filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_23669
import logging from collections import defaultdict from copy import deepcopy from decimal import Decimal from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple from django.contrib.sites.models import Site from django.db import transaction from ..account.models import User from ..core import analytics from ..core.exceptions import AllocationError, InsufficientStock, InsufficientStockData from ..payment import ( ChargeStatus, CustomPaymentChoices, PaymentError, TransactionKind, gateway, ) from ..payment.models import Payment, Transaction from ..payment.utils import create_payment from ..warehouse.management import ( deallocate_stock, deallocate_stock_for_order, decrease_stock, get_order_lines_with_track_inventory, ) from ..warehouse.models import Stock from . import ( FulfillmentLineData, FulfillmentStatus, OrderLineData, OrderStatus, events, utils, ) from .events import ( draft_order_created_from_replace_event, fulfillment_refunded_event, fulfillment_replaced_event, order_replacement_created, order_returned_event, ) from .models import Fulfillment, FulfillmentLine, Order, OrderLine from .notifications import ( send_fulfillment_confirmation_to_customer, send_order_canceled_confirmation, send_order_confirmed, send_order_refunded_confirmation, send_payment_confirmation, ) from .utils import ( order_line_needs_automatic_fulfillment, recalculate_order, restock_fulfillment_lines, update_order_status, ) if TYPE_CHECKING: from ..plugins.manager import PluginsManager from ..warehouse.models import Warehouse logger = logging.getLogger(__name__) OrderLineIDType = int QuantityType = int def order_created( order: "Order", user: "User", manager: "PluginsManager", from_draft: bool = False ): events.order_created_event(order=order, user=user, from_draft=from_draft) manager.order_created(order) payment = order.get_last_payment() if payment: if order.is_captured(): order_captured( order=order, user=user, amount=payment.total, payment=payment, manager=manager, ) elif order.is_pre_authorized(): order_authorized( order=order, user=user, amount=payment.total, payment=payment, manager=manager, ) site_settings = Site.objects.get_current().settings if site_settings.automatically_confirm_all_new_orders: order_confirmed(order, user, manager) def order_confirmed( order: "Order", user: "User", manager: "PluginsManager", send_confirmation_email: bool = False, ): """Order confirmed. Trigger event, plugin hooks and optionally confirmation email. """ events.order_confirmed_event(order=order, user=user) manager.order_confirmed(order) if send_confirmation_email: send_order_confirmed(order, user, manager) def handle_fully_paid_order( manager: "PluginsManager", order: "Order", user: Optional["User"] = None ): events.order_fully_paid_event(order=order, user=user) if order.get_customer_email(): send_payment_confirmation(order, manager) if utils.order_needs_automatic_fulfillment(order): automatically_fulfill_digital_lines(order, manager) try: analytics.report_order(order.tracking_client_id, order) except Exception: # Analytics failing should not abort the checkout flow logger.exception("Recording order in analytics failed") manager.order_fully_paid(order) manager.order_updated(order) @transaction.atomic def cancel_order(order: "Order", user: Optional["User"], manager: "PluginsManager"): """Cancel order. Release allocation of unfulfilled order items. """ events.order_canceled_event(order=order, user=user) deallocate_stock_for_order(order) order.status = OrderStatus.CANCELED order.save(update_fields=["status"]) manager.order_cancelled(order) manager.order_updated(order) send_order_canceled_confirmation(order, user, manager) def order_refunded( order: "Order", user: Optional["User"], amount: "Decimal", payment: "Payment", manager: "PluginsManager", ): events.payment_refunded_event( order=order, user=user, amount=amount, payment=payment ) manager.order_updated(order) send_order_refunded_confirmation(order, user, amount, payment.currency, manager) def order_voided( order: "Order", user: "User", payment: "Payment", manager: "PluginsManager" ): events.payment_voided_event(order=order, user=user, payment=payment) manager.order_updated(order) def order_returned( order: "Order", user: Optional["User"], returned_lines: List[Tuple[QuantityType, OrderLine]], manager: "PluginsManager", ): order_returned_event(order=order, user=user, returned_lines=returned_lines) update_order_status(order) manager.order_updated(order) @transaction.atomic def order_fulfilled( fulfillments: List["Fulfillment"], user: "User", fulfillment_lines: List["FulfillmentLine"], manager: "PluginsManager", notify_customer=True, ): order = fulfillments[0].order update_order_status(order) events.fulfillment_fulfilled_items_event( order=order, user=user, fulfillment_lines=fulfillment_lines ) manager.order_updated(order) for fulfillment in fulfillments: manager.fulfillment_created(fulfillment) if order.status == OrderStatus.FULFILLED: manager.order_fulfilled(order) if notify_customer: for fulfillment in fulfillments: send_fulfillment_confirmation_to_customer(order, fulfillment, user, manager) def order_shipping_updated(order: "Order", manager: "PluginsManager"): recalculate_order(order) manager.order_updated(order) def order_authorized( order: "Order", user: Optional["User"], amount: "Decimal", payment: "Payment", manager: "PluginsManager", ): events.payment_authorized_event( order=order, user=user, amount=amount, payment=payment ) manager.order_updated(order) def order_captured( order: "Order", user: Optional["User"], amount: "Decimal", payment: "Payment", manager: "PluginsManager", ): events.payment_captured_event( order=order, user=user, amount=amount, payment=payment ) manager.order_updated(order) if order.is_fully_paid(): handle_fully_paid_order(manager, order, user) def fulfillment_tracking_updated( fulfillment: "Fulfillment", user: "User", tracking_number: str, manager: "PluginsManager", ): events.fulfillment_tracking_updated_event( order=fulfillment.order, user=user, tracking_number=tracking_number, fulfillment=fulfillment, ) manager.order_updated(fulfillment.order) @transaction.atomic def cancel_fulfillment( fulfillment: "Fulfillment", user: "User", warehouse: "Warehouse", manager: "PluginsManager", ): """Cancel fulfillment. Return products to corresponding stocks. """ fulfillment = Fulfillment.objects.select_for_update().get(pk=fulfillment.pk) restock_fulfillment_lines(fulfillment, warehouse) events.fulfillment_canceled_event( order=fulfillment.order, user=user, fulfillment=fulfillment ) events.fulfillment_restocked_items_event( order=fulfillment.order, user=user, fulfillment=fulfillment, warehouse_pk=warehouse.pk, ) fulfillment.status = FulfillmentStatus.CANCELED fulfillment.save(update_fields=["status"]) update_order_status(fulfillment.order) manager.order_updated(fulfillment.order) @transaction.atomic def mark_order_as_paid( order: "Order", request_user: "User", manager: "PluginsManager", external_reference: Optional[str] = None, ): """Mark order as paid. Allows to create a payment for an order without actually performing any payment by the gateway. """ payment = create_payment( gateway=CustomPaymentChoices.MANUAL, payment_token="", currency=order.total.gross.currency, email=order.user_email, total=order.total.gross.amount, order=order, ) payment.charge_status = ChargeStatus.FULLY_CHARGED payment.captured_amount = order.total.gross.amount payment.save(update_fields=["captured_amount", "charge_status", "modified"]) Transaction.objects.create( payment=payment, action_required=False, kind=TransactionKind.EXTERNAL, token=external_reference or "", is_success=True, amount=order.total.gross.amount, currency=order.total.gross.currency, searchable_key=external_reference or "", gateway_response={}, ) events.order_manually_marked_as_paid_event( order=order, user=request_user, transaction_reference=external_reference ) manager.order_fully_paid(order) manager.order_updated(order) def clean_mark_order_as_paid(order: "Order"): """Check if an order can be marked as paid.""" if order.payments.exists(): raise PaymentError( "Orders with payments can not be manually marked as paid.", ) @transaction.atomic def fulfill_order_lines(order_lines_info: Iterable["OrderLineData"]): """Fulfill order line with given quantity.""" lines_to_decrease_stock = get_order_lines_with_track_inventory(order_lines_info) if lines_to_decrease_stock: decrease_stock(lines_to_decrease_stock) order_lines = [] for line_info in order_lines_info: line = line_info.line line.quantity_fulfilled += line_info.quantity order_lines.append(line) OrderLine.objects.bulk_update(order_lines, ["quantity_fulfilled"]) @transaction.atomic def automatically_fulfill_digital_lines(order: "Order", manager: "PluginsManager"): """Fulfill all digital lines which have enabled automatic fulfillment setting. Send confirmation email afterward. """ digital_lines = order.lines.filter( is_shipping_required=False, variant__digital_content__isnull=False ) digital_lines = digital_lines.prefetch_related("variant__digital_content") if not digital_lines: return fulfillment, _ = Fulfillment.objects.get_or_create(order=order) fulfillments = [] lines_info = [] for line in digital_lines: if not order_line_needs_automatic_fulfillment(line): continue variant = line.variant if variant: digital_content = variant.digital_content digital_content.urls.create(line=line) quantity = line.quantity fulfillments.append( FulfillmentLine(fulfillment=fulfillment, order_line=line, quantity=quantity) ) warehouse_pk = line.allocations.first().stock.warehouse.pk # type: ignore lines_info.append( OrderLineData( line=line, quantity=quantity, variant=line.variant, warehouse_pk=warehouse_pk, ) ) FulfillmentLine.objects.bulk_create(fulfillments) fulfill_order_lines(lines_info) send_fulfillment_confirmation_to_customer( order, fulfillment, user=order.user, manager=manager ) update_order_status(order) def _create_fulfillment_lines( fulfillment: Fulfillment, warehouse_pk: str, lines_data: List[Dict], channel_slug: str, ) -> List[FulfillmentLine]: """Modify stocks and allocations. Return list of unsaved FulfillmentLines. Args: fulfillment (Fulfillment): Fulfillment to create lines warehouse_pk (str): Warehouse to fulfill order. lines_data (List[Dict]): List with information from which system create FulfillmentLines. Example: [ { "order_line": (OrderLine), "quantity": (int), }, ... ] channel_slug (str): Channel for which fulfillment lines should be created. Return: List[FulfillmentLine]: Unsaved fulfillmet lines created for this fulfillment based on information form `lines` Raise: InsufficientStock: If system hasn't containt enough item in stock for any line. """ lines = [line_data["order_line"] for line_data in lines_data] variants = [line.variant for line in lines] stocks = ( Stock.objects.for_channel(channel_slug) .filter(warehouse_id=warehouse_pk, product_variant__in=variants) .select_related("product_variant") ) variant_to_stock: Dict[str, List[Stock]] = defaultdict(list) for stock in stocks: variant_to_stock[stock.product_variant_id].append(stock) insufficient_stocks = [] fulfillment_lines = [] lines_info = [] for line in lines_data: quantity = line["quantity"] order_line = line["order_line"] if quantity > 0: line_stocks = variant_to_stock.get(order_line.variant_id) if line_stocks is None: error_data = InsufficientStockData( variant=order_line.variant, order_line=order_line, warehouse_pk=warehouse_pk, ) insufficient_stocks.append(error_data) continue stock = line_stocks[0] lines_info.append( OrderLineData( line=order_line, quantity=quantity, variant=order_line.variant, warehouse_pk=warehouse_pk, ) ) if order_line.is_digital: order_line.variant.digital_content.urls.create(line=order_line) fulfillment_lines.append( FulfillmentLine( order_line=order_line, fulfillment=fulfillment, quantity=quantity, stock=stock, ) ) if insufficient_stocks: raise InsufficientStock(insufficient_stocks) if lines_info: fulfill_order_lines(lines_info) return fulfillment_lines @transaction.atomic() def create_fulfillments( requester: "User", order: "Order", fulfillment_lines_for_warehouses: Dict, manager: "PluginsManager", notify_customer: bool = True, ) -> List[Fulfillment]: """Fulfill order. Function create fulfillments with lines. Next updates Order based on created fulfillments. Args: requester (User): Requester who trigger this action. order (Order): Order to fulfill fulfillment_lines_for_warehouses (Dict): Dict with information from which system create fulfillments. Example: { (Warehouse.pk): [ { "order_line": (OrderLine), "quantity": (int), }, ... ] } manager (PluginsManager): Base manager for handling plugins logic. notify_customer (bool): If `True` system send email about fulfillments to customer. Return: List[Fulfillment]: Fulfillmet with lines created for this order based on information form `fulfillment_lines_for_warehouses` Raise: InsufficientStock: If system hasn't containt enough item in stock for any line. """ fulfillments: List[Fulfillment] = [] fulfillment_lines: List[FulfillmentLine] = [] for warehouse_pk in fulfillment_lines_for_warehouses: fulfillment = Fulfillment.objects.create(order=order) fulfillments.append(fulfillment) fulfillment_lines.extend( _create_fulfillment_lines( fulfillment, warehouse_pk, fulfillment_lines_for_warehouses[warehouse_pk], order.channel.slug, ) ) FulfillmentLine.objects.bulk_create(fulfillment_lines) transaction.on_commit( lambda: order_fulfilled( fulfillments, requester, fulfillment_lines, manager, notify_customer, ) ) return fulfillments def _get_fulfillment_line_if_exists( fulfillment_lines: List[FulfillmentLine], order_line_id, stock_id=None ): for line in fulfillment_lines: if line.order_line_id == order_line_id and line.stock_id == stock_id: return line return None def _get_fulfillment_line( target_fulfillment: Fulfillment, lines_in_target_fulfillment: List[FulfillmentLine], order_line_id: int, stock_id: Optional[int] = None, ) -> Tuple[FulfillmentLine, bool]: """Get fulfillment line if extists or create new fulfillment line object.""" # Check if line for order_line_id and stock_id does not exist in DB. moved_line = _get_fulfillment_line_if_exists( lines_in_target_fulfillment, order_line_id, stock_id, ) fulfillment_line_existed = True if not moved_line: # Create new not saved FulfillmentLine object and assign it to target # fulfillment fulfillment_line_existed = False moved_line = FulfillmentLine( fulfillment=target_fulfillment, order_line_id=order_line_id, stock_id=stock_id, quantity=0, ) return moved_line, fulfillment_line_existed @transaction.atomic() def _move_order_lines_to_target_fulfillment( order_lines_to_move: List[OrderLineData], lines_in_target_fulfillment: List[FulfillmentLine], target_fulfillment: Fulfillment, ): """Move order lines with given quantity to the target fulfillment.""" fulfillment_lines_to_create: List[FulfillmentLine] = [] fulfillment_lines_to_update: List[FulfillmentLine] = [] order_lines_to_update: List[OrderLine] = [] lines_to_dellocate: List[OrderLineData] = [] for line_data in order_lines_to_move: line_to_move = line_data.line quantity_to_move = line_data.quantity moved_line, fulfillment_line_existed = _get_fulfillment_line( target_fulfillment=target_fulfillment, lines_in_target_fulfillment=lines_in_target_fulfillment, order_line_id=line_to_move.id, stock_id=None, ) # calculate the quantity fulfilled/unfulfilled to move unfulfilled_to_move = min(line_to_move.quantity_unfulfilled, quantity_to_move) quantity_to_move -= unfulfilled_to_move line_to_move.quantity_fulfilled += unfulfilled_to_move moved_line.quantity += unfulfilled_to_move # update current lines with new value of quantity order_lines_to_update.append(line_to_move) if moved_line.quantity > 0 and not fulfillment_line_existed: # If this is new type of (order_line, stock) then we create new fulfillment # line fulfillment_lines_to_create.append(moved_line) elif fulfillment_line_existed: # if target fulfillment already have the same line, we just update the # quantity fulfillment_lines_to_update.append(moved_line) line_allocations_exists = line_to_move.allocations.exists() if line_allocations_exists: lines_to_dellocate.append( OrderLineData(line=line_to_move, quantity=unfulfilled_to_move) ) if lines_to_dellocate: try: deallocate_stock(lines_to_dellocate) except AllocationError as e: logger.warning( f"Unable to deallocate stock for line {', '.join(e.order_lines)}." ) # update the fulfillment lines with new values FulfillmentLine.objects.bulk_update(fulfillment_lines_to_update, ["quantity"]) FulfillmentLine.objects.bulk_create(fulfillment_lines_to_create) OrderLine.objects.bulk_update(order_lines_to_update, ["quantity_fulfilled"]) @transaction.atomic() def _move_fulfillment_lines_to_target_fulfillment( fulfillment_lines_to_move: List[FulfillmentLineData], lines_in_target_fulfillment: List[FulfillmentLine], target_fulfillment: Fulfillment, ): """Move fulfillment lines with given quantity to the target fulfillment.""" fulfillment_lines_to_create: List[FulfillmentLine] = [] fulfillment_lines_to_update: List[FulfillmentLine] = [] empty_fulfillment_lines_to_delete: List[FulfillmentLine] = [] for fulfillment_line_data in fulfillment_lines_to_move: fulfillment_line = fulfillment_line_data.line quantity_to_move = fulfillment_line_data.quantity moved_line, fulfillment_line_existed = _get_fulfillment_line( target_fulfillment=target_fulfillment, lines_in_target_fulfillment=lines_in_target_fulfillment, order_line_id=fulfillment_line.order_line_id, stock_id=fulfillment_line.stock_id, ) # calculate the quantity fulfilled/unfulfilled/to move fulfilled_to_move = min(fulfillment_line.quantity, quantity_to_move) quantity_to_move -= fulfilled_to_move moved_line.quantity += fulfilled_to_move fulfillment_line.quantity -= fulfilled_to_move if fulfillment_line.quantity == 0: # the fulfillment line without any items will be deleted empty_fulfillment_lines_to_delete.append(fulfillment_line) else: # update with new quantity value fulfillment_lines_to_update.append(fulfillment_line) if moved_line.quantity > 0 and not fulfillment_line_existed: # If this is new type of (order_line, stock) then we create new fulfillment # line fulfillment_lines_to_create.append(moved_line) elif fulfillment_line_existed: # if target fulfillment already have the same line, we just update the # quantity fulfillment_lines_to_update.append(moved_line) # update the fulfillment lines with new values FulfillmentLine.objects.bulk_update(fulfillment_lines_to_update, ["quantity"]) FulfillmentLine.objects.bulk_create(fulfillment_lines_to_create) # Remove the empty fulfillment lines FulfillmentLine.objects.filter( id__in=[f.id for f in empty_fulfillment_lines_to_delete] ).delete() def create_refund_fulfillment( requester: Optional["User"], order, payment, order_lines_to_refund: List[OrderLineData], fulfillment_lines_to_refund: List[FulfillmentLineData], manager: "PluginsManager", amount=None, refund_shipping_costs=False, ): """Proceed with all steps required for refunding products. Calculate refunds for products based on the order's order lines and fulfillment lines. The logic takes the list of order lines, fulfillment lines, and their quantities which is used to create the refund fulfillment. The stock for unfulfilled lines will be deallocated. It creates only single refund fulfillment for each order. Calling the method N-time will increase the quantity of the already refunded line. The refund fulfillment can have assigned lines with the same products but with the different stocks. """ _process_refund( requester=requester, order=order, payment=payment, order_lines_to_refund=order_lines_to_refund, fulfillment_lines_to_refund=fulfillment_lines_to_refund, amount=amount, refund_shipping_costs=refund_shipping_costs, manager=manager, ) with transaction.atomic(): refunded_fulfillment, _ = Fulfillment.objects.get_or_create( status=FulfillmentStatus.REFUNDED, order=order ) already_refunded_lines = list(refunded_fulfillment.lines.all()) _move_order_lines_to_target_fulfillment( order_lines_to_move=order_lines_to_refund, lines_in_target_fulfillment=already_refunded_lines, target_fulfillment=refunded_fulfillment, ) _move_fulfillment_lines_to_target_fulfillment( fulfillment_lines_to_move=fulfillment_lines_to_refund, lines_in_target_fulfillment=already_refunded_lines, target_fulfillment=refunded_fulfillment, ) Fulfillment.objects.filter(order=order, lines=None).delete() return refunded_fulfillment def _populate_replace_order_fields(original_order: "Order"): replace_order = Order() replace_order.status = OrderStatus.DRAFT replace_order.user_id = original_order.user_id replace_order.language_code = original_order.language_code replace_order.user_email = original_order.user_email replace_order.currency = original_order.currency replace_order.channel = original_order.channel replace_order.display_gross_prices = original_order.display_gross_prices replace_order.redirect_url = original_order.redirect_url if original_order.billing_address: original_order.billing_address.pk = None replace_order.billing_address = original_order.billing_address replace_order.billing_address.save() if original_order.shipping_address: original_order.shipping_address.pk = None replace_order.shipping_address = original_order.shipping_address replace_order.shipping_address.save() replace_order.save() original_order.refresh_from_db() return replace_order @transaction.atomic def create_replace_order( requester: Optional["User"], original_order: "Order", order_lines_to_replace: List[OrderLineData], fulfillment_lines_to_replace: List[FulfillmentLineData], ) -> "Order": """Create draft order with lines to replace.""" replace_order = _populate_replace_order_fields(original_order) order_line_to_create: Dict[OrderLineIDType, OrderLine] = dict() # iterate over lines without fulfillment to get the items for replace. # deepcopy to not lose the refence for lines assigned to original order for line_data in deepcopy(order_lines_to_replace): order_line = line_data.line order_line_id = order_line.pk order_line.pk = None order_line.order = replace_order order_line.quantity = line_data.quantity order_line.quantity_fulfilled = 0 # we set order_line_id as a key to use it for iterating over fulfillment items order_line_to_create[order_line_id] = order_line order_lines_with_fulfillment = OrderLine.objects.in_bulk( [line_data.line.order_line_id for line_data in fulfillment_lines_to_replace] ) for fulfillment_line_data in fulfillment_lines_to_replace: fulfillment_line = fulfillment_line_data.line order_line_id = fulfillment_line.order_line_id # if order_line_id exists in order_line_to_create, it means that we already have # prepared new order_line for this fulfillment. In that case we need to increase # quantity amount of new order_line by fulfillment_line.quantity if order_line_id in order_line_to_create: order_line_to_create[ order_line_id ].quantity += fulfillment_line_data.quantity continue order_line_from_fulfillment = order_lines_with_fulfillment.get(order_line_id) order_line = order_line_from_fulfillment # type: ignore order_line_id = order_line.pk order_line.pk = None order_line.order = replace_order order_line.quantity = fulfillment_line_data.quantity order_line.quantity_fulfilled = 0 order_line_to_create[order_line_id] = order_line lines_to_create = order_line_to_create.values() OrderLine.objects.bulk_create(lines_to_create) recalculate_order(replace_order) draft_order_created_from_replace_event( draft_order=replace_order, original_order=original_order, user=requester, lines=[(line.quantity, line) for line in lines_to_create], ) return replace_order def _move_lines_to_return_fulfillment( order_lines: List[OrderLineData], fulfillment_lines: List[FulfillmentLineData], fulfillment_status: str, order: "Order", ) -> Fulfillment: target_fulfillment, _ = Fulfillment.objects.get_or_create( status=fulfillment_status, order=order ) lines_in_target_fulfillment = list(target_fulfillment.lines.all()) _move_order_lines_to_target_fulfillment( order_lines_to_move=order_lines, lines_in_target_fulfillment=lines_in_target_fulfillment, target_fulfillment=target_fulfillment, ) fulfillment_lines_already_refunded = FulfillmentLine.objects.filter( fulfillment__order=order, fulfillment__status=FulfillmentStatus.REFUNDED ).values_list("id", flat=True) refunded_fulfillment_lines_to_return = [] fulfillment_lines_to_return = [] for line_data in fulfillment_lines: if line_data.line.id in fulfillment_lines_already_refunded: # item already refunded should be moved to fulfillment with status # REFUNDED_AND_RETURNED refunded_fulfillment_lines_to_return.append(line_data) else: # the rest of the items should be moved to target fulfillment fulfillment_lines_to_return.append(line_data) _move_fulfillment_lines_to_target_fulfillment( fulfillment_lines_to_move=fulfillment_lines_to_return, lines_in_target_fulfillment=lines_in_target_fulfillment, target_fulfillment=target_fulfillment, ) if refunded_fulfillment_lines_to_return: refund_and_return_fulfillment, _ = Fulfillment.objects.get_or_create( status=FulfillmentStatus.REFUNDED_AND_RETURNED, order=order ) lines_in_target_fulfillment = list(refund_and_return_fulfillment.lines.all()) _move_fulfillment_lines_to_target_fulfillment( fulfillment_lines_to_move=refunded_fulfillment_lines_to_return, lines_in_target_fulfillment=lines_in_target_fulfillment, target_fulfillment=refund_and_return_fulfillment, ) return target_fulfillment def _move_lines_to_replace_fulfillment( order_lines_to_replace: List[OrderLineData], fulfillment_lines_to_replace: List[FulfillmentLineData], order: "Order", ) -> Fulfillment: target_fulfillment, _ = Fulfillment.objects.get_or_create( status=FulfillmentStatus.REPLACED, order=order ) lines_in_target_fulfillment = list(target_fulfillment.lines.all()) _move_order_lines_to_target_fulfillment( order_lines_to_move=order_lines_to_replace, lines_in_target_fulfillment=lines_in_target_fulfillment, target_fulfillment=target_fulfillment, ) _move_fulfillment_lines_to_target_fulfillment( fulfillment_lines_to_move=fulfillment_lines_to_replace, lines_in_target_fulfillment=lines_in_target_fulfillment, target_fulfillment=target_fulfillment, ) return target_fulfillment @transaction.atomic def create_return_fulfillment( requester: Optional["User"], order: "Order", order_lines: List[OrderLineData], fulfillment_lines: List[FulfillmentLineData], manager: "PluginsManager", refund: bool = False, ) -> Fulfillment: status = FulfillmentStatus.RETURNED if refund: status = FulfillmentStatus.REFUNDED_AND_RETURNED with transaction.atomic(): return_fulfillment = _move_lines_to_return_fulfillment( order_lines=order_lines, fulfillment_lines=fulfillment_lines, fulfillment_status=status, order=order, ) returned_lines: Dict[OrderLineIDType, Tuple[QuantityType, OrderLine]] = dict() order_lines_with_fulfillment = OrderLine.objects.in_bulk( [line_data.line.order_line_id for line_data in fulfillment_lines] ) for line_data in order_lines: returned_lines[line_data.line.id] = (line_data.quantity, line_data.line) for line_data in fulfillment_lines: order_line = order_lines_with_fulfillment.get(line_data.line.order_line_id) returned_line = returned_lines.get(order_line.id) # type: ignore if returned_line: quantity, line = returned_line quantity += line_data.quantity returned_lines[order_line.id] = (quantity, line) # type: ignore else: returned_lines[order_line.id] = ( # type: ignore line_data.quantity, order_line, ) returned_lines_list = list(returned_lines.values()) transaction.on_commit( lambda: order_returned( order, user=requester, returned_lines=returned_lines_list, manager=manager, ) ) return return_fulfillment @transaction.atomic def process_replace( requester: Optional["User"], order: "Order", order_lines: List[OrderLineData], fulfillment_lines: List[FulfillmentLineData], ) -> Tuple[Fulfillment, Optional["Order"]]: """Create replace fulfillment and new draft order. Move all requested lines to fulfillment with status replaced. Based on original order create the draft order with all user details, and requested lines. """ replace_fulfillment = _move_lines_to_replace_fulfillment( order_lines_to_replace=order_lines, fulfillment_lines_to_replace=fulfillment_lines, order=order, ) new_order = create_replace_order( requester=requester, original_order=order, order_lines_to_replace=order_lines, fulfillment_lines_to_replace=fulfillment_lines, ) replaced_lines = [(line.quantity, line) for line in new_order.lines.all()] fulfillment_replaced_event( order=order, user=requester, replaced_lines=replaced_lines, ) order_replacement_created( original_order=order, replace_order=new_order, user=requester, ) return replace_fulfillment, new_order def create_fulfillments_for_returned_products( requester: Optional["User"], order: "Order", payment: Optional[Payment], order_lines: List[OrderLineData], fulfillment_lines: List[FulfillmentLineData], manager: "PluginsManager", refund: bool = False, amount: Optional[Decimal] = None, refund_shipping_costs=False, ) -> Tuple[Fulfillment, Optional[Fulfillment], Optional[Order]]: """Process the request for replacing or returning the products. Process the refund when the refund is set to True. The amount of refund will be calculated for all lines with statuses different from refunded. The lines which are set to replace will not be included in the refund amount. If the amount is provided, the refund will be used for this amount. If refund_shipping_costs is True, the calculated refund amount will include shipping costs. All lines with replace set to True will be used to create a new draft order, with the same order details as the original order. These lines will be moved to fulfillment with status replaced. The events with relation to new order will be created. All lines with replace set to False will be moved to fulfillment with status returned/refunded_and_returned - depends on refund flag and current line status. If the fulfillment line has refunded status it will be moved to returned_and_refunded """ return_order_lines = [data for data in order_lines if not data.replace] return_fulfillment_lines = [data for data in fulfillment_lines if not data.replace] if refund and payment: _process_refund( requester=requester, order=order, payment=payment, order_lines_to_refund=return_order_lines, fulfillment_lines_to_refund=return_fulfillment_lines, amount=amount, refund_shipping_costs=refund_shipping_costs, manager=manager, ) with transaction.atomic(): replace_order_lines = [data for data in order_lines if data.replace] replace_fulfillment_lines = [data for data in fulfillment_lines if data.replace] replace_fulfillment, new_order = None, None if replace_order_lines or replace_fulfillment_lines: replace_fulfillment, new_order = process_replace( requester=requester, order=order, order_lines=replace_order_lines, fulfillment_lines=replace_fulfillment_lines, ) return_fulfillment = create_return_fulfillment( requester=requester, order=order, order_lines=return_order_lines, fulfillment_lines=return_fulfillment_lines, manager=manager, refund=refund, ) Fulfillment.objects.filter(order=order, lines=None).delete() return return_fulfillment, replace_fulfillment, new_order def _calculate_refund_amount( return_order_lines: List[OrderLineData], return_fulfillment_lines: List[FulfillmentLineData], lines_to_refund: Dict[OrderLineIDType, Tuple[QuantityType, OrderLine]], ) -> Decimal: refund_amount = Decimal(0) for line_data in return_order_lines: refund_amount += line_data.quantity * line_data.line.unit_price_gross_amount lines_to_refund[line_data.line.id] = (line_data.quantity, line_data.line) if not return_fulfillment_lines: return refund_amount order_lines_with_fulfillment = OrderLine.objects.in_bulk( [line_data.line.order_line_id for line_data in return_fulfillment_lines] ) for line_data in return_fulfillment_lines: # skip lines which were already refunded if line_data.line.fulfillment.status == FulfillmentStatus.REFUNDED: continue order_line = order_lines_with_fulfillment[line_data.line.order_line_id] refund_amount += line_data.quantity * order_line.unit_price_gross_amount data_from_all_refunded_lines = lines_to_refund.get(order_line.id) if data_from_all_refunded_lines: quantity, line = data_from_all_refunded_lines quantity += line_data.quantity lines_to_refund[order_line.id] = (quantity, line) else: lines_to_refund[order_line.id] = (line_data.quantity, order_line) return refund_amount def _process_refund( requester: Optional["User"], order: "Order", payment: Payment, order_lines_to_refund: List[OrderLineData], fulfillment_lines_to_refund: List[FulfillmentLineData], amount: Optional[Decimal], refund_shipping_costs: bool, manager: "PluginsManager", ): lines_to_refund: Dict[OrderLineIDType, Tuple[QuantityType, OrderLine]] = dict() refund_amount = _calculate_refund_amount( order_lines_to_refund, fulfillment_lines_to_refund, lines_to_refund ) if amount is None: amount = refund_amount # we take into consideration the shipping costs only when amount is not # provided. if refund_shipping_costs: amount += order.shipping_price_gross_amount if amount: amount = min(payment.captured_amount, amount) gateway.refund(payment, manager, amount) order_refunded(order, requester, amount, payment, manager=manager) fulfillment_refunded_event( order=order, user=requester, refunded_lines=list(lines_to_refund.values()), amount=amount, shipping_costs_included=refund_shipping_costs, )
the-stack_0_23670
import io import salt.proxy.junos as junos from tests.support.mixins import LoaderModuleMockMixin from tests.support.mock import ANY, patch from tests.support.unit import TestCase, skipIf try: from jnpr.junos.device import Device # pylint: disable=unused-import from jnpr.junos.exception import ConnectError import jxmlease # pylint: disable=unused-import HAS_JUNOS = True except ImportError: HAS_JUNOS = False @skipIf(not HAS_JUNOS, "The junos-eznc and jxmlease modules are required") class JunosProxyTestCase(TestCase, LoaderModuleMockMixin): def setup_loader_modules(self): return {junos: {"DETAILS": {}, "__pillar__": {}}} def setUp(self): self.opts = { "proxy": { "username": "xxxx", "password]": "xxx", "host": "junos", "port": "960", } } @patch("ncclient.manager.connect") def test_init(self, mock_connect): junos.init(self.opts) self.assertTrue(junos.thisproxy.get("initialized")) mock_connect.assert_called_with( allow_agent=True, device_params={"name": "junos", "local": False, "use_filter": False}, host="junos", hostkey_verify=False, key_filename=None, password=None, port="960", sock_fd=None, ssh_config=ANY, username="xxxx", ) @patch("ncclient.manager.connect") def test_init_err(self, mock_connect): mock_connect.side_effect = ConnectError junos.init(self.opts) self.assertFalse(junos.thisproxy.get("initialized")) @patch("ncclient.manager.connect") def test_alive(self, mock_connect): junos.init(self.opts) junos.thisproxy["conn"]._conn._session._buffer = io.BytesIO() self.assertTrue(junos.alive(self.opts)) self.assertTrue(junos.thisproxy.get("initialized"))
the-stack_0_23671
""" Make a fasta file of all the proteins """ import os import sys import argparse from pppf_accessories import color from pppf_databases import connect_to_db, disconnect if __name__ == '__main__': parser = argparse.ArgumentParser(description="Sequences in the phage database not in a cluster") parser.add_argument('-p', help='phage database', required=True) parser.add_argument('-c', help='cluster database', required=True) parser.add_argument('-v', help='verbose output', action='store_true') args = parser.parse_args() pbc = connect_to_db(args.p, args.v) pcur = pbc.cursor() dbc = connect_to_db(args.c, args.v) ccur = dbc.cursor() cl = set() ex = ccur.execute("select protein_md5sum, cluster from md5cluster") for (m, c) in ex.fetchall(): cl.add(m) if args.v: sys.stderr.write(f"{color.GREEN}Loaded {len(cl)} proteins{color.ENDC}\n") ex = pcur.execute("select protein_md5sum, protein_sequence from protein_sequence") n = 0 for (m, s) in ex.fetchall(): n += 1 if m not in cl: print(f">{m}\n{s}") if args.v: sys.stderr.write(f"{color.GREEN}Tested {n} proteins{color.ENDC}\n")
the-stack_0_23674
"""Downloads filings from the EDGAR database. Examples: simple: singledownload("edgar/data/1645148/0001213900-15-004775.txt") for slow internet connections: singledownload("edgar/data/1645148/0001213900-15-004775.txt", timeout=120) with different folder structure: singledownload("edgar/data/1645148/0001213900-15-004775.txt", folder="myfolder/", sub="") """ import urllib.request import uuid import datetime import os def singledownload(url, edgar_url="https://www.sec.gov/Archives/", folder="data/", sub="filings/", timeout=30): """Download filings from the EDGAR database. Args: url (str): Relative path on the EDGAR server. edgar_url (str): URL to EDGAR archive parent folder on server. Defaults to "https://www.sec.gov/Archives/". folder (str): Path to working directory. Defaults to "data/". sub (str): Path to subdirectory in working directory. Defaults to "filings/". timeout (int): Number of seconds to wait for the download to complete before the download attempt is counted as failed. Defaults to 30 seconds. Returns: result (list): Information on which was downloaded, the local filename and the date and time the file was downloaded. Raises: None """ full_url = edgar_url + url fname = str(uuid.uuid4()) + ".txt" accessed = datetime.datetime.now().strftime('%Y%m%d_%H%M%S') try: txt = urllib.request.urlopen(full_url, timeout=timeout).read() except Exception as e: return [url, e, "Error"] if os.path.isdir(folder + sub) is False: try: os.makedirs(folder + sub) except Exception as e: print(e) try: f = open(folder + sub + fname, 'x') except Exception: f = open(folder + sub + fname, 'w+') f.write(txt.decode('utf-8')) f.close result = [url, fname, accessed] return result
the-stack_0_23676
import time import json import logging import requests import socket import threading from flask import request, Flask from werkzeug.middleware.dispatcher import DispatcherMiddleware from prometheus_client import make_wsgi_app from werkzeug.serving import make_server def wait_for_port(port, host="localhost", timeout=5.0): """Wait until a port starts accepting TCP connections. Args: port (int): Port number. host (str): Host address on which the port should exist. timeout (float): In seconds. How long to wait before raising errors. Raises: TimeoutError: The port isn't accepting connection after time specified in `timeout`. """ start_time = time.perf_counter() while True: try: with socket.create_connection((host, port), timeout=timeout): break except OSError as ex: time.sleep(0.01) if time.perf_counter() - start_time >= timeout: raise TimeoutError( "Waited too long for the port {} on host {} to start accepting " "connections.".format(port, host) ) from ex class ServerThread(threading.Thread): def __init__(self, master_addr, master_port, app): threading.Thread.__init__(self) self.srv = make_server(master_addr, master_port, app) self.ctx = app.app_context() self.ctx.push() def run(self): self.srv.serve_forever() def shutdown(self): self.srv.shutdown() def pick_n_free_ports(n: int): socks = [] for i in range(n): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("localhost", 0)) socks.append(sock) n_free_ports = [sock.getsockname()[1] for sock in socks] for sock in socks: sock.close() return n_free_ports def setup_app(slots: list, server_addr: str, server_port: int): # run http server app = Flask(__name__) app.use_reloader = False # type: ignore @app.route("/get_fuselib_server_addr", methods=["POST"]) def get_fuselib_server_addr(): req: dict = request.get_json(force=True) hostname: str = req["hostname"] rank: int = req["rank"] slots[rank] = hostname return json.dumps({"server_addr": server_addr, "server_port": server_port}) # Add prometheus wsgi middleware to route /metrics requests app.wsgi_app = DispatcherMiddleware(app.wsgi_app, {"/metrics": make_wsgi_app()}) # type: ignore return app def generate_and_broadcast_server_addr( master_addr, master_port, world_size: int, my_rank: int, proxies={ "http": None, "https": None, }, ): # import torch # torch.distributed.init_process_group(backend="gloo", init_method="tcp://{}:{}".format(master_addr, master_port), world_size=world_size, rank=my_rank) # if my_rank == 0: # objects = [pick_n_free_ports(1)[0]] # else: # objects = [None] # dist.broadcast_object_list(objects, src=0) # dist.destroy_process_group() # server_port = broadcast_objects[0] # return (master_addr, server_port) slots = [None] * world_size if my_rank == 0: server_addr = master_addr server_port = pick_n_free_ports(1)[0] slots[my_rank] = socket.gethostname() # type: ignore app = setup_app(slots, server_addr, server_port) server = ServerThread("0.0.0.0", master_port, app) server.start() while True: n_empty_slot = len([x for x in slots if x is None]) if n_empty_slot == 0: break time.sleep(1) server.shutdown() else: # Wait service discovery service ready timeout = time.time() + 60 # 60s timeout rsp = None wait_for_port(host=master_addr, port=master_port) while time.time() < timeout: try: with requests.session() as sess: rsp = sess.post( "http://{}:{}/get_fuselib_server_addr".format( master_addr, master_port ), json={"rank": my_rank, "hostname": socket.gethostname()}, proxies=proxies, timeout=timeout, ) except requests.exceptions.ConnectionError as ex: logging.info(ex) if rsp and rsp.status_code == 200: break time.sleep(1) if rsp is None or rsp.status_code != 200: raise RuntimeError("Waiting for service discovery service start timeout") server_addr = json.loads(rsp.content)["server_addr"] server_port = json.loads(rsp.content)["server_port"] return (master_addr, server_port, slots)
the-stack_0_23677
""" Tests the accuracy of the opt_einsum paths in addition to unit tests for the various path helper functions. """ import itertools import sys import numpy as np import pytest import opt_einsum as oe explicit_path_tests = { 'GEMM1': ([set('abd'), set('ac'), set('bdc')], set(''), { 'a': 1, 'b': 2, 'c': 3, 'd': 4 }), 'Inner1': ([set('abcd'), set('abc'), set('bc')], set(''), { 'a': 5, 'b': 2, 'c': 3, 'd': 4 }), } # note that these tests have no unique solution due to the chosen dimensions path_edge_tests = [ ['greedy', 'eb,cb,fb->cef', ((0, 2), (0, 1))], ['branch-all', 'eb,cb,fb->cef', ((0, 2), (0, 1))], ['branch-2', 'eb,cb,fb->cef', ((0, 2), (0, 1))], ['optimal', 'eb,cb,fb->cef', ((0, 2), (0, 1))], ['dp', 'eb,cb,fb->cef', ((1, 2), (0, 1))], ['greedy', 'dd,fb,be,cdb->cef', ((0, 3), (0, 1), (0, 1))], ['branch-all', 'dd,fb,be,cdb->cef', ((0, 3), (0, 1), (0, 1))], ['branch-2', 'dd,fb,be,cdb->cef', ((0, 3), (0, 1), (0, 1))], ['optimal', 'dd,fb,be,cdb->cef', ((0, 3), (0, 1), (0, 1))], ['optimal', 'dd,fb,be,cdb->cef', ((0, 3), (0, 1), (0, 1))], ['dp', 'dd,fb,be,cdb->cef', ((0, 3), (0, 2), (0, 1))], ['greedy', 'bca,cdb,dbf,afc->', ((1, 2), (0, 2), (0, 1))], ['branch-all', 'bca,cdb,dbf,afc->', ((1, 2), (0, 2), (0, 1))], ['branch-2', 'bca,cdb,dbf,afc->', ((1, 2), (0, 2), (0, 1))], ['optimal', 'bca,cdb,dbf,afc->', ((1, 2), (0, 2), (0, 1))], ['dp', 'bca,cdb,dbf,afc->', ((1, 2), (1, 2), (0, 1))], ['greedy', 'dcc,fce,ea,dbf->ab', ((1, 2), (0, 1), (0, 1))], ['branch-all', 'dcc,fce,ea,dbf->ab', ((1, 2), (0, 2), (0, 1))], ['branch-2', 'dcc,fce,ea,dbf->ab', ((1, 2), (0, 2), (0, 1))], ['optimal', 'dcc,fce,ea,dbf->ab', ((1, 2), (0, 2), (0, 1))], ['dp', 'dcc,fce,ea,dbf->ab', ((1, 2), (0, 2), (0, 1))], ] def check_path(test_output, benchmark, bypass=False): if not isinstance(test_output, list): return False if len(test_output) != len(benchmark): return False ret = True for pos in range(len(test_output)): ret &= isinstance(test_output[pos], tuple) ret &= test_output[pos] == benchmark[pos] return ret def assert_contract_order(func, test_data, max_size, benchmark): test_output = func(test_data[0], test_data[1], test_data[2], max_size) assert check_path(test_output, benchmark) def test_size_by_dict(): sizes_dict = {} for ind, val in zip('abcdez', [2, 5, 9, 11, 13, 0]): sizes_dict[ind] = val path_func = oe.helpers.compute_size_by_dict assert 1 == path_func('', sizes_dict) assert 2 == path_func('a', sizes_dict) assert 5 == path_func('b', sizes_dict) assert 0 == path_func('z', sizes_dict) assert 0 == path_func('az', sizes_dict) assert 0 == path_func('zbc', sizes_dict) assert 104 == path_func('aaae', sizes_dict) assert 12870 == path_func('abcde', sizes_dict) def test_flop_cost(): size_dict = {v: 10 for v in "abcdef"} # Loop over an array assert 10 == oe.helpers.flop_count("a", False, 1, size_dict) # Hadamard product (*) assert 10 == oe.helpers.flop_count("a", False, 2, size_dict) assert 100 == oe.helpers.flop_count("ab", False, 2, size_dict) # Inner product (+, *) assert 20 == oe.helpers.flop_count("a", True, 2, size_dict) assert 200 == oe.helpers.flop_count("ab", True, 2, size_dict) # Inner product x3 (+, *, *) assert 30 == oe.helpers.flop_count("a", True, 3, size_dict) # GEMM assert 2000 == oe.helpers.flop_count("abc", True, 2, size_dict) def test_bad_path_option(): with pytest.raises(KeyError): oe.contract("a,b,c", [1], [2], [3], optimize='optimall') def test_explicit_path(): x = oe.contract("a,b,c", [1], [2], [3], optimize=[(1, 2), (0, 1)]) assert x.item() == 6 def test_path_optimal(): test_func = oe.paths.optimal test_data = explicit_path_tests['GEMM1'] assert_contract_order(test_func, test_data, 5000, [(0, 2), (0, 1)]) assert_contract_order(test_func, test_data, 0, [(0, 1, 2)]) def test_path_greedy(): test_func = oe.paths.greedy test_data = explicit_path_tests['GEMM1'] assert_contract_order(test_func, test_data, 5000, [(0, 2), (0, 1)]) assert_contract_order(test_func, test_data, 0, [(0, 1, 2)]) def test_memory_paths(): expression = "abc,bdef,fghj,cem,mhk,ljk->adgl" views = oe.helpers.build_views(expression) # Test tiny memory limit path_ret = oe.contract_path(expression, *views, optimize="optimal", memory_limit=5) assert check_path(path_ret[0], [(0, 1, 2, 3, 4, 5)]) path_ret = oe.contract_path(expression, *views, optimize="greedy", memory_limit=5) assert check_path(path_ret[0], [(0, 1, 2, 3, 4, 5)]) # Check the possibilities, greedy is capped path_ret = oe.contract_path(expression, *views, optimize="optimal", memory_limit=-1) assert check_path(path_ret[0], [(0, 3), (0, 4), (0, 2), (0, 2), (0, 1)]) path_ret = oe.contract_path(expression, *views, optimize="greedy", memory_limit=-1) assert check_path(path_ret[0], [(0, 3), (0, 4), (0, 2), (0, 2), (0, 1)]) @pytest.mark.parametrize("alg,expression,order", path_edge_tests) def test_path_edge_cases(alg, expression, order): views = oe.helpers.build_views(expression) # Test tiny memory limit path_ret = oe.contract_path(expression, *views, optimize=alg) assert check_path(path_ret[0], order) def test_optimal_edge_cases(): # Edge test5 expression = 'a,ac,ab,ad,cd,bd,bc->' edge_test4 = oe.helpers.build_views(expression, dimension_dict={"a": 20, "b": 20, "c": 20, "d": 20}) path, path_str = oe.contract_path(expression, *edge_test4, optimize='greedy', memory_limit='max_input') assert check_path(path, [(0, 1), (0, 1, 2, 3, 4, 5)]) path, path_str = oe.contract_path(expression, *edge_test4, optimize='optimal', memory_limit='max_input') assert check_path(path, [(0, 1), (0, 1, 2, 3, 4, 5)]) def test_greedy_edge_cases(): expression = "abc,cfd,dbe,efa" dim_dict = {k: 20 for k in expression.replace(",", "")} tensors = oe.helpers.build_views(expression, dimension_dict=dim_dict) path, path_str = oe.contract_path(expression, *tensors, optimize='greedy', memory_limit='max_input') assert check_path(path, [(0, 1, 2, 3)]) path, path_str = oe.contract_path(expression, *tensors, optimize='greedy', memory_limit=-1) assert check_path(path, [(0, 1), (0, 2), (0, 1)]) def test_dp_edge_cases_dimension_1(): eq = 'nlp,nlq,pl->n' shapes = [(1, 1, 1), (1, 1, 1), (1, 1)] info = oe.contract_path(eq, *shapes, shapes=True, optimize='dp')[1] assert max(info.scale_list) == 3 def test_dp_edge_cases_all_singlet_indices(): eq = 'a,bcd,efg->' shapes = [(2, ), (2, 2, 2), (2, 2, 2)] info = oe.contract_path(eq, *shapes, shapes=True, optimize='dp')[1] assert max(info.scale_list) == 3 def test_custom_dp_can_optimize_for_outer_products(): eq = "a,b,abc->c" da, db, dc = 2, 2, 3 shapes = [(da, ), (db, ), (da, db, dc)] opt1 = oe.DynamicProgramming(search_outer=False) opt2 = oe.DynamicProgramming(search_outer=True) info1 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt1)[1] info2 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt2)[1] assert info2.opt_cost < info1.opt_cost def test_custom_dp_can_optimize_for_size(): eq, shapes = oe.helpers.rand_equation(10, 4, seed=43) opt1 = oe.DynamicProgramming(minimize='flops') opt2 = oe.DynamicProgramming(minimize='size') info1 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt1)[1] info2 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt2)[1] assert (info1.opt_cost < info2.opt_cost) assert (info1.largest_intermediate > info2.largest_intermediate) def test_custom_dp_can_set_cost_cap(): eq, shapes = oe.helpers.rand_equation(5, 3, seed=42) opt1 = oe.DynamicProgramming(cost_cap=True) opt2 = oe.DynamicProgramming(cost_cap=False) opt3 = oe.DynamicProgramming(cost_cap=100) info1 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt1)[1] info2 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt2)[1] info3 = oe.contract_path(eq, *shapes, shapes=True, optimize=opt3)[1] assert info1.opt_cost == info2.opt_cost == info3.opt_cost def test_dp_errors_when_no_contractions_found(): eq, shapes, size_dict = oe.helpers.rand_equation(10, 3, seed=42, return_size_dict=True) # first get the actual minimum cost opt = oe.DynamicProgramming(minimize='size') path, info = oe.contract_path(eq, *shapes, shapes=True, optimize=opt) mincost = info.largest_intermediate # check we can still find it without minimizing size explicitly oe.contract_path(eq, *shapes, shapes=True, memory_limit=mincost, optimize='dp') # but check just below this threshold raises with pytest.raises(RuntimeError): oe.contract_path(eq, *shapes, shapes=True, memory_limit=mincost - 1, optimize='dp') @pytest.mark.parametrize("optimize", ['greedy', 'branch-2', 'branch-all', 'optimal', 'dp']) def test_can_optimize_outer_products(optimize): a, b, c = [np.random.randn(10, 10) for _ in range(3)] d = np.random.randn(10, 2) assert oe.contract_path("ab,cd,ef,fg", a, b, c, d, optimize=optimize)[0] == [(2, 3), (0, 2), (0, 1)] @pytest.mark.parametrize('num_symbols', [2, 3, 26, 26 + 26, 256 - 140, 300]) def test_large_path(num_symbols): symbols = ''.join(oe.get_symbol(i) for i in range(num_symbols)) dimension_dict = dict(zip(symbols, itertools.cycle([2, 3, 4]))) expression = ','.join(symbols[t:t + 2] for t in range(num_symbols - 1)) tensors = oe.helpers.build_views(expression, dimension_dict=dimension_dict) # Check that path construction does not crash oe.contract_path(expression, *tensors, optimize='greedy') def test_custom_random_greedy(): eq, shapes = oe.helpers.rand_equation(10, 4, seed=42) views = list(map(np.ones, shapes)) with pytest.raises(ValueError): oe.RandomGreedy(minimize='something') optimizer = oe.RandomGreedy(max_repeats=10, minimize='flops') path, path_info = oe.contract_path(eq, *views, optimize=optimizer) assert len(optimizer.costs) == 10 assert len(optimizer.sizes) == 10 assert path == optimizer.path assert optimizer.best['flops'] == min(optimizer.costs) assert path_info.largest_intermediate == optimizer.best['size'] assert path_info.opt_cost == optimizer.best['flops'] # check can change settings and run again optimizer.temperature = 0.0 optimizer.max_repeats = 6 path, path_info = oe.contract_path(eq, *views, optimize=optimizer) assert len(optimizer.costs) == 16 assert len(optimizer.sizes) == 16 assert path == optimizer.path assert optimizer.best['size'] == min(optimizer.sizes) assert path_info.largest_intermediate == optimizer.best['size'] assert path_info.opt_cost == optimizer.best['flops'] # check error if we try and reuse the optimizer on a different expression eq, shapes = oe.helpers.rand_equation(10, 4, seed=41) views = list(map(np.ones, shapes)) with pytest.raises(ValueError): path, path_info = oe.contract_path(eq, *views, optimize=optimizer) def test_custom_branchbound(): eq, shapes = oe.helpers.rand_equation(8, 4, seed=42) views = list(map(np.ones, shapes)) optimizer = oe.BranchBound(nbranch=2, cutoff_flops_factor=10, minimize='size') path, path_info = oe.contract_path(eq, *views, optimize=optimizer) assert path == optimizer.path assert path_info.largest_intermediate == optimizer.best['size'] assert path_info.opt_cost == optimizer.best['flops'] # tweak settings and run again optimizer.nbranch = 3 optimizer.cutoff_flops_factor = 4 path, path_info = oe.contract_path(eq, *views, optimize=optimizer) assert path == optimizer.path assert path_info.largest_intermediate == optimizer.best['size'] assert path_info.opt_cost == optimizer.best['flops'] # check error if we try and reuse the optimizer on a different expression eq, shapes = oe.helpers.rand_equation(8, 4, seed=41) views = list(map(np.ones, shapes)) with pytest.raises(ValueError): path, path_info = oe.contract_path(eq, *views, optimize=optimizer) @pytest.mark.skipif(sys.version_info < (3, 2), reason="requires python3.2 or higher") def test_parallel_random_greedy(): from concurrent.futures import ProcessPoolExecutor pool = ProcessPoolExecutor(2) eq, shapes = oe.helpers.rand_equation(10, 4, seed=42) views = list(map(np.ones, shapes)) optimizer = oe.RandomGreedy(max_repeats=10, parallel=pool) path, path_info = oe.contract_path(eq, *views, optimize=optimizer) assert len(optimizer.costs) == 10 assert len(optimizer.sizes) == 10 assert path == optimizer.path assert optimizer.parallel is pool assert optimizer._executor is pool assert optimizer.best['flops'] == min(optimizer.costs) assert path_info.largest_intermediate == optimizer.best['size'] assert path_info.opt_cost == optimizer.best['flops'] # now switch to max time algorithm optimizer.max_repeats = int(1e6) optimizer.max_time = 0.2 optimizer.parallel = 2 path, path_info = oe.contract_path(eq, *views, optimize=optimizer) assert len(optimizer.costs) > 10 assert len(optimizer.sizes) > 10 assert path == optimizer.path assert optimizer.best['flops'] == min(optimizer.costs) assert path_info.largest_intermediate == optimizer.best['size'] assert path_info.opt_cost == optimizer.best['flops'] optimizer.parallel = True assert optimizer._executor is not None assert optimizer._executor is not pool are_done = [f.running() or f.done() for f in optimizer._futures] assert all(are_done) def test_custom_path_optimizer(): class NaiveOptimizer(oe.paths.PathOptimizer): def __call__(self, inputs, output, size_dict, memory_limit=None): self.was_used = True return [(0, 1)] * (len(inputs) - 1) eq, shapes = oe.helpers.rand_equation(5, 3, seed=42, d_max=3) views = list(map(np.ones, shapes)) exp = oe.contract(eq, *views, optimize=False) optimizer = NaiveOptimizer() out = oe.contract(eq, *views, optimize=optimizer) assert exp == out assert optimizer.was_used def test_custom_random_optimizer(): class NaiveRandomOptimizer(oe.path_random.RandomOptimizer): @staticmethod def random_path(r, n, inputs, output, size_dict): """Picks a completely random contraction order. """ np.random.seed(r) ssa_path = [] remaining = set(range(n)) while len(remaining) > 1: i, j = np.random.choice(list(remaining), size=2, replace=False) remaining.add(n + len(ssa_path)) remaining.remove(i) remaining.remove(j) ssa_path.append((i, j)) cost, size = oe.path_random.ssa_path_compute_cost(ssa_path, inputs, output, size_dict) return ssa_path, cost, size def setup(self, inputs, output, size_dict): self.was_used = True n = len(inputs) trial_fn = self.random_path trial_args = (n, inputs, output, size_dict) return trial_fn, trial_args eq, shapes = oe.helpers.rand_equation(5, 3, seed=42, d_max=3) views = list(map(np.ones, shapes)) exp = oe.contract(eq, *views, optimize=False) optimizer = NaiveRandomOptimizer(max_repeats=16) out = oe.contract(eq, *views, optimize=optimizer) assert exp == out assert optimizer.was_used assert len(optimizer.costs) == 16 def test_optimizer_registration(): def custom_optimizer(inputs, output, size_dict, memory_limit): return [(0, 1)] * (len(inputs) - 1) with pytest.raises(KeyError): oe.paths.register_path_fn('optimal', custom_optimizer) oe.paths.register_path_fn('custom', custom_optimizer) assert 'custom' in oe.paths._PATH_OPTIONS eq = 'ab,bc,cd' shapes = [(2, 3), (3, 4), (4, 5)] path, path_info = oe.contract_path(eq, *shapes, shapes=True, optimize='custom') assert path == [(0, 1), (0, 1)] del oe.paths._PATH_OPTIONS['custom']
the-stack_0_23678
# Copyright 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import logging import unittest from sawtooth_validator.database.dict_database import DictDatabase from sawtooth_validator.exceptions import PossibleForkDetectedError from sawtooth_validator.journal.block_store import BlockStore from sawtooth_validator.journal.block_wrapper import NULL_BLOCK_IDENTIFIER from sawtooth_validator.journal.block_wrapper import BlockWrapper from sawtooth_validator.protobuf.block_pb2 import Block from sawtooth_validator.protobuf.block_pb2 import BlockHeader from test_journal.block_tree_manager import BlockTreeManager LOGGER = logging.getLogger(__name__) class BlockStoreTest(unittest.TestCase): def setUp(self): self.block_tree_manager = BlockTreeManager() def test_chain_head(self): """ Test that the chain head can be retrieved from the BlockStore. """ block = self.create_block() block_store = self.create_block_store( { 'chain_head_id': 'head', 'head': self.encode_block(block) }) chain_head = block_store.chain_head self.assert_blocks_equal(chain_head, block) def test_get(self): """ Test BlockStore block get operations. """ block = self.create_block() block_store = self.create_block_store( { 'chain_head_id': 'head', 'head': self.encode_block(block), 'txn': 'head' }) chain_head = block_store['head'] self.assert_blocks_equal(chain_head, block) with self.assertRaises(KeyError): block_store['txn'] with self.assertRaises(KeyError): chain_head = block_store['missing'] def test_set(self): """ Test BlockStore block set operations. """ block = self.create_block() block_store = self.create_block_store( { 'chain_head_id': 'head', 'head': self.encode_block(block), 'txn': 'head' }) block2 = self.create_block() with self.assertRaises(KeyError): block_store['head'] = block2 block_store[block2.identifier] = block2 stored_block = block_store[block2.identifier] self.assert_blocks_equal(stored_block, block2) with self.assertRaises(AttributeError): block_store['batch'] = 'head' def test_has(self): """ Test BlockStore tests if Transactions and Batches are commited to the current chain. """ block_store = self.create_block_store( { 'chain_head_id': 'block', 'block': self.create_serialized_block(), 'txn': 'block', 'batch': 'block' }) self.assertTrue(block_store.has_transaction('txn')) self.assertFalse(block_store.has_transaction('txn_missing')) self.assertTrue(block_store.has_batch('batch')) self.assertFalse(block_store.has_transaction('batch_missing')) self.assertTrue('block' in block_store) self.assertTrue('batch' in block_store) self.assertTrue('txn' in block_store) self.assertFalse('block_missing' in block_store) self.assertFalse('batch_missing' in block_store) self.assertFalse('txn_missing' in block_store) def test_get_block_by_batch_id(self): """ Test BlockStore retrieval of a Block that contains a specific batch. """ block = self.create_block() block_store = self.create_block_store() block_store.update_chain([block]) batch_id = block.batches[0].header_signature stored = block_store.get_block_by_batch_id(batch_id) self.assert_blocks_equal(stored, block) with self.assertRaises(ValueError): block_store.get_block_by_batch_id("bad") def test_get_batch_by_transaction(self): """ Test BlockStore retrieval of a Batch that contains a specific transaction. """ block = self.create_block() block_store = self.create_block_store() block_store.update_chain([block]) batch = block.batches[0] txn_id = batch.transactions[0].header_signature stored = block_store.get_batch_by_transaction(txn_id) self.asset_protobufs_equal(stored, batch) with self.assertRaises(ValueError): block_store.get_batch_by_transaction("bad") def test_get_block_by_transaction_id(self): """ Test BlockStore retrieval of a Block that contains a specific transaction. """ block = self.create_block() block_store = self.create_block_store() block_store.update_chain([block]) txn_id = block.batches[0].transactions[0].header_signature stored = block_store.get_block_by_transaction_id(txn_id) self.assert_blocks_equal(stored, block) with self.assertRaises(ValueError): stored = block_store.get_block_by_transaction_id("bad") def test_get_batch(self): """ Test BlockStore retrieval of a batch by id. """ block = self.create_block() block_store = self.create_block_store() block_store.update_chain([block]) batch = block.batches[0] batch_id = batch.header_signature stored = block_store.get_batch(batch_id) self.asset_protobufs_equal(stored, batch) with self.assertRaises(ValueError): stored = block_store.get_batch("bad") def test_get_transaction(self): """ Test BlockStore retrieval of a transaction by id. """ block = self.create_block() block_store = self.create_block_store() block_store.update_chain([block]) txn = block.batches[0].transactions[0] txn_id = txn.header_signature stored = block_store.get_transaction(txn_id) self.asset_protobufs_equal(stored, txn) with self.assertRaises(ValueError): stored = block_store.get_transaction("bad") def assert_blocks_equal(self, stored, reference): self.asset_protobufs_equal(stored.block, reference.block) def asset_protobufs_equal(self, stored, reference): self.assertEqual(self.encode(stored), self.encode(reference)) @staticmethod def create_block_store(data=None): return BlockStore(DictDatabase(data)) def create_block(self): return self.block_tree_manager.create_block() def create_serialized_block(self): block_wrapper = self.block_tree_manager.create_block() return block_wrapper.block.SerializeToString() @staticmethod def encode_block(obj): return obj.block.SerializeToString() @staticmethod def encode(obj): return obj.SerializeToString() class BlockStorePredecessorIteratorTest(unittest.TestCase): def test_iterate_chain(self): """Given a block store, create an predecessor iterator. 1. Create a chain of length 5. 2. Iterate the chain using the get_predecessor_iter from the chain head 3. Verify that the block ids match the chain, in reverse order """ block_store = BlockStore(DictDatabase()) chain = self._create_chain(5) block_store.update_chain(chain) ids = [b.identifier for b in block_store.get_predecessor_iter()] self.assertEqual( ['abcd4', 'abcd3', 'abcd2', 'abcd1', 'abcd0'], ids) def test_iterate_chain_from_starting_block(self): """Given a block store, iterate if using an predecessor iterator from a particular start point in the chain. 1. Create a chain of length 5. 2. Iterate the chain using the get_predecessor_iter from block 3 3. Verify that the block ids match the chain, in reverse order """ block_store = BlockStore(DictDatabase()) chain = self._create_chain(5) block_store.update_chain(chain) block = block_store['abcd2'] ids = [b.identifier for b in block_store.get_predecessor_iter(block)] self.assertEqual( ['abcd2', 'abcd1', 'abcd0'], ids) def test_iterate_chain_on_empty_block_store(self): """Given a block store with no blocks, iterate using predecessor iterator and verify that it results in an empty list. """ block_store = BlockStore(DictDatabase()) self.assertEqual([], [b for b in block_store.get_predecessor_iter()]) def test_fork_detection_on_iteration(self): """Given a block store where a fork occurred while using the predecessor iterator, it should throw a PossibleForkDetectedError. The fork occurrance will be simulated. """ block_store = BlockStore(DictDatabase()) chain = self._create_chain(5) block_store.update_chain(chain) iterator = block_store.get_predecessor_iter() self.assertEqual('abcd4', next(iterator).identifier) del block_store['abcd3'] with self.assertRaises(PossibleForkDetectedError): next(iterator) def _create_chain(self, length): chain = [] previous_block_id = NULL_BLOCK_IDENTIFIER for i in range(length): block = BlockWrapper( Block(header_signature='abcd{}'.format(i), header=BlockHeader( block_num=i, previous_block_id=previous_block_id ).SerializeToString())) previous_block_id = block.identifier chain.append(block) chain.reverse() return chain
the-stack_0_23679
#!/usr/bin/env python3 import numpy as np import re # first version actually visual inspection with matplotlib def solve(input): data = np.array([(int(x),int(y),int(vx),int(vy)) for (x,y,vx,vy) in re.findall("[^<]+<([^,]+),([^>]+)>[^<]+<([^,]+),([^>]+)>", input)]) p = data[:,:2] v = data[:,2:] i = 0 s0 = 2**32 while True: s1 = p[:,0].max() - p[:,0].min() + p[:,1].max() - p[:,1].min() if s0 < s1: p -= v i -= 1 break p += v i += 1 s0 = s1 min_x = p[:,0].min() min_y = p[:,1].min() width = p[:,0].max() - min_x height = p[:,1].max() - min_y b = np.full((height+1, width+1), ".") for x,y in p: b[y-min_y,x-min_x] = "*" print("Seconds:", i) for row in b: print(''.join(row)) with open("../data/day10.input") as fd: solve(fd.read()) # pt1: XLZAKBGZ, pt2: 10656
the-stack_0_23680
def tree(cls, level=0, last_in_level=True): yield cls.__name__, level, last_in_level subclasses = cls.__subclasses__() if subclasses: last = subclasses[-1] for sub_cls in subclasses: yield from tree(sub_cls, level+1, sub_cls is last) def display(cls): for cls_name, level, _ in tree(cls): indent = ' ' * 4 * level print(f'{indent}{cls_name}') if __name__ == '__main__': display(BaseException)
the-stack_0_23682
import tensorflow as tf import numpy as np from absl.flags import FLAGS @tf.function def transform_targets_for_output(y_true, grid_size, anchor_idxs): # y_true: (N, boxes, (x1, y1, x2, y2, class, best_anchor)) N = tf.shape(y_true)[0] # y_true_out: (N, grid, grid, anchors, [x, y, w, h, obj, class]) y_true_out = tf.zeros( (N, grid_size, grid_size, tf.shape(anchor_idxs)[0], 6)) anchor_idxs = tf.cast(anchor_idxs, tf.int32) indexes = tf.TensorArray(tf.int32, 1, dynamic_size=True) updates = tf.TensorArray(tf.float32, 1, dynamic_size=True) idx = 0 for i in tf.range(N): for j in tf.range(tf.shape(y_true)[1]): if tf.equal(y_true[i][j][2], 0): continue anchor_eq = tf.equal( anchor_idxs, tf.cast(y_true[i][j][5], tf.int32)) if tf.reduce_any(anchor_eq): box = y_true[i][j][0:4] box_xy = (y_true[i][j][0:2] + y_true[i][j][2:4]) / 2 anchor_idx = tf.cast(tf.where(anchor_eq), tf.int32) grid_xy = tf.cast(box_xy // (1/grid_size), tf.int32) # grid[y][x][anchor] = (tx, ty, bw, bh, obj, class) indexes = indexes.write( idx, [i, grid_xy[1], grid_xy[0], anchor_idx[0][0]]) updates = updates.write( idx, [box[0], box[1], box[2], box[3], 1, y_true[i][j][4]]) idx += 1 # tf.print(indexes.stack()) # tf.print(updates.stack()) return tf.tensor_scatter_nd_update( y_true_out, indexes.stack(), updates.stack()) def transform_targets(y_train, anchors, anchor_masks, size): y_outs = [] grid_size = size // 32 # calculate anchor index for true boxes anchors = tf.cast(anchors, tf.float32) anchor_area = anchors[..., 0] * anchors[..., 1] box_wh = y_train[..., 2:4] - y_train[..., 0:2] box_wh = tf.tile(tf.expand_dims(box_wh, -2), (1, 1, tf.shape(anchors)[0], 1)) box_area = box_wh[..., 0] * box_wh[..., 1] intersection = tf.minimum(box_wh[..., 0], anchors[..., 0]) * \ tf.minimum(box_wh[..., 1], anchors[..., 1]) iou = intersection / (box_area + anchor_area - intersection) anchor_idx = tf.cast(tf.argmax(iou, axis=-1), tf.float32) anchor_idx = tf.expand_dims(anchor_idx, axis=-1) y_train = tf.concat([y_train, anchor_idx], axis=-1) for anchor_idxs in anchor_masks: y_outs.append(transform_targets_for_output( y_train, grid_size, anchor_idxs)) grid_size *= 2 return tuple(y_outs) IMAGE_FEATURE_MAP = { "image": tf.io.FixedLenFeature([], tf.string), "xmins": tf.io.VarLenFeature(tf.float32), "ymins": tf.io.VarLenFeature(tf.float32), "xmaxs": tf.io.VarLenFeature(tf.float32), "ymaxs": tf.io.VarLenFeature(tf.float32), "classes": tf.io.VarLenFeature(tf.int64) } def transform_images(x_train, size, pad=False, augment=False): if pad: x_train = tf.image.resize_with_pad( x_train, size, size, method='bicubic', antialias=True) else: x_train = tf.image.resize(x_train, (size, size), method='bicubic', antialias=True) if augment: x_train = augment_image(x_train) x_train = x_train / 255 return x_train def augment_image(image): choice = np.random.randint(4) if choice == 0: image = tf.image.random_brightness(image, 0.05) elif choice == 1: image = tf.image.random_contrast(image, 0.75, 1.25) elif choice == 2: image = tf.image.random_hue(image, 0.01) else: image = tf.image.random_saturation(image, 0.75, 1.5) return image def parse_tfrecord(tfrecord, size, image_type): x = tf.io.parse_single_example(tfrecord, IMAGE_FEATURE_MAP) if image_type == 'png': x_train = tf.image.decode_png(x['image'], channels=3) elif image_type == 'jpg': x_train = tf.image.decode_jpeg(x['image'], channels=3) x_train = tf.image.resize(x_train, (size, size), method='bicubic', antialias=True) y_train = tf.stack([tf.sparse.to_dense(x['xmins']), tf.sparse.to_dense(x['ymins']), tf.sparse.to_dense(x['xmaxs']), tf.sparse.to_dense(x['ymaxs']), tf.cast(tf.sparse.to_dense(x['classes']), tf.float32)], axis=1) paddings = [[0, FLAGS.yolo_max_boxes - tf.shape(y_train)[0]], [0, 0]] y_train = tf.pad(y_train, paddings) return x_train, y_train def load_tfrecord_dataset(file_pattern, size, image_type): files = tf.data.Dataset.list_files(file_pattern) dataset = files.flat_map(tf.data.TFRecordDataset) return dataset.map(lambda x: parse_tfrecord(x, size, image_type))
the-stack_0_23684
import os import random, math import torch import numpy as np import glob import cv2 from tqdm import tqdm from skimage import io from ISP_implement import ISP if __name__ == '__main__': isp = ISP() source_dir = './source/' target_dir = './target/' if not os.path.isdir(target_dir): os.makedirs(target_dir) fns = glob.glob(os.path.join(source_dir, '*.png')) patch_size = 256 for fn in tqdm(fns): img_rgb = cv2.imread(fn)[:, :, ::-1] / 255.0 H = img_rgb.shape[0] W = img_rgb.shape[1] H_s = H // patch_size W_s = W // patch_size patch_id = 0 for i in range(H_s): for j in range(W_s): yy = i * patch_size xx = j * patch_size patch_img_rgb = img_rgb[yy:yy+patch_size, xx:xx+patch_size, :] gt, noise = isp.noise_generate_srgb(patch_img_rgb) filename = os.path.basename(fn) foldername = filename.split('.')[0] out_folder = os.path.join(target_dir, foldername) if not os.path.isdir(out_folder): os.makedirs(out_folder) io.imsave(os.path.join(out_folder, 'GT_SRGB_%d_%d.png' % (i, j)), gt) io.imsave(os.path.join(out_folder, 'NOISY_SRGB_%d_%d.png' % (i, j)), noise)
the-stack_0_23688
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Interaction main program.""" import argparse from collections import namedtuple import paddle import paddle.fluid as fluid from termcolor import colored, cprint import knover.models as models from knover.tasks.dialog_generation import DialogGeneration from knover.utils import check_cuda, parse_args def setup_args(): """Setup arguments.""" parser = argparse.ArgumentParser() models.add_cmdline_args(parser) DialogGeneration.add_cmdline_args(parser) args = parse_args(parser) args.load(args.config_path, "Model") args.run_infer = True # only build infer program args.display() return args def interact(args): """Interaction main function.""" dev_count = 1 gpu_id = 0 place = fluid.CUDAPlace(gpu_id) task = DialogGeneration(args) model = models.create_model(args, place) task.debug() Example = namedtuple("Example", ["src", "data_id"]) context = [] start_info = "Enter [EXIT] to quit the interaction, [NEXT] to start a new conversation." cprint(start_info, "yellow", attrs=["bold"]) while True: user_utt = input(colored("[Human]: ", "red", attrs=["bold"])).strip() if user_utt == "[EXIT]": break elif user_utt == "[NEXT]": context = [] cprint(start_info, "yellow", attrs=["bold"]) else: context.append(user_utt) example = Example(src=" [SEP] ".join(context), data_id=0) task.reader.features[0] = example record = task.reader._convert_example_to_record(example, is_infer=True) data = task.reader._pad_batch_records([record], is_infer=True) pred = task.infer_step(model, data)[0] bot_response = pred["response"] print(colored("[Bot]:", "blue", attrs=["bold"]), colored(bot_response, attrs=["bold"])) context.append(bot_response) return if __name__ == "__main__": if hasattr(paddle, "enable_static"): paddle.enable_static() args = setup_args() check_cuda(True) interact(args)
the-stack_0_23689
import json from betamax.serializers.json_serializer import JSONSerializer class JSONBodySerializer(JSONSerializer): name = 'json_body' stored_as_binary = False def _get_content_type(self, ct): return ct[0].split(';')[0].strip().lower() def _add_json_body(self, r): body_string = r['body'].get('string') if body_string: content_type = self._get_content_type(r['headers']['Content-Type']) if content_type == 'application/json': r['json_body'] = json.loads(body_string) def serialize(self, cassette_data): for interaction in cassette_data['http_interactions']: self._add_json_body(interaction['request']) self._add_json_body(interaction['response']) return json.dumps( cassette_data, sort_keys=True, indent=2, separators=(',', ': '), )
the-stack_0_23692
#!/usr/bin/env python3 """Precompute Wav2Vec features.""" import os import json from pathlib import Path from tempfile import mkstemp from multiprocessing import cpu_count import tqdm import torch from torch.utils.data import DataLoader from jsonargparse import ArgumentParser, ActionConfigFile from models import load_pretrained_wav2vec from data import PreprocessDataset def parse_args(): """Parse command-line arguments.""" parser = ArgumentParser() parser.add_argument("data_dirs", type=str, nargs="+") parser.add_argument("wav2vec_path", type=str) parser.add_argument("out_dir", type=str) parser.add_argument("--trim_method", choices=["librosa", "vad"], default="vad") parser.add_argument("--n_workers", type=int, default=cpu_count()) parser.add_argument("--sample_rate", type=int, default=16000) parser.add_argument("--preemph", type=float, default=0.97) parser.add_argument("--hop_len", type=int, default=320) parser.add_argument("--win_len", type=int, default=1280) parser.add_argument("--n_fft", type=int, default=1280) parser.add_argument("--n_mels", type=int, default=80) parser.add_argument("--f_min", type=int, default=80) parser.add_argument("--f_max", type=int, default=None) parser.add_argument("--audio_config", action=ActionConfigFile) return vars(parser.parse_args()) def main( data_dirs, wav2vec_path, out_dir, trim_method, n_workers, sample_rate, preemph, hop_len, win_len, n_fft, n_mels, f_min, f_max, **kwargs, ): """Main function.""" out_dir_path = Path(out_dir) if out_dir_path.exists(): assert out_dir_path.is_dir() else: out_dir_path.mkdir(parents=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dataset = PreprocessDataset( data_dirs, trim_method, sample_rate, preemph, hop_len, win_len, n_fft, n_mels, f_min, f_max ) dataloader = DataLoader( dataset, batch_size=1, shuffle=False, drop_last=False, num_workers=n_workers ) wav2vec = load_pretrained_wav2vec(wav2vec_path).to(device) speaker_infos = {} pbar = tqdm.tqdm(total=len(dataset), ncols=0) for speaker_name, audio_path, wav, mel in dataloader: if wav.size(-1) < 10: continue wav = wav.to(device) speaker_name = speaker_name[0] audio_path = audio_path[0] with torch.no_grad(): feat = wav2vec.extract_features(wav, None)[0] feat = feat.detach().cpu().squeeze(0) mel = mel.squeeze(0) assert mel.shape == feat.shape fd, temp_file = mkstemp(suffix=".tar", prefix="utterance-", dir=out_dir_path) torch.save({"feat": feat, "mel": mel}, temp_file) os.close(fd) if speaker_name not in speaker_infos.keys(): speaker_infos[speaker_name] = [] speaker_infos[speaker_name].append( { "feature_path": Path(temp_file).name, "audio_path": audio_path, "feat_len": len(feat), "mel_len": len(mel), } ) pbar.update(dataloader.batch_size) with open(out_dir_path / "metadata.json", "w") as f: json.dump(speaker_infos, f, indent=2) if __name__ == "__main__": main(**parse_args())
the-stack_0_23693
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Simple image classification with Inception. Run image classification with Inception trained on ImageNet 2012 Challenge data set. This program creates a graph from a saved GraphDef protocol buffer, and runs inference on an input JPEG image. It outputs human readable strings of the top 5 predictions along with their probabilities. Change the --image_file argument to any jpg image to compute a classification of that image. Please see the tutorial and website for a detailed description of how to use this script to perform image recognition. https://tensorflow.org/tutorials/image_recognition/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import re import sys import tarfile import numpy as np from six.moves import urllib import tensorflow as tf FLAGS = tf.app.flags.FLAGS # classify_image_graph_def.pb: # Binary representation of the GraphDef protocol buffer. # imagenet_synset_to_human_label_map.txt: # Map from synset ID to a human readable string. # imagenet_2012_challenge_label_map_proto.pbtxt: # Text representation of a protocol buffer mapping a label to synset ID. tf.app.flags.DEFINE_string( 'model_dir', 'imagenet', """Path to classify_image_graph_def.pb, """ """imagenet_synset_to_human_label_map.txt, and """ """imagenet_2012_challenge_label_map_proto.pbtxt.""") tf.app.flags.DEFINE_string('image_file', '', """Absolute path to image file.""") tf.app.flags.DEFINE_integer('num_top_predictions', 5, """Display this many predictions.""") # pylint: disable=line-too-long DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' # pylint: enable=line-too-long class NodeLookup(object): """Converts integer node ID's to human readable labels.""" def __init__(self, label_lookup_path=None, uid_lookup_path=None): if not label_lookup_path: label_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') if not uid_lookup_path: uid_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt') self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path): """Loads a human readable English name for each softmax node. Args: label_lookup_path: string UID to integer node ID. uid_lookup_path: string UID to human-readable string. Returns: dict from integer node ID to human-readable string. """ if not tf.gfile.Exists(uid_lookup_path): tf.logging.fatal('File does not exist %s', uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} p = re.compile(r'[n\d]*[ \S,]*') for line in proto_as_ascii_lines: parsed_items = p.findall(line) uid = parsed_items[0] human_string = parsed_items[2] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id): if node_id not in self.node_lookup: return '' return self.node_lookup[node_id] def create_graph(): """Creates a graph from saved GraphDef file and returns a saver.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile(os.path.join( FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='') def run_inference_on_image(image): """Runs inference on an image. Args: image: Image file name. Returns: Nothing """ if not tf.gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = tf.gfile.FastGFile(image, 'rb').read() # Creates graph from saved GraphDef. create_graph() with tf.Session() as sess: # Some useful tensors: # 'softmax:0': A tensor containing the normalized prediction across # 1000 labels. # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 # float description of the image. # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG # encoding of the image. # Runs the softmax tensor by feeding the image_data as input to the graph. softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> English string lookup. node_lookup = NodeLookup() top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1] for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score)) def maybe_download_and_extract(): """Download and extract model tar file.""" dest_directory = FLAGS.model_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory) def testForFun(): path = './test' # filenames = next(os.walk(path))[2] filenames = [f for f in os.listdir(path) if f.endswith('.jpg')] print(filenames) for f in filenames: print('Inference image %s:' %(f)) image = os.path.join(path, f) run_inference_on_image(image) def main(_): # maybe_download_and_extract() # image = (FLAGS.image_file if FLAGS.image_file else # os.path.join(FLAGS.model_dir, 'cropped_panda.jpg')) # run_inference_on_image(image) testForFun() if __name__ == '__main__': tf.app.run()
the-stack_0_23701
import json import logging import discord from .document import FullDocument log = logging.getLogger(__name__) class Collection: def __init__(self, client, channel): self.id = channel.id self.chan = channel self.client = client def __repr__(self): return f'Collection({self.chan!r})' async def get_single(self, message_id: int) -> 'Document': """Get a single document""" message_id = int(message_id) m = await self.chan.get_message(message_id) if m is not None: return FullDocument(self.client, m) return async def simple_query(self, query: dict) -> 'Document': """Make a Simple Query to a collection. Parameters ---------- query: dict Query object to the collection. Returns ------- FullDocument The document found. None If no documents were found. """ if '_id' in query: return await self.get_single(query['_id']) if 'raw' in query: # Search raw-y raw = query['raw'] for message_id in self.client.indexdb[self.chan.id]: try: m = await self.chan.get_message(message_id) except discord.NotFound: return if raw in m.content: log.debug(m.content) return FullDocument(self.client, m) return # search by JSON, the most expensive for message_id in self.client.indexdb[self.chan.id]: try: m = await self.chan.get_message(message_id) except discord.NotFound: m = None if m is not None: doc = FullDocument(self.client, m) if doc.match(query): return doc return async def insert(self, document): m = await self.chan.send(json.dumps(document.to_raw)) self.client.indexdb[self.chan.id].append(m.id) async def delete(self, document): try: self.client.indexdb[self.id].pop(document.message.id) except IndexError: pass return await document.message.delete() async def update(self, document): await document.message.edit(content=document.to_raw_json)
the-stack_0_23702
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.application.app} and L{twisted.scripts.twistd}. """ import errno import inspect import pickle import signal import os import sys try: import pwd as _pwd import grp as _grp except ImportError: pwd = None grp = None else: pwd = _pwd grp = _grp from io import StringIO from unittest import skipIf from zope.interface import implementer from zope.interface.verify import verifyObject from twisted.trial.unittest import TestCase from twisted.test.test_process import MockOS from twisted import plugin, logger, internet from twisted.application import service, app, reactors from twisted.application.service import IServiceMaker from twisted.internet.defer import Deferred from twisted.internet.interfaces import IReactorDaemonize, _ISupportsExitSignalCapturing from twisted.internet.test.modulehelpers import AlternateReactor from twisted.logger import globalLogBeginner, globalLogPublisher, ILogObserver from twisted.internet.base import ReactorBase from twisted.test.proto_helpers import MemoryReactor from twisted.python.components import Componentized from twisted.python import util from twisted.python.log import ILogObserver as LegacyILogObserver, textFromEventDict from twisted.python.reflect import requireModule from twisted.python.runtime import platformType from twisted.python.usage import UsageError from twisted.python.fakepwd import UserDatabase from twisted.scripts import twistd _twistd_unix = requireModule("twistd.scripts._twistd_unix") if _twistd_unix: from twisted.scripts._twistd_unix import checkPID from twisted.scripts._twistd_unix import UnixApplicationRunner from twisted.scripts._twistd_unix import UnixAppLogger syslog = requireModule("twistd.python.syslog") profile = requireModule("profile") pstats = requireModule("pstats") cProfile = requireModule("cProfile") def patchUserDatabase(patch, user, uid, group, gid): """ Patch L{pwd.getpwnam} so that it behaves as though only one user exists and patch L{grp.getgrnam} so that it behaves as though only one group exists. @param patch: A function like L{TestCase.patch} which will be used to install the fake implementations. @type user: C{str} @param user: The name of the single user which will exist. @type uid: C{int} @param uid: The UID of the single user which will exist. @type group: C{str} @param group: The name of the single user which will exist. @type gid: C{int} @param gid: The GID of the single group which will exist. """ # Try not to be an unverified fake, but try not to depend on quirks of # the system either (eg, run as a process with a uid and gid which # equal each other, and so doesn't reliably test that uid is used where # uid should be used and gid is used where gid should be used). -exarkun pwent = pwd.getpwuid(os.getuid()) grent = grp.getgrgid(os.getgid()) database = UserDatabase() database.addUser( user, pwent.pw_passwd, uid, gid, pwent.pw_gecos, pwent.pw_dir, pwent.pw_shell ) def getgrnam(name): result = list(grent) result[result.index(grent.gr_name)] = group result[result.index(grent.gr_gid)] = gid result = tuple(result) return {group: result}[name] patch(pwd, "getpwnam", database.getpwnam) patch(grp, "getgrnam", getgrnam) patch(pwd, "getpwuid", database.getpwuid) class MockServiceMaker: """ A non-implementation of L{twisted.application.service.IServiceMaker}. """ tapname = "ueoa" def makeService(self, options): """ Take a L{usage.Options} instance and return a L{service.IService} provider. """ self.options = options self.service = service.Service() return self.service class CrippledAppLogger(app.AppLogger): """ @see: CrippledApplicationRunner. """ def start(self, application): pass class CrippledApplicationRunner(twistd._SomeApplicationRunner): """ An application runner that cripples the platform-specific runner and nasty side-effect-having code so that we can use it without actually running any environment-affecting code. """ loggerFactory = CrippledAppLogger def preApplication(self): pass def postApplication(self): pass class ServerOptionsTests(TestCase): """ Non-platform-specific tests for the platform-specific ServerOptions class. """ def test_subCommands(self): """ subCommands is built from IServiceMaker plugins, and is sorted alphabetically. """ class FakePlugin: def __init__(self, name): self.tapname = name self._options = "options for " + name self.description = "description of " + name def options(self): return self._options apple = FakePlugin("apple") banana = FakePlugin("banana") coconut = FakePlugin("coconut") donut = FakePlugin("donut") def getPlugins(interface): self.assertEqual(interface, IServiceMaker) yield coconut yield banana yield donut yield apple config = twistd.ServerOptions() self.assertEqual(config._getPlugins, plugin.getPlugins) config._getPlugins = getPlugins # "subCommands is a list of 4-tuples of (command name, command # shortcut, parser class, documentation)." subCommands = config.subCommands expectedOrder = [apple, banana, coconut, donut] for subCommand, expectedCommand in zip(subCommands, expectedOrder): name, shortcut, parserClass, documentation = subCommand self.assertEqual(name, expectedCommand.tapname) self.assertIsNone(shortcut) self.assertEqual(parserClass(), expectedCommand._options), self.assertEqual(documentation, expectedCommand.description) def test_sortedReactorHelp(self): """ Reactor names are listed alphabetically by I{--help-reactors}. """ class FakeReactorInstaller: def __init__(self, name): self.shortName = "name of " + name self.description = "description of " + name self.moduleName = "twisted.internet.default" apple = FakeReactorInstaller("apple") banana = FakeReactorInstaller("banana") coconut = FakeReactorInstaller("coconut") donut = FakeReactorInstaller("donut") def getReactorTypes(): yield coconut yield banana yield donut yield apple config = twistd.ServerOptions() self.assertEqual(config._getReactorTypes, reactors.getReactorTypes) config._getReactorTypes = getReactorTypes config.messageOutput = StringIO() self.assertRaises(SystemExit, config.parseOptions, ["--help-reactors"]) helpOutput = config.messageOutput.getvalue() indexes = [] for reactor in apple, banana, coconut, donut: def getIndex(s): self.assertIn(s, helpOutput) indexes.append(helpOutput.index(s)) getIndex(reactor.shortName) getIndex(reactor.description) self.assertEqual( indexes, sorted(indexes), "reactor descriptions were not in alphabetical order: {!r}".format( helpOutput ), ) def test_postOptionsSubCommandCausesNoSave(self): """ postOptions should set no_save to True when a subcommand is used. """ config = twistd.ServerOptions() config.subCommand = "ueoa" config.postOptions() self.assertTrue(config["no_save"]) def test_postOptionsNoSubCommandSavesAsUsual(self): """ If no sub command is used, postOptions should not touch no_save. """ config = twistd.ServerOptions() config.postOptions() self.assertFalse(config["no_save"]) def test_listAllProfilers(self): """ All the profilers that can be used in L{app.AppProfiler} are listed in the help output. """ config = twistd.ServerOptions() helpOutput = str(config) for profiler in app.AppProfiler.profilers: self.assertIn(profiler, helpOutput) @skipIf(not _twistd_unix, "twistd unix not available") def test_defaultUmask(self): """ The default value for the C{umask} option is L{None}. """ config = twistd.ServerOptions() self.assertIsNone(config["umask"]) @skipIf(not _twistd_unix, "twistd unix not available") def test_umask(self): """ The value given for the C{umask} option is parsed as an octal integer literal. """ config = twistd.ServerOptions() config.parseOptions(["--umask", "123"]) self.assertEqual(config["umask"], 83) config.parseOptions(["--umask", "0123"]) self.assertEqual(config["umask"], 83) @skipIf(not _twistd_unix, "twistd unix not available") def test_invalidUmask(self): """ If a value is given for the C{umask} option which cannot be parsed as an integer, L{UsageError} is raised by L{ServerOptions.parseOptions}. """ config = twistd.ServerOptions() self.assertRaises(UsageError, config.parseOptions, ["--umask", "abcdef"]) def test_unimportableConfiguredLogObserver(self): """ C{--logger} with an unimportable module raises a L{UsageError}. """ config = twistd.ServerOptions() e = self.assertRaises( UsageError, config.parseOptions, ["--logger", "no.such.module.I.hope"] ) self.assertTrue( e.args[0].startswith( "Logger 'no.such.module.I.hope' could not be imported: " "'no.such.module.I.hope' does not name an object" ) ) self.assertNotIn("\n", e.args[0]) def test_badAttributeWithConfiguredLogObserver(self): """ C{--logger} with a non-existent object raises a L{UsageError}. """ config = twistd.ServerOptions() e = self.assertRaises( UsageError, config.parseOptions, ["--logger", "twisted.test.test_twistd.FOOBAR"], ) self.assertTrue( e.args[0].startswith( "Logger 'twisted.test.test_twistd.FOOBAR' could not be " "imported: module 'twisted.test.test_twistd' " "has no attribute 'FOOBAR'" ) ) self.assertNotIn("\n", e.args[0]) def test_version(self): """ C{--version} prints the version. """ from twisted import copyright if platformType == "win32": name = "(the Twisted Windows runner)" else: name = "(the Twisted daemon)" expectedOutput = "twistd {} {}\n{}\n".format( name, copyright.version, copyright.copyright ) stdout = StringIO() config = twistd.ServerOptions(stdout=stdout) e = self.assertRaises(SystemExit, config.parseOptions, ["--version"]) self.assertIs(e.code, None) self.assertEqual(stdout.getvalue(), expectedOutput) def test_printSubCommandForUsageError(self): """ Command is printed when an invalid option is requested. """ stdout = StringIO() config = twistd.ServerOptions(stdout=stdout) self.assertRaises(UsageError, config.parseOptions, ["web --foo"]) @skipIf(not _twistd_unix, "twistd unix not available") class CheckPIDTests(TestCase): """ Tests for L{checkPID}. """ def test_notExists(self): """ Nonexistent PID file is not an error. """ self.patch(os.path, "exists", lambda _: False) checkPID("non-existent PID file") def test_nonNumeric(self): """ Non-numeric content in a PID file causes a system exit. """ pidfile = self.mktemp() with open(pidfile, "w") as f: f.write("non-numeric") e = self.assertRaises(SystemExit, checkPID, pidfile) self.assertIn("non-numeric value", e.code) def test_anotherRunning(self): """ Another running twistd server causes a system exit. """ pidfile = self.mktemp() with open(pidfile, "w") as f: f.write("42") def kill(pid, sig): pass self.patch(os, "kill", kill) e = self.assertRaises(SystemExit, checkPID, pidfile) self.assertIn("Another twistd server", e.code) def test_stale(self): """ Stale PID file is removed without causing a system exit. """ pidfile = self.mktemp() with open(pidfile, "w") as f: f.write(str(os.getpid() + 1)) def kill(pid, sig): raise OSError(errno.ESRCH, "fake") self.patch(os, "kill", kill) checkPID(pidfile) self.assertFalse(os.path.exists(pidfile)) def test_unexpectedOSError(self): """ An unexpected L{OSError} when checking the validity of a PID in a C{pidfile} terminates the process via L{SystemExit}. """ pidfile = self.mktemp() with open(pidfile, "w") as f: f.write("3581") def kill(pid, sig): raise OSError(errno.EBADF, "fake") self.patch(os, "kill", kill) e = self.assertRaises(SystemExit, checkPID, pidfile) self.assertIsNot(e.code, None) self.assertTrue(e.args[0].startswith("Can't check status of PID")) class TapFileTests(TestCase): """ Test twistd-related functionality that requires a tap file on disk. """ def setUp(self): """ Create a trivial Application and put it in a tap file on disk. """ self.tapfile = self.mktemp() with open(self.tapfile, "wb") as f: pickle.dump(service.Application("Hi!"), f) def test_createOrGetApplicationWithTapFile(self): """ Ensure that the createOrGetApplication call that 'twistd -f foo.tap' makes will load the Application out of foo.tap. """ config = twistd.ServerOptions() config.parseOptions(["-f", self.tapfile]) application = CrippledApplicationRunner(config).createOrGetApplication() self.assertEqual(service.IService(application).name, "Hi!") class TestLoggerFactory: """ A logger factory for L{TestApplicationRunner}. """ def __init__(self, runner): self.runner = runner def start(self, application): """ Save the logging start on the C{runner} instance. """ self.runner.order.append("log") self.runner.hadApplicationLogObserver = hasattr(self.runner, "application") def stop(self): """ Don't log anything. """ class TestApplicationRunner(app.ApplicationRunner): """ An ApplicationRunner which tracks the environment in which its methods are called. """ def __init__(self, options): app.ApplicationRunner.__init__(self, options) self.order = [] self.logger = TestLoggerFactory(self) def preApplication(self): self.order.append("pre") self.hadApplicationPreApplication = hasattr(self, "application") def postApplication(self): self.order.append("post") self.hadApplicationPostApplication = hasattr(self, "application") class ApplicationRunnerTests(TestCase): """ Non-platform-specific tests for the platform-specific ApplicationRunner. """ def setUp(self): config = twistd.ServerOptions() self.serviceMaker = MockServiceMaker() # Set up a config object like it's been parsed with a subcommand config.loadedPlugins = {"test_command": self.serviceMaker} config.subOptions = object() config.subCommand = "test_command" self.config = config def test_applicationRunnerGetsCorrectApplication(self): """ Ensure that a twistd plugin gets used in appropriate ways: it is passed its Options instance, and the service it returns is added to the application. """ arunner = CrippledApplicationRunner(self.config) arunner.run() self.assertIs( self.serviceMaker.options, self.config.subOptions, "ServiceMaker.makeService needs to be passed the correct " "sub Command object.", ) self.assertIs( self.serviceMaker.service, service.IService(arunner.application).services[0], "ServiceMaker.makeService's result needs to be set as a child " "of the Application.", ) def test_preAndPostApplication(self): """ Test thet preApplication and postApplication methods are called by ApplicationRunner.run() when appropriate. """ s = TestApplicationRunner(self.config) s.run() self.assertFalse(s.hadApplicationPreApplication) self.assertTrue(s.hadApplicationPostApplication) self.assertTrue(s.hadApplicationLogObserver) self.assertEqual(s.order, ["pre", "log", "post"]) def _applicationStartsWithConfiguredID(self, argv, uid, gid): """ Assert that given a particular command line, an application is started as a particular UID/GID. @param argv: A list of strings giving the options to parse. @param uid: An integer giving the expected UID. @param gid: An integer giving the expected GID. """ self.config.parseOptions(argv) events = [] class FakeUnixApplicationRunner(twistd._SomeApplicationRunner): def setupEnvironment(self, chroot, rundir, nodaemon, umask, pidfile): events.append("environment") def shedPrivileges(self, euid, uid, gid): events.append(("privileges", euid, uid, gid)) def startReactor(self, reactor, oldstdout, oldstderr): events.append("reactor") def removePID(self, pidfile): pass @implementer(service.IService, service.IProcess) class FakeService: parent = None running = None name = None processName = None uid = None gid = None def setName(self, name): pass def setServiceParent(self, parent): pass def disownServiceParent(self): pass def privilegedStartService(self): events.append("privilegedStartService") def startService(self): events.append("startService") def stopService(self): pass application = FakeService() verifyObject(service.IService, application) verifyObject(service.IProcess, application) runner = FakeUnixApplicationRunner(self.config) runner.preApplication() runner.application = application runner.postApplication() self.assertEqual( events, [ "environment", "privilegedStartService", ("privileges", False, uid, gid), "startService", "reactor", ], ) @skipIf( not getattr(os, "setuid", None), "Platform does not support --uid/--gid twistd options.", ) def test_applicationStartsWithConfiguredNumericIDs(self): """ L{postApplication} should change the UID and GID to the values specified as numeric strings by the configuration after running L{service.IService.privilegedStartService} and before running L{service.IService.startService}. """ uid = 1234 gid = 4321 self._applicationStartsWithConfiguredID( ["--uid", str(uid), "--gid", str(gid)], uid, gid ) @skipIf( not getattr(os, "setuid", None), "Platform does not support --uid/--gid twistd options.", ) def test_applicationStartsWithConfiguredNameIDs(self): """ L{postApplication} should change the UID and GID to the values specified as user and group names by the configuration after running L{service.IService.privilegedStartService} and before running L{service.IService.startService}. """ user = "foo" uid = 1234 group = "bar" gid = 4321 patchUserDatabase(self.patch, user, uid, group, gid) self._applicationStartsWithConfiguredID( ["--uid", user, "--gid", group], uid, gid ) def test_startReactorRunsTheReactor(self): """ L{startReactor} calls L{reactor.run}. """ reactor = DummyReactor() runner = app.ApplicationRunner( {"profile": False, "profiler": "profile", "debug": False} ) runner.startReactor(reactor, None, None) self.assertTrue(reactor.called, "startReactor did not call reactor.run()") def test_applicationRunnerChoosesReactorIfNone(self): """ L{ApplicationRunner} chooses a reactor if none is specified. """ reactor = DummyReactor() self.patch(internet, "reactor", reactor) runner = app.ApplicationRunner( {"profile": False, "profiler": "profile", "debug": False} ) runner.startReactor(None, None, None) self.assertTrue(reactor.called) def test_applicationRunnerCapturesSignal(self): """ If the reactor exits with a signal, the application runner caches the signal. """ class DummyReactorWithSignal(ReactorBase): """ A dummy reactor, providing a C{run} method, and setting the _exitSignal attribute to a nonzero value. """ def installWaker(self): """ Dummy method, does nothing. """ def run(self): """ A fake run method setting _exitSignal to a nonzero value """ self._exitSignal = 2 reactor = DummyReactorWithSignal() runner = app.ApplicationRunner( {"profile": False, "profiler": "profile", "debug": False} ) runner.startReactor(reactor, None, None) self.assertEquals(2, runner._exitSignal) def test_applicationRunnerIgnoresNoSignal(self): """ The runner sets its _exitSignal instance attribute to None if the reactor does not implement L{_ISupportsExitSignalCapturing}. """ class DummyReactorWithExitSignalAttribute: """ A dummy reactor, providing a C{run} method, and setting the _exitSignal attribute to a nonzero value. """ def installWaker(self): """ Dummy method, does nothing. """ def run(self): """ A fake run method setting _exitSignal to a nonzero value that should be ignored. """ self._exitSignal = 2 reactor = DummyReactorWithExitSignalAttribute() runner = app.ApplicationRunner( {"profile": False, "profiler": "profile", "debug": False} ) runner.startReactor(reactor, None, None) self.assertEquals(None, runner._exitSignal) @skipIf(not _twistd_unix, "twistd unix not available") class UnixApplicationRunnerSetupEnvironmentTests(TestCase): """ Tests for L{UnixApplicationRunner.setupEnvironment}. @ivar root: The root of the filesystem, or C{unset} if none has been specified with a call to L{os.chroot} (patched for this TestCase with L{UnixApplicationRunnerSetupEnvironmentTests.chroot}). @ivar cwd: The current working directory of the process, or C{unset} if none has been specified with a call to L{os.chdir} (patched for this TestCase with L{UnixApplicationRunnerSetupEnvironmentTests.chdir}). @ivar mask: The current file creation mask of the process, or C{unset} if none has been specified with a call to L{os.umask} (patched for this TestCase with L{UnixApplicationRunnerSetupEnvironmentTests.umask}). @ivar daemon: A boolean indicating whether daemonization has been performed by a call to L{_twistd_unix.daemonize} (patched for this TestCase with L{UnixApplicationRunnerSetupEnvironmentTests}. """ unset = object() def setUp(self): self.root = self.unset self.cwd = self.unset self.mask = self.unset self.daemon = False self.pid = os.getpid() self.patch(os, "chroot", lambda path: setattr(self, "root", path)) self.patch(os, "chdir", lambda path: setattr(self, "cwd", path)) self.patch(os, "umask", lambda mask: setattr(self, "mask", mask)) self.runner = UnixApplicationRunner(twistd.ServerOptions()) self.runner.daemonize = self.daemonize def daemonize(self, reactor): """ Indicate that daemonization has happened and change the PID so that the value written to the pidfile can be tested in the daemonization case. """ self.daemon = True self.patch(os, "getpid", lambda: self.pid + 1) def test_chroot(self): """ L{UnixApplicationRunner.setupEnvironment} changes the root of the filesystem if passed a non-L{None} value for the C{chroot} parameter. """ self.runner.setupEnvironment("/foo/bar", ".", True, None, None) self.assertEqual(self.root, "/foo/bar") def test_noChroot(self): """ L{UnixApplicationRunner.setupEnvironment} does not change the root of the filesystem if passed L{None} for the C{chroot} parameter. """ self.runner.setupEnvironment(None, ".", True, None, None) self.assertIs(self.root, self.unset) def test_changeWorkingDirectory(self): """ L{UnixApplicationRunner.setupEnvironment} changes the working directory of the process to the path given for the C{rundir} parameter. """ self.runner.setupEnvironment(None, "/foo/bar", True, None, None) self.assertEqual(self.cwd, "/foo/bar") def test_daemonize(self): """ L{UnixApplicationRunner.setupEnvironment} daemonizes the process if C{False} is passed for the C{nodaemon} parameter. """ with AlternateReactor(FakeDaemonizingReactor()): self.runner.setupEnvironment(None, ".", False, None, None) self.assertTrue(self.daemon) def test_noDaemonize(self): """ L{UnixApplicationRunner.setupEnvironment} does not daemonize the process if C{True} is passed for the C{nodaemon} parameter. """ self.runner.setupEnvironment(None, ".", True, None, None) self.assertFalse(self.daemon) def test_nonDaemonPIDFile(self): """ L{UnixApplicationRunner.setupEnvironment} writes the process's PID to the file specified by the C{pidfile} parameter. """ pidfile = self.mktemp() self.runner.setupEnvironment(None, ".", True, None, pidfile) with open(pidfile, "rb") as f: pid = int(f.read()) self.assertEqual(pid, self.pid) def test_daemonPIDFile(self): """ L{UnixApplicationRunner.setupEnvironment} writes the daemonized process's PID to the file specified by the C{pidfile} parameter if C{nodaemon} is C{False}. """ pidfile = self.mktemp() with AlternateReactor(FakeDaemonizingReactor()): self.runner.setupEnvironment(None, ".", False, None, pidfile) with open(pidfile, "rb") as f: pid = int(f.read()) self.assertEqual(pid, self.pid + 1) def test_umask(self): """ L{UnixApplicationRunner.setupEnvironment} changes the process umask to the value specified by the C{umask} parameter. """ with AlternateReactor(FakeDaemonizingReactor()): self.runner.setupEnvironment(None, ".", False, 123, None) self.assertEqual(self.mask, 123) def test_noDaemonizeNoUmask(self): """ L{UnixApplicationRunner.setupEnvironment} doesn't change the process umask if L{None} is passed for the C{umask} parameter and C{True} is passed for the C{nodaemon} parameter. """ self.runner.setupEnvironment(None, ".", True, None, None) self.assertIs(self.mask, self.unset) def test_daemonizedNoUmask(self): """ L{UnixApplicationRunner.setupEnvironment} changes the process umask to C{0077} if L{None} is passed for the C{umask} parameter and C{False} is passed for the C{nodaemon} parameter. """ with AlternateReactor(FakeDaemonizingReactor()): self.runner.setupEnvironment(None, ".", False, None, None) self.assertEqual(self.mask, 0o077) @skipIf(not _twistd_unix, "twistd unix not available") class UnixApplicationRunnerStartApplicationTests(TestCase): """ Tests for L{UnixApplicationRunner.startApplication}. """ def test_setupEnvironment(self): """ L{UnixApplicationRunner.startApplication} calls L{UnixApplicationRunner.setupEnvironment} with the chroot, rundir, nodaemon, umask, and pidfile parameters from the configuration it is constructed with. """ options = twistd.ServerOptions() options.parseOptions( [ "--nodaemon", "--umask", "0070", "--chroot", "/foo/chroot", "--rundir", "/foo/rundir", "--pidfile", "/foo/pidfile", ] ) application = service.Application("test_setupEnvironment") self.runner = UnixApplicationRunner(options) args = [] def fakeSetupEnvironment(self, chroot, rundir, nodaemon, umask, pidfile): args.extend((chroot, rundir, nodaemon, umask, pidfile)) # Sanity check setupEnvironmentParameters = inspect.signature( self.runner.setupEnvironment ).parameters fakeSetupEnvironmentParameters = inspect.signature( fakeSetupEnvironment ).parameters # inspect.signature() does not return "self" in the signature of # a class method, so we need to omit it when comparing the # the signature of a plain method fakeSetupEnvironmentParameters = fakeSetupEnvironmentParameters.copy() fakeSetupEnvironmentParameters.pop("self") self.assertEqual(setupEnvironmentParameters, fakeSetupEnvironmentParameters) self.patch(UnixApplicationRunner, "setupEnvironment", fakeSetupEnvironment) self.patch(UnixApplicationRunner, "shedPrivileges", lambda *a, **kw: None) self.patch(app, "startApplication", lambda *a, **kw: None) self.runner.startApplication(application) self.assertEqual(args, ["/foo/chroot", "/foo/rundir", True, 56, "/foo/pidfile"]) def test_shedPrivileges(self): """ L{UnixApplicationRunner.shedPrivileges} switches the user ID of the process. """ def switchUIDPass(uid, gid, euid): self.assertEqual(uid, 200) self.assertEqual(gid, 54) self.assertEqual(euid, 35) self.patch(_twistd_unix, "switchUID", switchUIDPass) runner = UnixApplicationRunner({}) runner.shedPrivileges(35, 200, 54) def test_shedPrivilegesError(self): """ An unexpected L{OSError} when calling L{twisted.scripts._twistd_unix.shedPrivileges} terminates the process via L{SystemExit}. """ def switchUIDFail(uid, gid, euid): raise OSError(errno.EBADF, "fake") runner = UnixApplicationRunner({}) self.patch(_twistd_unix, "switchUID", switchUIDFail) exc = self.assertRaises(SystemExit, runner.shedPrivileges, 35, 200, None) self.assertEqual(exc.code, 1) def _setUID(self, wantedUser, wantedUid, wantedGroup, wantedGid): """ Common code for tests which try to pass the the UID to L{UnixApplicationRunner}. """ patchUserDatabase(self.patch, wantedUser, wantedUid, wantedGroup, wantedGid) def initgroups(uid, gid): self.assertEqual(uid, wantedUid) self.assertEqual(gid, wantedGid) def setuid(uid): self.assertEqual(uid, wantedUid) def setgid(gid): self.assertEqual(gid, wantedGid) self.patch(util, "initgroups", initgroups) self.patch(os, "setuid", setuid) self.patch(os, "setgid", setgid) options = twistd.ServerOptions() options.parseOptions(["--nodaemon", "--uid", str(wantedUid)]) application = service.Application("test_setupEnvironment") self.runner = UnixApplicationRunner(options) runner = UnixApplicationRunner(options) runner.startApplication(application) def test_setUidWithoutGid(self): """ Starting an application with L{UnixApplicationRunner} configured with a UID and no GUID will result in the GUID being set to the default GUID for that UID. """ self._setUID("foo", 5151, "bar", 4242) def test_setUidSameAsCurrentUid(self): """ If the specified UID is the same as the current UID of the process, then a warning is displayed. """ currentUid = os.getuid() self._setUID("morefoo", currentUid, "morebar", 4343) warningsShown = self.flushWarnings() self.assertEqual(1, len(warningsShown)) expectedWarning = ( "tried to drop privileges and setuid {} but uid is already {}; " "should we be root? Continuing.".format(currentUid, currentUid) ) self.assertEqual(expectedWarning, warningsShown[0]["message"]) @skipIf(not _twistd_unix, "twistd unix not available") class UnixApplicationRunnerRemovePIDTests(TestCase): """ Tests for L{UnixApplicationRunner.removePID}. """ def test_removePID(self): """ L{UnixApplicationRunner.removePID} deletes the file the name of which is passed to it. """ runner = UnixApplicationRunner({}) path = self.mktemp() os.makedirs(path) pidfile = os.path.join(path, "foo.pid") open(pidfile, "w").close() runner.removePID(pidfile) self.assertFalse(os.path.exists(pidfile)) def test_removePIDErrors(self): """ Calling L{UnixApplicationRunner.removePID} with a non-existent filename logs an OSError. """ runner = UnixApplicationRunner({}) runner.removePID("fakepid") errors = self.flushLoggedErrors(OSError) self.assertEqual(len(errors), 1) self.assertEqual(errors[0].value.errno, errno.ENOENT) class FakeNonDaemonizingReactor: """ A dummy reactor, providing C{beforeDaemonize} and C{afterDaemonize} methods, but not announcing this, and logging whether the methods have been called. @ivar _beforeDaemonizeCalled: if C{beforeDaemonize} has been called or not. @type _beforeDaemonizeCalled: C{bool} @ivar _afterDaemonizeCalled: if C{afterDaemonize} has been called or not. @type _afterDaemonizeCalled: C{bool} """ def __init__(self): self._beforeDaemonizeCalled = False self._afterDaemonizeCalled = False def beforeDaemonize(self): self._beforeDaemonizeCalled = True def afterDaemonize(self): self._afterDaemonizeCalled = True def addSystemEventTrigger(self, *args, **kw): """ Skip event registration. """ @implementer(IReactorDaemonize) class FakeDaemonizingReactor(FakeNonDaemonizingReactor): """ A dummy reactor, providing C{beforeDaemonize} and C{afterDaemonize} methods, announcing this, and logging whether the methods have been called. """ class DummyReactor: """ A dummy reactor, only providing a C{run} method and checking that it has been called. @ivar called: if C{run} has been called or not. @type called: C{bool} """ called = False def run(self): """ A fake run method, checking that it's been called one and only time. """ if self.called: raise RuntimeError("Already called") self.called = True class AppProfilingTests(TestCase): """ Tests for L{app.AppProfiler}. """ @skipIf(not profile, "profile module not available") def test_profile(self): """ L{app.ProfileRunner.run} should call the C{run} method of the reactor and save profile data in the specified file. """ config = twistd.ServerOptions() config["profile"] = self.mktemp() config["profiler"] = "profile" profiler = app.AppProfiler(config) reactor = DummyReactor() profiler.run(reactor) self.assertTrue(reactor.called) with open(config["profile"]) as f: data = f.read() self.assertIn("DummyReactor.run", data) self.assertIn("function calls", data) def _testStats(self, statsClass, profile): out = StringIO() # Patch before creating the pstats, because pstats binds self.stream to # sys.stdout early in 2.5 and newer. stdout = self.patch(sys, "stdout", out) # If pstats.Stats can load the data and then reformat it, then the # right thing probably happened. stats = statsClass(profile) stats.print_stats() stdout.restore() data = out.getvalue() self.assertIn("function calls", data) self.assertIn("(run)", data) @skipIf(not profile, "profile module not available") def test_profileSaveStats(self): """ With the C{savestats} option specified, L{app.ProfileRunner.run} should save the raw stats object instead of a summary output. """ config = twistd.ServerOptions() config["profile"] = self.mktemp() config["profiler"] = "profile" config["savestats"] = True profiler = app.AppProfiler(config) reactor = DummyReactor() profiler.run(reactor) self.assertTrue(reactor.called) self._testStats(pstats.Stats, config["profile"]) def test_withoutProfile(self): """ When the C{profile} module is not present, L{app.ProfilerRunner.run} should raise a C{SystemExit} exception. """ savedModules = sys.modules.copy() config = twistd.ServerOptions() config["profiler"] = "profile" profiler = app.AppProfiler(config) sys.modules["profile"] = None try: self.assertRaises(SystemExit, profiler.run, None) finally: sys.modules.clear() sys.modules.update(savedModules) @skipIf(not profile, "profile module not available") def test_profilePrintStatsError(self): """ When an error happens during the print of the stats, C{sys.stdout} should be restored to its initial value. """ class ErroneousProfile(profile.Profile): def print_stats(self): raise RuntimeError("Boom") self.patch(profile, "Profile", ErroneousProfile) config = twistd.ServerOptions() config["profile"] = self.mktemp() config["profiler"] = "profile" profiler = app.AppProfiler(config) reactor = DummyReactor() oldStdout = sys.stdout self.assertRaises(RuntimeError, profiler.run, reactor) self.assertIs(sys.stdout, oldStdout) @skipIf(not cProfile, "cProfile module not available") def test_cProfile(self): """ L{app.CProfileRunner.run} should call the C{run} method of the reactor and save profile data in the specified file. """ config = twistd.ServerOptions() config["profile"] = self.mktemp() config["profiler"] = "cProfile" profiler = app.AppProfiler(config) reactor = DummyReactor() profiler.run(reactor) self.assertTrue(reactor.called) with open(config["profile"]) as f: data = f.read() self.assertIn("run", data) self.assertIn("function calls", data) @skipIf(not cProfile, "cProfile module not available") def test_cProfileSaveStats(self): """ With the C{savestats} option specified, L{app.CProfileRunner.run} should save the raw stats object instead of a summary output. """ config = twistd.ServerOptions() config["profile"] = self.mktemp() config["profiler"] = "cProfile" config["savestats"] = True profiler = app.AppProfiler(config) reactor = DummyReactor() profiler.run(reactor) self.assertTrue(reactor.called) self._testStats(pstats.Stats, config["profile"]) def test_withoutCProfile(self): """ When the C{cProfile} module is not present, L{app.CProfileRunner.run} should raise a C{SystemExit} exception and log the C{ImportError}. """ savedModules = sys.modules.copy() sys.modules["cProfile"] = None config = twistd.ServerOptions() config["profiler"] = "cProfile" profiler = app.AppProfiler(config) try: self.assertRaises(SystemExit, profiler.run, None) finally: sys.modules.clear() sys.modules.update(savedModules) def test_unknownProfiler(self): """ Check that L{app.AppProfiler} raises L{SystemExit} when given an unknown profiler name. """ config = twistd.ServerOptions() config["profile"] = self.mktemp() config["profiler"] = "foobar" error = self.assertRaises(SystemExit, app.AppProfiler, config) self.assertEqual(str(error), "Unsupported profiler name: foobar") def test_defaultProfiler(self): """ L{app.Profiler} defaults to the cprofile profiler if not specified. """ profiler = app.AppProfiler({}) self.assertEqual(profiler.profiler, "cprofile") def test_profilerNameCaseInsentive(self): """ The case of the profiler name passed to L{app.AppProfiler} is not relevant. """ profiler = app.AppProfiler({"profiler": "CprOfile"}) self.assertEqual(profiler.profiler, "cprofile") def _patchTextFileLogObserver(patch): """ Patch L{logger.textFileLogObserver} to record every call and keep a reference to the passed log file for tests. @param patch: a callback for patching (usually L{TestCase.patch}). @return: the list that keeps track of the log files. @rtype: C{list} """ logFiles = [] oldFileLogObserver = logger.textFileLogObserver def observer(logFile, *args, **kwargs): logFiles.append(logFile) return oldFileLogObserver(logFile, *args, **kwargs) patch(logger, "textFileLogObserver", observer) return logFiles def _setupSyslog(testCase): """ Make fake syslog, and return list to which prefix and then log messages will be appended if it is used. """ logMessages = [] class fakesyslogobserver: def __init__(self, prefix): logMessages.append(prefix) def emit(self, eventDict): logMessages.append(eventDict) testCase.patch(syslog, "SyslogObserver", fakesyslogobserver) return logMessages class AppLoggerTests(TestCase): """ Tests for L{app.AppLogger}. @ivar observers: list of observers installed during the tests. @type observers: C{list} """ def setUp(self): """ Override L{globaLogBeginner.beginLoggingTo} so that we can trace the observers installed in C{self.observers}. """ self.observers = [] def beginLoggingTo(observers): for observer in observers: self.observers.append(observer) globalLogPublisher.addObserver(observer) self.patch(globalLogBeginner, "beginLoggingTo", beginLoggingTo) def tearDown(self): """ Remove all installed observers. """ for observer in self.observers: globalLogPublisher.removeObserver(observer) def _makeObserver(self): """ Make a new observer which captures all logs sent to it. @return: An observer that stores all logs sent to it. @rtype: Callable that implements L{ILogObserver}. """ @implementer(ILogObserver) class TestObserver: _logs = [] def __call__(self, event): self._logs.append(event) return TestObserver() def _checkObserver(self, observer): """ Ensure that initial C{twistd} logs are written to logs. @param observer: The observer made by L{self._makeObserver). """ self.assertEqual(self.observers, [observer]) self.assertIn("starting up", observer._logs[0]["log_format"]) self.assertIn("reactor class", observer._logs[1]["log_format"]) def test_start(self): """ L{app.AppLogger.start} calls L{globalLogBeginner.addObserver}, and then writes some messages about twistd and the reactor. """ logger = app.AppLogger({}) observer = self._makeObserver() logger._getLogObserver = lambda: observer logger.start(Componentized()) self._checkObserver(observer) def test_startUsesApplicationLogObserver(self): """ When the L{ILogObserver} component is available on the application, that object will be used as the log observer instead of constructing a new one. """ application = Componentized() observer = self._makeObserver() application.setComponent(ILogObserver, observer) logger = app.AppLogger({}) logger.start(application) self._checkObserver(observer) def _setupConfiguredLogger( self, application, extraLogArgs={}, appLogger=app.AppLogger ): """ Set up an AppLogger which exercises the C{logger} configuration option. @type application: L{Componentized} @param application: The L{Application} object to pass to L{app.AppLogger.start}. @type extraLogArgs: C{dict} @param extraLogArgs: extra values to pass to AppLogger. @type appLogger: L{AppLogger} class, or a subclass @param appLogger: factory for L{AppLogger} instances. @rtype: C{list} @return: The logs accumulated by the log observer. """ observer = self._makeObserver() logArgs = {"logger": lambda: observer} logArgs.update(extraLogArgs) logger = appLogger(logArgs) logger.start(application) return observer def test_startUsesConfiguredLogObserver(self): """ When the C{logger} key is specified in the configuration dictionary (i.e., when C{--logger} is passed to twistd), the initial log observer will be the log observer returned from the callable which the value refers to in FQPN form. """ application = Componentized() self._checkObserver(self._setupConfiguredLogger(application)) def test_configuredLogObserverBeatsComponent(self): """ C{--logger} takes precedence over a L{ILogObserver} component set on Application. """ observer = self._makeObserver() application = Componentized() application.setComponent(ILogObserver, observer) self._checkObserver(self._setupConfiguredLogger(application)) self.assertEqual(observer._logs, []) def test_configuredLogObserverBeatsLegacyComponent(self): """ C{--logger} takes precedence over a L{LegacyILogObserver} component set on Application. """ nonlogs = [] application = Componentized() application.setComponent(LegacyILogObserver, nonlogs.append) self._checkObserver(self._setupConfiguredLogger(application)) self.assertEqual(nonlogs, []) def test_loggerComponentBeatsLegacyLoggerComponent(self): """ A L{ILogObserver} takes precedence over a L{LegacyILogObserver} component set on Application. """ nonlogs = [] observer = self._makeObserver() application = Componentized() application.setComponent(ILogObserver, observer) application.setComponent(LegacyILogObserver, nonlogs.append) logger = app.AppLogger({}) logger.start(application) self._checkObserver(observer) self.assertEqual(nonlogs, []) @skipIf(not _twistd_unix, "twistd unix not available") @skipIf(not syslog, "syslog not available") def test_configuredLogObserverBeatsSyslog(self): """ C{--logger} takes precedence over a C{--syslog} command line argument. """ logs = _setupSyslog(self) application = Componentized() self._checkObserver( self._setupConfiguredLogger(application, {"syslog": True}, UnixAppLogger) ) self.assertEqual(logs, []) def test_configuredLogObserverBeatsLogfile(self): """ C{--logger} takes precedence over a C{--logfile} command line argument. """ application = Componentized() path = self.mktemp() self._checkObserver( self._setupConfiguredLogger(application, {"logfile": "path"}) ) self.assertFalse(os.path.exists(path)) def test_getLogObserverStdout(self): """ When logfile is empty or set to C{-}, L{app.AppLogger._getLogObserver} returns a log observer pointing at C{sys.stdout}. """ logger = app.AppLogger({"logfile": "-"}) logFiles = _patchTextFileLogObserver(self.patch) logger._getLogObserver() self.assertEqual(len(logFiles), 1) self.assertIs(logFiles[0], sys.stdout) logger = app.AppLogger({"logfile": ""}) logger._getLogObserver() self.assertEqual(len(logFiles), 2) self.assertIs(logFiles[1], sys.stdout) def test_getLogObserverFile(self): """ When passing the C{logfile} option, L{app.AppLogger._getLogObserver} returns a log observer pointing at the specified path. """ logFiles = _patchTextFileLogObserver(self.patch) filename = self.mktemp() logger = app.AppLogger({"logfile": filename}) logger._getLogObserver() self.assertEqual(len(logFiles), 1) self.assertEqual(logFiles[0].path, os.path.abspath(filename)) def test_stop(self): """ L{app.AppLogger.stop} removes the observer created in C{start}, and reinitialize its C{_observer} so that if C{stop} is called several times it doesn't break. """ removed = [] observer = object() def remove(observer): removed.append(observer) self.patch(globalLogPublisher, "removeObserver", remove) logger = app.AppLogger({}) logger._observer = observer logger.stop() self.assertEqual(removed, [observer]) logger.stop() self.assertEqual(removed, [observer]) self.assertIsNone(logger._observer) def test_legacyObservers(self): """ L{app.AppLogger} using a legacy logger observer still works, wrapping it in a compat shim. """ logs = [] logger = app.AppLogger({}) @implementer(LegacyILogObserver) class LoggerObserver: """ An observer which implements the legacy L{LegacyILogObserver}. """ def __call__(self, x): """ Add C{x} to the logs list. """ logs.append(x) logger._observerFactory = lambda: LoggerObserver() logger.start(Componentized()) self.assertIn("starting up", textFromEventDict(logs[0])) warnings = self.flushWarnings([self.test_legacyObservers]) self.assertEqual(len(warnings), 0) def test_unmarkedObserversDeprecated(self): """ L{app.AppLogger} using a logger observer which does not implement L{ILogObserver} or L{LegacyILogObserver} will be wrapped in a compat shim and raise a L{DeprecationWarning}. """ logs = [] logger = app.AppLogger({}) logger._getLogObserver = lambda: logs.append logger.start(Componentized()) self.assertIn("starting up", textFromEventDict(logs[0])) warnings = self.flushWarnings([self.test_unmarkedObserversDeprecated]) self.assertEqual(len(warnings), 1) self.assertEqual( warnings[0]["message"], ( "Passing a logger factory which makes log observers " "which do not implement twisted.logger.ILogObserver " "or twisted.python.log.ILogObserver to " "twisted.application.app.AppLogger was deprecated " "in Twisted 16.2. Please use a factory that " "produces twisted.logger.ILogObserver (or the " "legacy twisted.python.log.ILogObserver) " "implementing objects instead." ), ) @skipIf(not _twistd_unix, "twistd unix not available") class UnixAppLoggerTests(TestCase): """ Tests for L{UnixAppLogger}. @ivar signals: list of signal handlers installed. @type signals: C{list} """ def setUp(self): """ Fake C{signal.signal} for not installing the handlers but saving them in C{self.signals}. """ self.signals = [] def fakeSignal(sig, f): self.signals.append((sig, f)) self.patch(signal, "signal", fakeSignal) def test_getLogObserverStdout(self): """ When non-daemonized and C{logfile} is empty or set to C{-}, L{UnixAppLogger._getLogObserver} returns a log observer pointing at C{sys.stdout}. """ logFiles = _patchTextFileLogObserver(self.patch) logger = UnixAppLogger({"logfile": "-", "nodaemon": True}) logger._getLogObserver() self.assertEqual(len(logFiles), 1) self.assertIs(logFiles[0], sys.stdout) logger = UnixAppLogger({"logfile": "", "nodaemon": True}) logger._getLogObserver() self.assertEqual(len(logFiles), 2) self.assertIs(logFiles[1], sys.stdout) def test_getLogObserverStdoutDaemon(self): """ When daemonized and C{logfile} is set to C{-}, L{UnixAppLogger._getLogObserver} raises C{SystemExit}. """ logger = UnixAppLogger({"logfile": "-", "nodaemon": False}) error = self.assertRaises(SystemExit, logger._getLogObserver) self.assertEqual(str(error), "Daemons cannot log to stdout, exiting!") def test_getLogObserverFile(self): """ When C{logfile} contains a file name, L{app.AppLogger._getLogObserver} returns a log observer pointing at the specified path, and a signal handler rotating the log is installed. """ logFiles = _patchTextFileLogObserver(self.patch) filename = self.mktemp() logger = UnixAppLogger({"logfile": filename}) logger._getLogObserver() self.assertEqual(len(logFiles), 1) self.assertEqual(logFiles[0].path, os.path.abspath(filename)) self.assertEqual(len(self.signals), 1) self.assertEqual(self.signals[0][0], signal.SIGUSR1) d = Deferred() def rotate(): d.callback(None) logFiles[0].rotate = rotate rotateLog = self.signals[0][1] rotateLog(None, None) return d def test_getLogObserverDontOverrideSignalHandler(self): """ If a signal handler is already installed, L{UnixAppLogger._getLogObserver} doesn't override it. """ def fakeGetSignal(sig): self.assertEqual(sig, signal.SIGUSR1) return object() self.patch(signal, "getsignal", fakeGetSignal) filename = self.mktemp() logger = UnixAppLogger({"logfile": filename}) logger._getLogObserver() self.assertEqual(self.signals, []) def test_getLogObserverDefaultFile(self): """ When daemonized and C{logfile} is empty, the observer returned by L{UnixAppLogger._getLogObserver} points at C{twistd.log} in the current directory. """ logFiles = _patchTextFileLogObserver(self.patch) logger = UnixAppLogger({"logfile": "", "nodaemon": False}) logger._getLogObserver() self.assertEqual(len(logFiles), 1) self.assertEqual(logFiles[0].path, os.path.abspath("twistd.log")) @skipIf(not _twistd_unix, "twistd unix not available") def test_getLogObserverSyslog(self): """ If C{syslog} is set to C{True}, L{UnixAppLogger._getLogObserver} starts a L{syslog.SyslogObserver} with given C{prefix}. """ logs = _setupSyslog(self) logger = UnixAppLogger({"syslog": True, "prefix": "test-prefix"}) observer = logger._getLogObserver() self.assertEqual(logs, ["test-prefix"]) observer({"a": "b"}) self.assertEqual(logs, ["test-prefix", {"a": "b"}]) @skipIf(not _twistd_unix, "twistd unix support not available") class DaemonizeTests(TestCase): """ Tests for L{_twistd_unix.UnixApplicationRunner} daemonization. """ def setUp(self): self.mockos = MockOS() self.config = twistd.ServerOptions() self.patch(_twistd_unix, "os", self.mockos) self.runner = _twistd_unix.UnixApplicationRunner(self.config) self.runner.application = service.Application("Hi!") self.runner.oldstdout = sys.stdout self.runner.oldstderr = sys.stderr self.runner.startReactor = lambda *args: None def test_success(self): """ When double fork succeeded in C{daemonize}, the child process writes B{0} to the status pipe. """ with AlternateReactor(FakeDaemonizingReactor()): self.runner.postApplication() self.assertEqual( self.mockos.actions, [ ("chdir", "."), ("umask", 0o077), ("fork", True), "setsid", ("fork", True), ("write", -2, b"0"), ("unlink", "twistd.pid"), ], ) self.assertEqual(self.mockos.closed, [-3, -2]) def test_successInParent(self): """ The parent process initiating the C{daemonize} call reads data from the status pipe and then exit the process. """ self.mockos.child = False self.mockos.readData = b"0" with AlternateReactor(FakeDaemonizingReactor()): self.assertRaises(SystemError, self.runner.postApplication) self.assertEqual( self.mockos.actions, [ ("chdir", "."), ("umask", 0o077), ("fork", True), ("read", -1, 100), ("exit", 0), ("unlink", "twistd.pid"), ], ) self.assertEqual(self.mockos.closed, [-1]) def test_successEINTR(self): """ If the C{os.write} call to the status pipe raises an B{EINTR} error, the process child retries to write. """ written = [] def raisingWrite(fd, data): written.append((fd, data)) if len(written) == 1: raise OSError(errno.EINTR) self.mockos.write = raisingWrite with AlternateReactor(FakeDaemonizingReactor()): self.runner.postApplication() self.assertEqual( self.mockos.actions, [ ("chdir", "."), ("umask", 0o077), ("fork", True), "setsid", ("fork", True), ("unlink", "twistd.pid"), ], ) self.assertEqual(self.mockos.closed, [-3, -2]) self.assertEqual([(-2, b"0"), (-2, b"0")], written) def test_successInParentEINTR(self): """ If the C{os.read} call on the status pipe raises an B{EINTR} error, the parent child retries to read. """ read = [] def raisingRead(fd, size): read.append((fd, size)) if len(read) == 1: raise OSError(errno.EINTR) return b"0" self.mockos.read = raisingRead self.mockos.child = False with AlternateReactor(FakeDaemonizingReactor()): self.assertRaises(SystemError, self.runner.postApplication) self.assertEqual( self.mockos.actions, [ ("chdir", "."), ("umask", 0o077), ("fork", True), ("exit", 0), ("unlink", "twistd.pid"), ], ) self.assertEqual(self.mockos.closed, [-1]) self.assertEqual([(-1, 100), (-1, 100)], read) def assertErrorWritten(self, raised, reported): """ Assert L{UnixApplicationRunner.postApplication} writes C{reported} to its status pipe if the service raises an exception whose message is C{raised}. """ class FakeService(service.Service): def startService(self): raise RuntimeError(raised) errorService = FakeService() errorService.setServiceParent(self.runner.application) with AlternateReactor(FakeDaemonizingReactor()): self.assertRaises(RuntimeError, self.runner.postApplication) self.assertEqual( self.mockos.actions, [ ("chdir", "."), ("umask", 0o077), ("fork", True), "setsid", ("fork", True), ("write", -2, reported), ("unlink", "twistd.pid"), ], ) self.assertEqual(self.mockos.closed, [-3, -2]) def test_error(self): """ If an error happens during daemonization, the child process writes the exception error to the status pipe. """ self.assertErrorWritten( raised="Something is wrong", reported=b"1 RuntimeError: Something is wrong" ) def test_unicodeError(self): """ If an error happens during daemonization, and that error's message is Unicode, the child encodes the message as ascii with backslash Unicode code points. """ self.assertErrorWritten(raised="\u2022", reported=b"1 RuntimeError: \\u2022") def assertErrorInParentBehavior(self, readData, errorMessage, mockOSActions): """ Make L{os.read} appear to return C{readData}, and assert that L{UnixApplicationRunner.postApplication} writes C{errorMessage} to standard error and executes the calls against L{os} functions specified in C{mockOSActions}. """ self.mockos.child = False self.mockos.readData = readData errorIO = StringIO() self.patch(sys, "__stderr__", errorIO) with AlternateReactor(FakeDaemonizingReactor()): self.assertRaises(SystemError, self.runner.postApplication) self.assertEqual(errorIO.getvalue(), errorMessage) self.assertEqual(self.mockos.actions, mockOSActions) self.assertEqual(self.mockos.closed, [-1]) def test_errorInParent(self): """ When the child writes an error message to the status pipe during daemonization, the parent writes the repr of the message to C{stderr} and exits with non-zero status code. """ self.assertErrorInParentBehavior( readData=b"1 Exception: An identified error", errorMessage=( "An error has occurred: b'Exception: An identified error'\n" "Please look at log file for more information.\n" ), mockOSActions=[ ("chdir", "."), ("umask", 0o077), ("fork", True), ("read", -1, 100), ("exit", 1), ("unlink", "twistd.pid"), ], ) def test_nonASCIIErrorInParent(self): """ When the child writes a non-ASCII error message to the status pipe during daemonization, the parent writes the repr of the message to C{stderr} and exits with a non-zero status code. """ self.assertErrorInParentBehavior( readData=b"1 Exception: \xff", errorMessage=( "An error has occurred: b'Exception: \\xff'\n" "Please look at log file for more information.\n" ), mockOSActions=[ ("chdir", "."), ("umask", 0o077), ("fork", True), ("read", -1, 100), ("exit", 1), ("unlink", "twistd.pid"), ], ) def test_errorInParentWithTruncatedUnicode(self): """ When the child writes a non-ASCII error message to the status pipe during daemonization, and that message is too longer, the parent writes the repr of the truncated message to C{stderr} and exits with a non-zero status code. """ truncatedMessage = b"1 RuntimeError: " + b"\\u2022" * 14 # the escape sequence will appear to be escaped twice, because # we're getting the repr reportedMessage = "b'RuntimeError: {}'".format(r"\\u2022" * 14) self.assertErrorInParentBehavior( readData=truncatedMessage, errorMessage=( "An error has occurred: {}\n" "Please look at log file for more information.\n".format( reportedMessage ) ), mockOSActions=[ ("chdir", "."), ("umask", 0o077), ("fork", True), ("read", -1, 100), ("exit", 1), ("unlink", "twistd.pid"), ], ) def test_errorMessageTruncated(self): """ If an error occurs during daemonization and its message is too long, it's truncated by the child. """ self.assertErrorWritten( raised="x" * 200, reported=b"1 RuntimeError: " + b"x" * 84 ) def test_unicodeErrorMessageTruncated(self): """ If an error occurs during daemonization and its message is unicode and too long, it's truncated by the child, even if this splits a unicode escape sequence. """ self.assertErrorWritten( raised="\u2022" * 30, reported=b"1 RuntimeError: " + b"\\u2022" * 14, ) def test_hooksCalled(self): """ C{daemonize} indeed calls L{IReactorDaemonize.beforeDaemonize} and L{IReactorDaemonize.afterDaemonize} if the reactor implements L{IReactorDaemonize}. """ reactor = FakeDaemonizingReactor() self.runner.daemonize(reactor) self.assertTrue(reactor._beforeDaemonizeCalled) self.assertTrue(reactor._afterDaemonizeCalled) def test_hooksNotCalled(self): """ C{daemonize} does NOT call L{IReactorDaemonize.beforeDaemonize} or L{IReactorDaemonize.afterDaemonize} if the reactor does NOT implement L{IReactorDaemonize}. """ reactor = FakeNonDaemonizingReactor() self.runner.daemonize(reactor) self.assertFalse(reactor._beforeDaemonizeCalled) self.assertFalse(reactor._afterDaemonizeCalled) @implementer(_ISupportsExitSignalCapturing) class SignalCapturingMemoryReactor(MemoryReactor): """ MemoryReactor that implements the _ISupportsExitSignalCapturing interface, all other operations identical to MemoryReactor. """ @property def _exitSignal(self): return self._val @_exitSignal.setter def _exitSignal(self, val): self._val = val class StubApplicationRunnerWithSignal(twistd._SomeApplicationRunner): """ An application runner that uses a SignalCapturingMemoryReactor and has a _signalValue attribute that it will set in the reactor. @ivar _signalValue: The signal value to set on the reactor's _exitSignal attribute. """ loggerFactory = CrippledAppLogger def __init__(self, config): super().__init__(config) self._signalValue = None def preApplication(self): """ Does nothing. """ def postApplication(self): """ Instantiate a SignalCapturingMemoryReactor and start it in the runner. """ reactor = SignalCapturingMemoryReactor() reactor._exitSignal = self._signalValue self.startReactor(reactor, sys.stdout, sys.stderr) def stubApplicationRunnerFactoryCreator(signum): """ Create a factory function to instantiate a StubApplicationRunnerWithSignal that will report signum as the captured signal.. @param signum: The integer signal number or None @type signum: C{int} or C{None} @return: A factory function to create stub runners. @rtype: stubApplicationRunnerFactory """ def stubApplicationRunnerFactory(config): """ Create a StubApplicationRunnerWithSignal using a reactor that implements _ISupportsExitSignalCapturing and whose _exitSignal attribute is set to signum. @param config: The runner configuration, platform dependent. @type config: L{twisted.scripts.twistd.ServerOptions} @return: A runner to use for the test. @rtype: twisted.test.test_twistd.StubApplicationRunnerWithSignal """ runner = StubApplicationRunnerWithSignal(config) runner._signalValue = signum return runner return stubApplicationRunnerFactory class ExitWithSignalTests(TestCase): """ Tests for L{twisted.application.app._exitWithSignal}. """ def setUp(self): """ Set up the server options and a fake for use by test cases. """ self.config = twistd.ServerOptions() self.config.loadedPlugins = {"test_command": MockServiceMaker()} self.config.subOptions = object() self.config.subCommand = "test_command" self.fakeKillArgs = [None, None] def fakeKill(pid, sig): """ Fake method to capture arguments passed to os.kill. @param pid: The pid of the process being killed. @param sig: The signal sent to the process. """ self.fakeKillArgs[0] = pid self.fakeKillArgs[1] = sig self.patch(os, "kill", fakeKill) def test_exitWithSignal(self): """ exitWithSignal replaces the existing signal handler with the default handler and sends the replaced signal to the current process. """ fakeSignalArgs = [None, None] def fake_signal(sig, handler): fakeSignalArgs[0] = sig fakeSignalArgs[1] = handler self.patch(signal, "signal", fake_signal) app._exitWithSignal(signal.SIGINT) self.assertEquals(fakeSignalArgs[0], signal.SIGINT) self.assertEquals(fakeSignalArgs[1], signal.SIG_DFL) self.assertEquals(self.fakeKillArgs[0], os.getpid()) self.assertEquals(self.fakeKillArgs[1], signal.SIGINT) def test_normalExit(self): """ _exitWithSignal is not called if the runner does not exit with a signal. """ self.patch( twistd, "_SomeApplicationRunner", stubApplicationRunnerFactoryCreator(None) ) twistd.runApp(self.config) self.assertIsNone(self.fakeKillArgs[0]) self.assertIsNone(self.fakeKillArgs[1]) def test_runnerExitsWithSignal(self): """ _exitWithSignal is called when the runner exits with a signal. """ self.patch( twistd, "_SomeApplicationRunner", stubApplicationRunnerFactoryCreator(signal.SIGINT), ) twistd.runApp(self.config) self.assertEquals(self.fakeKillArgs[0], os.getpid()) self.assertEquals(self.fakeKillArgs[1], signal.SIGINT)
the-stack_0_23707
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource_py3 import Resource class VirtualNetworkGatewayConnectionListEntity(Resource): """A common class for general resource information. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param id: Resource ID. :type id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param location: Resource location. :type location: str :param tags: Resource tags. :type tags: dict[str, str] :param authorization_key: The authorizationKey. :type authorization_key: str :param virtual_network_gateway1: Required. The reference to virtual network gateway resource. :type virtual_network_gateway1: ~azure.mgmt.network.v2018_02_01.models.VirtualNetworkConnectionGatewayReference :param virtual_network_gateway2: The reference to virtual network gateway resource. :type virtual_network_gateway2: ~azure.mgmt.network.v2018_02_01.models.VirtualNetworkConnectionGatewayReference :param local_network_gateway2: The reference to local network gateway resource. :type local_network_gateway2: ~azure.mgmt.network.v2018_02_01.models.VirtualNetworkConnectionGatewayReference :param connection_type: Required. Gateway connection type. Possible values are: 'Ipsec','Vnet2Vnet','ExpressRoute', and 'VPNClient. Possible values include: 'IPsec', 'Vnet2Vnet', 'ExpressRoute', 'VPNClient' :type connection_type: str or ~azure.mgmt.network.v2018_02_01.models.VirtualNetworkGatewayConnectionType :param routing_weight: The routing weight. :type routing_weight: int :param shared_key: The IPSec shared key. :type shared_key: str :ivar connection_status: Virtual network Gateway connection status. Possible values are 'Unknown', 'Connecting', 'Connected' and 'NotConnected'. Possible values include: 'Unknown', 'Connecting', 'Connected', 'NotConnected' :vartype connection_status: str or ~azure.mgmt.network.v2018_02_01.models.VirtualNetworkGatewayConnectionStatus :ivar tunnel_connection_status: Collection of all tunnels' connection health status. :vartype tunnel_connection_status: list[~azure.mgmt.network.v2018_02_01.models.TunnelConnectionHealth] :ivar egress_bytes_transferred: The egress bytes transferred in this connection. :vartype egress_bytes_transferred: long :ivar ingress_bytes_transferred: The ingress bytes transferred in this connection. :vartype ingress_bytes_transferred: long :param peer: The reference to peerings resource. :type peer: ~azure.mgmt.network.v2018_02_01.models.SubResource :param enable_bgp: EnableBgp flag :type enable_bgp: bool :param use_policy_based_traffic_selectors: Enable policy-based traffic selectors. :type use_policy_based_traffic_selectors: bool :param ipsec_policies: The IPSec Policies to be considered by this connection. :type ipsec_policies: list[~azure.mgmt.network.v2018_02_01.models.IpsecPolicy] :param resource_guid: The resource GUID property of the VirtualNetworkGatewayConnection resource. :type resource_guid: str :ivar provisioning_state: The provisioning state of the VirtualNetworkGatewayConnection resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :vartype provisioning_state: str :param etag: Gets a unique read-only string that changes whenever the resource is updated. :type etag: str """ _validation = { 'name': {'readonly': True}, 'type': {'readonly': True}, 'virtual_network_gateway1': {'required': True}, 'connection_type': {'required': True}, 'connection_status': {'readonly': True}, 'tunnel_connection_status': {'readonly': True}, 'egress_bytes_transferred': {'readonly': True}, 'ingress_bytes_transferred': {'readonly': True}, 'provisioning_state': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'authorization_key': {'key': 'properties.authorizationKey', 'type': 'str'}, 'virtual_network_gateway1': {'key': 'properties.virtualNetworkGateway1', 'type': 'VirtualNetworkConnectionGatewayReference'}, 'virtual_network_gateway2': {'key': 'properties.virtualNetworkGateway2', 'type': 'VirtualNetworkConnectionGatewayReference'}, 'local_network_gateway2': {'key': 'properties.localNetworkGateway2', 'type': 'VirtualNetworkConnectionGatewayReference'}, 'connection_type': {'key': 'properties.connectionType', 'type': 'str'}, 'routing_weight': {'key': 'properties.routingWeight', 'type': 'int'}, 'shared_key': {'key': 'properties.sharedKey', 'type': 'str'}, 'connection_status': {'key': 'properties.connectionStatus', 'type': 'str'}, 'tunnel_connection_status': {'key': 'properties.tunnelConnectionStatus', 'type': '[TunnelConnectionHealth]'}, 'egress_bytes_transferred': {'key': 'properties.egressBytesTransferred', 'type': 'long'}, 'ingress_bytes_transferred': {'key': 'properties.ingressBytesTransferred', 'type': 'long'}, 'peer': {'key': 'properties.peer', 'type': 'SubResource'}, 'enable_bgp': {'key': 'properties.enableBgp', 'type': 'bool'}, 'use_policy_based_traffic_selectors': {'key': 'properties.usePolicyBasedTrafficSelectors', 'type': 'bool'}, 'ipsec_policies': {'key': 'properties.ipsecPolicies', 'type': '[IpsecPolicy]'}, 'resource_guid': {'key': 'properties.resourceGuid', 'type': 'str'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, *, virtual_network_gateway1, connection_type, id: str=None, location: str=None, tags=None, authorization_key: str=None, virtual_network_gateway2=None, local_network_gateway2=None, routing_weight: int=None, shared_key: str=None, peer=None, enable_bgp: bool=None, use_policy_based_traffic_selectors: bool=None, ipsec_policies=None, resource_guid: str=None, etag: str=None, **kwargs) -> None: super(VirtualNetworkGatewayConnectionListEntity, self).__init__(id=id, location=location, tags=tags, **kwargs) self.authorization_key = authorization_key self.virtual_network_gateway1 = virtual_network_gateway1 self.virtual_network_gateway2 = virtual_network_gateway2 self.local_network_gateway2 = local_network_gateway2 self.connection_type = connection_type self.routing_weight = routing_weight self.shared_key = shared_key self.connection_status = None self.tunnel_connection_status = None self.egress_bytes_transferred = None self.ingress_bytes_transferred = None self.peer = peer self.enable_bgp = enable_bgp self.use_policy_based_traffic_selectors = use_policy_based_traffic_selectors self.ipsec_policies = ipsec_policies self.resource_guid = resource_guid self.provisioning_state = None self.etag = etag
the-stack_0_23709
import datetime from itertools import count import os import threading import time from six.moves import range from six.moves import urllib import pytest import cherrypy from cherrypy.lib import httputil from cherrypy.test import helper curdir = os.path.join(os.getcwd(), os.path.dirname(__file__)) gif_bytes = ( b'GIF89a\x01\x00\x01\x00\x82\x00\x01\x99"\x1e\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00,\x00\x00\x00\x00\x01\x00\x01\x00\x02\x03\x02\x08\t\x00;' ) class CacheTest(helper.CPWebCase): @staticmethod def setup_server(): @cherrypy.config(**{'tools.caching.on': True}) class Root: def __init__(self): self.counter = 0 self.control_counter = 0 self.longlock = threading.Lock() @cherrypy.expose def index(self): self.counter += 1 msg = 'visit #%s' % self.counter return msg @cherrypy.expose def control(self): self.control_counter += 1 return 'visit #%s' % self.control_counter @cherrypy.expose def a_gif(self): cherrypy.response.headers[ 'Last-Modified'] = httputil.HTTPDate() return gif_bytes @cherrypy.expose def long_process(self, seconds='1'): try: self.longlock.acquire() time.sleep(float(seconds)) finally: self.longlock.release() return 'success!' @cherrypy.expose def clear_cache(self, path): cherrypy._cache.store[cherrypy.request.base + path].clear() @cherrypy.config(**{ 'tools.caching.on': True, 'tools.response_headers.on': True, 'tools.response_headers.headers': [ ('Vary', 'Our-Varying-Header') ], }) class VaryHeaderCachingServer(object): def __init__(self): self.counter = count(1) @cherrypy.expose def index(self): return 'visit #%s' % next(self.counter) @cherrypy.config(**{ 'tools.expires.on': True, 'tools.expires.secs': 60, 'tools.staticdir.on': True, 'tools.staticdir.dir': 'static', 'tools.staticdir.root': curdir, }) class UnCached(object): @cherrypy.expose @cherrypy.config(**{'tools.expires.secs': 0}) def force(self): cherrypy.response.headers['Etag'] = 'bibbitybobbityboo' self._cp_config['tools.expires.force'] = True self._cp_config['tools.expires.secs'] = 0 return 'being forceful' @cherrypy.expose def dynamic(self): cherrypy.response.headers['Etag'] = 'bibbitybobbityboo' cherrypy.response.headers['Cache-Control'] = 'private' return 'D-d-d-dynamic!' @cherrypy.expose def cacheable(self): cherrypy.response.headers['Etag'] = 'bibbitybobbityboo' return "Hi, I'm cacheable." @cherrypy.expose @cherrypy.config(**{'tools.expires.secs': 86400}) def specific(self): cherrypy.response.headers[ 'Etag'] = 'need_this_to_make_me_cacheable' return 'I am being specific' class Foo(object): pass @cherrypy.expose @cherrypy.config(**{'tools.expires.secs': Foo()}) def wrongtype(self): cherrypy.response.headers[ 'Etag'] = 'need_this_to_make_me_cacheable' return 'Woops' @cherrypy.config(**{ 'tools.gzip.mime_types': ['text/*', 'image/*'], 'tools.caching.on': True, 'tools.staticdir.on': True, 'tools.staticdir.dir': 'static', 'tools.staticdir.root': curdir }) class GzipStaticCache(object): pass cherrypy.tree.mount(Root()) cherrypy.tree.mount(UnCached(), '/expires') cherrypy.tree.mount(VaryHeaderCachingServer(), '/varying_headers') cherrypy.tree.mount(GzipStaticCache(), '/gzip_static_cache') cherrypy.config.update({'tools.gzip.on': True}) def testCaching(self): elapsed = 0.0 for trial in range(10): self.getPage('/') # The response should be the same every time, # except for the Age response header. self.assertBody('visit #1') if trial != 0: age = int(self.assertHeader('Age')) self.assert_(age >= elapsed) elapsed = age # POST, PUT, DELETE should not be cached. self.getPage('/', method='POST') self.assertBody('visit #2') # Because gzip is turned on, the Vary header should always Vary for # content-encoding self.assertHeader('Vary', 'Accept-Encoding') # The previous request should have invalidated the cache, # so this request will recalc the response. self.getPage('/', method='GET') self.assertBody('visit #3') # ...but this request should get the cached copy. self.getPage('/', method='GET') self.assertBody('visit #3') self.getPage('/', method='DELETE') self.assertBody('visit #4') # The previous request should have invalidated the cache, # so this request will recalc the response. self.getPage('/', method='GET', headers=[('Accept-Encoding', 'gzip')]) self.assertHeader('Content-Encoding', 'gzip') self.assertHeader('Vary') self.assertEqual( cherrypy.lib.encoding.decompress(self.body), b'visit #5') # Now check that a second request gets the gzip header and gzipped body # This also tests a bug in 3.0 to 3.0.2 whereby the cached, gzipped # response body was being gzipped a second time. self.getPage('/', method='GET', headers=[('Accept-Encoding', 'gzip')]) self.assertHeader('Content-Encoding', 'gzip') self.assertEqual( cherrypy.lib.encoding.decompress(self.body), b'visit #5') # Now check that a third request that doesn't accept gzip # skips the cache (because the 'Vary' header denies it). self.getPage('/', method='GET') self.assertNoHeader('Content-Encoding') self.assertBody('visit #6') def testVaryHeader(self): self.getPage('/varying_headers/') self.assertStatus('200 OK') self.assertHeaderItemValue('Vary', 'Our-Varying-Header') self.assertBody('visit #1') # Now check that different 'Vary'-fields don't evict each other. # This test creates 2 requests with different 'Our-Varying-Header' # and then tests if the first one still exists. self.getPage('/varying_headers/', headers=[('Our-Varying-Header', 'request 2')]) self.assertStatus('200 OK') self.assertBody('visit #2') self.getPage('/varying_headers/', headers=[('Our-Varying-Header', 'request 2')]) self.assertStatus('200 OK') self.assertBody('visit #2') self.getPage('/varying_headers/') self.assertStatus('200 OK') self.assertBody('visit #1') def testExpiresTool(self): # test setting an expires header self.getPage('/expires/specific') self.assertStatus('200 OK') self.assertHeader('Expires') # test exceptions for bad time values self.getPage('/expires/wrongtype') self.assertStatus(500) self.assertInBody('TypeError') # static content should not have "cache prevention" headers self.getPage('/expires/index.html') self.assertStatus('200 OK') self.assertNoHeader('Pragma') self.assertNoHeader('Cache-Control') self.assertHeader('Expires') # dynamic content that sets indicators should not have # "cache prevention" headers self.getPage('/expires/cacheable') self.assertStatus('200 OK') self.assertNoHeader('Pragma') self.assertNoHeader('Cache-Control') self.assertHeader('Expires') self.getPage('/expires/dynamic') self.assertBody('D-d-d-dynamic!') # the Cache-Control header should be untouched self.assertHeader('Cache-Control', 'private') self.assertHeader('Expires') # configure the tool to ignore indicators and replace existing headers self.getPage('/expires/force') self.assertStatus('200 OK') # This also gives us a chance to test 0 expiry with no other headers self.assertHeader('Pragma', 'no-cache') if cherrypy.server.protocol_version == 'HTTP/1.1': self.assertHeader('Cache-Control', 'no-cache, must-revalidate') self.assertHeader('Expires', 'Sun, 28 Jan 2007 00:00:00 GMT') # static content should now have "cache prevention" headers self.getPage('/expires/index.html') self.assertStatus('200 OK') self.assertHeader('Pragma', 'no-cache') if cherrypy.server.protocol_version == 'HTTP/1.1': self.assertHeader('Cache-Control', 'no-cache, must-revalidate') self.assertHeader('Expires', 'Sun, 28 Jan 2007 00:00:00 GMT') # the cacheable handler should now have "cache prevention" headers self.getPage('/expires/cacheable') self.assertStatus('200 OK') self.assertHeader('Pragma', 'no-cache') if cherrypy.server.protocol_version == 'HTTP/1.1': self.assertHeader('Cache-Control', 'no-cache, must-revalidate') self.assertHeader('Expires', 'Sun, 28 Jan 2007 00:00:00 GMT') self.getPage('/expires/dynamic') self.assertBody('D-d-d-dynamic!') # dynamic sets Cache-Control to private but it should be # overwritten here ... self.assertHeader('Pragma', 'no-cache') if cherrypy.server.protocol_version == 'HTTP/1.1': self.assertHeader('Cache-Control', 'no-cache, must-revalidate') self.assertHeader('Expires', 'Sun, 28 Jan 2007 00:00:00 GMT') def _assert_resp_len_and_enc_for_gzip(self, uri): """ Test that after querying gzipped content it's remains valid in cache and available non-gzipped as well. """ ACCEPT_GZIP_HEADERS = [('Accept-Encoding', 'gzip')] content_len = None for _ in range(3): self.getPage(uri, method='GET', headers=ACCEPT_GZIP_HEADERS) if content_len is not None: # all requests should get the same length self.assertHeader('Content-Length', content_len) self.assertHeader('Content-Encoding', 'gzip') content_len = dict(self.headers)['Content-Length'] # check that we can still get non-gzipped version self.getPage(uri, method='GET') self.assertNoHeader('Content-Encoding') # non-gzipped version should have a different content length self.assertNoHeaderItemValue('Content-Length', content_len) def testGzipStaticCache(self): """Test that cache and gzip tools play well together when both enabled. Ref GitHub issue #1190. """ GZIP_STATIC_CACHE_TMPL = '/gzip_static_cache/{}' resource_files = ('index.html', 'dirback.jpg') for f in resource_files: uri = GZIP_STATIC_CACHE_TMPL.format(f) self._assert_resp_len_and_enc_for_gzip(uri) def testLastModified(self): self.getPage('/a.gif') self.assertStatus(200) self.assertBody(gif_bytes) lm1 = self.assertHeader('Last-Modified') # this request should get the cached copy. self.getPage('/a.gif') self.assertStatus(200) self.assertBody(gif_bytes) self.assertHeader('Age') lm2 = self.assertHeader('Last-Modified') self.assertEqual(lm1, lm2) # this request should match the cached copy, but raise 304. self.getPage('/a.gif', [('If-Modified-Since', lm1)]) self.assertStatus(304) self.assertNoHeader('Last-Modified') if not getattr(cherrypy.server, 'using_apache', False): self.assertHeader('Age') @pytest.mark.xfail(reason='#1536') def test_antistampede(self): SECONDS = 4 slow_url = '/long_process?seconds={SECONDS}'.format(**locals()) # We MUST make an initial synchronous request in order to create the # AntiStampedeCache object, and populate its selecting_headers, # before the actual stampede. self.getPage(slow_url) self.assertBody('success!') path = urllib.parse.quote(slow_url, safe='') self.getPage('/clear_cache?path=' + path) self.assertStatus(200) start = datetime.datetime.now() def run(): self.getPage(slow_url) # The response should be the same every time self.assertBody('success!') ts = [threading.Thread(target=run) for i in range(100)] for t in ts: t.start() for t in ts: t.join() finish = datetime.datetime.now() # Allow for overhead, two seconds for slow hosts allowance = SECONDS + 2 self.assertEqualDates(start, finish, seconds=allowance) def test_cache_control(self): self.getPage('/control') self.assertBody('visit #1') self.getPage('/control') self.assertBody('visit #1') self.getPage('/control', headers=[('Cache-Control', 'no-cache')]) self.assertBody('visit #2') self.getPage('/control') self.assertBody('visit #2') self.getPage('/control', headers=[('Pragma', 'no-cache')]) self.assertBody('visit #3') self.getPage('/control') self.assertBody('visit #3') time.sleep(1) self.getPage('/control', headers=[('Cache-Control', 'max-age=0')]) self.assertBody('visit #4') self.getPage('/control') self.assertBody('visit #4')
the-stack_0_23710
#!/usr/bin/env python3 import json import os from unidiff import PatchSet # type: ignore from build_download_helper import get_with_retries from env_helper import ( GITHUB_REPOSITORY, GITHUB_SERVER_URL, GITHUB_RUN_ID, GITHUB_EVENT_PATH, ) DIFF_IN_DOCUMENTATION_EXT = [ ".html", ".md", ".yml", ".txt", ".css", ".js", ".xml", ".ico", ".conf", ".svg", ".png", ".jpg", ".py", ".sh", ".json", ] RETRY_SLEEP = 0 def get_pr_for_commit(sha, ref): if not ref: return None try_get_pr_url = ( f"https://api.github.com/repos/{GITHUB_REPOSITORY}/commits/{sha}/pulls" ) try: response = get_with_retries(try_get_pr_url, sleep=RETRY_SLEEP) data = response.json() if len(data) > 1: print("Got more than one pr for commit", sha) for pr in data: # refs for pushes looks like refs/head/XX # refs for RPs looks like XX if pr["head"]["ref"] in ref: return pr print("Cannot find PR with required ref", ref, "returning first one") first_pr = data[0] return first_pr except Exception as ex: print("Cannot fetch PR info from commit", ex) return None class PRInfo: default_event = { "commits": 1, "before": "HEAD~", "after": "HEAD", "ref": None, } def __init__( self, github_event=None, need_orgs=False, need_changed_files=False, pr_event_from_api=False, ): if not github_event: if GITHUB_EVENT_PATH: with open(GITHUB_EVENT_PATH, "r", encoding="utf-8") as event_file: github_event = json.load(event_file) else: github_event = PRInfo.default_event.copy() self.event = github_event self.changed_files = set([]) self.body = "" ref = github_event.get("ref", "refs/head/master") if ref and ref.startswith("refs/heads/"): ref = ref[11:] # workflow completed event, used for PRs only if "action" in github_event and github_event["action"] == "completed": self.sha = github_event["workflow_run"]["head_sha"] prs_for_sha = get_with_retries( f"https://api.github.com/repos/{GITHUB_REPOSITORY}/commits/{self.sha}" "/pulls", sleep=RETRY_SLEEP, ).json() if len(prs_for_sha) != 0: github_event["pull_request"] = prs_for_sha[0] if "pull_request" in github_event: # pull request and other similar events self.number = github_event["pull_request"]["number"] if pr_event_from_api: response = get_with_retries( f"https://api.github.com/repos/{GITHUB_REPOSITORY}" f"/pulls/{self.number}", sleep=RETRY_SLEEP, ) github_event["pull_request"] = response.json() if "after" in github_event: self.sha = github_event["after"] else: self.sha = github_event["pull_request"]["head"]["sha"] repo_prefix = f"{GITHUB_SERVER_URL}/{GITHUB_REPOSITORY}" self.task_url = f"{repo_prefix}/actions/runs/{GITHUB_RUN_ID or '0'}" self.repo_full_name = GITHUB_REPOSITORY self.commit_html_url = f"{repo_prefix}/commits/{self.sha}" self.pr_html_url = f"{repo_prefix}/pull/{self.number}" self.base_ref = github_event["pull_request"]["base"]["ref"] self.base_name = github_event["pull_request"]["base"]["repo"]["full_name"] self.head_ref = github_event["pull_request"]["head"]["ref"] self.head_name = github_event["pull_request"]["head"]["repo"]["full_name"] self.body = github_event["pull_request"]["body"] self.labels = { label["name"] for label in github_event["pull_request"]["labels"] } self.user_login = github_event["pull_request"]["user"]["login"] self.user_orgs = set([]) if need_orgs: user_orgs_response = get_with_retries( github_event["pull_request"]["user"]["organizations_url"], sleep=RETRY_SLEEP, ) if user_orgs_response.ok: response_json = user_orgs_response.json() self.user_orgs = set(org["id"] for org in response_json) self.diff_url = github_event["pull_request"]["diff_url"] elif "commits" in github_event: self.sha = github_event["after"] pull_request = get_pr_for_commit(self.sha, github_event["ref"]) repo_prefix = f"{GITHUB_SERVER_URL}/{GITHUB_REPOSITORY}" self.task_url = f"{repo_prefix}/actions/runs/{GITHUB_RUN_ID or '0'}" self.commit_html_url = f"{repo_prefix}/commits/{self.sha}" self.repo_full_name = GITHUB_REPOSITORY if pull_request is None or pull_request["state"] == "closed": # it's merged PR to master self.number = 0 self.labels = {} self.pr_html_url = f"{repo_prefix}/commits/{ref}" self.base_ref = ref self.base_name = self.repo_full_name self.head_ref = ref self.head_name = self.repo_full_name self.diff_url = ( f"https://api.github.com/repos/{GITHUB_REPOSITORY}/" f"compare/{github_event['before']}...{self.sha}" ) else: self.labels = {label["name"] for label in pull_request["labels"]} self.base_ref = pull_request["base"]["ref"] self.base_name = pull_request["base"]["repo"]["full_name"] self.head_ref = pull_request["head"]["ref"] self.head_name = pull_request["head"]["repo"]["full_name"] self.pr_html_url = pull_request["html_url"] if "pr-backport" in self.labels: self.diff_url = ( f"https://github.com/{GITHUB_REPOSITORY}/" f"compare/master...{self.head_ref}.diff" ) else: self.diff_url = pull_request["diff_url"] else: print(json.dumps(github_event, sort_keys=True, indent=4)) self.sha = os.getenv("GITHUB_SHA") self.number = 0 self.labels = {} repo_prefix = f"{GITHUB_SERVER_URL}/{GITHUB_REPOSITORY}" self.task_url = f"{repo_prefix}/actions/runs/{GITHUB_RUN_ID or '0'}" self.commit_html_url = f"{repo_prefix}/commits/{self.sha}" self.repo_full_name = GITHUB_REPOSITORY self.pr_html_url = f"{repo_prefix}/commits/{ref}" self.base_ref = ref self.base_name = self.repo_full_name self.head_ref = ref self.head_name = self.repo_full_name if need_changed_files: self.fetch_changed_files() def fetch_changed_files(self): if not self.diff_url: raise Exception("Diff URL cannot be find for event") response = get_with_retries( self.diff_url, sleep=RETRY_SLEEP, ) response.raise_for_status() if "commits" in self.event and self.number == 0: diff = response.json() if "files" in diff: self.changed_files = [f["filename"] for f in diff["files"]] else: diff_object = PatchSet(response.text) self.changed_files = {f.path for f in diff_object} def get_dict(self): return { "sha": self.sha, "number": self.number, "labels": self.labels, "user_login": self.user_login, "user_orgs": self.user_orgs, } def has_changes_in_documentation(self): # If the list wasn't built yet the best we can do is to # assume that there were changes. if self.changed_files is None or not self.changed_files: return True for f in self.changed_files: _, ext = os.path.splitext(f) path_in_docs = "docs" in f path_in_website = "website" in f if ( ext in DIFF_IN_DOCUMENTATION_EXT and (path_in_docs or path_in_website) ) or "docker/docs" in f: return True return False def can_skip_builds_and_use_version_from_master(self): # TODO: See a broken loop if "force tests" in self.labels: return False if self.changed_files is None or not self.changed_files: return False for f in self.changed_files: # TODO: this logic is broken, should be fixed before using if ( not f.startswith("tests/queries") or not f.startswith("tests/integration") or not f.startswith("tests/performance") ): return False return True def can_skip_integration_tests(self): # TODO: See a broken loop if "force tests" in self.labels: return False if self.changed_files is None or not self.changed_files: return False for f in self.changed_files: # TODO: this logic is broken, should be fixed before using if not f.startswith("tests/queries") or not f.startswith( "tests/performance" ): return False return True def can_skip_functional_tests(self): # TODO: See a broken loop if "force tests" in self.labels: return False if self.changed_files is None or not self.changed_files: return False for f in self.changed_files: # TODO: this logic is broken, should be fixed before using if not f.startswith("tests/integration") or not f.startswith( "tests/performance" ): return False return True class FakePRInfo: def __init__(self): self.number = 11111 self.sha = "xxxxxxxxxxxxxxxxxx"
the-stack_0_23711
from typing import List from overrides import overrides from allennlp.common.util import JsonDict, sanitize from allennlp.data import Instance from allennlp.predictors.predictor import Predictor @Predictor.register('SeqClassificationPredictor') class SeqClassificationPredictor(Predictor): """ Predictor for the abstruct model """ def predict_json(self, json_dict: JsonDict) -> JsonDict: self._dataset_reader.predict = True pred_labels = [] sentences = json_dict['sentences'] for sentences_loop, _, _, _ in self._dataset_reader.enforce_max_sent_per_example(sentences): instance = self._dataset_reader.text_to_instance(sentences=sentences_loop) output = self._model.forward_on_instance(instance) idx = output['action_probs'].argmax(axis=1).tolist() labels = [self._model.vocab.get_token_from_index(i, namespace='labels') for i in idx] pred_labels.extend(labels) try: assert len(pred_labels) == len(sentences) json_dict['pred_labels_truncated'] = False # If a sequence is too long and gets truncated then some of sentences dont # get labels which is super weird I couldn't find where this happened. # Seemed to be a small number of cases. except AssertionError: #print('Added other because of truncation: {:}'.format(json_dict['paper_id'])) assert len(pred_labels) < len(sentences) dif_len = len(sentences)-len(pred_labels) pred_labels.extend(['other_label']*dif_len) json_dict['pred_labels_truncated'] = True json_dict['pred_labels'] = pred_labels return json_dict
the-stack_0_23714
# def warn(*args, **kwargs): # pass # import warnings # warnings.warn = warn # to ignore all warnings. import sys import pickle import numpy as np import pandas as pd from matplotlib import pyplot as plt import utils import loadData import fairRecourse from scatter import * from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from _third_party.svm_recourse import RecourseSVM from debug import ipsh from random import seed RANDOM_SEED = 54321 seed(RANDOM_SEED) # set the random seed so that the random permutations can be reproduced again np.random.seed(RANDOM_SEED) # TODO: change to be like _data_main below, and make python module # this answer https://stackoverflow.com/a/50474562 and others try: import treeUtils except: print('[ENV WARNING] treeUtils not available') SIMPLIFY_TREES = False def trainFairClassifier(model_class, fair_kernel_type): if model_class != 'iw_fair_svm': if 'svm' in model_class: if fair_kernel_type == 'linear': param_grid = [{'C': np.logspace(0, 2, 3), 'kernel': ['linear']}] elif fair_kernel_type == 'poly': param_grid = [{'C': np.logspace(0, 2, 3), 'kernel': ['poly'], 'degree':[2, 3, 5]}] elif fair_kernel_type == 'rbf': param_grid = [{'C': np.logspace(0, 2, 3), 'gamma': np.logspace(-3,0,4), 'kernel': ['rbf']}] elif fair_kernel_type == 'all': param_grid = [ {'C': np.logspace(0, 2, 3), 'kernel': ['linear']}, {'C': np.logspace(0, 2, 3), 'kernel': ['poly'], 'degree':[2, 3, 5]}, {'C': np.logspace(0, 2, 3), 'gamma': np.logspace(-3,0,4), 'kernel': ['rbf']}, ] else: raise Exception(f'unrecognized fair_kernel_type: {fair_kernel_type}') return GridSearchCV(estimator=SVC(probability=True), param_grid=param_grid, n_jobs=-1) elif 'lr' in model_class: return LogisticRegression() elif 'mlp' in model_class: return MLPClassifier(hidden_layer_sizes = (10, 10)) else: raise Exception(f'unrecognized model_class: {model_class}') else: # Note: regularisation strength C is referred to as 'ups' in RecourseSVM and is fixed to 10 by default; # (this correspondes to the Greek nu in the paper, see the primal form on p.3 of https://arxiv.org/pdf/1909.03166.pdf ) lams = [0.2, 0.5, 1, 2, 10, 50, 100] if fair_kernel_type == 'linear': param_grid = [{'lam': lams, 'kernel_fn': ['linear']}] elif fair_kernel_type == 'poly': param_grid = [{'lam': lams, 'kernel_fn': ['poly'], 'degree':[2, 3, 5]}] elif fair_kernel_type == 'rbf': param_grid = [{'lam': lams, 'kernel_fn': ['rbf'], 'gamma': np.logspace(-3,0,4)}] elif fair_kernel_type == 'all': param_grid = [ {'lam': lams, 'kernel_fn': ['linear']}, {'lam': lams, 'kernel_fn': ['poly'], 'degree':[2, 3, 5]}, {'lam': lams, 'kernel_fn': ['rbf'], 'gamma': np.logspace(-3,0,4)}, ] else: raise Exception(f'unrecognized fair_kernel_type: {fair_kernel_type}') return GridSearchCV(estimator=RecourseSVM(), param_grid=param_grid, n_jobs=-1) @utils.Memoize def loadModelForDataset(model_class, dataset_class, scm_class = None, num_train_samples = 1e5, fair_nodes = None, fair_kernel_type = None, experiment_folder_name = None): log_file = sys.stdout if experiment_folder_name == None else open(f'{experiment_folder_name}/log_training.txt','w') if not (model_class in {'lr', 'mlp', 'tree', 'forest'}) and not (model_class in fairRecourse.FAIR_MODELS): raise Exception(f'{model_class} not supported.') if not (dataset_class in {'synthetic', 'mortgage', 'twomoon', 'german', 'credit', 'compass', 'adult', 'test'}): raise Exception(f'{dataset_class} not supported.') if dataset_class == 'adult': dataset_obj = loadData.loadDataset(dataset_class, return_one_hot = False, load_from_cache = False, index_offset = 1) else: dataset_obj = loadData.loadDataset(dataset_class, return_one_hot = True, load_from_cache = False, meta_param = scm_class) if model_class not in fairRecourse.FAIR_MODELS: X_train, X_test, y_train, y_test = dataset_obj.getTrainTestSplit() y_all = pd.concat([y_train, y_test], axis = 0) assert sum(y_all) / len(y_all) == 0.5, 'Expected class balance should be 50/50%.' else: if dataset_class == 'adult': X_train, X_test, y_train, y_test = dataset_obj.getTrainTestSplit(with_meta = False, balanced = False) X_train = pd.concat([X_train], axis = 1)[fair_nodes] X_test = pd.concat([X_test], axis = 1)[fair_nodes] else: X_train, X_test, U_train, U_test, y_train, y_test = dataset_obj.getTrainTestSplit(with_meta = True, balanced = False) X_train = pd.concat([X_train, U_train], axis = 1)[fair_nodes] X_test = pd.concat([X_test, U_test], axis = 1)[fair_nodes] if model_class == 'tree': model_pretrain = DecisionTreeClassifier() elif model_class == 'forest': model_pretrain = RandomForestClassifier() elif model_class == 'lr': # IMPORTANT: The default solver changed from ‘liblinear’ to ‘lbfgs’ in 0.22; # therefore, results may differ slightly from paper. model_pretrain = LogisticRegression() # default penalty='l2', i.e., ridge elif model_class == 'mlp': model_pretrain = MLPClassifier(hidden_layer_sizes = (10, 10)) else: model_pretrain = trainFairClassifier(model_class, fair_kernel_type) X_train = np.array(X_train) X_test = np.array(X_test) y_train = np.array(y_train) y_test = np.array(y_test) X_train = X_train[:num_train_samples] y_train = y_train[:num_train_samples] training_setup_string = f'[INFO] Training `{model_class}` on {X_train.shape[0]:,} samples ' + \ f'(%{100 * X_train.shape[0] / (X_train.shape[0] + X_test.shape[0]):.2f}' + \ f'of {X_train.shape[0] + X_test.shape[0]:,} samples)...' print(training_setup_string, file=log_file) print(training_setup_string) model_trained = model_pretrain.fit(X_train, y_train) train_accuracy_string = f'\t[INFO] Training accuracy: %{accuracy_score(y_train, model_trained.predict(X_train)) * 100:.2f}.' test_accuracy_string = f'\t[INFO] Testing accuracy: %{accuracy_score(y_test, model_trained.predict(X_test)) * 100:.2f}.' print(train_accuracy_string, file=log_file) print(test_accuracy_string, file=log_file) print(train_accuracy_string) print(test_accuracy_string) if hasattr(model_trained, 'best_estimator_'): hyperparams_string = f'\t[INFO] Hyper-parameters of best classifier selected by CV:\n\t{model_trained.best_estimator_}' print(hyperparams_string, file=log_file) print(hyperparams_string) # shouldn't deal with bad model; arbitrarily select offset to be 70% accuracy tmp = accuracy_score(y_train, model_trained.predict(X_train)) # TODO (fair): added try except loop for use of nonlinear classifiers in fairness experiments try: assert tmp > 0.70, f'Model accuracy only {tmp}' except: print('[INFO] logistic regression accuracy may be low (<70%)') pass classifier_obj = model_trained visualizeDatasetAndFixedModel(dataset_obj, classifier_obj, experiment_folder_name) feature_names = dataset_obj.getInputAttributeNames('kurz') # easier to read (nothing to do with one-hot vs non-hit!) if model_class == 'tree': if SIMPLIFY_TREES: print('[INFO] Simplifying decision tree...', end = '', file=log_file) model_trained.tree_ = treeUtils.simplifyDecisionTree(model_trained, False) print('\tdone.', file=log_file) # treeUtils.saveTreeVisualization(model_trained, model_class, '', X_test, feature_names, experiment_folder_name) elif model_class == 'forest': for tree_idx in range(len(model_trained.estimators_)): if SIMPLIFY_TREES: print(f'[INFO] Simplifying decision tree (#{tree_idx + 1}/{len(model_trained.estimators_)})...', end = '', file=log_file) model_trained.estimators_[tree_idx].tree_ = treeUtils.simplifyDecisionTree(model_trained.estimators_[tree_idx], False) print('\tdone.', file=log_file) # treeUtils.saveTreeVisualization(model_trained.estimators_[tree_idx], model_class, f'tree{tree_idx}', X_test, feature_names, experiment_folder_name) if experiment_folder_name: pickle.dump(model_trained, open(f'{experiment_folder_name}/_model_trained', 'wb')) return model_trained
the-stack_0_23716
from support.logging import log import edp_modules.edp_db as edp_db import edp_modules.edp_system as edp_system import edp_modules.edp_router as edp_router def run_tests(): edp_db.tests() edp_system.tests() edp_router.tests() def compute_route(system_names_list, start_name, end_name): system_list = _create_system_list(system_names_list, start_name, end_name) return edp_router.create_route(system_list, start_name, end_name) def _complete_system_names_list(systems_list, start, end): if start is not None and start not in systems_list: systems_list.append(start) if end is not None and end not in systems_list: systems_list.append(end) def _warn_for_unresolved_names(system_list, system_names_list): resolved_names = [] for s in system_list: resolved_names.append(s.name) for n in system_names_list: if n not in resolved_names: log('Warning: Unable to resolve system {0}. Skipping it.'.format(n)) def _create_system_list(system_names_list, start_system_name, end_system_name): cache = edp_db.load_data() system_list = [] _complete_system_names_list(system_names_list, start_system_name, end_system_name) for system_descriptor in cache: if system_descriptor['name'].upper() in system_names_list: system = edp_system.EdpSystem(system_descriptor) system_list.append(system) if len(system_list) == len(system_names_list): break _warn_for_unresolved_names(system_list, system_names_list) return system_list
the-stack_0_23718
#!/usr/bin/env python3 # # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Big number routines. This file is copied from python-alphaconlib. """ import struct # generic big endian MPI format def bn_bytes(v, have_ext=False): ext = 0 if have_ext: ext = 1 return ((v.bit_length()+7)//8) + ext def bn2bin(v): s = bytearray() i = bn_bytes(v) while i > 0: s.append((v >> ((i-1) * 8)) & 0xff) i -= 1 return s def bn2mpi(v): have_ext = False if v.bit_length() > 0: have_ext = (v.bit_length() & 0x07) == 0 neg = False if v < 0: neg = True v = -v s = struct.pack(b">I", bn_bytes(v, have_ext)) ext = bytearray() if have_ext: ext.append(0) v_bin = bn2bin(v) if neg: if have_ext: ext[0] |= 0x80 else: v_bin[0] |= 0x80 return s + ext + v_bin # alphacon-specific little endian format, with implicit size def mpi2vch(s): r = s[4:] # strip size r = r[::-1] # reverse string, converting BE->LE return r def bn2vch(v): return bytes(mpi2vch(bn2mpi(v)))
the-stack_0_23719
import random import torch import pandas as pd import numpy as np from model import get_model from intent_initializer import read_all_intents, read_all_responses from preprocessing import stem, tokenize, bag_of_words PATH = './config/' BOT_NAME = 'Bavardez' def load_bot(): model_details = torch.load(PATH+'model_details.pt') model = get_model(model_details['input_size'], model_details['hidden_size'], model_details['output_size']) model.load_state_dict(model_details['model_state']) model.eval() tags = model_details['tags'] all_words = model_details['all_words'] return model, tags, all_words def main(): model, tags, all_words = load_bot() df_responses = read_all_responses() activation = torch.nn.Softmax(1) print("Let's chat! (BOF Version) Type \"quit\" to exit.") while True: sentence = input("You:\t") if sentence == "quit": break sentence = tokenize(sentence) bof = bag_of_words(sentence, all_words) bof = np.expand_dims(bof, axis=0) bof = torch.from_numpy(bof) output = model(bof) probs = activation(output).flatten() predicted_label = torch.argmax(probs) tag = tags[predicted_label.item()] if probs[predicted_label]>0.5: if tag in list(df_responses.keys()): answer = random.choice(df_responses[tag]) else: answer = "Sorry there's an error in OUR SYSTEM! Please re-phrase" else: answer = "I do not understand you." print(BOT_NAME+":\t"+answer) print("Thankyou for using "+BOT_NAME) if __name__ == '__main__': main()
the-stack_0_23720
"""Collections of linestrings and related utilities """ import sys if sys.version_info[0] < 3: range = xrange from ctypes import c_void_p, cast from private_tools.Shapely.shapely.geos import lgeos from private_tools.Shapely.shapely.geometry.base import BaseMultipartGeometry, geos_geom_from_py from private_tools.Shapely.shapely.geometry import linestring from private_tools.Shapely.shapely.geometry.proxy import CachingGeometryProxy __all__ = ['MultiLineString', 'asMultiLineString'] class MultiLineString(BaseMultipartGeometry): """ A collection of one or more line strings A MultiLineString has non-zero length and zero area. Attributes ---------- geoms : sequence A sequence of LineStrings """ def __init__(self, lines=None): """ Parameters ---------- lines : sequence A sequence of line-like coordinate sequences or objects that provide the numpy array interface, including instances of LineString. Example ------- Construct a collection containing one line string. >>> lines = MultiLineString( [[[0.0, 0.0], [1.0, 2.0]]] ) """ super(MultiLineString, self).__init__() if not lines: # allow creation of empty multilinestrings, to support unpickling pass else: self._geom, self._ndim = geos_multilinestring_from_py(lines) def shape_factory(self, *args): return linestring.LineString(*args) @property def __geo_interface__(self): return { 'type': 'MultiLineString', 'coordinates': tuple(tuple(c for c in g.coords) for g in self.geoms) } def svg(self, scale_factor=1., stroke_color=None): """Returns a group of SVG polyline elements for the LineString geometry. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. stroke_color : str, optional Hex string for stroke color. Default is to use "#66cc99" if geometry is valid, and "#ff3333" if invalid. """ if self.is_empty: return '<g />' if stroke_color is None: stroke_color = "#66cc99" if self.is_valid else "#ff3333" return '<g>' + \ ''.join(p.svg(scale_factor, stroke_color) for p in self) + \ '</g>' class MultiLineStringAdapter(CachingGeometryProxy, MultiLineString): context = None _other_owned = False def __init__(self, context): self.context = context self.factory = geos_multilinestring_from_py @property def _ndim(self): try: # From array protocol array = self.context[0].__array_interface__ n = array['shape'][1] assert n == 2 or n == 3 return n except AttributeError: # Fall back on list return len(self.context[0][0]) def asMultiLineString(context): """Adapts a sequence of objects to the MultiLineString interface""" return MultiLineStringAdapter(context) def geos_multilinestring_from_py(ob): # ob must be either a MultiLineString, a sequence, or # array of sequences or arrays if isinstance(ob, MultiLineString): return geos_geom_from_py(ob) obs = getattr(ob, 'geoms', ob) L = len(obs) assert L >= 1 exemplar = obs[0] try: N = len(exemplar[0]) except TypeError: N = exemplar._ndim if N not in (2, 3): raise ValueError("Invalid coordinate dimensionality") # Array of pointers to point geometries subs = (c_void_p * L)() # add to coordinate sequence for l in range(L): geom, ndims = linestring.geos_linestring_from_py(obs[l]) subs[l] = cast(geom, c_void_p) return (lgeos.GEOSGeom_createCollection(5, subs, L), N) # Test runner def _test(): import doctest doctest.testmod() if __name__ == "__main__": _test()
the-stack_0_23724
import numpy as np import pandas as pd from sklearn.preprocessing import MaxAbsScaler import matplotlib.pylab as plt import pickle import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' from tensorflow.keras.regularizers import l2, l1 from tensorflow.keras import layers from tensorflow.keras import layers, Model from tensorflow.keras.regularizers import l2 from tensorflow.keras.optimizers import Adam # Helper Functions def dump(obj, filename): with open(filename+".pickle", 'wb') as config_dictionary_file: pickle.dump(obj, config_dictionary_file) def get(filename): a = open(filename + ".pickle", "rb") print("Unpickling...") return pickle.load(a) def mse(true, predicted): """ A function to compute the total mean square error """ error = 0 for i in range(len(predicted)): error += pow(true[i] - predicted[i], 2) return error/len(predicted) def rmse(true, predicted): """ A function to compute the total mean square error """ error = 0 for i in range(len(predicted)): error += pow(true[i] - predicted[i], 2) return np.sqrt(error/len(predicted)) def parseData(data): subtables = ["election", "info", "questionsRaw", "weights", "questionsInfo"] columns = [['voterID', 'electionID', 'sourceTYPE', 'source','recTIME','recTYPE','questTYPE', 'soc_completion','N_answers','quest_completion'], ['districtID', 'language', 'birthYEAR','age','gender','zip','education','interest','position','pref_party'], ['language', 'birthYEAR', 'gender', 'zip', 'education', 'interest', 'position','pref_party'], [range(74,126)]] df = dict() print("init length", data.shape) dataNaN = data.replace(-9, np.nan) noQuestionNanIndex = dataNaN.iloc[:,20:73].dropna().index #.iloc[;,20:73] print("no NaN length", len(noQuestionNanIndex)) df["election"] = data.iloc[noQuestionNanIndex][columns[0]] df["info"] = data.iloc[noQuestionNanIndex][columns[1]].replace([-9, -1, -1977, -990], np.nan) df["questionsRaw"] = data.iloc[noQuestionNanIndex,20:73] df["weights"] = data.iloc[noQuestionNanIndex,74:127] df["questionsInfo"] = pd.DataFrame() for sub in subtables: print("size", sub, df[sub].shape) df["questions"] = MaxAbsScaler().fit_transform(pd.concat([df["questionsRaw"], df["info"]], axis=1)) #MaxAbsScaler().fit_transform( df["questions"] = pd.DataFrame(df["questions"], columns=np.concatenate((df["questionsRaw"].columns,df["info"].columns))) return df def plot_metric(h, metric): h = h.history train_metrics = h[metric] val_metrics = h['val_'+metric] epochs = range(1, len(train_metrics) + 1) plt.plot(epochs, train_metrics) plt.plot(epochs, val_metrics) plt.title('Training and validation '+ metric) plt.xlabel("Epochs") plt.ylabel(metric) plt.legend(["train_"+metric, 'val_'+metric]) plt.show() class EmbeddingLayer: def __init__(self, n_items, n_factors, name="", reg=l2(1e-5)): self.n_items = n_items self.n_factors = n_factors self.name = name self.reg = reg def __call__(self, x): x = layers.Embedding(self.n_items, self.n_factors, name=self.name, embeddings_regularizer=self.reg)(x) x = layers.Reshape((self.n_factors,))(x) return x def MF(df, n_factors, epoch, reg): n_users, n_items = df.shape train = makeForKeras(df) user = layers.Input(shape=(1,)) u = EmbeddingLayer(n_users, n_factors, name='U', reg=l2(1e-4))(user) ub = EmbeddingLayer(n_users, 1, name='U-bias', reg=l1(0))(user) items = layers.Input(shape=(1,)) m = EmbeddingLayer(n_items, n_factors, name="V", reg=l2(1e-4))(items) mb = EmbeddingLayer(n_items, 1, name="V-bias", reg=l1(reg))(items) x = layers.Dot(axes=1, activity_regularizer=None)([u, m]) x = layers.Add()([x, ub, mb]) model = Model(inputs=[user, items], outputs=x) opt = Adam(0.075, beta_1=0.9, beta_2=0.999) model.compile(optimizer=opt, loss='mean_squared_error', metrics=['mae']) bs = int(len(train)/6) history = model.fit([train["index"].values, train.variable.values], train.value.values,batch_size=bs, epochs=epoch, verbose=0) U, V = model.get_layer(name='U').get_weights()[0], model.get_layer(name='V').get_weights()[0] Ubias = model.get_layer(name='U-bias').get_weights()[0] Vbias = model.get_layer(name='V-bias').get_weights()[0] return U, V, Ubias, Vbias
the-stack_0_23726
"""The `vitamins.comms` package contains classes for convenient communications between Python processes via websockets. This is useful for sending commands to your bot interactively, or for having your bot send data out to another Python program. Data is sent in the form of `Message` objects, each of which has three members: * `id` is an integer that is unique to that message. * `tag` is a string. * `data` is any pickleable Python object. The `id` is assigned for you when the message is sent. The `tag` and `data` are specified by you when you send a message. I use the `tag` as a convenient identifier for the type of message, e.g. command, status, query, etc. Finally, the `data` can be any pickleable Python object. This could be a number, a string, `None` (in case the `tag` is meaningful all by itself, a dictionary, or even a class instance (assuming the program on the other end of the connection has the same class definition available). """ from collections import deque, namedtuple from typing import Any, Optional import io import pickle import socket from time import monotonic as now HOST: str = "localhost" PORT: int = 16849 BUFFSIZE: int = 4096 DEFAULT_RATE: int = 5 NOCLIENT_SPAM_INTERVAL: int = 10 Message = namedtuple("Message", "id, tag, data") # id is int, tag is str, data is anything. class SocketQueue: """This is the base class for Host and Client, which should be used for communication over a socket. This class is not intended to be instantiated directly. """ first_index: int def __init__( self, host: str = HOST, port_offset: int = 0, buffsize: int = BUFFSIZE, rate: int = DEFAULT_RATE, ): self.host = host self.port = PORT + port_offset self.buffsize = buffsize self.inq, self.outq = deque(), deque() self.connected = False self.endpoint = None self.socket = None self.msg_index = self.first_index # host uses evens, client uses odds self.poll_interval = 1 / rate self.next_poll = now() self.next_send = now() self.last_spam = -1e9 def _recv(self) -> None: """Read any available data from the socket, decode it, and put it into the incoming queue. """ if not self.connected or now() < self.next_poll: return self.next_poll += self.poll_interval data = [] while True: try: data.append(self.endpoint.recv(BUFFSIZE)) except BlockingIOError: break if data: stream = io.BytesIO(b"".join(data)) while True: try: info = pickle.load(stream) msg = Message(*info) self.inq.append(msg) except EOFError: break def _send(self) -> None: """Encode any data in the outgoing queue and send it to the socket.""" if not self.connected or now() < self.next_send: return self.next_send += self.poll_interval buff = [] while self.outq: msg_id, tag, data = self.outq.popleft() buff.append(pickle.dumps((msg_id, tag, data))) if buff: stream = b"".join(buff) self.endpoint.sendall(stream) def put(self, tag: str, data: Any = None) -> int: """Put (tag, data) into the queue. Return the index. """ msg = (self.msg_index, tag, data) self.msg_index += 2 self.outq.append(msg) self._send() return msg[0] def get(self) -> Optional[Message]: """Return the next incoming message, or None. """ self._recv() if not self.inq: return None return self.inq.popleft() def close(self) -> None: if self.socket is not None: self.socket.close() class Host(SocketQueue): first_index: int = 0 def connect(self) -> bool: """Try to connect to a client. Return True if a connection was successfully made (or already existed), False if not. A return value of False is expected, e.g., when there is no client trying to connect. """ if self.socket is None: self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.bind((self.host, self.port)) self.socket.setblocking(False) self.socket.listen(1) if self.endpoint is None: if self.socket is not None: try: self.endpoint, _ = self.socket.accept() self.connected = True return True except (BlockingIOError, OSError): pass self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.bind((self.host, self.port)) self.socket.setblocking(False) self.socket.listen(1) return self.connected class Client(SocketQueue): first_index: int = 1 def connect(self, timeout: float = 5) -> bool: """Try to connect to a host. Return True if a connection was successfully made (or already existed), False if not. """ if not self.connected: self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.settimeout(timeout) try: self.socket.connect((self.host, self.port)) self.connected = True self.socket.setblocking(False) self.endpoint = self.socket except ConnectionRefusedError: pass return self.connected
the-stack_0_23727
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import argparse import torch from fairseq.criterions import CRITERION_REGISTRY from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY from fairseq.optim import OPTIMIZER_REGISTRY from fairseq.optim.lr_scheduler import LR_SCHEDULER_REGISTRY from fairseq.tasks import TASK_REGISTRY def get_training_parser(default_task='translation'): parser = get_parser('Trainer', default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser) add_model_args(parser) add_optimization_args(parser) add_checkpoint_args(parser) return parser def get_generation_parser(interactive=False, default_task='translation'): parser = get_parser('Generation', default_task) add_dataset_args(parser, gen=True) add_generation_args(parser) if interactive: add_interactive_args(parser) return parser def get_interactive_generation_parser(default_task='translation'): return get_generation_parser(interactive=True, default_task=default_task) def get_eval_lm_parser(default_task='language_modeling'): parser = get_parser('Evaluate Language Model', default_task) add_dataset_args(parser, gen=True) add_eval_lm_args(parser) return parser def get_inference_parser(default_task='glue'): parser = get_parser('Inference', default_task) add_dataset_args(parser, gen=True) add_inference_args(parser) return parser def eval_str_list(x, type=float): if x is None: return None if isinstance(x, str): x = eval(x) try: return list(map(type, x)) except TypeError: return [type(x)] def eval_bool(x, default=False): if x is None: return default try: return bool(eval(x)) except TypeError: return default def parse_args_and_arch(parser, input_args=None, parse_known=False): # The parser doesn't know about model/criterion/optimizer-specific args, so # we parse twice. First we parse the model/criterion/optimizer, then we # parse a second time after adding the *-specific arguments. # If input_args is given, we will parse those args instead of sys.argv. args, _ = parser.parse_known_args(input_args) # Add model-specific args to parser. if hasattr(args, 'arch'): model_specific_group = parser.add_argument_group( 'Model-specific configuration', # Only include attributes which are explicitly given as command-line # arguments or which have default values. argument_default=argparse.SUPPRESS, ) ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group) # Add *-specific args to parser. if hasattr(args, 'criterion'): CRITERION_REGISTRY[args.criterion].add_args(parser) if hasattr(args, 'optimizer'): OPTIMIZER_REGISTRY[args.optimizer].add_args(parser) if hasattr(args, 'lr_scheduler'): LR_SCHEDULER_REGISTRY[args.lr_scheduler].add_args(parser) if hasattr(args, 'task'): TASK_REGISTRY[args.task].add_args(parser) # Parse a second time. if parse_known: args, extra = parser.parse_known_args(input_args) else: args = parser.parse_args(input_args) extra = None # Post-process args. if hasattr(args, 'lr'): args.lr = eval_str_list(args.lr, type=float) if hasattr(args, 'update_freq'): args.update_freq = eval_str_list(args.update_freq, type=int) if hasattr(args, 'max_sentences_valid') and args.max_sentences_valid is None: args.max_sentences_valid = args.max_sentences # Apply architecture configuration. if hasattr(args, 'arch'): ARCH_CONFIG_REGISTRY[args.arch](args) if parse_known: return args, extra else: return args def get_parser(desc, default_task='translation'): parser = argparse.ArgumentParser() parser.add_argument('--no-progress-bar', action='store_true', help='disable progress bar') parser.add_argument('--log-interval', type=int, default=1000, metavar='N', help='log progress every N batches (when progress bar is disabled)') parser.add_argument('--log-format', default=None, help='log format to use', choices=['json', 'none', 'simple', 'tqdm']) parser.add_argument('--seed', default=1, type=int, metavar='N', help='pseudo random number generator seed') parser.add_argument('--fp16', action='store_true', help='use FP16') parser.add_argument('--fp16-init-scale', default=2**7, type=int, help='default FP16 loss scale') # Task definitions can be found under fairseq/tasks/ parser.add_argument( '--task', metavar='TASK', default=default_task, choices=TASK_REGISTRY.keys(), help='task', ) return parser def add_dataset_args(parser, train=False, gen=False): group = parser.add_argument_group('Dataset and data loading') group.add_argument('--skip-invalid-size-inputs-valid-test', action='store_true', help='ignore too long or too short lines in valid and test set') group.add_argument('--max-tokens', type=int, metavar='N', help='maximum number of tokens in a batch') group.add_argument('--max-sentences', '--batch-size', type=int, metavar='N', help='maximum number of sentences in a batch') if train: group.add_argument('--train-subset', default='train', metavar='SPLIT', choices=['train', 'valid', 'test'], help='data subset to use for training (train, valid, test)') group.add_argument('--valid-subset', default='valid', metavar='SPLIT', help='comma separated list of data subsets to use for validation' ' (train, valid, valid1, test, test1)') group.add_argument('--max-sentences-valid', type=int, metavar='N', help='maximum number of sentences in a validation batch' ' (defaults to --max-sentences)') if gen: group.add_argument('--gen-subset', default='test', metavar='SPLIT', help='data subset to generate (train, valid, test)') group.add_argument('--num-shards', default=1, type=int, metavar='N', help='shard generation over N shards') group.add_argument('--shard-id', default=0, type=int, metavar='ID', help='id of the shard to generate (id < num_shards)') return group def add_distributed_training_args(parser): group = parser.add_argument_group('Distributed training') group.add_argument('--distributed-world-size', type=int, metavar='N', default=torch.cuda.device_count(), help='total number of GPUs across all nodes (default: all visible GPUs)') group.add_argument('--distributed-rank', default=0, type=int, help='rank of the current worker') group.add_argument('--distributed-backend', default='nccl', type=str, help='distributed backend') group.add_argument('--distributed-init-method', default=None, type=str, help='typically tcp://hostname:port that will be used to ' 'establish initial connetion') group.add_argument('--distributed-port', default=-1, type=int, help='port number (not required if using --distributed-init-method)') group.add_argument('--device-id', default=0, type=int, help='which GPU to use (usually configured automatically)') group.add_argument('--ddp-backend', default='c10d', type=str, choices=['c10d', 'no_c10d'], help='DistributedDataParallel backend') group.add_argument('--bucket-cap-mb', default=150, type=int, metavar='MB', help='bucket size for reduction') return group def add_optimization_args(parser): group = parser.add_argument_group('Optimization') group.add_argument('--max-epoch', '--me', default=0, type=int, metavar='N', help='force stop training at specified epoch') group.add_argument('--max-update', '--mu', default=0, type=int, metavar='N', help='force stop training at specified update') group.add_argument('--clip-norm', default=25, type=float, metavar='NORM', help='clip threshold of gradients') group.add_argument('--sentence-avg', action='store_true', help='normalize gradients by the number of sentences in a batch' ' (default is to normalize by number of tokens)') group.add_argument('--update-freq', default='1', metavar='N', help='update parameters every N_i batches, when in epoch i') # Optimizer definitions can be found under fairseq/optim/ group.add_argument('--optimizer', default='nag', metavar='OPT', choices=OPTIMIZER_REGISTRY.keys(), help='Optimizer') group.add_argument('--lr', '--learning-rate', default='0.25', metavar='LR_1,LR_2,...,LR_N', help='learning rate for the first N epochs; all epochs >N using LR_N' ' (note: this may be interpreted differently depending on --lr-scheduler)') group.add_argument('--momentum', default=0.99, type=float, metavar='M', help='momentum factor') group.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # Learning rate schedulers can be found under fairseq/optim/lr_scheduler/ group.add_argument('--lr-scheduler', default='reduce_lr_on_plateau', choices=LR_SCHEDULER_REGISTRY.keys(), help='Learning Rate Scheduler') group.add_argument('--lr-shrink', default=0.1, type=float, metavar='LS', help='learning rate shrink factor for annealing, lr_new = (lr * lr_shrink)') group.add_argument('--min-lr', default=1e-5, type=float, metavar='LR', help='minimum learning rate') group.add_argument('--min-loss-scale', default=1e-4, type=float, metavar='D', help='minimum loss scale (for FP16 training)') return group def add_checkpoint_args(parser): group = parser.add_argument_group('Checkpointing') group.add_argument('--save-dir', metavar='DIR', default='checkpoints', help='path to save checkpoints') group.add_argument('--restore-file', default='checkpoint_last.pt', help='filename in save-dir from which to load checkpoint') group.add_argument('--reset-optimizer', action='store_true', help='if set, does not load optimizer state from the checkpoint') group.add_argument('--reset-lr-scheduler', action='store_true', help='if set, does not load lr scheduler state from the checkpoint') group.add_argument('--optimizer-overrides', default="{}", type=str, metavar='DICT', help='a dictionary used to override optimizer args when loading a checkpoint') group.add_argument('--save-interval', type=int, default=1, metavar='N', help='save a checkpoint every N epochs') group.add_argument('--save-interval-updates', type=int, default=0, metavar='N', help='save a checkpoint (and validate) every N updates') group.add_argument('--keep-interval-updates', type=int, default=-1, metavar='N', help='keep last N checkpoints saved with --save-interval-updates') group.add_argument('--no-save', action='store_true', help='don\'t save models or checkpoints') group.add_argument('--no-epoch-checkpoints', action='store_true', help='only store last and best checkpoints') group.add_argument('--validate-interval', type=int, default=1, metavar='N', help='validate every N epochs') group.add_argument('--load-bert', metavar='PATH', type=str, help='pretrained bert encoder to load from file') group.add_argument('--load-type', metavar='TYPE', default="all", type=str, help='which part pretrained bert encoder to load ("all", "no_fc", "no_out", "no_out_no_fc")') return group def add_common_eval_args(group): group.add_argument('--path', metavar='FILE', help='path(s) to model file(s), colon separated') group.add_argument('--remove-bpe', nargs='?', const='@@ ', default=None, help='remove BPE tokens before scoring') group.add_argument('--cpu', action='store_true', help='generate on CPU') group.add_argument('--quiet', action='store_true', help='only print final scores') def add_eval_lm_args(parser): group = parser.add_argument_group('LM Evaluation') add_common_eval_args(group) group.add_argument('--output-word-probs', action='store_true', help='if set, outputs words and their predicted log probabilities to standard output') group.add_argument('--output-word-stats', action='store_true', help='if set, outputs word statistics such as word count, average probability, etc') def add_generation_args(parser): group = parser.add_argument_group('Generation') add_common_eval_args(group) group.add_argument('--beam', default=5, type=int, metavar='N', help='beam size') group.add_argument('--nbest', default=1, type=int, metavar='N', help='number of hypotheses to output') group.add_argument('--max-len-a', default=0, type=float, metavar='N', help=('generate sequences of maximum length ax + b, ' 'where x is the source length')) group.add_argument('--max-len-b', default=200, type=int, metavar='N', help=('generate sequences of maximum length ax + b, ' 'where x is the source length')) group.add_argument('--min-len', default=1, type=float, metavar='N', help=('minimum generation length')) group.add_argument('--no-early-stop', action='store_true', help=('continue searching even after finalizing k=beam ' 'hypotheses; this is more correct, but increases ' 'generation time by 50%%')) group.add_argument('--unnormalized', action='store_true', help='compare unnormalized hypothesis scores') group.add_argument('--no-beamable-mm', action='store_true', help='don\'t use BeamableMM in attention layers') group.add_argument('--lenpen', default=1, type=float, help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences') group.add_argument('--unkpen', default=0, type=float, help='unknown word penalty: <0 produces more unks, >0 produces fewer') group.add_argument('--replace-unk', nargs='?', const=True, default=None, help='perform unknown replacement (optionally with alignment dictionary)') group.add_argument('--score-reference', action='store_true', help='just score the reference translation') group.add_argument('--prefix-size', default=0, type=int, metavar='PS', help='initialize generation by target prefix of given length') group.add_argument('--sampling', action='store_true', help='sample hypotheses instead of using beam search') group.add_argument('--sampling-topk', default=-1, type=int, metavar='PS', help='sample from top K likely next words instead of all words') group.add_argument('--sampling-temperature', default=1, type=float, metavar='N', help='temperature for random sampling') group.add_argument('--diverse-beam-groups', default=1, type=int, metavar='N', help='number of groups for Diverse Beam Search') group.add_argument('--diverse-beam-strength', default=0.5, type=float, metavar='N', help='strength of diversity penalty for Diverse Beam Search') group.add_argument('--print-alignment', action='store_true', help='if set, uses attention feedback to compute and print alignment to source tokens') group.add_argument('--model-overrides', default="{}", type=str, metavar='DICT', help='a dictionary used to override model args at generation that were used during model training') return group def add_interactive_args(parser): group = parser.add_argument_group('Interactive') group.add_argument('--buffer-size', default=0, type=int, metavar='N', help='read this many sentences into a buffer before processing them') def add_inference_args(parser): group = parser.add_argument_group('Inference') add_common_eval_args(group) group.add_argument('--output', type=str, metavar='PATH', help='path of inference output') return group def add_model_args(parser): group = parser.add_argument_group('Model configuration') # Model definitions can be found under fairseq/models/ # # The model architecture can be specified in several ways. # In increasing order of priority: # 1) model defaults (lowest priority) # 2) --arch argument # 3) --encoder/decoder-* arguments (highest priority) group.add_argument( '--arch', '-a', default='fconv', metavar='ARCH', required=True, choices=ARCH_MODEL_REGISTRY.keys(), help='Model Architecture', ) # Criterion definitions can be found under fairseq/criterions/ group.add_argument( '--criterion', default='cross_entropy', metavar='CRIT', choices=CRITERION_REGISTRY.keys(), help='Training Criterion', ) return group
the-stack_0_23728
# Copyright 2013-2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Utility functions for working with Android devices through adb. """ # pylint: disable=E1103 import glob import logging import os import pexpect import re import subprocess import sys import tempfile import time import uuid import zipfile from collections import defaultdict from io import StringIO from lxml import etree try: from shlex import quote except ImportError: from pipes import quote from devlib.exception import TargetTransientError, TargetStableError, HostError from devlib.utils.misc import check_output, which, ABI_MAP, redirect_streams, get_subprocess from devlib.connection import ConnectionBase, AdbBackgroundCommand, PopenBackgroundCommand, PopenTransferManager logger = logging.getLogger('android') MAX_ATTEMPTS = 5 AM_START_ERROR = re.compile(r"Error: Activity.*") AAPT_BADGING_OUTPUT = re.compile(r"no dump ((file)|(apk)) specified", re.IGNORECASE) # See: # http://developer.android.com/guide/topics/manifest/uses-sdk-element.html#ApiLevels ANDROID_VERSION_MAP = { 29: 'Q', 28: 'PIE', 27: 'OREO_MR1', 26: 'OREO', 25: 'NOUGAT_MR1', 24: 'NOUGAT', 23: 'MARSHMALLOW', 22: 'LOLLYPOP_MR1', 21: 'LOLLYPOP', 20: 'KITKAT_WATCH', 19: 'KITKAT', 18: 'JELLY_BEAN_MR2', 17: 'JELLY_BEAN_MR1', 16: 'JELLY_BEAN', 15: 'ICE_CREAM_SANDWICH_MR1', 14: 'ICE_CREAM_SANDWICH', 13: 'HONEYCOMB_MR2', 12: 'HONEYCOMB_MR1', 11: 'HONEYCOMB', 10: 'GINGERBREAD_MR1', 9: 'GINGERBREAD', 8: 'FROYO', 7: 'ECLAIR_MR1', 6: 'ECLAIR_0_1', 5: 'ECLAIR', 4: 'DONUT', 3: 'CUPCAKE', 2: 'BASE_1_1', 1: 'BASE', } # See https://developer.android.com/reference/android/content/Intent.html#setFlags(int) INTENT_FLAGS = { 'ACTIVITY_NEW_TASK' : 0x10000000, 'ACTIVITY_CLEAR_TASK' : 0x00008000 } # Initialized in functions near the botton of the file android_home = None platform_tools = None adb = None aapt = None aapt_version = None fastboot = None class AndroidProperties(object): def __init__(self, text): self._properties = {} self.parse(text) def parse(self, text): self._properties = dict(re.findall(r'\[(.*?)\]:\s+\[(.*?)\]', text)) def iteritems(self): return iter(self._properties.items()) def __iter__(self): return iter(self._properties) def __getattr__(self, name): return self._properties.get(name) __getitem__ = __getattr__ class AdbDevice(object): def __init__(self, name, status): self.name = name self.status = status # pylint: disable=undefined-variable def __cmp__(self, other): if isinstance(other, AdbDevice): return cmp(self.name, other.name) else: return cmp(self.name, other) def __str__(self): return 'AdbDevice({}, {})'.format(self.name, self.status) __repr__ = __str__ class ApkInfo(object): version_regex = re.compile(r"name='(?P<name>[^']+)' versionCode='(?P<vcode>[^']+)' versionName='(?P<vname>[^']+)'") name_regex = re.compile(r"name='(?P<name>[^']+)'") permission_regex = re.compile(r"name='(?P<permission>[^']+)'") activity_regex = re.compile(r'\s*A:\s*android:name\(0x\d+\)=".(?P<name>\w+)"') def __init__(self, path=None): self.path = path self.package = None self.activity = None self.label = None self.version_name = None self.version_code = None self.native_code = None self.permissions = [] self._apk_path = None self._activities = None self._methods = None if path: self.parse(path) # pylint: disable=too-many-branches def parse(self, apk_path): _check_env() output = self._run([aapt, 'dump', 'badging', apk_path]) for line in output.split('\n'): if line.startswith('application-label:'): self.label = line.split(':')[1].strip().replace('\'', '') elif line.startswith('package:'): match = self.version_regex.search(line) if match: self.package = match.group('name') self.version_code = match.group('vcode') self.version_name = match.group('vname') elif line.startswith('launchable-activity:'): match = self.name_regex.search(line) self.activity = match.group('name') elif line.startswith('native-code'): apk_abis = [entry.strip() for entry in line.split(':')[1].split("'") if entry.strip()] mapped_abis = [] for apk_abi in apk_abis: found = False for abi, architectures in ABI_MAP.items(): if apk_abi in architectures: mapped_abis.append(abi) found = True break if not found: mapped_abis.append(apk_abi) self.native_code = mapped_abis elif line.startswith('uses-permission:'): match = self.permission_regex.search(line) if match: self.permissions.append(match.group('permission')) else: pass # not interested self._apk_path = apk_path self._activities = None self._methods = None @property def activities(self): if self._activities is None: cmd = [aapt, 'dump', 'xmltree', self._apk_path] if aapt_version == 2: cmd += ['--file'] cmd += ['AndroidManifest.xml'] matched_activities = self.activity_regex.finditer(self._run(cmd)) self._activities = [m.group('name') for m in matched_activities] return self._activities @property def methods(self): if self._methods is None: # Only try to extract once self._methods = [] with tempfile.TemporaryDirectory() as tmp_dir: with zipfile.ZipFile(self._apk_path, 'r') as z: try: extracted = z.extract('classes.dex', tmp_dir) except KeyError: return [] dexdump = os.path.join(os.path.dirname(aapt), 'dexdump') command = [dexdump, '-l', 'xml', extracted] dump = self._run(command) # Dexdump from build tools v30.0.X does not seem to produce # valid xml from certain APKs so ignore errors and attempt to recover. parser = etree.XMLParser(encoding='utf-8', recover=True) xml_tree = etree.parse(StringIO(dump), parser) package = next((i for i in xml_tree.iter('package') if i.attrib['name'] == self.package), None) self._methods = [(meth.attrib['name'], klass.attrib['name']) for klass in package.iter('class') for meth in klass.iter('method')] if package else [] return self._methods def _run(self, command): logger.debug(' '.join(command)) try: output = subprocess.check_output(command, stderr=subprocess.STDOUT) if sys.version_info[0] == 3: output = output.decode(sys.stdout.encoding or 'utf-8', 'replace') except subprocess.CalledProcessError as e: raise HostError('Error while running "{}":\n{}' .format(command, e.output)) return output class AdbConnection(ConnectionBase): # maintains the count of parallel active connections to a device, so that # adb disconnect is not invoked untill all connections are closed active_connections = defaultdict(int) # Track connected as root status per device _connected_as_root = defaultdict(lambda: None) default_timeout = 10 ls_command = 'ls' su_cmd = 'su -c {}' @property def name(self): return self.device @property def connected_as_root(self): if self._connected_as_root[self.device] is None: result = self.execute('id') self._connected_as_root[self.device] = 'uid=0(' in result return self._connected_as_root[self.device] @connected_as_root.setter def connected_as_root(self, state): self._connected_as_root[self.device] = state # pylint: disable=unused-argument def __init__(self, device=None, timeout=None, platform=None, adb_server=None, adb_as_root=False, connection_attempts=MAX_ATTEMPTS, poll_transfers=False, start_transfer_poll_delay=30, total_transfer_timeout=3600, transfer_poll_period=30,): super().__init__() self.timeout = timeout if timeout is not None else self.default_timeout if device is None: device = adb_get_device(timeout=timeout, adb_server=adb_server) self.device = device self.adb_server = adb_server self.adb_as_root = adb_as_root self.poll_transfers = poll_transfers if poll_transfers: transfer_opts = {'start_transfer_poll_delay': start_transfer_poll_delay, 'total_timeout': total_transfer_timeout, 'poll_period': transfer_poll_period, } self.transfer_mgr = PopenTransferManager(self, **transfer_opts) if poll_transfers else None if self.adb_as_root: self.adb_root(enable=True) adb_connect(self.device, adb_server=self.adb_server, attempts=connection_attempts) AdbConnection.active_connections[self.device] += 1 self._setup_ls() self._setup_su() def push(self, sources, dest, timeout=None): return self._push_pull('push', sources, dest, timeout) def pull(self, sources, dest, timeout=None): return self._push_pull('pull', sources, dest, timeout) def _push_pull(self, action, sources, dest, timeout): paths = sources + [dest] # Quote twice to avoid expansion by host shell, then ADB globbing do_quote = lambda x: quote(glob.escape(x)) paths = ' '.join(map(do_quote, paths)) command = "{} {}".format(action, paths) if timeout or not self.poll_transfers: adb_command(self.device, command, timeout=timeout, adb_server=self.adb_server) else: with self.transfer_mgr.manage(sources, dest, action): bg_cmd = adb_command_background(self.device, command, adb_server=self.adb_server) self.transfer_mgr.set_transfer_and_wait(bg_cmd) # pylint: disable=unused-argument def execute(self, command, timeout=None, check_exit_code=False, as_root=False, strip_colors=True, will_succeed=False): try: return adb_shell(self.device, command, timeout, check_exit_code, as_root, adb_server=self.adb_server, su_cmd=self.su_cmd) except TargetStableError as e: if will_succeed: raise TargetTransientError(e) else: raise def background(self, command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, as_root=False): bg_cmd = self._background(command, stdout, stderr, as_root) self._current_bg_cmds.add(bg_cmd) return bg_cmd def _background(self, command, stdout, stderr, as_root): adb_shell, pid = adb_background_shell(self, command, stdout, stderr, as_root) bg_cmd = AdbBackgroundCommand( conn=self, adb_popen=adb_shell, pid=pid, as_root=as_root ) return bg_cmd def _close(self): AdbConnection.active_connections[self.device] -= 1 if AdbConnection.active_connections[self.device] <= 0: if self.adb_as_root: self.adb_root(enable=False) adb_disconnect(self.device, self.adb_server) del AdbConnection.active_connections[self.device] def cancel_running_command(self): # adbd multiplexes commands so that they don't interfer with each # other, so there is no need to explicitly cancel a running command # before the next one can be issued. pass def adb_root(self, enable=True): cmd = 'root' if enable else 'unroot' output = adb_command(self.device, cmd, timeout=30, adb_server=self.adb_server) if 'cannot run as root in production builds' in output: raise TargetStableError(output) AdbConnection._connected_as_root[self.device] = enable def wait_for_device(self, timeout=30): adb_command(self.device, 'wait-for-device', timeout, self.adb_server) def reboot_bootloader(self, timeout=30): adb_command(self.device, 'reboot-bootloader', timeout, self.adb_server) # Again, we need to handle boards where the default output format from ls is # single column *and* boards where the default output is multi-column. # We need to do this purely because the '-1' option causes errors on older # versions of the ls tool in Android pre-v7. def _setup_ls(self): command = "shell '(ls -1); echo \"\n$?\"'" try: output = adb_command(self.device, command, timeout=self.timeout, adb_server=self.adb_server) except subprocess.CalledProcessError as e: raise HostError( 'Failed to set up ls command on Android device. Output:\n' + e.output) lines = output.splitlines() retval = lines[-1].strip() if int(retval) == 0: self.ls_command = 'ls -1' else: self.ls_command = 'ls' logger.debug("ls command is set to {}".format(self.ls_command)) def _setup_su(self): try: # Try the new style of invoking `su` self.execute('ls', timeout=self.timeout, as_root=True, check_exit_code=True) # If failure assume either old style or unrooted. Here we will assume # old style and root status will be verified later. except (TargetStableError, TargetTransientError, TimeoutError): self.su_cmd = 'echo {} | su' logger.debug("su command is set to {}".format(quote(self.su_cmd))) def fastboot_command(command, timeout=None, device=None): _check_env() target = '-s {}'.format(quote(device)) if device else '' full_command = 'fastboot {} {}'.format(target, command) logger.debug(full_command) output, _ = check_output(full_command, timeout, shell=True) return output def fastboot_flash_partition(partition, path_to_image): command = 'flash {} {}'.format(quote(partition), quote(path_to_image)) fastboot_command(command) def adb_get_device(timeout=None, adb_server=None): """ Returns the serial number of a connected android device. If there are more than one device connected to the machine, or it could not find any device connected, :class:`devlib.exceptions.HostError` is raised. """ # TODO this is a hacky way to issue a adb command to all listed devices # Ensure server is started so the 'daemon started successfully' message # doesn't confuse the parsing below adb_command(None, 'start-server', adb_server=adb_server) # The output of calling adb devices consists of a heading line then # a list of the devices sperated by new line # The last line is a blank new line. in otherwords, if there is a device found # then the output length is 2 + (1 for each device) start = time.time() while True: output = adb_command(None, "devices", adb_server=adb_server).splitlines() # pylint: disable=E1103 output_length = len(output) if output_length == 3: # output[1] is the 2nd line in the output which has the device name # Splitting the line by '\t' gives a list of two indexes, which has # device serial in 0 number and device type in 1. return output[1].split('\t')[0] elif output_length > 3: message = '{} Android devices found; either explicitly specify ' +\ 'the device you want, or make sure only one is connected.' raise HostError(message.format(output_length - 2)) else: if timeout < time.time() - start: raise HostError('No device is connected and available') time.sleep(1) def adb_connect(device, timeout=None, attempts=MAX_ATTEMPTS, adb_server=None): _check_env() tries = 0 output = None while tries <= attempts: tries += 1 if device: if "." in device: # Connect is required only for ADB-over-IP # ADB does not automatically remove a network device from it's # devices list when the connection is broken by the remote, so the # adb connection may have gone "stale", resulting in adb blocking # indefinitely when making calls to the device. To avoid this, # always disconnect first. adb_disconnect(device, adb_server) adb_cmd = get_adb_command(None, 'connect', adb_server) command = '{} {}'.format(adb_cmd, quote(device)) logger.debug(command) output, _ = check_output(command, shell=True, timeout=timeout) if _ping(device, adb_server): break time.sleep(10) else: # did not connect to the device message = 'Could not connect to {}'.format(device or 'a device') if output: message += '; got: "{}"'.format(output) raise HostError(message) def adb_disconnect(device, adb_server=None): _check_env() if not device: return if ":" in device and device in adb_list_devices(adb_server): adb_cmd = get_adb_command(None, 'disconnect', adb_server) command = "{} {}".format(adb_cmd, device) logger.debug(command) retval = subprocess.call(command, stdout=open(os.devnull, 'wb'), shell=True) if retval: raise TargetTransientError('"{}" returned {}'.format(command, retval)) def _ping(device, adb_server=None): _check_env() adb_cmd = get_adb_command(device, 'shell', adb_server) command = "{} {}".format(adb_cmd, quote('ls /data/local/tmp > /dev/null')) logger.debug(command) result = subprocess.call(command, stderr=subprocess.PIPE, shell=True) if not result: # pylint: disable=simplifiable-if-statement return True else: return False # pylint: disable=too-many-locals def adb_shell(device, command, timeout=None, check_exit_code=False, as_root=False, adb_server=None, su_cmd='su -c {}'): # NOQA _check_env() # On older combinations of ADB/Android versions, the adb host command always # exits with 0 if it was able to run the command on the target, even if the # command failed (https://code.google.com/p/android/issues/detail?id=3254). # Homogenise this behaviour by running the command then echoing the exit # code of the executed command itself. command = r'({}); echo "\n$?"'.format(command) parts = ['adb'] if adb_server is not None: parts += ['-H', adb_server] if device is not None: parts += ['-s', device] parts += ['shell', command if not as_root else su_cmd.format(quote(command))] logger.debug(' '.join(quote(part) for part in parts)) try: raw_output, error = check_output(parts, timeout, shell=False) except subprocess.CalledProcessError as e: raise TargetStableError(str(e)) if raw_output: try: output, exit_code, _ = raw_output.replace('\r\n', '\n').replace('\r', '\n').rsplit('\n', 2) except ValueError: exit_code, _ = raw_output.replace('\r\n', '\n').replace('\r', '\n').rsplit('\n', 1) output = '' else: # raw_output is empty exit_code = '969696' # just because output = '' if check_exit_code: exit_code = exit_code.strip() re_search = AM_START_ERROR.findall(output) if exit_code.isdigit(): if int(exit_code): message = ('Got exit code {}\nfrom target command: {}\n' 'OUTPUT: {}\nSTDERR: {}\n') raise TargetStableError(message.format(exit_code, command, output, error)) elif re_search: message = 'Could not start activity; got the following:\n{}' raise TargetStableError(message.format(re_search[0])) else: # not all digits if re_search: message = 'Could not start activity; got the following:\n{}' raise TargetStableError(message.format(re_search[0])) else: message = 'adb has returned early; did not get an exit code. '\ 'Was kill-server invoked?\nOUTPUT:\n-----\n{}\n'\ '-----\nSTDERR:\n-----\n{}\n-----' raise TargetTransientError(message.format(raw_output, error)) return output + error def adb_background_shell(conn, command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, as_root=False): """Runs the specified command in a subprocess, returning the the Popen object.""" device = conn.device adb_server = conn.adb_server _check_env() stdout, stderr, command = redirect_streams(stdout, stderr, command) if as_root: command = 'echo {} | su'.format(quote(command)) # Attach a unique UUID to the command line so it can be looked for without # any ambiguity with ps uuid_ = uuid.uuid4().hex uuid_var = 'BACKGROUND_COMMAND_UUID={}'.format(uuid_) command = "{} sh -c {}".format(uuid_var, quote(command)) adb_cmd = get_adb_command(device, 'shell', adb_server) full_command = '{} {}'.format(adb_cmd, quote(command)) logger.debug(full_command) p = subprocess.Popen(full_command, stdout=stdout, stderr=stderr, shell=True) # Out of band PID lookup, to avoid conflicting needs with stdout redirection find_pid = '{} ps -A -o pid,args | grep {}'.format(conn.busybox, quote(uuid_var)) ps_out = conn.execute(find_pid) pids = [ int(line.strip().split(' ', 1)[0]) for line in ps_out.splitlines() ] # The line we are looking for is the first one, since it was started before # any look up command pid = sorted(pids)[0] return (p, pid) def adb_kill_server(timeout=30, adb_server=None): adb_command(None, 'kill-server', timeout, adb_server) def adb_list_devices(adb_server=None): output = adb_command(None, 'devices', adb_server=adb_server) devices = [] for line in output.splitlines(): parts = [p.strip() for p in line.split()] if len(parts) == 2: devices.append(AdbDevice(*parts)) return devices def get_adb_command(device, command, adb_server=None): _check_env() device_string = "" if adb_server != None: device_string = ' -H {}'.format(adb_server) device_string += ' -s {}'.format(device) if device else '' return "adb{} {}".format(device_string, command) def adb_command(device, command, timeout=None, adb_server=None): full_command = get_adb_command(device, command, adb_server) logger.debug(full_command) output, _ = check_output(full_command, timeout, shell=True) return output def adb_command_background(device, command, adb_server=None): full_command = get_adb_command(device, command, adb_server) logger.debug(full_command) proc = get_subprocess(full_command, shell=True) cmd = PopenBackgroundCommand(proc) return cmd def grant_app_permissions(target, package): """ Grant an app all the permissions it may ask for """ dumpsys = target.execute('dumpsys package {}'.format(package)) permissions = re.search( r'requested permissions:\s*(?P<permissions>(android.permission.+\s*)+)', dumpsys ) if permissions is None: return permissions = permissions.group('permissions').replace(" ", "").splitlines() for permission in permissions: try: target.execute('pm grant {} {}'.format(package, permission)) except TargetStableError: logger.debug('Cannot grant {}'.format(permission)) # Messy environment initialisation stuff... class _AndroidEnvironment(object): def __init__(self): self.android_home = None self.platform_tools = None self.build_tools = None self.adb = None self.aapt = None self.aapt_version = None self.fastboot = None def _initialize_with_android_home(env): logger.debug('Using ANDROID_HOME from the environment.') env.android_home = android_home env.platform_tools = os.path.join(android_home, 'platform-tools') os.environ['PATH'] = env.platform_tools + os.pathsep + os.environ['PATH'] _init_common(env) return env def _initialize_without_android_home(env): adb_full_path = which('adb') if adb_full_path: env.adb = 'adb' else: raise HostError('ANDROID_HOME is not set and adb is not in PATH. ' 'Have you installed Android SDK?') logger.debug('Discovering ANDROID_HOME from adb path.') env.platform_tools = os.path.dirname(adb_full_path) env.android_home = os.path.dirname(env.platform_tools) _init_common(env) return env def _init_common(env): _discover_build_tools(env) _discover_aapt(env) def _discover_build_tools(env): logger.debug('ANDROID_HOME: {}'.format(env.android_home)) build_tools_directory = os.path.join(env.android_home, 'build-tools') if os.path.isdir(build_tools_directory): env.build_tools = build_tools_directory def _check_supported_aapt2(binary): # At time of writing the version argument of aapt2 is not helpful as # the output is only a placeholder that does not distinguish between versions # with and without support for badging. Unfortunately aapt has been # deprecated and fails to parse some valid apks so we will try to favour # aapt2 if possible else will fall back to aapt. # Try to execute the badging command and check if we get an expected error # message as opposed to an unknown command error to determine if we have a # suitable version. cmd = '{} dump badging'.format(binary) result = subprocess.run(cmd.encode('utf-8'), shell=True, stderr=subprocess.PIPE) supported = bool(AAPT_BADGING_OUTPUT.search(result.stderr.decode('utf-8'))) msg = 'Found a {} aapt2 binary at: {}' logger.debug(msg.format('supported' if supported else 'unsupported', binary)) return supported def _discover_aapt(env): if env.build_tools: aapt_path = '' aapt2_path = '' versions = os.listdir(env.build_tools) for version in reversed(sorted(versions)): if not os.path.isfile(aapt2_path): aapt2_path = os.path.join(env.build_tools, version, 'aapt2') if not os.path.isfile(aapt_path): aapt_path = os.path.join(env.build_tools, version, 'aapt') aapt_version = 1 # Use latest available version for aapt/appt2 but ensure at least one is valid. if os.path.isfile(aapt2_path) or os.path.isfile(aapt_path): break # Use aapt2 only if present and we have a suitable version if aapt2_path and _check_supported_aapt2(aapt2_path): aapt_path = aapt2_path aapt_version = 2 # Use the aapt version discoverted from build tools. if aapt_path: logger.debug('Using {} for version {}'.format(aapt_path, version)) env.aapt = aapt_path env.aapt_version = aapt_version return # Try detecting aapt2 and aapt from PATH if not env.aapt: aapt2_path = which('aapt2') if _check_supported_aapt2(aapt2_path): env.aapt = aapt2_path env.aapt_version = 2 else: env.aapt = which('aapt') env.aapt_version = 1 if not env.aapt: raise HostError('aapt/aapt2 not found. Please make sure it is avaliable in PATH' ' or at least one Android platform is installed') def _check_env(): global android_home, platform_tools, adb, aapt, aapt_version # pylint: disable=W0603 if not android_home: android_home = os.getenv('ANDROID_HOME') if android_home: _env = _initialize_with_android_home(_AndroidEnvironment()) else: _env = _initialize_without_android_home(_AndroidEnvironment()) android_home = _env.android_home platform_tools = _env.platform_tools adb = _env.adb aapt = _env.aapt aapt_version = _env.aapt_version class LogcatMonitor(object): """ Helper class for monitoring Anroid's logcat :param target: Android target to monitor :type target: :class:`AndroidTarget` :param regexps: List of uncompiled regular expressions to filter on the device. Logcat entries that don't match any will not be seen. If omitted, all entries will be sent to host. :type regexps: list(str) """ @property def logfile(self): return self._logfile def __init__(self, target, regexps=None, logcat_format=None): super(LogcatMonitor, self).__init__() self.target = target self._regexps = regexps self._logcat_format = logcat_format self._logcat = None self._logfile = None def start(self, outfile=None): """ Start logcat and begin monitoring :param outfile: Optional path to file to store all logcat entries :type outfile: str """ if outfile: self._logfile = open(outfile, 'w') else: self._logfile = tempfile.NamedTemporaryFile(mode='w') self.target.clear_logcat() logcat_cmd = 'logcat' # Join all requested regexps with an 'or' if self._regexps: regexp = '{}'.format('|'.join(self._regexps)) if len(self._regexps) > 1: regexp = '({})'.format(regexp) # Logcat on older version of android do not support the -e argument # so fall back to using grep. if self.target.get_sdk_version() > 23: logcat_cmd = '{} -e {}'.format(logcat_cmd, quote(regexp)) else: logcat_cmd = '{} | grep {}'.format(logcat_cmd, quote(regexp)) if self._logcat_format: logcat_cmd = "{} -v {}".format(logcat_cmd, quote(self._logcat_format)) logcat_cmd = get_adb_command(self.target.conn.device, logcat_cmd, self.target.adb_server) logger.debug('logcat command ="{}"'.format(logcat_cmd)) self._logcat = pexpect.spawn(logcat_cmd, logfile=self._logfile, encoding='utf-8') def stop(self): self.flush_log() self._logcat.terminate() self._logfile.close() def get_log(self): """ Return the list of lines found by the monitor """ self.flush_log() with open(self._logfile.name) as fh: return [line for line in fh] def flush_log(self): # Unless we tell pexect to 'expect' something, it won't read from # logcat's buffer or write into our logfile. We'll need to force it to # read any pending logcat output. while True: try: read_size = 1024 * 8 # This will read up to read_size bytes, but only those that are # already ready (i.e. it won't block). If there aren't any bytes # already available it raises pexpect.TIMEOUT. buf = self._logcat.read_nonblocking(read_size, timeout=0) # We can't just keep calling read_nonblocking until we get a # pexpect.TIMEOUT (i.e. until we don't find any available # bytes), because logcat might be writing bytes the whole time - # in that case we might never return from this function. In # fact, we only care about bytes that were written before we # entered this function. So, if we read read_size bytes (as many # as we were allowed to), then we'll assume there are more bytes # that have already been sitting in the output buffer of the # logcat command. If not, we'll assume we read everything that # had already been written. if len(buf) == read_size: continue else: break except pexpect.TIMEOUT: # No available bytes to read. No prob, logcat just hasn't # printed anything since pexpect last read from its buffer. break def clear_log(self): with open(self._logfile.name, 'w') as _: pass def search(self, regexp): """ Search a line that matches a regexp in the logcat log Return immediatly """ return [line for line in self.get_log() if re.match(regexp, line)] def wait_for(self, regexp, timeout=30): """ Search a line that matches a regexp in the logcat log Wait for it to appear if it's not found :param regexp: regexp to search :type regexp: str :param timeout: Timeout in seconds, before rasing RuntimeError. ``None`` means wait indefinitely :type timeout: number :returns: List of matched strings """ log = self.get_log() res = [line for line in log if re.match(regexp, line)] # Found some matches, return them if res: return res # Store the number of lines we've searched already, so we don't have to # re-grep them after 'expect' returns next_line_num = len(log) try: self._logcat.expect(regexp, timeout=timeout) except pexpect.TIMEOUT: raise RuntimeError('Logcat monitor timeout ({}s)'.format(timeout)) return [line for line in self.get_log()[next_line_num:] if re.match(regexp, line)]
the-stack_0_23729
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator 2.3.33.0 # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class BatchMetricV2Dto(Model): """BatchMetricV2Dto. :param values: :type values: list[~_restclient.models.MetricV2Dto] :param report_errors: :type report_errors: bool """ _attribute_map = { 'values': {'key': 'values', 'type': '[MetricV2Dto]'}, 'report_errors': {'key': 'reportErrors', 'type': 'bool'}, } def __init__(self, values=None, report_errors=None): super(BatchMetricV2Dto, self).__init__() self.values = values self.report_errors = report_errors
the-stack_0_23730
import sys, os from bmtk.simulator import bionet import numpy as np import h5py import pickle from neuron import h import pandas as pd np.random.seed(2129) #Calculates maximum polarization of the given arr. #Time time is base level and finds the lowest after that. def calc_pol(arr, time=4998): base = arr[time] trough = min(arr[time:]) return trough - base # if __name__ == '__main__': # if __file__ != sys.argv[-1]: # inp = sys.argv[-1] # else: # raise Exception("no work" + str(sys.argv[-1])) # dist = float(inp) #synapses.set_pyr_w(weight) #synapses.load() config_file = 'simulation_config.json' conf = bionet.Config.from_json(config_file, validate=True) conf.build_env() graph = bionet.BioNetwork.from_config(conf) sim = bionet.BioSimulator.from_config(conf, network=graph) cells = graph.get_local_cells() cell = cells[0] hobj = cell.hobj soma = cell.hobj.soma[0](0.5) soma_v = h.Vector() soma_v.record(soma._ref_v) segs = cell._morph.seg_prop dic = {} seg_names = [] i = 0 h.distance(sec=cell.hobj.soma[0]) for sec in hobj.all: fullsecname = sec.name() sec_type = fullsecname.split(".")[1][:4] for seg in sec: i+= 1 #if (i % 100 == 0): rec = h.Vector() rec.record(seg._ref_v) dic[str(seg)] = [sec_type, h.distance(seg.x), rec] # import pdb; pdb.set_trace() # seg_names.append(str(seg)) #import pdb; pdb.set_trace() # v_ref = cell.connections()[0]._connector.postseg()._ref_v # rec = h.Vector() # rec.record(v_ref) sim.run() import pdb; pdb.set_trace() soma_pol = calc_pol(np.array(soma_v)) df = pd.DataFrame() attenuations = [] distances = [] parts = [] for key in dic.keys(): parts.append(dic[key][0]) distances.append(dic[key][1]) attenuations.append(calc_pol(np.array(dic[key][2])) / soma_pol) df["type"] = parts df["distance"] = distances df["attenuation"] = attenuations df.to_csv("results.csv", index=False) # syn_volt = rec.as_numpy() # mem_pot_file = 'output/v_report.h5' # # load # f = h5py.File(mem_pot_file,'r') # mem_potential = f['report']['exc_stim']['data'] # import matplotlib.pyplot as plt # plt.plot(mem_potential[:, 0], label='soma') # plt.plot(syn_volt, label='synapse') # plt.legend() # plt.show() # low = mem_potential[3998, 0] # high = max(mem_potential[3998:, 0]) # soma_mag = high - low # #print(soma_mag) # low = syn_volt[3998] # high = max(syn_volt[3998:]) # dend_mag = high - low # #print(dend_mag) # attenuation = soma_mag / dend_mag # print(attenuation) # f = open('syn_att.pkl', 'rb') # res = pickle.load(f) # if dist in res.keys(): # res[dist].append(attenuation) # else: # res[dist] = [attenuation] # f.close() # #f = open('syn_epsps.pkl', 'wb') # f = open('syn_att.pkl', 'wb') # pickle.dump(res, f) # f.close()
the-stack_0_23731
from scrapeconfig_orm.models import Schema from .projects import BaseProjectModelRoute from ..jsonapi.exceptions import JsonApiBadRequestError, JsonApiNotFoundError class SchemaRoute(BaseProjectModelRoute): lookup_url_kwarg = 'schema_id' default_model = Schema def get_instance(self): return self.get_collection()[self.kwargs.get('schema_id')] def get_collection(self): return self.project.schemas def get_list_kwargs(self): return { 'fields_map': { 'schemas': [ 'name', 'default', 'project', ], } } def update(self, *args, **kwargs): # Reset default schema if current schema will be default if self.data.get('data', {}).get('attributes', {}).get('default'): for schema in self.get_collection(): if schema.default: schema.default = False schema.save() return super(SchemaRoute, self).update(*args, **kwargs) def destroy(self, *args, **kwargs): try: schema = self.get_instance() except KeyError: raise JsonApiNotFoundError('Unable to find the requested schema') for spider in self.project.spiders: for sample in spider.samples: for item in sample.items: if self._item_uses_schema(item): raise JsonApiBadRequestError( 'Unable to delete the data format "%s" as it is used ' "by a spider's sample." % schema.name) return super(SchemaRoute, self).destroy(*args, **kwargs) def _item_uses_schema(self, item): schema = self.get_instance() if item.schema.id == schema.id: return True for item in item.annotations: if hasattr(item, 'schema') and self._item_uses_schema(item): return True return False
the-stack_0_23733
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os, sys, warnings def fn_name(): return sys._getframe(1).f_code.co_name if six.PY3: warnings.warn( "The gtk* backends have not been tested with Python 3.x", ImportWarning) try: import gobject import gtk; gdk = gtk.gdk import pango except ImportError: raise ImportError("Gtk* backend requires pygtk to be installed.") pygtk_version_required = (2,4,0) if gtk.pygtk_version < pygtk_version_required: raise ImportError ("PyGTK %d.%d.%d is installed\n" "PyGTK %d.%d.%d or later is required" % (gtk.pygtk_version + pygtk_version_required)) del pygtk_version_required _new_tooltip_api = (gtk.pygtk_version[1] >= 12) import matplotlib from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors, TimerBase from matplotlib.backend_bases import ShowBase from matplotlib.backends.backend_gdk import RendererGDK, FigureCanvasGDK from matplotlib.cbook import is_string_like, is_writable_file_like from matplotlib.colors import colorConverter from matplotlib.figure import Figure from matplotlib.widgets import SubplotTool from matplotlib import lines from matplotlib import markers from matplotlib import cbook from matplotlib import verbose from matplotlib import rcParams backend_version = "%d.%d.%d" % gtk.pygtk_version _debug = False #_debug = True # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 96 # Hide the benign warning that it can't stat a file that doesn't warnings.filterwarnings('ignore', '.*Unable to retrieve the file info for.*', gtk.Warning) cursord = { cursors.MOVE : gdk.Cursor(gdk.FLEUR), cursors.HAND : gdk.Cursor(gdk.HAND2), cursors.POINTER : gdk.Cursor(gdk.LEFT_PTR), cursors.SELECT_REGION : gdk.Cursor(gdk.TCROSS), } # ref gtk+/gtk/gtkwidget.h def GTK_WIDGET_DRAWABLE(w): flags = w.flags(); return flags & gtk.VISIBLE != 0 and flags & gtk.MAPPED != 0 def draw_if_interactive(): """ Is called after every pylab drawing command """ if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw_idle() class Show(ShowBase): def mainloop(self): if gtk.main_level() == 0: gtk.main() show = Show() def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTK(figure) manager = FigureManagerGTK(canvas, num) return manager class TimerGTK(TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses GTK for timer events. Attributes: * interval: The time between timer events in milliseconds. Default is 1000 ms. * single_shot: Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. * callbacks: Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions add_callback and remove_callback can be used. ''' def _timer_start(self): # Need to stop it, otherwise we potentially leak a timer id that will # never be stopped. self._timer_stop() self._timer = gobject.timeout_add(self._interval, self._on_timer) def _timer_stop(self): if self._timer is not None: gobject.source_remove(self._timer) self._timer = None def _timer_set_interval(self): # Only stop and restart it if the timer has already been started if self._timer is not None: self._timer_stop() self._timer_start() def _on_timer(self): TimerBase._on_timer(self) # Gtk timeout_add() requires that the callback returns True if it # is to be called again. if len(self.callbacks) > 0 and not self._single: return True else: self._timer = None return False class FigureCanvasGTK (gtk.DrawingArea, FigureCanvasBase): keyvald = {65507 : 'control', 65505 : 'shift', 65513 : 'alt', 65508 : 'control', 65506 : 'shift', 65514 : 'alt', 65361 : 'left', 65362 : 'up', 65363 : 'right', 65364 : 'down', 65307 : 'escape', 65470 : 'f1', 65471 : 'f2', 65472 : 'f3', 65473 : 'f4', 65474 : 'f5', 65475 : 'f6', 65476 : 'f7', 65477 : 'f8', 65478 : 'f9', 65479 : 'f10', 65480 : 'f11', 65481 : 'f12', 65300 : 'scroll_lock', 65299 : 'break', 65288 : 'backspace', 65293 : 'enter', 65379 : 'insert', 65535 : 'delete', 65360 : 'home', 65367 : 'end', 65365 : 'pageup', 65366 : 'pagedown', 65438 : '0', 65436 : '1', 65433 : '2', 65435 : '3', 65430 : '4', 65437 : '5', 65432 : '6', 65429 : '7', 65431 : '8', 65434 : '9', 65451 : '+', 65453 : '-', 65450 : '*', 65455 : '/', 65439 : 'dec', 65421 : 'enter', 65511 : 'super', 65512 : 'super', 65406 : 'alt', 65289 : 'tab', } # Setting this as a static constant prevents # this resulting expression from leaking event_mask = (gdk.BUTTON_PRESS_MASK | gdk.BUTTON_RELEASE_MASK | gdk.EXPOSURE_MASK | gdk.KEY_PRESS_MASK | gdk.KEY_RELEASE_MASK | gdk.ENTER_NOTIFY_MASK | gdk.LEAVE_NOTIFY_MASK | gdk.POINTER_MOTION_MASK | gdk.POINTER_MOTION_HINT_MASK) def __init__(self, figure): if _debug: print('FigureCanvasGTK.%s' % fn_name()) FigureCanvasBase.__init__(self, figure) gtk.DrawingArea.__init__(self) self._idle_draw_id = 0 self._need_redraw = True self._pixmap_width = -1 self._pixmap_height = -1 self._lastCursor = None self.connect('scroll_event', self.scroll_event) self.connect('button_press_event', self.button_press_event) self.connect('button_release_event', self.button_release_event) self.connect('configure_event', self.configure_event) self.connect('expose_event', self.expose_event) self.connect('key_press_event', self.key_press_event) self.connect('key_release_event', self.key_release_event) self.connect('motion_notify_event', self.motion_notify_event) self.connect('leave_notify_event', self.leave_notify_event) self.connect('enter_notify_event', self.enter_notify_event) self.set_events(self.__class__.event_mask) self.set_double_buffered(False) self.set_flags(gtk.CAN_FOCUS) self._renderer_init() self._idle_event_id = gobject.idle_add(self.idle_event) self.last_downclick = {} def destroy(self): #gtk.DrawingArea.destroy(self) self.close_event() gobject.source_remove(self._idle_event_id) if self._idle_draw_id != 0: gobject.source_remove(self._idle_draw_id) def scroll_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y if event.direction==gdk.SCROLL_UP: step = 1 else: step = -1 FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) return False # finish event propagation? def button_press_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y dblclick = (event.type == gdk._2BUTTON_PRESS) if not dblclick: # GTK is the only backend that generates a DOWN-UP-DOWN-DBLCLICK-UP event # sequence for a double click. All other backends have a DOWN-UP-DBLCLICK-UP # sequence. In order to provide consistency to matplotlib users, we will # eat the extra DOWN event in the case that we detect it is part of a double # click. # first, get the double click time in milliseconds. current_time = event.get_time() last_time = self.last_downclick.get(event.button,0) dblclick_time = gtk.settings_get_for_screen(gdk.screen_get_default()).get_property('gtk-double-click-time') delta_time = current_time-last_time if delta_time < dblclick_time: del self.last_downclick[event.button] # we do not want to eat more than one event. return False # eat. self.last_downclick[event.button] = current_time FigureCanvasBase.button_press_event(self, x, y, event.button, dblclick=dblclick, guiEvent=event) return False # finish event propagation? def button_release_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) x = event.x # flipy so y=0 is bottom of canvas y = self.allocation.height - event.y FigureCanvasBase.button_release_event(self, x, y, event.button, guiEvent=event) return False # finish event propagation? def key_press_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) key = self._get_key(event) if _debug: print("hit", key) FigureCanvasBase.key_press_event(self, key, guiEvent=event) return False # finish event propagation? def key_release_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) key = self._get_key(event) if _debug: print("release", key) FigureCanvasBase.key_release_event(self, key, guiEvent=event) return False # finish event propagation? def motion_notify_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) if event.is_hint: x, y, state = event.window.get_pointer() else: x, y, state = event.x, event.y, event.state # flipy so y=0 is bottom of canvas y = self.allocation.height - y FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=event) return False # finish event propagation? def leave_notify_event(self, widget, event): FigureCanvasBase.leave_notify_event(self, event) def enter_notify_event(self, widget, event): x, y, state = event.window.get_pointer() FigureCanvasBase.enter_notify_event(self, event, xy=(x, y)) def _get_key(self, event): if event.keyval in self.keyvald: key = self.keyvald[event.keyval] elif event.keyval < 256: key = chr(event.keyval) else: key = None for key_mask, prefix in ( [gdk.MOD4_MASK, 'super'], [gdk.MOD1_MASK, 'alt'], [gdk.CONTROL_MASK, 'ctrl'], ): if event.state & key_mask: key = '{0}+{1}'.format(prefix, key) return key def configure_event(self, widget, event): if _debug: print('FigureCanvasGTK.%s' % fn_name()) if widget.window is None: return w, h = event.width, event.height if w < 3 or h < 3: return # empty fig # resize the figure (in inches) dpi = self.figure.dpi self.figure.set_size_inches (w/dpi, h/dpi) self._need_redraw = True return False # finish event propagation? def draw(self): # Note: FigureCanvasBase.draw() is inconveniently named as it clashes # with the deprecated gtk.Widget.draw() self._need_redraw = True if GTK_WIDGET_DRAWABLE(self): self.queue_draw() # do a synchronous draw (its less efficient than an async draw, # but is required if/when animation is used) self.window.process_updates (False) def draw_idle(self): def idle_draw(*args): try: self.draw() finally: self._idle_draw_id = 0 return False if self._idle_draw_id == 0: self._idle_draw_id = gobject.idle_add(idle_draw) def _renderer_init(self): """Override by GTK backends to select a different renderer Renderer should provide the methods: set_pixmap () set_width_height () that are used by _render_figure() / _pixmap_prepare() """ self._renderer = RendererGDK (self, self.figure.dpi) def _pixmap_prepare(self, width, height): """ Make sure _._pixmap is at least width, height, create new pixmap if necessary """ if _debug: print('FigureCanvasGTK.%s' % fn_name()) create_pixmap = False if width > self._pixmap_width: # increase the pixmap in 10%+ (rather than 1 pixel) steps self._pixmap_width = max (int (self._pixmap_width * 1.1), width) create_pixmap = True if height > self._pixmap_height: self._pixmap_height = max (int (self._pixmap_height * 1.1), height) create_pixmap = True if create_pixmap: self._pixmap = gdk.Pixmap (self.window, self._pixmap_width, self._pixmap_height) self._renderer.set_pixmap (self._pixmap) def _render_figure(self, pixmap, width, height): """used by GTK and GTKcairo. GTKAgg overrides """ self._renderer.set_width_height (width, height) self.figure.draw (self._renderer) def expose_event(self, widget, event): """Expose_event for all GTK backends. Should not be overridden. """ if _debug: print('FigureCanvasGTK.%s' % fn_name()) if GTK_WIDGET_DRAWABLE(self): if self._need_redraw: x, y, w, h = self.allocation self._pixmap_prepare (w, h) self._render_figure(self._pixmap, w, h) self._need_redraw = False x, y, w, h = event.area self.window.draw_drawable (self.style.fg_gc[self.state], self._pixmap, x, y, x, y, w, h) return False # finish event propagation? filetypes = FigureCanvasBase.filetypes.copy() filetypes['jpg'] = 'JPEG' filetypes['jpeg'] = 'JPEG' filetypes['png'] = 'Portable Network Graphics' def print_jpeg(self, filename, *args, **kwargs): return self._print_image(filename, 'jpeg') print_jpg = print_jpeg def print_png(self, filename, *args, **kwargs): return self._print_image(filename, 'png') def _print_image(self, filename, format, *args, **kwargs): if self.flags() & gtk.REALIZED == 0: # for self.window(for pixmap) and has a side effect of altering # figure width,height (via configure-event?) gtk.DrawingArea.realize(self) width, height = self.get_width_height() pixmap = gdk.Pixmap (self.window, width, height) self._renderer.set_pixmap (pixmap) self._render_figure(pixmap, width, height) # jpg colors don't match the display very well, png colors match # better pixbuf = gdk.Pixbuf(gdk.COLORSPACE_RGB, 0, 8, width, height) pixbuf.get_from_drawable(pixmap, pixmap.get_colormap(), 0, 0, 0, 0, width, height) # set the default quality, if we are writing a JPEG. # http://www.pygtk.org/docs/pygtk/class-gdkpixbuf.html#method-gdkpixbuf--save options = cbook.restrict_dict(kwargs, ['quality']) if format in ['jpg','jpeg']: if 'quality' not in options: options['quality'] = rcParams['savefig.jpeg_quality'] options['quality'] = str(options['quality']) if is_string_like(filename): try: pixbuf.save(filename, format, options=options) except gobject.GError as exc: error_msg_gtk('Save figure failure:\n%s' % (exc,), parent=self) elif is_writable_file_like(filename): if hasattr(pixbuf, 'save_to_callback'): def save_callback(buf, data=None): data.write(buf) try: pixbuf.save_to_callback(save_callback, format, user_data=filename, options=options) except gobject.GError as exc: error_msg_gtk('Save figure failure:\n%s' % (exc,), parent=self) else: raise ValueError("Saving to a Python file-like object is only supported by PyGTK >= 2.8") else: raise ValueError("filename must be a path or a file-like object") def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. optional arguments: *interval* Timer interval in milliseconds *callbacks* Sequence of (func, args, kwargs) where func(*args, **kwargs) will be executed by the timer every *interval*. """ return TimerGTK(*args, **kwargs) def flush_events(self): gtk.gdk.threads_enter() while gtk.events_pending(): gtk.main_iteration(True) gtk.gdk.flush() gtk.gdk.threads_leave() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerGTK(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The gtk.Toolbar (gtk only) vbox : The gtk.VBox containing the canvas and toolbar (gtk only) window : The gtk.Window (gtk only) """ def __init__(self, canvas, num): if _debug: print('FigureManagerGTK.%s' % fn_name()) FigureManagerBase.__init__(self, canvas, num) self.window = gtk.Window() self.set_window_title("Figure %d" % num) if (window_icon): try: self.window.set_icon_from_file(window_icon) except: # some versions of gtk throw a glib.GError but not # all, so I am not sure how to catch it. I am unhappy # diong a blanket catch here, but an not sure what a # better way is - JDH verbose.report('Could not load matplotlib icon: %s' % sys.exc_info()[1]) self.vbox = gtk.VBox() self.window.add(self.vbox) self.vbox.show() self.canvas.show() self.vbox.pack_start(self.canvas, True, True) self.toolbar = self._get_toolbar(canvas) # calculate size for window w = int (self.canvas.figure.bbox.width) h = int (self.canvas.figure.bbox.height) if self.toolbar is not None: self.toolbar.show() self.vbox.pack_end(self.toolbar, False, False) tb_w, tb_h = self.toolbar.size_request() h += tb_h self.window.set_default_size (w, h) def destroy(*args): Gcf.destroy(num) self.window.connect("destroy", destroy) self.window.connect("delete_event", destroy) if matplotlib.is_interactive(): self.window.show() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar is not None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) self.canvas.grab_focus() def destroy(self, *args): if _debug: print('FigureManagerGTK.%s' % fn_name()) if hasattr(self, 'toolbar') and self.toolbar is not None: self.toolbar.destroy() if hasattr(self, 'vbox'): self.vbox.destroy() if hasattr(self, 'window'): self.window.destroy() if hasattr(self, 'canvas'): self.canvas.destroy() self.__dict__.clear() #Is this needed? Other backends don't have it. if Gcf.get_num_fig_managers()==0 and \ not matplotlib.is_interactive() and \ gtk.main_level() >= 1: gtk.main_quit() def show(self): # show the figure window self.window.show() def full_screen_toggle(self): self._full_screen_flag = not self._full_screen_flag if self._full_screen_flag: self.window.fullscreen() else: self.window.unfullscreen() _full_screen_flag = False def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2GTK (canvas, self.window) else: toolbar = None return toolbar def get_window_title(self): return self.window.get_title() def set_window_title(self, title): self.window.set_title(title) def resize(self, width, height): 'set the canvas size in pixels' #_, _, cw, ch = self.canvas.allocation #_, _, ww, wh = self.window.allocation #self.window.resize (width-cw+ww, height-ch+wh) self.window.resize(width, height) class NavigationToolbar2GTK(NavigationToolbar2, gtk.Toolbar): def __init__(self, canvas, window): self.win = window gtk.Toolbar.__init__(self) NavigationToolbar2.__init__(self, canvas) def set_message(self, s): self.message.set_label(s) def set_cursor(self, cursor): self.canvas.window.set_cursor(cursord[cursor]) def release(self, event): try: del self._pixmapBack except AttributeError: pass def dynamic_update(self): # legacy method; new method is canvas.draw_idle self.canvas.draw_idle() def draw_rubberband(self, event, x0, y0, x1, y1): 'adapted from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/189744' drawable = self.canvas.window if drawable is None: return gc = drawable.new_gc() height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 w = abs(x1 - x0) h = abs(y1 - y0) rect = [int(val)for val in (min(x0,x1), min(y0, y1), w, h)] try: lastrect, pixmapBack = self._pixmapBack except AttributeError: #snap image back if event.inaxes is None: return ax = event.inaxes l,b,w,h = [int(val) for val in ax.bbox.bounds] b = int(height)-(b+h) axrect = l,b,w,h self._pixmapBack = axrect, gtk.gdk.Pixmap(drawable, w, h) self._pixmapBack[1].draw_drawable(gc, drawable, l, b, 0, 0, w, h) else: drawable.draw_drawable(gc, pixmapBack, 0, 0, *lastrect) drawable.draw_rectangle(gc, False, *rect) def _init_toolbar(self): self.set_style(gtk.TOOLBAR_ICONS) self._init_toolbar2_4() def _init_toolbar2_4(self): basedir = os.path.join(rcParams['datapath'],'images') if not _new_tooltip_api: self.tooltips = gtk.Tooltips() for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.insert( gtk.SeparatorToolItem(), -1 ) continue fname = os.path.join(basedir, image_file + '.png') image = gtk.Image() image.set_from_file(fname) tbutton = gtk.ToolButton(image, text) self.insert(tbutton, -1) tbutton.connect('clicked', getattr(self, callback)) if _new_tooltip_api: tbutton.set_tooltip_text(tooltip_text) else: tbutton.set_tooltip(self.tooltips, tooltip_text, 'Private') toolitem = gtk.SeparatorToolItem() self.insert(toolitem, -1) # set_draw() not making separator invisible, # bug #143692 fixed Jun 06 2004, will be in GTK+ 2.6 toolitem.set_draw(False) toolitem.set_expand(True) toolitem = gtk.ToolItem() self.insert(toolitem, -1) self.message = gtk.Label() toolitem.add(self.message) self.show_all() def get_filechooser(self): fc = FileChooserDialog( title='Save the figure', parent=self.win, path=os.path.expanduser(rcParams.get('savefig.directory', '')), filetypes=self.canvas.get_supported_filetypes(), default_filetype=self.canvas.get_default_filetype()) fc.set_current_name(self.canvas.get_default_filename()) return fc def save_figure(self, *args): chooser = self.get_filechooser() fname, format = chooser.get_filename_from_user() chooser.destroy() if fname: startpath = os.path.expanduser(rcParams.get('savefig.directory', '')) if startpath == '': # explicitly missing key or empty str signals to use cwd rcParams['savefig.directory'] = startpath else: # save dir for next time rcParams['savefig.directory'] = os.path.dirname(six.text_type(fname)) try: self.canvas.print_figure(fname, format=format) except Exception as e: error_msg_gtk(str(e), parent=self) def configure_subplots(self, button): toolfig = Figure(figsize=(6,3)) canvas = self._get_canvas(toolfig) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) w = int (toolfig.bbox.width) h = int (toolfig.bbox.height) window = gtk.Window() if (window_icon): try: window.set_icon_from_file(window_icon) except: # we presumably already logged a message on the # failure of the main plot, don't keep reporting pass window.set_title("Subplot Configuration Tool") window.set_default_size(w, h) vbox = gtk.VBox() window.add(vbox) vbox.show() canvas.show() vbox.pack_start(canvas, True, True) window.show() def _get_canvas(self, fig): return FigureCanvasGTK(fig) class FileChooserDialog(gtk.FileChooserDialog): """GTK+ 2.4 file selector which presents the user with a menu of supported image formats """ def __init__ (self, title = 'Save file', parent = None, action = gtk.FILE_CHOOSER_ACTION_SAVE, buttons = (gtk.STOCK_CANCEL, gtk.RESPONSE_CANCEL, gtk.STOCK_SAVE, gtk.RESPONSE_OK), path = None, filetypes = [], default_filetype = None ): super(FileChooserDialog, self).__init__ (title, parent, action, buttons) super(FileChooserDialog, self).set_do_overwrite_confirmation(True) self.set_default_response (gtk.RESPONSE_OK) if not path: path = os.getcwd() + os.sep # create an extra widget to list supported image formats self.set_current_folder (path) self.set_current_name ('image.' + default_filetype) hbox = gtk.HBox (spacing=10) hbox.pack_start (gtk.Label ("File Format:"), expand=False) liststore = gtk.ListStore(gobject.TYPE_STRING) cbox = gtk.ComboBox(liststore) cell = gtk.CellRendererText() cbox.pack_start(cell, True) cbox.add_attribute(cell, 'text', 0) hbox.pack_start (cbox) self.filetypes = filetypes self.sorted_filetypes = list(six.iteritems(filetypes)) self.sorted_filetypes.sort() default = 0 for i, (ext, name) in enumerate(self.sorted_filetypes): cbox.append_text ("%s (*.%s)" % (name, ext)) if ext == default_filetype: default = i cbox.set_active(default) self.ext = default_filetype def cb_cbox_changed (cbox, data=None): """File extension changed""" head, filename = os.path.split(self.get_filename()) root, ext = os.path.splitext(filename) ext = ext[1:] new_ext = self.sorted_filetypes[cbox.get_active()][0] self.ext = new_ext if ext in self.filetypes: filename = root + '.' + new_ext elif ext == '': filename = filename.rstrip('.') + '.' + new_ext self.set_current_name (filename) cbox.connect ("changed", cb_cbox_changed) hbox.show_all() self.set_extra_widget(hbox) def get_filename_from_user (self): while True: filename = None if self.run() != int(gtk.RESPONSE_OK): break filename = self.get_filename() break return filename, self.ext class DialogLineprops(object): """ A GUI dialog for controlling lineprops """ signals = ( 'on_combobox_lineprops_changed', 'on_combobox_linestyle_changed', 'on_combobox_marker_changed', 'on_colorbutton_linestyle_color_set', 'on_colorbutton_markerface_color_set', 'on_dialog_lineprops_okbutton_clicked', 'on_dialog_lineprops_cancelbutton_clicked', ) linestyles = [ls for ls in lines.Line2D.lineStyles if ls.strip()] linestyled = dict([ (s,i) for i,s in enumerate(linestyles)]) markers = [m for m in markers.MarkerStyle.markers if cbook.is_string_like(m)] markerd = dict([(s,i) for i,s in enumerate(markers)]) def __init__(self, lines): import gtk.glade datadir = matplotlib.get_data_path() gladefile = os.path.join(datadir, 'lineprops.glade') if not os.path.exists(gladefile): raise IOError('Could not find gladefile lineprops.glade in %s'%datadir) self._inited = False self._updateson = True # suppress updates when setting widgets manually self.wtree = gtk.glade.XML(gladefile, 'dialog_lineprops') self.wtree.signal_autoconnect(dict([(s, getattr(self, s)) for s in self.signals])) self.dlg = self.wtree.get_widget('dialog_lineprops') self.lines = lines cbox = self.wtree.get_widget('combobox_lineprops') cbox.set_active(0) self.cbox_lineprops = cbox cbox = self.wtree.get_widget('combobox_linestyles') for ls in self.linestyles: cbox.append_text(ls) cbox.set_active(0) self.cbox_linestyles = cbox cbox = self.wtree.get_widget('combobox_markers') for m in self.markers: cbox.append_text(m) cbox.set_active(0) self.cbox_markers = cbox self._lastcnt = 0 self._inited = True def show(self): 'populate the combo box' self._updateson = False # flush the old cbox = self.cbox_lineprops for i in range(self._lastcnt-1,-1,-1): cbox.remove_text(i) # add the new for line in self.lines: cbox.append_text(line.get_label()) cbox.set_active(0) self._updateson = True self._lastcnt = len(self.lines) self.dlg.show() def get_active_line(self): 'get the active line' ind = self.cbox_lineprops.get_active() line = self.lines[ind] return line def get_active_linestyle(self): 'get the active lineinestyle' ind = self.cbox_linestyles.get_active() ls = self.linestyles[ind] return ls def get_active_marker(self): 'get the active lineinestyle' ind = self.cbox_markers.get_active() m = self.markers[ind] return m def _update(self): 'update the active line props from the widgets' if not self._inited or not self._updateson: return line = self.get_active_line() ls = self.get_active_linestyle() marker = self.get_active_marker() line.set_linestyle(ls) line.set_marker(marker) button = self.wtree.get_widget('colorbutton_linestyle') color = button.get_color() r, g, b = [val/65535. for val in (color.red, color.green, color.blue)] line.set_color((r,g,b)) button = self.wtree.get_widget('colorbutton_markerface') color = button.get_color() r, g, b = [val/65535. for val in (color.red, color.green, color.blue)] line.set_markerfacecolor((r,g,b)) line.figure.canvas.draw() def on_combobox_lineprops_changed(self, item): 'update the widgets from the active line' if not self._inited: return self._updateson = False line = self.get_active_line() ls = line.get_linestyle() if ls is None: ls = 'None' self.cbox_linestyles.set_active(self.linestyled[ls]) marker = line.get_marker() if marker is None: marker = 'None' self.cbox_markers.set_active(self.markerd[marker]) r,g,b = colorConverter.to_rgb(line.get_color()) color = gtk.gdk.Color(*[int(val*65535) for val in (r,g,b)]) button = self.wtree.get_widget('colorbutton_linestyle') button.set_color(color) r,g,b = colorConverter.to_rgb(line.get_markerfacecolor()) color = gtk.gdk.Color(*[int(val*65535) for val in (r,g,b)]) button = self.wtree.get_widget('colorbutton_markerface') button.set_color(color) self._updateson = True def on_combobox_linestyle_changed(self, item): self._update() def on_combobox_marker_changed(self, item): self._update() def on_colorbutton_linestyle_color_set(self, button): self._update() def on_colorbutton_markerface_color_set(self, button): 'called colorbutton marker clicked' self._update() def on_dialog_lineprops_okbutton_clicked(self, button): self._update() self.dlg.hide() def on_dialog_lineprops_cancelbutton_clicked(self, button): self.dlg.hide() # set icon used when windows are minimized # Unfortunately, the SVG renderer (rsvg) leaks memory under earlier # versions of pygtk, so we have to use a PNG file instead. try: if gtk.pygtk_version < (2, 8, 0) or sys.platform == 'win32': icon_filename = 'matplotlib.png' else: icon_filename = 'matplotlib.svg' window_icon = os.path.join(rcParams['datapath'], 'images', icon_filename) except: window_icon = None verbose.report('Could not load matplotlib icon: %s' % sys.exc_info()[1]) def error_msg_gtk(msg, parent=None): if parent is not None: # find the toplevel gtk.Window parent = parent.get_toplevel() if parent.flags() & gtk.TOPLEVEL == 0: parent = None if not is_string_like(msg): msg = ','.join(map(str,msg)) dialog = gtk.MessageDialog( parent = parent, type = gtk.MESSAGE_ERROR, buttons = gtk.BUTTONS_OK, message_format = msg) dialog.run() dialog.destroy() FigureCanvas = FigureCanvasGTK FigureManager = FigureManagerGTK
the-stack_0_23735
import _plotly_utils.basevalidators class ZautoValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="zauto", parent_name="contourcarpet", **kwargs): super(ZautoValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), implied_edits=kwargs.pop("implied_edits", {}), role=kwargs.pop("role", "info"), **kwargs )
the-stack_0_23736
# Lint as: python2, python3 # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Lite tooling helper functionality.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import enum import functools import pprint import shutil import tempfile import time import warnings from absl import logging import six from six import PY2 from google.protobuf import text_format as _text_format from google.protobuf.message import DecodeError from tensorflow.core.framework import graph_pb2 as _graph_pb2 from tensorflow.lite.experimental.microfrontend.python.ops import audio_microfrontend_op # pylint: disable=unused-import from tensorflow.lite.python import lite_constants as constants from tensorflow.lite.python.convert import build_toco_convert_protos # pylint: disable=unused-import from tensorflow.lite.python.convert import convert_saved_model as _convert_saved_model from tensorflow.lite.python.convert import ConverterError # pylint: disable=unused-import from tensorflow.lite.python.convert import mlir_quantize as _mlir_quantize from tensorflow.lite.python.convert import mlir_sparsify as _mlir_sparsify from tensorflow.lite.python.convert import OpsSet from tensorflow.lite.python.convert import toco_convert # pylint: disable=unused-import from tensorflow.lite.python.convert import toco_convert_graph_def as _toco_convert_graph_def from tensorflow.lite.python.convert import toco_convert_impl as _toco_convert_impl from tensorflow.lite.python.convert import toco_convert_protos # pylint: disable=unused-import from tensorflow.lite.python.convert_phase import Component from tensorflow.lite.python.convert_phase import convert_phase from tensorflow.lite.python.convert_phase import SubComponent from tensorflow.lite.python.convert_saved_model import freeze_saved_model as _freeze_saved_model from tensorflow.lite.python.interpreter import Interpreter # pylint: disable=unused-import from tensorflow.lite.python.interpreter import load_delegate # pylint: disable=unused-import from tensorflow.lite.python.interpreter import OpResolverType # pylint: disable=unused-import from tensorflow.lite.python.op_hint import convert_op_hints_to_stubs # pylint: disable=unused-import from tensorflow.lite.python.op_hint import is_ophint_converted as _is_ophint_converted from tensorflow.lite.python.op_hint import OpHint # pylint: disable=unused-import from tensorflow.lite.python.optimize import calibrator as _calibrator from tensorflow.lite.python.util import build_debug_info_func as _build_debug_info_func from tensorflow.lite.python.util import convert_debug_info_func as _convert_debug_info_func from tensorflow.lite.python.util import freeze_graph as _freeze_graph from tensorflow.lite.python.util import get_debug_info as _get_debug_info from tensorflow.lite.python.util import get_grappler_config as _get_grappler_config from tensorflow.lite.python.util import get_tensor_name as _get_tensor_name from tensorflow.lite.python.util import get_tensors_from_tensor_names as _get_tensors_from_tensor_names from tensorflow.lite.python.util import get_tf_type_name as _get_tf_type_name from tensorflow.lite.python.util import is_frozen_graph as _is_frozen_graph from tensorflow.lite.python.util import model_input_signature as _model_input_signature from tensorflow.lite.python.util import modify_model_io_type as _modify_model_io_type from tensorflow.lite.python.util import run_graph_optimizations as _run_graph_optimizations from tensorflow.lite.python.util import set_tensor_shapes as _set_tensor_shapes from tensorflow.lite.python.util import trace_model_call as _trace_model_call from tensorflow.python import saved_model as _saved_model from tensorflow.python.client import session as _session from tensorflow.python.eager import context from tensorflow.python.eager import def_function as _def_function from tensorflow.python.eager import function as _function from tensorflow.python.framework import convert_to_constants as _convert_to_constants from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import ops as _ops from tensorflow.python.framework.errors_impl import NotFoundError as _NotFoundError from tensorflow.python.framework.importer import import_graph_def as _import_graph_def from tensorflow.python.platform import gfile from tensorflow.python.saved_model import loader_impl as _loader_impl from tensorflow.python.saved_model import save_options as _save_options from tensorflow.python.saved_model import signature_constants as _signature_constants from tensorflow.python.saved_model import tag_constants as _tag_constants from tensorflow.python.saved_model.load import load as _load from tensorflow.python.saved_model.loader_impl import parse_saved_model_with_debug_info as _parse_saved_model_with_debug_info from tensorflow.python.util import deprecation as _deprecation from tensorflow.python.util import keras_deps from tensorflow.python.util.tf_export import tf_export as _tf_export # pylint: disable=g-import-not-at-top try: from tensorflow.lite.python import metrics_portable as metrics except ImportError: from tensorflow.lite.python import metrics_nonportable as metrics # pylint: enable=g-import-not-at-top @_tf_export("lite.Optimize") class Optimize(enum.Enum): """Enum defining the optimizations to apply when generating a tflite model. DEFAULT Default optimization strategy that quantizes model weights. Enhanced optimizations are gained by providing a representative dataset that quantizes biases and activations as well. Converter will do its best to reduce size and latency, while minimizing the loss in accuracy. OPTIMIZE_FOR_SIZE Deprecated. Does the same as DEFAULT. OPTIMIZE_FOR_LATENCY Deprecated. Does the same as DEFAULT. EXPERIMENTAL_SPARSITY Experimental flag, subject to change. Enable optimization by taking advantage of the sparse model weights trained with pruning. The converter will inspect the sparsity pattern of the model weights and do its best to improve size and latency. The flag can be used alone to optimize float32 models with sparse weights. It can also be used together with the DEFAULT optimization mode to optimize quantized models with sparse weights. """ # Default optimization strategy that quantizes model weights. Enhanced # optimizations are gained by providing a representative dataset that # quantizes biases and activations as well. # Converter will do its best to reduce size and latency, while minimizing # the loss in accuracy. DEFAULT = "DEFAULT" # Deprecated. Does the same as DEFAULT. OPTIMIZE_FOR_SIZE = "OPTIMIZE_FOR_SIZE" # Deprecated. Does the same as DEFAULT. OPTIMIZE_FOR_LATENCY = "OPTIMIZE_FOR_LATENCY" # Experimental flag, subject to change. # Enable optimization by taking advantage of the sparse model weights trained # with pruning. # # The converter will inspect the sparsity pattern of the model weights and do # its best to improve size and latency. # The flag can be used alone to optimize float32 models with sparse weights. # It can also be used together with the DEFAULT optimization mode to optimize # quantized models with sparse weights. # TODO(b/161560631): Add log message when this optimization is applied. EXPERIMENTAL_SPARSITY = "EXPERIMENTAL_SPARSITY" def __str__(self): return str(self.value) @_tf_export("lite.RepresentativeDataset") class RepresentativeDataset(object): """Representative dataset used to optimize the model. This is a generator function that provides a small dataset to calibrate or estimate the range, i.e, (min, max) of all floating-point arrays in the model (such as model input, activation outputs of intermediate layers, and model output) for quantization. Usually, this is a small subset of a few hundred samples randomly chosen, in no particular order, from the training or evaluation dataset. """ def __init__(self, input_gen): """Creates a representative dataset. Args: input_gen: A generator function that generates input samples for the model and has the same order, type and shape as the inputs to the model. Usually, this is a small subset of a few hundred samples randomly chosen, in no particular order, from the training or evaluation dataset. """ self.input_gen = input_gen @_tf_export("lite.TargetSpec") class TargetSpec(object): """Specification of target device used to optimize the model. Attributes: supported_ops: Experimental flag, subject to change. Set of `tf.lite.OpsSet` options, where each option represents a set of operators supported by the target device. (default {tf.lite.OpsSet.TFLITE_BUILTINS})) supported_types: Set of `tf.dtypes.DType` data types supported on the target device. If initialized, optimization might be driven by the smallest type in this set. (default set()) experimental_select_user_tf_ops: Experimental flag, subject to change. Set of user's TensorFlow operators' names that are required in the TensorFlow Lite runtime. These ops will be exported as select TensorFlow ops in the model (in conjunction with the tf.lite.OpsSet.SELECT_TF_OPS flag). This is an advanced feature that should only be used if the client is using TF ops that may not be linked in by default with the TF ops that are provided when using the SELECT_TF_OPS path. The client is responsible for linking these ops into the target runtime. """ def __init__(self, supported_ops=None, supported_types=None, experimental_select_user_tf_ops=None): if supported_ops is None: supported_ops = {OpsSet.TFLITE_BUILTINS} self.supported_ops = supported_ops if supported_types is None: supported_types = set() self.supported_types = supported_types if experimental_select_user_tf_ops is None: experimental_select_user_tf_ops = set() self.experimental_select_user_tf_ops = experimental_select_user_tf_ops self._experimental_custom_op_registerers = [] # Hint for the supported accumulation type used for inference. Typically # used for fp16 post-training quantization, where some models can use fp16 # accumulators instead of the typical fp32 type. # TODO(b/188185962): Provide full API and authoring support for # reduced precision accumulation types. self._experimental_supported_accumulation_type = None class QuantizationMode(object): """QuantizationMode determines the quantization type from user options.""" def __init__(self, optimizations, target_spec, representative_dataset, graph_def): self._optimizations = optimizations for deprecated_optimization in [ Optimize.OPTIMIZE_FOR_SIZE, Optimize.OPTIMIZE_FOR_LATENCY ]: if deprecated_optimization in self._optimizations: logging.warning( "Optimization option %s is deprecated, please use optimizations=" "[Optimize.DEFAULT] instead.", deprecated_optimization) self._target_spec = target_spec self._representative_dataset = representative_dataset self._graph_def = graph_def self._validate_int8_required() # TODO(b/162537905): Refactor the following quantization functions - # re-organize and refactor for better readability. def post_training_int8_no_float(self): return (self.any_optimization_enabled() and self._is_int8_target_required() and not self._is_int16x8_target_required() and not self.is_allow_float() and self._representative_dataset is not None) def post_training_int8_allow_float(self): return (self.any_optimization_enabled() and not self._is_int16x8_target_required() and self._representative_dataset is not None and self._smallest_supported_type() == _dtypes.int8) def is_post_training_integer_quantize_8(self): return (self.post_training_int8_no_float() or self.post_training_int8_allow_float()) def is_post_training_integer_quantize_16x8(self): return (self.post_training_int16x8_no_float() or self.post_training_int16x8_allow_float()) def is_post_training_integer_quantize(self): return (self.is_post_training_integer_quantize_8() or self.is_post_training_integer_quantize_16x8()) def is_integer_quantize(self): return (self.is_post_training_integer_quantize() or self.is_training_time_int8_allow_float()) def is_training_time_int8_allow_float(self): return (self.any_optimization_enabled() and self.contains_training_quant_op()) def is_bfloat16_inference_allowed(self): return (self.any_optimization_enabled() and self._smallest_supported_type().size == 2 and _dtypes.bfloat16 in self._target_spec.supported_types) def post_training_int16x8_no_float(self): return (self.any_optimization_enabled() and not self._is_int8_target_required() and self._is_int16x8_target_required() and not self.is_allow_float() and self._representative_dataset is not None) def post_training_int16x8_allow_float(self): return (self.any_optimization_enabled() and self._is_int16x8_target_required() and self.is_allow_float()) def post_training_dynamic_range_int8(self): # Post-training dynamic range quantization is only enabled if post-training # int8 quantization and training time quantization was not done. return (self.any_optimization_enabled() and self._representative_dataset is None and not self.contains_training_quant_op() and self._smallest_supported_type() == _dtypes.int8) def post_training_fp16(self): return (self.any_optimization_enabled() and self._smallest_supported_type().size == 2 and _dtypes.float16 in self._target_spec.supported_types) def fp32_execution(self): """If none of the above are true.""" return not (self.is_integer_quantize() or self.post_training_dynamic_range_int8() or self.post_training_fp16()) def activations_type(self): if self.is_integer_quantize(): if self._is_int16x8_target_required(): return _dtypes.int16 else: return _dtypes.int8 else: return _dtypes.float32 def converter_flags(self, inference_ty=None, inference_input_ty=None): """Flags to the converter.""" if self.is_integer_quantize(): return { "inference_type": ( inference_ty if inference_ty else self.activations_type()), "inference_input_type": _dtypes.float32, "post_training_quantize": False, # disable dynamic range quantization "quantize_to_float16": False # disable float16 quantization } elif self.post_training_dynamic_range_int8(): return { "inference_type": _dtypes.float32, "inference_input_type": _dtypes.float32, "post_training_quantize": True, # enable dynamic range quantization "quantize_to_float16": False # disable float16 quantization } elif self.post_training_fp16(): return { "inference_type": _dtypes.float32, "inference_input_type": _dtypes.float32, "post_training_quantize": True, "quantize_to_float16": True, # enable float16 quantization "accumulation_type": self._target_spec._experimental_supported_accumulation_type, "allow_bfloat16": self.is_bfloat16_inference_allowed() } else: # Note this might still trigger (uint8) quantization to be compatible with # TOCO. return { "inference_type": inference_ty if inference_ty else _dtypes.float32, "inference_input_type": inference_input_ty, "post_training_quantize": False, # enable dynamic range quantization "quantize_to_float16": False, # disable float16 quantization "allow_bfloat16": self.is_bfloat16_inference_allowed() } # Below are helpers for the above functions. def _validate_int8_required(self): """Int8 mode requires certain parameters to exist and be compatible.""" if not self._is_int8_target_required(): return if self._target_spec.supported_types and (self._smallest_supported_type() != _dtypes.int8): raise ValueError("TFLITE_BUILTINS_INT8 requires smallest supported " "type to be INT8.") if self._representative_dataset: if not isinstance(self._representative_dataset, RepresentativeDataset): self._representative_dataset = RepresentativeDataset( self._representative_dataset) if self._representative_dataset.input_gen is None: raise ValueError( "Provide an input generator for representative_dataset") else: # TODO(b/162537905): Relax this check for QAT. raise ValueError("representative_dataset is required when specifying " "TFLITE_BUILTINS_INT8 or INT8 supported types.") def _is_int8_target_required(self): return (OpsSet.TFLITE_BUILTINS_INT8 in set( self._target_spec.supported_ops)) or (set( self._target_spec.supported_types) == set([_dtypes.int8])) def _is_int16x8_target_required(self): return (OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 in set(self._target_spec.supported_ops)) def is_allow_float(self): return (OpsSet.TFLITE_BUILTINS in set( self._target_spec.supported_ops)) or (OpsSet.SELECT_TF_OPS in set( self._target_spec.supported_ops)) def any_optimization_enabled(self): return bool( set(self._optimizations).intersection([ Optimize.OPTIMIZE_FOR_LATENCY, Optimize.OPTIMIZE_FOR_SIZE, Optimize.DEFAULT ])) def _smallest_supported_type(self): if self._target_spec.supported_types: return min(self._target_spec.supported_types, key=lambda x: x.size) else: # The default smallest supported type is INT8. return _dtypes.int8 def contains_training_quant_op(self): """Checks if the graph contains any training-time quantization ops.""" training_quant_ops = frozenset({ "FakeQuantWithMinMaxVars", "FakeQuantWithMinMaxVarsPerChannel", "FakeQuantWithMinMaxArgs", "FakeQuantWithMinMaxArgsPerChannel", "QuantizeAndDequantizeV2", "QuantizeAndDequantizeV3" }) if self._graph_def: for node_def in self._graph_def.node: if node_def.op in training_quant_ops: return True for function in self._graph_def.library.function: for node_def in function.node_def: if node_def.op in training_quant_ops: return True return False class TFLiteConverterBase(object): """Converter subclass to share functionality between V1 and V2 converters.""" def __init__(self): self.optimizations = set() self.representative_dataset = None self.target_spec = TargetSpec() self.allow_custom_ops = False self.experimental_new_converter = True self.experimental_new_quantizer = True self.experimental_enable_resource_variables = False self._experimental_new_quantizer = None self._experimental_calibrate_only = False self._experimental_sparsify_model = False self._experimental_disable_per_channel = False self._debug_info = None # contains the stack traces of all the original # nodes in the `GraphDef` to the converter. self.saved_model_dir = None self._saved_model_tags = None self._saved_model_version = 0 self._saved_model_exported_names = [] self._tflite_metrics = metrics.TFLiteConverterMetrics() self._collected_converter_params = {} self._experimental_disable_batchmatmul_unfold = False self._experimental_lower_tensor_list_ops = True def _grappler_config(self, optimizers=None): """Creates a tf.compat.v1.ConfigProto for configuring Grappler. Args: optimizers: List of strings that represents the list of optimizers. Returns: tf.ConfigProto. """ if not optimizers: optimizers = [] # MLIR converter will take care of constant folding instead of grappler. if not self.experimental_new_converter: optimizers.append("constfold") is_only_flex_enabled = ( set([OpsSet.SELECT_TF_OPS]) == set(self.target_spec.supported_ops)) if is_only_flex_enabled: # The layout optimizer turns NHCW to NCHW. This provides performance # optimizations when Flex mode is enabled. However, this is not compatible # with builtin ops. optimizers.append("layout") return _get_grappler_config(optimizers) def _quantize(self, result, input_type, output_type, activations_type, allow_float): """Quantize the model.""" # pylint: disable=protected-access custom_op_registerers_by_name = [ x for x in self.target_spec._experimental_custom_op_registerers if isinstance(x, str) ] custom_op_registerers_by_func = [ x for x in self.target_spec._experimental_custom_op_registerers if not isinstance(x, str) ] # pylint: enable=protected-access if not isinstance(self.representative_dataset, RepresentativeDataset): self.representative_dataset = RepresentativeDataset( self.representative_dataset) # Add intermediate tensors to the model if needed. result = _calibrator.add_intermediate_tensors(result) calibrate_quantize = _calibrator.Calibrator(result, custom_op_registerers_by_name, custom_op_registerers_by_func) if self._experimental_calibrate_only or self.experimental_new_quantizer: calibrated = calibrate_quantize.calibrate( self.representative_dataset.input_gen) if self._experimental_calibrate_only: return calibrated elif self.experimental_new_quantizer and ( activations_type != _dtypes.int16): # TODO(b/175659372): remove the activations_type restriction and enable # it for all the activation types. return _mlir_quantize( calibrated, self._experimental_disable_per_channel, input_data_type=input_type, output_data_type=output_type) else: return calibrate_quantize.calibrate_and_quantize( self.representative_dataset.input_gen, input_type, output_type, allow_float, activations_type, disable_per_channel=self._experimental_disable_per_channel) def _is_unknown_shapes_allowed(self): # Unknown dimensions are only allowed with the new converter. return self.experimental_new_converter def _get_base_converter_args(self): """Returns the base converter args. Returns: {key str: val} """ args = { "input_format": constants.TENSORFLOW_GRAPHDEF, "allow_custom_ops": self.allow_custom_ops, "debug_info": self._debug_info, "target_ops": self.target_spec.supported_ops, "enable_mlir_converter": self.experimental_new_converter, "select_user_tf_ops": self.target_spec.experimental_select_user_tf_ops, "unfold_batchmatmul": not self._experimental_disable_batchmatmul_unfold, "lower_tensor_list_ops": self._experimental_lower_tensor_list_ops, } if self.saved_model_dir: args.update({ "saved_model_dir": self.saved_model_dir, "saved_model_version": self._saved_model_version, "saved_model_tags": self._saved_model_tags, "saved_model_exported_names": self._saved_model_exported_names, }) return args def _contains_function_with_implements_attr(self, saved_model_proto): meta_graph = saved_model_proto.meta_graphs[0] for function in meta_graph.graph_def.library.function: if function.attr.get("_implements", None) or function.attr.get( "api_implements", None): return True return False def _parse_saved_model_args(self, always_enable_saved_model_import=False): """Parses SavedModel arguments from the given Keras/RNN SavedModel. Args: always_enable_saved_model_import: Bool. When the value is true, it enables MLIR saved model import path regardless of checking the conditions. """ if not self.experimental_new_converter: self.saved_model_dir = None return if self.saved_model_dir: try: saved_model_proto, _ = ( _parse_saved_model_with_debug_info(self.saved_model_dir)) except OSError: # If it fails to read the given saved model, it will fall back to the # frozen graph def path. self.saved_model_dir = None return if (not always_enable_saved_model_import and not self._contains_function_with_implements_attr(saved_model_proto)): self.saved_model_dir = None return if not self._saved_model_exported_names: self._saved_model_exported_names = [] self._saved_model_version = saved_model_proto.saved_model_schema_version if self._saved_model_version == 0: self.saved_model_dir = None logging.warning("SavedModel schema version is zero.") return if self._saved_model_version not in [1, 2]: raise ValueError("SavedModel file format({0}) is not supported".format( self._saved_model_version)) def _sparsify_model(self): return Optimize.EXPERIMENTAL_SPARSITY in self.optimizations def _validate_experimental_new_quantizer_flag(self): if self._experimental_new_quantizer is not None: raise ValueError("Please use 'experimental_new_quantizer' instead.") def _increase_conversion_attempt_metric(self): self._tflite_metrics.increase_counter_converter_attempt() def _increase_conversion_success_metric(self): self._tflite_metrics.increase_counter_converter_success() def _save_conversion_params_metric(self, graph_def=None, inference_type=None, inference_input_type=None): """Set conversion parameter metrics.""" converter_kwargs = self._collected_converter_params converter_kwargs.update(self._get_base_converter_args()) # Optimization parameters. quant_mode = QuantizationMode(self.optimizations, self.target_spec, self.representative_dataset, graph_def) converter_kwargs.update({ "optimization_default": quant_mode.any_optimization_enabled(), "optimization_post_training_dynamic_range": quant_mode.post_training_dynamic_range_int8(), "optimization_post_training_float16": quant_mode.post_training_fp16(), "optimization_post_training_integer_quantize": quant_mode.is_post_training_integer_quantize(), "optimization_qat": quant_mode.is_training_time_int8_allow_float(), "optimization_sparsify": self._sparsify_model(), "activations_type": quant_mode.activations_type() }) converter_kwargs.update( quant_mode.converter_flags(inference_type, inference_input_type)) # pylint: disable=protected-access if self.target_spec._experimental_supported_accumulation_type: converter_kwargs.update({ "accumulation_type": self.target_spec._experimental_supported_accumulation_type }) # pylint: enable=protected-access def format_element(elem): if isinstance(elem, enum.Enum): return str(elem.value) return pprint.pformat(elem) def format_param(param): if isinstance(param, (list, tuple, set)): if not param: return "None" # Return None if empty. string_list = [format_element(x) for x in param] return ",".join(sorted(string_list)) return format_element(param) for key, value in converter_kwargs.items(): self._tflite_metrics.set_converter_param(key, format_param(value)) self._tflite_metrics.set_export_required() def _set_conversion_latency_metric(self, value): self._tflite_metrics.set_converter_latency(value) @convert_phase(Component.OPTIMIZE_TFLITE_MODEL) def _optimize_tflite_model(self, model, quant_mode, quant_io=True): """Apply optimizations on a TFLite model.""" if quant_mode.is_integer_quantize(): in_type, out_type = self.inference_input_type, self.inference_output_type if quant_mode.is_post_training_integer_quantize(): q_in_type = in_type if in_type and quant_io else _dtypes.float32 q_out_type = out_type if out_type and quant_io else _dtypes.float32 q_activations_type = quant_mode.activations_type() q_allow_float = quant_mode.is_allow_float() model = self._quantize( model, q_in_type, q_out_type, q_activations_type, q_allow_float) m_in_type = in_type if in_type else _dtypes.float32 m_out_type = out_type if out_type else _dtypes.float32 model = _modify_model_io_type(model, m_in_type, m_out_type) if self._sparsify_model(): model = _mlir_sparsify(model) return model def _convert_and_export_metrics(self, convert_func, *args, **kwargs): """Wraps around convert function to export metrics. Args: convert_func: The convert function to wrap. *args: Positional arguments of the convert function. **kwargs: The keyword arguments of the convert function. Returns: The decorator to wrap the convert function. """ self._increase_conversion_attempt_metric() self._save_conversion_params_metric() start_time = time.process_time() result = convert_func(self, *args, **kwargs) elapsed_time_ms = (time.process_time() - start_time) * 1000 if result: self._increase_conversion_success_metric() self._set_conversion_latency_metric(round(elapsed_time_ms)) self._tflite_metrics.export_metrics() return result def _export_metrics(convert_func): """The decorator around convert function to export metrics.""" @functools.wraps(convert_func) def wrapper(self, *args, **kwargs): # pylint: disable=protected-access return self._convert_and_export_metrics(convert_func, *args, **kwargs) # pylint: enable=protected-access return wrapper class TFLiteConverterBaseV2(TFLiteConverterBase): """Converter subclass to share functionality between V2 converters.""" def __init__(self): """Constructor for TFLiteConverter.""" super(TFLiteConverterBaseV2, self).__init__() self.inference_input_type = _dtypes.float32 self.inference_output_type = _dtypes.float32 self._collected_converter_params.update({"api_version": 2}) def _validate_inference_input_output_types(self, quant_mode): """Validate inference_input_type and inference_output_type flags.""" default_types = [_dtypes.float32] # We support integer input/output for integer quantized models only. if quant_mode.is_integer_quantize(): if quant_mode.is_post_training_integer_quantize_16x8(): all_types = default_types + [_dtypes.int16] else: all_types = default_types + [_dtypes.int8, _dtypes.uint8] if (self.inference_input_type not in all_types or self.inference_output_type not in all_types): all_types_names = ["tf." + t.name for t in all_types] raise ValueError("The inference_input_type and inference_output_type " "must be in {}.".format(all_types_names)) elif (self.inference_input_type not in default_types or self.inference_output_type not in default_types): raise ValueError("The inference_input_type and inference_output_type " "must be tf.float32.") @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.LOAD_SAVED_MODEL) def _load_saved_model(self, saved_model_dir, saved_model_tags): """Load graph_def from saved model with the default serving signature key. Args: saved_model_dir: Directory of the SavedModel. saved_model_tags: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. Returns: graph_def: The loaded GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. """ graph = _ops.Graph() saved_model = _loader_impl.SavedModelLoader(saved_model_dir) saved_model.load_graph(graph, tags=saved_model_tags) meta_graph = saved_model.get_meta_graph_def_from_tags(saved_model_tags) graph_def = meta_graph.graph_def signature_def = meta_graph.signature_def[ _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] input_tensors = [ graph.get_tensor_by_name(signature_def.inputs[key].name) for key in signature_def.inputs ] output_tensors = [ graph.get_tensor_by_name(signature_def.outputs[key].name) for key in signature_def.outputs ] return graph_def, input_tensors, output_tensors @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.VALIDATE_INPUTS) def _validate_inputs(self, graph_def, input_tensors): """Validate the input parameters. Args: graph_def: The TensorFlow GraphDef. input_tensors: List of input tensors. Raise: ValueError: Input shape is not specified. Invalid quantization parameters. """ # Update conversion params with graph_def. self._save_conversion_params_metric(graph_def) self._quant_mode = QuantizationMode(self.optimizations, self.target_spec, self.representative_dataset, graph_def) self._validate_inference_input_output_types(self._quant_mode) self._validate_experimental_new_quantizer_flag() if not self._is_unknown_shapes_allowed(): # Checks dimensions in input tensor. for tensor in input_tensors: # Note that shape_list might be empty for scalar shapes. shape_list = tensor.shape.as_list() if None in shape_list[1:]: raise ValueError( "None is only supported in the 1st dimension. Tensor '{0}' has " "invalid shape '{1}'.".format( _get_tensor_name(tensor), shape_list)) elif shape_list and shape_list[0] is None: # Set the batch size to 1 if undefined. shape = tensor.shape.as_list() shape[0] = 1 tensor.set_shape(shape) if (self._trackable_obj is None or not hasattr(self._trackable_obj, "graph_debug_info")): self._debug_info = _get_debug_info( _build_debug_info_func(self._funcs[0].graph), graph_def) else: self._debug_info = _get_debug_info( _convert_debug_info_func(self._trackable_obj.graph_debug_info), graph_def) @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.OPTIMIZE_TF_MODEL) def _optimize_tf_model(self, graph_def, input_tensors, output_tensors, frozen_func): """Run a Grappler pass to optimize the TensorFlow graph. Args: graph_def: Frozen GraphDef to be optimized. input_tensors: List of input tensors. output_tensors: List of output tensors. frozen_func: TensorFlow Graph. Returns: The optimized TensorFlow graph. """ grappler_config = self._grappler_config() # Skip running grappler when there are no optimizers to run. If not, # grappler will run with the default optimizer set and it will lead to # causing an unexpected behavior. if grappler_config.graph_options.rewrite_options.optimizers: graph_def = _run_graph_optimizations( graph_def, input_tensors, output_tensors, config=grappler_config, graph=frozen_func.graph) return graph_def def convert(self, graph_def, input_tensors, output_tensors): """Converts a TensorFlow GraphDef based on instance variables. Args: graph_def: Frozen TensorFlow GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. Returns: The converted data in serialized format. Raises: ValueError: No concrete functions is specified. Multiple concrete functions are specified. Input shape is not specified. Invalid quantization parameters. """ self._validate_inputs(graph_def, input_tensors) converter_kwargs = self._get_base_converter_args() converter_kwargs.update(self._quant_mode.converter_flags()) if not self.experimental_new_converter: logging.warning( "Please consider switching to the new converter by setting " "experimental_new_converter=True. " "The old converter (TOCO) is deprecated.") else: logging.info("Using new converter: If you encounter a problem " "please file a bug. You can opt-out " "by setting experimental_new_converter=False") # Converts model. result = _toco_convert_impl( input_data=graph_def, input_tensors=input_tensors, output_tensors=output_tensors, **converter_kwargs) return self._optimize_tflite_model( result, self._quant_mode, quant_io=self.experimental_new_quantizer) class TFLiteSavedModelConverterV2(TFLiteConverterBaseV2): """Converts the given SavedModel into TensorFlow Lite model. Attributes: saved_model_dir: Directory of the SavedModel. """ def __init__(self, saved_model_dir, saved_model_tags=None, saved_model_exported_names=None, trackable_obj=None): """Constructor for TFLiteConverter. Args: saved_model_dir: Directory of the SavedModel. saved_model_tags: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. (default {tf.saved_model.SERVING}). saved_model_exported_names: Names to be exported when the saved model import path is on. trackable_obj: tf.AutoTrackable object associated with `funcs`. A reference to this object needs to be maintained so that Variables do not get garbage collected since functions have a weak reference to Variables. This is only required when the tf.AutoTrackable object is not maintained by the user (e.g. `from_saved_model`). """ super(TFLiteSavedModelConverterV2, self).__init__() self.saved_model_dir = saved_model_dir self._saved_model_tags = saved_model_tags self._saved_model_exported_names = saved_model_exported_names self._trackable_obj = trackable_obj self._parse_saved_model_args(always_enable_saved_model_import=True) @_export_metrics def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Raises: ValueError: No concrete functions is specified. Multiple concrete functions are specified. Input shape is not specified. Invalid quantization parameters. """ graph_def, input_tensors, output_tensors = self._load_saved_model( self.saved_model_dir, self._saved_model_tags) # If we can't use saved model importer, then fallback # to frozen graph conversion path. if self.saved_model_dir is None or not self.experimental_new_converter: graph_def, _, _, _ = _freeze_saved_model( self.saved_model_dir, None, None, None, self._saved_model_tags, _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY) # We make sure to clear the saved_model_dir as there is some # legacy code down in the caller that checks this. # TODO(b/162537905): Clean these indirect dependencies. self.saved_model_dir = None return super(TFLiteSavedModelConverterV2, self).convert(graph_def, input_tensors, output_tensors) if self._trackable_obj is None: self._debug_info = _get_debug_info( _build_debug_info_func(self._funcs[0].graph), graph_def) else: self._debug_info = _get_debug_info( _convert_debug_info_func(self._trackable_obj.graph_debug_info), graph_def) # Update conversion params with graph_def. self._save_conversion_params_metric(graph_def) # Get quantization options and do some sanity checks. quant_mode = QuantizationMode(self.optimizations, self.target_spec, self.representative_dataset, graph_def) self._validate_inference_input_output_types(quant_mode) converter_kwargs = { "enable_tflite_resource_variables": self.experimental_enable_resource_variables } converter_kwargs.update(self._get_base_converter_args()) converter_kwargs.update(quant_mode.converter_flags()) result = _convert_saved_model(**converter_kwargs) return self._optimize_tflite_model( result, quant_mode, quant_io=self.experimental_new_quantizer) class TFLiteKerasModelConverterV2(TFLiteConverterBaseV2): """Converts the given Keras model into TensorFlow Lite model.""" def __init__(self, keras_model, trackable_obj=None): """Constructor for TFLiteConverter. Args: keras_model: tf.Keras.Model. trackable_obj: tf.AutoTrackable object associated with `funcs`. A reference to this object needs to be maintained so that Variables do not get garbage collected since functions have a weak reference to Variables. This is only required when the tf.AutoTrackable object is not maintained by the user (e.g. `from_saved_model`). """ super(TFLiteKerasModelConverterV2, self).__init__() self._keras_model = keras_model self._trackable_obj = trackable_obj self.experimental_lower_to_saved_model = False @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.CONVERT_KERAS_TO_SAVED_MODEL) def _convert_keras_to_saved_model(self, output_dir): """Save Keras model to the SavedModel format. Args: output_dir: The output directory to save the SavedModel. Returns: graph_def: The frozen GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. """ try: _saved_model.save( self._keras_model, output_dir, options=_save_options.SaveOptions(save_debug_info=True)) except Exception: # pylint: disable=broad-except # When storing the given keras model to a saved model is failed, let's # use original keras model conversion pipeline. return None, None, None self.saved_model_dir = output_dir self._saved_model_tags = set([_tag_constants.SERVING]) self._saved_model_exported_names = [ _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY ] self._parse_saved_model_args( always_enable_saved_model_import=self.experimental_lower_to_saved_model) if self.saved_model_dir: graph_def, input_tensors, output_tensors = self._load_saved_model( self.saved_model_dir, self._saved_model_tags) self._trackable_obj = _load(self.saved_model_dir, self._saved_model_tags) return graph_def, input_tensors, output_tensors return None, None, None @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.FREEZE_KERAS_MODEL) def _freeze_keras_model(self): """Freeze Keras model to frozen graph. Returns: graph_def: The frozen GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. frozen_func: The frozen ConcreteFunction. """ input_signature = None # If the model's call is not a `tf.function`, then we need to first get its # input signature from `model_input_signature` method. We can't directly # call `trace_model_call` because otherwise the batch dimension is set # to None. # Once we have better support for dynamic shapes, we can remove this. if not isinstance(self._keras_model.call, _def_function.Function): # Pass `keep_original_batch_size=True` will ensure that we get an input # signature including the batch dimension specified by the user. # TODO(b/169898786): Use the Keras public API when TFLite moves out of TF input_signature = _model_input_signature( self._keras_model, keep_original_batch_size=True) # TODO(b/169898786): Use the Keras public API when TFLite moves out of TF func = _trace_model_call(self._keras_model, input_signature) concrete_func = func.get_concrete_function() self._funcs = [concrete_func] frozen_func, graph_def = ( _convert_to_constants.convert_variables_to_constants_v2_as_graph( self._funcs[0], lower_control_flow=False)) input_tensors = [ tensor for tensor in frozen_func.inputs if tensor.dtype != _dtypes.resource ] output_tensors = frozen_func.outputs return graph_def, input_tensors, output_tensors, frozen_func def _convert_as_saved_model(self): """Converts a Keras model as a saved model. Returns: The converted data in serialized format. """ temp_dir = tempfile.mkdtemp() try: graph_def, input_tensors, output_tensors = ( self._convert_keras_to_saved_model(temp_dir)) if self.saved_model_dir: return super(TFLiteKerasModelConverterV2, self).convert(graph_def, input_tensors, output_tensors) finally: shutil.rmtree(temp_dir, True) @_export_metrics def convert(self): """Converts a keras model based on instance variables. Returns: The converted data in serialized format. Raises: ValueError: Multiple concrete functions are specified. Input shape is not specified. Invalid quantization parameters. """ saved_model_convert_result = self._convert_as_saved_model() if saved_model_convert_result: return saved_model_convert_result graph_def, input_tensors, output_tensors, frozen_func = ( self._freeze_keras_model()) graph_def = self._optimize_tf_model(graph_def, input_tensors, output_tensors, frozen_func) return super(TFLiteKerasModelConverterV2, self).convert(graph_def, input_tensors, output_tensors) class TFLiteFrozenGraphConverterV2(TFLiteConverterBaseV2): """Converts the given frozen graph into TensorFlow Lite model.""" def __init__(self, funcs, trackable_obj=None): """Constructor for TFLiteConverter. Args: funcs: List of TensorFlow ConcreteFunctions. The list should not contain duplicate elements. trackable_obj: tf.AutoTrackable object associated with `funcs`. A reference to this object needs to be maintained so that Variables do not get garbage collected since functions have a weak reference to Variables. This is only required when the tf.AutoTrackable object is not maintained by the user (e.g. `from_saved_model`). """ super(TFLiteFrozenGraphConverterV2, self).__init__() self._funcs = funcs self._trackable_obj = trackable_obj self.experimental_lower_to_saved_model = True @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.FREEZE_CONCRETE_FUNCTION) def _freeze_concrete_function(self): """Convert the given ConcreteFunction to frozen graph. Returns: graph_def: The frozen GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. frozen_func: The frozen ConcreteFunction. Raises: ValueError: none or multiple ConcreteFunctions provided. """ # TODO(b/130297984): Add support for converting multiple function. if len(self._funcs) == 0: # pylint: disable=g-explicit-length-test raise ValueError("No ConcreteFunction is specified.") if len(self._funcs) > 1: raise ValueError("This converter can only convert a single " "ConcreteFunction. Converting multiple functions is " "under development.") frozen_func, graph_def = ( _convert_to_constants.convert_variables_to_constants_v2_as_graph( self._funcs[0], lower_control_flow=False)) input_tensors = [ tensor for tensor in frozen_func.inputs if tensor.dtype != _dtypes.resource ] output_tensors = frozen_func.outputs return graph_def, input_tensors, output_tensors, frozen_func @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.CONVERT_CONCRETE_FUNCTIONS_TO_SAVED_MODEL) def _convert_concrete_functions_to_saved_model(self, output_dir): """Save concrete functions to the SavedModel format. Args: output_dir: The output directory to save the SavedModel. Returns: graph_def: The frozen GraphDef. input_tensors: List of input tensors. output_tensors: List of output tensors. """ func = self._funcs[0] if not self.experimental_lower_to_saved_model: return None, None, None # Without the provided trackable obj, it is not able to serialize the given # concrete functions as a saved model format. if not self._trackable_obj: return None, None, None try: _saved_model.save( self._trackable_obj, output_dir, signatures={"serving_default": func}, options=_save_options.SaveOptions(save_debug_info=True)) except Exception: # pylint: disable=broad-except # When storing the given concrete function to a saved model is failed, # let's use original concrete function conversion pipeline. return None, None, None self.saved_model_dir = output_dir self._saved_model_tags = set([_tag_constants.SERVING]) self._saved_model_exported_names = [ _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY ] self._parse_saved_model_args(always_enable_saved_model_import=True) if self.saved_model_dir: graph_def, input_tensors, output_tensors = self._load_saved_model( self.saved_model_dir, self._saved_model_tags) self._trackable_obj = _load(self.saved_model_dir, self._saved_model_tags) return graph_def, input_tensors, output_tensors return None, None, None def _convert_as_saved_model(self): """Converts the given concrete functions as a saved model format. Returns: The converted data in serialized format. """ temp_dir = tempfile.mkdtemp() try: graph_def, input_tensors, output_tensors = ( self._convert_concrete_functions_to_saved_model(temp_dir)) if self.saved_model_dir: return super(TFLiteFrozenGraphConverterV2, self).convert(graph_def, input_tensors, output_tensors) finally: shutil.rmtree(temp_dir, True) return None @_export_metrics def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Raises: ValueError: No concrete functions is specified. Multiple concrete functions are specified. Input shape is not specified. Invalid quantization parameters. """ if self.experimental_lower_to_saved_model: saved_model_convert_result = self._convert_as_saved_model() if saved_model_convert_result: return saved_model_convert_result graph_def, input_tensors, output_tensors, frozen_func = ( self._freeze_concrete_function()) graph_def = self._optimize_tf_model(graph_def, input_tensors, output_tensors, frozen_func) return super(TFLiteFrozenGraphConverterV2, self).convert(graph_def, input_tensors, output_tensors) @_tf_export("lite.TFLiteConverter", v1=[]) class TFLiteConverterV2(TFLiteFrozenGraphConverterV2): """Converts a TensorFlow model into TensorFlow Lite model. Attributes: optimizations: Experimental flag, subject to change. Set of optimizations to apply. e.g {tf.lite.Optimize.DEFAULT}. (default None, must be None or a set of values of type `tf.lite.Optimize`) representative_dataset: A generator function used for integer quantization where each generated sample has the same order, type and shape as the inputs to the model. Usually, this is a small subset of a few hundred samples randomly chosen, in no particular order, from the training or evaluation dataset. This is an optional attribute, but required for full integer quantization, i.e, if `tf.int8` is the only supported type in `target_spec.supported_types`. Refer to `tf.lite.RepresentativeDataset`. (default None) target_spec: Experimental flag, subject to change. Specifications of target device, including supported ops set, supported types and a set of user's defined TensorFlow operators required in the TensorFlow Lite runtime. Refer to `tf.lite.TargetSpec`. inference_input_type: Data type of the input layer. Note that integer types (tf.int8 and tf.uint8) are currently only supported for post training integer quantization and quantization aware training. (default tf.float32, must be in {tf.float32, tf.int8, tf.uint8}) inference_output_type: Data type of the output layer. Note that integer types (tf.int8 and tf.uint8) are currently only supported for post training integer quantization and quantization aware training. (default tf.float32, must be in {tf.float32, tf.int8, tf.uint8}) allow_custom_ops: Boolean indicating whether to allow custom operations. When False, any unknown operation is an error. When True, custom ops are created for any op that is unknown. The developer needs to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) experimental_new_converter: Experimental flag, subject to change. Enables MLIR-based conversion instead of TOCO conversion. (default True) experimental_new_quantizer: Experimental flag, subject to change. Enables MLIR-based quantization conversion instead of Flatbuffer-based conversion. (default True) experimental_enable_resource_variables: Experimental flag, subject to change. Enables resource variables to be converted by this converter. This is only allowed if from_saved_model interface is used. (default False) Example usage: ```python # Converting a SavedModel to a TensorFlow Lite model. converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) tflite_model = converter.convert() # Converting a tf.Keras model to a TensorFlow Lite model. converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = converter.convert() # Converting ConcreteFunctions to a TensorFlow Lite model. converter = tf.lite.TFLiteConverter.from_concrete_functions([func]) tflite_model = converter.convert() ``` """ # pylint: disable=useless-super-delegation def __init__(self, funcs, trackable_obj=None): """Constructor for TFLiteConverter. Args: funcs: List of TensorFlow ConcreteFunctions. The list should not contain duplicate elements. trackable_obj: tf.AutoTrackable object associated with `funcs`. A reference to this object needs to be maintained so that Variables do not get garbage collected since functions have a weak reference to Variables. This is only required when the tf.AutoTrackable object is not maintained by the user (e.g. `from_saved_model`). """ super(TFLiteConverterV2, self).__init__(funcs, trackable_obj) @classmethod def from_concrete_functions(cls, funcs, trackable_obj=None): """Creates a TFLiteConverter object from ConcreteFunctions. Args: funcs: List of TensorFlow ConcreteFunctions. The list should not contain duplicate elements. Currently converter can only convert a single ConcreteFunction. Converting multiple functions is under development. trackable_obj: An `AutoTrackable` object (typically `tf.module`) associated with `funcs`. A reference to this object needs to be maintained so that Variables do not get garbage collected since functions have a weak reference to Variables. Returns: TFLiteConverter object. Raises: Invalid input type. """ for func in funcs: if not isinstance(func, _function.ConcreteFunction): message = "This function takes in a list of ConcreteFunction." if isinstance(func, _def_function.Function): message += (" To get the ConcreteFunction from a Function," " call get_concrete_function.") raise ValueError(message) return cls(funcs, trackable_obj) @classmethod def from_saved_model(cls, saved_model_dir, signature_keys=None, tags=None): """Creates a TFLiteConverter object from a SavedModel directory. Args: saved_model_dir: SavedModel directory to convert. signature_keys: List of keys identifying SignatureDef containing inputs and outputs. Elements should not be duplicated. By default the `signatures` attribute of the MetaGraphdef is used. (default saved_model.signatures) tags: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. (default {tf.saved_model.SERVING} or {'serve'}) Returns: TFLiteConverter object. Raises: Invalid signature keys. """ # When run without eager enabled, this will return the legacy # TFLiteConverter. if not context.executing_eagerly(): signature_key = None if signature_keys: if len(signature_keys) != 1: raise ValueError("Only support a single signature key.") else: signature_key = signature_keys[0] logging.warning("Invoking the TF1 implementation of TFLiteConverter " "because eager is disabled. Consider enabling eager.") return TFLiteConverter.from_saved_model( saved_model_dir, signature_key=signature_key, tag_set=tags) # Ensures any graphs created in Eager mode are able to run. This is required # in order to create a tf.estimator.Exporter that exports a TFLite model. if tags is None: tags = set([_tag_constants.SERVING]) with context.eager_mode(): saved_model = _load(saved_model_dir, tags) if not signature_keys: signature_keys = saved_model.signatures if not signature_keys: raise ValueError("Only support at least one signature key.") funcs = [] for key in signature_keys: if key not in saved_model.signatures: raise ValueError("Invalid signature key '{}' found. Valid keys are " "'{}'.".format(key, ",".join(saved_model.signatures))) funcs.append(saved_model.signatures[key]) saved_model_converter = TFLiteSavedModelConverterV2(saved_model_dir, tags, signature_keys, saved_model) if saved_model_converter.saved_model_dir: return saved_model_converter return cls(funcs, saved_model) @classmethod def from_keras_model(cls, model): """Creates a TFLiteConverter object from a Keras model. Args: model: tf.Keras.Model Returns: TFLiteConverter object. """ return TFLiteKerasModelConverterV2(model) # pylint: disable=useless-super-delegation def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Raises: ValueError: No concrete functions is specified. Multiple concrete functions are specified. Input shape is not specified. Invalid quantization parameters. """ return super(TFLiteConverterV2, self).convert() class TFLiteConverterBaseV1(TFLiteConverterBase): """Converter subclass to share functionality between V1 converters.""" def __init__(self, experimental_debug_info_func): """Constructor for TFLiteConverter. Args: experimental_debug_info_func: An experimental function to retrieve the graph debug info for a set of nodes from the `graph_def`. """ super(TFLiteConverterBaseV1, self).__init__() self.inference_type = _dtypes.float32 self.inference_input_type = None self.inference_output_type = None self.output_format = constants.TFLITE self.quantized_input_stats = {} self.default_ranges_stats = None self.drop_control_dependency = True self.reorder_across_fake_quant = False self.change_concat_input_ranges = False self.dump_graphviz_dir = None self.dump_graphviz_video = False self.conversion_summary_dir = None self._debug_info_func = experimental_debug_info_func self._experimental_allow_all_select_tf_ops = False def __setattr__(self, name, value): if name == "post_training_quantize": warnings.warn("Property %s is deprecated, " "please use optimizations=[Optimize.DEFAULT]" " instead." % name) if value: self.optimizations = [Optimize.DEFAULT] else: self.optimizations = [] return if name == "target_ops": warnings.warn("Property %s is deprecated, please use " "target_spec.supported_ops instead." % name) self.target_spec.supported_ops = value return object.__setattr__(self, name, value) def __getattribute__(self, name): if name == "post_training_quantize": warnings.warn("Property %s is deprecated, " "please use optimizations=[Optimize.DEFAULT]" " instead." % name) return Optimize.DEFAULT in set(self.optimizations) if name == "target_ops": warnings.warn("Property %s is deprecated, please use " "target_spec.supported_ops instead." % name) return self.target_spec.supported_ops return object.__getattribute__(self, name) def _validate_quantized_input_stats(self, converter_kwargs, quant_mode): """Ensure the `quantized_input_stats` flag is provided if required.""" quantized_types = frozenset({_dtypes.int8, _dtypes.uint8}) requires_quantized_input_stats = ( (converter_kwargs["inference_type"] in quantized_types or converter_kwargs["inference_input_type"] in quantized_types) and not quant_mode.is_post_training_integer_quantize()) if (requires_quantized_input_stats and not converter_kwargs["quantized_input_stats"]): raise ValueError( "The `quantized_input_stats` flag must be defined when either " "`inference_type` flag or `inference_input_type` flag is set to " "tf.int8 or tf.uint8. Currently, `inference_type={}` and " "`inference_input_type={}`.".format( _get_tf_type_name(converter_kwargs["inference_type"]), _get_tf_type_name(converter_kwargs["inference_input_type"]))) @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.VALIDATE_INPUTS) def _validate_inputs(self, input_tensors, quantized_input_stats): """Validate input parameters. Args: input_tensors: List of input tensors. quantized_input_stats: Map of input tensor names to a tuple of floats representing the mean and standard deviation of the training data. Raises: ValueError: Input shape is not specified. Quantization input stats is required but not provided. """ if (not self._is_unknown_shapes_allowed() and self._has_valid_tensors()): # Checks dimensions in input tensor. for tensor in input_tensors: shape = tensor.shape if not shape: raise ValueError("Provide an input shape for input array " "'{0}'.".format(_get_tensor_name(tensor))) # Note that shape_list might be empty for scalar shapes. shape_list = shape.as_list() if None in shape_list[1:]: raise ValueError( "None is only supported in the 1st dimension. Tensor '{0}' has " "invalid shape '{1}'.".format( _get_tensor_name(tensor), shape_list)) elif shape_list and shape_list[0] is None: self._set_batch_size(batch_size=1) # Get quantization stats. Ensures there is one stat per name if the stats # are specified. if quantized_input_stats: self._quantized_stats = [] invalid_stats = [] for name in self.get_input_arrays(): if name in quantized_input_stats: self._quantized_stats.append(quantized_input_stats[name]) else: invalid_stats.append(name) if invalid_stats: raise ValueError("Quantization input stats are not available for input " "tensors '{0}'.".format(",".join(invalid_stats))) else: self._quantized_stats = None @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.OPTIMIZE_TF_MODEL) def _optimize_tf_model(self, graph_def, input_tensors, output_tensors, quant_mode): """Run a Grappler pass to optimize the TensorFlow graph. Args: graph_def: Frozen GraphDef to be optimized. input_tensors: List of input tensors. output_tensors: List of output tensors. quant_mode: the quantization mode. Returns: The optimized TensorFlow graph. """ # Disable grappler constant folding if there are training quant ops. if self.saved_model_dir or quant_mode.contains_training_quant_op(): return graph_def try: # TODO(b/150163103): Merge `disabling lower using switch merge' calls. # Grappler will also try to lower while loop into switch merge # representation which is undesired for Ophints, so we simply remove # those attributes to prevent Grappler from doing so. graph = _convert_to_constants.disable_lower_using_switch_merge(graph_def) # Run function inlining optimization to ensure any models generated # through the from_frozen_graph path have been inlined. optimized_graph = _run_graph_optimizations( graph, input_tensors, output_tensors, config=self._grappler_config(["function"])) return optimized_graph except Exception: # pylint: disable=broad-except return graph_def def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Either a TFLite Flatbuffer or a Graphviz graph depending on value in `output_format`. Raises: ValueError: Input shape is not specified. None value for dimension in input_tensor. """ self._validate_inputs(self._input_tensors, self.quantized_input_stats) quant_mode = QuantizationMode(self.optimizations, self.target_spec, self.representative_dataset, self._graph_def) optimized_graph = self._optimize_tf_model(self._graph_def, self._input_tensors, self._output_tensors, quant_mode) self._debug_info = _get_debug_info(self._debug_info_func, optimized_graph) converter_kwargs = self._get_base_converter_args() converter_kwargs.update( quant_mode.converter_flags(self.inference_type, self.inference_input_type)) converter_kwargs.update({ "output_format": self.output_format, "quantized_input_stats": self._quantized_stats, "default_ranges_stats": self.default_ranges_stats, "drop_control_dependency": self.drop_control_dependency, "reorder_across_fake_quant": self.reorder_across_fake_quant, "change_concat_input_ranges": self.change_concat_input_ranges, "dump_graphviz_dir": self.dump_graphviz_dir, "dump_graphviz_video": self.dump_graphviz_video, "conversion_summary_dir": self.conversion_summary_dir, "allow_all_select_tf_ops": self._experimental_allow_all_select_tf_ops, }) if not self.experimental_new_converter: logging.warning( "Please consider switching to the new converter by setting " "experimental_new_converter=True. " "The old converter (TOCO) is deprecated.") else: logging.info("Using experimental converter: If you encountered a problem " "please file a bug. You can opt-out " "by setting experimental_new_converter=False") self._validate_quantized_input_stats(converter_kwargs, quant_mode) self._validate_experimental_new_quantizer_flag() # Converts model. if self._has_valid_tensors(): result = _toco_convert_impl( input_data=optimized_graph, input_tensors=self._input_tensors, output_tensors=self._output_tensors, **converter_kwargs) else: result = _toco_convert_graph_def( input_data=optimized_graph, input_arrays_with_shape=self._input_arrays_with_shape, output_arrays=self._output_arrays, control_output_arrays=self._control_output_arrays, **converter_kwargs) return self._optimize_tflite_model( result, quant_mode, quant_io=not self.experimental_new_converter) def get_input_arrays(self): """Returns a list of the names of the input tensors. Returns: List of strings. """ if self._has_valid_tensors(): return [_get_tensor_name(tensor) for tensor in self._input_tensors] else: return [name for name, _ in self._input_arrays_with_shape] def _has_valid_tensors(self): """Checks if the input and output tensors have been initialized. Returns: Bool. """ return self._input_tensors is not None and self._output_tensors def _set_batch_size(self, batch_size): """Sets the first dimension of the input tensor to `batch_size`. Args: batch_size: Batch size for the model. Replaces the first dimension of an input size array if undefined. (default 1) Raises: ValueError: input_tensor is not defined. """ if not self._has_valid_tensors(): raise ValueError("The batch size cannot be set for this model. Please " "use input_shapes parameter.") for tensor in self._input_tensors: shape = tensor.shape.as_list() if shape[0] is None: shape[0] = batch_size tensor.set_shape(shape) def _is_unknown_shapes_allowed(self): # Ophint Converted nodes will need the shapes to be known. if _is_ophint_converted(self._graph_def): return False if not super(TFLiteConverterBaseV1, self)._is_unknown_shapes_allowed(): return False # `conversion_summary_dir` calls TOCO. Unknown shapes are only supported by # the MLIR converter. if self.conversion_summary_dir: logging.warning( "`conversion_summary_dir` does not work with unknown shapes. " "Graphs with unknown shapes might be different than when this flag " "is disabled.") return False return True def _save_conversion_params_metric(self): self._collected_converter_params.update({ "output_format": self.output_format, "default_ranges_stats": self.default_ranges_stats, "drop_control_dependency": self.drop_control_dependency, "reorder_across_fake_quant": self.reorder_across_fake_quant, "change_concat_input_ranges": self.change_concat_input_ranges, "dump_graphviz_dir": self.dump_graphviz_dir, "dump_graphviz_video": self.dump_graphviz_video, "conversion_summary_dir": self.conversion_summary_dir, "api_version": 1, }) super(TFLiteConverterBaseV1, self)._save_conversion_params_metric(self._graph_def, self.inference_type, self.inference_input_type) class TFLiteSavedModelConverter(TFLiteConverterBaseV1): """Converts the given SavedModel into TensorFlow Lite model. Attributes: saved_model_dir: Directory of the SavedModel. """ def __init__(self, saved_model_dir, saved_model_tags, saved_model_exported_names, experimental_debug_info_func=None): """Constructor for TFLiteConverter. Args: saved_model_dir: Directory of the SavedModel. saved_model_tags: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. (default {tf.saved_model.SERVING}). saved_model_exported_names: Names to be exported when the saved model import path is on. experimental_debug_info_func: An experimental function to retrieve the graph debug info for a set of nodes from the `graph_def`. Raises: ValueError: Invalid arguments. """ super(TFLiteSavedModelConverter, self).__init__(experimental_debug_info_func) self.saved_model_dir = saved_model_dir self._saved_model_tags = saved_model_tags self._saved_model_exported_names = saved_model_exported_names signature_key = _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY if len(self._saved_model_exported_names) != 1: raise ValueError("Only support a single signature key.") signature_key = self._saved_model_exported_names[0] result = _freeze_saved_model(self.saved_model_dir, None, None, None, self._saved_model_tags, signature_key) self._graph_def = result[0] self._input_tensors = result[1] self._output_tensors = result[2] self._parse_saved_model_args() @_export_metrics def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Either a TFLite Flatbuffer or a Graphviz graph depending on value in `output_format`. Raises: ValueError: Input shape is not specified. None value for dimension in input_tensor. """ return super(TFLiteSavedModelConverter, self).convert() class TFLiteKerasModelConverter(TFLiteConverterBaseV1): """Converts the given SavedModel into TensorFlow Lite model.""" def __init__(self, model_file, input_arrays=None, input_shapes=None, output_arrays=None, custom_objects=None): """Constructor for TFLiteConverter. Args: model_file: Full filepath of HDF5 file containing the tf.keras model. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. (default None) input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. (default None) custom_objects: Dict mapping names (strings) to custom classes or functions to be considered during model deserialization. (default None) Raises: ValueError: Invalid arguments. """ super(TFLiteKerasModelConverter, self).__init__(experimental_debug_info_func=None) # Handles Keras when Eager mode is enabled. if context.executing_eagerly(): if input_arrays or output_arrays: raise ValueError("`input_arrays` and `output_arrays` are unsupported " "with Eager mode. If your model requires any of these " "parameters, please use disable_eager_execution().") keras_model = keras_deps.get_load_model_function()(model_file, custom_objects) function = _trace_model_call(keras_model) concrete_func = function.get_concrete_function() frozen_func = _convert_to_constants.convert_variables_to_constants_v2( concrete_func, lower_control_flow=False) _set_tensor_shapes(frozen_func.inputs, input_shapes) self._keras_model = keras_model self._graph_def = frozen_func.graph.as_graph_def() self._input_tensors = frozen_func.inputs self._output_tensors = frozen_func.outputs self._debug_info_func = _build_debug_info_func(frozen_func.graph) return # Handles Keras when Eager mode is disabled. keras_deps.get_clear_session_function()() keras_model = keras_deps.get_load_model_function()(model_file, custom_objects) sess = keras_deps.get_get_session_function()() # Get input and output tensors. if input_arrays: input_tensors = _get_tensors_from_tensor_names(sess.graph, input_arrays) else: input_tensors = keras_model.inputs if output_arrays: output_tensors = _get_tensors_from_tensor_names(sess.graph, output_arrays) else: output_tensors = keras_model.outputs _set_tensor_shapes(input_tensors, input_shapes) graph_def = _freeze_graph(sess, input_tensors, output_tensors) self._keras_model = keras_model self._graph_def = graph_def self._input_tensors = input_tensors self._output_tensors = output_tensors self._debug_info_func = _build_debug_info_func(sess.graph) @convert_phase(Component.PREPARE_TF_MODEL, SubComponent.FREEZE_KERAS_MODEL) def _freeze_keras_model(self, output_dir): """Save Keras model to Saved Model format. Args: output_dir: The output directory to save the SavedModel. """ try: self._keras_model.save(output_dir, save_format="tf") except Exception: # pylint: disable=broad-except # When storing the given keras model to a saved model is failed, let's # use original keras model conversion pipeline. return None tag_set = set([_tag_constants.SERVING]) signature_key = _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY graph_def, input_tensors, output_tensors, sess_graph = _freeze_saved_model( output_dir, None, None, None, tag_set, signature_key) self.saved_model_dir = output_dir self._saved_model_tags = tag_set self._saved_model_exported_names = [signature_key] self._parse_saved_model_args() if self.saved_model_dir: self._graph_def = graph_def self._input_tensors = input_tensors self._output_tensors = output_tensors self._debug_info_func = _build_debug_info_func(sess_graph) def _convert_as_saved_model(self): """Converts a Keras model as a saved model. Returns: The converted data in serialized format. """ temp_dir = tempfile.mkdtemp() try: self._freeze_keras_model(temp_dir) if self.saved_model_dir: return super(TFLiteKerasModelConverter, self).convert() finally: shutil.rmtree(temp_dir, True) @_export_metrics def convert(self): """Converts a Keras model based on instance variables. Returns: The converted data in serialized format. Either a TFLite Flatbuffer or a Graphviz graph depending on value in `output_format`. Raises: ValueError: Input shape is not specified. None value for dimension in input_tensor. """ saved_model_convert_result = self._convert_as_saved_model() if saved_model_convert_result: return saved_model_convert_result return super(TFLiteKerasModelConverter, self).convert() class TFLiteFrozenGraphConverter(TFLiteConverterBaseV1): """Converts the given frozen graph def into TensorFlow Lite model.""" def __init__(self, graph_def, input_tensors, output_tensors, input_arrays_with_shape=None, output_arrays=None, experimental_debug_info_func=None): """Constructor for TFLiteConverter. Args: graph_def: Frozen TensorFlow GraphDef. input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). input_arrays_with_shape: Tuple of strings representing input tensor names and list of integers representing input shapes (e.g., [("foo", [1, 16, 16, 3])]). Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) output_arrays: List of output tensors to freeze graph with. Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) experimental_debug_info_func: An experimental function to retrieve the graph debug info for a set of nodes from the `graph_def`. Raises: ValueError: Invalid arguments. """ super(TFLiteFrozenGraphConverter, self).__init__(experimental_debug_info_func) self._graph_def = graph_def self._input_tensors = input_tensors self._output_tensors = output_tensors self._control_output_arrays = None # Attributes are used by models that cannot be loaded into TensorFlow. if not self._has_valid_tensors(): self._input_arrays_with_shape = input_arrays_with_shape self._output_arrays = output_arrays if input_tensors is not None and input_arrays_with_shape is not None: logging.warning("input_arrays_with_shape will be ignored when both the " "given input_tensors and input_arrays_with_shape are not " "None.") if output_tensors is not None and output_arrays is not None: logging.warning("output_arrays will be ignored when both the given " "output_tensors and output_arrays are not None.") @_export_metrics def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Either a TFLite Flatbuffer or a Graphviz graph depending on value in `output_format`. Raises: ValueError: Input shape is not specified. None value for dimension in input_tensor. """ if not self._has_valid_tensors(): if not self._input_arrays_with_shape or not (self._output_arrays or self._control_output_arrays): raise ValueError( "If input_tensors and output_tensors are None, both " "input_arrays_with_shape and output_arrays|control_output_arrays " "must be defined.") return super(TFLiteFrozenGraphConverter, self).convert() @_tf_export(v1=["lite.TFLiteConverter"]) class TFLiteConverter(TFLiteFrozenGraphConverter): """Convert a TensorFlow model into `output_format`. This is used to convert from a TensorFlow GraphDef, SavedModel or tf.keras model into either a TFLite FlatBuffer or graph visualization. Attributes: optimizations: Experimental flag, subject to change. Set of optimizations to apply. e.g {tf.lite.Optimize.DEFAULT}. (default None, must be None or a set of values of type `tf.lite.Optimize`) representative_dataset: A generator function used for integer quantization where each generated sample has the same order, type and shape as the inputs to the model. Usually, this is a small subset of a few hundred samples randomly chosen, in no particular order, from the training or evaluation dataset. This is an optional attribute, but required for full integer quantization, i.e, if `tf.int8` is the only supported type in `target_spec.supported_types`. Refer to `tf.lite.RepresentativeDataset`. (default None) target_spec: Experimental flag, subject to change. Specifications of target device, including supported ops set, supported types and a set of user's defined TensorFlow operators required in the TensorFlow Lite runtime. Refer to `tf.lite.TargetSpec`. inference_type: Data type of numeric arrays, excluding the input layer. (default tf.float32, must be in {tf.float32, tf.int8, tf.uint8}) inference_input_type: Data type of the numeric arrays in the input layer. If `inference_input_type` is in {tf.int8, tf.uint8}, then `quantized_input_stats` must be provided. (default is the value assigned to `inference_type`, must be in {tf.float32, tf.int8, tf.uint8}) inference_output_type: Data type of the numeric arrays in the output layer. (default is the value assigned to `inference_type`, must be in {tf.float32, tf.int8, tf.uint8}) quantized_input_stats: Map of input tensor names to a tuple of floats representing the mean and standard deviation of the training data. (e.g., {"foo" : (0., 1.)}). Required if `inference_input_type` is tf.int8 or tf.uint8. (default None) default_ranges_stats: Tuple of integers (min, max) representing range values for all numeric arrays without a specified range. Intended for experimenting with quantization via "dummy quantization". (default None) allow_custom_ops: Boolean indicating whether to allow custom operations. When False any unknown operation is an error. When True, custom ops are created for any op that is unknown. The developer will need to provide these to the TensorFlow Lite runtime with a custom resolver. (default False) drop_control_dependency: Boolean indicating whether to drop control dependencies silently. This is due to TFLite not supporting control dependencies. (default True) reorder_across_fake_quant: Boolean indicating whether to reorder FakeQuant nodes in unexpected locations. Used when the location of the FakeQuant nodes is preventing graph transformations necessary to convert the graph. Results in a graph that differs from the quantized training graph, potentially causing differing arithmetic behavior. (default False) change_concat_input_ranges: Boolean to change behavior of min/max ranges for inputs and outputs of the concat operator for quantized models. Changes the ranges of concat operator overlap when true. (default False) output_format: Output file format. (default tf.compat.v1.lite.constants.TFLITE, must be in {tf.compat.v1.lite.constants.TFLITE, tf.compat.v1.lite.constants.GRAPHVIZ_DOT}) dump_graphviz_dir: Full filepath of folder to dump the graphs at various stages of processing GraphViz .dot files. Preferred over `output_format=tf.compat.v1.lite.constants.GRAPHVIZ_DOT` in order to keep the requirements of the output file. (default None) dump_graphviz_video: Boolean indicating whether to dump the GraphViz .dot files after every graph transformation. Requires the `dump_graphviz_dir` flag to be specified. (default False) conversion_summary_dir: Full path of the directory to store conversion logs. (default None) target_ops: Deprecated. Please use `target_spec.supported_ops` instead. post_training_quantize: Deprecated. Please use `optimizations` instead and set it to `{tf.lite.Optimize.DEFAULT}`. (default False) experimental_new_converter: Experimental flag, subject to change. Enables MLIR-based conversion instead of TOCO conversion. (default True) experimental_new_quantizer: Experimental flag, subject to change. Enables MLIR-based quantization conversion instead of Flatbuffer-based conversion. (default True) Example usage: ```python # Converting a GraphDef from session. converter = tf.compat.v1.lite.TFLiteConverter.from_session( sess, in_tensors, out_tensors) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) # Converting a GraphDef from file. converter = tf.compat.v1.lite.TFLiteConverter.from_frozen_graph( graph_def_file, input_arrays, output_arrays) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) # Converting a SavedModel. converter = tf.compat.v1.lite.TFLiteConverter.from_saved_model( saved_model_dir) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) # Converting a tf.keras model. converter = tf.compat.v1.lite.TFLiteConverter.from_keras_model_file( keras_model) tflite_model = converter.convert() open("converted_model.tflite", "wb").write(tflite_model) ``` """ # pylint: disable=useless-super-delegation def __init__(self, graph_def, input_tensors, output_tensors, input_arrays_with_shape=None, output_arrays=None, experimental_debug_info_func=None): """Constructor for TFLiteConverter. Args: graph_def: Frozen TensorFlow GraphDef. input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). input_arrays_with_shape: Tuple of strings representing input tensor names and list of integers representing input shapes (e.g., [("foo" : [1, 16, 16, 3])]). Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) output_arrays: List of output tensors to freeze graph with. Use only when graph cannot be loaded into TensorFlow and when `input_tensors` and `output_tensors` are None. (default None) experimental_debug_info_func: An experimental function to retrieve the graph debug info for a set of nodes from the `graph_def`. Raises: ValueError: Invalid arguments. """ super(TFLiteConverter, self).__init__(graph_def, input_tensors, output_tensors, input_arrays_with_shape, output_arrays, experimental_debug_info_func) @classmethod def from_session(cls, sess, input_tensors, output_tensors): """Creates a TFLiteConverter class from a TensorFlow Session. Args: sess: TensorFlow Session. input_tensors: List of input tensors. Type and shape are computed using `foo.shape` and `foo.dtype`. output_tensors: List of output tensors (only .name is used from this). Returns: TFLiteConverter class. """ graph_def = _freeze_graph(sess, input_tensors, output_tensors) return cls( graph_def, input_tensors, output_tensors, experimental_debug_info_func=_build_debug_info_func(sess.graph)) @classmethod def from_frozen_graph(cls, graph_def_file, input_arrays, output_arrays, input_shapes=None): """Creates a TFLiteConverter class from a file containing a frozen GraphDef. Args: graph_def_file: Full filepath of file containing frozen GraphDef. input_arrays: List of input tensors to freeze graph with. output_arrays: List of output tensors to freeze graph with. input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) Returns: TFLiteConverter class. Raises: IOError: File not found. Unable to parse input file. ValueError: The graph is not frozen. input_arrays or output_arrays contains an invalid tensor name. input_shapes is not correctly defined when required """ with _ops.Graph().as_default(): with _session.Session() as sess: # Read GraphDef from file. if not gfile.Exists(graph_def_file): raise IOError("File '{0}' does not exist.".format(graph_def_file)) with gfile.GFile(graph_def_file, "rb") as f: file_content = f.read() try: graph_def = _graph_pb2.GraphDef() graph_def.ParseFromString(file_content) except (_text_format.ParseError, DecodeError): try: print("Ignore 'tcmalloc: large alloc' warnings.") if not isinstance(file_content, str): if PY2: file_content = six.ensure_binary(file_content, "utf-8") else: file_content = six.ensure_text(file_content, "utf-8") graph_def = _graph_pb2.GraphDef() _text_format.Merge(file_content, graph_def) except (_text_format.ParseError, DecodeError): raise IOError( "Unable to parse input file '{}'.".format(graph_def_file)) # Handles models with custom TFLite ops that cannot be resolved in # TensorFlow. load_model_in_session = True try: _import_graph_def(graph_def, name="") except _NotFoundError: load_model_in_session = False if load_model_in_session: # Check if graph is frozen. if not _is_frozen_graph(sess): raise ValueError("Please freeze the graph using freeze_graph.py.") # Get input and output tensors. input_tensors = _get_tensors_from_tensor_names( sess.graph, input_arrays) output_tensors = _get_tensors_from_tensor_names( sess.graph, output_arrays) _set_tensor_shapes(input_tensors, input_shapes) return cls(sess.graph_def, input_tensors, output_tensors) else: if not input_shapes: raise ValueError("input_shapes must be defined for this model.") if set(input_arrays) != set(input_shapes.keys()): raise ValueError("input_shapes must contain a value for each item " "in input_array.") input_arrays_with_shape = [ (name, input_shapes[name]) for name in input_arrays ] return cls( graph_def, input_tensors=None, output_tensors=None, input_arrays_with_shape=input_arrays_with_shape, output_arrays=output_arrays) @classmethod def from_saved_model(cls, saved_model_dir, input_arrays=None, input_shapes=None, output_arrays=None, tag_set=None, signature_key=None): """Creates a TFLiteConverter class from a SavedModel. Args: saved_model_dir: SavedModel directory to convert. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. (default None) input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. (default None) tag_set: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. (default {tf.saved_model.SERVING}) signature_key: Key identifying SignatureDef containing inputs and outputs. (default tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY) Returns: TFLiteConverter class. """ if tag_set is None: tag_set = set([_tag_constants.SERVING]) if signature_key is None: signature_key = _signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY saved_model_converter = TFLiteSavedModelConverter(saved_model_dir, tag_set, [signature_key]) if saved_model_converter.saved_model_dir: return saved_model_converter result = _freeze_saved_model(saved_model_dir, input_arrays, input_shapes, output_arrays, tag_set, signature_key) return cls( graph_def=result[0], input_tensors=result[1], output_tensors=result[2], experimental_debug_info_func=_build_debug_info_func(result[3])) @classmethod def from_keras_model_file(cls, model_file, input_arrays=None, input_shapes=None, output_arrays=None, custom_objects=None): """Creates a TFLiteConverter class from a tf.keras model file. Args: model_file: Full filepath of HDF5 file containing the tf.keras model. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. (default None) input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo" : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). (default None) output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. (default None) custom_objects: Dict mapping names (strings) to custom classes or functions to be considered during model deserialization. (default None) Returns: TFLiteConverter class. """ return TFLiteKerasModelConverter(model_file, input_arrays, input_shapes, output_arrays, custom_objects) # pylint: disable=useless-super-delegation def convert(self): """Converts a TensorFlow GraphDef based on instance variables. Returns: The converted data in serialized format. Either a TFLite Flatbuffer or a Graphviz graph depending on value in `output_format`. Raises: ValueError: Input shape is not specified. None value for dimension in input_tensor. """ return super(TFLiteConverter, self).convert() @_tf_export(v1=["lite.TocoConverter"]) class TocoConverter(object): """Convert a TensorFlow model into `output_format` using TOCO. This class has been deprecated. Please use `lite.TFLiteConverter` instead. """ @classmethod @_deprecation.deprecated(None, "Use `lite.TFLiteConverter.from_session` instead.") def from_session(cls, sess, input_tensors, output_tensors): """Creates a TocoConverter class from a TensorFlow Session.""" return TFLiteConverter.from_session(sess, input_tensors, output_tensors) @classmethod @_deprecation.deprecated( None, "Use `lite.TFLiteConverter.from_frozen_graph` instead.") def from_frozen_graph(cls, graph_def_file, input_arrays, output_arrays, input_shapes=None): """Creates a TocoConverter class from a file containing a frozen graph.""" return TFLiteConverter.from_frozen_graph(graph_def_file, input_arrays, output_arrays, input_shapes) @classmethod @_deprecation.deprecated( None, "Use `lite.TFLiteConverter.from_saved_model` instead.") def from_saved_model(cls, saved_model_dir, input_arrays=None, input_shapes=None, output_arrays=None, tag_set=None, signature_key=None): """Creates a TocoConverter class from a SavedModel.""" return TFLiteConverter.from_saved_model(saved_model_dir, input_arrays, input_shapes, output_arrays, tag_set, signature_key) @classmethod @_deprecation.deprecated( None, "Use `lite.TFLiteConverter.from_keras_model_file` instead.") def from_keras_model_file(cls, model_file, input_arrays=None, input_shapes=None, output_arrays=None): """Creates a TocoConverter class from a tf.keras model file.""" return TFLiteConverter.from_keras_model_file(model_file, input_arrays, input_shapes, output_arrays)
the-stack_0_23737
""" Genetic Algorithms for Digital Signal Processing """ import numpy as np """ cal_pop_fitness: Calculating the population fitness for Digital Signal Processing The Signal to Noise Ratio (SNR) was used as the fitness function, with higher signal to noise ratios giving better results """ def cal_pop_fitness(Waveform, pop): # Calculating the fitness value of each solution in the current population. # The fitness function calulates the sum of products between each input and its corresponding weight. fitness = np.empty((pop.shape[0], 1)) for i in range(1, pop.shape[0]): fitness[i, 0] = Waveform.PM(pop[i]) return fitness """ select_mating_pool: Choose the mating pool for the parent genomes The parents are returned """ def select_mating_pool(pop, fitness, num_parents): # Selecting the best individuals in the current generation as parents for producing the offspring of the next generation. parents = np.empty((num_parents, pop.shape[1])) for parent_num in range(num_parents): # If taking num_parents from the previous iteration, # the best are taken. The fitness of others is set to be low so # the next best can be found max_fitness_idx = np.where(fitness == np.max(fitness)) max_fitness_idx = max_fitness_idx[0][0] parents[parent_num, :] = pop[max_fitness_idx, :] fitness[max_fitness_idx] = -99999999999 return parents """ crossover: The crossover function swaps the genes of the parents to find more optimal genes. """ def crossover(parents, offspring_size): offspring = np.empty(offspring_size) # The point at which crossover takes place between two parents. Usually, it is at the center. crossover_point = np.uint8(offspring_size[1]/2) # Gene Swapping here #Swaps the genes of the caried parents for k in range(offspring_size[0]): # Index of the first parent to mate. parent1_idx = k%parents.shape[0] # Index of the second parent to mate. parent2_idx = (k+1)%parents.shape[0] # The new offspring will have its first half of its genes taken from the first parent. offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_point] # The new offspring will have its second half of its genes taken from the second parent. offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:] return offspring """ mutation: Mutation adds random variation to genes to find other gene combinations """ def mutation(offspring_crossover, num_mutations=1): mutations_counter = np.uint8(offspring_crossover.shape[1] / num_mutations) # Mutation changes a number of genes as defined by the num_mutations argument. The changes are random. for idx in range(offspring_crossover.shape[0]): gene_idx = mutations_counter - 1 for mutation_num in range(num_mutations): # The random value to be added to the gene. random_value = np.random.uniform(-1.0, 1.0, 1) offspring_crossover[idx, gene_idx] = offspring_crossover[idx, gene_idx] + random_value gene_idx = gene_idx + mutations_counter return offspring_crossover """ create_population: The create_population function initialises the population data with appropriate data values. """ def create_population(pop_size): f1 = np.random.uniform(low=30, high=50, size=(pop_size[0], 1)) f2 = np.random.uniform(low=50, high=100, size=(pop_size[0], 1)) # TW = np.random.uniform(low=0, high=5, size=(pop_size[0], 1)) # BW = np.random.uniform(low=5, high=10, size=(pop_size[0], 1)) return np.column_stack((f1, f2))
the-stack_0_23738
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2014 Thomas Voegtlin # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import hmac import math import hashlib import unicodedata import string import ecdsa import pbkdf2 from util import print_error from rubycoin import is_old_seed, is_new_seed import version import i18n # http://www.asahi-net.or.jp/~ax2s-kmtn/ref/unicode/e_asia.html CJK_INTERVALS = [ (0x4E00, 0x9FFF, 'CJK Unified Ideographs'), (0x3400, 0x4DBF, 'CJK Unified Ideographs Extension A'), (0x20000, 0x2A6DF, 'CJK Unified Ideographs Extension B'), (0x2A700, 0x2B73F, 'CJK Unified Ideographs Extension C'), (0x2B740, 0x2B81F, 'CJK Unified Ideographs Extension D'), (0xF900, 0xFAFF, 'CJK Compatibility Ideographs'), (0x2F800, 0x2FA1D, 'CJK Compatibility Ideographs Supplement'), (0x3190, 0x319F , 'Kanbun'), (0x2E80, 0x2EFF, 'CJK Radicals Supplement'), (0x2F00, 0x2FDF, 'CJK Radicals'), (0x31C0, 0x31EF, 'CJK Strokes'), (0x2FF0, 0x2FFF, 'Ideographic Description Characters'), (0xE0100, 0xE01EF, 'Variation Selectors Supplement'), (0x3100, 0x312F, 'Bopomofo'), (0x31A0, 0x31BF, 'Bopomofo Extended'), (0xFF00, 0xFFEF, 'Halfwidth and Fullwidth Forms'), (0x3040, 0x309F, 'Hiragana'), (0x30A0, 0x30FF, 'Katakana'), (0x31F0, 0x31FF, 'Katakana Phonetic Extensions'), (0x1B000, 0x1B0FF, 'Kana Supplement'), (0xAC00, 0xD7AF, 'Hangul Syllables'), (0x1100, 0x11FF, 'Hangul Jamo'), (0xA960, 0xA97F, 'Hangul Jamo Extended A'), (0xD7B0, 0xD7FF, 'Hangul Jamo Extended B'), (0x3130, 0x318F, 'Hangul Compatibility Jamo'), (0xA4D0, 0xA4FF, 'Lisu'), (0x16F00, 0x16F9F, 'Miao'), (0xA000, 0xA48F, 'Yi Syllables'), (0xA490, 0xA4CF, 'Yi Radicals'), ] def is_CJK(c): n = ord(c) for imin,imax,name in CJK_INTERVALS: if n>=imin and n<=imax: return True return False def normalize_text(seed): # normalize seed = unicodedata.normalize('NFKD', unicode(seed)) # lower seed = seed.lower() # remove accents seed = u''.join([c for c in seed if not unicodedata.combining(c)]) # normalize whitespaces seed = u' '.join(seed.split()) # remove whitespaces between CJK seed = u''.join([seed[i] for i in range(len(seed)) if not (seed[i] in string.whitespace and is_CJK(seed[i-1]) and is_CJK(seed[i+1]))]) return seed filenames = { 'en':'english.txt', 'es':'spanish.txt', 'ja':'japanese.txt', 'pt':'portuguese.txt', 'zh':'chinese_simplified.txt' } class Mnemonic(object): # Seed derivation no longer follows BIP39 # Mnemonic phrase uses a hash based checksum, instead of a wordlist-dependent checksum def __init__(self, lang=None): lang = lang or 'en' print_error('language', lang) filename = filenames.get(lang[0:2], 'english.txt') path = os.path.join(os.path.dirname(__file__), 'wordlist', filename) s = open(path,'r').read().strip() s = unicodedata.normalize('NFKD', s.decode('utf8')) lines = s.split('\n') self.wordlist = [] for line in lines: line = line.split('#')[0] line = line.strip(' \r') assert ' ' not in line if line: self.wordlist.append(line) print_error("wordlist has %d words"%len(self.wordlist)) @classmethod def mnemonic_to_seed(self, mnemonic, passphrase): PBKDF2_ROUNDS = 2048 mnemonic = normalize_text(mnemonic) passphrase = normalize_text(passphrase) return pbkdf2.PBKDF2(mnemonic, 'electrum' + passphrase, iterations = PBKDF2_ROUNDS, macmodule = hmac, digestmodule = hashlib.sha512).read(64) def mnemonic_encode(self, i): n = len(self.wordlist) words = [] while i: x = i%n i = i/n words.append(self.wordlist[x]) return ' '.join(words) def get_suggestions(self, prefix): for w in self.wordlist: if w.startswith(prefix): yield w def mnemonic_decode(self, seed): n = len(self.wordlist) words = seed.split() i = 0 while words: w = words.pop() k = self.wordlist.index(w) i = i*n + k return i def check_seed(self, seed, custom_entropy): assert is_new_seed(seed) i = self.mnemonic_decode(seed) return i % custom_entropy == 0 def make_seed(self, num_bits=128, prefix=version.SEED_PREFIX, custom_entropy=1): # increase num_bits in order to obtain a uniform distibution for the last word bpw = math.log(len(self.wordlist), 2) num_bits = int(math.ceil(num_bits/bpw)) * bpw # handle custom entropy; make sure we add at least 16 bits n_custom = int(math.ceil(math.log(custom_entropy, 2))) n = max(16, num_bits - n_custom) print_error("make_seed", prefix, "adding %d bits"%n) my_entropy = ecdsa.util.randrange(pow(2, n)) nonce = 0 while True: nonce += 1 i = custom_entropy * (my_entropy + nonce) seed = self.mnemonic_encode(i) assert i == self.mnemonic_decode(seed) if is_old_seed(seed): continue if is_new_seed(seed, prefix): break print_error('%d words'%len(seed.split())) return seed
the-stack_0_23741
import numpy as np import collections as c import torch class Buffer(object): def __init__(self, o_dim, a_dim, bs, device='cpu'): self.o_dim = o_dim self.a_dim = a_dim self.bs = bs self.device = device self.o_buf, self.a_buf, self.r_buf, self.logpb_buf, self.distb_buf, self.done_buf = \ c.deque(), c.deque(), c.deque(), c.deque(), c.deque(), c.deque() self.op = np.zeros((1, o_dim), dtype=np.float32) def store(self, o, a, r, op, logpb, dist, done): self.o_buf.append(o) self.a_buf.append(a) self.r_buf.append(r) self.logpb_buf.append(logpb) self.distb_buf.append(dist) self.done_buf.append(float(done)) self.op[:] = op def pop(self): self.o_buf.popleft() self.a_buf.popleft() self.r_buf.popleft() self.logpb_buf.popleft() self.distb_buf.popleft() self.done_buf.popleft() def clear(self): self.o_buf.clear() self.a_buf.clear() self.r_buf.clear() self.logpb_buf.clear() self.distb_buf.clear() self.done_buf.clear() def get(self, dist_stack): rang = range(self.bs) os = torch.as_tensor(np.array([self.o_buf[i] for i in rang]), dtype=torch.float32, device=self.device).view(-1, self.o_dim) acts = torch.as_tensor(np.array([self.a_buf[i] for i in rang]), dtype=torch.float32, device=self.device).view(-1, self.a_dim) rs = torch.as_tensor(np.array([self.r_buf[i] for i in rang]), dtype=torch.float32, device=self.device).view(-1, 1) op = torch.as_tensor(self.op, device=self.device).view(-1, self.o_dim) logpbs = torch.as_tensor(np.array([self.logpb_buf[i] for i in rang]), dtype=torch.float32, device=self.device).view(-1, 1) distbs = dist_stack([self.distb_buf[i] for i in rang], device=self.device) dones = torch.as_tensor(np.array([self.done_buf[i] for i in rang]), dtype=torch.float32, device=self.device).view(-1, 1) return os, acts, rs, op, logpbs, distbs, dones
the-stack_0_23742
import _plotly_utils.basevalidators class DomainValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name='domain', parent_name='layout.grid', **kwargs ): super(DomainValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop('data_class_str', 'Domain'), data_docs=kwargs.pop( 'data_docs', """ x Sets the horizontal domain of this grid subplot (in plot fraction). The first and last cells end exactly at the domain edges, with no grout around the edges. y Sets the vertical domain of this grid subplot (in plot fraction). The first and last cells end exactly at the domain edges, with no grout around the edges. """ ), **kwargs )
the-stack_0_23743
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import pytest from tests.test_utils.amazon_system_helpers import AWS_DAG_FOLDER, AmazonSystemTest @pytest.mark.backend("postgres", "mysql") class ECSSystemTest(AmazonSystemTest): """ ECS System Test to run and test example ECS dags Required variables.env file content (from your account): # Auto-export all variables set -a # aws parameters REGION_NAME="eu-west-1" REGISTRY_ID="123456789012" IMAGE="alpine:3.9" SUBNET_ID="subnet-068e9654a3c357a" SECURITY_GROUP_ID="sg-054dc69874a651" EXECUTION_ROLE_ARN="arn:aws:iam::123456789012:role/FooBarRole" # remove all created/existing resources flag # comment out to keep resources or use empty string # REMOVE_RESOURCES="True" """ # should be same as in the example dag aws_conn_id = "aws_ecs" cluster = "c" task_definition = "hello-world" container = "hello-world-container" awslogs_group = "/ecs/hello-world" awslogs_stream_prefix = "prefix_b" # only prefix without container name @classmethod def setup_class(cls): cls.create_connection( aws_conn_id=cls.aws_conn_id, region=cls._region_name(), ) # create ecs cluster if it does not exist cls.create_ecs_cluster( aws_conn_id=cls.aws_conn_id, cluster_name=cls.cluster, ) # create task_definition if it does not exist task_definition_exists = cls.is_ecs_task_definition_exists( aws_conn_id=cls.aws_conn_id, task_definition=cls.task_definition, ) if not task_definition_exists: cls.create_ecs_task_definition( aws_conn_id=cls.aws_conn_id, task_definition=cls.task_definition, container=cls.container, image=cls._image(), execution_role_arn=cls._execution_role_arn(), awslogs_group=cls.awslogs_group, awslogs_region=cls._region_name(), awslogs_stream_prefix=cls.awslogs_stream_prefix, ) @classmethod def teardown_class(cls): # remove all created/existing resources in tear down if cls._remove_resources(): cls.delete_ecs_cluster( aws_conn_id=cls.aws_conn_id, cluster_name=cls.cluster, ) cls.delete_ecs_task_definition( aws_conn_id=cls.aws_conn_id, task_definition=cls.task_definition, ) def test_run_example_dag_ecs_fargate_dag(self): self.run_dag("ecs_fargate_dag", AWS_DAG_FOLDER)
the-stack_0_23746
import sublime import sublime_plugin from os.path import basename, dirname from .core import Core from .tools import Tools class VDeployProjectCommand(sublime_plugin.WindowCommand): def deploy_dj(self, project_id): Core().deploy_django_project(project_id) def deploy_php(self, project_id): """Copying project local files to project server files""" Core().deploy_php_project(project_id) def deploy_html(self, project_id): """Copying project local files to project server files""" Core().deploy_html_project(project_id) def deploy_go(self, project_id): """Copying project_local_dir/bin/* to project_server_dir""" Core().deploy_go_project(project_id) def deploy(self, project): """ Run deploy project by it's type: deploy_dj, deploy_go, deploy_php, deploy_html """ c = Core() # exclude for applying rights exclude = '' for p in project['exclude']: exclude += " -not -path '*{}*' ".format(p) # set 755 for all directories inside project directory cmd = "find {} -type d {} -exec chmod 755 {{}} +".format( project['project_dir_local'], exclude) c.run_command_in_subprocess(cmd) # set 644 for all files inside project directory if project['type'] != 'GO': cmd = "find {} -type f {} -exec chmod 644 {{}} +".format( project['project_dir_local'], exclude) c.run_command_in_subprocess(cmd) # run func by project type func = getattr(self, 'deploy_{}'.format(project['type'].lower())) return func(project['id']) def onselect(self, index): if index == -1: return project = self.data[index] self.deploy(project) def run(self, **kw): w = sublime.active_window() # get project path path = w.project_file_name() if not path: sublime.error_message('Project file has not found.') return # One level up - config directory with project file: # config/project.sublime-project # Two levels up - projectname directory (dirname = project name) # projectname/config/project.sublime-project # projectname/project/project_data_files name = basename(dirname(dirname(path))) # find project by name c = Core() result = c.get_project_by_name(name) # Can return project or list of projects if isinstance(result, list): self.data = result self.items = [project['name'] for project in result] Tools.show_quick_panel(self.items, self.onselect) else: project = result self.deploy(project)
the-stack_0_23747
import sys from test import list_tests from test.support import cpython_only import pickle import unittest class ListTest(list_tests.CommonTest): type2test = list def test_basic(self): self.assertEqual(list([]), []) l0_3 = [0, 1, 2, 3] l0_3_bis = list(l0_3) self.assertEqual(l0_3, l0_3_bis) self.assertTrue(l0_3 is not l0_3_bis) self.assertEqual(list(()), []) self.assertEqual(list((0, 1, 2, 3)), [0, 1, 2, 3]) self.assertEqual(list(''), []) self.assertEqual(list('spam'), ['s', 'p', 'a', 'm']) self.assertEqual(list(x for x in range(10) if x % 2), [1, 3, 5, 7, 9]) # XXX RUSTPYTHON TODO: catch ooms if sys.maxsize == 0x7fffffff and False: # This test can currently only work on 32-bit machines. # XXX If/when PySequence_Length() returns a ssize_t, it should be # XXX re-enabled. # Verify clearing of bug #556025. # This assumes that the max data size (sys.maxint) == max # address size this also assumes that the address size is at # least 4 bytes with 8 byte addresses, the bug is not well # tested # # Note: This test is expected to SEGV under Cygwin 1.3.12 or # earlier due to a newlib bug. See the following mailing list # thread for the details: # http://sources.redhat.com/ml/newlib/2002/msg00369.html self.assertRaises(MemoryError, list, range(sys.maxsize // 2)) # This code used to segfault in Py2.4a3 x = [] x.extend(-y for y in x) self.assertEqual(x, []) def test_keyword_args(self): with self.assertRaisesRegex(TypeError, 'keyword argument'): list(sequence=[]) def test_truth(self): super().test_truth() self.assertTrue(not []) self.assertTrue([42]) def test_identity(self): self.assertTrue([] is not []) def test_len(self): super().test_len() self.assertEqual(len([]), 0) self.assertEqual(len([0]), 1) self.assertEqual(len([0, 1, 2]), 3) @unittest.skip("TODO: RUSTPYTHON, thread 'main' panicked at 'capacity overflow'") def test_overflow(self): lst = [4, 5, 6, 7] n = int((sys.maxsize*2+2) // len(lst)) def mul(a, b): return a * b def imul(a, b): a *= b self.assertRaises((MemoryError, OverflowError), mul, lst, n) self.assertRaises((MemoryError, OverflowError), imul, lst, n) def test_repr_large(self): # Check the repr of large list objects def check(n): l = [0] * n s = repr(l) self.assertEqual(s, '[' + ', '.join(['0'] * n) + ']') check(10) # check our checking code check(1000000) def test_iterator_pickle(self): orig = self.type2test([4, 5, 6, 7]) data = [10, 11, 12, 13, 14, 15] for proto in range(pickle.HIGHEST_PROTOCOL + 1): # initial iterator itorig = iter(orig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(type(it), type(itorig)) self.assertEqual(list(it), data) # running iterator next(itorig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(type(it), type(itorig)) self.assertEqual(list(it), data[1:]) # empty iterator for i in range(1, len(orig)): next(itorig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(type(it), type(itorig)) self.assertEqual(list(it), data[len(orig):]) # exhausted iterator self.assertRaises(StopIteration, next, itorig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(list(it), []) def test_reversed_pickle(self): orig = self.type2test([4, 5, 6, 7]) data = [10, 11, 12, 13, 14, 15] for proto in range(pickle.HIGHEST_PROTOCOL + 1): # initial iterator itorig = reversed(orig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(type(it), type(itorig)) self.assertEqual(list(it), data[len(orig)-1::-1]) # running iterator next(itorig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(type(it), type(itorig)) self.assertEqual(list(it), data[len(orig)-2::-1]) # empty iterator for i in range(1, len(orig)): next(itorig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(type(it), type(itorig)) self.assertEqual(list(it), []) # exhausted iterator self.assertRaises(StopIteration, next, itorig) d = pickle.dumps((itorig, orig), proto) it, a = pickle.loads(d) a[:] = data self.assertEqual(list(it), []) def test_no_comdat_folding(self): # Issue 8847: In the PGO build, the MSVC linker's COMDAT folding # optimization causes failures in code that relies on distinct # function addresses. class L(list): pass with self.assertRaises(TypeError): (3,) + L([1,2]) @cpython_only def test_preallocation(self): iterable = [0] * 10 iter_size = sys.getsizeof(iterable) self.assertEqual(iter_size, sys.getsizeof(list([0] * 10))) self.assertEqual(iter_size, sys.getsizeof(list(range(10)))) if __name__ == "__main__": unittest.main()
the-stack_0_23749
from __future__ import annotations # To avoid circular import. from typing import Callable, List, TYPE_CHECKING from .ulist import BooleanList from .typedef import ELEM, LIST_PY from .ulist import select_bool as _select_bool from .ulist import select_float as _select_float from .ulist import select_int as _select_int from .ulist import select_string as _select_string if TYPE_CHECKING: # To avoid circular import. from . import UltraFastList def select( conditions: List[UltraFastList], choices: LIST_PY, default: ELEM, ) -> UltraFastList: """Return a ulist drawn from elements in `choices`, depending on`conditions`. Args: conditions (List[UltraFastList]): The list of conditions which determine from which array in `choices` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `conditions` is used. choices (LIST_PY): The list of ulist from which the output elements are taken. It has to be of the same length as `conditions`. default (ELEM): The element inserted in output when all conditions evaluate to False. Raises: TypeError: The type of parameter `default` should be bool, float, int or str! Returns: UltraFastList: A ulist object. Examples -------- >>> import ulist as ul >>> arr = ul.arange(6) >>> arr UltraFastList([0, 1, 2, 3, 4, 5]) >>> conditions = [arr < 2, arr < 4] >>> conditions [ UltraFastList([True, True, False, False, False, False]), UltraFastList([True, True, True, True, False, False]) ] >>> result = ul.select(conditions, choices=[0, 1], default=2) >>> result UltraFastList([0, 0, 1, 1, 2, 2]) """ assert len(conditions) == len(choices) if type(default) is bool: fn: Callable = _select_bool elif type(default) is float: fn = _select_float elif type(default) is int: fn = _select_int elif type(default) is str: fn = _select_string else: raise TypeError( "The type of parameter `default` should be" + " bool, float, int or str!" ) _conditions = [] for cond in conditions: assert isinstance(cond._values, BooleanList) _conditions.append(cond._values) result = fn(_conditions, choices, default) from . import UltraFastList # To avoid circular import. return UltraFastList(result) class CaseObject: """ This is designed to implement `case` method for UtraFastList. To provide an interface similar to SQL's `case` statement. """ def __init__(self, nums: UltraFastList, default: ELEM) -> None: self._values = nums self._default = default self._conditions: List[UltraFastList] = [] self._choices: list = [] def when( self, fn: Callable[[UltraFastList], UltraFastList], then: ELEM ) -> 'CaseObject': """Calculate the condition, and keep the condition and element to use. Args: fn (Callable[[UltraFastList], UltraFastList]): Function to calculate the condition. then (ELEM): The element to use when the condition is satisfied. Raises: TypeError: Calling parameter `fn` should return a ulist with dtype bool! TypeError: The type of parameter `then` should be the same as `default`! Returns: CaseObject """ cond = fn(self._values) if cond.dtype != "bool": raise TypeError( "Calling parameter `fn` should return a ulist with dtype bool!" ) self._conditions.append(cond) if not isinstance(then, type(self._default)): raise TypeError( "The type of parameter `then` should be the same as `default`!" ) self._choices.append(then) return self def end(self) -> UltraFastList: """Execute the case statement.""" return select(self._conditions, self._choices, self._default)
the-stack_0_23750
""" The question is to group all same integers together - Sort colors in place The challenge is: - They can give a pivot index They can also to do this in-place Generic version of the problem: - Given an I/P array - rearrange the elements such that all elements less than pivot appear first, - followed by element equal to the pivot - followed by elements greater than the pivot """ def sortColors(nums): """The sort Colors() problem is just a variant of the dutch national flag problem, where the pivot is 1""" dutch_flag_partition(nums, pivot=1) def dutch_flag_partition(nums, pivot): """Idea is to group the elements in-place""" n = len(nums) left = 0 # Group elements smaller than pivot for i in range(n): if nums[i] < pivot: nums[i], nums[left] = nums[left], nums[i] left += 1 # Second pass group elements larger than the pivot right = n - 1 for i in reversed(range(n)): if nums[i] > pivot: nums[i], nums[right] = nums[right], nums[i] right -= 1 def dutch_flag_partition_optimized(nums, pivot): """ here the idea is: 1. If value is less than pivot - we exhange it with the first pivot occurrence 2. If value is equal to the pivot - we advance to the next unclassified element 3. If the value is greater then the pivot = - we exchange it with the last unclassified element """ smaller = 0 equal = 0 larger = len(nums) - 1 while equal < larger: if nums[equal] < pivot: nums[smaller], nums[equal] = nums[equal], nums[smaller] smaller += 1 equal += 1 elif nums[equal] == pivot: equal += 1 elif nums[equal] > pivot: nums[equal], nums[larger] = nums[larger], nums[equal] larger -= 1 if __name__ == "__main__": pass
the-stack_0_23751
#!/usr/bin/env python # Perform radial raster scan on specified target(s). Mostly used for beam pattern mapping. import numpy as np from katcorelib import (standard_script_options, verify_and_connect, collect_targets, start_session, user_logger) # Set up standard script options description = 'Perform radial raster scan across one or more sources. ' \ 'Mostly used for beam pattern mapping and on-the-fly mapping. ' \ 'Some options are **required**.' parser = standard_script_options(usage="%prog [options] <'target/catalogue'> [<'target/catalogue'> ...]", description=description) # Add experiment-specific options parser.add_option('-k', '--num-scans', type='int', default=3, help='Number of scans across target (default=%default)') parser.add_option('-t', '--scan-duration', type='float', default=20.0, help='Minimum duration of each scan across target, in seconds (default=%default)') parser.add_option('-l', '--scan-extent', type='float', default=2.0, help='Length of each scan, in degrees (default=%default)') # Set default value for any option (both standard and experiment-specific options) parser.set_defaults(description='Radial raster scan') # Parse the command line opts, args = parser.parse_args() if len(args) == 0: raise ValueError("Please specify at least one target argument via name ('Cygnus A'), " "description ('azel, 20, 30') or catalogue file name ('sources.csv')") # Check options and build KAT configuration, connecting to proxies and devices with verify_and_connect(opts) as kat: observation_sources = collect_targets(kat, args) # Start capture session, which creates HDF5 file with start_session(kat, **vars(opts)) as session: session.standard_setup(**vars(opts)) session.capture_start() for target in observation_sources: session.label('raster') user_logger.info("Initiating radial scan (%d %g-second scans " "extending %g degrees) on target '%s'", opts.num_scans, opts.scan_duration, opts.scan_extent, target.name) # Calculate average time that noise diode is operated per scan, to add to scan duration in check below nd_time = session.nd_params['on'] + session.nd_params['off'] nd_time *= opts.scan_duration / max(session.nd_params['period'], opts.scan_duration) nd_time = nd_time if session.nd_params['period'] >= 0 else 0. # Check whether the target will be visible for entire duration of radial scan if not session.target_visible(target, (opts.scan_duration + nd_time) * opts.num_scans): user_logger.warning("Skipping radial scan, as target '%s' will be below horizon", target.name) continue # Iterate through angles and scan across target for ind, angle in enumerate(np.arange(0., np.pi, np.pi / opts.num_scans)): offset = np.array((np.cos(angle), -np.sin(angle))) * opts.scan_extent / 2. * (-1) ** ind session.scan(target, duration=opts.scan_duration, start=-offset, end=offset, index=ind, projection=opts.projection, announce=False)
the-stack_0_23752
import os import cv2 import torch import argparse from torch.nn import functional as F from model.RIFE_HDv3 import Model import warnings warnings.filterwarnings("ignore") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.set_grad_enabled(False) if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True parser = argparse.ArgumentParser(description='Interpolation for a pair of images') parser.add_argument('--img', dest='img', nargs=2, required=True) parser.add_argument('--exp', default=4, type=int) parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range') parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold') parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles') parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') args = parser.parse_args() model = Model() model.load_model(args.modelDir, -1) print("Loaded v3.x HD model.") model.eval() model.device() if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0) img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0) else: img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED) img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED) img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) n, c, h, w = img0.shape ph = ((h - 1) // 32 + 1) * 32 pw = ((w - 1) // 32 + 1) * 32 padding = (0, pw - w, 0, ph - h) img0 = F.pad(img0, padding) img1 = F.pad(img1, padding) if args.ratio: img_list = [img0] img0_ratio = 0.0 img1_ratio = 1.0 if args.ratio <= img0_ratio + args.rthreshold / 2: middle = img0 elif args.ratio >= img1_ratio - args.rthreshold / 2: middle = img1 else: tmp_img0 = img0 tmp_img1 = img1 for inference_cycle in range(args.rmaxcycles): middle = model.inference(tmp_img0, tmp_img1) middle_ratio = ( img0_ratio + img1_ratio ) / 2 if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2): break if args.ratio > middle_ratio: tmp_img0 = middle img0_ratio = middle_ratio else: tmp_img1 = middle img1_ratio = middle_ratio img_list.append(middle) img_list.append(img1) else: img_list = [img0, img1] for i in range(args.exp): tmp = [] for j in range(len(img_list) - 1): mid = model.inference(img_list[j], img_list[j + 1]) tmp.append(img_list[j]) tmp.append(mid) tmp.append(img1) img_list = tmp if not os.path.exists('output'): os.mkdir('output') for i in range(len(img_list)): if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) else: cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
the-stack_0_23753
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =========================================================================== """generate json desc for squeeze""" from ._utils import Expander, ExpanderInfoValidator as VLD @VLD.check_attrs('axis') class Squeeze(Expander): """Squeeze expander""" def _expand(self, graph_builder): input_x = self.inputs[0] out_shape = self.infer_shape(input_x.shape, self.attrs['axis']) result = graph_builder.emit('Reshape', [input_x], attrs={'shape': out_shape}) return result @staticmethod def infer_shape(shape, axis): """infer shape for squeeze""" def squeeze_axis(shape, axis): if not axis: out_shape = [d for d in shape if d != 1] else: out_shape = [] for idx, dim in enumerate(shape): if idx not in axis: out_shape.append(dim) if not out_shape: out_shape = [1] return out_shape if isinstance(shape, (list, tuple)): if isinstance(axis, int): axis = [axis] if isinstance(axis, (list, tuple)): return squeeze_axis(shape, axis) raise ValueError("Invalid axis for Squeeze.")
the-stack_0_23754
# Copyright 2020 Bluefog Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from typing import List, Callable, Optional import atexit import contextlib import ctypes import logging import networkx import bluefog.common.util as util import bluefog.common.topology_util as topology_util logger = logging.getLogger("bluefog") logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)-15s %(levelname)s %(message)s") ch.setFormatter(formatter) logger.addHandler(ch) class BlueFogBasics(object): """Wrapper class for the basic BlueFog API.""" def __init__(self, pkg_path, *args): full_path = util.get_extension_full_path(pkg_path, *args) self._topology = None self._machine_topology = None self._MPI_LIB_CTYPES = ctypes.CDLL(full_path, mode=ctypes.RTLD_GLOBAL) self._is_topo_weighted = False self._is_machine_topo_weighted = False self.warn_timeline = False def init( self, topology_fn: Optional[Callable[[int], networkx.DiGraph]] = None, is_weighted: bool = False, ): """A function that initializes BlueFog. Args: topology_fn: A callable function that takes size as input and return networkx.DiGraph object to decide the topology. If not provided a default exponential graph (base 2) structure is called. is_weighted: If set to true, the neighbor ops like (win_update, neighbor_allreduce) will execute the weighted average instead, where the weight is the value used in topology matrix (including self). """ self._MPI_LIB_CTYPES.bluefog_init() if topology_fn: topo = topology_fn(self.size()) else: topo = topology_util.ExponentialGraph(self.size()) self.set_topology(topo, is_weighted) atexit.register(self.shutdown) def shutdown(self) -> None: """A function that shuts BlueFog down.""" self._MPI_LIB_CTYPES.bluefog_shutdown() self._topology = None self._machine_topology = None def size(self) -> int: """A function that returns the number of BlueFog processes. Returns: An integer scalar containing the number of BlueFog processes. """ size = self._MPI_LIB_CTYPES.bluefog_size() if size == -1: raise ValueError("BlueFog has not been initialized; use bf.init().") return size def local_size(self) -> int: """A function that returns the number of BlueFog processes within the node the current process is running on. Returns: An integer scalar containing the number of local BlueFog processes. """ local_size = self._MPI_LIB_CTYPES.bluefog_local_size() if local_size == -1: raise ValueError("BlueFog has not been initialized; use bf.init().") return local_size def rank(self) -> int: """A function that returns the BlueFog rank of the calling process. Returns: An integer scalar with the BlueFog rank of the calling process. """ rank = self._MPI_LIB_CTYPES.bluefog_rank() if rank == -1: raise ValueError("BlueFog has not been initialized; use bf.init().") return rank def local_rank(self) -> int: """A function that returns the local BlueFog rank of the calling process, within the node that it is running on. For example, if there are seven processes running on a node, their local ranks will be zero through six, inclusive. Returns: An integer scalar with the local BlueFog rank of the calling process. """ local_rank = self._MPI_LIB_CTYPES.bluefog_local_rank() if local_rank == -1: raise ValueError("BlueFog has not been initialized; use bf.init().") return local_rank def machine_rank(self) -> int: """A function that returns the BlueFog rank of the machine. Returns: An integer scalar with the BlueFog rank of the machine. """ # TODO(hhb) This only supports the homogenous environment now. Currently it assumes all # machines share the same local_size() assert self.is_homogeneous(), "Only supports homogeneous environment now" return self.rank() // self.local_size() def machine_size(self) -> int: """A function that returns the BlueFog size of the machine. Returns: An integer scalar with the BlueFog size of the machine. """ # TODO(hhb) This only supports the homogenous environment now. Currently it assumes all # machines share the same local_size() assert self.is_homogeneous(), "Only supports homogeneous environment now" return self.size() // self.local_size() def unified_mpi_window_model_supported(self) -> bool: """Returns a boolean value to indicate the MPI_Win model is unified or not. Unfornuately, it is a collective call. We have to create a fake win to get this information. """ is_unified = self._MPI_LIB_CTYPES.bluefog_unified_mpi_window_model_supported() if is_unified == -1: raise ValueError("BlueFog has not been initialized; use bf.init().") return is_unified == 1 def mpi_threads_supported(self) -> bool: """A function that returns a flag indicating whether MPI multi-threading is supported. If MPI multi-threading is supported, users may mix and match BlueFog usage with other MPI libraries, such as `mpi4py`. Returns: A boolean value indicating whether MPI multi-threading is supported. """ mpi_threads_supported = self._MPI_LIB_CTYPES.bluefog_mpi_threads_supported() if mpi_threads_supported == -1: raise ValueError("BlueFog has not been initialized; use bf.init().") return mpi_threads_supported def is_topo_weighted(self) -> bool: """A function that returns if the virtual topology weights are used Returns: A boolean value indicating if the topology weights are used. """ return self._is_topo_weighted def is_machine_topo_weighted(self) -> bool: """A function that returns if the virtual machine topology weights are used Returns: A boolean value indicating if the machine topology weights are used. """ return self._is_machine_topo_weighted def load_machine_topology(self) -> networkx.DiGraph: """A function that returns the virtual topology for the machine. Returns: machine_topology: networkx.DiGraph. """ return self._machine_topology def load_topology(self) -> networkx.DiGraph: """A funnction that returns the virtual topology MPI used. Returns: topology: networkx.DiGraph. """ return self._topology def in_neighbor_machine_ranks(self) -> List[int]: """Return the machine ranks of all in-neighbors. Notice: No matter self-loop is presented or not, self machine rank will not be included. Returns: in_neighbor_machine_ranks """ if self._machine_topology is None: return [] _machine_rank = self.machine_rank() in_neighbor_machine_ranks = [ r for r in self._machine_topology.predecessors(self.machine_rank()) if r != _machine_rank ] return in_neighbor_machine_ranks def in_neighbor_ranks(self) -> List[int]: """Return the ranks of all in-neighbors. Notice: No matter self-loop is presented or not, self rank will not be included. Returns: in_neighbor_ranks """ if self._topology is None: return [] _rank = self.rank() in_neighbor_ranks = [ r for r in self._topology.predecessors(self.rank()) if r != _rank ] return in_neighbor_ranks def out_neighbor_machine_ranks(self) -> List[int]: """Return the machine ranks of all out-neighbors. Notice: No matter self-loop is presented or not, self machine rank will not be included. Returns: out_neighbor_machine_ranks """ if self._machine_topology is None: return [] _machine_rank = self.machine_rank() out_neighbor_machine_ranks = [ r for r in self._machine_topology.successors(self.machine_rank()) if r != _machine_rank ] return out_neighbor_machine_ranks def out_neighbor_ranks(self) -> List[int]: """Return the ranks of all out-neighbors. Notice: No matter self-loop is presented or not, self rank will not be included. Returns: out_neighbor_ranks """ if self._topology is None: return [] _rank = self.rank() out_neighbor_ranks = [ r for r in self._topology.successors(self.rank()) if r != _rank ] return out_neighbor_ranks def set_machine_topology( self, topology: Optional[networkx.DiGraph], is_weighted: bool = False ) -> bool: """A function that sets the virtual machine topology. Args: Topo: A networkx.DiGraph object to decide the machine topology. It shall not be None. is_weighted: If set to true, hierarchical_neighbor_allreduce will execute the weighted average instead, where the weights are the value used in machine topology matrix (including self weight). Returns: A boolean value that whether machine topology is set correctly or not. Example: >>> import bluefog.torch as bf >>> from bluefog.common import topology_util >>> bf.init() >>> bf.set_machine_topology(topology_util.RingGraph(bf.machine_size())) """ if topology is None: raise ValueError("Machine topology shall not be None.") if not isinstance(topology, networkx.DiGraph): raise TypeError("Machine topology must be a networkx.DiGraph obejct.") if topology.number_of_nodes() != self.machine_size(): raise TypeError( "topology must be a networkx.DiGraph obejct with same number of nodes " "as bf.machine_size()." ) assert self.is_homogeneous(), "Only supports homogeneous environment now" if topology_util.IsTopologyEquivalent(topology, self._machine_topology): if self.local_rank() == 0: logger.debug( "Machine topology to set is the same as old one. Skip the setting." ) return True self._machine_topology = topology self._is_machine_topo_weighted = is_weighted return True def set_topology( self, topology: Optional[networkx.DiGraph] = None, is_weighted: bool = False ) -> bool: """A function that sets the virtual topology MPI used. Args: Topo: A networkx.DiGraph object to decide the topology. If not provided a default exponential graph (base 2) structure is used. is_weighted: If set to true, the win_update and neighbor_allreduce will execute the weighted average instead, where the weights are the value used in topology matrix (including self weight). Note win_get/win_put/win_accumulate do not use this weight since win_update already uses these weights. Returns: A boolean value that whether topology is set correctly or not. Example: >>> import bluefog.torch as bf >>> from bluefog.common import topology_util >>> bf.init() >>> bf.set_topology(topology_util.RingGraph(bf.size())) """ if topology is None: topology = topology_util.ExponentialGraph(size=self.size()) if self.local_rank() == 0: logger.info( "Topology is not specified. Default Exponential Two topology is used." ) if not isinstance(topology, networkx.DiGraph): raise TypeError("topology must be a networkx.DiGraph obejct.") if topology.number_of_nodes() != self.size(): raise TypeError( "topology must be a networkx.DiGraph obejct with same number of nodes as bf.size()." ) if topology_util.IsTopologyEquivalent(topology, self._topology): if self.local_rank() == 0: logger.debug( "Topology to set is the same as old one. Skip the setting." ) return True # We remove the self-rank for any cases because MPI graph_comm do not include it. destinations = sorted( [r for r in topology.successors(self.rank()) if r != self.rank()] ) sources = sorted( [r for r in topology.predecessors(self.rank()) if r != self.rank()] ) indegree = len(sources) outdegree = len(destinations) sources_type = ctypes.c_int * indegree destinations_type = ctypes.c_int * outdegree if not is_weighted: self._MPI_LIB_CTYPES.bluefog_set_topology.argtypes = [ ctypes.c_int, ctypes.POINTER(ctypes.c_int), ctypes.c_int, ctypes.POINTER(ctypes.c_int), ] ret = self._MPI_LIB_CTYPES.bluefog_set_topology( indegree, sources_type(*sources), outdegree, destinations_type(*destinations), ) else: # Here the source_weights is a vector containing weights from source, i.e., # (in-)neighbors, converted from the neighbor_weights dictionary. self_weight, neighbor_weights = topology_util.GetRecvWeights( topology, self.rank() ) source_weights = [ neighbor_weights[r] for r in sorted(neighbor_weights.keys()) ] source_weights_type = ctypes.c_float * indegree self._MPI_LIB_CTYPES.bluefog_set_topology_with_weights.argtypes = [ ctypes.c_int, ctypes.POINTER(ctypes.c_int), ctypes.c_int, ctypes.POINTER(ctypes.c_int), ctypes.c_float, ctypes.POINTER(ctypes.c_float), ] ret = self._MPI_LIB_CTYPES.bluefog_set_topology_with_weights( indegree, sources_type(*sources), outdegree, destinations_type(*destinations), self_weight, source_weights_type(*source_weights), ) if ret != 1: if self.local_rank() == 0: logger.error( "Cannot set topology correctly. Three common reasons caused this. \n" "1. Has Bluefog been initialized? use bf.init(). \n" "2. The win_create has been called. It is not allowed to change\n" " the topology after that. You can call win_free() to unregister\n" " all window object first, then set the topology. \n" "3. Make sure all previous MPI ops are done. It is not allowed to \n" " change the topology while there is undone MPI ops." ) return False self._topology = topology self._is_topo_weighted = is_weighted return True def is_homogeneous(self) -> bool: """Returns True if the cluster is homogeneous. Returns: A boolean value indicating whether every node in the cluster has same number of ranks and if it is true it also indicates the ranks are continuous in machines. """ is_homogeneous = self._MPI_LIB_CTYPES.bluefog_is_homogeneous() if is_homogeneous == -1: raise ValueError("BlueFog has not been initialized; use bf.init().") return bool(is_homogeneous) def nccl_built(self) -> bool: """Returns True if BlueFog was compiled with NCCL support. Returns: A boolean value indicating whether NCCL support was compiled. """ return bool(self._MPI_LIB_CTYPES.bluefog_nccl_built()) def set_skip_negotiate_stage(self, value: bool) -> None: """Skip the negotiate stage or not. (Default state is no skip). For some MPI implementation, it doesn't have support for multiple thread. To use the win ops, it has to turn off the negotiate the stage. After turn off the negotiate the sate the error in collective callse like size mismatch, order of tensor is randomized, may not be able to be handled properly. But it may help to boost the performance. """ self._MPI_LIB_CTYPES.bluefog_set_skip_negotiate_stage(value) def get_skip_negotiate_stage(self) -> bool: """Get the value of skip the negotiate stage. (Default state is no skip).""" return bool(self._MPI_LIB_CTYPES.bluefog_get_skip_negotiate_stage()) def timeline_start_activity(self, tensor_name: str, activity_name: str) -> bool: """A python interface to call the timeline for StartActivity. If you want to use this function, please make sure to turn on the timeline first by setting the ENV variable BLUEFOG_TIMELINE = {file_name}, or use bfrun --timeline-filename {file_name} ... Args: tensor_name (str): The activity associated tensor name. activity_name (str): The activity type. Returns: A boolean value that whether timeline is executed correctly or not. Example: >>> import bluefog.torch as bf >>> from bluefog.common.util import env >>> with env(BLUEFOG_TIMELINE="./timeline_file"): >>> bf.init() >>> bf.timeline_start_activity(tensor_name, activity_name) >>> ... >>> bf.timeline_end_activity(tensor_name) """ if self.warn_timeline: # We know timeline didn't turn on. No need to repeat it. return False self._MPI_LIB_CTYPES.bluefog_timeline.argtypes = [ ctypes.c_bool, ctypes.c_char_p, ctypes.c_char_p, ] ret = self._MPI_LIB_CTYPES.bluefog_timeline( True, tensor_name.encode("utf-8"), activity_name.encode("utf-8") ) if ret != 1 and not self.warn_timeline: logger.error( "Cannot start activity in the timeline. " "Most common reason is you didn't turn on the timeline function. " "Use bfrun --timeline-filename file_name ... or " "setting the ENV variable BLUEFOG_TIMELINE = file_name" ) self.warn_timeline = True return False return True def timeline_end_activity(self, tensor_name: str) -> bool: """A python interface to call the timeline for EndActivity. Please check comments in timeline_start_activity for more explanation. """ if self.warn_timeline: # We know timeline didn't turn on. No need to repeat it. return False self._MPI_LIB_CTYPES.bluefog_timeline.argtypes = [ ctypes.c_bool, ctypes.c_char_p, ctypes.c_char_p, ] ret = self._MPI_LIB_CTYPES.bluefog_timeline( False, tensor_name.encode("utf-8"), "".encode("utf-8") ) if ret != 1 and not self.warn_timeline: logger.error( "Cannot end activity in the timeline. Check " "Most common reason is you didn't turn on the timeline function. " "Use bfrun --timeline-filename file_name ... or " "setting the ENV variable BLUEFOG_TIMELINE = file_name" ) self.warn_timeline = True return False return True @contextlib.contextmanager def timeline_context(self, tensor_name: str, activity_name: str): """Context manager for activating timeline record. If you want to use this function, please make sure to turn on the timeline first by setting the ENV variable BLUEFOG_TIMELINE = {file_name}, or use bfrun --timeline-filename {file_name} ... Args: tensor_name (str): The activity associated tensor name. activity_name (str): The activity type. Example: >>> with bf.timeline_context(tensor_name, activity_name): >>> time.sleep(1.0) """ self.timeline_start_activity(tensor_name, activity_name) try: yield finally: self.timeline_end_activity(tensor_name) def suspend(self): """Suspend the background thread of BlueFog. It should be used under interactive python environment only. """ if not util.is_running_from_ipython: raise EnvironmentError( "This function should be used only when you are under ipython environment." ) self._MPI_LIB_CTYPES.bluefog_suspend() def resume(self): """Resume the background thread of BlueFog. It should be used under interactive python environment only. """ if not util.is_running_from_ipython: raise EnvironmentError( "This function should be used only when you are under ipython environment." ) self._MPI_LIB_CTYPES.bluefog_resume()
the-stack_0_23756
import unittest from werkzeug.exceptions import NotFound from app import create_app import os.path from shutil import copyfile from .test_client import TestClient UPLOAD_DIRECTORY = '/var/hotmaps/cm_files_uploaded' if not os.path.exists(UPLOAD_DIRECTORY): os.makedirs(UPLOAD_DIRECTORY) os.chmod(UPLOAD_DIRECTORY, 0o777) class TestAPI(unittest.TestCase): def setUp(self): self.app = create_app(os.environ.get('FLASK_CONFIG', 'development')) self.ctx = self.app.app_context() self.ctx.push() self.client = TestClient(self.app,) def tearDown(self): self.ctx.pop() def test_compute(self): raster_file_path = 'tests/data/raster_for_test.tif' # simulate copy from HTAPI to CM save_path = UPLOAD_DIRECTORY+"/raster_for_test.tif" copyfile(raster_file_path, save_path) inputs_raster_selection = {} inputs_parameter_selection = {} inputs_vector_selection = {} inputs_raster_selection["heat_tot_curr_density"] = save_path inputs_vector_selection["heating_technologies_eu28"] = {} inputs_parameter_selection["reduction_factor"] = 2 # register the calculation module a payload = {"inputs_raster_selection": inputs_raster_selection, "inputs_parameter_selection": inputs_parameter_selection, "inputs_vector_selection": inputs_vector_selection} rv, json = self.client.post('computation-module/compute/', data=payload) self.assertTrue(rv.status_code == 200)
the-stack_0_23757
#!/usr/bin/env python # -*- coding: UTF-8 -*- import logging from plot import * from cluster import * def plot(data, density_threshold, distance_threshold, auto_select_dc=False): logging.basicConfig( format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) dpcluster = DensityPeakCluster() rho, delta, nneigh = dpcluster.cluster( load_paperdata, data, density_threshold, distance_threshold, auto_select_dc=auto_select_dc) logger.info(str(len(dpcluster.ccenter)) + ' center as below') for idx, center in dpcluster.ccenter.items(): logger.info('%d %f %f' % (idx, rho[center], delta[center])) # plot_rho_delta(rho, delta) #plot to choose the threthold plot_cluster(dpcluster) if __name__ == '__main__': # plot('./data/data_in_paper/example_distances.dat', 20, 0.1) plot('./data/data_iris_flower/iris.forcluster', 40.7, 0.9, auto_select_dc=True)
the-stack_0_23758
# # pytest documentation build configuration file, created by # sphinx-quickstart on Fri Oct 8 17:54:28 2010. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. # The short X.Y version. import os import sys from _pytest import __version__ as version release = ".".join(version.split(".")[:2]) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) autodoc_member_order = "bysource" todo_include_todos = 1 # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ "pygments_pytest", "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.viewcode", "sphinx_removed_in", "sphinxcontrib_trio", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "contents" # General information about the project. project = "pytest" copyright = "2015–2019, holger krekel and pytest-dev team" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [ "links.inc", "_build", "naming20.rst", "test/*", "old_*", "*attic*", "*/attic*", "funcargs.rst", "setup.rst", "example/remoteinterp.rst", ] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- sys.path.append(os.path.abspath("_themes")) html_theme_path = ["_themes"] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "flask" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {"index_logo": None} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = "pytest documentation" # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = "pytest-%s" % release # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = "img/pytest1.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = "img/pytest1favi.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # html_sidebars = {'index': 'indexsidebar.html'} html_sidebars = { "index": [ "slim_searchbox.html", "sidebarintro.html", "globaltoc.html", "links.html", "sourcelink.html", ], "**": [ "slim_searchbox.html", "globaltoc.html", "relations.html", "links.html", "sourcelink.html", ], } # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # html_additional_pages = {'index': 'index.html'} # If false, no module index is generated. html_domain_indices = True # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "pytestdoc" # -- Options for LaTeX output -------------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ( "contents", "pytest.tex", "pytest Documentation", "holger krekel, trainer and consultant, http://merlinux.eu", "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "img/pytest1.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [("usage", "pytest", "pytest usage", ["holger krekel at merlinux eu"], 1)] # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = "pytest" epub_author = "holger krekel at merlinux eu" epub_publisher = "holger krekel at merlinux eu" epub_copyright = "2013, holger krekel et alii" # The language of the text. It defaults to the language option # or en if the language is not set. # epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. # epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. # epub_identifier = '' # A unique identification for the text. # epub_uid = '' # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. # epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. # epub_post_files = [] # A list of files that should not be packed into the epub file. # epub_exclude_files = [] # The depth of the table of contents in toc.ncx. # epub_tocdepth = 3 # Allow duplicate toc entries. # epub_tocdup = True # -- Options for texinfo output ------------------------------------------------ texinfo_documents = [ ( master_doc, "pytest", "pytest Documentation", ( "Holger Krekel@*Benjamin Peterson@*Ronny Pfannschmidt@*" "Floris Bruynooghe@*others" ), "pytest", "simple powerful testing with Python", "Programming", 1, ) ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {"python": ("https://docs.python.org/3", None)} def setup(app): # from sphinx.ext.autodoc import cut_lines # app.connect('autodoc-process-docstring', cut_lines(4, what=['module'])) app.add_object_type( "confval", "confval", objname="configuration value", indextemplate="pair: %s; configuration value", )
the-stack_0_23759
import pandas as pd import numpy as np from statistics import mode class autodataclean: ''' A.1) Automated Data Cleaning; identify invalid values and/or rows and automatically solve the problem- NAN, missing, outliers, unreliable values, out of the range, automated data input. (Your group decide a solution for the each problem!) Reference - http://pandas.pydata.org/pandas-docs/stable/missing_data.html Process - 1. Check type of column - numeric/non-numeric 2. For non-numeric - a. Replace missing and out of range by most common (mode) in dev 3. For numeric - a. Compute dev mean, median, min and max excluding outliers and unreliable values b. For automated - i. Replace NA and unreliable by mean of dev ii. Replace outliers and out of range by min or max of dev as applicable c. For human assisted - i. For NAs and unreliable values, give option of replacing by mean, median or user input value ii. For outliers and out of range values, give option of replacing by mean, median, min, max or user input Note - Replacement values are always computed on dev and replacements in val are always same as dev treatment Note - Exclude ID and target from cleaning process Note - case 1 : one file, like MBD_FA2; case 2 : multiple files, one dev and others val, test, oot etc. ''' def __init__(self, traindata, testdata = None): '''Constructor for this class''' self.traindata = pd.DataFrame(traindata) if testdata is not None: self.testdata = pd.DataFrame(testdata) else: self.testdata = None self.main() def main(self): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] idtargetlist = ['id', 'ob_target', 'ID', 'TARGET'] dev_num_auto = self.traindata.select_dtypes(include=numerics) dev_nonnum_auto = self.traindata.select_dtypes(exclude=numerics) if self.testdata is not None: val_num_auto = self.testdata.select_dtypes(include=numerics) val_nonnum_auto = self.testdata.select_dtypes(exclude=numerics) colnames_num_auto = list(dev_num_auto.columns.values) colnames_nonnum_auto = list(dev_nonnum_auto.columns.values) for names in idtargetlist: if names in colnames_num_auto: colnames_num_auto.remove(names) if names in colnames_nonnum_auto: colnames_nonnum_auto.remove(names) print("Processing non-numeric variables") for column in colnames_nonnum_auto: print("Processing variable ", column) colmode = mode(dev_nonnum_auto.loc[:, column]) dev_nonnum_auto.loc[:, column].to_replace(to_replace="", value=colmode) allvalues = np.unique(dev_nonnum_auto.loc[:, column]) if val_filename != "NA": val_nonnum_auto.loc[:, column].to_replace(to_replace="", value=colmode) for row in val_nonnum_auto.loc[:, column]: if row not in allvalues: row = colmode print("Variable ", column, "is clean") print("Processing numeric variables") for column in colnames_num_auto: print("Processing variable ", column) colmeanorig = np.mean(dev_num_auto.loc[:, column]) colstdev = np.std(dev_num_auto.loc[:, column]) temp = dev_num_auto.loc[:, column].tolist() for i in temp: if np.abs((i - colmeanorig)) > 3 * colstdev: temp.remove(i) colmean = np.mean(temp) colmedian = np.median(temp) colmin = np.min(temp) colmax = np.max(temp) dev_num_auto.loc[:, column].fillna(colmean) for row in dev_num_auto.loc[:, column]: if row < colmeanorig - 3 * colstdev: row = colmin if row > colmeanorig + 3 * colstdev: row = colmax if self.testdata is not None: val_num_auto.loc[:, column].fillna(colmean) for row in val_num_auto.loc[:, column]: if row < colmin or row < colmeanorig - 3 * colstdev: row = colmin if row > colmax or row > colmeanorig + 3 * colstdev: row = colmax print("Variable ", column, "is clean") print("Automated cleaning is complete") print("Cleaned numeric variables are available in dev_num_auto and val_num_auto") print("Cleaned non-numeric variables are available in dev_nonnum_auto and val_nonnum_auto") # dev = pd.read_csv("dev.csv") # oot = pd.read_csv("oot0.csv") # A = autodataclean(dev,oot)
the-stack_0_23760
import uvicore from uvicore.http import status from uvicore.http import Request from uvicore.auth import User from uvicore.support import module from fastapi.params import Security from fastapi.security import SecurityScopes from uvicore.support.dumper import dump, dd from uvicore.typing import Optional, Sequence, Callable, Any, List, Dict, Tuple from uvicore.http.exceptions import HTTPException, PermissionDenied, NotAuthenticated, InvalidCredentials from uvicore.contracts import UserProvider @uvicore.service() class Guard(Security): """Uvicore Auth Guard""" def __init__(self, scopes: Optional[Sequence[str]] = None, guard: str = None): # # Swap guard and scopes # if scopes is None and type(guard) == list: # scopes: Sequence[str] = guard # guard = None # Ensure scopes is a List, to allow for singles if scopes: scopes = [scopes] if isinstance(scopes, str) else list(scopes) # Do NOT apply a default guard to self.guard, let it be None # So I know its blank so I can overwrite it with a parent guard if needed self.scopes = scopes self.guard = guard # Get auth_config from app config auth_config = uvicore.config.app.auth # Set default guard if none providedGet actual guard from app config if guard is None: guard = auth_config.default # Get actual guard config if guard not in auth_config.guards: raise Exception('Guard {} not found in app config'.format(guard)) guard_config = auth_config.guards[guard].clone() # Clone becuase I add name below # Add name to guard config (its a clone, its ok) guard_config.name = guard # Get all providers from auth_config providers = auth_config.providers # Get all authenticator options from auth_config options = auth_config.options # Call parent Depends passing in the multi-middleware Authenticator super().__init__(dependency=Authenticator(guard_config, options, providers), scopes=scopes, use_cache=True) @uvicore.service() class Authenticator: def __init__(self, guard: Dict, options, providers: Dict): # Guard is the full config SuperDict from app config matching the proper guard string self.guard = guard # Authenticator Default Options self.options = options # Providers is all providers from app config self.providers = providers async def __call__(self, scopes: SecurityScopes, request: Request): #dump(self.guard) # Dict({ # 'authenticators': Dict({ # 'jwt': Dict({ # 'module': 'uvicore.auth.middleware.Jwt', # 'verify_signature': True, # 'algorithms': ['RS256'], # 'secret': # '-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnc84SDViVX8JNye2GVQZ\n' # 'ixAwG2PWXoOhkj++wGASoAXs2LN0Ue48conxf/0bgEtq6kcbLPR23SieqBZA77vc\n' # 'yulimMbzfwNczyP3FRo8wSCqRgJipTse87WItd8ga2MUCzSS8q19V4swUT4T23Su\n' # 'DiG/Ry5f1sYbvxP2kJAJMUCzVbS7STxh33h65Bj+P6JdzrCJi+yrLqg928RHjLIF\n' # 'gDy4MyFBLTI8w5u6IJi1TLm6h9lj3YqSa/qDkkIardnnZa7Xj0IJCEB9c+RD4Q7C\n' # '+jco6g2Vr9oLP8Mg3c5lZPNVzcXC67UMVk9lK+zrlfPDI/m2+9kyTc/58S9ZUTFJ\nQwIDAQAB\n-----END PUBLIC KEY-----' # }), # 'basic': Dict({ # 'module': 'uvicore.auth.middleware.Basic', # 'provider': 'users', # 'realm': 'App1' # }) # }), # 'name': 'api' # }) for authenticator in self.guard.authenticators.values(): # Get authenticator options by deep merging defaults and proper providers options = authenticator.clone() if 'options' in options: # Deep merge default options option_key = options.options if option_key not in self.options: # This is an application error, not an HTTPException raise Exception('Default options key {} not found in app config'.format(option_key)) options.defaults(self.options[option_key]) # Merge seems to do a clone too! # Merge provider into options if 'provider' in options: if options.provider not in self.providers: # This is an application error, not an HTTPException raise Exception('Provider {} not found in app config'.format(options.provider)) options.provider = self.providers[options.provider].clone() options.guard = self.guard.name #dump(options) # Dict({ # 'default_options': 'jwt', # 'module': 'uvicore.auth.middleware.Jwt', # 'provider': Dict({ # 'module': 'uvicore.auth.models.user.User', # 'method': 'userinfo', # 'model': 'uvicore.auth.models.user.User', # 'includes': ['roles', 'roles.permissions', 'groups', 'groups.roles', 'groups.roles.permissions'] # }), # 'sync': Dict({'auto_create_user': True}), # 'verify_signature': True, # 'audience': '222b06eb-85ce-472b-af30-ec09244e3bf0', # 'algorithms': ['RS256'], # 'secret': # '-----BEGIN PUBLIC KEY-----\nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnc84SDViVX8JNye2GVQZ\n' # 'ixAwG2PWXoOhkj++wGASoAXs2LN0Ue48conxf/0bgEtq6kcbLPR23SieqBZA77vc\n' # 'yulimMbzfwNczyP3FRo8wSCqRgJipTse87WItd8ga2MUCzSS8q19V4swUT4T23Su\n' # 'DiG/Ry5f1sYbvxP2kJAJMUCzVbS7STxh33h65Bj+P6JdzrCJi+yrLqg928RHjLIF\n' # 'gDy4MyFBLTI8w5u6IJi1TLm6h9lj3YqSa/qDkkIardnnZa7Xj0IJCEB9c+RD4Q7C\n' # '+jco6g2Vr9oLP8Mg3c5lZPNVzcXC67UMVk9lK+zrlfPDI/m2+9kyTc/58S9ZUTFJ\nQwIDAQAB\n-----END PUBLIC KEY-----' # }) # Import the auth middleware module middleware = module.load(options.module).object(options) # Fire the middleware __call__ callable and get the returned value value = await middleware(scopes, request) # If value is returned, auth was successful with this authenticator. Return value, stop the middleware stack. # If value is None means auth headers not found. Continue to next middleware in auth stack if value is not None: return value # If we are here, no auth middleware returned a value, meaning NOT logged in # If no value is ever returned we are not logged in. # Maybe here is the place to add an anonymous user to the request? with user.authenticated = False ??????? # NO, think about this. If a route is NOT guarded, this code will never run therefore request.user will # never exist. Would have to do global auth middleware to accomplish an always present anonymous user. # I could have a built-in hidden global middleware that adds request.user as an anonymous model? raise NotAuthenticated('MASTER STACKER') @uvicore.service() class Auth: """Base Auth middleware class""" async def retrieve_user(self, username: str, password: str, provider: Dict) -> Optional[User]: """Retrieve user from User Provider backend""" # Import our user provider defined in auth config user_provider: UserProvider = module.load(provider.module).object() # Get user from user provider and validate password # If returned user is None, validation has failed, user is disabled or user not found user = await user_provider.retrieve_by_credentials(username, password, **provider.options) # Do not throw error if no user or not validated here. We let the middleware handle that return user def validate_permissions(self, user: User, scopes: SecurityScopes) -> None: """Validate logged in users permissions again route permissions""" # Superadmin is always allowed if user.superadmin: return # Get permissions defined on this route route_permissions = scopes.scopes # If route does not specify permissions, then anyone that is authenticated can access. if not route_permissions: return # Compare users permissions with route permissions for permission in route_permissions: if permission in user.permissions: # This is an OR, if any one of these, then pass return # No matching permissinos means they are logged in, but they don't have the proper permissions. raise PermissionDenied(route_permissions) def auth_header(self, request) -> Tuple[str, str, str]: """Extract authorization header parts""" authorization = request.headers.get('Authorization') if not authorization: return (authorization, '', '') scheme, _, param = authorization.partition(' ') return authorization, scheme.lower(), param
the-stack_0_23761
import textwrap from pytype.pytd import escape from pytype.pytd import pytd from pytype.pytd import pytd_utils from pytype.pytd import visitors from pytype.pytd.parse import parser_test_base import six import unittest # All of these tests implicitly test pytd_utils.Print because # parser_test_base.AssertSourceEquals() uses pytd_utils.Print. DEFAULT_PYI = """ from typing import Any def __getattr__(name) -> Any: ... """ def pytd_src(text): return textwrap.dedent(escape.preprocess_pytd(text)) class TestVisitors(parser_test_base.ParserTest): """Tests the classes in parse/visitors.""" def test_invent_starargs_params(self): call = lambda x: tuple(f.name for f in visitors.InventStarArgParams(x)) self.assertEqual(("args", "kwargs"), call({})) self.assertEqual(("args", "kwargs"), call({"a"})) self.assertEqual(("_args", "kwargs"), call({"args"})) self.assertEqual(("args", "_kwargs"), call({"kwargs"})) self.assertEqual(("_args", "_kwargs"), call({"args", "kwargs"})) self.assertEqual(("__args", "_kwargs"), call({"args", "_args", "kwargs"})) self.assertEqual(("args", "__kwargs"), call({"kwargs", "_kwargs"})) def test_lookup_classes(self): src = textwrap.dedent(""" from typing import Union class object: pass class A: def a(self, a: A, b: B) -> Union[A, B]: raise A() raise B() class B: def b(self, a: A, b: B) -> Union[A, B]: raise A() raise B() """) tree = self.Parse(src) new_tree = visitors.LookupClasses(tree) self.AssertSourceEquals(new_tree, src) new_tree.Visit(visitors.VerifyLookup()) def test_maybe_fill_in_local_pointers(self): src = textwrap.dedent(""" from typing import Union class A: def a(self, a: A, b: B) -> Union[A, B]: raise A() raise B() """) tree = self.Parse(src) ty_a = pytd.ClassType("A") ty_a.Visit(visitors.FillInLocalPointers({"": tree})) self.assertIsNotNone(ty_a.cls) ty_b = pytd.ClassType("B") ty_b.Visit(visitors.FillInLocalPointers({"": tree})) self.assertIsNone(ty_b.cls) def test_deface_unresolved(self): builtins = self.Parse(textwrap.dedent(""" class int: pass """)) src = textwrap.dedent(""" class A(X): def a(self, a: A, b: X, c: int) -> X: raise X() def b(self) -> X[int]: ... """) expected = textwrap.dedent(""" from typing import Any class A(Any): def a(self, a: A, b: Any, c: int) -> Any: raise Any def b(self) -> Any: ... """) tree = self.Parse(src) new_tree = tree.Visit(visitors.DefaceUnresolved([tree, builtins])) new_tree.Visit(visitors.VerifyVisitor()) self.AssertSourceEquals(new_tree, expected) def test_deface_unresolved2(self): builtins = self.Parse(textwrap.dedent(""" from typing import Generic, TypeVar class int: pass T = TypeVar("T") class list(Generic[T]): pass """)) src = textwrap.dedent(""" from typing import Union class A(X): def a(self, a: A, b: X, c: int) -> X: raise X() def c(self) -> Union[list[X], int]: ... """) expected = textwrap.dedent(""" from typing import Any, Union class A(Any): def a(self, a: A, b: Any, c: int) -> Any: raise Any def c(self) -> Union[list[Any], int]: ... """) tree = self.Parse(src) new_tree = tree.Visit(visitors.DefaceUnresolved([tree, builtins])) new_tree.Visit(visitors.VerifyVisitor()) self.AssertSourceEquals(new_tree, expected) def test_replace_types(self): src = textwrap.dedent(""" from typing import Union class A: def a(self, a: Union[A, B]) -> Union[A, B]: raise A() raise B() """) expected = textwrap.dedent(""" from typing import Union class A: def a(self: A2, a: Union[A2, B]) -> Union[A2, B]: raise A2() raise B() """) tree = self.Parse(src) new_tree = tree.Visit(visitors.ReplaceTypes({"A": pytd.NamedType("A2")})) self.AssertSourceEquals(new_tree, expected) def test_superclasses_by_name(self): src = textwrap.dedent(""" class A(): pass class B(): pass class C(A): pass class D(A,B): pass class E(C,D,A): pass """) tree = self.Parse(src) data = tree.Visit(visitors.ExtractSuperClassesByName()) six.assertCountEqual(self, ("object",), data["A"]) six.assertCountEqual(self, ("object",), data["B"]) six.assertCountEqual(self, ("A",), data["C"]) six.assertCountEqual(self, ("A", "B"), data["D"]) six.assertCountEqual(self, ("A", "C", "D"), data["E"]) def test_strip_self(self): src = textwrap.dedent(""" def add(x: int, y: int) -> int: ... class A: def bar(self, x: int) -> float: ... def baz(self) -> float: ... def foo(self, x: int, y: float) -> float: ... """) expected = textwrap.dedent(""" def add(x: int, y: int) -> int: ... class A: def bar(x: int) -> float: ... def baz() -> float: ... def foo(x: int, y: float) -> float: ... """) tree = self.Parse(src) new_tree = tree.Visit(visitors.StripSelf()) self.AssertSourceEquals(new_tree, expected) def test_remove_unknown_classes(self): src = pytd_src(""" from typing import Union class `~unknown1`(): pass class `~unknown2`(): pass class A: def foobar(x: `~unknown1`, y: `~unknown2`) -> Union[`~unknown1`, int]: ... """) expected = textwrap.dedent(""" from typing import Any, Union class A: def foobar(x, y) -> Union[Any, int]: ... """) tree = self.Parse(src) tree = tree.Visit(visitors.RemoveUnknownClasses()) tree = tree.Visit(visitors.DropBuiltinPrefix()) self.AssertSourceEquals(tree, expected) def test_find_unknown_visitor(self): src = pytd_src(""" from typing import Any class object: pass class `~unknown1`(): pass class `~unknown_foobar`(): pass class `~int`(): pass class A(): def foobar(self, x: `~unknown1`) -> Any: ... class B(): def foobar(self, x: `~int`) -> Any: ... class C(): x = ... # type: `~unknown_foobar` class D(`~unknown1`): pass """) tree = self.Parse(src) tree = visitors.LookupClasses(tree) find_on = lambda x: tree.Lookup(x).Visit(visitors.RaiseIfContainsUnknown()) self.assertRaises(visitors.RaiseIfContainsUnknown.HasUnknown, find_on, "A") find_on("B") # shouldn't raise self.assertRaises(visitors.RaiseIfContainsUnknown.HasUnknown, find_on, "C") self.assertRaises(visitors.RaiseIfContainsUnknown.HasUnknown, find_on, "D") def test_in_place_lookup_external_classes(self): src1 = textwrap.dedent(""" def f1() -> bar.Bar: ... class Foo: pass """) src2 = textwrap.dedent(""" def f2() -> foo.Foo: ... class Bar: pass """) ast1 = self.Parse(src1, name="foo") ast2 = self.Parse(src2, name="bar") ast1 = ast1.Visit(visitors.LookupExternalTypes(dict(foo=ast1, bar=ast2))) ast2 = ast2.Visit(visitors.LookupExternalTypes(dict(foo=ast1, bar=ast2))) f1, = ast1.Lookup("foo.f1").signatures f2, = ast2.Lookup("bar.f2").signatures self.assertIs(ast2.Lookup("bar.Bar"), f1.return_type.cls) self.assertIs(ast1.Lookup("foo.Foo"), f2.return_type.cls) def test_lookup_constant(self): src1 = textwrap.dedent(""" Foo = ... # type: type """) src2 = textwrap.dedent(""" class Bar: bar = ... # type: foo.Foo """) ast1 = self.Parse(src1, name="foo").Visit( visitors.LookupBuiltins(self.loader.builtins)) ast2 = self.Parse(src2, name="bar") ast2 = ast2.Visit(visitors.LookupExternalTypes({"foo": ast1, "bar": ast2})) self.assertEqual(ast2.Lookup("bar.Bar").constants[0], pytd.Constant(name="bar", type=pytd.AnythingType())) def test_lookup_star_alias(self): src1 = textwrap.dedent(""" x = ... # type: int T = TypeVar("T") class A: ... def f(x: T) -> T: ... B = A """) src2 = "from foo import *" ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast2 = ast2.Visit(visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2}, self_name="bar")) self.assertEqual("bar", ast2.name) self.assertSetEqual({a.name for a in ast2.aliases}, {"bar.x", "bar.T", "bar.A", "bar.f", "bar.B"}) def test_lookup_star_alias_in_unnamed_module(self): src1 = textwrap.dedent(""" class A: ... """) src2 = "from foo import *" ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2) name = ast2.name ast2 = ast2.Visit(visitors.LookupExternalTypes( {"foo": ast1}, self_name=None)) self.assertEqual(name, ast2.name) self.assertMultiLineEqual(pytd_utils.Print(ast2), textwrap.dedent(""" import foo A = foo.A """).strip()) def test_lookup_two_star_aliases(self): src1 = "class A: ..." src2 = "class B: ..." src3 = textwrap.dedent(""" from foo import * from bar import * """) ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast3 = self.Parse(src3).Replace(name="baz").Visit(visitors.AddNamePrefix()) ast3 = ast3.Visit(visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2, "baz": ast3}, self_name="baz")) self.assertSetEqual({a.name for a in ast3.aliases}, {"baz.A", "baz.B"}) def test_lookup_two_star_aliases_with_same_class(self): src1 = "class A: ..." src2 = "class A: ..." src3 = textwrap.dedent(""" from foo import * from bar import * """) ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast3 = self.Parse(src3).Replace(name="baz").Visit(visitors.AddNamePrefix()) self.assertRaises(KeyError, ast3.Visit, visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2, "baz": ast3}, self_name="baz")) def test_lookup_star_alias_with_duplicate_class(self): src1 = "class A: ..." src2 = textwrap.dedent(""" from foo import * class A: x = ... # type: int """) ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast2 = ast2.Visit(visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2}, self_name="bar")) self.assertMultiLineEqual(pytd_utils.Print(ast2), textwrap.dedent(""" class bar.A: x: int """).strip()) def test_lookup_two_star_aliases_with_default_pyi(self): src1 = DEFAULT_PYI src2 = DEFAULT_PYI src3 = textwrap.dedent(""" from foo import * from bar import * """) ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast3 = self.Parse(src3).Replace(name="baz").Visit(visitors.AddNamePrefix()) ast3 = ast3.Visit(visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2, "baz": ast3}, self_name="baz")) self.assertMultiLineEqual(pytd_utils.Print(ast3), textwrap.dedent(""" from typing import Any def baz.__getattr__(name) -> Any: ... """).strip()) def test_lookup_star_alias_with_duplicate_getattr(self): src1 = DEFAULT_PYI src2 = textwrap.dedent(""" from typing import Any from foo import * def __getattr__(name) -> Any: ... """) ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast2 = ast2.Visit(visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2}, self_name="bar")) self.assertMultiLineEqual(pytd_utils.Print(ast2), textwrap.dedent(""" from typing import Any def bar.__getattr__(name) -> Any: ... """).strip()) def test_lookup_two_star_aliases_with_different_getattrs(self): src1 = "def __getattr__(name) -> int: ..." src2 = "def __getattr__(name) -> str: ..." src3 = textwrap.dedent(""" from foo import * from bar import * """) ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast3 = self.Parse(src3).Replace(name="baz").Visit(visitors.AddNamePrefix()) self.assertRaises(KeyError, ast3.Visit, visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2, "baz": ast3}, self_name="baz")) def test_lookup_star_alias_with_different_getattr(self): src1 = "def __getattr__(name) -> int: ..." src2 = textwrap.dedent(""" from foo import * def __getattr__(name) -> str: ... """) ast1 = self.Parse(src1).Replace(name="foo").Visit(visitors.AddNamePrefix()) ast2 = self.Parse(src2).Replace(name="bar").Visit(visitors.AddNamePrefix()) ast2 = ast2.Visit(visitors.LookupExternalTypes( {"foo": ast1, "bar": ast2}, self_name="bar")) self.assertMultiLineEqual(pytd_utils.Print(ast2), textwrap.dedent(""" def bar.__getattr__(name) -> str: ... """).strip()) def test_collect_dependencies(self): src = textwrap.dedent(""" from typing import Union l = ... # type: list[Union[int, baz.BigInt]] def f1() -> bar.Bar: ... def f2() -> foo.bar.Baz: ... """) deps = visitors.CollectDependencies() self.Parse(src).Visit(deps) six.assertCountEqual(self, {"baz", "bar", "foo.bar"}, deps.dependencies) def test_expand(self): src = textwrap.dedent(""" from typing import Union def foo(a: Union[int, float], z: Union[complex, str], u: bool) -> file: ... def bar(a: int) -> Union[str, unicode]: ... """) new_src = textwrap.dedent(""" from typing import Union def foo(a: int, z: complex, u: bool) -> file: ... def foo(a: int, z: str, u: bool) -> file: ... def foo(a: float, z: complex, u: bool) -> file: ... def foo(a: float, z: str, u: bool) -> file: ... def bar(a: int) -> Union[str, unicode]: ... """) self.AssertSourceEquals( self.ApplyVisitorToString(src, visitors.ExpandSignatures()), new_src) def test_print_imports(self): src = textwrap.dedent(""" from typing import Any, List, Tuple, Union def f(x: Union[int, slice]) -> List[Any]: ... def g(x: foo.C.C2) -> None: ... """) expected = textwrap.dedent(""" import foo.C from typing import Any, List, Union def f(x: Union[int, slice]) -> List[Any]: ... def g(x: foo.C.C2) -> None: ... """).strip() tree = self.Parse(src) res = pytd_utils.Print(tree) self.AssertSourceEquals(res, src) self.assertMultiLineEqual(res, expected) def test_print_imports_named_type(self): # Can't get tree by parsing so build explicitly node = pytd.Constant("x", pytd.NamedType("typing.List")) tree = pytd_utils.CreateModule(name=None, constants=(node,)) expected_src = textwrap.dedent(""" from typing import List x: List """).strip() res = pytd_utils.Print(tree) self.assertMultiLineEqual(res, expected_src) def test_print_imports_ignores_existing(self): src = "from foo import b" tree = self.Parse(src) res = pytd_utils.Print(tree) self.assertMultiLineEqual(res, src) @unittest.skip("depended on `or`") def test_print_union_name_conflict(self): src = textwrap.dedent(""" class Union: ... def g(x: Union) -> Union[int, float]: ... """) tree = self.Parse(src) res = pytd_utils.Print(tree) self.AssertSourceEquals(res, src) def test_adjust_type_parameters(self): ast = self.Parse(""" from typing import Union T = TypeVar("T") T2 = TypeVar("T2") def f(x: T) -> T: ... class A(Generic[T]): def a(self, x: T2) -> None: self = A[Union[T, T2]] """) f = ast.Lookup("f") sig, = f.signatures p_x, = sig.params self.assertEqual(sig.template, (pytd.TemplateItem(pytd.TypeParameter("T", scope="f")),)) self.assertEqual(p_x.type, pytd.TypeParameter("T", scope="f")) cls = ast.Lookup("A") f_cls, = cls.methods sig_cls, = f_cls.signatures p_self, p_x_cls = sig_cls.params self.assertEqual(cls.template, (pytd.TemplateItem(pytd.TypeParameter("T", scope="A")),)) self.assertEqual(sig_cls.template, (pytd.TemplateItem( pytd.TypeParameter("T2", scope="A.a")),)) self.assertEqual(p_self.type.parameters, (pytd.TypeParameter("T", scope="A"),)) self.assertEqual(p_x_cls.type, pytd.TypeParameter("T2", scope="A.a")) def test_adjust_type_parameters_with_builtins(self): ast = self.ParseWithBuiltins(""" T = TypeVar("T") K = TypeVar("K") V = TypeVar("V") class Foo(List[int]): pass class Bar(Dict[T, int]): pass class Baz(Generic[K, V]): pass class Qux(Baz[str, int]): pass """) foo = ast.Lookup("Foo") bar = ast.Lookup("Bar") qux = ast.Lookup("Qux") foo_parent, = foo.parents bar_parent, = bar.parents qux_parent, = qux.parents # Expected: # Class(Foo, parent=GenericType(List, parameters=(int,)), template=()) # Class(Bar, parent=GenericType(Dict, parameters=(T, int)), template=(T)) # Class(Qux, parent=GenericType(Baz, parameters=(str, int)), template=()) self.assertEqual((pytd.ClassType("int"),), foo_parent.parameters) self.assertEqual((), foo.template) self.assertEqual( (pytd.TypeParameter("T", scope="Bar"), pytd.ClassType("int")), bar_parent.parameters) self.assertEqual( (pytd.TemplateItem(pytd.TypeParameter("T", scope="Bar")),), bar.template) self.assertEqual((pytd.ClassType("str"), pytd.ClassType("int")), qux_parent.parameters) self.assertEqual((), qux.template) def test_adjust_type_parameters_with_duplicates(self): ast = self.ParseWithBuiltins(""" T = TypeVar("T") class A(Dict[T, T], Generic[T]): pass """) a = ast.Lookup("A") self.assertEqual( (pytd.TemplateItem(pytd.TypeParameter("T", (), None, "A")),), a.template) def test_adjust_type_parameters_with_duplicates_in_generic(self): src = textwrap.dedent(""" T = TypeVar("T") class A(Generic[T, T]): pass """) self.assertRaises(visitors.ContainerError, lambda: self.Parse(src)) def test_verify_containers(self): ast1 = self.ParseWithBuiltins(""" from typing import SupportsInt, TypeVar T = TypeVar("T") class Foo(SupportsInt[T]): pass """) ast2 = self.ParseWithBuiltins(""" from typing import SupportsInt class Foo(SupportsInt[int]): pass """) ast3 = self.ParseWithBuiltins(""" from typing import Generic class Foo(Generic[int]): pass """) ast4 = self.ParseWithBuiltins(""" from typing import List class Foo(List[int, str]): pass """) self.assertRaises(visitors.ContainerError, lambda: ast1.Visit(visitors.VerifyContainers())) self.assertRaises(visitors.ContainerError, lambda: ast2.Visit(visitors.VerifyContainers())) self.assertRaises(visitors.ContainerError, lambda: ast3.Visit(visitors.VerifyContainers())) self.assertRaises(visitors.ContainerError, lambda: ast4.Visit(visitors.VerifyContainers())) def test_clear_class_pointers(self): cls = pytd.Class("foo", None, (), (), (), (), (), None, ()) t = pytd.ClassType("foo", cls) t = t.Visit(visitors.ClearClassPointers()) self.assertIsNone(t.cls) def test_expand_compatible_builtins(self): src = textwrap.dedent(""" from typing import Tuple, Union, TypeVar T = TypeVar('T', float, bool) def f1(a: float) -> None: ... def f2() -> float: ... def f3(a: bool) -> None: ... def f4() -> bool: ... def f5(a: Union[bool, int]) -> None: ... def f6(a: Tuple[bool, int]) -> None: ... def f7(x: T) -> T: ... """) expected = textwrap.dedent(""" from typing import Tuple, TypeVar, Union T = TypeVar('T', float, bool) def f1(a: Union[float, int]) -> None: ... def f2() -> float: ... def f3(a: Union[bool, None]) -> None: ... def f4() -> bool: ... def f5(a: Union[bool, None, int]) -> None: ... def f6(a: Tuple[Union[bool, None], int]) -> None: ... def f7(x: T) -> T: ... """) src_tree, expected_tree = ( self.Parse(s).Visit(visitors.LookupBuiltins(self.loader.builtins)) for s in (src, expected)) new_tree = src_tree.Visit(visitors.ExpandCompatibleBuiltins( self.loader.builtins)) self.AssertSourceEquals(new_tree, expected_tree) def test_add_name_prefix(self): src = textwrap.dedent(""" from typing import TypeVar def f(a: T) -> T: ... T = TypeVar("T") class X(Generic[T]): pass """) tree = self.Parse(src) self.assertIsNone(tree.Lookup("T").scope) self.assertEqual("X", tree.Lookup("X").template[0].type_param.scope) tree = tree.Replace(name="foo").Visit(visitors.AddNamePrefix()) self.assertIsNotNone(tree.Lookup("foo.f")) self.assertIsNotNone(tree.Lookup("foo.X")) self.assertEqual("foo", tree.Lookup("foo.T").scope) self.assertEqual("foo.X", tree.Lookup("foo.X").template[0].type_param.scope) def test_add_name_prefix_twice(self): src = textwrap.dedent(""" from typing import Any, TypeVar x = ... # type: Any T = TypeVar("T") class X(Generic[T]): ... """) tree = self.Parse(src) tree = tree.Replace(name="foo").Visit(visitors.AddNamePrefix()) tree = tree.Replace(name="foo").Visit(visitors.AddNamePrefix()) self.assertIsNotNone(tree.Lookup("foo.foo.x")) self.assertEqual("foo.foo", tree.Lookup("foo.foo.T").scope) self.assertEqual("foo.foo.X", tree.Lookup("foo.foo.X").template[0].type_param.scope) def test_add_name_prefix_on_class_type(self): src = textwrap.dedent(""" x = ... # type: y class Y: ... """) tree = self.Parse(src) x = tree.Lookup("x") x = x.Replace(type=pytd.ClassType("Y")) tree = tree.Replace(constants=(x,), name="foo") tree = tree.Visit(visitors.AddNamePrefix()) self.assertEqual("foo.Y", tree.Lookup("foo.x").type.name) def test_add_name_prefix_on_nested_class_alias(self): src = textwrap.dedent(""" class A: class B: class C: ... D = A.B.C """) expected = textwrap.dedent(""" from typing import Type class foo.A: class foo.A.B: class foo.A.B.C: ... D: Type[foo.A.B.C] """).strip() self.assertMultiLineEqual(expected, pytd_utils.Print( self.Parse(src).Replace(name="foo").Visit(visitors.AddNamePrefix()))) def test_add_name_prefix_on_nested_class_outside_ref(self): src = textwrap.dedent(""" class A: class B: ... b: A.B C = A.B def f(x: A.B) -> A.B: ... class D: b: A.B def f(self, x: A.B) -> A.B: ... """) expected = textwrap.dedent(""" from typing import Type foo.b: foo.A.B foo.C: Type[foo.A.B] class foo.A: class foo.A.B: ... class foo.D: b: foo.A.B def f(self, x: foo.A.B) -> foo.A.B: ... def foo.f(x: foo.A.B) -> foo.A.B: ... """).strip() self.assertMultiLineEqual(expected, pytd_utils.Print( self.Parse(src).Replace(name="foo").Visit(visitors.AddNamePrefix()))) def test_add_name_prefix_on_nested_class_method(self): src = textwrap.dedent(""" class A: class B: def copy(self) -> A.B: ... """) expected = textwrap.dedent(""" class foo.A: class foo.A.B: def copy(self) -> foo.A.B: ... """).strip() self.assertMultiLineEqual(expected, pytd_utils.Print( self.Parse(src).Replace(name="foo").Visit(visitors.AddNamePrefix()))) def test_print_merge_types(self): src = textwrap.dedent(""" from typing import Union def a(a: float) -> int: ... def b(a: Union[int, float]) -> int: ... def c(a: object) -> Union[float, int]: ... def d(a: float) -> int: ... def e(a: Union[bool, None]) -> Union[bool, None]: ... """) expected = textwrap.dedent(""" from typing import Optional, Union def a(a: float) -> int: ... def b(a: float) -> int: ... def c(a: object) -> Union[float, int]: ... def d(a: float) -> int: ... def e(a: bool) -> Optional[bool]: ... """) self.assertMultiLineEqual(expected.strip(), pytd_utils.Print(self.ToAST(src)).strip()) def test_print_heterogeneous_tuple(self): t = pytd.TupleType(pytd.NamedType("tuple"), (pytd.NamedType("str"), pytd.NamedType("float"))) self.assertEqual("Tuple[str, float]", pytd_utils.Print(t)) def test_verify_heterogeneous_tuple(self): # Error: does not inherit from Generic base = pytd.ClassType("tuple") base.cls = pytd.Class("tuple", None, (), (), (), (), (), None, ()) t1 = pytd.TupleType(base, (pytd.NamedType("str"), pytd.NamedType("float"))) self.assertRaises(visitors.ContainerError, lambda: t1.Visit(visitors.VerifyContainers())) # Error: Generic[str, float] gen = pytd.ClassType("typing.Generic") gen.cls = pytd.Class("typing.Generic", None, (), (), (), (), (), None, ()) t2 = pytd.TupleType(gen, (pytd.NamedType("str"), pytd.NamedType("float"))) self.assertRaises(visitors.ContainerError, lambda: t2.Visit(visitors.VerifyContainers())) # Okay param = pytd.TypeParameter("T") parent = pytd.GenericType(gen, (param,)) base.cls = pytd.Class( "tuple", None, (parent,), (), (), (), (), None, (pytd.TemplateItem(param),)) t3 = pytd.TupleType(base, (pytd.NamedType("str"), pytd.NamedType("float"))) t3.Visit(visitors.VerifyContainers()) def test_typevar_value_conflict(self): # Conflicting values for _T. ast = self.ParseWithBuiltins(""" from typing import List class A(List[int], List[str]): ... """) self.assertRaises(visitors.ContainerError, lambda: ast.Visit(visitors.VerifyContainers())) def test_typevar_value_conflict_hidden(self): # Conflicting value for _T hidden in MRO. ast = self.ParseWithBuiltins(""" from typing import List class A(List[int]): ... class B(A, List[str]): ... """) self.assertRaises(visitors.ContainerError, lambda: ast.Visit(visitors.VerifyContainers())) def test_typevar_value_conflict_related_containers(self): # List inherits from Sequence, so they share a type parameter. ast = self.ParseWithBuiltins(""" from typing import List, Sequence class A(List[int], Sequence[str]): ... """) self.assertRaises(visitors.ContainerError, lambda: ast.Visit(visitors.VerifyContainers())) def test_typevar_value_no_conflict(self): # Not an error if the containers are unrelated, even if they use the same # type parameter name. ast = self.ParseWithBuiltins(""" from typing import ContextManager, SupportsAbs class Foo(SupportsAbs[float], ContextManager[Foo]): ... """) ast.Visit(visitors.VerifyContainers()) def test_typevar_value_consistency(self): # Type renaming makes all type parameters represent the same type `T1`. ast = self.ParseWithBuiltins(""" from typing import Generic, TypeVar T1 = TypeVar("T1") T2 = TypeVar("T2") T3 = TypeVar("T3") T4 = TypeVar("T4") T5 = TypeVar("T5") class A(Generic[T1]): ... class B1(A[T2]): ... class B2(A[T3]): ... class C(B1[T4], B2[T5]): ... class D(C[str, str], A[str]): ... """) ast.Visit(visitors.VerifyContainers()) def test_typevar_value_and_alias_conflict(self): ast = self.ParseWithBuiltins(""" from typing import Generic, TypeVar T = TypeVar("T") class A(Generic[T]): ... class B(A[int], A[T]): ... """) self.assertRaises(visitors.ContainerError, lambda: ast.Visit(visitors.VerifyContainers())) def test_typevar_alias_and_value_conflict(self): ast = self.ParseWithBuiltins(""" from typing import Generic, TypeVar T = TypeVar("T") class A(Generic[T]): ... class B(A[T], A[int]): ... """) self.assertRaises(visitors.ContainerError, lambda: ast.Visit(visitors.VerifyContainers())) def test_verify_container_with_mro_error(self): # Make sure we don't crash. ast = self.ParseWithBuiltins(""" from typing import List class A(List[str]): ... class B(List[str], A): ... """) ast.Visit(visitors.VerifyContainers()) def test_alias_printing(self): a = pytd.Alias("MyList", pytd.GenericType( pytd.NamedType("typing.List"), (pytd.AnythingType(),))) ty = pytd_utils.CreateModule("test", aliases=(a,)) expected = textwrap.dedent(""" from typing import Any, List MyList = List[Any]""") self.assertMultiLineEqual(expected.strip(), pytd_utils.Print(ty).strip()) def test_print_none_union(self): src = textwrap.dedent(""" from typing import Union def f(x: Union[str, None]) -> None: ... def g(x: Union[str, int, None]) -> None: ... def h(x: Union[None]) -> None: ... """) expected = textwrap.dedent(""" from typing import Optional, Union def f(x: Optional[str]) -> None: ... def g(x: Optional[Union[str, int]]) -> None: ... def h(x: None) -> None: ... """) self.assertMultiLineEqual(expected.strip(), pytd_utils.Print(self.ToAST(src)).strip()) def test_lookup_typing_class(self): node = visitors.LookupClasses(pytd.NamedType("typing.Sequence"), self.loader.concat_all()) assert node.cls def test_create_type_parameters_from_unknowns(self): src = pytd_src(""" from typing import Dict def f(x: `~unknown1`) -> `~unknown1`: ... def g(x: `~unknown2`, y: `~unknown2`) -> None: ... def h(x: `~unknown3`) -> None: ... def i(x: Dict[`~unknown4`, `~unknown4`]) -> None: ... # Should not be changed class `~unknown5`: def __add__(self, x: `~unknown6`) -> `~unknown6`: ... def `~f`(x: `~unknown7`) -> `~unknown7`: ... """) expected = pytd_src(""" from typing import Dict _T0 = TypeVar('_T0') def f(x: _T0) -> _T0: ... def g(x: _T0, y: _T0) -> None: ... def h(x: `~unknown3`) -> None: ... def i(x: Dict[_T0, _T0]) -> None: ... class `~unknown5`: def __add__(self, x: `~unknown6`) -> `~unknown6`: ... def `~f`(x: `~unknown7`) -> `~unknown7`: ... """) ast1 = self.Parse(src) ast1 = ast1.Visit(visitors.CreateTypeParametersForSignatures()) self.AssertSourceEquals(ast1, expected) @unittest.skip("We no longer support redefining TypeVar") def test_redefine_typevar(self): src = pytd_src(""" def f(x: `~unknown1`) -> `~unknown1`: ... class `TypeVar`: ... """) ast = self.Parse(src).Visit(visitors.CreateTypeParametersForSignatures()) self.assertMultiLineEqual(pytd_utils.Print(ast), textwrap.dedent(""" import typing _T0 = TypeVar('_T0') class `TypeVar`: ... def f(x: _T0) -> _T0: ...""").strip()) def test_create_type_parameters_for_new(self): src = textwrap.dedent(""" class Foo: def __new__(cls: Type[Foo]) -> Foo: ... class Bar: def __new__(cls: Type[Bar], x, y, z) -> Bar: ... """) ast = self.Parse(src).Visit(visitors.CreateTypeParametersForSignatures()) self.assertMultiLineEqual(pytd_utils.Print(ast), textwrap.dedent(""" from typing import TypeVar _TBar = TypeVar('_TBar', bound=Bar) _TFoo = TypeVar('_TFoo', bound=Foo) class Foo: def __new__(cls: Type[_TFoo]) -> _TFoo: ... class Bar: def __new__(cls: Type[_TBar], x, y, z) -> _TBar: ... """).strip()) def test_keep_custom_new(self): src = textwrap.dedent(""" class Foo: def __new__(cls: Type[X]) -> X: ... class Bar: def __new__(cls, x: Type[Bar]) -> Bar: ... """).strip() ast = self.Parse(src).Visit(visitors.CreateTypeParametersForSignatures()) self.assertMultiLineEqual(pytd_utils.Print(ast), src) def test_print_type_parameter_bound(self): src = textwrap.dedent(""" from typing import TypeVar T = TypeVar("T", bound=str) """) self.assertMultiLineEqual(pytd_utils.Print(self.Parse(src)), textwrap.dedent(""" from typing import TypeVar T = TypeVar('T', bound=str)""").lstrip()) def test_print_cls(self): src = textwrap.dedent(""" class A: def __new__(cls: Type[A]) -> A: ... """) self.assertMultiLineEqual(pytd_utils.Print(self.Parse(src)), textwrap.dedent(""" class A: def __new__(cls) -> A: ... """).strip()) def test_print_no_return(self): src = textwrap.dedent(""" def f() -> nothing: ... """) self.assertMultiLineEqual(pytd_utils.Print(self.Parse(src)), textwrap.dedent(""" from typing import NoReturn def f() -> NoReturn: ...""").lstrip()) def test_print_multiline_signature(self): src = textwrap.dedent(""" def f(x: int, y: str, z: bool) -> list[str]: pass """) self.assertMultiLineEqual( pytd_utils.Print(self.Parse(src), multiline_args=True), textwrap.dedent(""" from typing import List def f( x: int, y: str, z: bool ) -> List[str]: ... """).strip()) def test_rename_builtins_prefix(self): """__builtin__.foo should get rewritten to builtins.foo and then to foo.""" src = textwrap.dedent(""" import __builtin__ class MyError(__builtin__.KeyError): ... """) self.assertMultiLineEqual(pytd_utils.Print(self.Parse(src)), "class MyError(KeyError): ...") class ReplaceModulesWithAnyTest(unittest.TestCase): def test_any_replacement(self): class_type_match = pytd.ClassType("match.foo") named_type_match = pytd.NamedType("match.bar") class_type_no_match = pytd.ClassType("match_no.foo") named_type_no_match = pytd.NamedType("match_no.bar") generic_type_match = pytd.GenericType(class_type_match, ()) generic_type_no_match = pytd.GenericType(class_type_no_match, ()) visitor = visitors.ReplaceModulesWithAny(["match."]) self.assertEqual(class_type_no_match, class_type_no_match.Visit(visitor)) self.assertEqual(named_type_no_match, named_type_no_match.Visit(visitor)) self.assertEqual(generic_type_no_match, generic_type_no_match.Visit(visitor)) self.assertEqual(pytd.AnythingType, class_type_match.Visit(visitor).__class__) self.assertEqual(pytd.AnythingType, named_type_match.Visit(visitor).__class__) self.assertEqual(pytd.AnythingType, generic_type_match.Visit(visitor).__class__) class ReplaceUnionsWithAnyTest(unittest.TestCase): def test_any_replacement(self): union = pytd.UnionType((pytd.NamedType("a"), pytd.NamedType("b"))) self.assertEqual( union.Visit(visitors.ReplaceUnionsWithAny()), pytd.AnythingType()) if __name__ == "__main__": unittest.main()
the-stack_0_23762
from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.exceptions import NotFittedError from sklearn.metrics import confusion_matrix import tensorflow as tf import numpy as np import random from dataset_wave import Dataset from alsNetHistory import AlsNetHistory import os import sys BASE_DIR = os.path.dirname(__file__) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, '../utils')) import tf_util from pointnet_util import pointnet_sa_module, pointnet_fp_module, pointnet_sa_module_2D def simple_loss(labels, logits): return tf.losses.sparse_softmax_cross_entropy(labels, logits, scope='loss') def fp_high_loss(labels, logits, factor=100): #weights = [tf.where(tf.logical_and(labels != 2, tf.argmax(logits) == 2), factor, 1)] weights = tf.where(labels == 0, 5, 1) weights = tf.where(labels == 1, 1, weights) weights = tf.where(labels == 2, 10, weights) weights = tf.where(labels == 3, 200, weights) weights = tf.where(labels == 4, 200, weights) weights = tf.where(labels == 5, 200, weights) classify_loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits, scope='loss', weights=weights) return classify_loss class AlsNetContainer(BaseEstimator, ClassifierMixin): def __init__(self, output_base, num_classes, num_feat, num_points, learning_rate=0.1, dropout=0.5, activation_fn=tf.nn.relu, optimizer_cls=tf.train.AdamOptimizer, loss_fn=simple_loss, initalizer=None, arch=None, score_sample=1): self.output_dir = output_base self.num_classes = num_classes self.num_feat = num_feat self.num_points = num_points self.learning_rate = learning_rate self.dropout = dropout self.activation_fn = activation_fn self.optimizer_cls = optimizer_cls self.loss_fn = loss_fn self.initalizer = initalizer self.arch = arch self.score_sample=score_sample self._session = None self._graph = None self._config = tf.ConfigProto() self._config.gpu_options.allow_growth = True self._config.allow_soft_placement = False self._config.log_device_placement = False self.savefiles = True self._train_points_seen = 0 self.train_history = AlsNetHistory() self.eval_history = AlsNetHistory() def _build_graph(self): """ Build the graph :return: Nothing """ # define placeholders # input points points_in = tf.placeholder(tf.float32, shape=(1, self.num_points, 3), name='points_in') waves_in = tf.placeholder(tf.float32, shape=(1, self.num_points, self.num_feat), name='points_in') # reference labels labels_ref = tf.placeholder(tf.int64, shape=(1, self.num_points), name='labels_ref') # training flag is_training = tf.placeholder(tf.bool, shape=(), name='is_training') # create network logits = self._dnn(points_in, is_training) # get loss loss = self.loss_fn(labels_ref, logits) # create optimizer optimizer = self.optimizer_cls(learning_rate=self.learning_rate) # set operations train_op = optimizer.minimize(loss, name='train') softmax_op = tf.nn.softmax(logits, name='softmax') # initalize variables init_op = tf.global_variables_initializer() saver = tf.train.Saver() # Make important vars/ops availiable instance-wide self._points_in = points_in self._labels_ref = labels_ref self._is_training = is_training self._logits = logits self._loss = loss self._train_op = train_op self._softmax_op = softmax_op self._init_op = init_op self._saver = saver def _dnn(self, points_in, is_training): """ Central definition of the deep neural network: creates the sa and fp layers and handles dropout. :param points_in: tensor (batch x num_points x (3+num_feat)). input points (x,y,z,attr...) :param is_training: bool. :return: last layer of net """ with tf.variable_scope('dnn'), tf.device('/gpu:0'): ln_xyz = [tf.slice(points_in, [0, 0, 0], [-1, -1, 3])] # point coordinates ln_feat_in = [tf.slice(points_in, [0, 0, 3], [-1, -1, -1])] # point attributes ln_feat = [tf.slice(points_in, [0, 0, 3], [-1, -1, -1])] # point attributes ln_wave_in = [tf.slice(waves_in, [0, 0, 3], [-1, -1, -1])] # point attributes ln_wave = [tf.slice(waves_in, [0, 0, 3], [-1, -1, -1])] # point attributes if self.savefiles: self._ln_xyz = ln_xyz self._ln_feat_in = ln_feat_in self._ln_feat = ln_feat for depth, step_dict in enumerate(self.arch): # set abstraction xyz, feat = self._pointnet_sa(step_dict, ln_xyz[depth], ln_feat[depth], is_training, 'sa_layer_%d' % (depth + 1)) ln_xyz.append(xyz) ln_feat.append(feat) ln_feat_in.append(feat) for depth, step_dict in enumerate(reversed(self.arch)): # feature propagation depth = len(self.arch) - depth feat = self._pointnet_fp(step_dict, ln_xyz[depth-1], ln_xyz[depth], ln_feat[depth-1], ln_feat[depth], is_training, 'fp_layer_%d' % (depth - 1)) ln_feat[depth - 1] = feat l0_feats = ln_feat[0] net = tf_util.conv1d(l0_feats, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=None) net = tf_util.dropout(net, keep_prob=(1-self.dropout), is_training=is_training, scope='dp1') net = tf_util.conv1d(net, self.num_classes, 1, padding='VALID', activation_fn=None, scope='fc2', name='net') return net def _pointnet_sa(self, arch_dict, xyz, feat, is_training, scope=""): """ PointNet Set Abstraction layer (Qi et al. 2017) :param arch_dict: dictionary describing the architecture of this layer :param xyz: Tensor (batch x num_points x 3). coordinate triplets :param feat: Tensor (batch x num_points x num_feat). features for each point :param scope: name for the layers :return: xyz and features of the superpoint layer """ li_xyz, li_feats, li_indices = pointnet_sa_module_2D(xyz, feat, npoint=arch_dict['npoint'], radius=arch_dict['radius'], nsample=arch_dict['nsample'], mlp=arch_dict['mlp'], pooling=arch_dict['pooling'], mlp2=arch_dict['mlp2'], group_all=False, is_training=is_training, bn_decay=None, scope=scope) return li_xyz, li_feats def _pointnet_fp(self, arch_dict, xyz_to, xyz_from, feat_to, feat_from, is_training, scope=""): """ PointNet Feature Propagation layer (Qi et al. 2017) :param arch_dict: dictionary describing the architecture of this layer :param xyz_to: Tensor (batch x num_points x 3). coordinate triplets :param xyz_from: Tensor (batch x num_points x 3). coordinate triplets :param feat_to: Tensor (batch x num_points x num_feat). features for each point :param feat_from: Tensor (batch x num_points x num_feat). features for each point :param scope: name for the layers :return: features interpolated to the next layer """ li_feats = pointnet_fp_module(xyz_to, xyz_from, feat_to, feat_from, arch_dict['reverse_mlp'], is_training, bn_decay=None, scope=scope) return li_feats def close_session(self): if self._session: self._session.close() def fit_file(self, filenames_in, new_session=True, **kwargs): if new_session or self._graph is None: self.close_session() self._train_points_seen = 0 self._graph = tf.Graph() with self._graph.as_default(): self._build_graph() self._session = tf.Session(graph=self._graph, config=self._config) with self._session.as_default() as sess: sess.run(self._init_op) for filename in filenames_in: ds = Dataset(filename) self.fit_one_epoch(ds.points_and_features, ds.labels) return self def fit(self, datasets, new_session=True): if new_session or self._graph is None: self.close_session() self._train_points_seen = 0 self._graph = tf.Graph() with self._graph.as_default(): self._build_graph() self._session = tf.Session(graph=self._graph, config=self._config) with self._session.as_default() as sess: sess.run(self._init_op) for ds in datasets: points_in_single_ds, labels_single_ds = ds.points_and_features, ds.labels self.fit_one_epoch(points_in_single_ds, labels_single_ds) ds.unload() def fit_one_epoch(self, points_in, labels): with self._session.as_default() as sess: points_in = np.expand_dims(points_in, 0) labels = np.expand_dims(labels, 0) train, loss, class_prob = sess.run([self._train_op, self._loss, self._softmax_op], feed_dict={self._points_in: points_in, self._labels_ref: labels, self._is_training: True}) new_classes = np.argmax(class_prob, axis=2) cm = confusion_matrix(labels[0], new_classes[0], range(self.num_classes)) self._train_points_seen += len(labels[0]) *1e-6 self.train_history.add_history_step(cm, self._train_points_seen, loss) def predict_probability(self, points_in): if not self._session: raise NotFittedError("This %s instance is not fitted yet" % self.__class__.__name__) with self._session.as_default() as sess: points_in = np.expand_dims(points_in, 0) softmax, feat, feat_in, xyz = sess.run((self._softmax_op, self._ln_feat, self._ln_feat_in, self._ln_xyz), feed_dict={self._points_in: points_in, self._is_training: False}) #if self.savefiles: # for level, x in enumerate(xyz): # print(xyz[level][0], feat[level][0]) # print(xyz[level][0].shape, feat[level][0].shape) # np.savetxt(os.path.join(self.output_dir, 'xyz%i.xyz' % level), np.hstack((xyz[level][0], feat[level][0]))) # np.savetxt(os.path.join(self.output_dir, 'xyz%i_in.xyz' % level), np.hstack((xyz[level][0], feat_in[level][0]))) return softmax def predict_one_epoch(self, points_in): class_indices = np.argmax(self.predict_probability(points_in), axis=2) return class_indices def predict(self, points_in_mult): results = [] for points_in in points_in_mult: pred_res = self.predict_one_epoch(points_in) results.append(pred_res[0]) return results def _get_model_params(self): """Get all variable values (used for early stopping, faster than saving to disk)""" with self._graph.as_default(): gvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) return {gvar.op.name: value for gvar, value in zip(gvars, self._session.run(gvars))} def _restore_model_params(self, model_params): """Set all variables to the given values (for early stopping, faster than loading from disk)""" gvar_names = list(model_params.keys()) assign_ops = {gvar_name: self._graph.get_operation_by_name(gvar_name + "/Assign") for gvar_name in gvar_names} init_values = {gvar_name: assign_op.inputs[1] for gvar_name, assign_op in assign_ops.items()} feed_dict = {init_values[gvar_name]: model_params[gvar_name] for gvar_name in gvar_names} self._session.run(assign_ops, feed_dict=feed_dict) def test_single(self, file_in, save_to=None, save_prob=False, unload=True): if isinstance(file_in, Dataset): ds = file_in else: print(file_in) ds = Dataset(file_in) probs = self.predict_probability(ds.points_and_features) new_classes = np.argmax(probs, axis=2) if save_to: Dataset.Save(save_to, ds.points_and_features, ds.names, ds.labels, new_classes[0], probs[0] if save_prob else None) cm = confusion_matrix(ds.labels, new_classes[0], range(self.num_classes)) self.eval_history.add_history_step(cm, self._train_points_seen, 0) if unload: ds.unload() return np.count_nonzero(ds.labels == new_classes[0]) / self.num_points def save_model(self, path): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) self._saver.save(self._session, path) def load_model(self, path): if self._graph is None or self._session is None: self.close_session() self._train_points_seen = 0 self._graph = tf.Graph() with self._graph.as_default(): self._build_graph() self._session = tf.Session(graph=self._graph, config=self._config) with self._session.as_default() as sess: self._saver.restore(sess, path) def score(self, ds, sample_weight=None): from sklearn.metrics import accuracy_score try: samples = random.sample(ds, self.score_sample) except ValueError: # too few samples --> take whatever we have samples = ds scores = [] for sample in samples: X = sample.points_and_features y = sample.labels score = accuracy_score(np.array(y), np.array(self.predict_one_epoch(X)[0]), sample_weight=sample_weight) print("Current Accuracy score: %s" % score) scores.append(score) sample.unload() return np.mean(scores)
the-stack_0_23766
# Copyright (c) 2011 Openstack, LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Least Cost Scheduler is a mechanism for choosing which host machines to provision a set of resources to. The input of the least-cost-scheduler is a set of objective-functions, called the 'cost-functions', a weight for each cost-function, and a list of candidate hosts (gathered via FilterHosts). The cost-function and weights are tabulated, and the host with the least cost is then selected for provisioning. """ import collections from nova import flags from nova import log as logging from nova.scheduler import base_scheduler from nova import utils from nova import exception LOG = logging.getLogger('nova.scheduler.least_cost') FLAGS = flags.FLAGS flags.DEFINE_list('least_cost_scheduler_cost_functions', ['nova.scheduler.least_cost.noop_cost_fn'], 'Which cost functions the LeastCostScheduler should use.') # TODO(sirp): Once we have enough of these rules, we can break them out into a # cost_functions.py file (perhaps in a least_cost_scheduler directory) flags.DEFINE_integer('noop_cost_fn_weight', 1, 'How much weight to give the noop cost function') flags.DEFINE_integer('compute_fill_first_cost_fn_weight', 1, 'How much weight to give the fill-first cost function') def noop_cost_fn(host): """Return a pre-weight cost of 1 for each host""" return 1 def compute_fill_first_cost_fn(host): """Prefer hosts that have less ram available, filter_hosts will exclude hosts that don't have enough ram. """ hostname, service = host caps = service.get("compute", {}) free_mem = caps.get("host_memory_free", 0) return free_mem def normalize_list(L): """Normalize an array of numbers such that each element satisfies: 0 <= e <= 1 """ if not L: return L max_ = max(L) if max_ > 0: return [(float(e) / max_) for e in L] return L def weighted_sum(domain, weighted_fns, normalize=True): """Use the weighted-sum method to compute a score for an array of objects. Normalize the results of the objective-functions so that the weights are meaningful regardless of objective-function's range. domain - input to be scored weighted_fns - list of weights and functions like: [(weight, objective-functions)] Returns an unsorted list of scores. To pair with hosts do: zip(scores, hosts) """ # Table of form: # { domain1: [score1, score2, ..., scoreM] # ... # domainN: [score1, score2, ..., scoreM] } score_table = collections.defaultdict(list) for weight, fn in weighted_fns: scores = [fn(elem) for elem in domain] if normalize: norm_scores = normalize_list(scores) else: norm_scores = scores for idx, score in enumerate(norm_scores): weighted_score = score * weight score_table[idx].append(weighted_score) # Sum rows in table to compute score for each element in domain domain_scores = [] for idx in sorted(score_table): elem_score = sum(score_table[idx]) domain_scores.append(elem_score) return domain_scores class LeastCostScheduler(base_scheduler.BaseScheduler): def __init__(self, *args, **kwargs): self.cost_fns_cache = {} super(LeastCostScheduler, self).__init__(*args, **kwargs) def get_cost_fns(self, topic): """Returns a list of tuples containing weights and cost functions to use for weighing hosts """ if topic in self.cost_fns_cache: return self.cost_fns_cache[topic] cost_fns = [] for cost_fn_str in FLAGS.least_cost_scheduler_cost_functions: if '.' in cost_fn_str: short_name = cost_fn_str.split('.')[-1] else: short_name = cost_fn_str cost_fn_str = "%s.%s.%s" % ( __name__, self.__class__.__name__, short_name) if not (short_name.startswith('%s_' % topic) or short_name.startswith('noop')): continue try: # NOTE(sirp): import_class is somewhat misnamed since it can # any callable from a module cost_fn = utils.import_class(cost_fn_str) except exception.ClassNotFound: raise exception.SchedulerCostFunctionNotFound( cost_fn_str=cost_fn_str) try: flag_name = "%s_weight" % cost_fn.__name__ weight = getattr(FLAGS, flag_name) except AttributeError: raise exception.SchedulerWeightFlagNotFound( flag_name=flag_name) cost_fns.append((weight, cost_fn)) self.cost_fns_cache[topic] = cost_fns return cost_fns def weigh_hosts(self, topic, request_spec, hosts): """Returns a list of dictionaries of form: [ {weight: weight, hostname: hostname, capabilities: capabs} ] """ cost_fns = self.get_cost_fns(topic) costs = weighted_sum(domain=hosts, weighted_fns=cost_fns) weighted = [] weight_log = [] for cost, (hostname, caps) in zip(costs, hosts): weight_log.append("%s: %s" % (hostname, "%.2f" % cost)) weight_dict = dict(weight=cost, hostname=hostname, capabilities=caps) weighted.append(weight_dict) LOG.debug(_("Weighted Costs => %s") % weight_log) return weighted
the-stack_0_23767
import logging from base.wrapper import DB, doc from math import pi from .my_geom import MyPoints def calc_angle_to_ver_or_hor_side(main_vector, second_vector): """ Calc angle between main and second Then transform it to main vector or it perpendicular and make angle less than 90 :param main_vector: DB.XYZ :param second_vector: DB.XYZ, for example UpDirection of view :return: Angle between main and second < 90 :rtype: float """ angle = main_vector.AngleTo(second_vector) logging.debug('Calc first rotation angle: {:.2f}'.format(angle * 180 / pi)) if pi / 4 < angle <= pi / 2: angle -= pi / 2 elif pi / 2 < angle <= 3 * pi / 4: angle += pi / 2 - pi elif 3 * pi / 4 < angle <= pi: angle -= pi logging.debug('Calc change rotation angle: {:.2f}'.format(angle * 180 / pi)) sign_angle = MyPoints.calc_sign(main_vector, second_vector) * angle logging.debug('Calc sign rotation angle: {:.2f}'.format(sign_angle * 180 / pi)) return sign_angle def get_depends_elems_id_by_class(view, cur_class): my_filter = DB.ElementClassFilter(cur_class) elems_ids = view.GetDependentElements(my_filter) logging.debug('View #{}. Get {} id elems by class: {}'.format(view.Id, len(elems_ids), cur_class)) return elems_ids def get_depends_elems_by_class(view, cur_class): elems_ids = get_depends_elems_id_by_class(view, cur_class) elems = get_elems_by_ids(elems_ids) logging.debug('View #{}. Get {} elems by class: {}'.format(view.Id, len(elems), cur_class)) return elems def get_elems_by_ids(list_ids): elems = [] for elem_id in list_ids: elem = doc.GetElement(elem_id) if elem is not None: elems.append(elem) return elems
the-stack_0_23770
''' Module : Main Description : The main entry point for the program. Copyright : (c) RD, 29 Nov 2018 License : MIT Maintainer : [email protected] Portability : POSIX The program reads one or more input FASTA files. For each file it computes a variety of statistics, and then prints a summary of the statistics as output. ''' from argparse import ArgumentParser from math import floor import sys import logging import pkg_resources from Bio import SeqIO EXIT_FILE_IO_ERROR = 1 EXIT_COMMAND_LINE_ERROR = 2 EXIT_FASTA_FILE_ERROR = 3 DEFAULT_MIN_LEN = 0 DEFAULT_VERBOSE = False HEADER = 'FILENAME\tNUMSEQ\tTOTAL\tMIN\tAVG\tMAX' PROGRAM_NAME = "biodemo" try: PROGRAM_VERSION = pkg_resources.require(PROGRAM_NAME)[0].version except pkg_resources.DistributionNotFound: PROGRAM_VERSION = "undefined_version" def exit_with_error(message, exit_status): '''Print an error message to stderr, prefixed by the program name and 'ERROR'. Then exit program with supplied exit status. Arguments: message: an error message as a string. exit_status: a positive integer representing the exit status of the program. ''' logging.error(message) print("{} ERROR: {}, exiting".format(PROGRAM_NAME, message), file=sys.stderr) sys.exit(exit_status) def parse_args(): '''Parse command line arguments. Returns Options object with command line argument values as attributes. Will exit the program on a command line error. ''' description = 'Read one or more FASTA files, compute simple stats for each file' parser = ArgumentParser(description=description) parser.add_argument( '--minlen', metavar='N', type=int, default=DEFAULT_MIN_LEN, help='Minimum length sequence to include in stats (default {})'.format( DEFAULT_MIN_LEN)) parser.add_argument('--version', action='version', version='%(prog)s ' + PROGRAM_VERSION) parser.add_argument('--log', metavar='LOG_FILE', type=str, help='record program progress in LOG_FILE') parser.add_argument('fasta_files', nargs='*', metavar='FASTA_FILE', type=str, help='Input FASTA files') return parser.parse_args() class FastaStats(object): '''Compute various statistics for a FASTA file: num_seqs: the number of sequences in the file satisfying the minimum length requirement (minlen_threshold). num_bases: the total length of all the counted sequences. min_len: the minimum length of the counted sequences. max_len: the maximum length of the counted sequences. average: the average length of the counted sequences rounded down to an integer. ''' #pylint: disable=too-many-arguments def __init__(self, num_seqs=None, num_bases=None, min_len=None, max_len=None, average=None): "Build an empty FastaStats object" self.num_seqs = num_seqs self.num_bases = num_bases self.min_len = min_len self.max_len = max_len self.average = average def __eq__(self, other): "Two FastaStats objects are equal iff their attributes are equal" if type(other) is type(self): return self.__dict__ == other.__dict__ return False def __repr__(self): "Generate a printable representation of a FastaStats object" return "FastaStats(num_seqs={}, num_bases={}, min_len={}, max_len={}, " \ "average={})".format( self.num_seqs, self.num_bases, self.min_len, self.max_len, self.average) def from_file(self, fasta_file, minlen_threshold=DEFAULT_MIN_LEN): '''Compute a FastaStats object from an input FASTA file. Arguments: fasta_file: an open file object for the FASTA file minlen_threshold: the minimum length sequence to consider in computing the statistics. Sequences in the input FASTA file which have a length less than this value are ignored and not considered in the resulting statistics. Result: A FastaStats object ''' num_seqs = num_bases = 0 min_len = max_len = None for seq in SeqIO.parse(fasta_file, "fasta"): this_len = len(seq) if this_len >= minlen_threshold: if num_seqs == 0: min_len = max_len = this_len else: min_len = min(this_len, min_len) max_len = max(this_len, max_len) num_seqs += 1 num_bases += this_len if num_seqs > 0: self.average = int(floor(float(num_bases) / num_seqs)) else: self.average = None self.num_seqs = num_seqs self.num_bases = num_bases self.min_len = min_len self.max_len = max_len return self def pretty(self, filename): '''Generate a pretty printable representation of a FastaStats object suitable for output of the program. The output is a tab-delimited string containing the filename of the input FASTA file followed by the attributes of the object. If 0 sequences were read from the FASTA file then num_seqs and num_bases are output as 0, and min_len, average and max_len are output as a dash "-". Arguments: filename: the name of the input FASTA file Result: A string suitable for pretty printed output ''' if self.num_seqs > 0: num_seqs = str(self.num_seqs) num_bases = str(self.num_bases) min_len = str(self.min_len) average = str(self.average) max_len = str(self.max_len) else: num_seqs = num_bases = "0" min_len = average = max_len = "-" return "\t".join([filename, num_seqs, num_bases, min_len, average, max_len]) def process_files(options): '''Compute and print FastaStats for each input FASTA file specified on the command line. If no FASTA files are specified on the command line then read from the standard input (stdin). Arguments: options: the command line options of the program Result: None ''' if options.fasta_files: for fasta_filename in options.fasta_files: logging.info("Processing FASTA file from %s", fasta_filename) try: fasta_file = open(fasta_filename) except IOError as exception: exit_with_error(str(exception), EXIT_FILE_IO_ERROR) else: with fasta_file: stats = FastaStats().from_file(fasta_file, options.minlen) print(stats.pretty(fasta_filename)) else: logging.info("Processing FASTA file from stdin") stats = FastaStats().from_file(sys.stdin, options.minlen) print(stats.pretty("stdin")) def init_logging(log_filename): '''If the log_filename is defined, then initialise the logging facility, and write log statement indicating the program has started, and also write out the command line from sys.argv Arguments: log_filename: either None, if logging is not required, or the string name of the log file to write to Result: None ''' if log_filename is not None: logging.basicConfig(filename=log_filename, level=logging.DEBUG, filemode='w', format='%(asctime)s %(levelname)s - %(message)s', datefmt='%m-%d-%Y %H:%M:%S') logging.info('program started') logging.info('command line: %s', ' '.join(sys.argv)) def main(): "Orchestrate the execution of the program" options = parse_args() init_logging(options.log) print(HEADER) process_files(options) # If this script is run from the command line then call the main function. if __name__ == '__main__': main()
the-stack_0_23771
# @author:leacoder # @des: 暴力 旋转数组 O(n*k) class Solution: def rotate(self, nums: List[int], k: int) -> None: # 旋转 k 次,每次将数组旋转 1 个元素。 for i in range(k): prev = nums[len(nums)-1] # 从数组尾取数据 for j in range(len(nums)): # 将数组尾数据 放在数组头 并前后搬移数据 temp = nums[j] nums[j] = prev prev = temp class Solution: def rotate(self, nums: List[int], k: int) -> None: n = len(nums) k %= n # 旋转 k 次,每次将数组旋转 1 个元素。 for _ in range(k): nums.insert(0, nums.pop()) # @author:leacoder # @des: 拼接切片 使用额外的数组 旋转数组 class Solution: def rotate(self, nums: List[int], k: int) -> None: n = len(nums) k %= n # 处理 k > len(nums)的情况 # 切片 nums[-k:] :后 k个数据 nums[:-k] : 前 len(nums) - k 个数据 nums[:] = nums[-k:] + nums[:-k] # @author:leacoder # @des: 翻转 旋转数组 class Solution: def rotate(self, nums: List[int], k: int) -> None: n = len(nums) k %= n # 处理 k > len(nums)的情况 nums[:] = nums[::-1] # 整体翻转 nums[:k] = nums[:k][::-1] # 前 k 翻转 nums[k:] = nums[k:][::-1] # 剩余翻转
the-stack_0_23773
from diesel import Application, Loop, sleep import time def l(ident): for x in range(2): print('* [{}] hi.{}: {}'.format(time.strftime('%H:%M:%S'), ident, x)) time.sleep(1) sleep(5) a.halt() a = Application() a.add_loop(Loop(l, 1)) a.add_loop(Loop(l, 2)) a.run()
the-stack_0_23774
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Example script to train a stacked LSTM on the Tiny Shakespeare dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import sonnet as snt from sonnet.examples import dataset_shakespeare import tensorflow.compat.v1 as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer("num_training_iterations", 10000, "Number of iterations to train for.") tf.flags.DEFINE_integer("report_interval", 1000, "Iterations between reports (samples, valid loss).") tf.flags.DEFINE_integer("reduce_learning_rate_interval", 2500, "Iterations between learning rate reductions.") tf.flags.DEFINE_integer("lstm_depth", 3, "Number of LSTM layers.") tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.") tf.flags.DEFINE_integer("num_embedding", 32, "Size of embedding layer.") tf.flags.DEFINE_integer("num_hidden", 128, "Size of LSTM hidden layer.") tf.flags.DEFINE_integer("truncation_length", 64, "Sequence size for training.") tf.flags.DEFINE_integer("sample_length", 1000, "Sequence size for sampling.") tf.flags.DEFINE_float("max_grad_norm", 5, "Gradient clipping norm limit.") tf.flags.DEFINE_float("learning_rate", 0.1, "Optimizer learning rate.") tf.flags.DEFINE_float("reduce_learning_rate_multiplier", 0.1, "Learning rate is multiplied by this when reduced.") tf.flags.DEFINE_float("optimizer_epsilon", 0.01, "Epsilon used for Adam optimizer.") tf.flags.DEFINE_string("checkpoint_dir", "/tmp/tf/rnn_shakespeare", "Checkpointing directory.") tf.flags.DEFINE_integer("checkpoint_interval", 500, "Checkpointing step interval.") def _configure_saver(checkpoint_dir, checkpoint_interval): """Returns a tf.train.CheckpointSaverHook for autosaving checkpoints.""" saver = tf.train.Saver() return tf.train.CheckpointSaverHook( checkpoint_dir=checkpoint_dir, save_steps=checkpoint_interval, saver=saver) def build_graph(lstm_depth=3, batch_size=32, num_embedding=32, num_hidden=128, truncation_length=64, sample_length=1000, max_grad_norm=5, initial_learning_rate=0.1, reduce_learning_rate_multiplier=0.1, optimizer_epsilon=0.01): """Constructs the computation graph.""" # Get datasets. dataset_train = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="train", random=True, name="shake_train") dataset_valid = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="valid", random=False, name="shake_valid") dataset_test = dataset_shakespeare.TinyShakespeareDataset( num_steps=truncation_length, batch_size=batch_size, subset="test", random=False, name="shake_test") # Define model. model = TextModel( num_embedding=num_embedding, num_hidden=num_hidden, lstm_depth=lstm_depth, output_size=dataset_valid.vocab_size, use_dynamic_rnn=True, use_skip_connections=True) # Get the training loss. train_input_sequence, train_target_sequence = dataset_train() train_output_sequence_logits, train_final_state = model(train_input_sequence) # pylint: disable=not-callable train_loss = dataset_train.cost(train_output_sequence_logits, train_target_sequence) # Get the validation loss. valid_input_sequence, valid_target_sequence = dataset_valid() valid_output_sequence_logits, _ = model(valid_input_sequence) # pylint: disable=not-callable valid_loss = dataset_valid.cost(valid_output_sequence_logits, valid_target_sequence) # Get the test loss. test_input_sequence, test_target_sequence = dataset_test() test_output_sequence_logits, _ = model(test_input_sequence) # pylint: disable=not-callable test_loss = dataset_test.cost(test_output_sequence_logits, test_target_sequence) # Build graph to sample some strings during training. initial_logits = train_output_sequence_logits[truncation_length - 1] train_generated_string = model.generate_string( initial_logits=initial_logits, initial_state=train_final_state, sequence_length=sample_length) # Set up global norm clipping of gradients. trainable_variables = tf.trainable_variables() grads, _ = tf.clip_by_global_norm( tf.gradients(train_loss, trainable_variables), max_grad_norm) # Get learning rate and define annealing. learning_rate = tf.get_variable( "learning_rate", shape=[], dtype=tf.float32, initializer=tf.constant_initializer(initial_learning_rate), trainable=False) reduce_learning_rate = learning_rate.assign( learning_rate * reduce_learning_rate_multiplier) # Get training step counter. global_step = tf.get_variable( name="global_step", shape=[], dtype=tf.int64, initializer=tf.zeros_initializer(), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP]) # Define optimizer and training step. optimizer = tf.train.AdamOptimizer( learning_rate, epsilon=optimizer_epsilon) train_step = optimizer.apply_gradients( zip(grads, trainable_variables), global_step=global_step) graph_tensors = { "train_loss": train_loss, "valid_loss": valid_loss, "test_loss": test_loss, "train_generated_string": train_generated_string, "reduce_learning_rate": reduce_learning_rate, "global_step": global_step, "train_step": train_step } # Return dataset_train for translation to human readable text. return graph_tensors, dataset_train def train(num_training_iterations, report_interval, reduce_learning_rate_interval): """Trains a deep LSTM model on the Tiny Shakespeare dataset.""" # Build the computation graph. graph_tensors, dataset_train = build_graph( lstm_depth=FLAGS.lstm_depth, batch_size=FLAGS.batch_size, num_embedding=FLAGS.num_embedding, num_hidden=FLAGS.num_hidden, truncation_length=FLAGS.truncation_length, sample_length=FLAGS.sample_length, max_grad_norm=FLAGS.max_grad_norm, initial_learning_rate=FLAGS.learning_rate, reduce_learning_rate_multiplier=FLAGS.reduce_learning_rate_multiplier, optimizer_epsilon=FLAGS.optimizer_epsilon) # Configure a checkpoint saver. saver_hook = _configure_saver(FLAGS.checkpoint_dir, FLAGS.checkpoint_interval) # Train the network. with tf.train.SingularMonitoredSession( hooks=[saver_hook], checkpoint_dir=FLAGS.checkpoint_dir) as sess: start_iteration = sess.run(graph_tensors["global_step"]) for train_iteration in range(start_iteration, num_training_iterations): if (train_iteration + 1) % report_interval == 0: train_loss_v, valid_loss_v, _ = sess.run( (graph_tensors["train_loss"], graph_tensors["valid_loss"], graph_tensors["train_step"])) train_generated_string_v = sess.run( graph_tensors["train_generated_string"]) train_generated_string_human = dataset_train.to_human_readable( (train_generated_string_v, 0), indices=[0]) tf.logging.info("%d: Training loss %f. Validation loss %f. Sample = %s", train_iteration, train_loss_v, valid_loss_v, train_generated_string_human) else: train_loss_v, _ = sess.run((graph_tensors["train_loss"], graph_tensors["train_step"])) tf.logging.info("%d: Training loss %f.", train_iteration, train_loss_v) if (train_iteration + 1) % reduce_learning_rate_interval == 0: sess.run(graph_tensors["reduce_learning_rate"]) tf.logging.info("Reducing learning rate.") test_loss = sess.run(graph_tensors["test_loss"]) tf.logging.info("Test loss %f", test_loss) class TextModel(snt.AbstractModule): """A deep LSTM model, for use on the Tiny Shakespeare dataset.""" def __init__(self, num_embedding, num_hidden, lstm_depth, output_size, use_dynamic_rnn=True, use_skip_connections=True, name="text_model"): """Constructs a `TextModel`. Args: num_embedding: Size of embedding representation, used directly after the one-hot encoded input. num_hidden: Number of hidden units in each LSTM layer. lstm_depth: Number of LSTM layers. output_size: Size of the output layer on top of the DeepRNN. use_dynamic_rnn: Whether to use dynamic RNN unrolling. If `False`, it uses static unrolling. Default is `True`. use_skip_connections: Whether to use skip connections in the `snt.DeepRNN`. Default is `True`. name: Name of the module. """ super(TextModel, self).__init__(name=name) self._num_embedding = num_embedding self._num_hidden = num_hidden self._lstm_depth = lstm_depth self._output_size = output_size self._use_dynamic_rnn = use_dynamic_rnn self._use_skip_connections = use_skip_connections with self._enter_variable_scope(): self._embed_module = snt.Linear(self._num_embedding, name="linear_embed") self._output_module = snt.Linear(self._output_size, name="linear_output") self._subcores = [ snt.LSTM(self._num_hidden, name="lstm_{}".format(i)) for i in range(self._lstm_depth) ] if self._use_skip_connections: skips = [] current_input_shape = self._num_embedding for lstm in self._subcores: input_shape = tf.TensorShape([current_input_shape]) skip = snt.SkipConnectionCore( lstm, input_shape=input_shape, name="skip_{}".format(lstm.module_name)) skips.append(skip) # SkipConnectionCore concatenates the input with the output, so the # dimensionality increases with depth. current_input_shape += self._num_hidden self._subcores = skips self._core = snt.DeepRNN(self._subcores, skip_connections=False, name="deep_lstm") def _build(self, one_hot_input_sequence): """Builds the deep LSTM model sub-graph. Args: one_hot_input_sequence: A Tensor with the input sequence encoded as a one-hot representation. Its dimensions should be `[truncation_length, batch_size, output_size]`. Returns: Tuple of the Tensor of output logits for the batch, with dimensions `[truncation_length, batch_size, output_size]`, and the final state of the unrolled core,. """ input_shape = one_hot_input_sequence.get_shape() batch_size = input_shape[1] batch_embed_module = snt.BatchApply(self._embed_module) input_sequence = batch_embed_module(one_hot_input_sequence) input_sequence = tf.nn.relu(input_sequence) initial_state = self._core.initial_state(batch_size) if self._use_dynamic_rnn: output_sequence, final_state = tf.nn.dynamic_rnn( cell=self._core, inputs=input_sequence, time_major=True, initial_state=initial_state) else: rnn_input_sequence = tf.unstack(input_sequence) output, final_state = tf.nn.static_rnn( cell=self._core, inputs=rnn_input_sequence, initial_state=initial_state) output_sequence = tf.stack(output) batch_output_module = snt.BatchApply(self._output_module) output_sequence_logits = batch_output_module(output_sequence) return output_sequence_logits, final_state @snt.reuse_variables def generate_string(self, initial_logits, initial_state, sequence_length): """Builds sub-graph to generate a string, sampled from the model. Args: initial_logits: Starting logits to sample from. initial_state: Starting state for the RNN core. sequence_length: Number of characters to sample. Returns: A Tensor of characters, with dimensions `[sequence_length, batch_size, output_size]`. """ current_logits = initial_logits current_state = initial_state generated_letters = [] for _ in range(sequence_length): # Sample a character index from distribution. char_index = tf.squeeze(tf.multinomial(current_logits, 1)) char_one_hot = tf.one_hot(char_index, self._output_size, 1.0, 0.0) generated_letters.append(char_one_hot) # Feed character back into the deep_lstm. gen_out_seq, current_state = self._core( tf.nn.relu(self._embed_module(char_one_hot)), current_state) current_logits = self._output_module(gen_out_seq) generated_string = tf.stack(generated_letters) return generated_string def main(unused_argv): train( num_training_iterations=FLAGS.num_training_iterations, report_interval=FLAGS.report_interval, reduce_learning_rate_interval=FLAGS.reduce_learning_rate_interval) if __name__ == "__main__": tf.app.run()
the-stack_0_23775
from bs4 import BeautifulSoup as Soup from .fixtures import ( app_client, make_app_client, TABLES, TEMP_PLUGIN_SECRET_FILE, TestClient as _TestClient, ) # noqa from datasette.app import Datasette from datasette import cli from datasette.plugins import get_plugins, DEFAULT_PLUGINS, pm from datasette.utils import sqlite3, CustomRow from jinja2.environment import Template import base64 import json import os import pathlib import re import sqlite3 import textwrap import pytest import urllib at_memory_re = re.compile(r" at 0x\w+") @pytest.mark.parametrize( "plugin_hook", [name for name in dir(pm.hook) if not name.startswith("_")] ) def test_plugin_hooks_have_tests(plugin_hook): "Every plugin hook should be referenced in this test module" tests_in_this_module = [t for t in globals().keys() if t.startswith("test_")] ok = False for test in tests_in_this_module: if plugin_hook in test: ok = True assert ok, "Plugin hook is missing tests: {}".format(plugin_hook) def test_plugins_dir_plugin_prepare_connection(app_client): response = app_client.get( "/fixtures.json?sql=select+convert_units(100%2C+'m'%2C+'ft')" ) assert pytest.approx(328.0839) == response.json["rows"][0][0] def test_plugin_prepare_connection_arguments(app_client): response = app_client.get( "/fixtures.json?sql=select+prepare_connection_args()&_shape=arrayfirst" ) assert [ "database=fixtures, datasette.plugin_config(\"name-of-plugin\")={'depth': 'root'}" ] == response.json @pytest.mark.parametrize( "path,expected_decoded_object", [ ("/", {"template": "index.html", "database": None, "table": None}), ( "/fixtures/", {"template": "database.html", "database": "fixtures", "table": None}, ), ( "/fixtures/sortable", {"template": "table.html", "database": "fixtures", "table": "sortable"}, ), ], ) def test_plugin_extra_css_urls(app_client, path, expected_decoded_object): response = app_client.get(path) links = Soup(response.body, "html.parser").findAll("link") special_href = [ l for l in links if l.attrs["href"].endswith("/extra-css-urls-demo.css") ][0]["href"] # This link has a base64-encoded JSON blob in it encoded = special_href.split("/")[3] assert expected_decoded_object == json.loads( base64.b64decode(encoded).decode("utf8") ) def test_plugin_extra_js_urls(app_client): response = app_client.get("/") scripts = Soup(response.body, "html.parser").findAll("script") assert [ s for s in scripts if s.attrs == { "integrity": "SRIHASH", "crossorigin": "anonymous", "src": "https://plugin-example.com/jquery.js", } ] def test_plugins_with_duplicate_js_urls(app_client): # If two plugins both require jQuery, jQuery should be loaded only once response = app_client.get("/fixtures") # This test is a little tricky, as if the user has any other plugins in # their current virtual environment those may affect what comes back too. # What matters is that https://plugin-example.com/jquery.js is only there once # and it comes before plugin1.js and plugin2.js which could be in either # order scripts = Soup(response.body, "html.parser").findAll("script") srcs = [s["src"] for s in scripts if s.get("src")] # No duplicates allowed: assert len(srcs) == len(set(srcs)) # jquery.js loaded once: assert 1 == srcs.count("https://plugin-example.com/jquery.js") # plugin1.js and plugin2.js are both there: assert 1 == srcs.count("https://plugin-example.com/plugin1.js") assert 1 == srcs.count("https://plugin-example.com/plugin2.js") # jquery comes before them both assert srcs.index("https://plugin-example.com/jquery.js") < srcs.index( "https://plugin-example.com/plugin1.js" ) assert srcs.index("https://plugin-example.com/jquery.js") < srcs.index( "https://plugin-example.com/plugin2.js" ) def test_plugins_render_cell_link_from_json(app_client): sql = """ select '{"href": "http://example.com/", "label":"Example"}' """.strip() path = "/fixtures?" + urllib.parse.urlencode({"sql": sql}) response = app_client.get(path) td = Soup(response.body, "html.parser").find("table").find("tbody").find("td") a = td.find("a") assert a is not None, str(a) assert a.attrs["href"] == "http://example.com/" assert a.attrs["data-database"] == "fixtures" assert a.text == "Example" def test_plugins_render_cell_demo(app_client): response = app_client.get("/fixtures/simple_primary_key?id=4") soup = Soup(response.body, "html.parser") td = soup.find("td", {"class": "col-content"}) assert { "column": "content", "table": "simple_primary_key", "database": "fixtures", "config": {"depth": "table", "special": "this-is-simple_primary_key"}, } == json.loads(td.string) def test_plugin_config(app_client): assert {"depth": "table"} == app_client.ds.plugin_config( "name-of-plugin", database="fixtures", table="sortable" ) assert {"depth": "database"} == app_client.ds.plugin_config( "name-of-plugin", database="fixtures", table="unknown_table" ) assert {"depth": "database"} == app_client.ds.plugin_config( "name-of-plugin", database="fixtures" ) assert {"depth": "root"} == app_client.ds.plugin_config( "name-of-plugin", database="unknown_database" ) assert {"depth": "root"} == app_client.ds.plugin_config("name-of-plugin") assert None is app_client.ds.plugin_config("unknown-plugin") def test_plugin_config_env(app_client): os.environ["FOO_ENV"] = "FROM_ENVIRONMENT" assert {"foo": "FROM_ENVIRONMENT"} == app_client.ds.plugin_config("env-plugin") # Ensure secrets aren't visible in /-/metadata.json metadata = app_client.get("/-/metadata.json") assert {"foo": {"$env": "FOO_ENV"}} == metadata.json["plugins"]["env-plugin"] del os.environ["FOO_ENV"] def test_plugin_config_env_from_list(app_client): os.environ["FOO_ENV"] = "FROM_ENVIRONMENT" assert [{"in_a_list": "FROM_ENVIRONMENT"}] == app_client.ds.plugin_config( "env-plugin-list" ) # Ensure secrets aren't visible in /-/metadata.json metadata = app_client.get("/-/metadata.json") assert [{"in_a_list": {"$env": "FOO_ENV"}}] == metadata.json["plugins"][ "env-plugin-list" ] del os.environ["FOO_ENV"] def test_plugin_config_file(app_client): open(TEMP_PLUGIN_SECRET_FILE, "w").write("FROM_FILE") assert {"foo": "FROM_FILE"} == app_client.ds.plugin_config("file-plugin") # Ensure secrets aren't visible in /-/metadata.json metadata = app_client.get("/-/metadata.json") assert {"foo": {"$file": TEMP_PLUGIN_SECRET_FILE}} == metadata.json["plugins"][ "file-plugin" ] os.remove(TEMP_PLUGIN_SECRET_FILE) @pytest.mark.parametrize( "path,expected_extra_body_script", [ ( "/", { "template": "index.html", "database": None, "table": None, "config": {"depth": "root"}, }, ), ( "/fixtures/", { "template": "database.html", "database": "fixtures", "table": None, "config": {"depth": "database"}, }, ), ( "/fixtures/sortable", { "template": "table.html", "database": "fixtures", "table": "sortable", "config": {"depth": "table"}, }, ), ], ) def test_plugins_extra_body_script(app_client, path, expected_extra_body_script): r = re.compile(r"<script>var extra_body_script = (.*?);</script>") json_data = r.search(app_client.get(path).text).group(1) actual_data = json.loads(json_data) assert expected_extra_body_script == actual_data def test_plugins_asgi_wrapper(app_client): response = app_client.get("/fixtures") assert "fixtures" == response.headers["x-databases"] def test_plugins_extra_template_vars(restore_working_directory): with make_app_client( template_dir=str(pathlib.Path(__file__).parent / "test_templates") ) as client: response = client.get("/-/metadata") assert response.status == 200 extra_template_vars = json.loads( Soup(response.body, "html.parser").select("pre.extra_template_vars")[0].text ) assert { "template": "show_json.html", "scope_path": "/-/metadata", } == extra_template_vars extra_template_vars_from_awaitable = json.loads( Soup(response.body, "html.parser") .select("pre.extra_template_vars_from_awaitable")[0] .text ) assert { "template": "show_json.html", "awaitable": True, "scope_path": "/-/metadata", } == extra_template_vars_from_awaitable def test_plugins_async_template_function(restore_working_directory): with make_app_client( template_dir=str(pathlib.Path(__file__).parent / "test_templates") ) as client: response = client.get("/-/metadata") assert response.status == 200 extra_from_awaitable_function = ( Soup(response.body, "html.parser") .select("pre.extra_from_awaitable_function")[0] .text ) expected = ( sqlite3.connect(":memory:").execute("select sqlite_version()").fetchone()[0] ) assert expected == extra_from_awaitable_function def test_default_plugins_have_no_templates_path_or_static_path(): # The default plugins that ship with Datasette should have their static_path and # templates_path all set to None plugins = get_plugins() for plugin in plugins: if plugin["name"] in DEFAULT_PLUGINS: assert None is plugin["static_path"] assert None is plugin["templates_path"] @pytest.fixture(scope="session") def view_names_client(tmp_path_factory): tmpdir = tmp_path_factory.mktemp("test-view-names") templates = tmpdir / "templates" templates.mkdir() plugins = tmpdir / "plugins" plugins.mkdir() for template in ( "index.html", "database.html", "table.html", "row.html", "show_json.html", "query.html", ): (templates / template).write_text("view_name:{{ view_name }}", "utf-8") (plugins / "extra_vars.py").write_text( textwrap.dedent( """ from datasette import hookimpl @hookimpl def extra_template_vars(view_name): return {"view_name": view_name} """ ), "utf-8", ) db_path = str(tmpdir / "fixtures.db") conn = sqlite3.connect(db_path) conn.executescript(TABLES) return _TestClient( Datasette( [db_path], template_dir=str(templates), plugins_dir=str(plugins) ).app() ) @pytest.mark.parametrize( "path,view_name", ( ("/", "index"), ("/fixtures", "database"), ("/fixtures/units", "table"), ("/fixtures/units/1", "row"), ("/-/metadata", "json_data"), ("/fixtures?sql=select+1", "database"), ), ) def test_view_names(view_names_client, path, view_name): response = view_names_client.get(path) assert response.status == 200 assert "view_name:{}".format(view_name) == response.text def test_register_output_renderer_no_parameters(app_client): response = app_client.get("/fixtures/facetable.testnone") assert 200 == response.status assert b"Hello" == response.body def test_register_output_renderer_all_parameters(app_client): response = app_client.get("/fixtures/facetable.testall") assert 200 == response.status # Lots of 'at 0x103a4a690' in here - replace those so we can do # an easy comparison body = at_memory_re.sub(" at 0xXXX", response.text) assert { "1+1": 2, "datasette": "<datasette.app.Datasette object at 0xXXX>", "columns": [ "pk", "created", "planet_int", "on_earth", "state", "city_id", "neighborhood", "tags", "complex_array", "distinct_some_null", ], "rows": [ "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", "<sqlite3.Row object at 0xXXX>", ], "sql": "select pk, created, planet_int, on_earth, state, city_id, neighborhood, tags, complex_array, distinct_some_null from facetable order by pk limit 51", "query_name": None, "database": "fixtures", "table": "facetable", "request": "<datasette.utils.asgi.Request object at 0xXXX>", "view_name": "table", } == json.loads(body) # Test that query_name is set correctly query_response = app_client.get("/fixtures/pragma_cache_size.testall") assert "pragma_cache_size" == json.loads(query_response.body)["query_name"] def test_register_output_renderer_custom_status_code(app_client): response = app_client.get("/fixtures/pragma_cache_size.testall?status_code=202") assert 202 == response.status def test_register_output_renderer_custom_content_type(app_client): response = app_client.get( "/fixtures/pragma_cache_size.testall?content_type=text/blah" ) assert "text/blah" == response.headers["content-type"] def test_register_output_renderer_custom_headers(app_client): response = app_client.get( "/fixtures/pragma_cache_size.testall?header=x-wow:1&header=x-gosh:2" ) assert "1" == response.headers["x-wow"] assert "2" == response.headers["x-gosh"] def test_register_output_renderer_can_render(app_client): response = app_client.get("/fixtures/facetable?_no_can_render=1") assert response.status == 200 links = ( Soup(response.body, "html.parser") .find("p", {"class": "export-links"}) .findAll("a") ) actual = [l["href"].split("/")[-1] for l in links] # Should not be present because we sent ?_no_can_render=1 assert "facetable.testall?_labels=on" not in actual # Check that it was passed the values we expected assert hasattr(app_client.ds, "_can_render_saw") assert { "datasette": app_client.ds, "columns": [ "pk", "created", "planet_int", "on_earth", "state", "city_id", "neighborhood", "tags", "complex_array", "distinct_some_null", ], "sql": "select pk, created, planet_int, on_earth, state, city_id, neighborhood, tags, complex_array, distinct_some_null from facetable order by pk limit 51", "query_name": None, "database": "fixtures", "table": "facetable", "view_name": "table", }.items() <= app_client.ds._can_render_saw.items() @pytest.mark.asyncio async def test_prepare_jinja2_environment(app_client): template = app_client.ds.jinja_env.from_string( "Hello there, {{ a|format_numeric }}", {"a": 3412341} ) rendered = await app_client.ds.render_template(template) assert "Hello there, 3,412,341" == rendered def test_publish_subcommand(): # This is hard to test properly, because publish subcommand plugins # cannot be loaded using the --plugins-dir mechanism - they need # to be installed using "pip install". So I'm cheating and taking # advantage of the fact that cloudrun/heroku use the plugin hook # to register themselves as default plugins. assert ["cloudrun", "heroku"] == cli.publish.list_commands({}) def test_register_facet_classes(app_client): response = app_client.get( "/fixtures/compound_three_primary_keys.json?_dummy_facet=1" ) assert [ { "name": "pk1", "toggle_url": "http://localhost/fixtures/compound_three_primary_keys.json?_dummy_facet=1&_facet_dummy=pk1", "type": "dummy", }, { "name": "pk2", "toggle_url": "http://localhost/fixtures/compound_three_primary_keys.json?_dummy_facet=1&_facet_dummy=pk2", "type": "dummy", }, { "name": "pk3", "toggle_url": "http://localhost/fixtures/compound_three_primary_keys.json?_dummy_facet=1&_facet_dummy=pk3", "type": "dummy", }, { "name": "content", "toggle_url": "http://localhost/fixtures/compound_three_primary_keys.json?_dummy_facet=1&_facet_dummy=content", "type": "dummy", }, { "name": "pk1", "toggle_url": "http://localhost/fixtures/compound_three_primary_keys.json?_dummy_facet=1&_facet=pk1", }, { "name": "pk2", "toggle_url": "http://localhost/fixtures/compound_three_primary_keys.json?_dummy_facet=1&_facet=pk2", }, { "name": "pk3", "toggle_url": "http://localhost/fixtures/compound_three_primary_keys.json?_dummy_facet=1&_facet=pk3", }, ] == response.json["suggested_facets"] def test_actor_from_request(app_client): app_client.get("/") # Should have no actor assert None == app_client.ds._last_request.scope["actor"] app_client.get("/?_bot=1") # Should have bot actor assert {"id": "bot"} == app_client.ds._last_request.scope["actor"] def test_actor_from_request_async(app_client): app_client.get("/") # Should have no actor assert None == app_client.ds._last_request.scope["actor"] app_client.get("/?_bot2=1") # Should have bot2 actor assert {"id": "bot2", "1+1": 2} == app_client.ds._last_request.scope["actor"] def test_existing_scope_actor_respected(app_client): app_client.get("/?_actor_in_scope=1") assert {"id": "from-scope"} == app_client.ds._last_request.scope["actor"] @pytest.mark.asyncio @pytest.mark.parametrize( "action,expected", [ ("this_is_allowed", True), ("this_is_denied", False), ("this_is_allowed_async", True), ("this_is_denied_async", False), ("no_match", None), ], ) async def test_permission_allowed(app_client, action, expected): actual = await app_client.ds.permission_allowed( {"id": "actor"}, action, default=None ) assert expected == actual def test_actor_json(app_client): assert {"actor": None} == app_client.get("/-/actor.json").json assert {"actor": {"id": "bot2", "1+1": 2}} == app_client.get( "/-/actor.json/?_bot2=1" ).json @pytest.mark.parametrize( "path,body", [("/one/", "2"), ("/two/Ray?greeting=Hail", "Hail Ray"),] ) def test_register_routes(app_client, path, body): response = app_client.get(path) assert 200 == response.status assert body == response.text def test_register_routes_post(app_client): response = app_client.post("/post/", {"this is": "post data"}, csrftoken_from=True) assert 200 == response.status assert "csrftoken" in response.json assert "post data" == response.json["this is"] def test_register_routes_csrftoken(restore_working_directory, tmpdir_factory): templates = tmpdir_factory.mktemp("templates") (templates / "csrftoken_form.html").write_text( "CSRFTOKEN: {{ csrftoken() }}", "utf-8" ) with make_app_client(template_dir=templates) as client: response = client.get("/csrftoken-form/") expected_token = client.ds._last_request.scope["csrftoken"]() assert "CSRFTOKEN: {}".format(expected_token) == response.text def test_register_routes_asgi(app_client): response = app_client.get("/three/") assert {"hello": "world"} == response.json assert "1" == response.headers["x-three"] @pytest.mark.asyncio async def test_startup(app_client): await app_client.ds.invoke_startup() assert app_client.ds._startup_hook_fired assert 2 == app_client.ds._startup_hook_calculation def test_canned_queries(app_client): queries = app_client.get("/fixtures.json").json["queries"] queries_by_name = {q["name"]: q for q in queries} assert { "sql": "select 2", "name": "from_async_hook", "private": False, } == queries_by_name["from_async_hook"] assert { "sql": "select 1, 'null' as actor_id", "name": "from_hook", "private": False, } == queries_by_name["from_hook"] def test_canned_queries_non_async(app_client): response = app_client.get("/fixtures/from_hook.json?_shape=array") assert [{"1": 1, "actor_id": "null"}] == response.json def test_canned_queries_async(app_client): response = app_client.get("/fixtures/from_async_hook.json?_shape=array") assert [{"2": 2}] == response.json def test_canned_queries_actor(app_client): assert [{"1": 1, "actor_id": "bot"}] == app_client.get( "/fixtures/from_hook.json?_bot=1&_shape=array" ).json
the-stack_0_23776
""" Model definitions. Note: some models are denormalized by design, this greatly simplifies (and speeds up) the queries necessary to fetch a certain entry. """ import os, random, hashlib, string from django.db import models from django.db import transaction from django.contrib.auth.models import User, Group from django.contrib import admin from django.conf import settings from mptt.models import MPTTModel, TreeForeignKey from datetime import datetime, timedelta from main.server import html, notegen # import all constants from main.server.const import * import markdown class UserProfile( models.Model ): """ Stores user options >>> user, flag = User.objects.get_or_create(first_name='Jane', last_name='Doe', username='jane', email='jane') >>> prof = user.get_profile() >>> prof.json = dict( message='Hello world' ) >>> prof.save() """ user = models.OneToOneField(User, unique=True, related_name='profile') # this designates a user as moderator type = models.IntegerField(choices=USER_TYPES, default=USER_NORMAL) # globally unique id uuid = models.TextField(null=False, db_index=True, unique=True) score = models.IntegerField(default=0, blank=True) reputation = models.IntegerField(default=0, blank=True, db_index=True) views = models.IntegerField(default=0, blank=True) bronze_badges = models.IntegerField(default=0) silver_badges = models.IntegerField(default=0) gold_badges = models.IntegerField(default=0) json = models.TextField(default="", null=True) last_visited = models.DateTimeField(auto_now=True) suspended = models.BooleanField(default=False, null=False) about_me = models.TextField(default="(about me)", null=True) html = models.TextField(default="", null=True) location = models.TextField(default="", null=True) website = models.URLField(default="", null=True, max_length=100) openid = models.URLField(default="http://www.biostars.org", null=True) display_name = models.CharField(max_length=35, default='User', null=False, db_index=True) last_login_ip = models.IPAddressField(default="0.0.0.0", null=True) openid_merge = models.NullBooleanField(default=False, null=True) @property def is_moderator(self): return (self.type == USER_MODERATOR) or (self.type == USER_ADMIN) @property def is_admin(self): return self.type == USER_ADMIN @property def is_active(self): if self.suspended: return False if self.is_moderator or self.score >= settings.MINIMUM_REPUTATION: return True # right not we let it fall through to True # needs more throttles may go here here return True def get_absolute_url(self): return "/user/show/%i/" % self.user.id def status(self): if self.suspended: return 'suspended' else: return 'active' def authorize(self, moderator): "Authorizes access to a user data moderator" # we will cascade through options here # no access to anonymous users if moderator.is_anonymous(): return False # other admins may only be changed via direct database access if self.is_admin: return False # moderator that is also an admin may access everyone else if moderator.profile.is_admin: return True # a moderator's private info may not be accessed past this point if self.is_moderator: return False return moderator.profile.is_moderator def editable(self, moderator): "Is this users content editable by a moderator" # everyone can access themselves if self.user == moderator: return True return self.authorize(moderator) @property def note_count(self): note_count = Note.objects.filter(target=self.user).count() new_count = Note.objects.filter(target=self.user, unread=True).count() return (note_count, new_count) class Tag(models.Model): name = models.TextField(max_length=50) count = models.IntegerField(default=0) class TagAdmin(admin.ModelAdmin): list_display = ('name', 'count') admin.site.register(Tag, TagAdmin) class PostManager(models.Manager): ''' Used for all posts (question, answer, comment); returns only non-deleted posts ''' def get_query_set(self): return super(PostManager, self).get_query_set().select_related('author','author__profile','children',).filter(post_type=POST_COMMENT) class AnswerManager(models.Manager): ''' Used for all posts (question, answer, comment); returns only non-deleted posts ''' def get_query_set(self): return super(AnswerManager, self).get_query_set().select_related('author','author__profile','children').filter(post_type=POST_ANSWER) class Post(MPTTModel): """ A posting is the basic content generated by a user >>> user, flag = User.objects.get_or_create(first_name='Jane', last_name='Doe', username='jane', email='jane') >>> post = Post.objects.create(author=user, post_type=POST_QUESTION) >>> content ='*A*' >>> post.create_revision(content=content) >>> post.html u'<p><em>A</em></p>' """ author = models.ForeignKey(User) content = models.TextField(blank=True) # The underlying Markdown html = models.TextField(blank=True) # this is the sanitized HTML for display title = models.TextField(blank=True) slug = models.SlugField(blank=True, max_length=200) tag_string = models.CharField(max_length=200) # The tag string is the canonical form of the post's tags tag_set = models.ManyToManyField(Tag) # The tag set is built from the tag string and used only for fast filtering views = models.IntegerField(default=0, blank=True) score = models.IntegerField(default=0, blank=True) creation_date = models.DateTimeField(db_index=True) lastedit_date = models.DateTimeField() lastedit_user = models.ForeignKey(User, related_name='editor') deleted = models.BooleanField() closed = models.BooleanField() post_type = models.IntegerField(choices=POST_TYPES, db_index=True) # this will maintain parent-child replationships between poss #parent = models.ForeignKey('self', related_name="children", null=True, blank=True) parent = TreeForeignKey('self', null=True, blank=True, related_name='children') # # denormalized fields only that only apply to specific cases # comment_count = models.IntegerField(default=0) revision_count = models.IntegerField(default=0) child_count = models.IntegerField(default=0, blank=True) # number of children (other posts associated with the post) post_accepted = models.BooleanField(default=False) # the post has been accepted answer_accepted = models.BooleanField() # if this was unanswered = models.BooleanField(db_index=True) # this is a question with no answers answer_count = models.IntegerField(default=0, blank=True) # this field will be used to allow posts to float back into relevance touch_date = models.DateTimeField(db_index=True) class MPTTMeta: order_insertion_by = ['creation_date'] def get_absolute_url(self): return "/post/show/%i/" % self.id @property def status(self): # some say this is ugly but simplifies greatly the templates if self.post_accepted: return 'answer-accepted' elif self.answer_count: return 'answered' else: return 'unanswered' @property def post_type_name(self): "Returns a user friendly name for the post type" return POST_REV_MAP[self.post_type] @property def is_owner(self, user): return (self.author == user) @transaction.commit_on_success def notify(self): "Generates notifications to all users related with this post. Invoked only on the creation of the post" # create a notification for the post that includes all authors of every child root = self.get_root() authors = set( [ root.author] ) for child in root.get_descendants(): authors.add( child.author ) text = notegen.post_action(user=self.author, post=self) # the current author will get a message that is not new authors.remove(self.author) for target in authors: Note.send(sender=self.author, target=target, content=text, type=NOTE_USER, unread=True, date=self.creation_date) # for the current post author this is not a new message Note.send(sender=self.author, target=self.author, content=text, type=NOTE_USER, unread=False, date=self.creation_date) def changed(self, content=None, title=None, tag_string=None): "Tests post parameters" return (content == self.content and tag_string == self.tag_string and title == self.title) def create_revision(self, content=None, title=None, tag_string=None, author=None, date=None, action=REV_NONE): """ Creates a new revision of the post with the given data. Content, title and tags are assumed to be unmodified if not given. Author is assumed to be same as original author if not given. Date is assumed to be now if not given. """ content = content or self.content title = title or self.title tag_string = tag_string or self.tag_string author = author or self.author date = date or datetime.now() # transform the content to UNIX style line endings content = content.replace('\r\n', '\n') content = content.replace('\r', '\n') # creates a new revision for the post revision = PostRevision(post=self, content=content, tag_string=tag_string, title=title, author=author, date=date, action=action) revision.save() # Update our metadata self.lastedit_user = author self.content = content self.title = title self.set_tags(tag_string) self.save() def get_title(self): title = self.title if self.deleted: title = "%s [deleted ]" % self.title elif self.closed: title = "%s [closed]" % self.title return title def current_revision(self): """ Returns the most recent revision of the post. Primarily useful for getting the current raw text of the post """ return self.revisions.order_by('date')[0] def moderator_action(self, action, moderator, date=None): """ Performs a moderator action on the post. Takes an action (one of REV_ACTIONS) and a user. Date is assumed to be now if not provided """ text = notegen.post_moderator_action(user=moderator, post=self, action=action) Note.send(target=self.author, sender=moderator, post=self, content=text, type=NOTE_MODERATOR) self.create_revision(action=action) if action == REV_CLOSE: self.closed = True elif action == REV_REOPEN: self.closed = False elif action == REV_DELETE: self.deleted = True elif action == REV_UNDELETE: self.deleted = False else: raise Exception('Invalid moderator action %s' % action) self.save() def authorize(self, user, strict=True): "Verfifies access by a request object. Strict mode fails immediately." # no access to anonymous users if user.is_anonymous(): return False # everyone may access posts they have authored if user == self.author: return True return user.profile.is_moderator def get_vote(self, user, vote_type): if user.is_anonymous(): return None try: return self.votes.get(author=user, type=vote_type) except Vote.DoesNotExist: return None def add_vote(self, user, vote_type): vote = Vote(author=user, type=vote_type, post=self) vote.save() return vote def remove_vote(self, user, vote_type): ''' Removes a vote from a user of a certain type if it exists Returns True if removed, False if it didn't exist''' vote = self.get_vote(user, vote_type) if vote: vote.delete() return True return False def set_tags(self, tag_string): ''' Sets the post's tags to a space-separated string of tags ''' self.tag_string = tag_string self.save() self.tag_set.clear() if not tag_string: return tags = [] for tag_name in tag_string.split(' '): try: tags.append(Tag.objects.get(name=tag_name)) except Tag.DoesNotExist: tag = Tag(name=tag_name) tag.save() tags.append(tag) self.tag_set.add(*tags) def get_tags(self): ''' Returns the post's tags as a list of strings ''' return self.tag_string.split(' ') def details(self): return def apply(self, dir): is_answer = self.parent and self.post_type == POST_ANSWER is_comment = self.parent and self.post_type == POST_COMMENT if is_answer: self.parent.answer_count += dir self.parent.save() if is_comment: self.parent.comment_count += dir self.parent.save() def comments(self): objs = Post.objects.filter(parent=self, post_type=POST_COMMENT).select_related('author','author__profile') return objs def css(self): "Used during rendering" if self.deleted: return "post-deleted" elif self.closed: return "post-closed" else: return "post-active" objects = models.Manager() answers = AnswerManager() class PostRevision(models.Model): """ Represents various revisions of a single post """ post = models.ForeignKey(Post, related_name='revisions') content = models.TextField() tag_string = models.CharField(max_length=200) title = models.TextField(blank=True) # Moderator action performed in this revision, if applicable action = models.IntegerField(choices=REV_ACTIONS, default=REV_NONE) author = models.ForeignKey(User) date = models.DateTimeField() def html(self): '''We won't cache the HTML in the DB because revisions are viewed fairly infrequently ''' return html.generate(self.content) def get_tags(self): ''' Returns the revision's tags as a list of strings ''' return self.tag_string.split(' ') def apply(self, dir=1): self.post.revision_count += dir self.post.save() class PostAdmin(admin.ModelAdmin): list_display = ('id', 'title', ) admin.site.register(Post, PostAdmin) class PostRevisionAdmin(admin.ModelAdmin): list_display = ('id', 'title', ) admin.site.register(PostRevision, PostRevisionAdmin) class Note(models.Model): """ Creates simple notifications that are active until the user deletes them """ sender = models.ForeignKey(User, related_name="note_sender") # the creator of the notification target = models.ForeignKey(User, related_name="note_target", db_index=True) # the user that will get the note post = models.ForeignKey(Post, related_name="note_post",null=True, blank=True) # the user that will get the note content = models.CharField(max_length=5000, default='') # this contains the raw message html = models.CharField(max_length=5000, default='') # this contains the santizied content date = models.DateTimeField(null=False) unread = models.BooleanField(default=True) type = models.IntegerField(choices=NOTE_TYPES, default=NOTE_USER) @classmethod def send(self, **params): note = Note.objects.create(**params) return note def get_absolute_url(self): return "/user/show/%s/" % self.target.id @property def status(self): return 'new' if self.unread else 'old' class Vote(models.Model): """ >>> user, flag = User.objects.get_or_create(first_name='Jane', last_name='Doe', username='jane', email='jane') >>> post = Post.objects.create(author=user, post_type=POST_QUESTION) >>> post.create_revision(content='ABC') >>> vote = Vote(author=user, post=post, type=VOTE_UP) >>> vote.score() 1 """ author = models.ForeignKey(User) post = models.ForeignKey(Post, related_name='votes') type = models.IntegerField(choices=VOTE_TYPES) def score(self): return POST_SCORE.get(self.type, 0) def reputation(self): return USER_REP.get(self.type, 0) def voter_reputation(self): return VOTER_REP.get(self.type, 0) def apply(self, dir=1): "Applies the score and reputation changes. Direction can be set to -1 to undo (ie delete vote)" if self.reputation(): prof = self.post.author.get_profile() prof.score += dir * self.reputation() prof.save() if self.voter_reputation(): prof = self.author.get_profile() prof.score += dir * self.voter_reputation() prof.save() if self.score(): self.post.score += dir * self.score() self.post.save() if self.type == VOTE_ACCEPT: answer = self.post question = self.post.parent if dir == 1: answer.post_accepted = True question.answer_accepted = True else: answer.post_accepted = False question.answer_accepted = False answer.save() #question.save() class Badge(models.Model): name = models.CharField(max_length=50) description = models.CharField(max_length=200) type = models.IntegerField(choices=BADGE_TYPES) unique = models.BooleanField(default=False) # Unique badges may be earned only once secret = models.BooleanField(default=False) # Secret badges are not listed on the badge list count = models.IntegerField(default=0) # Total number of times awarded def get_absolute_url(self): return "/badge/show/%s/" % self.id class Award(models.Model): ''' A badge being awarded to a user.Cannot be ManyToManyField because some may be earned multiple times ''' badge = models.ForeignKey(Badge) user = models.ForeignKey(User) date = models.DateTimeField() def apply(self, dir=1): type = self.badge.type prof = self.user.get_profile() if type == BADGE_BRONZE: prof.bronze_badges += dir if type == BADGE_SILVER: prof.silver_badges += dir if type == BADGE_GOLD: prof.gold_badges += dir prof.save() self.badge.count += dir self.badge.save() def apply_award(request, user, badge_name, messages=None): badge = Badge.objects.get(name=badge_name) award = Award.objects.filter(badge=badge, user=user) if award and badge.unique: # this badge has already been awarded return community = User.objects.get(username='community') award = Award.objects.create(badge=badge, user=user) text = notegen.badgenote(award.badge) note = Note.send(sender=community, target=user, content=text) if messages: messages.info(request, note.html) # most of the site functionality, reputation change # and voting is auto applied via database signals # # data migration will need to route through # these models (this application) to ensure that all actions # get applied properly # from django.db.models import signals # Many models have apply() methods that need to be called when they are created # and called with dir=-1 when deleted to update something. MODELS_WITH_APPLY = [ Post, Vote, Award, PostRevision ] def apply_instance(sender, instance, created, raw, *args, **kwargs): "Applies changes from an instance with an apply() method" if created and not raw: # Raw is true when importing from fixtures, in which case votes are already applied instance.apply(+1) def unapply_instance(sender, instance, *args, **kwargs): "Unapplies an instance when it is deleted" instance.apply(-1) for model in MODELS_WITH_APPLY: signals.post_save.connect(apply_instance, sender=model) signals.post_delete.connect(unapply_instance, sender=model) def make_uuid(): "Returns a unique id" x = random.getrandbits(256) u = hashlib.md5(str(x)).hexdigest() return u def create_profile(sender, instance, created, *args, **kwargs): "Post save hook for creating user profiles on user save" if created: uuid = make_uuid() display_name = html.nuke(instance.get_full_name()) UserProfile.objects.create(user=instance, uuid=uuid, display_name=display_name) def update_profile(sender, instance, *args, **kwargs): "Pre save hook for profiles" instance.html = html.generate(instance.about_me) from django.template.defaultfilters import slugify def create_post(sender, instance, *args, **kwargs): "Pre save post information that needs to be applied" if not hasattr(instance, 'lastedit_user'): instance.lastedit_user = instance.author if not instance.creation_date: instance.creation_date = datetime.now() if not instance.lastedit_date: instance.lastedit_date = datetime.now() if not instance.title: instance.title = "%s: %s" %(POST_MAP[instance.post_type], instance.get_root().title) instance.slug = slugify(instance.title) # generate the HTML from the content instance.html = html.generate(instance.content) # set the touch date instance.touch_date = datetime.now() def create_post_note(sender, instance, created, *args, **kwargs): "Post save notice on a post" if created: # when a new post is created all descendants are notified instance.notify() def create_award(sender, instance, *args, **kwargs): "Pre save award function" if not instance.date: instance.date = datetime.now() def create_note(sender, instance, *args, **kwargs): "Pre save notice function" if not instance.date: instance.date = datetime.now() instance.html = html.generate(instance.content) def tags_changed(sender, instance, action, pk_set, *args, **kwargs): "Applies tag count updates upon post changes" if action == 'post_add': for pk in pk_set: tag = Tag.objects.get(pk=pk) tag.count += 1 tag.save() if action == 'post_delete': for pk in pk_set: tag = Tag.objects.get(pk=pk) tag.count -= 1 tag.save() if action == 'pre_clear': # Must be pre so we know what was cleared for tag in instance.tag_set.all(): tag.count -= 1 tag.save() def tag_created(sender, instance, created, *args, **kwargs): "Zero out the count of a newly created Tag instance to avoid double counting in import" if created and instance.count != 0: # To avoid infinite recursion, we must disconnect the signal temporarily signals.post_save.disconnect(tag_created, sender=Tag) instance.count = 0 instance.save() signals.post_save.connect(tag_created, sender=Tag) # now connect all the signals signals.post_save.connect( create_profile, sender=User ) signals.pre_save.connect( update_profile, sender=UserProfile ) signals.pre_save.connect( create_post, sender=Post ) signals.post_save.connect( create_post_note, sender=Post ) signals.pre_save.connect( create_note, sender=Note ) signals.pre_save.connect( create_award, sender=Award ) signals.m2m_changed.connect( tags_changed, sender=Post.tag_set.through ) signals.post_save.connect( tag_created, sender=Tag ) # adding full text search capabilities from whoosh import store, fields, index WhooshSchema = fields.Schema(content=fields.TEXT(), pid=fields.NUMERIC(stored=True)) def create_index(sender=None, **kwargs): if not os.path.exists(settings.WHOOSH_INDEX): os.mkdir(settings.WHOOSH_INDEX) ix = index.create_in(settings.WHOOSH_INDEX, WhooshSchema) writer = ix.writer() signals.post_syncdb.connect(create_index) def update_index(sender, instance, created, **kwargs): ix = index.open_dir(settings.WHOOSH_INDEX) writer = ix.writer() if instance.post_type in POST_FULL_FORM: text = instance.title + instance.content else: text = instance.content if created: writer.add_document(content=text, pid=instance.id) writer.commit() else: writer.update_document(content=text, pid=instance.id) writer.commit() def set_text_indexing(switch): if switch: signals.post_save.connect(update_index, sender=Post) else: signals.post_save.disconnect(update_index, sender=Post) set_text_indexing(True)
the-stack_0_23777
import inspect import os import sys from random import choice from typing import List __author__ = "GLNB" __copyright__ = "GLNB" __license__ = "mit" try: from .dictionaries import invisible_chars, dict_latin except ImportError: from dictionaries import invisible_chars, dict_latin __location__ = os.path.join( os.getcwd(), os.path.dirname(inspect.getfile(inspect.currentframe())) ) class Scrambler: # This is done by parsing the Unicode list of confusable characters. """ .. code:: python >>> from text_scrambler import Scrambler >>> scr = Scrambler() >>> text = "This is an example" >>> text_1 = scr.scramble(text, level=1) >>> ############# >>> # adding only zwj/zwnj characters >>> print(text, text_1, sep="\\n") This is an example T‌h‍i‍s‌ ‍i‌s‍ ‌a‌n‌ ‍e‍x‌a‍m‍p‌l‌e >>> assert text != text_1 >>> print(len(text), len(text_1)) 18 35 >>> # though the texts look similar, the second one has more characters >>> ############# >>> text_2 = scr.scramble(text, level=2) >>> # replacing some latin letters by their cyrillic/greek equivalent >>> print(text_2) Тhiѕ iѕ an ехаmple >>> for char, char_2 in zip(text, text_2): ... if char != char_2: ... print(char, char_2) ... T Т s ѕ s ѕ e е x х a а >>> ############# >>> text_3 = scr.scramble(text, level=3) >>> # adding zwj/zwnj characters and replacing latin letters >>> print(text_3) T‌h‍і‍s‌ ‍i‌ѕ‍ ‍а‌n‍ ‌e‌х‍а‌m‍p‌l‌e >>> print(text, text_3, sep="\\n") This is an example T‌h‍і‍s‌ ‍i‌ѕ‍ ‍а‌n‍ ‌e‌х‍а‌m‍p‌l‌e >>> assert text_3 != text >>> ############# >>> text_4 = scr.scramble(text, level=4) >>> # replacing all characters by any unicode looking like character >>> print(text_4) ⊤‌𝒽‍𝐢‌𝘴‌ ‌𝘪‍𝙨‌ ‍𝞪‍ռ‍ ‌𝙚‍⨯‍𝚊‍m‌ρ‍𝟙‌ҽ >>> # >>> # generating several versions >>> versions = scr.generate(text, 10, level=4) >>> for txt in versions: ... print(txt) ... 𝕋‌𝗵‌𝕚‍𝔰‍ ‍𝙞‌ѕ‌ ‌ɑ‍𝗇‌ ‌ꬲ‍𝗑‍𝒂‍m‌𝛠‍Ⲓ‍𝚎 𝔗‌һ‌𑣃‍ƽ‌ ‌˛‍ꜱ‍ ‍𝛼‍𝐧‌ ‌𝐞‍𝖝‍𝛼‌m‌𝜌‌𝟏‌ℯ T‌h‌𝓲‌𝔰‌ ‌ⅈ‌𝔰‍ ‌α‌n‌ ‍ꬲ‌⤬‌α‌m‌⍴‍𞸀‌e 𝗧‍𝗵‍i‍𝑠‍ ‌i‌𝖘‌ ‍⍺‍𝘯‌ ‌𝗲‌𝔁‍а‌m‍𝘱‍𝙸‍𝔢 ⊤‌𝚑‍𝑖‌s‌ ‍ɪ‌𝚜‌ ‍𝜶‍𝑛‌ ‍𝖾‍𝘅‍𝒶‍m‍𝛒‍𝑙‌𝓮 𝘛‌h‍𝙞‍ꮪ‍ ‌ⅈ‌𝗌‍ ‍𝗮‌𝐧‍ ‍ꬲ‌ᕽ‍𝓪‌m‌𝜌‌⏽‍𝓮 𝙏‌𝕙‍і‍𝓈‌ ‌ı‍ꜱ‍ ‌𝔞‍𝕟‍ ‍𝗲‍𝕩‍𝛂‍m‍р‍𐌉‌𝚎 𝕿‌Ꮒ‌ℹ‌𝐬‌ ‍𝗶‌𝗌‌ ‍𝛼‍𝔫‌ ‍𝗲‍𝐱‍𝓪‌m‍𝞎‌𝙡‌𝖊 ⟙‌h‍𝜾‍ꮪ‍ ‌i‍𝘴‍ ‌𝝰‍𝒏‌ ‌𝙚‍ᕽ‍𝗮‍m‌𝗽‌𝗜‍𝗲 𝖳‌հ‌𝒊‌s‌ ‍𝕚‌𝙨‌ ‌𝖆‌𝑛‌ ‌𝘦‌𝔁‌а‌m‌𝜌‌𝐈‍𝗲 >>> versions = scr.generate(text, 1000, level=1) >>> assert len(versions) == len(set(versions)) >>> # all unique """ def __init__( self, confusables_file=os.path.join( __location__, "txt_files", "confusablesSummary.txt" ), ): # The confusables can be found at: # https://www.unicode.org/Public/security/13.0.0/confusables.txt self.confusables_file = confusables_file self.invisible_chars = invisible_chars self.dict_latin = dict_latin self._parse_unicode_file() def __str__(self): return self.scramble("<__main__.Scrambler object>", level=4) __repr__ = __str__ def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): if exc_type: print(f"exc_type: {exc_type}", file=sys.stderr) print(f"exc_value: {exc_value}", file=sys.stderr) print(f"exc_traceback: {exc_traceback}", file=sys.stderr) def _parse_unicode_file(self) -> dict: """return a dict of the unicode confusable given the self.confusables_file""" self.unicode_dict = {} file = open(self.confusables_file, encoding="utf-8") ls_lines_confusable = [] for _ in range(32): file.readline() for line in file: if line.startswith("#"): ls_lines_confusable.append(line[:-1]) # not taking the \n file.close() ls_lines_confusable = ls_lines_confusable[ :-1 ] # not taking the last line (total) for line in ls_lines_confusable: _, char, *ls_chars = line.split("\t") if len(char) > 1: continue self.unicode_dict[char] = ls_chars def scramble(self, text: str, level: int = 1) -> str: """return the text scrambled :param text: the text to scramble :type text: str :param level: default to 1 :type level: int, optional **level**: 1: insert non printable characters within the text 2: replace some latin letters to their Greek or Cyrillic equivalent 3: insert non printable characters and change the some latin letters to their Greek or Cyrillic equivalent 4: insert non printable chraracters change all possible letter to a randomly picked unicode letter equivalent :return: the scrambled string :rtype: str """ if level not in range(1, 5): raise ValueError(f"level {level} not implemented") new_text = "" if level == 1: for char in text: new_text += char + choice(self.invisible_chars) elif level == 2: for char in text: new_text += choice(self.dict_latin.get(char, []) + [char]) new_text += " " elif level == 3: for char in text: new_text += choice(self.dict_latin.get(char, []) + [char]) + choice( self.invisible_chars ) elif level == 4: for char in text: new_text += choice(self.unicode_dict.get(char, []) + [char]) + choice( self.invisible_chars ) else: raise ValueError(f"level '{level}' not implemented") return new_text[:-1] def generate(self, text: str, n: int = 1000, level: int = 3) -> List[str]: """return a list containing n versions of the text jammed :param text: the text to be scrambled :type text: str :param n: the number of time the text should be scrambled, defaults to 1000 :type n: int, optional :param level: the level of the scrambling, defaults to 3 :type level: int, optional :return: a list of scrambled texts, all differents :rtype: List[str] .. code:: python >>> from text_scrambler import Scrambler >>> scr = Scrambler() >>> text = "A cranial nerve nucleus is a collection of neurons in the brain stem that is associated with one or more of the cranial nerves." >>> texts = scr.generate(text, 1000, level=1) >>> assert texts[0] != text >>> for scrambled_text in texts: ... assert text != scrambled_text ... >>> print(texts[0]) A‍ ‌c‍r‌a‌n‍i‍a‌l‌ ‌n‌e‍r‍v‍e‌ ‍n‌u‌c‍l‌e‌u‌s‌ ‍i‌s‌ ‌a‍ ‌c‍o‌l‍l‌e‍c‌t‌i‌o‍n‍ ‌o‍f‍ ‍n‌e‌u‌r‍o‍n‍s‌ ‍i‌n‌ ‍t‌h‍e‍ ‍b‍r‍a‍i‍n‌ ‌s‍t‍e‌m‍ ‍t‍h‍a‍t‍ ‍i‍s‌ ‌a‌s‍s‍o‌c‌i‌a‌t‌e‍d‍ ‌w‌i‌t‌h‍ ‌o‍n‍e‍ ‍o‍r‍ ‌m‌o‍r‍e‌ ‍o‍f‌ ‍t‍h‌e‌ ‍c‍r‌a‍n‍i‌a‍l‌ ‍n‌e‍r‍v‌e‌s‌. >>> # different from the original text """ ls_new_text = [] num_generated = 0 while True: new_text = self.scramble(text, level=level) if new_text not in ls_new_text: ls_new_text.append(new_text) num_generated += 1 if num_generated == n: break return ls_new_text
the-stack_0_23778
from ops.framework import Object, StoredState class KeepalivedPeers(Object): state = StoredState() def __init__(self, charm, relation_name): super().__init__(charm, relation_name) self._relation_name = relation_name self._relation = self.framework.model.get_relation(self._relation_name) self.framework.observe(charm.on.keepalived_initialized, self) @property def is_joined(self): return self._relation is not None def on_keepalived_initialized(self, event): if not self.framework.model.unit.is_leader(): return # A workaround for LP: #1859769. if not self.is_joined: event.defer() return self._relation.data[self.model.app]['initial_unit'] = self.framework.model.unit.name @property def initial_unit(self): """Return the unit that is supposed to have an initial MASTER state.""" if self.is_joined: return self._relation.data[self.model.app].get('initial_unit') else: return None
the-stack_0_23779
FILTER_WORDS = [ "who", "http", "twitch", "onlyfans", "instagram", "snapchat", "website", "profile", "ethereum", "commentmessage" "snap", "youtube", ] def is_valid_comment(raw_text): """ Makes sure the comment is not spam, is not just asking for who it is, does not contain link, and is somewhat long """ comment_text = raw_text.lower() if len(comment_text) <= 14: return False for word in FILTER_WORDS: if comment_text.find(word) != -1: return False return True
the-stack_0_23781
""" Module for testing postgres update""" import os import psycopg2 class DBConnector: """Establishes connection to local postgres""" def __init__(self): """ init method that establishes connection - *dbname*: the database name - *user*: user name used to authenticate - *password*: password used to authenticate - *host*: database host address (defaults to UNIX socket if not provided) - *port*: connection port number (defaults to 5432 if not provided) """ self.host = 'localhost' self.user = os.environ['user'] def connect(self): """ Connects to somedb in local postgres""" connection = psycopg2.connect( host=self.host, user=self.user, password='', database='somedb' ) return connection def get_all_changed_rows(self): """ Get all""" sql = "Select user_id from users where email like '%test_changed%'" connection = self.connect() with connection: with connection.cursor() as curs: curs.execute(sql) return [r[0] for r in curs.fetchall()] def bulk_insert(self): """ bulk inserts million records in no time """ connection = self.connect() with connection: with connection.cursor() as curs: with open('users.csv', 'r') as f: next(f) curs.copy_from(f, 'users', sep=',') def update(self, row): """ updates and test concurrency """ sql = f"""Update users set email='test_changed_{row}' where username='test_{row}'""" print(sql) connection = self.connect() with connection: with connection.cursor() as curs: curs.execute(sql)
the-stack_0_23782
class ListNode: def __init__(self, key, val): self.key = key self.val = val self.next = None class MyHashMap: def __init__(self): """ Initialize your data structure here. """ self.mod = 100 self.data = [None] * self.mod def put(self, key: int, value: int) -> None: """ value will always be non-negative. """ index = key % self.mod node = ListNode(key, value) node.next = self.data[index] self.data[index] = node def get(self, key: int) -> int: """ Returns the value to which the specified key is mapped, or -1 if this map contains no mapping for the key """ index = key % self.mod node = self.data[index] while node is not None: if node.key == key: return node.val node = node.next return -1 def remove(self, key: int) -> None: """ Removes the mapping of the specified value key if this map contains a mapping for the key """ index = key % self.mod head = node = ListNode(None,None) node.next = self.data[index] while node.next is not None: if node.next.key == key: node.next = node.next.next else: node = node.next self.data[index] = head.next # Your MyHashMap object will be instantiated and called as such: obj = MyHashMap() obj.put(1, 2) param_2 = obj.get(1) print(param_2) obj.remove(1) param_2 = obj.get(1) print(param_2)
the-stack_0_23784
# Welcome to the gCloud Datastore Demo! (hit enter) # We're going to walk through some of the basics... # Don't worry though. You don't need to do anything, just keep hitting enter... # Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Let's start by importing the demo module and initializing our connection. from gcloud import datastore from gcloud.datastore import demo demo.initialize() # Let's import the package containing our helper classes: # Let's create a new entity of type "Thing" and name it 'Toy': key = datastore.Key('Thing') toy = datastore.Entity(key) toy.update({'name': 'Toy'}) # Now let's save it to our datastore: datastore.put(toy) # If we look it up by its key, we should find it... print(datastore.get(toy.key)) # And we should be able to delete it... datastore.delete(toy.key) # Since we deleted it, if we do another lookup it shouldn't be there again: print(datastore.get(toy.key)) # Now let's try a more advanced query. # First, let's create some entities. SAMPLE_DATA = [ (1234, 'Computer', 10), (2345, 'Computer', 8), (3456, 'Laptop', 10), (4567, 'Printer', 11), (5678, 'Printer', 12), (6789, 'Computer', 13)] sample_keys = [] for id, name, age in SAMPLE_DATA: key = datastore.Key('Thing', id) sample_keys.append(key) entity = datastore.Entity(key) entity['name'] = name entity['age'] = age datastore.put(entity) # We'll start by look at all Thing entities: query = datastore.Query(kind='Thing') # Let's look at the first two. print(list(query.fetch(limit=2))) # Now let's check for Thing entities named 'Computer' query.add_filter('name', '=', 'Computer') print(list(query.fetch())) # If you want to filter by multiple attributes, # you can call .add_filter multiple times on the query. query.add_filter('age', '=', 10) print(list(query.fetch())) # Now delete them. datastore.delete_multi(sample_keys) # You can also work inside a transaction. # (Check the official docs for explanations of what's happening here.) with datastore.Transaction() as xact: print('Creating and saving an entity...') key = datastore.Key('Thing', 'foo') thing = datastore.Entity(key) thing['age'] = 10 xact.put(thing) print('Creating and saving another entity...') key2 = datastore.Key('Thing', 'bar') thing2 = datastore.Entity(key2) thing2['age'] = 15 xact.put(thing2) print('Committing the transaction...') # Now that the transaction is commited, let's delete the entities. datastore.delete_multi([key, key2]) # To rollback a transaction, just call .rollback() with datastore.Transaction() as xact: key = datastore.Key('Thing', 'another') thing = datastore.Entity(key) xact.put(thing) xact.rollback() # Let's check if the entity was actually created: created = datastore.get(key) print('yes' if created else 'no') # Remember, a key won't be complete until the transaction is commited. # That is, while inside the transaction block, thing.key will be incomplete. with datastore.Transaction() as xact: key = datastore.Key('Thing') # partial thing = datastore.Entity(key) xact.put(thing) print(thing.key) # This will still be partial print(thing.key) # This will be complete # Now let's delete the entity. datastore.delete(thing.key)
the-stack_0_23785
import networkx as nx __all__ = ["cytoscape_data", "cytoscape_graph"] _attrs = dict(name="name", ident="id") def cytoscape_data(G, attrs=None): """Returns data in Cytoscape JSON format (cyjs). Parameters ---------- G : NetworkX Graph Returns ------- data: dict A dictionary with cyjs formatted data. Raises ------ NetworkXError If values in attrs are not unique. """ if not attrs: attrs = _attrs else: attrs.update({k: v for (k, v) in _attrs.items() if k not in attrs}) name = attrs["name"] ident = attrs["ident"] if len({name, ident}) < 2: raise nx.NetworkXError("Attribute names are not unique.") jsondata = {"data": list(G.graph.items())} jsondata["directed"] = G.is_directed() jsondata["multigraph"] = G.is_multigraph() jsondata["elements"] = {"nodes": [], "edges": []} nodes = jsondata["elements"]["nodes"] edges = jsondata["elements"]["edges"] for i, j in G.nodes.items(): n = {"data": j.copy()} n["data"]["id"] = j.get(ident) or str(i) n["data"]["value"] = i n["data"]["name"] = j.get(name) or str(i) nodes.append(n) if G.is_multigraph(): for e in G.edges(keys=True): n = {"data": G.adj[e[0]][e[1]][e[2]].copy()} n["data"]["source"] = e[0] n["data"]["target"] = e[1] n["data"]["key"] = e[2] edges.append(n) else: for e in G.edges(): n = {"data": G.adj[e[0]][e[1]].copy()} n["data"]["source"] = e[0] n["data"]["target"] = e[1] edges.append(n) return jsondata def cytoscape_graph(data, attrs=None): if not attrs: attrs = _attrs else: attrs.update({k: v for (k, v) in _attrs.items() if k not in attrs}) name = attrs["name"] ident = attrs["ident"] if len({ident, name}) < 2: raise nx.NetworkXError("Attribute names are not unique.") multigraph = data.get("multigraph") directed = data.get("directed") if multigraph: graph = nx.MultiGraph() else: graph = nx.Graph() if directed: graph = graph.to_directed() graph.graph = dict(data.get("data")) for d in data["elements"]["nodes"]: node_data = d["data"].copy() node = d["data"]["value"] if d["data"].get(name): node_data[name] = d["data"].get(name) if d["data"].get(ident): node_data[ident] = d["data"].get(ident) graph.add_node(node) graph.nodes[node].update(node_data) for d in data["elements"]["edges"]: edge_data = d["data"].copy() sour = d["data"].pop("source") targ = d["data"].pop("target") if multigraph: key = d["data"].get("key", 0) graph.add_edge(sour, targ, key=key) graph.edges[sour, targ, key].update(edge_data) else: graph.add_edge(sour, targ) graph.edges[sour, targ].update(edge_data) return graph
the-stack_0_23787
# Copyright (c) 2012 OpenStack Foundation # All Rights Reserved. # Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Functionality related to notifications common to multiple layers of the system. """ import datetime from keystoneauth1 import exceptions as ks_exc from oslo_log import log from oslo_utils import excutils from oslo_utils import timeutils import nova.conf import nova.context from nova import exception from nova import image as image_api from nova import network from nova.network import model as network_model from nova.notifications.objects import base as notification_base from nova.notifications.objects import instance as instance_notification from nova import objects from nova.objects import base as obj_base from nova.objects import fields from nova import rpc from nova import utils LOG = log.getLogger(__name__) CONF = nova.conf.CONF def send_update(context, old_instance, new_instance, service="compute", host=None): """Send compute.instance.update notification to report any changes occurred in that instance """ if not CONF.notifications.notify_on_state_change: # skip all this if updates are disabled return update_with_state_change = False old_vm_state = old_instance["vm_state"] new_vm_state = new_instance["vm_state"] old_task_state = old_instance["task_state"] new_task_state = new_instance["task_state"] # we should check if we need to send a state change or a regular # notification if old_vm_state != new_vm_state: # yes, the vm state is changing: update_with_state_change = True elif (CONF.notifications.notify_on_state_change == "vm_and_task_state" and old_task_state != new_task_state): # yes, the task state is changing: update_with_state_change = True if update_with_state_change: # send a notification with state changes # value of verify_states need not be True as the check for states is # already done here send_update_with_states(context, new_instance, old_vm_state, new_vm_state, old_task_state, new_task_state, service, host) else: try: old_display_name = None if new_instance["display_name"] != old_instance["display_name"]: old_display_name = old_instance["display_name"] send_instance_update_notification(context, new_instance, service=service, host=host, old_display_name=old_display_name) except exception.InstanceNotFound: LOG.debug('Failed to send instance update notification. The ' 'instance could not be found and was most likely ' 'deleted.', instance=new_instance) except Exception: LOG.exception("Failed to send state update notification", instance=new_instance) def send_update_with_states(context, instance, old_vm_state, new_vm_state, old_task_state, new_task_state, service="compute", host=None, verify_states=False): """Send compute.instance.update notification to report changes if there are any, in the instance """ if not CONF.notifications.notify_on_state_change: # skip all this if updates are disabled return fire_update = True # send update notification by default if verify_states: # check whether we need to send notification related to state changes fire_update = False # do not send notification if the conditions for vm and(or) task state # are not satisfied if old_vm_state != new_vm_state: # yes, the vm state is changing: fire_update = True elif (CONF.notifications.notify_on_state_change == "vm_and_task_state" and old_task_state != new_task_state): # yes, the task state is changing: fire_update = True if fire_update: # send either a state change or a regular notification try: send_instance_update_notification(context, instance, old_vm_state=old_vm_state, old_task_state=old_task_state, new_vm_state=new_vm_state, new_task_state=new_task_state, service=service, host=host) except exception.InstanceNotFound: LOG.debug('Failed to send instance update notification. The ' 'instance could not be found and was most likely ' 'deleted.', instance=instance) except Exception: LOG.exception("Failed to send state update notification", instance=instance) def _compute_states_payload(instance, old_vm_state=None, old_task_state=None, new_vm_state=None, new_task_state=None): # If the states were not specified we assume the current instance # states are the correct information. This is important to do for # both old and new states because otherwise we create some really # confusing notifications like: # # None(None) => Building(none) # # When we really were just continuing to build if new_vm_state is None: new_vm_state = instance["vm_state"] if new_task_state is None: new_task_state = instance["task_state"] if old_vm_state is None: old_vm_state = instance["vm_state"] if old_task_state is None: old_task_state = instance["task_state"] states_payload = { "old_state": old_vm_state, "state": new_vm_state, "old_task_state": old_task_state, "new_task_state": new_task_state, } return states_payload def send_instance_update_notification(context, instance, old_vm_state=None, old_task_state=None, new_vm_state=None, new_task_state=None, service="compute", host=None, old_display_name=None): """Send 'compute.instance.update' notification to inform observers about instance state changes. """ # NOTE(gibi): The image_ref_url is only used in unversioned notifications. # Calling the generate_image_url() could be costly as it calls # the Keystone API. So only do the call if the actual value will be # used. populate_image_ref_url = (CONF.notifications.notification_format in ('both', 'unversioned')) payload = info_from_instance(context, instance, None, populate_image_ref_url=populate_image_ref_url) # determine how we'll report states payload.update( _compute_states_payload( instance, old_vm_state, old_task_state, new_vm_state, new_task_state)) # add audit fields: (audit_start, audit_end) = audit_period_bounds(current_period=True) payload["audit_period_beginning"] = null_safe_isotime(audit_start) payload["audit_period_ending"] = null_safe_isotime(audit_end) # add bw usage info: bw = bandwidth_usage(context, instance, audit_start) payload["bandwidth"] = bw # add old display name if it is changed if old_display_name: payload["old_display_name"] = old_display_name rpc.get_notifier(service, host).info(context, 'compute.instance.update', payload) _send_versioned_instance_update(context, instance, payload, host, service) @rpc.if_notifications_enabled def _send_versioned_instance_update(context, instance, payload, host, service): def _map_legacy_service_to_source(legacy_service): if not legacy_service.startswith('nova-'): return 'nova-' + service else: return service state_update = instance_notification.InstanceStateUpdatePayload( old_state=payload.get('old_state'), state=payload.get('state'), old_task_state=payload.get('old_task_state'), new_task_state=payload.get('new_task_state')) audit_period = instance_notification.AuditPeriodPayload( audit_period_beginning=payload.get('audit_period_beginning'), audit_period_ending=payload.get('audit_period_ending')) bandwidth = [instance_notification.BandwidthPayload( network_name=label, in_bytes=bw['bw_in'], out_bytes=bw['bw_out']) for label, bw in payload['bandwidth'].items()] versioned_payload = instance_notification.InstanceUpdatePayload( context=context, instance=instance, state_update=state_update, audit_period=audit_period, bandwidth=bandwidth, old_display_name=payload.get('old_display_name')) notification = instance_notification.InstanceUpdateNotification( priority=fields.NotificationPriority.INFO, event_type=notification_base.EventType( object='instance', action=fields.NotificationAction.UPDATE), publisher=notification_base.NotificationPublisher( host=host or CONF.host, source=_map_legacy_service_to_source(service)), payload=versioned_payload) notification.emit(context) def audit_period_bounds(current_period=False): """Get the start and end of the relevant audit usage period :param current_period: if True, this will generate a usage for the current usage period; if False, this will generate a usage for the previous audit period. """ begin, end = utils.last_completed_audit_period() if current_period: audit_start = end audit_end = timeutils.utcnow() else: audit_start = begin audit_end = end return (audit_start, audit_end) def bandwidth_usage(context, instance_ref, audit_start, ignore_missing_network_data=True): """Get bandwidth usage information for the instance for the specified audit period. """ admin_context = context.elevated(read_deleted='yes') def _get_nwinfo_old_skool(): """Support for getting network info without objects.""" if (instance_ref.get('info_cache') and instance_ref['info_cache'].get('network_info') is not None): cached_info = instance_ref['info_cache']['network_info'] if isinstance(cached_info, network_model.NetworkInfo): return cached_info return network_model.NetworkInfo.hydrate(cached_info) try: return network.API().get_instance_nw_info(admin_context, instance_ref) except Exception: try: with excutils.save_and_reraise_exception(): LOG.exception('Failed to get nw_info', instance=instance_ref) except Exception: if ignore_missing_network_data: return raise # FIXME(comstud): Temporary as we transition to objects. if isinstance(instance_ref, obj_base.NovaObject): nw_info = instance_ref.info_cache.network_info if nw_info is None: nw_info = network_model.NetworkInfo() else: nw_info = _get_nwinfo_old_skool() macs = [vif['address'] for vif in nw_info] uuids = [instance_ref["uuid"]] bw_usages = objects.BandwidthUsageList.get_by_uuids(admin_context, uuids, audit_start) bw = {} for b in bw_usages: if b.mac in macs: label = 'net-name-not-found-%s' % b.mac for vif in nw_info: if vif['address'] == b.mac: label = vif['network']['label'] break bw[label] = dict(bw_in=b.bw_in, bw_out=b.bw_out) return bw def image_meta(system_metadata): """Format image metadata for use in notifications from the instance system metadata. """ image_meta = {} for md_key, md_value in system_metadata.items(): if md_key.startswith('image_'): image_meta[md_key[6:]] = md_value return image_meta def null_safe_str(s): return str(s) if s else '' def null_safe_isotime(s): if isinstance(s, datetime.datetime): return utils.strtime(s) else: return str(s) if s else '' def info_from_instance(context, instance, network_info, populate_image_ref_url=False, **kw): """Get detailed instance information for an instance which is common to all notifications. :param:instance: nova.objects.Instance :param:network_info: network_info provided if not None :param:populate_image_ref_url: If True then the full URL of the image of the instance is generated and returned. This, depending on the configuration, might mean a call to Keystone. If false, None value is returned in the dict at the image_ref_url key. """ image_ref_url = None if populate_image_ref_url: try: # NOTE(mriedem): We can eventually drop this when we no longer # support legacy notifications since versioned notifications don't # use this. image_ref_url = image_api.API().generate_image_url( instance.image_ref, context) except ks_exc.EndpointNotFound: # We might be running from a periodic task with no auth token and # CONF.glance.api_servers isn't set, so we can't get the image API # endpoint URL from the service catalog, therefore just use the # image id for the URL (yes it's a lie, but it's best effort at # this point). with excutils.save_and_reraise_exception() as exc_ctx: if context.auth_token is None: image_ref_url = instance.image_ref exc_ctx.reraise = False instance_type = instance.get_flavor() instance_type_name = instance_type.get('name', '') instance_flavorid = instance_type.get('flavorid', '') instance_info = dict( # Owner properties tenant_id=instance.project_id, user_id=instance.user_id, # Identity properties instance_id=instance.uuid, display_name=instance.display_name, reservation_id=instance.reservation_id, hostname=instance.hostname, # Type properties instance_type=instance_type_name, instance_type_id=instance.instance_type_id, instance_flavor_id=instance_flavorid, architecture=instance.architecture, # Capacity properties memory_mb=instance.flavor.memory_mb, disk_gb=instance.flavor.root_gb + instance.flavor.ephemeral_gb, vcpus=instance.flavor.vcpus, # Note(dhellmann): This makes the disk_gb value redundant, but # we are keeping it for backwards-compatibility with existing # users of notifications. root_gb=instance.flavor.root_gb, ephemeral_gb=instance.flavor.ephemeral_gb, # Location properties host=instance.host, node=instance.node, availability_zone=instance.availability_zone, cell_name=null_safe_str(instance.cell_name), # Date properties created_at=str(instance.created_at), # Terminated and Deleted are slightly different (although being # terminated and not deleted is a transient state), so include # both and let the recipient decide which they want to use. terminated_at=null_safe_isotime(instance.get('terminated_at', None)), deleted_at=null_safe_isotime(instance.get('deleted_at', None)), launched_at=null_safe_isotime(instance.get('launched_at', None)), # Image properties image_ref_url=image_ref_url, os_type=instance.os_type, kernel_id=instance.kernel_id, ramdisk_id=instance.ramdisk_id, # Status properties state=instance.vm_state, state_description=null_safe_str(instance.task_state), # NOTE(gibi): It might seems wrong to default the progress to an empty # string but this is how legacy work and this code only used by the # legacy notification so try to keep the compatibility here but also # keep it contained. progress=int(instance.progress) if instance.progress else '', # accessIPs access_ip_v4=instance.access_ip_v4, access_ip_v6=instance.access_ip_v6, ) if network_info is not None: fixed_ips = [] for vif in network_info: for ip in vif.fixed_ips(): ip["label"] = vif["network"]["label"] ip["vif_mac"] = vif["address"] fixed_ips.append(ip) instance_info['fixed_ips'] = fixed_ips # add image metadata image_meta_props = image_meta(instance.system_metadata) instance_info["image_meta"] = image_meta_props # add instance metadata instance_info['metadata'] = instance.metadata instance_info.update(kw) return instance_info
the-stack_0_23789
import numpy as np from yaglm.utils import count_support def est_dof_support(coef, intercept=None, transform=None, zero_tol=1e-6): """ The size of the support of the estimated coefficient (or a transform therof) is sometimes a reasonable estimate for the degrees of freedom e.g. in Lasso, SCAD and some generalized Lasso problems. Parameters ---------- coef: array-like The estimated coefficient. intercept: None, float, array-like (Optional) The estimated coefficeint. transform: None, callable(coef) -> array-like (Optional) The transformation applied to the coefficient e.g. for the generalized Lasso. zero_tol: float Tolerance for declaring a small value equal to zero. This addresses numerical issues where some solvers may not return exact zeros. Output ------ dof: int The estimaed number of degrees of freedom. The DoF of the coefficeint is given by either ||coef||_0 or ||transform(coef)||_0 References ---------- Zou, H., Hastie, T. and Tibshirani, R., 2007. On the “degrees of freedom” of the lasso. The Annals of Statistics, 35(5), pp.2173-2192. Park, M.Y. and Hastie, T., 2007. L1‐regularization path algorithm for generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), pp.659-677. Zhang, Y., Li, R. and Tsai, C.L., 2010. Regularization parameter selections via generalized information criterion. Journal of the American Statistical Association, 105(489), pp.312-323. """ # count support of estimated coefficient coef = np.array(coef) if transform is None: n_nonzero_coef = count_support(coef, zero_tol=zero_tol) else: n_nonzero_coef = count_support(transform(coef), zero_tol=zero_tol) # maybe add intercept if intercept is not None: n_vals_intercept = np.array(intercept).size else: n_vals_intercept = 0 DoF = n_nonzero_coef + n_vals_intercept return DoF def est_dof_enet(coef, pen_val, mix_val, X, intercept=None, zero_tol=1e-6): """ The size of the support of the estimated coefficient for elastic net at a particular penalty and mixing value. ElasticNet penalty: pen_val * mix_val ||coef||_1 + pen_val * (1 - mix_val) * ||coef||_2^2 Parameters ---------- coef: array-like The estimated coefficient. pen_val: float, current penalty value in the elastic net penalty mix_val: float, current mixing value in the elastic net penalty X: (n,d)-array, design matrix excluding the intercept column intercept: None, float, array-like (Optional) The estimated coefficeint. zero_tol: float Tolerance for declaring a small value equal to zero. This addresses numerical issues where some solvers may not return exact zeros. Output ------ DoF: int The estimaed number of degrees of freedom. The DoF of the coefficeint is given by either ||coef||_0 or ||transform(coef)||_0 References ---------- Zou, H., Hastie, T. and Tibshirani, R., 2007. On the “degrees of freedom” of the lasso. The Annals of Statistics, 35(5), pp.2173-2192. """ # Get the estimated support from the fitted coefficient if intercept is not None: coef = np.concatenate([[intercept], coef]) support = (abs(coef) > zero_tol) # tuning parameter attached to the ridge penalty lambda_2 = pen_val * (1 - mix_val) # Get the columns of the design matrix that correspond to the non-zero coef if intercept is not None: ones = np.ones((X.shape[0], 1)) X = np.concatenate([ones, X], axis = 1) X_A = X[:, support].copy() xtx_li_inv = np.linalg.inv(X_A.T @ X_A + lambda_2 * np.identity(X_A.shape[1])) DoF = np.trace(X_A @ xtx_li_inv @ X_A.T) return(DoF)
the-stack_0_23790
#!/usr/bin/env python import re import numpy as np if __name__ == "__main__": with open("input") as fh: data = [line.rstrip() for line in fh.readlines()] grid = np.zeros(shape=(1000, 1000)) pattern = re.compile(r"\#(\S+) \@ (\d+),(\d+): (\d+)x(\d+)") for line in data: match = pattern.match(line) idx, x, y, width, height = match.groups() x = int(x) y = int(y) width = int(width) height = int(height) grid[x:x+width, y:y+height] += 1 overlaps = np.where(grid > 1) print(len(overlaps[0]), len(overlaps[1]))
the-stack_0_23791
""" Distributed Prioritized Experience Replay (Ape-X) ================================================= This file defines a DQN trainer using the Ape-X architecture. Ape-X uses a single GPU learner and many CPU workers for experience collection. Experience collection can scale to hundreds of CPU workers due to the distributed prioritization of experience prior to storage in replay buffers. Detailed documentation: https://docs.ray.io/en/master/rllib-algorithms.html#distributed-prioritized-experience-replay-ape-x """ # noqa: E501 import collections import copy import platform from typing import Tuple import ray from ray.actor import ActorHandle from ray.rllib.agents.dqn.dqn import ( calculate_rr_weights, DEFAULT_CONFIG as DQN_DEFAULT_CONFIG, DQNTrainer, ) from ray.rllib.agents.dqn.learner_thread import LearnerThread from ray.rllib.evaluation.worker_set import WorkerSet from ray.rllib.execution.common import ( STEPS_TRAINED_COUNTER, STEPS_TRAINED_THIS_ITER_COUNTER, _get_global_vars, _get_shared_metrics, ) from ray.rllib.execution.concurrency_ops import Concurrently, Dequeue, Enqueue from ray.rllib.execution.metric_ops import StandardMetricsReporting from ray.rllib.execution.buffers.multi_agent_replay_buffer import ReplayActor from ray.rllib.execution.replay_ops import Replay, StoreToReplayBuffer from ray.rllib.execution.rollout_ops import ParallelRollouts from ray.rllib.execution.train_ops import UpdateTargetNetwork from ray.rllib.utils import merge_dicts from ray.rllib.utils.actors import create_colocated_actors from ray.rllib.utils.annotations import override from ray.rllib.utils.metrics.learner_info import LEARNER_INFO from ray.rllib.utils.typing import SampleBatchType, TrainerConfigDict from ray.tune.trainable import Trainable from ray.tune.utils.placement_groups import PlacementGroupFactory from ray.util.iter import LocalIterator # fmt: off # __sphinx_doc_begin__ APEX_DEFAULT_CONFIG = merge_dicts( # See also the options in dqn.py, which are also supported. DQN_DEFAULT_CONFIG, { "optimizer": merge_dicts( DQN_DEFAULT_CONFIG["optimizer"], { "max_weight_sync_delay": 400, "num_replay_buffer_shards": 4, "debug": False }), "n_step": 3, "num_gpus": 1, "num_workers": 32, # TODO(jungong) : add proper replay_buffer_config after # DistributedReplayBuffer type is supported. "replay_buffer_config": { # For now we don't use the new ReplayBuffer API here "_enable_replay_buffer_api": False, "no_local_replay_buffer": True, "type": "MultiAgentReplayBuffer", "capacity": 2000000, "replay_batch_size": 32, "prioritized_replay_alpha": 0.6, # Beta parameter for sampling from prioritized replay buffer. "prioritized_replay_beta": 0.4, # Epsilon to add to the TD errors when updating priorities. "prioritized_replay_eps": 1e-6, }, # Whether all shards of the replay buffer must be co-located # with the learner process (running the execution plan). # This is preferred b/c the learner process should have quick # access to the data from the buffer shards, avoiding network # traffic each time samples from the buffer(s) are drawn. # Set this to False for relaxing this constraint and allowing # replay shards to be created on node(s) other than the one # on which the learner is located. "replay_buffer_shards_colocated_with_driver": True, "learning_starts": 50000, "train_batch_size": 512, "rollout_fragment_length": 50, "target_network_update_freq": 500000, "timesteps_per_iteration": 25000, "exploration_config": {"type": "PerWorkerEpsilonGreedy"}, "worker_side_prioritization": True, "min_time_s_per_reporting": 30, # If set, this will fix the ratio of replayed from a buffer and learned # on timesteps to sampled from an environment and stored in the replay # buffer timesteps. Otherwise, replay will proceed as fast as possible. "training_intensity": None, # Experimental flag. # If True, the execution plan API will not be used. Instead, # a Trainer's `training_iteration` method will be called as-is each # training iteration. "_disable_execution_plan_api": False, }, ) # __sphinx_doc_end__ # fmt: on # Update worker weights as they finish generating experiences. class UpdateWorkerWeights: def __init__( self, learner_thread: LearnerThread, workers: WorkerSet, max_weight_sync_delay: int, ): self.learner_thread = learner_thread self.workers = workers self.steps_since_update = collections.defaultdict(int) self.max_weight_sync_delay = max_weight_sync_delay self.weights = None def __call__(self, item: Tuple[ActorHandle, SampleBatchType]): actor, batch = item self.steps_since_update[actor] += batch.count if self.steps_since_update[actor] >= self.max_weight_sync_delay: # Note that it's important to pull new weights once # updated to avoid excessive correlation between actors. if self.weights is None or self.learner_thread.weights_updated: self.learner_thread.weights_updated = False self.weights = ray.put(self.workers.local_worker().get_weights()) actor.set_weights.remote(self.weights, _get_global_vars()) # Also update global vars of the local worker. self.workers.local_worker().set_global_vars(_get_global_vars()) self.steps_since_update[actor] = 0 # Update metrics. metrics = _get_shared_metrics() metrics.counters["num_weight_syncs"] += 1 class ApexTrainer(DQNTrainer): @classmethod @override(DQNTrainer) def get_default_config(cls) -> TrainerConfigDict: return APEX_DEFAULT_CONFIG @override(DQNTrainer) def validate_config(self, config): if config["num_gpus"] > 1: raise ValueError("`num_gpus` > 1 not yet supported for APEX-DQN!") # Call DQN's validation method. super().validate_config(config) @staticmethod @override(DQNTrainer) def execution_plan( workers: WorkerSet, config: dict, **kwargs ) -> LocalIterator[dict]: assert ( len(kwargs) == 0 ), "Apex execution_plan does NOT take any additional parameters" # Create a number of replay buffer actors. num_replay_buffer_shards = config["optimizer"]["num_replay_buffer_shards"] replay_actor_args = [ num_replay_buffer_shards, config["learning_starts"], config["replay_buffer_config"]["capacity"], config["train_batch_size"], config["replay_buffer_config"]["prioritized_replay_alpha"], config["replay_buffer_config"]["prioritized_replay_beta"], config["replay_buffer_config"]["prioritized_replay_eps"], config["multiagent"]["replay_mode"], config["replay_buffer_config"].get("replay_sequence_length", 1), ] # Place all replay buffer shards on the same node as the learner # (driver process that runs this execution plan). if config["replay_buffer_shards_colocated_with_driver"]: replay_actors = create_colocated_actors( actor_specs=[ # (class, args, kwargs={}, count) (ReplayActor, replay_actor_args, {}, num_replay_buffer_shards) ], node=platform.node(), # localhost )[ 0 ] # [0]=only one item in `actor_specs`. # Place replay buffer shards on any node(s). else: replay_actors = [ ReplayActor(*replay_actor_args) for _ in range(num_replay_buffer_shards) ] # Start the learner thread. learner_thread = LearnerThread(workers.local_worker()) learner_thread.start() # Update experience priorities post learning. def update_prio_and_stats(item: Tuple[ActorHandle, dict, int]) -> None: actor, prio_dict, count = item if config.get("prioritized_replay"): actor.update_priorities.remote(prio_dict) metrics = _get_shared_metrics() # Manually update the steps trained counter since the learner # thread is executing outside the pipeline. metrics.counters[STEPS_TRAINED_THIS_ITER_COUNTER] = count metrics.counters[STEPS_TRAINED_COUNTER] += count metrics.timers["learner_dequeue"] = learner_thread.queue_timer metrics.timers["learner_grad"] = learner_thread.grad_timer metrics.timers["learner_overall"] = learner_thread.overall_timer # We execute the following steps concurrently: # (1) Generate rollouts and store them in one of our replay buffer # actors. Update the weights of the worker that generated the batch. rollouts = ParallelRollouts(workers, mode="async", num_async=2) store_op = rollouts.for_each(StoreToReplayBuffer(actors=replay_actors)) # Only need to update workers if there are remote workers. if workers.remote_workers(): store_op = store_op.zip_with_source_actor().for_each( UpdateWorkerWeights( learner_thread, workers, max_weight_sync_delay=( config["optimizer"]["max_weight_sync_delay"] ), ) ) # (2) Read experiences from one of the replay buffer actors and send # to the learner thread via its in-queue. post_fn = config.get("before_learn_on_batch") or (lambda b, *a: b) replay_op = ( Replay(actors=replay_actors, num_async=4) .for_each(lambda x: post_fn(x, workers, config)) .zip_with_source_actor() .for_each(Enqueue(learner_thread.inqueue)) ) # (3) Get priorities back from learner thread and apply them to the # replay buffer actors. update_op = ( Dequeue(learner_thread.outqueue, check=learner_thread.is_alive) .for_each(update_prio_and_stats) .for_each( UpdateTargetNetwork( workers, config["target_network_update_freq"], by_steps_trained=True ) ) ) if config["training_intensity"]: # Execute (1), (2) with a fixed intensity ratio. rr_weights = calculate_rr_weights(config) + ["*"] merged_op = Concurrently( [store_op, replay_op, update_op], mode="round_robin", output_indexes=[2], round_robin_weights=rr_weights, ) else: # Execute (1), (2), (3) asynchronously as fast as possible. Only # output items from (3) since metrics aren't available before # then. merged_op = Concurrently( [store_op, replay_op, update_op], mode="async", output_indexes=[2] ) # Add in extra replay and learner metrics to the training result. def add_apex_metrics(result: dict) -> dict: replay_stats = ray.get( replay_actors[0].stats.remote(config["optimizer"].get("debug")) ) exploration_infos = workers.foreach_policy_to_train( lambda p, _: p.get_exploration_state() ) result["info"].update( { "exploration_infos": exploration_infos, "learner_queue": learner_thread.learner_queue_size.stats(), LEARNER_INFO: copy.deepcopy(learner_thread.learner_info), "replay_shard_0": replay_stats, } ) return result # Only report metrics from the workers with the lowest 1/3 of # epsilons. selected_workers = workers.remote_workers()[ -len(workers.remote_workers()) // 3 : ] return StandardMetricsReporting( merged_op, workers, config, selected_workers=selected_workers ).for_each(add_apex_metrics) @classmethod @override(Trainable) def default_resource_request(cls, config): cf = dict(cls.get_default_config(), **config) eval_config = cf["evaluation_config"] # Return PlacementGroupFactory containing all needed resources # (already properly defined as device bundles). return PlacementGroupFactory( bundles=[ { # Local worker + replay buffer actors. # Force replay buffers to be on same node to maximize # data bandwidth between buffers and the learner (driver). # Replay buffer actors each contain one shard of the total # replay buffer and use 1 CPU each. "CPU": cf["num_cpus_for_driver"] + cf["optimizer"]["num_replay_buffer_shards"], "GPU": 0 if cf["_fake_gpus"] else cf["num_gpus"], } ] + [ { # RolloutWorkers. "CPU": cf["num_cpus_per_worker"], "GPU": cf["num_gpus_per_worker"], } for _ in range(cf["num_workers"]) ] + ( [ { # Evaluation workers. # Note: The local eval worker is located on the driver # CPU. "CPU": eval_config.get( "num_cpus_per_worker", cf["num_cpus_per_worker"] ), "GPU": eval_config.get( "num_gpus_per_worker", cf["num_gpus_per_worker"] ), } for _ in range(cf["evaluation_num_workers"]) ] if cf["evaluation_interval"] else [] ), strategy=config.get("placement_strategy", "PACK"), )
the-stack_0_23797
# qubit number=3 # total number=59 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.rx(-0.09738937226128368,input_qubit[2]) # number=2 prog.h(input_qubit[1]) # number=33 prog.cz(input_qubit[2],input_qubit[1]) # number=34 prog.h(input_qubit[1]) # number=35 prog.h(input_qubit[1]) # number=3 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_QC322.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_belem") circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
the-stack_0_23798
#!/usr/bin/python # -*- encoding: utf-8; py-indent-offset: 4 -*- # +------------------------------------------------------------------+ # | ____ _ _ __ __ _ __ | # | / ___| |__ ___ ___| | __ | \/ | |/ / | # | | | | '_ \ / _ \/ __| |/ / | |\/| | ' / | # | | |___| | | | __/ (__| < | | | | . \ | # | \____|_| |_|\___|\___|_|\_\___|_| |_|_|\_\ | # | | # | Copyright Mathias Kettner 2014 [email protected] | # +------------------------------------------------------------------+ # # This file is part of Check_MK. # The official homepage is at http://mathias-kettner.de/check_mk. # # check_mk is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation in version 2. check_mk is distributed # in the hope that it will be useful, but WITHOUT ANY WARRANTY; with- # out even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the GNU General Public License for more de- # tails. You should have received a copy of the GNU General Public # License along with GNU Make; see the file COPYING. If not, write # to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, # Boston, MA 02110-1301 USA. # ____ _ # | _ \ ___ | | ___ ___ # | |_) / _ \| |/ _ \/ __| # | _ < (_) | | __/\__ \ # |_| \_\___/|_|\___||___/ # roles = {} # User supplied roles # define default values for all settings debug = False screenshotmode = False profile = False users = [] admin_users = [] guest_users = [] default_user_role = "user" save_user_access_times = False user_online_maxage = 30 # seconds # New style, used by WATO multisite_users = {} # ____ _ _ _ # / ___|(_) __| | ___| |__ __ _ _ __ # \___ \| |/ _` |/ _ \ '_ \ / _` | '__| # ___) | | (_| | __/ |_) | (_| | | # |____/|_|\__,_|\___|_.__/ \__,_|_| # sidebar = [ ('tactical_overview', 'open'), ('search', 'open'), ('views', 'open'), ('reports', 'closed'), # does not harm if not available ('bookmarks', 'open'), ('admin', 'open'), ('master_control', 'closed') ] # Interval of snapin updates in seconds sidebar_update_interval = 30.0 # It is possible (but ugly) to enable a scrollbar in the sidebar sidebar_show_scrollbar = False # Enable regular checking for popup notifications sidebar_notify_interval = None # _ _ _ _ # | | (_)_ __ ___ (_) |_ ___ # | | | | '_ ` _ \| | __/ __| # | |___| | | | | | | | |_\__ \ # |_____|_|_| |_| |_|_|\__|___/ # soft_query_limit = 1000 hard_query_limit = 5000 # ____ _ # / ___| ___ _ _ _ __ __| |___ # \___ \ / _ \| | | | '_ \ / _` / __| # ___) | (_) | |_| | | | | (_| \__ \ # |____/ \___/ \__,_|_| |_|\__,_|___/ # sound_url = "sounds/" enable_sounds = False sounds = [ ( "down", "down.wav" ), ( "critical", "critical.wav" ), ( "unknown", "unknown.wav" ), ( "warning", "warning.wav" ), # ( None, "ok.wav" ), ] # __ ___ _ _ # \ \ / (_) _____ __ ___ _ __ | |_(_) ___ _ __ ___ # \ \ / /| |/ _ \ \ /\ / / / _ \| '_ \| __| |/ _ \| '_ \/ __| # \ V / | | __/\ V V / | (_) | |_) | |_| | (_) | | | \__ \ # \_/ |_|\___| \_/\_/ \___/| .__/ \__|_|\___/|_| |_|___/ # |_| view_option_refreshes = [ 30, 60, 90, 0 ] view_option_columns = [ 1, 2, 3, 4, 5, 6, 8, 10, 12 ] # MISC doculink_urlformat = "http://mathias-kettner.de/checkmk_%s.html"; # ____ _ _ _ _ # / ___| _ ___| |_ ___ _ __ ___ | | (_)_ __ | | _____ # | | | | | / __| __/ _ \| '_ ` _ \ | | | | '_ \| |/ / __| # | |__| |_| \__ \ || (_) | | | | | | | |___| | | | | <\__ \ # \____\__,_|___/\__\___/|_| |_| |_| |_____|_|_| |_|_|\_\___/ # custom_links = {} # __ __ _ # \ \ / /_ _ _ __(_) ___ _ _ ___ # \ \ / / _` | '__| |/ _ \| | | / __| # \ V / (_| | | | | (_) | |_| \__ \ # \_/ \__,_|_| |_|\___/ \__,_|___/ # debug_livestatus_queries = False # Show livestatus errors in multi site setup if some sites are # not reachable. show_livestatus_errors = True # Whether the livestatu proxy daemon is available liveproxyd_enabled = False # Set this to a list in order to globally control which views are # being displayed in the sidebar snapin "Views" visible_views = None # Set this list in order to actively hide certain views hidden_views = None # Custom user stylesheet to load (resides in htdocs/) custom_style_sheet = None # URL for start page in main frame (welcome page) start_url = "dashboard.py" # Page heading for main frame set page_heading = "Check_MK %s" # Timeout for rescheduling of host- and servicechecks reschedule_timeout = 10.0 # Number of columsn in "Filter" form filter_columns = 2 # Default language for l10n default_language = None # Hide these languages from user selection hide_languages = [] # Default timestamp format to be used in multisite default_ts_format = 'mixed' # Default authentication type. Can be changed to e.g. "cookie" for # using the cookie auth auth_type = 'basic' # Show only most used buttons, set to None if you want # always all buttons to be shown context_buttons_to_show = 5 # Buffering of HTML output stream buffered_http_stream = True # Maximum livetime of unmodified selections selection_livetime = 3600 # Configure HTTP header to read usernames from auth_by_http_header = False # Number of rows to display by default in tables rendered with # the table.py module table_row_limit = 100 # Add an icon pointing to the WATO rule to each service multisite_draw_ruleicon = True # Default downtime configuration adhoc_downtime = {} # Display dashboard date pagetitle_date_format = None # Value of the host_staleness/service_staleness field to make hosts/services # appear in a stale state staleness_threshold = 1.5 # Escape HTML in plugin output / log messages escape_plugin_output = True # Virtual host trees for the "Virtual Host Trees" snapin virtual_host_trees = [] # Fall back to PNP4Nagios as graphing GUI even on CEE force_pnp_graphing = False # Target email address for "Crashed Check" page crash_report_target = "[email protected]" # GUI Tests (see cmk-guitest) guitests_enabled = False # _ _ ____ ____ # | | | |___ ___ _ __| _ \| __ ) # | | | / __|/ _ \ '__| | | | _ \ # | |_| \__ \ __/ | | |_| | |_) | # \___/|___/\___|_| |____/|____/ # userdb_automatic_sync = "master" # Holds dicts defining user connector instances and their properties user_connections = [] default_user_profile = { 'roles': ['user'], } lock_on_logon_failures = False password_policy = {} user_localizations = { u'Agent type': { "de": u"Art des Agenten", }, u'Business critical': { "de": u"Geschäftskritisch", }, u'Check_MK Agent (Server)': { "de": u"Check_MK Agent (Server)", }, u'Criticality': { "de": u"Kritikalität", }, u'DMZ (low latency, secure access)': { "de": u"DMZ (geringe Latenz, hohe Sicherheit", }, u'Do not monitor this host': { "de": u"Diesen Host nicht überwachen", }, u'Dual: Check_MK Agent + SNMP': { "de": u"Dual: Check_MK Agent + SNMP", }, u'Legacy SNMP device (using V1)': { "de": u"Alte SNMP-Geräte (mit Version 1)", }, u'Local network (low latency)': { "de": u"Lokales Netzwerk (geringe Latenz)", }, u'Networking Segment': { "de": u"Netzwerksegment", }, u'No Agent': { "de": u"Kein Agent", }, u'Productive system': { "de": u"Produktivsystem", }, u'Test system': { "de": u"Testsystem", }, u'WAN (high latency)': { "de": u"WAN (hohe Latenz)", }, u'monitor via Check_MK Agent': { "de": u"Überwachung via Check_MK Agent", }, u'monitor via SNMP': { "de": u"Überwachung via SNMP", }, u'SNMP (Networking device, Appliance)': { "de": u"SNMP (Netzwerkgerät, Appliance)", }, } # Contains user specified icons and actions for hosts and services user_icons_and_actions = {} # Override toplevel and sort_index settings of builtin icons builtin_icon_visibility = {} # Write WATO folder permissions to auth.php file export_folder_permissions = False # Name of the hostgroup to filter the network topology view by default topology_default_filter_group = None
the-stack_0_23799
"""Training-related part of the Keras engine. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import warnings import copy import numpy as np from .network import Network from .base_layer import Layer from .training_utils import collect_metrics from .training_utils import check_array_length_consistency from .training_utils import check_loss_and_target_compatibility from .training_utils import standardize_class_weights from .training_utils import standardize_input_data from .training_utils import standardize_sample_weights from .training_utils import standardize_weights from .training_utils import weighted_masked_objective from . import training_arrays from . import training_generator from .. import backend as K from .. import optimizers from .. import losses from .. import metrics as metrics_module from ..utils.generic_utils import slice_arrays from ..utils.generic_utils import to_list from ..utils.generic_utils import unpack_singleton from ..legacy import interfaces class Model(Network): """The `Model` class adds training & evaluation routines to a `Network`. """ def compile(self, optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, **kwargs): """Configures the model for training. # Arguments optimizer: String (name of optimizer) or optimizer instance. See [optimizers](/optimizers). loss: String (name of objective function) or objective function. See [losses](/losses). If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses. metrics: List of metrics to be evaluated by the model during training and testing. Typically you will use `metrics=['accuracy']`. To specify different metrics for different outputs of a multi-output model, you could also pass a dictionary, such as `metrics={'output_a': 'accuracy'}`. loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the *weighted sum* of all individual losses, weighted by the `loss_weights` coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a tensor, it is expected to map output names (strings) to scalar coefficients. sample_weight_mode: If you need to do timestep-wise sample weighting (2D weights), set this to `"temporal"`. `None` defaults to sample-wise weights (1D). If the model has multiple outputs, you can use a different `sample_weight_mode` on each output by passing a dictionary or a list of modes. weighted_metrics: List of metrics to be evaluated and weighted by sample_weight or class_weight during training and testing. target_tensors: By default, Keras will create placeholders for the model's target, which will be fed with the target data during training. If instead you would like to use your own target tensors (in turn, Keras will not expect external Numpy data for these targets at training time), you can specify them via the `target_tensors` argument. It can be a single tensor (for a single-output model), a list of tensors, or a dict mapping output names to target tensors. **kwargs: When using the Theano/CNTK backends, these arguments are passed into `K.function`. When using the TensorFlow backend, these arguments are passed into `tf.Session.run`. # Raises ValueError: In case of invalid arguments for `optimizer`, `loss`, `metrics` or `sample_weight_mode`. """ self.optimizer = optimizers.get(optimizer) self.loss = loss or [] self.metrics = metrics or [] self.loss_weights = loss_weights self.sample_weight_mode = sample_weight_mode self.weighted_metrics = weighted_metrics if not self.built: # Model is not compilable because # it does not know its number of inputs # and outputs, nor their shapes and names. # We will compile after the first # time the model gets called on training data. return self._is_compiled = True # Prepare loss functions. if isinstance(loss, dict): for name in loss: if name not in self.output_names: raise ValueError('Unknown entry in loss ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) loss_functions = [] for name in self.output_names: if name not in loss: warnings.warn('Output "' + name + '" missing from loss dictionary. ' 'We assume this was done on purpose, ' 'and we will not be expecting ' 'any data to be passed to "' + name + '" during training.', stacklevel=2) loss_functions.append(losses.get(loss.get(name))) elif isinstance(loss, list): if len(loss) != len(self.outputs): raise ValueError('When passing a list as loss, ' 'it should have one entry per model outputs. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed loss=' + str(loss)) loss_functions = [losses.get(l) for l in loss] else: loss_function = losses.get(loss) loss_functions = [loss_function for _ in range(len(self.outputs))] self.loss_functions = loss_functions weighted_losses = [ weighted_masked_objective(fn) for fn in loss_functions] skip_target_indices = [] skip_target_weighing_indices = [] self._feed_outputs = [] self._feed_output_names = [] self._feed_output_shapes = [] self._feed_loss_fns = [] for i in range(len(weighted_losses)): if weighted_losses[i] is None: skip_target_indices.append(i) skip_target_weighing_indices.append(i) # Prepare output masks. masks = self.compute_mask(self.inputs, mask=None) if masks is None: masks = [None for _ in self.outputs] masks = to_list(masks) # Prepare loss weights. if loss_weights is None: loss_weights_list = [1. for _ in range(len(self.outputs))] elif isinstance(loss_weights, dict): for name in loss_weights: if name not in self.output_names: raise ValueError('Unknown entry in loss_weights ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) loss_weights_list = [] for name in self.output_names: loss_weights_list.append(loss_weights.get(name, 1.)) elif isinstance(loss_weights, list): if len(loss_weights) != len(self.outputs): raise ValueError('When passing a list as loss_weights, ' 'it should have one entry per model output. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed loss_weights=' + str(loss_weights)) loss_weights_list = loss_weights else: raise TypeError('Could not interpret loss_weights argument: ' + str(loss_weights) + ' - expected a list of dicts.') # Prepare targets of model. self.targets = [] self._feed_targets = [] if target_tensors is not None: if isinstance(target_tensors, list): if len(target_tensors) != len(self.outputs): raise ValueError( 'When passing a list as `target_tensors`, ' 'it should have one entry per model output. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed target_tensors=' + str(target_tensors)) elif isinstance(target_tensors, dict): for name in target_tensors: if name not in self.output_names: raise ValueError('Unknown entry in `target_tensors` ' 'dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) tmp_target_tensors = [] for name in self.output_names: tmp_target_tensors.append(target_tensors.get(name, None)) target_tensors = tmp_target_tensors elif K.is_tensor(target_tensors): if len(self.outputs) != 1: raise ValueError('The model has ' + str(len(self.outputs)) + ' outputs, but you passed a single tensor as ' '`target_tensors`. Expected a list or a dict ' 'of tensors.') target_tensors = [target_tensors] else: raise TypeError('Expected `target_tensors` to be a tensor, ' 'a list of tensors, or dict of tensors, but got:', target_tensors) for i in range(len(self.outputs)): if i in skip_target_indices: self.targets.append(None) else: shape = K.int_shape(self.outputs[i]) name = self.output_names[i] if target_tensors is not None: target = target_tensors[i] else: target = None if target is None or K.is_placeholder(target): if target is None: target = K.placeholder( ndim=len(shape), name=name + '_target', sparse=K.is_sparse(self.outputs[i]), dtype=K.dtype(self.outputs[i])) self._feed_targets.append(target) self._feed_outputs.append(self.outputs[i]) self._feed_output_names.append(name) self._feed_output_shapes.append(shape) self._feed_loss_fns.append(self.loss_functions[i]) else: skip_target_weighing_indices.append(i) self.targets.append(target) # Prepare sample weights. sample_weights = [] sample_weight_modes = [] if isinstance(sample_weight_mode, dict): for name in sample_weight_mode: if name not in self.output_names: raise ValueError('Unknown entry in ' 'sample_weight_mode dictionary: "' + name + '". ' 'Only expected the following keys: ' + str(self.output_names)) for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: if name not in sample_weight_mode: raise ValueError('Output "' + name + '" missing from sample_weight_modes ' 'dictionary') if sample_weight_mode.get(name) == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) elif isinstance(sample_weight_mode, list): if len(sample_weight_mode) != len(self.outputs): raise ValueError('When passing a list as sample_weight_mode, ' 'it should have one entry per model output. ' 'The model has ' + str(len(self.outputs)) + ' outputs, but you passed ' 'sample_weight_mode=' + str(sample_weight_mode)) for i in range(len(self.output_names)): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: mode = sample_weight_mode[i] name = self.output_names[i] if mode == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) else: for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: sample_weight_modes.append(None) sample_weights.append(None) else: if sample_weight_mode == 'temporal': sample_weights.append( K.placeholder(ndim=2, name=name + '_sample_weights')) sample_weight_modes.append('temporal') else: sample_weights.append( K.placeholder(ndim=1, name=name + '_sample_weights')) sample_weight_modes.append(None) self.sample_weight_modes = sample_weight_modes self._feed_sample_weight_modes = [] for i in range(len(self.outputs)): if i not in skip_target_weighing_indices: self._feed_sample_weight_modes.append( self.sample_weight_modes[i]) # Prepare metrics. self.metrics_names = ['loss'] self.metrics_tensors = [] # Compute total loss. total_loss = None with K.name_scope('loss'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weighted_loss = weighted_losses[i] sample_weight = sample_weights[i] mask = masks[i] loss_weight = loss_weights_list[i] with K.name_scope(self.output_names[i] + '_loss'): output_loss = weighted_loss(y_true, y_pred, sample_weight, mask) if len(self.outputs) > 1: self.metrics_tensors.append(output_loss) self.metrics_names.append(self.output_names[i] + '_loss') if total_loss is None: total_loss = loss_weight * output_loss else: total_loss += loss_weight * output_loss if total_loss is None: if not self.losses: raise ValueError('The model cannot be compiled ' 'because it has no loss to optimize.') else: total_loss = 0. # Add regularization penalties # and other layer-specific losses. for loss_tensor in self.losses: total_loss += loss_tensor # List of same size as output_names. # contains tuples (metrics for output, names of metrics). nested_metrics = collect_metrics(metrics, self.output_names) nested_weighted_metrics = collect_metrics(weighted_metrics, self.output_names) self.metrics_updates = [] self.stateful_metric_names = [] self.stateful_metric_functions = [] def handle_metrics(metrics, weights=None): metric_name_prefix = 'weighted_' if weights is not None else '' for metric in metrics: if metric in ('accuracy', 'acc', 'crossentropy', 'ce'): # custom handling of accuracy/crossentropy # (because of class mode duality) output_shape = K.int_shape(self.outputs[i]) if (output_shape[-1] == 1 or self.loss_functions[i] == losses.binary_crossentropy): # case: binary accuracy/crossentropy if metric in ('accuracy', 'acc'): metric_fn = metrics_module.binary_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = metrics_module.binary_crossentropy elif self.loss_functions[i] == losses.sparse_categorical_crossentropy: # case: categorical accuracy/crossentropy # with sparse targets if metric in ('accuracy', 'acc'): metric_fn = metrics_module.sparse_categorical_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = metrics_module.sparse_categorical_crossentropy else: # case: categorical accuracy/crossentropy if metric in ('accuracy', 'acc'): metric_fn = metrics_module.categorical_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = metrics_module.categorical_crossentropy if metric in ('accuracy', 'acc'): suffix = 'acc' elif metric in ('crossentropy', 'ce'): suffix = 'ce' weighted_metric_fn = weighted_masked_objective(metric_fn) metric_name = metric_name_prefix + suffix else: metric_fn = metrics_module.get(metric) weighted_metric_fn = weighted_masked_objective(metric_fn) # Get metric name as string if hasattr(metric_fn, 'name'): metric_name = metric_fn.name else: metric_name = metric_fn.__name__ metric_name = metric_name_prefix + metric_name with K.name_scope(metric_name): metric_result = weighted_metric_fn(y_true, y_pred, weights=weights, mask=masks[i]) # Append to self.metrics_names, self.metric_tensors, # self.stateful_metric_names if len(self.output_names) > 1: metric_name = self.output_names[i] + '_' + metric_name # Dedupe name j = 1 base_metric_name = metric_name while metric_name in self.metrics_names: metric_name = base_metric_name + '_' + str(j) j += 1 self.metrics_names.append(metric_name) self.metrics_tensors.append(metric_result) # Keep track of state updates created by # stateful metrics (i.e. metrics layers). if isinstance(metric_fn, Layer) and metric_fn.stateful: self.stateful_metric_names.append(metric_name) self.stateful_metric_functions.append(metric_fn) self.metrics_updates += metric_fn.updates with K.name_scope('metrics'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weights = sample_weights[i] output_metrics = nested_metrics[i] output_weighted_metrics = nested_weighted_metrics[i] handle_metrics(output_metrics) handle_metrics(output_weighted_metrics, weights=weights) # Prepare gradient updates and state updates. self.total_loss = total_loss self.sample_weights = sample_weights self._feed_sample_weights = [] for i in range(len(self.sample_weights)): if i not in skip_target_weighing_indices: self._feed_sample_weights.append(sample_weights[i]) # Functions for train, test and predict will # be compiled lazily when required. # This saves time when the user is not using all functions. self._function_kwargs = kwargs self.train_function = None self.test_function = None self.predict_function = None # Collected trainable weights, sorted in topological order. trainable_weights = self.trainable_weights self._collected_trainable_weights = trainable_weights def _check_trainable_weights_consistency(self): """Check trainable weights count consistency. This will raise a warning if `trainable_weights` and `_collected_trainable_weights` are inconsistent (i.e. have different number of parameters). Inconsistency will typically arise when one modifies `model.trainable` without calling `model.compile` again. """ if not hasattr(self, '_collected_trainable_weights'): return if (len(self.trainable_weights) != len(self._collected_trainable_weights)): warnings.warn(UserWarning( 'Discrepancy between trainable weights and collected trainable' ' weights, did you set `model.trainable` without calling' ' `model.compile` after ?')) def _make_train_function(self): if not hasattr(self, 'train_function'): raise RuntimeError('You must compile your model before using it.') self._check_trainable_weights_consistency() if self.train_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self._uses_dynamic_learning_phase(): inputs += [K.learning_phase()] with K.name_scope('training'): with K.name_scope(self.optimizer.__class__.__name__): training_updates = self.optimizer.get_updates( params=self._collected_trainable_weights, loss=self.total_loss) updates = (self.updates + training_updates + self.metrics_updates) # Gets loss and metrics. Updates weights at each call. self.train_function = K.function( inputs, [self.total_loss] + self.metrics_tensors, updates=updates, name='train_function', **self._function_kwargs) def _make_test_function(self): if not hasattr(self, 'test_function'): raise RuntimeError('You must compile your model before using it.') if self.test_function is None: inputs = (self._feed_inputs + self._feed_targets + self._feed_sample_weights) if self._uses_dynamic_learning_phase(): inputs += [K.learning_phase()] # Return loss and metrics, no gradient updates. # Does update the network states. self.test_function = K.function( inputs, [self.total_loss] + self.metrics_tensors, updates=self.state_updates + self.metrics_updates, name='test_function', **self._function_kwargs) def _make_predict_function(self): if not hasattr(self, 'predict_function'): self.predict_function = None if self.predict_function is None: if self._uses_dynamic_learning_phase(): inputs = self._feed_inputs + [K.learning_phase()] else: inputs = self._feed_inputs # Gets network outputs. Does not update weights. # Does update the network states. kwargs = getattr(self, '_function_kwargs', {}) self.predict_function = K.function(inputs, self.outputs, updates=self.state_updates, name='predict_function', **kwargs) def _uses_dynamic_learning_phase(self): return (self.uses_learning_phase and not isinstance(K.learning_phase(), int)) def _set_inputs(self, inputs, outputs=None, training=None): """Set model's input and output specs based on the input data received. This is to be used for Model subclasses, which do not know at instantiation time what their inputs look like. # Arguments inputs: Single array, or list of arrays. The arrays could be placeholders, Numpy arrays, or data tensors. - if placeholders: the model is built on top of these placeholders, and we expect Numpy data to be fed for them when calling `fit`/etc. - if Numpy data: we create placeholders matching the shape of the Numpy arrays. We expect Numpy data to be fed for these placeholders when calling `fit`/etc. - if data tensors: the model is built on top of these tensors. We do not expect any Numpy data to be provided when calling `fit`/etc. outputs: Optional output tensors (if already computed by running the model). training: Boolean or None. Only relevant in symbolic mode. Specifies whether to build the model's graph in inference mode (False), training mode (True), or using the Keras learning phase (None). """ if self.__class__.__name__ == 'Sequential': # Note: we can't test whether the model # is `Sequential` via `isinstance` # since `Sequential` depends on `Model`. if isinstance(inputs, list): assert len(inputs) == 1 inputs = inputs[0] self.build(input_shape=(None,) + inputs.shape[1:]) return if self.inputs: raise ValueError('Model inputs are already set.') # On-the-fly setting of symbolic model inputs # (either by using the tensor provided, # or by creating a placeholder if Numpy data was provided). self.inputs = [] self.input_names = [] self._feed_inputs = [] self._feed_input_names = [] self._feed_input_shapes = [] inputs = to_list(inputs, allow_tuple=True) for i, v in enumerate(inputs): name = 'input_%d' % (i + 1) self.input_names.append(name) if isinstance(v, list): v = np.asarray(v) if v.ndim == 1: v = np.expand_dims(v, 1) if isinstance(v, (np.ndarray)): # We fix the placeholder shape except the batch size. # This is suboptimal, but it is the best we can do with the info # we have. The user should call `model._set_inputs(placeholders)` # to specify custom placeholders if the need arises. shape = (None,) + v.shape[1:] placeholder = K.placeholder(shape=shape, name=name) self.inputs.append(placeholder) self._feed_inputs.append(placeholder) self._feed_input_names.append(name) self._feed_input_shapes.append(shape) else: # Assumed tensor - TODO(fchollet) additional type check? self.inputs.append(v) if K.is_placeholder(v): self._feed_inputs.append(v) self._feed_input_names.append(name) self._feed_input_shapes.append(K.int_shape(v)) if outputs is None: # Obtain symbolic outputs by calling the model. if self._expects_training_arg: outputs = self.call(unpack_singleton(self.inputs), training=training) else: outputs = self.call(unpack_singleton(self.inputs)) outputs = to_list(outputs, allow_tuple=True) self.outputs = outputs self.output_names = [ 'output_%d' % (i + 1) for i in range(len(self.outputs))] self.built = True def _standardize_user_data(self, x, y=None, sample_weight=None, class_weight=None, check_array_lengths=True, batch_size=None): all_inputs = [] if not self.built: # We need to use `x` to set the model inputs. # We type-check that `x` and `y` are either single arrays # or lists of arrays. if isinstance(x, (list, tuple)): if not all(isinstance(v, np.ndarray) or K.is_tensor(v) for v in x): raise ValueError('Please provide as model inputs ' 'either a single ' 'array or a list of arrays. ' 'You passed: x=' + str(x)) all_inputs += list(x) elif isinstance(x, dict): raise ValueError('Please do not pass a dictionary ' 'as model inputs.') else: if not isinstance(x, np.ndarray) and not K.is_tensor(x): raise ValueError('Please provide as model inputs ' 'either a single ' 'array or a list of arrays. ' 'You passed: x=' + str(x)) all_inputs.append(x) # Build the model using the retrieved inputs (value or symbolic). # If values, then in symbolic-mode placeholders will be created # to match the value shapes. if not self.inputs: self._set_inputs(x) if y is not None: if not self.optimizer: raise RuntimeError('You must compile a model before ' 'training/testing. ' 'Use `model.compile(optimizer, loss)`.') if not self._is_compiled: # On-the-fly compilation of the model. # We need to use `y` to set the model targets. if isinstance(y, (list, tuple)): if not all(isinstance(v, np.ndarray) or K.is_tensor(v) for v in y): raise ValueError('Please provide as model targets ' 'either a single ' 'array or a list of arrays. ' 'You passed: y=' + str(y)) elif isinstance(y, dict): raise ValueError('Please do not pass a dictionary ' 'as model targets.') else: if not isinstance(y, np.ndarray) and not K.is_tensor(y): raise ValueError('Please provide as model targets ' 'either a single ' 'array or a list of arrays. ' 'You passed: y=' + str(y)) # Typecheck that all inputs are *either* value *or* symbolic. if y is not None: all_inputs += to_list(y, allow_tuple=True) if any(K.is_tensor(v) for v in all_inputs): if not all(K.is_tensor(v) for v in all_inputs): raise ValueError('Do not pass inputs that mix Numpy ' 'arrays and symbolic tensors. ' 'You passed: x=' + str(x) + '; y=' + str(y)) # Handle target tensors if any passed. y = to_list(y, allow_tuple=True) target_tensors = [v for v in y if K.is_tensor(v)] if not target_tensors: target_tensors = None self.compile(optimizer=self.optimizer, loss=self.loss, metrics=self.metrics, loss_weights=self.loss_weights, target_tensors=target_tensors) # If `x` and `y` were all symbolic, # then the model should not be fed any inputs and targets. # Note: in this case, `any` and `all` are equivalent since we disallow # mixed symbolic/value inputs. if any(K.is_tensor(v) for v in all_inputs): return [], [], [] # What follows is input validation and standardization to list format, # in the case where all inputs are value arrays. if not self._is_graph_network: # Case: symbolic-mode subclassed network. # Do not do shape validation. feed_input_names = self._feed_input_names feed_input_shapes = None else: # Case: symbolic-mode graph network. # In this case, we run extensive shape validation checks. feed_input_names = self._feed_input_names feed_input_shapes = self._feed_input_shapes # Standardize the inputs. x = standardize_input_data( x, feed_input_names, feed_input_shapes, check_batch_axis=False, # Don't enforce the batch size. exception_prefix='input') if y is not None: if not self._is_graph_network: feed_output_names = self._feed_output_names feed_output_shapes = None # Sample weighting not supported in this case. # TODO: consider supporting it. feed_sample_weight_modes = [None for _ in self.outputs] else: feed_output_names = self._feed_output_names feed_sample_weight_modes = self._feed_sample_weight_modes feed_output_shapes = [] for output_shape, loss_fn in zip(self._feed_output_shapes, self._feed_loss_fns): if loss_fn is losses.sparse_categorical_crossentropy: if K.image_data_format() == 'channels_first' and len( output_shape) in [4, 5]: feed_output_shapes.append( (output_shape[0], 1) + output_shape[2:]) else: feed_output_shapes.append(output_shape[:-1] + (1,)) elif (not hasattr(loss_fn, '__name__') or getattr(losses, loss_fn.__name__, None) is None): # If `loss_fn` is not a function (e.g. callable class) # or if it not in the `losses` module, then # it is a user-defined loss and we make no assumptions # about it. feed_output_shapes.append(None) else: feed_output_shapes.append(output_shape) # Standardize the outputs. y = standardize_input_data( y, feed_output_names, feed_output_shapes, check_batch_axis=False, # Don't enforce the batch size. exception_prefix='target') # Generate sample-wise weight values given the `sample_weight` and # `class_weight` arguments. sample_weights = standardize_sample_weights( sample_weight, feed_output_names) class_weights = standardize_class_weights( class_weight, feed_output_names) sample_weights = [ standardize_weights(ref, sw, cw, mode) for (ref, sw, cw, mode) in zip(y, sample_weights, class_weights, feed_sample_weight_modes) ] # Check that all arrays have the same length. check_array_length_consistency(x, y, sample_weights) if self._is_graph_network: # Additional checks to avoid users mistakenly # using improper loss fns. check_loss_and_target_compatibility( y, self._feed_loss_fns, feed_output_shapes) else: y = [] sample_weights = [] if self.stateful and batch_size: # Check that for stateful networks, number of samples is a multiple # of the static batch size. if x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples') return x, y, sample_weights def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, **kwargs): """Trains the model for a given number of epochs (iterations on a dataset). # Arguments x: Numpy array of training data (if the model has a single input), or list of Numpy arrays (if the model has multiple inputs). If input layers in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. `x` can be `None` (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). y: Numpy array of target (label) data (if the model has a single output), or list of Numpy arrays (if the model has multiple outputs). If output layers in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. `y` can be `None` (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 32. epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire `x` and `y` data provided. Note that in conjunction with `initial_epoch`, `epochs` is to be understood as "final epoch". The model is not trained for a number of iterations given by `epochs`, but merely until the epoch of index `epochs` is reached. verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during training. See [callbacks](/callbacks). validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling. validation_data: tuple `(x_val, y_val)` or tuple `(x_val, y_val, val_sample_weights)` on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`. shuffle: Boolean (whether to shuffle the training data before each epoch) or str (for 'batch'). 'batch' is a special option for dealing with the limitations of HDF5 data; it shuffles in batch-sized chunks. Has no effect when `steps_per_epoch` is not `None`. class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class. sample_weight: Optional Numpy array of weights for the training samples, used for weighting the loss function (during training only). You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape `(samples, sequence_length)`, to apply a different weight to every timestep of every sample. In this case you should make sure to specify `sample_weight_mode="temporal"` in `compile()`. initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run). steps_per_epoch: Integer or `None`. Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. When training with input tensors such as TensorFlow data tensors, the default `None` is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined. validation_steps: Only relevant if `steps_per_epoch` is specified. Total number of steps (batches of samples) to validate before stopping. # Returns A `History` object. Its `History.history` attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable). # Raises RuntimeError: If the model was never compiled. ValueError: In case of mismatch between the provided input data and what the model expects. """ # Backwards compatibility if batch_size is None and steps_per_epoch is None: batch_size = 32 # Legacy support if 'nb_epoch' in kwargs: warnings.warn('The `nb_epoch` argument in `fit` ' 'has been renamed `epochs`.', stacklevel=2) epochs = kwargs.pop('nb_epoch') if kwargs: raise TypeError('Unrecognized keyword arguments: ' + str(kwargs)) if x is None and y is None and steps_per_epoch is None: raise ValueError('If fitting from data tensors, ' 'you should specify the `steps_per_epoch` ' 'argument.') # Validate user data. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size) # Prepare validation data. do_validation = False if validation_data: do_validation = True if len(validation_data) == 2: val_x, val_y = validation_data val_sample_weight = None elif len(validation_data) == 3: val_x, val_y, val_sample_weight = validation_data else: raise ValueError('When passing validation_data, ' 'it must contain 2 (x_val, y_val) ' 'or 3 (x_val, y_val, val_sample_weights) ' 'items, however it contains %d items' % len(validation_data)) val_x, val_y, val_sample_weights = self._standardize_user_data( val_x, val_y, sample_weight=val_sample_weight, batch_size=batch_size) if self._uses_dynamic_learning_phase(): val_ins = val_x + val_y + val_sample_weights + [0.] else: val_ins = val_x + val_y + val_sample_weights elif validation_split and 0. < validation_split < 1.: if any(K.is_tensor(t) for t in x): raise ValueError( 'If your data is in the form of symbolic tensors, ' 'you cannot use `validation_split`.') do_validation = True if hasattr(x[0], 'shape'): split_at = int(int(x[0].shape[0]) * (1. - validation_split)) else: split_at = int(len(x[0]) * (1. - validation_split)) x, val_x = (slice_arrays(x, 0, split_at), slice_arrays(x, split_at)) y, val_y = (slice_arrays(y, 0, split_at), slice_arrays(y, split_at)) sample_weights, val_sample_weights = ( slice_arrays(sample_weights, 0, split_at), slice_arrays(sample_weights, split_at)) if self._uses_dynamic_learning_phase(): val_ins = val_x + val_y + val_sample_weights + [0.] else: val_ins = val_x + val_y + val_sample_weights elif validation_steps: do_validation = True if self._uses_dynamic_learning_phase(): val_ins = [0.] # Prepare input arrays and training function. if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [1.] else: ins = x + y + sample_weights self._make_train_function() f = self.train_function # Prepare display labels. out_labels = self.metrics_names if do_validation: self._make_test_function() val_f = self.test_function callback_metrics = copy.copy(out_labels) + [ 'val_' + n for n in out_labels] else: callback_metrics = copy.copy(out_labels) val_f = None val_ins = [] # Delegate logic to `fit_loop`. return training_arrays.fit_loop(self, f, ins, out_labels=out_labels, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_f=val_f, val_ins=val_ins, shuffle=shuffle, callback_metrics=callback_metrics, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps) def evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None): """Returns the loss value & metrics values for the model in test mode. Computation is done in batches. # Arguments x: Numpy array of test data (if the model has a single input), or list of Numpy arrays (if the model has multiple inputs). If input layers in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. `x` can be `None` (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). y: Numpy array of target (label) data (if the model has a single output), or list of Numpy arrays (if the model has multiple outputs). If output layers in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. `y` can be `None` (default) if feeding from framework-native tensors (e.g. TensorFlow data tensors). batch_size: Integer or `None`. Number of samples per evaluation step. If unspecified, `batch_size` will default to 32. verbose: 0 or 1. Verbosity mode. 0 = silent, 1 = progress bar. sample_weight: Optional Numpy array of weights for the test samples, used for weighting the loss function. You can either pass a flat (1D) Numpy array with the same length as the input samples (1:1 mapping between weights and samples), or in the case of temporal data, you can pass a 2D array with shape `(samples, sequence_length)`, to apply a different weight to every timestep of every sample. In this case you should make sure to specify `sample_weight_mode="temporal"` in `compile()`. steps: Integer or `None`. Total number of steps (batches of samples) before declaring the evaluation round finished. Ignored with the default value of `None`. # Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ # Backwards compatibility. if batch_size is None and steps is None: batch_size = 32 if x is None and y is None and steps is None: raise ValueError('If evaluating from data tensors, ' 'you should specify the `steps` ' 'argument.') # Validate user data. x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size) # Prepare inputs, delegate logic to `test_loop`. if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [0.] else: ins = x + y + sample_weights self._make_test_function() f = self.test_function return training_arrays.test_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps) def predict(self, x, batch_size=None, verbose=0, steps=None): """Generates output predictions for the input samples. Computation is done in batches. # Arguments x: The input data, as a Numpy array (or list of Numpy arrays if the model has multiple inputs). batch_size: Integer. If unspecified, it will default to 32. verbose: Verbosity mode, 0 or 1. steps: Total number of steps (batches of samples) before declaring the prediction round finished. Ignored with the default value of `None`. # Returns Numpy array(s) of predictions. # Raises ValueError: In case of mismatch between the provided input data and the model's expectations, or in case a stateful model receives a number of samples that is not a multiple of the batch size. """ # Backwards compatibility. if batch_size is None and steps is None: batch_size = 32 if x is None and steps is None: raise ValueError('If predicting from data tensors, ' 'you should specify the `steps` ' 'argument.') # Validate user data. x, _, _ = self._standardize_user_data(x) if self.stateful: if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples. ' 'Batch size: ' + str(batch_size) + '.') # Prepare inputs, delegate logic to `predict_loop`. if self._uses_dynamic_learning_phase(): ins = x + [0.] else: ins = x self._make_predict_function() f = self.predict_function return training_arrays.predict_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps) def train_on_batch(self, x, y, sample_weight=None, class_weight=None): """Runs a single gradient update on a single batch of data. # Arguments x: Numpy array of training data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). class_weight: Optional dictionary mapping class indices (integers) to a weight (float) to apply to the model's loss for the samples from this class during training. This can be useful to tell the model to "pay more attention" to samples from an under-represented class. # Returns Scalar training loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight) if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [1.] else: ins = x + y + sample_weights self._make_train_function() outputs = self.train_function(ins) return unpack_singleton(outputs) def test_on_batch(self, x, y, sample_weight=None): """Test the model on a single batch of samples. # Arguments x: Numpy array of test data, or list of Numpy arrays if the model has multiple inputs. If all inputs in the model are named, you can also pass a dictionary mapping input names to Numpy arrays. y: Numpy array of target data, or list of Numpy arrays if the model has multiple outputs. If all outputs in the model are named, you can also pass a dictionary mapping output names to Numpy arrays. sample_weight: Optional array of the same length as x, containing weights to apply to the model's loss for each sample. In the case of temporal data, you can pass a 2D array with shape (samples, sequence_length), to apply a different weight to every timestep of every sample. In this case you should make sure to specify sample_weight_mode="temporal" in compile(). # Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. """ x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight) if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [0.] else: ins = x + y + sample_weights self._make_test_function() outputs = self.test_function(ins) return unpack_singleton(outputs) def predict_on_batch(self, x): """Returns predictions for a single batch of samples. # Arguments x: Input samples, as a Numpy array. # Returns Numpy array(s) of predictions. """ x, _, _ = self._standardize_user_data(x) if self._uses_dynamic_learning_phase(): ins = x + [0.] else: ins = x self._make_predict_function() outputs = self.predict_function(ins) return unpack_singleton(outputs) @interfaces.legacy_generator_methods_support def fit_generator(self, generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0): """Trains the model on data generated batch-by-batch by a Python generator (or an instance of `Sequence`). The generator is run in parallel to the model, for efficiency. For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU. The use of `keras.utils.Sequence` guarantees the ordering and guarantees the single use of every input per epoch when using `use_multiprocessing=True`. # Arguments generator: A generator or an instance of `Sequence` (`keras.utils.Sequence`) object in order to avoid duplicate data when using multiprocessing. The output of the generator must be either - a tuple `(inputs, targets)` - a tuple `(inputs, targets, sample_weights)`. This tuple (a single output of the generator) makes a single batch. Therefore, all arrays in this tuple must have the same length (equal to the size of this batch). Different batches may have different sizes. For example, the last batch of the epoch is commonly smaller than the others, if the size of the dataset is not divisible by the batch size. The generator is expected to loop over its data indefinitely. An epoch finishes when `steps_per_epoch` batches have been seen by the model. steps_per_epoch: Integer. Total number of steps (batches of samples) to yield from `generator` before declaring one epoch finished and starting the next epoch. It should typically be equal to the number of samples of your dataset divided by the batch size. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire data provided, as defined by `steps_per_epoch`. Note that in conjunction with `initial_epoch`, `epochs` is to be understood as "final epoch". The model is not trained for a number of iterations given by `epochs`, but merely until the epoch of index `epochs` is reached. verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. callbacks: List of `keras.callbacks.Callback` instances. List of callbacks to apply during training. See [callbacks](/callbacks). validation_data: This can be either - a generator or a `Sequence` object for the validation data - tuple `(x_val, y_val)` - tuple `(x_val, y_val, val_sample_weights)` on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. validation_steps: Only relevant if `validation_data` is a generator. Total number of steps (batches of samples) to yield from `validation_data` generator before stopping at the end of every epoch. It should typically be equal to the number of samples of your validation dataset divided by the batch size. Optional for `Sequence`: if unspecified, will use the `len(validation_data)` as a number of steps. class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). This can be useful to tell the model to "pay more attention" to samples from an under-represented class. max_queue_size: Integer. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-picklable arguments to the generator as they can't be passed easily to children processes. shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch. Only used with instances of `Sequence` (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not `None`. initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run). # Returns A `History` object. Its `History.history` attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable). # Raises ValueError: In case the generator yields data in an invalid format. # Example ```python def generate_arrays_from_file(path): while True: with open(path) as f: for line in f: # create numpy arrays of input data # and labels, from each line in the file x1, x2, y = process_line(line) yield ({'input_1': x1, 'input_2': x2}, {'output': y}) model.fit_generator(generate_arrays_from_file('/my_file.txt'), steps_per_epoch=10000, epochs=10) ``` """ return training_generator.fit_generator( self, generator, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, shuffle=shuffle, initial_epoch=initial_epoch) @interfaces.legacy_generator_methods_support def evaluate_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0): """Evaluates the model on a data generator. The generator should return the same kind of data as accepted by `test_on_batch`. # Arguments generator: Generator yielding tuples (inputs, targets) or (inputs, targets, sample_weights) or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. max_queue_size: maximum size for the generator queue workers: Integer. Maximum number of processes to spin up when using process based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: if True, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. # Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute `model.metrics_names` will give you the display labels for the scalar outputs. # Raises ValueError: In case the generator yields data in an invalid format. """ return training_generator.evaluate_generator( self, generator, steps=steps, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose) @interfaces.legacy_generator_methods_support def predict_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0): """Generates predictions for the input samples from a data generator. The generator should return the same kind of data as accepted by `predict_on_batch`. # Arguments generator: Generator yielding batches of input samples or an instance of Sequence (keras.utils.Sequence) object in order to avoid duplicate data when using multiprocessing. steps: Total number of steps (batches of samples) to yield from `generator` before stopping. Optional for `Sequence`: if unspecified, will use the `len(generator)` as a number of steps. max_queue_size: Maximum size for the generator queue. workers: Integer. Maximum number of processes to spin up when using process based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: If `True`, use process based threading. Note that because this implementation relies on multiprocessing, you should not pass non picklable arguments to the generator as they can't be passed easily to children processes. verbose: verbosity mode, 0 or 1. # Returns Numpy array(s) of predictions. # Raises ValueError: In case the generator yields data in an invalid format. """ return training_generator.predict_generator( self, generator, steps=steps, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, verbose=verbose)
the-stack_0_23800
"""Tests for abstract.py.""" from pytype import abstract from pytype import abstract_utils from pytype import annotations_util from pytype import config from pytype import errors from pytype import function from pytype import load_pytd from pytype import special_builtins from pytype import state as frame_state from pytype import vm from pytype.pytd import pytd from pytype.pytd import pytd_utils from pytype.typegraph import cfg import six import unittest class AbstractTestBase(unittest.TestCase): PYTHON_VERSION = (2, 7) def setUp(self): options = config.Options.create() self._vm = vm.VirtualMachine( errors.ErrorLog(), options, load_pytd.Loader(None, self.PYTHON_VERSION)) self._program = self._vm.program self._node = self._vm.root_cfg_node.ConnectNew("test_node") def new_var(self, *values): """Create a Variable bound to the given values.""" var = self._program.NewVariable() for value in values: var.AddBinding(value, source_set=(), where=self._node) return var def new_dict(self, **kwargs): """Create a Dict from keywords mapping names to Variable objects.""" d = abstract.Dict(self._vm) for name, var in kwargs.items(): d.set_str_item(self._node, name, var) return d class InstanceTest(AbstractTestBase): # TODO(dbaum): Is it worth adding a test for frozenset()? There isn't # an easy way to create one directly from the vm, it is already covered # in test_splits.py, and there aren't any new code paths. Perhaps it isn't # worth the effort. def test_compatible_with_non_container(self): # Compatible with either True or False. i = abstract.Instance(self._vm.convert.object_type, self._vm) self.assertIs(True, i.compatible_with(True)) self.assertIs(True, i.compatible_with(False)) def test_compatible_with_list(self): i = abstract.List([], self._vm) # Empty list is not compatible with True. self.assertIs(False, i.compatible_with(True)) self.assertIs(True, i.compatible_with(False)) # Once a type parameter is set, list is compatible with True and False. i.merge_instance_type_parameter( self._node, abstract_utils.T, self._vm.convert.object_type.to_variable(self._vm.root_cfg_node)) self.assertIs(True, i.compatible_with(True)) self.assertIs(True, i.compatible_with(False)) def test_compatible_with_set(self): i = abstract.Instance(self._vm.convert.set_type, self._vm) # Empty list is not compatible with True. self.assertIs(False, i.compatible_with(True)) self.assertIs(True, i.compatible_with(False)) # Once a type parameter is set, list is compatible with True and False. i.merge_instance_type_parameter( self._node, abstract_utils.T, self._vm.convert.object_type.to_variable(self._vm.root_cfg_node)) self.assertIs(True, i.compatible_with(True)) self.assertIs(True, i.compatible_with(False)) def test_compatible_with_none(self): # This test is specifically for abstract.Instance, so we don't use # self._vm.convert.none, which is an AbstractOrConcreteValue. i = abstract.Instance(self._vm.convert.none_type, self._vm) self.assertIs(False, i.compatible_with(True)) self.assertIs(True, i.compatible_with(False)) class TupleTest(AbstractTestBase): def setUp(self): super(TupleTest, self).setUp() self._var = self._program.NewVariable() self._var.AddBinding(abstract.Unknown(self._vm), [], self._node) def test_compatible_with__not_empty(self): t = abstract.Tuple((self._var,), self._vm) self.assertIs(True, t.compatible_with(True)) self.assertIs(False, t.compatible_with(False)) def test_compatible_with__empty(self): t = abstract.Tuple((), self._vm) self.assertIs(False, t.compatible_with(True)) self.assertIs(True, t.compatible_with(False)) def test_getitem__concrete_index(self): t = abstract.Tuple((self._var,), self._vm) index = self._vm.convert.constant_to_var(0) node, var = t.cls.getitem_slot(self._node, index) self.assertIs(node, self._node) self.assertIs(abstract_utils.get_atomic_value(var), abstract_utils.get_atomic_value(self._var)) def test_getitem__abstract_index(self): t = abstract.Tuple((self._var,), self._vm) index = self._vm.convert.build_int(self._node) node, var = t.cls.getitem_slot(self._node, index) self.assertIs(node, self._node) self.assertIs(abstract_utils.get_atomic_value(var), abstract_utils.get_atomic_value(self._var)) class DictTest(AbstractTestBase): def setUp(self): super(DictTest, self).setUp() self._d = abstract.Dict(self._vm) self._var = self._program.NewVariable() self._var.AddBinding(abstract.Unknown(self._vm), [], self._node) def test_compatible_with__when_empty(self): self.assertIs(False, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) def test_compatible_with__after_setitem(self): # Once a slot is added, dict is ambiguous. self._d.setitem_slot(self._node, self._var, self._var) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) def test_compatible_with__after_set_str_item(self): self._d.set_str_item(self._node, "key", self._var) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(False, self._d.compatible_with(False)) def test_compatible_with__after_unknown_update(self): # Updating an empty dict with an unknown value makes the former ambiguous. self._d.update(self._node, abstract.Unknown(self._vm)) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) def test_compatible_with__after_empty_update(self): empty_dict = abstract.Dict(self._vm) self._d.update(self._node, empty_dict) self.assertIs(False, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) def test_compatible_with__after_unambiguous_update(self): unambiguous_dict = abstract.Dict(self._vm) unambiguous_dict.set_str_item( self._node, "a", self._vm.convert.create_new_unsolvable(self._node)) self._d.update(self._node, unambiguous_dict) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(False, self._d.compatible_with(False)) def test_compatible_with__after_ambiguous_update(self): ambiguous_dict = abstract.Dict(self._vm) ambiguous_dict.merge_instance_type_parameter( self._node, abstract_utils.K, self._vm.convert.create_new_unsolvable(self._node)) ambiguous_dict.could_contain_anything = True self._d.update(self._node, ambiguous_dict) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) def test_compatible_with__after_concrete_update(self): self._d.update(self._node, {}) self.assertIs(False, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) self._d.update( self._node, {"a": self._vm.convert.create_new_unsolvable(self._node)}) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(False, self._d.compatible_with(False)) def test_pop(self): self._d.set_str_item(self._node, "a", self._var) node, ret = self._d.pop_slot( self._node, self._vm.convert.build_string(self._node, "a")) self.assertIs(False, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) self.assertIs(node, self._node) self.assertIs(ret, self._var) def test_pop_with_default(self): self._d.set_str_item(self._node, "a", self._var) node, ret = self._d.pop_slot( self._node, self._vm.convert.build_string(self._node, "a"), self._vm.convert.none.to_variable(self._node)) # default is ignored self.assertIs(False, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) self.assertIs(node, self._node) self.assertIs(ret, self._var) def test_bad_pop(self): self._d.set_str_item(self._node, "a", self._var) self.assertRaises(function.DictKeyMissing, self._d.pop_slot, self._node, self._vm.convert.build_string(self._node, "b")) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(False, self._d.compatible_with(False)) def test_bad_pop_with_default(self): val = self._vm.convert.primitive_class_instances[int] self._d.set_str_item(self._node, "a", val.to_variable(self._node)) node, ret = self._d.pop_slot( self._node, self._vm.convert.build_string(self._node, "b"), self._vm.convert.none.to_variable(self._node)) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(False, self._d.compatible_with(False)) self.assertIs(node, self._node) self.assertListEqual(ret.data, [self._vm.convert.none]) def test_ambiguous_pop(self): val = self._vm.convert.primitive_class_instances[int] self._d.set_str_item(self._node, "a", val.to_variable(self._node)) ambiguous_key = self._vm.convert.primitive_class_instances[str] node, ret = self._d.pop_slot( self._node, ambiguous_key.to_variable(self._node)) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) self.assertIs(node, self._node) self.assertListEqual(ret.data, [val]) def test_ambiguous_pop_with_default(self): val = self._vm.convert.primitive_class_instances[int] self._d.set_str_item(self._node, "a", val.to_variable(self._node)) ambiguous_key = self._vm.convert.primitive_class_instances[str] default_var = self._vm.convert.none.to_variable(self._node) node, ret = self._d.pop_slot( self._node, ambiguous_key.to_variable(self._node), default_var) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) self.assertIs(node, self._node) self.assertSetEqual(set(ret.data), {val, self._vm.convert.none}) def test_ambiguous_dict_after_pop(self): ambiguous_key = self._vm.convert.primitive_class_instances[str] val = self._vm.convert.primitive_class_instances[int] node, _ = self._d.setitem_slot( self._node, ambiguous_key.to_variable(self._node), val.to_variable(self._node)) _, ret = self._d.pop_slot(node, self._vm.convert.build_string(node, "a")) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) self.assertListEqual(ret.data, [val]) def test_ambiguous_dict_after_pop_with_default(self): ambiguous_key = self._vm.convert.primitive_class_instances[str] val = self._vm.convert.primitive_class_instances[int] node, _ = self._d.setitem_slot( self._node, ambiguous_key.to_variable(self._node), val.to_variable(self._node)) _, ret = self._d.pop_slot(node, self._vm.convert.build_string(node, "a"), self._vm.convert.none.to_variable(node)) self.assertIs(True, self._d.compatible_with(True)) self.assertIs(True, self._d.compatible_with(False)) self.assertSetEqual(set(ret.data), {val, self._vm.convert.none}) class IsInstanceTest(AbstractTestBase): def setUp(self): super(IsInstanceTest, self).setUp() self._is_instance = special_builtins.IsInstance.make(self._vm) # Easier access to some primitive instances. self._bool = self._vm.convert.primitive_class_instances[bool] self._int = self._vm.convert.primitive_class_instances[int] self._str = self._vm.convert.primitive_class_instances[str] # Values that represent primitive classes. self._obj_class = self._vm.convert.primitive_classes[object] self._int_class = self._vm.convert.primitive_classes[int] self._str_class = self._vm.convert.primitive_classes[str] def assert_call(self, expected, left, right): """Check that call() returned the desired results. Args: expected: A dict from values to source sets, where a source set is represented by the sorted binding names separated by spaces, for example "left:0 right:1" would indicate binding #0 of variable "left" and binding #1 of variable "right". left: A Variable to use as the first arg to call(). right: A Variable to use as the second arg to call(). """ name_map = {left: "left", right: "right"} node, result = self._is_instance.call( self._node, None, function.Args( (left, right), self.new_dict(), None, None)) self.assertIn(node, self._node.outgoing) result_map = {} # Turning source sets into canonical string representations of the binding # names makes it much easier to debug failures. for b in result.bindings: terms = set() for o in b.origins: self.assertEqual(node, o.where) for sources in o.source_sets: terms.add(" ".join(sorted( "%s:%d" % (name_map[b.variable], b.variable.bindings.index(b)) for b in sources))) result_map[b.data] = terms self.assertEqual(expected, result_map) def test_call_single_bindings(self): right = self.new_var(self._str_class) left = self.new_var(self._str) self.assert_call( {self._vm.convert.true: {"left:0 right:0"}}, left, right) left = self.new_var(self._int) self.assert_call( {self._vm.convert.false: {"left:0 right:0"}}, left, right) left = self.new_var(abstract.Unknown(self._vm)) self.assert_call( {self._bool: {"left:0 right:0"}}, left, right) def test_call_multiple_bindings(self): left = self.new_var(self._int, self._str) right = self.new_var(self._int_class, self._str_class) self.assert_call( { self._vm.convert.true: {"left:0 right:0", "left:1 right:1"}, self._vm.convert.false: {"left:0 right:1", "left:1 right:0"}, }, left, right) def test_call_wrong_argcount(self): self._vm.push_frame(frame_state.SimpleFrame()) node, result = self._is_instance.call( self._node, None, function.Args((), self.new_dict(), None, None)) self.assertEqual(self._node, node) self.assertIsInstance(abstract_utils.get_atomic_value(result), abstract.Unsolvable) self.assertRegexpMatches(str(self._vm.errorlog), "missing-parameter") def test_call_wrong_keywords(self): self._vm.push_frame(frame_state.SimpleFrame()) x = self.new_var(abstract.Unknown(self._vm)) node, result = self._is_instance.call( self._node, None, function.Args( (x, x), self.new_dict(foo=x), None, None)) self.assertEqual(self._node, node) self.assertIsInstance(abstract_utils.get_atomic_value(result), abstract.Unsolvable) self.assertRegexpMatches( str(self._vm.errorlog), r"foo.*isinstance.*\[wrong-keyword-args\]") def test_is_instance(self): def check(expected, left, right): self.assertEqual(expected, self._is_instance._is_instance(left, right)) # Unknown and Unsolvable are ambiguous. check(None, abstract.Unknown(self._vm), self._obj_class) check(None, abstract.Unsolvable(self._vm), self._obj_class) # If the object's class has multiple bindings, result is ambiguous. obj = abstract.SimpleAbstractValue("foo", self._vm) check(None, obj, self._obj_class) obj.set_class(self._node, self.new_var( self._str_class, self._int_class)) check(None, obj, self._str_class) # If the class_spec is not a class, result is ambiguous. check(None, self._str, self._str) # Result is True/False depending on if the class is in the object's mro. check(True, self._str, self._obj_class) check(True, self._str, self._str_class) check(False, self._str, self._int_class) def test_flatten(self): def maybe_var(v): return v if isinstance(v, cfg.Variable) else self.new_var(v) def new_tuple(*args): pyval = tuple(maybe_var(a) for a in args) return self._vm.convert.tuple_to_value(pyval) def check(expected_ambiguous, expected_classes, value): classes = [] ambiguous = special_builtins._flatten(value, classes) self.assertEqual(expected_ambiguous, ambiguous) self.assertEqual(expected_classes, classes) unknown = abstract.Unknown(self._vm) # Simple values. check(False, [self._str_class], self._str_class) check(True, [], self._str) check(True, [], unknown) # (str, int) check(False, [self._str_class, self._int_class], new_tuple(self._str_class, self._int_class)) # (str, ?, int) check(True, [self._str_class, self._int_class], new_tuple(self._str_class, unknown, self._int_class)) # (str, (int, object)) check(False, [self._str_class, self._int_class, self._obj_class], new_tuple( self._str_class, new_tuple(self._int_class, self._obj_class))) # (str, (?, object)) check(True, [self._str_class, self._obj_class], new_tuple( self._str_class, new_tuple(unknown, self._obj_class))) # A variable with multiple bindings is ambiguous. # (str, int | object) check(True, [self._str_class], new_tuple(self._str_class, self.new_var(self._int_class, self._obj_class))) class PyTDTest(AbstractTestBase): """Tests for abstract -> pytd type conversions.""" def test_metaclass(self): cls = abstract.InterpreterClass("X", [], {}, None, self._vm) meta = abstract.InterpreterClass("M", [], {}, None, self._vm) meta.official_name = "M" cls.cls = meta pytd_cls = cls.to_pytd_def(self._vm.root_cfg_node, "X") self.assertEqual(pytd_cls.metaclass, pytd.NamedType("M")) def test_inherited_metaclass(self): parent = abstract.InterpreterClass("X", [], {}, None, self._vm) parent.official_name = "X" meta = abstract.InterpreterClass("M", [], {}, None, self._vm) meta.official_name = "M" parent.cls = meta child = abstract.InterpreterClass( "Y", [parent.to_variable(self._vm.root_cfg_node)], {}, None, self._vm) self.assertIs(child.cls, parent.cls) pytd_cls = child.to_pytd_def(self._vm.root_cfg_node, "Y") self.assertIs(pytd_cls.metaclass, None) def test_metaclass_union(self): cls = abstract.InterpreterClass("X", [], {}, None, self._vm) meta1 = abstract.InterpreterClass("M1", [], {}, None, self._vm) meta2 = abstract.InterpreterClass("M2", [], {}, None, self._vm) meta1.official_name = "M1" meta2.official_name = "M2" cls.cls = abstract.Union([meta1, meta2], self._vm) pytd_cls = cls.to_pytd_def(self._vm.root_cfg_node, "X") self.assertEqual(pytd_cls.metaclass, pytd.UnionType( (pytd.NamedType("M1"), pytd.NamedType("M2")))) def test_to_type_with_view1(self): # to_type(<instance of List[int or unsolvable]>, view={T: int}) instance = abstract.List([], self._vm) instance.merge_instance_type_parameter( self._vm.root_cfg_node, abstract_utils.T, self._vm.program.NewVariable( [self._vm.convert.unsolvable], [], self._vm.root_cfg_node)) param_binding = instance.get_instance_type_parameter( abstract_utils.T).AddBinding( self._vm.convert.primitive_class_instances[int], [], self._vm.root_cfg_node) view = { instance.get_instance_type_parameter(abstract_utils.T): param_binding} pytd_type = instance.to_type(self._vm.root_cfg_node, seen=None, view=view) self.assertEqual("__builtin__.list", pytd_type.base_type.name) self.assertSetEqual({"__builtin__.int"}, {t.name for t in pytd_type.parameters}) def test_to_type_with_view2(self): # to_type(<tuple (int or str,)>, view={0: str}) param1 = self._vm.convert.primitive_class_instances[int] param2 = self._vm.convert.primitive_class_instances[str] param_var = param1.to_variable(self._vm.root_cfg_node) str_binding = param_var.AddBinding(param2, [], self._vm.root_cfg_node) instance = abstract.Tuple((param_var,), self._vm) view = {param_var: str_binding} pytd_type = instance.to_type(self._vm.root_cfg_node, seen=None, view=view) self.assertEqual(pytd_type.parameters[0], pytd.NamedType("__builtin__.str")) def test_to_type_with_view_and_empty_param(self): instance = abstract.List([], self._vm) pytd_type = instance.to_type(self._vm.root_cfg_node, seen=None, view={}) self.assertEqual("__builtin__.list", pytd_type.base_type.name) self.assertSequenceEqual((pytd.NothingType(),), pytd_type.parameters) def test_typing_container(self): cls = self._vm.convert.list_type container = abstract.AnnotationContainer("List", self._vm, cls) expected = pytd.GenericType(pytd.NamedType("__builtin__.list"), (pytd.AnythingType(),)) actual = container.get_instance_type(self._vm.root_cfg_node) self.assertEqual(expected, actual) # TODO(rechen): Test InterpreterFunction. class FunctionTest(AbstractTestBase): def _make_pytd_function(self, params, name="f"): pytd_params = [] for i, p in enumerate(params): p_type = pytd.ClassType(p.name) p_type.cls = p pytd_params.append( pytd.Parameter(function.argname(i), p_type, False, False, None)) pytd_sig = pytd.Signature( tuple(pytd_params), None, None, pytd.AnythingType(), (), ()) sig = function.PyTDSignature(name, pytd_sig, self._vm) return abstract.PyTDFunction(name, (sig,), pytd.METHOD, self._vm) def _call_pytd_function(self, f, args): b = f.to_binding(self._vm.root_cfg_node) return f.call(self._vm.root_cfg_node, b, function.Args(posargs=args)) def test_call_with_empty_arg(self): self.assertRaises(AssertionError, self._call_pytd_function, self._make_pytd_function(params=()), (self._vm.program.NewVariable(),)) def test_call_with_bad_arg(self): f = self._make_pytd_function( (self._vm.lookup_builtin("__builtin__.str"),)) arg = self._vm.convert.primitive_class_instances[int].to_variable( self._vm.root_cfg_node) self.assertRaises( function.WrongArgTypes, self._call_pytd_function, f, (arg,)) def test_simple_call(self): f = self._make_pytd_function( (self._vm.lookup_builtin("__builtin__.str"),)) arg = self._vm.convert.primitive_class_instances[str].to_variable( self._vm.root_cfg_node) node, ret = self._call_pytd_function(f, (arg,)) self.assertIs(node, self._vm.root_cfg_node) retval, = ret.bindings self.assertIs(retval.data, self._vm.convert.unsolvable) def test_call_with_multiple_arg_bindings(self): f = self._make_pytd_function( (self._vm.lookup_builtin("__builtin__.str"),)) arg = self._vm.program.NewVariable() arg.AddBinding(self._vm.convert.primitive_class_instances[str], [], self._vm.root_cfg_node) arg.AddBinding(self._vm.convert.primitive_class_instances[int], [], self._vm.root_cfg_node) node, ret = self._call_pytd_function(f, (arg,)) self.assertIs(node, self._vm.root_cfg_node) retval, = ret.bindings self.assertIs(retval.data, self._vm.convert.unsolvable) def test_call_with_skipped_combination(self): f = self._make_pytd_function( (self._vm.lookup_builtin("__builtin__.str"),)) node = self._vm.root_cfg_node.ConnectNew() arg = self._vm.convert.primitive_class_instances[str].to_variable(node) node, ret = self._call_pytd_function(f, (arg,)) self.assertIs(node, self._vm.root_cfg_node) self.assertFalse(ret.bindings) def test_signature_from_pytd(self): # def f(self: Any, *args: Any) self_param = pytd.Parameter("self", pytd.AnythingType(), False, False, None) args_param = pytd.Parameter("args", pytd.AnythingType(), False, True, None) sig = function.Signature.from_pytd( self._vm, "f", pytd.Signature( (self_param,), args_param, None, pytd.AnythingType(), (), ())) self.assertEqual(repr(sig), "def f(self: Any, *args: Any) -> Any") self.assertEqual(sig.name, "f") self.assertSequenceEqual(sig.param_names, ("self",)) self.assertEqual(sig.varargs_name, "args") self.assertFalse(sig.kwonly_params) self.assertIs(sig.kwargs_name, None) self.assertSetEqual(set(sig.annotations), {"self", "args", "return"}) self.assertFalse(sig.late_annotations) self.assertTrue(sig.has_return_annotation) self.assertTrue(sig.has_param_annotations) def test_signature_from_callable(self): # Callable[[int, str], Any] params = {0: self._vm.convert.int_type, 1: self._vm.convert.str_type} params[abstract_utils.ARGS] = abstract.Union( (params[0], params[1]), self._vm) params[abstract_utils.RET] = self._vm.convert.unsolvable callable_val = abstract.Callable( self._vm.convert.function_type, params, self._vm) sig = function.Signature.from_callable(callable_val) self.assertEqual(repr(sig), "def <callable>(_0: int, _1: str) -> Any") self.assertEqual(sig.name, "<callable>") self.assertSequenceEqual(sig.param_names, ("_0", "_1")) self.assertIs(sig.varargs_name, None) self.assertFalse(sig.kwonly_params) self.assertIs(sig.kwargs_name, None) six.assertCountEqual(self, sig.annotations.keys(), sig.param_names) self.assertFalse(sig.late_annotations) self.assertFalse(sig.has_return_annotation) self.assertTrue(sig.has_param_annotations) def test_signature_annotations(self): # def f(self: Any, *args: Any) self_param = pytd.Parameter("self", pytd.AnythingType(), False, False, None) # Imitate the parser's conversion of '*args: Any' to '*args: Tuple[Any]'. tup = pytd.ClassType("__builtin__.tuple") tup.cls = self._vm.convert.tuple_type.pytd_cls any_tuple = pytd.GenericType(tup, (pytd.AnythingType(),)) args_param = pytd.Parameter("args", any_tuple, False, True, None) sig = function.Signature.from_pytd( self._vm, "f", pytd.Signature( (self_param,), args_param, None, pytd.AnythingType(), (), ())) self.assertEqual(repr(sig), "def f(self: Any, *args: Tuple[Any, ...]) -> Any") self.assertIs(sig.annotations["self"], self._vm.convert.unsolvable) args_type = sig.annotations["args"] self.assertIsInstance(args_type, abstract.ParameterizedClass) self.assertIs(args_type.base_cls, self._vm.convert.tuple_type) self.assertListEqual(list(args_type.formal_type_parameters.items()), [(abstract_utils.T, self._vm.convert.unsolvable)]) self.assertIs(sig.drop_first_parameter().annotations["args"], args_type) def test_signature_annotations_existence(self): # def f(v: "X") -> "Y" sig = function.Signature( name="f", param_names=("v",), varargs_name=None, kwonly_params=(), kwargs_name=None, defaults={}, annotations={}, late_annotations={ "v": annotations_util.LateAnnotation("X", "v", None), "return": annotations_util.LateAnnotation("Y", "return", None) } ) self.assertEqual(repr(sig), "def f(v: 'X') -> 'Y'") self.assertFalse(sig.has_param_annotations) self.assertFalse(sig.has_return_annotation) sig.set_annotation("v", self._vm.convert.unsolvable) self.assertTrue(sig.has_param_annotations) self.assertFalse(sig.has_return_annotation) sig.set_annotation("return", self._vm.convert.unsolvable) self.assertTrue(sig.has_param_annotations) self.assertTrue(sig.has_return_annotation) def test_signature_posarg_only_param_count(self): # def f(x): ... sig = function.Signature( name="f", param_names=("x",), varargs_name=None, kwonly_params=(), kwargs_name=None, defaults={}, annotations={}, late_annotations={}, ) self.assertEqual(repr(sig), "def f(x) -> Any") self.assertEqual(sig.mandatory_param_count(), 1) self.assertEqual(sig.maximum_param_count(), 1) def test_signature_posarg_and_kwarg_param_count(self): # def f(x, y=None): ... sig = function.Signature( name="f", param_names=("x", "y",), varargs_name=None, kwonly_params=(), kwargs_name=None, defaults={"y": self._vm.convert.none_type.to_variable(self._node)}, annotations={}, late_annotations={}, ) self.assertEqual(repr(sig), "def f(x, y = None) -> Any") self.assertEqual(sig.mandatory_param_count(), 1) self.assertEqual(sig.maximum_param_count(), 2) def test_signature_varargs_param_count(self): # def f(*args): ... sig = function.Signature( name="f", param_names=(), varargs_name="args", kwonly_params=(), kwargs_name=None, defaults={}, annotations={}, late_annotations={}, ) self.assertEqual(repr(sig), "def f(*args) -> Any") self.assertEqual(sig.mandatory_param_count(), 0) self.assertIsNone(sig.maximum_param_count()) def test_signature_kwargs_param_count(self): # def f(**kwargs): ... sig = function.Signature( name="f", param_names=(), varargs_name=None, kwonly_params=(), kwargs_name="kwargs", defaults={}, annotations={}, late_annotations={}, ) self.assertEqual(repr(sig), "def f(**kwargs) -> Any") self.assertEqual(sig.mandatory_param_count(), 0) self.assertIsNone(sig.maximum_param_count()) def test_signature_kwonly_param_count(self): # def f(*, y=None): ... sig = function.Signature( name="f", param_names=(), varargs_name=None, kwonly_params=("y",), kwargs_name=None, defaults={"y": self._vm.convert.none_type.to_variable(self._node)}, annotations={}, late_annotations={}, ) self.assertEqual(repr(sig), "def f(*, y = None) -> Any") self.assertEqual(sig.mandatory_param_count(), 0) self.assertEqual(sig.maximum_param_count(), 1) def test_signature_has_param(self): # def f(x, *args, y, **kwargs): ... sig = function.Signature( name="f", param_names=("x",), varargs_name="args", kwonly_params={"y"}, kwargs_name="kwargs", defaults={}, annotations={}, late_annotations={}, ) self.assertEqual(repr(sig), "def f(x, *args, y, **kwargs) -> Any") for param in ("x", "args", "y", "kwargs"): self.assertTrue(sig.has_param(param)) self.assertFalse(sig.has_param("rumpelstiltskin")) def test_signature_insert_varargs_and_kwargs(self): # def f(x, *args, y, **kwargs): ... sig = function.Signature( name="f", param_names=("x",), varargs_name="args", kwonly_params={"y"}, kwargs_name="kwargs", defaults={}, annotations={}, late_annotations={}, ) # f(1, 2, y=3, z=4) int_inst = self._vm.convert.primitive_class_instances[int] int_binding = int_inst.to_binding(self._node) arg_dict = { "x": int_binding, "_1": int_binding, "y": int_binding, "z": int_binding} sig = sig.insert_varargs_and_kwargs(arg_dict) self.assertEqual(sig.name, "f") self.assertSequenceEqual(sig.param_names, ("x", "_1", "z")) self.assertEqual(sig.varargs_name, "args") self.assertSetEqual(sig.kwonly_params, {"y"}) self.assertEqual(sig.kwargs_name, "kwargs") self.assertFalse(sig.annotations) self.assertFalse(sig.late_annotations) def test_signature_del_param_annotation(self): # def f(x) -> int: ... sig = function.Signature( name="f", param_names=("x",), varargs_name=None, kwonly_params=(), kwargs_name=None, defaults={}, annotations={"x": self._vm.convert.unsolvable, "return": self._vm.convert.unsolvable}, late_annotations={} ) sig.del_annotation("x") six.assertCountEqual(self, sig.annotations.keys(), {"return"}) self.assertFalse(sig.has_param_annotations) self.assertTrue(sig.has_return_annotation) def test_signature_del_return_annotation(self): # def f(x) -> int: ... sig = function.Signature( name="f", param_names=("x",), varargs_name=None, kwonly_params=(), kwargs_name=None, defaults={}, annotations={"x": self._vm.convert.unsolvable, "return": self._vm.convert.unsolvable}, late_annotations={} ) sig.del_annotation("return") six.assertCountEqual(self, sig.annotations.keys(), {"x"}) self.assertTrue(sig.has_param_annotations) self.assertFalse(sig.has_return_annotation) def test_signature_del_nonexistent_annotation(self): # def f(): ... sig = function.Signature( name="f", param_names=(), varargs_name=None, kwonly_params=(), kwargs_name=None, defaults={}, annotations={}, late_annotations={} ) self.assertRaises(KeyError, sig.del_annotation, "rumpelstiltskin") def test_constructor_args(self): f = abstract.PyTDFunction.make("open", self._vm, "__builtin__") self.assertEqual(f.name, "__builtin__.open") six.assertCountEqual( self, {sig.pytd_sig for sig in f.signatures}, self._vm.lookup_builtin("__builtin__.open").signatures) self.assertIs(f.kind, pytd.METHOD) self.assertIs(f.vm, self._vm) def test_constructor_args_pyval(self): sig = pytd.Signature((), None, None, pytd.AnythingType(), (), ()) pyval = pytd.Function("blah", (sig,), pytd.STATICMETHOD, 0) f = abstract.PyTDFunction.make("open", self._vm, "__builtin__", pyval=pyval) self.assertEqual(f.name, "__builtin__.open") f_sig, = f.signatures self.assertIs(f_sig.pytd_sig, sig) self.assertIs(f.kind, pytd.STATICMETHOD) self.assertIs(f.vm, self._vm) def test_get_constructor_args(self): f = abstract.PyTDFunction.make( "TypeVar", self._vm, "typing", pyval_name="_typevar_new") self.assertEqual(f.name, "typing.TypeVar") six.assertCountEqual( self, {sig.pytd_sig for sig in f.signatures}, self._vm.loader.import_name("typing").Lookup( "typing._typevar_new").signatures) self.assertIs(f.kind, pytd.METHOD) self.assertIs(f.vm, self._vm) def test_bound_function_repr(self): f = self._make_pytd_function(params=()) callself = self._vm.program.NewVariable( [abstract.AtomicAbstractValue(name, self._vm) for name in ("test1", "test2")], [], self._vm.root_cfg_node) bound = abstract.BoundFunction(callself, f) six.assertCountEqual(self, bound.repr_names(), ["test1.f", "test2.f"]) six.assertRegex(self, repr(bound), r"test(1|2)\.f") def test_bound_function_callself_repr(self): f = self._make_pytd_function(params=()) callself = self._vm.program.NewVariable( [abstract.AtomicAbstractValue("test", self._vm)], [], self._vm.root_cfg_node) bound = abstract.BoundFunction(callself, f) callself_repr = lambda v: v.name + "foo" six.assertCountEqual(self, bound.repr_names(callself_repr), ["testfoo.f"]) def test_bound_function_nested_repr(self): f = self._make_pytd_function(params=()) callself1 = self._vm.program.NewVariable( [abstract.AtomicAbstractValue("test1", self._vm)], [], self._vm.root_cfg_node) bound1 = abstract.BoundFunction(callself1, f) callself2 = self._vm.program.NewVariable( [abstract.AtomicAbstractValue("test2", self._vm)], [], self._vm.root_cfg_node) bound2 = abstract.BoundFunction(callself2, bound1) # `bound2` is BoundFunction(test2, BoundFunction(test1, f)) six.assertCountEqual(self, bound2.repr_names(), ["test2.f"]) def test_bound_function_repr_no_callself(self): f = self._make_pytd_function(params=()) callself = self._vm.program.NewVariable() bound = abstract.BoundFunction(callself, f) six.assertCountEqual(self, bound.repr_names(), ["<class>.f"]) def test_bound_function_repr_replace_parent(self): f = self._make_pytd_function(params=(), name="foo.f") callself = self._vm.program.NewVariable( [abstract.AtomicAbstractValue("test", self._vm)], [], self._vm.root_cfg_node) bound = abstract.BoundFunction(callself, f) six.assertCountEqual(self, bound.repr_names(), ["test.f"]) class AbstractMethodsTest(AbstractTestBase): def test_abstract_method(self): func = abstract.Function("f", self._vm).to_variable(self._vm.root_cfg_node) func.data[0].is_abstract = True cls = abstract.InterpreterClass("X", [], {"f": func}, None, self._vm) six.assertCountEqual(self, cls.abstract_methods, {"f"}) def test_inherited_abstract_method(self): sized_pytd = self._vm.loader.typing.Lookup("typing.Sized") sized = self._vm.convert.constant_to_value( sized_pytd, {}, self._vm.root_cfg_node) cls = abstract.InterpreterClass( "X", [sized.to_variable(self._vm.root_cfg_node)], {}, None, self._vm) six.assertCountEqual(self, cls.abstract_methods, {"__len__"}) def test_overridden_abstract_method(self): sized_pytd = self._vm.loader.typing.Lookup("typing.Sized") sized = self._vm.convert.constant_to_value( sized_pytd, {}, self._vm.root_cfg_node) bases = [sized.to_variable(self._vm.root_cfg_node)] members = {"__len__": self._vm.convert.create_new_unsolvable(self._vm.root_cfg_node)} cls = abstract.InterpreterClass("X", bases, members, None, self._vm) self.assertFalse(cls.abstract_methods) def test_overridden_abstract_method_still_abstract(self): sized_pytd = self._vm.loader.typing.Lookup("typing.Sized") sized = self._vm.convert.constant_to_value( sized_pytd, {}, self._vm.root_cfg_node) bases = [sized.to_variable(self._vm.root_cfg_node)] func = abstract.Function("__len__", self._vm) func.is_abstract = True members = {"__len__": func.to_variable(self._vm.root_cfg_node)} cls = abstract.InterpreterClass("X", bases, members, None, self._vm) six.assertCountEqual(self, cls.abstract_methods, {"__len__"}) class SimpleFunctionTest(AbstractTestBase): def _make_func(self, name="_", param_names=None, varargs_name=None, kwonly_params=(), kwargs_name=None, defaults=(), annotations=None, late_annotations=None): return abstract.SimpleFunction(name, param_names or (), varargs_name, kwonly_params, kwargs_name, defaults, annotations or {}, late_annotations or {}, self._vm) def _simple_sig(self, param_types, ret_type=None): annots = {("_%d" % i): t for i, t in enumerate(param_types)} params = tuple(annots.keys()) if ret_type: annots["return"] = ret_type return self._make_func(param_names=params, annotations=annots) def test_simple_call(self): f = self._simple_sig([self._vm.convert.str_type], ret_type=self._vm.convert.int_type) args = function.Args( (self._vm.convert.build_string(self._vm.root_cfg_node, "hello"),)) node, ret = f.call(self._vm.root_cfg_node, f, args) self.assertIs(node, self._vm.root_cfg_node) ret_val, = ret.data self.assertEqual(ret_val.cls, self._vm.convert.int_type) def test_call_with_bad_arg(self): f = self._make_func(param_names=("test",), annotations={"test": self._vm.convert.str_type}) args = function.Args((self._vm.convert.build_int(self._vm.root_cfg_node),)) self.assertRaises(function.WrongArgTypes, f.call, self._vm.root_cfg_node, f, args) def test_call_with_no_args(self): f = self._simple_sig([self._vm.convert.str_type, self._vm.convert.int_type]) args = function.Args(()) self.assertRaises(function.MissingParameter, f.call, self._vm.root_cfg_node, f, args) def test_call_with_multiple_arg_bindings(self): f = self._simple_sig([self._vm.convert.str_type]) arg = self._vm.program.NewVariable() arg.AddBinding(self._vm.convert.primitive_class_instances[str], [], self._vm.root_cfg_node) arg.AddBinding(self._vm.convert.primitive_class_instances[int], [], self._vm.root_cfg_node) args = function.Args((arg,)) node, ret = f.call(self._vm.root_cfg_node, f, args) self.assertIs(node, self._vm.root_cfg_node) self.assertIs(ret.data[0], self._vm.convert.none) def test_call_with_varargs(self): f = self._make_func( varargs_name="arg", annotations={"arg": self._vm.convert.str_type, "return": self._vm.convert.str_type} ) starargs = abstract.Tuple( (self._vm.convert.build_string(self._vm.root_cfg_node, ""),), self._vm).to_variable(self._vm.root_cfg_node) args = function.Args(posargs=(), starargs=starargs) node, ret = f.call(self._vm.root_cfg_node, f, args) self.assertIs(node, self._vm.root_cfg_node) self.assertIs(ret.data[0].cls, self._vm.convert.str_type) def test_call_with_bad_varargs(self): f = self._make_func( varargs_name="arg", annotations={"arg": self._vm.convert.str_type}) starargs = abstract.Tuple( (self._vm.convert.build_string(self._vm.root_cfg_node, ""), self._vm.convert.build_int(self._vm.root_cfg_node)), self._vm ).to_variable(self._vm.root_cfg_node) args = function.Args(posargs=(), starargs=starargs) self.assertRaises(function.WrongArgTypes, f.call, self._vm.root_cfg_node, f, args) def test_call_with_multiple_varargs_bindings(self): f = self._make_func( varargs_name="arg", annotations={"arg": self._vm.convert.str_type}) arg = self._vm.program.NewVariable() arg.AddBinding(self._vm.convert.primitive_class_instances[str], [], self._vm.root_cfg_node) arg.AddBinding(self._vm.convert.primitive_class_instances[int], [], self._vm.root_cfg_node) starargs = abstract.Tuple((arg,), self._vm) starargs = starargs.to_variable(self._vm.root_cfg_node) args = function.Args(posargs=(), starargs=starargs) f.call(self._vm.root_cfg_node, f, args) def test_call_with_kwargs(self): f = self._make_func( kwargs_name="kwarg", annotations={"kwarg": self._vm.convert.str_type}) kwargs = abstract.Dict(self._vm) kwargs.update( self._vm.root_cfg_node, { "_1": self._vm.convert.build_string(self._vm.root_cfg_node, "1"), "_2": self._vm.convert.build_string(self._vm.root_cfg_node, "2") }) kwargs = kwargs.to_variable(self._vm.root_cfg_node) args = function.Args( posargs=(), namedargs=abstract.Dict(self._vm), starstarargs=kwargs ) f.call(self._vm.root_cfg_node, f, args) def test_call_with_bad_kwargs(self): f = self._make_func( kwargs_name="kwarg", annotations={"kwarg": self._vm.convert.str_type}) kwargs = abstract.Dict(self._vm) kwargs.update(self._vm.root_cfg_node, {"_1": self._vm.convert.build_int(self._vm.root_cfg_node)}) kwargs = kwargs.to_variable(self._vm.root_cfg_node) args = function.Args( posargs=(), namedargs=abstract.Dict(self._vm), starstarargs=kwargs ) self.assertRaises(function.WrongArgTypes, f.call, self._vm.root_cfg_node, f, args) def test_call_with_kwonly_args(self): f = self._make_func( param_names=("test",), kwonly_params=("a", "b"), annotations={ "test": self._vm.convert.str_type, "a": self._vm.convert.str_type, "b": self._vm.convert.str_type } ) kwargs = abstract.Dict(self._vm) kwargs.update( self._vm.root_cfg_node, { "a": self._vm.convert.build_string(self._vm.root_cfg_node, "2"), "b": self._vm.convert.build_string(self._vm.root_cfg_node, "3") } ) kwargs = kwargs.to_variable(self._vm.root_cfg_node) args = function.Args( posargs=(self._vm.convert.build_string(self._vm.root_cfg_node, "1"),), namedargs=abstract.Dict(self._vm), starstarargs=kwargs ) f.call(self._vm.root_cfg_node, f, args) kwargs = abstract.Dict(self._vm) kwargs.update( self._vm.root_cfg_node, {"b": self._vm.convert.build_string(self._vm.root_cfg_node, "3")} ) kwargs = kwargs.to_variable(self._vm.root_cfg_node) args = function.Args( posargs=(self._vm.convert.build_string(self._vm.root_cfg_node, "1"), self._vm.convert.build_int(self._vm.root_cfg_node)), namedargs=abstract.Dict(self._vm), starstarargs=kwargs ) self.assertRaises(function.MissingParameter, f.call, self._vm.root_cfg_node, f, args) def test_call_with_all_args(self): f = self._make_func( param_names=("a", "b", "c"), varargs_name="arg", kwargs_name="kwarg", defaults=(self._vm.convert.build_int(self._vm.root_cfg_node),), annotations={ "a": self._vm.convert.str_type, "b": self._vm.convert.int_type, "c": self._vm.convert.int_type, "arg": self._vm.convert.primitive_classes[float], "kwarg": self._vm.convert.primitive_classes[bool] } ) posargs = (self._vm.convert.build_string(self._vm.root_cfg_node, "1"), self._vm.convert.build_int(self._vm.root_cfg_node)) float_inst = self._vm.convert.primitive_class_instances[float] stararg = abstract.Tuple((float_inst.to_variable(self._vm.root_cfg_node),), self._vm).to_variable(self._vm.root_cfg_node) namedargs = abstract.Dict(self._vm) kwarg = abstract.Dict(self._vm) kwarg.update(self._vm.root_cfg_node, {"x": self._vm.convert.build_bool(self._vm.root_cfg_node), "y": self._vm.convert.build_bool(self._vm.root_cfg_node)}) kwarg = kwarg.to_variable(self._vm.root_cfg_node) args = function.Args(posargs, namedargs, stararg, kwarg) f.call(self._vm.root_cfg_node, f, args) def test_call_with_defaults(self): f = self._make_func( param_names=("a", "b", "c"), defaults=(self._vm.convert.build_int(self._vm.root_cfg_node),), annotations={ "a": self._vm.convert.int_type, "b": self._vm.convert.int_type, "c": self._vm.convert.int_type } ) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node)) ) f.call(self._vm.root_cfg_node, f, args) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node)) ) f.call(self._vm.root_cfg_node, f, args) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node),)) self.assertRaises( function.MissingParameter, f.call, self._vm.root_cfg_node, f, args) def test_call_with_bad_default(self): f = self._make_func( param_names=("a", "b"), defaults=(self._vm.convert.build_string(self._vm.root_cfg_node, ""),), annotations={ "a": self._vm.convert.int_type, "b": self._vm.convert.str_type } ) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node)) ) self.assertRaises( function.WrongArgTypes, f.call, self._vm.root_cfg_node, f, args) def test_call_with_duplicate_keyword(self): f = self._simple_sig([self._vm.convert.int_type]*2) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node)), namedargs={"_1": self._vm.convert.build_int(self._vm.root_cfg_node)} ) self.assertRaises( function.DuplicateKeyword, f.call, self._vm.root_cfg_node, f, args) def test_call_with_wrong_arg_count(self): f = self._simple_sig([self._vm.convert.int_type]) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node)) ) self.assertRaises( function.WrongArgCount, f.call, self._vm.root_cfg_node, f, args) def test_change_defaults(self): f = self._make_func( param_names=("a", "b", "c"), defaults=(self._vm.convert.build_int(self._vm.root_cfg_node),) ) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node)) ) f.call(self._vm.root_cfg_node, f, args) new_defaults = abstract.Tuple( (self._vm.convert.build_int(self._vm.root_cfg_node), self._vm.convert.build_int(self._vm.root_cfg_node)), self._vm).to_variable(self._vm.root_cfg_node) f.set_function_defaults(new_defaults) f.call(self._vm.root_cfg_node, f, args) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node),) ) f.call(self._vm.root_cfg_node, f, args) def test_call_with_type_parameter(self): ret_cls = abstract.ParameterizedClass( self._vm.convert.list_type, {abstract_utils.T: abstract.TypeParameter(abstract_utils.T, self._vm)}, self._vm ) f = self._make_func( param_names=("test",), annotations={ "test": abstract.TypeParameter(abstract_utils.T, self._vm), "return": ret_cls } ) args = function.Args( posargs=(self._vm.convert.build_int(self._vm.root_cfg_node),)) _, ret = f.call(self._vm.root_cfg_node, f, args) # ret is an Instance(ParameterizedClass(list, {abstract_utils.T: int})) # but we really only care about T. self.assertIs(ret.data[0].cls.formal_type_parameters[abstract_utils.T], self._vm.convert.int_type) def test_signature_func_output_basic(self): node = self._vm.root_cfg_node f = self._make_func(name="basic", param_names=("a", "b")) fp = self._vm.convert.pytd_convert.value_to_pytd_def(node, f, f.name) self.assertEqual(pytd.Print(fp), "def basic(a, b) -> None: ...") def test_signature_func_output_annotations(self): node = self._vm.root_cfg_node f = self._make_func( name="annots", param_names=("a", "b"), annotations={ "a": self._vm.convert.int_type, "b": self._vm.convert.str_type, "return": self._vm.convert.int_type } ) fp = self._vm.convert.pytd_convert.value_to_pytd_def(node, f, f.name) self.assertEqual(pytd.Print(fp), "def annots(a: int, b: str) -> int: ...") def test_signature_func_output(self): node = self._vm.root_cfg_node dict_type = abstract.ParameterizedClass( self._vm.convert.dict_type, {abstract_utils.K: self._vm.convert.str_type, abstract_utils.V: self._vm.convert.int_type}, self._vm) f = self._make_func( name="test", param_names=("a", "b"), varargs_name="c", kwonly_params=("d", "e"), kwargs_name="f", defaults={ "b": self._vm.convert.build_int(node), "d": self._vm.convert.build_int(node) }, annotations={ "a": self._vm.convert.str_type, "b": self._vm.convert.int_type, "c": self._vm.convert.str_type, "d": dict_type, "e": self._vm.convert.int_type, "f": self._vm.convert.str_type, "return": self._vm.convert.str_type } ) fp = self._vm.convert.pytd_convert.value_to_pytd_def(node, f, f.name) f_str = ("def test(a: str, b: int = ..., *c: str, d: Dict[str, int] = ...," " e: int, **f: str) -> str: ...") self.assertEqual(pytd.Print(fp), f_str) class AbstractTest(AbstractTestBase): def test_interpreter_class_official_name(self): cls = abstract.InterpreterClass("X", [], {}, None, self._vm) cls.update_official_name("Z") self.assertEqual(cls.official_name, "Z") cls.update_official_name("A") # takes effect because A < Z self.assertEqual(cls.official_name, "A") cls.update_official_name("Z") # no effect self.assertEqual(cls.official_name, "A") cls.update_official_name("X") # takes effect because X == cls.name self.assertEqual(cls.official_name, "X") cls.update_official_name("A") # no effect self.assertEqual(cls.official_name, "X") def test_type_parameter_official_name(self): param = abstract.TypeParameter("T", self._vm) self._vm.frame = frame_state.SimpleFrame() # for error logging param.update_official_name("T") self.assertFalse(self._vm.errorlog.has_error()) param.update_official_name("Q") self.assertTrue(self._vm.errorlog.has_error()) def test_type_parameter_equality(self): param1 = abstract.TypeParameter("S", self._vm) param2 = abstract.TypeParameter("T", self._vm) cls = abstract.InterpreterClass("S", [], {}, None, self._vm) self.assertEqual(param1, param1) self.assertNotEqual(param1, param2) self.assertNotEqual(param1, cls) def test_union_equality(self): union1 = abstract.Union((self._vm.convert.unsolvable,), self._vm) union2 = abstract.Union((self._vm.convert.none,), self._vm) cls = abstract.InterpreterClass("Union", [], {}, None, self._vm) self.assertEqual(union1, union1) self.assertNotEqual(union1, union2) self.assertNotEqual(union1, cls) def test_instantiate_type_parameter_type(self): params = { abstract_utils.T: abstract.TypeParameter(abstract_utils.T, self._vm)} cls = abstract.ParameterizedClass( self._vm.convert.type_type, params, self._vm) self.assertListEqual(cls.instantiate(self._node).data, [self._vm.convert.unsolvable]) def test_super_type(self): supercls = special_builtins.Super(self._vm) self.assertEqual(supercls.get_class(), self._vm.convert.type_type) def test_instantiate_interpreter_class(self): cls = abstract.InterpreterClass("X", [], {}, None, self._vm) # When there is no current frame, create a new instance every time. v1 = abstract_utils.get_atomic_value(cls.instantiate(self._node)) v2 = abstract_utils.get_atomic_value(cls.instantiate(self._node)) self.assertIsNot(v1, v2) # Create one instance per opcode. fake_opcode = object() self._vm.push_frame(frame_state.SimpleFrame(fake_opcode)) v3 = abstract_utils.get_atomic_value(cls.instantiate(self._node)) v4 = abstract_utils.get_atomic_value(cls.instantiate(self._node)) self.assertIsNot(v1, v3) self.assertIsNot(v2, v3) self.assertIs(v3, v4) def test_set_module_on_module(self): # A module's 'module' attribute should always remain None, and no one # should attempt to set it to something besides the module's name or None. ast = pytd_utils.CreateModule("some_mod") mod = abstract.Module(self._vm, ast.name, {}, ast) mod.module = ast.name self.assertIsNone(mod.module) self.assertEqual(ast.name, mod.full_name) mod.module = None self.assertIsNone(mod.module) self.assertEqual(ast.name, mod.full_name) def set_module(): mod.module = "other_mod" self.assertRaises(AssertionError, set_module) def test_call_type_parameter_instance(self): instance = abstract.Instance(self._vm.convert.list_type, self._vm) instance.merge_instance_type_parameter( self._vm.root_cfg_node, abstract_utils.T, self._vm.convert.int_type.to_variable(self._vm.root_cfg_node)) t = abstract.TypeParameter(abstract_utils.T, self._vm) t_instance = abstract.TypeParameterInstance(t, instance, self._vm) node, ret = t_instance.call(self._node, t_instance.to_binding(self._node), function.Args(posargs=())) self.assertIs(node, self._node) retval, = ret.data self.assertEqual(retval.cls, self._vm.convert.int_type) def test_call_empty_type_parameter_instance(self): instance = abstract.Instance(self._vm.convert.list_type, self._vm) t = abstract.TypeParameter(abstract_utils.T, self._vm) t_instance = abstract.TypeParameterInstance(t, instance, self._vm) node, ret = t_instance.call(self._node, t_instance.to_binding(self._node), function.Args(posargs=())) self.assertIs(node, self._node) retval, = ret.data self.assertIs(retval, self._vm.convert.empty) def test_call_type_parameter_instance_with_wrong_args(self): instance = abstract.Instance(self._vm.convert.list_type, self._vm) instance.merge_instance_type_parameter( self._vm.root_cfg_node, abstract_utils.T, self._vm.convert.int_type.to_variable(self._vm.root_cfg_node)) t = abstract.TypeParameter(abstract_utils.T, self._vm) t_instance = abstract.TypeParameterInstance(t, instance, self._vm) posargs = (self._vm.convert.create_new_unsolvable(self._node),) * 3 node, ret = t_instance.call(self._node, t_instance.to_binding(self._node), function.Args(posargs=posargs)) self.assertIs(node, self._node) self.assertTrue(ret.bindings) error, = self._vm.errorlog self.assertEqual(error.name, "wrong-arg-count") def test_instantiate_tuple_class_for_sub(self): type_param = abstract.TypeParameter(abstract_utils.K, self._vm) cls = abstract.TupleClass( self._vm.convert.tuple_type, {0: type_param, abstract_utils.T: type_param}, self._vm) # Instantiate the tuple class. subst_value = self._vm.annotations_util.instantiate_for_sub( self._vm.root_cfg_node, cls) # Recover the class from the instance. subbed_cls = self._vm.annotations_util.sub_one_annotation( self._vm.root_cfg_node, type_param, [{abstract_utils.K: subst_value}]) self.assertEqual(cls, subbed_cls) if __name__ == "__main__": unittest.main()
the-stack_0_23801
# -*- coding: utf-8 -*- """ TencentBlueKing is pleased to support the open source community by making 蓝鲸智云-节点管理(BlueKing-BK-NODEMAN) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.conf.urls import include, url from rest_framework import routers as drf_routers from apps.backend import views from apps.backend.healthz.views import HealthzViewSet from apps.backend.plugin.views import ( PluginViewSet, export_download, upload_package, upload_package_by_cos, ) from apps.backend.subscription.views import SubscriptionViewSet routers = drf_routers.DefaultRouter(trailing_slash=True) routers.register("plugin", PluginViewSet, basename="plugin") routers.register("subscription", SubscriptionViewSet, basename="subscription") routers.register("healthz", HealthzViewSet, basename="healthz") export_routers = drf_routers.DefaultRouter(trailing_slash=True) urlpatterns = [ url(r"api/", include(routers.urls)), url(r"^package/upload/$", upload_package), url(r"^package/upload_cos/$", upload_package_by_cos), url(r"^export/download/$", export_download, name="export_download"), url(r"^export/", include(export_routers.urls)), url(r"^get_gse_config/", views.get_gse_config), url(r"^report_log/", views.report_log), url(r"^api/job_callback/", views.job_callback), ]
the-stack_0_23802
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import seaborn as sns get_ipython().run_line_magic('matplotlib', 'inline') np.random.seed(2) from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools from keras.utils.np_utils import to_categorical # convert to one-hot-encoding from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.optimizers import RMSprop from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau sns.set(style='white', context='notebook', palette='deep') # Load the data train = pd.read_csv("./input/train.csv") test = pd.read_csv("./input/test.csv") Y_train = train["label"] # Drop 'label' column X_train = train.drop(labels = ["label"],axis = 1) # free some space del train # Count the values Y_train.value_counts() # Normalize the data X_train = X_train / 255.0 test = test / 255.0 # Reshape image in 3 dimensions (height = 28px, width = 28px , canal = 1) X_train = X_train.values.reshape(-1,28,28,1) test = test.values.reshape(-1,28,28,1) # Encode labels to one hot vectors (ex : 2 -> [0,0,1,0,0,0,0,0,0,0]) Y_train = to_categorical(Y_train, num_classes = 10) pd.DataFrame(Y_train).head() # Set the random seed random_seed = 2 # Split the train and the validation set for the fitting X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed) # Some examples g = plt.imshow(X_train[0][:,:,0]) # Set the CNN model #CNN architechture -> [[Conv2D->relu]*2 -> MaxPool2D -> Dropout]*2 -> Flatten -> Dense -> Dropout -> Out model = Sequential() model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', activation ='relu', input_shape = (28,28,1))) model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) # Define the optimizer optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) # Compile the model model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) model.summary() # Set a learning rate annealer learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) epochs = 35 batch_size = 86 # With data augmentation to prevent overfitting (accuracy 0.99286) datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) zoom_range = 0.1, # Randomly zoom image width_shift_range=0.1, # randomly shift images horizontally (fraction of total width) height_shift_range=0.1, # randomly shift images vertically (fraction of total height) horizontal_flip=False, # randomly flip images vertical_flip=False) # randomly flip images datagen.fit(X_train) # Fit the model history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data = (X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction]) # Plot the loss and accuracy curves for training and validation fig, ax = plt.subplots(2,1) ax[0].plot(history.history['loss'], color='b', label="Training loss") ax[0].plot(history.history['val_loss'], color='r', label="validation loss",axes =ax[0]) legend = ax[0].legend(loc='best', shadow=True) ax[1].plot(history.history['acc'], color='b', label="Training accuracy") ax[1].plot(history.history['val_acc'], color='r',label="Validation accuracy") legend = ax[1].legend(loc='best', shadow=True) # Look at confusion matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Predict the values from the validation dataset Y_pred = model.predict(X_val) # Convert predictions classes to one hot vectors Y_pred_classes = np.argmax(Y_pred,axis = 1) # Convert validation observations to one hot vectors Y_true = np.argmax(Y_val,axis = 1) # compute the confusion matrix confusion_mtx = confusion_matrix(Y_true, Y_pred_classes) # plot the confusion matrix plot_confusion_matrix(confusion_mtx, classes = range(10)) # Display some error results # Errors are difference between predicted labels and true labels errors = (Y_pred_classes - Y_true != 0) Y_pred_classes_errors = Y_pred_classes[errors] Y_pred_errors = Y_pred[errors] Y_true_errors = Y_true[errors] X_val_errors = X_val[errors] def display_errors(errors_index,img_errors,pred_errors, obs_errors): """ This function shows 6 images with their predicted and real labels""" n = 0 nrows = 2 ncols = 3 fig, ax = plt.subplots(nrows,ncols,sharex=True,sharey=True) for row in range(nrows): for col in range(ncols): error = errors_index[n] ax[row,col].imshow((img_errors[error]).reshape((28,28))) ax[row,col].set_title("Predicted label :{}\nTrue label :{}".format(pred_errors[error],obs_errors[error])) n += 1 # Probabilities of the wrong predicted numbers Y_pred_errors_prob = np.max(Y_pred_errors,axis = 1) # Predicted probabilities of the true values in the error set true_prob_errors = np.diagonal(np.take(Y_pred_errors, Y_true_errors, axis=1)) # Difference between the probability of the predicted label and the true label delta_pred_true_errors = Y_pred_errors_prob - true_prob_errors # Sorted list of the delta prob errors sorted_dela_errors = np.argsort(delta_pred_true_errors) # Top 6 errors most_important_errors = sorted_dela_errors[-6:] # Show the top 6 errors display_errors(most_important_errors, X_val_errors, Y_pred_classes_errors, Y_true_errors) # predict results results = model.predict(test) # select the indix with the maximum probability results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False)
the-stack_0_23803
import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, BatchNormalization, Conv2DTranspose, Reshape from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.callbacks import TensorBoard from matplotlib import pyplot as plt from utils.DataLoader import load_gaps, load_stl10_data def gen_model(): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(64, 64, 1))) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(BatchNormalization(momentum=0.8)) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(BatchNormalization(momentum=0.8)) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(Conv2D(32, (3, 3), activation='relu', padding='same')) model.add(BatchNormalization(momentum=0.8)) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) # model.add(Dense(100, activation='relu')) model.add(Dense(10, activation='relu', name="encoder_output")) # model.add(Dense(100, activation='relu')) # model.add(Dense(512, activation='relu')) # model.add(Reshape((2, 2, 128))) model.add(Dense(2048, activation='relu')) model.add(Reshape((8,8,32))) model.add(Conv2DTranspose(128, (3, 3), strides=2, activation='relu', padding='same')) model.add(Conv2DTranspose(64, (3, 3), strides=2, activation='relu', padding='same')) model.add(Conv2DTranspose(32, (3, 3), strides=2, activation='relu', padding='same')) model.add(Conv2D(1, (3, 3), padding='same', activation='relu')) model.compile(optimizer='sgd', loss='mae') return model def train(): model = gen_model() data = np.load('images/64px_image_x.npy') data = np.reshape(data, (40000, 64, 64, 1)) model.fit(x=data, y=data, epochs=100, batch_size=40, validation_split=0.1) model.save_weights("models/ae_0113_64px.h5") idx = np.random.randint(0, 40000, size=8) x = data[idx] x = np.reshape(x, (8, 64, 64, 1)) ret = model.predict(x) for i in range(4): for j in range(2): plt.subplot(4, 4, (i*4+j*2+1)) plt.imshow(x[i*2+j, :, :, 0], cmap='gray') plt.subplot(4, 4, (i*4+j*2+2)) plt.imshow(ret[i*2+j, :, :, 0], cmap='gray') plt.show() if __name__ == "__main__": train()
the-stack_0_23804
# -*- coding: utf-8 -*- import sys from setuptools import setup, find_packages from setuptools.extension import Extension try: from Cython.Build import cythonize except ImportError: raise RuntimeError( "Cython required for running the package installation\n" + "Try installing it with:\n" + "$> pip install cython" ) try: import numpy except ImportError: raise RuntimeError( "Numpy required for running the package installation\n" + "Try installing it with:\n" + "$> pip install numpy" ) # Define common arguments used to compile the extensions common_link_args = ["-fopenmp"] common_compile_args = ["-fopenmp", "-O3", "-ffast-math"] common_include = [numpy.get_include()] if sys.platform.startswith("darwin"): common_link_args.append("-Wl,-rpath,/usr/local/opt/gcc/lib/gcc/9/") extensions_data = { "pysteps.motion._proesmans": {"sources": ["pysteps/motion/_proesmans.pyx"]}, "pysteps.motion._vet": {"sources": ["pysteps/motion/_vet.pyx"]}, } extensions = [] for name, data in extensions_data.items(): include = data.get("include", common_include) extra_compile_args = data.get("extra_compile_args", common_compile_args) extra_link_args = data.get("extra_link_args", common_link_args) pysteps_extension = Extension( name, sources=data["sources"], depends=data.get("depends", []), include_dirs=include, language=data.get("language", "c"), define_macros=data.get("macros", []), extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, ) extensions.append(pysteps_extension) external_modules = cythonize(extensions, force=True, language_level=3) requirements = [ "numpy", "jsmin", "scipy", "matplotlib", "jsonschema", ] setup( name="pysteps", version="1.4.1", author="PySteps developers", packages=find_packages(), license="LICENSE", include_package_data=True, description="Python framework for short-term ensemble prediction systems", long_description=open("README.rst").read(), long_description_content_type="text/x-rst", url="https://pysteps.github.io/", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Topic :: Scientific/Engineering :: Atmospheric Science", "Topic :: Scientific/Engineering :: Hydrology", "License :: OSI Approved :: BSD License", "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], ext_modules=external_modules, setup_requires=requirements, install_requires=requirements, )
the-stack_0_23809
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # This file handles all flask-restful resources for /v3/users import base64 import os import secrets import uuid import flask import http.client from oslo_serialization import jsonutils from werkzeug import exceptions from keystone.api._shared import json_home_relations from keystone.application_credential import schema as app_cred_schema from keystone.common import json_home from keystone.common import provider_api from keystone.common import rbac_enforcer from keystone.common import utils from keystone.common import validation import keystone.conf from keystone import exception as ks_exception from keystone.i18n import _ from keystone.identity import schema from keystone import notifications from keystone.server import flask as ks_flask CRED_TYPE_EC2 = 'ec2' CONF = keystone.conf.CONF ENFORCER = rbac_enforcer.RBACEnforcer PROVIDERS = provider_api.ProviderAPIs ACCESS_TOKEN_ID_PARAMETER_RELATION = ( json_home_relations.os_oauth1_parameter_rel_func( parameter_name='access_token_id') ) def _convert_v3_to_ec2_credential(credential): # Prior to bug #1259584 fix, blob was stored unserialized # but it should be stored as a json string for compatibility # with the v3 credentials API. Fall back to the old behavior # for backwards compatibility with existing DB contents try: blob = jsonutils.loads(credential['blob']) except TypeError: blob = credential['blob'] return {'user_id': credential.get('user_id'), 'tenant_id': credential.get('project_id'), 'access': blob.get('access'), 'secret': blob.get('secret'), 'trust_id': blob.get('trust_id')} def _format_token_entity(entity): formatted_entity = entity.copy() access_token_id = formatted_entity['id'] user_id = formatted_entity.get('authorizing_user_id', '') if 'role_ids' in entity: formatted_entity.pop('role_ids') if 'access_secret' in entity: formatted_entity.pop('access_secret') url = ('/users/%(user_id)s/OS-OAUTH1/access_tokens/%(access_token_id)s' '/roles' % {'user_id': user_id, 'access_token_id': access_token_id}) formatted_entity.setdefault('links', {}) formatted_entity['links']['roles'] = (ks_flask.base_url(url)) return formatted_entity def _check_unrestricted_application_credential(token): if 'application_credential' in token.methods: if not token.application_credential['unrestricted']: action = _("Using method 'application_credential' is not " "allowed for managing additional application " "credentials.") raise ks_exception.ForbiddenAction(action=action) def _build_user_target_enforcement(): target = {} try: target['user'] = PROVIDERS.identity_api.get_user( flask.request.view_args.get('user_id') ) if flask.request.view_args.get('group_id'): target['group'] = PROVIDERS.identity_api.get_group( flask.request.view_args.get('group_id') ) except ks_exception.NotFound: # nosec # Defer existence in the event the user doesn't exist, we'll # check this later anyway. pass return target def _build_enforcer_target_data_owner_and_user_id_match(): ref = {} if flask.request.view_args: credential_id = flask.request.view_args.get('credential_id') if credential_id is not None: hashed_id = utils.hash_access_key(credential_id) ref['credential'] = PROVIDERS.credential_api.get_credential( hashed_id) return ref def _update_request_user_id_attribute(): # This method handles a special case in policy enforcement. The application # credential API is underneath the user path (e.g., # /v3/users/{user_id}/application_credentials/{application_credential_id}). # The RBAC enforcer thinks the user to evaluate for application credential # ownership comes from the path, but it should come from the actual # application credential reference. By ensuring we pull the user ID from # the application credential, we close a loop hole where users could # effectively bypass authorization to view or delete any application # credential in the system, assuming the attacker knows the application # credential ID of another user. So long as the attacker matches the user # ID in the request path to the user in the token of the request, they can # pass the `rule:owner` policy check. This method protects against that by # ensuring we use the application credential user ID and not something # determined from the client. try: app_cred = ( PROVIDERS.application_credential_api.get_application_credential( flask.request.view_args.get('application_credential_id') ) ) flask.request.view_args['user_id'] = app_cred['user_id'] # This target isn't really used in the default policy for application # credentials, but we return it since we're using this method as a hook # to update the flask request variables, which are used later in the # keystone RBAC enforcer to populate the policy_dict, which ultimately # turns into target attributes. return {'user_id': app_cred['user_id']} except ks_exception.NotFound: # nosec # Defer existance in the event the application credential doesn't # exist, we'll check this later anyway. pass def _format_role_entity(role_id): role = PROVIDERS.role_api.get_role(role_id) formatted_entity = role.copy() if 'description' in role: formatted_entity.pop('description') if 'enabled' in role: formatted_entity.pop('enabled') return formatted_entity class UserResource(ks_flask.ResourceBase): collection_key = 'users' member_key = 'user' get_member_from_driver = PROVIDERS.deferred_provider_lookup( api='identity_api', method='get_user') def get(self, user_id=None): """Get a user resource or list users. GET/HEAD /v3/users GET/HEAD /v3/users/{user_id} """ if user_id is not None: return self._get_user(user_id) return self._list_users() def _get_user(self, user_id): """Get a user resource. GET/HEAD /v3/users/{user_id} """ ENFORCER.enforce_call( action='identity:get_user', build_target=_build_user_target_enforcement ) ref = PROVIDERS.identity_api.get_user(user_id) return self.wrap_member(ref) def _list_users(self): """List users. GET/HEAD /v3/users """ filters = ('domain_id', 'enabled', 'idp_id', 'name', 'protocol_id', 'unique_id', 'password_expires_at') target = None if self.oslo_context.domain_id: target = {'domain_id': self.oslo_context.domain_id} hints = self.build_driver_hints(filters) ENFORCER.enforce_call( action='identity:list_users', filters=filters, target_attr=target ) domain = self._get_domain_id_for_list_request() if domain is None and self.oslo_context.domain_id: domain = self.oslo_context.domain_id refs = PROVIDERS.identity_api.list_users( domain_scope=domain, hints=hints) # If the user making the request used a domain-scoped token, let's make # sure we filter out users that are not in that domain. Otherwise, we'd # be exposing users in other domains. This if statement is needed in # case _get_domain_id_for_list_request() short-circuits due to # configuration and protects against information from other domains # leaking to people who shouldn't see it. if self.oslo_context.domain_id: domain_id = self.oslo_context.domain_id users = [user for user in refs if user['domain_id'] == domain_id] else: users = refs return self.wrap_collection(users, hints=hints) def post(self): """Create a user. POST /v3/users """ user_data = self.request_body_json.get('user', {}) target = {'user': user_data} ENFORCER.enforce_call( action='identity:create_user', target_attr=target ) validation.lazy_validate(schema.user_create, user_data) user_data = self._normalize_dict(user_data) user_data = self._normalize_domain_id(user_data) ref = PROVIDERS.identity_api.create_user( user_data, initiator=self.audit_initiator) return self.wrap_member(ref), http.client.CREATED def patch(self, user_id): """Update a user. PATCH /v3/users/{user_id} """ ENFORCER.enforce_call( action='identity:update_user', build_target=_build_user_target_enforcement ) PROVIDERS.identity_api.get_user(user_id) user_data = self.request_body_json.get('user', {}) validation.lazy_validate(schema.user_update, user_data) self._require_matching_id(user_data) ref = PROVIDERS.identity_api.update_user( user_id, user_data, initiator=self.audit_initiator) return self.wrap_member(ref) def delete(self, user_id): """Delete a user. DELETE /v3/users/{user_id} """ ENFORCER.enforce_call( action='identity:delete_user', build_target=_build_user_target_enforcement ) PROVIDERS.identity_api.delete_user(user_id) return None, http.client.NO_CONTENT class UserChangePasswordResource(ks_flask.ResourceBase): @ks_flask.unenforced_api def get(self, user_id): # Special case, GET is not allowed. raise exceptions.MethodNotAllowed(valid_methods=['POST']) @ks_flask.unenforced_api def post(self, user_id): user_data = self.request_body_json.get('user', {}) validation.lazy_validate(schema.password_change, user_data) try: PROVIDERS.identity_api.change_password( user_id=user_id, original_password=user_data['original_password'], new_password=user_data['password'], initiator=self.audit_initiator) except AssertionError as e: raise ks_exception.Unauthorized( _('Error when changing user password: %s') % e ) return None, http.client.NO_CONTENT class UserProjectsResource(ks_flask.ResourceBase): collection_key = 'projects' member_key = 'project' get_member_from_driver = PROVIDERS.deferred_provider_lookup( api='resource_api', method='get_project') def get(self, user_id): filters = ('domain_id', 'enabled', 'name') ENFORCER.enforce_call(action='identity:list_user_projects', filters=filters, build_target=_build_user_target_enforcement) hints = self.build_driver_hints(filters) refs = PROVIDERS.assignment_api.list_projects_for_user(user_id) return self.wrap_collection(refs, hints=hints) class UserGroupsResource(ks_flask.ResourceBase): collection_key = 'groups' member_key = 'group' get_member_from_driver = PROVIDERS.deferred_provider_lookup( api='identity_api', method='get_group') def get(self, user_id): """Get groups for a user. GET/HEAD /v3/users/{user_id}/groups """ filters = ('name',) hints = self.build_driver_hints(filters) ENFORCER.enforce_call(action='identity:list_groups_for_user', build_target=_build_user_target_enforcement, filters=filters) refs = PROVIDERS.identity_api.list_groups_for_user(user_id=user_id, hints=hints) if (self.oslo_context.domain_id): filtered_refs = [] for ref in refs: if ref['domain_id'] == self.oslo_context.domain_id: filtered_refs.append(ref) refs = filtered_refs return self.wrap_collection(refs, hints=hints) class _UserOSEC2CredBaseResource(ks_flask.ResourceBase): collection_key = 'credentials' member_key = 'credential' @classmethod def _add_self_referential_link(cls, ref, collection_name=None): # NOTE(morgan): This should be refactored to have an EC2 Cred API with # a sane prefix instead of overloading the "_add_self_referential_link" # method. This was chosen as it more closely mirrors the pre-flask # code (for transition). path = '/users/%(user_id)s/credentials/OS-EC2/%(credential_id)s' url = ks_flask.base_url(path) % { 'user_id': ref['user_id'], 'credential_id': ref['access']} ref.setdefault('links', {}) ref['links']['self'] = url class UserOSEC2CredentialsResourceListCreate(_UserOSEC2CredBaseResource): def get(self, user_id): """List EC2 Credentials for user. GET/HEAD /v3/users/{user_id}/credentials/OS-EC2 """ ENFORCER.enforce_call(action='identity:ec2_list_credentials') PROVIDERS.identity_api.get_user(user_id) credential_refs = PROVIDERS.credential_api.list_credentials_for_user( user_id, type=CRED_TYPE_EC2) collection_refs = [ _convert_v3_to_ec2_credential(cred) for cred in credential_refs ] return self.wrap_collection(collection_refs) def post(self, user_id): """Create EC2 Credential for user. POST /v3/users/{user_id}/credentials/OS-EC2 """ target = {} target['credential'] = {'user_id': user_id} ENFORCER.enforce_call(action='identity:ec2_create_credential', target_attr=target) PROVIDERS.identity_api.get_user(user_id) tenant_id = self.request_body_json.get('tenant_id') PROVIDERS.resource_api.get_project(tenant_id) blob = dict( access=uuid.uuid4().hex, secret=uuid.uuid4().hex, trust_id=self.oslo_context.trust_id ) credential_id = utils.hash_access_key(blob['access']) cred_data = dict( user_id=user_id, project_id=tenant_id, blob=jsonutils.dumps(blob), id=credential_id, type=CRED_TYPE_EC2 ) PROVIDERS.credential_api.create_credential(credential_id, cred_data) ref = _convert_v3_to_ec2_credential(cred_data) return self.wrap_member(ref), http.client.CREATED class UserOSEC2CredentialsResourceGetDelete(_UserOSEC2CredBaseResource): @staticmethod def _get_cred_data(credential_id): cred = PROVIDERS.credential_api.get_credential(credential_id) if not cred or cred['type'] != CRED_TYPE_EC2: raise ks_exception.Unauthorized( message=_('EC2 access key not found.')) return _convert_v3_to_ec2_credential(cred) def get(self, user_id, credential_id): """Get a specific EC2 credential. GET/HEAD /users/{user_id}/credentials/OS-EC2/{credential_id} """ func = _build_enforcer_target_data_owner_and_user_id_match ENFORCER.enforce_call( action='identity:ec2_get_credential', build_target=func) PROVIDERS.identity_api.get_user(user_id) ec2_cred_id = utils.hash_access_key(credential_id) cred_data = self._get_cred_data(ec2_cred_id) return self.wrap_member(cred_data) def delete(self, user_id, credential_id): """Delete a specific EC2 credential. DELETE /users/{user_id}/credentials/OS-EC2/{credential_id} """ func = _build_enforcer_target_data_owner_and_user_id_match ENFORCER.enforce_call(action='identity:ec2_delete_credential', build_target=func) PROVIDERS.identity_api.get_user(user_id) ec2_cred_id = utils.hash_access_key(credential_id) self._get_cred_data(ec2_cred_id) PROVIDERS.credential_api.delete_credential(ec2_cred_id) return None, http.client.NO_CONTENT class _OAuth1ResourceBase(ks_flask.ResourceBase): collection_key = 'access_tokens' member_key = 'access_token' @classmethod def _add_self_referential_link(cls, ref, collection_name=None): # NOTE(morgan): This should be refactored to have an OAuth1 API with # a sane prefix instead of overloading the "_add_self_referential_link" # method. This was chosen as it more closely mirrors the pre-flask # code (for transition). ref.setdefault('links', {}) path = '/users/%(user_id)s/OS-OAUTH1/access_tokens' % { 'user_id': ref.get('authorizing_user_id', '') } ref['links']['self'] = ks_flask.base_url(path) + '/' + ref['id'] class OAuth1ListAccessTokensResource(_OAuth1ResourceBase): def get(self, user_id): """List OAuth1 Access Tokens for user. GET /v3/users/{user_id}/OS-OAUTH1/access_tokens """ ENFORCER.enforce_call(action='identity:list_access_tokens') if self.oslo_context.is_delegated_auth: raise ks_exception.Forbidden( _('Cannot list request tokens with a token ' 'issued via delegation.')) refs = PROVIDERS.oauth_api.list_access_tokens(user_id) formatted_refs = ([_format_token_entity(x) for x in refs]) return self.wrap_collection(formatted_refs) class OAuth1AccessTokenCRUDResource(_OAuth1ResourceBase): def get(self, user_id, access_token_id): """Get specific access token. GET/HEAD /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id} """ ENFORCER.enforce_call(action='identity:get_access_token') access_token = PROVIDERS.oauth_api.get_access_token(access_token_id) if access_token['authorizing_user_id'] != user_id: raise ks_exception.NotFound() access_token = _format_token_entity(access_token) return self.wrap_member(access_token) def delete(self, user_id, access_token_id): """Delete specific access token. DELETE /v3/users/{user_id}/OS-OAUTH1/access_tokens/{access_token_id} """ ENFORCER.enforce_call( action='identity:ec2_delete_credential', build_target=_build_enforcer_target_data_owner_and_user_id_match) access_token = PROVIDERS.oauth_api.get_access_token(access_token_id) reason = ( 'Invalidating the token cache because an access token for ' 'consumer %(consumer_id)s has been deleted. Authorization for ' 'users with OAuth tokens will be recalculated and enforced ' 'accordingly the next time they authenticate or validate a ' 'token.' % {'consumer_id': access_token['consumer_id']} ) notifications.invalidate_token_cache_notification(reason) PROVIDERS.oauth_api.delete_access_token( user_id, access_token_id, initiator=self.audit_initiator) return None, http.client.NO_CONTENT class OAuth1AccessTokenRoleListResource(ks_flask.ResourceBase): collection_key = 'roles' member_key = 'role' def get(self, user_id, access_token_id): """List roles for a user access token. GET/HEAD /v3/users/{user_id}/OS-OAUTH1/access_tokens/ {access_token_id}/roles """ ENFORCER.enforce_call(action='identity:list_access_token_roles') access_token = PROVIDERS.oauth_api.get_access_token(access_token_id) if access_token['authorizing_user_id'] != user_id: raise ks_exception.NotFound() authed_role_ids = access_token['role_ids'] authed_role_ids = jsonutils.loads(authed_role_ids) refs = ([_format_role_entity(x) for x in authed_role_ids]) return self.wrap_collection(refs) class OAuth1AccessTokenRoleResource(ks_flask.ResourceBase): collection_key = 'roles' member_key = 'role' def get(self, user_id, access_token_id, role_id): """Get role for access token. GET/HEAD /v3/users/{user_id}/OS-OAUTH1/access_tokens/ {access_token_id}/roles/{role_id} """ ENFORCER.enforce_call(action='identity:get_access_token_role') access_token = PROVIDERS.oauth_api.get_access_token(access_token_id) if access_token['authorizing_user_id'] != user_id: raise ks_exception.Unauthorized(_('User IDs do not match')) authed_role_ids = access_token['role_ids'] authed_role_ids = jsonutils.loads(authed_role_ids) for authed_role_id in authed_role_ids: if authed_role_id == role_id: role = _format_role_entity(role_id) return self.wrap_member(role) raise ks_exception.RoleNotFound(role_id=role_id) class UserAppCredListCreateResource(ks_flask.ResourceBase): collection_key = 'application_credentials' member_key = 'application_credential' _public_parameters = frozenset([ 'id', 'name', 'description', 'expires_at', 'project_id', 'roles', # secret is only exposed after create, it is not stored 'secret', 'links', 'unrestricted', 'access_rules' ]) @staticmethod def _generate_secret(): length = 64 secret = secrets.token_bytes(length) secret = base64.urlsafe_b64encode(secret) secret = secret.rstrip(b'=') secret = secret.decode('utf-8') return secret @staticmethod def _normalize_role_list(app_cred_roles): roles = [] for role in app_cred_roles: if role.get('id'): roles.append(role) else: roles.append(PROVIDERS.role_api.get_unique_role_by_name( role['name'])) return roles def _get_roles(self, app_cred_data, token): if app_cred_data.get('roles'): roles = self._normalize_role_list(app_cred_data['roles']) # NOTE(cmurphy): The user is not allowed to add a role that is not # in their token. This is to prevent trustees or application # credential users from escallating their privileges to include # additional roles that the trustor or application credential # creator has assigned on the project. token_roles = [r['id'] for r in token.roles] for role in roles: if role['id'] not in token_roles: detail = _('Cannot create an application credential with ' 'unassigned role') raise ks_exception.ApplicationCredentialValidationError( detail=detail) else: roles = token.roles return roles def get(self, user_id): """List application credentials for user. GET/HEAD /v3/users/{user_id}/application_credentials """ filters = ('name',) ENFORCER.enforce_call(action='identity:list_application_credentials', filters=filters) app_cred_api = PROVIDERS.application_credential_api hints = self.build_driver_hints(filters) refs = app_cred_api.list_application_credentials(user_id, hints=hints) return self.wrap_collection(refs, hints=hints) def post(self, user_id): """Create application credential. POST /v3/users/{user_id}/application_credentials """ ENFORCER.enforce_call(action='identity:create_application_credential') app_cred_data = self.request_body_json.get( 'application_credential', {}) validation.lazy_validate(app_cred_schema.application_credential_create, app_cred_data) token = self.auth_context['token'] _check_unrestricted_application_credential(token) if self.oslo_context.user_id != user_id: action = _('Cannot create an application credential for another ' 'user.') raise ks_exception.ForbiddenAction(action=action) project_id = self.oslo_context.project_id app_cred_data = self._assign_unique_id(app_cred_data) if not app_cred_data.get('secret'): app_cred_data['secret'] = self._generate_secret() app_cred_data['user_id'] = user_id app_cred_data['project_id'] = project_id app_cred_data['roles'] = self._get_roles(app_cred_data, token) if app_cred_data.get('expires_at'): app_cred_data['expires_at'] = utils.parse_expiration_date( app_cred_data['expires_at']) if app_cred_data.get('access_rules'): for access_rule in app_cred_data['access_rules']: # If user provides an access rule by ID, it will be looked up # by ID. If user provides an access rule that is identical to # an existing one, the ID generated here will be ignored and # the pre-existing access rule will be used. if 'id' not in access_rule: # Generate directly, rather than using _assign_unique_id, # so that there is no deep copy made access_rule['id'] = uuid.uuid4().hex app_cred_data = self._normalize_dict(app_cred_data) app_cred_api = PROVIDERS.application_credential_api try: ref = app_cred_api.create_application_credential( app_cred_data, initiator=self.audit_initiator) except ks_exception.RoleAssignmentNotFound as e: # Raise a Bad Request, not a Not Found, in accordance with the # API-SIG recommendations: # https://specs.openstack.org/openstack/api-wg/guidelines/http.html#failure-code-clarifications raise ks_exception.ApplicationCredentialValidationError( detail=str(e)) return self.wrap_member(ref), http.client.CREATED class UserAppCredGetDeleteResource(ks_flask.ResourceBase): collection_key = 'application_credentials' member_key = 'application_credential' def get(self, user_id, application_credential_id): """Get application credential resource. GET/HEAD /v3/users/{user_id}/application_credentials/ {application_credential_id} """ target = _update_request_user_id_attribute() ENFORCER.enforce_call( action='identity:get_application_credential', target_attr=target, ) ref = PROVIDERS.application_credential_api.get_application_credential( application_credential_id) return self.wrap_member(ref) def delete(self, user_id, application_credential_id): """Delete application credential resource. DELETE /v3/users/{user_id}/application_credentials/ {application_credential_id} """ target = _update_request_user_id_attribute() ENFORCER.enforce_call( action='identity:delete_application_credential', target_attr=target ) token = self.auth_context['token'] _check_unrestricted_application_credential(token) PROVIDERS.application_credential_api.delete_application_credential( application_credential_id, initiator=self.audit_initiator) return None, http.client.NO_CONTENT class UserAccessRuleListResource(ks_flask.ResourceBase): collection_key = 'access_rules' member_key = 'access_rule' def get(self, user_id): """List access rules for user. GET/HEAD /v3/users/{user_id}/access_rules """ filters = ('service', 'path', 'method',) ENFORCER.enforce_call(action='identity:list_access_rules', filters=filters, build_target=_build_user_target_enforcement) app_cred_api = PROVIDERS.application_credential_api hints = self.build_driver_hints(filters) refs = app_cred_api.list_access_rules_for_user(user_id, hints=hints) hints = self.build_driver_hints(filters) return self.wrap_collection(refs, hints=hints) class UserAccessRuleGetDeleteResource(ks_flask.ResourceBase): collection_key = 'access_rules' member_key = 'access_rule' def get(self, user_id, access_rule_id): """Get access rule resource. GET/HEAD /v3/users/{user_id}/access_rules/{access_rule_id} """ ENFORCER.enforce_call( action='identity:get_access_rule', build_target=_build_user_target_enforcement ) ref = PROVIDERS.application_credential_api.get_access_rule( access_rule_id) return self.wrap_member(ref) def delete(self, user_id, access_rule_id): """Delete access rule resource. DELETE /v3/users/{user_id}/access_rules/{access_rule_id} """ ENFORCER.enforce_call( action='identity:delete_access_rule', build_target=_build_user_target_enforcement ) PROVIDERS.application_credential_api.delete_access_rule( access_rule_id, initiator=self.audit_initiator) return None, http.client.NO_CONTENT class UserAPI(ks_flask.APIBase): _name = 'users' _import_name = __name__ resources = [UserResource] resource_mapping = [ ks_flask.construct_resource_map( resource=UserChangePasswordResource, url='/users/<string:user_id>/password', resource_kwargs={}, rel='user_change_password', path_vars={'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=UserGroupsResource, url='/users/<string:user_id>/groups', resource_kwargs={}, rel='user_groups', path_vars={'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=UserProjectsResource, url='/users/<string:user_id>/projects', resource_kwargs={}, rel='user_projects', path_vars={'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=UserOSEC2CredentialsResourceListCreate, url='/users/<string:user_id>/credentials/OS-EC2', resource_kwargs={}, rel='user_credentials', resource_relation_func=( json_home_relations.os_ec2_resource_rel_func), path_vars={'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=UserOSEC2CredentialsResourceGetDelete, url=('/users/<string:user_id>/credentials/OS-EC2/' '<string:credential_id>'), resource_kwargs={}, rel='user_credential', resource_relation_func=( json_home_relations.os_ec2_resource_rel_func), path_vars={ 'credential_id': json_home.build_v3_parameter_relation( 'credential_id'), 'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=OAuth1ListAccessTokensResource, url='/users/<string:user_id>/OS-OAUTH1/access_tokens', resource_kwargs={}, rel='user_access_tokens', resource_relation_func=( json_home_relations.os_oauth1_resource_rel_func), path_vars={'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=OAuth1AccessTokenCRUDResource, url=('/users/<string:user_id>/OS-OAUTH1/' 'access_tokens/<string:access_token_id>'), resource_kwargs={}, rel='user_access_token', resource_relation_func=( json_home_relations.os_oauth1_resource_rel_func), path_vars={ 'access_token_id': ACCESS_TOKEN_ID_PARAMETER_RELATION, 'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=OAuth1AccessTokenRoleListResource, url=('/users/<string:user_id>/OS-OAUTH1/access_tokens/' '<string:access_token_id>/roles'), resource_kwargs={}, rel='user_access_token_roles', resource_relation_func=( json_home_relations.os_oauth1_resource_rel_func), path_vars={'access_token_id': ACCESS_TOKEN_ID_PARAMETER_RELATION, 'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=OAuth1AccessTokenRoleResource, url=('/users/<string:user_id>/OS-OAUTH1/access_tokens/' '<string:access_token_id>/roles/<string:role_id>'), resource_kwargs={}, rel='user_access_token_role', resource_relation_func=( json_home_relations.os_oauth1_resource_rel_func), path_vars={'access_token_id': ACCESS_TOKEN_ID_PARAMETER_RELATION, 'role_id': json_home.Parameters.ROLE_ID, 'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=UserAppCredListCreateResource, url='/users/<string:user_id>/application_credentials', resource_kwargs={}, rel='application_credentials', path_vars={'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=UserAppCredGetDeleteResource, url=('/users/<string:user_id>/application_credentials/' '<string:application_credential_id>'), resource_kwargs={}, rel='application_credential', path_vars={ 'user_id': json_home.Parameters.USER_ID, 'application_credential_id': json_home.Parameters.APPLICATION_CRED_ID} ), ks_flask.construct_resource_map( resource=UserAccessRuleListResource, url='/users/<string:user_id>/access_rules', resource_kwargs={}, rel='access_rules', path_vars={'user_id': json_home.Parameters.USER_ID} ), ks_flask.construct_resource_map( resource=UserAccessRuleGetDeleteResource, url=('/users/<string:user_id>/access_rules/' '<string:access_rule_id>'), resource_kwargs={}, rel='access_rule', path_vars={ 'user_id': json_home.Parameters.USER_ID, 'access_rule_id': json_home.Parameters.ACCESS_RULE_ID} ) ] APIs = (UserAPI,)
the-stack_0_23810
#!/usr/bin/env python import numpy as np from astropy.io import fits from specutils.io import read_fits import EchelleJSON as ej c_ang = 2.99792458e18 #A s^-1 c_kms = 2.99792458e5 #km s^-1 #n @ 3000: 1.0002915686329712 #n @ 6000: 1.0002769832562917 #n @ 8000: 1.0002750477973053 n_air = 1.000277 c_ang_air = c_ang/n_air c_kms_air = c_kms/n_air def convert_spectrum(fraw, fout, BCV=False): ''' param fraw: the raw counts param fout: the .json file to save to ''' raw_list = read_fits.read_fits_spectrum1d(fraw) head = fits.getheader(fraw) try: BCV = head["BCV"] except KeyError: print("No BCV correction for", fraw) BCV = 0.0 BCV_cor = np.sqrt((c_kms_air + BCV) / (c_kms_air - BCV)) echelle_dict = {} npix = len(raw_list[0].wavelength) # Do this for each order in the spectrum for i,raw in enumerate(raw_list): # Correct for the barycentric shift wl = raw.wavelength.value # Scale the sigma values by the same blaze function that the raw fluxes were scaled by # raw_flux = raw.flux.value # raw_flux[raw_flux==0] = 1.0 # Where the ratio values are 0, just set it to 1, since the noise will be 0 here too. # ratio = blaze.flux.value/raw_flux # sigma = ratio * np.sqrt(raw.flux.value) if BCV: wl = wl * BCV_cor order_dict = { "wl":wl, "fl":raw.flux.value, "mask": np.ones((npix,), dtype="bool")} echelle_dict["order_{}".format(i)] = order_dict UT = head["DATE-OBS"] echelle_dict["UT"] = UT echelle_dict["AIR"] = head["AIR"] echelle_dict["EXPTIME"] = head["EXPTIME"] try: echelle_dict["HJD"] = head["HJDN"] except KeyError: print("Spectrum does not have HJDN keyword", UT) print("Setting to 0.0") echelle_dict["HJD"] = 0.0 try: echelle_dict["BCV"] = BCV except KeyError: print("Spectrum does not have BCV keyword", UT) print("Setting to 0.0") echelle_dict["BCV"] = 0.0 ej.write(fout, echelle_dict) if __name__=="__main__": import argparse parser = argparse.ArgumentParser(description="Process TRES echelle spectra into an EchelleJSON file.") parser.add_argument("rawfile", help="The un-blaze-corrected, un-flux-calibrated FITS file.") parser.add_argument("outfile", help="Output Filename to contain the processed file. Should have no extension, *.hdf5 or *.npy added automatically.") parser.add_argument("-t", "--trim", type=int, default=6, help="How many pixels to trim from the front of the file. Default is 6") parser.add_argument("--BCV", action="store_true", help="If provided, do the barycentric correction.") parser.add_argument("--clobber", action="store_true", help="Overwrite existing outfile?") args = parser.parse_args() convert_spectrum(args.rawfile, args.outfile, args.BCV)
the-stack_0_23813
""" Write a function that takes in a list of ints and uses the Bubble Sort algorithm to sort the list 'in place' in ascending order. The method should return the same, in-place sorted list. Note: Bubble sort is one of the most inefficient ways to sort a large list of integers. Nevertheless, it is an interview favorite. Bubble sort has a time complexity of O(n2). However, if the sample size is small, bubble sort provides a simple implementation of a classic sorting algorithm. """ def bubble_sort(a_list): if a_list is None or len(a_list) < 2: return a_list for i in range(len(a_list) - 1, 0, -1): swap = False for j in range(0, i): if a_list[j] > a_list[j+1]: a_list[j], a_list[j+1] = a_list[j+1], a_list[j] swap = True if not swap: break return a_list
the-stack_0_23814
import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg from transformer import TransformerBlock, TransformerLayer def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() self.transformer_modules = nn.ModuleList() channel_in = input_channels ''' # 将数组的每个元素加上新的一维, 然后传入网络中 # 最后一个元素修改后如下: # mlps : [[6, 16, 16, 32], [6, 32, 32, 64]] # channel_out: 96 # mlps : [[96, 64, 64, 128], [96, 64, 96, 128]] # channel_out: 256 # mlps : [[256, 128, 196, 256], [256, 128, 196, 256]] # channel_out: 512 # mlps : [[512, 256, 256, 512], [512, 256, 384, 512]] # channel_out: 1024 ''' skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): # for k in range(2): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] # 修改 =======pointnet================ # channel_out += mlps[idx][-1] + 3 # 修改 =============================== channel_out += mlps[idx][-1] # print("mlps -->", mlps) self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) # self.transformer_modules.append( # TransformerLayer(cfg.RPN.SA_CONFIG.NPOINTS[k], channel_out) # ) # print("transformer_modules", self.transformer_modules) skip_channel_list.append(channel_out) channel_in = channel_out ''' # 四次循环mlp的值 # [262, 128, 128] # [608, 256, 256] # [768, 512, 512] # [1536, 512, 512] # RPN.FP_MLPS = [[128, 128], [256, 256], [512, 512], [512, 512]] ''' test = [[256], [364]] self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): # for k in range(2): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + \ 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) # self.FP_modules.append( # PointnetFPModule( # mlp=test[k] + cfg.RPN.FP_MLPS[k]) # ) # print("mlp -->", [pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) # print("li_features shape -->", li_features.shape) # print("li_xyz shape -->", li_xyz.shape) # li_features = self.transformer_modules[i](li_xyz, li_features) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): # print("[i - 1] -->", [i - 1]) # print("l_xyz[i - 1] -->", l_xyz[i-1].shape) # print("l_xyz[i] -->", l_xyz[i].shape) # print("l_features[i] -->", l_features[i].shape) l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) # print("l_features[i - 1] -->", l_features[i-1].shape) return l_xyz[0], l_features[0]
the-stack_0_23815
"""Unit tests for the io module.""" # Tests of io are scattered over the test suite: # * test_bufio - tests file buffering # * test_memoryio - tests BytesIO and StringIO # * test_fileio - tests FileIO # * test_file - tests the file interface # * test_io - tests everything else in the io module # * test_univnewlines - tests universal newline support # * test_largefile - tests operations on a file greater than 2**32 bytes # (only enabled with -ulargefile) ################################################################################ # ATTENTION TEST WRITERS!!! ################################################################################ # When writing tests for io, it's important to test both the C and Python # implementations. This is usually done by writing a base test that refers to # the type it is testing as a attribute. Then it provides custom subclasses to # test both implementations. This file has lots of examples. ################################################################################ from __future__ import print_function from __future__ import unicode_literals import os import sys import time import array import random import unittest import weakref import warnings import abc import signal import errno from itertools import cycle, count from collections import deque from UserList import UserList from test import test_support as support import contextlib import codecs import io # C implementation of io import _pyio as pyio # Python implementation of io try: import threading except ImportError: threading = None try: import fcntl except ImportError: fcntl = None __metaclass__ = type bytes = support.py3k_bytes def _default_chunk_size(): """Get the default TextIOWrapper chunk size""" with io.open(__file__, "r", encoding="latin1") as f: return f._CHUNK_SIZE class MockRawIOWithoutRead: """A RawIO implementation without read(), so as to exercise the default RawIO.read() which calls readinto().""" def __init__(self, read_stack=()): self._read_stack = list(read_stack) self._write_stack = [] self._reads = 0 self._extraneous_reads = 0 def write(self, b): self._write_stack.append(bytes(b)) return len(b) def writable(self): return True def fileno(self): return 42 def readable(self): return True def seekable(self): return True def seek(self, pos, whence): return 0 # wrong but we gotta return something def tell(self): return 0 # same comment as above def readinto(self, buf): self._reads += 1 max_len = len(buf) try: data = self._read_stack[0] except IndexError: self._extraneous_reads += 1 return 0 if data is None: del self._read_stack[0] return None n = len(data) if len(data) <= max_len: del self._read_stack[0] buf[:n] = data return n else: buf[:] = data[:max_len] self._read_stack[0] = data[max_len:] return max_len def truncate(self, pos=None): return pos class CMockRawIOWithoutRead(MockRawIOWithoutRead, io.RawIOBase): pass class PyMockRawIOWithoutRead(MockRawIOWithoutRead, pyio.RawIOBase): pass class MockRawIO(MockRawIOWithoutRead): def read(self, n=None): self._reads += 1 try: return self._read_stack.pop(0) except: self._extraneous_reads += 1 return b"" class CMockRawIO(MockRawIO, io.RawIOBase): pass class PyMockRawIO(MockRawIO, pyio.RawIOBase): pass class MisbehavedRawIO(MockRawIO): def write(self, b): return MockRawIO.write(self, b) * 2 def read(self, n=None): return MockRawIO.read(self, n) * 2 def seek(self, pos, whence): return -123 def tell(self): return -456 def readinto(self, buf): MockRawIO.readinto(self, buf) return len(buf) * 5 class CMisbehavedRawIO(MisbehavedRawIO, io.RawIOBase): pass class PyMisbehavedRawIO(MisbehavedRawIO, pyio.RawIOBase): pass class CloseFailureIO(MockRawIO): closed = 0 def close(self): if not self.closed: self.closed = 1 raise IOError class CCloseFailureIO(CloseFailureIO, io.RawIOBase): pass class PyCloseFailureIO(CloseFailureIO, pyio.RawIOBase): pass class MockFileIO: def __init__(self, data): self.read_history = [] super(MockFileIO, self).__init__(data) def read(self, n=None): res = super(MockFileIO, self).read(n) self.read_history.append(None if res is None else len(res)) return res def readinto(self, b): res = super(MockFileIO, self).readinto(b) self.read_history.append(res) return res class CMockFileIO(MockFileIO, io.BytesIO): pass class PyMockFileIO(MockFileIO, pyio.BytesIO): pass class MockNonBlockWriterIO: def __init__(self): self._write_stack = [] self._blocker_char = None def pop_written(self): s = b"".join(self._write_stack) self._write_stack[:] = [] return s def block_on(self, char): """Block when a given char is encountered.""" self._blocker_char = char def readable(self): return True def seekable(self): return True def writable(self): return True def write(self, b): b = bytes(b) n = -1 if self._blocker_char: try: n = b.index(self._blocker_char) except ValueError: pass else: if n > 0: # write data up to the first blocker self._write_stack.append(b[:n]) return n else: # cancel blocker and indicate would block self._blocker_char = None return None self._write_stack.append(b) return len(b) class CMockNonBlockWriterIO(MockNonBlockWriterIO, io.RawIOBase): BlockingIOError = io.BlockingIOError class PyMockNonBlockWriterIO(MockNonBlockWriterIO, pyio.RawIOBase): BlockingIOError = pyio.BlockingIOError class IOTest(unittest.TestCase): def setUp(self): support.unlink(support.TESTFN) def tearDown(self): support.unlink(support.TESTFN) def write_ops(self, f): self.assertEqual(f.write(b"blah."), 5) f.truncate(0) self.assertEqual(f.tell(), 5) f.seek(0) self.assertEqual(f.write(b"blah."), 5) self.assertEqual(f.seek(0), 0) self.assertEqual(f.write(b"Hello."), 6) self.assertEqual(f.tell(), 6) self.assertEqual(f.seek(-1, 1), 5) self.assertEqual(f.tell(), 5) self.assertEqual(f.write(bytearray(b" world\n\n\n")), 9) self.assertEqual(f.seek(0), 0) self.assertEqual(f.write(b"h"), 1) self.assertEqual(f.seek(-1, 2), 13) self.assertEqual(f.tell(), 13) self.assertEqual(f.truncate(12), 12) self.assertEqual(f.tell(), 13) self.assertRaises(TypeError, f.seek, 0.0) def read_ops(self, f, buffered=False): data = f.read(5) self.assertEqual(data, b"hello") data = bytearray(data) self.assertEqual(f.readinto(data), 5) self.assertEqual(data, b" worl") self.assertEqual(f.readinto(data), 2) self.assertEqual(len(data), 5) self.assertEqual(data[:2], b"d\n") self.assertEqual(f.seek(0), 0) self.assertEqual(f.read(20), b"hello world\n") self.assertEqual(f.read(1), b"") self.assertEqual(f.readinto(bytearray(b"x")), 0) self.assertEqual(f.seek(-6, 2), 6) self.assertEqual(f.read(5), b"world") self.assertEqual(f.read(0), b"") self.assertEqual(f.readinto(bytearray()), 0) self.assertEqual(f.seek(-6, 1), 5) self.assertEqual(f.read(5), b" worl") self.assertEqual(f.tell(), 10) self.assertRaises(TypeError, f.seek, 0.0) if buffered: f.seek(0) self.assertEqual(f.read(), b"hello world\n") f.seek(6) self.assertEqual(f.read(), b"world\n") self.assertEqual(f.read(), b"") LARGE = 2**31 def large_file_ops(self, f): assert f.readable() assert f.writable() self.assertEqual(f.seek(self.LARGE), self.LARGE) self.assertEqual(f.tell(), self.LARGE) self.assertEqual(f.write(b"xxx"), 3) self.assertEqual(f.tell(), self.LARGE + 3) self.assertEqual(f.seek(-1, 1), self.LARGE + 2) self.assertEqual(f.truncate(), self.LARGE + 2) self.assertEqual(f.tell(), self.LARGE + 2) self.assertEqual(f.seek(0, 2), self.LARGE + 2) self.assertEqual(f.truncate(self.LARGE + 1), self.LARGE + 1) self.assertEqual(f.tell(), self.LARGE + 2) self.assertEqual(f.seek(0, 2), self.LARGE + 1) self.assertEqual(f.seek(-1, 2), self.LARGE) self.assertEqual(f.read(2), b"x") def test_invalid_operations(self): # Try writing on a file opened in read mode and vice-versa. for mode in ("w", "wb"): with self.open(support.TESTFN, mode) as fp: self.assertRaises(IOError, fp.read) self.assertRaises(IOError, fp.readline) with self.open(support.TESTFN, "rb") as fp: self.assertRaises(IOError, fp.write, b"blah") self.assertRaises(IOError, fp.writelines, [b"blah\n"]) with self.open(support.TESTFN, "r") as fp: self.assertRaises(IOError, fp.write, "blah") self.assertRaises(IOError, fp.writelines, ["blah\n"]) def test_raw_file_io(self): with self.open(support.TESTFN, "wb", buffering=0) as f: self.assertEqual(f.readable(), False) self.assertEqual(f.writable(), True) self.assertEqual(f.seekable(), True) self.write_ops(f) with self.open(support.TESTFN, "rb", buffering=0) as f: self.assertEqual(f.readable(), True) self.assertEqual(f.writable(), False) self.assertEqual(f.seekable(), True) self.read_ops(f) def test_buffered_file_io(self): with self.open(support.TESTFN, "wb") as f: self.assertEqual(f.readable(), False) self.assertEqual(f.writable(), True) self.assertEqual(f.seekable(), True) self.write_ops(f) with self.open(support.TESTFN, "rb") as f: self.assertEqual(f.readable(), True) self.assertEqual(f.writable(), False) self.assertEqual(f.seekable(), True) self.read_ops(f, True) def test_readline(self): with self.open(support.TESTFN, "wb") as f: f.write(b"abc\ndef\nxyzzy\nfoo\x00bar\nanother line") with self.open(support.TESTFN, "rb") as f: self.assertEqual(f.readline(), b"abc\n") self.assertEqual(f.readline(10), b"def\n") self.assertEqual(f.readline(2), b"xy") self.assertEqual(f.readline(4), b"zzy\n") self.assertEqual(f.readline(), b"foo\x00bar\n") self.assertEqual(f.readline(None), b"another line") self.assertRaises(TypeError, f.readline, 5.3) with self.open(support.TESTFN, "r") as f: self.assertRaises(TypeError, f.readline, 5.3) def test_raw_bytes_io(self): f = self.BytesIO() self.write_ops(f) data = f.getvalue() self.assertEqual(data, b"hello world\n") f = self.BytesIO(data) self.read_ops(f, True) def test_large_file_ops(self): # On Windows and Mac OSX this test comsumes large resources; It takes # a long time to build the >2GB file and takes >2GB of disk space # therefore the resource must be enabled to run this test. if sys.platform[:3] == 'win' or sys.platform == 'darwin': support.requires( 'largefile', 'test requires %s bytes and a long time to run' % self.LARGE) with self.open(support.TESTFN, "w+b", 0) as f: self.large_file_ops(f) with self.open(support.TESTFN, "w+b") as f: self.large_file_ops(f) def test_with_open(self): for bufsize in (0, 1, 100): f = None with self.open(support.TESTFN, "wb", bufsize) as f: f.write(b"xxx") self.assertEqual(f.closed, True) f = None try: with self.open(support.TESTFN, "wb", bufsize) as f: 1 // 0 except ZeroDivisionError: self.assertEqual(f.closed, True) else: self.fail("1 // 0 didn't raise an exception") # issue 5008 def test_append_mode_tell(self): with self.open(support.TESTFN, "wb") as f: f.write(b"xxx") with self.open(support.TESTFN, "ab", buffering=0) as f: self.assertEqual(f.tell(), 3) with self.open(support.TESTFN, "ab") as f: self.assertEqual(f.tell(), 3) with self.open(support.TESTFN, "a") as f: self.assertTrue(f.tell() > 0) def test_destructor(self): record = [] class MyFileIO(self.FileIO): def __del__(self): record.append(1) try: f = super(MyFileIO, self).__del__ except AttributeError: pass else: f() def close(self): record.append(2) super(MyFileIO, self).close() def flush(self): record.append(3) super(MyFileIO, self).flush() f = MyFileIO(support.TESTFN, "wb") f.write(b"xxx") del f support.gc_collect() self.assertEqual(record, [1, 2, 3]) with self.open(support.TESTFN, "rb") as f: self.assertEqual(f.read(), b"xxx") def _check_base_destructor(self, base): record = [] class MyIO(base): def __init__(self): # This exercises the availability of attributes on object # destruction. # (in the C version, close() is called by the tp_dealloc # function, not by __del__) self.on_del = 1 self.on_close = 2 self.on_flush = 3 def __del__(self): record.append(self.on_del) try: f = super(MyIO, self).__del__ except AttributeError: pass else: f() def close(self): record.append(self.on_close) super(MyIO, self).close() def flush(self): record.append(self.on_flush) super(MyIO, self).flush() f = MyIO() del f support.gc_collect() self.assertEqual(record, [1, 2, 3]) def test_IOBase_destructor(self): self._check_base_destructor(self.IOBase) def test_RawIOBase_destructor(self): self._check_base_destructor(self.RawIOBase) def test_BufferedIOBase_destructor(self): self._check_base_destructor(self.BufferedIOBase) def test_TextIOBase_destructor(self): self._check_base_destructor(self.TextIOBase) def test_close_flushes(self): with self.open(support.TESTFN, "wb") as f: f.write(b"xxx") with self.open(support.TESTFN, "rb") as f: self.assertEqual(f.read(), b"xxx") def test_array_writes(self): a = array.array(b'i', range(10)) n = len(a.tostring()) with self.open(support.TESTFN, "wb", 0) as f: self.assertEqual(f.write(a), n) with self.open(support.TESTFN, "wb") as f: self.assertEqual(f.write(a), n) def test_closefd(self): self.assertRaises(ValueError, self.open, support.TESTFN, 'w', closefd=False) def test_read_closed(self): with self.open(support.TESTFN, "w") as f: f.write("egg\n") with self.open(support.TESTFN, "r") as f: file = self.open(f.fileno(), "r", closefd=False) self.assertEqual(file.read(), "egg\n") file.seek(0) file.close() self.assertRaises(ValueError, file.read) def test_no_closefd_with_filename(self): # can't use closefd in combination with a file name self.assertRaises(ValueError, self.open, support.TESTFN, "r", closefd=False) def test_closefd_attr(self): with self.open(support.TESTFN, "wb") as f: f.write(b"egg\n") with self.open(support.TESTFN, "r") as f: self.assertEqual(f.buffer.raw.closefd, True) file = self.open(f.fileno(), "r", closefd=False) self.assertEqual(file.buffer.raw.closefd, False) def test_garbage_collection(self): # FileIO objects are collected, and collecting them flushes # all data to disk. f = self.FileIO(support.TESTFN, "wb") f.write(b"abcxxx") f.f = f wr = weakref.ref(f) del f support.gc_collect() self.assertTrue(wr() is None, wr) with self.open(support.TESTFN, "rb") as f: self.assertEqual(f.read(), b"abcxxx") def test_unbounded_file(self): # Issue #1174606: reading from an unbounded stream such as /dev/zero. zero = "/dev/zero" if not os.path.exists(zero): self.skipTest("{0} does not exist".format(zero)) if sys.maxsize > 0x7FFFFFFF: self.skipTest("test can only run in a 32-bit address space") if support.real_max_memuse < support._2G: self.skipTest("test requires at least 2GB of memory") with self.open(zero, "rb", buffering=0) as f: self.assertRaises(OverflowError, f.read) with self.open(zero, "rb") as f: self.assertRaises(OverflowError, f.read) with self.open(zero, "r") as f: self.assertRaises(OverflowError, f.read) def test_flush_error_on_close(self): f = self.open(support.TESTFN, "wb", buffering=0) def bad_flush(): raise IOError() f.flush = bad_flush self.assertRaises(IOError, f.close) # exception not swallowed self.assertTrue(f.closed) def test_multi_close(self): f = self.open(support.TESTFN, "wb", buffering=0) f.close() f.close() f.close() self.assertRaises(ValueError, f.flush) def test_RawIOBase_read(self): # Exercise the default RawIOBase.read() implementation (which calls # readinto() internally). rawio = self.MockRawIOWithoutRead((b"abc", b"d", None, b"efg", None)) self.assertEqual(rawio.read(2), b"ab") self.assertEqual(rawio.read(2), b"c") self.assertEqual(rawio.read(2), b"d") self.assertEqual(rawio.read(2), None) self.assertEqual(rawio.read(2), b"ef") self.assertEqual(rawio.read(2), b"g") self.assertEqual(rawio.read(2), None) self.assertEqual(rawio.read(2), b"") def test_fileio_closefd(self): # Issue #4841 with self.open(__file__, 'rb') as f1, \ self.open(__file__, 'rb') as f2: fileio = self.FileIO(f1.fileno(), closefd=False) # .__init__() must not close f1 fileio.__init__(f2.fileno(), closefd=False) f1.readline() # .close() must not close f2 fileio.close() f2.readline() def test_nonbuffered_textio(self): with warnings.catch_warnings(record=True) as recorded: with self.assertRaises(ValueError): self.open(support.TESTFN, 'w', buffering=0) support.gc_collect() self.assertEqual(recorded, []) def test_invalid_newline(self): with warnings.catch_warnings(record=True) as recorded: with self.assertRaises(ValueError): self.open(support.TESTFN, 'w', newline='invalid') support.gc_collect() self.assertEqual(recorded, []) class CIOTest(IOTest): def test_IOBase_finalize(self): # Issue #12149: segmentation fault on _PyIOBase_finalize when both a # class which inherits IOBase and an object of this class are caught # in a reference cycle and close() is already in the method cache. class MyIO(self.IOBase): def close(self): pass # create an instance to populate the method cache MyIO() obj = MyIO() obj.obj = obj wr = weakref.ref(obj) del MyIO del obj support.gc_collect() self.assertTrue(wr() is None, wr) class PyIOTest(IOTest): test_array_writes = unittest.skip( "len(array.array) returns number of elements rather than bytelength" )(IOTest.test_array_writes) class CommonBufferedTests: # Tests common to BufferedReader, BufferedWriter and BufferedRandom def test_detach(self): raw = self.MockRawIO() buf = self.tp(raw) self.assertIs(buf.detach(), raw) self.assertRaises(ValueError, buf.detach) def test_fileno(self): rawio = self.MockRawIO() bufio = self.tp(rawio) self.assertEqual(42, bufio.fileno()) @unittest.skip('test having existential crisis') def test_no_fileno(self): # XXX will we always have fileno() function? If so, kill # this test. Else, write it. pass def test_invalid_args(self): rawio = self.MockRawIO() bufio = self.tp(rawio) # Invalid whence self.assertRaises(ValueError, bufio.seek, 0, -1) self.assertRaises(ValueError, bufio.seek, 0, 3) def test_override_destructor(self): tp = self.tp record = [] class MyBufferedIO(tp): def __del__(self): record.append(1) try: f = super(MyBufferedIO, self).__del__ except AttributeError: pass else: f() def close(self): record.append(2) super(MyBufferedIO, self).close() def flush(self): record.append(3) super(MyBufferedIO, self).flush() rawio = self.MockRawIO() bufio = MyBufferedIO(rawio) writable = bufio.writable() del bufio support.gc_collect() if writable: self.assertEqual(record, [1, 2, 3]) else: self.assertEqual(record, [1, 2]) def test_context_manager(self): # Test usability as a context manager rawio = self.MockRawIO() bufio = self.tp(rawio) def _with(): with bufio: pass _with() # bufio should now be closed, and using it a second time should raise # a ValueError. self.assertRaises(ValueError, _with) def test_error_through_destructor(self): # Test that the exception state is not modified by a destructor, # even if close() fails. rawio = self.CloseFailureIO() def f(): self.tp(rawio).xyzzy with support.captured_output("stderr") as s: self.assertRaises(AttributeError, f) s = s.getvalue().strip() if s: # The destructor *may* have printed an unraisable error, check it self.assertEqual(len(s.splitlines()), 1) self.assertTrue(s.startswith("Exception IOError: "), s) self.assertTrue(s.endswith(" ignored"), s) def test_repr(self): raw = self.MockRawIO() b = self.tp(raw) clsname = "%s.%s" % (self.tp.__module__, self.tp.__name__) self.assertEqual(repr(b), "<%s>" % clsname) raw.name = "dummy" self.assertEqual(repr(b), "<%s name=u'dummy'>" % clsname) raw.name = b"dummy" self.assertEqual(repr(b), "<%s name='dummy'>" % clsname) def test_flush_error_on_close(self): raw = self.MockRawIO() def bad_flush(): raise IOError() raw.flush = bad_flush b = self.tp(raw) self.assertRaises(IOError, b.close) # exception not swallowed self.assertTrue(b.closed) def test_close_error_on_close(self): raw = self.MockRawIO() def bad_flush(): raise IOError('flush') def bad_close(): raise IOError('close') raw.close = bad_close b = self.tp(raw) b.flush = bad_flush with self.assertRaises(IOError) as err: # exception not swallowed b.close() self.assertEqual(err.exception.args, ('close',)) self.assertFalse(b.closed) def test_multi_close(self): raw = self.MockRawIO() b = self.tp(raw) b.close() b.close() b.close() self.assertRaises(ValueError, b.flush) def test_readonly_attributes(self): raw = self.MockRawIO() buf = self.tp(raw) x = self.MockRawIO() with self.assertRaises((AttributeError, TypeError)): buf.raw = x class SizeofTest: @support.cpython_only def test_sizeof(self): bufsize1 = 4096 bufsize2 = 8192 rawio = self.MockRawIO() bufio = self.tp(rawio, buffer_size=bufsize1) size = sys.getsizeof(bufio) - bufsize1 rawio = self.MockRawIO() bufio = self.tp(rawio, buffer_size=bufsize2) self.assertEqual(sys.getsizeof(bufio), size + bufsize2) class BufferedReaderTest(unittest.TestCase, CommonBufferedTests): read_mode = "rb" def test_constructor(self): rawio = self.MockRawIO([b"abc"]) bufio = self.tp(rawio) bufio.__init__(rawio) bufio.__init__(rawio, buffer_size=1024) bufio.__init__(rawio, buffer_size=16) self.assertEqual(b"abc", bufio.read()) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=0) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-16) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-1) rawio = self.MockRawIO([b"abc"]) bufio.__init__(rawio) self.assertEqual(b"abc", bufio.read()) def test_uninitialized(self): bufio = self.tp.__new__(self.tp) del bufio bufio = self.tp.__new__(self.tp) self.assertRaisesRegexp((ValueError, AttributeError), 'uninitialized|has no attribute', bufio.read, 0) bufio.__init__(self.MockRawIO()) self.assertEqual(bufio.read(0), b'') def test_read(self): for arg in (None, 7): rawio = self.MockRawIO((b"abc", b"d", b"efg")) bufio = self.tp(rawio) self.assertEqual(b"abcdefg", bufio.read(arg)) # Invalid args self.assertRaises(ValueError, bufio.read, -2) def test_read1(self): rawio = self.MockRawIO((b"abc", b"d", b"efg")) bufio = self.tp(rawio) self.assertEqual(b"a", bufio.read(1)) self.assertEqual(b"b", bufio.read1(1)) self.assertEqual(rawio._reads, 1) self.assertEqual(b"c", bufio.read1(100)) self.assertEqual(rawio._reads, 1) self.assertEqual(b"d", bufio.read1(100)) self.assertEqual(rawio._reads, 2) self.assertEqual(b"efg", bufio.read1(100)) self.assertEqual(rawio._reads, 3) self.assertEqual(b"", bufio.read1(100)) self.assertEqual(rawio._reads, 4) # Invalid args self.assertRaises(ValueError, bufio.read1, -1) def test_readinto(self): rawio = self.MockRawIO((b"abc", b"d", b"efg")) bufio = self.tp(rawio) b = bytearray(2) self.assertEqual(bufio.readinto(b), 2) self.assertEqual(b, b"ab") self.assertEqual(bufio.readinto(b), 2) self.assertEqual(b, b"cd") self.assertEqual(bufio.readinto(b), 2) self.assertEqual(b, b"ef") self.assertEqual(bufio.readinto(b), 1) self.assertEqual(b, b"gf") self.assertEqual(bufio.readinto(b), 0) self.assertEqual(b, b"gf") def test_readlines(self): def bufio(): rawio = self.MockRawIO((b"abc\n", b"d\n", b"ef")) return self.tp(rawio) self.assertEqual(bufio().readlines(), [b"abc\n", b"d\n", b"ef"]) self.assertEqual(bufio().readlines(5), [b"abc\n", b"d\n"]) self.assertEqual(bufio().readlines(None), [b"abc\n", b"d\n", b"ef"]) def test_buffering(self): data = b"abcdefghi" dlen = len(data) tests = [ [ 100, [ 3, 1, 4, 8 ], [ dlen, 0 ] ], [ 100, [ 3, 3, 3], [ dlen ] ], [ 4, [ 1, 2, 4, 2 ], [ 4, 4, 1 ] ], ] for bufsize, buf_read_sizes, raw_read_sizes in tests: rawio = self.MockFileIO(data) bufio = self.tp(rawio, buffer_size=bufsize) pos = 0 for nbytes in buf_read_sizes: self.assertEqual(bufio.read(nbytes), data[pos:pos+nbytes]) pos += nbytes # this is mildly implementation-dependent self.assertEqual(rawio.read_history, raw_read_sizes) def test_read_non_blocking(self): # Inject some None's in there to simulate EWOULDBLOCK rawio = self.MockRawIO((b"abc", b"d", None, b"efg", None, None, None)) bufio = self.tp(rawio) self.assertEqual(b"abcd", bufio.read(6)) self.assertEqual(b"e", bufio.read(1)) self.assertEqual(b"fg", bufio.read()) self.assertEqual(b"", bufio.peek(1)) self.assertIsNone(bufio.read()) self.assertEqual(b"", bufio.read()) rawio = self.MockRawIO((b"a", None, None)) self.assertEqual(b"a", rawio.readall()) self.assertIsNone(rawio.readall()) def test_read_past_eof(self): rawio = self.MockRawIO((b"abc", b"d", b"efg")) bufio = self.tp(rawio) self.assertEqual(b"abcdefg", bufio.read(9000)) def test_read_all(self): rawio = self.MockRawIO((b"abc", b"d", b"efg")) bufio = self.tp(rawio) self.assertEqual(b"abcdefg", bufio.read()) @unittest.skipUnless(threading, 'Threading required for this test.') @support.requires_resource('cpu') def test_threads(self): try: # Write out many bytes with exactly the same number of 0's, # 1's... 255's. This will help us check that concurrent reading # doesn't duplicate or forget contents. N = 1000 l = list(range(256)) * N random.shuffle(l) s = bytes(bytearray(l)) with self.open(support.TESTFN, "wb") as f: f.write(s) with self.open(support.TESTFN, self.read_mode, buffering=0) as raw: bufio = self.tp(raw, 8) errors = [] results = [] def f(): try: # Intra-buffer read then buffer-flushing read for n in cycle([1, 19]): s = bufio.read(n) if not s: break # list.append() is atomic results.append(s) except Exception as e: errors.append(e) raise threads = [threading.Thread(target=f) for x in range(20)] for t in threads: t.start() time.sleep(0.02) # yield for t in threads: t.join() self.assertFalse(errors, "the following exceptions were caught: %r" % errors) s = b''.join(results) for i in range(256): c = bytes(bytearray([i])) self.assertEqual(s.count(c), N) finally: support.unlink(support.TESTFN) def test_misbehaved_io(self): rawio = self.MisbehavedRawIO((b"abc", b"d", b"efg")) bufio = self.tp(rawio) self.assertRaises(IOError, bufio.seek, 0) self.assertRaises(IOError, bufio.tell) def test_no_extraneous_read(self): # Issue #9550; when the raw IO object has satisfied the read request, # we should not issue any additional reads, otherwise it may block # (e.g. socket). bufsize = 16 for n in (2, bufsize - 1, bufsize, bufsize + 1, bufsize * 2): rawio = self.MockRawIO([b"x" * n]) bufio = self.tp(rawio, bufsize) self.assertEqual(bufio.read(n), b"x" * n) # Simple case: one raw read is enough to satisfy the request. self.assertEqual(rawio._extraneous_reads, 0, "failed for {}: {} != 0".format(n, rawio._extraneous_reads)) # A more complex case where two raw reads are needed to satisfy # the request. rawio = self.MockRawIO([b"x" * (n - 1), b"x"]) bufio = self.tp(rawio, bufsize) self.assertEqual(bufio.read(n), b"x" * n) self.assertEqual(rawio._extraneous_reads, 0, "failed for {}: {} != 0".format(n, rawio._extraneous_reads)) class CBufferedReaderTest(BufferedReaderTest, SizeofTest): tp = io.BufferedReader def test_constructor(self): BufferedReaderTest.test_constructor(self) # The allocation can succeed on 32-bit builds, e.g. with more # than 2GB RAM and a 64-bit kernel. if sys.maxsize > 0x7FFFFFFF: rawio = self.MockRawIO() bufio = self.tp(rawio) self.assertRaises((OverflowError, MemoryError, ValueError), bufio.__init__, rawio, sys.maxsize) def test_initialization(self): rawio = self.MockRawIO([b"abc"]) bufio = self.tp(rawio) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=0) self.assertRaises(ValueError, bufio.read) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-16) self.assertRaises(ValueError, bufio.read) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-1) self.assertRaises(ValueError, bufio.read) def test_misbehaved_io_read(self): rawio = self.MisbehavedRawIO((b"abc", b"d", b"efg")) bufio = self.tp(rawio) # _pyio.BufferedReader seems to implement reading different, so that # checking this is not so easy. self.assertRaises(IOError, bufio.read, 10) def test_garbage_collection(self): # C BufferedReader objects are collected. # The Python version has __del__, so it ends into gc.garbage instead rawio = self.FileIO(support.TESTFN, "w+b") f = self.tp(rawio) f.f = f wr = weakref.ref(f) del f support.gc_collect() self.assertTrue(wr() is None, wr) @support.impl_detail(cpython=True) def test_args_error(self): # Issue #17275 with self.assertRaisesRegexp(TypeError, "BufferedReader"): self.tp(io.BytesIO(), 1024, 1024, 1024) class PyBufferedReaderTest(BufferedReaderTest): tp = pyio.BufferedReader class BufferedWriterTest(unittest.TestCase, CommonBufferedTests): write_mode = "wb" def test_constructor(self): rawio = self.MockRawIO() bufio = self.tp(rawio) bufio.__init__(rawio) bufio.__init__(rawio, buffer_size=1024) bufio.__init__(rawio, buffer_size=16) self.assertEqual(3, bufio.write(b"abc")) bufio.flush() self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=0) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-16) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-1) bufio.__init__(rawio) self.assertEqual(3, bufio.write(b"ghi")) bufio.flush() self.assertEqual(b"".join(rawio._write_stack), b"abcghi") def test_uninitialized(self): bufio = self.tp.__new__(self.tp) del bufio bufio = self.tp.__new__(self.tp) self.assertRaisesRegexp((ValueError, AttributeError), 'uninitialized|has no attribute', bufio.write, b'') bufio.__init__(self.MockRawIO()) self.assertEqual(bufio.write(b''), 0) def test_detach_flush(self): raw = self.MockRawIO() buf = self.tp(raw) buf.write(b"howdy!") self.assertFalse(raw._write_stack) buf.detach() self.assertEqual(raw._write_stack, [b"howdy!"]) def test_write(self): # Write to the buffered IO but don't overflow the buffer. writer = self.MockRawIO() bufio = self.tp(writer, 8) bufio.write(b"abc") self.assertFalse(writer._write_stack) def test_write_overflow(self): writer = self.MockRawIO() bufio = self.tp(writer, 8) contents = b"abcdefghijklmnop" for n in range(0, len(contents), 3): bufio.write(contents[n:n+3]) flushed = b"".join(writer._write_stack) # At least (total - 8) bytes were implicitly flushed, perhaps more # depending on the implementation. self.assertTrue(flushed.startswith(contents[:-8]), flushed) def check_writes(self, intermediate_func): # Lots of writes, test the flushed output is as expected. contents = bytes(range(256)) * 1000 n = 0 writer = self.MockRawIO() bufio = self.tp(writer, 13) # Generator of write sizes: repeat each N 15 times then proceed to N+1 def gen_sizes(): for size in count(1): for i in range(15): yield size sizes = gen_sizes() while n < len(contents): size = min(next(sizes), len(contents) - n) self.assertEqual(bufio.write(contents[n:n+size]), size) intermediate_func(bufio) n += size bufio.flush() self.assertEqual(contents, b"".join(writer._write_stack)) def test_writes(self): self.check_writes(lambda bufio: None) def test_writes_and_flushes(self): self.check_writes(lambda bufio: bufio.flush()) def test_writes_and_seeks(self): def _seekabs(bufio): pos = bufio.tell() bufio.seek(pos + 1, 0) bufio.seek(pos - 1, 0) bufio.seek(pos, 0) self.check_writes(_seekabs) def _seekrel(bufio): pos = bufio.seek(0, 1) bufio.seek(+1, 1) bufio.seek(-1, 1) bufio.seek(pos, 0) self.check_writes(_seekrel) def test_writes_and_truncates(self): self.check_writes(lambda bufio: bufio.truncate(bufio.tell())) def test_write_non_blocking(self): raw = self.MockNonBlockWriterIO() bufio = self.tp(raw, 8) self.assertEqual(bufio.write(b"abcd"), 4) self.assertEqual(bufio.write(b"efghi"), 5) # 1 byte will be written, the rest will be buffered raw.block_on(b"k") self.assertEqual(bufio.write(b"jklmn"), 5) # 8 bytes will be written, 8 will be buffered and the rest will be lost raw.block_on(b"0") try: bufio.write(b"opqrwxyz0123456789") except self.BlockingIOError as e: written = e.characters_written else: self.fail("BlockingIOError should have been raised") self.assertEqual(written, 16) self.assertEqual(raw.pop_written(), b"abcdefghijklmnopqrwxyz") self.assertEqual(bufio.write(b"ABCDEFGHI"), 9) s = raw.pop_written() # Previously buffered bytes were flushed self.assertTrue(s.startswith(b"01234567A"), s) def test_write_and_rewind(self): raw = io.BytesIO() bufio = self.tp(raw, 4) self.assertEqual(bufio.write(b"abcdef"), 6) self.assertEqual(bufio.tell(), 6) bufio.seek(0, 0) self.assertEqual(bufio.write(b"XY"), 2) bufio.seek(6, 0) self.assertEqual(raw.getvalue(), b"XYcdef") self.assertEqual(bufio.write(b"123456"), 6) bufio.flush() self.assertEqual(raw.getvalue(), b"XYcdef123456") def test_flush(self): writer = self.MockRawIO() bufio = self.tp(writer, 8) bufio.write(b"abc") bufio.flush() self.assertEqual(b"abc", writer._write_stack[0]) def test_writelines(self): l = [b'ab', b'cd', b'ef'] writer = self.MockRawIO() bufio = self.tp(writer, 8) bufio.writelines(l) bufio.flush() self.assertEqual(b''.join(writer._write_stack), b'abcdef') def test_writelines_userlist(self): l = UserList([b'ab', b'cd', b'ef']) writer = self.MockRawIO() bufio = self.tp(writer, 8) bufio.writelines(l) bufio.flush() self.assertEqual(b''.join(writer._write_stack), b'abcdef') def test_writelines_error(self): writer = self.MockRawIO() bufio = self.tp(writer, 8) self.assertRaises(TypeError, bufio.writelines, [1, 2, 3]) self.assertRaises(TypeError, bufio.writelines, None) def test_destructor(self): writer = self.MockRawIO() bufio = self.tp(writer, 8) bufio.write(b"abc") del bufio support.gc_collect() self.assertEqual(b"abc", writer._write_stack[0]) def test_truncate(self): # Truncate implicitly flushes the buffer. with self.open(support.TESTFN, self.write_mode, buffering=0) as raw: bufio = self.tp(raw, 8) bufio.write(b"abcdef") self.assertEqual(bufio.truncate(3), 3) self.assertEqual(bufio.tell(), 6) with self.open(support.TESTFN, "rb", buffering=0) as f: self.assertEqual(f.read(), b"abc") @unittest.skipUnless(threading, 'Threading required for this test.') @support.requires_resource('cpu') def test_threads(self): try: # Write out many bytes from many threads and test they were # all flushed. N = 1000 contents = bytes(range(256)) * N sizes = cycle([1, 19]) n = 0 queue = deque() while n < len(contents): size = next(sizes) queue.append(contents[n:n+size]) n += size del contents # We use a real file object because it allows us to # exercise situations where the GIL is released before # writing the buffer to the raw streams. This is in addition # to concurrency issues due to switching threads in the middle # of Python code. with self.open(support.TESTFN, self.write_mode, buffering=0) as raw: bufio = self.tp(raw, 8) errors = [] def f(): try: while True: try: s = queue.popleft() except IndexError: return bufio.write(s) except Exception as e: errors.append(e) raise threads = [threading.Thread(target=f) for x in range(20)] for t in threads: t.start() time.sleep(0.02) # yield for t in threads: t.join() self.assertFalse(errors, "the following exceptions were caught: %r" % errors) bufio.close() with self.open(support.TESTFN, "rb") as f: s = f.read() for i in range(256): self.assertEqual(s.count(bytes([i])), N) finally: support.unlink(support.TESTFN) def test_misbehaved_io(self): rawio = self.MisbehavedRawIO() bufio = self.tp(rawio, 5) self.assertRaises(IOError, bufio.seek, 0) self.assertRaises(IOError, bufio.tell) self.assertRaises(IOError, bufio.write, b"abcdef") def test_max_buffer_size_deprecation(self): with support.check_warnings(("max_buffer_size is deprecated", DeprecationWarning)): self.tp(self.MockRawIO(), 8, 12) def test_write_error_on_close(self): raw = self.MockRawIO() def bad_write(b): raise IOError() raw.write = bad_write b = self.tp(raw) b.write(b'spam') self.assertRaises(IOError, b.close) # exception not swallowed self.assertTrue(b.closed) class CBufferedWriterTest(BufferedWriterTest, SizeofTest): tp = io.BufferedWriter def test_constructor(self): BufferedWriterTest.test_constructor(self) # The allocation can succeed on 32-bit builds, e.g. with more # than 2GB RAM and a 64-bit kernel. if sys.maxsize > 0x7FFFFFFF: rawio = self.MockRawIO() bufio = self.tp(rawio) self.assertRaises((OverflowError, MemoryError, ValueError), bufio.__init__, rawio, sys.maxsize) def test_initialization(self): rawio = self.MockRawIO() bufio = self.tp(rawio) self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=0) self.assertRaises(ValueError, bufio.write, b"def") self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-16) self.assertRaises(ValueError, bufio.write, b"def") self.assertRaises(ValueError, bufio.__init__, rawio, buffer_size=-1) self.assertRaises(ValueError, bufio.write, b"def") def test_garbage_collection(self): # C BufferedWriter objects are collected, and collecting them flushes # all data to disk. # The Python version has __del__, so it ends into gc.garbage instead rawio = self.FileIO(support.TESTFN, "w+b") f = self.tp(rawio) f.write(b"123xxx") f.x = f wr = weakref.ref(f) del f support.gc_collect() self.assertTrue(wr() is None, wr) with self.open(support.TESTFN, "rb") as f: self.assertEqual(f.read(), b"123xxx") @support.impl_detail(cpython=True) def test_args_error(self): # Issue #17275 with self.assertRaisesRegexp(TypeError, "BufferedWriter"): self.tp(io.BytesIO(), 1024, 1024, 1024) class PyBufferedWriterTest(BufferedWriterTest): tp = pyio.BufferedWriter class BufferedRWPairTest(unittest.TestCase): def test_constructor(self): pair = self.tp(self.MockRawIO(), self.MockRawIO()) self.assertFalse(pair.closed) def test_uninitialized(self): pair = self.tp.__new__(self.tp) del pair pair = self.tp.__new__(self.tp) self.assertRaisesRegexp((ValueError, AttributeError), 'uninitialized|has no attribute', pair.read, 0) self.assertRaisesRegexp((ValueError, AttributeError), 'uninitialized|has no attribute', pair.write, b'') pair.__init__(self.MockRawIO(), self.MockRawIO()) self.assertEqual(pair.read(0), b'') self.assertEqual(pair.write(b''), 0) def test_detach(self): pair = self.tp(self.MockRawIO(), self.MockRawIO()) self.assertRaises(self.UnsupportedOperation, pair.detach) def test_constructor_max_buffer_size_deprecation(self): with support.check_warnings(("max_buffer_size is deprecated", DeprecationWarning)): self.tp(self.MockRawIO(), self.MockRawIO(), 8, 12) def test_constructor_with_not_readable(self): class NotReadable(MockRawIO): def readable(self): return False self.assertRaises(IOError, self.tp, NotReadable(), self.MockRawIO()) def test_constructor_with_not_writeable(self): class NotWriteable(MockRawIO): def writable(self): return False self.assertRaises(IOError, self.tp, self.MockRawIO(), NotWriteable()) def test_read(self): pair = self.tp(self.BytesIO(b"abcdef"), self.MockRawIO()) self.assertEqual(pair.read(3), b"abc") self.assertEqual(pair.read(1), b"d") self.assertEqual(pair.read(), b"ef") pair = self.tp(self.BytesIO(b"abc"), self.MockRawIO()) self.assertEqual(pair.read(None), b"abc") def test_readlines(self): pair = lambda: self.tp(self.BytesIO(b"abc\ndef\nh"), self.MockRawIO()) self.assertEqual(pair().readlines(), [b"abc\n", b"def\n", b"h"]) self.assertEqual(pair().readlines(), [b"abc\n", b"def\n", b"h"]) self.assertEqual(pair().readlines(5), [b"abc\n", b"def\n"]) def test_read1(self): # .read1() is delegated to the underlying reader object, so this test # can be shallow. pair = self.tp(self.BytesIO(b"abcdef"), self.MockRawIO()) self.assertEqual(pair.read1(3), b"abc") def test_readinto(self): pair = self.tp(self.BytesIO(b"abcdef"), self.MockRawIO()) data = bytearray(5) self.assertEqual(pair.readinto(data), 5) self.assertEqual(data, b"abcde") def test_write(self): w = self.MockRawIO() pair = self.tp(self.MockRawIO(), w) pair.write(b"abc") pair.flush() pair.write(b"def") pair.flush() self.assertEqual(w._write_stack, [b"abc", b"def"]) def test_peek(self): pair = self.tp(self.BytesIO(b"abcdef"), self.MockRawIO()) self.assertTrue(pair.peek(3).startswith(b"abc")) self.assertEqual(pair.read(3), b"abc") def test_readable(self): pair = self.tp(self.MockRawIO(), self.MockRawIO()) self.assertTrue(pair.readable()) def test_writeable(self): pair = self.tp(self.MockRawIO(), self.MockRawIO()) self.assertTrue(pair.writable()) def test_seekable(self): # BufferedRWPairs are never seekable, even if their readers and writers # are. pair = self.tp(self.MockRawIO(), self.MockRawIO()) self.assertFalse(pair.seekable()) # .flush() is delegated to the underlying writer object and has been # tested in the test_write method. def test_close_and_closed(self): pair = self.tp(self.MockRawIO(), self.MockRawIO()) self.assertFalse(pair.closed) pair.close() self.assertTrue(pair.closed) def test_isatty(self): class SelectableIsAtty(MockRawIO): def __init__(self, isatty): MockRawIO.__init__(self) self._isatty = isatty def isatty(self): return self._isatty pair = self.tp(SelectableIsAtty(False), SelectableIsAtty(False)) self.assertFalse(pair.isatty()) pair = self.tp(SelectableIsAtty(True), SelectableIsAtty(False)) self.assertTrue(pair.isatty()) pair = self.tp(SelectableIsAtty(False), SelectableIsAtty(True)) self.assertTrue(pair.isatty()) pair = self.tp(SelectableIsAtty(True), SelectableIsAtty(True)) self.assertTrue(pair.isatty()) class CBufferedRWPairTest(BufferedRWPairTest): tp = io.BufferedRWPair class PyBufferedRWPairTest(BufferedRWPairTest): tp = pyio.BufferedRWPair class BufferedRandomTest(BufferedReaderTest, BufferedWriterTest): read_mode = "rb+" write_mode = "wb+" def test_constructor(self): BufferedReaderTest.test_constructor(self) BufferedWriterTest.test_constructor(self) def test_uninitialized(self): BufferedReaderTest.test_uninitialized(self) BufferedWriterTest.test_uninitialized(self) def test_read_and_write(self): raw = self.MockRawIO((b"asdf", b"ghjk")) rw = self.tp(raw, 8) self.assertEqual(b"as", rw.read(2)) rw.write(b"ddd") rw.write(b"eee") self.assertFalse(raw._write_stack) # Buffer writes self.assertEqual(b"ghjk", rw.read()) self.assertEqual(b"dddeee", raw._write_stack[0]) def test_seek_and_tell(self): raw = self.BytesIO(b"asdfghjkl") rw = self.tp(raw) self.assertEqual(b"as", rw.read(2)) self.assertEqual(2, rw.tell()) rw.seek(0, 0) self.assertEqual(b"asdf", rw.read(4)) rw.write(b"123f") rw.seek(0, 0) self.assertEqual(b"asdf123fl", rw.read()) self.assertEqual(9, rw.tell()) rw.seek(-4, 2) self.assertEqual(5, rw.tell()) rw.seek(2, 1) self.assertEqual(7, rw.tell()) self.assertEqual(b"fl", rw.read(11)) rw.flush() self.assertEqual(b"asdf123fl", raw.getvalue()) self.assertRaises(TypeError, rw.seek, 0.0) def check_flush_and_read(self, read_func): raw = self.BytesIO(b"abcdefghi") bufio = self.tp(raw) self.assertEqual(b"ab", read_func(bufio, 2)) bufio.write(b"12") self.assertEqual(b"ef", read_func(bufio, 2)) self.assertEqual(6, bufio.tell()) bufio.flush() self.assertEqual(6, bufio.tell()) self.assertEqual(b"ghi", read_func(bufio)) raw.seek(0, 0) raw.write(b"XYZ") # flush() resets the read buffer bufio.flush() bufio.seek(0, 0) self.assertEqual(b"XYZ", read_func(bufio, 3)) def test_flush_and_read(self): self.check_flush_and_read(lambda bufio, *args: bufio.read(*args)) def test_flush_and_readinto(self): def _readinto(bufio, n=-1): b = bytearray(n if n >= 0 else 9999) n = bufio.readinto(b) return bytes(b[:n]) self.check_flush_and_read(_readinto) def test_flush_and_peek(self): def _peek(bufio, n=-1): # This relies on the fact that the buffer can contain the whole # raw stream, otherwise peek() can return less. b = bufio.peek(n) if n != -1: b = b[:n] bufio.seek(len(b), 1) return b self.check_flush_and_read(_peek) def test_flush_and_write(self): raw = self.BytesIO(b"abcdefghi") bufio = self.tp(raw) bufio.write(b"123") bufio.flush() bufio.write(b"45") bufio.flush() bufio.seek(0, 0) self.assertEqual(b"12345fghi", raw.getvalue()) self.assertEqual(b"12345fghi", bufio.read()) def test_threads(self): BufferedReaderTest.test_threads(self) BufferedWriterTest.test_threads(self) def test_writes_and_peek(self): def _peek(bufio): bufio.peek(1) self.check_writes(_peek) def _peek(bufio): pos = bufio.tell() bufio.seek(-1, 1) bufio.peek(1) bufio.seek(pos, 0) self.check_writes(_peek) def test_writes_and_reads(self): def _read(bufio): bufio.seek(-1, 1) bufio.read(1) self.check_writes(_read) def test_writes_and_read1s(self): def _read1(bufio): bufio.seek(-1, 1) bufio.read1(1) self.check_writes(_read1) def test_writes_and_readintos(self): def _read(bufio): bufio.seek(-1, 1) bufio.readinto(bytearray(1)) self.check_writes(_read) def test_write_after_readahead(self): # Issue #6629: writing after the buffer was filled by readahead should # first rewind the raw stream. for overwrite_size in [1, 5]: raw = self.BytesIO(b"A" * 10) bufio = self.tp(raw, 4) # Trigger readahead self.assertEqual(bufio.read(1), b"A") self.assertEqual(bufio.tell(), 1) # Overwriting should rewind the raw stream if it needs so bufio.write(b"B" * overwrite_size) self.assertEqual(bufio.tell(), overwrite_size + 1) # If the write size was smaller than the buffer size, flush() and # check that rewind happens. bufio.flush() self.assertEqual(bufio.tell(), overwrite_size + 1) s = raw.getvalue() self.assertEqual(s, b"A" + b"B" * overwrite_size + b"A" * (9 - overwrite_size)) def test_write_rewind_write(self): # Various combinations of reading / writing / seeking backwards / writing again def mutate(bufio, pos1, pos2): assert pos2 >= pos1 # Fill the buffer bufio.seek(pos1) bufio.read(pos2 - pos1) bufio.write(b'\x02') # This writes earlier than the previous write, but still inside # the buffer. bufio.seek(pos1) bufio.write(b'\x01') b = b"\x80\x81\x82\x83\x84" for i in range(0, len(b)): for j in range(i, len(b)): raw = self.BytesIO(b) bufio = self.tp(raw, 100) mutate(bufio, i, j) bufio.flush() expected = bytearray(b) expected[j] = 2 expected[i] = 1 self.assertEqual(raw.getvalue(), expected, "failed result for i=%d, j=%d" % (i, j)) def test_truncate_after_read_or_write(self): raw = self.BytesIO(b"A" * 10) bufio = self.tp(raw, 100) self.assertEqual(bufio.read(2), b"AA") # the read buffer gets filled self.assertEqual(bufio.truncate(), 2) self.assertEqual(bufio.write(b"BB"), 2) # the write buffer increases self.assertEqual(bufio.truncate(), 4) def test_misbehaved_io(self): BufferedReaderTest.test_misbehaved_io(self) BufferedWriterTest.test_misbehaved_io(self) def test_interleaved_read_write(self): # Test for issue #12213 with self.BytesIO(b'abcdefgh') as raw: with self.tp(raw, 100) as f: f.write(b"1") self.assertEqual(f.read(1), b'b') f.write(b'2') self.assertEqual(f.read1(1), b'd') f.write(b'3') buf = bytearray(1) f.readinto(buf) self.assertEqual(buf, b'f') f.write(b'4') self.assertEqual(f.peek(1), b'h') f.flush() self.assertEqual(raw.getvalue(), b'1b2d3f4h') with self.BytesIO(b'abc') as raw: with self.tp(raw, 100) as f: self.assertEqual(f.read(1), b'a') f.write(b"2") self.assertEqual(f.read(1), b'c') f.flush() self.assertEqual(raw.getvalue(), b'a2c') def test_interleaved_readline_write(self): with self.BytesIO(b'ab\ncdef\ng\n') as raw: with self.tp(raw) as f: f.write(b'1') self.assertEqual(f.readline(), b'b\n') f.write(b'2') self.assertEqual(f.readline(), b'def\n') f.write(b'3') self.assertEqual(f.readline(), b'\n') f.flush() self.assertEqual(raw.getvalue(), b'1b\n2def\n3\n') class CBufferedRandomTest(CBufferedReaderTest, CBufferedWriterTest, BufferedRandomTest, SizeofTest): tp = io.BufferedRandom def test_constructor(self): BufferedRandomTest.test_constructor(self) # The allocation can succeed on 32-bit builds, e.g. with more # than 2GB RAM and a 64-bit kernel. if sys.maxsize > 0x7FFFFFFF: rawio = self.MockRawIO() bufio = self.tp(rawio) self.assertRaises((OverflowError, MemoryError, ValueError), bufio.__init__, rawio, sys.maxsize) def test_garbage_collection(self): CBufferedReaderTest.test_garbage_collection(self) CBufferedWriterTest.test_garbage_collection(self) @support.impl_detail(cpython=True) def test_args_error(self): # Issue #17275 with self.assertRaisesRegexp(TypeError, "BufferedRandom"): self.tp(io.BytesIO(), 1024, 1024, 1024) class PyBufferedRandomTest(BufferedRandomTest): tp = pyio.BufferedRandom # To fully exercise seek/tell, the StatefulIncrementalDecoder has these # properties: # - A single output character can correspond to many bytes of input. # - The number of input bytes to complete the character can be # undetermined until the last input byte is received. # - The number of input bytes can vary depending on previous input. # - A single input byte can correspond to many characters of output. # - The number of output characters can be undetermined until the # last input byte is received. # - The number of output characters can vary depending on previous input. class StatefulIncrementalDecoder(codecs.IncrementalDecoder): """ For testing seek/tell behavior with a stateful, buffering decoder. Input is a sequence of words. Words may be fixed-length (length set by input) or variable-length (period-terminated). In variable-length mode, extra periods are ignored. Possible words are: - 'i' followed by a number sets the input length, I (maximum 99). When I is set to 0, words are space-terminated. - 'o' followed by a number sets the output length, O (maximum 99). - Any other word is converted into a word followed by a period on the output. The output word consists of the input word truncated or padded out with hyphens to make its length equal to O. If O is 0, the word is output verbatim without truncating or padding. I and O are initially set to 1. When I changes, any buffered input is re-scanned according to the new I. EOF also terminates the last word. """ def __init__(self, errors='strict'): codecs.IncrementalDecoder.__init__(self, errors) self.reset() def __repr__(self): return '<SID %x>' % id(self) def reset(self): self.i = 1 self.o = 1 self.buffer = bytearray() def getstate(self): i, o = self.i ^ 1, self.o ^ 1 # so that flags = 0 after reset() return bytes(self.buffer), i*100 + o def setstate(self, state): buffer, io = state self.buffer = bytearray(buffer) i, o = divmod(io, 100) self.i, self.o = i ^ 1, o ^ 1 def decode(self, input, final=False): output = '' for b in input: if self.i == 0: # variable-length, terminated with period if b == '.': if self.buffer: output += self.process_word() else: self.buffer.append(b) else: # fixed-length, terminate after self.i bytes self.buffer.append(b) if len(self.buffer) == self.i: output += self.process_word() if final and self.buffer: # EOF terminates the last word output += self.process_word() return output def process_word(self): output = '' if self.buffer[0] == ord('i'): self.i = min(99, int(self.buffer[1:] or 0)) # set input length elif self.buffer[0] == ord('o'): self.o = min(99, int(self.buffer[1:] or 0)) # set output length else: output = self.buffer.decode('ascii') if len(output) < self.o: output += '-'*self.o # pad out with hyphens if self.o: output = output[:self.o] # truncate to output length output += '.' self.buffer = bytearray() return output codecEnabled = False @classmethod def lookupTestDecoder(cls, name): if cls.codecEnabled and name == 'test_decoder': latin1 = codecs.lookup('latin-1') return codecs.CodecInfo( name='test_decoder', encode=latin1.encode, decode=None, incrementalencoder=None, streamreader=None, streamwriter=None, incrementaldecoder=cls) # Register the previous decoder for testing. # Disabled by default, tests will enable it. codecs.register(StatefulIncrementalDecoder.lookupTestDecoder) class StatefulIncrementalDecoderTest(unittest.TestCase): """ Make sure the StatefulIncrementalDecoder actually works. """ test_cases = [ # I=1, O=1 (fixed-length input == fixed-length output) (b'abcd', False, 'a.b.c.d.'), # I=0, O=0 (variable-length input, variable-length output) (b'oiabcd', True, 'abcd.'), # I=0, O=0 (should ignore extra periods) (b'oi...abcd...', True, 'abcd.'), # I=0, O=6 (variable-length input, fixed-length output) (b'i.o6.x.xyz.toolongtofit.', False, 'x-----.xyz---.toolon.'), # I=2, O=6 (fixed-length input < fixed-length output) (b'i.i2.o6xyz', True, 'xy----.z-----.'), # I=6, O=3 (fixed-length input > fixed-length output) (b'i.o3.i6.abcdefghijklmnop', True, 'abc.ghi.mno.'), # I=0, then 3; O=29, then 15 (with longer output) (b'i.o29.a.b.cde.o15.abcdefghijabcdefghij.i3.a.b.c.d.ei00k.l.m', True, 'a----------------------------.' + 'b----------------------------.' + 'cde--------------------------.' + 'abcdefghijabcde.' + 'a.b------------.' + '.c.------------.' + 'd.e------------.' + 'k--------------.' + 'l--------------.' + 'm--------------.') ] def test_decoder(self): # Try a few one-shot test cases. for input, eof, output in self.test_cases: d = StatefulIncrementalDecoder() self.assertEqual(d.decode(input, eof), output) # Also test an unfinished decode, followed by forcing EOF. d = StatefulIncrementalDecoder() self.assertEqual(d.decode(b'oiabcd'), '') self.assertEqual(d.decode(b'', 1), 'abcd.') class TextIOWrapperTest(unittest.TestCase): def setUp(self): self.testdata = b"AAA\r\nBBB\rCCC\r\nDDD\nEEE\r\n" self.normalized = b"AAA\nBBB\nCCC\nDDD\nEEE\n".decode("ascii") support.unlink(support.TESTFN) def tearDown(self): support.unlink(support.TESTFN) def test_constructor(self): r = self.BytesIO(b"\xc3\xa9\n\n") b = self.BufferedReader(r, 1000) t = self.TextIOWrapper(b) t.__init__(b, encoding="latin1", newline="\r\n") self.assertEqual(t.encoding, "latin1") self.assertEqual(t.line_buffering, False) t.__init__(b, encoding="utf8", line_buffering=True) self.assertEqual(t.encoding, "utf8") self.assertEqual(t.line_buffering, True) self.assertEqual("\xe9\n", t.readline()) self.assertRaises(TypeError, t.__init__, b, newline=42) self.assertRaises(ValueError, t.__init__, b, newline='xyzzy') def test_detach(self): r = self.BytesIO() b = self.BufferedWriter(r) t = self.TextIOWrapper(b) self.assertIs(t.detach(), b) t = self.TextIOWrapper(b, encoding="ascii") t.write("howdy") self.assertFalse(r.getvalue()) t.detach() self.assertEqual(r.getvalue(), b"howdy") self.assertRaises(ValueError, t.detach) def test_repr(self): raw = self.BytesIO("hello".encode("utf-8")) b = self.BufferedReader(raw) t = self.TextIOWrapper(b, encoding="utf-8") modname = self.TextIOWrapper.__module__ self.assertEqual(repr(t), "<%s.TextIOWrapper encoding='utf-8'>" % modname) raw.name = "dummy" self.assertEqual(repr(t), "<%s.TextIOWrapper name=u'dummy' encoding='utf-8'>" % modname) raw.name = b"dummy" self.assertEqual(repr(t), "<%s.TextIOWrapper name='dummy' encoding='utf-8'>" % modname) def test_line_buffering(self): r = self.BytesIO() b = self.BufferedWriter(r, 1000) t = self.TextIOWrapper(b, newline="\n", line_buffering=True) t.write("X") self.assertEqual(r.getvalue(), b"") # No flush happened t.write("Y\nZ") self.assertEqual(r.getvalue(), b"XY\nZ") # All got flushed t.write("A\rB") self.assertEqual(r.getvalue(), b"XY\nZA\rB") def test_encoding(self): # Check the encoding attribute is always set, and valid b = self.BytesIO() t = self.TextIOWrapper(b, encoding="utf8") self.assertEqual(t.encoding, "utf8") t = self.TextIOWrapper(b) self.assertTrue(t.encoding is not None) codecs.lookup(t.encoding) def test_encoding_errors_reading(self): # (1) default b = self.BytesIO(b"abc\n\xff\n") t = self.TextIOWrapper(b, encoding="ascii") self.assertRaises(UnicodeError, t.read) # (2) explicit strict b = self.BytesIO(b"abc\n\xff\n") t = self.TextIOWrapper(b, encoding="ascii", errors="strict") self.assertRaises(UnicodeError, t.read) # (3) ignore b = self.BytesIO(b"abc\n\xff\n") t = self.TextIOWrapper(b, encoding="ascii", errors="ignore") self.assertEqual(t.read(), "abc\n\n") # (4) replace b = self.BytesIO(b"abc\n\xff\n") t = self.TextIOWrapper(b, encoding="ascii", errors="replace") self.assertEqual(t.read(), "abc\n\ufffd\n") def test_encoding_errors_writing(self): # (1) default b = self.BytesIO() t = self.TextIOWrapper(b, encoding="ascii") self.assertRaises(UnicodeError, t.write, "\xff") # (2) explicit strict b = self.BytesIO() t = self.TextIOWrapper(b, encoding="ascii", errors="strict") self.assertRaises(UnicodeError, t.write, "\xff") # (3) ignore b = self.BytesIO() t = self.TextIOWrapper(b, encoding="ascii", errors="ignore", newline="\n") t.write("abc\xffdef\n") t.flush() self.assertEqual(b.getvalue(), b"abcdef\n") # (4) replace b = self.BytesIO() t = self.TextIOWrapper(b, encoding="ascii", errors="replace", newline="\n") t.write("abc\xffdef\n") t.flush() self.assertEqual(b.getvalue(), b"abc?def\n") def test_newlines(self): input_lines = [ "unix\n", "windows\r\n", "os9\r", "last\n", "nonl" ] tests = [ [ None, [ 'unix\n', 'windows\n', 'os9\n', 'last\n', 'nonl' ] ], [ '', input_lines ], [ '\n', [ "unix\n", "windows\r\n", "os9\rlast\n", "nonl" ] ], [ '\r\n', [ "unix\nwindows\r\n", "os9\rlast\nnonl" ] ], [ '\r', [ "unix\nwindows\r", "\nos9\r", "last\nnonl" ] ], ] encodings = ( 'utf-8', 'latin-1', 'utf-16', 'utf-16-le', 'utf-16-be', 'utf-32', 'utf-32-le', 'utf-32-be', ) # Try a range of buffer sizes to test the case where \r is the last # character in TextIOWrapper._pending_line. for encoding in encodings: # XXX: str.encode() should return bytes data = bytes(''.join(input_lines).encode(encoding)) for do_reads in (False, True): for bufsize in range(1, 10): for newline, exp_lines in tests: bufio = self.BufferedReader(self.BytesIO(data), bufsize) textio = self.TextIOWrapper(bufio, newline=newline, encoding=encoding) if do_reads: got_lines = [] while True: c2 = textio.read(2) if c2 == '': break self.assertEqual(len(c2), 2) got_lines.append(c2 + textio.readline()) else: got_lines = list(textio) for got_line, exp_line in zip(got_lines, exp_lines): self.assertEqual(got_line, exp_line) self.assertEqual(len(got_lines), len(exp_lines)) def test_newlines_input(self): testdata = b"AAA\nBB\x00B\nCCC\rDDD\rEEE\r\nFFF\r\nGGG" normalized = testdata.replace(b"\r\n", b"\n").replace(b"\r", b"\n") for newline, expected in [ (None, normalized.decode("ascii").splitlines(True)), ("", testdata.decode("ascii").splitlines(True)), ("\n", ["AAA\n", "BB\x00B\n", "CCC\rDDD\rEEE\r\n", "FFF\r\n", "GGG"]), ("\r\n", ["AAA\nBB\x00B\nCCC\rDDD\rEEE\r\n", "FFF\r\n", "GGG"]), ("\r", ["AAA\nBB\x00B\nCCC\r", "DDD\r", "EEE\r", "\nFFF\r", "\nGGG"]), ]: buf = self.BytesIO(testdata) txt = self.TextIOWrapper(buf, encoding="ascii", newline=newline) self.assertEqual(txt.readlines(), expected) txt.seek(0) self.assertEqual(txt.read(), "".join(expected)) def test_newlines_output(self): testdict = { "": b"AAA\nBBB\nCCC\nX\rY\r\nZ", "\n": b"AAA\nBBB\nCCC\nX\rY\r\nZ", "\r": b"AAA\rBBB\rCCC\rX\rY\r\rZ", "\r\n": b"AAA\r\nBBB\r\nCCC\r\nX\rY\r\r\nZ", } tests = [(None, testdict[os.linesep])] + sorted(testdict.items()) for newline, expected in tests: buf = self.BytesIO() txt = self.TextIOWrapper(buf, encoding="ascii", newline=newline) txt.write("AAA\nB") txt.write("BB\nCCC\n") txt.write("X\rY\r\nZ") txt.flush() self.assertEqual(buf.closed, False) self.assertEqual(buf.getvalue(), expected) def test_destructor(self): l = [] base = self.BytesIO class MyBytesIO(base): def close(self): l.append(self.getvalue()) base.close(self) b = MyBytesIO() t = self.TextIOWrapper(b, encoding="ascii") t.write("abc") del t support.gc_collect() self.assertEqual([b"abc"], l) def test_override_destructor(self): record = [] class MyTextIO(self.TextIOWrapper): def __del__(self): record.append(1) try: f = super(MyTextIO, self).__del__ except AttributeError: pass else: f() def close(self): record.append(2) super(MyTextIO, self).close() def flush(self): record.append(3) super(MyTextIO, self).flush() b = self.BytesIO() t = MyTextIO(b, encoding="ascii") del t support.gc_collect() self.assertEqual(record, [1, 2, 3]) def test_error_through_destructor(self): # Test that the exception state is not modified by a destructor, # even if close() fails. rawio = self.CloseFailureIO() def f(): self.TextIOWrapper(rawio).xyzzy with support.captured_output("stderr") as s: self.assertRaises(AttributeError, f) s = s.getvalue().strip() if s: # The destructor *may* have printed an unraisable error, check it self.assertEqual(len(s.splitlines()), 1) self.assertTrue(s.startswith("Exception IOError: "), s) self.assertTrue(s.endswith(" ignored"), s) # Systematic tests of the text I/O API def test_basic_io(self): for chunksize in (1, 2, 3, 4, 5, 15, 16, 17, 31, 32, 33, 63, 64, 65): for enc in "ascii", "latin1", "utf8" :# , "utf-16-be", "utf-16-le": f = self.open(support.TESTFN, "w+", encoding=enc) f._CHUNK_SIZE = chunksize self.assertEqual(f.write("abc"), 3) f.close() f = self.open(support.TESTFN, "r+", encoding=enc) f._CHUNK_SIZE = chunksize self.assertEqual(f.tell(), 0) self.assertEqual(f.read(), "abc") cookie = f.tell() self.assertEqual(f.seek(0), 0) self.assertEqual(f.read(None), "abc") f.seek(0) self.assertEqual(f.read(2), "ab") self.assertEqual(f.read(1), "c") self.assertEqual(f.read(1), "") self.assertEqual(f.read(), "") self.assertEqual(f.tell(), cookie) self.assertEqual(f.seek(0), 0) self.assertEqual(f.seek(0, 2), cookie) self.assertEqual(f.write("def"), 3) self.assertEqual(f.seek(cookie), cookie) self.assertEqual(f.read(), "def") if enc.startswith("utf"): self.multi_line_test(f, enc) f.close() def multi_line_test(self, f, enc): f.seek(0) f.truncate() sample = "s\xff\u0fff\uffff" wlines = [] for size in (0, 1, 2, 3, 4, 5, 30, 31, 32, 33, 62, 63, 64, 65, 1000): chars = [] for i in range(size): chars.append(sample[i % len(sample)]) line = "".join(chars) + "\n" wlines.append((f.tell(), line)) f.write(line) f.seek(0) rlines = [] while True: pos = f.tell() line = f.readline() if not line: break rlines.append((pos, line)) self.assertEqual(rlines, wlines) def test_telling(self): f = self.open(support.TESTFN, "w+", encoding="utf8") p0 = f.tell() f.write("\xff\n") p1 = f.tell() f.write("\xff\n") p2 = f.tell() f.seek(0) self.assertEqual(f.tell(), p0) self.assertEqual(f.readline(), "\xff\n") self.assertEqual(f.tell(), p1) self.assertEqual(f.readline(), "\xff\n") self.assertEqual(f.tell(), p2) f.seek(0) for line in f: self.assertEqual(line, "\xff\n") self.assertRaises(IOError, f.tell) self.assertEqual(f.tell(), p2) f.close() def test_seeking(self): chunk_size = _default_chunk_size() prefix_size = chunk_size - 2 u_prefix = "a" * prefix_size prefix = bytes(u_prefix.encode("utf-8")) self.assertEqual(len(u_prefix), len(prefix)) u_suffix = "\u8888\n" suffix = bytes(u_suffix.encode("utf-8")) line = prefix + suffix f = self.open(support.TESTFN, "wb") f.write(line*2) f.close() f = self.open(support.TESTFN, "r", encoding="utf-8") s = f.read(prefix_size) self.assertEqual(s, prefix.decode("ascii")) self.assertEqual(f.tell(), prefix_size) self.assertEqual(f.readline(), u_suffix) def test_seeking_too(self): # Regression test for a specific bug data = b'\xe0\xbf\xbf\n' f = self.open(support.TESTFN, "wb") f.write(data) f.close() f = self.open(support.TESTFN, "r", encoding="utf-8") f._CHUNK_SIZE # Just test that it exists f._CHUNK_SIZE = 2 f.readline() f.tell() def test_seek_and_tell(self): #Test seek/tell using the StatefulIncrementalDecoder. # Make test faster by doing smaller seeks CHUNK_SIZE = 128 def test_seek_and_tell_with_data(data, min_pos=0): """Tell/seek to various points within a data stream and ensure that the decoded data returned by read() is consistent.""" f = self.open(support.TESTFN, 'wb') f.write(data) f.close() f = self.open(support.TESTFN, encoding='test_decoder') f._CHUNK_SIZE = CHUNK_SIZE decoded = f.read() f.close() for i in range(min_pos, len(decoded) + 1): # seek positions for j in [1, 5, len(decoded) - i]: # read lengths f = self.open(support.TESTFN, encoding='test_decoder') self.assertEqual(f.read(i), decoded[:i]) cookie = f.tell() self.assertEqual(f.read(j), decoded[i:i + j]) f.seek(cookie) self.assertEqual(f.read(), decoded[i:]) f.close() # Enable the test decoder. StatefulIncrementalDecoder.codecEnabled = 1 # Run the tests. try: # Try each test case. for input, _, _ in StatefulIncrementalDecoderTest.test_cases: test_seek_and_tell_with_data(input) # Position each test case so that it crosses a chunk boundary. for input, _, _ in StatefulIncrementalDecoderTest.test_cases: offset = CHUNK_SIZE - len(input)//2 prefix = b'.'*offset # Don't bother seeking into the prefix (takes too long). min_pos = offset*2 test_seek_and_tell_with_data(prefix + input, min_pos) # Ensure our test decoder won't interfere with subsequent tests. finally: StatefulIncrementalDecoder.codecEnabled = 0 def test_encoded_writes(self): data = "1234567890" tests = ("utf-16", "utf-16-le", "utf-16-be", "utf-32", "utf-32-le", "utf-32-be") for encoding in tests: buf = self.BytesIO() f = self.TextIOWrapper(buf, encoding=encoding) # Check if the BOM is written only once (see issue1753). f.write(data) f.write(data) f.seek(0) self.assertEqual(f.read(), data * 2) f.seek(0) self.assertEqual(f.read(), data * 2) self.assertEqual(buf.getvalue(), (data * 2).encode(encoding)) def test_unreadable(self): class UnReadable(self.BytesIO): def readable(self): return False txt = self.TextIOWrapper(UnReadable()) self.assertRaises(IOError, txt.read) def test_read_one_by_one(self): txt = self.TextIOWrapper(self.BytesIO(b"AA\r\nBB")) reads = "" while True: c = txt.read(1) if not c: break reads += c self.assertEqual(reads, "AA\nBB") def test_readlines(self): txt = self.TextIOWrapper(self.BytesIO(b"AA\nBB\nCC")) self.assertEqual(txt.readlines(), ["AA\n", "BB\n", "CC"]) txt.seek(0) self.assertEqual(txt.readlines(None), ["AA\n", "BB\n", "CC"]) txt.seek(0) self.assertEqual(txt.readlines(5), ["AA\n", "BB\n"]) # read in amounts equal to TextIOWrapper._CHUNK_SIZE which is 128. def test_read_by_chunk(self): # make sure "\r\n" straddles 128 char boundary. txt = self.TextIOWrapper(self.BytesIO(b"A" * 127 + b"\r\nB")) reads = "" while True: c = txt.read(128) if not c: break reads += c self.assertEqual(reads, "A"*127+"\nB") def test_writelines(self): l = ['ab', 'cd', 'ef'] buf = self.BytesIO() txt = self.TextIOWrapper(buf) txt.writelines(l) txt.flush() self.assertEqual(buf.getvalue(), b'abcdef') def test_writelines_userlist(self): l = UserList(['ab', 'cd', 'ef']) buf = self.BytesIO() txt = self.TextIOWrapper(buf) txt.writelines(l) txt.flush() self.assertEqual(buf.getvalue(), b'abcdef') def test_writelines_error(self): txt = self.TextIOWrapper(self.BytesIO()) self.assertRaises(TypeError, txt.writelines, [1, 2, 3]) self.assertRaises(TypeError, txt.writelines, None) self.assertRaises(TypeError, txt.writelines, b'abc') def test_issue1395_1(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") # read one char at a time reads = "" while True: c = txt.read(1) if not c: break reads += c self.assertEqual(reads, self.normalized) def test_issue1395_2(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") txt._CHUNK_SIZE = 4 reads = "" while True: c = txt.read(4) if not c: break reads += c self.assertEqual(reads, self.normalized) def test_issue1395_3(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") txt._CHUNK_SIZE = 4 reads = txt.read(4) reads += txt.read(4) reads += txt.readline() reads += txt.readline() reads += txt.readline() self.assertEqual(reads, self.normalized) def test_issue1395_4(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") txt._CHUNK_SIZE = 4 reads = txt.read(4) reads += txt.read() self.assertEqual(reads, self.normalized) def test_issue1395_5(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") txt._CHUNK_SIZE = 4 reads = txt.read(4) pos = txt.tell() txt.seek(0) txt.seek(pos) self.assertEqual(txt.read(4), "BBB\n") def test_issue2282(self): buffer = self.BytesIO(self.testdata) txt = self.TextIOWrapper(buffer, encoding="ascii") self.assertEqual(buffer.seekable(), txt.seekable()) def test_append_bom(self): # The BOM is not written again when appending to a non-empty file filename = support.TESTFN for charset in ('utf-8-sig', 'utf-16', 'utf-32'): with self.open(filename, 'w', encoding=charset) as f: f.write('aaa') pos = f.tell() with self.open(filename, 'rb') as f: self.assertEqual(f.read(), 'aaa'.encode(charset)) with self.open(filename, 'a', encoding=charset) as f: f.write('xxx') with self.open(filename, 'rb') as f: self.assertEqual(f.read(), 'aaaxxx'.encode(charset)) def test_seek_bom(self): # Same test, but when seeking manually filename = support.TESTFN for charset in ('utf-8-sig', 'utf-16', 'utf-32'): with self.open(filename, 'w', encoding=charset) as f: f.write('aaa') pos = f.tell() with self.open(filename, 'r+', encoding=charset) as f: f.seek(pos) f.write('zzz') f.seek(0) f.write('bbb') with self.open(filename, 'rb') as f: self.assertEqual(f.read(), 'bbbzzz'.encode(charset)) def test_errors_property(self): with self.open(support.TESTFN, "w") as f: self.assertEqual(f.errors, "strict") with self.open(support.TESTFN, "w", errors="replace") as f: self.assertEqual(f.errors, "replace") @unittest.skipUnless(threading, 'Threading required for this test.') def test_threads_write(self): # Issue6750: concurrent writes could duplicate data event = threading.Event() with self.open(support.TESTFN, "w", buffering=1) as f: def run(n): text = "Thread%03d\n" % n event.wait() f.write(text) threads = [threading.Thread(target=lambda n=x: run(n)) for x in range(20)] for t in threads: t.start() time.sleep(0.02) event.set() for t in threads: t.join() with self.open(support.TESTFN) as f: content = f.read() for n in range(20): self.assertEqual(content.count("Thread%03d\n" % n), 1) def test_flush_error_on_close(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") def bad_flush(): raise IOError() txt.flush = bad_flush self.assertRaises(IOError, txt.close) # exception not swallowed self.assertTrue(txt.closed) def test_multi_close(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") txt.close() txt.close() txt.close() self.assertRaises(ValueError, txt.flush) def test_readonly_attributes(self): txt = self.TextIOWrapper(self.BytesIO(self.testdata), encoding="ascii") buf = self.BytesIO(self.testdata) with self.assertRaises((AttributeError, TypeError)): txt.buffer = buf def test_read_nonbytes(self): # Issue #17106 # Crash when underlying read() returns non-bytes class NonbytesStream(self.StringIO): read1 = self.StringIO.read class NonbytesStream(self.StringIO): read1 = self.StringIO.read t = self.TextIOWrapper(NonbytesStream('a')) with self.maybeRaises(TypeError): t.read(1) t = self.TextIOWrapper(NonbytesStream('a')) with self.maybeRaises(TypeError): t.readline() t = self.TextIOWrapper(NonbytesStream('a')) self.assertEqual(t.read(), u'a') def test_illegal_decoder(self): # Issue #17106 # Crash when decoder returns non-string t = self.TextIOWrapper(self.BytesIO(b'aaaaaa'), newline='\n', encoding='quopri_codec') with self.maybeRaises(TypeError): t.read(1) t = self.TextIOWrapper(self.BytesIO(b'aaaaaa'), newline='\n', encoding='quopri_codec') with self.maybeRaises(TypeError): t.readline() t = self.TextIOWrapper(self.BytesIO(b'aaaaaa'), newline='\n', encoding='quopri_codec') with self.maybeRaises(TypeError): t.read() class CTextIOWrapperTest(TextIOWrapperTest): def test_initialization(self): r = self.BytesIO(b"\xc3\xa9\n\n") b = self.BufferedReader(r, 1000) t = self.TextIOWrapper(b) self.assertRaises(TypeError, t.__init__, b, newline=42) self.assertRaises(ValueError, t.read) self.assertRaises(ValueError, t.__init__, b, newline='xyzzy') self.assertRaises(ValueError, t.read) def test_garbage_collection(self): # C TextIOWrapper objects are collected, and collecting them flushes # all data to disk. # The Python version has __del__, so it ends in gc.garbage instead. rawio = io.FileIO(support.TESTFN, "wb") b = self.BufferedWriter(rawio) t = self.TextIOWrapper(b, encoding="ascii") t.write("456def") t.x = t wr = weakref.ref(t) del t support.gc_collect() self.assertTrue(wr() is None, wr) with self.open(support.TESTFN, "rb") as f: self.assertEqual(f.read(), b"456def") def test_rwpair_cleared_before_textio(self): # Issue 13070: TextIOWrapper's finalization would crash when called # after the reference to the underlying BufferedRWPair's writer got # cleared by the GC. for i in range(1000): b1 = self.BufferedRWPair(self.MockRawIO(), self.MockRawIO()) t1 = self.TextIOWrapper(b1, encoding="ascii") b2 = self.BufferedRWPair(self.MockRawIO(), self.MockRawIO()) t2 = self.TextIOWrapper(b2, encoding="ascii") # circular references t1.buddy = t2 t2.buddy = t1 support.gc_collect() maybeRaises = unittest.TestCase.assertRaises class PyTextIOWrapperTest(TextIOWrapperTest): @contextlib.contextmanager def maybeRaises(self, *args, **kwds): yield class IncrementalNewlineDecoderTest(unittest.TestCase): def check_newline_decoding_utf8(self, decoder): # UTF-8 specific tests for a newline decoder def _check_decode(b, s, **kwargs): # We exercise getstate() / setstate() as well as decode() state = decoder.getstate() self.assertEqual(decoder.decode(b, **kwargs), s) decoder.setstate(state) self.assertEqual(decoder.decode(b, **kwargs), s) _check_decode(b'\xe8\xa2\x88', "\u8888") _check_decode(b'\xe8', "") _check_decode(b'\xa2', "") _check_decode(b'\x88', "\u8888") _check_decode(b'\xe8', "") _check_decode(b'\xa2', "") _check_decode(b'\x88', "\u8888") _check_decode(b'\xe8', "") self.assertRaises(UnicodeDecodeError, decoder.decode, b'', final=True) decoder.reset() _check_decode(b'\n', "\n") _check_decode(b'\r', "") _check_decode(b'', "\n", final=True) _check_decode(b'\r', "\n", final=True) _check_decode(b'\r', "") _check_decode(b'a', "\na") _check_decode(b'\r\r\n', "\n\n") _check_decode(b'\r', "") _check_decode(b'\r', "\n") _check_decode(b'\na', "\na") _check_decode(b'\xe8\xa2\x88\r\n', "\u8888\n") _check_decode(b'\xe8\xa2\x88', "\u8888") _check_decode(b'\n', "\n") _check_decode(b'\xe8\xa2\x88\r', "\u8888") _check_decode(b'\n', "\n") def check_newline_decoding(self, decoder, encoding): result = [] if encoding is not None: encoder = codecs.getincrementalencoder(encoding)() def _decode_bytewise(s): # Decode one byte at a time for b in encoder.encode(s): result.append(decoder.decode(b)) else: encoder = None def _decode_bytewise(s): # Decode one char at a time for c in s: result.append(decoder.decode(c)) self.assertEqual(decoder.newlines, None) _decode_bytewise("abc\n\r") self.assertEqual(decoder.newlines, '\n') _decode_bytewise("\nabc") self.assertEqual(decoder.newlines, ('\n', '\r\n')) _decode_bytewise("abc\r") self.assertEqual(decoder.newlines, ('\n', '\r\n')) _decode_bytewise("abc") self.assertEqual(decoder.newlines, ('\r', '\n', '\r\n')) _decode_bytewise("abc\r") self.assertEqual("".join(result), "abc\n\nabcabc\nabcabc") decoder.reset() input = "abc" if encoder is not None: encoder.reset() input = encoder.encode(input) self.assertEqual(decoder.decode(input), "abc") self.assertEqual(decoder.newlines, None) def test_newline_decoder(self): encodings = ( # None meaning the IncrementalNewlineDecoder takes unicode input # rather than bytes input None, 'utf-8', 'latin-1', 'utf-16', 'utf-16-le', 'utf-16-be', 'utf-32', 'utf-32-le', 'utf-32-be', ) for enc in encodings: decoder = enc and codecs.getincrementaldecoder(enc)() decoder = self.IncrementalNewlineDecoder(decoder, translate=True) self.check_newline_decoding(decoder, enc) decoder = codecs.getincrementaldecoder("utf-8")() decoder = self.IncrementalNewlineDecoder(decoder, translate=True) self.check_newline_decoding_utf8(decoder) def test_newline_bytes(self): # Issue 5433: Excessive optimization in IncrementalNewlineDecoder def _check(dec): self.assertEqual(dec.newlines, None) self.assertEqual(dec.decode("\u0D00"), "\u0D00") self.assertEqual(dec.newlines, None) self.assertEqual(dec.decode("\u0A00"), "\u0A00") self.assertEqual(dec.newlines, None) dec = self.IncrementalNewlineDecoder(None, translate=False) _check(dec) dec = self.IncrementalNewlineDecoder(None, translate=True) _check(dec) class CIncrementalNewlineDecoderTest(IncrementalNewlineDecoderTest): pass class PyIncrementalNewlineDecoderTest(IncrementalNewlineDecoderTest): pass # XXX Tests for open() class MiscIOTest(unittest.TestCase): def tearDown(self): support.unlink(support.TESTFN) def test___all__(self): for name in self.io.__all__: obj = getattr(self.io, name, None) self.assertTrue(obj is not None, name) if name == "open": continue elif "error" in name.lower() or name == "UnsupportedOperation": self.assertTrue(issubclass(obj, Exception), name) elif not name.startswith("SEEK_"): self.assertTrue(issubclass(obj, self.IOBase)) def test_attributes(self): f = self.open(support.TESTFN, "wb", buffering=0) self.assertEqual(f.mode, "wb") f.close() f = self.open(support.TESTFN, "U") self.assertEqual(f.name, support.TESTFN) self.assertEqual(f.buffer.name, support.TESTFN) self.assertEqual(f.buffer.raw.name, support.TESTFN) self.assertEqual(f.mode, "U") self.assertEqual(f.buffer.mode, "rb") self.assertEqual(f.buffer.raw.mode, "rb") f.close() f = self.open(support.TESTFN, "w+") self.assertEqual(f.mode, "w+") self.assertEqual(f.buffer.mode, "rb+") # Does it really matter? self.assertEqual(f.buffer.raw.mode, "rb+") g = self.open(f.fileno(), "wb", closefd=False) self.assertEqual(g.mode, "wb") self.assertEqual(g.raw.mode, "wb") self.assertEqual(g.name, f.fileno()) self.assertEqual(g.raw.name, f.fileno()) f.close() g.close() def test_io_after_close(self): for kwargs in [ {"mode": "w"}, {"mode": "wb"}, {"mode": "w", "buffering": 1}, {"mode": "w", "buffering": 2}, {"mode": "wb", "buffering": 0}, {"mode": "r"}, {"mode": "rb"}, {"mode": "r", "buffering": 1}, {"mode": "r", "buffering": 2}, {"mode": "rb", "buffering": 0}, {"mode": "w+"}, {"mode": "w+b"}, {"mode": "w+", "buffering": 1}, {"mode": "w+", "buffering": 2}, {"mode": "w+b", "buffering": 0}, ]: f = self.open(support.TESTFN, **kwargs) f.close() self.assertRaises(ValueError, f.flush) self.assertRaises(ValueError, f.fileno) self.assertRaises(ValueError, f.isatty) self.assertRaises(ValueError, f.__iter__) if hasattr(f, "peek"): self.assertRaises(ValueError, f.peek, 1) self.assertRaises(ValueError, f.read) if hasattr(f, "read1"): self.assertRaises(ValueError, f.read1, 1024) if hasattr(f, "readall"): self.assertRaises(ValueError, f.readall) if hasattr(f, "readinto"): self.assertRaises(ValueError, f.readinto, bytearray(1024)) self.assertRaises(ValueError, f.readline) self.assertRaises(ValueError, f.readlines) self.assertRaises(ValueError, f.seek, 0) self.assertRaises(ValueError, f.tell) self.assertRaises(ValueError, f.truncate) self.assertRaises(ValueError, f.write, b"" if "b" in kwargs['mode'] else "") self.assertRaises(ValueError, f.writelines, []) self.assertRaises(ValueError, next, f) def test_blockingioerror(self): # Various BlockingIOError issues self.assertRaises(TypeError, self.BlockingIOError) self.assertRaises(TypeError, self.BlockingIOError, 1) self.assertRaises(TypeError, self.BlockingIOError, 1, 2, 3, 4) self.assertRaises(TypeError, self.BlockingIOError, 1, "", None) b = self.BlockingIOError(1, "") self.assertEqual(b.characters_written, 0) class C(unicode): pass c = C("") b = self.BlockingIOError(1, c) c.b = b b.c = c wr = weakref.ref(c) del c, b support.gc_collect() self.assertTrue(wr() is None, wr) def test_abcs(self): # Test the visible base classes are ABCs. self.assertIsInstance(self.IOBase, abc.ABCMeta) self.assertIsInstance(self.RawIOBase, abc.ABCMeta) self.assertIsInstance(self.BufferedIOBase, abc.ABCMeta) self.assertIsInstance(self.TextIOBase, abc.ABCMeta) def _check_abc_inheritance(self, abcmodule): with self.open(support.TESTFN, "wb", buffering=0) as f: self.assertIsInstance(f, abcmodule.IOBase) self.assertIsInstance(f, abcmodule.RawIOBase) self.assertNotIsInstance(f, abcmodule.BufferedIOBase) self.assertNotIsInstance(f, abcmodule.TextIOBase) with self.open(support.TESTFN, "wb") as f: self.assertIsInstance(f, abcmodule.IOBase) self.assertNotIsInstance(f, abcmodule.RawIOBase) self.assertIsInstance(f, abcmodule.BufferedIOBase) self.assertNotIsInstance(f, abcmodule.TextIOBase) with self.open(support.TESTFN, "w") as f: self.assertIsInstance(f, abcmodule.IOBase) self.assertNotIsInstance(f, abcmodule.RawIOBase) self.assertNotIsInstance(f, abcmodule.BufferedIOBase) self.assertIsInstance(f, abcmodule.TextIOBase) def test_abc_inheritance(self): # Test implementations inherit from their respective ABCs self._check_abc_inheritance(self) def test_abc_inheritance_official(self): # Test implementations inherit from the official ABCs of the # baseline "io" module. self._check_abc_inheritance(io) @unittest.skipUnless(fcntl, 'fcntl required for this test') def test_nonblock_pipe_write_bigbuf(self): self._test_nonblock_pipe_write(16*1024) @unittest.skipUnless(fcntl, 'fcntl required for this test') def test_nonblock_pipe_write_smallbuf(self): self._test_nonblock_pipe_write(1024) def _set_non_blocking(self, fd): flags = fcntl.fcntl(fd, fcntl.F_GETFL) self.assertNotEqual(flags, -1) res = fcntl.fcntl(fd, fcntl.F_SETFL, flags | os.O_NONBLOCK) self.assertEqual(res, 0) def _test_nonblock_pipe_write(self, bufsize): sent = [] received = [] r, w = os.pipe() self._set_non_blocking(r) self._set_non_blocking(w) # To exercise all code paths in the C implementation we need # to play with buffer sizes. For instance, if we choose a # buffer size less than or equal to _PIPE_BUF (4096 on Linux) # then we will never get a partial write of the buffer. rf = self.open(r, mode='rb', closefd=True, buffering=bufsize) wf = self.open(w, mode='wb', closefd=True, buffering=bufsize) with rf, wf: for N in 9999, 73, 7574: try: i = 0 while True: msg = bytes([i % 26 + 97]) * N sent.append(msg) wf.write(msg) i += 1 except self.BlockingIOError as e: self.assertEqual(e.args[0], errno.EAGAIN) sent[-1] = sent[-1][:e.characters_written] received.append(rf.read()) msg = b'BLOCKED' wf.write(msg) sent.append(msg) while True: try: wf.flush() break except self.BlockingIOError as e: self.assertEqual(e.args[0], errno.EAGAIN) self.assertEqual(e.characters_written, 0) received.append(rf.read()) received += iter(rf.read, None) sent, received = b''.join(sent), b''.join(received) self.assertTrue(sent == received) self.assertTrue(wf.closed) self.assertTrue(rf.closed) class CMiscIOTest(MiscIOTest): io = io class PyMiscIOTest(MiscIOTest): io = pyio @unittest.skipIf(os.name == 'nt', 'POSIX signals required for this test.') class SignalsTest(unittest.TestCase): def setUp(self): self.oldalrm = signal.signal(signal.SIGALRM, self.alarm_interrupt) def tearDown(self): signal.signal(signal.SIGALRM, self.oldalrm) def alarm_interrupt(self, sig, frame): 1 // 0 @unittest.skipUnless(threading, 'Threading required for this test.') @unittest.skipIf(sys.platform in ('freebsd5', 'freebsd6', 'freebsd7'), 'issue #12429: skip test on FreeBSD <= 7') def check_interrupted_write(self, item, bytes, **fdopen_kwargs): """Check that a partial write, when it gets interrupted, properly invokes the signal handler, and bubbles up the exception raised in the latter.""" # XXX This test has three flaws that appear when objects are # XXX not reference counted. # - if wio.write() happens to trigger a garbage collection, # the signal exception may be raised when some __del__ # method is running; it will not reach the assertRaises() # call. # - more subtle, if the wio object is not destroyed at once # and survives this function, the next opened file is likely # to have the same fileno (since the file descriptor was # actively closed). When wio.__del__ is finally called, it # will close the other's test file... To trigger this with # CPython, try adding "global wio" in this function. # - This happens only for streams created by the _pyio module, # because a wio.close() that fails still consider that the # file needs to be closed again. You can try adding an # "assert wio.closed" at the end of the function. # Fortunately, a little gc.gollect() seems to be enough to # work around all these issues. support.gc_collect() read_results = [] def _read(): s = os.read(r, 1) read_results.append(s) t = threading.Thread(target=_read) t.daemon = True r, w = os.pipe() try: wio = self.io.open(w, **fdopen_kwargs) t.start() signal.alarm(1) # Fill the pipe enough that the write will be blocking. # It will be interrupted by the timer armed above. Since the # other thread has read one byte, the low-level write will # return with a successful (partial) result rather than an EINTR. # The buffered IO layer must check for pending signal # handlers, which in this case will invoke alarm_interrupt(). self.assertRaises(ZeroDivisionError, wio.write, item * (support.PIPE_MAX_SIZE // len(item) + 1)) t.join() # We got one byte, get another one and check that it isn't a # repeat of the first one. read_results.append(os.read(r, 1)) self.assertEqual(read_results, [bytes[0:1], bytes[1:2]]) finally: os.close(w) os.close(r) # This is deliberate. If we didn't close the file descriptor # before closing wio, wio would try to flush its internal # buffer, and block again. try: wio.close() except IOError as e: if e.errno != errno.EBADF: raise def test_interrupted_write_unbuffered(self): self.check_interrupted_write(b"xy", b"xy", mode="wb", buffering=0) def test_interrupted_write_buffered(self): self.check_interrupted_write(b"xy", b"xy", mode="wb") def test_interrupted_write_text(self): self.check_interrupted_write("xy", b"xy", mode="w", encoding="ascii") def check_reentrant_write(self, data, **fdopen_kwargs): def on_alarm(*args): # Will be called reentrantly from the same thread wio.write(data) 1//0 signal.signal(signal.SIGALRM, on_alarm) r, w = os.pipe() wio = self.io.open(w, **fdopen_kwargs) try: signal.alarm(1) # Either the reentrant call to wio.write() fails with RuntimeError, # or the signal handler raises ZeroDivisionError. with self.assertRaises((ZeroDivisionError, RuntimeError)) as cm: while 1: for i in range(100): wio.write(data) wio.flush() # Make sure the buffer doesn't fill up and block further writes os.read(r, len(data) * 100) exc = cm.exception if isinstance(exc, RuntimeError): self.assertTrue(str(exc).startswith("reentrant call"), str(exc)) finally: wio.close() os.close(r) def test_reentrant_write_buffered(self): self.check_reentrant_write(b"xy", mode="wb") def test_reentrant_write_text(self): self.check_reentrant_write("xy", mode="w", encoding="ascii") def check_interrupted_read_retry(self, decode, **fdopen_kwargs): """Check that a buffered read, when it gets interrupted (either returning a partial result or EINTR), properly invokes the signal handler and retries if the latter returned successfully.""" r, w = os.pipe() fdopen_kwargs["closefd"] = False def alarm_handler(sig, frame): os.write(w, b"bar") signal.signal(signal.SIGALRM, alarm_handler) try: rio = self.io.open(r, **fdopen_kwargs) os.write(w, b"foo") signal.alarm(1) # Expected behaviour: # - first raw read() returns partial b"foo" # - second raw read() returns EINTR # - third raw read() returns b"bar" self.assertEqual(decode(rio.read(6)), "foobar") finally: rio.close() os.close(w) os.close(r) def test_interrupterd_read_retry_buffered(self): self.check_interrupted_read_retry(lambda x: x.decode('latin1'), mode="rb") def test_interrupterd_read_retry_text(self): self.check_interrupted_read_retry(lambda x: x, mode="r") @unittest.skipUnless(threading, 'Threading required for this test.') def check_interrupted_write_retry(self, item, **fdopen_kwargs): """Check that a buffered write, when it gets interrupted (either returning a partial result or EINTR), properly invokes the signal handler and retries if the latter returned successfully.""" select = support.import_module("select") # A quantity that exceeds the buffer size of an anonymous pipe's # write end. N = support.PIPE_MAX_SIZE r, w = os.pipe() fdopen_kwargs["closefd"] = False # We need a separate thread to read from the pipe and allow the # write() to finish. This thread is started after the SIGALRM is # received (forcing a first EINTR in write()). read_results = [] write_finished = False def _read(): while not write_finished: while r in select.select([r], [], [], 1.0)[0]: s = os.read(r, 1024) read_results.append(s) t = threading.Thread(target=_read) t.daemon = True def alarm1(sig, frame): signal.signal(signal.SIGALRM, alarm2) signal.alarm(1) def alarm2(sig, frame): t.start() signal.signal(signal.SIGALRM, alarm1) try: wio = self.io.open(w, **fdopen_kwargs) signal.alarm(1) # Expected behaviour: # - first raw write() is partial (because of the limited pipe buffer # and the first alarm) # - second raw write() returns EINTR (because of the second alarm) # - subsequent write()s are successful (either partial or complete) self.assertEqual(N, wio.write(item * N)) wio.flush() write_finished = True t.join() self.assertEqual(N, sum(len(x) for x in read_results)) finally: write_finished = True os.close(w) os.close(r) # This is deliberate. If we didn't close the file descriptor # before closing wio, wio would try to flush its internal # buffer, and could block (in case of failure). try: wio.close() except IOError as e: if e.errno != errno.EBADF: raise def test_interrupterd_write_retry_buffered(self): self.check_interrupted_write_retry(b"x", mode="wb") def test_interrupterd_write_retry_text(self): self.check_interrupted_write_retry("x", mode="w", encoding="latin1") class CSignalsTest(SignalsTest): io = io class PySignalsTest(SignalsTest): io = pyio # Handling reentrancy issues would slow down _pyio even more, so the # tests are disabled. test_reentrant_write_buffered = None test_reentrant_write_text = None def test_main(): tests = (CIOTest, PyIOTest, CBufferedReaderTest, PyBufferedReaderTest, CBufferedWriterTest, PyBufferedWriterTest, CBufferedRWPairTest, PyBufferedRWPairTest, CBufferedRandomTest, PyBufferedRandomTest, StatefulIncrementalDecoderTest, CIncrementalNewlineDecoderTest, PyIncrementalNewlineDecoderTest, CTextIOWrapperTest, PyTextIOWrapperTest, CMiscIOTest, PyMiscIOTest, CSignalsTest, PySignalsTest, ) # Put the namespaces of the IO module we are testing and some useful mock # classes in the __dict__ of each test. mocks = (MockRawIO, MisbehavedRawIO, MockFileIO, CloseFailureIO, MockNonBlockWriterIO, MockRawIOWithoutRead) all_members = io.__all__ + ["IncrementalNewlineDecoder"] c_io_ns = dict((name, getattr(io, name)) for name in all_members) py_io_ns = dict((name, getattr(pyio, name)) for name in all_members) globs = globals() c_io_ns.update((x.__name__, globs["C" + x.__name__]) for x in mocks) py_io_ns.update((x.__name__, globs["Py" + x.__name__]) for x in mocks) # Avoid turning open into a bound method. py_io_ns["open"] = pyio.OpenWrapper for test in tests: if test.__name__.startswith("C"): for name, obj in c_io_ns.items(): setattr(test, name, obj) elif test.__name__.startswith("Py"): for name, obj in py_io_ns.items(): setattr(test, name, obj) support.run_unittest(*tests) if __name__ == "__main__": test_main()
the-stack_0_23819
from __future__ import absolute_import, unicode_literals import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(PROJECT_DIR) # Base URL to use when referring to full URLs within the Wagtail admin backend - # e.g. in notification emails. Don't include '/admin' or a trailing slash BASE_URL = 'http://localhost:8019' # Django base settings. # https://docs.djangoproject.com/en/2.2/ref/settings/ # Check if a setting fits into a more specific partial before adding it here. INSTALLED_APPS = [ 'wagtail_advanced_form_builder', 'build_test', 'wagtailextraicons', 'wagtail.contrib.forms', 'wagtail.contrib.redirects', 'wagtail.embeds', 'wagtail.sites', 'wagtail.users', 'wagtail.snippets', 'wagtail.documents', 'wagtail.images', 'wagtail.search', 'wagtail.admin', 'wagtail.core', 'wagtail.contrib.modeladmin', 'wagtail.contrib.settings', 'wagtail.contrib.routable_page', 'modelcluster', 'taggit', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sitemaps', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_extensions', ] MIDDLEWARE = [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'wagtail.contrib.redirects.middleware.RedirectMiddleware', ] ROOT_URLCONF = 'build_test.urls' WSGI_APPLICATION = 'build_test.wsgi.application' # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Pacific/Auckland' USE_I18N = True USE_L10N = True USE_TZ = True SESSION_ENGINE = 'django.contrib.sessions.backends.cache' EMAIL_BACKEND = 'build_test.backends.mail_backend.DevEmailBackend' EMAIL_HOST = '127.0.0.1' EMAIL_PORT = 1025 DEBUG = True ALLOWED_HOSTS = [ '*' ] MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] STATICFILES_DIRS = [ os.path.join(PROJECT_DIR, 'static'), ] STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATIC_URL = '/static/' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(PROJECT_DIR, 'templates'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'wagtail.contrib.settings.context_processors.settings', ], }, }, ] WAGTAIL_SITE_NAME = 'Wagtail Advanced Form Builder Test' try: from .local import * except ImportError: pass
the-stack_0_23820
# -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright IBM Corp. 2021 # -------------------------------------------------------------------------- # Author: Olivier OUDOT, IBM Analytics, France Lab, Sophia-Antipolis """ A blackbox expression is a numerical expression for which the analytical form is not known or cannot be formulated using CP Optimizer's classical expressions. A blackbox expression is specified by giving a function that evaluates the expression at given points. Defining a blackbox function ---------------------------- A blackbox function is defined by an instance of the class :class:`~docplex.cp.blackbox.CpoBlackboxFunction` that contains: * the name of the blackbox function, auto-allocated if not given, * the number of values that are returned by the evaluation of the function, one by default, * the list of argument types, auto-determined if not given, * the implementation of the function, * optionally an argument to pass known result bounds when evaluating the function, * an indicator allowing parallel evaluation of the blackbox function, False by default. Each argument type can be given using its symbolic name string, or using its corresponding type descriptor constant object of class :class:`~docplex.cp.catalog.CpoType` listed in module :mod:`~docplex.cp.catalog`. Allowed argument types are: * 'Int' or :const:`~docplex.cp.catalog.Type_Int` * 'IntVar' or :const:`~docplex.cp.catalog.Type_IntVar` * 'IntExpr' or :const:`~docplex.cp.catalog.Type_IntExpr` * 'Float' or :const:`~docplex.cp.catalog.Type_Float` * 'FloatExpr' or :const:`~docplex.cp.catalog.Type_FloatExpr` * 'IntervalVar' or :const:`~docplex.cp.catalog.Type_IntervalVar` * 'SequenceVar' or :const:`~docplex.cp.catalog.Type_SequenceVar` * 'IntArray' or :const:`~docplex.cp.catalog.Type_IntArray` * 'IntVarArray' or :const:`~docplex.cp.catalog.Type_IntVarArray` * 'IntExprArray' or :const:`~docplex.cp.catalog.Type_IntExprArray` * 'FloatArray' or :const:`~docplex.cp.catalog.Type_FloatArray` * 'FloatExprArray' or :const:`~docplex.cp.catalog.Type_FloatExprArray` * 'IntervalVarArray' or :const:`~docplex.cp.catalog.Type_IntervalVarArray` * 'SequenceVarArray' or :const:`~docplex.cp.catalog.Type_SequenceVarArray` If not given, the list of argument types is automatically computed as the smallest list of types that are common to all the references to the blackbox function in the model. Evaluating a blackbox function ------------------------------ The implementation of the function is a function or a lambda expression that takes as many parameters as declared in the list of argument types. Each argument value is fixed and is implemented, for each argument type, as described below: * 'Int': integer constant * 'IntVar': integer constant * 'IntExpr': integer constant * 'Float': float constant * 'FloatExpr': float constant * 'IntervalVar': interval variable solution value, named tuple containing start, end and size of the variable, * 'SequenceVar': sequence variable solution value, ordered list of interval variables in the sequence, * 'IntArray': list of integer constants * 'IntVarArray': list of integer constants * 'IntExprArray': list of integer constants * 'FloatArray': list of float constants * 'FloatExprArray': list of float constants * 'IntervalVarArray': list of interval variable solution value * 'SequenceVarArray': list of sequence variable solution value The function may return: * one or several float results in a list, * a single number value, automatically converted in a list with this single value, * a boolean value, converted as an integer 0 or 1 put in a single value list, * *None*, if the function has no solution for these arguments, * an exception, if an error occured during the evaluation. If an exception is thrown, it is propagated to the solver that rethrow an exception to exit from the solve. As the evaluation of the blackbox function is required by the different CPO workers, multiple evaluation requests may happen concurrently. As Python does not support real multi-threading (see Global Interpreter Lock here: https://wiki.python.org/moin/GlobalInterpreterLock), concurrent processing may introduce overhead, or computation problems if the blackbox evaluation uses services of libraries that are not designed to run concurrently. By default, blackbox function evaluation is then executed in mutual exclusion, but this can be changed by setting the parameter *parallel* to True, or using method :meth:`~CpoBlackboxFunction.set_parallel_eval` To avoid calling the blackbox function multiple times with the same parameters, the solver can use a cache that may be configured at the declaration of the blackbox. This cache is by default local to each call instance of the blackbox function in the model, in case the evaluation of the function depends on the calling context and may return different results with the same parameters depending where the call is placed in the model. Using a blackbox function in a model ------------------------------------ Once defined, the blackbox function can be used in a model simply by calling the blackbox function descriptor with appropriate model expressions as arguments. Following is a simple example that shows how to use a blackbox function with 2 parameters: :: bbf = CpoBlackboxFunction(lambda x, y: x + y) mdl = CpoModel() v1 = integer_var(0, 10, "V1") v2 = integer_var(0, 10, "V2") mdl.add(bbf(v1, v2) == 5) If the blackbox function returns multiple values, using the function in a model is done in two steps, as follows: :: bbf = CpoBlackboxFunction(impl=lambda x, y: (x + y, x - y), dimension=2) mdl = CpoModel() v1 = integer_var(0, 10, "V1") v2 = integer_var(0, 10, "V2") a, b = bbf(v1, v2) mdl.add(a + b == 4) Note that not all returned expressions need to be used in the model. Detailed description -------------------- """ from docplex.cp.catalog import * from docplex.cp.expression import build_cpo_expr, CpoFunctionCall from docplex.cp.utils import * from itertools import count #----------------------------------------------------------------------------- # Constants #----------------------------------------------------------------------------- # List of possible argument types (DO NOT CHANGE AS ENCODING DEPENDS ON IT) ARGUMENT_TYPES = (Type_Int, Type_IntVar, Type_IntExpr, Type_Float, Type_FloatExpr, Type_IntervalVar, Type_SequenceVar, Type_IntArray, Type_IntVarArray, Type_IntExprArray, Type_FloatArray, Type_FloatExprArray, Type_IntervalVarArray, Type_SequenceVarArray,) # Encoding of blackbox types into integer (zero reserved) BLACKBOX_ARGUMENT_TYPES_ENCODING = {t: (i + 1) for i, t in enumerate(ARGUMENT_TYPES)} # Set of all argument types _ARG_TYPES_SET = set(ARGUMENT_TYPES) # Build allowed types per name, ignoring case. Key is type name in lower case, value is type descriptor. _ARG_TYPES_DICT = {t.get_name().lower(): t for t in ARGUMENT_TYPES} #----------------------------------------------------------------------------- # Classes #----------------------------------------------------------------------------- class CpoBlackboxFunction(object): """ This class represents the descriptor of a blackbox function. A blackbox function is defined by: * a name, that must not be equal to an existing modeling operation, * the number of float values it returns (the dimension), * the list argument types, * the implementation of the function, that evaluates the result from a list of fully evaluated arguments. * a parameter allowing to pass the known bounds of the result. Each argument type can be given using its symbolic name string, or using its corresponding type descriptor constant object of class :class:`~docplex.cp.catalog.CpoType` listed in module :mod:`~docplex.cp.catalog`. Allowed argument types are: * 'Int' or :const:`~docplex.cp.catalog.Type_Int` * 'IntVar' or :const:`~docplex.cp.catalog.Type_IntVar` * 'IntExpr' or :const:`~docplex.cp.catalog.Type_IntExpr` * 'Float' or :const:`~docplex.cp.catalog.Type_Float` * 'FloatExpr' or :const:`~docplex.cp.catalog.Type_FloatExpr` * 'IntervalVar' or :const:`~docplex.cp.catalog.Type_IntervalVar` * 'SequenceVar' or :const:`~docplex.cp.catalog.Type_SequenceVar` * 'IntArray' or :const:`~docplex.cp.catalog.Type_IntArray` * 'IntVarArray' or :const:`~docplex.cp.catalog.Type_IntVarArray` * 'IntExprArray' or :const:`~docplex.cp.catalog.Type_IntExprArray` * 'FloatArray' or :const:`~docplex.cp.catalog.Type_FloatArray` * 'FloatExprArray' or :const:`~docplex.cp.catalog.Type_FloatExprArray` * 'IntervalVarArray' or :const:`~docplex.cp.catalog.Type_IntervalVarArray` * 'SequenceVarArray' or :const:`~docplex.cp.catalog.Type_SequenceVarArray` """ __slots__ = ('name', # Name of the blackbox function, None for auto-allocation 'dimension', # Number of result values 'argtypes', # List of argument types 'atypes_given', # Indicates that argument types where given at function declaration 'impl', # Implementation of the function 'bounds_param', # Name of the bounds parameter 'cachesize', # Size of the function call cache 'globalcache', # Global cache indicator 'operation', # Corresponding operation descriptor 'eval_count', # Number of evaluation resuests 'auto', # Auto-created blackbox (for smart parsing) 'eval_mutex', # Lock to ensure mutual exclusion of function evaluation ) def __init__(self, impl=None, dimension=1, argtypes=None, name=None, parallel=False, bounds_parameter=None, cachesize=-1, globalcache=False): """ **Constructor** The list of function argument types is optional. If not given, it is automatically determined as the most common types of the expression arguments used in its different references in the model. Function implementation is optional. This allows to parse a CPO file that contains references to blackbox functions(s), which requires to register them in the model prior to parse it. However, the model will not be able to be solved. Bound parameter is optional. If defined, the known bounds of the function result is passed to the function implementation using this named parameter. If the dimension of the function is 1, the bounds is a simple tuple containing lower and upper bounds. Otherwise, the bounds is a list of tuples, one for each returned value. If unknown, bounds are set to -inf or inf (float("inf") in Python). The name of the function is optional. If not given, a name is automatically allocated when solving the model. If given, the name of the function must be a symbol (only letters and digits, starting by a letter) that is not already used as the name of an existing modeling function. A cache can be used by the solver to avoid calling the blackbox function multiple times with the same values. By default (cachesize=-1), the size of the cache is automatically determined by the solver, but it can be forced to a given value, or zero for no cache at all. By default, this cache local to each call instance of the blackbox function in the model, in case the evaluation of the function depends on the calling context and may return different results with the same parameters depending where the call is placed in the model. The parameter *globalcache* can be set to *True* if the same cache can be used for all call instances. Args: impl: (Optional) Implementation of the function dimension: (Optional) Number of float values that are returned by the function. Default is 1. argtypes: (Optional) List of argument types or type names. name: (Optional) Name of the function, restricted to symbol. parallel: (Optional) Indicates that the blackbox function evaluation is allowed concurrently. Default is False. bounds_parameter: (Optional) Name of the parameter in which known return values bounds can be set. Default is None. cachesize: (Optional) Indicates that the blackbox function evaluation is allowed concurrently. Default value is -1, indicating that the cache is managed by the solver with default settings. globalcache: (Optional) Indicates that the same cache can be used for all blackbox function call instances in the model. Default is False. """ # Check dimension if dimension is not None: assert is_int(dimension) and dimension >= 1, "Blackbox function dimension should be greater than zero" self.dimension = dimension self.bounds_param = bounds_parameter # Check argument types if argtypes is None: self.atypes_given = False self.argtypes = None else: self.atypes_given = True self.argtypes = [] for t in argtypes: if t in _ARG_TYPES_SET: at = t else: # Consider t as a name and search in types map at = _ARG_TYPES_DICT.get(str(t).lower()) if at is None: raise AssertionError("Argument type '{}' is not allowed as blackbox function argument".format(t)) self.argtypes.append(at) # Check function name if name is not None: if name in ALL_OPERATIONS_PER_NAME: raise AssertionError("Function name {} is already used for a standard modeling operation".format(name)) self.name = name # Store attributes self.impl = impl self.cachesize = cachesize self.globalcache = globalcache self.eval_count = 0 self.auto = (dimension is None) self.set_parallel_eval(parallel) # Build operation descriptor if self.atypes_given: self.operation = CpoOperation(name, name, None, -1, (CpoSignature(Type_FloatExprArray, self.argtypes),) ) else: self.operation = CpoOperation(name, name, None, -1, () ) def set_name(self, nm): """ Set the name of the blackbox function Args: nm: Name of the blackbox function """ self.name = nm def get_name(self): """ Get the name of the blackbox function Returns: Name of the blackbox function """ return self.name def set_dimension(self, dim): """ Set the dimension of this blackbox function, i.e. the number of values that it returns. Args: dim: Number of result values (size of the result list or array) """ self.dimension = dim def get_dimension(self): """ Get the dimension of this blackbox function Returns: Number of result values (size of the result list or array) """ return self.dimension def set_implementation(self, impl): """ Set the blackbox function implementation Args: impl: Blackbox function implementation """ self.impl = impl def get_implementation(self): """ Get the blackbox function implementation Returns: Blackbox function implementation """ return self.impl def has_implementation(self): """ Get if the blackbox function has an implementation Returns: True if the blackbox function has an implementation """ return self.impl is not None def get_arg_types(self): """ Get the list of argument types Returns: List of argument types, objects of class :class:`~docplex.cp.catalog.CpoType` """ return self.argtypes def set_parallel_eval(self, par): """ Set parallel evaluation enablement indicator. Args: par: Parallel evaluation indicator. """ self.eval_mutex = None if par else threading.Lock() def is_parallel_eval(self): """ Check if parallel evaluation is allowed. Returns: True if parallel evaluation is allowed, false oherwise """ return self.eval_mutex is None def set_cache_size(self, size): """ Set the size of evaluation cache. Args: size: Cache size, -1 for default, 0 for none. """ self.cachesize = size def get_cache_size(self): """ Get the size of the evaluation cache Returns: Evaluation cache size, -1 for default, 0 for none. """ return self.cachesize def set_global_cache(self, glob): """ Set the global cache indicator. When set, there is a single evaluation cache for all the blackbox function call instances. Args: glob: Global cache indicator """ self.globalcache = glob def is_global_cache(self): """ Check if a global cache has been set. Returns: True if there is a global cache for this function. """ return self.globalcache def get_eval_count(self): """ Get the number of times this blackbox function has been evaluated Returns: number of times this blackbox function has been evaluated """ return self.eval_count def reset_eval_count(self): """ Reset the number of times this blackbox function has been evaluated """ self.eval_count = 0 def build_model_call(self, *args): """ Build a model expression representing a call to this blackbox function. Args: *args: List of expressions that are arguments of the function Returns: List model expressions representing access to the unitary result values, or single result if dimension is 1. """ # Build argument expressions argexprs = [build_cpo_expr(a) for a in args] # Update/check argument types self._update_check_arg_types(argexprs) # Build function call expression expr = CpoBlackboxFunctionCall(self, argexprs) # Build list of result access expressions res = tuple(CpoFunctionCall(Oper_eval, Type_FloatExpr, (expr, build_cpo_expr(i))) for i in range(self.dimension)) return res if self.dimension > 1 else res[0] def __call__(self, *args): """ Build a model expression representing a call to this blackbox function. Args: *args: List of expressions that are arguments of the function Returns: List model expressions representing access to the unitary result values, or single result if dimension is 1. """ return self.build_model_call(*args) def __str__(self): """ Build a string representing this blackbox function. Returns: String representing this blackbox function. """ name = "Anonymous" if self.name is None else self.name argtypes = "..." if self.argtypes is None else ', '.join(t.get_name() for t in self.argtypes) return "{}({}): {}".format(self.name, argtypes, self.dimension) def _eval_function(self, rbnds, *args): """ Evaluate the function from the list of parameter values Args: rbnds: Known result bounds, None in unknown *args: List of parameter values Returns: List of result float values """ #print("Evaluate blackbox function {}{}".format(self.name, args)) # Increment number of evaluation requests self.eval_count += 1 # Get and check arguments assert self.argtypes is not None, "Blackbox function '{}' argument types are unknown".format(self.name) if len(args) != len(self.argtypes): raise CpoException("Evaluation of blackbox function '{}' with wrong number of parameters {} when {} are expected.".format(self.name, len(args), len(self.argtypes))) # Build associated arguments kwargs = {} if (rbnds is not None) and (self.bounds_param is not None): if self.dimension == 1: rbnds = rbnds[0] kwargs[self.bounds_param] = rbnds # Evaluate function if self.impl is None: raise CpoException("Blackbox function '{}' implementation is not provided".format(self.name)) res = self.impl(*args, **kwargs) # Check single result (separatly to process the case of zero) if is_number(res): assert self.dimension == 1, "Evaluation of blackbox function '{}' returned 1 result values instead of {} that have been declared.".format(self.name, self.dimension) res = (res,) elif is_bool(res): assert self.dimension == 1, "Evaluation of blackbox function '{}' returned 1 result values instead of {} that have been declared.".format(self.name, self.dimension) res = (int(res),) # Check result (None is allowed) elif res: assert is_array(res), "Evaluation of blackbox function '{}' should return a tuple or a list, not {}.".format(self.name, type(res)) assert len(res) == self.dimension, "Evaluation of blackbox function '{}' returned {} result values instead of {} that have been declared.".format(self.name, len(res), self.dimension) assert all(is_number(v) for v in res), "Evaluation of blackbox function '{}' result should contain only numbers.".format(self.name) #print("{}{} = {}".format(self.name, args, res)) return res def eval(self, *args): """ Evaluate the function from the list of parameter values This function evaluates the blackbox function without providing bounds. Args: *args: List of parameter values Returns: List of result float values """ return self._eval_function(None, *args) def _update_check_arg_types(self, argexprs): """ Update function argument types from a list of argument expressions Args: argexprs: List of expressions that are arguments of the function """ # Check if argument types already known if self.argtypes is None: # Retrieve argument types from expressions self.argtypes = [_get_argument_type(a) for a in argexprs] # Set new signature in operation self.operation.signatures = (CpoSignature(Type_FloatExprArray, self.argtypes),) else: # Build and check list or arguments assert len(argexprs) == len(self.argtypes), "This blackbox function should be called with {} arguments".format(len(self.argtypes)) if self.atypes_given: for i, a, t in zip(count(), argexprs, self.argtypes): assert _get_argument_type(a).is_kind_of(t), "The argument {} of blackbox function '{}' should be a {}".format(i + 1, self.name, t.get_public_name()) else: tchanged = False for i, a, t in zip(count(), argexprs, self.argtypes): # Determine most common type ct = _get_argument_type(a).get_common_type(t) assert ct is not None, "Argument type {} is not compatible with already used type {}".format(a.type, t) assert ct in _ARG_TYPES_SET, "Common expression type {} is not allowed as blackbox function argument".format(ct) if ct != t: self.argtypes[i] = ct tchanged = True # Set new signature in operation if type changed if tchanged: self.operation.signatures = (CpoSignature(Type_FloatExprArray, self.argtypes),) def _update_dimension(self, anx): """ Update blackbox dimension with an evaluation index Args: anx: Evaluation index """ if (self.dimension is None) or (self.dimension <= anx): self.dimension = anx + 1 class CpoBlackboxFunctionCall(CpoFunctionCall): """ This class represent all model expression nodes that call a blackbox function. """ __slots__ = ('blackbox', # Blackbox function descriptor ) def __init__(self, bbf, oprnds): """ **Constructor** Args: bbf: Blackbox function descriptor oprnds: List of operand expressions. """ assert isinstance(bbf, CpoBlackboxFunction), "Argument 'bbf' should be a CpoBlackboxFunction" super(CpoBlackboxFunctionCall, self).__init__(bbf.operation, Type_Blackbox, oprnds) self.blackbox = bbf def _equals(self, other): """ Checks the equality of this expression with another object. This particular method just checks local attributes, but does not check recursively children if any. Recursion is implemented by method equals() that uses a self-managed stack to avoid too many recursive calls that may lead to an exception 'RuntimeError: maximum recursion depth exceeded'. Args: other: Other object to compare with. Returns: True if 'other' is semantically identical to this object, False otherwise. """ return super(CpoBlackboxFunctionCall, self)._equals(other) and (self.blackbox == other.blackbox) #----------------------------------------------------------------------------- # Private functions #----------------------------------------------------------------------------- # Dictionary of type mapping to accepted type _ARG_TYPE_MAPPING = {t: t for t in ARGUMENT_TYPES} _ARG_TYPE_MAPPING.update( { Type_Bool: Type_IntExpr, Type_BoolExpr: Type_IntExpr, Type_BoolArray: Type_IntArray, Type_BoolExprArray: Type_IntExprArray, }) def _get_argument_type(a): """ Get the blackbox argument type corresponding to a given argument type Args: a: Argument value Returns: Authorized blackbox argument type Raises: CpoException if given argument type is not supported. """ at = a.type nt = _ARG_TYPE_MAPPING.get(at) if nt is None: raise CpoException("Expression type {} is not allowed as blackbox function argument".format(at)) return nt
the-stack_0_23822
import logging import os import threading lock = threading.Lock() from firebase_admin import firestore from google.cloud import firestore FORMAT = "%(levelname)s %(asctime)s %(funcName)s() %(lineno)i %(message)s" formatter = logging.Formatter(FORMAT) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logger = logging.getLogger(__name__) logger.addHandler(stream_handler) class JslFirebaseUtil: __db = None __instance = None def __init__(self, credentials_path, log_level): if self.__instance is None: JslFirebaseUtil.__new__(self, credentials_path, log_level) def __new__(cls, credentials_path, log_level): if not cls.__instance: lock.acquire() if not cls.__instance: cls.__instance = super(JslFirebaseUtil, cls).__new__(cls) cls.initialize_firebase_client(cls, credentials_path) logger.setLevel(log_level) logger.info("Initialization of JslFirebaseUtil is successful") lock.release() return cls.__instance def initialize_firebase_client(self, credentials_path=None): if credentials_path: os.environ[ "GOOGLE_APPLICATION_CREDENTIALS"] = credentials_path self.db = firestore.Client() logger.info("Firebase client is initialized") else: logger.error(f"Credentials Path can not be empty {credentials_path}") def clear_all_collection(self, collection_name): deleted_count = 0 try: if collection_name: collection_reference = self.db.collection(collection_name) docs = collection_reference.stream() for doc in docs: logger.info(f'Deleting doc {doc.id} => {doc.to_dict()}') doc.reference.delete() deleted_count += 1 else: logger.error(f"{collection_name}: collection name can not be blank") except Exception as e: logger.error(f"Exception while clearing all docs inf{collection_name} WIth exception message: {e.args}") logger.info(f"Total deleted records: {deleted_count}") def delete_document_collection_with_contains(self, collection_name, limit=10, string_contains=None): deleted_count = 0 try: if collection_name and string_contains: collection_reference = self.db.collection(collection_name) docs = collection_reference.limit(limit).stream() for doc in docs: if string_contains in str(doc.to_dict()): logger.info(f'Deleting doc {doc.id} => {doc.to_dict()}') doc.reference.delete() deleted_count += 1 else: logger.error(f"{collection_name}:{string_contains} can not be blank") except Exception as e: logger.error(f"Exception while clearing all docs in {collection_name} With exception message: {e.args}") logger.info(f"Total deleted records: {deleted_count}") def read_document_as_dict(self, collection_name, id=None): try: if collection_name and id: collection_reference = self.db.collection(collection_name) doc = collection_reference.document(id) return doc.get().to_dict() else: logger.error(f"{collection_name}:{id} can not be blank") except Exception as e: logger.error( f"Exception while read_document in {collection_name} with Id; {id} With exception message: {e.args}")
the-stack_0_23823
# # ImageViewJpw.py -- Module for a Ginga FITS viewer in a Jupyter web notebook. # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # """ This example illustrates using a Ginga as the driver of a Jupyter web widget. REQUIREMENTS: To use this code you will need the "ipywidgets" and "ipyevents" python modules installed. These are easily installed via: $ pip install ipyevents $ jupyter nbextension enable --py --sys-prefix ipyevents or via conda: $ conda install -c conda-forge ipyevents Basic usage in a Jupyter notebook: import ipywidgets as widgets # create a Jupyter image that will be our display surface # format can be 'jpeg' or 'png'; specify width and height to set viewer size jp_img = widgets.Image(format='jpeg', width=500, height=500) # Boilerplate to create a Ginga viewer connected to this widget # this could be simplified by creating a class that created viewers # as a factory. from ginga.misc.log import get_logger logger = get_logger("v1", log_stderr=True, level=40) from ginga.web.jupyterw.ImageViewJpw import EnhancedCanvasView v1 = EnhancedCanvasView(logger=logger) v1.set_widget(jp_img) bd = v1.get_bindings() bd.enable_all(True) # You can now build a GUI with the image widget and other Jupyter # widgets. Here we just show the image widget. v1.embed() """ from ipyevents import Event as EventListener from ginga import AstroImage from ginga import Mixins, Bindings from ginga.util.toolbox import ModeIndicator try: # See if we have aggdraw module--best choice from ginga.aggw.ImageViewAgg import ImageViewAgg as ImageView except ImportError: # fall back to pillow if aggdraw not available from ginga.pilw.ImageViewPil import ImageViewPil as ImageView from ginga.web.jupyterw import JpHelp class ImageViewJpw(ImageView): def __init__(self, logger=None, rgbmap=None, settings=None): ImageView.__init__(self, logger=logger, rgbmap=rgbmap, settings=settings) self.jp_img = None self.jp_evt = None # Format 'png' is ok with 'RGBA', but 'jpeg' only works with 'RGB' self.rgb_order = 'RGB' self._defer_task = None self.msgtask = None def set_widget(self, jp_img): """Call this method with the Jupyter image widget (image_w) that will be used. """ self.jp_img = jp_img # TODO: need configure (resize) event callback # see reschedule_redraw() method self._defer_task = JpHelp.Timer() self._defer_task.add_callback('expired', lambda timer: self.delayed_redraw()) self.msgtask = JpHelp.Timer() self.msgtask.add_callback('expired', lambda timer: self.onscreen_message(None)) # for some reason these are stored as strings! wd, ht = int(jp_img.width), int(jp_img.height) self.configure_surface(wd, ht) def get_widget(self): return self.jp_img def update_image(self): fmt = self.jp_img.format web_img = self.get_rgb_image_as_bytes(format=fmt) # this updates the model, and then the Jupyter image(s) self.jp_img.value = web_img def reschedule_redraw(self, time_sec): self._defer_task.stop() self._defer_task.start(time_sec) def configure_window(self, width, height): self.configure_surface(width, height) def _resize_cb(self, event): self.configure_window(event.width, event.height) def set_cursor(self, cursor): # TODO pass def onscreen_message(self, text, delay=None, redraw=True): if self.jp_img is None: return self.msgtask.stop() self.set_onscreen_message(text, redraw=redraw) if delay is not None: self.msgtask.start(delay) class ImageViewEvent(ImageViewJpw): def __init__(self, logger=None, rgbmap=None, settings=None): ImageViewJpw.__init__(self, logger=logger, rgbmap=rgbmap, settings=settings) self._button = 0 # maps EventListener events to callback handlers self._evt_dispatch = { 'mousedown': self.button_press_event, 'mouseup': self.button_release_event, 'mousemove': self.motion_notify_event, 'wheel': self.scroll_event, 'mouseenter': self.enter_notify_event, 'mouseleave': self.leave_notify_event, 'keydown': self.key_press_event, 'keyup': self.key_release_event, } # mapping from EventListener key events to ginga key events self._keytbl = { 'shiftleft': 'shift_l', 'shiftright': 'shift_r', 'controlleft': 'control_l', 'controlright': 'control_r', 'altleft': 'alt_l', 'altright': 'alt_r', 'osleft': 'super_l', 'osright': 'super_r', 'contextmenu': 'menu_r', 'backslash': 'backslash', 'space': 'space', 'escape': 'escape', 'enter': 'return', 'tab': 'tab', 'arrowright': 'right', 'arrowleft': 'left', 'arrowup': 'up', 'arrowdown': 'down', 'pageup': 'page_up', 'pagedown': 'page_down', 'f1': 'f1', 'f2': 'f2', 'f3': 'f3', 'f4': 'f4', 'f5': 'f5', 'f6': 'f6', 'f7': 'f7', 'f8': 'f8', 'f9': 'f9', 'f10': 'f10', 'f11': 'f11', 'f12': 'f12', } self._keytbl2 = { '`': 'backquote', '"': 'doublequote', "'": 'singlequote', } # Define cursors for pick and pan #hand = openHandCursor() hand = 'fleur' self.define_cursor('pan', hand) cross = 'cross' self.define_cursor('pick', cross) for name in ('motion', 'button-press', 'button-release', 'key-press', 'key-release', 'drag-drop', 'scroll', 'map', 'focus', 'enter', 'leave', 'pinch', 'rotate', 'pan', 'swipe', 'tap'): self.enable_callback(name) def set_widget(self, jp_imgw): """Call this method with the Jupyter image widget (image_w) that will be used. """ super(ImageViewEvent, self).set_widget(jp_imgw) self.jp_evt = EventListener(source=jp_imgw) self.jp_evt.watched_events = [ 'keydown', 'keyup', 'mouseenter', 'mouseleave', 'mousedown', 'mouseup', 'mousemove', 'wheel', 'contextmenu' ] self.jp_evt.prevent_default_action = True self.jp_evt.on_dom_event(self._handle_event) self.logger.info("installed event handlers") return self.make_callback('map') def _handle_event(self, event): # TODO: need focus events and maybe a map event # TODO: Set up widget as a drag and drop destination evt_kind = event['type'] handler = self._evt_dispatch.get(evt_kind, None) if handler is not None: return handler(event) return False def transkey(self, keycode, keyname=None): keycode = str(keycode).lower() if keyname is None: keyname = keycode self.logger.debug("key code in jupyter '%s'" % (keycode)) res = self._keytbl.get(keycode, None) if res is None: res = self._keytbl2.get(keyname, keyname) return res def get_keyTable(self): return self._keytbl def focus_event(self, event, has_focus): return self.make_callback('focus', has_focus) def enter_notify_event(self, event): enter_focus = self.t_.get('enter_focus', False) if enter_focus: # TODO: set focus on canvas pass return self.make_callback('enter') def leave_notify_event(self, event): self.logger.debug("leaving widget...") return self.make_callback('leave') def key_press_event(self, event): keyname = self.transkey(event['code'], keyname=event['key']) self.logger.debug("key press event, key=%s" % (keyname)) return self.make_ui_callback('key-press', keyname) def key_release_event(self, event): keyname = self.transkey(event['code'], keyname=event['key']) self.logger.debug("key release event, key=%s" % (keyname)) return self.make_ui_callback('key-release', keyname) def button_press_event(self, event): x, y = event['arrayX'], event['arrayY'] self.last_win_x, self.last_win_y = x, y button = 0 button |= 0x1 << event['button'] self._button = button self.logger.debug("button event at %dx%d, button=%x" % (x, y, button)) data_x, data_y = self.check_cursor_location() return self.make_ui_callback('button-press', button, data_x, data_y) def button_release_event(self, event): x, y = event['arrayX'], event['arrayY'] self.last_win_x, self.last_win_y = x, y button = 0 button |= 0x1 << event['button'] self._button = 0 self.logger.debug("button release at %dx%d button=%x" % (x, y, button)) data_x, data_y = self.check_cursor_location() return self.make_ui_callback('button-release', button, data_x, data_y) def motion_notify_event(self, event): button = self._button x, y = event['arrayX'], event['arrayY'] self.last_win_x, self.last_win_y = x, y self.logger.debug("motion event at %dx%d, button=%x" % (x, y, button)) data_x, data_y = self.check_cursor_location() return self.make_ui_callback('motion', button, data_x, data_y) def scroll_event(self, event): x, y = event['arrayX'], event['arrayY'] self.last_win_x, self.last_win_y = x, y dx, dy = event['deltaX'], event['deltaY'] if (dx != 0 or dy != 0): # <= This browser gives us deltas for x and y # Synthesize this as a pan gesture event self.make_ui_callback('pan', 'start', 0, 0) self.make_ui_callback('pan', 'move', -dx, -dy) return self.make_ui_callback('pan', 'stop', 0, 0) # <= This code path should not be followed under normal # circumstances. # we leave it here in case we want to make the scroll # callback configurable in the future # TODO: calculate actual angle of direction if dy < 0: direction = 0.0 # up elif dy > 0: direction = 180.0 # down else: return False # 15 deg is standard 1-click turn for a wheel mouse num_deg = 15.0 self.logger.debug("scroll deg=%f direction=%f" % ( num_deg, direction)) data_x, data_y = self.check_cursor_location() return self.make_ui_callback('scroll', direction, num_deg, data_x, data_y) class ImageViewZoom(Mixins.UIMixin, ImageViewEvent): # class variables for binding map and bindings can be set bindmapClass = Bindings.BindingMapper bindingsClass = Bindings.ImageViewBindings @classmethod def set_bindingsClass(cls, klass): cls.bindingsClass = klass @classmethod def set_bindmapClass(cls, klass): cls.bindmapClass = klass def __init__(self, logger=None, rgbmap=None, settings=None, bindmap=None, bindings=None): ImageViewEvent.__init__(self, logger=logger, rgbmap=rgbmap, settings=settings) Mixins.UIMixin.__init__(self) self.ui_set_active(True) if bindmap is None: bindmap = ImageViewZoom.bindmapClass(self.logger) self.bindmap = bindmap bindmap.register_for_events(self) if bindings is None: bindings = ImageViewZoom.bindingsClass(self.logger) self.set_bindings(bindings) def get_bindmap(self): return self.bindmap def get_bindings(self): return self.bindings def set_bindings(self, bindings): self.bindings = bindings bindings.set_bindings(self) class CanvasView(ImageViewZoom): def __init__(self, logger=None, settings=None, rgbmap=None, bindmap=None, bindings=None): ImageViewZoom.__init__(self, logger=logger, settings=settings, rgbmap=rgbmap, bindmap=bindmap, bindings=bindings) # Needed for UIMixin to propagate events correctly self.objects = [self.private_canvas] self._mi = ModeIndicator(self) def set_canvas(self, canvas, private_canvas=None): super(CanvasView, self).set_canvas(canvas, private_canvas=private_canvas) self.objects[0] = self.private_canvas class EnhancedCanvasView(CanvasView): """ This just adds some convenience methods to the viewer for loading images, grabbing screenshots, etc. You can subclass to add new methods. """ def embed(self): """ Embed a viewer into a Jupyter notebook. """ return self.jp_img def open(self, new=1): """ Open this viewer in a new browser window or tab. """ # TBD raise Exception("Not yet implemented!") def show(self, fmt=None): """ Capture the window of a viewer. """ # force any delayed redraws # TODO: this really needs to be addressed in get_rgb_image_as_bytes() # of the various superclasses, as it affects other backends as well self.redraw_now() from IPython.display import Image if fmt is None: # what format are we using for the Jupyter image--use that fmt = self.jp_img.format return Image(data=bytes(self.get_rgb_image_as_bytes(format=fmt)), format=fmt, embed=True) def load_fits(self, filepath): """ Load a FITS file into the viewer. """ image = AstroImage.AstroImage(logger=self.logger) image.load_file(filepath) self.set_image(image) load = load_fits def load_hdu(self, hdu): """ Load an HDU into the viewer. """ image = AstroImage.AstroImage(logger=self.logger) image.load_hdu(hdu) self.set_image(image) def load_data(self, data_np): """ Load raw numpy data into the viewer. """ image = AstroImage.AstroImage(logger=self.logger) image.set_data(data_np) self.set_image(image) def add_canvas(self, tag=None): # add a canvas to the view my_canvas = self.get_canvas() DrawingCanvas = my_canvas.get_draw_class('drawingcanvas') canvas = DrawingCanvas() # enable drawing on the canvas canvas.enable_draw(True) canvas.enable_edit(True) canvas.set_drawtype(None) canvas.ui_set_active(True) canvas.set_surface(self) canvas.register_for_cursor_drawing(self) # add the canvas to the view. my_canvas.add(canvas, tag=tag) return canvas
the-stack_0_23824
#!/usr/local/bin/python3 import smtplib import time import jinja2 import threading import os import csv from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.image import MIMEImage from sshtunnel import SSHTunnelForwarder from paramiko import client from operator import itemgetter from matplotlib import pyplot as plt class ssh: client = None def __init__(self, address, username, password): print('Connecting to target node...') self.client = client.SSHClient() self.client.set_missing_host_key_policy(client.AutoAddPolicy()) self.client.connect(address, username=username, password=password, look_for_keys=False) def sendCommand(self, command, logpath): if (self.client): stdin, stdout, stderr = self.client.exec_command(command) log_output = stdout.read() stdin.flush() log_output_file = open(logpath, 'wb') log_output_file.write(log_output) log_output_file.close() else: print('Connection is not opened...') class sshThread(threading.Thread): def __init__(self, threadId, node, ip_addr, user, password): threading.Thread.__init__(self) self.threadId = threadId self.node = node self.ip_addr = ip_addr self.user = user self.password = password def run(self): print("Starting " + self.name) # Get lock to synchronize threads threadLock.acquire() connectNode(self.node, self.ip_addr, self.user, self.password) # Free lock to release next thread threadLock.release() def connectNode(node, ip_addr, user, password): command_message = 'show task resources' output_log = '/home/edruser/scripts/{}-tasklog'.format(node) connection_node = ssh(ip_addr, user, password) connection_node.sendCommand(command_message, output_log) def parseOutput(logpath, hournow, node): # Dict generator items = [] nodename = node cpu = '' facility = '' task_instance = '' cpu_used = '' cpu_alloc = '' mem_used = '' mem_alloc = '' files_used = '' files_alloc = '' status = '' hournow = hournow with open(logpath, 'r') as infile: for line in infile: if 'sessmgr' and 'I' in line: cpu = str(line.strip().split()[0]) facility = str(line.strip().split()[1]) task_instance = int(line.strip().split()[2]) cpu_used = str(line.strip().split()[3]) cpu_alloc = str(line.strip().split()[4]) mem_used = str(line.strip().split()[5]) mem_alloc = str(line.strip().split()[6]) files_used = str(line.strip().split()[7]) files_alloc = str(line.strip().split()[8]) status = str(line.strip().split()[12]) # Dict = {} # We just have to quote the keys as needed node_data = dict(nodename=nodename, cpu=cpu, facility=facility, task_instance=task_instance, cpu_used=cpu_used, cpu_alloc=cpu_alloc, mem_used=mem_used, mem_alloc=mem_alloc, files_used=files_used, files_alloc=files_alloc, status=status, hournow=hournow) items.append(node_data) # Sort list of dict, descending, by task_instance id value # and get the top 10 items_by_task_id = sorted(items, key=itemgetter('task_instance'), reverse=True) items_by_task_id_top10 = items_by_task_id[:10] return items_by_task_id_top10 def createCsv(fileinput, node_highest_dict): with open(fileinput, 'a+') as csv_infile: # append mode with read mode implied # File has been opened at this point csv_infile.seek(0) # Ensure that we are at the start of the file first_char = csv_infile.read(1) # Get the first char of the file w = csv.DictWriter(csv_infile, node_highest_dict.keys()) # Set the dict writer object if not first_char: # If first char is not found then deem as empty file w.writeheader() w.writerow(node_highest_dict) else: # non-empty file w.writerow(node_highest_dict) def sendEmail(sender, recipient, subject, html_skel, *args): # Create message container - the correct MIME type is # multipart/alternative msg = MIMEMultipart('alternative') msg['Subject'] = subject msg['From'] = sender if type(recipient) is list: msg['To'] = recipient[0] msg['Cc'] = ','.join(recipient[1:]) msg['Bcc'] = recipient[-1] else: msg['To'] = recipient msg['Cc'] = '' msg['Bcc'] = '' # Create the body of the message text = 'Please find below the top 10 SessMgr Instance ID for All Cisco SGSN/MME Nodes' # Record the MIME types of both parts # text/plain and text/html part1 = MIMEText(text, 'plain') part2 = MIMEText(html_skel, 'html') # Attach image to email body with open('/home/edruser/scripts/sessmgr_plot/sessmgr_trending.png', 'rb') as f: img = f.read() msgImg = MIMEImage(img, 'png') msgImg.add_header('Content-ID', '<image1>') msgImg.add_header('Content-Disposition', 'inline', filename='/home/edruser/scripts/sessmgr_plot/sessmgr_trending.png') # Attach parts into message container # According to RFC 2046, the last part of a multipart message # in this case the HTML message # is best and preferred msg.attach(part1) msg.attach(part2) msg.attach(msgImg) try: server = smtplib.SMTP('127.0.0.1', 10022) server.ehlo() server.sendmail(sender, recipient, msg.as_string()) server.close() print('Successfully sent the mail') except: print('Failed to send the mail') # Main datenow = time.strftime('%s') datenow_human = time.strftime('%a, %d %b %Y %H:%M:00') datenow_subj = time.strftime('%Y-%m-%d %H:%M:00') hournow = time.strftime('%H:00') datenow_dateonly = time.strftime('%Y%m%d') datenow_dateonly_dashed = time.strftime('%Y-%m-%d') # Threading definition threadLock = threading.Lock() threads = [] # Create new ssh threads thread1 = sshThread(1, 'VSGBTR05', '10.205.57.4', 'psi.gandhi', 'password*1') thread2 = sshThread(2, 'VSGCBT04', '10.205.62.4', 'psi.gandhi', 'password*1') thread3 = sshThread(3, 'VSGCBT05', '10.205.67.4', 'psi.gandhi', 'password*1') # Start new ssh threads thread1.start() thread2.start() thread3.start() # Add threads to thread list threads.append(thread1) threads.append(thread2) threads.append(thread3) # Wait for all threads to complete for t in threads: t.join() print('Exiting main thread') # Parse log and generate list of dict container # to be used later by Jinja2 template engine output_log_vsgbtr05 = '/home/edruser/scripts/VSGBTR05-tasklog' output_log_vsgcbt04 = '/home/edruser/scripts/VSGCBT04-tasklog' output_log_vsgcbt05 = '/home/edruser/scripts/VSGCBT05-tasklog' vsgcbt04_dict = parseOutput(output_log_vsgcbt04, hournow, 'VSGCBT04') vsgbtr05_dict = parseOutput(output_log_vsgbtr05, hournow, 'VSGBTR05') vsgcbt05_dict = parseOutput(output_log_vsgcbt05, hournow, 'VSGCBT05') # HTML template engine loader = jinja2.FileSystemLoader('/home/edruser/scripts/templateSessmgr.jinja2.html') env = jinja2.Environment(loader=loader) template = env.get_template('') # Render for each node # manipulate using data contained in list of lists of dict big_items = [] big_items.append(vsgbtr05_dict) big_items.append(vsgcbt04_dict) big_items.append(vsgcbt05_dict) node_table_html = template.render(items=big_items) # Print to csv file # mode = append vsgbtr05_highest_dict = vsgbtr05_dict[0] vsgcbt04_highest_dict = vsgcbt04_dict[0] vsgcbt05_highest_dict = vsgcbt05_dict[0] vsgbtr05_highest_csv = '/home/edruser/scripts/sessmgr_trending_csv/vsgbtr05_highest_sessmgr_{}.csv'.format(datenow_dateonly) vsgcbt04_highest_csv = '/home/edruser/scripts/sessmgr_trending_csv/vsgcbt04_highest_sessmgr_{}.csv'.format(datenow_dateonly) vsgcbt05_highest_csv = '/home/edruser/scripts/sessmgr_trending_csv/vsgcbt05_highest_sessmgr_{}.csv'.format(datenow_dateonly) # Create CSV createCsv(vsgbtr05_highest_csv, vsgbtr05_highest_dict) createCsv(vsgcbt04_highest_csv, vsgcbt04_highest_dict) createCsv(vsgcbt05_highest_csv, vsgcbt05_highest_dict) # Matplotlib graph generation with open(vsgbtr05_highest_csv, 'r') as f_vsgbtr05: with open(vsgcbt04_highest_csv, 'r') as f_vsgcbt04: with open(vsgcbt05_highest_csv, 'r') as f_vsgcbt05: data_vsgbtr05 = list(csv.reader(f_vsgbtr05)) data_vsgcbt04 = list(csv.reader(f_vsgcbt04)) data_vsgcbt05 = list(csv.reader(f_vsgcbt05)) task_instance_btr05 = [i[3] for i in data_vsgbtr05[1::]] # skip header time_instance = [i[11] for i in data_vsgbtr05[1::]] # skip header task_instance_cbt04 = [i[3] for i in data_vsgcbt04[1::]] # skip header task_instance_cbt05 = [i[3] for i in data_vsgcbt05[1::]] # skip header # Instantiate plot object # which consists of 3 subplots fig = plt.figure() ax1 = fig.add_subplot(311) # first subplot in three ax1.plot(time_instance, task_instance_btr05, 'ro') # red dot # Set title for the whole graph ax1.set_title('SessMgr Task Instance ID Changes Over Time - {}'.format(datenow_dateonly_dashed)) ax1.legend(['VSGBTR05'], loc='upper left') # subplot legend ax2 = fig.add_subplot(312, sharex=ax1) # second subplot in three, use ax1's x-ticks ax2.plot(time_instance, task_instance_cbt04, 'bs') # blue square ax2.legend(['VSGCBT04'], loc='upper left') ax2.set_ylabel('SessMgr Task Instance ID') # hacky hack to set a common-Y label across all subplots ax3 = fig.add_subplot(313, sharex=ax1) # third subplot in three, use ax1's x-ticks ax3.plot(time_instance, task_instance_cbt05, 'g^') # green triangle ax3.legend(['VSGCBT05'], loc='upper left') # Add legends and other graph properties plt.xticks(rotation=30) # Rotate x-label 30 degrees plt.setp(ax1.get_xticklabels(), visible=False) # Remove x ticks from ax1 subplot plt.setp(ax2.get_xticklabels(), visible=False) # Remove x ticks from ax2 subplot plt.xlabel('Hour') plt.tight_layout() # Use tight layout in the graph plt.savefig('/home/edruser/scripts/sessmgr_plot/sessmgr_trending.png') # Create HTML Skeleton html_skel = """\ <html> <head> <style> table, th, td {{ border: 1px solid black; border-collapse: collapse; text-align: center; table-layout: auto; }} .safe-limit {{ color: green; }} .warn-limit {{ color: orange; }} .over-limit {{ color: red; }} </style> </head> <body> <article> <header> <p>Please find below the top 10 SessMgr Instance ID for All Cisco SGSN/MME Nodes as per {}</p> </header> </article> {}<br> <h3><b>Trending Graph</b></h3> <img src="cid:image1"> </body> <footer> <p><i>This email is automatically generated. <strong>Please do not reply</strong>.</i></p> <p><i>Contact Information: <a href="mailto:[email protected]">[email protected]</a>.</i></p> </footer> </html> """.format(datenow_human, node_table_html) # Write raw HTML file as point of reference html_file = open('/home/edruser/scripts/sessMgr_table.html', 'w') html_file.write(html_skel) html_file.close() # Forward local port to XL SMTP mail port with SSHTunnelForwarder( ('10.23.33.125', 22), ssh_username = 'root', ssh_password = 'psi12345', remote_bind_address = ('10.17.6.210', 25), local_bind_address = ('127.0.0.1', 10022) ) as tunnel: recipient = ['[email protected]', '[email protected]', '[email protected]', '[email protected]','[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]'] sendEmail('[email protected]', recipient, '[PSI/Cisco Internal] TOP 10 SessMgr Instance ID Cisco SGSN/MME {}'.format(datenow_subj), html_skel) # Remove source logs os.remove(output_log_vsgcbt04) os.remove(output_log_vsgbtr05) os.remove(output_log_vsgcbt05) print('FINISH EXECUTING SCRIPT')
the-stack_0_23825
from unittest import mock import graphene from django.utils.functional import SimpleLazyObject from freezegun import freeze_time from .....app.models import App from .....webhook.event_types import WebhookEventAsyncType from .....webhook.payloads import generate_meta, generate_requestor from ....tests.utils import assert_no_permission, get_graphql_content APP_DEACTIVATE_MUTATION = """ mutation AppDeactivate($id: ID!){ appDeactivate(id:$id){ app{ id isActive } errors{ field message code } } } """ def test_deactivate_app(app, staff_api_client, permission_manage_apps): # given app.is_active = True app.save() query = APP_DEACTIVATE_MUTATION id = graphene.Node.to_global_id("App", app.id) variables = { "id": id, } # when response = staff_api_client.post_graphql( query, variables=variables, permissions=(permission_manage_apps,) ) # then get_graphql_content(response) app.refresh_from_db() assert not app.is_active @freeze_time("2022-05-12 12:00:00") @mock.patch("saleor.plugins.webhook.plugin.get_webhooks_for_event") @mock.patch("saleor.plugins.webhook.plugin.trigger_webhooks_async") def test_deactivate_app_trigger_webhook( mocked_webhook_trigger, mocked_get_webhooks_for_event, any_webhook, app, staff_api_client, permission_manage_apps, settings, ): # given mocked_get_webhooks_for_event.return_value = [any_webhook] settings.PLUGINS = ["saleor.plugins.webhook.plugin.WebhookPlugin"] app.is_active = True app.save() variables = { "id": graphene.Node.to_global_id("App", app.id), } # when staff_api_client.post_graphql( APP_DEACTIVATE_MUTATION, variables=variables, permissions=(permission_manage_apps,), ) app.refresh_from_db() # then assert not app.is_active mocked_webhook_trigger.assert_called_once_with( { "id": variables["id"], "is_active": app.is_active, "name": app.name, "meta": generate_meta( requestor_data=generate_requestor( SimpleLazyObject(lambda: staff_api_client.user) ) ), }, WebhookEventAsyncType.APP_STATUS_CHANGED, [any_webhook], app, SimpleLazyObject(lambda: staff_api_client.user), ) def test_deactivate_app_by_app(app, app_api_client, permission_manage_apps): # given app = App.objects.create(name="Sample app objects", is_active=True) query = APP_DEACTIVATE_MUTATION id = graphene.Node.to_global_id("App", app.id) variables = { "id": id, } app_api_client.app.permissions.set([permission_manage_apps]) # when response = app_api_client.post_graphql(query, variables=variables) # then get_graphql_content(response) app.refresh_from_db() assert not app.is_active def test_deactivate_app_missing_permission( app, staff_api_client, permission_manage_orders ): # given app.is_active = True app.save() query = APP_DEACTIVATE_MUTATION id = graphene.Node.to_global_id("App", app.id) variables = { "id": id, } # when response = staff_api_client.post_graphql( query, variables=variables, permissions=(permission_manage_orders,) ) # then assert_no_permission(response) app.refresh_from_db() assert app.is_active def test_activate_app_by_app_missing_permission( app, app_api_client, permission_manage_orders ): # given app = App.objects.create(name="Sample app objects", is_active=True) query = APP_DEACTIVATE_MUTATION id = graphene.Node.to_global_id("App", app.id) variables = { "id": id, } app_api_client.app.permissions.set([permission_manage_orders]) # when response = app_api_client.post_graphql(query, variables=variables) # then assert_no_permission(response) assert app.is_active def test_app_has_more_permission_than_user_requestor( app, staff_api_client, permission_manage_orders, permission_manage_apps ): # given app.permissions.add(permission_manage_orders) app.is_active = True app.save() query = APP_DEACTIVATE_MUTATION id = graphene.Node.to_global_id("App", app.id) variables = { "id": id, } # when response = staff_api_client.post_graphql( query, variables=variables, permissions=(permission_manage_apps,) ) # then content = get_graphql_content(response) app_data = content["data"]["appDeactivate"]["app"] app_errors = content["data"]["appDeactivate"]["errors"] app.refresh_from_db() assert not app_errors assert not app.is_active assert app_data["isActive"] is False def test_app_has_more_permission_than_app_requestor( app_api_client, permission_manage_orders, permission_manage_apps ): # given app = App.objects.create(name="Sample app objects", is_active=True) app.permissions.add(permission_manage_orders) query = APP_DEACTIVATE_MUTATION id = graphene.Node.to_global_id("App", app.id) variables = { "id": id, } # when response = app_api_client.post_graphql( query, variables=variables, permissions=(permission_manage_apps,) ) # then content = get_graphql_content(response) app_data = content["data"]["appDeactivate"]["app"] app_errors = content["data"]["appDeactivate"]["errors"] app.refresh_from_db() assert not app_errors assert not app.is_active assert app_data["isActive"] is False
the-stack_0_23829
import unittest from exabel_data_sdk.client.api.data_classes.derived_signal import ( DerivedSignal, DerivedSignalMetaData, DerivedSignalUnit, ) class TestDerivedSignal(unittest.TestCase): def test_proto_conversion(self): derived_signal = DerivedSignal( name="derivedSignals/123", label="test_signal", expression="close_price + 1", description="price plus one", metadata=DerivedSignalMetaData(unit=DerivedSignalUnit.RATIO_DIFFERENCE, decimals=2), ) self.assertEqual(derived_signal, DerivedSignal.from_proto(derived_signal.to_proto()))
the-stack_0_23830
from sklearn import tree clf = tree.DecisionTreeClassifier() # [freshman_gpa, sophomore_gpa, junior_gpa] X = [[3.3, 3.8, 4.0], [2.8, 3.1, 2.7], [3.8, 2.1, 1.7], [3.2, 2.8, 3.3], [3.9, 2.9, 4.0], [1.9, 2.0, 2.8], [3.8, 3.6, 3.0], [2.8, 2.5, 2.1], [3.4, 2.0, 0], [2.8, 3.1, 2.7], [2.8, 3.1, 3.0]] # [thou shall fail or pass(graduate)] Y = ['Graduated', 'Failed', 'Failed', 'Failed', 'Graduated', 'Failed', 'Graduated', 'Failed', 'Failed', 'Graduated', 'Graduated'] # train them on our data clf = clf.fit(X, Y) prediction = clf.predict([[3.6, 3.98, 3.7]]) # print your prediction print(prediction)
the-stack_0_23832
#!/usr/bin/env python3 # coding: utf-8 # Example 35 インターネット照る照る坊主 【IoT カラーLEDを制御】 # 接続図 # [天気情報] (インターネット) # ↓ # [本機] ------> [IoTカラーLED] or [IoTフルカラーLED] # # 機器構成 # 本機 天気情報を色番号に変換してIoTカラーLEDを点灯制御 # IoTカラーLED example14_iot_btn.py 初期設定内の colors_full=False # IoTフルカラーLED example19_iot_ledpwm.py 初期設定内の colors_full=True # # ESP8266用: # https://github.com/bokunimowakaru/esp/blob/master/2_example/example16f_led/example16f_led.ino # # ESP32用: # https://github.com/bokunimowakaru/esp/blob/master/2_example/example48f_led/example48f_led.ino # # 天気情報・参考文献: # http://weather.livedoor.com/weather_hacks/webservice # 初期設定 ip_leds = ['127.0.0.1'] # IoTカラーLEDのIPアドレス colors = ['消灯','赤色','緑色','黄色','青色','赤紫色','藍緑色','白色'] # フルカラーLEDを使用する場合はcolors_full=Trueを設定 colors_full = True # フルカラー有効化フラグ city_id = 270000 # 大阪の city ID=270000 # 東京=130010 京都=260010 # 横浜=140010 千葉=120010 # 名古屋=230010 福岡=400010 url_wea_s = 'http://weather.livedoor.com/forecast/webservice/json/v1?city=' url_wea_s += str(city_id) interval = 10 * 60 # 動作間隔10分(単位=秒) # ライブラリ import urllib.request # HTTP通信ライブラリを組込む import json # JSON変換ライブラリを組込む from time import sleep # スリープ実行モジュール def getWeather(): # 天気情報取得関数を定義 try: # 例外処理の監視を開始 res = urllib.request.urlopen(url_wea_s) # HTTPアクセスを実行 res_s = res.read().decode() # 受信テキストを変数res_sへ res.close() # HTTPアクセスの終了 res_dict = json.loads(res_s) # 辞書型の変数res_dictへ代入 except Exception as e: print(e) # エラー内容を表示 return None # Noneを応答 return res_dict['forecasts'][0]['telop'] # 天候の情報を応答 def led3(ip,color): # IoTカラーLED if color is None or color < 0 or color > 7: # 範囲外の値の時に return # 何もせずに戻る url_led_s = 'http://' + ip # アクセス先 if colors_full: # フルカラーの設定 colors_3 = ['R','G','B'] # 3原色名R,G,Bを代入 colors_rgb = ['000','933','393','770','339','717','276','666'] # カラー s = '/?' # 文字列変数sの初期化 for i in range(len(colors_3)): # 文字変数cにR、G、Bを代入 s += colors_3[i] + "=" # 変数sにR=、G=、B=を追加 s += colors_rgb[color][i] # 各色の輝度(0~9)を追加 if i < len(colors_3) - 1: # forに次の3原色がある場合 s += '&' # 結合を示す「&」を追加 else: s = '/?COLOR=' + str(color) # 色番号(0~7)の設定 try: urllib.request.urlopen(url_led_s + s) # IoTカラーLEDへ色情報を送信 except urllib.error.URLError: # 例外処理発生時 print('URLError :',url_led_s) # エラー表示 # ポート8080へのアクセス用 (下記の5行) url_led_s = 'http://' + ip + ':8080' # ポートを8080に変更 try: urllib.request.urlopen(url_led_s + s) # 再アクセス except urllib.error.URLError: # 例外処理発生時 print('URLError :',url_led_s) # エラー表示 while True: telop = getWeather() # 天気情報を取得 print('telop =', telop) # telopの内容を表示 if telop is not None: color = colors.index('消灯') # 初期カラー番号を白色=7に if telop.find('晴') >= 0: # 晴れが含まれているとき color |= colors.index('赤色') # 赤色を混合 if telop.find('曇') >= 0: # 曇りが含まれているとき color |= colors.index('緑色') # 緑色を混合 if telop.find('雨') >= 0 or telop.find('雪') >= 0: # 雨or雪のとき color |= colors.index('青色') # 青色を混合 color %= len(colors) # colorは0~7 print('Color =',color,colors[color]) # 色番号と色名を表示 for ip in ip_leds: # 各機器のIPアドレスをipへ led3(ip,color) # 各IoTカラーLEDに色を送信 sleep(interval) # 動作間隔の待ち時間処理 ''' 実行例 -------------------------------------------------------------------------------- pi@raspberrypi:~/iot/learning $ ./example35_srv_led3_wea.py telop = 晴れのち曇り Color = 3 黄色 telop = 曇り Color = 2 緑色 -------------------------------------------------------------------------------- pi@raspberrypi:~/iot/learning $ sudo ./example19_iot_ledpwm.py 127.0.0.1 - - [11/Oct/2019 17:54:24] "GET /?R=3&G=9&B=3 HTTP/1.1" 200 17 Color = [7, 7, 0] GPIO17 = 35 GPIO27 = 35 GPIO22 = 0 127.0.0.1 - - [11/Oct/2019 18:04:24] "GET /?R=3&G=9&B=3 HTTP/1.1" 200 17 Color = [3, 9, 3] GPIO17 = 4 GPIO27 = 100 GPIO22 = 4 -------------------------------------------------------------------------------- '''
the-stack_0_23833
import pytest from easy_tenants import ( get_current_tenant, tenant_context, tenant_context_disabled, ) from easy_tenants.exceptions import TenantError from easy_tenants.models import TenantAbstract from tests.models import Contact, Product, StoreTenant def test_inheritance_tenant_model(): assert TenantAbstract in Product.__mro__ def test_create_object(tenant_ctx): Product.objects.create(name="prod1") assert Product.objects.count() def test_set_tenant_in_instance_model(tenant_ctx): prod = Product.objects.create(name="prod1") assert prod.tenant_id def test_get_objects_of_tenant(db): store1 = StoreTenant.objects.create() store2 = StoreTenant.objects.create() with tenant_context(store1): Product.objects.create(name="prod1") with tenant_context(store2): Product.objects.create(name="prod2") assert Product.objects.count() == 1 def test_custom_queryset_in_manager(tenant_ctx): Contact.objects.create(name="phone 222") Contact.objects.create(name="email") assert callable(Contact.objects.by_phone) assert Contact.objects.by_phone().count() == 1 def test_bulk_create(tenant_ctx): objs = [ Product(name="prod1"), Product(name="prod2"), ] Product.objects.bulk_create(objs) tenant = get_current_tenant() assert Product.objects.count() == 2 assert objs[0].tenant == tenant assert objs[1].tenant == tenant def test_all_objects(db): store1 = StoreTenant.objects.create() store2 = StoreTenant.objects.create() with tenant_context(store1): Product.objects.create(name="prod1") Product.objects.count() == 1 with tenant_context(store2): Product.objects.create(name="prod2") Product.objects.count() == 1 with tenant_context_disabled(): assert Product.objects.count() == 2 def test_tenant_required_error(db): with pytest.raises(TenantError): with tenant_context(): Product.objects.create(name="prod1")
the-stack_0_23835
import sys import numpy as np import torch import torch.nn as nn from base import BaseModel # append transformer_utils import os path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(path, "transformer_utils")) from multiheadattn import MultiHeadAttn from embedding import Embedding, PositionalEmbedding from positionwise_FF import PositionwiseFF from init_weights import weights_init __all__ = ["MemTransformerLM"] class DecoderLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs): super(DecoderLayer, self).__init__() self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs) self.pos_ff = PositionwiseFF( d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm") ) def forward(self, dec_inp, dec_attn_mask=None, mems=None): output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask, mems=mems) output = self.pos_ff(output) return output class MemTransformerLM(BaseModel): def __init__( self, n_token, n_layer, n_head, d_model, d_head, d_inner, dropout, dropatt, d_embed=None, pre_lnorm=False, tgt_len=None, ext_len=None, clamp_len=-1 ): super(MemTransformerLM, self).__init__() self.n_token = n_token d_embed = d_model if d_embed is None else d_embed self.d_embed = d_embed self.d_model = d_model self.n_head = n_head self.d_head = d_head self.word_emb = Embedding(n_token, d_embed) self.drop = nn.Dropout(dropout) self.n_layer = n_layer self.tgt_len = tgt_len self.ext_len = ext_len self.max_klen = tgt_len + ext_len self.clamp_len = clamp_len self.layers = nn.ModuleList() for _ in range(n_layer): self.layers.append( DecoderLayer( n_head, d_model, d_head, d_inner, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm, ) ) self.pos_emb = PositionalEmbedding(self.d_model) self.loss = nn.BCEWithLogitsLoss() self.fc = nn.Linear( self.d_embed, self.n_token, bias=True ) weights_init(self) def _forward(self, dec_inp): qlen, _, _ = dec_inp.size() word_emb = self.word_emb(dec_inp) klen = qlen # decoder attention mask dec_attn_mask = torch.triu(word_emb.new_ones(qlen, klen), diagonal=1).byte()[ :, :, None ] hids = [] pos_seq = torch.arange( klen - 1, -1, -1.0, device=word_emb.device, dtype=word_emb.dtype ) if self.clamp_len > 0: pos_seq.clamp_(max=self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb + pos_emb[-qlen:]) hids.append(core_out) for layer in self.layers: core_out = layer(core_out, dec_attn_mask=dec_attn_mask.bool()) hids.append(core_out) core_out = self.drop(core_out) return core_out def forward(self, data, target, **kwargs): target_mask = kwargs.get("target_mask", None) tgt_len = target.size(0) hidden = self._forward(data) if target_mask is not None: target_mask = target_mask.unsqueeze(2) hidden = torch.mul(hidden, target_mask) pred_hid = hidden[-tgt_len:] pred_hid = pred_hid.transpose(1, 0).contiguous().view(-1, pred_hid.size(-1)) logits = self.fc(pred_hid) return [logits, self.word_emb.embedding_w] def get_embedding(self): return self.word_emb def __str__(self): """ Model prints with number of trainable parameters """ model_parameters = filter(lambda p: p.requires_grad, self.parameters()) params = sum([np.prod(p.size()) for p in model_parameters if p is not None]) return "\nTrainable parameters: {}".format(params)
the-stack_0_23837
from pathlib import Path from ..base_classes.base_json_sprite_loader import BaseJsonSpriteLoader from ..util import chunks_from_animation class Mounts(BaseJsonSpriteLoader): _sprite_sheet_path = Path("Data/Textures/mounts.png") _chunk_size = 128 _chunk_map = { "turkey": (0, 0, 1, 1), "mount_turkey": (0, 0, 1, 1), **chunks_from_animation("turkey_neck", (12, 1, 13, 2), 4), "rockdog": (0, 4, 1, 5), "axolotl": (0, 8, 1, 9), "qilin": (0, 12, 1, 13), "mount_rockdog": (0, 4, 1, 5), "mount_axolotl": (0, 8, 1, 9), "mount_qilin": (0, 12, 1, 13), } _entity_names = [ "ENT_TYPE_MOUNT_TURKEY", "ENT_TYPE_ITEM_TURKEY_NECK", "ENT_TYPE_MOUNT_ROCKDOG", "ENT_TYPE_MOUNT_AXOLOTL", "ENT_TYPE_FX_AXOLOTL_HEAD_ENTERING_DOOR", "ENT_TYPE_MOUNT_QILIN", ]