filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_24182
import numpy as np import properties from ....survey import BaseTimeSurvey from . import sources from . import receivers from .. import resistivity as dc class Survey(BaseTimeSurvey): """ Spectral induced polarization survey """ n_pulse = 2 T = 8.0 source_list = properties.List( "A list of sources for the survey", properties.Instance("A SimPEG source", sources.BaseSrc), default=[], ) def __init__(self, source_list=None, **kwargs): super().__init__(source_list, **kwargs) @property def n_locations(self): return int(self.nD / self.unique_times.size) def from_dc_to_sip_survey(survey_dc, times): """ Generate sip survey from dc survey """ source_list = survey_dc.source_list source_list_sip = [] for src in source_list: receiver_list_sip = [] for rx in src.receiver_list: if isinstance(rx, dc.receivers.Pole): rx_sip = receivers.Pole(rx.locations, times=times) elif isinstance(rx, dc.receivers.Dipole): rx_sip = receivers.Dipole(rx.locations[0], rx.locations[1], times=times) else: print(rx) raise NotImplementedError() receiver_list_sip.append(rx_sip) if isinstance(src, dc.sources.Pole): src_sip = sources.Pole(receiver_list_sip, src.loc) elif isinstance(src, dc.sources.Dipole): src_sip = sources.Dipole(receiver_list_sip, src.loc[0], src.loc[1]) else: print(src) raise NotImplementedError() source_list_sip.append(src_sip) survey_sip = Survey(source_list_sip) return survey_sip
the-stack_0_24183
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The StarChain Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test StarChaind with different proxy configuration. Test plan: - Start StarChaind's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on StarChaind side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create StarChainds that connect to them - Manipulate the StarChainds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name """ import socket import os from test_framework.socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework.test_framework import StarChainTestFramework from test_framework.util import ( PORT_MIN, PORT_RANGE, assert_equal, ) from test_framework.netutil import test_ipv6_local RANGE_BEGIN = PORT_MIN + 2 * PORT_RANGE # Start after p2p and rpc ports class ProxyTest(StarChainTestFramework): def set_test_params(self): self.num_nodes = 4 def setup_nodes(self): self.have_ipv6 = test_ipv6_local() # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', RANGE_BEGIN + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', RANGE_BEGIN + 1000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True if self.have_ipv6: # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', RANGE_BEGIN + 2000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True else: self.log.warning("Testing without local IPv6 support") self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() if self.have_ipv6: self.serv3 = Socks5Server(self.conf3) self.serv3.start() # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost args = [ ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], [] ] if self.have_ipv6: args[3] = ['-listen', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0', '-noonion'] self.add_nodes(self.num_nodes, extra_args=args) self.start_nodes() def node_test(self, node, proxies, auth, test_onion=True): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: StarChaind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if self.have_ipv6: # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: StarChaind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) if test_onion: # Test: outgoing onion connection through node node.addnode("StarChainostk4e4re.onion:8333", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"StarChainostk4e4re.onion") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:8333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, b"node.noumenon") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), len(rv)) if self.have_ipv6: # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False, False) def networks_dict(d): r = {} for x in d['networks']: r[x['name']] = x return r # test RPC getnetworkinfo n0 = networks_dict(self.nodes[0].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n0[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n0[net]['proxy_randomize_credentials'], True) assert_equal(n0['onion']['reachable'], True) n1 = networks_dict(self.nodes[1].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n1[net]['proxy'], '%s:%i' % (self.conf1.addr)) assert_equal(n1[net]['proxy_randomize_credentials'], False) assert_equal(n1['onion']['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n1['onion']['proxy_randomize_credentials'], False) assert_equal(n1['onion']['reachable'], True) n2 = networks_dict(self.nodes[2].getnetworkinfo()) for net in ['ipv4','ipv6','onion']: assert_equal(n2[net]['proxy'], '%s:%i' % (self.conf2.addr)) assert_equal(n2[net]['proxy_randomize_credentials'], True) assert_equal(n2['onion']['reachable'], True) if self.have_ipv6: n3 = networks_dict(self.nodes[3].getnetworkinfo()) for net in ['ipv4','ipv6']: assert_equal(n3[net]['proxy'], '[%s]:%i' % (self.conf3.addr)) assert_equal(n3[net]['proxy_randomize_credentials'], False) assert_equal(n3['onion']['reachable'], False) if __name__ == '__main__': ProxyTest().main()
the-stack_0_24184
# Copyright 2016 Intel Corporation # Copyright 2013,2014 Cray Inc # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from ironic.common.i18n import _ opts = [ cfg.IntOpt('power_timeout', default=10, help=_('Seconds to wait for power action to be completed')), # NOTE(yuriyz): some of SNMP-enabled hardware have own options for pause # between off and on. This option guarantees minimal value. cfg.IntOpt('reboot_delay', default=0, min=0, help=_('Time (in seconds) to sleep between when rebooting ' '(powering off and on again)')), cfg.FloatOpt('udp_transport_timeout', default=1.0, min=0.0, help=_('Response timeout in seconds used for UDP transport. ' 'Timeout should be a multiple of 0.5 seconds and ' 'is applicable to each retry.')), cfg.IntOpt('udp_transport_retries', default=5, min=0, help=_('Maximum number of UDP request retries, ' '0 means no retries.')), ] def register_opts(conf): conf.register_opts(opts, group='snmp')
the-stack_0_24185
# -*- coding: utf-8 -*- import logging from box import Box from PySide6 import QtCore, QtWidgets, QtGui from fastflix.encoders.common.setting_panel import SettingPanel from fastflix.language import t from fastflix.models.encode import VCEEncCAVCSettings from fastflix.models.fastflix_app import FastFlixApp from fastflix.shared import link from fastflix.resources import get_icon logger = logging.getLogger("fastflix") presets = ["balanced", "fast", "slow"] recommended_bitrates = [ "200k (320x240p @ 30fps)", "300k (640x360p @ 30fps)", "1000k (640x480p @ 30fps)", "1750k (1280x720p @ 30fps)", "2500k (1280x720p @ 60fps)", "4000k (1920x1080p @ 30fps)", "5000k (1920x1080p @ 60fps)", "7000k (2560x1440p @ 30fps)", "10000k (2560x1440p @ 60fps)", "15000k (3840x2160p @ 30fps)", "20000k (3840x2160p @ 60fps)", "Custom", ] recommended_crfs = [ "28", "27", "26", "25", "24", "23", "22", "21", "20", "19", "18", "17", "16", "15", "14", "Custom", ] def get_breaker(): breaker_line = QtWidgets.QWidget() breaker_line.setMaximumHeight(2) breaker_line.setStyleSheet("background-color: #ccc; margin: auto 0; padding: auto 0;") return breaker_line class VCEENCCAVC(SettingPanel): profile_name = "vceencc_avc" hdr10plus_signal = QtCore.Signal(str) hdr10plus_ffmpeg_signal = QtCore.Signal(str) def __init__(self, parent, main, app: FastFlixApp): super().__init__(parent, main, app) self.main = main self.app = app grid = QtWidgets.QGridLayout() self.widgets = Box(mode=None) self.mode = "Bitrate" self.updating_settings = False grid.addLayout(self.init_modes(), 0, 2, 4, 4) grid.addLayout(self._add_custom(title="Custom VCEEncC options", disable_both_passes=True), 10, 0, 1, 6) grid.addLayout(self.init_preset(), 0, 0, 1, 2) grid.addLayout(self.init_profile(), 1, 0, 1, 2) grid.addLayout(self.init_mv_precision(), 2, 0, 1, 2) grid.addLayout(self.init_pre(), 3, 0, 1, 2) breaker = QtWidgets.QHBoxLayout() breaker_label = QtWidgets.QLabel(t("Advanced")) breaker_label.setFont(QtGui.QFont("helvetica", 8, weight=55)) breaker.addWidget(get_breaker(), stretch=1) breaker.addWidget(breaker_label, alignment=QtCore.Qt.AlignHCenter) breaker.addWidget(get_breaker(), stretch=1) grid.addLayout(breaker, 4, 0, 1, 6) qp_line = QtWidgets.QHBoxLayout() qp_line.addLayout(self.init_min_q()) qp_line.addStretch(1) qp_line.addLayout(self.init_max_q()) qp_line.addStretch(1) qp_line.addLayout(self.init_ref()) qp_line.addStretch(1) qp_line.addLayout(self.init_b_frames()) qp_line.addStretch(1) qp_line.addLayout(self.init_level()) qp_line.addStretch(1) qp_line.addLayout(self.init_decoder()) qp_line.addStretch(1) qp_line.addLayout(self.init_metrics()) grid.addLayout(qp_line, 5, 0, 1, 6) self.ffmpeg_level = QtWidgets.QLabel() grid.addWidget(self.ffmpeg_level, 8, 2, 1, 4) grid.setRowStretch(9, 1) guide_label = QtWidgets.QLabel( link( "https://github.com/rigaya/VCEEnc/blob/master/VCEEncC_Options.en.md", t("VCEEncC Options"), app.fastflix.config.theme, ) ) warning_label = QtWidgets.QLabel() warning_label.setPixmap(QtGui.QIcon(get_icon("onyx-warning", self.app.fastflix.config.theme)).pixmap(22)) guide_label.setAlignment(QtCore.Qt.AlignBottom) guide_label.setOpenExternalLinks(True) grid.addWidget(guide_label, 11, 0, 1, 4) grid.addWidget(warning_label, 11, 4, 1, 1, alignment=QtCore.Qt.AlignRight) grid.addWidget(QtWidgets.QLabel(t("VCEEncC Encoder support is still experimental!")), 11, 5, 1, 1) self.setLayout(grid) self.hide() self.hdr10plus_signal.connect(self.done_hdr10plus_extract) self.hdr10plus_ffmpeg_signal.connect(lambda x: self.ffmpeg_level.setText(x)) def init_preset(self): return self._add_combo_box( label="Preset", widget_name="preset", options=presets, tooltip="preset: The slower the preset, the better the compression and quality", connect="default", opt="preset", ) def init_profile(self): return self._add_combo_box( label="Profile", widget_name="profile", options=["Baseline", "Main", "High"], connect="default", opt="profile", ) def init_mv_precision(self): return self._add_combo_box( label="Motion vector accuracy", tooltip="Q-pel is highest precision", widget_name="mv_precision", options=["q-pel", "half-pel", "full-pel"], opt="mv_precision", ) def init_lookahead(self): return self._add_combo_box( label="Lookahead", tooltip="", widget_name="lookahead", opt="lookahead", options=["off"] + [str(x) for x in range(1, 33)], ) def init_pre(self): layout = QtWidgets.QHBoxLayout() layout.addLayout(self._add_check_box(label="VBAQ", widget_name="vbaq", opt="vbaq")) layout.addLayout(self._add_check_box(label="Pre Encode", widget_name="pre_encode", opt="pre_encode")) layout.addLayout(self._add_check_box(label="Pre Analysis", widget_name="pre_analysis", opt="pre_analysis")) return layout def init_level(self): layout = self._add_combo_box( label="Level", tooltip="Set the encoding level restriction", widget_name="level", options=[ t("Auto"), "1.0", "2.0", "2.1", "3.0", "3.1", "4.0", "4.1", "5.0", "5.1", "5.2", ], opt="level", ) self.widgets.level.setMinimumWidth(60) return layout @staticmethod def _qp_range(): return [str(x) for x in range(0, 52)] def init_min_q(self): layout = QtWidgets.QHBoxLayout() layout.addWidget(QtWidgets.QLabel(t("Min Q"))) layout.addWidget( self._add_combo_box(widget_name="min_q", options=["I"] + self._qp_range(), min_width=45, opt="min_q") ) return layout def init_max_q(self): layout = QtWidgets.QHBoxLayout() layout.addWidget(QtWidgets.QLabel(t("Max Q"))) layout.addWidget( self._add_combo_box(widget_name="max_q", options=["I"] + self._qp_range(), min_width=45, opt="max_q") ) return layout def init_b_frames(self): return self._add_combo_box( widget_name="b_frames", label="B Frames", options=[t("Auto")] + [str(x) for x in range(3)], opt="b_frames", min_width=60, ) def init_ref(self): return self._add_combo_box( widget_name="ref", label="Ref Frames", options=[t("Auto")] + [str(x) for x in range(17)], opt="ref", min_width=60, ) def init_decoder(self): return self._add_combo_box( widget_name="decoder", label="Decoder", options=["Hardware", "Software"], opt="decoder", tooltip="Hardware: use libavformat + hardware decoder for input\nSoftware: use avcodec + software decoder", min_width=80, ) def init_metrics(self): return self._add_check_box( widget_name="metrics", opt="metrics", label="Metrics", tooltip="Calculate PSNR and SSIM and show in the encoder output", ) def init_modes(self): layout = self._add_modes(recommended_bitrates, recommended_crfs, qp_name="cqp") return layout def mode_update(self): self.widgets.custom_cqp.setDisabled(self.widgets.cqp.currentText() != "Custom") self.widgets.custom_bitrate.setDisabled(self.widgets.bitrate.currentText() != "Custom") self.main.build_commands() def setting_change(self, update=True): if self.updating_settings: return self.updating_settings = True if update: self.main.page_update() self.updating_settings = False def update_video_encoder_settings(self): settings = VCEEncCAVCSettings( preset=self.widgets.preset.currentText().split("-")[0].strip(), mv_precision=self.widgets.mv_precision.currentText(), max_q=self.widgets.max_q.currentText() if self.widgets.max_q.currentIndex() != 0 else None, min_q=self.widgets.min_q.currentText() if self.widgets.min_q.currentIndex() != 0 else None, extra=self.ffmpeg_extras, metrics=self.widgets.metrics.isChecked(), level=self.widgets.level.currentText() if self.widgets.level.currentIndex() != 0 else None, b_frames=self.widgets.b_frames.currentText() if self.widgets.b_frames.currentIndex() != 0 else None, ref=self.widgets.ref.currentText() if self.widgets.ref.currentIndex() != 0 else None, pre_encode=self.widgets.pre_encode.isChecked(), pre_analysis=self.widgets.pre_analysis.isChecked(), vbaq=self.widgets.vbaq.isChecked(), decoder=self.widgets.decoder.currentText(), ) encode_type, q_value = self.get_mode_settings() settings.cqp = q_value if encode_type == "qp" else None settings.bitrate = q_value if encode_type == "bitrate" else None self.app.fastflix.current_video.video_settings.video_encoder_settings = settings def set_mode(self, x): self.mode = x.text() self.widgets.min_q.setEnabled(self.mode.lower() == "bitrate") self.widgets.max_q.setEnabled(self.mode.lower() == "bitrate") self.main.build_commands() def new_source(self): if not self.app.fastflix.current_video: return super().new_source()
the-stack_0_24187
"Template support for Cheetah" import sys, os, imp from Cheetah import Compiler import pkg_resources def _recompile_template(package, basename, tfile, classname): tmpl = pkg_resources.resource_string(package, "%s.tmpl" % basename) c = Compiler.Compiler(source=tmpl, mainClassName='GenTemplate') code = str(c) mod = imp.new_module(classname) ns = dict() exec(code, ns) tempclass = ns.get("GenTemplate", ns.get('DynamicallyCompiledCheetahTemplate')) assert tempclass tempclass.__name__ = basename setattr(mod, basename, tempclass) sys.modules[classname] = mod return mod class TurboCheetah: extension = "tmpl" def __init__(self, extra_vars_func=None, options=None): if options is None: options = dict() self.get_extra_vars = extra_vars_func self.options = options self.compiledTemplates = {} self.search_path = [] def load_template(self, template=None, template_string=None, template_file=None, loadingSite=False): """Searches for a template along the Python path. Template files must end in ".tmpl" and be in legitimate packages. """ given = len([_f for _f in (template, template_string, template_file) if _f]) if given > 1: raise TypeError( "You may give only one of template, template_string, and " "template_file") if not given: raise TypeError( "You must give one of template, template_string, or " "template_file") if template: return self.load_template_module(template) elif template_string: return self.load_template_string(template_string) elif template_file: return self.load_template_file(template_file) def load_template_module(self, classname): ct = self.compiledTemplates divider = classname.rfind(".") if divider > -1: package = classname[0:divider] basename = classname[divider+1:] else: raise ValueError("All templates must be in a package") if not self.options.get("cheetah.precompiled", False): tfile = pkg_resources.resource_filename(package, "%s.%s" % (basename, self.extension)) if classname in ct: mtime = os.stat(tfile).st_mtime if ct[classname] != mtime: ct[classname] = mtime del sys.modules[classname] mod = _recompile_template(package, basename, tfile, classname) else: mod = __import__(classname, dict(), dict(), [basename]) else: ct[classname] = os.stat(tfile).st_mtime mod = _recompile_template(package, basename, tfile, classname) else: mod = __import__(classname, dict(), dict(), [basename]) tempclass = getattr(mod, basename) return tempclass def load_template_string(self, content): raise NotImplementedError def load_template_file(self, filename): raise NotImplementedError def render(self, info, format="html", fragment=False, template=None, template_string=None, template_file=None): tclass = self.load_template( template=template, template_string=template_string, template_file=template_file) if self.get_extra_vars: extra = self.get_extra_vars() else: extra = {} tempobj = tclass(searchList=[info, extra]) if fragment: return tempobj.fragment() else: return tempobj.respond()
the-stack_0_24188
import heapq from dataclasses import dataclass, field from operator import lt from typing import Dict, List, Optional, Tuple # default collection name if none is specified. DEFAULT_COLLECTION_NAME = "default_collection" """ Time Taken By Me -> 33 mins 18 secs Atlassian LLD Round -: Design the following -: Given a list of [FileName, FileSize, [Collection]] - A collection can have 1 or more files. - Same file can be a part of more than 1 collection. How would you design a system - To calculate total size of files processed. - To calculate Top-K collections based on size. Example: file1.txt(size: 100) file2.txt(size: 200) in collection "collection1" file3.txt(size: 200) in collection "collection1" file4.txt(size: 300) in collection "collection2" file5.txt(size: 100) Output: Total size of files processed: 900 Top 2 collections: - collection1 : 400 - collection2 : 300 """ @dataclass class Attributes: # dummy base class which can store some common attributes b/w File and Directory. pass @dataclass() class File(Attributes): # This represents a file in our file system. name: str size: float dir_name: str @dataclass class Directory(Attributes): # This represents a directory in our file system. name: str size: float = 0 files: List[File] = field(default_factory=list) class DirectoryWithSize(object): def __init__(self, dir_name:str, dir_size:float) -> None: self.dir_name = dir_name self.dir_size = dir_size def __lt__(self, other): return lt(self.dir_size, other.dir_size) @dataclass class FileSystem: # This is the file system that we are trying to model here _total_file_system_size: float = 0 all_files: Dict[str, float] = field(default_factory=dict) directory_mapping: Dict[str, Directory] = field(default_factory=dict) directory_present_in_system: set = field(default_factory=set) def get_total_file_system_size(self) -> float: return self._total_file_system_size def add_file_to_directory( self, file_name: str, file_size: float, file_directory: Optional[str] ) -> None: # add the directory to our file system first if it doesn't exists. if file_directory not in self.directory_present_in_system: file_directory = file_directory or DEFAULT_COLLECTION_NAME self.directory_present_in_system.add(file_directory) self.directory_mapping[file_directory] = Directory(name=file_directory) # create the file object and update the respective collections accordingly. current_file = File( name=file_name, size=file_size, dir_name=file_directory, ) current_directory = self.directory_mapping.get(file_directory) current_directory.files.append(current_file) current_directory.size += file_size # increment the global file system size self._total_file_system_size += file_size self.all_files[current_file.dir_name] = current_directory.size print( f"File named {file_name} and size {file_size} was successfully added to our file_system under {file_directory}." ) def get_top_k_directory(self, top_k: int) -> List[Tuple[str, float]]: # let's make a heap from the lsit of <dir_name, dir_size> and then get the top_k basically. # it can actually be moved out and we can maintain a fixed heap in global space as well. _max_heap = [] for dir_name, dir_size in self.all_files.items(): heapq.heappush(_max_heap, DirectoryWithSize(dir_name, -1 * dir_size)) _results = [] for _ in range(0, top_k): dir_obj = heapq.heappop(_max_heap) dir_name, dir_size = dir_obj.dir_name, -1 * dir_obj.dir_size _results.append((dir_name, dir_size)) return _results if __name__ == "__main__": files = [ ["file_1.txt", 10000, ""], ["file_2.txt", 1000, "collection_1"], ["file_3.txt", 1210, "collection_2"], ["file_4.txt", 300, "collection_1"], ["file_5.txt", 600, "collection_2"], ["file_6.txt", 500, "collection_5"], ] top_k = 2 fp = FileSystem() for (file_name, file_size, file_directory) in files: fp.add_file_to_directory(file_name, file_size, file_directory) print(fp.all_files) print("\n") print("Total Processed -: \n\t", fp.get_total_file_system_size()) print(f"Top-{top_k} collections are -: \n\t ", fp.get_top_k_directory(top_k=top_k))
the-stack_0_24190
from collections import OrderedDict from itertools import islice from cached_property import cached_property from devito.dimension import Dimension from devito.ir.equations import ClusterizedEq from devito.symbolics import (as_symbol, retrieve_indexed, retrieve_terminals, q_indirect, q_timedimension) from devito.tools import DefaultOrderedDict, flatten, filter_ordered from devito.types import Symbol __all__ = ['FlowGraph'] class Node(ClusterizedEq): """ A special :class:`ClusterizedEq` which keeps track of: :: - :class:`sympy.Eq` writing to ``self`` - :class:`sympy.Eq` reading from ``self`` """ _state = ClusterizedEq._state + ('reads', 'readby') @property def function(self): return self.lhs.function @property def reads(self): return self._reads @property def readby(self): return self._readby @property def is_unbound_temporary(self): return self.function.is_Array and not self.reads and not self.readby def __repr__(self): reads = '[%s%s]' % (', '.join([str(i) for i in self.reads][:2]), '%s') reads = reads % ('' if len(self.reads) <= 2 else ', ...') readby = '[%s%s]' % (', '.join([str(i) for i in self.readby][:2]), '%s') readby = readby % ('' if len(self.readby) <= 2 else ', ...') return "Node(key=%s, reads=%s, readby=%s)" % (self.lhs, reads, readby) class FlowGraph(OrderedDict): """ A FlowGraph represents an ordered sequence of operations. Operations, of type :class:`Node`, are the nodes of the graph. An edge from ``n0`` to ``n1`` indicates that ``n1`` reads from ``n0``. For example, the sequence: :: temp0 = a*b temp1 = temp0*c temp2 = temp0*d temp3 = temp1 + temp2 is represented by the following FlowGraph: :: temp0 ---> temp1 | | | | v v temp2 ---> temp3 The input and output edges of a node ``n`` are encoded in ``n.reads`` and ``n.readby``, respectively. Operations may involve scalars and indexed objects (arrays). The indices of the indexed objects represent either "space" or "time" dimensions. """ def __init__(self, exprs, **kwargs): # Always convert to SSA exprs = makeit_ssa(exprs) mapper = OrderedDict([(i.lhs, i) for i in exprs]) assert len(set(mapper)) == len(exprs), "not SSA Cluster?" # Construct the Nodes, tracking reads and readby tensor_map = DefaultOrderedDict(list) for i in mapper: tensor_map[as_symbol(i)].append(i) reads = DefaultOrderedDict(set) readby = DefaultOrderedDict(set) for k, v in mapper.items(): handle = retrieve_terminals(v.rhs) for i in list(handle): if i.is_Indexed: for idx in i.indices: handle |= retrieve_terminals(idx) reads[k].update(set(flatten([tensor_map.get(as_symbol(i), []) for i in handle]))) for i in reads[k]: readby[i].add(k) # Make sure read-after-writes are honored for scalar nodes processed = [i for i in mapper if i.is_Indexed] queue = [i for i in mapper if i not in processed] while queue: k = queue.pop(0) if not readby[k] or k in readby[k]: processed.insert(0, k) elif all(i in processed for i in readby[k]): index = min(processed.index(i) for i in readby[k]) processed.insert(index, k) else: queue.append(k) # Build up the FlowGraph nodes = [(i, Node(mapper[i], reads=reads[i], readby=readby[i])) for i in processed] super(FlowGraph, self).__init__(nodes, **kwargs) # Determine indices along the space and time dimensions terms = [v for k, v in self.items() if v.is_Tensor and not q_indirect(k)] indices = filter_ordered(flatten([i.function.indices for i in terms])) self.space_indices = tuple(i for i in indices if i.is_Space) self.time_indices = tuple(i for i in indices if i.is_Time) def trace(self, key, readby=False, strict=False): """ Return the sequence of operations required to compute the node ``key``. If ``readby = True``, then return the sequence of operations that will depend on ``key``, instead. With ``strict = True``, drop ``key`` from the result. """ if key not in self: return [] # OrderedDicts, besides preserving the scheduling order, also prevent # scheduling the same node more than once found = OrderedDict() queue = OrderedDict([(key, self[key])]) while queue: k, v = queue.popitem(last=False) reads = self.extract(k, readby=readby) if set(reads).issubset(set(found.values())): # All dependencies satisfied, schedulable found[k] = v else: # Tensors belong to other traces, so they can be scheduled straight away tensors = [i for i in reads if i.is_Tensor] found = OrderedDict(list(found.items()) + [(i.lhs, i) for i in tensors]) # Postpone the rest until all dependening nodes got scheduled scalars = [i for i in reads if i.is_Scalar] queue = OrderedDict([(i.lhs, i) for i in scalars] + [(k, v)] + list(queue.items())) if strict is True: found.pop(key) return tuple(found.values()) def time_invariant(self, expr=None): """ Check if ``expr`` is time invariant. ``expr`` may be an expression ``e`` explicitly tracked by the FlowGraph or even a generic subexpression of ``e``. If no ``expr`` is provided, then time invariance of the entire FlowGraph is assessed. """ if expr is None: return all(self.time_invariant(v) for v in self.values()) if any(q_timedimension(i) for i in expr.free_symbols): return False queue = [expr.rhs if expr.is_Equality else expr] seen = set() while queue: item = queue.pop() nodes = set() for i in retrieve_terminals(item): if i in seen: # Already inspected, nothing more can be inferred continue elif any(isinstance(j, Dimension) and j.is_Time for j in i.free_symbols): # Definitely not time-invariant return False elif i in self: # Go on with the search nodes.add(i) elif isinstance(i, Dimension): # Go on with the search, as /i/ is not a time dimension pass elif not i.base.function.is_TensorFunction: # It didn't come from the outside and it's not in self, so # cannot determine if time-invariant; assume time-varying return False seen.add(i) queue.extend([self[i].rhs for i in nodes]) return True def is_index(self, key): """ Return True if ``key`` is used as array index in an expression of the FlowGraph, False otherwise. """ if key not in self: return False match = key.base.label if self[key].is_Tensor else key for i in self.extract(key, readby=True): for e in retrieve_indexed(i): if any(match in idx.free_symbols for idx in e.indices): return True return False def extract(self, key, readby=False): """ Return the list of nodes appearing in ``key.reads``, in program order (ie, based on the order in which the nodes appear in ``self``). If ``readby is True``, then return instead the list of nodes appearing ``key.readby``, in program order. Examples ======== Given the following sequence of operations: :: t1 = ... t0 = ... u[i, j] = ... v ... u[3, j] = ... v = t0 + t1 + u[z, k] t2 = ... Assuming ``key == v`` and ``readby is False`` (as by default), return the following list of :class:`Node` objects: :: [t1, t0, u[i, j], u[3, j]] If ``readby is True``, return: :: [v, t2] """ if key not in self: return [] match = self[key].reads if readby is False else self[key].readby found = [] for k, v in self.items(): if k in match: found.append(v) return found def __getitem__(self, key): if not isinstance(key, slice): return super(FlowGraph, self).__getitem__(key) offset = key.step or 0 try: start = list(self.keys()).index(key.start) + offset except ValueError: start = 0 try: stop = list(self.keys()).index(key.stop) + offset except ValueError: stop = None return FlowGraph(islice(list(self.items()), start, stop)) @cached_property def unknown(self): """ Return all symbols appearing in self for which a node is not available. """ known = {v.function for v in self.values()} reads = set([i.base.function for i in flatten(retrieve_terminals(v.rhs) for v in self.values())]) return reads - known @cached_property def tensors(self): """ Return all occurrences of the tensors in ``self`` keyed by function. """ mapper = {} for v in self.values(): handle = retrieve_indexed(v) for i in handle: found = mapper.setdefault(i.base.function, []) if i not in found: # Not using sets to preserve order found.append(i) return mapper def makeit_ssa(exprs): """ Convert an iterable of :class:`Eq`s into Static Single Assignment (SSA) form. """ # Identify recurring LHSs seen = {} for i, e in enumerate(exprs): seen.setdefault(e.lhs, []).append(i) # Optimization: don't waste time reconstructing stuff if already in SSA form if all(len(i) == 1 for i in seen.values()): return exprs # SSA conversion c = 0 mapper = {} processed = [] for i, e in enumerate(exprs): where = seen[e.lhs] rhs = e.rhs.xreplace(mapper) if len(where) > 1: needssa = e.is_Scalar or where[-1] != i lhs = Symbol(name='ssa%d' % c, dtype=e.dtype) if needssa else e.lhs if e.is_Increment: # Turn AugmentedAssignment into Assignment processed.append(e.func(lhs, mapper[e.lhs] + rhs, is_Increment=False)) else: processed.append(e.func(lhs, rhs)) mapper[e.lhs] = lhs c += 1 else: processed.append(e.func(e.lhs, rhs)) return processed
the-stack_0_24192
#!/usr/bin/env python # -*- coding: utf-8 -*- # -------------------------------------------- import logging class NullHandler(logging.Handler): def emit(self, record): pass logger = logging.getLogger('pyagentx.network') logger.addHandler(NullHandler()) # -------------------------------------------- import socket import time import threading import queue as Queue import pyagentx from pyagentx.pdu import PDU class Network(threading.Thread): def __init__(self, queue, oid_list, sethandlers): threading.Thread.__init__(self) self.stop = threading.Event() self._queue = queue self._oid_list = oid_list self._sethandlers = sethandlers self.session_id = 0 self.transaction_id = 0 self.debug = 1 # Data Related Variables self.data = {} self.data_idx = [] def _connect(self): while True: try: self.socket = socket.socket( socket.AF_UNIX, socket.SOCK_STREAM ) self.socket.connect(pyagentx.SOCKET_PATH) self.socket.settimeout(0.1) return except socket.error: logger.error("Failed to connect, sleeping and retrying later") time.sleep(2) def new_pdu(self, type): pdu = PDU(type) pdu.session_id = self.session_id pdu.transaction_id = self.transaction_id self.transaction_id += 1 return pdu def response_pdu(self, org_pdu): pdu = PDU(pyagentx.AGENTX_RESPONSE_PDU) pdu.session_id = org_pdu.session_id pdu.transaction_id = org_pdu.transaction_id pdu.packet_id = org_pdu.packet_id return pdu def send_pdu(self, pdu): if self.debug: pdu.dump() self.socket.send(pdu.encode()) def recv_pdu(self): buf = self.socket.recv(1024) if not buf: return None pdu = PDU() pdu.decode(buf) if self.debug: pdu.dump() return pdu # ========================================= def _get_updates(self): while True: try: item = self._queue.get_nowait() logger.debug('New update') update_oid = item['oid'] update_data = item['data'] # clear values with prefix oid for oid in list(self.data.keys()): if oid.startswith(update_oid): del(self.data[oid]) # insert updated value for row in list(update_data.values()): oid = "%s.%s" % (update_oid, row['name']) self.data[oid] = {'name': oid, 'type':row['type'], 'value':row['value']} # recalculate reverse index if data changed self.data_idx = sorted(list(self.data.keys()), key=lambda k: tuple(int(part) for part in k.split('.'))) except Queue.Empty: break def _get_next_oid(self, oid, endoid): if oid in self.data: # Exact match found #logger.debug('get_next_oid, exact match of %s' % oid) idx = self.data_idx.index(oid) if idx == (len(self.data_idx)-1): # Last Item in MIB, No match! return None return self.data_idx[idx+1] else: # No exact match, find prefix #logger.debug('get_next_oid, no exact match of %s' % oid) slist = oid.split('.') elist = endoid.split('.') for tmp_oid in self.data_idx: tlist = tmp_oid.split('.') for i in range(len(tlist)): try: sok = int(slist[i]) <= int(tlist[i]) eok = int(elist[i]) >= int(tlist[i]) if not ( sok and eok ): break except IndexError: pass if sok and eok: return tmp_oid return None # No match! def start(self): while True: try: self._start_network() except socket.error: logger.error("Network error, master disconnect?!") def _start_network(self): self._connect() logger.info("==== Open PDU ====") pdu = self.new_pdu(pyagentx.AGENTX_OPEN_PDU) self.send_pdu(pdu) pdu = self.recv_pdu() self.session_id = pdu.session_id logger.info("==== Ping PDU ====") pdu = self.new_pdu(pyagentx.AGENTX_PING_PDU) self.send_pdu(pdu) pdu = self.recv_pdu() logger.info("==== Register PDU ====") for oid in self._oid_list: logger.info("Registering: %s" % (oid)) pdu = self.new_pdu(pyagentx.AGENTX_REGISTER_PDU) pdu.oid = oid self.send_pdu(pdu) pdu = self.recv_pdu() logger.info("==== Waiting for PDU ====") while True: try: self._get_updates() request = self.recv_pdu() except socket.timeout: continue if not request: logger.error("Empty PDU, connection closed!") raise socket.error response = self.response_pdu(request) if request.type == pyagentx.AGENTX_GET_PDU: logger.info("Received GET PDU") for rvalue in request.range_list: oid = rvalue[0] logger.debug("OID: %s" % (oid)) if oid in self.data: logger.debug("OID Found") response.values.append(self.data[oid]) else: logger.debug("OID Not Found!") response.values.append({'type':pyagentx.TYPE_NOSUCHOBJECT, 'name':rvalue[0], 'value':0}) elif request.type == pyagentx.AGENTX_GETNEXT_PDU: logger.info("Received GET_NEXT PDU") for rvalue in request.range_list: oid = self._get_next_oid(rvalue[0],rvalue[1]) logger.debug("GET_NEXT: %s => %s" % (rvalue[0], oid)) if oid: response.values.append(self.data[oid]) else: response.values.append({'type':pyagentx.TYPE_ENDOFMIBVIEW, 'name':rvalue[0], 'value':0}) elif request.type == pyagentx.AGENTX_TESTSET_PDU: logger.info("Received TESTSET PDU") idx = 0 for row in request.values: idx += 1 oid = row['name'] type_ = pyagentx.TYPE_NAME.get(row['type'], 'Unknown type') value = row['data'] logger.info("Name: [%s] Type: [%s] Value: [%s]" % (oid, type_, value)) # Find matching sethandler matching_oid = '' for target_oid in self._sethandlers: if oid.startswith(target_oid): matching_oid = target_oid break if matching_oid == '': logger.debug('TestSet request failed: not writeable #%s' % idx) response.error = pyagentx.ERROR_NOTWRITABLE response.error_index = idx break try: self._sethandlers[matching_oid].network_test(request.session_id, request.transaction_id, oid, row['data']) except pyagentx.SetHandlerError: logger.debug('TestSet request failed: wrong value #%s' % idx) response.error = pyagentx.ERROR_WRONGVALUE response.error_index = idx break logger.debug('TestSet request passed') elif request.type == pyagentx.AGENTX_COMMITSET_PDU: for handler in list(self._sethandlers.values()): handler.network_commit(request.session_id, request.transaction_id) logger.info("Received COMMITSET PDU") elif request.type == pyagentx.AGENTX_UNDOSET_PDU: for handler in list(self._sethandlers.values()): handler.network_undo(request.session_id, request.transaction_id) logger.info("Received UNDOSET PDU") elif request.type == pyagentx.AGENTX_CLEANUPSET_PDU: for handler in list(self._sethandlers.values()): handler.network_cleanup(request.session_id, request.transaction_id) logger.info("Received CLEANUP PDU") self.send_pdu(response)
the-stack_0_24193
import json import re from pathlib import Path from typing import Iterable, List import jupytext import pytest import toml import yaml from nbformat import NotebookNode from implectus.config import IMPLECTUS_CONFIG_FILES @pytest.fixture def tmpdir_cd(tmpdir): """Create a temporary directory and change to it for the duration of the test.""" with tmpdir.as_cwd(): yield tmpdir def write_config(config_file_path, config: dict): """Write an Implectus config file in toml, yaml, json, or py format.""" path = Path(config_file_path) path.parent.mkdir(exist_ok=True, parents=True) if path.suffix == ".py": config_src = [f'c.{k} = "{v}"' for (k, v) in config.items()] path.write_text("\n".join(config_src)) else: with path.open("w") as f: if path.suffix == ".yaml" or path.suffix == ".yml": yaml.dump(config, f) elif path.suffix == ".json": json.dump(config, f) else: toml.dump(config, f) def nb_to_py(path, strip_metadata=True): """Return the contents of a notebook (or script) as py:light.""" nb = jupytext.read(path) if strip_metadata: nb.metadata.setdefault("jupytext", {})["notebook_metadata_filter"] = "-all" return jupytext.writes(nb, fmt="py:light") def _strip_trailing_slash(pattern_or_patterns): if pattern_or_patterns is None: return [] elif type(pattern_or_patterns) in (list, tuple): return [_strip_trailing_slash(pattern) for pattern in pattern_or_patterns] else: pattern = str(pattern_or_patterns) if pattern.endswith("/"): pattern = pattern[:-1] return pattern def _path_expected(path: Path, expected): """Check if the given path or one of its parent dirs is in `expected`. Also ignore config files and .ipynb_checkpoints. """ if _strip_trailing_slash(path) in expected: return True for parent in path.parents: if str(parent) in expected: return True # Ignore these as well to save typing if path.name in IMPLECTUS_CONFIG_FILES or ".ipynb_checkpoints" in path.parts: return True return False def no_extra_files(path=".", expected: Iterable = None): """Check if the given path contains only files and dirs from `expected`. Also ignore config files and .ipynb_checkpoints. """ expected = _strip_trailing_slash(expected) unexpected_dirs = [] # type: List[str] for file in Path(path).glob("**/*"): if _path_expected(file, expected): # Drop parent dir from unexpected_dirs list for parent in file.parents: if str(parent) in unexpected_dirs: unexpected_dirs.remove(str(parent)) continue if file.is_dir(): unexpected_dirs.append(str(file)) continue print("Unexpected file", file) return False return len(unexpected_dirs) == 0 def _resolve_code(code_or_file, _load=lambda f: Path(f).read_text()): """If `code_or_file` is a filename then load it, otherwise return it as-is.""" if type(code_or_file) is str and ("\n" in code_or_file or len(code_or_file) > 256): # Probably code return code_or_file if type(code_or_file) is str and code_or_file.endswith(".py"): # Probably filename assert Path(code_or_file).is_file() return _load(code_or_file) if Path(code_or_file).is_file(): # Probably filename return _load(code_or_file) return code_or_file def _split_header(code): """Extract the Implectus header from a generated code string.""" lines = code.splitlines() assert len(lines) > 3 assert lines[0].startswith("# # Autogenerated"), "Missing header" assert lines[1].startswith("# This file was"), "Missing header" assert lines[2].startswith("# edit `"), "Missing header" assert not lines[3], "Missing gap" return "\n".join(lines[:3]), "\n".join(lines[4:]) def _remove_header_version(header): """Remove the version number from an Implectus header.""" return re.sub(r"Implectus [\d\.]+?\. ", "Implectus. ", header) def code_equal(actual, expected, assert_=True, _resolve=_resolve_code): """Check whether generated code files or strings are equivalent. Only works when both are py:light for now. """ actual = _resolve(actual) expected = _resolve(expected) actual_header, actual_code = _split_header(actual) expected_header, expected_code = _split_header(expected) actual_header = _remove_header_version(actual_header) expected_header = _remove_header_version(expected_header) if assert_ is True: assert actual_header == expected_header assert actual_code == expected_code if assert_ is False: assert actual_header != expected_header or actual_code != expected_code return actual_header == expected_header and actual_code == expected_code def _resolve_doc(doc_or_file): """If `code_or_file` is a filename then load it as py:light, otherwise return it.""" return _resolve_code(doc_or_file, nb_to_py) def doc_equal(*args, **kwargs): """Check whether generated code files or strings are equivalent. Arguments must be files or py:light strings. """ return code_equal(*args, **kwargs, _resolve=_resolve_doc) # type: ignore def create_nb(cells=None, metadata=None, nbformat=4, nbformat_minor=4): return NotebookNode( metadata=metadata or {}, nbformat=nbformat, nbformat_minor=nbformat_minor, cells=cells or [], )
the-stack_0_24196
import math class BevelGearAttributes: def __init__(self, teeth, module, shaftAngle, faceWidth): self.teeth = teeth self.module = module self.shaftAngle = shaftAngle self.faceWidth = faceWidth @classmethod def createGearPair(cls, gearTeeth, pinionTeeth, module, shaftAngle, faceWidth): gear = cls(gearTeeth, module, shaftAngle, faceWidth) pinion = cls(gearTeeth, module, shaftAngle, faceWidth) referenceDiameterPinion = pinionTeeth * module referenceDiameterGear = gearTeeth * module referenceConeAnglePinion = math.atan(math.sin(math.radians(shaftAngle)) / (gearTeeth/pinionTeeth + math.cos(math.radians(shaftAngle)))) referenceConeAngleGear = shaftAngle - math.degrees(referenceConeAnglePinion) coneDistance = referenceConeAngleGear / (2 * math.sin(math.radians(referenceConeAngleGear))) if (faceWidth > coneDistance / 3): print("Oh noes.") _temp = (gearTeeth * math.cos(math.radians(referenceConeAnglePinion)) / pinionTeeth * math.cos(math.radians(referenceConeAngleGear))) addendumGear = 0.54*module + 0.46*module / _temp addendumPinion = 2*module - addendumGear dedendumGear = 2.188 * module - addendumGear dedendumPinion = 2.188 * module - addendumPinion return (gear, pinion)
the-stack_0_24197
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import glob import os import shutil from os import path from setuptools import find_packages, setup from typing import List import torch from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension torch_ver = [int(x) for x in torch.__version__.split(".")[:2]] assert torch_ver >= [1, 3], "Requires PyTorch >= 1.3" def get_version(): init_py_path = path.join(path.abspath(path.dirname(__file__)), "mydl", "__init__.py") init_py = open(init_py_path, "r").readlines() version_line = [l.strip() for l in init_py if l.startswith("__version__")][0] version = version_line.split("=")[-1].strip().strip("'\"") # The following is used to build release packages. # Users should never use it. suffix = os.getenv("D2_VERSION_SUFFIX", "") version = version + suffix if os.getenv("BUILD_NIGHTLY", "0") == "1": from datetime import datetime date_str = datetime.today().strftime("%y%m%d") version = version + ".dev" + date_str new_init_py = [l for l in init_py if not l.startswith("__version__")] new_init_py.append('__version__ = "{}"\n'.format(version)) with open(init_py_path, "w") as f: f.write("".join(new_init_py)) return version def get_extensions(): this_dir = path.dirname(path.abspath(__file__)) extensions_dir = path.join(this_dir, "mydl", "layers", "csrc") main_source = path.join(extensions_dir, "vision.cpp") sources = glob.glob(path.join(extensions_dir, "**", "*.cpp")) source_cuda = glob.glob(path.join(extensions_dir, "**", "*.cu")) + glob.glob( path.join(extensions_dir, "*.cu") ) sources = [main_source] + sources extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] if ( torch.cuda.is_available() and CUDA_HOME is not None and os.path.isdir(CUDA_HOME) ) or os.getenv("FORCE_CUDA", "0") == "1": extension = CUDAExtension sources += source_cuda define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] # It's better if pytorch can do this by default .. CC = os.environ.get("CC", None) if CC is not None: extra_compile_args["nvcc"].append("-ccbin={}".format(CC)) include_dirs = [extensions_dir] ext_modules = [ extension( "mydl._C", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules def get_model_zoo_configs() -> List[str]: """ Return a list of configs to include in package for model zoo. Copy over these configs inside mydl/model_zoo. """ # Use absolute paths while symlinking. source_configs_dir = path.join(path.dirname(path.realpath(__file__)), "configs") destination = path.join( path.dirname(path.realpath(__file__)), "mydl", "model_zoo", "configs" ) # Symlink the config directory inside package to have a cleaner pip install. # Remove stale symlink/directory from a previous build. if path.exists(source_configs_dir): if path.islink(destination): os.unlink(destination) elif path.isdir(destination): shutil.rmtree(destination) if not path.exists(destination): try: os.symlink(source_configs_dir, destination) except OSError: # Fall back to copying if symlink fails: ex. on Windows. shutil.copytree(source_configs_dir, destination) config_paths = glob.glob("configs/**/*.yaml", recursive=True) return config_paths setup( name="mydl", version=get_version(), author="FAIR", url="https://github.com/facebookresearch/mydl", description="Detectron2 is FAIR's next-generation research " "platform for object detection and segmentation.", packages=find_packages(exclude=("configs", "tests")), package_data={"mydl.model_zoo": get_model_zoo_configs()}, python_requires=">=3.6", install_requires=[ "termcolor>=1.1", "Pillow", # you can also use pillow-simd for better performance "yacs>=0.1.6", "tabulate", "cloudpickle", "matplotlib", "tqdm>4.29.0", "tensorboard", "fvcore", "future", # used by caffe2 "pydot", # used to save caffe2 SVGs ], extras_require={ "all": ["shapely", "psutil"], "dev": ["flake8", "isort", "black==19.3b0", "flake8-bugbear", "flake8-comprehensions"], }, ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension}, )
the-stack_0_24198
from grafana_import.constants import (PKG_NAME, PKG_VERSION) from setuptools import setup, find_packages # Global variables name = PKG_NAME version = PKG_VERSION requires = [ 'grafana-api', 'jinja2' ] setup( name=name, version=version, description='A Python-based application to import Grafana dashboards using the Grafana API and grafana-api python interface', long_description_content_type='text/markdown', long_description=open('README.md', 'r').read(), author="author", author_email="[email protected]", url="https://github.com/peekjef72/grafana-import-tool", entry_points={ 'console_scripts': [ 'grafana-import = grafana_import.cli:main' ] }, packages=find_packages(), install_requires=requires, package_data={'': ['conf/*']}, )
the-stack_0_24199
""" Histogram Equalization Class """ import numpy import math import copy import matplotlib.pyplot as plt class HistogramEqualization: """Implements Histogram Equalization""" imgName = "IMG" #ImageName colorDepth = 8 #Intensity represented by 8 bits def __init__(self, pixels, colorDepth=8, imgName="IMG"): self.pixels = pixels self.colorDepth = colorDepth self.imgName = imgName def evaluate(self): # Assert pixels is a matrix assert(type(self.pixels) == numpy.ndarray) height, width, _ = self.pixels.shape img = self.pixels.reshape(height*width) L = 2**self.colorDepth # Assert color depth is coherent assert(L > numpy.amax(img)) # Calculation of intesity frequencies frequency = numpy.zeros(L) for pixel in img: frequency[pixel] += 1/(width*height) # Print histogram of original image fig_name = self.imgName + "_hist" self.printHistogram(frequency,fig_name) # Creation of intensity transformation function eq_transformation_func = numpy.zeros(L) for intesity in range(L): sum_previous = 0 for previous in range(intesity): sum_previous =+ eq_transformation_func[previous] eq_transformation_func[intesity] = sum_previous + (L-1) * frequency[intesity] eq_transformation_func = numpy.around(eq_transformation_func) # Round new intensity values eq_transformation_func = eq_transformation_func.astype(int) # Transform to integer # Generation of equalized image from the transformation function eq_img = eq_transformation_func[img] # Calculation of equalized intesity frequencies frequency_eq = numpy.zeros(L) for pixel in eq_img: frequency_eq[pixel] += 1/(width*height) # Print histogram of equalized image fig_name = self.imgName + "_hist_eq" self.printHistogram(frequency_eq,fig_name) result = numpy.array(eq_img).reshape((height, width, 1)) return result @staticmethod def printHistogram(frequency, figName): f = plt.figure() plt.bar(range(len(frequency)),frequency) plt.xlabel("Intensity") plt.ylabel("Frequency") figName = figName + ".pdf" f.savefig(figName, bbox_inches='tight')
the-stack_0_24202
import os import sys import argparse import pickle import week4.retrieval as retrieval import week4.evaluation as evaluation import week4.utils as utils def parse_args(args=sys.argv[2:]): parser = argparse.ArgumentParser(description='CBIR: Content Based Image Retrieval. MCV-M1-Project, Team 3') parser.add_argument('bbdd_path', type=str, help='absolute/relative path to the bbdd dataset') parser.add_argument('query_path', type=str, help='absolute/relative path to the query dataset') parser.add_argument('--test', action='store_true', help='using a test dataset, so no groundtruth is provided') parser.add_argument('--map_k', type=lambda s: [int(item) for item in s.split(',')], default=[5], help='retrieve K number/s of images') parser.add_argument('--remove_bg', action='store_true', help='remove background from images in order to extract paintings') parser.add_argument('--max_paintings', type=int, default=3, help='maximum number of paintings to extract from an image after removing the background') parser.add_argument('--remove_text', action='store_true', help='remove text bounding boxes from images') parser.add_argument('--remove_noise', action='store_true', help='remove noise from noisy images') parser.add_argument('--use_color', action='store_true', help='use color descriptor') parser.add_argument('--use_texture', action='store_true', help='use texture descriptor/s') parser.add_argument('--use_text', action='store_true', help='use text descriptor') parser.add_argument('--color_descriptor', type=str, default='rgb_3d_blocks', choices=['rgb_3d_blocks', 'rgb_3d_multiresolution'], help='color descriptor used') parser.add_argument('--texture_descriptor', type=lambda s: [item for item in s.split(',')], default='dct_blocks', # choices=['dct_blocks', 'dct_multiresolution', 'lbp_blocks', 'lbp_multiresolution', # 'hog', 'wavelet', 'hog_blocks', 'hog_multiresolution', 'wavelet_blocks', 'wavelet_multiresolution'], help='texture descriptor used') parser.add_argument('--color_weight', type=float, default=0.33, help='weight for the color descriptor') parser.add_argument('--texture_weight', type=lambda s: [float(item) for item in s.split(',')], default=[0.33], help='weight for the texture descriptor') parser.add_argument('--text_weight', type=float, default=0.0, help='weight for the text descriptor') parser.add_argument('--color_metric', type=str, default='hellinger', choices=['hellinger', 'intersection', 'chi-squared', 'correlation'], help='distance metric to compare images') parser.add_argument('--texture_metric', type=lambda s: [item for item in s.split(',')], default=['correlation'], # choices=['hellinger', 'intersection', 'chi-squared', 'correlation'], help='distance metric to compare images') parser.add_argument('--text_metric', type=str, default='Levensthein', choices=['Levensthein', 'Hamming', 'Damerau'], help='distance metric to compare images') parser.add_argument('--number_blocks', type=int, default=16, help='number of blocks in which the image is divided if using the block-based histograms') parser.add_argument('--multiresolution_blocks', type=lambda s: [int(item) for item in s.split(',')], default=[1,4,8,16], help='list of numbers of blocks in which the image is divided if using the multiresolution histograms') parser.add_argument('--verbose', action='store_true', help='increase output verbosity: show k similar images per each query image') parser.add_argument('--use_sift', action='store_true', help='use SIFT to predict images') parser.add_argument('--use_orb', action='store_true', help='use ORB to predict images') parser.add_argument('--use_surf', action='store_true', help='use SURF to predict images') parser.add_argument('--cluster_images', action='store_true', help='Cluster Images using diff Knn') args = parser.parse_args(args) return args def args_to_params(args): results_path = os.path.join(args.query_path, 'results') if not os.path.exists(results_path): os.makedirs(results_path) params = { 'lists': None, 'paths': None, 'features': None, 'color': None, 'texture': None, 'text': None, 'remove': None } params['paths'] = { 'bbdd': args.bbdd_path, 'query': args.query_path, 'results': results_path } if args.use_color: params['color'] = { 'descriptor': args.color_descriptor, 'weight': args.color_weight, 'metric': args.color_metric } if args.use_texture: params['texture'] = { 'descriptor': args.texture_descriptor, 'weight': args.texture_weight, 'metric': args.texture_metric } if args.use_text: params['text'] = { 'weight': args.text_weight, 'metric': args.text_metric } if True in (args.remove_bg, args.remove_text, args.remove_noise): params['remove'] = { 'bg': args.remove_bg, 'max_paintings': args.max_paintings, 'text': args.remove_text, 'noise': args.remove_noise } if True in (args.use_sift, args.use_orb, args.use_surf): params['features'] = { 'sift': args.use_sift, 'orb': args.use_orb, 'surf': args.use_surf } if not True in (args.use_color, args.use_texture, args.use_text, args.use_sift, args.use_orb, args.use_surf): sys.exit('[ERROR] No descriptor method specified') return params def lists_to_params(params, bbdd_list, query_list): params['lists'] = { 'bbdd': bbdd_list, 'query': query_list } return params def run(): args = parse_args() params = args_to_params(args) print(params) k = args.map_k bbdd_list = utils.path_to_list(params['paths']['bbdd'], extension='jpg') query_list = utils.path_to_list(params['paths']['query'], extension='jpg') params = lists_to_params(params, bbdd_list, query_list) paintings_predicted_list = retrieval.get_k_images(params, k=max(k)) utils.save_pickle(os.path.join(params['paths']['results'], 'result.pkl'), paintings_predicted_list) if not args.test: evaluation.evaluate(params, k, verbose=args.verbose)
the-stack_0_24203
""" Implements means of exchanging user ID token with temporary access and secret key. """ import xml.etree.ElementTree as ET import requests from ..exceptions import * from ..interfaces.providers import * class Authorize(IProvider): action = "AssumeRoleWithWebIdentity" version = "2011-06-15" namespace = '{https://sts.amazonaws.com/doc/2011-06-15/}' def __init__(self, config): self.identity_token = None self.role_arn = None self.token_ttl = None self.role_session_name = None super(Authorize, self).__init__(config) def __parse_error(self, response): """ Parses the AWS STS xml-based error response, and throws appropriate exception. :type response: string :param response: error xml :rtype : CloudAuthzBaseException (or any of its derived classes) :return: a CloudAuthz exception w.r.t. AWS STS error code. """ root = ET.fromstring(response) error = root.find('{}Error'.format(self.namespace)) code = error.find('{}Code'.format(self.namespace)).text message = error.find('{}Message'.format(self.namespace)).text if code == 'ExpiredTokenException': return ExpiredTokenException(message) elif code == 'AccessDenied': return AccessDeniedException(message) elif code == 'InvalidIdentityToken': return InvalidTokenException(message) else: return CloudAuthzBaseException(message) def expand_config(self, config): """ Asserts if the config dictionary contains all the keys necessary for the AWS authorization flow; and sets all the necessary and optional parameters. :type config: dict :param config: a dictionary containing all the necessary and optional parameters for AWS authorization flow. The expected keys are as the following: - identity_token: an OpenID Connect identity token represented in JSON Web Token (JWT) format. - role_arn: an Amazon Resource Name (ARN) of a role to be assumed. - duration: an integer specifying the session duration in seconds; ; credentials will expire after this period. Valid values range from 900 seconds to 3600 seconds. - role_session_name: a name assigned to the session, consisting of lower and upper-case letters with no space. :return: all the optional and required parameters. """ if 'id_token' not in config: raise KeyError("`id_token` is not provided.") self.identity_token = config['id_token'] if 'role_arn' not in config: raise KeyError("`role_arn` is not provided.") self.role_arn = config['role_arn'] self.token_ttl = config.get('token_ttl', 900) self.role_session_name = config.get('role_session_name', 'cloudauthz') def get_credentials(self): """ Assumes an AWS Role and returns credentials accordingly. :rtype : dict :return: a dictionary containing credentials to access the resources available to the assumed role. Credentials are: - Access Key ID - Secret Access Key - Session Token """ url = "https://sts.amazonaws.com/?" \ "DurationSeconds={}&" \ "Action={}&Version={}&" \ "RoleSessionName={}&" \ "RoleArn={}&" \ "WebIdentityToken={}"\ .format(self.token_ttl, self.action, self.version, self.role_session_name, self.role_arn, self.identity_token) response = requests.get(url) if response.ok: root = ET.fromstring(response.content) rtv = {} role_assume_result = root.find('{}AssumeRoleWithWebIdentityResult'.format(self.namespace)) credentials = role_assume_result.find('{}Credentials'.format(self.namespace)) for attribute in credentials: rtv[attribute.tag.replace(self.namespace, '')] = attribute.text return rtv else: raise self.__parse_error(response.content)
the-stack_0_24204
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import wagtail.wagtailcore.fields import wagtail.wagtailcore.blocks import wagtail.wagtailimages.blocks class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0023_alter_page_revision_on_delete_behaviour'), ('home', '0008_auto_20171121_0042'), ] operations = [ migrations.CreateModel( name='HomeStream', fields=[ ('page_ptr', models.OneToOneField(parent_link=True, auto_created=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('home_body', wagtail.wagtailcore.fields.StreamField([(b'heading', wagtail.wagtailcore.blocks.CharBlock(classname=b'full title')), (b'paragraph', wagtail.wagtailcore.blocks.RichTextBlock()), (b'image', wagtail.wagtailimages.blocks.ImageChooserBlock())])), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), ]
the-stack_0_24205
import os import re import string import urllib.parse from collections import defaultdict import matplotlib.pyplot as plt import numpy as np import requests from bs4 import BeautifulSoup import gensim from keras.layers import (Activation, Conv1D, Dense, Dropout, Embedding, GlobalMaxPooling1D) from keras.models import Sequential from keras.preprocessing import sequence class WebProcessor: def __init__(self, query, tags=None, model=None, sim_threshold=0.4): self.query = query if tags: self.tags = tags else: self.tags = [ 'title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'ul', 'ol', 'table' ] if model: self.model = model else: path = 'D:\Word2Vec\GoogleNews-vectors-negative300.bin' if os.path.isfile(path): self.model = gensim.models.KeyedVectors.load_word2vec_format( path, binary=True) print('Model loaded.') else: raise FileNotFoundError( f"No such file: '{path}'\n" "Pre-trained word and phrase vectors not found. " "You can download the file at " "https://code.google.com/archive/p/word2vec/.") self.sim_threshold = sim_threshold def crawl_website(self, url): self.url = url try: r = requests.get(url) r.raise_for_status() except Exception: return None self.soup = BeautifulSoup(r.text, 'html.parser') print('Web page loaded..') def extract_by_tags(self): tag_text = defaultdict(str) for tag in self.tags: for elem in self.soup.find_all(tag): stripped = elem.text.translate( str.maketrans( str.maketrans(dict.fromkeys(string.punctuation)))) stripped = re.sub(r'\s+', ' ', stripped).strip() if stripped: tag_text[tag] += f' {stripped.lower()}'.strip() return dict(tag_text) def get_hyperlinks(self): self.links = {} for link in self.soup.find_all('a'): url = urllib.parse.urljoin(self.url, link.get('href')) self.links[url] = ' '.join( [self.links.get(url, '') + link.text.strip()]) return self.links def get_tf(self, text): if not text: return 0 words = text.split() num_rel_words = np.zeros(len(self.query)) for word in words: for idx, topic in enumerate(self.query): try: sim = self.model.similarity(topic, word) # sim = np.random.random() if sim >= self.sim_threshold: num_rel_words[idx] += 1 except KeyError: pass return np.max(num_rel_words) / len(text) def get_tfidf(self, tag_text): tf = np.empty(len(self.tags)) for idx, tag in enumerate(self.tags): try: tf[idx] = self.get_tf(tag_text[tag]) except KeyError: tf[idx] = 0 return tf def main(): wp = WebProcessor(query=['education', 'university', 'college']) wp.crawl_website(url='https://illinois.edu/') links = wp.get_hyperlinks() tag_text = wp.extract_by_tags() tf = wp.get_tfidf(tag_text) print(tf) if __name__ == '__main__': main()
the-stack_0_24206
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import multiprocessing import os import random import time import collections import h5py import utils from tokenization import ElectraTokenizer features = collections.namedtuple("features", ["input_ids", "input_mask", "segment_ids"]) class ExampleBuilder(object): """Given a stream of input text, creates pretraining examples.""" def __init__(self, tokenizer, max_length): self._tokenizer = tokenizer self._current_sentences = [] self._current_length = 0 self._max_length = max_length self._target_length = max_length def add_line(self, line): """Adds a line of text to the current example being built.""" line = line.strip().replace("\n", " ") if (not line) and self._current_length != 0: # empty lines separate docs return self._create_example() bert_tokens = self._tokenizer.tokenize(line) bert_tokids = self._tokenizer.convert_tokens_to_ids(bert_tokens) self._current_sentences.append(bert_tokids) self._current_length += len(bert_tokids) if self._current_length >= self._target_length: return self._create_example() return None def _create_example(self): """Creates a pre-training example from the current list of sentences.""" # small chance to only have one segment as in classification tasks if random.random() < 0.1: first_segment_target_length = 100000 else: # -3 due to not yet having [CLS]/[SEP] tokens in the input text first_segment_target_length = (self._target_length - 3) // 2 first_segment = [] second_segment = [] for sentence in self._current_sentences: # the sentence goes to the first segment if (1) the first segment is # empty, (2) the sentence doesn't put the first segment over length or # (3) 50% of the time when it does put the first segment over length if (len(first_segment) == 0 or len(first_segment) + len(sentence) < first_segment_target_length or (len(second_segment) == 0 and len(first_segment) < first_segment_target_length and random.random() < 0.5)): first_segment += sentence else: second_segment += sentence # trim to max_length while accounting for not-yet-added [CLS]/[SEP] tokens first_segment = first_segment[:self._max_length - 2] second_segment = second_segment[:max(0, self._max_length - len(first_segment) - 3)] # prepare to start building the next example self._current_sentences = [] self._current_length = 0 # small chance for random-length instead of max_length-length example if random.random() < 0.05: self._target_length = random.randint(5, self._max_length) else: self._target_length = self._max_length return self._make_example(first_segment, second_segment) def _make_example(self, first_segment, second_segment): vocab = self._tokenizer.vocab input_ids = [vocab["[CLS]"]] + first_segment + [vocab["[SEP]"]] segment_ids = [0] * len(input_ids) if second_segment: input_ids += second_segment + [vocab["[SEP]"]] segment_ids += [1] * (len(second_segment) + 1) input_mask = [1] * len(input_ids) input_ids += [0] * (self._max_length - len(input_ids)) input_mask += [0] * (self._max_length - len(input_mask)) segment_ids += [0] * (self._max_length - len(segment_ids)) example = features( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids ) return example def features_append(examples, example): examples["input_ids"].append(example.input_ids) examples["input_mask"].append(example.input_mask) examples["segment_ids"].append(example.segment_ids) class ExampleWriter(object): """Writes pre-training examples to disk.""" def __init__(self, job_id, vocab_file, output_dir, max_seq_length, num_jobs, blanks_separate_docs, do_lower_case, num_out_files=1000, chunk_size=10000): self._blanks_separate_docs = blanks_separate_docs tokenizer = ElectraTokenizer( vocab_file=vocab_file, do_lower_case=do_lower_case) self._example_builder = ExampleBuilder(tokenizer, max_seq_length) self.examples = [] self._writers = [] for i in range(num_out_files): if i % num_jobs == job_id: output_fname = os.path.join( output_dir, "pretrain_data-{:}-of-{:}.hdf5".format( i, num_out_files)) self.examples.append({"input_ids": [], "input_mask": [], "segment_ids": []}) self._writers.append(h5py.File(output_fname, "w")) self.chunk_size = chunk_size self.max_seq_length = max_seq_length self.n_written = 0 def write_examples(self, input_file): """Writes out examples from the provided input file.""" with open(input_file, "r") as f: for line in f: line = line.strip() if line or self._blanks_separate_docs: example = self._example_builder.add_line(line) if example: features_append(self.examples[self.n_written % len(self._writers)], example) write_hdf5( self._writers[self.n_written % len(self._writers)], self.examples[self.n_written % len(self._writers)], chunk_size=self.chunk_size, max_seq_length=self.max_seq_length) self.n_written += 1 example = self._example_builder.add_line("") if example: features_append(self.examples[self.n_written % len(self._writers)], example) write_hdf5( self._writers[self.n_written % len(self._writers)], self.examples[self.n_written % len(self._writers)], chunk_size=0, max_seq_length=self.max_seq_length) self.n_written += 1 def finish(self): for examples, writer in zip(self.examples, self._writers): write_hdf5(writer, examples, chunk_size=0, max_seq_length=self.max_seq_length) writer.flush() writer.close() def write_hdf5(writer, examples, chunk_size, max_seq_length): if len(examples["input_ids"]) < chunk_size: return if "input_ids" not in writer: writer.create_dataset( "input_ids", data=examples["input_ids"], dtype='i4', compression='gzip', maxshape=(None, max_seq_length)) writer.create_dataset( "input_mask", data=examples["input_mask"], dtype='i1', compression='gzip', maxshape=(None, max_seq_length)) writer.create_dataset( "segment_ids", data=examples["segment_ids"], dtype='i1', compression='gzip', maxshape=(None, max_seq_length)) else: for key in ["input_ids", "input_mask", "segment_ids"]: writer[key].resize(writer[key].shape[0] + len(examples[key]), axis=0) writer[key][-len(examples[key]):] = examples[key] writer.flush() for key in ["input_ids", "input_mask", "segment_ids"]: examples[key] = [] def write_examples(job_id, args): """A single process creating and writing out pre-processed examples.""" def log(*args): msg = " ".join(map(str, args)) print("Job {}:".format(job_id), msg) log("Creating example writer") example_writer = ExampleWriter( job_id=job_id, vocab_file=args.vocab_file, output_dir=args.output_dir, max_seq_length=args.max_seq_length, num_jobs=args.num_processes, blanks_separate_docs=args.blanks_separate_docs, do_lower_case=args.do_lower_case, num_out_files=args.num_out_files, chunk_size=args.chunk_size ) log("Writing hdf5 examples") fnames = sorted(os.listdir(args.corpus_dir)) fnames = [f for (i, f) in enumerate(fnames) if i % args.num_processes == job_id] random.shuffle(fnames) start_time = time.time() for file_no, fname in enumerate(fnames): if file_no > 0: elapsed = time.time() - start_time log("processed {:}/{:} files ({:.1f}%), ELAPSED: {:}s, ETA: {:}s, " "{:} examples written".format( file_no, len(fnames), 100.0 * file_no / len(fnames), int(elapsed), int((len(fnames) - file_no) / (file_no / elapsed)), example_writer.n_written)) example_writer.write_examples(os.path.join(args.corpus_dir, fname)) example_writer.finish() log("Done!") # python build_pretraining_dataset --corpus-dir def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--corpus-dir", required=True, help="Location of pre-training text files.") parser.add_argument("--vocab-file", required=True, help="Location of vocabulary file.") parser.add_argument("--output-dir", required=True, help="Where to write out the hdf5 files.") parser.add_argument("--max-seq-length", default=128, type=int, help="Number of tokens per example.") parser.add_argument("--num-processes", default=1, type=int, help="Parallelize across multiple processes.") parser.add_argument("--blanks-separate-docs", default=True, type=bool, help="Whether blank lines indicate document boundaries.") parser.add_argument("--do-lower-case", dest='do_lower_case', action='store_true', help="Lower case input text.") parser.add_argument("--no-lower-case", dest='do_lower_case', action='store_false', help="Don't lower case input text.") parser.add_argument("--num-out-files", default=1000, type=int, help="Number of output files.") parser.add_argument("--seed", default=1314, type=int) parser.add_argument("--chunk_size", default=1000, type=int) parser.set_defaults(do_lower_case=True) args = parser.parse_args() random.seed(args.seed) utils.rmkdir(args.output_dir) if args.num_processes == 1: write_examples(0, args) else: jobs = [] for i in range(args.num_processes): job = multiprocessing.Process(target=write_examples, args=(i, args)) jobs.append(job) job.start() for job in jobs: job.join() if __name__ == "__main__": main()
the-stack_0_24208
from gensim.models import KeyedVectors import numpy as np import pandas as pd import keras import csv from sklearn.model_selection import train_test_split # neural network with keras from numpy import loadtxt from keras.models import Sequential from keras.layers import Dense,BatchNormalization,Dropout import pickle from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score,roc_curve from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt train_pos_u = np.load('dummy_data/train_pos_u.npy') train_neg_u = np.load('dummy_data/train_neg_u.npy') test_pos_u = np.load('dummy_data/test_pos_u.npy') test_neg_u = np.load('dummy_data/test_neg_u.npy') train_pos_v = np.load('dummy_data/train_pos_v.npy') train_neg_v = np.load('dummy_data/train_neg_v.npy') test_pos_v = np.load('dummy_data/test_pos_v.npy') test_pos_v=test_pos_v.squeeze() test_neg_v = np.load('dummy_data/test_neg_v.npy') node_num2str=pd.read_csv('dummy_data/node_dict.csv') dict_num2str=dict(zip(node_num2str.int_names, node_num2str.nodes)) sdne_file=open("dummy_data/embed_trainonly_2kepochs.pickle","rb") sdne_embed=pickle.load(sdne_file) sdne_file.close() dim_emb=list(sdne_embed.values())[0].shape[0] def get_samples(pos_u,pos_v,sdne_embed,dict_num2str): samples=np.zeros((pos_u.shape[0],dim_emb)) i=0 for x in range(pos_u.shape[0]): try: samples[i] = np.multiply(sdne_embed[str(int(pos_u[x]))],sdne_embed[str(int(pos_v[x]))]) i+=1 except: pass print("One of the nodes in connection dont have embeddings") return samples train_input_pos = get_samples(train_pos_u,train_pos_v,sdne_embed,dict_num2str) train_pos_y = np.ones((train_pos_u.shape[0],1)) train_input_neg = get_samples(train_neg_u,train_neg_v,sdne_embed,dict_num2str) train_neg_y = np.zeros((train_neg_u.shape[0],1)) test_input_pos = get_samples(test_pos_u,test_pos_v,sdne_embed,dict_num2str) test_pos_y = np.ones((test_pos_u.shape[0],1)) test_input_neg = get_samples(test_neg_u,test_neg_v,sdne_embed,dict_num2str) test_neg_y = np.zeros((test_neg_u.shape[0],1)) X_final = np.concatenate((test_input_pos,test_input_neg)) y_final=np.concatenate((test_pos_y,test_neg_y)) X = np.concatenate((train_input_pos,train_input_neg)) y=np.concatenate((train_pos_y,train_neg_y)) X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.15, random_state=3) model = keras.Sequential( [ Dense(32, input_dim=128, activation="relu", name="layer1"), BatchNormalization(), Dropout(0.2), Dense(8, activation="relu", name="layer2"), BatchNormalization(), Dropout(0.1), Dense(1, activation="sigmoid", name="output") ] ) opt = keras.optimizers.Adam(lr=0.001) model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy']) #model_checkpoint=keras.callbacks.ModelCheckpoint(model_name,monitor='val_loss',verbose=1,save_best_only=True,min_delta=0.001) early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss',patience=10,mode='min',min_delta=0.001) # saves only the best ones red_lr=keras.callbacks.ReduceLROnPlateau(monitor='val_loss',factor=0.1,patience=5, verbose=1, mode='auto',min_lr=1e-7,min_delta=0.001) history=model.fit(X_train, y_train,validation_split=0.2 ,epochs=50, batch_size=500,callbacks=[early_stopping,red_lr]) y_pred=model.predict_classes(X_test) _, test_acc = model.evaluate(X_test, y_test, verbose=0) y_pred_final=model.predict_classes(X_final) y_prob_final = model.predict_proba(X_final) _, test_acc_final = model.evaluate(X_final, y_final, verbose=0) # accuracy: (tp + tn) / (p + n) accuracy = accuracy_score(y_final, y_pred_final) print('Accuracy: %f' % accuracy) # precision tp / (tp + fp) precision = precision_score(y_final, y_pred_final) print('Precision: %f' % precision) # recall: tp / (tp + fn) recall = recall_score(y_final, y_pred_final) print('Recall: %f' % recall) # f1: 2 tp / (2 tp + fp + fn) f1 = f1_score(y_final, y_pred_final) print('F1 score: %f' % f1) # ROC AUC auc = roc_auc_score(y_final, y_prob_final) print('ROC AUC: %f' % auc) # confusion matrix matrix = confusion_matrix(y_final, y_pred_final) print(matrix) fpr, tpr, thresholds = roc_curve(y_final, y_prob_final) plt.scatter(fpr, tpr, marker='.', label='SDNE embeddings') # axis labels plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') # show the legend plt.legend() # show the plot plt.show()
the-stack_0_24209
image=cv2.imread('file location') def encrypt(mess,key): if len(key)%16 != 0: a = 16 - len(key)%16 key = key.ljust(len(key)+a) if len(mess)%16 != 0: a = 16 - len(mess)%16 mess = mess.ljust(len(mess)+a) cipher = AES.new(key) encrypted_data = cipher.encrypt(mess) return encrypted_data def correlation(M1,M2): li,wi = M1.shape ls,ws = M2.shape lo = li + ls -1 wo = wi + ws -1 g = np.zeros([li+ls*2-2,wi+ws*2-2]) g[ls-1:li+ls-1,ws-1:wi+ws-1] = M1 out = np.zeros([lo,wo]) for x in range(lo): for y in range(wo): C = np.multiply(g[x:x+ls,y:y+ws],M2) out[x,y] = np.sum(C) return out def gaussian_filter(dim): sigma = math.sqrt(dim) fil = np.zeros((dim,dim)) k=dim m = int((dim/2)+1) for i in range(int((dim/2)+1)): for j in range(int((dim/2)+1)): fil[i,j]=np.exp(-((((m-i-1)*(m-i-1))+((m-j-1)*(m-j-1)))/(2*sigma*sigma)))/(2*np.pi*sigma**2) fil[i,k-j-1]=fil[k-i-1,j]=fil[k-i-1,k-j-1]=fil[i,j] s = np.sum(fil) fil = fil/s return fil def sobelfilter(s): filter1 = gaussian_filter(3) s = correlation(s,filter1) sobelxy = cv2.Sobel(src=s, ddepth=cv2.CV_8U, dx=1, dy=1, ksize=3) return sobelxy def image_steg(img,mess,key): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edge_img = sobelfilter(img_gray) indices = np.where(edge_img != 0) f_points = np.column_stack((indices[0],indices[1])) no_edge , r = f_points.shape en_mess = str(encrypt(mess,key)) f = np.array([]) le = np.array([]) n = 0 for i in en_mess: arr = " ".join(f"{ord(x):08b}" for x in i) for j in arr: f = np.append(f,int(j)) l = str(len(en_mess)*8) l = l + "/" arr = " ".join(f"{ord(x):08b}" for x in l) for j in arr: if j!=' ': le = np.append(le,int(j)) for i in le: x,y = f_points[n] pix_val = img_gray[x,y] if (pix_val%2 == i): img_gray[x,y] = img_gray[x,y] else: img_gray[x,y] = img_gray[x,y]-1 #img_gray = pix_encode(f_points[n],img_gray,i) n = n+1 n = 82 for i in f: x,y = f_points[n] pix_val = img_gray[x,y] if (pix_val%2 == i): img_gray[x,y] = img_gray[x,y] else: img_gray[x,y] = img_gray[x,y]-1 #img_gray = pix_encode(f_points[n],img_gray,i) n = n+1 print(n) return img_gray message = "Message to encrypt" key = "key to encrypt the message" test_image=image_steg(image,message,key)
the-stack_0_24210
# parameters.py """ Exp 10 - {'Initial_genes': '5000', 'Host_mutation_rate': '0.30', 'TE_progeny': '0.15, 0, 0.55, 1, 0.30, 2', 'TE_Insertion_Distribution': 'Flat()', 'Carrying_capacity': '30', 'TE_excision_rate': '0.1', 'Junk_BP': '1.4', 'Gene_Insertion_Distribution': 'Flat()', 'mutation_effect': '0.01', 'TE_death_rate': '0.005'} """ from TEUtil import *; # note that "#" indicates a comment # set the following to True if you want messages printed to the screen # while the program runs - search for these keywords in TESim.py to see # what each one prints out output = { "SPLAT": False, "SPLAT FITNESS": False, "INITIALIZATION": False, "GENERATION": True, "HOST EXTINCTION": True, "TE EXTINCTION": True, "TRIAL NO": True, "GENE INIT": False, "TE INIT": False, }; TE_Insertion_Distribution = Flat(); Gene_Insertion_Distribution = Flat(); # Triangle( pmax, pzero ) generates values between pmax and pzero with # a triangular probability distribution, where pmax is the point of highest # probability, and pzero is the point of lowest probability # - you can change the orientation of the triangle by reversing the values # of pmax and pzero # Flat() generates values between 0 and 1 with uniform probability Gene_length = 1000; # use 1000? TE_length = 1000; # use 1000? TE_death_rate = 0.005; TE_excision_rate = 0.1; # set this to zero for retro transposons # for retro transposons this is the probability of the given number of progeny # for dna transposons this is the probability of the given number of progeny # ___PLUS___ the original re-inserting TE_progeny = ProbabilityTable( 0.15, 0, 0.55, 1, 0.30, 2 ); Initial_genes = 5000; Append_gene = True; # True: when the intialization routine tries to place # a gene inside another gene, it instead appends it # at the end of the original gene (use this with small # amounts of Junk_BP). # False: when the intialization routine tries to place # a gene inside another gene, try to place it somewhere # else again (don't use theis option with samll amounts # of Junk_BP). Initial_TEs = 1; MILLION = 1000000; Junk_BP = 1.4 * MILLION; Host_start_fitness = 1.0; Host_mutation_rate = 0.30; Host_mutation = ProbabilityTable( 0.40, lambda fit: 0.0, 0.30, lambda fit: fit - random.random()*0.01, 0.15, lambda fit: fit, 0.15, lambda fit: fit + random.random()*0.01 ); # what happens when a TA hits a gene Insertion_effect = ProbabilityTable(0.30, lambda fit: 0.0, 0.20, lambda fit: fit - random.random()*0.01, 0.30, lambda fit: fit, 0.20, lambda fit: fit + random.random()*0.01 ); Carrying_capacity = 30; Host_reproduction_rate = 1; # how many offspring each host has Host_survival_rate = lambda propfit: min( Carrying_capacity * propfit, 0.95 ); # propfit = proportion of fitness owned by this individual Maximum_generations = 1500; Terminate_no_TEs = True; # end simulation if there are no TEs left # seed = 0; seed = None; # if seed = None, the random number generator's initial state is # set "randomly" save_frequency = 50; # Frequency with with which to save state of experiment saved = None; # if saved = None then we start a new simulation from scratch # if saves = string, then we open that file and resume a simulation
the-stack_0_24211
import os import subprocess import sys from time import sleep from typing import List from telegram import Bot, Update, TelegramError from telegram.ext import CommandHandler, run_async from Manager import dispatcher from Manager.modules.helper_funcs.chat_status import dev_plus @run_async @dev_plus def leave(bot: Bot, update: Update, args: List[str]): if args: chat_id = str(args[0]) try: bot.leave_chat(int(chat_id)) update.effective_message.reply_text("Beep boop, I left that soup!.") except TelegramError: update.effective_message.reply_text("Beep boop, I could not leave that group(dunno why tho).") else: update.effective_message.reply_text("Send a valid chat ID") @run_async @dev_plus def gitpull(bot: Bot, update: Update): sent_msg = update.effective_message.reply_text("Pulling all changes from remote and then attempting to restart.") subprocess.Popen('git pull', stdout=subprocess.PIPE, shell=True) sent_msg_text = sent_msg.text + "\n\nChanges pulled...I guess.. Restarting in " for i in reversed(range(5)): sent_msg.edit_text(sent_msg_text + str(i + 1)) sleep(1) sent_msg.edit_text("Restarted.") os.system('restart.bat') os.execv('start.bat', sys.argv) @run_async @dev_plus def restart(bot: Bot, update: Update): update.effective_message.reply_text("Starting a new instance and shutting down this one") os.system('restart.bat') os.execv('start.bat', sys.argv) LEAVE_HANDLER = CommandHandler("leave", leave, pass_args=True) GITPULL_HANDLER = CommandHandler("gitpull", gitpull) RESTART_HANDLER = CommandHandler("reboot", restart) dispatcher.add_handler(LEAVE_HANDLER) dispatcher.add_handler(GITPULL_HANDLER) dispatcher.add_handler(RESTART_HANDLER) __mod_name__ = "Dev" __handlers__ = [LEAVE_HANDLER, GITPULL_HANDLER, RESTART_HANDLER]
the-stack_0_24213
import cgi import functools import pathlib import re import sys import traceback import warnings from contextlib import contextmanager from copy import copy, deepcopy from inspect import getfullargspec from json import JSONDecodeError from typing import ( Any, Callable, Dict, Generator, Generic, List, NoReturn, Optional, Set, Tuple, Type, TypeVar, Union, overload, ) import pytest import requests import yaml import yarl from hypothesis.core import is_invalid_test from hypothesis.reporting import with_reporter from hypothesis.strategies import SearchStrategy from requests.auth import HTTPDigestAuth from requests.exceptions import InvalidHeader # type: ignore from requests.utils import check_header_validity # type: ignore from werkzeug.wrappers import Response as BaseResponse from ._compat import InferType, JSONMixin from .constants import USER_AGENT, DataGenerationMethod from .exceptions import UsageError from .types import DataGenerationMethodInput, Filter, GenericTest, NotSet, RawAuth try: from yaml import CSafeLoader as SafeLoader except ImportError: # pylint: disable=unused-import from yaml import SafeLoader # type: ignore NOT_SET = NotSet() def file_exists(path: str) -> bool: try: return pathlib.Path(path).is_file() except OSError: # For example, path could be too long return False def is_latin_1_encodable(value: str) -> bool: """Header values are encoded to latin-1 before sending.""" try: value.encode("latin-1") return True except UnicodeEncodeError: return False # Adapted from http.client._is_illegal_header_value INVALID_HEADER_RE = re.compile(r"\n(?![ \t])|\r(?![ \t\n])") # pragma: no mutate def has_invalid_characters(name: str, value: str) -> bool: try: check_header_validity((name, value)) return bool(INVALID_HEADER_RE.search(value)) except InvalidHeader: return True def is_schemathesis_test(func: Callable) -> bool: """Check whether test is parametrized with schemathesis.""" try: from .schemas import BaseSchema # pylint: disable=import-outside-toplevel item = getattr(func, PARAMETRIZE_MARKER, None) # Comparison is needed to avoid false-positives when mocks are collected by pytest return isinstance(item, BaseSchema) except Exception: return False def fail_on_no_matches(node_id: str) -> NoReturn: # type: ignore pytest.fail(f"Test function {node_id} does not match any API operations and therefore has no effect") def force_tuple(item: Filter) -> Union[List, Set, Tuple]: if not isinstance(item, (list, set, tuple)): return (item,) return item def dict_true_values(**kwargs: Any) -> Dict[str, Any]: """Create a dict with given kwargs while skipping items where bool(value) evaluates to False.""" return {key: value for key, value in kwargs.items() if bool(value)} def dict_not_none_values(**kwargs: Any) -> Dict[str, Any]: return {key: value for key, value in kwargs.items() if value is not None} IGNORED_PATTERNS = ( "Falsifying example: ", "Falsifying explicit example: ", "You can add @seed", "Failed to reproduce exception. Expected:", "Flaky example!", "Traceback (most recent call last):", "You can reproduce this example by temporarily", "Unreliable test timings", ) @contextmanager def capture_hypothesis_output() -> Generator[List[str], None, None]: """Capture all output of Hypothesis into a list of strings. It allows us to have more granular control over Schemathesis output. Usage:: @given(i=st.integers()) def test(i): assert 0 with capture_hypothesis_output() as output: test() # hypothesis test # output == ["Falsifying example: test(i=0)"] """ output = [] def get_output(value: str) -> None: # Drop messages that could be confusing in the Schemathesis context if value.startswith(IGNORED_PATTERNS): return output.append(value) # the following context manager is untyped with with_reporter(get_output): # type: ignore yield output def format_exception(error: Exception, include_traceback: bool = False) -> str: """Format exception as text.""" error_type = type(error) if include_traceback: lines = traceback.format_exception(error_type, error, error.__traceback__) else: lines = traceback.format_exception_only(error_type, error) return "".join(lines) def parse_content_type(content_type: str) -> Tuple[str, str]: """Parse Content Type and return main type and subtype.""" try: content_type, _ = cgi.parse_header(content_type) main_type, sub_type = content_type.split("/", 1) except ValueError as exc: raise ValueError(f"Malformed media type: `{content_type}`") from exc return main_type.lower(), sub_type.lower() def is_json_media_type(value: str) -> bool: """Detect whether the content type is JSON-compatible. For example - ``application/problem+json`` matches. """ main, sub = parse_content_type(value) return main == "application" and (sub == "json" or sub.endswith("+json")) def is_plain_text_media_type(value: str) -> bool: """Detect variations of the ``text/plain`` media type.""" return parse_content_type(value) == ("text", "plain") def make_loader(*tags_to_remove: str) -> Type[yaml.SafeLoader]: """Create a YAML loader, that doesn't parse specific tokens into Python objects.""" cls: Type[yaml.SafeLoader] = type("YAMLLoader", (SafeLoader,), {}) cls.yaml_implicit_resolvers = { key: [(tag, regexp) for tag, regexp in mapping if tag not in tags_to_remove] for key, mapping in cls.yaml_implicit_resolvers.copy().items() } # Fix pyyaml scientific notation parse bug # See PR: https://github.com/yaml/pyyaml/pull/174 for upstream fix cls.add_implicit_resolver( # type: ignore "tag:yaml.org,2002:float", re.compile( r"""^(?:[-+]?(?:[0-9][0-9_]*)\.[0-9_]*(?:[eE][-+]?[0-9]+)? |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) |\.[0-9_]+(?:[eE][-+]?[0-9]+)? |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\.[0-9_]* |[-+]?\.(?:inf|Inf|INF) |\.(?:nan|NaN|NAN))$""", re.X, ), list("-+0123456789."), ) return cls StringDatesYAMLLoader = make_loader("tag:yaml.org,2002:timestamp") class WSGIResponse(BaseResponse, JSONMixin): # pylint: disable=too-many-ancestors # We store "requests" request to build a reproduction code request: requests.PreparedRequest def on_json_loading_failed(self, e: JSONDecodeError) -> NoReturn: # We don't need a werkzeug-specific exception when JSON parsing error happens raise e def get_requests_auth(auth: Optional[RawAuth], auth_type: Optional[str]) -> Optional[Union[HTTPDigestAuth, RawAuth]]: if auth and auth_type == "digest": return HTTPDigestAuth(*auth) return auth GenericResponse = Union[requests.Response, WSGIResponse] # pragma: no mutate def copy_response(response: GenericResponse) -> GenericResponse: """Create a copy of the given response as far as it makes sense.""" if isinstance(response, requests.Response): copied_response = deepcopy(response) setattr(copied_response, "raw", response.raw) return copied_response # Can't deepcopy WSGI response due to generators inside (`response.freeze` doesn't completely help) response.freeze() copied_response = copy(response) copied_response.request = deepcopy(response.request) return copied_response def get_response_payload(response: GenericResponse) -> str: if isinstance(response, requests.Response): return response.text return response.get_data(as_text=True) def import_app(path: str) -> Any: """Import an application from a string.""" path, name = (re.split(r":(?![\\/])", path, 1) + [""])[:2] __import__(path) # accessing the module from sys.modules returns a proper module, while `__import__` # may return a parent module (system dependent) module = sys.modules[path] return getattr(module, name) Schema = Union[Dict[str, Any], List, str, float, int] @overload def traverse_schema(schema: Dict[str, Any], callback: Callable, *args: Any, **kwargs: Any) -> Dict[str, Any]: pass @overload def traverse_schema(schema: List, callback: Callable, *args: Any, **kwargs: Any) -> List: pass @overload def traverse_schema(schema: str, callback: Callable, *args: Any, **kwargs: Any) -> str: pass @overload def traverse_schema(schema: float, callback: Callable, *args: Any, **kwargs: Any) -> float: pass def traverse_schema(schema: Schema, callback: Callable[..., Dict[str, Any]], *args: Any, **kwargs: Any) -> Schema: """Apply callback recursively to the given schema.""" if isinstance(schema, dict): schema = callback(schema, *args, **kwargs) for key, sub_item in schema.items(): schema[key] = traverse_schema(sub_item, callback, *args, **kwargs) elif isinstance(schema, list): schema = [traverse_schema(sub_item, callback, *args, **kwargs) for sub_item in schema] return schema def _warn_deprecation(*, thing: str, removed_in: str, replacement: str) -> None: warnings.warn( f"Property `{thing}` is deprecated and will be removed in Schemathesis {removed_in}. " f"Use `{replacement}` instead.", DeprecationWarning, ) def deprecated_property(*, removed_in: str, replacement: str) -> Callable: def wrapper(prop: Callable) -> Callable: @property # type: ignore def inner(self: Any) -> Any: _warn_deprecation(thing=prop.__name__, removed_in=removed_in, replacement=replacement) return prop(self) return inner return wrapper def deprecated(*, removed_in: str, replacement: str) -> Callable: def wrapper(func: Callable) -> Callable: def inner(*args: Any, **kwargs: Any) -> Any: _warn_deprecation(thing=func.__name__, removed_in=removed_in, replacement=replacement) return func(*args, **kwargs) return inner return wrapper def setup_headers(kwargs: Dict[str, Any]) -> None: headers = kwargs.setdefault("headers", {}) if "user-agent" not in {header.lower() for header in headers}: kwargs["headers"]["User-Agent"] = USER_AGENT def require_relative_url(url: str) -> None: """Raise an error if the URL is not relative.""" if yarl.URL(url).is_absolute(): raise ValueError("Schema path should be relative for WSGI/ASGI loaders") T = TypeVar("T") E = TypeVar("E", bound=Exception) class Ok(Generic[T]): __slots__ = ("_value",) def __init__(self, value: T): self._value = value def ok(self) -> T: return self._value class Err(Generic[E]): __slots__ = ("_error",) def __init__(self, error: E): self._error = error def err(self) -> E: return self._error Result = Union[Ok[T], Err[E]] GivenInput = Union[SearchStrategy, InferType] PARAMETRIZE_MARKER = "_schemathesis_test" GIVEN_ARGS_MARKER = "_schemathesis_given_args" GIVEN_KWARGS_MARKER = "_schemathesis_given_kwargs" def get_given_args(func: GenericTest) -> Tuple: return getattr(func, GIVEN_ARGS_MARKER, ()) def get_given_kwargs(func: GenericTest) -> Dict[str, Any]: return getattr(func, GIVEN_KWARGS_MARKER, {}) def is_given_applied(func: GenericTest) -> bool: return hasattr(func, GIVEN_ARGS_MARKER) or hasattr(func, GIVEN_KWARGS_MARKER) def given_proxy(*args: GivenInput, **kwargs: GivenInput) -> Callable[[GenericTest], GenericTest]: """Proxy Hypothesis strategies to ``hypothesis.given``.""" def wrapper(func: GenericTest) -> GenericTest: if hasattr(func, GIVEN_ARGS_MARKER): def wrapped_test(*_: Any, **__: Any) -> NoReturn: raise UsageError( f"You have applied `given` to the `{func.__name__}` test more than once, which " "overrides the previous decorator. You need to pass all arguments to the same `given` call." ) return wrapped_test setattr(func, GIVEN_ARGS_MARKER, args) setattr(func, GIVEN_KWARGS_MARKER, kwargs) return func return wrapper def merge_given_args(func: GenericTest, args: Tuple, kwargs: Dict[str, Any]) -> Dict[str, Any]: """Merge positional arguments to ``@schema.given`` into a dictionary with keyword arguments. Kwargs are modified inplace. """ if args: argspec = getfullargspec(func) for name, strategy in zip(reversed([arg for arg in argspec.args if arg != "case"]), reversed(args)): kwargs[name] = strategy return kwargs def validate_given_args(func: GenericTest, args: Tuple, kwargs: Dict[str, Any]) -> Optional[Callable]: argspec = getfullargspec(func) return is_invalid_test(func, argspec, args, kwargs) # type: ignore def compose(*functions: Callable) -> Callable: """Compose multiple functions into a single one.""" def noop(x: Any) -> Any: return x return functools.reduce(lambda f, g: lambda x: f(g(x)), functions, noop) def maybe_set_assertion_message(exc: AssertionError, check_name: str) -> str: message = str(exc) if not message: message = f"Check '{check_name}' failed" exc.args = (message,) return message def prepare_data_generation_methods(data_generation_methods: DataGenerationMethodInput) -> List[DataGenerationMethod]: if isinstance(data_generation_methods, DataGenerationMethod): return [data_generation_methods] return list(data_generation_methods) def merge(a: Dict[str, Any], b: Dict[str, Any]) -> Dict[str, Any]: """Merge two dictionaries recursively.""" for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): merge(a[key], b[key]) else: a[key] = b[key] else: a[key] = b[key] return a
the-stack_0_24214
from sympy.core.numbers import igcd from primetest import isprime def totient_(n): """returns the number of integers less than n and relatively prime to n""" if n < 1: raise ValueError("n must be a positive integer") tot=0 for x in xrange(1,n): if igcd(x,n)==1: tot+=1 return tot def n_order(a,n): """ returns the order of a modulo n Order of a modulo n is the smallest integer k such that a^k leaves a remainder of 1 with n. """ assert igcd(a,n)==1 if a>n : a=a%n for x in xrange(1,totient_(n)+1): if (a**x)%n==1: return x def is_primitive_root(a,p): """ returns True if a is a primitive root of p """ assert igcd(a,p) == 1,"The two numbers should be relatively prime" if a>p: a=a%p if n_order(a,p)==totient_(p): return True else: return False def is_quad_residue(a,p): """ returns True if a is a quadratic residue of p p should be a prime and a should be relatively prime to p """ assert isprime(p) and p!=2,"p should be an odd prime" assert igcd(a,p)==1,"The two numbers should be relatively prime" if a>p: a=a%p rem=(a**((p-1)//2))%p # a^(p-1 / 2) % p if rem==1: return True else : return False def legendre_symbol(a,p): """ return 1 if a is a quadratic residue of p else return -1 p should be an odd prime by definition """ assert isprime(p) and p!=2,"p should be an odd prime" assert igcd(a,p)==1,"The two numbers should be relatively prime" if a>p: a=a%p if is_quad_residue(a,p)==True: return 1 else : return -1
the-stack_0_24216
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Primitive operator classes. A collection of operators to build neural networks or to compute functions. """ from .image_ops import (CropAndResize) from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Stack, Unpack, Unstack, Diag, DiagPart, DType, ExpandDims, Eye, Fill, Ones, Zeros, GatherNd, GatherV2, Gather, SparseGatherV2, InvertPermutation, IsInstance, IsSubClass, ArgMaxWithValue, OnesLike, ZerosLike, Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue, Meshgrid, SameTypeShape, ScatterAdd, ScatterSub, ScatterMul, ScatterDiv, ScatterMax, ScatterMin, ScatterUpdate, ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select, Shape, DynamicShape, Size, Slice, Split, TransShape, ParallelConcat, Padding, UniqueWithPad, ScatterNdAdd, ScatterNdSub, ScatterNonAliasingAdd, ReverseV2, Rint, Squeeze, StridedSlice, Tile, TensorScatterUpdate, TensorScatterAdd, EditDistance, Sort, Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentMax, UnsortedSegmentProd, UnsortedSegmentSum, SpaceToDepth, DepthToSpace, SpaceToBatch, BatchToSpace, SpaceToBatchND, BatchToSpaceND, BroadcastTo, InplaceUpdate, ReverseSequence, EmbeddingLookup, Unique, GatherD, Identity, Range, MaskedSelect) from .comm_ops import (AllGather, AllReduce, _AlltoAll, AllSwap, ReduceScatter, Broadcast, _MirrorOperator, _MirrorMiniStepOperator, _MiniStepAllGather, ReduceOp, _VirtualDataset, _VirtualOutput, _VirtualDiv, _GetTensorSlice, _VirtualAdd, _HostAllGather, _HostReduceScatter) from .debug_ops import (ImageSummary, InsertGradientOf, HookBackward, ScalarSummary, TensorSummary, HistogramSummary, Print, Assert) from .control_ops import GeSwitch, Merge from .inner_ops import (ScalarCast, Randperm, NoRepeatNGram, LambApplyOptimizerAssign, LambApplyWeightAssign, MakeRefKey, FusedWeightScaleApplyMomentum, AdamWeightDecay) from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, BitwiseXor, Inv, Invert, ApproximateEqual, InplaceAdd, InplaceSub, ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, ReduceAny, Cos, Div, DivNoNan, Equal, EqualCount, Exp, Expm1, Erf, Erfc, Floor, FloorDiv, FloorMod, Ceil, Acosh, Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, Mod, LogicalNot, LogicalOr, MatMul, Maximum, MulNoNan, Minimum, Mul, Neg, NMSWithMask, NotEqual, NPUAllocFloatStatus, NPUClearFloatStatus, LinSpace, NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus, Reciprocal, CumSum, HistogramFixedWidth, SquaredDifference, Xdivy, Xlogy, Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod, Square, Sub, TensorAdd, Add, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan, MatrixInverse, IndexAdd) from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal, RandomCategorical, StandardLaplace, Multinomial, UniformCandidateSampler, LogUniformCandidateSampler) from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, AdamNoUpdateParam, ApplyMomentum, BatchNorm, BiasAdd, Conv2D, Conv3D, Conv2DTranspose, Conv3DTranspose, DepthwiseConv2dNative, DropoutDoMask, Dropout, Dropout2D, Dropout3D, DropoutGenMask, Flatten, InstanceNorm, BNTrainingReduce, BNTrainingUpdate, GeLU, Gelu, FastGeLU, FastGelu, Elu, GetNext, L2Normalize, LayerNorm, L2Loss, CTCLoss, CTCGreedyDecoder, LogSoftmax, MaxPool3D, AvgPool3D, MaxPool, DataFormatDimMap, AvgPool, Conv2DBackpropInput, ComputeAccidentalHits, MaxPoolWithArgmax, OneHot, Pad, MirrorPad, Mish, PReLU, ReLU, ReLU6, ReLUV2, HSwish, HSigmoid, ResizeBilinear, Sigmoid, SeLU, SigmoidCrossEntropyWithLogits, NLLLoss, BCEWithLogitsLoss, SmoothL1Loss, Softmax, Softsign, Softplus, LRN, RNNTLoss, DynamicRNN, DynamicGRUV2, SoftmaxCrossEntropyWithLogits, ROIAlign, SparseSoftmaxCrossEntropyWithLogits, Tanh, TopK, BinaryCrossEntropy, KLDivLoss, SparseApplyAdagrad, LARSUpdate, ApplyFtrl, SparseApplyFtrl, ApplyProximalAdagrad, SparseApplyProximalAdagrad, SparseApplyAdagradV2, SparseApplyFtrlV2, FusedSparseFtrl, FusedSparseProximalAdagrad, ApplyAdaMax, ApplyAdadelta, ApplyAdagrad, ApplyAdagradV2, ApplyAddSign, ApplyPowerSign, ApplyGradientDescent, ApplyProximalGradientDescent, ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK, AdaptiveAvgPool2D) from . import _quant_ops from ._quant_ops import * from .other_ops import (Assign, InplaceAssign, IOU, BoundingBoxDecode, BoundingBoxEncode, ConfusionMatrix, PopulationCount, UpdateState, Load, CheckValid, Partial, Depend, identity, CheckBprop, Push, Pull, PullWeight, PushWeight) from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg2Col, CusMatMulCubeDenseLeft, CusMatMulCubeFraczRightMul, CusMatMulCube, CusMatrixCombine, CusTranspose02314, CusMatMulCubeDenseRight, CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle, ProdForceSeA) from .sparse_ops import (SparseToDense, SparseTensorDenseMatmul) from ._embedding_cache_ops import (CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter, MapUniform, DynamicAssign, PadAndShift) from .quantum_ops import PQC, Evolution from .sponge_ops import (BondForce, BondEnergy, BondAtomEnergy, BondForceWithAtomEnergy, BondForceWithAtomVirial, DihedralForce, DihedralEnergy, DihedralAtomEnergy, DihedralForceWithAtomEnergy, AngleForce, AngleEnergy, AngleAtomEnergy, AngleForceWithAtomEnergy, PMEReciprocalForce, LJForce, LJEnergy, LJForceWithPMEDirectForce, PMEExcludedForce, PMEEnergy, Dihedral14LJForce, Dihedral14LJForceWithDirectCF, Dihedral14LJEnergy, Dihedral14LJCFForceWithAtomEnergy, Dihedral14LJAtomEnergy, Dihedral14CFEnergy, Dihedral14CFAtomEnergy, MDIterationLeapFrog, GetCenterOfGeometry, MDTemperature, NeighborListUpdate, MDIterationLeapFrogLiujian, CrdToUintCrd, MDIterationSetupRandState, TransferCrd) __all__ = [ 'Unique', 'ReverseSequence', 'Sort', 'EditDistance', 'CropAndResize', 'Add', 'TensorAdd', 'Argmax', 'Argmin', 'MaxPool3D', 'AvgPool3D', 'ArgMaxWithValue', 'ArgMinWithValue', 'AddN', 'AccumulateNV2', 'Sub', 'CumSum', 'MatMul', 'BatchMatMul', 'Mul', 'Meshgrid', 'Pow', 'Exp', 'Expm1', 'Rsqrt', 'Sqrt', 'Square', 'DynamicGRUV2', 'SquaredDifference', 'Xdivy', 'Xlogy', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'Conv3DTranspose', 'Flatten', 'MaxPoolWithArgmax', 'BNTrainingReduce', 'BNTrainingUpdate', 'BatchNorm', 'MaxPool', 'TopK', 'LinSpace', 'Adam', 'AdamWeightDecay', 'FusedSparseAdam', 'FusedSparseLazyAdam', 'AdamNoUpdateParam', 'Softplus', 'Softmax', 'Softsign', 'LogSoftmax', 'SoftmaxCrossEntropyWithLogits', 'BCEWithLogitsLoss', 'ROIAlign', 'SparseSoftmaxCrossEntropyWithLogits', 'NLLLoss', 'SGD', 'ApplyMomentum', 'FusedWeightScaleApplyMomentum', 'ExpandDims', 'Cast', 'IsSubClass', 'IsInstance', 'Reshape', 'Squeeze', 'Transpose', 'OneHot', 'GatherV2', 'Gather', 'SparseGatherV2', 'EmbeddingLookup', 'Padding', 'GatherD', 'Identity', 'UniqueWithPad', 'Concat', 'Pack', 'Stack', 'Unpack', 'Unstack', 'Tile', 'BiasAdd', 'GeLU', 'Gelu', 'FastGeLU', 'FastGelu', 'Minimum', 'Maximum', 'StridedSlice', 'ReduceSum', 'ReduceMean', 'LayerNorm', 'Rank', 'Less', 'LessEqual', 'RealDiv', 'Div', 'DivNoNan', 'Inv', 'Invert', 'TruncatedNormal', 'Fill', 'Ones', 'Zeros', 'OnesLike', 'ZerosLike', 'Select', 'Split', 'Mish', 'SeLU', 'MulNoNan', 'ReLU', 'ReLU6', 'Elu', 'Erf', 'Erfc', 'Sigmoid', 'HSwish', 'HSigmoid', 'Tanh', 'NoRepeatNGram', 'Randperm', 'RandomChoiceWithMask', 'StandardNormal', 'Multinomial', 'Gamma', 'Poisson', 'UniformInt', 'UniformReal', 'StandardLaplace', 'RandomCategorical', 'ResizeBilinear', 'ScalarSummary', 'ImageSummary', 'TensorSummary', 'HistogramSummary', "Print", "Assert", 'InsertGradientOf', 'HookBackward', 'InvertPermutation', 'Shape', 'DynamicShape', 'DropoutDoMask', 'DropoutGenMask', 'Dropout', 'Dropout2D', 'Dropout3D', 'Neg', 'InplaceAdd', 'InplaceSub', 'Slice', 'DType', 'NPUAllocFloatStatus', 'NPUGetFloatStatus', 'NPUClearFloatStatus', 'IsNan', 'IsFinite', 'IsInf', 'FloatStatus', 'Reciprocal', 'SmoothL1Loss', 'L2Loss', 'CTCLoss', 'CTCGreedyDecoder', 'RNNTLoss', 'DynamicRNN', 'ReduceAll', 'ReduceAny', 'ScalarToArray', 'ScalarToTensor', 'TupleToArray', 'GeSwitch', 'Merge', 'SameTypeShape', 'CheckBprop', 'CheckValid', 'BoundingBoxEncode', 'BoundingBoxDecode', 'L2Normalize', 'ScatterAdd', 'ScatterSub', 'ScatterMul', 'ScatterDiv', 'ScatterNd', 'ScatterMax', 'ScatterMin', 'ScatterNdAdd', 'ScatterNdSub', 'ScatterNonAliasingAdd', 'ReverseV2', 'Rint', 'ResizeNearestNeighbor', 'HistogramFixedWidth', 'Pad', 'MirrorPad', 'GatherNd', 'TensorScatterUpdate', 'TensorScatterAdd', 'ScatterUpdate', 'ScatterNdUpdate', 'Floor', 'NMSWithMask', 'IOU', 'Partial', 'MakeRefKey', 'Depend', 'UpdateState', 'identity', 'AvgPool', # Back Primitive 'Equal', 'EqualCount', 'NotEqual', 'Greater', 'GreaterEqual', 'LogicalNot', 'LogicalAnd', 'LogicalOr', 'Size', 'DepthwiseConv2dNative', 'UnsortedSegmentSum', 'UnsortedSegmentMin', 'UnsortedSegmentMax', 'UnsortedSegmentProd', "AllGather", "AllReduce", "AllSwap", "ReduceScatter", "Broadcast", "ReduceOp", 'ScalarCast', 'GetNext', 'ReduceMax', 'ReduceMin', 'ReduceProd', 'CumProd', 'Log', 'Log1p', 'SigmoidCrossEntropyWithLogits', 'FloorDiv', 'FloorMod', 'TruncateDiv', 'TruncateMod', 'Ceil', 'Acosh', 'Asinh', "PReLU", "Cos", "Cosh", "ACos", "Diag", "DiagPart", 'Eye', 'Assign', 'AssignAdd', 'AssignSub', "Sin", "Sinh", "Asin", "LSTM", "Abs", "BinaryCrossEntropy", "KLDivLoss", "SparseApplyAdagrad", "SparseApplyAdagradV2", "SpaceToDepth", "DepthToSpace", "Conv2DBackpropInput", "ComputeAccidentalHits", "Sign", "LARSUpdate", "Round", "Eps", "ApplyFtrl", "SpaceToBatch", "SparseApplyFtrl", "SparseApplyFtrlV2", "FusedSparseFtrl", "ApplyProximalAdagrad", "SparseApplyProximalAdagrad", "FusedSparseProximalAdagrad", "ApplyAdaMax", "ApplyAdadelta", "ApplyAdagrad", "ApplyAdagradV2", "ApplyAddSign", "ApplyPowerSign", "ApplyGradientDescent", "ApplyProximalGradientDescent", "BatchToSpace", "Atan2", "ApplyRMSProp", "ApplyCenteredRMSProp", "SpaceToBatchND", "BatchToSpaceND", "SquareSumAll", "BitwiseAnd", "BitwiseOr", "BitwiseXor", "BesselI0e", "BesselI1e", "Atan", "Atanh", "Tan", "BasicLSTMCell", "BroadcastTo", "DataFormatDimMap", "ApproximateEqual", "InplaceUpdate", "InTopK", "UniformCandidateSampler", "LogUniformCandidateSampler", "LRN", "Mod", "ConfusionMatrix", "PopulationCount", "ParallelConcat", "Push", "Pull", "PullWeight", "PushWeight", "ReLUV2", "SparseToDense", "SparseTensorDenseMatmul", "MatrixInverse", "Range", "IndexAdd", "PQC", "Evolution", "BondForce", "BondEnergy", "BondAtomEnergy", "BondForceWithAtomEnergy", "BondForceWithAtomVirial", "DihedralForce", "DihedralEnergy", "DihedralAtomEnergy", "DihedralForceWithAtomEnergy", "AngleForce", "AngleEnergy", "AngleAtomEnergy", "AngleForceWithAtomEnergy", 'PMEReciprocalForce', 'LJForce', 'LJForceWithPMEDirectForce', 'LJEnergy', 'PMEExcludedForce', 'PMEEnergy', "Dihedral14LJForce", "Dihedral14LJEnergy", "Dihedral14LJForceWithDirectCF", "Dihedral14LJCFForceWithAtomEnergy", "Dihedral14LJAtomEnergy", "Dihedral14CFEnergy", "MDIterationLeapFrog", "Dihedral14CFAtomEnergy", "GetCenterOfGeometry", "MDTemperature", "NeighborListUpdate", "MDIterationLeapFrogLiujian", "CrdToUintCrd", "MDIterationSetupRandState", "TransferCrd", "AdaptiveAvgPool2D" ] __all__.sort()
the-stack_0_24217
import os import shutil from conans import ConanFile, tools from conan.tools.cmake import CMake, CMakeToolchain from conan.tools.layout import cmake_layout class TestPackage(ConanFile): settings = "os", "compiler", "build_type", "arch" generators = "CMakeDeps", "CMakeToolchain", "VirtualBuildEnv", "VirtualRunEnv" @property def _package(self): return self.deps_cpp_info["tensorflow"] def layout(self): cmake_layout(self) def generate(self): cmake_tc = CMakeToolchain(self) cmake_tc.variables["_package_name"] = self._package.name cmake_tc.variables["_package_version"] = self._package.version cmake_tc.preprocessor_definitions["_package_name"] = self._package.name cmake_tc.preprocessor_definitions["_package_version"] = self._package.version cmake_tc.generate() def build(self): cmake = CMake(self) cmake.configure() cmake.build() def test(self): if not tools.cross_building(self): test = os.path.join(self.cpp.build.bindirs[0], "test_package") self.run(test, env="conanrun") self._remove_artifacts() ##################################################################################### def _remove_artifacts(self): for file in ["conan.lock", "conanbuildinfo.txt", "conaninfo.txt", "graph_info.json"]: file_path = os.path.join(self.folders.source_folder, file) if os.path.isfile(file_path): os.remove(file_path) shutil.rmtree(self.folders.build_folder, ignore_errors=True)
the-stack_0_24218
"""Base class for nodes for writing C-code to create a vxXXXNode objects. Done by parsing the graph parameters of the xml description of the node. """ from xml.dom import minidom import logging from graphml_parser import parse_common from graphml_parser import graphml_parser class BaseNode: """Class for parsing node with the given class name. """ # Class-global attributes for all function node instances border_mode_count = 0 def __init__(self): """Specified according to the OpenVX standard Note that the first index is not counted (i.e. the graph index in the node creation function) """ self.node_has_errors = False self.dry_run = False self.node_info = minidom.Node() def reset_parameters(self, graphparser, current_node, dry_run): """Used to reset internal parameters before parsing is done in the subclasses""" self.node_has_errors = False self.dry_run = dry_run self.node_info = graphparser.get_function_node_info(current_node) def parse(self, graphparser, current_node, assignment_string, dry_run=False): """Parsing of xml and creation of dummy function node. Note that this function should only be called if the graph function node class was not found. This might mean that the node name was not found, or that the parse function of the subclass has not been implemented. """ self.reset_parameters(graphparser, current_node, dry_run) parsed_string = "" #=============== # ERROR CHECKING #=============== # Dummy node only used if something with the naming of a function node went wrong self.set_graph_has_errors(graphparser, current_node, "ERROR: Node implementation not found.\nMaybe node name is wrong?\n") #================= # PARSE PARAMETERS #================= parsed_string += "ERROR: Node implementation not found. Maybe node name is wrong?" parsed_string += self.append_to_io_arrays(graphparser, current_node) return parsed_string def parse_border_mode(self, graphparser, current_node, node_ref_string, dry_run=False): """Parsing of border mode parameters from xml. This functionality lies in base_node bacause it is possible to set border mode for all nodes but it might not be supported by a node implementation. The function node C-name is given by node_ref_string Returns C code for setting the border mode on the function node.""" parsed_string = "" border_mode = parse_common.parse_parameter('vx_border_mode_e', current_node) if border_mode and not dry_run: logging.debug('border_mode: ' + border_mode) if BaseNode.border_mode_count == 0: parsed_string += " {} border_mode;\n".format(get_border_mode_type(graphparser.vx_version)) BaseNode.border_mode_count += 1 if border_mode == "VX_BORDER_MODE_CONSTANT" or "VX_BORDER_MODE_REPLICATE" or "VX_BORDER_MODE_UNDEFINED": parsed_string += " border_mode.mode = " + get_border_mode(graphparser.vx_version, border_mode) + ";\n" if border_mode == "VX_BORDER_MODE_CONSTANT": constant_value = parse_common.parse_parameter('constant_value', current_node) logging.debug('constant_value: ' + constant_value) if constant_value: parsed_string += " border_mode" + get_border_constant(graphparser.vx_version, constant_value) + ";\n" else: self.set_graph_has_errors(graphparser, current_node, "ERROR: VX_BORDER_MODE_CONSTANT requires a constant_value parameter\n") else: self.set_graph_has_errors(graphparser, current_node, "ERROR: Border mode {} not found.\nMaybe spelling is wrong?\n".format(border_mode)) parsed_string += " vxSetNodeAttribute({}, {}, &border_mode, " \ "sizeof({}));\n".format(node_ref_string, get_border_mode_attribute(graphparser.vx_version), get_border_mode_type(graphparser.vx_version)) return parsed_string def set_graph_has_errors(self, graphparser, current_node, errorstring): """Sets an error text on the given function node.""" self.node_has_errors = True graphparser.graph_has_errors = True parse_common.set_text_on_node(graphparser.validation_output_graph, current_node, errorstring, 'Red', True) def require_nbr_input_edges(self, graphparser, current_node, nbr_edges): if (len(self.node_info.input_image_node_ids) != nbr_edges): logging.warning('WARNING: Wrong number of input edges') self.set_graph_has_errors(graphparser, current_node, "ERROR: Wrong number of input edges\n") def require_nbr_output_edges(self, graphparser, current_node, nbr_edges): if (len(self.node_info.output_image_node_ids) != nbr_edges): logging.warning('WARNING: Wrong number of output edges') self.set_graph_has_errors(graphparser, current_node, "ERROR: Wrong number of output edges\n") def require_2_input_edges_labeled(self, graphparser, current_node): if not (((self.node_info.input_edge_labels[0] == "in1") and (self.node_info.input_edge_labels[1] == "in2")) or ((self.node_info.input_edge_labels[0] == "in2") and (self.node_info.input_edge_labels[1] == "in1"))): logging.warning('WARNING: Incorrect naming of input edge labels (in1 and in2 required)') self.set_graph_has_errors(graphparser, current_node, "ERROR: Incorrect naming of input edge labels (in1 and in2 required)\n") def require_2_output_edges_labeled(self, graphparser, current_node): if not (((self.node_info.output_edge_labels[0] == "out1") and (self.node_info.output_edge_labels[1] == "out2")) or ((self.node_info.output_edge_labels[0] == "out2") and (self.node_info.output_edge_labels[1] == "out1"))): logging.warning('WARNING: Incorrect naming of output edge labels (out1 and out2 required)') self.set_graph_has_errors(graphparser, current_node, "ERROR: Incorrect naming of output edge labels (out1 and out2 required)\n") def append_to_io_arrays_strip(self, graphparser, current_node): """Special version of append_to_io_arrays for strip mode. Here we don't use refcounted nodes type, simply save the dynamic nodes to list. This function assumes the node lists that current_node is compared against can not contain duplicates of nodes (node ids). """ parsed_string = "" if graphparser.strip_io: # Also set I/O images if any(e in self.node_info.input_image_node_ids for e in graphparser.get_indexed_names('input_image_nodes')): parsed_string += " (io_nodes->input_nodes)[" + \ str(graphparser.get_index_for_function_node_in_list('input', current_node)) + "] = function_node;\n" if any(e in self.node_info.output_image_node_ids for e in graphparser.get_indexed_names('output_image_nodes')): parsed_string += " (io_nodes->output_nodes)[" + \ str(graphparser.get_index_for_function_node_in_list('output', current_node)) + "] = function_node;\n" for idx, itemlist in enumerate(graphparser.get_dynamic_function_nodes_info()): if itemlist[0] == current_node: parsed_string += " dynamic_nodes[" + str(idx) + "] = function_node;\n" return parsed_string def append_to_io_arrays(self, graphparser, current_node): """Appends reference to the current node in the corresp. I/O C-array if it is a I/O function node This function assumes the node lists that current_node is compared against can not contain duplicates of nodes (node ids). """ # Special function if strip_mode if graphparser.strip_mode: return self.append_to_io_arrays_strip(graphparser, current_node) parsed_string = "" if graphparser.using_refcounted_assignment_string(current_node): parsed_string += " function_node_rc = node_rc_create(function_node);\n" for idx, itemlist in enumerate(graphparser.get_dynamic_function_nodes_info()): if itemlist[0] == current_node: parsed_string += " dynamic_nodes[" + str(idx) + "] = node_rc_copy_ref(function_node_rc);\n" if any(e in self.node_info.output_image_node_ids for e in graphparser.get_indexed_names('debug_image_nodes')): parsed_string += " (nodes->debug_input_nodes)[" + \ str(graphparser.get_index_for_function_node_in_list('debug_input', current_node)) + "] = node_rc_copy_ref(function_node_rc);\n" if any(e in self.node_info.input_image_node_ids for e in graphparser.get_indexed_names('debug_image_nodes')): parsed_string += " (nodes->debug_output_nodes)[" + \ str(graphparser.get_index_for_function_node_in_list('debug_output', current_node)) + "] = node_rc_copy_ref(function_node_rc);\n" return parsed_string def parse_input_parameter(self, graphparser, index, node_info): """Creates C-code node input image parameter for a given index in node_info.input_data_node_ids[].""" if node_info.input_image_node_ids[index] in graphparser.get_indexed_names('virtual_image_nodes'): return ", internal_images[" + str(graphparser.get_indexed_names('virtual_image_nodes').index(node_info.input_image_node_ids[index])) + "]" elif node_info.input_image_node_ids[index] in graphparser.get_indexed_names('input_image_nodes'): return ", input_images[" + str(graphparser.get_indexed_names('input_image_nodes').index(node_info.input_image_node_ids[index])) + "]" elif node_info.input_image_node_ids[index] in graphparser.get_indexed_names('output_image_nodes'): return ", output_images[" + str(graphparser.get_indexed_names('output_image_nodes').index(node_info.input_image_node_ids[index])) + "]" else: return "ERROR: Input parameter missing!!!\n\n" def parse_output_parameter(self, graphparser, index, node_info): """Creates C-code node output image parameter for a given index in node_info.output_data_node_ids[].""" if node_info.output_image_node_ids[index] in graphparser.get_indexed_names('virtual_image_nodes'): return ", internal_images[" + str(graphparser.get_indexed_names('virtual_image_nodes').index(node_info.output_image_node_ids[index])) + "]" elif node_info.output_image_node_ids[index] in graphparser.get_indexed_names('input_image_nodes'): return ", input_images[" + str(graphparser.get_indexed_names('input_image_nodes').index(node_info.output_image_node_ids[index])) + "]" elif node_info.output_image_node_ids[index] in graphparser.get_indexed_names('output_image_nodes'): return ", output_images[" + str(graphparser.get_indexed_names('output_image_nodes').index(node_info.output_image_node_ids[index])) + "]" else: return "ERROR: Output parameter missing!!!\n\n" def parse_input_parameters(self, graphparser, current_node): """Creates the C-code node input image parameters.""" parsed_string = "" if (len(self.node_info.input_image_node_ids) == 1): parsed_string += self.parse_input_parameter(graphparser, 0, self.node_info) elif (len(self.node_info.input_image_node_ids) == 2): if 'in1' in self.node_info.input_edge_labels and 'in2' in self.node_info.input_edge_labels: parsed_string += self.parse_input_parameter(graphparser, self.node_info.input_edge_labels.index('in1'), self.node_info) parsed_string += self.parse_input_parameter(graphparser, self.node_info.input_edge_labels.index('in2'), self.node_info) else: logging.warning('WARNING: missing label on input node!\n') return parsed_string def parse_output_parameters(self, graphparser, current_node): """Creates the C-code node input image parameters.""" parsed_string = "" if (len(self.node_info.output_image_node_ids) == 1): parsed_string += self.parse_output_parameter(graphparser, 0, self.node_info) elif (len(self.node_info.output_image_node_ids) == 2): if 'out1' in self.node_info.output_edge_labels and 'out2' in self.node_info.output_edge_labels: parsed_string += self.parse_output_parameter(graphparser, self.node_info.output_edge_labels.index('out1'), self.node_info) parsed_string += self.parse_output_parameter(graphparser, self.node_info.output_edge_labels.index('out2'), self.node_info) else: logging.warning('WARNING: missing label on output node!\n') return parsed_string def parse_parameter(self, graphparser, parameter, current_node): """Creates a C-code function node parameter Searches for a parameter that matches the given type in parameter. The first occurrence found will be used. If the function node creation function has multiple parameters of the given type, a more general function must be called. """ parameter_value = parse_common.parse_parameter(parameter, current_node) if parameter_value != "": parameter_value = ", " + parameter_value return parameter_value def parse_single_parameter(self, graphparser, parameter, current_node): """Creates a C-code function node parameter Searches for a parameter that matches the given type in parameter. The first occurrence found will be used. If the function node creation function has multiple parameters of the given type, a more general function must be called. """ return parse_common.parse_parameter(parameter, current_node) # Helper functions to generate code for different OpenVX versions def get_border_mode_type(vx_version): if vx_version == graphml_parser.VX_VERSION_1_0_1: return "vx_border_mode_t" else: return "vx_border_t" def get_border_mode(vx_version, border_mode): if vx_version == graphml_parser.VX_VERSION_1_0_1: border_modes = {"VX_BORDER_MODE_CONSTANT" : "VX_BORDER_MODE_CONSTANT", "VX_BORDER_MODE_REPLICATE" : "VX_BORDER_MODE_REPLICATE", "VX_BORDER_MODE_UNDEFINED" : "VX_BORDER_MODE_UNDEFINED"} else: border_modes = {"VX_BORDER_MODE_CONSTANT" : "VX_BORDER_CONSTANT", "VX_BORDER_MODE_REPLICATE" : "VX_BORDER_REPLICATE", "VX_BORDER_MODE_UNDEFINED" : "VX_BORDER_UNDEFINED"} return border_modes[border_mode] def get_border_constant(vx_version, constant_value): # TODO: This functions needs to parse the node if we need border modes for non-U8 operations! if vx_version is graphml_parser.VX_VERSION_1_0_1: return ".constant_value = " + constant_value else: return ".constant_value.U8 = " + constant_value def get_border_mode_attribute(vx_version): if vx_version == graphml_parser.VX_VERSION_1_0_1: return "VX_NODE_ATTRIBUTE_BORDER_MODE" else: return "VX_NODE_BORDER"
the-stack_0_24220
# -*- coding: utf-8 -*- import json from flask import Blueprint, request, redirect, url_for from common.auth.session import Session from common.worker.command import Command from uuid import uuid4 bp_worker_client = Blueprint("worker_client", __name__, template_folder="/templates") @bp_worker_client.route("/authKey", methods = ['GET']) def worker_client_authkey(): # 추 후 client ip 체크 기능 추가 if 'HTTP_X_FORWARDED_FOR' in request.environ: ip = request.environ['HTTP_X_FORWARDED_FOR'].split(',')[0] elif 'REMOTE_ADDR' in request.environ: ip = request.list_storage_class([request.environ['REMOTE_ADDR']])[0] token = str(uuid4()) result = { "ip":ip } print(result) return json.dumps(result) @bp_worker_client.route("/req/sync", methods =['POST']) def client_command_sync_clients(): if not Session().checkSession(): return redirect(url_for('index_sign.signin_view')) command = Command() command.syncClinetCount() result = {"result": True} return json.dumps(result) @bp_worker_client.route("/req/sync/device", methods =['POST']) def client_command_sync_clients_device(): if not Session().checkSession(): return redirect(url_for('index_sign.signin_view')) command = Command() command.syncClinetCount() result = {"result": True} return json.dumps(result) @bp_worker_client.route("/get/count", methods =['POST']) def client_command_get_command_to_client_count(): if not Session().checkSession(): return redirect(url_for('index_sign.signin_view')) command = Command() clients = command.getClientList() commands = command.getCommandList() connectToClient = {} for server in commands: connectToClient[server] = 0 for client in clients: if clients[client] in list(connectToClient.keys()): connectToClient[clients[client]] = connectToClient[clients[client]] + 1 result = {"result": True, "data":connectToClient} return json.dumps(result) @bp_worker_client.route("/get/list", methods =['POST']) def client_command_get_command_to_client_list(): if not Session().checkSession(): return redirect(url_for('index_sign.signin_view')) command = Command() clients = command.getClientList() data = [] for client in clients: data.append(client) result = {"result": True, "data":data} return json.dumps(result)
the-stack_0_24222
import simpleReading as sr import biHorarioReading as br import triHorarioReading as tr from datetime import date class powerSpot: def __init__(self, name, cpe, nif, typeOfMeter): self.name = name self.cpe = cpe self.nif = nif self.typeOfMeter = typeOfMeter readingObject = None if typeOfMeter == 1: readingObject = sr.makeSimpleReading(0) elif typeOfMeter == 2: readingObject = br.makeBiHorarioReading(0,0) elif typeOfMeter == 3: readingObject = tr.makeTriHorarioReading(0,0,0) self.lastReading = readingObject self.lastReadingDate = date.today().strftime("%d/%m/%Y") def updateReading(self, *argv): try: self.lastReading.updateReading(*argv) self.lastReadingDate = date.today().strftime("%d/%m/%Y") return True except ValueError: return False def getLastReading(self): reading = self.lastReading.getLastReading() reading["data"] = self.lastReadingDate return reading def getReadingArgs(self): if type(self.lastReading) is sr.simpleReading: return ["Simples"] elif type(self.lastReading) is br.biHorarioReading: return ["Fora Vazio", "Vazio"] elif type(self.lastReading) is tr.triHorarioReading: return ["Ponta", "Vazio", "Cheias"]
the-stack_0_24225
# # Copyright (c) 2019-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ############################################################################### # How these tests work # ############################################################################### # # This test file contains some unit tests and an integration test. # # The units tests use the same parameters with cuML and the reference # implementation to compare strict parity of specific components. # # The integration tests compare that, when fitting and forecasting separately, # our implementation performs better or approximately as good as the reference # (it mostly serves to test that we don't have any regression) # # Note that there are significant differences between our implementation and # the reference, and perfect parity cannot be expected for integration tests. import pytest import numpy as np import os import warnings import pandas as pd from scipy.optimize.optimize import approx_fprime from sklearn.model_selection import train_test_split import statsmodels.api as sm import cudf import cuml.tsa.arima as arima from cuml.common.input_utils import input_to_host_array from cuml.test.utils import stress_param ############################################################################### # Test data # ############################################################################### class ARIMAData: """Contains a dataset name and associated metadata """ def __init__(self, batch_size, n_obs, n_test, dataset, tolerance_integration): self.batch_size = batch_size self.n_obs = n_obs self.n_test = n_test self.dataset = dataset self.tolerance_integration = tolerance_integration self.n_train = n_obs - n_test # ARIMA(1,0,1) with intercept test_101c = ARIMAData( batch_size=8, n_obs=15, n_test=2, dataset="long_term_arrivals_by_citizenship", tolerance_integration=0.01 ) # ARIMA(0,0,2) with intercept test_002c = ARIMAData( batch_size=7, n_obs=20, n_test=2, dataset="net_migrations_auckland_by_age", tolerance_integration=0.01 ) # ARIMA(0,1,0) with intercept test_010c = ARIMAData( batch_size=4, n_obs=17, n_test=2, dataset="cattle", tolerance_integration=0.01 ) # ARIMA(1,1,0) test_110 = ARIMAData( batch_size=1, n_obs=137, n_test=5, dataset="police_recorded_crime", tolerance_integration=0.01 ) # ARIMA(0,1,1) with intercept test_011c = ARIMAData( batch_size=16, n_obs=28, n_test=2, dataset="deaths_by_region", tolerance_integration=0.05 ) # ARIMA(1,2,1) with intercept test_121c = ARIMAData( batch_size=2, n_obs=137, n_test=10, dataset="population_estimate", tolerance_integration=0.01 ) # ARIMA(1,1,1) with intercept (missing observations) test_111c_missing = ARIMAData( batch_size=2, n_obs=137, n_test=10, dataset="population_estimate_missing", tolerance_integration=0.01 ) # ARIMA(1,0,1)(1,1,1)_4 test_101_111_4 = ARIMAData( batch_size=3, n_obs=101, n_test=10, dataset="alcohol", tolerance_integration=0.01 ) # ARIMA(5,1,0) test_510 = ARIMAData( batch_size=3, n_obs=101, n_test=10, dataset="alcohol", tolerance_integration=0.02 ) # ARIMA(1,1,1)(2,0,0)_4 with intercept test_111_200_4c = ARIMAData( batch_size=14, n_obs=123, n_test=10, dataset="hourly_earnings_by_industry", tolerance_integration=0.01 ) # ARIMA(1,1,1)(2,0,0)_4 with intercept (missing observations) test_111_200_4c_missing = ARIMAData( batch_size=14, n_obs=123, n_test=10, dataset="hourly_earnings_by_industry_missing", tolerance_integration=0.01 ) # ARIMA(1,1,2)(0,1,2)_4 test_112_012_4 = ARIMAData( batch_size=2, n_obs=179, n_test=10, dataset="passenger_movements", tolerance_integration=0.001 ) # ARIMA(1,1,1)(1,1,1)_12 test_111_111_12 = ARIMAData( batch_size=12, n_obs=279, n_test=20, dataset="guest_nights_by_region", tolerance_integration=0.001 ) # ARIMA(1,1,1)(1,1,1)_12 (missing observations) test_111_111_12_missing = ARIMAData( batch_size=12, n_obs=279, n_test=20, dataset="guest_nights_by_region_missing", tolerance_integration=0.001 ) # Dictionary matching a test case to a tuple of model parameters # (a test case could be used with different models) # (p, d, q, P, D, Q, s, k) -> ARIMAData test_data = [ # ((1, 0, 1, 0, 0, 0, 0, 1), test_101c), ((0, 0, 2, 0, 0, 0, 0, 1), test_002c), ((0, 1, 0, 0, 0, 0, 0, 1), test_010c), ((1, 1, 0, 0, 0, 0, 0, 0), test_110), ((0, 1, 1, 0, 0, 0, 0, 1), test_011c), ((1, 2, 1, 0, 0, 0, 0, 1), test_121c), ((1, 1, 1, 0, 0, 0, 0, 1), test_111c_missing), ((1, 0, 1, 1, 1, 1, 4, 0), test_101_111_4), ((5, 1, 0, 0, 0, 0, 0, 0), test_510), ((1, 1, 1, 2, 0, 0, 4, 1), test_111_200_4c), ((1, 1, 1, 2, 0, 0, 4, 1), test_111_200_4c_missing), ((1, 1, 2, 0, 1, 2, 4, 0), test_112_012_4), stress_param((1, 1, 1, 1, 1, 1, 12, 0), test_111_111_12), stress_param((1, 1, 1, 1, 1, 1, 12, 0), test_111_111_12_missing), ] # Dictionary for lazy-loading of datasets # (name, dtype) -> (pandas dataframe, cuDF dataframe) lazy_data = {} # Dictionary for lazy-evaluation of reference fits # (p, d, q, P, D, Q, s, k, name, dtype) -> SARIMAXResults lazy_ref_fit = {} def extract_order(tup): """Extract the order from a tuple of parameters""" p, d, q, P, D, Q, s, k = tup return (p, d, q), (P, D, Q, s), k data_path = os.path.join(os.path.dirname( os.path.abspath(__file__)), 'ts_datasets') def get_dataset(data, dtype): """Load a dataset with a given dtype or return a previously loaded dataset """ key = (data.dataset, np.dtype(dtype).name) if key not in lazy_data: y = pd.read_csv( os.path.join(data_path, "{}.csv".format(data.dataset)), usecols=range(1, data.batch_size + 1), dtype=dtype) y_train, y_test = train_test_split(y, test_size=data.n_test, shuffle=False) y_train_cudf = cudf.from_pandas(y_train).fillna(np.nan) y_test_cudf = cudf.from_pandas(y_test) lazy_data[key] = (y_train, y_train_cudf, y_test, y_test_cudf) return lazy_data[key] def get_ref_fit(data, order, seasonal_order, intercept, dtype): """Compute a reference fit of a dataset with the given parameters and dtype or return a previously computed fit """ y_train, *_ = get_dataset(data, dtype) key = order + seasonal_order + \ (intercept, data.dataset, np.dtype(dtype).name) if key not in lazy_ref_fit: ref_model = [sm.tsa.SARIMAX(y_train[col], order=order, seasonal_order=seasonal_order, trend='c' if intercept else 'n') for col in y_train.columns] with warnings.catch_warnings(): warnings.filterwarnings("ignore") lazy_ref_fit[key] = [model.fit(disp=0) for model in ref_model] return lazy_ref_fit[key] ############################################################################### # Utility functions # ############################################################################### def mase(y_train, y_test, y_fc, s): y_train_np = input_to_host_array(y_train).array y_test_np = input_to_host_array(y_test).array y_fc_np = input_to_host_array(y_fc).array diff = np.abs(y_train_np[s:] - y_train_np[:-s]) scale = np.zeros(y_train_np.shape[1]) for ib in range(y_train_np.shape[1]): scale[ib] = diff[~np.isnan(diff)].mean(axis=0) scale = diff[~np.isnan(diff[:, ib]), ib].mean() error = np.abs(y_fc_np - y_test_np).mean(axis=0) return np.mean(error / scale) def fill_interpolation(df_in): np_arr = df_in.to_numpy() for ib in range(np_arr.shape[1]): n = len(np_arr) start, end = -1, 0 while start < n - 1: if not np.isnan(np_arr[start+1, ib]): start += 1 end = start + 1 elif end < n and np.isnan(np_arr[end, ib]): end += 1 else: if start == -1: np_arr[:end, ib] = np_arr[end, ib] elif end == n: np_arr[start+1:, ib] = np_arr[start, ib] else: for j in range(start+1, end): coef = (j - start) / (end - start) np_arr[j, ib] = ( (1. - coef) * np_arr[start, ib] + coef * np_arr[end, ib] ) start = end end = start + 1 return pd.DataFrame(np_arr, columns=df_in.columns) ############################################################################### # Tests # ############################################################################### @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) def test_integration(key, data, dtype): """Full integration test: estimate, fit, forecast """ order, seasonal_order, intercept = extract_order(key) s = max(1, seasonal_order[3]) y_train, y_train_cudf, y_test, _ = get_dataset(data, dtype) # Get fit reference model ref_fits = get_ref_fit(data, order, seasonal_order, intercept, dtype) # Create and fit cuML model cuml_model = arima.ARIMA(y_train_cudf, order=order, seasonal_order=seasonal_order, fit_intercept=intercept, output_type='numpy') cuml_model.fit() # Predict y_fc_cuml = cuml_model.forecast(data.n_test) y_fc_ref = np.zeros((data.n_test, data.batch_size)) for i in range(data.batch_size): y_fc_ref[:, i] = ref_fits[i].get_prediction( data.n_train, data.n_obs - 1).predicted_mean # Compare results: MASE must be better or within the tolerance margin mase_ref = mase(y_train, y_test, y_fc_ref, s) mase_cuml = mase(y_train, y_test, y_fc_cuml, s) assert mase_cuml < mase_ref * (1. + data.tolerance_integration) def _statsmodels_to_cuml(ref_fits, cuml_model, order, seasonal_order, intercept, dtype): """Utility function to transfer the parameters from a statsmodels' SARIMAXResults object to a cuML ARIMA object. .. note:: be cautious with the intercept, it is not always equivalent in statsmodels and cuML models (it depends on the order). """ nb = cuml_model.batch_size N = cuml_model.complexity x = np.zeros(nb * N, dtype=np.float64) for ib in range(nb): x[ib*N:(ib+1)*N] = ref_fits[ib].params[:N] cuml_model.unpack(x) def _predict_common(key, data, dtype, start, end, num_steps=None, level=None, simple_differencing=True): """Utility function used by test_predict and test_forecast to avoid code duplication. """ order, seasonal_order, intercept = extract_order(key) _, y_train_cudf, *_ = get_dataset(data, dtype) # Get fit reference model ref_fits = get_ref_fit(data, order, seasonal_order, intercept, dtype) # Create cuML model cuml_model = arima.ARIMA(y_train_cudf, order=order, seasonal_order=seasonal_order, fit_intercept=intercept, output_type='numpy', simple_differencing=simple_differencing) # Feed the parameters to the cuML model _statsmodels_to_cuml(ref_fits, cuml_model, order, seasonal_order, intercept, dtype) # Predict or forecast # Reference (statsmodels) ref_preds = np.zeros((end - start, data.batch_size)) for i in range(data.batch_size): ref_preds[:, i] = ref_fits[i].get_prediction( start, end - 1).predicted_mean if level is not None: ref_lower = np.zeros((end - start, data.batch_size)) ref_upper = np.zeros((end - start, data.batch_size)) for i in range(data.batch_size): temp_pred = ref_fits[i].get_forecast(num_steps) ci = temp_pred.summary_frame(alpha=1-level) ref_lower[:, i] = ci["mean_ci_lower"].to_numpy() ref_upper[:, i] = ci["mean_ci_upper"].to_numpy() # cuML if num_steps is None: cuml_pred = cuml_model.predict(start, end) elif level is not None: cuml_pred, cuml_lower, cuml_upper = \ cuml_model.forecast(num_steps, level) else: cuml_pred = cuml_model.forecast(num_steps) # Compare results np.testing.assert_allclose(cuml_pred, ref_preds, rtol=0.001, atol=0.01) if level is not None: np.testing.assert_allclose( cuml_lower, ref_lower, rtol=0.005, atol=0.01) np.testing.assert_allclose( cuml_upper, ref_upper, rtol=0.005, atol=0.01) @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) @pytest.mark.parametrize('simple_differencing', [True, False]) def test_predict_in(key, data, dtype, simple_differencing): """Test in-sample prediction against statsmodels (with the same values for the model parameters) """ _predict_common(key, data, dtype, data.n_train // 2, data.n_obs, simple_differencing=simple_differencing) @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) @pytest.mark.parametrize('simple_differencing', [True, False]) def test_predict_inout(key, data, dtype, simple_differencing): """Test in- and ouf-of-sample prediction against statsmodels (with the same values for the model parameters) """ _predict_common(key, data, dtype, data.n_train // 2, data.n_train, simple_differencing=simple_differencing) @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) @pytest.mark.parametrize('simple_differencing', [True, False]) def test_forecast(key, data, dtype, simple_differencing): """Test out-of-sample forecasting against statsmodels (with the same values for the model parameters) """ _predict_common(key, data, dtype, data.n_train, data.n_obs, data.n_test, simple_differencing=simple_differencing) @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) @pytest.mark.parametrize('level', [0.5, 0.95]) def test_intervals(key, data, dtype, level): """Test forecast confidence intervals against statsmodels (with the same values for the model parameters) """ _predict_common(key, data, dtype, data.n_train, data.n_obs, data.n_test, level) @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) @pytest.mark.parametrize('simple_differencing', [True, False]) def test_loglikelihood(key, data, dtype, simple_differencing): """Test loglikelihood against statsmodels (with the same values for the model parameters) """ order, seasonal_order, intercept = extract_order(key) _, y_train_cudf, *_ = get_dataset(data, dtype) # Get fit reference model ref_fits = get_ref_fit(data, order, seasonal_order, intercept, dtype) # Create cuML model cuml_model = arima.ARIMA(y_train_cudf, order=order, seasonal_order=seasonal_order, fit_intercept=intercept, simple_differencing=simple_differencing) # Feed the parameters to the cuML model _statsmodels_to_cuml(ref_fits, cuml_model, order, seasonal_order, intercept, dtype) # Compute loglikelihood cuml_llf = cuml_model.llf ref_llf = np.array([ref_fit.llf for ref_fit in ref_fits]) # Compare results np.testing.assert_allclose(cuml_llf, ref_llf, rtol=0.01, atol=0.01) @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) def test_gradient(key, data, dtype): """ Test batched gradient implementation against scipy non-batched gradient. .. note:: it doesn't test that the loglikelihood is correct! """ order, seasonal_order, intercept = extract_order(key) p, _, q = order P, _, Q, _ = seasonal_order N = p + P + q + Q + intercept + 1 h = 1e-8 _, y_train_cudf, *_ = get_dataset(data, dtype) # Create cuML model cuml_model = arima.ARIMA(y_train_cudf, order=order, seasonal_order=seasonal_order, fit_intercept=intercept) # Get an estimate of the parameters and pack them into a vector cuml_model._estimate_x0() x = cuml_model.pack() # Compute the batched loglikelihood gradient batched_grad = cuml_model._loglike_grad(x, h) # Iterate over the batch to compute a reference gradient scipy_grad = np.zeros(N * data.batch_size) for i in range(data.batch_size): # Create a model with only the current series model_i = arima.ARIMA(y_train_cudf[y_train_cudf.columns[i]], order=order, seasonal_order=seasonal_order, fit_intercept=intercept) def f(x): return model_i._loglike(x) scipy_grad[N * i: N * (i + 1)] = \ approx_fprime(x[N * i: N * (i + 1)], f, h) # Compare np.testing.assert_allclose(batched_grad, scipy_grad, rtol=0.001, atol=0.01) @pytest.mark.parametrize('key, data', test_data) @pytest.mark.parametrize('dtype', [np.float64]) def test_start_params(key, data, dtype): """Test starting parameters against statsmodels """ order, seasonal_order, intercept = extract_order(key) y_train, y_train_cudf, *_ = get_dataset(data, dtype) # fillna for reference to match cuML initial estimation strategy y_train_nona = fill_interpolation(y_train) # Create models cuml_model = arima.ARIMA(y_train_cudf, order=order, seasonal_order=seasonal_order, fit_intercept=intercept) ref_model = [sm.tsa.SARIMAX(y_train_nona[col], order=order, seasonal_order=seasonal_order, trend='c' if intercept else 'n') for col in y_train_nona.columns] # Estimate reference starting parameters N = cuml_model.complexity nb = data.batch_size x_ref = np.zeros(N * nb, dtype=dtype) for ib in range(nb): with warnings.catch_warnings(): warnings.filterwarnings("ignore") x_ref[ib*N:(ib+1)*N] = ref_model[ib].start_params[:N] # Estimate cuML starting parameters cuml_model._estimate_x0() x_cuml = cuml_model.pack() # Compare results np.testing.assert_allclose(x_cuml, x_ref, rtol=0.001, atol=0.01)
the-stack_0_24226
class Solution: def longestCommonSub(self, a, n, b, m): dp = [[0]*(m+1) for i in range(n+1)] for i in range(1, n+1): for j in range(1, m+1): if a[i-1] == b[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[n][m] def sequencePatternMatching(self, a:str, b:str)->bool: n = len(a) m = len(b) lcs = self.longestCommonSub(a, n,b,m) if lcs == n: return True else: return False if __name__ == '__main__': a = "AXY" b = "ADXCPY" print(Solution().sequencePatternMatching(a, b))
the-stack_0_24228
fp16 = dict(loss_scale=512.) # model settings model = dict( type='CascadeRCNN', num_stages=3, pretrained=None, backbone=dict( type='ResNeXt', depth=101, groups=64, base_width=4, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=5, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=5, target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=5, target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067], reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ]) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False) ], stage_loss_weights=[1, 0.5, 0.25]) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.0001, nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.0001), max_per_img=200)) # dataset settings dataset_type = 'Underwater' data_root = 'data/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) albu_train_transforms = [ dict( type='OneOf', transforms=[ dict(type='MedianBlur'), ], p=1), ] train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(4096, 800), keep_ratio=True), #dict(type='Resize', img_scale=[(4096, 600), (4096, 1000)],multiscale_mode='range', keep_ratio=True), #dict(type='Pad', size_divisor=32), #dict(type='RandomFlip', flip_ratio=0.5), dict( type='Albu', transforms=albu_train_transforms, bbox_params=dict( type='BboxParams', format='pascal_voc', label_fields=['gt_labels'], min_visibility=0.0, filter_lost_elements=True), keymap={ 'img': 'image', 'gt_bboxes': 'bboxes' }, update_pad_shape=False, skip_img_without_anno=True), #dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor')) ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=[(3072, 450), (3072, 600), (3072, 750),(4096, 600), (4096, 800), (4096, 1000),(5120, 750), (5120, 1000), (5120, 1250), (6144, 900), (6144, 1200), (6144, 1500)], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=1, workers_per_gpu=2, train=dict( type=dataset_type, ann_file='data/train/annotations/train.json', img_prefix=data_root + 'train/image/', pipeline=train_pipeline), test=dict( type=dataset_type, ann_file='data/train/annotations/testA.json', img_prefix=data_root + 'test-A-image/', pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=12) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 12 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/cas_x101_64x4d_fpn_htc_reTrain' load_from = 'data/pretrained/htc_dconv_c3-c5_mstrain_400_1400_x101_64x4d_fpn_20e_20190408-0e50669c.pth' resume_from = None workflow = [('train', 1)]
the-stack_0_24229
#!/usr/bin/env python3 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Accept or Reject VPC Peering request """ import openstack openstack.enable_logging(True) conn = openstack.connect(cloud='otc') peering = conn.vpc.get_peering("peering_id") # accept VPC peering request set_status = 'accept' peering = conn.vpc.set_peering(peering=peering, set_status=set_status) print(peering) # Reject VPC peering request set_status = 'reject' peering = conn.vpc.set_peering(peering=peering, set_status=set_status) print(peering)
the-stack_0_24230
from __future__ import annotations import math from itertools import product from typing import Any import matplotlib.pyplot as plt import numpy as np from matplotlib.patches import PathPatch, Wedge from matplotlib.path import Path from pymatgen.core import Structure from pymatviz.utils import NumArray, covalent_radii, jmol_colors # plot_structure_2d() and its helphers get_rot_matrix() and unit_cell_to_lines() were # inspired by ASE https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html#matplotlib def get_rot_matrix(angles: str, rotation: NumArray = np.eye(3)) -> NumArray: """Convert Euler angles to a rotation matrix. Note the order of angles matters. 50x,40z != 40z,50x. Args: angles (str): Euler angles (in degrees) formatted as '-10y,50x,120z' rotation (NumArray, optional): Initial rotation matrix. Defaults to identity matrix. Returns: NumArray: 3d rotation matrix. """ if angles == "": return rotation.copy() # return initial rotation matrix if no angles for i, a in [ ("xyz".index(s[-1]), math.radians(float(s[:-1]))) for s in angles.split(",") ]: s = math.sin(a) c = math.cos(a) if i == 0: rotation = np.dot(rotation, [(1, 0, 0), (0, c, s), (0, -s, c)]) elif i == 1: rotation = np.dot(rotation, [(c, 0, -s), (0, 1, 0), (s, 0, c)]) else: rotation = np.dot(rotation, [(c, s, 0), (-s, c, 0), (0, 0, 1)]) return rotation def unit_cell_to_lines(cell: NumArray) -> tuple[NumArray, NumArray, NumArray]: """Convert lattice vectors to plot lines. Args: cell (NumArray): Lattice vectors. Returns: tuple[NumArray, NumArray, NumArray]: - Lines - z-indices that sort plot elements into out-of-plane layers - lines used to plot the unit cell """ n_lines = 0 segments = [] for c in range(3): norm = math.sqrt(sum(cell[c] ** 2)) segment = max(2, int(norm / 0.3)) segments.append(segment) n_lines += 4 * segment lines = np.empty((n_lines, 3)) z_indices = np.empty(n_lines, int) unit_cell_lines = np.zeros((3, 3)) n1 = 0 for c in range(3): segment = segments[c] dd = cell[c] / (4 * segment - 2) unit_cell_lines[c] = dd P = np.arange(1, 4 * segment + 1, 4)[:, None] * dd z_indices[n1:] = c for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]: n2 = n1 + segment lines[n1:n2] = P + i * cell[c - 2] + j * cell[c - 1] n1 = n2 return lines, z_indices, unit_cell_lines def plot_structure_2d( struct: Structure, ax: plt.Axes = None, rotation: str = "10x,10y,0z", atomic_radii: float | dict[str, float] | None = None, colors: dict[str, str | list[float]] = None, scale: float = 1, show_unit_cell: bool = True, site_labels: bool | dict[str, str | float] | list[str | float] = True, label_kwargs: dict[str, Any] = {"fontsize": 14}, ) -> plt.Axes: """Plot pymatgen structure object in 2d. Uses matplotlib. Inspired by ASE's ase.visualize.plot.plot_atoms() https://wiki.fysik.dtu.dk/ase/ase/visualize/visualize.html#matplotlib pymatviz aims to give similar output to ASE but supports disordered structures and avoids the conversion hassle of AseAtomsAdaptor.get_atoms(pmg_struct). For example, these two snippets should give very similar output: ```py from pymatgen.ext.matproj import MPRester mp_19017 = MPRester().get_structure_by_material_id("mp-19017") # ASE from ase.visualize.plot import plot_atoms from pymatgen.io.ase import AseAtomsAdaptor plot_atoms(AseAtomsAdaptor().get_atoms(mp_19017), rotation="10x,10y,0z", radii=0.5) # pymatviz from pymatviz import plot_structure_2d plot_structure_2d(mp_19017) ``` Args: struct (Structure): Must be pymatgen instance. ax (plt.Axes, optional): Matplotlib axes on which to plot. Defaults to None. rotation (str, optional): Euler angles in degrees in the form '10x,20y,30z' describing angle at which to view structure. Defaults to "". atomic_radii (float | dict[str, float], optional): Either a scaling factor for default radii or map from element symbol to atomic radii. Defaults to covalent radii. colors (dict[str, str | list[float]], optional): Map from element symbols to colors, either a named color (str) or rgb(a) values like (0.2, 0.3, 0.6). Defaults to JMol colors. scale (float, optional): Scaling of the plotted atoms and lines. Defaults to 1. show_unit_cell (bool, optional): Whether to draw unit cell. Defaults to True. site_labels (bool | dict[str, str | float] | list[str | float]): How to annotate lattice sites. If True, labels are element symbols. If a dict, should map element symbols to labels. If a list, must be same length as the number of sites in the crystal. Defaults to True. label_kwargs (dict, optional): Keyword arguments for matplotlib.text.Text. Defaults to {"fontsize": 14}. Returns: plt.Axes: matplotlib Axes instance with plotted structure. """ if ax is None: ax = plt.gca() elems = [str(site.species.elements[0]) for site in struct] if isinstance(site_labels, list): assert len(site_labels) == len( struct ), "Length mismatch between site_labels and struct" if colors is None: colors = jmol_colors if atomic_radii is None or isinstance(atomic_radii, float): atomic_radii = 0.7 * covalent_radii * (atomic_radii or 1) else: assert isinstance(atomic_radii, dict) # make sure all present elements are assigned a radius missing = {el for el in elems if el not in atomic_radii} assert not missing, f"atomic_radii is missing keys: {missing}" radii = np.array([atomic_radii[el] for el in elems]) # type: ignore n_atoms = len(struct) rot_matrix = get_rot_matrix(rotation) unit_cell = struct.lattice.matrix if show_unit_cell: lines, z_indices, unit_cell_lines = unit_cell_to_lines(unit_cell) corners = np.array(list(product((0, 1), (0, 1), (0, 1)))) cell_vertices = np.dot(corners, unit_cell) cell_vertices = np.dot(cell_vertices, rot_matrix) else: lines = np.empty((0, 3)) z_indices = None unit_cell_lines = None cell_vertices = None n_lines = len(lines) positions = np.empty((n_atoms + n_lines, 3)) site_coords = np.array([site.coords for site in struct]) positions[:n_atoms] = site_coords positions[n_atoms:] = lines # determine which lines should be hidden behind other objects for idx in range(n_lines): this_layer = unit_cell_lines[z_indices[idx]] occlu_top = ((site_coords - lines[idx] + this_layer) ** 2).sum(1) < radii**2 occlu_bot = ((site_coords - lines[idx] - this_layer) ** 2).sum(1) < radii**2 if any(occlu_top & occlu_bot): z_indices[idx] = -1 positions = np.dot(positions, rot_matrix) site_coords = positions[:n_atoms] min_coords = (site_coords - radii[:, None]).min(0) max_coords = (site_coords + radii[:, None]).max(0) if show_unit_cell: min_coords = np.minimum(min_coords, cell_vertices.min(0)) max_coords = np.maximum(max_coords, cell_vertices.max(0)) means = (min_coords + max_coords) / 2 coord_ranges = 1.05 * (max_coords - min_coords) offset = scale * (means - coord_ranges / 2) positions *= scale positions -= offset if n_lines > 0: unit_cell_lines = np.dot(unit_cell_lines, rot_matrix)[:, :2] * scale # sort so we draw from back to front along out-of-plane (z-)axis for idx in positions[:, 2].argsort(): xy = positions[idx, :2] start = 0 if idx < n_atoms: # loop over all species on a site (usually just 1 for ordered sites) for elem, occupancy in struct[idx].species.items(): elem = str(elem) radius = atomic_radii[elem] * scale # type: ignore wedge = Wedge( xy, radius, 360 * start, 360 * (start + occupancy), facecolor=colors[elem], edgecolor="black", ) ax.add_patch(wedge) txt = elem if isinstance(site_labels, dict) and elem in site_labels: txt = site_labels.get(elem, "") if isinstance(site_labels, list): txt = site_labels[idx] if site_labels: # place element symbol half way along outer wedge edge for # disordered sites half_way = 2 * np.pi * (start + occupancy / 2) direction = np.array([math.cos(half_way), math.sin(half_way)]) text_offset = ( (0.5 * radius) * direction if occupancy < 1 else (0, 0) ) txt_kwds = dict(ha="center", va="center", **label_kwargs) ax.text(*(xy + text_offset), txt, **txt_kwds) start += occupancy else: # draw unit cell idx -= n_atoms # only draw line if not obstructed by an atom if z_indices[idx] != -1: hxy = unit_cell_lines[z_indices[idx]] path = PathPatch(Path((xy + hxy, xy - hxy))) ax.add_patch(path) width, height, _ = scale * coord_ranges ax.set(xlim=[0, width], ylim=[0, height], aspect="equal") ax.axis("off") return ax
the-stack_0_24231
""" End slide. """ from mplslide import FONT, new_slide, slide_heading def slides(): """ Create end slide. """ fig = new_slide() slide_heading(fig, 'Thank You!') props = dict(fontproperties=FONT, fontsize=56, alpha=0.7, horizontalalignment='center') fig.text(0.5, 0.5, 'This entire presentation was made in Matplotlib:', **props) t = fig.text(0.5, 0.4, '\nhttps://github.com/QuLogic/scipy2021-mpl-update', **props) t.set_url('https://github.com/QuLogic/scipy2021-mpl-update') return fig
the-stack_0_24232
import Bio.SeqUtils.ProtParam import os import ASAP.FeatureExtraction as extract import pandas as pd import matplotlib.pyplot as plt import numpy as np # Chothia numbering definition for CDR regions CHOTHIA_CDR = {'L': {'1': [24, 34], '2': [50, 56], '3': [89, 97]}, 'H':{'1': [26, 32], '2': [52, 56], '3': [95, 102]}} canonical_direct = '../data/pigs_canonical.txt' SET_NAME = 'IGHV' IF_ONLY_HEAVY = True CNT_DB = 1 CNT_TARGET = 1 REFERENCE_PATH_TESTCASE = '../testCase/IGHV/reference-IGHV/' TARGETING_PATH_TESTCASE = '../testCase/IGHV/targeting-MMP-IGHV/' TARGET_DESIRE_SIZE = 134 #44 #IGHV targeting_direct = TARGETING_PATH_TESTCASE reference_direct = REFERENCE_PATH_TESTCASE Amino, Num, Germ, DatasetName, DatasetSize = extract.ReadAminoNumGerm(targeting_direct, reference_direct) seq_id = [] for i, name in enumerate(DatasetName): # if i<2: # continue tmp= [[] for j in range(int(DatasetSize[i]))] # for every seq in that dataset for j in range(int(DatasetSize[i])): seq_name = name + '_' + str(j) seq_id.append(seq_name) # raw sequence def sequence_raw(): def getSequenceHL(sname): SH = ''.join(Amino['H'][sname]) SL = '' if not IF_ONLY_HEAVY: SL = ''.join(Amino['L'][sname]) return SL, SH else: return [SH] with open('../results/'+SET_NAME +'_Sequence.csv','w') as fi: fi.write('sequence name, ') if not IF_ONLY_HEAVY: fi.write('light chain, ') fi.write('heavy chain\n') for sname in seq_id: fi.write(sname + ',' + ','.join(getSequenceHL(sname))+ '\n') # sequence with numbering def sequence_num(): def getSequenceHL_num(sname): NH = ','.join(Num['H'][sname]) SH = ','.join(Amino['H'][sname]) NL = ','.join(Num['L'][sname]) SL = ','.join(Amino['L'][sname]) return NH, SH, NL, SL with open('./Sequence_numbered.csv','w') as fi: for sname in seq_id: NH, SH, NL, SL = getSequenceHL_num(sname) fi.write(sname + ' light num,' + NL + '\n') fi.write(sname + ' light seq,' + SL + '\n') fi.write(sname + ' heavy num,' + NH + '\n') fi.write(sname + ' heavy seq,' + SH + '\n') # sequence with region def sequence_region(): def getSequenceHL_region(sname): NH = Num['H'][sname] HFW1, HCDR1, HFW2, HCDR2, HFW3, HCDR3, HFW4 = '', '', '', '', '', '', '' for i, number in enumerate(NH): if number[-1] >= 'A' and number[-1] <= 'Z': num_i = int(number[:-1]) else: num_i = int(number) if num_i < CHOTHIA_CDR['H']['1'][0]: HFW1 += Amino['H'][sname][i] elif num_i <= CHOTHIA_CDR['H']['1'][1]: HCDR1+= Amino['H'][sname][i] elif num_i < CHOTHIA_CDR['H']['2'][0]: HFW2 += Amino['H'][sname][i] elif num_i <= CHOTHIA_CDR['H']['2'][1]: HCDR2 += Amino['H'][sname][i] elif num_i < CHOTHIA_CDR['H']['3'][0]: HFW3 += Amino['H'][sname][i] elif num_i <= CHOTHIA_CDR['H']['3'][1]: HCDR3 += Amino['H'][sname][i] else: HFW4 += Amino['H'][sname][i] if IF_ONLY_HEAVY: return ''.join(HFW1), ''.join(HCDR1), ''.join(HFW2), ''.join(HCDR2), ''.join(HFW3), ''.join(HCDR3), ''.join( HFW4) else: NL = Num['L'][sname] LFW1, LCDR1, LFW2, LCDR2, LFW3, LCDR3, LFW4 = '', '', '', '', '', '', '' for i, number in enumerate(NL): if number[-1] >= 'A' and number[-1] <= 'Z': num_i = int(number[:-1]) else: num_i = int(number) if num_i < CHOTHIA_CDR['L']['1'][0]: LFW1 += Amino['L'][sname][i] elif num_i <= CHOTHIA_CDR['L']['1'][1]: LCDR1 += Amino['L'][sname][i] elif num_i < CHOTHIA_CDR['L']['2'][0]: LFW2 += Amino['L'][sname][i] elif num_i <= CHOTHIA_CDR['L']['2'][1]: LCDR2 += Amino['L'][sname][i] elif num_i < CHOTHIA_CDR['L']['3'][0]: LFW3 += Amino['L'][sname][i] elif num_i <= CHOTHIA_CDR['L']['3'][1]: LCDR3 += Amino['L'][sname][i] else: LFW4 += Amino['L'][sname][i] return ''.join(LFW1), ''.join(LCDR1), ''.join(LFW2), ''.join(LCDR2), ''.join(LFW3), ''.join(LCDR3), ''.join(LFW4),\ ''.join(HFW1), ''.join(HCDR1), ''.join(HFW2), ''.join(HCDR2), ''.join(HFW3), ''.join(HCDR3), ''.join(HFW4) with open('../results/'+SET_NAME +'_Sequence_region.csv','w') as fi: if IF_ONLY_HEAVY: fi.write( 'sequence id, heavy chain FW1, heavy chain CDR1, heavy chain FW2, heavy chain CDR2, heavy chain FW3, heavy chain CDR3, heavy chain FW4\n') else: fi.write('sequence id, light chain FW1, light chain CDR1, light chain FW2, light chain CDR2, light chain FW3, light chain CDR3, light chain FW4, '+ 'heavy chain FW1, heavy chain CDR1, heavy chain FW2, heavy chain CDR2, heavy chain FW3, heavy chain CDR3, heavy chain FW4\n') for sname in seq_id: fi.write(sname + ',' + ','.join(getSequenceHL_region(sname)) + '\n') def feature_distribution(): from collections import Counter write_out = [[] for i in range(len(seq_id))] for fi in range(1,12): feat = [] for item in write_out: feat.append(item[fi]) feat_count = Counter(feat) sorted_count = sorted(feat_count.items(), key=lambda kv: kv[1], reverse=True) if fi==11: feat_type = sorted_count[0][0].split('_')[0] else: feat_type = sorted_count[0][0].split('_')[0] + sorted_count[0][0].split('_')[1] with open('./Features_distribution_'+feat_type+'.csv','w') as fi: for i in range(len(sorted_count)): fi.write(sorted_count[i][0]+','+str(sorted_count[i][1])+'\n') def feature(): write_out = [[] for i in range(len(seq_id))] for i in range(len(seq_id)): write_out[i].append(seq_id[i]) for idx, f in enumerate(AllFeatureVectors[i]): if f == 1: write_out[i].append(AllFeatureNames[idx]) with open('../results/'+SET_NAME +'_Features.csv', 'w') as fi: fi.write('sequence id, ') if not IF_ONLY_HEAVY: fi.write('light chain V region, light chain J region, ') fi.write('heavy chain V region, heavy chain J region, ') if not IF_ONLY_HEAVY: fi.write('Canonical L1, Canonical L2, Canonical L3, ') fi.write('Canonical H1, Canonical H2, Canonical H3, ' ) fi.write('PI, frequent positional motif\n') for i in range(len(write_out)): fi.write(','.join(write_out[i]) + '\n') def correlation_feature(): ###### plot correlation matrix data = pd.DataFrame(AllFeatureVectors, columns=AllFeatureNames) # print(AllFeatureVectors.shape) corr = data.corr() import numpy as np corr = np.array(corr) with open('../results/Pearson_feature_correlation.csv', 'w') as fi: fi.write('Feature value 1, Feature value 2, Pearson coefficient\n') for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): # if str(corr[i][j])=='nan': # print('nan', AllFeatureNames[i], AllFeatureNames[j]) fi.write(AllFeatureNames[i]+ ','+AllFeatureNames[j]+','+ str(corr[i][j])+'\n') # data.to_csv(r'../results/Feature_test.csv', header=True) # fig = plt.figure(figsize=(100, 70)) # ax = fig.add_subplot(111) # cax = ax.matshow(corr, cmap='seismic', vmin=-1, vmax =1) # fig.colorbar(cax) # ticks = np.arange(0, len(data.columns),1) # ax.set_xticks(ticks) # plt.xticks(rotation=90) # ax.set_yticks(ticks) # ax.set_xticklabels(data.columns) # ax.set_yticklabels(data.columns) # plt.savefig('../results/feature_correlation.png') # corr = pd.DataFrame(corr, index=AllFeatureNames, columns=AllFeatureNames) ###### display pairwise correlation value # au_corr = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) # au_corr = au_corr.stack().sort_values(ascending=False) # au_corr = corr.unstack() # au_corr.columns = [' 1', 'Feature 2', 'Pearson Correlation Value'] # au_corr = pd.DataFrame(au_corr.values, columns = ['Feature 1, Feature 2, Pearson Correlation Value']) # au_corr.to_csv(r'../results/Pearson_feature_correlation.csv', header=True) # print(len(au_corr)) # print(AllFeatureVectors[:, AllFeatureNames.index('Germ_LJ_IGKJ3*01')]) # print(AllFeatureVectors[:, AllFeatureNames.index('Canonical_L2_0')]) # def JaccardCoefficientAnalysis(): # df = pd.DataFrame(AllFeatureVectors, columns=AllFeatureNames) # # interest_feature=['Germ_HV_IGHV3-23*01', 'Canonical_H2_6', 'Germ_HJ_IGHJ4*02', 'Germ_HJ_IGHJ6*01', 'Germ_LV_IGKV1D-39*01', # 'Canonical_H2_5', 'Germ_HJ_IGHJ4*01'] # jac_sim = np.eye(len(AllFeatureNames)) # for i in range(len(AllFeatureNames)): # for j in range(i+1, len(AllFeatureNames)): # if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): # continue # a = AllFeatureVectors[:, i] # b = AllFeatureVectors[:, j] # aandb =0 # aorb = 0 # for k in range(len(a)): # if a[k]==b[k] and a[k]==1: # aandb +=1 # if a[k]==1 or b[k]==1: # aorb +=1 # if aorb==0: # jac_tmp=0 # else: # jac_tmp = float(aandb)/aorb # if AllFeatureNames[i] in interest_feature and AllFeatureNames[j] in interest_feature: # print(AllFeatureNames[i], AllFeatureNames[j], jac_tmp) # # jac_sim[i][j]=jac_tmp # jac_sim[j][i]=jac_tmp # # # with open('../results/Jaccard_feature_coefficient.csv', 'w') as fi: # fi.write('Feature value 1, Feature value 2, Jaccard coefficient\n') # for i in range(len(AllFeatureNames)): # for j in range(i+1, len(AllFeatureNames)): # if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): # continue # fi.write(AllFeatureNames[i]+ ','+AllFeatureNames[j]+','+ str(jac_sim[i][j])+'\n') # # # fig = plt.figure(figsize=(100, 70)) # ax = fig.add_subplot(111) # cax = ax.matshow(jac_sim, cmap='Blues', vmin=0, vmax =1) # fig.colorbar(cax) # ticks = np.arange(0, len(df.columns),1) # ax.set_xticks(ticks) # plt.xticks(rotation=90) # ax.set_yticks(ticks) # ax.set_xticklabels(df.columns) # ax.set_yticklabels(df.columns) # plt.savefig('../results/feature_coefficient.png') # # # print(AllFeatureVectors[:,AllFeatureNames.index('Germ_LJ_IGKJ3*01')]) # # print(AllFeatureVectors[:,AllFeatureNames.index('Canonical_L2_0*01')]) # # where(np.triu(np.ones(jac_sim.shape), k=1).astype(np.bool)) # # au_jac = jac_sim.where(np.triu(np.ones(jac_sim.shape), k=0).astype(np.bool)) # # au_jac = au_jac.stack().sort_values(ascending=False) # # au_jac = jac_sim.unstack() # # print(len(au_jac)) # # au_jac.to_csv(r'../results/Jaccard_feature_coefficient.csv', header=True) def JaccardCoefficientAnalysis(): PDB_size = DatasetSize[0] jac_sim_PDB = np.eye(len(AllFeatureNames)) for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): continue a = AllFeatureVectors[:PDB_size, i] b = AllFeatureVectors[:PDB_size, j] aandb =0 aorb = 0 for k in range(len(a)): if a[k]==b[k] and a[k]==1: aandb +=1 if a[k]==1 or b[k]==1: aorb +=1 if aorb==0: jac_tmp=0 else: jac_tmp = float(aandb)/aorb # if AllFeatureNames[i] == 'Germ_HV_IGHV3-23*01' and AllFeatureNames[j] =='Canonical_H2_6': # print(a, b, jac_tmp) # if AllFeatureNames[i] in interest_feature and AllFeatureNames[j] in interest_feature: # print(AllFeatureNames[i], AllFeatureNames[j], jac_tmp) jac_sim_PDB[i][j]=jac_tmp jac_sim_PDB[j][i]=jac_tmp jac_sim_MMP = np.eye(len(AllFeatureNames)) for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): continue a = AllFeatureVectors[PDB_size:, i] b = AllFeatureVectors[PDB_size:, j] aandb =0 aorb = 0 for k in range(len(a)): if a[k]==b[k] and a[k]==1: aandb +=1 if a[k]==1 or b[k]==1: aorb +=1 if aorb==0: jac_tmp=0 else: jac_tmp = float(aandb)/aorb # if AllFeatureNames[i] in interest_feature and AllFeatureNames[j] in interest_feature: # print(AllFeatureNames[i], AllFeatureNames[j], jac_tmp) jac_sim_MMP[i][j]=jac_tmp jac_sim_MMP[j][i]=jac_tmp with open('../results/'+SET_NAME+'_Jaccard Feature Coefficient.csv', 'w') as fi: fi.write('Feature value 1, Feature value 2, Jaccard coefficient for reference set, Jaccard coefficient for MMP-targeting set\n') for i in range(len(AllFeatureNames)): for j in range(i+1, len(AllFeatureNames)): if AllFeatureNames[i].startswith('Motif') or AllFeatureNames[j].startswith('Motif'): continue fi.write(AllFeatureNames[i]+ ','+AllFeatureNames[j]+','+ str(jac_sim_PDB[i][j])+','+ str(jac_sim_MMP[i][j])+'\n') if __name__=='__main__': sequence_raw() sequence_region() OneHotGerm, GermFeatureNames = extract.GetOneHotGerm(Germ, DatasetSize, DatasetName) OneHotCanon, CanonFeatureNames = extract.GetOneHotCanon(canonical_direct, Amino, Num, DatasetSize, DatasetName) CDRH3 = extract.GetCDRH3(Amino, Num) OneHotPI, PIFeatureNames = extract.GetOneHotPI(CDRH3, DatasetSize, DatasetName) MultiHotMotif, MotifFeatureNames = extract.MultiHotMotif(CDRH3, DatasetSize, DatasetName) AllFeatureVectors, AllFeatureNames, _, _ = extract.GetFeatureVectors(OneHotGerm, GermFeatureNames, OneHotCanon, CanonFeatureNames, OneHotPI, PIFeatureNames, MultiHotMotif, MotifFeatureNames) feature() # correlation_feature() JaccardCoefficientAnalysis()
the-stack_0_24233
from textwrap import dedent from typing import List, Set import pytest from brain_brew.representation.yaml.notes import Note, NoteGrouping, Notes, \ NOTES, NOTE_GROUPINGS, FIELDS, GUID, NOTE_MODEL, TAGS, FLAGS working_notes = { "test1": {FIELDS: ['first'], GUID: "12345", NOTE_MODEL: "model_name", TAGS: ['noun', 'other']}, "test2": {FIELDS: ['english', 'german'], GUID: "sdfhfghsvsdv", NOTE_MODEL: "LL Test", TAGS: ['marked']}, "no_note_model": {FIELDS: ['first'], GUID: "12345", TAGS: ['noun', 'other']}, "no_note_model2": {FIELDS: ['second'], GUID: "67890", TAGS: ['noun', 'other']}, "no_tags1": {FIELDS: ['first'], GUID: "12345", NOTE_MODEL: "model_name"}, "no_tags2": {FIELDS: ['first'], GUID: "12345", NOTE_MODEL: "model_name", TAGS: []}, "no_model_or_tags": {FIELDS: ['first'], GUID: "12345"}, "test1_with_default_flags": {FIELDS: ['first'], GUID: "12345", NOTE_MODEL: "model_name", TAGS: ['noun', 'other'], FLAGS: 0}, "test1_with_flags": {FIELDS: ['first'], GUID: "12345", NOTE_MODEL: "model_name", TAGS: ['noun', 'other'], FLAGS: 1}, } working_note_groupings = { "nothing_grouped": {NOTES: [working_notes["test1"], working_notes["test2"]]}, "note_model_grouped": {NOTES: [working_notes["no_note_model"], working_notes["no_note_model2"]], NOTE_MODEL: "model_name"}, "note_model_grouped2": {NOTES: [working_notes["no_note_model"], working_notes["no_note_model2"]], NOTE_MODEL: "different_model"}, "tags_grouped": {NOTES: [working_notes["no_tags1"], working_notes["no_tags2"]], TAGS: ["noun", "other"]}, "tags_grouped_as_addition": {NOTES: [working_notes["test1"], working_notes["test2"]], TAGS: ["test", "recent"]}, "model_and_tags_grouped": {NOTES: [working_notes["no_model_or_tags"], working_notes["no_model_or_tags"]], NOTE_MODEL: "model_name", TAGS: ["noun", "other"]} } working_dpns = { "one_group": {NOTE_GROUPINGS: [working_note_groupings["nothing_grouped"]]}, "two_groups_two_models": {NOTE_GROUPINGS: [working_note_groupings["nothing_grouped"], working_note_groupings["note_model_grouped"]]}, "two_groups_three_models": {NOTE_GROUPINGS: [working_note_groupings["nothing_grouped"], working_note_groupings["note_model_grouped2"]]}, } @pytest.fixture(params=working_notes.values()) def note_fixtures(request): return Note.from_dict(request.param) @pytest.fixture(params=working_note_groupings.values()) def note_grouping_fixtures(request): return NoteGrouping.from_dict(request.param) class TestConstructor: class TestNote: @pytest.mark.parametrize("fields, guid, note_model, tags, flags, media", [ ([], "", "", [], 0, {}), (None, None, None, None, None, None), (["test", "blah", "whatever"], "1234567890x", "model_name", ["noun"], 1, {}), (["test", "blah", "<img src=\"animal.jpg\">"], "1234567890x", "model_name", ["noun"], 2, {"animal.jpg"}), ]) def test_constructor(self, fields: List[str], guid: str, note_model: str, tags: List[str], flags: int, media: Set[str]): note = Note(fields=fields, guid=guid, note_model=note_model, tags=tags, flags=flags) assert isinstance(note, Note) assert note.fields == fields assert note.guid == guid assert note.note_model == note_model assert note.tags == tags assert note.flags == flags # assert note.media_references == media def test_from_dict(self, note_fixtures): assert isinstance(note_fixtures, Note) class TestNoteGrouping: def test_constructor(self): note_grouping = NoteGrouping(notes=[Note.from_dict(working_notes["test1"])], note_model=None, tags=None) assert isinstance(note_grouping, NoteGrouping) assert isinstance(note_grouping.notes, List) def test_from_dict(self, note_grouping_fixtures): assert isinstance(note_grouping_fixtures, NoteGrouping) class TestDeckPartNote: def test_constructor(self): dpn = Notes(note_groupings=[NoteGrouping.from_dict(working_note_groupings["nothing_grouped"])]) assert isinstance(dpn, Notes) def test_from_dict(self): dpn = Notes.from_dict({NOTE_GROUPINGS: [working_note_groupings["nothing_grouped"]]}) assert isinstance(dpn, Notes) class TestDumpToYaml: @staticmethod def _make_temp_file(tmpdir): folder = tmpdir.mkdir("yaml_files") file = folder.join("test.yaml") file.write("test") return file class TestNote: @staticmethod def _assert_dump_to_yaml(tmpdir, ystring, note_name): file = TestDumpToYaml._make_temp_file(tmpdir) note = Note.from_dict(working_notes[note_name]) note.dump_to_yaml(str(file)) assert file.read() == ystring def test_all1(self, tmpdir): ystring = dedent(f'''\ {FIELDS}: - first {GUID}: '12345' {NOTE_MODEL}: model_name {TAGS}: - noun - other ''') self._assert_dump_to_yaml(tmpdir, ystring, "test1") def test_all2(self, tmpdir): ystring = dedent(f'''\ {FIELDS}: - english - german {GUID}: sdfhfghsvsdv {NOTE_MODEL}: LL Test {TAGS}: - marked ''') self._assert_dump_to_yaml(tmpdir, ystring, "test2") def test_no_note_model(self, tmpdir): ystring = dedent(f'''\ {FIELDS}: - first {GUID}: '12345' {TAGS}: - noun - other ''') self._assert_dump_to_yaml(tmpdir, ystring, "no_note_model") def test_no_tags(self, tmpdir): for num, note in enumerate(["no_tags1", "no_tags2"]): ystring = dedent(f'''\ {FIELDS}: - first {GUID}: '12345' {NOTE_MODEL}: model_name ''') self._assert_dump_to_yaml(tmpdir.mkdir(str(num)), ystring, note) def test_with_flags(self, tmpdir): ystring = dedent(f'''\ {FIELDS}: - first {GUID}: '12345' {FLAGS}: 1 {NOTE_MODEL}: model_name {TAGS}: - noun - other ''') self._assert_dump_to_yaml(tmpdir, ystring, "test1_with_flags") def test_with_default_flags(self, tmpdir): ystring = dedent(f'''\ {FIELDS}: - first {GUID}: '12345' {NOTE_MODEL}: model_name {TAGS}: - noun - other ''') self._assert_dump_to_yaml(tmpdir, ystring, "test1_with_default_flags") class TestNoteGrouping: @staticmethod def _assert_dump_to_yaml(tmpdir, ystring, note_grouping_name): file = TestDumpToYaml._make_temp_file(tmpdir) note = NoteGrouping.from_dict(working_note_groupings[note_grouping_name]) note.dump_to_yaml(str(file)) assert file.read() == ystring def test_nothing_grouped(self, tmpdir): ystring = dedent(f'''\ {NOTES}: - {FIELDS}: - first {GUID}: '12345' {NOTE_MODEL}: model_name {TAGS}: - noun - other - {FIELDS}: - english - german {GUID}: sdfhfghsvsdv {NOTE_MODEL}: LL Test {TAGS}: - marked ''') self._assert_dump_to_yaml(tmpdir, ystring, "nothing_grouped") def test_note_model_grouped(self, tmpdir): ystring = dedent(f'''\ {NOTE_MODEL}: model_name {NOTES}: - {FIELDS}: - first {GUID}: '12345' {TAGS}: - noun - other - {FIELDS}: - second {GUID}: '67890' {TAGS}: - noun - other ''') self._assert_dump_to_yaml(tmpdir, ystring, "note_model_grouped") def test_note_tags_grouped(self, tmpdir): ystring = dedent(f'''\ {TAGS}: - noun - other {NOTES}: - {FIELDS}: - first {GUID}: '12345' {NOTE_MODEL}: model_name - {FIELDS}: - first {GUID}: '12345' {NOTE_MODEL}: model_name ''') self._assert_dump_to_yaml(tmpdir, ystring, "tags_grouped") def test_note_model_and_tags_grouped(self, tmpdir): ystring = dedent(f'''\ {NOTE_MODEL}: model_name {TAGS}: - noun - other {NOTES}: - {FIELDS}: - first {GUID}: '12345' - {FIELDS}: - first {GUID}: '12345' ''') self._assert_dump_to_yaml(tmpdir, ystring, "model_and_tags_grouped") class TestDeckPartNotes: @staticmethod def _assert_dump_to_yaml(tmpdir, ystring, groups: list): file = TestDumpToYaml._make_temp_file(tmpdir) note = Notes.from_dict({NOTE_GROUPINGS: [working_note_groupings[name] for name in groups]}) note.dump_to_yaml(str(file)) assert file.read() == ystring def test_two_groupings(self, tmpdir): ystring = dedent(f'''\ {NOTE_GROUPINGS}: - {NOTE_MODEL}: model_name {TAGS}: - noun - other {NOTES}: - {FIELDS}: - first {GUID}: '12345' - {FIELDS}: - first {GUID}: '12345' - {NOTES}: - {FIELDS}: - first {GUID}: '12345' {NOTE_MODEL}: model_name {TAGS}: - noun - other - {FIELDS}: - english - german {GUID}: sdfhfghsvsdv {NOTE_MODEL}: LL Test {TAGS}: - marked ''') self._assert_dump_to_yaml(tmpdir, ystring, ["model_and_tags_grouped", "nothing_grouped"]) class TestFunctionality: class TestGetMediaReferences: class TestNote: @pytest.mark.parametrize("fields, expected_count", [ ([], 0), (["nothing", "empty", "can't find nothing here"], 0), (["<img src=\"animal.jpg\">", "empty", "can't find nothing here"], 1), (["<img src=\"animal.jpg\">", "<img src=\"animal.jpg\">", "<img src=\"animal.jpg\">"], 1), (["<img src=\"animal.jpg\">", "<img src=\"food.jpg\">", "<img src=\"object.jpg\">"], 3), (["<img src=\"animal.jpg\">", "[sound:test.mp3]", "[sound:test.mp3]"], 2), ]) def test_all(self, fields, expected_count): note = Note(fields=fields, note_model=None, guid="", tags=None, flags=0) media_found = note.get_all_media_references() assert isinstance(media_found, Set) assert len(media_found) == expected_count class TestGetAllNoteModels: class TestNoteGrouping: def test_nothing_grouped(self): group = NoteGrouping.from_dict(working_note_groupings["nothing_grouped"]) models = group.get_all_known_note_model_names() assert models == {'LL Test', 'model_name'} def test_grouped(self): group = NoteGrouping.from_dict(working_note_groupings["note_model_grouped"]) models = group.get_all_known_note_model_names() assert models == {'model_name'} class TestDeckPartNotes: def test_two_groups_two_models(self): dpn = Notes.from_dict(working_dpns["two_groups_two_models"]) models = dpn.get_all_known_note_model_names() assert models == {'LL Test', 'model_name'} def test_two_groups_three_models(self): dpn = Notes.from_dict(working_dpns["two_groups_three_models"]) models = dpn.get_all_known_note_model_names() assert models == {'LL Test', 'model_name', 'different_model'} # class TestGetAllNotes: # class TestNoteGrouping: # def test_nothing_grouped(self): # group = NoteGrouping.from_dict(working_note_groupings["nothing_grouped"]) # notes = group.get_all_notes_copy([], False) # assert len(notes) == 2 # # def test_model_grouped(self): # group = NoteGrouping.from_dict(working_note_groupings["note_model_grouped"]) # assert group.note_model == "model_name" # assert all([note.note_model is None for note in group.notes]) # # notes = group.get_all_notes_copy() # assert {note.note_model for note in notes} == {"model_name"} # # def test_tags_grouped(self): # group = NoteGrouping.from_dict(working_note_groupings["tags_grouped"]) # assert group.tags == ["noun", "other"] # assert all([note.tags is None or note.tags == [] for note in group.notes]) # # notes = group.get_all_notes_copy() # assert all([note.tags == ["noun", "other"] for note in notes]) # # def test_tags_grouped_as_addition(self): # group = NoteGrouping.from_dict(working_note_groupings["tags_grouped_as_addition"]) # assert group.tags == ["test", "recent"] # assert all([note.tags is not None for note in group.notes]) # # notes = group.get_all_notes_copy() # assert notes[0].tags == ['noun', 'other', "test", "recent"] # assert notes[1].tags == ['marked', "test", "recent"] # # def test_no_tags(self): # group = NoteGrouping.from_dict(working_note_groupings["tags_grouped"]) # group.tags = None # assert all([note.tags is None or note.tags == [] for note in group.notes]) # # notes = group.get_all_notes_copy() # assert all([note.tags == [] for note in notes]) #
the-stack_0_24234
import numpy as np def set_balance(row, ratio): if row['ratio 3/(3+5)'] >= ratio: return '3p' elif row['ratio 5/(3+5)'] >= ratio: return '5p' elif np.isnan(row['reads_3p']) and np.isnan(row['reads_5p']): return 'unknown' elif np.isnan(row['reads_3p']): return '5p' elif np.isnan(row['reads_5p']): return '3p' else: return 'both' def find_in_mirna(row, df_loc): if df_loc[ (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['orientation'] == row['orient_loc']) & (df_loc['stop'] >= row['pos'])].shape[0] != 0: temp = df_loc[ (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['orientation'] == row['orient_loc']) & (df_loc['stop'] >= row['pos'])].values[0] if row['orient_loc'] == '+': start = row['pos'] - temp[2] + 1 stop = row['pos'] - temp[3] - 1 else: start = -(row['pos'] - temp[3] - 1) stop = -(row['pos'] - temp[2] + 1) localiz = [start, stop] else: localiz = [np.nan, np.nan] return localiz def find_arm(row): if row['-/+'] == '+': if row['start'] - row['start_pre'] < row['stop_pre'] - row['stop']: return '5p' else: return '3p' if row['-/+'] == '-': if row['start'] - row['start_pre'] < row['stop_pre'] - row['stop']: return '3p' else: return '5p' def from_start(row, column_start, column_stop): if row['orientation'] == '+': return row['pos'] - row[column_start] + 1 else: return row[column_stop] - row['pos'] + 1 def from_end(row, column_stop, column_start): if row['orientation'] == '+': return row['pos'] - row[column_stop] - 1 else: return row[column_start] - row['pos'] - 1 def find_localization(row, df_loc): print(row) localizations = df_loc[(df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['stop'] >= row['pos'])].values print(localizations) if len(localizations) > 1: raise ValueError else: return localizations[0] def if_complex(row, complex_df): if complex_df[(complex_df['chrom'] == row['chrom']) & (complex_df['pre_name'] == row['pre_name']) & (complex_df['id'] == row['id']) & (complex_df['start_pre'] == row['start_pre']) & (complex_df['seq_type'] == row['seq_type'])].shape[0] != 0: values = complex_df[(complex_df['chrom'] == row['chrom']) & (complex_df['pre_name'] == row['pre_name']) & (complex_df['id'] == row['id']) & (complex_df['start_pre'] == row['start_pre']) & (complex_df['seq_type'] == row['seq_type'])]['complex'].unique() if 1 in values: return 1 else: return 0 else: return 0 def concat_ints(col): row = list(col.values) new_row = [] for x in row: new_row.append(str(x)) return '"' + ':'.join(new_row) + '"' def concat_alg(col): row = list(col.values) new_row = [] for x in row: new_row.append(str(x)) new_row = sorted(set(new_row)) return '"' + ':'.join(new_row) + '"' def type_of_mutation(row): if len(row['ref']) > len(row['alt']): return 'del' elif len(row['ref']) == len(row['alt']): return 'subst' elif ',' in row['alt']: return 'subst' else: return 'ins' def take_from_coord(coordinates, column_name, row): return coordinates[(coordinates['chr'] == row['chrom']) & (coordinates['start'] < int(row['pos'])) & (coordinates['stop'] > int(row['pos']))][column_name].values[0] def seq_type(value): if 'hsa-' in value: return 'mirna' else: return 'not_defined' def subst_type(row): if row['mutation_type'] == 'subst': if (((row['ref'] in ['A', 'G']) and (row['alt'] in ['A', 'G'])) or ((row['ref'] in ['C', 'T']) and (row['alt'] in ['C', 'T']))): return 'transition' else: return 'transversion' else: return 'n.a.'
the-stack_0_24235
# Copyright 2013 Google Inc. All Rights Reserved. # Use of this source code is governed by a BSD-style license that can # be found in the LICENSE file. from itertools import izip import logging import re from net import bsonrpc from net import gorpc from vtdb import cursor from vtdb import dbexceptions from vtdb import field_types # This is the shard name for when the keyrange covers the entire space # for unsharded database. SHARD_ZERO = "0" _errno_pattern = re.compile('\(errno (\d+)\)') # Map specific errors to specific classes. _errno_map = { 1062: dbexceptions.IntegrityError, } def convert_exception(exc, *args): new_args = exc.args + args if isinstance(exc, gorpc.TimeoutError): return dbexceptions.TimeoutError(new_args) elif isinstance(exc, gorpc.AppError): msg = str(exc[0]).lower() match = _errno_pattern.search(msg) if match: mysql_errno = int(match.group(1)) return _errno_map.get(mysql_errno, dbexceptions.DatabaseError)(new_args) return dbexceptions.DatabaseError(new_args) elif isinstance(exc, gorpc.ProgrammingError): return dbexceptions.ProgrammingError(new_args) elif isinstance(exc, gorpc.GoRpcError): return dbexceptions.FatalError(new_args) return exc # A simple, direct connection to the vttablet query server. # This is shard-unaware and only handles the most basic communication. # If something goes wrong, this object should be thrown away and a new one instantiated. class VtgateConnection(object): session = None tablet_type = None cursorclass = cursor.TabletCursor _stream_fields = None _stream_conversions = None _stream_result = None _stream_result_index = None def __init__(self, addr, tablet_type, keyspace, shard, timeout, user=None, password=None, encrypted=False, keyfile=None, certfile=None): self.addr = addr self.tablet_type = tablet_type self.keyspace = keyspace self.shard = shard self.timeout = timeout self.client = bsonrpc.BsonRpcClient(addr, timeout, user, password, encrypted=encrypted, keyfile=keyfile, certfile=certfile) def __str__(self): return '<VtgateConnection %s %s %s/%s>' % (self.addr, self.tablet_type, self.keyspace, self.shard) def dial(self): try: if not self.is_closed(): self.close() self.client.dial() except gorpc.GoRpcError as e: raise convert_exception(e, str(self)) def close(self): if self.session: self.rollback() self.client.close() def is_closed(self): return self.client.is_closed() def begin(self): try: response = self.client.call('VTGate.Begin', None) self.session = response.reply except gorpc.GoRpcError as e: raise convert_exception(e, str(self)) def commit(self): try: session = self.session self.session = None self.client.call('VTGate.Commit', session) except gorpc.GoRpcError as e: raise convert_exception(e, str(self)) def rollback(self): try: session = self.session self.session = None self.client.call('VTGate.Rollback', session) except gorpc.GoRpcError as e: raise convert_exception(e, str(self)) def cursor(self, cursorclass=None, **kargs): return (cursorclass or self.cursorclass)(self, **kargs) def _add_session(self, req): if self.session: req['Session'] = self.session def _update_session(self, response): if 'Session' in response.reply and response.reply['Session']: self.session = response.reply['Session'] def _execute(self, sql, bind_variables): new_binds = field_types.convert_bind_vars(bind_variables) req = { 'Sql': sql, 'BindVariables': new_binds, 'Keyspace': self.keyspace, 'TabletType': self.tablet_type, 'Shards': [self.shard], } self._add_session(req) fields = [] conversions = [] results = [] rowcount = 0 lastrowid = 0 try: response = self.client.call('VTGate.ExecuteShard', req) self._update_session(response) reply = response.reply # TODO(sougou): Simplify this check after all servers are deployed if 'Error' in response.reply and response.reply['Error']: raise gorpc.AppError(response.reply['Error'], 'VTGate.ExecuteShard') if 'Result' in reply: res = reply['Result'] for field in res['Fields']: fields.append((field['Name'], field['Type'])) conversions.append(field_types.conversions.get(field['Type'])) for row in res['Rows']: results.append(tuple(_make_row(row, conversions))) rowcount = res['RowsAffected'] lastrowid = res['InsertId'] except gorpc.GoRpcError as e: raise convert_exception(e, str(self), sql, bind_variables) except: logging.exception('gorpc low-level error') raise return results, rowcount, lastrowid, fields def _execute_batch(self, sql_list, bind_variables_list): query_list = [] for sql, bind_vars in zip(sql_list, bind_variables_list): query = {} query['Sql'] = sql query['BindVariables'] = field_types.convert_bind_vars(bind_vars) query_list.append(query) rowsets = [] try: req = { 'Queries': query_list, 'Keyspace': self.keyspace, 'TabletType': self.tablet_type, 'Shards': [self.shard], } self._add_session(req) response = self.client.call('VTGate.ExecuteBatchShard', req) self._update_session(response) if 'Error' in response.reply and response.reply['Error']: raise gorpc.AppError(response.reply['Error'], 'VTGate.ExecuteBatchShard') for reply in response.reply['List']: fields = [] conversions = [] results = [] rowcount = 0 for field in reply['Fields']: fields.append((field['Name'], field['Type'])) conversions.append(field_types.conversions.get(field['Type'])) for row in reply['Rows']: results.append(tuple(_make_row(row, conversions))) rowcount = reply['RowsAffected'] lastrowid = reply['InsertId'] rowsets.append((results, rowcount, lastrowid, fields)) except gorpc.GoRpcError as e: raise convert_exception(e, str(self), sql_list, bind_variables_list) except: logging.exception('gorpc low-level error') raise return rowsets # we return the fields for the response, and the column conversions # the conversions will need to be passed back to _stream_next # (that way we avoid using a member variable here for such a corner case) def _stream_execute(self, sql, bind_variables): new_binds = field_types.convert_bind_vars(bind_variables) req = { 'Sql': sql, 'BindVariables': new_binds, 'Keyspace': self.keyspace, 'TabletType': self.tablet_type, 'Shards': [self.shard], } self._add_session(req) self._stream_fields = [] self._stream_conversions = [] self._stream_result = None self._stream_result_index = 0 try: self.client.stream_call('VTGate.StreamExecuteShard', req) first_response = self.client.stream_next() reply = first_response.reply['Result'] for field in reply['Fields']: self._stream_fields.append((field['Name'], field['Type'])) self._stream_conversions.append(field_types.conversions.get(field['Type'])) except gorpc.GoRpcError as e: raise convert_exception(e, str(self), sql, bind_variables) except: logging.exception('gorpc low-level error') raise return None, 0, 0, self._stream_fields def _stream_next(self): # Terminating condition if self._stream_result_index is None: return None # See if we need to read more or whether we just pop the next row. while self._stream_result is None: try: self._stream_result = self.client.stream_next() if self._stream_result is None: self._stream_result_index = None return None # A session message, if any comes separately with no rows # TODO(sougou) get rid of this check. After all the server # changes, there will always be a 'Session' in the reply. if 'Session' in self._stream_result.reply and self._stream_result.reply['Session']: self.session = self._stream_result.reply['Session'] self._stream_result = None continue except gorpc.GoRpcError as e: raise convert_exception(e, str(self)) except: logging.exception('gorpc low-level error') raise row = tuple(_make_row(self._stream_result.reply['Result']['Rows'][self._stream_result_index], self._stream_conversions)) # If we are reading the last row, set us up to read more data. self._stream_result_index += 1 if self._stream_result_index == len(self._stream_result.reply['Result']['Rows']): self._stream_result = None self._stream_result_index = 0 return row def _make_row(row, conversions): converted_row = [] for conversion_func, field_data in izip(conversions, row): if field_data is None: v = None elif conversion_func: v = conversion_func(field_data) else: v = field_data converted_row.append(v) return converted_row def connect(*pargs, **kargs): conn = VtgateConnection(*pargs, **kargs) conn.dial() return conn
the-stack_0_24238
import pytest @pytest.fixture(scope="session") def report(dials_data, tmpdir_factory): data_dir = dials_data("pychef") mtz = data_dir.join("insulin_dials_scaled_unmerged.mtz").strpath temp_path = tmpdir_factory.mktemp("test_report") with temp_path.as_cwd(): from xia2.Modules.Analysis import ( phil_scope, ) # import creates /xia2-debug.txt dropping from xia2.Modules.Report import Report # import creates /DEFAULT/ dropping params = phil_scope.extract() params.batch = [] params.dose.batch = [] yield Report.from_unmerged_mtz(mtz, params, report_dir=temp_path.strpath) def test_multiplicity_plots(report): multiplicity_plots = report.multiplicity_plots(dest_path=".") assert set(multiplicity_plots) == { "multiplicity_h", "multiplicity_k", "multiplicity_l", } def test_symmetry_table_html(report): assert ( report.symmetry_table_html() == """ <p> <b>Unit cell:</b> I 2 3 (No. 197) <br> <b>Space group:</b> (78.1047, 78.1047, 78.1047, 90, 90, 90) </p> """ ) def test_xtriage(report): xtriage_report = report.xtriage_report() assert len(xtriage_report) == 3 assert set(xtriage_report[0][0]) == {"text", "summary", "header", "level"} def test_batch_dependent_plots(report): plots = report.batch_dependent_plots() assert set(plots) == {"i_over_sig_i_vs_batch", "scale_rmerge_vs_batch"} assert plots["scale_rmerge_vs_batch"]["data"][0]["x"] == list(range(1, 46)) assert plots["i_over_sig_i_vs_batch"]["data"][0]["x"] == list(range(1, 46)) def test_resolution_plots_and_stats(report): ( overall_stats_table, merging_stats_table, stats_plots, ) = report.resolution_plots_and_stats() assert len(overall_stats_table) == 11 assert overall_stats_table[0] == [ "", "Overall", "Low resolution", "High resolution", ] assert len(merging_stats_table) == 21 assert merging_stats_table[0] == [ "Resolution (\xc5)", "N(obs)", "N(unique)", "Multiplicity", "Completeness", "Mean I", "Mean I/\u03c3(I)", "R<sub>merge</sub>", "R<sub>meas</sub>", "R<sub>pim</sub>", "R<sub>anom</sub>", "CC<sub>\xbd</sub>", "CC<sub>ano</sub>", ] assert merging_stats_table[1] == [ "24.70 - 4.36", 2765, 543, "5.09", "96.11", "7201.0", "72.9", "0.027", "0.030", "0.013", "0.046", "0.998*", "0.598*", ] assert set(stats_plots) == { "multiplicity_vs_resolution", "completeness", "r_pim", "i_over_sig_i", "cc_one_half", } def test_intensity_stats_plots(report): plots = report.intensity_stats_plots() assert set(plots) == { "wilson_intensity_plot", "multiplicities", "second_moments", "cumulative_intensity_distribution", "l_test", } def test_pychef(report): plots = report.pychef_plots() assert set(plots) == { "rcp_vs_dose", "scp_vs_dose", "completeness_vs_dose", "rd_vs_batch_difference", }
the-stack_0_24239
from __future__ import print_function # Copyright (c) 2017, IGLU consortium # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Neither the name of the NECOTIS research group nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys from timeit import default_timer as timer # Disable v-sync import os os.environ['vblank_mode'] = '0' # Load configuration file with CPU backend (TinyPanda software rendering) from panda3d.core import loadPrcFile loadPrcFile(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ConfigCPU.prc")) from benchmark import BenchmarkEnvironment def getFpsAll(nbSteps): # 'acoustics' world temporarily disabled env = BenchmarkEnvironment(activeEngines=['physics', 'render']) start = timer() env.simulate(nbSteps=nbSteps) end = timer() elapsed = (end - start) env.destroy() fps = nbSteps/elapsed return fps def getFpsRenderOnly(nbSteps): env = BenchmarkEnvironment(activeEngines=['render']) start = timer() env.simulate(nbSteps=nbSteps) end = timer() elapsed = (end - start) env.destroy() fps = nbSteps/elapsed return fps def getFpsPhysicsOnly(nbSteps): env = BenchmarkEnvironment(activeEngines=['physics']) start = timer() env.simulate(nbSteps=nbSteps) end = timer() elapsed = (end - start) env.destroy() fps = nbSteps/elapsed return fps def getFpsAcousticsOnly(nbSteps): env = BenchmarkEnvironment(activeEngines=['acoustics']) start = timer() env.simulate(nbSteps=nbSteps) end = timer() elapsed = (end - start) env.destroy() fps = nbSteps/elapsed return fps def main(): nbSteps = 100 print('FPS (all): ', getFpsAll(nbSteps)) print('FPS (render-only): ', getFpsRenderOnly(nbSteps)) print('FPS (physics-only): ', getFpsPhysicsOnly(nbSteps)) # print 'FPS (acoustics-only): ', getFpsAcousticsOnly(nbSteps) print('FPS (acoustics-only): ', "temporarily disabled") return 0 if __name__ == "__main__": sys.exit(main())
the-stack_0_24241
""" Low-level classes for interacting directly with the Strava API webservers. """ from __future__ import division, absolute_import, print_function, unicode_literals import abc import logging import functools import requests import six from six.moves.urllib.parse import urlunsplit, urljoin, urlencode from stravalib import exc @six.add_metaclass(abc.ABCMeta) class ApiV3(object): """ This class is responsible for performing the HTTP requests, rate limiting, and error handling. """ server = 'www.strava.com' # Note: The hostname for webhook events is different than normal API requests # (via http://strava.github.io/api/partner/v3/events/) server_webhook_events = 'api.strava.com' api_base = '/api/v3' def __init__(self, access_token=None, requests_session=None, rate_limiter=None): """ Initialize this protocol client, optionally providing a (shared) :class:`requests.Session` object. :param access_token: The token that provides access to a specific Strava account. :type access_token: str :param requests_session: An existing :class:`requests.Session` object to use. :type requests_session::class:`requests.Session` """ self.log = logging.getLogger('{0.__module__}.{0.__name__}'.format(self.__class__)) self.access_token = access_token if requests_session: self.rsession = requests_session else: self.rsession = requests.Session() if rate_limiter is None: # Make it a dummy function, so we don't have to check if it's defined before # calling it later rate_limiter = lambda x=None: None self.rate_limiter = rate_limiter def authorization_url(self, client_id, redirect_uri, approval_prompt='auto', scope=None, state=None): """ Get the URL needed to authorize your application to access a Strava user's information. See https://developers.strava.com/docs/authentication/ :param client_id: The numeric developer client id. :type client_id: int :param redirect_uri: The URL that Strava will redirect to after successful (or failed) authorization. :type redirect_uri: str :param approval_prompt: Whether to prompt for approval even if approval already granted to app. Choices are 'auto' or 'force'. (Default is 'auto') :type approval_prompt: str :param scope: The access scope required. Omit to imply "read" and "activity:read" Valid values are 'read', 'read_all', 'profile:read_all', 'profile:write', 'profile:read_all', 'activity:read_all', 'activity:write'. :type scope: list[str] :param state: An arbitrary variable that will be returned to your application in the redirect URI. :type state: str :return: The URL to use for authorization link. :rtype: str """ assert approval_prompt in ('auto', 'force') if scope is None: scope = ['read', 'activity:read'] elif isinstance(scope, (six.text_type, six.binary_type)): scope = [scope] unsupported = set(scope) - {'read', 'read_all', 'profile:read_all', 'profile:write', 'activity:read', 'activity:read_all', 'activity:write'} assert not unsupported, 'Unsupported scope value(s): {}'.format(unsupported) if isinstance(scope, (list, tuple)): scope = ','.join(scope) params = {'client_id': client_id, 'redirect_uri': redirect_uri, 'approval_prompt': approval_prompt, 'response_type': 'code'} if scope is not None: params['scope'] = scope if state is not None: params['state'] = state return urlunsplit(('https', self.server, '/oauth/authorize', urlencode(params), '')) def exchange_code_for_token(self, client_id, client_secret, code): """ Exchange the temporary authorization code (returned with redirect from strava authorization URL) for a short-lived access token and a refresh token (used to obtain the next access token later on). :param client_id: The numeric developer client id. :type client_id: int :param client_secret: The developer client secret :type client_secret: str :param code: The temporary authorization code :type code: str :return: Dictionary containing the access_token, refresh_token and expires_at (number of seconds since Epoch when the provided access token will expire) :rtype: dict """ response = self._request('https://{0}/oauth/token'.format(self.server), params={'client_id': client_id, 'client_secret': client_secret, 'code': code, 'grant_type': 'authorization_code'}, method='POST') access_info = dict() access_info['access_token'] = response['access_token'] access_info['refresh_token'] = response['refresh_token'] access_info['expires_at'] = response['expires_at'] self.access_token = response['access_token'] return access_info def refresh_access_token(self, client_id, client_secret, refresh_token): """ Exchanges the previous refresh token for a short-lived access token and a new refresh token (used to obtain the next access token later on). :param client_id: The numeric developer client id. :type client_id: int :param client_secret: The developer client secret :type client_secret: str :param refresh_token: The refresh token obtain from a previous authorization request :type refresh_token: str :return: Dictionary containing the access_token, refresh_token and expires_at (number of seconds since Epoch when the provided access token will expire) :rtype: dict """ response = self._request('https://{0}/oauth/token'.format(self.server), params={'client_id': client_id, 'client_secret': client_secret, 'refresh_token': refresh_token, 'grant_type': 'refresh_token'}, method='POST') access_info = dict() access_info['access_token'] = response['access_token'] access_info['refresh_token'] = response['refresh_token'] access_info['expires_at'] = response['expires_at'] self.access_token = response['access_token'] return access_info def _resolve_url(self, url, use_webhook_server): server = use_webhook_server and self.server_webhook_events or self.server if not url.startswith('http'): url = urljoin('https://{0}'.format(server), self.api_base + '/' + url.strip('/')) return url def _request(self, url, params=None, files=None, method='GET', check_for_errors=True, use_webhook_server=False): """ Perform the underlying request, returning the parsed JSON results. :param url: The request URL. :type url: str :param params: Request parameters :type params: Dict[str,Any] :param files: Dictionary of file name to file-like objects. :type files: Dict[str,file] :param method: The request method (GET/POST/etc.) :type method: str :param check_for_errors: Whether to raise :type check_for_errors: bool :param use_webhook_server: Whether to use the webhook server for this request. :type use_webhook_server: bool :return: The parsed JSON response. :rtype: Dict[str,Any] """ url = self._resolve_url(url, use_webhook_server) self.log.info("{method} {url!r} with params {params!r}".format(method=method, url=url, params=params)) if params is None: params = {} if self.access_token: params['access_token'] = self.access_token methods = {'GET': self.rsession.get, 'POST': functools.partial(self.rsession.post, files=files), 'PUT': self.rsession.put, 'DELETE': self.rsession.delete} try: requester = methods[method.upper()] except KeyError: raise ValueError("Invalid/unsupported request method specified: {0}".format(method)) raw = requester(url, params=params) # Rate limits are taken from HTTP response headers # https://strava.github.io/api/#rate-limiting self.rate_limiter(raw.headers) if check_for_errors: self._handle_protocol_error(raw) # 204 = No content if raw.status_code in [204]: resp = {} else: resp = raw.json() return resp def _handle_protocol_error(self, response): """ Parses the raw response from the server, raising a :class:`stravalib.exc.Fault` if the server returned an error. :param response: The response object. :raises Fault: If the response contains an error. """ error_str = None try: json_response = response.json() except ValueError: pass else: if 'message' in json_response or 'errors' in json_response: error_str = '{0}: {1}'.format(json_response.get('message', 'Undefined error'), json_response.get('errors')) # Special subclasses for some errors msg = None exc_class = None if response.status_code == 404: msg = '%s: %s' % (response.reason, error_str) exc_class = exc.ObjectNotFound elif response.status_code == 401: msg = '%s: %s' % (response.reason, error_str) exc_class = exc.AccessUnauthorized elif 400 <= response.status_code < 500: msg = '%s Client Error: %s [%s]' % (response.status_code, response.reason, error_str) exc_class = exc.Fault elif 500 <= response.status_code < 600: msg = '%s Server Error: %s [%s]' % (response.status_code, response.reason, error_str) exc_class = exc.Fault elif error_str: msg = error_str exc_class = exc.Fault if exc_class is not None: raise exc_class(msg, response=response) return response def _extract_referenced_vars(self, s): """ Utility method to find the referenced format variables in a string. (Assumes string.format() format vars.) :param s: The string that contains format variables. (e.g. "{foo}-text") :return: The list of referenced variable names. (e.g. ['foo']) :rtype: list """ d = {} while True: try: s.format(**d) except KeyError as exc: # exc.args[0] contains the name of the key that was not found; # 0 is used because it appears to work with all types of placeholders. d[exc.args[0]] = 0 else: break return d.keys() def get(self, url, check_for_errors=True, use_webhook_server=False, **kwargs): """ Performs a generic GET request for specified params, returning the response. """ referenced = self._extract_referenced_vars(url) url = url.format(**kwargs) params = dict([(k, v) for k, v in kwargs.items() if not k in referenced]) return self._request(url, params=params, check_for_errors=check_for_errors, use_webhook_server=use_webhook_server) def post(self, url, files=None, check_for_errors=True, use_webhook_server=False, **kwargs): """ Performs a generic POST request for specified params, returning the response. """ referenced = self._extract_referenced_vars(url) url = url.format(**kwargs) params = dict([(k, v) for k, v in kwargs.items() if not k in referenced]) return self._request(url, params=params, files=files, method='POST', check_for_errors=check_for_errors, use_webhook_server=use_webhook_server) def put(self, url, check_for_errors=True, use_webhook_server=False, **kwargs): """ Performs a generic PUT request for specified params, returning the response. """ referenced = self._extract_referenced_vars(url) url = url.format(**kwargs) params = dict([(k, v) for k, v in kwargs.items() if not k in referenced]) return self._request(url, params=params, method='PUT', check_for_errors=check_for_errors, use_webhook_server=use_webhook_server) def delete(self, url, check_for_errors=True, use_webhook_server=False, **kwargs): """ Performs a generic DELETE request for specified params, returning the response. """ referenced = self._extract_referenced_vars(url) url = url.format(**kwargs) params = dict([(k, v) for k, v in kwargs.items() if not k in referenced]) return self._request(url, params=params, method='DELETE', check_for_errors=check_for_errors, use_webhook_server=use_webhook_server)
the-stack_0_24243
#!/usr/bin/env python # ---------------------------------------------------------------- # Programmer(s): Daniel R. Reynolds @ SMU # ---------------------------------------------------------------- # SUNDIALS Copyright Start # Copyright (c) 2002-2021, Lawrence Livermore National Security # and Southern Methodist University. # All rights reserved. # # See the top-level LICENSE and NOTICE files for details. # # SPDX-License-Identifier: BSD-3-Clause # SUNDIALS Copyright End # ---------------------------------------------------------------- # matplotlib-based plotting script for ODE examples # imports import sys import pylab as plt import numpy as np # load solution data file data = np.loadtxt('solution.txt', dtype=np.double) # determine number of time steps, number of fields nt,nv = np.shape(data) # extract time array times = data[:,0] # parse comment line to determine solution names f = open('solution.txt', 'r') commentline = f.readline() commentsplit = commentline.split() names = commentsplit[2:] # create plot plt.figure() # add curves to figure for i in range(nv-1): plt.plot(times,data[:,i+1],label=names[i]) plt.xlabel('t') if (nv > 2): plt.ylabel('solutions') else: plt.ylabel('solution') plt.legend(loc='upper right', shadow=True) plt.grid() plt.savefig('solution.png') ##### end of script #####
the-stack_0_24244
from pythran.tests import TestEnv from pythran.typing import List, Set, Dict, NDArray import numpy as np class TestNoGil(TestEnv): def test_list_param(self): code=""" def list_param(l): return l, sum(i*j for i in l for j in l) """ self.run_test(code, list(range(3000)), list_param=[List[int]], thread_count=4) def test_set_param(self): code=""" def set_param(l): return {sum(l), sum(i*j for i in l for j in l)}, l """ self.run_test(code, set(range(3000)), set_param=[Set[int]], thread_count=4) def test_dict_param(self): code=""" def dict_param(l): return {sum(i*j for i in l.keys() for j in l.values()): l}, l """ self.run_test(code, dict(zip(range(3000), range(3000))), dict_param=[Dict[int, int]], thread_count=4) def test_ndarray_param(self): code=""" import numpy as np def ndarray_param(l): return np.array([i*j for i in l for j in l]), l """ self.run_test(code, np.ones(100, dtype=int), ndarray_param=[NDArray[int, :]], thread_count=4)
the-stack_0_24245
import OSC import timeit wall_clock = timeit.default_timer from ..sphere import sphere # manage rotation of the simulated sphere # and simulation of touches on this sphere via mouse presses class RotationManager: def __init__(self, auto_spin=False, osc_port=3333): self.osc_client = OSC.OSCClient() self.osc_client.connect(('localhost', osc_port)) self.auto_spin = auto_spin self.rotation = [-90,0] self.last_rotation = [0,0] self.rotate_scale = -0.2 self.frame_ctr = 0 self.drag_start = None self.last_touch = wall_clock() self.spin = 0 self.touch_id = 0 self.target_spin = 0 self.auto_spin = False # manage simulated touches on the sphere self.touch_is_down = False self.touch_pos = (0,0) self._sphere_point = None # updated all the time in lon, lat format self.sphere_point = (-1, -1) # updated only while the (right) mouse is down self.locked = False def lock_rotation(self): self.locked = True def unlock_rotation(self): self.locked = False def send_osc(self, addr, elements): """Send a message to the given address using the open OSC client connection""" oscmsg = OSC.OSCMessage() oscmsg.setAddress(addr) for elt in elements: oscmsg.append(elt) self.osc_client.send(oscmsg) def send_touch(self, polar=None): """Send the simulated touches over OSC""" self.send_osc("/tuio/2Dcur", ['alive']) if polar: lon, lat = polar tuio = sphere.polar_to_tuio(lon, lat) self.send_osc("/tuio/2Dcur", ['set', self.touch_id, tuio[0], 1.0-tuio[1]]) self.send_osc("/tuio/2Dcur", ['fseq', self.frame_ctr]) self.frame_ctr += 1 # left mouse down def press(self, x, y): self.drag_start = (x,y) self.last_rotation = list(self.rotation) self.last_touch = wall_clock() # left mouse drag; spin the sphere def drag(self, x, y): if self.drag_start is not None: new_pos = (x,y) self.rotation[0] = self.last_rotation[0] + (self.drag_start[0] - new_pos[0]) * self.rotate_scale self.rotation[1] = self.last_rotation[1] + (self.drag_start[1] - new_pos[1]) * self.rotate_scale * 0.5 self.last_touch = wall_clock() else: # we started dragging without a press?! # just simulate the press self.press(x, y) # left mouse up; sphere relaxes def release(self,x,y): self.drag_start = None self.last_touch = wall_clock() # return active touch point def get_touch_point(self): if self.touch_is_down: return self._sphere_point else: return None # get position of mouse in screen coords def get_mouse_pos(self): if self.touch_is_down: return self.touch_pos else: return None # simulated touch point down def touch_down(self, x, y): self.touch_is_down = True self.touch_pos = (x,y) # simulated touch point up def touch_release(self, x, y): self.touch_is_down = False self._sphere_point = None self.touch_id += 1 # make sure we have unique ids for each simulated touch # simulated touch point moves def touch_drag(self, x, y): self.touch_pos = (x,y) if not self.touch_is_down: self.touch_down(x,y) def tick(self): # autorotate the sphere if needed if wall_clock()-self.last_touch>3 and self.auto_spin: self.target_spin = 0.2 else: self.target_spin = 0.0 # smooth out polar rotation self.spin = 0.8 *self.spin + 0.2*self.target_spin self.rotation[0] += self.spin # relax sphere back towards equatorial alignment with horizontal if self.drag_start is None and not self.locked: self.rotation[1] *= 0.95 # send tuio if the touch is down if self.touch_is_down and self._sphere_point is not None: self.send_touch(self._sphere_point) else: self.send_touch(None) # return overall rotation of the sphere as lon,lat pair def get_rotation(self): return self.rotation def get_sphere_touch(self): if self.touch_is_down: return self._sphere_point else: return None def set_sphere_touch(self, lon, lat): # note: this should only be read while the mouse button is down # outside of a mouse down event, this will change as the sphere # is rotated, which won't be the desired effect! self._sphere_point = (lon, lat)
the-stack_0_24248
from __future__ import unicode_literals, division, absolute_import from builtins import * # noqa pylint: disable=unused-import, redefined-builtin import pytest from flexget.task import TaskAbort class TestAbortIfExists(object): config = """ templates: global: disable: [seen] mock: - {title: 'test', location: 'mock://some_file.lftp-get-status'} - {title: 'test2', location: 'mock://some_file.mkv'} tasks: test_abort: abort_if_exists: regexp: '.*\.lftp-get-status' field: 'location' test_not_abort: abort_if_exists: regexp: '.*\.lftp-get-status' field: 'title' """ def test_abort(self, execute_task): with pytest.raises(TaskAbort): task = execute_task('test_abort') def test_not_abort(self, execute_task): task = execute_task('test_not_abort') assert not task.aborted, 'Task should have aborted'
the-stack_0_24250
#!/usr/bin/env python # coding: utf-8 # In[1]: import time import matplotlib.pyplot as plt import numpy as np import seaborn as sns import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data sns.set() # In[2]: mnist = input_data.read_data_sets("", validation_size=0) # In[3]: class Model: def __init__(self): self.X = tf.placeholder(tf.float32, [None, 784]) self.Y = tf.placeholder(tf.float32, [None, 10]) w1 = tf.Variable(tf.random_normal([784, 256], stddev=np.sqrt(1 / 784))) b1 = tf.Variable(tf.random_normal([256], stddev=0)) w2 = tf.Variable(tf.random_normal([256, 100], stddev=np.sqrt(1 / 256))) b2 = tf.Variable(tf.random_normal([100], stddev=0)) w3 = tf.Variable(tf.random_normal([100, 10], stddev=np.sqrt(1 / 100))) b3 = tf.Variable(tf.random_normal([10], stddev=0)) feedforward = tf.nn.selu(tf.matmul(self.X, w1) + b1) feeddropout = tf.contrib.nn.alpha_dropout(feedforward, 0.5) feedforward = tf.nn.selu(tf.matmul(feeddropout, w2) + b2) feeddropout = tf.contrib.nn.alpha_dropout(feedforward, 0.5) self.logits = tf.matmul(feeddropout, w3) + b3 self.cost = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=self.Y, logits=self.logits) ) self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.05).minimize(self.cost) correct_prediction = tf.equal(tf.argmax(self.logits, 1), tf.argmax(self.Y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # In[4]: batch_size = 128 epoch = 10 train_images = (mnist.train.images - np.mean(mnist.train.images)) / np.std(mnist.train.images) test_images = (mnist.test.images - np.mean(mnist.test.images)) / np.std(mnist.test.images) tf.reset_default_graph() sess = tf.InteractiveSession() model = Model() sess.run(tf.global_variables_initializer()) # In[5]: LOSS, ACC_TRAIN, ACC_TEST = [], [], [] for i in range(epoch): total_loss, total_acc = 0, 0 for n in range(0, (mnist.train.images.shape[0] // batch_size) * batch_size, batch_size): batch_x = train_images[n : n + batch_size, :] batch_y = np.zeros((batch_size, 10)) batch_y[np.arange(batch_size), mnist.train.labels[n : n + batch_size]] = 1.0 cost, _ = sess.run( [model.cost, model.optimizer], feed_dict={model.X: batch_x, model.Y: batch_y} ) total_acc += sess.run(model.accuracy, feed_dict={model.X: batch_x, model.Y: batch_y}) total_loss += cost total_loss /= mnist.train.images.shape[0] // batch_size total_acc /= mnist.train.images.shape[0] // batch_size ACC_TRAIN.append(total_acc) total_acc = 0 for n in range( 0, (mnist.test.images[:1000, :].shape[0] // batch_size) * batch_size, batch_size ): batch_x = test_images[n : n + batch_size, :] batch_y = np.zeros((batch_size, 10)) batch_y[np.arange(batch_size), mnist.test.labels[n : n + batch_size]] = 1.0 total_acc += sess.run(model.accuracy, feed_dict={model.X: batch_x, model.Y: batch_y}) total_acc /= mnist.test.images[:1000, :].shape[0] // batch_size ACC_TEST.append(total_acc) print( "epoch: %d, accuracy train: %f, accuracy testing: %f" % (i + 1, ACC_TRAIN[-1], ACC_TEST[-1]) ) # In[ ]:
the-stack_0_24251
import pandas as pd import numpy as np import tensorflow_hub as hub import tensorflow as tf import joblib from loader import data_loader import warnings; warnings.filterwarnings('ignore') datapath = '/media/einhard/Seagate Expansion Drive/3380_data/data/' print('Loading USE...') embed = hub.load('/media/einhard/Seagate Expansion Drive/3380_data/tensorflow_hub/universal-sentence-encoder_4') print('Success!') print('Loading word embeddings') sentence_array = joblib.load('/media/einhard/Seagate Expansion Drive/3380_data/3380-Book-Recommendations/Models/Summarizer/reviewEmbeddings.pkl') print('Loading reviews and books') books, reviews = data_loader(datapath, 'filtered_books.csv', 'filtered_reviews.csv') def find_reviews(query,reviews=reviews, n_results=10): # Create vector from query and compare with global embedding sentence = [query] sentence_vector = np.array(embed(sentence)) inner_product = np.inner(sentence_vector, sentence_array)[0] # Find sentences with highest inner products top_n_sentences = pd.Series(inner_product).nlargest(n_results+1) top_n_indices = top_n_sentences.index.tolist() top_n_list = list(reviews.review_text.iloc[top_n_indices][1:]) print(f'Input sentence: "{query}"\n') print(f'{n_results} most semantically similar reviews: \n\n') print(*top_n_list, sep='\n\n') return top_n_indices def find_books(query, reviews=reviews, books=books): top_n_indices = find_reviews(query) return books[books.book_id.isin(reviews.iloc[top_ten_indices].book_id.tolist())][['title', 'name','description', 'weighted_score']] find_books("I've been waiting for a hard sci-fi novel for a long time")
the-stack_0_24252
# -*- coding: utf-8 -*- """ Created on Tue Jun 12 13:57:55 2018 @author: Denis """ from .utils import infos_irisdates class sji_frame_infos: def __init__(self, height, large, wavelength, year, month, day, hour, minute, second, millisecond, timestamp, xcenter, ycenter, xfov, yfov, xcenterslit, ycenterslit): self.height = height self.large = large self.wavelength = wavelength self.year = year self.month = month self.day = day self.hour = hour self.minute = minute self.second = second self.millisecond = millisecond self.timestamp = timestamp self.xcenter = xcenter self.ycenter = ycenter self.xfov = xfov self.yfov = yfov self.xcenterslit = xcenterslit self.ycenterslit = ycenterslit def sji_frameinfos_loader(sji_data, i): (height, large) = sji_data.get_image_step(i).shape header = sji_data.headers[i] wavelength = int(header['TWAVE1']) (year, month, day, hour, minute, second, millisecond) = infos_irisdates(header['DATE_OBS']) timestamp = sji_data.get_timestamps()[i] xcenter = float(header['XCEN']) ycenter = float(header['YCEN']) xfov = float(header['FOVX']) yfov = float(header['FOVY']) xcenterslit = float(header['SLTPX1IX']) ycenterslit = float(header['SLTPX2IX']) return sji_frame_infos(height, large, wavelength, year, month, day, hour, minute, second, millisecond, timestamp, xcenter, ycenter, xfov, yfov, xcenterslit, ycenterslit)
the-stack_0_24253
from tuneta.tune_ta import TuneTA import pandas as pd from pandas_ta import percent_return from sklearn.model_selection import train_test_split import yfinance as yf if __name__ == "__main__": # Download data set from yahoo, calculate next day return and split into train and test X = yf.download("SPY", period="10y", interval="1d", auto_adjust=True) y = percent_return(X.Close, offset=-1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, shuffle=False) # Initialize with x cores and show trial results tt = TuneTA(n_jobs=4, verbose=True) # Optimize indicators tt.fit(X_train, y_train, indicators=['tta.RSI'], ranges=[(2, 30), (31, 180)], trials=500, early_stop=100, ) # Show correlation of indicators tt.report(target_corr=True, features_corr=True) # Add indicators to X_train features = tt.transform(X_train) X_train = pd.concat([X_train, features], axis=1) # Add same indicators to X_test features = tt.transform(X_test) X_test = pd.concat([X_test, features], axis=1)
the-stack_0_24256
# -*- coding: utf-8 -*- """Implements file-like objects for reading and writing from/to S3.""" import io import contextlib import functools import logging import warnings import boto3 import botocore.client import six import sys import smart_open.bytebuffer logger = logging.getLogger(__name__) # Multiprocessing is unavailable in App Engine (and possibly other sandboxes). # The only method currently relying on it is iter_bucket, which is instructed # whether to use it by the MULTIPROCESSING flag. _MULTIPROCESSING = False try: import multiprocessing.pool _MULTIPROCESSING = True except ImportError: warnings.warn("multiprocessing could not be imported and won't be used") DEFAULT_MIN_PART_SIZE = 50 * 1024**2 """Default minimum part size for S3 multipart uploads""" MIN_MIN_PART_SIZE = 5 * 1024 ** 2 """The absolute minimum permitted by Amazon.""" READ_BINARY = 'rb' WRITE_BINARY = 'wb' MODES = (READ_BINARY, WRITE_BINARY) """Allowed I/O modes for working with S3.""" _BINARY_TYPES = (six.binary_type, bytearray) """Allowed binary buffer types for writing to the underlying S3 stream""" if sys.version_info >= (2, 7): _BINARY_TYPES = (six.binary_type, bytearray, memoryview) BINARY_NEWLINE = b'\n' SUPPORTED_SCHEMES = ("s3", "s3n", 's3u', "s3a") DEFAULT_BUFFER_SIZE = 128 * 1024 START = 0 CURRENT = 1 END = 2 WHENCE_CHOICES = [START, CURRENT, END] def clamp(value, minval, maxval): return max(min(value, maxval), minval) def make_range_string(start, stop=None): # # https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35 # if stop is None: return 'bytes=%d-' % start return 'bytes=%d-%d' % (start, stop) def open( bucket_id, key_id, mode, buffer_size=DEFAULT_BUFFER_SIZE, min_part_size=DEFAULT_MIN_PART_SIZE, session=None, resource_kwargs=None, multipart_upload_kwargs=None, ): """Open an S3 object for reading or writing. Parameters ---------- bucket_id: str The name of the bucket this object resides in. key_id: str The name of the key within the bucket. mode: str The mode for opening the object. Must be either "rb" or "wb". buffer_size: int, optional The buffer size to use when performing I/O. min_part_size: int, optional The minimum part size for multipart uploads. For writing only. session: object, optional The S3 session to use when working with boto3. resource_kwargs: dict, optional Keyword arguments to use when accessing the S3 resource for reading or writing. multipart_upload_kwargs: dict, optional Additional parameters to pass to boto3's initiate_multipart_upload function. For writing only. """ logger.debug('%r', locals()) if mode not in MODES: raise NotImplementedError('bad mode: %r expected one of %r' % (mode, MODES)) if resource_kwargs is None: resource_kwargs = {} if multipart_upload_kwargs is None: multipart_upload_kwargs = {} if mode == READ_BINARY: fileobj = SeekableBufferedInputBase( bucket_id, key_id, buffer_size=buffer_size, session=session, resource_kwargs=resource_kwargs, ) elif mode == WRITE_BINARY: fileobj = BufferedOutputBase( bucket_id, key_id, min_part_size=min_part_size, session=session, multipart_upload_kwargs=multipart_upload_kwargs, resource_kwargs=resource_kwargs, ) else: assert False, 'unexpected mode: %r' % mode return fileobj class RawReader(object): """Read an S3 object.""" def __init__(self, s3_object): self.position = 0 self._object = s3_object self._body = s3_object.get()['Body'] def read(self, size=-1): if size == -1: return self._body.read() return self._body.read(size) class SeekableRawReader(object): """Read an S3 object.""" def __init__(self, s3_object): self._object = s3_object try: self._content_length = self._object.content_length except botocore.client.ClientError: raise ValueError('the s3 key %r does not exist, or is forbidden for access' % s3_object.key) self.seek(0) def seek(self, position): """Seek to the specified position (byte offset) in the S3 key. :param int position: The byte offset from the beginning of the key. """ self._position = position range_string = make_range_string(self._position) logger.debug('content_length: %r range_string: %r', self._content_length, range_string) # # Close old body explicitly. # When first seek(), self._body is not exist. Catch the exception and do nothing. # try: self._body.close() except AttributeError: pass if position == self._content_length == 0 or position == self._content_length: # # When reading, we can't seek to the first byte of an empty file. # Similarly, we can't seek past the last byte. Do nothing here. # self._body = io.BytesIO() else: self._body = self._object.get(Range=range_string)['Body'] def read(self, size=-1): if self._position >= self._content_length: return b'' if size == -1: binary = self._body.read() else: binary = self._body.read(size) self._position += len(binary) return binary class BufferedInputBase(io.BufferedIOBase): def __init__(self, bucket, key, buffer_size=DEFAULT_BUFFER_SIZE, line_terminator=BINARY_NEWLINE, session=None, resource_kwargs=None): if session is None: session = boto3.Session() if resource_kwargs is None: resource_kwargs = {} s3 = session.resource('s3', **resource_kwargs) self._object = s3.Object(bucket, key) self._raw_reader = RawReader(self._object) self._content_length = self._object.content_length self._current_pos = 0 self._buffer = smart_open.bytebuffer.ByteBuffer(buffer_size) self._eof = False self._line_terminator = line_terminator # # This member is part of the io.BufferedIOBase interface. # self.raw = None # # Override some methods from io.IOBase. # def close(self): """Flush and close this stream.""" logger.debug("close: called") self._object = None def readable(self): """Return True if the stream can be read from.""" return True def seekable(self): return False # # io.BufferedIOBase methods. # def detach(self): """Unsupported.""" raise io.UnsupportedOperation def read(self, size=-1): """Read up to size bytes from the object and return them.""" if size == 0: return b'' elif size < 0: from_buf = self._read_from_buffer() self._current_pos = self._content_length return from_buf + self._raw_reader.read() # # Return unused data first # if len(self._buffer) >= size: return self._read_from_buffer(size) # # If the stream is finished, return what we have. # if self._eof: return self._read_from_buffer() # # Fill our buffer to the required size. # # logger.debug('filling %r byte-long buffer up to %r bytes', len(self._buffer), size) self._fill_buffer(size) return self._read_from_buffer(size) def read1(self, size=-1): """This is the same as read().""" return self.read(size=size) def readinto(self, b): """Read up to len(b) bytes into b, and return the number of bytes read.""" data = self.read(len(b)) if not data: return 0 b[:len(data)] = data return len(data) def readline(self, limit=-1): """Read up to and including the next newline. Returns the bytes read.""" if limit != -1: raise NotImplementedError('limits other than -1 not implemented yet') the_line = io.BytesIO() while not (self._eof and len(self._buffer) == 0): # # In the worst case, we're reading the unread part of self._buffer # twice here, once in the if condition and once when calling index. # # This is sub-optimal, but better than the alternative: wrapping # .index in a try..except, because that is slower. # remaining_buffer = self._buffer.peek() if self._line_terminator in remaining_buffer: next_newline = remaining_buffer.index(self._line_terminator) the_line.write(self._read_from_buffer(next_newline + 1)) break else: the_line.write(self._read_from_buffer()) self._fill_buffer() return the_line.getvalue() def terminate(self): """Do nothing.""" pass # # Internal methods. # def _read_from_buffer(self, size=-1): """Remove at most size bytes from our buffer and return them.""" # logger.debug('reading %r bytes from %r byte-long buffer', size, len(self._buffer)) size = size if size >= 0 else len(self._buffer) part = self._buffer.read(size) self._current_pos += len(part) # logger.debug('part: %r', part) return part def _fill_buffer(self, size=-1): size = size if size >= 0 else self._buffer._chunk_size while len(self._buffer) < size and not self._eof: bytes_read = self._buffer.fill(self._raw_reader) if bytes_read == 0: logger.debug('reached EOF while filling buffer') self._eof = True class SeekableBufferedInputBase(BufferedInputBase): """Reads bytes from S3. Implements the io.BufferedIOBase interface of the standard library.""" def __init__(self, bucket, key, buffer_size=DEFAULT_BUFFER_SIZE, line_terminator=BINARY_NEWLINE, session=None, resource_kwargs=None): if session is None: session = boto3.Session() if resource_kwargs is None: resource_kwargs = {} s3 = session.resource('s3', **resource_kwargs) self._object = s3.Object(bucket, key) self._raw_reader = SeekableRawReader(self._object) self._content_length = self._object.content_length self._current_pos = 0 self._buffer = smart_open.bytebuffer.ByteBuffer(buffer_size) self._eof = False self._line_terminator = line_terminator # # This member is part of the io.BufferedIOBase interface. # self.raw = None def seekable(self): """If False, seek(), tell() and truncate() will raise IOError. We offer only seek support, and no truncate support.""" return True def seek(self, offset, whence=START): """Seek to the specified position. :param int offset: The offset in bytes. :param int whence: Where the offset is from. Returns the position after seeking.""" logger.debug('seeking to offset: %r whence: %r', offset, whence) if whence not in WHENCE_CHOICES: raise ValueError('invalid whence, expected one of %r' % WHENCE_CHOICES) if whence == START: new_position = offset elif whence == CURRENT: new_position = self._current_pos + offset else: new_position = self._content_length + offset new_position = clamp(new_position, 0, self._content_length) self._current_pos = new_position self._raw_reader.seek(new_position) logger.debug('new_position: %r', self._current_pos) self._buffer.empty() self._eof = self._current_pos == self._content_length return self._current_pos def tell(self): """Return the current position within the file.""" return self._current_pos def truncate(self, size=None): """Unsupported.""" raise io.UnsupportedOperation class BufferedOutputBase(io.BufferedIOBase): """Writes bytes to S3. Implements the io.BufferedIOBase interface of the standard library.""" def __init__( self, bucket, key, min_part_size=DEFAULT_MIN_PART_SIZE, session=None, resource_kwargs=None, multipart_upload_kwargs=None, ): if min_part_size < MIN_MIN_PART_SIZE: logger.warning("S3 requires minimum part size >= 5MB; \ multipart upload may fail") if session is None: session = boto3.Session() if resource_kwargs is None: resource_kwargs = {} if multipart_upload_kwargs is None: multipart_upload_kwargs = {} s3 = session.resource('s3', **resource_kwargs) try: self._object = s3.Object(bucket, key) self._min_part_size = min_part_size self._mp = self._object.initiate_multipart_upload(**multipart_upload_kwargs) except botocore.client.ClientError: raise ValueError('the bucket %r does not exist, or is forbidden for access' % bucket) self._buf = io.BytesIO() self._total_bytes = 0 self._total_parts = 0 self._parts = [] # # This member is part of the io.BufferedIOBase interface. # self.raw = None def flush(self): pass # # Override some methods from io.IOBase. # def close(self): logger.debug("closing") if self._buf.tell(): self._upload_next_part() if self._total_bytes and self._mp: self._mp.complete(MultipartUpload={'Parts': self._parts}) logger.debug("completed multipart upload") elif self._mp: # # AWS complains with "The XML you provided was not well-formed or # did not validate against our published schema" when the input is # completely empty => abort the upload, no file created. # # We work around this by creating an empty file explicitly. # logger.info("empty input, ignoring multipart upload") assert self._mp, "no multipart upload in progress" self._mp.abort() self._object.put(Body=b'') self._mp = None logger.debug("successfully closed") @property def closed(self): return self._mp is None def writable(self): """Return True if the stream supports writing.""" return True def tell(self): """Return the current stream position.""" return self._total_bytes # # io.BufferedIOBase methods. # def detach(self): raise io.UnsupportedOperation("detach() not supported") def write(self, b): """Write the given bytes (binary string) to the S3 file. There's buffering happening under the covers, so this may not actually do any HTTP transfer right away.""" if not isinstance(b, _BINARY_TYPES): raise TypeError( "input must be one of %r, got: %r" % (_BINARY_TYPES, type(b))) self._buf.write(b) self._total_bytes += len(b) if self._buf.tell() >= self._min_part_size: self._upload_next_part() return len(b) def terminate(self): """Cancel the underlying multipart upload.""" assert self._mp, "no multipart upload in progress" self._mp.abort() self._mp = None # # Internal methods. # def _upload_next_part(self): part_num = self._total_parts + 1 logger.info("uploading part #%i, %i bytes (total %.3fGB)", part_num, self._buf.tell(), self._total_bytes / 1024.0 ** 3) self._buf.seek(0) part = self._mp.Part(part_num) upload = part.upload(Body=self._buf) self._parts.append({'ETag': upload['ETag'], 'PartNumber': part_num}) logger.debug("upload of part #%i finished" % part_num) self._total_parts += 1 self._buf = io.BytesIO() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: self.terminate() else: self.close() def iter_bucket(bucket_name, prefix='', accept_key=None, key_limit=None, workers=16, retries=3): """ Iterate and download all S3 objects under `s3://bucket_name/prefix`. Parameters ---------- bucket_name: str The name of the bucket. prefix: str, optional Limits the iteration to keys starting wit the prefix. accept_key: callable, optional This is a function that accepts a key name (unicode string) and returns True/False, signalling whether the given key should be downloaded. The default behavior is to accept all keys. key_limit: int, optional If specified, the iterator will stop after yielding this many results. workers: int, optional The number of subprocesses to use. retries: int, optional The number of time to retry a failed download. Yields ------ str The full key name (does not include the bucket name). bytes The full contents of the key. Notes ----- The keys are processed in parallel, using `workers` processes (default: 16), to speed up downloads greatly. If multiprocessing is not available, thus _MULTIPROCESSING is False, this parameter will be ignored. Examples -------- >>> # get all JSON files under "mybucket/foo/" >>> for key, content in iter_bucket(bucket_name, prefix='foo/', accept_key=lambda key: key.endswith('.json')): ... print key, len(content) >>> # limit to 10k files, using 32 parallel workers (default is 16) >>> for key, content in iter_bucket(bucket_name, key_limit=10000, workers=32): ... print key, len(content) """ if accept_key is None: accept_key = lambda key: True # # If people insist on giving us bucket instances, silently extract the name # before moving on. Works for boto3 as well as boto. # try: bucket_name = bucket_name.name except AttributeError: pass total_size, key_no = 0, -1 key_iterator = _list_bucket(bucket_name, prefix=prefix, accept_key=accept_key) download_key = functools.partial(_download_key, bucket_name=bucket_name, retries=retries) with _create_process_pool(processes=workers) as pool: result_iterator = pool.imap_unordered(download_key, key_iterator) for key_no, (key, content) in enumerate(result_iterator): if True or key_no % 1000 == 0: logger.info( "yielding key #%i: %s, size %i (total %.1fMB)", key_no, key, len(content), total_size / 1024.0 ** 2 ) yield key, content total_size += len(content) if key_limit is not None and key_no + 1 >= key_limit: # we were asked to output only a limited number of keys => we're done break logger.info("processed %i keys, total size %i" % (key_no + 1, total_size)) def _list_bucket(bucket_name, prefix='', accept_key=lambda k: True): client = boto3.client('s3') ctoken = None while True: # list_objects_v2 doesn't like a None value for ContinuationToken # so we don't set it if we don't have one. if ctoken: response = client.list_objects_v2(Bucket=bucket_name, Prefix=prefix, ContinuationToken=ctoken) else: response = client.list_objects_v2(Bucket=bucket_name, Prefix=prefix) try: content = response['Contents'] except KeyError: pass else: for c in content: key = c['Key'] if accept_key(key): yield key ctoken = response.get('NextContinuationToken', None) if not ctoken: break def _download_key(key_name, bucket_name=None, retries=3): if bucket_name is None: raise ValueError('bucket_name may not be None') # # https://geekpete.com/blog/multithreading-boto3/ # session = boto3.session.Session() s3 = session.resource('s3') bucket = s3.Bucket(bucket_name) # Sometimes, https://github.com/boto/boto/issues/2409 can happen because of network issues on either side. # Retry up to 3 times to ensure its not a transient issue. for x in range(retries + 1): try: content_bytes = _download_fileobj(bucket, key_name) except botocore.client.ClientError: # Actually fail on last pass through the loop if x == retries: raise # Otherwise, try again, as this might be a transient timeout pass else: return key_name, content_bytes def _download_fileobj(bucket, key_name): # # This is a separate function only because it makes it easier to inject # exceptions during tests. # buf = io.BytesIO() bucket.download_fileobj(key_name, buf) return buf.getvalue() class DummyPool(object): """A class that mimics multiprocessing.pool.Pool for our purposes.""" def imap_unordered(self, function, items): return six.moves.map(function, items) def terminate(self): pass @contextlib.contextmanager def _create_process_pool(processes=1): if _MULTIPROCESSING and processes: logger.info("creating pool with %i workers", processes) pool = multiprocessing.pool.Pool(processes=processes) else: logger.info("creating dummy pool") pool = DummyPool() yield pool pool.terminate()
the-stack_0_24258
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Performance stats constants and helpers for libFuzzer.""" import re from clusterfuzz._internal.bot.fuzzers import dictionary_manager from clusterfuzz._internal.bot.fuzzers import utils as fuzzer_utils from clusterfuzz._internal.bot.fuzzers.libFuzzer import constants from clusterfuzz._internal.fuzzing import strategy from clusterfuzz._internal.metrics import logs from clusterfuzz._internal.system import environment from clusterfuzz.stacktraces import constants as stacktrace_constants # Regular expressions to detect different types of crashes. LEAK_TESTCASE_REGEX = re.compile(r'.*ERROR: LeakSanitizer.*') LIBFUZZER_BAD_INSTRUMENTATION_REGEX = re.compile( r'.*ERROR:.*Is the code instrumented for coverage.*') LIBFUZZER_CRASH_TYPE_REGEX = r'.*Test unit written to.*{type}' LIBFUZZER_CRASH_START_MARKER = r'.*ERROR: (libFuzzer|.*Sanitizer):' LIBFUZZER_ANY_CRASH_TYPE_REGEX = re.compile( r'(%s|%s)' % (LIBFUZZER_CRASH_START_MARKER, LIBFUZZER_CRASH_TYPE_REGEX.format(type=''))) LIBFUZZER_CRASH_TESTCASE_REGEX = re.compile( LIBFUZZER_CRASH_TYPE_REGEX.format(type='crash')) LIBFUZZER_OOM_TESTCASE_REGEX = re.compile( LIBFUZZER_CRASH_TYPE_REGEX.format(type='oom')) LIBFUZZER_SLOW_UNIT_TESTCASE_REGEX = re.compile( LIBFUZZER_CRASH_TYPE_REGEX.format(type='slow-unit')) LIBFUZZER_TIMEOUT_TESTCASE_REGEX = re.compile( LIBFUZZER_CRASH_TYPE_REGEX.format(type='timeout')) # Regular expressions to detect different sections of logs. LIBFUZZER_FUZZING_STRATEGIES = re.compile(r'cf::fuzzing_strategies:\s*(.*)') LIBFUZZER_LOG_DICTIONARY_REGEX = re.compile(r'Dictionary: \d+ entries') LIBFUZZER_LOG_END_REGEX = re.compile(r'Done\s+\d+\s+runs.*') LIBFUZZER_LOG_IGNORE_REGEX = re.compile(r'.*WARNING:.*Sanitizer') LIBFUZZER_LOG_LINE_REGEX = re.compile( r'^#\d+[\s]*(READ|INITED|NEW|pulse|REDUCE|RELOAD|DONE|:)\s.*') LIBFUZZER_LOG_SEED_CORPUS_INFO_REGEX = re.compile( r'INFO:\s+seed corpus:\s+files:\s+(\d+).*rss:\s+(\d+)Mb.*') LIBFUZZER_LOG_START_INITED_REGEX = re.compile( r'(#\d+\s+INITED\s+|INFO:\s+-fork=\d+:\s+fuzzing in separate process).*') LIBFUZZER_MERGE_LOG_STATS_REGEX = re.compile( r'MERGE-OUTER:\s+\d+\s+new files with' r'\s+(\d+)\s+new features added;' r'\s+(\d+)\s+new coverage edges.*') LIBFUZZER_MODULES_LOADED_REGEX = re.compile( r'^INFO:\s+Loaded\s+\d+\s+(modules|PC tables)\s+\((\d+)\s+.*\).*') # Regular expressions to extract different values from the log. LIBFUZZER_LOG_MAX_LEN_REGEX = re.compile( r'.*-max_len is not provided; libFuzzer will not generate inputs larger' r' than (\d+) bytes.*') def calculate_log_lines(log_lines): """Calculate number of logs lines of different kind in the given log.""" # Counters to be returned. libfuzzer_lines_count = 0 other_lines_count = 0 ignored_lines_count = 0 lines_after_last_libfuzzer_line_count = 0 libfuzzer_inited = False found_libfuzzer_crash = False for line in log_lines: if not libfuzzer_inited: # Skip to start of libFuzzer log output. if LIBFUZZER_LOG_START_INITED_REGEX.match(line): libfuzzer_inited = True else: ignored_lines_count += 1 continue if LIBFUZZER_LOG_IGNORE_REGEX.match(line): # We should ignore lines like sanitizer warnings, etc. ignored_lines_count += 1 continue if LIBFUZZER_ANY_CRASH_TYPE_REGEX.match(line): # We should ignore whole block if a libfuzzer crash is found. # E.g. slow units. found_libfuzzer_crash = True elif LIBFUZZER_LOG_LINE_REGEX.match(line): if found_libfuzzer_crash: # Ignore previous block. other_lines_count -= lines_after_last_libfuzzer_line_count ignored_lines_count += lines_after_last_libfuzzer_line_count libfuzzer_lines_count += 1 lines_after_last_libfuzzer_line_count = 0 found_libfuzzer_crash = False elif LIBFUZZER_LOG_END_REGEX.match(line): libfuzzer_lines_count += 1 break else: other_lines_count += 1 lines_after_last_libfuzzer_line_count += 1 # Ignore the lines after the last libfuzzer line. other_lines_count -= lines_after_last_libfuzzer_line_count ignored_lines_count += lines_after_last_libfuzzer_line_count return other_lines_count, libfuzzer_lines_count, ignored_lines_count def strategy_column_name(strategy_name): """Convert the strategy name into stats column name.""" return 'strategy_%s' % strategy_name def parse_fuzzing_strategies(log_lines, strategies): """Extract stats for fuzzing strategies used.""" if not strategies: # Extract strategies from the log. for line in log_lines: match = LIBFUZZER_FUZZING_STRATEGIES.match(line) if match: strategies = match.group(1).split(',') break return process_strategies(strategies) def process_strategies(strategies, name_modifier=strategy_column_name): """Process strategies, parsing any stored values.""" stats = {} def parse_line_for_strategy_prefix(line, strategy_name): """Parse log line to find the value of a strategy with a prefix.""" strategy_prefix = strategy_name + '_' if not line.startswith(strategy_prefix): return suffix_type = strategy.LIBFUZZER_STRATEGIES_WITH_PREFIX_VALUE_TYPE[ strategy_name] try: strategy_value = suffix_type(line[len(strategy_prefix):]) stats[name_modifier(strategy_name)] = strategy_value except (IndexError, ValueError) as e: logs.log_error('Failed to parse strategy "%s":\n%s\n' % (line, str(e))) # These strategies are used with different values specified in the prefix. for strategy_type in strategy.LIBFUZZER_STRATEGIES_WITH_PREFIX_VALUE: for line in strategies: parse_line_for_strategy_prefix(line, strategy_type.name) # Other strategies are either ON or OFF, without arbitrary values. for strategy_type in strategy.LIBFUZZER_STRATEGIES_WITH_BOOLEAN_VALUE: if strategy_type.name in strategies: stats[name_modifier(strategy_type.name)] = 1 return stats def parse_performance_features(log_lines, strategies, arguments): """Extract stats for performance analysis.""" # TODO(ochang): Remove include_strategies once refactor is complete. # Initialize stats with default values. stats = { 'bad_instrumentation': 0, 'corpus_crash_count': 0, 'corpus_size': 0, 'crash_count': 0, 'dict_used': 0, 'edge_coverage': 0, 'edges_total': 0, 'feature_coverage': 0, 'initial_edge_coverage': 0, 'initial_feature_coverage': 0, 'leak_count': 0, 'log_lines_unwanted': 0, 'log_lines_from_engine': 0, 'log_lines_ignored': 0, 'max_len': 0, 'manual_dict_size': 0, 'merge_edge_coverage': 0, 'new_edges': 0, 'new_features': 0, 'oom_count': 0, 'recommended_dict_size': 0, 'slow_unit_count': 0, 'slow_units_count': 0, 'startup_crash_count': 1, 'timeout_count': 0, } # Extract strategy selection method. # TODO(ochang): Move to more general place? stats['strategy_selection_method'] = environment.get_value( 'STRATEGY_SELECTION_METHOD', default_value='default') # Initialize all strategy stats as disabled by default. for strategy_type in strategy.LIBFUZZER_STRATEGY_LIST: if strategy.LIBFUZZER_STRATEGIES_WITH_PREFIX_VALUE_TYPE.get( strategy_type.name) == str: stats[strategy_column_name(strategy_type.name)] = '' else: stats[strategy_column_name(strategy_type.name)] = 0 # Process fuzzing strategies used. stats.update(parse_fuzzing_strategies(log_lines, strategies)) (stats['log_lines_unwanted'], stats['log_lines_from_engine'], stats['log_lines_ignored']) = calculate_log_lines(log_lines) if stats['log_lines_from_engine'] > 0: stats['startup_crash_count'] = 0 # Extract '-max_len' value from arguments, if possible. stats['max_len'] = int( fuzzer_utils.extract_argument( arguments, constants.MAX_LEN_FLAG, remove=False) or stats['max_len']) # Extract sizes of manual and recommended dictionary used for fuzzing. dictionary_path = fuzzer_utils.extract_argument( arguments, constants.DICT_FLAG, remove=False) stats['manual_dict_size'], stats['recommended_dict_size'] = ( dictionary_manager.get_stats_for_dictionary_file(dictionary_path)) # Different crashes and other flags extracted via regexp match. has_corpus = False for line in log_lines: if LIBFUZZER_BAD_INSTRUMENTATION_REGEX.match(line): stats['bad_instrumentation'] = 1 continue if LIBFUZZER_CRASH_TESTCASE_REGEX.match(line): stats['crash_count'] = 1 continue if LIBFUZZER_LOG_DICTIONARY_REGEX.match(line): stats['dict_used'] = 1 continue if LEAK_TESTCASE_REGEX.match(line): stats['leak_count'] = 1 continue if (LIBFUZZER_OOM_TESTCASE_REGEX.match(line) or stacktrace_constants.OUT_OF_MEMORY_REGEX.match(line)): stats['oom_count'] = 1 continue if LIBFUZZER_SLOW_UNIT_TESTCASE_REGEX.match(line): # Use |slow_unit_count| to track if this run had any slow units at all. # and use |slow_units_count| to track the actual number of slow units in # this run (used by performance analyzer). stats['slow_unit_count'] = 1 stats['slow_units_count'] += 1 continue match = LIBFUZZER_LOG_SEED_CORPUS_INFO_REGEX.match(line) if match: has_corpus = True match = LIBFUZZER_MODULES_LOADED_REGEX.match(line) if match: stats['startup_crash_count'] = 0 stats['edges_total'] = int(match.group(2)) if (LIBFUZZER_TIMEOUT_TESTCASE_REGEX.match(line) or stacktrace_constants.LIBFUZZER_TIMEOUT_REGEX.match(line)): stats['timeout_count'] = 1 continue if not stats['max_len']: # Get "max_len" value from the log, if it has not been found in arguments. match = LIBFUZZER_LOG_MAX_LEN_REGEX.match(line) if match: stats['max_len'] = int(match.group(1)) continue if has_corpus and not stats['log_lines_from_engine']: stats['corpus_crash_count'] = 1 return stats def parse_stats_from_merge_log(log_lines): """Extract stats from a log produced by libFuzzer run with -merge=1.""" stats = { 'edge_coverage': 0, 'feature_coverage': 0, } # Reverse the list as an optimization. The line of our interest is the last. for line in reversed(log_lines): match = LIBFUZZER_MERGE_LOG_STATS_REGEX.match(line) if match: stats['edge_coverage'] = int(match.group(2)) stats['feature_coverage'] = int(match.group(1)) break return stats
the-stack_0_24260
# Copyright (c) Facebook, Inc. and its affiliates. import json import numpy as np import os import random import re import torch import torch.utils.data from PIL import Image from torchvision import transforms as transforms_tv import slowfast.datasets.transform as transform import slowfast.utils.logging as logging # import cv2 from slowfast.utils.env import pathmgr from .build import DATASET_REGISTRY from .transform import transforms_imagenet_train logger = logging.get_logger(__name__) @DATASET_REGISTRY.register() class Imagenet(torch.utils.data.Dataset): """ImageNet dataset.""" def __init__(self, cfg, mode, num_retries=10): self.num_retries = num_retries self.cfg = cfg self.mode = mode self.data_path = cfg.DATA.PATH_TO_DATA_DIR assert mode in [ "train", "val", "test", ], "Split '{}' not supported for ImageNet".format(mode) logger.info("Constructing ImageNet {}...".format(mode)) if cfg.DATA.PATH_TO_PRELOAD_IMDB == "": self._construct_imdb() else: self._load_imdb() def _load_imdb(self): split_path = os.path.join( self.cfg.DATA.PATH_TO_PRELOAD_IMDB, f"{self.mode}.json" ) with pathmgr.open(split_path, "r") as f: data = f.read() self._imdb = json.loads(data) def _construct_imdb(self): """Constructs the imdb.""" # Compile the split data path split_path = os.path.join(self.data_path, self.mode) logger.info("{} data path: {}".format(self.mode, split_path)) # Images are stored per class in subdirs (format: n<number>) split_files = pathmgr.ls(split_path) self._class_ids = sorted( f for f in split_files if re.match(r"^n[0-9]+$", f) ) # Map ImageNet class ids to contiguous ids self._class_id_cont_id = {v: i for i, v in enumerate(self._class_ids)} # Construct the image db self._imdb = [] for class_id in self._class_ids: cont_id = self._class_id_cont_id[class_id] im_dir = os.path.join(split_path, class_id) for im_name in pathmgr.ls(im_dir): im_path = os.path.join(im_dir, im_name) self._imdb.append({"im_path": im_path, "class": cont_id}) logger.info("Number of images: {}".format(len(self._imdb))) logger.info("Number of classes: {}".format(len(self._class_ids))) def load_image(self, im_path): """Prepares the image for network input with format of CHW RGB float""" with pathmgr.open(im_path, "rb") as f: with Image.open(f) as im: im = im.convert("RGB") im = torch.from_numpy(np.array(im).astype(np.float32) / 255.0) # H W C to C H W im = im.permute([2, 0, 1]) return im def _prepare_im_res(self, im_path): # Prepare resnet style augmentation. im = self.load_image(im_path) # Train and test setups differ train_size, test_size = ( self.cfg.DATA.TRAIN_CROP_SIZE, self.cfg.DATA.TEST_CROP_SIZE, ) if self.mode == "train": # For training use random_sized_crop, horizontal_flip, augment, lighting im = transform.random_sized_crop_img( im, train_size, jitter_scale=self.cfg.DATA.TRAIN_JITTER_SCALES_RELATIVE, jitter_aspect=self.cfg.DATA.TRAIN_JITTER_ASPECT_RELATIVE, ) im, _ = transform.horizontal_flip(prob=0.5, images=im) # im = transforms.augment(im, cfg.TRAIN.AUGMENT) im = transform.lighting_jitter( im, 0.1, self.cfg.DATA.TRAIN_PCA_EIGVAL, self.cfg.DATA.TRAIN_PCA_EIGVEC, ) else: # For testing use scale and center crop im, _ = transform.uniform_crop( im, test_size, spatial_idx=1, scale_size=train_size ) # For training and testing use color normalization im = transform.color_normalization( im, self.cfg.DATA.MEAN, self.cfg.DATA.STD ) # Convert HWC/RGB/float to CHW/BGR/float format # im = np.ascontiguousarray(im[:, :, ::-1].transpose([2, 0, 1])) return im def _prepare_im_tf(self, im_path): with pathmgr.open(im_path, "rb") as f: with Image.open(f) as im: im = im.convert("RGB") # Convert HWC/BGR/int to HWC/RGB/float format for applying transforms train_size, test_size = ( self.cfg.DATA.TRAIN_CROP_SIZE, self.cfg.DATA.TEST_CROP_SIZE, ) if self.mode == "train": aug_transform = transforms_imagenet_train( img_size=(train_size, train_size), color_jitter=self.cfg.AUG.COLOR_JITTER, auto_augment=self.cfg.AUG.AA_TYPE, interpolation=self.cfg.AUG.INTERPOLATION, re_prob=self.cfg.AUG.RE_PROB, re_mode=self.cfg.AUG.RE_MODE, re_count=self.cfg.AUG.RE_COUNT, mean=self.cfg.DATA.MEAN, std=self.cfg.DATA.STD, ) else: t = [] size = int((256 / 224) * test_size) t.append( transforms_tv.Resize( size, interpolation=3 ), # to maintain same ratio w.r.t. 224 images ) t.append(transforms_tv.CenterCrop(test_size)) t.append(transforms_tv.ToTensor()) t.append( transforms_tv.Normalize(self.cfg.DATA.MEAN, self.cfg.DATA.STD) ) aug_transform = transforms_tv.Compose(t) im = aug_transform(im) return im def __load__(self, index): try: # Load the image im_path = self._imdb[index]["im_path"] # Prepare the image for training / testing if self.cfg.AUG.ENABLE: if self.mode == "train" and self.cfg.AUG.NUM_SAMPLE > 1: im = [] for _ in range(self.cfg.AUG.NUM_SAMPLE): crop = self._prepare_im_tf(im_path) im.append(crop) return im else: im = self._prepare_im_tf(im_path) return im else: im = self._prepare_im_res(im_path) return im except Exception: return None def __getitem__(self, index): # if the current image is corrupted, load a different image. for _ in range(self.num_retries): im = self.__load__(index) # Data corrupted, retry with a different image. if im is None: index = random.randint(0, len(self._imdb) - 1) else: break # Retrieve the label label = self._imdb[index]["class"] if isinstance(im, list): label = [label for _ in range(len(im))] dummy = [torch.Tensor() for _ in range(len(im))] return im, label, dummy, dummy, {} else: dummy = torch.Tensor() return [im], label, dummy, dummy, {} def __len__(self): return len(self._imdb)
the-stack_0_24261
""" Predict.py Usage: python predict.py <image> """ import sys from contextlib import contextmanager import numpy as np import time from PIL import Image from keras.models import model_from_json from keras.optimizers import SGD img_rows = 64 img_cols = 64 img_channels = 1 batch_size = 32 nb_epoch = 20 def load_image(filename): img = Image.open(filename) img.load() img = img.resize((128, 128), Image.BICUBIC) img.thumbnail((img_cols, img_rows)) a4im = Image.new('RGB', (img_cols, img_rows), (255, 255, 255)) a4im.paste(img, (0, 0)) return np.array([np.array(a4im.convert("L"))]) if len(sys.argv) < 2: print(__doc__) exit(0) image = np.array([load_image(sys.argv[1])]) nb_classes = 2 X_test = image.astype('float32') X_test /= 255 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model = model_from_json(open('cnn_64_1.json').read()) model.load_weights('cnn_64_1.h5') model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) @contextmanager def measure_time(): t1 = time.clock() yield t2 = time.clock() print('%s: %0.2f seconds elapsed' % ("", t2-t1)) with measure_time(): if model.predict_classes(X_test, verbose=0)[0] == 0: print("") print("android") else: print("") print("iphone") print(model.predict_proba(X_test, verbose=0))
the-stack_0_24262
import numpy as np from astropy import units as u from astropy.coordinates import ( HCRS, ITRS as _ITRS, BaseRADecFrame, FunctionTransform, TimeAttribute, frame_transform_graph, ) from astropy.coordinates.builtin_frames.utils import DEFAULT_OBSTIME from astropy.coordinates.matrix_utilities import rotation_matrix from poliastro.bodies import ( Jupiter, Mars, Mercury, Moon, Neptune, Saturn, Sun, Uranus, Venus, ) from poliastro.constants import J2000 from .equatorial import ( JupiterICRS, MarsICRS, MercuryICRS, MoonICRS, NeptuneICRS, SaturnICRS, UranusICRS, VenusICRS, ) __all__ = [ "SunFixed", "MercuryFixed", "VenusFixed", "ITRS", "MarsFixed", "JupiterFixed", "SaturnFixed", "UranusFixed", "NeptuneFixed", ] # HACK: sphinx-autoapi variable definition ITRS = _ITRS class _PlanetaryFixed(BaseRADecFrame): obstime = TimeAttribute(default=DEFAULT_OBSTIME) def __new__(cls, *args, **kwargs): frame_transform_graph.transform(FunctionTransform, cls, cls.equatorial)( cls.to_equatorial ) frame_transform_graph.transform(FunctionTransform, cls.equatorial, cls)( cls.from_equatorial ) return super().__new__(cls) @staticmethod def to_equatorial(fixed_coo, equatorial_frame): # TODO replace w/ something smart (Sun/Earth special cased) if fixed_coo.body == Sun: assert type(equatorial_frame) == HCRS else: assert fixed_coo.body == equatorial_frame.body r = fixed_coo.cartesian ra, dec, W = fixed_coo.rot_elements_at_epoch(equatorial_frame.obstime) r = r.transform(rotation_matrix(-W, "z")) r_trans1 = r.transform(rotation_matrix(-(90 * u.deg - dec), "x")) data = r_trans1.transform(rotation_matrix(-(90 * u.deg + ra), "z")) return equatorial_frame.realize_frame(data) @staticmethod def from_equatorial(equatorial_coo, fixed_frame): # TODO replace w/ something smart (Sun/Earth special cased) if fixed_frame.body == Sun: assert type(equatorial_coo) == HCRS else: assert equatorial_coo.body == fixed_frame.body r = equatorial_coo.cartesian ra, dec, W = fixed_frame.rot_elements_at_epoch(fixed_frame.obstime) r_trans2 = r.transform(rotation_matrix(90 * u.deg + ra, "z")) r_f = r_trans2.transform(rotation_matrix(90 * u.deg - dec, "x")) r_f = r_f.transform(rotation_matrix(W, "z")) return fixed_frame.realize_frame(r_f) @classmethod def rot_elements_at_epoch(cls, epoch): """Provides rotational elements at epoch. Provides north pole of body and angle to prime meridian. Parameters ---------- epoch : ~astropy.time.Time, optional Epoch, default to J2000. Returns ------- ra, dec, W: tuple (~astropy.units.Quantity) Right ascension and declination of north pole, and angle of the prime meridian. """ T = (epoch.tdb - J2000).to(u.day).value / 36525 d = (epoch.tdb - J2000).to(u.day).value return cls._rot_elements_at_epoch(T, d) @staticmethod def _rot_elements_at_epoch(T, d): raise NotImplementedError class SunFixed(_PlanetaryFixed): body = Sun equatorial = HCRS @staticmethod def _rot_elements_at_epoch(T, d): ra = 286.13 * u.deg dec = 63.87 * u.deg W = (84.176 + 14.1844000 * d) * u.deg return ra, dec, W class MercuryFixed(_PlanetaryFixed): body = Mercury equatorial = MercuryICRS @staticmethod def _rot_elements_at_epoch(T, d): M1 = (174.7910857 + 4.092335 * d) * u.deg M2 = (349.5821714 + 8.184670 * d) * u.deg M3 = (164.3732571 + 12.277005 * d) * u.deg M4 = (339.1643429 + 16.369340 * d) * u.deg M5 = (153.9554286 + 20.461675 * d) * u.deg ra = (281.0103 - 0.0328 * T) * u.deg dec = (61.45 - 0.005 * T) * u.deg W = (329.5988 + 6.1385108 * d) * u.deg + ( 0.01067257 * np.sin(M1.to("rad").value) - 0.00112309 * np.sin(M2.to("rad").value) - 0.00011040 * np.sin(M3.to("rad").value) - 0.00002539 * np.sin(M4.to("rad").value) - 0.00000571 * np.sin(M5.to("rad").value) ) * u.deg return ra, dec, W class VenusFixed(_PlanetaryFixed): body = Venus equatorial = VenusICRS @staticmethod def _rot_elements_at_epoch(T, d): ra = 272.76 * u.deg dec = 67.16 * u.deg W = (160.20 - 1.4813688 * d) * u.deg return ra, dec, W class MarsFixed(_PlanetaryFixed): body = Mars equatorial = MarsICRS @staticmethod def _rot_elements_at_epoch(T, d): M1 = (198.991226 + 19139.4819985 * T) * u.deg M2 = (226.292679 + 38280.8511281 * T) * u.deg M3 = (249.663391 + 57420.7251593 * T) * u.deg M4 = (266.183510 + 76560.6367950 * T) * u.deg M5 = (79.398797 + 0.5042615 * T) * u.deg ra = ( 317.269202 - 0.10927547 * T + 0.000068 * np.sin(M1.to("rad").value) + 0.000238 * np.sin(M2.to("rad").value) + 0.000052 * np.sin(M3.to("rad").value) + 0.000009 * np.sin(M4.to("rad").value) + 0.419057 * np.sin(M5.to("rad").value) ) * u.deg K1 = (122.433576 + 19139.9407476 * T) * u.deg K2 = (43.058401 + 38280.8753272 * T) * u.deg K3 = (57.663379 + 57420.7517205 * T) * u.deg K4 = (79.476401 + 76560.6495004 * T) * u.deg K5 = (166.325722 + 0.5042615 * T) * u.deg dec = ( 54.432516 - 0.05827105 * T + 0.000051 * np.cos(K1.to("rad").value) + 0.000141 * np.cos(K2.to("rad").value) + 0.000031 * np.cos(K3.to("rad").value) + 0.000005 * np.cos(K4.to("rad").value) + 1.591274 * np.cos(K5.to("rad").value) ) * u.deg J1 = (129.071773 + 19140.0328244 * T) * u.deg J2 = (36.352167 + 38281.0473591 * T) * u.deg J3 = (56.668646 + 57420.9295360 * T) * u.deg J4 = (67.364003 + 76560.2552215 * T) * u.deg J5 = (104.792680 + 95700.4387578 * T) * u.deg J6 = (95.391654 + 0.5042615 * T) * u.deg W = ( 176.049863 + 350.891982443297 * d + 0.000145 * np.sin(J1.to("rad").value) + 0.000157 * np.sin(J2.to("rad").value) + 0.000040 * np.sin(J3.to("rad").value) + 0.000001 * np.sin(J4.to("rad").value) + 0.000001 * np.sin(J5.to("rad").value) + 0.584542 * np.sin(J6.to("rad").value) ) * u.deg return ra, dec, W class JupiterFixed(_PlanetaryFixed): body = Jupiter equatorial = JupiterICRS @staticmethod def _rot_elements_at_epoch(T, d): Ja = (99.360714 + 4850.4046 * T) * u.deg Jb = (175.895369 + 1191.9605 * T) * u.deg Jc = (300.323162 + 262.5475 * T) * u.deg Jd = (114.012305 + 6070.2476 * T) * u.deg Je = (49.511251 + 64.3000 * T) * u.deg ra = ( 268.056595 - 0.006499 * T + 0.000117 * np.sin(Ja.to("rad").value) + 0.000938 * np.sin(Jb.to("rad").value) + 0.001432 * np.sin(Jc.to("rad").value) + 0.000030 * np.sin(Jd.to("rad").value) + 0.002150 * np.sin(Je.to("rad").value) ) * u.deg dec = ( 64.495303 + 0.002413 * T + 0.000050 * np.cos(Ja.to("rad").value) + 0.000404 * np.cos(Jb.to("rad").value) + 0.000617 * np.cos(Jc.to("rad").value) - 0.000013 * np.cos(Jd.to("rad").value) + 0.000926 * np.cos(Je.to("rad").value) ) * u.deg W = (284.95 + 870.536 * d) * u.deg return ra, dec, W class SaturnFixed(_PlanetaryFixed): body = Saturn equatorial = SaturnICRS @staticmethod def _rot_elements_at_epoch(T, d): ra = (40.589 - 0.036 * T) * u.deg dec = (83.537 - 0.004 * T) * u.deg W = (38.90 + 810.7939024 * d) * u.deg return ra, dec, W class UranusFixed(_PlanetaryFixed): body = Uranus equatorial = UranusICRS @staticmethod def _rot_elements_at_epoch(T, d): ra = 257.311 * u.deg dec = -15.175 * u.deg W = (203.81 - 501.1600928 * d) * u.deg return ra, dec, W class NeptuneFixed(_PlanetaryFixed): body = Neptune equatorial = NeptuneICRS @staticmethod def _rot_elements_at_epoch(T, d): N = (357.85 + 52.316 * T) * u.deg ra = (299.36 + 0.70 * np.sin(N.to("rad").value)) * u.deg dec = (43.46 - 0.51 * np.cos(N.to("rad").value)) * u.deg W = (249.978 + 541.1397757 * d - 0.48 * np.sin(N.to("rad").value)) * u.deg return ra, dec, W class MoonFixed(_PlanetaryFixed): body = Moon equatorial = MoonICRS @staticmethod def _rot_elements_at_epoch(T, d): E1 = (125.045 - 0.0529921 * d) * u.deg E2 = (250.089 - 0.1059842 * d) * u.deg E3 = (260.008 + 13.0120009 * d) * u.deg E4 = (176.625 + 13.3407154 * d) * u.deg E5 = (357.529 + 0.9856003 * d) * u.deg E6 = (311.589 + 26.4057084 * d) * u.deg E7 = (134.963 + 13.0649930 * d) * u.deg E8 = (276.617 + 0.3287146 * d) * u.deg E9 = (34.226 + 1.7484877 * d) * u.deg E10 = (15.134 - 0.1589763 * d) * u.deg E11 = (119.743 + 0.0036096 * d) * u.deg E12 = (239.961 + 0.1643573 * d) * u.deg E13 = (25.053 + 12.9590088 * d) * u.deg ra = ( 269.9949 + 0.0031 * T - 3.8787 * np.sin(E1.to("rad").value) - 0.1204 * np.sin(E2.to("rad").value) + 0.0700 * np.sin(E3.to("rad").value) - 0.0172 * np.sin(E4.to("rad").value) + 0.0072 * np.sin(E6.to("rad").value) - 0.0052 * np.sin(E10.to("rad").value) + 0.0043 * np.sin(E13.to("rad").value) ) * u.deg dec = ( 66.5392 + 0.0130 * T + 1.5419 * np.cos(E1.to("rad").value) + 0.0239 * np.cos(E2.to("rad").value) - 0.0278 * np.cos(E3.to("rad").value) + 0.0068 * np.cos(E4.to("rad").value) - 0.0029 * np.cos(E6.to("rad").value) + 0.0009 * np.cos(E7.to("rad").value) + 0.0008 * np.cos(E10.to("rad").value) - 0.0009 * np.cos(E13.to("rad").value) ) * u.deg W = ( 38.3213 + 13.17635815 * d - 1.4e-12 * d ** 2 + 3.5610 * np.sin(E1.to("rad").value) + 0.1208 * np.sin(E2.to("rad").value) - 0.0642 * np.sin(E3.to("rad").value) + 0.0158 * np.sin(E4.to("rad").value) + 0.0252 * np.sin(E5.to("rad").value) - 0.0066 * np.sin(E6.to("rad").value) - 0.0047 * np.sin(E7.to("rad").value) - 0.0046 * np.sin(E8.to("rad").value) + 0.0028 * np.sin(E9.to("rad").value) + 0.0052 * np.sin(E10.to("rad").value) + 0.0040 * np.sin(E11.to("rad").value) + 0.0019 * np.sin(E12.to("rad").value) - 0.0044 * np.sin(E13.to("rad").value) ) * u.deg return ra, dec, W
the-stack_0_24263
import time class ProgressBar(object): _empty: str _fill: str _left: str _length: int _right: int _progress: int = 0 def __init__(self, length = 16, left = "[", fill = "#", empty = " ", right = "]"): self._length = length self._left = left self._fill = fill self._empty = empty self._right = right fill_string: str = "" for i in range(0, length): fill_string += fill if i < self._progress else empty print(left + fill_string + right) def set_progress(self, progress: int): self._progress = progress fill_string: str = "\033[F" + self._left for i in range(0, self._length): fill_string += self._fill if i < self._progress else self._empty print(fill_string + self._right) def __main__(): debug_bar = ProgressBar(64, "<", "=", "-", ">") for i in range(0, 65): debug_bar.set_progress(i) time.sleep(0.1) print("Done!") if __name__ == "__main__": __main__()
the-stack_0_24264
import numpy as np STRUCTURES = 5 # Process next CLAMP sequence data: get sequence and binding affinity # A CLAMP line looks like: SCORE SEQUQNCE def process_clamp(clamp_file): data = clamp_file.readline() if not data: return None line = data.strip().split() score = float(line[0]) seq = line[1] return (seq, score) # Process next RNAcontext sequence data: get sequnce and (STRUCTURES X SEQ_LEN) matrix def process_rnacontext(rnacontext_file): data = rnacontext_file.readline() if not data: return None seq_line = data.strip() assert (seq_line[0] == '>') seq = seq_line[1:] matrix = list() for structure_index in range(STRUCTURES): structure_line = rnacontext_file.readline().strip() matrix_line = [float(elem) for elem in structure_line.split()] matrix.append(matrix_line) return (seq, matrix) def read_combined_data(sequences_path, structures_path, max_seq_len): with open(sequences_path, 'r') as sequences, open(structures_path, 'r') as structures: data = list() lengths = list() labels = list() counter = 0 while True: counter += 1 seq_data = process_clamp(sequences) structure_data = process_rnacontext(structures) if not seq_data or not structure_data: return np.array(data), np.array(lengths), np.array(labels), counter-1 #print ("Line", counter) #print (seq_data) #print (structure_data) # Compute a matrix of SEQ_LEN X RNA_ALPHABET for decoding the sequence bases labels.append(seq_data[1]) seq_matrix = list() for base in structure_data[0]: if base == 'A': base_encoding = [1, 0, 0, 0] elif base == 'C': base_encoding = [0, 1, 0, 0] elif base == 'G': base_encoding = [0, 0, 1, 0] elif base == 'U': base_encoding = [0, 0, 0, 1] else: raise ValueError seq_matrix.append(base_encoding) seq_matrix = np.array(seq_matrix) # Compute a matrix of SEQ_LEN X STRUCTURE for decoding the sequence structures struct_matrix = np.transpose(np.array(structure_data[1])) base_matrix = np.concatenate((seq_matrix, struct_matrix), axis=1) #print ("==") #print (base_matrix.shape) #Padding curr_seq_len = base_matrix.shape[0] lengths.append(curr_seq_len) padd_len = max_seq_len - curr_seq_len assert (padd_len >= 0) if padd_len > 0: padding_matrix = np.zeros((padd_len, base_matrix.shape[1])) base_matrix = np.concatenate((base_matrix, padding_matrix), axis=0) #print (base_matrix.shape) data.append(base_matrix) assert(False) # Testing code if __name__ == "__main__": DATA_DIR = "/specific/a/home/cc/students/cs/shiranabadi/motif-binding/" TRAIN_STRUCTURE_FILE= "RNCMPT00001.txt.annotations_A.RNAcontext" TEST_STRUCTURE_FILE = "RNCMPT00001.txt.annotations_B.RNAcontext" TRAIN_SEQUENCE_FILE = "RNCMPT00001.txt.sequences_A.RNAcontext.clamp" TEST_SEQUENCE_FILE = "RNCMPT00001.txt.sequences_B.RNAcontext.clamp" MAX_SEQ_LEN = 41 data, lengths, labels = read_combined_data(DATA_DIR + TRAIN_SEQUENCE_FILE, DATA_DIR + TRAIN_STRUCTURE_FILE, MAX_SEQ_LEN) print (data.shape) print (lengths.shape) print (labels.shape) print (data[0]) print (lengths[0]) print (labels[0])
the-stack_0_24265
# -*- coding: utf8 -*- import datetime import random import ssl import socket from typing import Dict, List, Tuple import pytz import requests from nio import AsyncClient from core.bot_commands import Command from core.plugin import Plugin import logging logger = logging.getLogger(__name__) plugin = Plugin( "federation_status", "Matrix", "Keeps track of federation status with all homeservers in the bot's rooms", ) def setup(): """ This just moves the initial setup-commands to the top for better readability :return: - """ plugin.add_config("room_list", default_value=None, is_required=False) plugin.add_config("warn_cert_expiry", default_value=7, is_required=True) plugin.add_config("server_max_age", default_value=60, is_required=True) plugin.add_config( "federation_tester_url", default_value="https://federationtester.matrix.org", is_required=True, ) plugin.add_command( "federation", command_federation_status, "Displays the current status of all federating servers in the room", room_id=plugin.read_config("room_list"), ) plugin.add_command("federation_update", update_federation_status, "Update all known server's data") plugin.add_timer(update_federation_status, frequency=datetime.timedelta(minutes=5)) class Server: def __init__(self, server_name: str): self.server_name: str = server_name self.last_update: datetime.datetime or None = None self.last_alive: datetime.datetime or None = None self.cert_expiry: datetime.datetime or None = None self.last_posted_warning: datetime.datetime = datetime.datetime(1970, 1, 1) self.software: str or None = None self.version: str or None = None self.federation_test() self.currently_alive: bool = self.is_alive() def is_alive(self) -> bool: """ Checks if the server is currently alive, e.g. if last_alive >= last_update. :return: """ if self.last_alive and self.last_update: return self.last_alive >= self.last_update async def time_until_expire(self) -> datetime.timedelta: """ Returns the time left until the server's cert expires :return: """ return self.cert_expiry - datetime.datetime.now() async def is_expired(self) -> bool: """ Checks if the server's certificate is currently expired :return: """ return await self.cert_expiry < datetime.datetime.now() async def last_updated_within(self, timeframe: datetime.timedelta) -> bool: """ Checks whether the server has been successfully updated within the given timeframe :param timeframe: :return: """ return self.last_update > (datetime.datetime.now() - timeframe) async def needs_update(self) -> bool: """ Checks whether the server's data needs to be updates :return: """ # server is currently offline and hasn't been offline for more than a week if not self.currently_alive and self.last_alive and self.last_alive > datetime.datetime.now() - datetime.timedelta(days=7): return True # certificate will expire in less than 10 minutes elif self.cert_expiry < datetime.datetime.now() + datetime.timedelta(minutes=10): return True # server hasn't been updated for more than server_max_age (+-5 minutes to distribute updates a little) elif not await self.last_updated_within(datetime.timedelta(minutes=plugin.read_config("server_max_age") + random.randint(-5, 5))): return True else: return False async def needs_warning(self) -> bool: """ Warn once, if a certificate expiration date is known, is in the future, but less than warn_steps away :return: """ # TODO: only report servers that have been offline for more than 5 minutes, but report expired certs immediately? warn_steps: List[datetime.timedelta] = [ datetime.timedelta(minutes=10), datetime.timedelta(days=1), datetime.timedelta(days=plugin.read_config("warn_cert_expiry")), ] step: datetime.timedelta if not self.cert_expiry: return False else: for step in warn_steps: if datetime.datetime.now() < self.cert_expiry < (datetime.datetime.now() + step) and self.last_posted_warning < ( datetime.datetime.now() - step ): return True return False def federation_test(self): """ Do a federation_test for the given server :return: Tuple of: last_update: timestamp of the last successful update, last_alive: timestamp of the servers last successful check, cert_expiry: timestamp of the server's certificate expiry date """ api_parameters = {"server_name": self.server_name} logger.debug(f"Updating {self.server_name}") try: response: requests.Response = requests.get( plugin.read_config("federation_tester_url") + "/api/report", params=api_parameters, ) except requests.exceptions.ConnectionError as err: logger.warning(f"Connection to federation-tester failed: {err}") return if response.status_code == 200: federation_data: Dict[str, any] = response.json() self.last_update = datetime.datetime.now() self.software = federation_data.get("Version").get("name") self.version = federation_data.get("Version").get("version") # check certificates of all hosts and store the smallest expiry date host: str port: int hosts: List[Tuple[str, int]] = [] if federation_data.get("WellKnownResult").get("m.server"): # read host and port from well-known, strip trailing '.' from host host = federation_data.get("WellKnownResult").get("m.server").split(":")[0].rstrip(".") if len(federation_data.get("WellKnownResult").get("m.server").split(":")) > 1: port = int(federation_data.get("WellKnownResult").get("m.server").split(":")[1]) else: port = 8448 hosts = [(host, port)] else: # read hosts from DNS-Result, strip trailing '.', default to Port 8448 for now for host in federation_data.get("DNSResult").get("Hosts").keys(): hosts.append((host.rstrip("."), 8448)) min_expire_date: datetime.datetime = datetime.datetime(year=2500, month=1, day=1) for (host, port) in hosts: try: expire_date: datetime.datetime or None = ssl_expiry_datetime(host, port) except ssl.SSLCertVerificationError: expire_date = None if expire_date: min_expire_date = min(expire_date, min_expire_date) self.cert_expiry = min_expire_date if federation_data.get("FederationOK"): self.last_alive = datetime.datetime.now() self.currently_alive = True else: self.currently_alive = False def ssl_expiry_datetime(host: str, port=8448) -> datetime.datetime or None: """ Connects to a host on the given port and retrieves it's TLS-certificate. :param host: a hostname or IP-Address :param port: the port to connect to :return: datetime.datime of the certificates expiration """ ssl_date_fmt: str = r"%b %d %H:%M:%S %Y %Z" context: ssl.SSLContext = ssl.create_default_context() conn: ssl.SSLSocket = context.wrap_socket(socket.socket(socket.AF_INET), server_hostname=host) # 3 second timeout because Lambda has runtime limitations conn.settimeout(3.0) try: conn.connect((host, port)) ssl_info: Dict or Tuple or None = conn.getpeercert() if ssl_info: expiry_date: datetime.datetime = datetime.datetime.strptime(ssl_info["notAfter"], ssl_date_fmt) # add timezone offset timezone = pytz.timezone("CET") offset = timezone.utcoffset(expiry_date) expiry_date = expiry_date + offset return expiry_date else: return None except socket.timeout: return None async def update_federation_status(client_or_command: AsyncClient or Command): """ Regularly check last_update timestamps of each server and get an updated status if older than server_max_age :param client: :return: """ client: AsyncClient forced_update: bool = False if isinstance(client_or_command, AsyncClient): # we're called by timer client = client_or_command else: # we're called by command, force an update client = client_or_command.client forced_update = True # get a list of shared servers on rooms the plugin is active for shared_servers: List[str] = await plugin.get_connected_servers(client, plugin.read_config("room_list")) server_list_saved: Dict[str, Server] or None = await plugin.read_data("server_list") data_changed: bool = False if not server_list_saved: server_list_new: Dict[str, Server] = {} # get initial server status and save it for server_name in shared_servers: server_list_new[server_name] = Server(server_name) await plugin.store_data("server_list", server_list_new) else: server_names_saved: List[str] = list(server_list_saved.keys()) # delete data for servers we're not federating with anymore for server_name in server_names_saved: if server_name not in shared_servers: del server_list_saved[server_name] data_changed = True # add new servers for server_name in shared_servers: if server_name not in server_names_saved: server_list_saved[server_name] = Server(server_name) del server_names_saved # check for changes previously_dead_servers: List[str] = [] previously_alive_servers: List[str] = [] new_dead_servers: List[str] = [] new_alive_servers: List[str] = [] need_warning_servers: List[Tuple[str, datetime.datetime]] = [] for server in server_list_saved.values(): if server.currently_alive: previously_alive_servers.append(server.server_name) else: previously_dead_servers.append(server.server_name) # update servers' status if required server_list_new: Dict[str, Server] = server_list_saved for server in server_list_new.values(): if forced_update or await server.needs_update(): server.federation_test() data_changed = True if server.currently_alive and server.server_name not in previously_alive_servers: new_alive_servers.append(server.server_name) if not server.currently_alive and server.server_name not in previously_dead_servers: new_dead_servers.append(server.server_name) if await server.needs_warning(): need_warning_servers.append((server.server_name, server.cert_expiry)) server.last_posted_warning = datetime.datetime.now() # announce any changes room_list: List[str] = plugin.read_config("room_list") if not room_list: room_list = [x for x in client.rooms] for room_id in room_list: for server in new_dead_servers: try: user_ids: List[str] = (await plugin.get_users_on_servers(client, [server], [room_id]))[server] message: str = f"Federation error: {server} offline. \n" message += f"Isolated users: {', '.join([await plugin.link_user_by_id(client, room_id, user_id) for user_id in user_ids])}." await plugin.send_notice(client, room_id, message) except KeyError: pass for server in new_alive_servers: try: user_ids: List[str] = (await plugin.get_users_on_servers(client, [server], [room_id]))[server] message: str = f"Federation recovery: {server} back online. \n" message += f"Welcome back, {', '.join([await plugin.link_user_by_id(client, room_id, user_id) for user_id in user_ids])}." await plugin.send_notice(client, room_id, message) except KeyError: pass expire_date: datetime.datetime for server, expire_date in need_warning_servers: try: user_ids: List[str] = (await plugin.get_users_on_servers(client, [server], [room_id]))[server] message: str = f"Federation warning: {server}'s certificate will expire on {expire_date} (in {expire_date - datetime.datetime.now()}) \n" message += ( f"{', '.join([await plugin.link_user_by_id(client, room_id, user_id) for user_id in user_ids])} will be isolated until " f"the server's certificate has been renewed." ) await plugin.send_message(client, room_id, message) except KeyError: pass if data_changed: await plugin.store_data("server_list", server_list_new) async def command_federation_status(command: Command): """ Displays the current status of all federating servers in the room :param command: :return: """ message: str = "" room_list: List[str] = [] if len(command.args) == 1 and command.args[0] == "global": message += f"Federation status (all known rooms): \n" elif len(command.args) == 0: message += f"Federation status (this room only): \n" room_list = [command.room.room_id] else: await plugin.respond_notice(command, "Usage: `federation [global]`") return server_list_saved: Dict[str, Server] or None = await plugin.read_data("server_list") server: Server server_name: str for server_name in await plugin.get_connected_servers(command.client, room_list): server = server_list_saved[server_name] if not server.currently_alive: message += f"<font color=red>{server.server_name} offline (last alive: {server.last_alive})</font>. " elif (datetime.datetime.now() + datetime.timedelta(days=plugin.read_config("warn_cert_expiry"))) > server.cert_expiry: message += f"<font color=yellow>{server.server_name} warning</font>. " else: message += f"<font color=green>{server.server_name} online</font>. " if server.software: message += f"**Server**: {server.software} ({server.version}). " if server.cert_expiry: message += f"**Cert expiry**: {server.cert_expiry} ({server.cert_expiry - datetime.datetime.now()}). " num_users: int = len((await plugin.get_users_on_servers(command.client, [server.server_name], room_list))[server_name]) message += f"**Users**: {num_users}. \n" await plugin.respond_notice(command, message) setup()
the-stack_0_24266
import zipfile import os import shutil with zipfile.ZipFile('tiny-imagenet-200.zip','r') as my_zip: my_zip.extractall() print('------------- INFO : Preparing Train and Test Loader Folder ---------------- ') os.makedirs('TinyImageNet') os.makedirs('TinyImageNet/train') os.makedirs('TinyImageNet/test') os.makedirs('TinyImageNet/val') for classes in os.listdir('tiny-imagenet-200/train'): os.makedirs('TinyImageNet/train/'+classes) for images in os.listdir('tiny-imagenet-200/train/'+classes+'/images'): shutil.move('tiny-imagenet-200/train/'+classes+'/images/'+images,'TinyImageNet/train/'+classes) print('Train Data Transfer successfully') val_class = [] for line in open('tiny-imagenet-200/val/val_annotations.txt','r'): img_name , class_id = line.split('\t')[:2] val_class.append(class_id) val_class = list(set(val_class)) for i in val_class: os.makedirs(f'TinyImageNet/val/{i}') for line in open('tiny-imagenet-200/val/val_annotations.txt','r'): img_name , class_id = line.split('\t')[:2] shutil.move(f'tiny-imagenet-200/val/images/{img_name}',f'TinyImageNet/val/{class_id}') print('Val Data Transfer successfully') print('------------- INFO : Train and Test Loader Folder TinyImageNet Done ---------------- ')
the-stack_0_24267
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyscf import scf, gto from pyscf.eph import eph_fd, rhf import numpy as np import unittest mol = gto.M() mol.atom = [['O', [0.000000000000, -0.000000000775, 0.923671924285]], ['H', [-0.000000000000, -1.432564848017, 2.125164039823]], ['H', [0.000000000000, 1.432564848792, 2.125164035930]]] mol.unit = 'Bohr' mol.basis = 'sto3g' mol.verbose=4 mol.build() # this is a pre-computed relaxed geometry class KnownValues(unittest.TestCase): def test_finite_diff_rhf_eph(self): mf = scf.RHF(mol) mf.conv_tol = 1e-16 mf.conv_tol_grad = 1e-10 mf.kernel() grad = mf.nuc_grad_method().kernel() self.assertTrue(abs(grad).max()<1e-5) mat, omega = eph_fd.kernel(mf) matmo, _ = eph_fd.kernel(mf, mo_rep=True) myeph = rhf.EPH(mf) eph, _ = myeph.kernel() ephmo, _ = myeph.kernel(mo_rep=True) for i in range(len(omega)): self.assertTrue(min(np.linalg.norm(eph[i]-mat[i]),np.linalg.norm(eph[i]+mat[i]))<1e-5) self.assertTrue(min(abs(eph[i]-mat[i]).max(), abs(eph[i]+mat[i]).max())<1e-5) self.assertTrue(min(np.linalg.norm(ephmo[i]-matmo[i]),np.linalg.norm(ephmo[i]+matmo[i]))<1e-5) self.assertTrue(min(abs(ephmo[i]-matmo[i]).max(), abs(ephmo[i]+matmo[i]).max())<1e-5) if __name__ == '__main__': print("Full Tests for RHF") unittest.main()
the-stack_0_24268
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the abandontransaction RPC. The abandontransaction RPC marks a transaction and all its in-wallet descendants as abandoned which allows their inputs to be respent. It can be used to replace "stuck" or evicted transactions. It only works on transactions which are not included in a block and are not currently in the mempool. It has no effect on transactions which are already conflicted or abandoned. """ from test_framework.test_framework import GenesisTestFramework from test_framework.util import * class AbandonConflictTest(GenesisTestFramework): def set_test_params(self): self.num_nodes = 2 self.extra_args = [["-minrelaytxfee=0.00001"], []] def run_test(self): self.nodes[1].generate(100) sync_blocks(self.nodes) balance = self.nodes[0].getbalance() txA = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) txB = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) txC = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), Decimal("10")) sync_mempools(self.nodes) self.nodes[1].generate(1) sync_blocks(self.nodes) newbalance = self.nodes[0].getbalance() assert(balance - newbalance < Decimal("0.001")) #no more than fees lost balance = newbalance # Disconnect nodes so node0's transactions don't get into node1's mempool disconnect_nodes(self.nodes[0], 1) # Identify the 10btc outputs nA = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txA, 1)["vout"]) if vout["value"] == Decimal("10")) nB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txB, 1)["vout"]) if vout["value"] == Decimal("10")) nC = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txC, 1)["vout"]) if vout["value"] == Decimal("10")) inputs =[] # spend 10btc outputs from txA and txB inputs.append({"txid":txA, "vout":nA}) inputs.append({"txid":txB, "vout":nB}) outputs = {} outputs[self.nodes[0].getnewaddress()] = Decimal("14.99998") outputs[self.nodes[1].getnewaddress()] = Decimal("5") signed = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) txAB1 = self.nodes[0].sendrawtransaction(signed["hex"]) # Identify the 14.99998btc output nAB = next(i for i, vout in enumerate(self.nodes[0].getrawtransaction(txAB1, 1)["vout"]) if vout["value"] == Decimal("14.99998")) #Create a child tx spending AB1 and C inputs = [] inputs.append({"txid":txAB1, "vout":nAB}) inputs.append({"txid":txC, "vout":nC}) outputs = {} outputs[self.nodes[0].getnewaddress()] = Decimal("24.9996") signed2 = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) txABC2 = self.nodes[0].sendrawtransaction(signed2["hex"]) # Create a child tx spending ABC2 signed3_change = Decimal("24.999") inputs = [ {"txid":txABC2, "vout":0} ] outputs = { self.nodes[0].getnewaddress(): signed3_change } signed3 = self.nodes[0].signrawtransaction(self.nodes[0].createrawtransaction(inputs, outputs)) # note tx is never directly referenced, only abandoned as a child of the above self.nodes[0].sendrawtransaction(signed3["hex"]) # In mempool txs from self should increase balance from change newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("30") + signed3_change) balance = newbalance # Restart the node with a higher min relay fee so the parent tx is no longer in mempool # TODO: redo with eviction self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) # Verify txs no longer in either node's mempool assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(len(self.nodes[1].getrawmempool()), 0) # Not in mempool txs from self should only reduce balance # inputs are still spent, but change not received newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - signed3_change) # Unconfirmed received funds that are not in mempool, also shouldn't show # up in unconfirmed balance unconfbalance = self.nodes[0].getunconfirmedbalance() + self.nodes[0].getbalance() assert_equal(unconfbalance, newbalance) # Also shouldn't show up in listunspent assert(not txABC2 in [utxo["txid"] for utxo in self.nodes[0].listunspent(0)]) balance = newbalance # Abandon original transaction and verify inputs are available again # including that the child tx was also abandoned self.nodes[0].abandontransaction(txAB1) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance + Decimal("30")) balance = newbalance # Verify that even with a low min relay fee, the tx is not reaccepted from wallet on startup once abandoned self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.00001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) assert_equal(self.nodes[0].getbalance(), balance) # But if its received again then it is unabandoned # And since now in mempool, the change is available # But its child tx remains abandoned self.nodes[0].sendrawtransaction(signed["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("20") + Decimal("14.99998")) balance = newbalance # Send child tx again so its unabandoned self.nodes[0].sendrawtransaction(signed2["hex"]) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("10") - Decimal("14.99998") + Decimal("24.9996")) balance = newbalance # Remove using high relay fee again self.stop_node(0) self.start_node(0, extra_args=["-minrelaytxfee=0.0001"]) assert_equal(len(self.nodes[0].getrawmempool()), 0) newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance - Decimal("24.9996")) balance = newbalance # Create a double spend of AB1 by spending again from only A's 10 output # Mine double spend from node 1 inputs =[] inputs.append({"txid":txA, "vout":nA}) outputs = {} outputs[self.nodes[1].getnewaddress()] = Decimal("9.9999") tx = self.nodes[0].createrawtransaction(inputs, outputs) signed = self.nodes[0].signrawtransaction(tx) self.nodes[1].sendrawtransaction(signed["hex"]) self.nodes[1].generate(1) connect_nodes(self.nodes[0], 1) sync_blocks(self.nodes) # Verify that B and C's 10 GENX outputs are available for spending again because AB1 is now conflicted newbalance = self.nodes[0].getbalance() assert_equal(newbalance, balance + Decimal("20")) balance = newbalance # There is currently a minor bug around this and so this test doesn't work. See Issue #7315 # Invalidate the block with the double spend and B's 10 GENX output should no longer be available # Don't think C's should either self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) newbalance = self.nodes[0].getbalance() #assert_equal(newbalance, balance - Decimal("10")) self.log.info("If balance has not declined after invalidateblock then out of mempool wallet tx which is no longer") self.log.info("conflicted has not resumed causing its inputs to be seen as spent. See Issue #7315") self.log.info(str(balance) + " -> " + str(newbalance) + " ?") if __name__ == '__main__': AbandonConflictTest().main()
the-stack_0_24272
''' Author : Gehrychiang LastEditTime : 2021-03-05 17:54:13 Website : www.yilantingfeng.site E-mail : [email protected] ProbTitle : (记得补充题目标题) ''' # filesubmitter # TSM1PL6kY8MWeVXwPQzugFJWynVLChuY # filedownloader # 4ydSRMSkOUefyBeZenFTRhj6jOXc1Asr import upyun import requests import os import sys import json bucket_name='*' operator_name='*' operator_token='*' up = upyun.UpYun(bucket_name, operator_name, operator_token, timeout=60, endpoint=upyun.ED_AUTO) headers = { 'py_file_submiter': '180' } print("Syncing data with server....\n") r = requests.get('http://api.yilantingfeng.site/', params={'type':'fsub'}) title =r.json()['data']['title'] print('Collecting: ',title,'\n') print("To continue, please input the authorization code") psd=input() q = requests.get('http://api.yilantingfeng.site/', params={'type':'fsub','pwd':psd}) if not(q.json()['msg'] == "pass"): print("Invalid authorization code!") os.system('pause') sys.exit(1) print("Authorization checked!") underway=r.json()['data']['underway'] if int(underway) == 1: print("Collection has not ended!\n") print("Confirm downloading?\n") req=input("input yes for futher proceeder ") if not(req == "yes"): os.system('pause') sys.exit(1) path = os.getcwd()+'\\'+title if not(os.path.exists(path)): os.mkdir(path) res = up.getlist('/'+title+'/') for i in range(len(res)): print("downloading: "+res[i]['name']+'\n') if(os.path.exists(path+'\\'+res[i]['name'])): os.remove(path+'\\'+res[i]['name']) with open(path+'\\'+res[i]['name'], 'wb') as f: up.get('/'+title+'/'+res[i]['name'], f) print("download succeed!") os.system('pause')
the-stack_0_24274
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init import functools from torch.optim import lr_scheduler import numpy as np from .stylegan_networks import StyleGAN2Discriminator, StyleGAN2Generator, TileStyleGAN2Discriminator ############################################################################### # Helper Functions ############################################################################### def get_filter(filt_size=3): if(filt_size == 1): a = np.array([1., ]) elif(filt_size == 2): a = np.array([1., 1.]) elif(filt_size == 3): a = np.array([1., 2., 1.]) elif(filt_size == 4): a = np.array([1., 3., 3., 1.]) elif(filt_size == 5): a = np.array([1., 4., 6., 4., 1.]) elif(filt_size == 6): a = np.array([1., 5., 10., 10., 5., 1.]) elif(filt_size == 7): a = np.array([1., 6., 15., 20., 15., 6., 1.]) filt = torch.Tensor(a[:, None] * a[None, :]) filt = filt / torch.sum(filt) return filt class Downsample(nn.Module): def __init__(self, channels, pad_type='reflect', filt_size=3, stride=2, pad_off=0): super(Downsample, self).__init__() self.filt_size = filt_size self.pad_off = pad_off self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2)), int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))] self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes] self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels filt = get_filter(filt_size=self.filt_size) self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) self.pad = get_pad_layer(pad_type)(self.pad_sizes) def forward(self, inp): if(self.filt_size == 1): if(self.pad_off == 0): return inp[:, :, ::self.stride, ::self.stride] else: return self.pad(inp)[:, :, ::self.stride, ::self.stride] else: return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1]) class Upsample2(nn.Module): def __init__(self, scale_factor, mode='nearest'): super().__init__() self.factor = scale_factor self.mode = mode def forward(self, x): return torch.nn.functional.interpolate(x, scale_factor=self.factor, mode=self.mode) class Upsample(nn.Module): def __init__(self, channels, pad_type='repl', filt_size=4, stride=2): super(Upsample, self).__init__() self.filt_size = filt_size self.filt_odd = np.mod(filt_size, 2) == 1 self.pad_size = int((filt_size - 1) / 2) self.stride = stride self.off = int((self.stride - 1) / 2.) self.channels = channels filt = get_filter(filt_size=self.filt_size) * (stride**2) self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1))) self.pad = get_pad_layer(pad_type)([1, 1, 1, 1]) def forward(self, inp): ret_val = F.conv_transpose2d(self.pad(inp), self.filt, stride=self.stride, padding=1 + self.pad_size, groups=inp.shape[1])[:, :, 1:, 1:] if(self.filt_odd): return ret_val else: return ret_val[:, :, :-1, :-1] def get_pad_layer(pad_type): if(pad_type in ['refl', 'reflect']): PadLayer = nn.ReflectionPad2d elif(pad_type in ['repl', 'replicate']): PadLayer = nn.ReplicationPad2d elif(pad_type == 'zero'): PadLayer = nn.ZeroPad2d else: print('Pad type [%s] not recognized' % pad_type) return PadLayer class Identity(nn.Module): def forward(self, x): return x def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02, debug=False): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if debug: print(classname) if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) # apply the initialization function <init_func> def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[], debug=False, initialize_weights=True): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) # if not amp: # net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs for non-AMP training if initialize_weights: init_weights(net, init_type, init_gain=init_gain, debug=debug) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, no_antialias=False, no_antialias_up=False, gpu_ids=[], opt=None): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, no_antialias=no_antialias, no_antialias_up=no_antialias_up, n_blocks=9, opt=opt) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, no_antialias=no_antialias, no_antialias_up=no_antialias_up, n_blocks=6, opt=opt) elif netG == 'resnet_4blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, no_antialias=no_antialias, no_antialias_up=no_antialias_up, n_blocks=4, opt=opt) elif netG == 'unet_128': net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'unet_256': net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'stylegan2': net = StyleGAN2Generator(input_nc, output_nc, ngf, use_dropout=use_dropout, opt=opt) elif netG == 'smallstylegan2': net = StyleGAN2Generator(input_nc, output_nc, ngf, use_dropout=use_dropout, n_blocks=2, opt=opt) elif netG == 'resnet_cat': n_blocks = 8 net = G_Resnet(input_nc, output_nc, opt.nz, num_downs=2, n_res=n_blocks - 4, ngf=ngf, norm='inst', nl_layer='relu') else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids, initialize_weights=('stylegan2' not in netG)) def define_F(input_nc, netF, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, no_antialias=False, gpu_ids=[], opt=None): if netF == 'global_pool': net = PoolingF() elif netF == 'reshape': net = ReshapeF() elif netF == 'sample': net = PatchSampleF(use_mlp=False, init_type=init_type, init_gain=init_gain, gpu_ids=gpu_ids, nc=opt.netF_nc) elif netF == 'mlp_sample': net = PatchSampleF(use_mlp=True, init_type=init_type, init_gain=init_gain, gpu_ids=gpu_ids, nc=opt.netF_nc) elif netF == 'strided_conv': net = StridedConvF(init_type=init_type, init_gain=init_gain, gpu_ids=gpu_ids) elif netF == 'mlp_samplev2': net = PatchSampleFv2(use_mlp=True, init_type=init_type, init_gain=init_gain, gpu_ids=gpu_ids, nc=opt.netF_nc) else: raise NotImplementedError('projection model name [%s] is not recognized' % netF) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, no_antialias=False, gpu_ids=[], opt=None): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you cna specify the number of conv layers in the discriminator with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by <init_net>. It uses Leaky RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, no_antialias=no_antialias,) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer, no_antialias=no_antialias,) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) elif 'stylegan2' in netD: net = StyleGAN2Discriminator(input_nc, ndf, n_layers_D, no_antialias=no_antialias, opt=opt) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD) return init_net(net, init_type, init_gain, gpu_ids, initialize_weights=('stylegan2' not in netD)) ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp', 'nonsaturating']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ bs = prediction.size(0) if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() elif self.gan_mode == 'nonsaturating': if target_is_real: loss = F.softplus(-prediction).view(bs, -1).mean(dim=1) else: loss = F.softplus(prediction).view(bs, -1).mean(dim=1) return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class Normalize(nn.Module): def __init__(self, power=2): super(Normalize, self).__init__() self.power = power def forward(self, x): norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power) out = x.div(norm + 1e-7) return out class PoolingF(nn.Module): def __init__(self): super(PoolingF, self).__init__() model = [nn.AdaptiveMaxPool2d(1)] self.model = nn.Sequential(*model) self.l2norm = Normalize(2) def forward(self, x): return self.l2norm(self.model(x)) class ReshapeF(nn.Module): def __init__(self): super(ReshapeF, self).__init__() model = [nn.AdaptiveAvgPool2d(4)] self.model = nn.Sequential(*model) self.l2norm = Normalize(2) def forward(self, x): x = self.model(x) x_reshape = x.permute(0, 2, 3, 1).flatten(0, 2) return self.l2norm(x_reshape) class StridedConvF(nn.Module): def __init__(self, init_type='normal', init_gain=0.02, gpu_ids=[]): super().__init__() # self.conv1 = nn.Conv2d(256, 128, 3, stride=2) # self.conv2 = nn.Conv2d(128, 64, 3, stride=1) self.l2_norm = Normalize(2) self.mlps = {} self.moving_averages = {} self.init_type = init_type self.init_gain = init_gain self.gpu_ids = gpu_ids def create_mlp(self, x): C, H = x.shape[1], x.shape[2] n_down = int(np.rint(np.log2(H / 32))) mlp = [] for i in range(n_down): mlp.append(nn.Conv2d(C, max(C // 2, 64), 3, stride=2)) mlp.append(nn.ReLU()) C = max(C // 2, 64) mlp.append(nn.Conv2d(C, 64, 3)) mlp = nn.Sequential(*mlp) init_net(mlp, self.init_type, self.init_gain, self.gpu_ids) return mlp def update_moving_average(self, key, x): if key not in self.moving_averages: self.moving_averages[key] = x.detach() self.moving_averages[key] = self.moving_averages[key] * 0.999 + x.detach() * 0.001 def forward(self, x, use_instance_norm=False): C, H = x.shape[1], x.shape[2] key = '%d_%d' % (C, H) if key not in self.mlps: self.mlps[key] = self.create_mlp(x) self.add_module("child_%s" % key, self.mlps[key]) mlp = self.mlps[key] x = mlp(x) self.update_moving_average(key, x) x = x - self.moving_averages[key] if use_instance_norm: x = F.instance_norm(x) return self.l2_norm(x) class PatchSampleF(nn.Module): def __init__(self, use_mlp=False, init_type='normal', init_gain=0.02, nc=256, gpu_ids=[]): # potential issues: currently, we use the same patch_ids for multiple images in the batch super(PatchSampleF, self).__init__() self.l2norm = Normalize(2) self.use_mlp = use_mlp self.nc = nc # hard-coded self.mlp_init = False self.init_type = init_type self.init_gain = init_gain self.gpu_ids = gpu_ids def create_mlp(self, feats): for mlp_id, feat in enumerate(feats): input_nc = feat.shape[1] mlp = nn.Sequential(*[nn.Linear(input_nc, self.nc), nn.ReLU(), nn.Linear(self.nc, self.nc)]) if len(self.gpu_ids) > 0: mlp.cuda() setattr(self, 'mlp_%d' % mlp_id, mlp) init_net(self, self.init_type, self.init_gain, self.gpu_ids) self.mlp_init = True def forward(self, feats, num_patches=64, patch_ids=None): return_ids = [] return_feats = [] if self.use_mlp and not self.mlp_init: self.create_mlp(feats) for feat_id, feat in enumerate(feats): B, H, W = feat.shape[0], feat.shape[2], feat.shape[3] feat_reshape = feat.permute(0, 2, 3, 1).flatten(1, 2) if num_patches > 0: if patch_ids is not None: patch_id = patch_ids[feat_id] else: patch_id = torch.randperm(feat_reshape.shape[1], device=feats[0].device) patch_id = patch_id[:int(min(num_patches, patch_id.shape[0]))] # .to(patch_ids.device) x_sample = feat_reshape[:, patch_id, :].flatten(0, 1) # b,num_patch, c else: x_sample = feat_reshape patch_id = [] if self.use_mlp: mlp = getattr(self, 'mlp_%d' % feat_id) x_sample = mlp(x_sample) return_ids.append(patch_id) x_sample = self.l2norm(x_sample) if num_patches == 0: x_sample = x_sample.permute(0, 2, 1).reshape([B, x_sample.shape[-1], H, W]) return_feats.append(x_sample) return return_feats, return_ids class PatchSampleFv2(nn.Module): def __init__(self, use_mlp=False, init_type='normal', init_gain=0.02, nc=256, gpu_ids=[]): # potential issues: currently, we use the same patch_ids for multiple images in the batch super(PatchSampleFv2, self).__init__() self.l2norm = Normalize(2) self.use_mlp = use_mlp self.nc = nc # hard-coded self.mlp_init = False self.init_type = init_type self.init_gain = init_gain self.gpu_ids = gpu_ids def create_mlp(self, feats): for mlp_id, feat in enumerate(feats): input_nc = feat.shape[1] mlp = nn.Sequential(*[nn.Linear(input_nc, self.nc), nn.ReLU(), nn.Linear(self.nc, self.nc)]) if len(self.gpu_ids) > 0: mlp.cuda() setattr(self, 'mlp_%d' % mlp_id, mlp) init_net(self, self.init_type, self.init_gain, self.gpu_ids) self.mlp_init = True def forward(self, feats, num_patches=64, patch_ids=None): return_ids = [] return_feats = [] if self.use_mlp and not self.mlp_init: self.create_mlp(feats) for feat_id, feat in enumerate(feats): B, C, H, W = feat.size() feat_reshape = feat.permute(0, 2, 3, 1).flatten(1, 2) if num_patches > 0: if patch_ids is not None: patch_id = patch_ids[feat_id] else: patch_id = torch.randperm(feat_reshape.shape[1], device=feats[0].device) patch_id = patch_id[:int(min(num_patches, patch_id.shape[0]))] # .to(patch_ids.device) x_sample = feat_reshape[:, patch_id, :] # b, num_patch, c else: x_sample = feat_reshape patch_id = [] if self.use_mlp: mlp = getattr(self, 'mlp_%d' % feat_id) x_sample = mlp(x_sample) return_ids.append(patch_id) x_sample = self.l2norm(x_sample) # if num_patches == 0: # x_sample = x_sample.permute(0, 2, 1).reshape([B, x_sample.shape[-1], H, W]) return_feats.append(x_sample) return return_feats, return_ids class G_Resnet(nn.Module): def __init__(self, input_nc, output_nc, nz, num_downs, n_res, ngf=64, norm=None, nl_layer=None): super(G_Resnet, self).__init__() n_downsample = num_downs pad_type = 'reflect' self.enc_content = ContentEncoder(n_downsample, n_res, input_nc, ngf, norm, nl_layer, pad_type=pad_type) if nz == 0: self.dec = Decoder(n_downsample, n_res, self.enc_content.output_dim, output_nc, norm=norm, activ=nl_layer, pad_type=pad_type, nz=nz) else: self.dec = Decoder_all(n_downsample, n_res, self.enc_content.output_dim, output_nc, norm=norm, activ=nl_layer, pad_type=pad_type, nz=nz) def decode(self, content, style=None): return self.dec(content, style) def forward(self, image, style=None, nce_layers=[], encode_only=False): content, feats = self.enc_content(image, nce_layers=nce_layers, encode_only=encode_only) if encode_only: return feats else: images_recon = self.decode(content, style) if len(nce_layers) > 0: return images_recon, feats else: return images_recon ################################################################################## # Encoder and Decoders ################################################################################## class E_adaIN(nn.Module): def __init__(self, input_nc, output_nc=1, nef=64, n_layers=4, norm=None, nl_layer=None, vae=False): # style encoder super(E_adaIN, self).__init__() self.enc_style = StyleEncoder(n_layers, input_nc, nef, output_nc, norm='none', activ='relu', vae=vae) def forward(self, image): style = self.enc_style(image) return style class StyleEncoder(nn.Module): def __init__(self, n_downsample, input_dim, dim, style_dim, norm, activ, vae=False): super(StyleEncoder, self).__init__() self.vae = vae self.model = [] self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type='reflect')] for i in range(2): self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type='reflect')] dim *= 2 for i in range(n_downsample - 2): self.model += [Conv2dBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type='reflect')] self.model += [nn.AdaptiveAvgPool2d(1)] # global average pooling if self.vae: self.fc_mean = nn.Linear(dim, style_dim) # , 1, 1, 0) self.fc_var = nn.Linear(dim, style_dim) # , 1, 1, 0) else: self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)] self.model = nn.Sequential(*self.model) self.output_dim = dim def forward(self, x): if self.vae: output = self.model(x) output = output.view(x.size(0), -1) output_mean = self.fc_mean(output) output_var = self.fc_var(output) return output_mean, output_var else: return self.model(x).view(x.size(0), -1) class ContentEncoder(nn.Module): def __init__(self, n_downsample, n_res, input_dim, dim, norm, activ, pad_type='zero'): super(ContentEncoder, self).__init__() self.model = [] self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type='reflect')] # downsampling blocks for i in range(n_downsample): self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type='reflect')] dim *= 2 # residual blocks self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)] self.model = nn.Sequential(*self.model) self.output_dim = dim def forward(self, x, nce_layers=[], encode_only=False): if len(nce_layers) > 0: feat = x feats = [] for layer_id, layer in enumerate(self.model): feat = layer(feat) if layer_id in nce_layers: feats.append(feat) if layer_id == nce_layers[-1] and encode_only: return None, feats return feat, feats else: return self.model(x), None for layer_id, layer in enumerate(self.model): print(layer_id, layer) class Decoder_all(nn.Module): def __init__(self, n_upsample, n_res, dim, output_dim, norm='batch', activ='relu', pad_type='zero', nz=0): super(Decoder_all, self).__init__() # AdaIN residual blocks self.resnet_block = ResBlocks(n_res, dim, norm, activ, pad_type=pad_type, nz=nz) self.n_blocks = 0 # upsampling blocks for i in range(n_upsample): block = [Upsample2(scale_factor=2), Conv2dBlock(dim + nz, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type='reflect')] setattr(self, 'block_{:d}'.format(self.n_blocks), nn.Sequential(*block)) self.n_blocks += 1 dim //= 2 # use reflection padding in the last conv layer setattr(self, 'block_{:d}'.format(self.n_blocks), Conv2dBlock(dim + nz, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type='reflect')) self.n_blocks += 1 def forward(self, x, y=None): if y is not None: output = self.resnet_block(cat_feature(x, y)) for n in range(self.n_blocks): block = getattr(self, 'block_{:d}'.format(n)) if n > 0: output = block(cat_feature(output, y)) else: output = block(output) return output class Decoder(nn.Module): def __init__(self, n_upsample, n_res, dim, output_dim, norm='batch', activ='relu', pad_type='zero', nz=0): super(Decoder, self).__init__() self.model = [] # AdaIN residual blocks self.model += [ResBlocks(n_res, dim, norm, activ, pad_type=pad_type, nz=nz)] # upsampling blocks for i in range(n_upsample): if i == 0: input_dim = dim + nz else: input_dim = dim self.model += [Upsample2(scale_factor=2), Conv2dBlock(input_dim, dim // 2, 5, 1, 2, norm='ln', activation=activ, pad_type='reflect')] dim //= 2 # use reflection padding in the last conv layer self.model += [Conv2dBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type='reflect')] self.model = nn.Sequential(*self.model) def forward(self, x, y=None): if y is not None: return self.model(cat_feature(x, y)) else: return self.model(x) ################################################################################## # Sequential Models ################################################################################## class ResBlocks(nn.Module): def __init__(self, num_blocks, dim, norm='inst', activation='relu', pad_type='zero', nz=0): super(ResBlocks, self).__init__() self.model = [] for i in range(num_blocks): self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type, nz=nz)] self.model = nn.Sequential(*self.model) def forward(self, x): return self.model(x) ################################################################################## # Basic Blocks ################################################################################## def cat_feature(x, y): y_expand = y.view(y.size(0), y.size(1), 1, 1).expand( y.size(0), y.size(1), x.size(2), x.size(3)) x_cat = torch.cat([x, y_expand], 1) return x_cat class ResBlock(nn.Module): def __init__(self, dim, norm='inst', activation='relu', pad_type='zero', nz=0): super(ResBlock, self).__init__() model = [] model += [Conv2dBlock(dim + nz, dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)] model += [Conv2dBlock(dim, dim + nz, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)] self.model = nn.Sequential(*model) def forward(self, x): residual = x out = self.model(x) out += residual return out class Conv2dBlock(nn.Module): def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0, norm='none', activation='relu', pad_type='zero'): super(Conv2dBlock, self).__init__() self.use_bias = True # initialize padding if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, "Unsupported padding type: {}".format(pad_type) # initialize normalization norm_dim = output_dim if norm == 'batch': self.norm = nn.BatchNorm2d(norm_dim) elif norm == 'inst': self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=False) elif norm == 'ln': self.norm = LayerNorm(norm_dim) elif norm == 'none': self.norm = None else: assert 0, "Unsupported normalization: {}".format(norm) # initialize activation if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'prelu': self.activation = nn.PReLU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'none': self.activation = None else: assert 0, "Unsupported activation: {}".format(activation) # initialize convolution self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias) def forward(self, x): x = self.conv(self.pad(x)) if self.norm: x = self.norm(x) if self.activation: x = self.activation(x) return x class LinearBlock(nn.Module): def __init__(self, input_dim, output_dim, norm='none', activation='relu'): super(LinearBlock, self).__init__() use_bias = True # initialize fully connected layer self.fc = nn.Linear(input_dim, output_dim, bias=use_bias) # initialize normalization norm_dim = output_dim if norm == 'batch': self.norm = nn.BatchNorm1d(norm_dim) elif norm == 'inst': self.norm = nn.InstanceNorm1d(norm_dim) elif norm == 'ln': self.norm = LayerNorm(norm_dim) elif norm == 'none': self.norm = None else: assert 0, "Unsupported normalization: {}".format(norm) # initialize activation if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'prelu': self.activation = nn.PReLU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'none': self.activation = None else: assert 0, "Unsupported activation: {}".format(activation) def forward(self, x): out = self.fc(x) if self.norm: out = self.norm(out) if self.activation: out = self.activation(out) return out ################################################################################## # Normalization layers ################################################################################## class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-5, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_()) self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False, no_antialias_up=False, opt=None): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() self.opt = opt if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i if(no_antialias): model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] else: model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True), Downsample(ngf * mult * 2)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) if no_antialias_up: model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] else: model += [Upsample(ngf * mult), nn.Conv2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=1, padding=1, # output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input, layers=[], encode_only=False): if -1 in layers: layers.append(len(self.model)) if len(layers) > 0: feat = input feats = [] for layer_id, layer in enumerate(self.model): # print(layer_id, layer) feat = layer(feat) if layer_id in layers: # print("%d: adding the output of %s %d" % (layer_id, layer.__class__.__name__, feat.size(1))) feats.append(feat) else: # print("%d: skipping %s %d" % (layer_id, layer.__class__.__name__, feat.size(1))) pass if layer_id == layers[-1] and encode_only: # print('encoder only return features') return feats # return intermediate features alone; stop in the last layers return feat, feats # return both output and intermediate features else: """Standard forward""" fake = self.model(input) return fake class ResnetDecoder(nn.Module): """Resnet-based decoder that consists of a few Resnet blocks + a few upsampling operations. """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False): """Construct a Resnet-based decoder Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetDecoder, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [] n_downsampling = 2 mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) if(no_antialias): model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] else: model += [Upsample(ngf * mult), nn.Conv2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetEncoder(nn.Module): """Resnet-based encoder that consists of a few downsampling + several Resnet blocks """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect', no_antialias=False): """Construct a Resnet-based encoder Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetEncoder, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i if(no_antialias): model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] else: model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=1, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True), Downsample(ngf * mult * 2)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, no_antialias=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 if(no_antialias): sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] else: sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=1, padding=padw), nn.LeakyReLU(0.2, True), Downsample(ndf)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) if(no_antialias): sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] else: sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True), Downsample(ndf * nf_mult)] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input) class PatchDiscriminator(NLayerDiscriminator): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, no_antialias=False): super().__init__(input_nc, ndf, 2, norm_layer, no_antialias) def forward(self, input): B, C, H, W = input.size(0), input.size(1), input.size(2), input.size(3) size = 16 Y = H // size X = W // size input = input.view(B, C, Y, size, X, size) input = input.permute(0, 2, 4, 1, 3, 5).contiguous().view(B * Y * X, C, size, size) return super().forward(input) class GroupedChannelNorm(nn.Module): def __init__(self, num_groups): super().__init__() self.num_groups = num_groups def forward(self, x): shape = list(x.shape) new_shape = [shape[0], self.num_groups, shape[1] // self.num_groups] + shape[2:] x = x.view(*new_shape) mean = x.mean(dim=2, keepdim=True) std = x.std(dim=2, keepdim=True) x_norm = (x - mean) / (std + 1e-7) return x_norm.view(*shape)
the-stack_0_24276
# Copyright 2016 Huawei Technologies India Pvt. Ltd. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from __future__ import print_function from neutronclient._i18n import _ from neutronclient.common import utils from neutronclient.common import validators from neutronclient.neutron import v2_0 as neutronv20 from neutronclient.neutron.v2_0.bgp import peer as bgp_peer # Allowed BGP Autonomous number range MIN_AS_NUM = 1 MAX_AS_NUM = 65535 def get_network_id(client, id_or_name): return neutronv20.find_resourceid_by_name_or_id(client, 'network', id_or_name) def get_bgp_speaker_id(client, id_or_name): return neutronv20.find_resourceid_by_name_or_id(client, 'bgp_speaker', id_or_name) def validate_speaker_attributes(parsed_args): # Validate AS number validators.validate_int_range(parsed_args, 'local_as', MIN_AS_NUM, MAX_AS_NUM) def add_common_arguments(parser): utils.add_boolean_argument( parser, '--advertise-floating-ip-host-routes', help=_('Whether to enable or disable the advertisement ' 'of floating-ip host routes by the BGP speaker. ' 'By default floating ip host routes will be ' 'advertised by the BGP speaker.')) utils.add_boolean_argument( parser, '--advertise-tenant-networks', help=_('Whether to enable or disable the advertisement ' 'of tenant network routes by the BGP speaker. ' 'By default tenant network routes will be ' 'advertised by the BGP speaker.')) def args2body_common_arguments(body, parsed_args): neutronv20.update_dict(parsed_args, body, ['name', 'advertise_floating_ip_host_routes', 'advertise_tenant_networks']) class ListSpeakers(neutronv20.ListCommand): """List BGP speakers.""" resource = 'bgp_speaker' list_columns = ['id', 'name', 'local_as', 'ip_version'] pagination_support = True sorting_support = True class ShowSpeaker(neutronv20.ShowCommand): """Show information of a given BGP speaker.""" resource = 'bgp_speaker' class CreateSpeaker(neutronv20.CreateCommand): """Create a BGP Speaker.""" resource = 'bgp_speaker' def add_known_arguments(self, parser): parser.add_argument( 'name', metavar='NAME', help=_('Name of the BGP speaker to create.')) parser.add_argument( '--local-as', metavar='LOCAL_AS', required=True, help=_('Local AS number. (Integer in [%(min_val)s, %(max_val)s] ' 'is allowed.)') % {'min_val': MIN_AS_NUM, 'max_val': MAX_AS_NUM}) parser.add_argument( '--ip-version', type=int, choices=[4, 6], default=4, help=_('IP version for the BGP speaker (default is 4).')) add_common_arguments(parser) def args2body(self, parsed_args): body = {} validate_speaker_attributes(parsed_args) body['local_as'] = parsed_args.local_as body['ip_version'] = parsed_args.ip_version args2body_common_arguments(body, parsed_args) return {self.resource: body} class UpdateSpeaker(neutronv20.UpdateCommand): """Update BGP Speaker's information.""" resource = 'bgp_speaker' def add_known_arguments(self, parser): parser.add_argument( '--name', help=_('Name of the BGP speaker to update.')) add_common_arguments(parser) def args2body(self, parsed_args): body = {} args2body_common_arguments(body, parsed_args) return {self.resource: body} class DeleteSpeaker(neutronv20.DeleteCommand): """Delete a BGP speaker.""" resource = 'bgp_speaker' class AddPeerToSpeaker(neutronv20.NeutronCommand): """Add a peer to the BGP speaker.""" def get_parser(self, prog_name): parser = super(AddPeerToSpeaker, self).get_parser(prog_name) parser.add_argument( 'bgp_speaker', metavar='BGP_SPEAKER', help=_('ID or name of the BGP speaker.')) parser.add_argument( 'bgp_peer', metavar='BGP_PEER', help=_('ID or name of the BGP peer to add.')) return parser def take_action(self, parsed_args): neutron_client = self.get_client() _speaker_id = get_bgp_speaker_id(neutron_client, parsed_args.bgp_speaker) _peer_id = bgp_peer.get_bgp_peer_id(neutron_client, parsed_args.bgp_peer) neutron_client.add_peer_to_bgp_speaker(_speaker_id, {'bgp_peer_id': _peer_id}) print(_('Added BGP peer %(peer)s to BGP speaker %(speaker)s.') % {'peer': parsed_args.bgp_peer, 'speaker': parsed_args.bgp_speaker}, file=self.app.stdout) class RemovePeerFromSpeaker(neutronv20.NeutronCommand): """Remove a peer from the BGP speaker.""" def get_parser(self, prog_name): parser = super(RemovePeerFromSpeaker, self).get_parser(prog_name) parser.add_argument( 'bgp_speaker', metavar='BGP_SPEAKER', help=_('ID or name of the BGP speaker.')) parser.add_argument( 'bgp_peer', metavar='BGP_PEER', help=_('ID or name of the BGP peer to remove.')) return parser def take_action(self, parsed_args): neutron_client = self.get_client() _speaker_id = get_bgp_speaker_id(neutron_client, parsed_args.bgp_speaker) _peer_id = bgp_peer.get_bgp_peer_id(neutron_client, parsed_args.bgp_peer) neutron_client.remove_peer_from_bgp_speaker(_speaker_id, {'bgp_peer_id': _peer_id}) print(_('Removed BGP peer %(peer)s from BGP speaker %(speaker)s.') % {'peer': parsed_args.bgp_peer, 'speaker': parsed_args.bgp_speaker}, file=self.app.stdout) class AddNetworkToSpeaker(neutronv20.NeutronCommand): """Add a network to the BGP speaker.""" def get_parser(self, prog_name): parser = super(AddNetworkToSpeaker, self).get_parser(prog_name) parser.add_argument( 'bgp_speaker', metavar='BGP_SPEAKER', help=_('ID or name of the BGP speaker.')) parser.add_argument( 'network', metavar='NETWORK', help=_('ID or name of the network to add.')) return parser def take_action(self, parsed_args): neutron_client = self.get_client() _speaker_id = get_bgp_speaker_id(neutron_client, parsed_args.bgp_speaker) _net_id = get_network_id(neutron_client, parsed_args.network) neutron_client.add_network_to_bgp_speaker(_speaker_id, {'network_id': _net_id}) print(_('Added network %(net)s to BGP speaker %(speaker)s.') % {'net': parsed_args.network, 'speaker': parsed_args.bgp_speaker}, file=self.app.stdout) class RemoveNetworkFromSpeaker(neutronv20.NeutronCommand): """Remove a network from the BGP speaker.""" def get_parser(self, prog_name): parser = super(RemoveNetworkFromSpeaker, self).get_parser(prog_name) parser.add_argument( 'bgp_speaker', metavar='BGP_SPEAKER', help=_('ID or name of the BGP speaker.')) parser.add_argument( 'network', metavar='NETWORK', help=_('ID or name of the network to remove.')) return parser def take_action(self, parsed_args): neutron_client = self.get_client() _speaker_id = get_bgp_speaker_id(neutron_client, parsed_args.bgp_speaker) _net_id = get_network_id(neutron_client, parsed_args.network) neutron_client.remove_network_from_bgp_speaker(_speaker_id, {'network_id': _net_id}) print(_('Removed network %(net)s from BGP speaker %(speaker)s.') % {'net': parsed_args.network, 'speaker': parsed_args.bgp_speaker}, file=self.app.stdout) class ListRoutesAdvertisedBySpeaker(neutronv20.ListCommand): """List routes advertised by a given BGP speaker.""" list_columns = ['id', 'destination', 'next_hop'] resource = 'advertised_route' pagination_support = True sorting_support = True def get_parser(self, prog_name): parser = super(ListRoutesAdvertisedBySpeaker, self).get_parser(prog_name) parser.add_argument( 'bgp_speaker', metavar='BGP_SPEAKER', help=_('ID or name of the BGP speaker.')) return parser def call_server(self, neutron_client, search_opts, parsed_args): _speaker_id = get_bgp_speaker_id(neutron_client, parsed_args.bgp_speaker) data = neutron_client.list_route_advertised_from_bgp_speaker( _speaker_id, **search_opts) return data
the-stack_0_24277
#!/usr/bin/env python3 """ Find the day with the highest average temperature. Write a program that takes a filename on the command line and processes the CSV contents. The contents will be a CSV file with a month of weather data, one day per line. Determine which day had the highest average temperature where the average temperature is the average of the day's high and low temperatures. This is not normally how average temperature is computed, but it will work for our demonstration. The first line of the CSV file will be column headers: Day,MxT,MnT,AvT,AvDP,1HrP TPcn,PDir,AvSp,Dir,MxS,SkyC,MxR,Mn,R AvSLP The day number, max temperature, and min temperature are the first three columns. Write unit tests with Pytest to test your program. """ import csv_parser def get_name_and_avg(day_stats): day_number = int(day_stats["Day"]) avg = (int(day_stats["MxT"]) + int(day_stats["MnT"])) / 2 return day_number, avg def get_max_avg(filename): with open(filename, "r", newline="") as csv_file: return max( csv_parser.get_next_result(csv_file, get_name_and_avg), key=lambda item: item[1], )
the-stack_0_24281
import json import logging import sys if sys.version_info.major == 2: import urllib2 else: import urllib.request as urllib2 class Nominatim(object): """Class for querying text adress http://wiki.openstreetmap.org/wiki/Nominatim#Search""" def __init__(self): self.url = 'http://nominatim.openstreetmap.org/search?format=json' self.logger = logging.getLogger(__name__) def query(self, query, acceptlanguage='', limit=None): """Method takes query string, acceptlanguage string (rfc2616 language code), limit integer (limits number of results).""" query = query.replace(' ', '+') url = self.url url += '&q=' + query if acceptlanguage: url += '&accept-language=' + acceptlanguage if limit: url += '&limit=' + str(limit) self.logger.debug('url:\n' + url) try: response = urllib2.urlopen(url) if response.code == 200: result = json.loads(response.read().decode('utf-8')) return result else: return None except urllib2.URLError: self.logger.info('Server connection problem') return None pass class NominatimReverse(object): """Class for querying gps coordinates http://wiki.openstreetmap.org/wiki/Nominatim#Reverse_Geocoding_.2F_Address_lookup""" def __init__(self): self.url = 'http://nominatim.openstreetmap.org/reverse?format=json' self.logger = logging.getLogger(__name__) def query(self, lat=None, lon=None, acceptlanguage='', zoom=18): """Method takes lat and lon for GPS coordinates, acceptlanguage string, zoom integer (between from 0 to 18). """ url = self.url if lat and lon: url += '&lat=' + str(lat) + '&lon=' + str(lon) if acceptlanguage: url += '&accept-language=' + acceptlanguage if zoom < 0 or zoom > 18: raise Exception('zoom must be betwen 0 and 18') url +='&zoom=' + str(zoom) self.logger.debug('url:\n' + url) try: response = urllib2.urlopen(url) if response.code == 200: result = json.loads(response.read().decode('utf-8')) return result else: return None except urllib2.URLError: self.logger.info('Server connection problem') return None pass
the-stack_0_24283
#!/usr/bin/env python import argparse import logging.config import os import time from collections import defaultdict from pathlib import Path from typing import ( TYPE_CHECKING, Any, DefaultDict, Dict, List, Literal, Optional, Tuple, Union, cast, ) import gevent from rotkehlchen.accounting.accountant import Accountant from rotkehlchen.accounting.structures.balance import Balance, BalanceType from rotkehlchen.api.websockets.notifier import RotkiNotifier from rotkehlchen.api.websockets.typedefs import WSMessageType from rotkehlchen.assets.asset import Asset from rotkehlchen.balances.manual import ( account_for_manually_tracked_asset_balances, get_manually_tracked_balances, ) from rotkehlchen.chain.avalanche.manager import AvalancheManager from rotkehlchen.chain.ethereum.accounting.aggregator import EVMAccountingAggregator from rotkehlchen.chain.ethereum.decoding import EVMTransactionDecoder from rotkehlchen.chain.ethereum.manager import ( ETHEREUM_NODES_TO_CONNECT_AT_START, EthereumManager, NodeName, ) from rotkehlchen.chain.ethereum.oracles.saddle import SaddleOracle from rotkehlchen.chain.ethereum.oracles.uniswap import UniswapV2Oracle, UniswapV3Oracle from rotkehlchen.chain.ethereum.transactions import EthTransactions from rotkehlchen.chain.manager import BlockchainBalancesUpdate, ChainManager from rotkehlchen.chain.substrate.manager import SubstrateManager from rotkehlchen.chain.substrate.types import SubstrateChain from rotkehlchen.chain.substrate.utils import ( KUSAMA_NODES_TO_CONNECT_AT_START, POLKADOT_NODES_TO_CONNECT_AT_START, ) from rotkehlchen.config import default_data_directory from rotkehlchen.constants.misc import ZERO from rotkehlchen.data.importer import DataImporter from rotkehlchen.data_handler import DataHandler from rotkehlchen.data_migrations.manager import DataMigrationManager from rotkehlchen.db.settings import DBSettings, ModifiableDBSettings from rotkehlchen.errors.api import PremiumAuthenticationError from rotkehlchen.errors.misc import EthSyncError, InputError, RemoteError, SystemPermissionError from rotkehlchen.exchanges.manager import ExchangeManager from rotkehlchen.externalapis.beaconchain import BeaconChain from rotkehlchen.externalapis.coingecko import Coingecko from rotkehlchen.externalapis.covalent import Covalent, chains_id from rotkehlchen.externalapis.cryptocompare import Cryptocompare from rotkehlchen.externalapis.etherscan import Etherscan from rotkehlchen.fval import FVal from rotkehlchen.globaldb import GlobalDBHandler from rotkehlchen.globaldb.updates import AssetsUpdater from rotkehlchen.greenlets import GreenletManager from rotkehlchen.history.events import EventsHistorian from rotkehlchen.history.price import PriceHistorian from rotkehlchen.history.types import HistoricalPriceOracle from rotkehlchen.icons import IconManager from rotkehlchen.inquirer import Inquirer from rotkehlchen.logging import RotkehlchenLogsAdapter, configure_logging from rotkehlchen.premium.premium import Premium, PremiumCredentials, premium_create_and_verify from rotkehlchen.premium.sync import PremiumSyncManager from rotkehlchen.tasks.manager import DEFAULT_MAX_TASKS_NUM, TaskManager from rotkehlchen.types import ( ApiKey, ApiSecret, BlockchainAccountData, ChecksumEthAddress, ListOfBlockchainAddresses, Location, SupportedBlockchain, Timestamp, ) from rotkehlchen.usage_analytics import maybe_submit_usage_analytics from rotkehlchen.user_messages import MessagesAggregator from rotkehlchen.utils.misc import combine_dicts if TYPE_CHECKING: from rotkehlchen.chain.bitcoin.xpub import XpubData from rotkehlchen.exchanges.kraken import KrakenAccountType logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) MAIN_LOOP_SECS_DELAY = 10 ICONS_BATCH_SIZE = 3 ICONS_QUERY_SLEEP = 60 class Rotkehlchen(): def __init__(self, args: argparse.Namespace) -> None: """Initialize the Rotkehlchen object This runs during backend initialization so it should be as light as possible. May Raise: - SystemPermissionError if the given data directory's permissions are not correct. """ # Can also be None after unlock if premium credentials did not # authenticate or premium server temporarily offline self.premium: Optional[Premium] = None self.user_is_logged_in: bool = False configure_logging(args) self.sleep_secs = args.sleep_secs if args.data_dir is None: self.data_dir = default_data_directory() else: self.data_dir = Path(args.data_dir) self.data_dir.mkdir(parents=True, exist_ok=True) if not os.access(self.data_dir, os.W_OK | os.R_OK): raise SystemPermissionError( f'The given data directory {self.data_dir} is not readable or writable', ) self.main_loop_spawned = False self.args = args self.api_task_greenlets: List[gevent.Greenlet] = [] self.msg_aggregator = MessagesAggregator() self.greenlet_manager = GreenletManager(msg_aggregator=self.msg_aggregator) self.rotki_notifier = RotkiNotifier(greenlet_manager=self.greenlet_manager) self.msg_aggregator.rotki_notifier = self.rotki_notifier self.exchange_manager = ExchangeManager(msg_aggregator=self.msg_aggregator) # Initialize the GlobalDBHandler singleton. Has to be initialized BEFORE asset resolver GlobalDBHandler(data_dir=self.data_dir) self.data = DataHandler(self.data_dir, self.msg_aggregator) self.cryptocompare = Cryptocompare(data_directory=self.data_dir, database=None) self.coingecko = Coingecko() self.icon_manager = IconManager(data_dir=self.data_dir, coingecko=self.coingecko) self.assets_updater = AssetsUpdater(self.msg_aggregator) # Initialize the Inquirer singleton Inquirer( data_dir=self.data_dir, cryptocompare=self.cryptocompare, coingecko=self.coingecko, ) self.task_manager: Optional[TaskManager] = None self.shutdown_event = gevent.event.Event() def reset_after_failed_account_creation_or_login(self) -> None: """If the account creation or login failed make sure that the rotki instance is clear Tricky instances are when after either failed premium credentials or user refusal to sync premium databases we relogged in """ self.cryptocompare.db = None def unlock_user( self, user: str, password: str, create_new: bool, sync_approval: Literal['yes', 'no', 'unknown'], premium_credentials: Optional[PremiumCredentials], initial_settings: Optional[ModifiableDBSettings] = None, sync_database: bool = True, ) -> None: """Unlocks an existing user or creates a new one if `create_new` is True May raise: - PremiumAuthenticationError if the password can't unlock the database. - AuthenticationError if premium_credentials are given and are invalid or can't authenticate with the server - DBUpgradeError if the rotki DB version is newer than the software or there is a DB upgrade and there is an error. - SystemPermissionError if the directory or DB file can not be accessed """ log.info( 'Unlocking user', user=user, create_new=create_new, sync_approval=sync_approval, sync_database=sync_database, initial_settings=initial_settings, ) # unlock or create the DB self.password = password self.user_directory = self.data.unlock(user, password, create_new, initial_settings) # Run the DB integrity check due to https://github.com/rotki/rotki/issues/3010 # TODO: Hopefully onece 3010 is handled this can go away self.greenlet_manager.spawn_and_track( after_seconds=None, task_name='user DB data integrity check', exception_is_error=False, method=self.data.db.ensure_data_integrity, ) self.data_importer = DataImporter(db=self.data.db) self.last_data_upload_ts = self.data.db.get_last_data_upload_ts() self.premium_sync_manager = PremiumSyncManager(data=self.data, password=password) # set the DB in the external services instances that need it self.cryptocompare.set_database(self.data.db) # Anything that was set above here has to be cleaned in case of failure in the next step # by reset_after_failed_account_creation_or_login() try: self.premium = self.premium_sync_manager.try_premium_at_start( given_premium_credentials=premium_credentials, username=user, create_new=create_new, sync_approval=sync_approval, sync_database=sync_database, ) except PremiumAuthenticationError: # Reraise it only if this is during the creation of a new account where # the premium credentials were given by the user if create_new: raise self.msg_aggregator.add_warning( 'Could not authenticate the rotki premium API keys found in the DB.' ' Has your subscription expired?', ) # else let's just continue. User signed in succesfully, but he just # has unauthenticable/invalid premium credentials remaining in his DB settings = self.get_settings() self.greenlet_manager.spawn_and_track( after_seconds=None, task_name='submit_usage_analytics', exception_is_error=False, method=maybe_submit_usage_analytics, data_dir=self.data_dir, should_submit=settings.submit_usage_analytics, ) self.etherscan = Etherscan(database=self.data.db, msg_aggregator=self.msg_aggregator) self.beaconchain = BeaconChain(database=self.data.db, msg_aggregator=self.msg_aggregator) eth_rpc_endpoint = settings.eth_rpc_endpoint # Initialize the price historian singleton PriceHistorian( data_directory=self.data_dir, cryptocompare=self.cryptocompare, coingecko=self.coingecko, ) PriceHistorian().set_oracles_order(settings.historical_price_oracles) exchange_credentials = self.data.db.get_exchange_credentials() self.exchange_manager.initialize_exchanges( exchange_credentials=exchange_credentials, database=self.data.db, ) # Initialize blockchain querying modules ethereum_manager = EthereumManager( ethrpc_endpoint=eth_rpc_endpoint, etherscan=self.etherscan, msg_aggregator=self.msg_aggregator, greenlet_manager=self.greenlet_manager, connect_at_start=ETHEREUM_NODES_TO_CONNECT_AT_START, ) kusama_manager = SubstrateManager( chain=SubstrateChain.KUSAMA, msg_aggregator=self.msg_aggregator, greenlet_manager=self.greenlet_manager, connect_at_start=KUSAMA_NODES_TO_CONNECT_AT_START, connect_on_startup=self._connect_ksm_manager_on_startup(), own_rpc_endpoint=settings.ksm_rpc_endpoint, ) polkadot_manager = SubstrateManager( chain=SubstrateChain.POLKADOT, msg_aggregator=self.msg_aggregator, greenlet_manager=self.greenlet_manager, connect_at_start=POLKADOT_NODES_TO_CONNECT_AT_START, connect_on_startup=self._connect_dot_manager_on_startup(), own_rpc_endpoint=settings.dot_rpc_endpoint, ) self.eth_transactions = EthTransactions(ethereum=ethereum_manager, database=self.data.db) self.covalent_avalanche = Covalent( database=self.data.db, msg_aggregator=self.msg_aggregator, chain_id=chains_id['avalanche'], ) avalanche_manager = AvalancheManager( avaxrpc_endpoint="https://api.avax.network/ext/bc/C/rpc", covalent=self.covalent_avalanche, msg_aggregator=self.msg_aggregator, ) Inquirer().inject_ethereum(ethereum_manager) uniswap_v2_oracle = UniswapV2Oracle(ethereum_manager) uniswap_v3_oracle = UniswapV3Oracle(ethereum_manager) saddle_oracle = SaddleOracle(ethereum_manager) Inquirer().add_defi_oracles( uniswap_v2=uniswap_v2_oracle, uniswap_v3=uniswap_v3_oracle, saddle=saddle_oracle, ) Inquirer().set_oracles_order(settings.current_price_oracles) self.chain_manager = ChainManager( blockchain_accounts=self.data.db.get_blockchain_accounts(), ethereum_manager=ethereum_manager, kusama_manager=kusama_manager, polkadot_manager=polkadot_manager, avalanche_manager=avalanche_manager, msg_aggregator=self.msg_aggregator, database=self.data.db, greenlet_manager=self.greenlet_manager, premium=self.premium, eth_modules=settings.active_modules, data_directory=self.data_dir, beaconchain=self.beaconchain, btc_derivation_gap_limit=settings.btc_derivation_gap_limit, ) self.evm_tx_decoder = EVMTransactionDecoder( database=self.data.db, ethereum_manager=ethereum_manager, eth_transactions=self.eth_transactions, msg_aggregator=self.msg_aggregator, ) self.evm_accounting_aggregator = EVMAccountingAggregator( ethereum_manager=ethereum_manager, msg_aggregator=self.msg_aggregator, ) self.accountant = Accountant( db=self.data.db, msg_aggregator=self.msg_aggregator, evm_accounting_aggregator=self.evm_accounting_aggregator, premium=self.premium, ) self.events_historian = EventsHistorian( user_directory=self.user_directory, db=self.data.db, msg_aggregator=self.msg_aggregator, exchange_manager=self.exchange_manager, chain_manager=self.chain_manager, evm_tx_decoder=self.evm_tx_decoder, eth_transactions=self.eth_transactions, ) self.task_manager = TaskManager( max_tasks_num=DEFAULT_MAX_TASKS_NUM, greenlet_manager=self.greenlet_manager, api_task_greenlets=self.api_task_greenlets, database=self.data.db, cryptocompare=self.cryptocompare, premium_sync_manager=self.premium_sync_manager, chain_manager=self.chain_manager, exchange_manager=self.exchange_manager, eth_transactions=self.eth_transactions, evm_tx_decoder=self.evm_tx_decoder, deactivate_premium=self.deactivate_premium_status, query_balances=self.query_balances, ) DataMigrationManager(self).maybe_migrate_data() self.greenlet_manager.spawn_and_track( after_seconds=5, task_name='periodically_query_icons_until_all_cached', exception_is_error=False, method=self.icon_manager.periodically_query_icons_until_all_cached, batch_size=ICONS_BATCH_SIZE, sleep_time_secs=ICONS_QUERY_SLEEP, ) self.user_is_logged_in = True log.debug('User unlocking complete') def _logout(self) -> None: if not self.user_is_logged_in: return user = self.data.username log.info( 'Logging out user', user=user, ) self.deactivate_premium_status() self.greenlet_manager.clear() del self.chain_manager self.exchange_manager.delete_all_exchanges() del self.accountant del self.events_historian del self.data_importer self.data.logout() self.password = '' self.cryptocompare.unset_database() # Make sure no messages leak to other user sessions self.msg_aggregator.consume_errors() self.msg_aggregator.consume_warnings() self.task_manager = None self.user_is_logged_in = False log.info( 'User successfully logged out', user=user, ) def logout(self) -> None: if self.task_manager is None: # no user logged in? return with self.task_manager.schedule_lock: self._logout() def set_premium_credentials(self, credentials: PremiumCredentials) -> None: """ Sets the premium credentials for rotki Raises PremiumAuthenticationError if the given key is rejected by the Rotkehlchen server """ log.info('Setting new premium credentials') if self.premium is not None: self.premium.set_credentials(credentials) else: self.premium = premium_create_and_verify(credentials) self.premium_sync_manager.premium = self.premium self.accountant.activate_premium_status(self.premium) self.chain_manager.activate_premium_status(self.premium) self.data.db.set_rotkehlchen_premium(credentials) def deactivate_premium_status(self) -> None: """Deactivate premium in the current session""" self.premium = None self.premium_sync_manager.premium = None self.accountant.deactivate_premium_status() self.chain_manager.deactivate_premium_status() def delete_premium_credentials(self) -> Tuple[bool, str]: """Deletes the premium credentials for rotki""" msg = '' success = self.data.db.del_rotkehlchen_premium() if success is False: msg = 'The database was unable to delete the Premium keys for the logged-in user' self.deactivate_premium_status() return success, msg def start(self) -> gevent.Greenlet: assert not self.main_loop_spawned, 'Tried to spawn the main loop twice' greenlet = gevent.spawn(self.main_loop) self.main_loop_spawned = True return greenlet def main_loop(self) -> None: """rotki main loop that fires often and runs the task manager's scheduler""" while self.shutdown_event.wait(timeout=MAIN_LOOP_SECS_DELAY) is not True: if self.task_manager is not None: self.task_manager.schedule() def get_blockchain_account_data( self, blockchain: SupportedBlockchain, ) -> Union[List[BlockchainAccountData], Dict[str, Any]]: account_data = self.data.db.get_blockchain_account_data(blockchain) if blockchain != SupportedBlockchain.BITCOIN: return account_data xpub_data = self.data.db.get_bitcoin_xpub_data() addresses_to_account_data = {x.address: x for x in account_data} address_to_xpub_mappings = self.data.db.get_addresses_to_xpub_mapping( list(addresses_to_account_data.keys()), # type: ignore ) xpub_mappings: Dict['XpubData', List[BlockchainAccountData]] = {} for address, xpub_entry in address_to_xpub_mappings.items(): if xpub_entry not in xpub_mappings: xpub_mappings[xpub_entry] = [] xpub_mappings[xpub_entry].append(addresses_to_account_data[address]) data: Dict[str, Any] = {'standalone': [], 'xpubs': []} # Add xpub data for xpub_entry in xpub_data: data_entry = xpub_entry.serialize() addresses = xpub_mappings.get(xpub_entry, None) data_entry['addresses'] = addresses if addresses and len(addresses) != 0 else None data['xpubs'].append(data_entry) # Add standalone addresses for account in account_data: if account.address not in address_to_xpub_mappings: data['standalone'].append(account) return data def add_blockchain_accounts( self, blockchain: SupportedBlockchain, account_data: List[BlockchainAccountData], ) -> BlockchainBalancesUpdate: """Adds new blockchain accounts Adds the accounts to the blockchain instance and queries them to get the updated balances. Also adds them in the DB May raise: - EthSyncError from modify_blockchain_account - InputError if the given accounts list is empty. - TagConstraintError if any of the given account data contain unknown tags. - RemoteError if an external service such as Etherscan is queried and there is a problem with its query. """ self.data.db.ensure_tags_exist( given_data=account_data, action='adding', data_type='blockchain accounts', ) address_type = blockchain.get_address_type() updated_balances = self.chain_manager.add_blockchain_accounts( blockchain=blockchain, accounts=[address_type(entry.address) for entry in account_data], ) self.data.db.add_blockchain_accounts( blockchain=blockchain, account_data=account_data, ) return updated_balances def edit_blockchain_accounts( self, blockchain: SupportedBlockchain, account_data: List[BlockchainAccountData], ) -> None: """Edits blockchain accounts Edits blockchain account data for the given accounts May raise: - InputError if the given accounts list is empty or if any of the accounts to edit do not exist. - TagConstraintError if any of the given account data contain unknown tags. """ # First check for validity of account data addresses if len(account_data) == 0: raise InputError('Empty list of blockchain account data to edit was given') accounts = [x.address for x in account_data] unknown_accounts = set(accounts).difference(self.chain_manager.accounts.get(blockchain)) if len(unknown_accounts) != 0: raise InputError( f'Tried to edit unknown {blockchain.value} ' f'accounts {",".join(unknown_accounts)}', ) self.data.db.ensure_tags_exist( given_data=account_data, action='editing', data_type='blockchain accounts', ) # Finally edit the accounts self.data.db.edit_blockchain_accounts( blockchain=blockchain, account_data=account_data, ) def remove_blockchain_accounts( self, blockchain: SupportedBlockchain, accounts: ListOfBlockchainAddresses, ) -> BlockchainBalancesUpdate: """Removes blockchain accounts Removes the accounts from the blockchain instance and queries them to get the updated balances. Also removes them from the DB May raise: - RemoteError if an external service such as Etherscan is queried and there is a problem with its query. - InputError if a non-existing account was given to remove """ balances_update = self.chain_manager.remove_blockchain_accounts( blockchain=blockchain, accounts=accounts, ) eth_addresses: List[ChecksumEthAddress] = cast(List[ChecksumEthAddress], accounts) if blockchain == SupportedBlockchain.ETHEREUM else [] # noqa: E501 with self.eth_transactions.wait_until_no_query_for(eth_addresses): self.data.db.remove_blockchain_accounts(blockchain, accounts) return balances_update def get_history_query_status(self) -> Dict[str, str]: if self.events_historian.progress < FVal('100'): processing_state = self.events_historian.processing_state_name progress = self.events_historian.progress / 2 elif self.accountant.first_processed_timestamp == -1: processing_state = 'Processing all retrieved historical events' progress = FVal(50) else: processing_state = 'Processing all retrieved historical events' # start_ts is min of the query start or the first action timestamp since action # processing can start well before query start to calculate cost basis start_ts = min( self.accountant.query_start_ts, self.accountant.first_processed_timestamp, ) diff = self.accountant.query_end_ts - start_ts progress = 50 + 100 * ( FVal(self.accountant.currently_processing_timestamp - start_ts) / FVal(diff) / 2) return {'processing_state': str(processing_state), 'total_progress': str(progress)} def process_history( self, start_ts: Timestamp, end_ts: Timestamp, ) -> Tuple[int, str]: error_or_empty, events = self.events_historian.get_history( start_ts=start_ts, end_ts=end_ts, has_premium=self.premium is not None, ) report_id = self.accountant.process_history( start_ts=start_ts, end_ts=end_ts, events=events, ) return report_id, error_or_empty def query_balances( self, requested_save_data: bool = False, save_despite_errors: bool = False, timestamp: Timestamp = None, ignore_cache: bool = False, ) -> Dict[str, Any]: """Query all balances rotkehlchen can see. If requested_save_data is True then the data are always saved in the DB, if it is False then data are saved if self.data.should_save_balances() is True. If save_despite_errors is True then even if there is any error the snapshot will be saved. If timestamp is None then the current timestamp is used. If a timestamp is given then that is the time that the balances are going to be saved in the DB If ignore_cache is True then all underlying calls that have a cache ignore it Returns a dictionary with the queried balances. """ log.info( 'query_balances called', requested_save_data=requested_save_data, save_despite_errors=save_despite_errors, ) balances: Dict[str, Dict[Asset, Balance]] = {} problem_free = True for exchange in self.exchange_manager.iterate_exchanges(): exchange_balances, error_msg = exchange.query_balances(ignore_cache=ignore_cache) # If we got an error, disregard that exchange but make sure we don't save data if not isinstance(exchange_balances, dict): problem_free = False self.msg_aggregator.add_message( message_type=WSMessageType.BALANCE_SNAPSHOT_ERROR, data={'location': exchange.name, 'error': error_msg}, ) else: location_str = str(exchange.location) if location_str not in balances: balances[location_str] = exchange_balances else: # multiple exchange of same type. Combine balances balances[location_str] = combine_dicts( balances[location_str], exchange_balances, ) liabilities: Dict[Asset, Balance] try: blockchain_result = self.chain_manager.query_balances( blockchain=None, force_token_detection=ignore_cache, ignore_cache=ignore_cache, ) if len(blockchain_result.totals.assets) != 0: balances[str(Location.BLOCKCHAIN)] = blockchain_result.totals.assets liabilities = blockchain_result.totals.liabilities except (RemoteError, EthSyncError) as e: problem_free = False liabilities = {} log.error(f'Querying blockchain balances failed due to: {str(e)}') self.msg_aggregator.add_message( message_type=WSMessageType.BALANCE_SNAPSHOT_ERROR, data={'location': 'blockchain balances query', 'error': str(e)}, ) manually_tracked_liabilities = get_manually_tracked_balances( db=self.data.db, balance_type=BalanceType.LIABILITY, ) manual_liabilities_as_dict: DefaultDict[Asset, Balance] = defaultdict(Balance) for manual_liability in manually_tracked_liabilities: manual_liabilities_as_dict[manual_liability.asset] += manual_liability.value liabilities = combine_dicts(liabilities, manual_liabilities_as_dict) # retrieve loopring balances if module is activated if self.chain_manager.get_module('loopring'): try: loopring_balances = self.chain_manager.get_loopring_balances() except RemoteError as e: problem_free = False self.msg_aggregator.add_message( message_type=WSMessageType.BALANCE_SNAPSHOT_ERROR, data={'location': 'loopring', 'error': str(e)}, ) else: if len(loopring_balances) != 0: balances[str(Location.LOOPRING)] = loopring_balances # retrieve nft balances if module is activated nfts = self.chain_manager.get_module('nfts') if nfts is not None: try: nft_mapping = nfts.get_balances( addresses=self.chain_manager.queried_addresses_for_module('nfts'), return_zero_values=False, ignore_cache=False, ) except RemoteError as e: log.error( f'At balance snapshot NFT balances query failed due to {str(e)}. Error ' f'is ignored and balance snapshot will still be saved.', ) else: if len(nft_mapping) != 0: if str(Location.BLOCKCHAIN) not in balances: balances[str(Location.BLOCKCHAIN)] = {} for _, nft_balances in nft_mapping.items(): for balance_entry in nft_balances: balances[str(Location.BLOCKCHAIN)][Asset( balance_entry['id'])] = Balance( amount=FVal(1), usd_value=balance_entry['usd_price'], ) balances = account_for_manually_tracked_asset_balances(db=self.data.db, balances=balances) # Calculate usd totals assets_total_balance: DefaultDict[Asset, Balance] = defaultdict(Balance) total_usd_per_location: Dict[str, FVal] = {} for location, asset_balance in balances.items(): total_usd_per_location[location] = ZERO for asset, balance in asset_balance.items(): assets_total_balance[asset] += balance total_usd_per_location[location] += balance.usd_value net_usd = sum((balance.usd_value for _, balance in assets_total_balance.items()), ZERO) liabilities_total_usd = sum((liability.usd_value for _, liability in liabilities.items()), ZERO) # noqa: E501 net_usd -= liabilities_total_usd # Calculate location stats location_stats: Dict[str, Any] = {} for location, total_usd in total_usd_per_location.items(): if location == str(Location.BLOCKCHAIN): total_usd -= liabilities_total_usd percentage = (total_usd / net_usd).to_percentage() if net_usd != ZERO else '0%' location_stats[location] = { 'usd_value': total_usd, 'percentage_of_net_value': percentage, } # Calculate 'percentage_of_net_value' per asset assets_total_balance_as_dict: Dict[Asset, Dict[str, Any]] = { asset: balance.to_dict() for asset, balance in assets_total_balance.items() } liabilities_as_dict: Dict[Asset, Dict[str, Any]] = { asset: balance.to_dict() for asset, balance in liabilities.items() } for asset, balance_dict in assets_total_balance_as_dict.items(): percentage = (balance_dict['usd_value'] / net_usd).to_percentage() if net_usd != ZERO else '0%' # noqa: E501 assets_total_balance_as_dict[asset]['percentage_of_net_value'] = percentage for asset, balance_dict in liabilities_as_dict.items(): percentage = (balance_dict['usd_value'] / net_usd).to_percentage() if net_usd != ZERO else '0%' # noqa: E501 liabilities_as_dict[asset]['percentage_of_net_value'] = percentage # Compose balances response result_dict = { 'assets': assets_total_balance_as_dict, 'liabilities': liabilities_as_dict, 'location': location_stats, 'net_usd': net_usd, } allowed_to_save = requested_save_data or self.data.db.should_save_balances() if (problem_free or save_despite_errors) and allowed_to_save: if not timestamp: timestamp = Timestamp(int(time.time())) self.data.db.save_balances_data(data=result_dict, timestamp=timestamp) log.debug('query_balances data saved') else: log.debug( 'query_balances data not saved', allowed_to_save=allowed_to_save, problem_free=problem_free, save_despite_errors=save_despite_errors, ) return result_dict def set_settings(self, settings: ModifiableDBSettings) -> Tuple[bool, str]: """Tries to set new settings. Returns True in success or False with message if error""" if settings.eth_rpc_endpoint is not None: result, msg = self.chain_manager.set_eth_rpc_endpoint(settings.eth_rpc_endpoint) if not result: return False, msg if settings.ksm_rpc_endpoint is not None: result, msg = self.chain_manager.set_ksm_rpc_endpoint(settings.ksm_rpc_endpoint) if not result: return False, msg if settings.dot_rpc_endpoint is not None: result, msg = self.chain_manager.set_dot_rpc_endpoint(settings.dot_rpc_endpoint) if not result: return False, msg if settings.btc_derivation_gap_limit is not None: self.chain_manager.btc_derivation_gap_limit = settings.btc_derivation_gap_limit if settings.current_price_oracles is not None: Inquirer().set_oracles_order(settings.current_price_oracles) if settings.historical_price_oracles is not None: PriceHistorian().set_oracles_order(settings.historical_price_oracles) if settings.active_modules is not None: self.chain_manager.process_new_modules_list(settings.active_modules) self.data.db.set_settings(settings) return True, '' def get_settings(self) -> DBSettings: """Returns the db settings with a check whether premium is active or not""" db_settings = self.data.db.get_settings(have_premium=self.premium is not None) return db_settings def setup_exchange( self, name: str, location: Location, api_key: ApiKey, api_secret: ApiSecret, passphrase: Optional[str] = None, kraken_account_type: Optional['KrakenAccountType'] = None, PAIRS: Optional[List[str]] = None, # noqa: N803 ftx_subaccount: Optional[str] = None, ) -> Tuple[bool, str]: """ Setup a new exchange with an api key and an api secret and optionally a passphrase """ is_success, msg = self.exchange_manager.setup_exchange( name=name, location=location, api_key=api_key, api_secret=api_secret, database=self.data.db, passphrase=passphrase, ftx_subaccount=ftx_subaccount, PAIRS=PAIRS, ) if is_success: # Success, save the result in the DB self.data.db.add_exchange( name=name, location=location, api_key=api_key, api_secret=api_secret, passphrase=passphrase, kraken_account_type=kraken_account_type, PAIRS=PAIRS, ftx_subaccount=ftx_subaccount, ) return is_success, msg def remove_exchange(self, name: str, location: Location) -> Tuple[bool, str]: if self.exchange_manager.get_exchange(name=name, location=location) is None: return False, f'{str(location)} exchange {name} is not registered' self.exchange_manager.delete_exchange(name=name, location=location) # Success, remove it also from the DB self.data.db.remove_exchange(name=name, location=location) if self.exchange_manager.connected_exchanges.get(location) is None: # was last exchange of the location type. Delete used query ranges self.data.db.delete_used_query_range_for_exchange(location) return True, '' def query_periodic_data(self) -> Dict[str, Union[bool, Timestamp]]: """Query for frequently changing data""" result: Dict[str, Union[bool, Timestamp]] = {} if self.user_is_logged_in: result['last_balance_save'] = self.data.db.get_last_balance_save_time() result['eth_node_connection'] = self.chain_manager.ethereum.web3_mapping.get(NodeName.OWN, None) is not None # noqa : E501 result['last_data_upload_ts'] = Timestamp(self.premium_sync_manager.last_data_upload_ts) # noqa : E501 return result def shutdown(self) -> None: self.logout() self.shutdown_event.set() def _connect_ksm_manager_on_startup(self) -> bool: return bool(self.data.db.get_blockchain_accounts().ksm) def _connect_dot_manager_on_startup(self) -> bool: return bool(self.data.db.get_blockchain_accounts().dot) def create_oracle_cache( self, oracle: HistoricalPriceOracle, from_asset: Asset, to_asset: Asset, purge_old: bool, ) -> None: """Creates the cache of the given asset pair from the start of time until now for the given oracle. if purge_old is true then any old cache in memory and in a file is purged May raise: - RemoteError if there is a problem reaching the oracle - UnsupportedAsset if any of the two assets is not supported by the oracle """ if oracle != HistoricalPriceOracle.CRYPTOCOMPARE: return # only for cryptocompare for now self.cryptocompare.create_cache(from_asset, to_asset, purge_old)
the-stack_0_24284
from pyravendb.tests.test_base import TestBase from datetime import datetime, timedelta from pyravendb.tools.utils import Utils import unittest class Time(object): def __init__(self, td, dt): self.td = td self.dt = dt class Item(object): def __init__(self, val): self.val = val class TestConversion(TestBase): def setUp(self): super(TestConversion, self).setUp() with self.store.open_session() as session: session.store(Time(Utils.timedelta_to_str(timedelta(days=20, minutes=23, seconds=59, milliseconds=254)), Utils.datetime_to_string(datetime.now())), "times/3") session.store(Time(Utils.timedelta_to_str(timedelta(minutes=23, seconds=59, milliseconds=254)), Utils.datetime_to_string(datetime.now())), "times/4") session.save_changes() def tearDown(self): super(TestConversion, self).tearDown() self.delete_all_topology_files() def test_before_store(self): def update_item(session, doc_id, entity): entity.val = 2 with self.store.open_session() as session: session.events.before_store = update_item session.store(Item(1), "item/1") session.save_changes() with self.store.open_session() as session: time = session.load("item/1", object_type=Item) self.assertEqual(2, time.val) def test_load_timedelta_and_datetime(self): with self.store.open_session() as session: times = session.load("times/3", object_type=Time, nested_object_types={"td": timedelta, "dt": datetime}) self.assertTrue(isinstance(times.td, timedelta) and isinstance(times.dt, datetime)) def test_store_conversion(self): with self.store.open_session() as session: times = Time(timedelta(days=1, hours=1), datetime.now()) session.store(times) key = session.advanced.get_document_id(times) session.save_changes() with self.store.open_session() as session: times = session.load(key, object_type=Time, nested_object_types={"td": timedelta, "dt": datetime}) self.assertTrue(isinstance(times.td, timedelta) and isinstance(times.dt, datetime)) def test_query_conversion(self): with self.store.open_session() as session: query = list(session.query(object_type=Time, nested_object_types={"td": timedelta, "dt": datetime}). where_greater_than_or_equal("td", timedelta(days=9))) not_working = False if len(query) < 1: not_working = True for item in query: if not isinstance(item.td, timedelta): not_working = True self.assertFalse(not_working) self.assertEqual(len(query), 1) if __name__ == "__main__": unittest.main()
the-stack_0_24285
import numpy as np import random import os from collections import namedtuple import abc import torch from torch import optim from ..core import SingleTrainer, AbstractTrainer, AbstractAgent from ..common.pytorch import pytorch_call from ..common.torchsummary import minimal_summary from .replay import ReplayBuffer from .util import qlearning, polyak_update, double_qlearning class DeepQTrainer(SingleTrainer): def __init__(self, name, env_kwargs, model_kwargs): super().__init__(env_kwargs = env_kwargs, model_kwargs = model_kwargs) self.name = name self.batch_size = 32 self.gamma = 0.99 self.epsilon_start = 1.0 self.epsilon_end = 0.02 self.update_period = 500 # Double DQN update period self.annealing_steps = 200000 self.preprocess_steps = 100000 self.replay_size = 50000 self.learning_rate = 0.001 self.model_kwargs = model_kwargs self.max_episode_steps = None self.double_dqn = True self.allow_gpu = True self._global_t = 0 self._state = None self._episode_length = 0 self._episode_reward = 0.0 self._local_timestep = 0 self._replay = None @abc.abstractclassmethod def create_model(self, **kwargs): pass def show_summary(self, model): batch_shape = (self.batch_size,) shapes = (batch_shape + self.env.observation_space.shape, batch_shape, batch_shape, batch_shape + self.env.observation_space.shape, batch_shape) minimal_summary(model, shapes) def _build_train(self, model, main_device): optimizer = optim.Adam(model.parameters(), lr = self.learning_rate) update_params = lambda: None if self.double_dqn: target_net = self.create_model(**self._model_kwargs) target_net = target_net.to(main_device) update_params = lambda: polyak_update(1.0, target_net, model) def compute_loss(observations, actions, rewards, next_observations, terminals): with torch.no_grad(): q_next_online_net = model(next_observations) if self.double_dqn: q_select = target_net(next_observations) q = model(observations) pcontinues = (1.0 - terminals) * self.gamma if self.double_dqn: loss = double_qlearning(q, actions, rewards, pcontinues, q_next_online_net, q_select) else: loss = qlearning(q, actions, rewards, pcontinues, q_next_online_net) return loss @pytorch_call(main_device) def train(*args): loss = compute_loss(*args) optimizer.zero_grad() loss.backward() optimizer.step() return loss.item() self._update_parameters = update_params return train def _build_graph(self, allow_gpu, **model_kwargs): model = self.create_model(**model_kwargs) # Show summary self.show_summary(model) cuda_devices = torch.cuda.device_count() if cuda_devices == 0 or not allow_gpu: print('Using CPU only') main_device = torch.device('cpu') get_state_dict = lambda: model.state_dict() else: print('Using single GPU') main_device = torch.device('cuda') model = model.to(main_device) get_state_dict = lambda: model.state_dict() model.train() # Build train and act functions self._train = self._build_train(model, main_device) @pytorch_call(main_device) def act(observations): observations = observations with torch.no_grad(): q = model(observations) actions = torch.argmax(q, -1) return actions.item() @pytorch_call(main_device) def q(observations): observations = observations with torch.no_grad(): q = model(observations) return q.detach() self._act = act self._q = q self._save = lambda path: torch.save(get_state_dict(), os.path.join(path, 'weights.pth')) self.main_device = main_device return model def save(self, path): super().save(path) self._save(path) def _initialize(self, **model_kwargs): self._replay = ReplayBuffer(self.replay_size) model = self._build_graph(self.allow_gpu, **model_kwargs) return model @property def epsilon(self): start_eps = self.epsilon_start end_eps = self.epsilon_end if self._global_t < self.preprocess_steps: return 1.0 return max(start_eps - (start_eps - end_eps) * ((self._global_t - self.preprocess_steps) / self.annealing_steps), end_eps) def step(self, state, mode = 'validation'): if random.random() < self.epsilon: return random.randrange(self.env.action_space.n) return self.act(state) def on_optimization_done(self, stats): ''' Callback called after the optimization step ''' pass def act(self, state): return self._act(state[None]) def _optimize(self): state, action, reward, next_state, done = self._replay.sample(self.batch_size) td_losses = self._train(state, action, reward, next_state, done) loss = np.mean(np.abs(td_losses)) if self._global_t % self.update_period == 0: self._update_parameters() return loss def process(self, mode = 'train', **kwargs): episode_end = None if self._state is None: self._state = self.env.reset() old_state = self._state action = self.step(self._state, mode) self._state, reward, done, env_props = self.env.step(action) if mode == 'train': self._replay.add(old_state, action, reward, self._state, done) self._episode_length += 1 self._episode_reward += reward if done or (self.max_episode_steps is not None and self._episode_length >= self.max_episode_steps): episode_end = (self._episode_length, self._episode_reward) self._episode_length = 0 self._episode_reward = 0.0 self._state = self.env.reset() stats = dict() if self._global_t >= self.preprocess_steps and mode == 'train': loss = self._optimize() stats = dict(loss = loss, epsilon = self.epsilon) self.on_optimization_done(stats) if 'win' in env_props: stats['win'] = env_props['win'] if mode == 'train': self._global_t += 1 return (1, episode_end, stats) class DeepQAgent(AbstractAgent): def __init__(self, checkpoint_dir = None, name = 'deepq'): super().__init__(name) if checkpoint_dir is None: from ..configuration import configuration checkpoint_dir = configuration.get('models_path') self._load(checkpoint_dir) @abc.abstractclassmethod def create_model(self, **model_kwargs): pass def _load(self, checkpoint_dir): path = os.path.join(checkpoint_dir, self.name, 'weights.pth') self.model = self.create_model() self.model.load_state_dict(torch.load(path, map_location=torch.device('cpu'))) self.model.eval() def wrap_env(self, env): return env def q(self, state): with torch.no_grad(): observation = torch.from_numpy(state) return self.model(observation).numpy() def act(self, state): with torch.no_grad(): observation = torch.from_numpy(state) action = torch.argmax(self.model(observation), dim = -1).squeeze(0) return action.item()
the-stack_0_24286
import frappe def get_context(context): print(f"\n\n\n\n{frappe.form_dict}\n\n\n\n") try: docname = frappe.form_dict.docnam context.property = frappe.get_doc("Property", frappe.form_dict.docname) context.agent = frappe.get_doc("Agent", context.property.agent) related_properties = frappe.db.sql(f""" SELECT creation, name, property_name, status, address, grand_total, image FROM `tabProperty` WHERE property_type='{context.property.property_type}' AND name != '{context.property.name}' ORDER BY creation DESC LIMIT 3; """, as_dict=True) context.related_properties = related_properties except Exception as e: frappe.local.flags.redirect_location = '/404' raise frappe.Redirect print(frappe.session) return context
the-stack_0_24287
from utils import add_gaussian_noise, symetrize from bm3d_1st_step import bm3d_1st_step from bm3d_2nd_step import bm3d_2nd_step from psnr import compute_psnr def run_bm3d(noisy_im, sigma, n_H, k_H, N_H, p_H, tauMatch_H, useSD_H, tau_2D_H, lambda3D_H, n_W, k_W, N_W, p_W, tauMatch_W, useSD_W, tau_2D_W): k_H = 8 if (tau_2D_H == 'BIOR' or sigma < 40.) else 12 k_W = 8 if (tau_2D_W == 'BIOR' or sigma < 40.) else 12 noisy_im_p = symetrize(noisy_im, n_H) img_basic = bm3d_1st_step(sigma, noisy_im_p, n_H, k_H, N_H, p_H, lambda3D_H, tauMatch_H, useSD_H, tau_2D_H) img_basic = img_basic[n_H: -n_H, n_H: -n_H] assert not np.any(np.isnan(img_basic)) img_basic_p = symetrize(img_basic, n_W) noisy_im_p = symetrize(noisy_im, n_W) img_denoised = bm3d_2nd_step(sigma, noisy_im_p, img_basic_p, n_W, k_W, N_W, p_W, tauMatch_W, useSD_W, tau_2D_W) img_denoised = img_denoised[n_W: -n_W, n_W: -n_W] return img_basic, img_denoised if __name__ == '__main__': import os import cv2 import numpy as np # <hyper parameter> ------------------------------------------------------------------------------- n_H = 16 k_H = 8 N_H = 16 p_H = 3 lambda3D_H = 2.7 # ! Threshold for Hard Thresholding useSD_H = False tau_2D_H = 'BIOR' n_W = 16 k_W = 8 N_W = 32 p_W = 3 useSD_W = True tau_2D_W = 'DCT' # <\ hyper parameter> ----------------------------------------------------------------------------- im_dir = 'test_data/image' save_dir = 'temp_test_result' os.makedirs(save_dir, exist_ok=True) # for im_name in os.listdir(im_dir): for im_name in ['Cameraman.png',]: # sigma_list = [2, 5, 10, 20, 30, 40, 60, 80, 100] sigma_list = [20] for sigma in sigma_list: print(im_name, ' ', sigma) tauMatch_H = 2500 if sigma < 35 else 5000 # ! threshold determinates similarity between patches tauMatch_W = 400 if sigma < 35 else 3500 # ! threshold determinates similarity between patches noisy_dir = 'test_data/sigma' + str(sigma) im_path = os.path.join(im_dir, im_name) im = cv2.imread(im_path, cv2.IMREAD_GRAYSCALE) noisy_im_path = os.path.join(noisy_dir, im_name) noisy_im = cv2.imread(noisy_im_path, cv2.IMREAD_GRAYSCALE) im1, im2 = run_bm3d(noisy_im, sigma, n_H, k_H, N_H, p_H, tauMatch_H, useSD_H, tau_2D_H, lambda3D_H, n_W, k_W, N_W, p_W, tauMatch_W, useSD_W, tau_2D_W) psnr_1st = compute_psnr(im, im1) psnr_2nd = compute_psnr(im, im2) im1 = (np.clip(im1, 0, 255)).astype(np.uint8) im2 = (np.clip(im2, 0, 255)).astype(np.uint8) save_name = im_name[:-4] + '_s' + str(sigma) + '_py_1st_P' + '%.4f' % psnr_1st + '.png' cv2.imwrite(os.path.join(save_dir, save_name), im1) save_name = im_name[:-4] + '_s' + str(sigma) + '_py_2nd_P' + '%.4f' % psnr_2nd + '.png' cv2.imwrite(os.path.join(save_dir, save_name), im2)
the-stack_0_24288
# coding: utf-8 import argparse import tempfile import json import numpy as np import pytest import torch from espnet.asr.pytorch_backend.asr_init import load_trained_model import espnet.lm.pytorch_backend.extlm as extlm_pytorch from espnet.nets.beam_search_transducer import BeamSearchTransducer from espnet.nets.pytorch_backend.e2e_asr_transducer import E2E import espnet.nets.pytorch_backend.lm.default as lm_pytorch from espnet.nets.pytorch_backend.nets_utils import pad_list def get_default_train_args(**kwargs): train_defaults = dict( etype="vggblstmp", elayers=1, subsample="1_2_2_1_1", eunits=4, eprojs=4, dtype="lstm", dlayers=1, dunits=4, dec_embed_dim=4, dropout_rate=0.0, dropout_rate_decoder=0.0, dropout_rate_embed_decoder=0.0, joint_dim=2, joint_activation_type="tanh", transducer_loss_weight=1.0, use_ctc_loss=False, ctc_loss_weight=0.0, ctc_loss_dropout_rate=0.0, use_lm_loss=False, lm_loss_weight=0.0, use_aux_transducer_loss=False, aux_transducer_loss_weight=0.0, aux_transducer_loss_enc_output_layers=[], use_symm_kl_div_loss=False, symm_kl_div_loss_weight=0.0, char_list=["a", "b", "c", "d"], sym_space="<space>", sym_blank="<blank>", report_cer=False, report_wer=False, verbose=0, outdir=None, rnnlm=None, model_module="espnet.nets.pytorch_backend.e2e_asr_transducer:E2E", ) train_defaults.update(kwargs) return argparse.Namespace(**train_defaults) def get_default_recog_args(**kwargs): recog_defaults = dict( batchsize=0, beam_size=1, nbest=1, verbose=0, search_type="default", nstep=1, max_sym_exp=2, prefix_alpha=2, u_max=5, expansion_gamma=2, expansion_beta=0.2, score_norm_transducer=True, rnnlm=None, lm_weight=0.1, ) recog_defaults.update(kwargs) return argparse.Namespace(**recog_defaults) def get_default_scope_inputs(): idim = 15 odim = 4 ilens = [12, 8] olens = [8, 4] return idim, odim, ilens, olens def get_lm(): n_layers = 1 n_units = 4 char_list = ["<blank>", "<space>", "a", "b", "c", "d", "<eos>"] rnnlm = lm_pytorch.ClassifierWithState( lm_pytorch.RNNLM(len(char_list), n_layers, n_units, typ="lstm") ) return rnnlm def get_wordlm(): n_layers = 1 n_units = 8 char_list = ["<blank>", "<space>", "a", "b", "c", "d", "<eos>"] word_list = ["<blank>", "<unk>", "ab", "id", "ac", "bd", "<eos>"] char_dict = {x: i for i, x in enumerate(char_list)} word_dict = {x: i for i, x in enumerate(word_list)} word_rnnlm = lm_pytorch.ClassifierWithState( lm_pytorch.RNNLM(len(word_list), n_layers, n_units) ) word_rnnlm = lm_pytorch.ClassifierWithState( extlm_pytorch.LookAheadWordLM(word_rnnlm.predictor, word_dict, char_dict) ) return word_rnnlm def prepare_inputs(idim, odim, ilens, olens, is_cuda=False): np.random.seed(1) feats = [np.random.randn(ilen, idim).astype(np.float32) for ilen in ilens] labels = [np.random.randint(1, odim, olen).astype(np.int32) for olen in olens] feats_len = np.array([x.shape[0] for x in feats], dtype=np.int32) feats = pad_list([torch.from_numpy(x).float() for x in feats], 0) labels = pad_list([torch.from_numpy(y).long() for y in labels], -1) feats_len = torch.from_numpy(feats_len).long() if is_cuda: feats = feats.cuda() labels = labels.cuda() feats_len = feats_len.cuda() return feats, feats_len, labels @pytest.mark.parametrize( "train_dic, recog_dic", [ ({}, {}), ({"eprojs": 4}, {}), ({"dlayers": 2}, {}), ({"etype": "gru"}, {}), ({"etype": "blstm"}, {}), ({"etype": "blstmp", "elayers": 2, "eprojs": 4}, {}), ({"etype": "vgggru"}, {}), ({"etype": "vggbru"}, {}), ({"etype": "vgggrup", "elayers": 2, "eprojs": 4}, {}), ({"dtype": "gru"}, {}), ({"dtype": "bgrup"}, {}), ({"dtype": "gru", "dlayers": 2}, {}), ({"joint-activation-type": "relu"}, {}), ({"joint-activation-type": "swish"}, {}), ({}, {"score_norm_transducer": False}), ({"report_cer": True, "report_wer": True}, {}), ({}, {"nbest": 2}), ({}, {"beam_size": 1}), ({}, {"beam_size": 2}), ({}, {"beam_size": 2, "search_type": "nsc"}), ({}, {"beam_size": 2, "search_type": "nsc", "nstep": 2, "prefix_alpha": 1}), ({}, {"beam_size": 2, "search_type": "tsd"}), ({}, {"beam_size": 2, "search_type": "tsd", "max-sym-exp": 3}), ({}, {"beam_size": 2, "search_type": "alsd"}), ({}, {"beam_size": 2, "search_type": "alsd", "u_max": 10}), ({}, {"beam_size": 2, "search_type": "maes", "nstep": 2}), ( {}, { "beam_size": 2, "search_type": "default", "rnnlm": get_wordlm(), "lm_weight": 1.0, }, ), ({}, {"beam_size": 2, "search_type": "nsc", "rnnlm": get_lm()}), ({}, {"beam_size": 2, "search_type": "nsc", "rnnlm": get_wordlm()}), ({}, {"beam_size": 2, "search_type": "nsc", "nstep": 2, "rnnlm": get_lm()}), ({}, {"beam_size": 2, "search_type": "nsc", "nstep": 2, "rnnlm": get_wordlm()}), ( {}, { "beam_size": 2, "search_type": "alsd", "rnnlm": get_lm(), "lm_weight": 0.2, }, ), ( {}, { "beam_size": 2, "search_type": "alsd", "rnnlm": get_wordlm(), "lm_weight": 0.6, }, ), ({}, {"beam_size": 2, "search_type": "tsd", "rnnlm": get_lm()}), ({}, {"beam_size": 2, "search_type": "tsd", "rnnlm": get_wordlm()}), ( {}, {"beam_size": 2, "search_type": "maes", "nstep": 2, "rnnlm": get_wordlm()}, ), ], ) def test_pytorch_transducer_trainable_and_decodable(train_dic, recog_dic): idim, odim, ilens, olens = get_default_scope_inputs() train_args = get_default_train_args(**train_dic) recog_args = get_default_recog_args(**recog_dic) model = E2E(idim, odim, train_args) batch = prepare_inputs(idim, odim, ilens, olens) # to avoid huge training time, cer/wer report # is only enabled at validation steps if train_args.report_cer or train_args.report_wer: model.training = False loss = model(*batch) loss.backward() beam_search = BeamSearchTransducer( decoder=model.dec, joint_network=model.transducer_tasks.joint_network, beam_size=recog_args.beam_size, lm=recog_args.rnnlm, lm_weight=recog_args.lm_weight, search_type=recog_args.search_type, max_sym_exp=recog_args.max_sym_exp, u_max=recog_args.u_max, nstep=recog_args.nstep, prefix_alpha=recog_args.prefix_alpha, score_norm=recog_args.score_norm_transducer, ) with torch.no_grad(): in_data = np.random.randn(20, idim) model.recognize(in_data, beam_search) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="multi gpu required") @pytest.mark.parametrize( "train_dic", [ {"report_cer": True, "report_wer": True}, ], ) @pytest.mark.execution_timeout(3.2) def test_pytorch_multi_gpu_trainable(train_dic): idim, odim, ilens, olens = get_default_scope_inputs() train_args = get_default_train_args(**train_dic) ngpu = 2 device_ids = list(range(ngpu)) model = E2E(idim, odim, train_args) model = torch.nn.DataParallel(model, device_ids) model.cuda() batch = prepare_inputs(idim, odim, ilens, olens, is_cuda=True) loss = 1.0 / ngpu * model(*batch) loss.backward(loss.new_ones(ngpu)) def test_calculate_plot_attention(): idim, odim, ilens, olens = get_default_scope_inputs() train_args = get_default_train_args() model = E2E(idim, odim, train_args) batch = prepare_inputs(idim, odim, ilens, olens, is_cuda=False) assert model.calculate_all_attentions(*batch) == [] @pytest.mark.parametrize( "train_dic", [ { "elayers": 3, "use_aux_transducer_loss": True, "aux_transducer_loss_enc_output_layers": [1], }, { "elayers": 2, "use_ctc_loss": True, "ctc_loss_weight": 0.5, "ctc_loss_dropout_rate": 0.1, }, { "etype": "vggblstm", "elayers": 3, "use_aux_transducer_loss": True, "aux_transducer_loss": True, "use_symm_kl_div_loss": True, "symm_kl_div_loss_weight": 0.5, "aux_transducer_loss_enc_output_layers": [0, 1], }, {"dlayers": 2, "use_lm_loss": True, "lm_loss_weight": 0.5}, ], ) def test_auxiliary_task(train_dic): idim, odim, ilens, olens = get_default_scope_inputs() train_args = get_default_train_args(**train_dic) recog_args = get_default_recog_args() model = E2E(idim, odim, train_args) batch = prepare_inputs(idim, odim, ilens, olens) loss = model(*batch) loss.backward() beam_search = BeamSearchTransducer( decoder=model.dec, joint_network=model.transducer_tasks.joint_network, beam_size=recog_args.beam_size, lm=recog_args.rnnlm, lm_weight=recog_args.lm_weight, search_type=recog_args.search_type, max_sym_exp=recog_args.max_sym_exp, u_max=recog_args.u_max, nstep=recog_args.nstep, prefix_alpha=recog_args.prefix_alpha, score_norm=recog_args.score_norm_transducer, ) tmpdir = tempfile.mkdtemp(prefix="tmp_", dir="/tmp") torch.save(model.state_dict(), tmpdir + "/model.dummy.best") with open(tmpdir + "/model.json", "wb") as f: f.write( json.dumps( (idim, odim, vars(train_args)), indent=4, ensure_ascii=False, sort_keys=True, ).encode("utf_8") ) with torch.no_grad(): in_data = np.random.randn(20, idim) model, _ = load_trained_model(tmpdir + "/model.dummy.best", training=False) model.recognize(in_data, beam_search) def test_invalid_aux_transducer_loss_enc_layers(): idim, odim, ilens, olens = get_default_scope_inputs() train_args = get_default_train_args(use_aux_transducer_loss=True) with pytest.raises(ValueError): E2E(idim, odim, train_args) train_args = get_default_train_args( use_aux_transducer_loss=True, aux_transducer_loss_enc_output_layers="foo" ) with pytest.raises(ValueError): E2E(idim, odim, train_args) train_args = get_default_train_args( use_aux_transducer_loss=True, aux_transducer_loss_enc_output_layers=[0, 4] ) with pytest.raises(ValueError): E2E(idim, odim, train_args) train_args = get_default_train_args( use_aux_transducer_loss=True, use_symm_kl_div_loss=True, aux_transducer_loss_enc_output_layers=[0], elayers=3, etype="blstmp", subsample="1_2_1", ) with pytest.raises(ValueError): E2E(idim, odim, train_args)
the-stack_0_24289
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from ..ops import emulate_int class IntEmbedding(nn.Module): """ Quantized counterpart of the nn.Embedding module that applies QuantNoise during training. Args: - num_embeddings: number of tokens - embedding_dim: embedding dimension - p: amount of noise to inject (0 = no quantization, 1 = quantize all the weights) - bits: number of bits - method: choose among {"tensor", "histogram", "channel"} - update_step: recompute scale and zero_point every update_steps iterations Remarks: - We use the straight-through estimator so that the gradients back-propagate nicely in the network, this is implemented with the detach() trick - Parameters scale and zero_point are recomputed every update_step forward pass to reduce the overhead - At test time, the weights are fully quantized """ def __init__( self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, p=0, update_step=1000, bits=8, method="histogram", ): super(IntEmbedding, self).__init__() self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim if padding_idx is not None: if padding_idx > 0: assert ( padding_idx < self.num_embeddings ), "Padding_idx must be within num_embeddings" elif padding_idx < 0: assert ( padding_idx >= -self.num_embeddings ), "Padding_idx must be within num_embeddings" padding_idx = self.num_embeddings + padding_idx self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq if _weight is None: self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) self.reset_parameters() else: assert list(_weight.shape) == [ num_embeddings, embedding_dim, ], "Shape of weight does not match num_embeddings and embedding_dim" self.weight = nn.Parameter(_weight) self.sparse = sparse # quantization parameters self.p = p self.bits = bits self.method = method self.update_step = update_step self.counter = 0 def reset_parameters(self): nn.init.normal_(self.weight) if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input): # train with QuantNoise and evaluate the fully quantized network p = self.p if self.training else 1 # update parameters every 1000 iterations if self.counter % self.update_step == 0: self.scale = None self.zero_point = None self.counter += 1 # quantize weight weight_quantized, self.scale, self.zero_point = emulate_int( self.weight.detach(), bits=self.bits, method=self.method, scale=self.scale, zero_point=self.zero_point, ) # mask to apply noise mask = torch.zeros_like(self.weight) mask.bernoulli_(1 - p) noise = (weight_quantized - self.weight).masked_fill(mask.bool(), 0) # using straight-through estimator (STE) clamp_low = -self.scale * self.zero_point clamp_high = self.scale * (2 ** self.bits - 1 - self.zero_point) weight = ( torch.clamp(self.weight, clamp_low.item(), clamp_high.item()) + noise.detach() ) # return output output = F.embedding( input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return output def extra_repr(self): s = "{num_embeddings}, {embedding_dim}" if self.padding_idx is not None: s += ", padding_idx={padding_idx}" if self.max_norm is not None: s += ", max_norm={max_norm}" if self.norm_type != 2: s += ", norm_type={norm_type}" if self.scale_grad_by_freq is not False: s += ", scale_grad_by_freq={scale_grad_by_freq}" if self.sparse is not False: s += ", sparse=True" s += "quant_noise={p}, bits={bits}, method={method}" return s.format(**self.__dict__)
the-stack_0_24290
from functools import partial from typing import Callable, Optional, List from mypy import message_registry from mypy.nodes import Expression, StrExpr, IntExpr, DictExpr, UnaryExpr from mypy.plugin import ( Plugin, FunctionContext, MethodContext, MethodSigContext, AttributeContext, ClassDefContext, CheckerPluginInterface, ) from mypy.plugins.common import try_getting_str_literals from mypy.types import ( FunctionLike, Type, Instance, AnyType, TypeOfAny, CallableType, NoneType, TypedDictType, TypeVarType, TPDICT_FB_NAMES, get_proper_type, LiteralType, TupleType ) from mypy.subtypes import is_subtype from mypy.typeops import make_simplified_union from mypy.checkexpr import is_literal_type_like from mypy.checker import detach_callable class DefaultPlugin(Plugin): """Type checker plugin that is enabled by default.""" def get_function_hook(self, fullname: str ) -> Optional[Callable[[FunctionContext], Type]]: from mypy.plugins import ctypes, singledispatch if fullname in ('contextlib.contextmanager', 'contextlib.asynccontextmanager'): return contextmanager_callback elif fullname == 'builtins.open' and self.python_version[0] == 3: return open_callback elif fullname == 'ctypes.Array': return ctypes.array_constructor_callback elif fullname == 'functools.singledispatch': return singledispatch.create_singledispatch_function_callback return None def get_method_signature_hook(self, fullname: str ) -> Optional[Callable[[MethodSigContext], FunctionLike]]: from mypy.plugins import ctypes, singledispatch if fullname == 'typing.Mapping.get': return typed_dict_get_signature_callback elif fullname in set(n + '.setdefault' for n in TPDICT_FB_NAMES): return typed_dict_setdefault_signature_callback elif fullname in set(n + '.pop' for n in TPDICT_FB_NAMES): return typed_dict_pop_signature_callback elif fullname in set(n + '.update' for n in TPDICT_FB_NAMES): return typed_dict_update_signature_callback elif fullname in set(n + '.__delitem__' for n in TPDICT_FB_NAMES): return typed_dict_delitem_signature_callback elif fullname == 'ctypes.Array.__setitem__': return ctypes.array_setitem_callback elif fullname == singledispatch.SINGLEDISPATCH_CALLABLE_CALL_METHOD: return singledispatch.call_singledispatch_function_callback return None def get_method_hook(self, fullname: str ) -> Optional[Callable[[MethodContext], Type]]: from mypy.plugins import ctypes, singledispatch if fullname == 'typing.Mapping.get': return typed_dict_get_callback elif fullname == 'builtins.int.__pow__': return int_pow_callback elif fullname == 'builtins.int.__neg__': return int_neg_callback elif fullname in ('builtins.tuple.__mul__', 'builtins.tuple.__rmul__'): return tuple_mul_callback elif fullname in set(n + '.setdefault' for n in TPDICT_FB_NAMES): return typed_dict_setdefault_callback elif fullname in set(n + '.pop' for n in TPDICT_FB_NAMES): return typed_dict_pop_callback elif fullname in set(n + '.__delitem__' for n in TPDICT_FB_NAMES): return typed_dict_delitem_callback elif fullname == 'ctypes.Array.__getitem__': return ctypes.array_getitem_callback elif fullname == 'ctypes.Array.__iter__': return ctypes.array_iter_callback elif fullname == 'pathlib.Path.open': return path_open_callback elif fullname == singledispatch.SINGLEDISPATCH_REGISTER_METHOD: return singledispatch.singledispatch_register_callback elif fullname == singledispatch.REGISTER_CALLABLE_CALL_METHOD: return singledispatch.call_singledispatch_function_after_register_argument return None def get_attribute_hook(self, fullname: str ) -> Optional[Callable[[AttributeContext], Type]]: from mypy.plugins import ctypes from mypy.plugins import enums if fullname == 'ctypes.Array.value': return ctypes.array_value_callback elif fullname == 'ctypes.Array.raw': return ctypes.array_raw_callback elif fullname in enums.ENUM_NAME_ACCESS: return enums.enum_name_callback elif fullname in enums.ENUM_VALUE_ACCESS: return enums.enum_value_callback return None def get_class_decorator_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: from mypy.plugins import attrs from mypy.plugins import dataclasses from mypy.plugins import functools if fullname in attrs.attr_class_makers: return attrs.attr_class_maker_callback elif fullname in attrs.attr_dataclass_makers: return partial( attrs.attr_class_maker_callback, auto_attribs_default=True, ) elif fullname in attrs.attr_frozen_makers: return partial( attrs.attr_class_maker_callback, auto_attribs_default=None, frozen_default=True, ) elif fullname in attrs.attr_define_makers: return partial( attrs.attr_class_maker_callback, auto_attribs_default=None, ) elif fullname in dataclasses.dataclass_makers: return dataclasses.dataclass_class_maker_callback elif fullname in functools.functools_total_ordering_makers: return functools.functools_total_ordering_maker_callback return None def open_callback(ctx: FunctionContext) -> Type: """Infer a better return type for 'open'.""" return _analyze_open_signature( arg_types=ctx.arg_types, args=ctx.args, mode_arg_index=1, default_return_type=ctx.default_return_type, api=ctx.api, ) def path_open_callback(ctx: MethodContext) -> Type: """Infer a better return type for 'pathlib.Path.open'.""" return _analyze_open_signature( arg_types=ctx.arg_types, args=ctx.args, mode_arg_index=0, default_return_type=ctx.default_return_type, api=ctx.api, ) def _analyze_open_signature(arg_types: List[List[Type]], args: List[List[Expression]], mode_arg_index: int, default_return_type: Type, api: CheckerPluginInterface, ) -> Type: """A helper for analyzing any function that has approximately the same signature as the builtin 'open(...)' function. Currently, the only thing the caller can customize is the index of the 'mode' argument. If the mode argument is omitted or is a string literal, we refine the return type to either 'TextIO' or 'BinaryIO' as appropriate. """ mode = None if not arg_types or len(arg_types[mode_arg_index]) != 1: mode = 'r' else: mode_expr = args[mode_arg_index][0] if isinstance(mode_expr, StrExpr): mode = mode_expr.value if mode is not None: assert isinstance(default_return_type, Instance) # type: ignore if 'b' in mode: return api.named_generic_type('typing.BinaryIO', []) else: return api.named_generic_type('typing.TextIO', []) return default_return_type def contextmanager_callback(ctx: FunctionContext) -> Type: """Infer a better return type for 'contextlib.contextmanager'.""" # Be defensive, just in case. if ctx.arg_types and len(ctx.arg_types[0]) == 1: arg_type = get_proper_type(ctx.arg_types[0][0]) default_return = get_proper_type(ctx.default_return_type) if (isinstance(arg_type, CallableType) and isinstance(default_return, CallableType)): # The stub signature doesn't preserve information about arguments so # add them back here. return detach_callable(default_return.copy_modified( arg_types=arg_type.arg_types, arg_kinds=arg_type.arg_kinds, arg_names=arg_type.arg_names, variables=arg_type.variables, is_ellipsis_args=arg_type.is_ellipsis_args)) return ctx.default_return_type def typed_dict_get_signature_callback(ctx: MethodSigContext) -> CallableType: """Try to infer a better signature type for TypedDict.get. This is used to get better type context for the second argument that depends on a TypedDict value type. """ signature = ctx.default_signature if (isinstance(ctx.type, TypedDictType) and len(ctx.args) == 2 and len(ctx.args[0]) == 1 and isinstance(ctx.args[0][0], StrExpr) and len(signature.arg_types) == 2 and len(signature.variables) == 1 and len(ctx.args[1]) == 1): key = ctx.args[0][0].value value_type = get_proper_type(ctx.type.items.get(key)) ret_type = signature.ret_type if value_type: default_arg = ctx.args[1][0] if (isinstance(value_type, TypedDictType) and isinstance(default_arg, DictExpr) and len(default_arg.items) == 0): # Caller has empty dict {} as default for typed dict. value_type = value_type.copy_modified(required_keys=set()) # Tweak the signature to include the value type as context. It's # only needed for type inference since there's a union with a type # variable that accepts everything. tv = signature.variables[0] assert isinstance(tv, TypeVarType) return signature.copy_modified( arg_types=[signature.arg_types[0], make_simplified_union([value_type, tv])], ret_type=ret_type) return signature def typed_dict_get_callback(ctx: MethodContext) -> Type: """Infer a precise return type for TypedDict.get with literal first argument.""" if (isinstance(ctx.type, TypedDictType) and len(ctx.arg_types) >= 1 and len(ctx.arg_types[0]) == 1): keys = try_getting_str_literals(ctx.args[0][0], ctx.arg_types[0][0]) if keys is None: return ctx.default_return_type output_types: List[Type] = [] for key in keys: value_type = get_proper_type(ctx.type.items.get(key)) if value_type is None: return ctx.default_return_type if len(ctx.arg_types) == 1: output_types.append(value_type) elif (len(ctx.arg_types) == 2 and len(ctx.arg_types[1]) == 1 and len(ctx.args[1]) == 1): default_arg = ctx.args[1][0] if (isinstance(default_arg, DictExpr) and len(default_arg.items) == 0 and isinstance(value_type, TypedDictType)): # Special case '{}' as the default for a typed dict type. output_types.append(value_type.copy_modified(required_keys=set())) else: output_types.append(value_type) output_types.append(ctx.arg_types[1][0]) if len(ctx.arg_types) == 1: output_types.append(NoneType()) return make_simplified_union(output_types) return ctx.default_return_type def typed_dict_pop_signature_callback(ctx: MethodSigContext) -> CallableType: """Try to infer a better signature type for TypedDict.pop. This is used to get better type context for the second argument that depends on a TypedDict value type. """ signature = ctx.default_signature str_type = ctx.api.named_generic_type('builtins.str', []) if (isinstance(ctx.type, TypedDictType) and len(ctx.args) == 2 and len(ctx.args[0]) == 1 and isinstance(ctx.args[0][0], StrExpr) and len(signature.arg_types) == 2 and len(signature.variables) == 1 and len(ctx.args[1]) == 1): key = ctx.args[0][0].value value_type = ctx.type.items.get(key) if value_type: # Tweak the signature to include the value type as context. It's # only needed for type inference since there's a union with a type # variable that accepts everything. tv = signature.variables[0] assert isinstance(tv, TypeVarType) typ = make_simplified_union([value_type, tv]) return signature.copy_modified( arg_types=[str_type, typ], ret_type=typ) return signature.copy_modified(arg_types=[str_type, signature.arg_types[1]]) def typed_dict_pop_callback(ctx: MethodContext) -> Type: """Type check and infer a precise return type for TypedDict.pop.""" if (isinstance(ctx.type, TypedDictType) and len(ctx.arg_types) >= 1 and len(ctx.arg_types[0]) == 1): keys = try_getting_str_literals(ctx.args[0][0], ctx.arg_types[0][0]) if keys is None: ctx.api.fail(message_registry.TYPEDDICT_KEY_MUST_BE_STRING_LITERAL, ctx.context) return AnyType(TypeOfAny.from_error) value_types = [] for key in keys: if key in ctx.type.required_keys: ctx.api.msg.typeddict_key_cannot_be_deleted(ctx.type, key, ctx.context) value_type = ctx.type.items.get(key) if value_type: value_types.append(value_type) else: ctx.api.msg.typeddict_key_not_found(ctx.type, key, ctx.context) return AnyType(TypeOfAny.from_error) if len(ctx.args[1]) == 0: return make_simplified_union(value_types) elif (len(ctx.arg_types) == 2 and len(ctx.arg_types[1]) == 1 and len(ctx.args[1]) == 1): return make_simplified_union([*value_types, ctx.arg_types[1][0]]) return ctx.default_return_type def typed_dict_setdefault_signature_callback(ctx: MethodSigContext) -> CallableType: """Try to infer a better signature type for TypedDict.setdefault. This is used to get better type context for the second argument that depends on a TypedDict value type. """ signature = ctx.default_signature str_type = ctx.api.named_generic_type('builtins.str', []) if (isinstance(ctx.type, TypedDictType) and len(ctx.args) == 2 and len(ctx.args[0]) == 1 and isinstance(ctx.args[0][0], StrExpr) and len(signature.arg_types) == 2 and len(ctx.args[1]) == 1): key = ctx.args[0][0].value value_type = ctx.type.items.get(key) if value_type: return signature.copy_modified(arg_types=[str_type, value_type]) return signature.copy_modified(arg_types=[str_type, signature.arg_types[1]]) def typed_dict_setdefault_callback(ctx: MethodContext) -> Type: """Type check TypedDict.setdefault and infer a precise return type.""" if (isinstance(ctx.type, TypedDictType) and len(ctx.arg_types) == 2 and len(ctx.arg_types[0]) == 1 and len(ctx.arg_types[1]) == 1): keys = try_getting_str_literals(ctx.args[0][0], ctx.arg_types[0][0]) if keys is None: ctx.api.fail(message_registry.TYPEDDICT_KEY_MUST_BE_STRING_LITERAL, ctx.context) return AnyType(TypeOfAny.from_error) default_type = ctx.arg_types[1][0] value_types = [] for key in keys: value_type = ctx.type.items.get(key) if value_type is None: ctx.api.msg.typeddict_key_not_found(ctx.type, key, ctx.context) return AnyType(TypeOfAny.from_error) # The signature_callback above can't always infer the right signature # (e.g. when the expression is a variable that happens to be a Literal str) # so we need to handle the check ourselves here and make sure the provided # default can be assigned to all key-value pairs we're updating. if not is_subtype(default_type, value_type): ctx.api.msg.typeddict_setdefault_arguments_inconsistent( default_type, value_type, ctx.context) return AnyType(TypeOfAny.from_error) value_types.append(value_type) return make_simplified_union(value_types) return ctx.default_return_type def typed_dict_delitem_signature_callback(ctx: MethodSigContext) -> CallableType: # Replace NoReturn as the argument type. str_type = ctx.api.named_generic_type('builtins.str', []) return ctx.default_signature.copy_modified(arg_types=[str_type]) def typed_dict_delitem_callback(ctx: MethodContext) -> Type: """Type check TypedDict.__delitem__.""" if (isinstance(ctx.type, TypedDictType) and len(ctx.arg_types) == 1 and len(ctx.arg_types[0]) == 1): keys = try_getting_str_literals(ctx.args[0][0], ctx.arg_types[0][0]) if keys is None: ctx.api.fail(message_registry.TYPEDDICT_KEY_MUST_BE_STRING_LITERAL, ctx.context) return AnyType(TypeOfAny.from_error) for key in keys: if key in ctx.type.required_keys: ctx.api.msg.typeddict_key_cannot_be_deleted(ctx.type, key, ctx.context) elif key not in ctx.type.items: ctx.api.msg.typeddict_key_not_found(ctx.type, key, ctx.context) return ctx.default_return_type def typed_dict_update_signature_callback(ctx: MethodSigContext) -> CallableType: """Try to infer a better signature type for TypedDict.update.""" signature = ctx.default_signature if (isinstance(ctx.type, TypedDictType) and len(signature.arg_types) == 1): arg_type = get_proper_type(signature.arg_types[0]) assert isinstance(arg_type, TypedDictType) arg_type = arg_type.as_anonymous() arg_type = arg_type.copy_modified(required_keys=set()) return signature.copy_modified(arg_types=[arg_type]) return signature def int_pow_callback(ctx: MethodContext) -> Type: """Infer a more precise return type for int.__pow__.""" # int.__pow__ has an optional modulo argument, # so we expect 2 argument positions if (len(ctx.arg_types) == 2 and len(ctx.arg_types[0]) == 1 and len(ctx.arg_types[1]) == 0): arg = ctx.args[0][0] if isinstance(arg, IntExpr): exponent = arg.value elif isinstance(arg, UnaryExpr) and arg.op == '-' and isinstance(arg.expr, IntExpr): exponent = -arg.expr.value else: # Right operand not an int literal or a negated literal -- give up. return ctx.default_return_type if exponent >= 0: return ctx.api.named_generic_type('builtins.int', []) else: return ctx.api.named_generic_type('builtins.float', []) return ctx.default_return_type def int_neg_callback(ctx: MethodContext) -> Type: """Infer a more precise return type for int.__neg__. This is mainly used to infer the return type as LiteralType if the original underlying object is a LiteralType object """ if isinstance(ctx.type, Instance) and ctx.type.last_known_value is not None: value = ctx.type.last_known_value.value fallback = ctx.type.last_known_value.fallback if isinstance(value, int): if is_literal_type_like(ctx.api.type_context[-1]): return LiteralType(value=-value, fallback=fallback) else: return ctx.type.copy_modified(last_known_value=LiteralType( value=-value, fallback=ctx.type, line=ctx.type.line, column=ctx.type.column, )) elif isinstance(ctx.type, LiteralType): value = ctx.type.value fallback = ctx.type.fallback if isinstance(value, int): return LiteralType(value=-value, fallback=fallback) return ctx.default_return_type def tuple_mul_callback(ctx: MethodContext) -> Type: """Infer a more precise return type for tuple.__mul__ and tuple.__rmul__. This is used to return a specific sized tuple if multiplied by Literal int """ if not isinstance(ctx.type, TupleType): return ctx.default_return_type arg_type = get_proper_type(ctx.arg_types[0][0]) if isinstance(arg_type, Instance) and arg_type.last_known_value is not None: value = arg_type.last_known_value.value if isinstance(value, int): return ctx.type.copy_modified(items=ctx.type.items * value) elif isinstance(ctx.type, LiteralType): value = arg_type.value if isinstance(value, int): return ctx.type.copy_modified(items=ctx.type.items * value) return ctx.default_return_type
the-stack_0_24293
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A Dataset Resource. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets """ import json from google.cloud.forseti.common.gcp_type import resource class DatasetLifecycleState(resource.LifecycleState): """Represents the dataset's LifecycleState.""" pass class Dataset(resource.Resource): """Dataset resource.""" RESOURCE_NAME_FMT = 'datasets/%s' def __init__( self, dataset_id, full_name=None, data=None, name=None, display_name=None, parent=None, locations=None, lifecycle_state=DatasetLifecycleState.UNSPECIFIED): """Initialize. Args: dataset_id (int): The dataset id. full_name (str): The full resource name and ancestry. data (str): Resource representation of the dataset. name (str): The dataset's unique GCP name, with the format "datasets/{id}". display_name (str): The dataset's display name. locations (List[str]): Locations this dataset resides in. If set, there should be exactly one element in the list. parent (Resource): The parent Resource. lifecycle_state (LifecycleState): The lifecycle state of the dataset. """ super(Dataset, self).__init__( resource_id=dataset_id, resource_type=resource.ResourceType.DATASET, name=name, display_name=display_name, parent=parent, locations=locations, lifecycle_state=lifecycle_state) self.full_name = full_name self.data = data @classmethod def from_json(cls, parent, json_string): """Create a dataset from a JSON string. Args: parent (Resource): resource this dataset belongs to. json_string(str): JSON string of a dataset GCP API response. Returns: Dataset: dataset resource. """ dataset_dict = json.loads(json_string) dataset_id = dataset_dict['id'] return cls( parent=parent, dataset_id=dataset_id, full_name='{}dataset/{}/'.format(parent.full_name, dataset_id), display_name=dataset_id, # The default location if not specified is US # https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets locations=[dataset_dict.get('location', 'US')], data=json_string, )
the-stack_0_24295
#!/usr/bin/env python """ This script is used to build "official" universal installers on macOS. NEW for 3.7.0: - support Intel 64-bit-only () and 32-bit-only installer builds - use external Tcl/Tk 8.6 for 10.9+ builds - deprecate use of explicit SDK (--sdk-path=) since all but the oldest versions of Xcode support implicit setting of an SDK via environment variables (SDKROOT and friends, see the xcrun man page for more info). The SDK stuff was primarily needed for building universal installers for 10.4; so as of 3.7.0, building installers for 10.4 is no longer supported with build-installer. - use generic "gcc" as compiler (CC env var) rather than "gcc-4.2" TODO: - support SDKROOT and DEVELOPER_DIR xcrun env variables - test with 10.5 and 10.4 and determine support status Please ensure that this script keeps working with Python 2.5, to avoid bootstrap issues (/usr/bin/python is Python 2.5 on OSX 10.5). Doc builds use current versions of Sphinx and require a reasonably current python3. Sphinx and dependencies are installed into a venv using the python3's pip so will fetch them from PyPI if necessary. Since python3 is now used for Sphinx, build-installer.py should also be converted to use python3! build-installer currently requires an installed third-party version of Tcl/Tk 8.4 (for OS X 10.4 and 10.5 deployment targets), Tcl/TK 8.5 (for 10.6 or later), or Tcl/TK 8.6 (for 10.9 or later) installed in /Library/Frameworks. When installed, the Python built by this script will attempt to dynamically link first to Tcl and Tk frameworks in /Library/Frameworks if available otherwise fall back to the ones in /System/Library/Framework. For the build, we recommend installing the most recent ActiveTcl 8.6. 8.5, or 8.4 version, depending on the deployment target. The actual version linked to depends on the path of /Library/Frameworks/{Tcl,Tk}.framework/Versions/Current. Usage: see USAGE variable in the script. """ import platform, os, sys, getopt, textwrap, shutil, stat, time, pwd, grp try: import urllib2 as urllib_request except ImportError: import urllib.request as urllib_request STAT_0o755 = ( stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH ) STAT_0o775 = ( stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR | stat.S_IRGRP | stat.S_IWGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH ) INCLUDE_TIMESTAMP = 1 VERBOSE = 1 from plistlib import Plist try: from plistlib import writePlist except ImportError: # We're run using python2.3 def writePlist(plist, path): plist.write(path) def shellQuote(value): """ Return the string value in a form that can safely be inserted into a shell command. """ return "'%s'"%(value.replace("'", "'\"'\"'")) def grepValue(fn, variable): """ Return the unquoted value of a variable from a file.. QUOTED_VALUE='quotes' -> str('quotes') UNQUOTED_VALUE=noquotes -> str('noquotes') """ variable = variable + '=' for ln in open(fn, 'r'): if ln.startswith(variable): value = ln[len(variable):].strip() return value.strip("\"'") raise RuntimeError("Cannot find variable %s" % variable[:-1]) _cache_getVersion = None def getVersion(): global _cache_getVersion if _cache_getVersion is None: _cache_getVersion = grepValue( os.path.join(SRCDIR, 'configure'), 'PACKAGE_VERSION') return _cache_getVersion def getVersionMajorMinor(): return tuple([int(n) for n in getVersion().split('.', 2)]) _cache_getFullVersion = None def getFullVersion(): global _cache_getFullVersion if _cache_getFullVersion is not None: return _cache_getFullVersion fn = os.path.join(SRCDIR, 'Include', 'patchlevel.h') for ln in open(fn): if 'PY_VERSION' in ln: _cache_getFullVersion = ln.split()[-1][1:-1] return _cache_getFullVersion raise RuntimeError("Cannot find full version??") FW_PREFIX = ["Library", "Frameworks", "Python.framework"] FW_VERSION_PREFIX = "--undefined--" # initialized in parseOptions FW_SSL_DIRECTORY = "--undefined--" # initialized in parseOptions # The directory we'll use to create the build (will be erased and recreated) WORKDIR = "/tmp/_py" # The directory we'll use to store third-party sources. Set this to something # else if you don't want to re-fetch required libraries every time. DEPSRC = os.path.join(WORKDIR, 'third-party') DEPSRC = os.path.expanduser('~/Universal/other-sources') universal_opts_map = { '32-bit': ('i386', 'ppc',), '64-bit': ('x86_64', 'ppc64',), 'intel': ('i386', 'x86_64'), 'intel-32': ('i386',), 'intel-64': ('x86_64',), '3-way': ('ppc', 'i386', 'x86_64'), 'all': ('i386', 'ppc', 'x86_64', 'ppc64',) } default_target_map = { '64-bit': '10.5', '3-way': '10.5', 'intel': '10.5', 'intel-32': '10.4', 'intel-64': '10.5', 'all': '10.5', } UNIVERSALOPTS = tuple(universal_opts_map.keys()) UNIVERSALARCHS = '32-bit' ARCHLIST = universal_opts_map[UNIVERSALARCHS] # Source directory (assume we're in Mac/BuildScript) SRCDIR = os.path.dirname( os.path.dirname( os.path.dirname( os.path.abspath(__file__ )))) # $MACOSX_DEPLOYMENT_TARGET -> minimum OS X level DEPTARGET = '10.5' def getDeptargetTuple(): return tuple([int(n) for n in DEPTARGET.split('.')[0:2]]) def getTargetCompilers(): target_cc_map = { '10.4': ('gcc-4.0', 'g++-4.0'), '10.5': ('gcc', 'g++'), '10.6': ('gcc', 'g++'), } return target_cc_map.get(DEPTARGET, ('gcc', 'gcc++') ) CC, CXX = getTargetCompilers() PYTHON_3 = getVersionMajorMinor() >= (3, 0) USAGE = textwrap.dedent("""\ Usage: build_python [options] Options: -? or -h: Show this message -b DIR --build-dir=DIR: Create build here (default: %(WORKDIR)r) --third-party=DIR: Store third-party sources here (default: %(DEPSRC)r) --sdk-path=DIR: Location of the SDK (deprecated, use SDKROOT env variable) --src-dir=DIR: Location of the Python sources (default: %(SRCDIR)r) --dep-target=10.n macOS deployment target (default: %(DEPTARGET)r) --universal-archs=x universal architectures (options: %(UNIVERSALOPTS)r, default: %(UNIVERSALARCHS)r) """)% globals() # Dict of object file names with shared library names to check after building. # This is to ensure that we ended up dynamically linking with the shared # library paths and versions we expected. For example: # EXPECTED_SHARED_LIBS['_tkinter.so'] = [ # '/Library/Frameworks/Tcl.framework/Versions/8.5/Tcl', # '/Library/Frameworks/Tk.framework/Versions/8.5/Tk'] EXPECTED_SHARED_LIBS = {} # Are we building and linking with our own copy of Tcl/TK? # For now, do so if deployment target is 10.9+. def internalTk(): return getDeptargetTuple() >= (10, 9) # List of names of third party software built with this installer. # The names will be inserted into the rtf version of the License. THIRD_PARTY_LIBS = [] # Instructions for building libraries that are necessary for building a # batteries included python. # [The recipes are defined here for convenience but instantiated later after # command line options have been processed.] def library_recipes(): result = [] LT_10_5 = bool(getDeptargetTuple() < (10, 5)) # Since Apple removed the header files for the deprecated system # OpenSSL as of the Xcode 7 release (for OS X 10.10+), we do not # have much choice but to build our own copy here, too. result.extend([ dict( name="OpenSSL 1.1.0g", url="https://www.openssl.org/source/openssl-1.1.0g.tar.gz", checksum='ba5f1b8b835b88cadbce9b35ed9531a6', buildrecipe=build_universal_openssl, configure=None, install=None, ), ]) if internalTk(): result.extend([ dict( name="Tcl 8.6.7", url="ftp://ftp.tcl.tk/pub/tcl//tcl8_6/tcl8.6.7-src.tar.gz", checksum='5673aaf45b5de5d8dd80bb3daaeb8838', buildDir="unix", configure_pre=[ '--enable-shared', '--enable-threads', '--libdir=/Library/Frameworks/Python.framework/Versions/%s/lib'%(getVersion(),), ], useLDFlags=False, install='make TCL_LIBRARY=%(TCL_LIBRARY)s && make install TCL_LIBRARY=%(TCL_LIBRARY)s DESTDIR=%(DESTDIR)s'%{ "DESTDIR": shellQuote(os.path.join(WORKDIR, 'libraries')), "TCL_LIBRARY": shellQuote('/Library/Frameworks/Python.framework/Versions/%s/lib/tcl8.6'%(getVersion())), }, ), dict( name="Tk 8.6.7", url="ftp://ftp.tcl.tk/pub/tcl//tcl8_6/tk8.6.7-src.tar.gz", checksum='46ea9c0165c515d87393700f4891ab6f', buildDir="unix", configure_pre=[ '--enable-aqua', '--enable-shared', '--enable-threads', '--libdir=/Library/Frameworks/Python.framework/Versions/%s/lib'%(getVersion(),), ], useLDFlags=False, install='make TCL_LIBRARY=%(TCL_LIBRARY)s TK_LIBRARY=%(TK_LIBRARY)s && make install TCL_LIBRARY=%(TCL_LIBRARY)s TK_LIBRARY=%(TK_LIBRARY)s DESTDIR=%(DESTDIR)s'%{ "DESTDIR": shellQuote(os.path.join(WORKDIR, 'libraries')), "TCL_LIBRARY": shellQuote('/Library/Frameworks/Python.framework/Versions/%s/lib/tcl8.6'%(getVersion())), "TK_LIBRARY": shellQuote('/Library/Frameworks/Python.framework/Versions/%s/lib/tk8.6'%(getVersion())), }, ), ]) if PYTHON_3: result.extend([ dict( name="XZ 5.2.3", url="http://tukaani.org/xz/xz-5.2.3.tar.gz", checksum='ef68674fb47a8b8e741b34e429d86e9d', configure_pre=[ '--disable-dependency-tracking', ] ), ]) result.extend([ dict( name="NCurses 5.9", url="http://ftp.gnu.org/pub/gnu/ncurses/ncurses-5.9.tar.gz", checksum='8cb9c412e5f2d96bc6f459aa8c6282a1', configure_pre=[ "--enable-widec", "--without-cxx", "--without-cxx-binding", "--without-ada", "--without-curses-h", "--enable-shared", "--with-shared", "--without-debug", "--without-normal", "--without-tests", "--without-manpages", "--datadir=/usr/share", "--sysconfdir=/etc", "--sharedstatedir=/usr/com", "--with-terminfo-dirs=/usr/share/terminfo", "--with-default-terminfo-dir=/usr/share/terminfo", "--libdir=/Library/Frameworks/Python.framework/Versions/%s/lib"%(getVersion(),), ], patchscripts=[ ("ftp://invisible-island.net/ncurses//5.9/ncurses-5.9-20120616-patch.sh.bz2", "f54bf02a349f96a7c4f0d00922f3a0d4"), ], useLDFlags=False, install='make && make install DESTDIR=%s && cd %s/usr/local/lib && ln -fs ../../../Library/Frameworks/Python.framework/Versions/%s/lib/lib* .'%( shellQuote(os.path.join(WORKDIR, 'libraries')), shellQuote(os.path.join(WORKDIR, 'libraries')), getVersion(), ), ), dict( name="SQLite 3.22.0", url="https://www.sqlite.org/2018/sqlite-autoconf-3220000.tar.gz", checksum='96b5648d542e8afa6ab7ffb8db8ddc3d', extra_cflags=('-Os ' '-DSQLITE_ENABLE_FTS5 ' '-DSQLITE_ENABLE_FTS4 ' '-DSQLITE_ENABLE_FTS3_PARENTHESIS ' '-DSQLITE_ENABLE_JSON1 ' '-DSQLITE_ENABLE_RTREE ' '-DSQLITE_TCL=0 ' '%s' % ('','-DSQLITE_WITHOUT_ZONEMALLOC ')[LT_10_5]), configure_pre=[ '--enable-threadsafe', '--enable-shared=no', '--enable-static=yes', '--disable-readline', '--disable-dependency-tracking', ] ), ]) if getDeptargetTuple() < (10, 5): result.extend([ dict( name="Bzip2 1.0.6", url="http://bzip.org/1.0.6/bzip2-1.0.6.tar.gz", checksum='00b516f4704d4a7cb50a1d97e6e8e15b', configure=None, install='make install CC=%s CXX=%s, PREFIX=%s/usr/local/ CFLAGS="-arch %s"'%( CC, CXX, shellQuote(os.path.join(WORKDIR, 'libraries')), ' -arch '.join(ARCHLIST), ), ), dict( name="ZLib 1.2.3", url="http://www.gzip.org/zlib/zlib-1.2.3.tar.gz", checksum='debc62758716a169df9f62e6ab2bc634', configure=None, install='make install CC=%s CXX=%s, prefix=%s/usr/local/ CFLAGS="-arch %s"'%( CC, CXX, shellQuote(os.path.join(WORKDIR, 'libraries')), ' -arch '.join(ARCHLIST), ), ), dict( # Note that GNU readline is GPL'd software name="GNU Readline 6.1.2", url="http://ftp.gnu.org/pub/gnu/readline/readline-6.1.tar.gz" , checksum='fc2f7e714fe792db1ce6ddc4c9fb4ef3', patchlevel='0', patches=[ # The readline maintainers don't do actual micro releases, but # just ship a set of patches. ('http://ftp.gnu.org/pub/gnu/readline/readline-6.1-patches/readline61-001', 'c642f2e84d820884b0bf9fd176bc6c3f'), ('http://ftp.gnu.org/pub/gnu/readline/readline-6.1-patches/readline61-002', '1a76781a1ea734e831588285db7ec9b1'), ] ), ]) if not PYTHON_3: result.extend([ dict( name="Sleepycat DB 4.7.25", url="http://download.oracle.com/berkeley-db/db-4.7.25.tar.gz", checksum='ec2b87e833779681a0c3a814aa71359e', buildDir="build_unix", configure="../dist/configure", configure_pre=[ '--includedir=/usr/local/include/db4', ] ), ]) return result # Instructions for building packages inside the .mpkg. def pkg_recipes(): unselected_for_python3 = ('selected', 'unselected')[PYTHON_3] result = [ dict( name="PythonFramework", long_name="Python Framework", source="/Library/Frameworks/Python.framework", readme="""\ This package installs Python.framework, that is the python interpreter and the standard library. """, postflight="scripts/postflight.framework", selected='selected', ), dict( name="PythonApplications", long_name="GUI Applications", source="/Applications/Python %(VER)s", readme="""\ This package installs IDLE (an interactive Python IDE), Python Launcher and Build Applet (create application bundles from python scripts). It also installs a number of examples and demos. """, required=False, selected='selected', ), dict( name="PythonUnixTools", long_name="UNIX command-line tools", source="/usr/local/bin", readme="""\ This package installs the unix tools in /usr/local/bin for compatibility with older releases of Python. This package is not necessary to use Python. """, required=False, selected='selected', ), dict( name="PythonDocumentation", long_name="Python Documentation", topdir="/Library/Frameworks/Python.framework/Versions/%(VER)s/Resources/English.lproj/Documentation", source="/pydocs", readme="""\ This package installs the python documentation at a location that is useable for pydoc and IDLE. """, postflight="scripts/postflight.documentation", required=False, selected='selected', ), dict( name="PythonProfileChanges", long_name="Shell profile updater", readme="""\ This packages updates your shell profile to make sure that the Python tools are found by your shell in preference of the system provided Python tools. If you don't install this package you'll have to add "/Library/Frameworks/Python.framework/Versions/%(VER)s/bin" to your PATH by hand. """, postflight="scripts/postflight.patch-profile", topdir="/Library/Frameworks/Python.framework", source="/empty-dir", required=False, selected='selected', ), dict( name="PythonInstallPip", long_name="Install or upgrade pip", readme="""\ This package installs (or upgrades from an earlier version) pip, a tool for installing and managing Python packages. """, postflight="scripts/postflight.ensurepip", topdir="/Library/Frameworks/Python.framework", source="/empty-dir", required=False, selected='selected', ), ] return result def fatal(msg): """ A fatal error, bail out. """ sys.stderr.write('FATAL: ') sys.stderr.write(msg) sys.stderr.write('\n') sys.exit(1) def fileContents(fn): """ Return the contents of the named file """ return open(fn, 'r').read() def runCommand(commandline): """ Run a command and raise RuntimeError if it fails. Output is suppressed unless the command fails. """ fd = os.popen(commandline, 'r') data = fd.read() xit = fd.close() if xit is not None: sys.stdout.write(data) raise RuntimeError("command failed: %s"%(commandline,)) if VERBOSE: sys.stdout.write(data); sys.stdout.flush() def captureCommand(commandline): fd = os.popen(commandline, 'r') data = fd.read() xit = fd.close() if xit is not None: sys.stdout.write(data) raise RuntimeError("command failed: %s"%(commandline,)) return data def getTclTkVersion(configfile, versionline): """ search Tcl or Tk configuration file for version line """ try: f = open(configfile, "r") except OSError: fatal("Framework configuration file not found: %s" % configfile) for l in f: if l.startswith(versionline): f.close() return l fatal("Version variable %s not found in framework configuration file: %s" % (versionline, configfile)) def checkEnvironment(): """ Check that we're running on a supported system. """ if sys.version_info[0:2] < (2, 5): fatal("This script must be run with Python 2.5 (or later)") if platform.system() != 'Darwin': fatal("This script should be run on a macOS 10.5 (or later) system") if int(platform.release().split('.')[0]) < 8: fatal("This script should be run on a macOS 10.5 (or later) system") # Because we only support dynamic load of only one major/minor version of # Tcl/Tk, if we are not using building and using our own private copy of # Tcl/Tk, ensure: # 1. there is a user-installed framework (usually ActiveTcl) in (or linked # in) SDKROOT/Library/Frameworks. As of Python 3.7.0, we no longer # enforce that the version of the user-installed framework also # exists in the system-supplied Tcl/Tk frameworks. Time to support # Tcl/Tk 8.6 even if Apple does not. if not internalTk(): frameworks = {} for framework in ['Tcl', 'Tk']: fwpth = 'Library/Frameworks/%s.framework/Versions/Current' % framework libfw = os.path.join('/', fwpth) usrfw = os.path.join(os.getenv('HOME'), fwpth) frameworks[framework] = os.readlink(libfw) if not os.path.exists(libfw): fatal("Please install a link to a current %s %s as %s so " "the user can override the system framework." % (framework, frameworks[framework], libfw)) if os.path.exists(usrfw): fatal("Please rename %s to avoid possible dynamic load issues." % usrfw) if frameworks['Tcl'] != frameworks['Tk']: fatal("The Tcl and Tk frameworks are not the same version.") print(" -- Building with external Tcl/Tk %s frameworks" % frameworks['Tk']) # add files to check after build EXPECTED_SHARED_LIBS['_tkinter.so'] = [ "/Library/Frameworks/Tcl.framework/Versions/%s/Tcl" % frameworks['Tcl'], "/Library/Frameworks/Tk.framework/Versions/%s/Tk" % frameworks['Tk'], ] else: print(" -- Building private copy of Tcl/Tk") print("") # Remove inherited environment variables which might influence build environ_var_prefixes = ['CPATH', 'C_INCLUDE_', 'DYLD_', 'LANG', 'LC_', 'LD_', 'LIBRARY_', 'PATH', 'PYTHON'] for ev in list(os.environ): for prefix in environ_var_prefixes: if ev.startswith(prefix) : print("INFO: deleting environment variable %s=%s" % ( ev, os.environ[ev])) del os.environ[ev] base_path = '/bin:/sbin:/usr/bin:/usr/sbin' if 'SDK_TOOLS_BIN' in os.environ: base_path = os.environ['SDK_TOOLS_BIN'] + ':' + base_path # Xcode 2.5 on OS X 10.4 does not include SetFile in its usr/bin; # add its fixed location here if it exists OLD_DEVELOPER_TOOLS = '/Developer/Tools' if os.path.isdir(OLD_DEVELOPER_TOOLS): base_path = base_path + ':' + OLD_DEVELOPER_TOOLS os.environ['PATH'] = base_path print("Setting default PATH: %s"%(os.environ['PATH'])) # Ensure we have access to sphinx-build. # You may have to create a link in /usr/bin for it. runCommand('sphinx-build --version') def parseOptions(args=None): """ Parse arguments and update global settings. """ global WORKDIR, DEPSRC, SRCDIR, DEPTARGET global UNIVERSALOPTS, UNIVERSALARCHS, ARCHLIST, CC, CXX global FW_VERSION_PREFIX global FW_SSL_DIRECTORY if args is None: args = sys.argv[1:] try: options, args = getopt.getopt(args, '?hb', [ 'build-dir=', 'third-party=', 'sdk-path=' , 'src-dir=', 'dep-target=', 'universal-archs=', 'help' ]) except getopt.GetoptError: print(sys.exc_info()[1]) sys.exit(1) if args: print("Additional arguments") sys.exit(1) deptarget = None for k, v in options: if k in ('-h', '-?', '--help'): print(USAGE) sys.exit(0) elif k in ('-d', '--build-dir'): WORKDIR=v elif k in ('--third-party',): DEPSRC=v elif k in ('--sdk-path',): print(" WARNING: --sdk-path is no longer supported") elif k in ('--src-dir',): SRCDIR=v elif k in ('--dep-target', ): DEPTARGET=v deptarget=v elif k in ('--universal-archs', ): if v in UNIVERSALOPTS: UNIVERSALARCHS = v ARCHLIST = universal_opts_map[UNIVERSALARCHS] if deptarget is None: # Select alternate default deployment # target DEPTARGET = default_target_map.get(v, '10.5') else: raise NotImplementedError(v) else: raise NotImplementedError(k) SRCDIR=os.path.abspath(SRCDIR) WORKDIR=os.path.abspath(WORKDIR) DEPSRC=os.path.abspath(DEPSRC) CC, CXX = getTargetCompilers() FW_VERSION_PREFIX = FW_PREFIX[:] + ["Versions", getVersion()] FW_SSL_DIRECTORY = FW_VERSION_PREFIX[:] + ["etc", "openssl"] print("-- Settings:") print(" * Source directory: %s" % SRCDIR) print(" * Build directory: %s" % WORKDIR) print(" * Third-party source: %s" % DEPSRC) print(" * Deployment target: %s" % DEPTARGET) print(" * Universal archs: %s" % str(ARCHLIST)) print(" * C compiler: %s" % CC) print(" * C++ compiler: %s" % CXX) print("") print(" -- Building a Python %s framework at patch level %s" % (getVersion(), getFullVersion())) print("") def extractArchive(builddir, archiveName): """ Extract a source archive into 'builddir'. Returns the path of the extracted archive. XXX: This function assumes that archives contain a toplevel directory that is has the same name as the basename of the archive. This is safe enough for almost anything we use. Unfortunately, it does not work for current Tcl and Tk source releases where the basename of the archive ends with "-src" but the uncompressed directory does not. For now, just special case Tcl and Tk tar.gz downloads. """ curdir = os.getcwd() try: os.chdir(builddir) if archiveName.endswith('.tar.gz'): retval = os.path.basename(archiveName[:-7]) if ((retval.startswith('tcl') or retval.startswith('tk')) and retval.endswith('-src')): retval = retval[:-4] if os.path.exists(retval): shutil.rmtree(retval) fp = os.popen("tar zxf %s 2>&1"%(shellQuote(archiveName),), 'r') elif archiveName.endswith('.tar.bz2'): retval = os.path.basename(archiveName[:-8]) if os.path.exists(retval): shutil.rmtree(retval) fp = os.popen("tar jxf %s 2>&1"%(shellQuote(archiveName),), 'r') elif archiveName.endswith('.tar'): retval = os.path.basename(archiveName[:-4]) if os.path.exists(retval): shutil.rmtree(retval) fp = os.popen("tar xf %s 2>&1"%(shellQuote(archiveName),), 'r') elif archiveName.endswith('.zip'): retval = os.path.basename(archiveName[:-4]) if os.path.exists(retval): shutil.rmtree(retval) fp = os.popen("unzip %s 2>&1"%(shellQuote(archiveName),), 'r') data = fp.read() xit = fp.close() if xit is not None: sys.stdout.write(data) raise RuntimeError("Cannot extract %s"%(archiveName,)) return os.path.join(builddir, retval) finally: os.chdir(curdir) def downloadURL(url, fname): """ Download the contents of the url into the file. """ fpIn = urllib_request.urlopen(url) fpOut = open(fname, 'wb') block = fpIn.read(10240) try: while block: fpOut.write(block) block = fpIn.read(10240) fpIn.close() fpOut.close() except: try: os.unlink(fname) except OSError: pass def verifyThirdPartyFile(url, checksum, fname): """ Download file from url to filename fname if it does not already exist. Abort if file contents does not match supplied md5 checksum. """ name = os.path.basename(fname) if os.path.exists(fname): print("Using local copy of %s"%(name,)) else: print("Did not find local copy of %s"%(name,)) print("Downloading %s"%(name,)) downloadURL(url, fname) print("Archive for %s stored as %s"%(name, fname)) if os.system( 'MD5=$(openssl md5 %s) ; test "${MD5##*= }" = "%s"' % (shellQuote(fname), checksum) ): fatal('MD5 checksum mismatch for file %s' % fname) def build_universal_openssl(basedir, archList): """ Special case build recipe for universal build of openssl. The upstream OpenSSL build system does not directly support OS X universal builds. We need to build each architecture separately then lipo them together into fat libraries. """ # OpenSSL fails to build with Xcode 2.5 (on OS X 10.4). # If we are building on a 10.4.x or earlier system, # unilaterally disable assembly code building to avoid the problem. no_asm = int(platform.release().split(".")[0]) < 9 def build_openssl_arch(archbase, arch): "Build one architecture of openssl" arch_opts = { "i386": ["darwin-i386-cc"], "x86_64": ["darwin64-x86_64-cc", "enable-ec_nistp_64_gcc_128"], "ppc": ["darwin-ppc-cc"], "ppc64": ["darwin64-ppc-cc"], } configure_opts = [ "no-idea", "no-mdc2", "no-rc5", "no-zlib", "no-ssl3", # "enable-unit-test", "shared", "--prefix=%s"%os.path.join("/", *FW_VERSION_PREFIX), "--openssldir=%s"%os.path.join("/", *FW_SSL_DIRECTORY), ] if no_asm: configure_opts.append("no-asm") runCommand(" ".join(["perl", "Configure"] + arch_opts[arch] + configure_opts)) runCommand("make depend") runCommand("make all") runCommand("make install_sw DESTDIR=%s"%shellQuote(archbase)) # runCommand("make test") return srcdir = os.getcwd() universalbase = os.path.join(srcdir, "..", os.path.basename(srcdir) + "-universal") os.mkdir(universalbase) archbasefws = [] for arch in archList: # fresh copy of the source tree archsrc = os.path.join(universalbase, arch, "src") shutil.copytree(srcdir, archsrc, symlinks=True) # install base for this arch archbase = os.path.join(universalbase, arch, "root") os.mkdir(archbase) # Python framework base within install_prefix: # the build will install into this framework.. # This is to ensure that the resulting shared libs have # the desired real install paths built into them. archbasefw = os.path.join(archbase, *FW_VERSION_PREFIX) # build one architecture os.chdir(archsrc) build_openssl_arch(archbase, arch) os.chdir(srcdir) archbasefws.append(archbasefw) # copy arch-independent files from last build into the basedir framework basefw = os.path.join(basedir, *FW_VERSION_PREFIX) shutil.copytree( os.path.join(archbasefw, "include", "openssl"), os.path.join(basefw, "include", "openssl") ) shlib_version_number = grepValue(os.path.join(archsrc, "Makefile"), "SHLIB_VERSION_NUMBER") # e.g. -> "1.0.0" libcrypto = "libcrypto.dylib" libcrypto_versioned = libcrypto.replace(".", "."+shlib_version_number+".") # e.g. -> "libcrypto.1.0.0.dylib" libssl = "libssl.dylib" libssl_versioned = libssl.replace(".", "."+shlib_version_number+".") # e.g. -> "libssl.1.0.0.dylib" try: os.mkdir(os.path.join(basefw, "lib")) except OSError: pass # merge the individual arch-dependent shared libs into a fat shared lib archbasefws.insert(0, basefw) for (lib_unversioned, lib_versioned) in [ (libcrypto, libcrypto_versioned), (libssl, libssl_versioned) ]: runCommand("lipo -create -output " + " ".join(shellQuote( os.path.join(fw, "lib", lib_versioned)) for fw in archbasefws)) # and create an unversioned symlink of it os.symlink(lib_versioned, os.path.join(basefw, "lib", lib_unversioned)) # Create links in the temp include and lib dirs that will be injected # into the Python build so that setup.py can find them while building # and the versioned links so that the setup.py post-build import test # does not fail. relative_path = os.path.join("..", "..", "..", *FW_VERSION_PREFIX) for fn in [ ["include", "openssl"], ["lib", libcrypto], ["lib", libssl], ["lib", libcrypto_versioned], ["lib", libssl_versioned], ]: os.symlink( os.path.join(relative_path, *fn), os.path.join(basedir, "usr", "local", *fn) ) return def buildRecipe(recipe, basedir, archList): """ Build software using a recipe. This function does the 'configure;make;make install' dance for C software, with a possibility to customize this process, basically a poor-mans DarwinPorts. """ curdir = os.getcwd() name = recipe['name'] THIRD_PARTY_LIBS.append(name) url = recipe['url'] configure = recipe.get('configure', './configure') buildrecipe = recipe.get('buildrecipe', None) install = recipe.get('install', 'make && make install DESTDIR=%s'%( shellQuote(basedir))) archiveName = os.path.split(url)[-1] sourceArchive = os.path.join(DEPSRC, archiveName) if not os.path.exists(DEPSRC): os.mkdir(DEPSRC) verifyThirdPartyFile(url, recipe['checksum'], sourceArchive) print("Extracting archive for %s"%(name,)) buildDir=os.path.join(WORKDIR, '_bld') if not os.path.exists(buildDir): os.mkdir(buildDir) workDir = extractArchive(buildDir, sourceArchive) os.chdir(workDir) for patch in recipe.get('patches', ()): if isinstance(patch, tuple): url, checksum = patch fn = os.path.join(DEPSRC, os.path.basename(url)) verifyThirdPartyFile(url, checksum, fn) else: # patch is a file in the source directory fn = os.path.join(curdir, patch) runCommand('patch -p%s < %s'%(recipe.get('patchlevel', 1), shellQuote(fn),)) for patchscript in recipe.get('patchscripts', ()): if isinstance(patchscript, tuple): url, checksum = patchscript fn = os.path.join(DEPSRC, os.path.basename(url)) verifyThirdPartyFile(url, checksum, fn) else: # patch is a file in the source directory fn = os.path.join(curdir, patchscript) if fn.endswith('.bz2'): runCommand('bunzip2 -fk %s' % shellQuote(fn)) fn = fn[:-4] runCommand('sh %s' % shellQuote(fn)) os.unlink(fn) if 'buildDir' in recipe: os.chdir(recipe['buildDir']) if configure is not None: configure_args = [ "--prefix=/usr/local", "--enable-static", "--disable-shared", #"CPP=gcc -arch %s -E"%(' -arch '.join(archList,),), ] if 'configure_pre' in recipe: args = list(recipe['configure_pre']) if '--disable-static' in args: configure_args.remove('--enable-static') if '--enable-shared' in args: configure_args.remove('--disable-shared') configure_args.extend(args) if recipe.get('useLDFlags', 1): configure_args.extend([ "CFLAGS=%s-mmacosx-version-min=%s -arch %s " "-I%s/usr/local/include"%( recipe.get('extra_cflags', ''), DEPTARGET, ' -arch '.join(archList), shellQuote(basedir)[1:-1],), "LDFLAGS=-mmacosx-version-min=%s -L%s/usr/local/lib -arch %s"%( DEPTARGET, shellQuote(basedir)[1:-1], ' -arch '.join(archList)), ]) else: configure_args.extend([ "CFLAGS=%s-mmacosx-version-min=%s -arch %s " "-I%s/usr/local/include"%( recipe.get('extra_cflags', ''), DEPTARGET, ' -arch '.join(archList), shellQuote(basedir)[1:-1],), ]) if 'configure_post' in recipe: configure_args = configure_args + list(recipe['configure_post']) configure_args.insert(0, configure) configure_args = [ shellQuote(a) for a in configure_args ] print("Running configure for %s"%(name,)) runCommand(' '.join(configure_args) + ' 2>&1') if buildrecipe is not None: # call special-case build recipe, e.g. for openssl buildrecipe(basedir, archList) if install is not None: print("Running install for %s"%(name,)) runCommand('{ ' + install + ' ;} 2>&1') print("Done %s"%(name,)) print("") os.chdir(curdir) def buildLibraries(): """ Build our dependencies into $WORKDIR/libraries/usr/local """ print("") print("Building required libraries") print("") universal = os.path.join(WORKDIR, 'libraries') os.mkdir(universal) os.makedirs(os.path.join(universal, 'usr', 'local', 'lib')) os.makedirs(os.path.join(universal, 'usr', 'local', 'include')) for recipe in library_recipes(): buildRecipe(recipe, universal, ARCHLIST) def buildPythonDocs(): # This stores the documentation as Resources/English.lproj/Documentation # inside the framework. pydoc and IDLE will pick it up there. print("Install python documentation") rootDir = os.path.join(WORKDIR, '_root') buildDir = os.path.join('../../Doc') docdir = os.path.join(rootDir, 'pydocs') curDir = os.getcwd() os.chdir(buildDir) runCommand('make clean') # Create virtual environment for docs builds with blurb and sphinx runCommand('make venv') runCommand('make html PYTHON=venv/bin/python') os.chdir(curDir) if not os.path.exists(docdir): os.mkdir(docdir) os.rename(os.path.join(buildDir, 'build', 'html'), docdir) def buildPython(): print("Building a universal python for %s architectures" % UNIVERSALARCHS) buildDir = os.path.join(WORKDIR, '_bld', 'python') rootDir = os.path.join(WORKDIR, '_root') if os.path.exists(buildDir): shutil.rmtree(buildDir) if os.path.exists(rootDir): shutil.rmtree(rootDir) os.makedirs(buildDir) os.makedirs(rootDir) os.makedirs(os.path.join(rootDir, 'empty-dir')) curdir = os.getcwd() os.chdir(buildDir) # Extract the version from the configure file, needed to calculate # several paths. version = getVersion() # Since the extra libs are not in their installed framework location # during the build, augment the library path so that the interpreter # will find them during its extension import sanity checks. os.environ['DYLD_LIBRARY_PATH'] = os.path.join(WORKDIR, 'libraries', 'usr', 'local', 'lib') print("Running configure...") runCommand("%s -C --enable-framework --enable-universalsdk=/ " "--with-universal-archs=%s " "%s " "%s " "%s " "%s " "LDFLAGS='-g -L%s/libraries/usr/local/lib' " "CFLAGS='-g -I%s/libraries/usr/local/include' 2>&1"%( shellQuote(os.path.join(SRCDIR, 'configure')), UNIVERSALARCHS, (' ', '--with-computed-gotos ')[PYTHON_3], (' ', '--without-ensurepip ')[PYTHON_3], (' ', "--with-tcltk-includes='-I%s/libraries/usr/local/include'"%( shellQuote(WORKDIR)[1:-1],))[internalTk()], (' ', "--with-tcltk-libs='-L%s/libraries/usr/local/lib -ltcl8.6 -ltk8.6'"%( shellQuote(WORKDIR)[1:-1],))[internalTk()], shellQuote(WORKDIR)[1:-1], shellQuote(WORKDIR)[1:-1])) # Look for environment value BUILDINSTALLER_BUILDPYTHON_MAKE_EXTRAS # and, if defined, append its value to the make command. This allows # us to pass in version control tags, like GITTAG, to a build from a # tarball rather than from a vcs checkout, thus eliminating the need # to have a working copy of the vcs program on the build machine. # # A typical use might be: # export BUILDINSTALLER_BUILDPYTHON_MAKE_EXTRAS=" \ # GITVERSION='echo 123456789a' \ # GITTAG='echo v3.6.0' \ # GITBRANCH='echo 3.6'" make_extras = os.getenv("BUILDINSTALLER_BUILDPYTHON_MAKE_EXTRAS") if make_extras: make_cmd = "make " + make_extras else: make_cmd = "make" print("Running " + make_cmd) runCommand(make_cmd) print("Running make install") runCommand("make install DESTDIR=%s"%( shellQuote(rootDir))) print("Running make frameworkinstallextras") runCommand("make frameworkinstallextras DESTDIR=%s"%( shellQuote(rootDir))) del os.environ['DYLD_LIBRARY_PATH'] print("Copying required shared libraries") if os.path.exists(os.path.join(WORKDIR, 'libraries', 'Library')): build_lib_dir = os.path.join( WORKDIR, 'libraries', 'Library', 'Frameworks', 'Python.framework', 'Versions', getVersion(), 'lib') fw_lib_dir = os.path.join( WORKDIR, '_root', 'Library', 'Frameworks', 'Python.framework', 'Versions', getVersion(), 'lib') if internalTk(): # move Tcl and Tk pkgconfig files runCommand("mv %s/pkgconfig/* %s/pkgconfig"%( shellQuote(build_lib_dir), shellQuote(fw_lib_dir) )) runCommand("rm -r %s/pkgconfig"%( shellQuote(build_lib_dir), )) runCommand("mv %s/* %s"%( shellQuote(build_lib_dir), shellQuote(fw_lib_dir) )) frmDir = os.path.join(rootDir, 'Library', 'Frameworks', 'Python.framework') frmDirVersioned = os.path.join(frmDir, 'Versions', version) path_to_lib = os.path.join(frmDirVersioned, 'lib', 'python%s'%(version,)) # create directory for OpenSSL certificates sslDir = os.path.join(frmDirVersioned, 'etc', 'openssl') os.makedirs(sslDir) print("Fix file modes") gid = grp.getgrnam('admin').gr_gid shared_lib_error = False for dirpath, dirnames, filenames in os.walk(frmDir): for dn in dirnames: os.chmod(os.path.join(dirpath, dn), STAT_0o775) os.chown(os.path.join(dirpath, dn), -1, gid) for fn in filenames: if os.path.islink(fn): continue # "chmod g+w $fn" p = os.path.join(dirpath, fn) st = os.stat(p) os.chmod(p, stat.S_IMODE(st.st_mode) | stat.S_IWGRP) os.chown(p, -1, gid) if fn in EXPECTED_SHARED_LIBS: # check to see that this file was linked with the # expected library path and version data = captureCommand("otool -L %s" % shellQuote(p)) for sl in EXPECTED_SHARED_LIBS[fn]: if ("\t%s " % sl) not in data: print("Expected shared lib %s was not linked with %s" % (sl, p)) shared_lib_error = True if shared_lib_error: fatal("Unexpected shared library errors.") if PYTHON_3: LDVERSION=None VERSION=None ABIFLAGS=None fp = open(os.path.join(buildDir, 'Makefile'), 'r') for ln in fp: if ln.startswith('VERSION='): VERSION=ln.split()[1] if ln.startswith('ABIFLAGS='): ABIFLAGS=ln.split()[1] if ln.startswith('LDVERSION='): LDVERSION=ln.split()[1] fp.close() LDVERSION = LDVERSION.replace('$(VERSION)', VERSION) LDVERSION = LDVERSION.replace('$(ABIFLAGS)', ABIFLAGS) config_suffix = '-' + LDVERSION if getVersionMajorMinor() >= (3, 6): config_suffix = config_suffix + '-darwin' else: config_suffix = '' # Python 2.x # We added some directories to the search path during the configure # phase. Remove those because those directories won't be there on # the end-users system. Also remove the directories from _sysconfigdata.py # (added in 3.3) if it exists. include_path = '-I%s/libraries/usr/local/include' % (WORKDIR,) lib_path = '-L%s/libraries/usr/local/lib' % (WORKDIR,) # fix Makefile path = os.path.join(path_to_lib, 'config' + config_suffix, 'Makefile') fp = open(path, 'r') data = fp.read() fp.close() for p in (include_path, lib_path): data = data.replace(" " + p, '') data = data.replace(p + " ", '') fp = open(path, 'w') fp.write(data) fp.close() # fix _sysconfigdata # # TODO: make this more robust! test_sysconfig_module of # distutils.tests.test_sysconfig.SysconfigTestCase tests that # the output from get_config_var in both sysconfig and # distutils.sysconfig is exactly the same for both CFLAGS and # LDFLAGS. The fixing up is now complicated by the pretty # printing in _sysconfigdata.py. Also, we are using the # pprint from the Python running the installer build which # may not cosmetically format the same as the pprint in the Python # being built (and which is used to originally generate # _sysconfigdata.py). import pprint if getVersionMajorMinor() >= (3, 6): # XXX this is extra-fragile path = os.path.join(path_to_lib, '_sysconfigdata_m_darwin_darwin.py') else: path = os.path.join(path_to_lib, '_sysconfigdata.py') fp = open(path, 'r') data = fp.read() fp.close() # create build_time_vars dict exec(data) vars = {} for k, v in build_time_vars.items(): if type(v) == type(''): for p in (include_path, lib_path): v = v.replace(' ' + p, '') v = v.replace(p + ' ', '') vars[k] = v fp = open(path, 'w') # duplicated from sysconfig._generate_posix_vars() fp.write('# system configuration generated and used by' ' the sysconfig module\n') fp.write('build_time_vars = ') pprint.pprint(vars, stream=fp) fp.close() # Add symlinks in /usr/local/bin, using relative links usr_local_bin = os.path.join(rootDir, 'usr', 'local', 'bin') to_framework = os.path.join('..', '..', '..', 'Library', 'Frameworks', 'Python.framework', 'Versions', version, 'bin') if os.path.exists(usr_local_bin): shutil.rmtree(usr_local_bin) os.makedirs(usr_local_bin) for fn in os.listdir( os.path.join(frmDir, 'Versions', version, 'bin')): os.symlink(os.path.join(to_framework, fn), os.path.join(usr_local_bin, fn)) os.chdir(curdir) if PYTHON_3: # Remove the 'Current' link, that way we don't accidentally mess # with an already installed version of python 2 os.unlink(os.path.join(rootDir, 'Library', 'Frameworks', 'Python.framework', 'Versions', 'Current')) def patchFile(inPath, outPath): data = fileContents(inPath) data = data.replace('$FULL_VERSION', getFullVersion()) data = data.replace('$VERSION', getVersion()) data = data.replace('$MACOSX_DEPLOYMENT_TARGET', ''.join((DEPTARGET, ' or later'))) data = data.replace('$ARCHITECTURES', ", ".join(universal_opts_map[UNIVERSALARCHS])) data = data.replace('$INSTALL_SIZE', installSize()) data = data.replace('$THIRD_PARTY_LIBS', "\\\n".join(THIRD_PARTY_LIBS)) # This one is not handy as a template variable data = data.replace('$PYTHONFRAMEWORKINSTALLDIR', '/Library/Frameworks/Python.framework') fp = open(outPath, 'w') fp.write(data) fp.close() def patchScript(inPath, outPath): major, minor = getVersionMajorMinor() data = fileContents(inPath) data = data.replace('@PYMAJOR@', str(major)) data = data.replace('@PYVER@', getVersion()) fp = open(outPath, 'w') fp.write(data) fp.close() os.chmod(outPath, STAT_0o755) def packageFromRecipe(targetDir, recipe): curdir = os.getcwd() try: # The major version (such as 2.5) is included in the package name # because having two version of python installed at the same time is # common. pkgname = '%s-%s'%(recipe['name'], getVersion()) srcdir = recipe.get('source') pkgroot = recipe.get('topdir', srcdir) postflight = recipe.get('postflight') readme = textwrap.dedent(recipe['readme']) isRequired = recipe.get('required', True) print("- building package %s"%(pkgname,)) # Substitute some variables textvars = dict( VER=getVersion(), FULLVER=getFullVersion(), ) readme = readme % textvars if pkgroot is not None: pkgroot = pkgroot % textvars else: pkgroot = '/' if srcdir is not None: srcdir = os.path.join(WORKDIR, '_root', srcdir[1:]) srcdir = srcdir % textvars if postflight is not None: postflight = os.path.abspath(postflight) packageContents = os.path.join(targetDir, pkgname + '.pkg', 'Contents') os.makedirs(packageContents) if srcdir is not None: os.chdir(srcdir) runCommand("pax -wf %s . 2>&1"%(shellQuote(os.path.join(packageContents, 'Archive.pax')),)) runCommand("gzip -9 %s 2>&1"%(shellQuote(os.path.join(packageContents, 'Archive.pax')),)) runCommand("mkbom . %s 2>&1"%(shellQuote(os.path.join(packageContents, 'Archive.bom')),)) fn = os.path.join(packageContents, 'PkgInfo') fp = open(fn, 'w') fp.write('pmkrpkg1') fp.close() rsrcDir = os.path.join(packageContents, "Resources") os.mkdir(rsrcDir) fp = open(os.path.join(rsrcDir, 'ReadMe.txt'), 'w') fp.write(readme) fp.close() if postflight is not None: patchScript(postflight, os.path.join(rsrcDir, 'postflight')) vers = getFullVersion() major, minor = getVersionMajorMinor() pl = Plist( CFBundleGetInfoString="Python.%s %s"%(pkgname, vers,), CFBundleIdentifier='org.python.Python.%s'%(pkgname,), CFBundleName='Python.%s'%(pkgname,), CFBundleShortVersionString=vers, IFMajorVersion=major, IFMinorVersion=minor, IFPkgFormatVersion=0.10000000149011612, IFPkgFlagAllowBackRev=False, IFPkgFlagAuthorizationAction="RootAuthorization", IFPkgFlagDefaultLocation=pkgroot, IFPkgFlagFollowLinks=True, IFPkgFlagInstallFat=True, IFPkgFlagIsRequired=isRequired, IFPkgFlagOverwritePermissions=False, IFPkgFlagRelocatable=False, IFPkgFlagRestartAction="NoRestart", IFPkgFlagRootVolumeOnly=True, IFPkgFlagUpdateInstalledLangauges=False, ) writePlist(pl, os.path.join(packageContents, 'Info.plist')) pl = Plist( IFPkgDescriptionDescription=readme, IFPkgDescriptionTitle=recipe.get('long_name', "Python.%s"%(pkgname,)), IFPkgDescriptionVersion=vers, ) writePlist(pl, os.path.join(packageContents, 'Resources', 'Description.plist')) finally: os.chdir(curdir) def makeMpkgPlist(path): vers = getFullVersion() major, minor = getVersionMajorMinor() pl = Plist( CFBundleGetInfoString="Python %s"%(vers,), CFBundleIdentifier='org.python.Python', CFBundleName='Python', CFBundleShortVersionString=vers, IFMajorVersion=major, IFMinorVersion=minor, IFPkgFlagComponentDirectory="Contents/Packages", IFPkgFlagPackageList=[ dict( IFPkgFlagPackageLocation='%s-%s.pkg'%(item['name'], getVersion()), IFPkgFlagPackageSelection=item.get('selected', 'selected'), ) for item in pkg_recipes() ], IFPkgFormatVersion=0.10000000149011612, IFPkgFlagBackgroundScaling="proportional", IFPkgFlagBackgroundAlignment="left", IFPkgFlagAuthorizationAction="RootAuthorization", ) writePlist(pl, path) def buildInstaller(): # Zap all compiled files for dirpath, _, filenames in os.walk(os.path.join(WORKDIR, '_root')): for fn in filenames: if fn.endswith('.pyc') or fn.endswith('.pyo'): os.unlink(os.path.join(dirpath, fn)) outdir = os.path.join(WORKDIR, 'installer') if os.path.exists(outdir): shutil.rmtree(outdir) os.mkdir(outdir) pkgroot = os.path.join(outdir, 'Python.mpkg', 'Contents') pkgcontents = os.path.join(pkgroot, 'Packages') os.makedirs(pkgcontents) for recipe in pkg_recipes(): packageFromRecipe(pkgcontents, recipe) rsrcDir = os.path.join(pkgroot, 'Resources') fn = os.path.join(pkgroot, 'PkgInfo') fp = open(fn, 'w') fp.write('pmkrpkg1') fp.close() os.mkdir(rsrcDir) makeMpkgPlist(os.path.join(pkgroot, 'Info.plist')) pl = Plist( IFPkgDescriptionTitle="Python", IFPkgDescriptionVersion=getVersion(), ) writePlist(pl, os.path.join(pkgroot, 'Resources', 'Description.plist')) for fn in os.listdir('resources'): if fn == '.svn': continue if fn.endswith('.jpg'): shutil.copy(os.path.join('resources', fn), os.path.join(rsrcDir, fn)) else: patchFile(os.path.join('resources', fn), os.path.join(rsrcDir, fn)) def installSize(clear=False, _saved=[]): if clear: del _saved[:] if not _saved: data = captureCommand("du -ks %s"%( shellQuote(os.path.join(WORKDIR, '_root')))) _saved.append("%d"%((0.5 + (int(data.split()[0]) / 1024.0)),)) return _saved[0] def buildDMG(): """ Create DMG containing the rootDir. """ outdir = os.path.join(WORKDIR, 'diskimage') if os.path.exists(outdir): shutil.rmtree(outdir) imagepath = os.path.join(outdir, 'python-%s-macosx%s'%(getFullVersion(),DEPTARGET)) if INCLUDE_TIMESTAMP: imagepath = imagepath + '-%04d-%02d-%02d'%(time.localtime()[:3]) imagepath = imagepath + '.dmg' os.mkdir(outdir) volname='Python %s'%(getFullVersion()) runCommand("hdiutil create -format UDRW -volname %s -srcfolder %s %s"%( shellQuote(volname), shellQuote(os.path.join(WORKDIR, 'installer')), shellQuote(imagepath + ".tmp.dmg" ))) if not os.path.exists(os.path.join(WORKDIR, "mnt")): os.mkdir(os.path.join(WORKDIR, "mnt")) runCommand("hdiutil attach %s -mountroot %s"%( shellQuote(imagepath + ".tmp.dmg"), shellQuote(os.path.join(WORKDIR, "mnt")))) # Custom icon for the DMG, shown when the DMG is mounted. shutil.copy("../Icons/Disk Image.icns", os.path.join(WORKDIR, "mnt", volname, ".VolumeIcon.icns")) runCommand("SetFile -a C %s/"%( shellQuote(os.path.join(WORKDIR, "mnt", volname)),)) runCommand("hdiutil detach %s"%(shellQuote(os.path.join(WORKDIR, "mnt", volname)))) setIcon(imagepath + ".tmp.dmg", "../Icons/Disk Image.icns") runCommand("hdiutil convert %s -format UDZO -o %s"%( shellQuote(imagepath + ".tmp.dmg"), shellQuote(imagepath))) setIcon(imagepath, "../Icons/Disk Image.icns") os.unlink(imagepath + ".tmp.dmg") return imagepath def setIcon(filePath, icnsPath): """ Set the custom icon for the specified file or directory. """ dirPath = os.path.normpath(os.path.dirname(__file__)) toolPath = os.path.join(dirPath, "seticon.app/Contents/MacOS/seticon") if not os.path.exists(toolPath) or os.stat(toolPath).st_mtime < os.stat(dirPath + '/seticon.m').st_mtime: # NOTE: The tool is created inside an .app bundle, otherwise it won't work due # to connections to the window server. appPath = os.path.join(dirPath, "seticon.app/Contents/MacOS") if not os.path.exists(appPath): os.makedirs(appPath) runCommand("cc -o %s %s/seticon.m -framework Cocoa"%( shellQuote(toolPath), shellQuote(dirPath))) runCommand("%s %s %s"%(shellQuote(os.path.abspath(toolPath)), shellQuote(icnsPath), shellQuote(filePath))) def main(): # First parse options and check if we can perform our work parseOptions() checkEnvironment() os.environ['MACOSX_DEPLOYMENT_TARGET'] = DEPTARGET os.environ['CC'] = CC os.environ['CXX'] = CXX if os.path.exists(WORKDIR): shutil.rmtree(WORKDIR) os.mkdir(WORKDIR) os.environ['LC_ALL'] = 'C' # Then build third-party libraries such as sleepycat DB4. buildLibraries() # Now build python itself buildPython() # And then build the documentation # Remove the Deployment Target from the shell # environment, it's no longer needed and # an unexpected build target can cause problems # when Sphinx and its dependencies need to # be (re-)installed. del os.environ['MACOSX_DEPLOYMENT_TARGET'] buildPythonDocs() # Prepare the applications folder folder = os.path.join(WORKDIR, "_root", "Applications", "Python %s"%( getVersion(),)) fn = os.path.join(folder, "License.rtf") patchFile("resources/License.rtf", fn) fn = os.path.join(folder, "ReadMe.rtf") patchFile("resources/ReadMe.rtf", fn) fn = os.path.join(folder, "Update Shell Profile.command") patchScript("scripts/postflight.patch-profile", fn) fn = os.path.join(folder, "Install Certificates.command") patchScript("resources/install_certificates.command", fn) os.chmod(folder, STAT_0o755) setIcon(folder, "../Icons/Python Folder.icns") # Create the installer buildInstaller() # And copy the readme into the directory containing the installer patchFile('resources/ReadMe.rtf', os.path.join(WORKDIR, 'installer', 'ReadMe.rtf')) # Ditto for the license file. patchFile('resources/License.rtf', os.path.join(WORKDIR, 'installer', 'License.rtf')) fp = open(os.path.join(WORKDIR, 'installer', 'Build.txt'), 'w') fp.write("# BUILD INFO\n") fp.write("# Date: %s\n" % time.ctime()) fp.write("# By: %s\n" % pwd.getpwuid(os.getuid()).pw_gecos) fp.close() # And copy it to a DMG buildDMG() if __name__ == "__main__": main()
the-stack_0_24298
import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px import plotly.graph_objs as go import requests import pandas as pd import numpy as np import datetime from app import app from uszipcode import SearchEngine from dash_dangerously_set_inner_html import DangerouslySetInnerHTML as rawHtml from . import BASE_URL TITLE = html.Div(html.H1('Search Earthquakes'), style={'text-align': 'center', 'margin-top': '40px'}) source_col = dbc.Col([ dcc.Markdown('Choose a source'), html.Div([ dcc.Dropdown( id='Searchsource', options=[ {'label': 'USGS', 'value': 'USGS'}, {'label': 'EMSC', 'value': 'EMSC'}, ], value='USGS' ), # ends dropdown ]) # ends div ]) # ends col1 type_col = dbc.Col([ dcc.Markdown('Search By:'), html.Div( dcc.Dropdown( id='searchtype', options=[ {'label': 'Zipcode', 'value': 'zip'}, {'label': 'Time', 'value': 'time'} ], value='zip' ) ) ]) # ends col2 search_fields = [ dbc.Col([dcc.Markdown('Enter Zipcode:'), dcc.Input( id='frame', type='number', minLength=5, maxLength=5, value=10001 )]), dbc.Col([ dcc.Markdown('Select Distance:'), dcc.Slider( id='amount', min=0, max=100, step=10, value=20 ), html.Div(id='amountCol')]), ] # sets the two search parameters based on selection @app.callback( dash.dependencies.Output('searchArea', 'children'), [dash.dependencies.Input('searchtype', 'value')]) def search_type(search): if search == 'time': search_fields = [ dbc.Col([dcc.Markdown('Select Timeframe:'), dcc.Dropdown( id='frame', options=[ {'label': 'Last Quake', 'value': 'Quake'}, {'label': 'Last Hour', 'value': '/hour'}, {'label': 'Last Day', 'value': '/day'}, {'label': 'Last Week', 'value': '/week'}, {'label': 'Last Month', 'value': '/month'} ], value='Quake' )]), dbc.Col([dcc.Markdown('Minimum Magnitude:'), dcc.Slider( id='amount', min=0, max=10, step=.5, value=5.5 ), html.Div(id='amountCol')]), ] else: search_fields = [ dbc.Col([dcc.Markdown('Enter Zipcode:'), dcc.Input( id='frame', type='number', minLength=5, maxLength=5, value=10001 )]), dbc.Col([ dcc.Markdown('Select Distance:'), dcc.Slider( id='amount', min=0, max=100, step=10, value=20 ), html.Div(id='amountCol')]), ] return search_fields @app.callback( dash.dependencies.Output('amountCol', 'children'), [dash.dependencies.Input('amount', 'value'), dash.dependencies.Input('searchtype', 'value')]) def place_ammount(amount, search): if search == 'Time': return dcc.Markdown(f'Minimum Magnitude: {amount}') else: return dcc.Markdown(f'Maximum Distance: {amount}') @app.callback( dash.dependencies.Output('searchResults', 'children'), [dash.dependencies.Input('searchtype', 'value'), dash.dependencies.Input('frame', 'value'), dash.dependencies.Input('amount', 'value'), dash.dependencies.Input('Searchsource', 'value')]) def search_results(search, frame, amount, source): ''' Search is the type os search Frame is either zip code or time Frame Amount is either distance or min mag source is USGS or EMSC ''' if search == 'time': try: float(frame) except: return search_time(frame, amount, source) else: try: float(frame) return search_zip(frame, amount, source) except: return None def search_time(frame, amount, source): if frame == 'Quake': api_url = BASE_URL + f'last{frame}/{source}/{float(amount)}' else: api_url = BASE_URL + f'last/{source}/{frame}/{float(amount)}' print(api_url) data = requests.get(api_url) if data.json()['num_quakes'] != 0: df = pd.DataFrame(data.json()['message']) if frame != 'Quake' else \ pd.DataFrame(data.json()['message'], index=[0]) if frame == 'Quake': title = f'Last Quake over {amount} in {source}' else: title = f"Quakes over {amount} in the last {frame.strip('last/')} in {source}" return display_table(df, title) else: if frame == 'Quake': display_text = f'No Quakes over {amount} to display in {source}' else: display_text = f"No Quakes over {amount} in the last {frame.strip('last/')} to display in {source}" return dcc.Markdown(display_text) def search_zip(zip, dist, source): location_search = SearchEngine(simple_zipcode=True) location = location_search.by_zipcode(str(zip)) lat = location.to_dict()['lat'] lon = location.to_dict()['lng'] if lat == None: return dcc.Markdown(f'{zip} is not a valid US zip code') api_url = BASE_URL + f'history/{source}/{lat},{lon},{dist}' quakes = requests.get(api_url) if quakes.json()['num_quakes'] != 0: df = pd.DataFrame(quakes.json()['message']) title = f'Quakes within {dist} KM of {zip} from {source}' return display_table(df, title) else: return dcc.Markdown(f'No Quakes have occured within {dist} KM of {zip} in {source}') def display_table(df, title): html = '<table cellpadding=20><tr>' df = df[['id', 'time', 'place', 'lat', 'lon', 'mag']] col_names = df.columns for col in col_names: html = html + f'<td>{col.upper()}</td>' html += '</tr>' for row in df.iterrows(): print(row[1]['id']) html += f"<tr class='hoverable'><td>{row[1]['id']}</td><td>{row[1]['time']}</td><td>{row[1]['place']}</td><td>{row[1]['lat']}</td><td>{row[1]['lon']}</td><td>{row[1]['mag']}</td></tr>" return rawHtml(html) hightlight_on_hover = '''<style> .hoverable:hover { background-color: #ffff99; } </style> ''' layout = dbc.Col([ TITLE, dbc.Row([type_col, source_col]), dbc.Row(search_fields, id='searchArea', style={'width': '100%'}), dbc.Row(id='searchResults'), rawHtml(hightlight_on_hover) ])
the-stack_0_24299
import time from django.db import connections from django.db.utils import OperationalError from django.core.management.base import BaseCommand class Command(BaseCommand): """Django command too pause execution until database is available""" def handle(self, *arg, **kwargs): self.stdout.write('Waiting for database...') db_conn = None while not db_conn: try: db_conn = connections['default'] except OperationalError: self.stdout.write('Database unavaliable, waiting 1 second...') time.sleep(1) self.stdout.write(self.style.SUCCESS('Database available!'))
the-stack_0_24301
# Copyright 2016 AT&T Corp # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tempest test-case to test fqname ID objects using RBAC roles """ from oslo_log import log as logging from patrole_tempest_plugin import rbac_rule_validation from tempest import config from tempest.lib.common.utils import data_utils from tempest.lib.decorators import idempotent_id from tungsten_tempest_plugin.tests.api.contrail import rbac_base CONF = config.CONF LOG = logging.getLogger(__name__) class FqnameIdTest(rbac_base.BaseContrailTest): """Test class to test Fqname ID objects using RBAC roles""" @classmethod def resource_setup(cls): super(FqnameIdTest, cls).resource_setup() # Create network to test fqname and uuid conversion net_name = data_utils.rand_name('rbac-fq-network') fq_name = ['default-domain', cls.tenant_name, net_name] post_body = {'parent_type': 'project', 'fq_name': fq_name} body = cls.vn_client.create_virtual_networks(**post_body) cls.network = body['virtual-network'] cls.type = 'virtual-network' @classmethod def resource_cleanup(cls): cls._try_delete_resource(cls.vn_client.delete_virtual_network, cls.network['uuid']) super(FqnameIdTest, cls).resource_cleanup() @rbac_rule_validation.action(service="Contrail", rules=["fqname_to_id"]) @idempotent_id('1fc1350b-3146-49bc-9af5-a61a98b55541') def test_fqname_to_id(self): """test method for fqname to id rules objects""" with self.rbac_utils.override_role(self): self.fq_client.fqname_to_id(fq_name=self.network['fq_name'], type=self.type) @rbac_rule_validation.action(service="Contrail", rules=["id_to_fqname"]) @idempotent_id('ecdd77d7-8508-4639-86cd-b97907b363ff') def test_id_to_fqname(self): """test method for id to fqname rules objects""" with self.rbac_utils.override_role(self): self.fq_client.id_to_fqname(uuid=self.network['uuid'])
the-stack_0_24304
import os import argparse from solver import Solver def main(config): # path for models if not os.path.exists(config.model_save_path): os.makedirs(config.model_save_path) # import data loader if config.dataset == 'mtat': from data_loader.mtat_loader import get_audio_loader elif config.dataset == 'msd': from data_loader.msd_loader import get_audio_loader elif config.dataset == 'jamendo': from data_loader.jamendo_loader import get_audio_loader # audio length if config.model_type == 'fcn' or config.model_type == 'crnn': config.input_length = 29 * 16000 elif config.model_type == 'musicnn': config.input_length = 3 * 16000 elif config.model_type in ['sample', 'se', 'short', 'short_res']: config.input_length = 59049 elif config.model_type == 'hcnn': config.input_length = 80000 elif config.model_type == 'attention': config.input_length = 15 * 16000 # get data loder train_loader = get_audio_loader(config.data_path, config.batch_size, split='TRAIN', input_length=config.input_length, num_workers=config.num_workers) solver = Solver(train_loader, config) solver.train() if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--num_workers', type=int, default=0) parser.add_argument('--dataset', type=str, default='mtat', choices=['mtat', 'msd', 'jamendo']) parser.add_argument('--model_type', type=str, default='fcn', choices=['fcn', 'musicnn', 'crnn', 'sample', 'se', 'short', 'short_res', 'attention', 'hcnn']) parser.add_argument('--n_epochs', type=int, default=200) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--lr', type=float, default=1e-4) parser.add_argument('--use_tensorboard', type=int, default=1) parser.add_argument('--model_save_path', type=str, default='./../models') parser.add_argument('--model_load_path', type=str, default='.') parser.add_argument('--data_path', type=str, default='./data') parser.add_argument('--log_step', type=int, default=20) config = parser.parse_args() print(config) main(config)
the-stack_0_24305
from lib.target_menu.colors import palette def update(menu, control, cl): i = 0 for i in range(len(menu)): if control["pos1"] == i: print(f"{cl[2]}{menu[i]} {palette.colors[15][1]}") else: print(f"{menu[i]}") print("\n")
the-stack_0_24308
# Copyright 2017-present Open Networking Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from xossynchronizer.steps import ansiblesyncstep def escape(s): s = s.replace("\n", r"\n").replace('"', r"\"") return s class SyncInstances(ansiblesyncstep.AnsibleSyncStep): requested_interval = 0 # This observes is intentionally a list of one string, to test steps where observes is a list of strings. observes = ["Instance"] playbook = "sync_instances.yaml" def fetch_pending(self, deletion=False): objs = super(SyncInstances, self).fetch_pending(deletion) objs = [x for x in objs if x.isolation == "vm"] return objs def map_sync_inputs(self, instance): inputs = {} metadata_update = {} fields = {"name": instance.name, "delete": False} return fields def map_sync_outputs(self, instance, res): instance.save() def map_delete_inputs(self, instance): input = { "endpoint": "endpoint", "admin_user": "admin_user", "admin_password": "admin_password", "project_name": "project_name", "tenant": "tenant", "tenant_description": "tenant_description", "name": instance.name, "ansible_tag": "ansible_tag", "delete": True, } return input
the-stack_0_24310
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from PyQt4.QtCore import * from PyQt4.QtGui import * class AddLabelDialog(QDialog): """A dialog for adding a new label.""" def __init__(self, label_configs, edit_label=None, parent=None): super(AddLabelDialog, self).__init__(parent) self._edit_label = edit_label self._new_label = [] self._label_configs = label_configs self._is_valid_label = False self._init_gui() self._create_actions() def _init_gui(self): label_label = QLabel("Label") self.label_edit = QLineEdit() index_label = QLabel("Index") self.index_edit = QLineEdit() regx = QRegExp("[0-9]+$") validator = QRegExpValidator(regx, self.index_edit) self.index_edit.setValidator(validator) self.index_edit.setEnabled(self._edit_label is None) color_label = QLabel("Color") self.color_button = ColorButton() grid_layout = QGridLayout() grid_layout.addWidget(label_label, 0, 0) grid_layout.addWidget(self.label_edit, 0, 1) grid_layout.addWidget(index_label, 1, 0) grid_layout.addWidget(self.index_edit, 1, 1) grid_layout.addWidget(color_label, 2, 0) grid_layout.addWidget(self.color_button, 2, 1) self.add_button = QPushButton("Add") self.cancel_button = QPushButton("Cancel") hbox_layout = QHBoxLayout() hbox_layout.addWidget(self.add_button) hbox_layout.addWidget(self.cancel_button) vbox_layout = QVBoxLayout() vbox_layout.addLayout(grid_layout) vbox_layout.addLayout(hbox_layout) self.setLayout(vbox_layout) if self._edit_label: self.index_edit.setText(self._edit_label[0]) self.label_edit.setText(self._edit_label[1]) self.color_button._set_current_color(self._edit_label[2]) self.add_button.setText("OK") def _create_actions(self): self.add_button.clicked.connect(self._add_label) self.cancel_button.clicked.connect(self.done) def _add_label(self): self._new_label = [] label = str(self.label_edit.text()) if not label: QMessageBox.critical(self, "No label name", "Please speicify your label name.") return index = self.index_edit.text() if not index: QMessageBox.critical(self, "No index", "Please specify a index for your label.") return index = int(str(self.index_edit.text())) color = self.color_button.get_current_color() if not color.isValid(): QMessageBox.critical(self, "Color invalid", "Please choose a valid color for your label.") return label = str(label) self._new_label.append(index) self._new_label.append(str(label.replace(" ", "_"))) self._new_label.append(color) if self._new_label[1] in self._label_configs.get_label_list(): if self._edit_label is None or self._edit_label[1] != self._new_label[1]: QMessageBox.warning(self, "Add label", "The label %s has exsited!" % self._new_label[1], QMessageBox.Yes) return if not self._edit_label: if self._new_label[0] in self._label_configs.get_index_list(): QMessageBox.warning(self, "Add label", "The index %s has exsited!" % self._new_label[0], QMessageBox.Yes) return self._is_valid_label = True self.done(0) def get_new_label(self): if self._is_valid_label: return self._new_label else: return None class ColorButton(QPushButton): """Button to choose color from a color dialog.""" default_color = QColor(255, 0, 0) icon_size = QSize(32, 32) color_changed = pyqtSignal(QColor) def __init__(self, init_color=None, parent=None): super(ColorButton, self).__init__(parent) if not init_color: init_color = self.default_color self.current_color = init_color self._update_icon() self.clicked.connect(self._choose_color) def _update_icon(self): if self.current_color: icon_image = QImage(self.icon_size, QImage.Format_RGB888) icon_image.fill(self.current_color.rgb()) icon_image = icon_image.rgbSwapped() icon_pm = QPixmap.fromImage(icon_image) self.setIcon(QIcon(icon_pm)) def _choose_color(self): color = QColorDialog.getColor(self.current_color, self) if color.isValid(): self._set_current_color(color) def _set_current_color(self, color): self.set_current_color(color) self.color_changed.emit(color) def set_current_color(self, color): self.current_color = color self._update_icon() def get_current_color(self): return self.current_color
the-stack_0_24311
from collections import OrderedDict import copy import os import time from lxml import etree as ET import networkx as nx import numpy as np import PIL import trimesh import six from .utils import (parse_origin, unparse_origin, get_filename, load_meshes, configure_origin) class URDFType(object): """Abstract base class for all URDF types. This has useful class methods for automatic parsing/unparsing of XML trees. There are three overridable class variables: - ``_ATTRIBS`` - This is a dictionary mapping attribute names to a tuple, ``(type, required)`` where ``type`` is the Python type for the attribute and ``required`` is a boolean stating whether the attribute is required to be present. - ``_ELEMENTS`` - This is a dictionary mapping element names to a tuple, ``(type, required, multiple)`` where ``type`` is the Python type for the element, ``required`` is a boolean stating whether the element is required to be present, and ``multiple`` is a boolean indicating whether multiple elements of this type could be present. Elements are child nodes in the XML tree, and their type must be a subclass of :class:`.URDFType`. - ``_TAG`` - This is a string that represents the XML tag for the node containing this type of object. """ _ATTRIBS = {} # Map from attrib name to (type, required) _ELEMENTS = {} # Map from element name to (type, required, multiple) _TAG = '' # XML tag for this element def __init__(self): pass @classmethod def _parse_attrib(cls, val_type, val): """Parse an XML attribute into a python value. Parameters ---------- val_type : :class:`type` The type of value to create. val : :class:`object` The value to parse. Returns ------- val : :class:`object` The parsed attribute. """ if val_type == np.ndarray: val = np.fromstring(val, sep=' ') else: val = val_type(val) return val @classmethod def _parse_simple_attribs(cls, node): """Parse all attributes in the _ATTRIBS array for this class. Parameters ---------- node : :class:`lxml.etree.Element` The node to parse attributes for. Returns ------- kwargs : dict Map from attribute name to value. If the attribute is not required and is not present, that attribute's name will map to ``None``. """ kwargs = {} for a in cls._ATTRIBS: t, r = cls._ATTRIBS[a] # t = type, r = required (bool) if r: try: v = cls._parse_attrib(t, node.attrib[a]) except Exception: raise ValueError( 'Missing required attribute {} when parsing an object ' 'of type {}'.format(a, cls.__name__) ) else: v = None if a in node.attrib: v = cls._parse_attrib(t, node.attrib[a]) kwargs[a] = v return kwargs @classmethod def _parse_simple_elements(cls, node, path): """Parse all elements in the _ELEMENTS array from the children of this node. Parameters ---------- node : :class:`lxml.etree.Element` The node to parse children for. path : str The string path where the XML file is located (used for resolving the location of mesh or image files). Returns ------- kwargs : dict Map from element names to the :class:`URDFType` subclass (or list, if ``multiple`` was set) created for that element. """ kwargs = {} for a in cls._ELEMENTS: t, r, m = cls._ELEMENTS[a] if not m: v = node.find(t._TAG) if r or v is not None: v = t._from_xml(v, path) else: vs = node.findall(t._TAG) if len(vs) == 0 and r: raise ValueError( 'Missing required subelement(s) of type {} when ' 'parsing an object of type {}'.format( t.__name__, cls.__name__ ) ) v = [t._from_xml(n, path) for n in vs] kwargs[a] = v return kwargs @classmethod def _parse(cls, node, path): """Parse all elements and attributes in the _ELEMENTS and _ATTRIBS arrays for a node. Parameters ---------- node : :class:`lxml.etree.Element` The node to parse. path : str The string path where the XML file is located (used for resolving the location of mesh or image files). Returns ------- kwargs : dict Map from names to Python classes created from the attributes and elements in the class arrays. """ kwargs = cls._parse_simple_attribs(node) kwargs.update(cls._parse_simple_elements(node, path)) return kwargs @classmethod def _from_xml(cls, node, path): """Create an instance of this class from an XML node. Parameters ---------- node : :class:`lxml.etree.Element` The node to parse. path : str The string path where the XML file is located (used for resolving the location of mesh or image files). Returns ------- obj : :class:`URDFType` An instance of this class parsed from the node. """ return cls(**cls._parse(node, path)) def _unparse_attrib(self, val_type, val): """Convert a Python value into a string for storage in an XML attribute. Parameters ---------- val_type : :class:`type` The type of the Python object. val : :class:`object` The actual value. Returns ------- s : str The attribute string. """ if val_type == np.ndarray: val = np.array2string(val)[1:-1] else: val = str(val) return val def _unparse_simple_attribs(self, node): """Convert all Python types from the _ATTRIBS array back into attributes for an XML node. Parameters ---------- node : :class:`object` The XML node to add the attributes to. """ for a in self._ATTRIBS: t, r = self._ATTRIBS[a] v = getattr(self, a, None) if r or v is not None: node.attrib[a] = self._unparse_attrib(t, v) def _unparse_simple_elements(self, node, path): """Unparse all Python types from the _ELEMENTS array back into child nodes of an XML node. Parameters ---------- node : :class:`object` The XML node for this object. Elements will be added as children of this node. path : str The string path where the XML file is being written to (used for writing out meshes and image files). """ for a in self._ELEMENTS: t, r, m = self._ELEMENTS[a] v = getattr(self, a, None) if not m: if r or v is not None: node.append(v._to_xml(node, path)) else: vs = v for v in vs: node.append(v._to_xml(node, path)) def _unparse(self, path): """Create a node for this object and unparse all elements and attributes in the class arrays. Parameters ---------- path : str The string path where the XML file is being written to (used for writing out meshes and image files). Returns ------- node : :class:`lxml.etree.Element` The newly-created node. """ node = ET.Element(self._TAG) self._unparse_simple_attribs(node) self._unparse_simple_elements(node, path) return node def _to_xml(self, parent, path): """Create and return an XML node for this object. Parameters ---------- parent : :class:`lxml.etree.Element` The parent node that this element will eventually be added to. This base implementation doesn't use this information, but classes that override this function may use it. path : str The string path where the XML file is being written to (used for writing out meshes and image files). Returns ------- node : :class:`lxml.etree.Element` The newly-created node. """ return self._unparse(path) ############################################################################### # Link types ############################################################################### class Box(URDFType): """A rectangular prism whose center is at the local origin. Parameters ---------- size : (3,) float The length, width, and height of the box in meters. """ _ATTRIBS = { 'size': (np.ndarray, True) } _TAG = 'box' def __init__(self, size): self.size = size self._meshes = [] @property def size(self): """(3,) float : The length, width, and height of the box in meters. """ return self._size @size.setter def size(self, value): self._size = np.asanyarray(value).astype(np.float64) self._meshes = [] @property def meshes(self): """list of :class:`~trimesh.base.Trimesh` : The triangular meshes that represent this object. """ if len(self._meshes) == 0: self._meshes = [trimesh.creation.box(extents=self.size)] return self._meshes def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.Box` A deep copy. """ if scale is None: scale = 1.0 b = Box( size=self.size.copy() * scale, ) return b class Cylinder(URDFType): """A cylinder whose center is at the local origin. Parameters ---------- radius : float The radius of the cylinder in meters. length : float The length of the cylinder in meters. """ _ATTRIBS = { 'radius': (float, True), 'length': (float, True), } _TAG = 'cylinder' def __init__(self, radius, length): self.radius = radius self.length = length self._meshes = None @property def radius(self): """float : The radius of the cylinder in meters. """ return self._radius @radius.setter def radius(self, value): self._radius = float(value) self._meshes = None @property def length(self): """float : The length of the cylinder in meters. """ return self._length @length.setter def length(self, value): self._length = float(value) self._meshes = None @property def meshes(self): """list of :class:`~trimesh.base.Trimesh` : The triangular meshes that represent this object. """ if len(self._meshes) == 0: self._meshes = [trimesh.creation.cylinder( radius=self.radius, height=self.length )] return self._mesh def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.Cylinder` A deep copy. """ if scale is None: scale = 1.0 if isinstance(scale, (list, np.ndarray)): if scale[0] != scale[1]: raise ValueError('Cannot rescale cylinder geometry with asymmetry in x/y') c = Cylinder( radius=self.radius * scale[0], length=self.length * scale[2], ) else: c = Cylinder( radius=self.radius * scale, length=self.length * scale, ) return c class Sphere(URDFType): """A sphere whose center is at the local origin. Parameters ---------- radius : float The radius of the sphere in meters. """ _ATTRIBS = { 'radius': (float, True), } _TAG = 'sphere' def __init__(self, radius): self.radius = radius self._meshes = [] @property def radius(self): """float : The radius of the sphere in meters. """ return self._radius @radius.setter def radius(self, value): self._radius = float(value) self._meshes = [] @property def meshes(self): """list of :class:`~trimesh.base.Trimesh` : The triangular meshes that represent this object. """ if len(self._meshes) == 0: self._meshes = [trimesh.creation.icosphere(radius=self.radius)] return self._meshes def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.Sphere` A deep copy. """ if scale is None: scale = 1.0 if isinstance(scale, (list, np.ndarray)): if scale[0] != scale[1] or scale[0] != scale[2]: raise ValueError('Spheres do not support non-uniform scaling!') scale = scale[0] s = Sphere( radius=self.radius * scale, ) return s class Mesh(URDFType): """A triangular mesh object. Parameters ---------- filename : str The path to the mesh that contains this object. This can be relative to the top-level URDF or an absolute path. scale : (3,) float, optional The scaling value for the mesh along the XYZ axes. If ``None``, assumes no scale is applied. meshes : list of :class:`~trimesh.base.Trimesh` A list of meshes that compose this mesh. The list of meshes is useful for visual geometries that might be composed of separate trimesh objects. If not specified, the mesh is loaded from the file using trimesh. use_package : bool The parsed XML node will use the `package://` prefix. For ROS compliance. """ _ATTRIBS = { 'filename': (str, True), 'scale': (np.ndarray, False) } _TAG = 'mesh' def __init__(self, filename, scale=None, meshes=None, use_package=False): if meshes is None: meshes = load_meshes(filename) self.filename = filename self.scale = scale self.meshes = meshes self.use_package = use_package @property def filename(self): """str : The path to the mesh file for this object. """ return self._filename @filename.setter def filename(self, value): self._filename = value @property def scale(self): """(3,) float : A scaling for the mesh along its local XYZ axes. """ return self._scale @scale.setter def scale(self, value): if value is not None: value = np.asanyarray(value).astype(np.float64) self._scale = value @property def meshes(self): """list of :class:`~trimesh.base.Trimesh` : The triangular meshes that represent this object. """ return self._meshes @meshes.setter def meshes(self, value): if isinstance(value, six.string_types): value = load_meshes(value) elif isinstance(value, (list, tuple, set, np.ndarray)): value = list(value) if len(value) == 0: raise ValueError('Mesh must have at least one trimesh.Trimesh') for m in value: if not isinstance(m, trimesh.Trimesh): raise TypeError('Mesh requires a trimesh.Trimesh or a ' 'list of them') elif isinstance(value, trimesh.Trimesh): value = [value] else: raise TypeError('Mesh requires a trimesh.Trimesh') self._meshes = value @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) # Load the mesh, combining collision geometry meshes but keeping # visual ones separate to preserve colors and textures fn = get_filename(path, kwargs['filename']) combine = node.getparent().getparent().tag == Collision._TAG meshes = load_meshes(fn) if combine: # Delete visuals for simplicity for m in meshes: m.visual = trimesh.visual.ColorVisuals(mesh=m) meshes = [meshes[0] + meshes[1:]] kwargs['meshes'] = meshes return Mesh(**kwargs) def _to_xml(self, parent, path): # Get the filename fn = get_filename(path, self.filename, makedirs=True) # compatible formats for multi-mesh files (i.e. trimesh Scenes) multimesh_compati_exts = ['.glb', '.obj'] # Export the meshes as a single file meshes = self.meshes if len(meshes) == 1: meshes = meshes[0] elif os.path.splitext(fn)[1] in multimesh_compati_exts: meshes = trimesh.scene.Scene(geometry=meshes) trimesh.exchange.export.export_mesh(meshes, fn) # Unparse the node node = self._unparse(path) if self.use_package: node.attrib['filename'] = "package://" + self.filename return node def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.Sphere` A deep copy. """ meshes = [m.copy() for m in self.meshes] if scale is not None: sm = np.eye(4) if isinstance(scale, (list, np.ndarray)): sm[:3,:3] = np.diag(scale) else: sm[:3,:3] = np.diag(np.repeat(scale, 3)) for i, m in enumerate(meshes): meshes[i] = m.apply_transform(sm) base, fn = os.path.split(self.filename) fn = '{}{}'.format(prefix, self.filename) m = Mesh( filename=os.path.join(base, fn), scale=(self.scale.copy() if self.scale is not None else None), meshes=meshes ) return m class Geometry(URDFType): """A wrapper for all geometry types. Only one of the following values can be set, all others should be set to ``None``. Parameters ---------- box : :class:`.Box`, optional Box geometry. cylinder : :class:`.Cylinder` Cylindrical geometry. sphere : :class:`.Sphere` Spherical geometry. mesh : :class:`.Mesh` Mesh geometry. """ _ELEMENTS = { 'box': (Box, False, False), 'cylinder': (Cylinder, False, False), 'sphere': (Sphere, False, False), 'mesh': (Mesh, False, False), } _TAG = 'geometry' def __init__(self, box=None, cylinder=None, sphere=None, mesh=None): if (box is None and cylinder is None and sphere is None and mesh is None): raise ValueError('At least one geometry element must be set') self.box = box self.cylinder = cylinder self.sphere = sphere self.mesh = mesh @property def box(self): """:class:`.Box` : Box geometry. """ return self._box @box.setter def box(self, value): if value is not None and not isinstance(value, Box): raise TypeError('Expected Box type') self._box = value @property def cylinder(self): """:class:`.Cylinder` : Cylinder geometry. """ return self._cylinder @cylinder.setter def cylinder(self, value): if value is not None and not isinstance(value, Cylinder): raise TypeError('Expected Cylinder type') self._cylinder = value @property def sphere(self): """:class:`.Sphere` : Spherical geometry. """ return self._sphere @sphere.setter def sphere(self, value): if value is not None and not isinstance(value, Sphere): raise TypeError('Expected Sphere type') self._sphere = value @property def mesh(self): """:class:`.Mesh` : Mesh geometry. """ return self._mesh @mesh.setter def mesh(self, value): if value is not None and not isinstance(value, Mesh): raise TypeError('Expected Mesh type') self._mesh = value @property def geometry(self): """:class:`.Box`, :class:`.Cylinder`, :class:`.Sphere`, or :class:`.Mesh` : The valid geometry element. """ if self.box is not None: return self.box if self.cylinder is not None: return self.cylinder if self.sphere is not None: return self.sphere if self.mesh is not None: return self.mesh return None @property def meshes(self): """list of :class:`~trimesh.base.Trimesh` : The geometry's triangular mesh representation(s). """ return self.geometry.meshes def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.Geometry` A deep copy. """ v = Geometry( box=(self.box.copy(prefix=prefix, scale=scale) if self.box else None), cylinder=(self.cylinder.copy(prefix=prefix, scale=scale) if self.cylinder else None), sphere=(self.sphere.copy(prefix=prefix, scale=scale) if self.sphere else None), mesh=(self.mesh.copy(prefix=prefix, scale=scale) if self.mesh else None), ) return v class Texture(URDFType): """An image-based texture. Parameters ---------- filename : str The path to the image that contains this texture. This can be relative to the top-level URDF or an absolute path. image : :class:`PIL.Image.Image`, optional The image for the texture. If not specified, it is loaded automatically from the filename. """ _ATTRIBS = { 'filename': (str, True) } _TAG = 'texture' def __init__(self, filename, image=None): if image is None: image = PIL.image.open(filename) self.filename = filename self.image = image @property def filename(self): """str : Path to the image for this texture. """ return self._filename @filename.setter def filename(self, value): self._filename = str(value) @property def image(self): """:class:`PIL.Image.Image` : The image for this texture. """ return self._image @image.setter def image(self, value): if isinstance(value, str): value = PIL.Image.open(value) if isinstance(value, np.ndarray): value = PIL.Image.fromarray(value) elif not isinstance(value, PIL.Image.Image): raise ValueError('Texture only supports numpy arrays ' 'or PIL images') self._image = value @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) # Load image fn = get_filename(path, kwargs['filename']) kwargs['image'] = PIL.Image.open(fn) return Texture(**kwargs) def _to_xml(self, parent, path): # Save the image filepath = get_filename(path, self.filename, makedirs=True) self.image.save(filepath) return self._unparse(path) def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.Texture` A deep copy. """ v = Texture( filename=self.filename, image=self.image.copy() ) return v class Material(URDFType): """A material for some geometry. Parameters ---------- name : str The name of the material. color : (4,) float, optional The RGBA color of the material in the range [0,1]. texture : :class:`.Texture`, optional A texture for the material. """ _ATTRIBS = { 'name': (str, True) } _ELEMENTS = { 'texture': (Texture, False, False), } _TAG = 'material' def __init__(self, name, color=None, texture=None): self.name = name self.color = color self.texture = texture @property def name(self): """str : The name of the material. """ return self._name @name.setter def name(self, value): self._name = str(value) @property def color(self): """(4,) float : The RGBA color of the material, in the range [0,1]. """ return self._color @color.setter def color(self, value): if value is not None: value = np.asanyarray(value).astype(np.float) value = np.clip(value, 0.0, 1.0) if value.shape != (4,): raise ValueError('Color must be a (4,) float') self._color = value @property def texture(self): """:class:`.Texture` : The texture for the material. """ return self._texture @texture.setter def texture(self, value): if value is not None: if isinstance(value, six.string_types): image = PIL.Image.open(value) value = Texture(filename=value, image=image) elif not isinstance(value, Texture): raise ValueError('Invalid type for texture -- expect path to ' 'image or Texture') self._texture = value @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) # Extract the color -- it's weirdly an attribute of a subelement color = node.find('color') if color is not None: color = np.fromstring(color.attrib['rgba'], sep=' ', dtype=np.float64) kwargs['color'] = color return Material(**kwargs) def _to_xml(self, parent, path): # Simplify materials by collecting them at the top level. # For top-level elements, save the full material specification if parent.tag == 'robot': node = self._unparse(path) if self.color is not None: color = ET.Element('color') color.attrib['rgba'] = np.array2string(self.color)[1:-1] node.append(color) # For non-top-level elements just save the material with a name else: node = ET.Element('material') node.attrib['name'] = self.name return node def copy(self, prefix='', scale=None): """Create a deep copy of the material with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.Material` A deep copy of the material. """ return Material( name='{}{}'.format(prefix, self.name), color=self.color, texture=self.texture ) class Collision(URDFType): """Collision properties of a link. Parameters ---------- geometry : :class:`.Geometry` The geometry of the element name : str, optional The name of the collision geometry. origin : (4,4) float, optional The pose of the collision element relative to the link frame. Defaults to identity. """ _ATTRIBS = { 'name': (str, False) } _ELEMENTS = { 'geometry': (Geometry, True, False), } _TAG = 'collision' def __init__(self, name, origin, geometry): self.geometry = geometry self.name = name self.origin = origin @property def geometry(self): """:class:`.Geometry` : The geometry of this element. """ return self._geometry @geometry.setter def geometry(self, value): if not isinstance(value, Geometry): raise TypeError('Must set geometry with Geometry object') self._geometry = value @property def name(self): """str : The name of this collision element. """ return self._name @name.setter def name(self, value): if value is not None: value = str(value) self._name = value @property def origin(self): """(4,4) float : The pose of this element relative to the link frame. """ return self._origin @origin.setter def origin(self, value): self._origin = configure_origin(value) @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) kwargs['origin'] = parse_origin(node) return Collision(**kwargs) def _to_xml(self, parent, path): node = self._unparse(path) node.append(unparse_origin(self.origin)) return node def copy(self, prefix='', scale=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.Visual` A deep copy of the visual. """ origin=self.origin.copy() if scale is not None: if not isinstance(scale, (list, np.ndarray)): scale = np.repeat(scale, 3) origin[:3,3] *= scale return Collision( name='{}{}'.format(prefix, self.name), origin=origin, geometry=self.geometry.copy(prefix=prefix, scale=scale), ) class Visual(URDFType): """Visual properties of a link. Parameters ---------- geometry : :class:`.Geometry` The geometry of the element name : str, optional The name of the visual geometry. origin : (4,4) float, optional The pose of the visual element relative to the link frame. Defaults to identity. material : :class:`.Material`, optional The material of the element. """ _ATTRIBS = { 'name': (str, False) } _ELEMENTS = { 'geometry': (Geometry, True, False), 'material': (Material, False, False), } _TAG = 'visual' def __init__(self, geometry, name=None, origin=None, material=None): self.geometry = geometry self.name = name self.origin = origin self.material = material @property def geometry(self): """:class:`.Geometry` : The geometry of this element. """ return self._geometry @geometry.setter def geometry(self, value): if not isinstance(value, Geometry): raise TypeError('Must set geometry with Geometry object') self._geometry = value @property def name(self): """str : The name of this visual element. """ return self._name @name.setter def name(self, value): if value is not None: value = str(value) self._name = value @property def origin(self): """(4,4) float : The pose of this element relative to the link frame. """ return self._origin @origin.setter def origin(self, value): self._origin = configure_origin(value) @property def material(self): """:class:`.Material` : The material for this element. """ return self._material @material.setter def material(self, value): if value is not None: if not isinstance(value, Material): raise TypeError('Must set material with Material object') self._material = value @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) kwargs['origin'] = parse_origin(node) return Visual(**kwargs) def _to_xml(self, parent, path): node = self._unparse(path) node.append(unparse_origin(self.origin)) return node def copy(self, prefix='', scale=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.Visual` A deep copy of the visual. """ origin=self.origin.copy() if scale is not None: if not isinstance(scale, (list, np.ndarray)): scale = np.repeat(scale, 3) origin[:3,3] *= scale return Visual( geometry=self.geometry.copy(prefix=prefix, scale=scale), name='{}{}'.format(prefix, self.name), origin=origin, material=(self.material.copy(prefix=prefix) if self.material else None), ) class Inertial(URDFType): """The inertial properties of a link. Parameters ---------- mass : float The mass of the link in kilograms. inertia : (3,3) float The 3x3 symmetric rotational inertia matrix. origin : (4,4) float, optional The pose of the inertials relative to the link frame. Defaults to identity if not specified. """ _TAG = 'inertial' def __init__(self, mass, inertia, origin=None): self.mass = mass self.inertia = inertia self.origin = origin @property def mass(self): """float : The mass of the link in kilograms. """ return self._mass @mass.setter def mass(self, value): self._mass = float(value) @property def inertia(self): """(3,3) float : The 3x3 symmetric rotational inertia matrix. """ return self._inertia @inertia.setter def inertia(self, value): value = np.asanyarray(value).astype(np.float64) if not np.allclose(value, value.T): raise ValueError('Inertia must be a symmetric matrix') self._inertia = value @property def origin(self): """(4,4) float : The pose of the inertials relative to the link frame. """ return self._origin @origin.setter def origin(self, value): self._origin = configure_origin(value) @classmethod def _from_xml(cls, node, path): origin = parse_origin(node) mass = float(node.find('mass').attrib['value']) n = node.find('inertia') xx = float(n.attrib['ixx']) xy = float(n.attrib['ixy']) xz = float(n.attrib['ixz']) yy = float(n.attrib['iyy']) yz = float(n.attrib['iyz']) zz = float(n.attrib['izz']) inertia = np.array([ [xx, xy, xz], [xy, yy, yz], [xz, yz, zz] ], dtype=np.float64) return Inertial(mass=mass, inertia=inertia, origin=origin) def _to_xml(self, parent, path): node = ET.Element('inertial') node.append(unparse_origin(self.origin)) mass = ET.Element('mass') mass.attrib['value'] = str(self.mass) node.append(mass) inertia = ET.Element('inertia') inertia.attrib['ixx'] = str(self.inertia[0,0]) inertia.attrib['ixy'] = str(self.inertia[0,1]) inertia.attrib['ixz'] = str(self.inertia[0,2]) inertia.attrib['iyy'] = str(self.inertia[1,1]) inertia.attrib['iyz'] = str(self.inertia[1,2]) inertia.attrib['izz'] = str(self.inertia[2,2]) node.append(inertia) return node def copy(self, prefix='', mass=None, origin=None, inertia=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.Inertial` A deep copy of the visual. """ if mass is None: mass = self.mass if origin is None: origin = self.origin.copy() if inertia is None: inertia = self.inertia.copy() return Inertial( mass=mass, inertia=inertia, origin=origin, ) ############################################################################### # Joint types ############################################################################### class JointCalibration(URDFType): """The reference positions of the joint. Parameters ---------- rising : float, optional When the joint moves in a positive direction, this position will trigger a rising edge. falling : When the joint moves in a positive direction, this position will trigger a falling edge. """ _ATTRIBS = { 'rising': (float, False), 'falling': (float, False) } _TAG = 'calibration' def __init__(self, rising=None, falling=None): self.rising = rising self.falling = falling @property def rising(self): """float : description. """ return self._rising @rising.setter def rising(self, value): if value is not None: value = float(value) self._rising = value @property def falling(self): """float : description. """ return self._falling @falling.setter def falling(self, value): if value is not None: value = float(value) self._falling = value def copy(self, prefix='', scale=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.JointCalibration` A deep copy of the visual. """ return JointCalibration( rising=self.rising, falling=self.falling, ) class JointDynamics(URDFType): """The dynamic properties of the joint. Parameters ---------- damping : float The damping value of the joint (Ns/m for prismatic joints, Nms/rad for revolute). friction : float The static friction value of the joint (N for prismatic joints, Nm for revolute). """ _ATTRIBS = { 'damping': (float, False), 'friction': (float, False), } _TAG = 'dynamics' def __init__(self, damping, friction): self.damping = damping self.friction = friction @property def damping(self): """float : The damping value of the joint. """ return self._damping @damping.setter def damping(self, value): if value is not None: value = float(value) self._damping = value @property def friction(self): """float : The static friction value of the joint. """ return self._friction @friction.setter def friction(self, value): if value is not None: value = float(value) self._friction = value def copy(self, prefix='', scale=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.JointDynamics` A deep copy of the visual. """ return JointDynamics( damping=self.damping, friction=self.friction, ) class JointLimit(URDFType): """The limits of the joint. Parameters ---------- effort : float The maximum joint effort (N for prismatic joints, Nm for revolute). velocity : float The maximum joint velocity (m/s for prismatic joints, rad/s for revolute). lower : float, optional The lower joint limit (m for prismatic joints, rad for revolute). upper : float, optional The upper joint limit (m for prismatic joints, rad for revolute). """ _ATTRIBS = { 'effort': (float, True), 'velocity': (float, True), 'lower': (float, False), 'upper': (float, False), } _TAG = 'limit' def __init__(self, effort, velocity, lower=None, upper=None): self.effort = effort self.velocity = velocity self.lower = lower self.upper = upper @property def effort(self): """float : The maximum joint effort. """ return self._effort @effort.setter def effort(self, value): self._effort = float(value) @property def velocity(self): """float : The maximum joint velocity. """ return self._velocity @velocity.setter def velocity(self, value): self._velocity = float(value) @property def lower(self): """float : The lower joint limit. """ return self._lower @lower.setter def lower(self, value): if value is not None: value = float(value) self._lower = value @property def upper(self): """float : The upper joint limit. """ return self._upper @upper.setter def upper(self, value): if value is not None: value = float(value) self._upper = value def copy(self, prefix='', scale=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.JointLimit` A deep copy of the visual. """ return JointLimit( effort=self.effort, velocity=self.velocity, lower=self.lower, upper=self.upper, ) class JointMimic(URDFType): """A mimicry tag for a joint, which forces its configuration to mimic another joint's. This joint's configuration value is set equal to ``multiplier * other_joint_cfg + offset``. Parameters ---------- joint : str The name of the joint to mimic. multiplier : float The joint configuration multiplier. Defaults to 1.0. offset : float, optional The joint configuration offset. Defaults to 0.0. """ _ATTRIBS = { 'joint': (str, True), 'multiplier': (float, False), 'offset': (float, False), } _TAG = 'mimic' def __init__(self, joint, multiplier=None, offset=None): self.joint = joint self.multiplier = multiplier self.offset = offset @property def joint(self): """float : The name of the joint to mimic. """ return self._joint @joint.setter def joint(self, value): self._joint = str(value) @property def multiplier(self): """float : The multiplier for the joint configuration. """ return self._multiplier @multiplier.setter def multiplier(self, value): if value is not None: value = float(value) else: value = 1.0 self._multiplier = value @property def offset(self): """float : The offset for the joint configuration """ return self._offset @offset.setter def offset(self, value): if value is not None: value = float(value) else: value = 0.0 self._offset = value def copy(self, prefix='', scale=None): """Create a deep copy of the joint mimic with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.JointMimic` A deep copy of the joint mimic. """ return JointMimic( joint='{}{}'.format(prefix, self.joint), multiplier=self.multiplier, offset=self.offset ) class SafetyController(URDFType): """A controller for joint movement safety. Parameters ---------- k_velocity : float An attribute specifying the relation between the effort and velocity limits. k_position : float, optional An attribute specifying the relation between the position and velocity limits. Defaults to 0.0. soft_lower_limit : float, optional The lower joint boundary where the safety controller kicks in. Defaults to 0.0. soft_upper_limit : float, optional The upper joint boundary where the safety controller kicks in. Defaults to 0.0. """ _ATTRIBS = { 'k_velocity': (float, True), 'k_position': (float, False), 'soft_lower_limit': (float, False), 'soft_upper_limit': (float, False), } _TAG = 'safety_controller' def __init__(self, k_velocity, k_position=None, soft_lower_limit=None, soft_upper_limit=None): self.k_velocity = k_velocity self.k_position = k_position self.soft_lower_limit = soft_lower_limit self.soft_upper_limit = soft_upper_limit @property def soft_lower_limit(self): """float : The soft lower limit where the safety controller kicks in. """ return self._soft_lower_limit @soft_lower_limit.setter def soft_lower_limit(self, value): if value is not None: value = float(value) else: value = 0.0 self._soft_lower_limit = value @property def soft_upper_limit(self): """float : The soft upper limit where the safety controller kicks in. """ return self._soft_upper_limit @soft_upper_limit.setter def soft_upper_limit(self, value): if value is not None: value = float(value) else: value = 0.0 self._soft_upper_limit = value @property def k_position(self): """float : A relation between the position and velocity limits. """ return self._k_position @k_position.setter def k_position(self, value): if value is not None: value = float(value) else: value = 0.0 self._k_position = value @property def k_velocity(self): """float : A relation between the effort and velocity limits. """ return self._k_velocity @k_velocity.setter def k_velocity(self, value): self._k_velocity = float(value) def copy(self, prefix='', scale=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.SafetyController` A deep copy of the visual. """ return SafetyController( k_velocity=self.k_velocity, k_position=self.k_position, soft_lower_limit=self.soft_lower_limit, soft_upper_limit=self.soft_upper_limit, ) ############################################################################### # Transmission types ############################################################################### class Actuator(URDFType): """An actuator. Parameters ---------- name : str The name of this actuator. mechanicalReduction : str, optional A specifier for the mechanical reduction at the joint/actuator transmission. hardwareInterfaces : list of str, optional The supported hardware interfaces to the actuator. """ _ATTRIBS = { 'name': (str, True), } _TAG = 'actuator' def __init__(self, name, mechanicalReduction=None, hardwareInterfaces=None): self.name = name self.mechanicalReduction = mechanicalReduction self.hardwareInterfaces = hardwareInterfaces @property def name(self): """str : The name of this actuator. """ return self._name @name.setter def name(self, value): self._name = str(value) @property def mechanicalReduction(self): """str : A specifier for the type of mechanical reduction. """ return self._mechanicalReduction @mechanicalReduction.setter def mechanicalReduction(self, value): if value is not None: value = str(value) self._mechanicalReduction = value @property def hardwareInterfaces(self): """list of str : The supported hardware interfaces. """ return self._hardwareInterfaces @hardwareInterfaces.setter def hardwareInterfaces(self, value): if value is None: value = [] else: value = list(value) for i, v in enumerate(value): value[i] = str(v) self._hardwareInterfaces = value @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) mr = node.find('mechanicalReduction') if mr is not None: mr = float(mr.text) kwargs['mechanicalReduction'] = mr hi = node.findall('hardwareInterface') if len(hi) > 0: hi = [h.text for h in hi] kwargs['hardwareInterfaces'] = hi return Actuator(**kwargs) def _to_xml(self, parent, path): node = self._unparse(path) if self.mechanicalReduction is not None: mr = ET.Element('mechanicalReduction') mr.text = str(self.mechanicalReduction) node.append(mr) if len(self.hardwareInterfaces) > 0: for hi in self.hardwareInterfaces: h = ET.Element('hardwareInterface') h.text = hi node.append(h) return node def copy(self, prefix='', scale=None): """Create a deep copy of the visual with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.Actuator` A deep copy of the visual. """ return Actuator( name='{}{}'.format(prefix, self.name), mechanicalReduction=self.mechanicalReduction, hardwareInterfaces=self.hardwareInterfaces.copy(), ) class TransmissionJoint(URDFType): """A transmission joint specification. Parameters ---------- name : str The name of this actuator. hardwareInterfaces : list of str, optional The supported hardware interfaces to the actuator. """ _ATTRIBS = { 'name': (str, True), } _TAG = 'joint' def __init__(self, name, hardwareInterfaces): self.name = name self.hardwareInterfaces = hardwareInterfaces @property def name(self): """str : The name of this transmission joint. """ return self._name @name.setter def name(self, value): self._name = str(value) @property def hardwareInterfaces(self): """list of str : The supported hardware interfaces. """ return self._hardwareInterfaces @hardwareInterfaces.setter def hardwareInterfaces(self, value): if value is None: value = [] else: value = list(value) for i, v in enumerate(value): value[i] = str(v) self._hardwareInterfaces = value @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) hi = node.findall('hardwareInterface') if len(hi) > 0: hi = [h.text for h in hi] kwargs['hardwareInterfaces'] = hi return TransmissionJoint(**kwargs) def _to_xml(self, parent, path): node = self._unparse(path) if len(self.hardwareInterfaces) > 0: for hi in self.hardwareInterfaces: h = ET.Element('hardwareInterface') h.text = hi node.append(h) return node def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.TransmissionJoint` A deep copy. """ return TransmissionJoint( name='{}{}'.format(prefix, self.name), hardwareInterfaces=self.hardwareInterfaces.copy(), ) ############################################################################### # Top-level types ############################################################################### class Transmission(URDFType): """An element that describes the relationship between an actuator and a joint. Parameters ---------- name : str The name of this transmission. trans_type : str The type of this transmission. joints : list of :class:`.TransmissionJoint` The joints connected to this transmission. actuators : list of :class:`.Actuator` The actuators connected to this transmission. """ _ATTRIBS = { 'name': (str, True), } _ELEMENTS = { 'joints': (TransmissionJoint, True, True), 'actuators': (Actuator, True, True), } _TAG = 'transmission' def __init__(self, name, trans_type, joints=None, actuators=None): self.name = name self.trans_type = trans_type self.joints = joints self.actuators = actuators @property def name(self): """str : The name of this transmission. """ return self._name @name.setter def name(self, value): self._name = str(value) @property def trans_type(self): """str : The type of this transmission. """ return self._trans_type @trans_type.setter def trans_type(self, value): self._trans_type = str(value) @property def joints(self): """:class:`.TransmissionJoint` : The joints the transmission is connected to. """ return self._joints @joints.setter def joints(self, value): if value is None: value = [] else: value = list(value) for v in value: if not isinstance(v, TransmissionJoint): raise TypeError( 'Joints expects a list of TransmissionJoint' ) self._joints = value @property def actuators(self): """:class:`.Actuator` : The actuators the transmission is connected to. """ return self._actuators @actuators.setter def actuators(self, value): if value is None: value = [] else: value = list(value) for v in value: if not isinstance(v, Actuator): raise TypeError( 'Actuators expects a list of Actuator' ) self._actuators = value @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) kwargs['trans_type'] = node.find('type').text return Transmission(**kwargs) def _to_xml(self, parent, path): node = self._unparse(path) ttype = ET.Element('type') ttype.text = self.trans_type node.append(ttype) return node def copy(self, prefix='', scale=None): """Create a deep copy with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all names. Returns ------- :class:`.Transmission` A deep copy. """ return Transmission( name='{}{}'.format(prefix, self.name), trans_type=self.trans_type, joints=[j.copy(prefix) for j in self.joints], actuators=[a.copy(prefix) for a in self.actuators], ) class Joint(URDFType): """A connection between two links. There are several types of joints, including: - ``fixed`` - a joint that cannot move. - ``prismatic`` - a joint that slides along the joint axis. - ``revolute`` - a hinge joint that rotates about the axis with a limited range of motion. - ``continuous`` - a hinge joint that rotates about the axis with an unlimited range of motion. - ``planar`` - a joint that moves in the plane orthogonal to the axis. - ``floating`` - a joint that can move in 6DoF. - ``spherical`` - a spherical joint that moves in 3DoF. Parameters ---------- name : str The name of this joint. parent : str The name of the parent link of this joint. child : str The name of the child link of this joint. joint_type : str The type of the joint. Must be one of :obj:`.Joint.TYPES`. axis : (3,) float, optional The axis of the joint specified in joint frame. Defaults to ``[1,0,0]``. origin : (4,4) float, optional The pose of the child link with respect to the parent link's frame. The joint frame is defined to be coincident with the child link's frame, so this is also the pose of the joint frame with respect to the parent link's frame. limit : :class:`.JointLimit`, optional Limit for the joint. Only required for revolute and prismatic joints. dynamics : :class:`.JointDynamics`, optional Dynamics for the joint. safety_controller : :class`.SafetyController`, optional The safety controller for this joint. calibration : :class:`.JointCalibration`, optional Calibration information for the joint. mimic : :class:`JointMimic`, optional Joint mimicry information. """ TYPES = ['fixed', 'prismatic', 'revolute', 'continuous', 'spherical', 'floating', 'planar'] _ATTRIBS = { 'name': (str, True), } _ELEMENTS = { 'dynamics': (JointDynamics, False, False), 'limit': (JointLimit, False, False), 'mimic': (JointMimic, False, False), 'safety_controller': (SafetyController, False, False), 'calibration': (JointCalibration, False, False), } _TAG = 'joint' def __init__(self, name, joint_type, parent, child, axis=None, origin=None, limit=None, dynamics=None, safety_controller=None, calibration=None, mimic=None): self.name = name self.parent = parent self.child = child self.joint_type = joint_type self.axis = axis self.origin = origin self.limit = limit self.dynamics = dynamics self.safety_controller = safety_controller self.calibration = calibration self.mimic = mimic @property def name(self): """str : Name for this joint. """ return self._name @name.setter def name(self, value): self._name = str(value) @property def joint_type(self): """str : The type of this joint. """ return self._joint_type @joint_type.setter def joint_type(self, value): value = str(value) if value not in Joint.TYPES: raise ValueError('Unsupported joint type {}'.format(value)) self._joint_type = value @property def parent(self): """str : The name of the parent link. """ return self._parent @parent.setter def parent(self, value): self._parent = str(value) @property def child(self): """str : The name of the child link. """ return self._child @child.setter def child(self, value): self._child = str(value) @property def axis(self): """(3,) float : The joint axis in the joint frame. """ return self._axis @axis.setter def axis(self, value): if value is None: value = np.array([1.0, 0.0, 0.0], dtype=np.float64) else: value = np.asanyarray(value, dtype=np.float64) if value.shape != (3,): raise ValueError('Invalid shape for axis, should be (3,)') value = value / np.linalg.norm(value) self._axis = value @property def origin(self): """(4,4) float : The pose of child and joint frames relative to the parent link's frame. """ return self._origin @origin.setter def origin(self, value): self._origin = configure_origin(value) @property def limit(self): """:class:`.JointLimit` : The limits for this joint. """ return self._limit @limit.setter def limit(self, value): if value is None: if self.joint_type in ['prismatic', 'revolute']: raise ValueError('Require joint limit for prismatic and ' 'revolute joints') elif not isinstance(value, JointLimit): raise TypeError('Expected JointLimit type') self._limit = value @property def dynamics(self): """:class:`.JointDynamics` : The dynamics for this joint. """ return self._dynamics @dynamics.setter def dynamics(self, value): if value is not None: if not isinstance(value, JointDynamics): raise TypeError('Expected JointDynamics type') self._dynamics = value @property def safety_controller(self): """:class:`.SafetyController` : The safety controller for this joint. """ return self._safety_controller @safety_controller.setter def safety_controller(self, value): if value is not None: if not isinstance(value, SafetyController): raise TypeError('Expected SafetyController type') self._safety_controller = value @property def calibration(self): """:class:`.JointCalibration` : The calibration for this joint. """ return self._calibration @calibration.setter def calibration(self, value): if value is not None: if not isinstance(value, JointCalibration): raise TypeError('Expected JointCalibration type') self._calibration = value @property def mimic(self): """:class:`.JointMimic` : The mimic for this joint. """ return self._mimic @mimic.setter def mimic(self, value): if value is not None: if not isinstance(value, JointMimic): raise TypeError('Expected JointMimic type') self._mimic = value def is_valid(self, cfg): """Check if the provided configuration value is valid for this joint. Parameters ---------- cfg : float, (2,) float, (6,) float, or (4,4) float The configuration of the joint. Returns ------- is_valid : bool True if the configuration is valid, and False otherwise. """ if self.joint_type not in ['fixed', 'revolute']: return True if self.joint_limit is None: return True cfg = float(cfg) lower = -np.infty upper = np.infty if self.limit.lower is not None: lower = self.limit.lower if self.limit.upper is not None: upper = self.limit.upper return (cfg >= lower and cfg <= upper) def get_child_pose(self, cfg=None): """Computes the child pose relative to a parent pose for a given configuration value. Parameters ---------- cfg : float, (2,) float, (6,) float, or (4,4) float The configuration values for this joint. They are interpreted based on the joint type as follows: - ``fixed`` - not used. - ``prismatic`` - a translation along the axis in meters. - ``revolute`` - a rotation about the axis in radians. - ``continuous`` - a rotation about the axis in radians. - ``planar`` - the x and y translation values in the plane. - ``floating`` - the xyz values followed by the rpy values, or a (4,4) matrix. - ``spherical`` - same as ``floating``. If ``cfg`` is ``None``, then this just returns the joint pose. Returns ------- pose : (4,4) float The pose of the child relative to the parent. """ if cfg is None: return self.origin elif self.joint_type == 'fixed': return self.origin elif self.joint_type in ['revolute', 'continuous']: if cfg is None: cfg = 0.0 else: cfg = float(cfg) R = trimesh.transformations.rotation_matrix(cfg, self.axis) return self.origin.dot(R) elif self.joint_type == 'prismatic': if cfg is None: cfg = 0.0 else: cfg = float(cfg) translation = np.eye(4, dtype=np.float64) translation[:3,3] = self.axis * cfg return self.origin.dot(translation) elif self.joint_type == 'planar': if cfg is None: cfg = np.zeros(2, dtype=np.float64) else: cfg = np.asanyarray(cfg, dtype=np.float64) if cfg.shape != (2,): raise ValueError( '(2,) float configuration required for planar joints' ) translation = np.eye(4, dtype=np.float64) translation[:3,3] = self.origin[:3,:2].dot(cfg) return self.origin.dot(translation) elif self.joint_type in ['floating', 'spherical']: if cfg is None: cfg = np.zeros(6, dtype=np.float64) else: if self.joint_type == 'spherical': if cfg.shape == (4, 4): assert np.allclose(cfg[:3, 3], 0), "spherical joint should have no translation component" cfg = configure_origin(cfg) if cfg is None: raise ValueError('Invalid configuration for floating joint') return self.origin.dot(cfg) else: raise ValueError('Invalid configuration') def get_child_poses(self, cfg, n_cfgs): """Computes the child pose relative to a parent pose for a given set of configuration values. Parameters ---------- cfg : (n,) float or None The configuration values for this joint. They are interpreted based on the joint type as follows: - ``fixed`` - not used. - ``prismatic`` - a translation along the axis in meters. - ``revolute`` - a rotation about the axis in radians. - ``continuous`` - a rotation about the axis in radians. - ``planar`` - Not implemented. - ``spherical`` - Not implemented. - ``floating`` - Not implemented. If ``cfg`` is ``None``, then this just returns the joint pose. Returns ------- poses : (n,4,4) float The poses of the child relative to the parent. """ if cfg is None: return np.tile(self.origin, (n_cfgs, 1, 1)) elif self.joint_type == 'fixed': return np.tile(self.origin, (n_cfgs, 1, 1)) elif self.joint_type in ['revolute', 'continuous']: if cfg is None: cfg = np.zeros(n_cfgs) return np.matmul(self.origin, self._rotation_matrices(cfg, self.axis)) elif self.joint_type == 'prismatic': if cfg is None: cfg = np.zeros(n_cfgs) translation = np.tile(np.eye(4), (n_cfgs, 1, 1)) translation[:,:3,3] = self.axis * cfg[:,np.newaxis] return np.matmul(self.origin, translation) elif self.joint_type == 'planar': raise NotImplementedError() elif self.joint_type in ['floating', 'spherical']: raise NotImplementedError() else: raise ValueError('Invalid configuration') @classmethod def _from_xml(cls, node, path): kwargs = cls._parse(node, path) kwargs['joint_type'] = str(node.attrib['type']) kwargs['parent'] = node.find('parent').attrib['link'] kwargs['child'] = node.find('child').attrib['link'] axis = node.find('axis') if axis is not None: axis = np.fromstring(axis.attrib['xyz'], sep=' ') kwargs['axis'] = axis kwargs['origin'] = parse_origin(node) return Joint(**kwargs) def _to_xml(self, parent, path): node = self._unparse(path) parent = ET.Element('parent') parent.attrib['link'] = self.parent node.append(parent) child = ET.Element('child') child.attrib['link'] = self.child node.append(child) if self.axis is not None: axis = ET.Element('axis') axis.attrib['xyz'] = np.array2string(self.axis)[1:-1] node.append(axis) node.append(unparse_origin(self.origin)) node.attrib['type'] = self.joint_type return node def _rotation_matrices(self, angles, axis): """Compute rotation matrices from angle/axis representations. Parameters ---------- angles : (n,) float The angles. axis : (3,) float The axis. Returns ------- rots : (n,4,4) The rotation matrices """ axis = axis / np.linalg.norm(axis) sina = np.sin(angles) cosa = np.cos(angles) M = np.tile(np.eye(4), (len(angles), 1, 1)) M[:,0,0] = cosa M[:,1,1] = cosa M[:,2,2] = cosa M[:,:3,:3] += ( np.tile(np.outer(axis, axis), (len(angles), 1, 1)) * (1.0 - cosa)[:, np.newaxis, np.newaxis] ) M[:,:3,:3] += np.tile(np.array([ [0.0, -axis[2], axis[1]], [axis[2], 0.0, -axis[0]], [-axis[1], axis[0], 0.0]] ), (len(angles), 1, 1)) * sina[:, np.newaxis, np.newaxis] return M def copy(self, prefix='', scale=None): """Create a deep copy of the joint with the prefix applied to all names. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- :class:`.Joint` A deep copy of the joint. """ origin = self.origin.copy() if scale is not None: if not isinstance(scale, (list, np.ndarray)): scale = np.repeat(scale, 3) origin[:3,3] *= scale cpy = Joint( name='{}{}'.format(prefix, self.name), joint_type=self.joint_type, parent='{}{}'.format(prefix, self.parent), child='{}{}'.format(prefix, self.child), axis=self.axis.copy(), origin=origin, limit=(self.limit.copy(prefix, scale) if self.limit else None), dynamics=(self.dynamics.copy(prefix,scale) if self.dynamics else None), safety_controller=(self.safety_controller.copy(prefix, scale) if self.safety_controller else None), calibration=(self.calibration.copy(prefix, scale) if self.calibration else None), mimic=(self.mimic.copy(prefix=prefix, scale=scale) if self.mimic else None) ) return cpy class Link(URDFType): """A link of a rigid object. Parameters ---------- name : str The name of the link. inertial : :class:`.Inertial`, optional The inertial properties of the link. visuals : list of :class:`.Visual`, optional The visual properties of the link. collsions : list of :class:`.Collision`, optional The collision properties of the link. """ _ATTRIBS = { 'name': (str, True), } _ELEMENTS = { 'inertial': (Inertial, False, False), 'visuals': (Visual, False, True), 'collisions': (Collision, False, True), } _TAG = 'link' def __init__(self, name, inertial, visuals, collisions): self.name = name self.inertial = inertial self.visuals = visuals self.collisions = collisions self._collision_mesh = None @property def name(self): """str : The name of this link. """ return self._name @name.setter def name(self, value): self._name = str(value) @property def inertial(self): """:class:`.Inertial` : Inertial properties of the link. """ return self._inertial @inertial.setter def inertial(self, value): if value is not None and not isinstance(value, Inertial): raise TypeError('Expected Inertial object') # Set default inertial if value is None: value = Inertial(mass=1.0, inertia=np.eye(3)) self._inertial = value @property def visuals(self): """list of :class:`.Visual` : The visual properties of this link. """ return self._visuals @visuals.setter def visuals(self, value): if value is None: value = [] else: value = list(value) for v in value: if not isinstance(v, Visual): raise ValueError('Expected list of Visual objects') self._visuals = value @property def collisions(self): """list of :class:`.Collision` : The collision properties of this link. """ return self._collisions @collisions.setter def collisions(self, value): if value is None: value = [] else: value = list(value) for v in value: if not isinstance(v, Collision): raise ValueError('Expected list of Collision objects') self._collisions = value @property def collision_mesh(self): """:class:`~trimesh.base.Trimesh` : A single collision mesh for the link, specified in the link frame, or None if there isn't one. """ if len(self.collisions) == 0: return None if self._collision_mesh is None: meshes = [] for c in self.collisions: for m in c.geometry.meshes: m = m.copy() pose = c.origin if c.geometry.mesh is not None: if c.geometry.mesh.scale is not None: S = np.eye(4) S[:3,:3] = np.diag(c.geometry.mesh.scale) pose = pose.dot(S) m.apply_transform(pose) meshes.append(m) if len(meshes) == 0: return None self._collision_mesh = (meshes[0] + meshes[1:]) return self._collision_mesh def copy(self, prefix='', scale=None, collision_only=False): """Create a deep copy of the link. Parameters ---------- prefix : str A prefix to apply to all joint and link names. Returns ------- link : :class:`.Link` A deep copy of the Link. """ inertial = self.inertial.copy() if self.inertial is not None else None cm = self._collision_mesh if scale is not None: if self.collision_mesh is not None and self.inertial is not None: sm = np.eye(4) if not isinstance(scale, (list, np.ndarray)): scale = np.repeat(scale, 3) sm[:3,:3] = np.diag(scale) cm = self.collision_mesh.copy() cm.density = self.inertial.mass / cm.volume cm.apply_transform(sm) cmm = np.eye(4) cmm[:3,3] = cm.center_mass inertial = Inertial(mass=cm.mass, inertia=cm.moment_inertia, origin=cmm) visuals = None if not collision_only: visuals=[v.copy(prefix=prefix, scale=scale) for v in self.visuals] cpy = Link( name='{}{}'.format(prefix, self.name), inertial=inertial, visuals=visuals, collisions=[v.copy(prefix=prefix, scale=scale) for v in self.collisions], ) cpy._collision_mesh = cm return cpy class URDF(URDFType): """The top-level URDF specification. The URDF encapsulates an articulated object, such as a robot or a gripper. It is made of links and joints that tie them together and define their relative motions. Parameters ---------- name : str The name of the URDF. links : list of :class:`.Link` The links of the URDF. joints : list of :class:`.Joint`, optional The joints of the URDF. transmissions : list of :class:`.Transmission`, optional The transmissions of the URDF. materials : list of :class:`.Material`, optional The materials for the URDF. other_xml : str, optional A string containing any extra XML for extensions. """ _ATTRIBS = { 'name': (str, True), } _ELEMENTS = { 'links': (Link, True, True), 'joints': (Joint, False, True), 'transmissions': (Transmission, False, True), 'materials': (Material, False, True), } _TAG = 'robot' def __init__(self, name, links, joints=None, transmissions=None, materials=None, other_xml=None): if joints is None: joints = [] if transmissions is None: transmissions = [] if materials is None: materials = [] self.name = name self.other_xml = other_xml # No setters for these self._links = list(links) self._joints = list(joints) self._transmissions = list(transmissions) self._materials = list(materials) # Set up private helper maps from name to value self._link_map = {} self._joint_map = {} self._transmission_map = {} self._material_map = {} for x in self._links: if x.name in self._link_map: raise ValueError('Two links with name {} found'.format(x.name)) self._link_map[x.name] = x for x in self._joints: if x.name in self._joint_map: raise ValueError('Two joints with name {} ' 'found'.format(x.name)) self._joint_map[x.name] = x for x in self._transmissions: if x.name in self._transmission_map: raise ValueError('Two transmissions with name {} ' 'found'.format(x.name)) self._transmission_map[x.name] = x for x in self._materials: if x.name in self._material_map: raise ValueError('Two materials with name {} ' 'found'.format(x.name)) self._material_map[x.name] = x # Synchronize materials between links and top-level set self._merge_materials() # Validate the joints and transmissions actuated_joints = self._validate_joints() self._validate_transmissions() # Create the link graph and base link/end link sets self._G = nx.DiGraph() # Add all links for link in self.links: self._G.add_node(link) # Add all edges from CHILDREN TO PARENTS, with joints as their object for joint in self.joints: parent = self._link_map[joint.parent] child = self._link_map[joint.child] self._G.add_edge(child, parent, joint=joint) # Validate the graph and get the base and end links self._base_link, self._end_links = self._validate_graph() # Cache the paths to the base link self._paths_to_base = nx.shortest_path( self._G, target=self._base_link ) self._actuated_joints = self._sort_joints(actuated_joints) # Cache the reverse topological order (useful for speeding up FK, # as we want to start at the base and work outward to cache # computation. self._reverse_topo = list(reversed(list(nx.topological_sort(self._G)))) @property def name(self): """str : The name of the URDF. """ return self._name @name.setter def name(self, value): self._name = str(value) @property def links(self): """list of :class:`.Link` : The links of the URDF. This returns a copy of the links array which cannot be edited directly. If you want to add or remove links, use the appropriate functions. """ return copy.copy(self._links) @property def link_map(self): """dict : Map from link names to the links themselves. This returns a copy of the link map which cannot be edited directly. If you want to add or remove links, use the appropriate functions. """ return copy.copy(self._link_map) @property def joints(self): """list of :class:`.Joint` : The links of the URDF. This returns a copy of the joints array which cannot be edited directly. If you want to add or remove joints, use the appropriate functions. """ return copy.copy(self._joints) @property def joint_map(self): """dict : Map from joint names to the joints themselves. This returns a copy of the joint map which cannot be edited directly. If you want to add or remove joints, use the appropriate functions. """ return copy.copy(self._joint_map) @property def transmissions(self): """list of :class:`.Transmission` : The transmissions of the URDF. This returns a copy of the transmissions array which cannot be edited directly. If you want to add or remove transmissions, use the appropriate functions. """ return copy.copy(self._transmissions) @property def transmission_map(self): """dict : Map from transmission names to the transmissions themselves. This returns a copy of the transmission map which cannot be edited directly. If you want to add or remove transmissions, use the appropriate functions. """ return copy.copy(self._transmission_map) @property def materials(self): """list of :class:`.Material` : The materials of the URDF. This returns a copy of the materials array which cannot be edited directly. If you want to add or remove materials, use the appropriate functions. """ return copy.copy(self._materials) @property def material_map(self): """dict : Map from material names to the materials themselves. This returns a copy of the material map which cannot be edited directly. If you want to add or remove materials, use the appropriate functions. """ return copy.copy(self._material_map) @property def other_xml(self): """str : Any extra XML that belongs with the URDF. """ return self._other_xml @other_xml.setter def other_xml(self, value): self._other_xml = value @property def actuated_joints(self): """list of :class:`.Joint` : The joints that are independently actuated. This excludes mimic joints and fixed joints. The joints are listed in topological order, starting from the base-most joint. """ return self._actuated_joints @property def actuated_joint_names(self): """list of :class:`.Joint` : The names of joints that are independently actuated. This excludes mimic joints and fixed joints. The joints are listed in topological order, starting from the base-most joint. """ return [j.name for j in self._actuated_joints] def cfg_to_vector(self, cfg): """Convert a configuration dictionary into a configuration vector. Parameters ---------- cfg : dict or None The configuration value. Returns ------- vec : (n,) float The configuration vector, or None if no actuated joints present. """ if cfg is None: if len(self.actuated_joints) > 0: return np.zeros(len(self.actuated_joints)) else: return None elif isinstance(cfg, (list, tuple, np.ndarray)): return np.asanyarray(cfg) elif isinstance(cfg, dict): vec = np.zeros(len(self.actuated_joints)) for i, jn in enumerate(self.actuated_joint_names): if jn in cfg: vec[i] = cfg[jn] return vec else: raise ValueError('Invalid configuration: {}'.format(cfg)) @property def base_link(self): """:class:`.Link`: The base link for the URDF. The base link is the single link that has no parent. """ return self._base_link @property def end_links(self): """list of :class:`.Link`: The end links for the URDF. The end links are the links that have no children. """ return self._end_links @property def joint_limit_cfgs(self): """tuple of dict : The lower-bound and upper-bound joint configuration maps. The first map is the lower-bound map, which maps limited joints to their lower joint limits. The second map is the upper-bound map, which maps limited joints to their upper joint limits. """ lb = {} ub = {} for joint in self.actuated_joints: if joint.limit is not None: if joint.limit.lower is not None: lb[joint] = joint.limit.lower if joint.limit.upper is not None: ub[joint] = joint.limit.upper return (lb, ub) @property def joint_limits(self): """(n,2) float : A lower and upper limit for each joint. """ limits = [] for joint in self.actuated_joints: limit = [-np.infty, np.infty] if joint.limit is not None: if joint.limit.lower is not None: limit[0] = joint.limit.lower if joint.limit.upper is not None: limit[1] = joint.limit.upper limits.append(limit) return np.array(limits) def link_fk(self, cfg=None, link=None, links=None, use_names=False): """Computes the poses of the URDF's links via forward kinematics. Parameters ---------- cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. link : str or :class:`.Link` A single link or link name to return a pose for. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only these links will be in the returned map. If neither link nor links are specified all links are returned. use_names : bool If True, the returned dictionary will have keys that are string link names rather than the links themselves. Returns ------- fk : dict or (4,4) float A map from links to 4x4 homogenous transform matrices that position them relative to the base link's frame, or a single 4x4 matrix if ``link`` is specified. """ # Process config value joint_cfg = self._process_cfg(cfg) # Process link set link_set = set() if link is not None: if isinstance(link, six.string_types): link_set.add(self._link_map[link]) elif isinstance(link, Link): link_set.add(link) elif links is not None: for lnk in links: if isinstance(lnk, six.string_types): link_set.add(self._link_map[lnk]) elif isinstance(lnk, Link): link_set.add(lnk) else: raise TypeError('Got object of type {} in links list' .format(type(lnk))) else: link_set = self.links # Compute forward kinematics in reverse topological order fk = OrderedDict() for lnk in self._reverse_topo: if lnk not in link_set: continue pose = np.eye(4, dtype=np.float64) path = self._paths_to_base[lnk] for i in range(len(path) - 1): child = path[i] parent = path[i + 1] joint = self._G.get_edge_data(child, parent)['joint'] cfg = None if joint.mimic is not None: mimic_joint = self._joint_map[joint.mimic.joint] if mimic_joint in joint_cfg: cfg = joint_cfg[mimic_joint] cfg = joint.mimic.multiplier * cfg + joint.mimic.offset elif joint in joint_cfg: cfg = joint_cfg[joint] pose = joint.get_child_pose(cfg).dot(pose) # Check existing FK to see if we can exit early if parent in fk: pose = fk[parent].dot(pose) break fk[lnk] = pose if link: if isinstance(link, six.string_types): return fk[self._link_map[link]] else: return fk[link] if use_names: return {ell.name: fk[ell] for ell in fk} return fk def link_fk_batch(self, cfgs=None, link=None, links=None, use_names=False): """Computes the poses of the URDF's links via forward kinematics in a batch. Parameters ---------- cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of ``n`` configuration vectors, each of which has a vector with an entry for each actuated joint. link : str or :class:`.Link` A single link or link name to return a pose for. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only these links will be in the returned map. If neither link nor links are specified all links are returned. use_names : bool If True, the returned dictionary will have keys that are string link names rather than the links themselves. Returns ------- fk : dict or (n,4,4) float A map from links to a (n,4,4) vector of homogenous transform matrices that position the links relative to the base link's frame, or a single nx4x4 matrix if ``link`` is specified. """ joint_cfgs, n_cfgs = self._process_cfgs(cfgs) # Process link set link_set = set() if link is not None: if isinstance(link, six.string_types): link_set.add(self._link_map[link]) elif isinstance(link, Link): link_set.add(link) elif links is not None: for lnk in links: if isinstance(lnk, six.string_types): link_set.add(self._link_map[lnk]) elif isinstance(lnk, Link): link_set.add(lnk) else: raise TypeError('Got object of type {} in links list' .format(type(lnk))) else: link_set = self.links # Compute FK mapping each link to a vector of matrices, one matrix per cfg fk = OrderedDict() for lnk in self._reverse_topo: if lnk not in link_set: continue poses = np.tile(np.eye(4, dtype=np.float64), (n_cfgs, 1, 1)) path = self._paths_to_base[lnk] for i in range(len(path) - 1): child = path[i] parent = path[i + 1] joint = self._G.get_edge_data(child, parent)['joint'] cfg_vals = None if joint.mimic is not None: mimic_joint = self._joint_map[joint.mimic.joint] if mimic_joint in joint_cfgs: cfg_vals = joint_cfgs[mimic_joint] cfg_vals = joint.mimic.multiplier * cfg_vals + joint.mimic.offset elif joint in joint_cfgs: cfg_vals = joint_cfgs[joint] poses = np.matmul(joint.get_child_poses(cfg_vals, n_cfgs), poses) if parent in fk: poses = np.matmul(fk[parent], poses) break fk[lnk] = poses if link: if isinstance(link, six.string_types): return fk[self._link_map[link]] else: return fk[link] if use_names: return {ell.name: fk[ell] for ell in fk} return fk def visual_geometry_fk(self, cfg=None, links=None): """Computes the poses of the URDF's visual geometries using fk. Parameters ---------- cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`Geometry` objects that are part of the visual elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk(cfg=cfg, links=links) fk = OrderedDict() for link in lfk: for visual in link.visuals: fk[visual.geometry] = lfk[link].dot(visual.origin) return fk def visual_geometry_fk_batch(self, cfgs=None, links=None): """Computes the poses of the URDF's visual geometries using fk. Parameters ---------- cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of ``n`` configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`Geometry` objects that are part of the visual elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk_batch(cfgs=cfgs, links=links) fk = OrderedDict() for link in lfk: for visual in link.visuals: fk[visual.geometry] = np.matmul(lfk[link], visual.origin) return fk def visual_trimesh_fk(self, cfg=None, links=None): """Computes the poses of the URDF's visual trimeshes using fk. Parameters ---------- cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`~trimesh.base.Trimesh` objects that are part of the visual geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk(cfg=cfg, links=links) fk = OrderedDict() for link in lfk: for visual in link.visuals: for mesh in visual.geometry.meshes: pose = lfk[link].dot(visual.origin) if visual.geometry.mesh is not None: if visual.geometry.mesh.scale is not None: S = np.eye(4, dtype=np.float64) S[:3,:3] = np.diag(visual.geometry.mesh.scale) pose = pose.dot(S) fk[mesh] = pose return fk def visual_trimesh_fk_batch(self, cfgs=None, links=None): """Computes the poses of the URDF's visual trimeshes using fk. Parameters ---------- cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of ``n`` configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`~trimesh.base.Trimesh` objects that are part of the visual geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk_batch(cfgs=cfgs, links=links) fk = OrderedDict() for link in lfk: for visual in link.visuals: for mesh in visual.geometry.meshes: poses = np.matmul(lfk[link], visual.origin) if visual.geometry.mesh is not None: if visual.geometry.mesh.scale is not None: S = np.eye(4, dtype=np.float64) S[:3,:3] = np.diag(visual.geometry.mesh.scale) poses = np.matmul(poses, S) fk[mesh] = poses return fk def collision_geometry_fk(self, cfg=None, links=None): """Computes the poses of the URDF's collision geometries using fk. Parameters ---------- cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`Geometry` objects that are part of the collision elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk(cfg=cfg, links=links) fk = OrderedDict() for link in lfk: for collision in link.collisions: fk[collision] = lfk[link].dot(collision.origin) return fk def collision_geometry_fk_batch(self, cfgs=None, links=None): """Computes the poses of the URDF's collision geometries using fk. Parameters ---------- cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of ``n`` configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only geometries from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`Geometry` objects that are part of the collision elements of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk_batch(cfgs=cfgs, links=links) fk = OrderedDict() for link in lfk: for collision in link.collisions: fk[collision] = np.matmul(lfk[link], collision.origin) return fk def collision_trimesh_fk(self, cfg=None, links=None): """Computes the poses of the URDF's collision trimeshes using fk. Parameters ---------- cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`~trimesh.base.Trimesh` objects that are part of the collision geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk(cfg=cfg, links=links) fk = OrderedDict() for link in lfk: pose = lfk[link] cm = link.collision_mesh if cm is not None: fk[cm] = pose return fk def collision_trimesh_fk_batch(self, cfgs=None, links=None): """Computes the poses of the URDF's collision trimeshes using fk. Parameters ---------- cfgs : dict, list of dict, or (n,m), float One of the following: (A) a map from joints or joint names to vectors of joint configuration values, (B) a list of maps from joints or joint names to single configuration values, or (C) a list of ``n`` configuration vectors, each of which has a vector with an entry for each actuated joint. links : list of str or list of :class:`.Link` The links or names of links to perform forward kinematics on. Only trimeshes from these links will be in the returned map. If not specified, all links are returned. Returns ------- fk : dict A map from :class:`~trimesh.base.Trimesh` objects that are part of the collision geometry of the specified links to the 4x4 homogenous transform matrices that position them relative to the base link's frame. """ lfk = self.link_fk_batch(cfgs=cfgs, links=links) fk = OrderedDict() for link in lfk: poses = lfk[link] cm = link.collision_mesh if cm is not None: fk[cm] = poses return fk def animate(self, cfg_trajectory=None, loop_time=3.0, use_collision=False): """Animate the URDF through a configuration trajectory. Parameters ---------- cfg_trajectory : dict or (m,n) float A map from joints or joint names to lists of configuration values for each joint along the trajectory, or a vector of vectors where the second dimension contains a value for each joint. If not specified, all joints will articulate from limit to limit. The trajectory steps are assumed to be equally spaced out in time. loop_time : float The time to loop the animation for, in seconds. The trajectory will play fowards and backwards during this time, ending at the inital configuration. use_collision : bool If True, the collision geometry is visualized instead of the visual geometry. Examples -------- You can run this without specifying a ``cfg_trajectory`` to view the full articulation of the URDF >>> robot = URDF.load('ur5.urdf') >>> robot.animate() .. image:: /_static/ur5.gif >>> ct = {'shoulder_pan_joint': [0.0, 2 * np.pi]} >>> robot.animate(cfg_trajectory=ct) .. image:: /_static/ur5_shoulder.gif >>> ct = { ... 'shoulder_pan_joint' : [-np.pi / 4, np.pi / 4], ... 'shoulder_lift_joint' : [0.0, -np.pi / 2.0], ... 'elbow_joint' : [0.0, np.pi / 2.0] ... } >>> robot.animate(cfg_trajectory=ct) .. image:: /_static/ur5_three_joints.gif """ import pyrender # Save pyrender import for here for CI ct = cfg_trajectory traj_len = None # Length of the trajectory in steps ct_np = {} # Numpyified trajectory # If trajectory not specified, articulate between the limits. if ct is None: lb, ub = self.joint_limit_cfgs if len(lb) > 0: traj_len = 2 ct_np = {k: np.array([lb[k], ub[k]]) for k in lb} # If it is specified, parse it and extract the trajectory length. elif isinstance(ct, dict): if len(ct) > 0: for k in ct: val = np.asanyarray(ct[k]).astype(np.float64) if traj_len is None: traj_len = len(val) elif traj_len != len(val): raise ValueError('Trajectories must be same length') ct_np[k] = val elif isinstance(ct, (list, tuple, np.ndarray)): ct = np.asanyarray(ct).astype(np.float64) if ct.ndim == 1: ct = ct.reshape(-1, 1) if ct.ndim != 2 or ct.shape[1] != len(self.actuated_joints): raise ValueError('Cfg trajectory must have entry for each joint') ct_np = {j: ct[:,i] for i, j in enumerate(self.actuated_joints)} else: raise TypeError('Invalid type for cfg_trajectory: {}' .format(type(cfg_trajectory))) # If there isn't a trajectory to render, just show the model and exit if len(ct_np) == 0 or traj_len < 2: self.show(use_collision=use_collision) return # Create an array of times that loops from 0 to 1 and back to 0 fps = 30.0 n_steps = int(loop_time * fps / 2.0) times = np.linspace(0.0, 1.0, n_steps) times = np.hstack((times, np.flip(times))) # Create bin edges in the range [0, 1] for each trajectory step bins = np.arange(traj_len) / (float(traj_len) - 1.0) # Compute alphas for each time right_inds = np.digitize(times, bins, right=True) right_inds[right_inds == 0] = 1 alphas = ((bins[right_inds] - times) / (bins[right_inds] - bins[right_inds - 1])) # Create the new interpolated trajectory new_ct = {} for k in ct_np: new_ct[k] = (alphas * ct_np[k][right_inds - 1] + (1.0 - alphas) * ct_np[k][right_inds]) # Create the scene if use_collision: fk = self.collision_trimesh_fk() else: fk = self.visual_trimesh_fk() node_map = {} scene = pyrender.Scene() for tm in fk: pose = fk[tm] mesh = pyrender.Mesh.from_trimesh(tm, smooth=False) node = scene.add(mesh, pose=pose) node_map[tm] = node # Get base pose to focus on blp = self.link_fk(links=[self.base_link])[self.base_link] # Pop the visualizer asynchronously v = pyrender.Viewer(scene, run_in_thread=True, use_raymond_lighting=True, view_center=blp[:3,3]) # Now, run our loop i = 0 while v.is_active: cfg = {k: new_ct[k][i] for k in new_ct} i = (i + 1) % len(times) if use_collision: fk = self.collision_trimesh_fk(cfg=cfg) else: fk = self.visual_trimesh_fk(cfg=cfg) v.render_lock.acquire() for mesh in fk: pose = fk[mesh] node_map[mesh].matrix = pose v.render_lock.release() time.sleep(1.0 / fps) def show(self, cfg=None, use_collision=False): """Visualize the URDF in a given configuration. Parameters ---------- cfg : dict or (n), float A map from joints or joint names to configuration values for each joint, or a list containing a value for each actuated joint in sorted order from the base link. If not specified, all joints are assumed to be in their default configurations. use_collision : bool If True, the collision geometry is visualized instead of the visual geometry. """ import pyrender # Save pyrender import for here for CI if use_collision: fk = self.collision_trimesh_fk(cfg=cfg) else: fk = self.visual_trimesh_fk(cfg=cfg) scene = pyrender.Scene() for tm in fk: pose = fk[tm] mesh = pyrender.Mesh.from_trimesh(tm, smooth=False) scene.add(mesh, pose=pose) pyrender.Viewer(scene, use_raymond_lighting=True) def copy(self, name=None, prefix='', scale=None, collision_only=False): """Make a deep copy of the URDF. Parameters ---------- name : str, optional A name for the new URDF. If not specified, ``self.name`` is used. prefix : str, optional A prefix to apply to all names except for the base URDF name. scale : float or (3,) float, optional A scale to apply to the URDF. collision_only : bool, optional If True, all visual geometry is redirected to the collision geometry. Returns ------- copy : :class:`.URDF` The copied URDF. """ return URDF( name = (name if name else self.name), links=[v.copy(prefix, scale, collision_only) for v in self.links], joints=[v.copy(prefix, scale) for v in self.joints], transmissions=[v.copy(prefix, scale) for v in self.transmissions], materials=[v.copy(prefix, scale) for v in self.materials], other_xml=self.other_xml ) def save(self, file_obj): """Save this URDF to a file. Parameters ---------- file_obj : str or file-like object The file to save the URDF to. Should be the path to the ``.urdf`` XML file. Any paths in the URDF should be specified as relative paths to the ``.urdf`` file instead of as ROS resources. Returns ------- urdf : :class:`.URDF` The parsed URDF. """ if isinstance(file_obj, six.string_types): path, _ = os.path.split(file_obj) else: path, _ = os.path.split(os.path.realpath(file_obj.name)) node = self._to_xml(None, path) tree = ET.ElementTree(node) tree.write(file_obj, pretty_print=True, xml_declaration=True, encoding='utf-8') def join(self, other, link, origin=None, name=None, prefix=''): """Join another URDF to this one by rigidly fixturing the two at a link. Parameters ---------- other : :class:.`URDF` Another URDF to fuze to this one. link : :class:`.Link` or str The link of this URDF to attach the other URDF to. origin : (4,4) float, optional The location in this URDF's link frame to attach the base link of the other URDF at. name : str, optional A name for the new URDF. prefix : str, optional If specified, all joints and links from the (other) mesh will be pre-fixed with this value to avoid name clashes. Returns ------- :class:`.URDF` The new URDF. """ myself = self.copy() other = other.copy(prefix=prefix) # Validate link_names = set(myself.link_map.keys()) other_link_names = set(other.link_map.keys()) if len(link_names.intersection(other_link_names)) > 0: raise ValueError('Cannot merge two URDFs with shared link names') joint_names = set(myself.joint_map.keys()) other_joint_names = set(other.joint_map.keys()) if len(joint_names.intersection(other_joint_names)) > 0: raise ValueError('Cannot merge two URDFs with shared joint names') links = myself.links + other.links joints = myself.joints + other.joints transmissions = myself.transmissions + other.transmissions materials = myself.materials + other.materials if name is None: name = self.name # Create joint that links the two rigidly joints.append(Joint( name='{}_join_{}{}_joint'.format(self.name, prefix, other.name), joint_type='fixed', parent=link if isinstance(link, str) else link.name, child=other.base_link.name, origin=origin )) return URDF(name=name, links=links, joints=joints, transmissions=transmissions, materials=materials) def _merge_materials(self): """Merge the top-level material set with the link materials. """ for link in self.links: for v in link.visuals: if v.material is None: continue if v.material.name in self.material_map: v.material = self._material_map[v.material.name] else: self._materials.append(v.material) self._material_map[v.material.name] = v.material @staticmethod def load(file_obj): """Load a URDF from a file. Parameters ---------- file_obj : str or file-like object The file to load the URDF from. Should be the path to the ``.urdf`` XML file. Any paths in the URDF should be specified as relative paths to the ``.urdf`` file instead of as ROS resources. Returns ------- urdf : :class:`.URDF` The parsed URDF. """ if isinstance(file_obj, six.string_types): if os.path.isfile(file_obj): parser = ET.XMLParser(remove_comments=True, remove_blank_text=True) tree = ET.parse(file_obj, parser=parser) path, _ = os.path.split(file_obj) else: raise ValueError('{} is not a file'.format(file_obj)) else: parser = ET.XMLParser(remove_comments=True, remove_blank_text=True) tree = ET.parse(file_obj, parser=parser) path, _ = os.path.split(file_obj.name) node = tree.getroot() return URDF._from_xml(node, path) def _validate_joints(self): """Raise an exception of any joints are invalidly specified. Checks for the following: - Joint parents are valid link names. - Joint children are valid link names that aren't the same as parent. - Joint mimics have valid joint names that aren't the same joint. Returns ------- actuated_joints : list of :class:`.Joint` The joints in the model that are independently controllable. """ actuated_joints = [] for joint in self.joints: if joint.parent not in self._link_map: raise ValueError('Joint {} has invalid parent link name {}' .format(joint.name, joint.parent)) if joint.child not in self._link_map: raise ValueError('Joint {} has invalid child link name {}' .format(joint.name, joint.child)) if joint.child == joint.parent: raise ValueError('Joint {} has matching parent and child' .format(joint.name)) if joint.mimic is not None: if joint.mimic.joint not in self._joint_map: raise ValueError( 'Joint {} has an invalid mimic joint name {}' .format(joint.name, joint.mimic.joint) ) if joint.mimic.joint == joint.name: raise ValueError( 'Joint {} set up to mimic itself' .format(joint.mimic.joint) ) elif joint.joint_type != 'fixed': actuated_joints.append(joint) # Do a depth-first search return actuated_joints def _sort_joints(self, joints): """Sort joints by ascending distance from the base link (topologically). Parameters ---------- joints : list of :class:`.Joint` The joints to sort. Returns ------- joints : list of :class:`.Joint` The sorted joints. """ lens = [] for joint in joints: child_link = self._link_map[joint.child] lens.append(len(self._paths_to_base[child_link])) order = np.argsort(lens) return np.array(joints)[order].tolist() def _validate_transmissions(self): """Raise an exception of any transmissions are invalidly specified. Checks for the following: - Transmission joints have valid joint names. """ for t in self.transmissions: for joint in t.joints: if joint.name not in self._joint_map: raise ValueError('Transmission {} has invalid joint name ' '{}'.format(t.name, joint.name)) def _validate_graph(self): """Raise an exception if the link-joint structure is invalid. Checks for the following: - The graph is connected in the undirected sense. - The graph is acyclic in the directed sense. - The graph has only one base link. Returns ------- base_link : :class:`.Link` The base link of the URDF. end_links : list of :class:`.Link` The end links of the URDF. """ # Check that the link graph is weakly connected if not nx.is_weakly_connected(self._G): link_clusters = [] for cc in nx.weakly_connected_components(self._G): cluster = [] for n in cc: cluster.append(n.name) link_clusters.append(cluster) message = ('Links are not all connected. ' 'Connected components are:') for lc in link_clusters: message += '\n\t' for n in lc: message += ' {}'.format(n) raise ValueError(message) # Check that link graph is acyclic if not nx.is_directed_acyclic_graph(self._G): raise ValueError('There are cycles in the link graph') # Ensure that there is exactly one base link, which has no parent base_link = None end_links = [] for n in self._G: if len(nx.descendants(self._G, n)) == 0: if base_link is None: base_link = n else: raise ValueError('Links {} and {} are both base links!' .format(n.name, base_link.name)) if len(nx.ancestors(self._G, n)) == 0: end_links.append(n) return base_link, end_links def _process_cfg(self, cfg): """Process a joint configuration spec into a dictionary mapping joints to configuration values. """ joint_cfg = {} if cfg is None: return joint_cfg if isinstance(cfg, dict): for joint in cfg: if isinstance(joint, six.string_types): joint_cfg[self._joint_map[joint]] = cfg[joint] elif isinstance(joint, Joint): joint_cfg[joint] = cfg[joint] elif isinstance(cfg, (list, tuple, np.ndarray)): if len(cfg) != len(self.actuated_joints): raise ValueError('Cfg must have same length as actuated joints ' 'if specified as a numerical array') for joint, value in zip(self.actuated_joints, cfg): joint_cfg[joint] = value else: raise TypeError('Invalid type for config') return joint_cfg def _process_cfgs(self, cfgs): """Process a list of joint configurations into a dictionary mapping joints to configuration values. This should result in a dict mapping each joint to a list of cfg values, one per joint. """ joint_cfg = {j : [] for j in self.actuated_joints} n_cfgs = None if isinstance(cfgs, dict): for joint in cfgs: if isinstance(joint, six.string_types): joint_cfg[self._joint_map[joint]] = cfgs[joint] else: joint_cfg[joint] = cfgs[joint] if n_cfgs is None: n_cfgs = len(cfgs[joint]) elif isinstance(cfgs, (list, tuple, np.ndarray)): n_cfgs = len(cfgs) if isinstance(cfgs[0], dict): for cfg in cfgs: for joint in cfg: if isinstance(joint, six.string_types): joint_cfg[self._joint_map[joint]].append(cfg[joint]) else: joint_cfg[joint].append(cfg[joint]) elif cfgs[0] is None: pass else: cfgs = np.asanyarray(cfgs, dtype=np.float64) for i, j in enumerate(self.actuated_joints): joint_cfg[j] = cfgs[:,i] else: raise ValueError('Incorrectly formatted config array') for j in joint_cfg: if len(joint_cfg[j]) == 0: joint_cfg[j] = None elif len(joint_cfg[j]) != n_cfgs: raise ValueError('Inconsistent number of configurations for joints') return joint_cfg, n_cfgs @classmethod def _from_xml(cls, node, path): valid_tags = set(['joint', 'link', 'transmission', 'material']) kwargs = cls._parse(node, path) extra_xml_node = ET.Element('extra') for child in node: if child.tag not in valid_tags: extra_xml_node.append(child) data = ET.tostring(extra_xml_node) kwargs['other_xml'] = data return URDF(**kwargs) def _to_xml(self, parent, path): node = self._unparse(path) if self.other_xml: extra_tree = ET.fromstring(self.other_xml) for child in extra_tree: node.append(child) return node
the-stack_0_24313
#!/usr/bin/env python3 import os import argparse import subprocess from colors import * from utils import * CUR_DIR = os.path.abspath(os.path.dirname(__file__)) def vm_boot(vm, freeze, cpu, memory, kernel, dir, port): cmd_boot = """\ set -e; sudo qemu-system-x86_64 \ -s \ {freeze} \ -nographic \ -enable-kvm \ -cpu host \ -smp cpus={cpu} \ -m {memory} \ -hda {vm} \ -device e1000,netdev=net0 \ -net nic \ -netdev user,id=net0,hostfwd=tcp::{port}-:22 \ """ cmd_dir = """\ -kernel {kernel} \ -append "nokaslr root=/dev/sda4 console=ttyS0" \ -fsdev local,security_model=passthrough,id=fsdev0,path={dir} \ -device virtio-9p-pci,id=fs0,fsdev=fsdev0,mount_tag=/dev/host \ """ cmd = cmd_boot.format(vm=vm, freeze=freeze, cpu=cpu, \ memory=memory, port=port) if kernel != None and dir != None: cmd = cmd + " " + cmd_dir.format(kernel=kernel, dir=dir) print(cmd) os.system(cmd) if __name__ == '__main__': # options parser = argparse.ArgumentParser(prog='vm-boot.py') parser.add_argument('-v', '--vm', help="VM image") parser.add_argument('-S', '--freeze', action='store_true', default=False, help="freeze CPU at startup") parser.add_argument('-c', '--cpu', default="2", help="number of CPU: default = 2") parser.add_argument('-m', '--memory', default="4G", help="memory size: default = 4G") parser.add_argument('-k', '--kernel', help="kernel boot image") parser.add_argument('-d', '--dir', default=os.path.join(CUR_DIR, ".."), help="shared directory: mount tag = /dev/host, default = ../") parser.add_argument('-p', '--port', default=port_number(), help="ssh port number: default is %s" % port_number()) # options parsing args = parser.parse_args() if args.vm is None: parser.print_help() exit(1) # boot vm_boot(args.vm, "-S" if args.freeze else "", args.cpu, args.memory, \ args.kernel, args.dir, args.port)
the-stack_0_24314
""" Add a custom VERBOSE logging level between DEBUG and INFO. """ import logging VERBOSE = 15 VERBOSE_NAME = "VERBOSE" def verbose(msg, *args, **kwargs) -> None: """ Verbose logging function. :param msg: The message to log as verbose :param args: Standard args :param kwargs: Standard kwargs :return: No meaningful return """ if logging.getLogger().isEnabledFor(VERBOSE): logging.log(VERBOSE, msg) logging.addLevelName(VERBOSE, VERBOSE_NAME) logging.verbose = verbose logging.Logger.verbose = verbose def configure_logging(loglevel: str) -> None: """ Configure basic logging to the console. :param loglevel: level name from the command line or default :return: No meaningful return """ if logging.getLevelName(loglevel) == "Level {0}".format(loglevel): raise ValueError('Invalid log level: %s' % loglevel) logging.basicConfig(level=loglevel, format='%(asctime)s - %(levelname)s - %(message)s')
the-stack_0_24315
def htmlEndTagByStartTag(startTag): ''' You are implementing your own HTML editor. To make it more comfortable for developers you would like to add an auto-completion feature to it. Given the starting HTML tag, find the appropriate end tag which your editor should propose. If you are not familiar with HTML, consult with this note. Example For startTag = "<button type='button' disabled>", the output should be htmlEndTagByStartTag(startTag) = "</button>"; For startTag = "<i>", the output should be htmlEndTagByStartTag(startTag) = "</i>". ''' tag = "" for c in startTag: if c == " " or c == ">": return "</"+ tag +">" elif c != "<": tag += c print(htmlEndTagByStartTag("<button type='button' disabled>")) print(htmlEndTagByStartTag("<i>"))
the-stack_0_24316
# -*- coding:utf-8 -*- # author:keyoung # email:[email protected] # date:2019-10-11 def draw_grid(amount_card, read_file, savefile_name): from readList import read_csv_to_list import xlsxwriter workbook = xlsxwriter.Workbook(savefile_name) # 新建excel表 worksheet = workbook.add_worksheet('sheet1') # 新建sheet(sheet的名称为"sheet1") # 设置右对齐格式 align_right = workbook.add_format() align_right.set_align("right") align_right.set_bottom(1) align_right.set_bottom_color("black") # 设置单元格格式1 border1 = workbook.add_format() border1.set_bottom(1) border1.set_bottom_color("black") # 设置单元格格式2 border2 = workbook.add_format() border2.set_left(2) border2.set_left_color("black") border2.set_right(2) border2.set_right_color("black") border2.set_top(2) border2.set_top_color("black") border2.set_bottom(1) border2.set_bottom_color("black") border2.set_valign("vcenter") border2.set_align("center") # 设置单元格格式3 border3 = workbook.add_format() border3.set_left(1) border3.set_left_color("black") border3.set_right(1) border3.set_right_color("black") border3.set_top(1) border3.set_top_color("black") border3.set_bottom(1) border3.set_bottom_color("black") # 设置一个9号字体 border3_with_smaller_font = workbook.add_format() border3_with_smaller_font.set_left(1) border3_with_smaller_font.set_left_color("black") border3_with_smaller_font.set_right(1) border3_with_smaller_font.set_right_color("black") border3_with_smaller_font.set_top(1) border3_with_smaller_font.set_top_color("black") border3_with_smaller_font.set_bottom(1) border3_with_smaller_font.set_bottom_color("black") border3_with_smaller_font.set_font_size(9) # 设置一个8号字体 border3_with_very_smaller_font = workbook.add_format() border3_with_very_smaller_font.set_left(1) border3_with_very_smaller_font.set_left_color("black") border3_with_very_smaller_font.set_right(1) border3_with_very_smaller_font.set_right_color("black") border3_with_very_smaller_font.set_top(1) border3_with_very_smaller_font.set_top_color("black") border3_with_very_smaller_font.set_bottom(1) border3_with_very_smaller_font.set_bottom_color("black") border3_with_very_smaller_font.set_font_size(8) # 设置一个居中格式 border3_with_center = workbook.add_format() border3_with_center.set_left(1) border3_with_center.set_left_color("black") border3_with_center.set_right(1) border3_with_center.set_right_color("black") border3_with_center.set_top(1) border3_with_center.set_top_color("black") border3_with_center.set_bottom(1) border3_with_center.set_bottom_color("black") border3_with_center.set_align("center") # rewrite drawGrid rownum = 0 colnum = 0 print("绘制卡片中......") # 这里稍微处理一下amount_card,使得画卡片的时候永远是偶数张卡片,方便打印控制,而且不会使处理数据的时候混乱 if amount_card % 2 == 0: draw_card_amount = amount_card else: draw_card_amount = amount_card + 1 for page in range(draw_card_amount): if rownum >= (amount_card * 18) / 2: # 一个格子需要18行 # 这是控制换列 colnum = 5 rownum = 0 # 写前三行 worksheet.write(rownum, colnum, "科 名") worksheet.write(rownum + 1, colnum, "学 名") worksheet.write(rownum + 2, colnum, "中 名") worksheet.write(rownum, colnum + 1, None, border1) worksheet.write(rownum + 1, colnum + 1, None, border1) worksheet.write(rownum + 2, colnum + 1, None, border1) worksheet.write(rownum + 4, colnum, "登记号", border2) worksheet.write(rownum + 4, colnum + 1, "采集地点", border2) worksheet.write(rownum + 4, colnum + 2, "采集日期", border2) worksheet.write(rownum + 4, colnum + 3, "标本概况", border2) worksheet.write(rownum + 9, colnum, "登记号", border2) worksheet.write(rownum + 9, colnum + 1, "采集地点", border2) worksheet.write(rownum + 9, colnum + 2, "采集日期", border2) worksheet.write(rownum + 9, colnum + 3, "标本概况", border2) # 写个编号吧,如果不需要可以用随时注释掉 worksheet.write(rownum, colnum + 3, "第{}张".format(page + 1), align_right) # 设置样式 worksheet.set_column(0, 0, 7.22) # 设置A列宽度 worksheet.set_column(5, 5, 7.22) # 设置F列宽度 worksheet.set_column(2, 2, 11.22) # 设置C列宽度 worksheet.set_column(7, 7, 11.22) # 设置H列宽度 worksheet.set_column(1, 1, 14.22) # 设置B列宽度 worksheet.set_column(6, 6, 14.22) # 设置G列宽度 worksheet.set_column(3, 3, 25.22) # 设置D列宽度 worksheet.set_column(8, 8, 25.22) # 设置I列宽度 worksheet.set_column(4, 4, 5.11) # 设置E列宽度,为了裁纸的时候舒服一点 # 调整行高 worksheet.set_row(rownum, 25.0, None) worksheet.set_row(rownum + 1, 25.0, None) worksheet.set_row(rownum + 2, 25.0, None) worksheet.set_row(rownum + 4, 20.6, None) worksheet.set_row(rownum + 5, 20.6, None) worksheet.set_row(rownum + 6, 20.6, None) worksheet.set_row(rownum + 7, 20.6, None) worksheet.set_row(rownum + 9, 20.6, None) worksheet.set_row(rownum + 10, 20.6, None) worksheet.set_row(rownum + 11, 20.6, None) worksheet.set_row(rownum + 12, 20.6, None) worksheet.set_row(rownum + 13, 20.6, None) worksheet.set_row(rownum + 14, 20.6, None) worksheet.set_row(rownum + 15, 20.6, None) worksheet.set_row(rownum + 16, 20.6, None) worksheet.set_row(rownum + 17, 118.7, None) worksheet.write_blank(rownum, colnum + 2, "", border1) worksheet.write_blank(rownum + 1, colnum + 2, "", border1) worksheet.write_blank(rownum + 1, colnum + 3, "", border1) worksheet.write_blank(rownum + 2, colnum + 2, "", border1) worksheet.write_blank(rownum + 2, colnum + 3, "", border1) for j in range(5, 8): for q in range(0, 4): worksheet.write_blank(rownum + j, colnum + q, "", border3) for j in range(10, 17): for q in range(0, 4): worksheet.write_blank(rownum + j, colnum + q, "", border3) rownum = rownum + 18 # 这里定义一个内部函数,用来把学名的种名属名(specific_generic_name)和作者(author)分离出来 def split_scientific_name(scientific_name: str): import re global specific_generic_name, author_name specific_generic_name = re.findall("(^[A-Z].*? .*?) .*", scientific_name) if specific_generic_name: specific_generic_name = specific_generic_name[0] author_name = scientific_name[len(specific_generic_name) + 1:] if len(author_name) == 0: author_name = " " return specific_generic_name, author_name # rewrite handleListDate(重写老版的handleListDate) print("处理数据中......") lst = read_csv_to_list(read_file) amount_of_lst = len(lst) current_row = lst.pop() # 抽出数据 italic = workbook.add_format({'italic': True}) rownum = 0 # 行号 colnum = 0 # 列号 # 这里可以选者两种对比方式,7是选择学名,感觉科学一点 check_name = current_row[7] # 先把第一个给填了,等会再来对比分析 generic_name, author = split_scientific_name(current_row[7]) worksheet.write(rownum, colnum + 1, current_row[2], border1) # 写科名 worksheet.write_rich_string(rownum + 1, colnum + 1, italic, f"{generic_name} ", f"{author}", border1) # 写学名 worksheet.write(rownum + 2, colnum + 1, current_row[1], border1) # 写中文名 worksheet.write(rownum + 5, colnum, current_row[0], border3) # 写登记号 if len(current_row[10]) < 8: worksheet.write(rownum + 5, colnum + 1, current_row[10], border3) # 写采集地点 else: worksheet.write(rownum + 5, colnum + 1, current_row[10], border3_with_smaller_font) # 写采集地点 worksheet.write(rownum + 5, colnum + 2, current_row[13], border3_with_center) # 写采集日期 if len(current_row[11] + "采集 " + current_row[12]) < 17: worksheet.write(rownum + 5, colnum + 3, current_row[11] + "采集 " + current_row[12], border3) # 写标本概况 elif 17 <= len(current_row[11] + "采集 " + current_row[12]) < 24: worksheet.write(rownum + 5, colnum + 3, current_row[11] + "采集 " + current_row[12], border3_with_smaller_font) # 写标本概况 else: worksheet.write(rownum + 5, colnum + 3, current_row[11] + "采集 " + current_row[12], border3_with_very_smaller_font) # 写标本概况 # 第一条数据录完之后就要对比分析了 row_counter = 1 # 设置一个行计数器 while lst: # 当列表lst不为空,就不断抽取数据 if rownum > (amount_card * 18) / 2: # 这个是控制换到另一边 colnum = 5 rownum = 0 current_row = lst.pop() # 又抽取一条数据 if current_row[7] == check_name: if row_counter == 3: # 因为要空一行,所以要多加一个判断 row_counter = 5 if row_counter > 11: # 大于这么多就准备换页了 row_counter = 0 rownum = rownum + 18 if rownum >= (page * 9) + 1: # 这个数字应该还要计算一下,天灵灵地灵灵,保佑不出错 rownum = 0 colnum = 5 generic_name, author = split_scientific_name(current_row[7]) worksheet.write(rownum, colnum + 1, current_row[2], border1) # 写科名 worksheet.write_rich_string(rownum + 1, colnum + 1, italic, f"{generic_name} ", f"{author}", border1) # 写学名 worksheet.write(rownum + 2, colnum + 1, current_row[1], border1) # 写中文名 # 如果相等,意思就是同一种标本 # 同一种标本就不用再写科名,学名和中文名了 worksheet.write(rownum + 5 + row_counter, colnum, current_row[0], border3) # 写登记号 if len(current_row[10]) < 8: worksheet.write(rownum + 5 + row_counter, colnum + 1, current_row[10], border3) # 写采集地点 else: worksheet.write(rownum + 5 + row_counter, colnum + 1, current_row[10], border3_with_smaller_font) # 写采集地点 worksheet.write(rownum + 5 + row_counter, colnum + 2, current_row[13], border3_with_center) # 写采集日期 if len(current_row[11] + "采集 " + current_row[12]) < 17: worksheet.write(rownum + 5 + row_counter, colnum + 3, current_row[11] + "采集 " + current_row[12], border3) # 写标本概况 elif 17 <= len(current_row[11] + "采集 " + current_row[12]) < 24: worksheet.write(rownum + 5 + row_counter, colnum + 3, current_row[11] + "采集 " + current_row[12], border3_with_smaller_font) # 写标本概况 else: worksheet.write(rownum + 5 + row_counter, colnum + 3, current_row[11] + "采集 " + current_row[12], border3_with_very_smaller_font) # 写标本概况 row_counter = row_counter + 1 else: # 这是不等于的情况,意思就是不是同一种标本 # 就要跳到下一页去了 rownum = rownum + 18 # 在前后不同的情况下也要考虑换列的情况 if rownum >= (page * 9) + 1: rownum = 0 colnum = 5 generic_name, author = split_scientific_name(current_row[7]) worksheet.write(rownum, colnum + 1, current_row[2], border1) # 写科名 worksheet.write_rich_string(rownum + 1, colnum + 1, italic, f"{generic_name} ", f"{author}", border1) # 写学名 worksheet.write(rownum + 2, colnum + 1, current_row[1], border1) # 写中文名 worksheet.write(rownum + 5, colnum, current_row[0], border3) # 写登记号 if len(current_row[10]): worksheet.write(rownum + 5, colnum + 1, current_row[10], border3) # 写采集地点 else: worksheet.write(rownum + 5, colnum + 1, current_row[10], border3_with_smaller_font) # 写采集地点 worksheet.write(rownum + 5, colnum + 2, current_row[13], border3_with_center) # 写采集日期 if len(current_row[11] + "采集 " + current_row[12]) < 17: worksheet.write(rownum + 5, colnum + 3, current_row[11] + "采集 " + current_row[12], border3) # 写标本概况 elif 17 <= len(current_row[11] + "采集 " + current_row[12]) < 24: worksheet.write(rownum + 5, colnum + 3, current_row[11] + "采集 " + current_row[12], border3_with_smaller_font) # 写标本概况 else: worksheet.write(rownum + 5, colnum + 3, current_row[11] + "采集 " + current_row[12], border3_with_very_smaller_font) # 再把check_name重新赋值一下 check_name = current_row[7] row_counter = 1 workbook.close() print(f"数据处理完成,一共处理{amount_of_lst}条数据。") print(f"保存文件<{savefile_name}>。") print("-"*46)
the-stack_0_24317
import pytest import os import numpy as np from .. import utils from .. import templates def test_data_path(): """ Data path """ path = os.path.join(os.path.dirname(__file__), '../data/') assert(os.path.exists(path)) return path def test_templates_path(): """ Does ``templates`` path exist? """ path = test_data_path() assert(os.path.exists(os.path.join(path, 'templates'))) return os.path.join(path, 'templates') def test_read_template_ascii(): """ Test interpolation function """ path = test_templates_path() ascii_file = os.path.join(path, 'fsps_full/fsps_QSF_12_v3_001.dat') templ = templates.Template(file=ascii_file) assert(templ.name == 'fsps_QSF_12_v3_001.dat') assert(np.allclose(templ.flux.shape, [1,5994])) return templ def test_read_template_fits(): """ Read template FITS file """ path = test_templates_path() fits_file = os.path.join(path, 'spline_templates_v2/spline_age0.01_av0.0.fits') templ = templates.Template(file=fits_file) assert(np.allclose(templ.flux.shape, [templ.NZ, 12603])) assert(templ.name == 'spline_age0.01_av0.0.fits') return templ
the-stack_0_24318
""" Utility for generating TCL script to launch simulation on Vivado """ import argparse def create_sim(f_out, args): print(""" launch_simulation """, file=f_out) clock_pins = args.clock_pins.split(';') clock_periods = args.clock_periods.split(';') assert len(clock_pins) == len(clock_periods) for clock_pin, clock_period in zip(clock_pins, map(float, clock_periods)): print( """ add_force {{/{top}/{pin}}} -radix hex {{0 0ns}} {{1 {half_period}ns}} -repeat_every {period}ns """.format( top=args.top, pin=clock_pin, half_period=clock_period / 2.0, period=clock_period, ), file=f_out ) print(""" restart run 1us run 1us """, file=f_out) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('--top', help="Top-level module name.", required=True) parser.add_argument( '--clock_pins', help="Semi-colon seperated list of clock pins.", required=True ) parser.add_argument( '--clock_periods', help="Semi-colon seperated list of clock periods (in ns).", required=True ) parser.add_argument( '--output_tcl', help="Filename of output TCL file.", required=True ) args = parser.parse_args() with open(args.output_tcl, 'w') as f: create_sim(f, args) if __name__ == "__main__": main()
the-stack_0_24319
from tkinter import Tk, Label, StringVar, Button, X from tkinter.filedialog import askopenfilename import iCalSalad def main(): file_path = ["", ""] window = Tk() window.title("salad.nu -> ical") window.geometry("300x300") file_entry = Label(text="csv file", font="helvetica 14",) file_entry.pack(fill=X) file_entry_button = Button( window, text="Select File to convert", font="helvetica 14", width=15, height=1, command = lambda: get_file_path(file_entry, file_path) ) file_entry_button.pack() status_text = StringVar() go_button = Button( window, text="Convert", font="helvetica 14", width=10, height=1, command= lambda:convert(status_text, file_path) ) go_button.pack() status_section = Label( textvariable=status_text, font="helvetica 12", wraplength=300, justify="center", ) status_section.pack() window.mainloop() def add_to_status(status_text, message): t = message + "\n" + status_text.get() status_text.set(t) def convert(status_text, file_path): add_to_status(status_text, "Converting") iCalSalad.convert(file_path[0], file_path[1]) add_to_status(status_text, f"Converted, saved to {file_path[1]}") def get_file_path(entry_field, file_path): path = askopenfilename(title = "Select csv",filetypes = (("csv files","*.csv"),("all files","*.*"))) if path is not None: o = path.rsplit("/", 1) file_path[0] = path file_path[1] = o[0]+"/nu_calendar.ics" entry_field.config(text=o[1]) if __name__ == "__main__": main()
the-stack_0_24321
#!/usr/bin/env python """Create the main TCC status window (which is also the main TUI window, since it has the menus) History: 2003-06-09 ROwen added addWindow and renamed from StatusWdg to StatusWindow. 2003-06-25 ROwen Modified test case to handle message data as a dict 2003-12-17 ROwen Modified to use renamed TUI.MainMenu. 2004-02-04 ROwen Modified _HelpURL to match minor help reorg. 2004-02-17 ROwen Changed buildAutoMenus to buildMenus. 2004-05-18 ROwen Removed unused local variable in addWindow. 2004-08-11 ROwen Modified for updated RO.Wdg.Toplevel. 2006-03-16 ROwen Modified to use TestData module for testing. 2009-04-17 ROwen Added this window to the TUI menu. 2009-09-09 ROwen Moved this window to the TCC menu. Modified for changes in the TestData module. Added constant WindowName. 2011-02-16 ROwen Added AxisOffsetWdg and moved MiscWdg above the offsets. """ import Tkinter import AxisStatus import NetPosWdg import OffsetWdg import AxisOffsetWdg import MiscWdg import RO.Wdg import SlewStatus WindowName = "TCC.Status" def addWindow(tlSet): """Set up the main status window """ tlSet.createToplevel( name = WindowName, defGeom = "+0+22", resizable = False, closeMode = RO.Wdg.tl_CloseDisabled, wdgFunc = StatusWdg, ) _HelpPrefix = "Telescope/StatusWin.html#" class StatusWdg (Tkinter.Frame): def __init__ (self, master = None, **kargs): """creates a new telescope status frame Inputs: - master master Tk widget -- typically a frame or window """ Tkinter.Frame.__init__(self, master=master, **kargs) row = 1 self.netPosWdg = NetPosWdg.NetPosWdg( master=self, borderwidth=1, ) self.netPosWdg.grid(row=row, column=0, sticky="w") self.slewStatusWdg = SlewStatus.SlewStatusWdg( master = self, ) self.slewStatusWdg.grid(row=row, column=1, sticky="ns") row += 1 self.miscWdg = MiscWdg.MiscWdg( master=self, borderwidth=1, relief="ridge", ) self.miscWdg.grid(row=row, column=0, columnspan=2, sticky="ew") row += 1 self.offsetWdg = OffsetWdg.OffsetWdg( master=self, borderwidth=1, relief="ridge", ) self.offsetWdg.grid(row=row, column=0, columnspan=2, sticky="ew") row += 1 self.axisOffsetWdg = AxisOffsetWdg.AxisOffsetWdg( master=self, borderwidth=1, relief="ridge", ) self.axisOffsetWdg.grid(row=row, column=0, columnspan=2, sticky="ew") row += 1 self.axisStatusWdg = AxisStatus.AxisStatusWdg( master=self, borderwidth=1, relief="ridge", ) self.axisStatusWdg.grid(row=row, column=0, columnspan=2, sticky="ew") row += 1 # set up status bar; this is only for showing help, # not command status, so we can omit dispatcher and prefs self.statusBar = RO.Wdg.StatusBar( master = self, helpURL = _HelpPrefix + "StatusBar", ) self.statusBar.grid(row=row, column=0, columnspan=2, sticky="ew") row += 1 if __name__ == "__main__": import TestData root = TestData.tuiModel.tkRoot testFrame = StatusWdg(TestData.tuiModel.tkRoot) testFrame.pack() TestData.init() TestData.runTest() root.mainloop()
the-stack_0_24322
import copy import re import sys import tempfile import unittest from mock.tests.support import ALWAYS_EQ from mock.tests.support import is_instance from mock import ( call, DEFAULT, patch, sentinel, MagicMock, Mock, NonCallableMock, NonCallableMagicMock, AsyncMock, create_autospec, mock ) from mock.mock import _Call, _CallList import mock.mock as mock_module class Iter(object): def __init__(self): self.thing = iter(['this', 'is', 'an', 'iter']) def __iter__(self): return self def next(self): return next(self.thing) __next__ = next class Something(object): def meth(self, a, b, c, d=None): pass @classmethod def cmeth(cls, a, b, c, d=None): pass @staticmethod def smeth(a, b, c, d=None): pass def something(a): pass class MockTest(unittest.TestCase): def test_all(self): # if __all__ is badly defined then import * will raise an error # We have to exec it because you can't import * inside a method # in Python 3 exec("from mock.mock import *") def test_constructor(self): mock = Mock() self.assertFalse(mock.called, "called not initialised correctly") self.assertEqual(mock.call_count, 0, "call_count not initialised correctly") self.assertTrue(is_instance(mock.return_value, Mock), "return_value not initialised correctly") self.assertEqual(mock.call_args, None, "call_args not initialised correctly") self.assertEqual(mock.call_args_list, [], "call_args_list not initialised correctly") self.assertEqual(mock.method_calls, [], "method_calls not initialised correctly") # Can't use hasattr for this test as it always returns True on a mock self.assertNotIn('_items', mock.__dict__, "default mock should not have '_items' attribute") self.assertIsNone(mock._mock_parent, "parent not initialised correctly") self.assertIsNone(mock._mock_methods, "methods not initialised correctly") self.assertEqual(mock._mock_children, {}, "children not initialised incorrectly") def test_return_value_in_constructor(self): mock = Mock(return_value=None) self.assertIsNone(mock.return_value, "return value in constructor not honoured") def test_change_return_value_via_delegate(self): def f(): pass mock = create_autospec(f) mock.mock.return_value = 1 self.assertEqual(mock(), 1) def test_change_side_effect_via_delegate(self): def f(): pass mock = create_autospec(f) mock.mock.side_effect = TypeError() with self.assertRaises(TypeError): mock() def test_repr(self): mock = Mock(name='foo') self.assertIn('foo', repr(mock)) self.assertIn("'%s'" % id(mock), repr(mock)) mocks = [(Mock(), 'mock'), (Mock(name='bar'), 'bar')] for mock, name in mocks: self.assertIn('%s.bar' % name, repr(mock.bar)) self.assertIn('%s.foo()' % name, repr(mock.foo())) self.assertIn('%s.foo().bing' % name, repr(mock.foo().bing)) self.assertIn('%s()' % name, repr(mock())) self.assertIn('%s()()' % name, repr(mock()())) self.assertIn('%s()().foo.bar.baz().bing' % name, repr(mock()().foo.bar.baz().bing)) def test_repr_with_spec(self): class X(object): pass mock = Mock(spec=X) self.assertIn(" spec='X' ", repr(mock)) mock = Mock(spec=X()) self.assertIn(" spec='X' ", repr(mock)) mock = Mock(spec_set=X) self.assertIn(" spec_set='X' ", repr(mock)) mock = Mock(spec_set=X()) self.assertIn(" spec_set='X' ", repr(mock)) mock = Mock(spec=X, name='foo') self.assertIn(" spec='X' ", repr(mock)) self.assertIn(" name='foo' ", repr(mock)) mock = Mock(name='foo') self.assertNotIn("spec", repr(mock)) mock = Mock() self.assertNotIn("spec", repr(mock)) mock = Mock(spec=['foo']) self.assertNotIn("spec", repr(mock)) def test_side_effect(self): mock = Mock() def effect(*args, **kwargs): raise SystemError('kablooie') mock.side_effect = effect self.assertRaises(SystemError, mock, 1, 2, fish=3) mock.assert_called_with(1, 2, fish=3) results = [1, 2, 3] def effect(): return results.pop() mock.side_effect = effect self.assertEqual([mock(), mock(), mock()], [3, 2, 1], "side effect not used correctly") mock = Mock(side_effect=sentinel.SideEffect) self.assertEqual(mock.side_effect, sentinel.SideEffect, "side effect in constructor not used") def side_effect(): return DEFAULT mock = Mock(side_effect=side_effect, return_value=sentinel.RETURN) self.assertEqual(mock(), sentinel.RETURN) def test_autospec_side_effect(self): # Test for issue17826 results = [1, 2, 3] def effect(): return results.pop() def f(): pass mock = create_autospec(f) mock.side_effect = [1, 2, 3] self.assertEqual([mock(), mock(), mock()], [1, 2, 3], "side effect not used correctly in create_autospec") # Test where side effect is a callable results = [1, 2, 3] mock = create_autospec(f) mock.side_effect = effect self.assertEqual([mock(), mock(), mock()], [3, 2, 1], "callable side effect not used correctly") def test_autospec_side_effect_exception(self): # Test for issue 23661 def f(): pass mock = create_autospec(f) mock.side_effect = ValueError('Bazinga!') self.assertRaisesRegex(ValueError, 'Bazinga!', mock) def test_reset_mock(self): parent = Mock() spec = ["something"] mock = Mock(name="child", parent=parent, spec=spec) mock(sentinel.Something, something=sentinel.SomethingElse) something = mock.something mock.something() mock.side_effect = sentinel.SideEffect return_value = mock.return_value return_value() mock.reset_mock() self.assertEqual(mock._mock_name, "child", "name incorrectly reset") self.assertEqual(mock._mock_parent, parent, "parent incorrectly reset") self.assertEqual(mock._mock_methods, spec, "methods incorrectly reset") self.assertFalse(mock.called, "called not reset") self.assertEqual(mock.call_count, 0, "call_count not reset") self.assertEqual(mock.call_args, None, "call_args not reset") self.assertEqual(mock.call_args_list, [], "call_args_list not reset") self.assertEqual(mock.method_calls, [], "method_calls not initialised correctly: %r != %r" % (mock.method_calls, [])) self.assertEqual(mock.mock_calls, []) self.assertEqual(mock.side_effect, sentinel.SideEffect, "side_effect incorrectly reset") self.assertEqual(mock.return_value, return_value, "return_value incorrectly reset") self.assertFalse(return_value.called, "return value mock not reset") self.assertEqual(mock._mock_children, {'something': something}, "children reset incorrectly") self.assertEqual(mock.something, something, "children incorrectly cleared") self.assertFalse(mock.something.called, "child not reset") def test_reset_mock_recursion(self): mock = Mock() mock.return_value = mock # used to cause recursion mock.reset_mock() def test_reset_mock_on_mock_open_issue_18622(self): a = mock.mock_open() a.reset_mock() def test_call(self): mock = Mock() self.assertTrue(is_instance(mock.return_value, Mock), "Default return_value should be a Mock") result = mock() self.assertEqual(mock(), result, "different result from consecutive calls") mock.reset_mock() ret_val = mock(sentinel.Arg) self.assertTrue(mock.called, "called not set") self.assertEqual(mock.call_count, 1, "call_count incorrect") self.assertEqual(mock.call_args, ((sentinel.Arg,), {}), "call_args not set") self.assertEqual(mock.call_args.args, (sentinel.Arg,), "call_args not set") self.assertEqual(mock.call_args.kwargs, {}, "call_args not set") self.assertEqual(mock.call_args_list, [((sentinel.Arg,), {})], "call_args_list not initialised correctly") mock.return_value = sentinel.ReturnValue ret_val = mock(sentinel.Arg, key=sentinel.KeyArg) self.assertEqual(ret_val, sentinel.ReturnValue, "incorrect return value") self.assertEqual(mock.call_count, 2, "call_count incorrect") self.assertEqual(mock.call_args, ((sentinel.Arg,), {'key': sentinel.KeyArg}), "call_args not set") self.assertEqual(mock.call_args_list, [ ((sentinel.Arg,), {}), ((sentinel.Arg,), {'key': sentinel.KeyArg}) ], "call_args_list not set") def test_call_args_comparison(self): mock = Mock() mock() mock(sentinel.Arg) mock(kw=sentinel.Kwarg) mock(sentinel.Arg, kw=sentinel.Kwarg) self.assertEqual(mock.call_args_list, [ (), ((sentinel.Arg,),), ({"kw": sentinel.Kwarg},), ((sentinel.Arg,), {"kw": sentinel.Kwarg}) ]) self.assertEqual(mock.call_args, ((sentinel.Arg,), {"kw": sentinel.Kwarg})) self.assertEqual(mock.call_args.args, (sentinel.Arg,)) self.assertEqual(mock.call_args.kwargs, {"kw": sentinel.Kwarg}) # Comparing call_args to a long sequence should not raise # an exception. See issue 24857. self.assertFalse(mock.call_args == "a long sequence") def test_calls_equal_with_any(self): # Check that equality and non-equality is consistent even when # comparing with mock.ANY mm = mock.MagicMock() self.assertTrue(mm == mm) self.assertFalse(mm != mm) self.assertFalse(mm == mock.MagicMock()) self.assertTrue(mm != mock.MagicMock()) self.assertTrue(mm == mock.ANY) self.assertFalse(mm != mock.ANY) self.assertTrue(mock.ANY == mm) self.assertFalse(mock.ANY != mm) self.assertTrue(mm == ALWAYS_EQ) self.assertFalse(mm != ALWAYS_EQ) call1 = mock.call(mock.MagicMock()) call2 = mock.call(mock.ANY) self.assertTrue(call1 == call2) self.assertFalse(call1 != call2) self.assertTrue(call2 == call1) self.assertFalse(call2 != call1) self.assertTrue(call1 == ALWAYS_EQ) self.assertFalse(call1 != ALWAYS_EQ) self.assertFalse(call1 == 1) self.assertTrue(call1 != 1) def test_assert_called_with(self): mock = Mock() mock() # Will raise an exception if it fails mock.assert_called_with() self.assertRaises(AssertionError, mock.assert_called_with, 1) mock.reset_mock() self.assertRaises(AssertionError, mock.assert_called_with) mock(1, 2, 3, a='fish', b='nothing') mock.assert_called_with(1, 2, 3, a='fish', b='nothing') def test_assert_called_with_any(self): m = MagicMock() m(MagicMock()) m.assert_called_with(mock.ANY) def test_assert_called_with_function_spec(self): def f(a, b, c, d=None): pass mock = Mock(spec=f) mock(1, b=2, c=3) mock.assert_called_with(1, 2, 3) mock.assert_called_with(a=1, b=2, c=3) self.assertRaises(AssertionError, mock.assert_called_with, 1, b=3, c=2) # Expected call doesn't match the spec's signature with self.assertRaises(AssertionError) as cm: mock.assert_called_with(e=8) self.assertIsInstance(cm.exception.__cause__, TypeError) def test_assert_called_with_method_spec(self): def _check(mock): mock(1, b=2, c=3) mock.assert_called_with(1, 2, 3) mock.assert_called_with(a=1, b=2, c=3) self.assertRaises(AssertionError, mock.assert_called_with, 1, b=3, c=2) mock = Mock(spec=Something().meth) _check(mock) mock = Mock(spec=Something.cmeth) _check(mock) mock = Mock(spec=Something().cmeth) _check(mock) mock = Mock(spec=Something.smeth) _check(mock) mock = Mock(spec=Something().smeth) _check(mock) def test_assert_called_exception_message(self): msg = "Expected '{0}' to have been called" with self.assertRaisesRegex(AssertionError, msg.format('mock')): Mock().assert_called() with self.assertRaisesRegex(AssertionError, msg.format('test_name')): Mock(name="test_name").assert_called() def test_assert_called_once_with(self): mock = Mock() mock() # Will raise an exception if it fails mock.assert_called_once_with() mock() self.assertRaises(AssertionError, mock.assert_called_once_with) mock.reset_mock() self.assertRaises(AssertionError, mock.assert_called_once_with) mock('foo', 'bar', baz=2) mock.assert_called_once_with('foo', 'bar', baz=2) mock.reset_mock() mock('foo', 'bar', baz=2) self.assertRaises( AssertionError, lambda: mock.assert_called_once_with('bob', 'bar', baz=2) ) def test_assert_called_once_with_call_list(self): m = Mock() m(1) m(2) self.assertRaisesRegex(AssertionError, re.escape("Calls: [call(1), call(2)]"), lambda: m.assert_called_once_with(2)) def test_assert_called_once_with_function_spec(self): def f(a, b, c, d=None): pass mock = Mock(spec=f) mock(1, b=2, c=3) mock.assert_called_once_with(1, 2, 3) mock.assert_called_once_with(a=1, b=2, c=3) self.assertRaises(AssertionError, mock.assert_called_once_with, 1, b=3, c=2) # Expected call doesn't match the spec's signature with self.assertRaises(AssertionError) as cm: mock.assert_called_once_with(e=8) self.assertIsInstance(cm.exception.__cause__, TypeError) # Mock called more than once => always fails mock(4, 5, 6) self.assertRaises(AssertionError, mock.assert_called_once_with, 1, 2, 3) self.assertRaises(AssertionError, mock.assert_called_once_with, 4, 5, 6) def test_attribute_access_returns_mocks(self): mock = Mock() something = mock.something self.assertTrue(is_instance(something, Mock), "attribute isn't a mock") self.assertEqual(mock.something, something, "different attributes returned for same name") # Usage example mock = Mock() mock.something.return_value = 3 self.assertEqual(mock.something(), 3, "method returned wrong value") self.assertTrue(mock.something.called, "method didn't record being called") def test_attributes_have_name_and_parent_set(self): mock = Mock() something = mock.something self.assertEqual(something._mock_name, "something", "attribute name not set correctly") self.assertEqual(something._mock_parent, mock, "attribute parent not set correctly") def test_method_calls_recorded(self): mock = Mock() mock.something(3, fish=None) mock.something_else.something(6, cake=sentinel.Cake) self.assertEqual(mock.something_else.method_calls, [("something", (6,), {'cake': sentinel.Cake})], "method calls not recorded correctly") self.assertEqual(mock.method_calls, [ ("something", (3,), {'fish': None}), ("something_else.something", (6,), {'cake': sentinel.Cake}) ], "method calls not recorded correctly") def test_method_calls_compare_easily(self): mock = Mock() mock.something() self.assertEqual(mock.method_calls, [('something',)]) self.assertEqual(mock.method_calls, [('something', (), {})]) mock = Mock() mock.something('different') self.assertEqual(mock.method_calls, [('something', ('different',))]) self.assertEqual(mock.method_calls, [('something', ('different',), {})]) mock = Mock() mock.something(x=1) self.assertEqual(mock.method_calls, [('something', {'x': 1})]) self.assertEqual(mock.method_calls, [('something', (), {'x': 1})]) mock = Mock() mock.something('different', some='more') self.assertEqual(mock.method_calls, [ ('something', ('different',), {'some': 'more'}) ]) def test_only_allowed_methods_exist(self): for spec in ['something'], ('something',): for arg in 'spec', 'spec_set': mock = Mock(**{arg: spec}) # this should be allowed mock.something self.assertRaisesRegex( AttributeError, "Mock object has no attribute 'something_else'", getattr, mock, 'something_else' ) def test_from_spec(self): class Something(object): x = 3 __something__ = None def y(self): pass def test_attributes(mock): # should work mock.x mock.y mock.__something__ self.assertRaisesRegex( AttributeError, "Mock object has no attribute 'z'", getattr, mock, 'z' ) self.assertRaisesRegex( AttributeError, "Mock object has no attribute '__foobar__'", getattr, mock, '__foobar__' ) test_attributes(Mock(spec=Something)) test_attributes(Mock(spec=Something())) def test_wraps_calls(self): real = Mock() mock = Mock(wraps=real) self.assertEqual(mock(), real()) real.reset_mock() mock(1, 2, fish=3) real.assert_called_with(1, 2, fish=3) def test_wraps_prevents_automatic_creation_of_mocks(self): class Real(object): pass real = Real() mock = Mock(wraps=real) self.assertRaises(AttributeError, lambda: mock.new_attr()) def test_wraps_call_with_nondefault_return_value(self): real = Mock() mock = Mock(wraps=real) mock.return_value = 3 self.assertEqual(mock(), 3) self.assertFalse(real.called) def test_wraps_attributes(self): class Real(object): attribute = Mock() real = Real() mock = Mock(wraps=real) self.assertEqual(mock.attribute(), real.attribute()) self.assertRaises(AttributeError, lambda: mock.fish) self.assertNotEqual(mock.attribute, real.attribute) result = mock.attribute.frog(1, 2, fish=3) Real.attribute.frog.assert_called_with(1, 2, fish=3) self.assertEqual(result, Real.attribute.frog()) def test_customize_wrapped_object_with_side_effect_iterable_with_default(self): class Real(object): def method(self): return sentinel.ORIGINAL_VALUE real = Real() mock = Mock(wraps=real) mock.method.side_effect = [sentinel.VALUE1, DEFAULT] self.assertEqual(mock.method(), sentinel.VALUE1) self.assertEqual(mock.method(), sentinel.ORIGINAL_VALUE) self.assertRaises(StopIteration, mock.method) def test_customize_wrapped_object_with_side_effect_iterable(self): class Real(object): def method(self): pass real = Real() mock = Mock(wraps=real) mock.method.side_effect = [sentinel.VALUE1, sentinel.VALUE2] self.assertEqual(mock.method(), sentinel.VALUE1) self.assertEqual(mock.method(), sentinel.VALUE2) self.assertRaises(StopIteration, mock.method) def test_customize_wrapped_object_with_side_effect_exception(self): class Real(object): def method(self): pass real = Real() mock = Mock(wraps=real) mock.method.side_effect = RuntimeError self.assertRaises(RuntimeError, mock.method) def test_customize_wrapped_object_with_side_effect_function(self): class Real(object): def method(self): pass def side_effect(): return sentinel.VALUE real = Real() mock = Mock(wraps=real) mock.method.side_effect = side_effect self.assertEqual(mock.method(), sentinel.VALUE) def test_customize_wrapped_object_with_return_value(self): class Real(object): def method(self): pass real = Real() mock = Mock(wraps=real) mock.method.return_value = sentinel.VALUE self.assertEqual(mock.method(), sentinel.VALUE) def test_customize_wrapped_object_with_return_value_and_side_effect(self): # side_effect should always take precedence over return_value. class Real(object): def method(self): pass real = Real() mock = Mock(wraps=real) mock.method.side_effect = [sentinel.VALUE1, sentinel.VALUE2] mock.method.return_value = sentinel.WRONG_VALUE self.assertEqual(mock.method(), sentinel.VALUE1) self.assertEqual(mock.method(), sentinel.VALUE2) self.assertRaises(StopIteration, mock.method) def test_customize_wrapped_object_with_return_value_and_side_effect2(self): # side_effect can return DEFAULT to default to return_value class Real(object): def method(self): pass real = Real() mock = Mock(wraps=real) mock.method.side_effect = lambda: DEFAULT mock.method.return_value = sentinel.VALUE self.assertEqual(mock.method(), sentinel.VALUE) def test_customize_wrapped_object_with_return_value_and_side_effect_default(self): class Real(object): def method(self): pass real = Real() mock = Mock(wraps=real) mock.method.side_effect = [sentinel.VALUE1, DEFAULT] mock.method.return_value = sentinel.RETURN self.assertEqual(mock.method(), sentinel.VALUE1) self.assertEqual(mock.method(), sentinel.RETURN) self.assertRaises(StopIteration, mock.method) def test_magic_method_wraps_dict(self): # bpo-25597: MagicMock with wrap doesn't call wrapped object's # method for magic methods with default values. data = {'foo': 'bar'} wrapped_dict = MagicMock(wraps=data) self.assertEqual(wrapped_dict.get('foo'), 'bar') # Accessing key gives a MagicMock self.assertIsInstance(wrapped_dict['foo'], MagicMock) # __contains__ method has a default value of False self.assertFalse('foo' in wrapped_dict) # return_value is non-sentinel and takes precedence over wrapped value. wrapped_dict.get.return_value = 'return_value' self.assertEqual(wrapped_dict.get('foo'), 'return_value') # return_value is sentinel and hence wrapped value is returned. wrapped_dict.get.return_value = sentinel.DEFAULT self.assertEqual(wrapped_dict.get('foo'), 'bar') self.assertEqual(wrapped_dict.get('baz'), None) self.assertIsInstance(wrapped_dict['baz'], MagicMock) self.assertFalse('bar' in wrapped_dict) data['baz'] = 'spam' self.assertEqual(wrapped_dict.get('baz'), 'spam') self.assertIsInstance(wrapped_dict['baz'], MagicMock) self.assertFalse('bar' in wrapped_dict) del data['baz'] self.assertEqual(wrapped_dict.get('baz'), None) def test_magic_method_wraps_class(self): class Foo: def __getitem__(self, index): return index def __custom_method__(self): return "foo" klass = MagicMock(wraps=Foo) obj = klass() self.assertEqual(obj.__getitem__(2), 2) self.assertEqual(obj[2], 2) self.assertEqual(obj.__custom_method__(), "foo") def test_exceptional_side_effect(self): mock = Mock(side_effect=AttributeError) self.assertRaises(AttributeError, mock) mock = Mock(side_effect=AttributeError('foo')) self.assertRaises(AttributeError, mock) def test_baseexceptional_side_effect(self): mock = Mock(side_effect=KeyboardInterrupt) self.assertRaises(KeyboardInterrupt, mock) mock = Mock(side_effect=KeyboardInterrupt('foo')) self.assertRaises(KeyboardInterrupt, mock) def test_assert_called_with_message(self): mock = Mock() self.assertRaisesRegex(AssertionError, 'not called', mock.assert_called_with) def test_assert_called_once_with_message(self): mock = Mock(name='geoffrey') self.assertRaisesRegex(AssertionError, r"Expected 'geoffrey' to be called once\.", mock.assert_called_once_with) def test__name__(self): mock = Mock() self.assertRaises(AttributeError, lambda: mock.__name__) mock.__name__ = 'foo' self.assertEqual(mock.__name__, 'foo') def test_spec_list_subclass(self): class Sub(list): pass mock = Mock(spec=Sub(['foo'])) mock.append(3) mock.append.assert_called_with(3) self.assertRaises(AttributeError, getattr, mock, 'foo') def test_spec_class(self): class X(object): pass mock = Mock(spec=X) self.assertIsInstance(mock, X) mock = Mock(spec=X()) self.assertIsInstance(mock, X) self.assertIs(mock.__class__, X) self.assertEqual(Mock().__class__.__name__, 'Mock') mock = Mock(spec_set=X) self.assertIsInstance(mock, X) mock = Mock(spec_set=X()) self.assertIsInstance(mock, X) def test_spec_class_no_object_base(self): class X: pass mock = Mock(spec=X) self.assertIsInstance(mock, X) mock = Mock(spec=X()) self.assertIsInstance(mock, X) self.assertIs(mock.__class__, X) self.assertEqual(Mock().__class__.__name__, 'Mock') mock = Mock(spec_set=X) self.assertIsInstance(mock, X) mock = Mock(spec_set=X()) self.assertIsInstance(mock, X) def test_setting_attribute_with_spec_set(self): class X(object): y = 3 mock = Mock(spec=X) mock.x = 'foo' mock = Mock(spec_set=X) def set_attr(): mock.x = 'foo' mock.y = 'foo' self.assertRaises(AttributeError, set_attr) def test_copy(self): current = sys.getrecursionlimit() self.addCleanup(sys.setrecursionlimit, current) # can't use sys.maxint as this doesn't exist in Python 3 sys.setrecursionlimit(int(10e8)) # this segfaults without the fix in place copy.copy(Mock()) def test_subclass_with_properties(self): class SubClass(Mock): def _get(self): return 3 def _set(self, value): raise NameError('strange error') some_attribute = property(_get, _set) s = SubClass(spec_set=SubClass) self.assertEqual(s.some_attribute, 3) def test(): s.some_attribute = 3 self.assertRaises(NameError, test) def test(): s.foo = 'bar' self.assertRaises(AttributeError, test) def test_setting_call(self): mock = Mock() def __call__(self, a): self._increment_mock_call(a) return self._mock_call(a) type(mock).__call__ = __call__ mock('one') mock.assert_called_with('one') self.assertRaises(TypeError, mock, 'one', 'two') def test_dir(self): mock = Mock() attrs = set(dir(mock)) type_attrs = set([m for m in dir(Mock) if not m.startswith('_')]) # all public attributes from the type are included self.assertEqual(set(), type_attrs - attrs) # creates these attributes mock.a, mock.b self.assertIn('a', dir(mock)) self.assertIn('b', dir(mock)) # instance attributes mock.c = mock.d = None self.assertIn('c', dir(mock)) self.assertIn('d', dir(mock)) # magic methods mock.__iter__ = lambda s: iter([]) self.assertIn('__iter__', dir(mock)) def test_dir_from_spec(self): mock = Mock(spec=unittest.TestCase) testcase_attrs = set(dir(unittest.TestCase)) attrs = set(dir(mock)) # all attributes from the spec are included self.assertEqual(set(), testcase_attrs - attrs) # shadow a sys attribute mock.version = 3 self.assertEqual(dir(mock).count('version'), 1) def test_filter_dir(self): patcher = patch.object(mock, 'FILTER_DIR', False) patcher.start() try: attrs = set(dir(Mock())) type_attrs = set(dir(Mock)) # ALL attributes from the type are included self.assertEqual(set(), type_attrs - attrs) finally: patcher.stop() def test_dir_does_not_include_deleted_attributes(self): mock = Mock() mock.child.return_value = 1 self.assertIn('child', dir(mock)) del mock.child self.assertNotIn('child', dir(mock)) def test_configure_mock(self): mock = Mock(foo='bar') self.assertEqual(mock.foo, 'bar') mock = MagicMock(foo='bar') self.assertEqual(mock.foo, 'bar') kwargs = {'side_effect': KeyError, 'foo.bar.return_value': 33, 'foo': MagicMock()} mock = Mock(**kwargs) self.assertRaises(KeyError, mock) self.assertEqual(mock.foo.bar(), 33) self.assertIsInstance(mock.foo, MagicMock) mock = Mock() mock.configure_mock(**kwargs) self.assertRaises(KeyError, mock) self.assertEqual(mock.foo.bar(), 33) self.assertIsInstance(mock.foo, MagicMock) def assertRaisesWithMsg(self, exception, message, func, *args, **kwargs): # needed because assertRaisesRegex doesn't work easily with newlines with self.assertRaises(exception) as context: func(*args, **kwargs) msg = str(context.exception) self.assertEqual(msg, message) def test_assert_called_with_failure_message(self): mock = NonCallableMock() actual = 'not called.' expected = "mock(1, '2', 3, bar='foo')" message = 'expected call not found.\nExpected: %s\nActual: %s' self.assertRaisesWithMsg( AssertionError, message % (expected, actual), mock.assert_called_with, 1, '2', 3, bar='foo' ) mock.foo(1, '2', 3, foo='foo') asserters = [ mock.foo.assert_called_with, mock.foo.assert_called_once_with ] for meth in asserters: actual = "foo(1, '2', 3, foo='foo')" expected = "foo(1, '2', 3, bar='foo')" message = 'expected call not found.\nExpected: %s\nActual: %s' self.assertRaisesWithMsg( AssertionError, message % (expected, actual), meth, 1, '2', 3, bar='foo' ) # just kwargs for meth in asserters: actual = "foo(1, '2', 3, foo='foo')" expected = "foo(bar='foo')" message = 'expected call not found.\nExpected: %s\nActual: %s' self.assertRaisesWithMsg( AssertionError, message % (expected, actual), meth, bar='foo' ) # just args for meth in asserters: actual = "foo(1, '2', 3, foo='foo')" expected = "foo(1, 2, 3)" message = 'expected call not found.\nExpected: %s\nActual: %s' self.assertRaisesWithMsg( AssertionError, message % (expected, actual), meth, 1, 2, 3 ) # empty for meth in asserters: actual = "foo(1, '2', 3, foo='foo')" expected = "foo()" message = 'expected call not found.\nExpected: %s\nActual: %s' self.assertRaisesWithMsg( AssertionError, message % (expected, actual), meth ) def test_mock_calls(self): mock = MagicMock() # need to do this because MagicMock.mock_calls used to just return # a MagicMock which also returned a MagicMock when __eq__ was called self.assertIs(mock.mock_calls == [], True) mock = MagicMock() mock() expected = [('', (), {})] self.assertEqual(mock.mock_calls, expected) mock.foo() expected.append(call.foo()) self.assertEqual(mock.mock_calls, expected) # intermediate mock_calls work too self.assertEqual(mock.foo.mock_calls, [('', (), {})]) mock = MagicMock() mock().foo(1, 2, 3, a=4, b=5) expected = [ ('', (), {}), ('().foo', (1, 2, 3), dict(a=4, b=5)) ] self.assertEqual(mock.mock_calls, expected) self.assertEqual(mock.return_value.foo.mock_calls, [('', (1, 2, 3), dict(a=4, b=5))]) self.assertEqual(mock.return_value.mock_calls, [('foo', (1, 2, 3), dict(a=4, b=5))]) mock = MagicMock() mock().foo.bar().baz() expected = [ ('', (), {}), ('().foo.bar', (), {}), ('().foo.bar().baz', (), {}) ] self.assertEqual(mock.mock_calls, expected) self.assertEqual(mock().mock_calls, call.foo.bar().baz().call_list()) for kwargs in dict(), dict(name='bar'): mock = MagicMock(**kwargs) int(mock.foo) expected = [('foo.__int__', (), {})] self.assertEqual(mock.mock_calls, expected) mock = MagicMock(**kwargs) mock.a()() expected = [('a', (), {}), ('a()', (), {})] self.assertEqual(mock.mock_calls, expected) self.assertEqual(mock.a().mock_calls, [call()]) mock = MagicMock(**kwargs) mock(1)(2)(3) self.assertEqual(mock.mock_calls, call(1)(2)(3).call_list()) self.assertEqual(mock().mock_calls, call(2)(3).call_list()) self.assertEqual(mock()().mock_calls, call(3).call_list()) mock = MagicMock(**kwargs) mock(1)(2)(3).a.b.c(4) self.assertEqual(mock.mock_calls, call(1)(2)(3).a.b.c(4).call_list()) self.assertEqual(mock().mock_calls, call(2)(3).a.b.c(4).call_list()) self.assertEqual(mock()().mock_calls, call(3).a.b.c(4).call_list()) mock = MagicMock(**kwargs) int(mock().foo.bar().baz()) last_call = ('().foo.bar().baz().__int__', (), {}) self.assertEqual(mock.mock_calls[-1], last_call) self.assertEqual(mock().mock_calls, call.foo.bar().baz().__int__().call_list()) self.assertEqual(mock().foo.bar().mock_calls, call.baz().__int__().call_list()) self.assertEqual(mock().foo.bar().baz.mock_calls, call().__int__().call_list()) def test_child_mock_call_equal(self): m = Mock() result = m() result.wibble() # parent looks like this: self.assertEqual(m.mock_calls, [call(), call().wibble()]) # but child should look like this: self.assertEqual(result.mock_calls, [call.wibble()]) def test_mock_call_not_equal_leaf(self): m = Mock() m.foo().something() self.assertNotEqual(m.mock_calls[1], call.foo().different()) self.assertEqual(m.mock_calls[0], call.foo()) def test_mock_call_not_equal_non_leaf(self): m = Mock() m.foo().bar() self.assertNotEqual(m.mock_calls[1], call.baz().bar()) self.assertNotEqual(m.mock_calls[0], call.baz()) def test_mock_call_not_equal_non_leaf_params_different(self): m = Mock() m.foo(x=1).bar() # This isn't ideal, but there's no way to fix it without breaking backwards compatibility: self.assertEqual(m.mock_calls[1], call.foo(x=2).bar()) def test_mock_call_not_equal_non_leaf_attr(self): m = Mock() m.foo.bar() self.assertNotEqual(m.mock_calls[0], call.baz.bar()) def test_mock_call_not_equal_non_leaf_call_versus_attr(self): m = Mock() m.foo.bar() self.assertNotEqual(m.mock_calls[0], call.foo().bar()) def test_mock_call_repr(self): m = Mock() m.foo().bar().baz.bob() self.assertEqual(repr(m.mock_calls[0]), 'call.foo()') self.assertEqual(repr(m.mock_calls[1]), 'call.foo().bar()') self.assertEqual(repr(m.mock_calls[2]), 'call.foo().bar().baz.bob()') def test_mock_call_repr_loop(self): m = Mock() m.foo = m repr(m.foo()) self.assertRegex(repr(m.foo()), r"<Mock name='mock\(\)' id='\d+'>") def test_mock_calls_contains(self): m = Mock() self.assertFalse([call()] in m.mock_calls) def test_subclassing(self): class Subclass(Mock): pass mock = Subclass() self.assertIsInstance(mock.foo, Subclass) self.assertIsInstance(mock(), Subclass) class Subclass(Mock): def _get_child_mock(self, **kwargs): return Mock(**kwargs) mock = Subclass() self.assertNotIsInstance(mock.foo, Subclass) self.assertNotIsInstance(mock(), Subclass) def test_arg_lists(self): mocks = [ Mock(), MagicMock(), NonCallableMock(), NonCallableMagicMock() ] def assert_attrs(mock): names = 'call_args_list', 'method_calls', 'mock_calls' for name in names: attr = getattr(mock, name) self.assertIsInstance(attr, _CallList) self.assertIsInstance(attr, list) self.assertEqual(attr, []) for mock in mocks: assert_attrs(mock) if callable(mock): mock() mock(1, 2) mock(a=3) mock.reset_mock() assert_attrs(mock) mock.foo() mock.foo.bar(1, a=3) mock.foo(1).bar().baz(3) mock.reset_mock() assert_attrs(mock) def test_call_args_two_tuple(self): mock = Mock() mock(1, a=3) mock(2, b=4) self.assertEqual(len(mock.call_args), 2) self.assertEqual(mock.call_args.args, (2,)) self.assertEqual(mock.call_args.kwargs, dict(b=4)) expected_list = [((1,), dict(a=3)), ((2,), dict(b=4))] for expected, call_args in zip(expected_list, mock.call_args_list): self.assertEqual(len(call_args), 2) self.assertEqual(expected[0], call_args[0]) self.assertEqual(expected[1], call_args[1]) def test_side_effect_iterator(self): mock = Mock(side_effect=iter([1, 2, 3])) self.assertEqual([mock(), mock(), mock()], [1, 2, 3]) self.assertRaises(StopIteration, mock) mock = MagicMock(side_effect=['a', 'b', 'c']) self.assertEqual([mock(), mock(), mock()], ['a', 'b', 'c']) self.assertRaises(StopIteration, mock) mock = Mock(side_effect='ghi') self.assertEqual([mock(), mock(), mock()], ['g', 'h', 'i']) self.assertRaises(StopIteration, mock) class Foo(object): pass mock = MagicMock(side_effect=Foo) self.assertIsInstance(mock(), Foo) mock = Mock(side_effect=Iter()) self.assertEqual([mock(), mock(), mock(), mock()], ['this', 'is', 'an', 'iter']) self.assertRaises(StopIteration, mock) def test_side_effect_iterator_exceptions(self): for Klass in Mock, MagicMock: iterable = (ValueError, 3, KeyError, 6) m = Klass(side_effect=iterable) self.assertRaises(ValueError, m) self.assertEqual(m(), 3) self.assertRaises(KeyError, m) self.assertEqual(m(), 6) def test_side_effect_setting_iterator(self): mock = Mock() mock.side_effect = iter([1, 2, 3]) self.assertEqual([mock(), mock(), mock()], [1, 2, 3]) self.assertRaises(StopIteration, mock) side_effect = mock.side_effect self.assertIsInstance(side_effect, type(iter([]))) mock.side_effect = ['a', 'b', 'c'] self.assertEqual([mock(), mock(), mock()], ['a', 'b', 'c']) self.assertRaises(StopIteration, mock) side_effect = mock.side_effect self.assertIsInstance(side_effect, type(iter([]))) this_iter = Iter() mock.side_effect = this_iter self.assertEqual([mock(), mock(), mock(), mock()], ['this', 'is', 'an', 'iter']) self.assertRaises(StopIteration, mock) self.assertIs(mock.side_effect, this_iter) def test_side_effect_iterator_default(self): mock = Mock(return_value=2) mock.side_effect = iter([1, DEFAULT]) self.assertEqual([mock(), mock()], [1, 2]) def test_assert_has_calls_any_order(self): mock = Mock() mock(1, 2) mock(a=3) mock(3, 4) mock(b=6) mock(b=6) kalls = [ call(1, 2), ({'a': 3},), ((3, 4),), ((), {'a': 3}), ('', (1, 2)), ('', {'a': 3}), ('', (1, 2), {}), ('', (), {'a': 3}) ] for kall in kalls: mock.assert_has_calls([kall], any_order=True) for kall in call(1, '2'), call(b=3), call(), 3, None, 'foo': self.assertRaises( AssertionError, mock.assert_has_calls, [kall], any_order=True ) kall_lists = [ [call(1, 2), call(b=6)], [call(3, 4), call(1, 2)], [call(b=6), call(b=6)], ] for kall_list in kall_lists: mock.assert_has_calls(kall_list, any_order=True) kall_lists = [ [call(b=6), call(b=6), call(b=6)], [call(1, 2), call(1, 2)], [call(3, 4), call(1, 2), call(5, 7)], [call(b=6), call(3, 4), call(b=6), call(1, 2), call(b=6)], ] for kall_list in kall_lists: self.assertRaises( AssertionError, mock.assert_has_calls, kall_list, any_order=True ) def test_assert_has_calls(self): kalls1 = [ call(1, 2), ({'a': 3},), ((3, 4),), call(b=6), ('', (1,), {'b': 6}), ] kalls2 = [call.foo(), call.bar(1)] kalls2.extend(call.spam().baz(a=3).call_list()) kalls2.extend(call.bam(set(), foo={}).fish([1]).call_list()) mocks = [] for mock in Mock(), MagicMock(): mock(1, 2) mock(a=3) mock(3, 4) mock(b=6) mock(1, b=6) mocks.append((mock, kalls1)) mock = Mock() mock.foo() mock.bar(1) mock.spam().baz(a=3) mock.bam(set(), foo={}).fish([1]) mocks.append((mock, kalls2)) for mock, kalls in mocks: for i in range(len(kalls)): for step in 1, 2, 3: these = kalls[i:i+step] mock.assert_has_calls(these) if len(these) > 1: self.assertRaises( AssertionError, mock.assert_has_calls, list(reversed(these)) ) def test_assert_has_calls_nested_spec(self): class Something: def __init__(self): pass def meth(self, a, b, c, d=None): pass class Foo: def __init__(self, a): pass def meth1(self, a, b): pass mock_class = create_autospec(Something) for m in [mock_class, mock_class()]: m.meth(1, 2, 3, d=1) m.assert_has_calls([call.meth(1, 2, 3, d=1)]) m.assert_has_calls([call.meth(1, 2, 3, 1)]) mock_class.reset_mock() for m in [mock_class, mock_class()]: self.assertRaises(AssertionError, m.assert_has_calls, [call.Foo()]) m.Foo(1).meth1(1, 2) m.assert_has_calls([call.Foo(1), call.Foo(1).meth1(1, 2)]) m.Foo.assert_has_calls([call(1), call().meth1(1, 2)]) mock_class.reset_mock() invalid_calls = [call.meth(1), call.non_existent(1), call.Foo().non_existent(1), call.Foo().meth(1, 2, 3, 4)] for kall in invalid_calls: self.assertRaises(AssertionError, mock_class.assert_has_calls, [kall] ) def test_assert_has_calls_nested_without_spec(self): m = MagicMock() m().foo().bar().baz() m.one().two().three() calls = call.one().two().three().call_list() m.assert_has_calls(calls) def test_assert_has_calls_with_function_spec(self): def f(a, b, c, d=None): pass mock = Mock(spec=f) mock(1, b=2, c=3) mock(4, 5, c=6, d=7) mock(10, 11, c=12) calls = [ ('', (1, 2, 3), {}), ('', (4, 5, 6), {'d': 7}), ((10, 11, 12), {}), ] mock.assert_has_calls(calls) mock.assert_has_calls(calls, any_order=True) mock.assert_has_calls(calls[1:]) mock.assert_has_calls(calls[1:], any_order=True) mock.assert_has_calls(calls[:-1]) mock.assert_has_calls(calls[:-1], any_order=True) # Reversed order calls = list(reversed(calls)) with self.assertRaises(AssertionError): mock.assert_has_calls(calls) mock.assert_has_calls(calls, any_order=True) with self.assertRaises(AssertionError): mock.assert_has_calls(calls[1:]) mock.assert_has_calls(calls[1:], any_order=True) with self.assertRaises(AssertionError): mock.assert_has_calls(calls[:-1]) mock.assert_has_calls(calls[:-1], any_order=True) def test_assert_has_calls_not_matching_spec_error(self): def f(x=None): pass mock = Mock(spec=f) mock(1) with self.assertRaisesRegex( AssertionError, '^{}$'.format( re.escape('Calls not found.\n' 'Expected: [call()]\n' 'Actual: [call(1)]'))) as cm: mock.assert_has_calls([call()]) self.assertIsNone(cm.exception.__cause__) with self.assertRaisesRegex( AssertionError, '^{}$'.format( re.escape( 'Error processing expected calls.\n' "Errors: [None, TypeError('too many positional arguments')]\n" "Expected: [call(), call(1, 2)]\n" 'Actual: [call(1)]').replace( "arguments\\'", "arguments\\',?" ))) as cm: mock.assert_has_calls([call(), call(1, 2)]) self.assertIsInstance(cm.exception.__cause__, TypeError) def test_assert_any_call(self): mock = Mock() mock(1, 2) mock(a=3) mock(1, b=6) mock.assert_any_call(1, 2) mock.assert_any_call(a=3) mock.assert_any_call(1, b=6) self.assertRaises( AssertionError, mock.assert_any_call ) self.assertRaises( AssertionError, mock.assert_any_call, 1, 3 ) self.assertRaises( AssertionError, mock.assert_any_call, a=4 ) def test_assert_any_call_with_function_spec(self): def f(a, b, c, d=None): pass mock = Mock(spec=f) mock(1, b=2, c=3) mock(4, 5, c=6, d=7) mock.assert_any_call(1, 2, 3) mock.assert_any_call(a=1, b=2, c=3) mock.assert_any_call(4, 5, 6, 7) mock.assert_any_call(a=4, b=5, c=6, d=7) self.assertRaises(AssertionError, mock.assert_any_call, 1, b=3, c=2) # Expected call doesn't match the spec's signature with self.assertRaises(AssertionError) as cm: mock.assert_any_call(e=8) self.assertIsInstance(cm.exception.__cause__, TypeError) def test_mock_calls_create_autospec(self): def f(a, b): pass obj = Iter() obj.f = f funcs = [ create_autospec(f), create_autospec(obj).f ] for func in funcs: func(1, 2) func(3, 4) self.assertEqual( func.mock_calls, [call(1, 2), call(3, 4)] ) #Issue21222 def test_create_autospec_with_name(self): m = mock.create_autospec(object(), name='sweet_func') self.assertIn('sweet_func', repr(m)) #Issue23078 def test_create_autospec_classmethod_and_staticmethod(self): class TestClass: @classmethod def class_method(cls): pass @staticmethod def static_method(): pass for method in ('class_method', 'static_method'): with self.subTest(method=method): mock_method = mock.create_autospec(getattr(TestClass, method)) mock_method() mock_method.assert_called_once_with() self.assertRaises(TypeError, mock_method, 'extra_arg') #Issue21238 def test_mock_unsafe(self): m = Mock() msg = "Attributes cannot start with 'assert' or its misspellings" with self.assertRaisesRegex(AttributeError, msg): m.assert_foo_call() with self.assertRaisesRegex(AttributeError, msg): m.assret_foo_call() with self.assertRaisesRegex(AttributeError, msg): m.asert_foo_call() with self.assertRaisesRegex(AttributeError, msg): m.aseert_foo_call() with self.assertRaisesRegex(AttributeError, msg): m.assrt_foo_call() m = Mock(unsafe=True) m.assert_foo_call() m.assret_foo_call() m.asert_foo_call() m.aseert_foo_call() m.assrt_foo_call() #Issue21262 def test_assert_not_called(self): m = Mock() m.hello.assert_not_called() m.hello() with self.assertRaises(AssertionError): m.hello.assert_not_called() def test_assert_not_called_message(self): m = Mock() m(1, 2) self.assertRaisesRegex(AssertionError, re.escape("Calls: [call(1, 2)]"), m.assert_not_called) def test_assert_called(self): m = Mock() with self.assertRaises(AssertionError): m.hello.assert_called() m.hello() m.hello.assert_called() m.hello() m.hello.assert_called() def test_assert_called_once(self): m = Mock() with self.assertRaises(AssertionError): m.hello.assert_called_once() m.hello() m.hello.assert_called_once() m.hello() with self.assertRaises(AssertionError): m.hello.assert_called_once() def test_assert_called_once_message(self): m = Mock() m(1, 2) m(3) self.assertRaisesRegex(AssertionError, re.escape("Calls: [call(1, 2), call(3)]"), m.assert_called_once) def test_assert_called_once_message_not_called(self): m = Mock() with self.assertRaises(AssertionError) as e: m.assert_called_once() self.assertNotIn("Calls:", str(e.exception)) #Issue37212 printout of keyword args now preserves the original order def test_ordered_call_signature(self): m = Mock() m.hello(name='hello', daddy='hero') text = "call(name='hello', daddy='hero')" self.assertEqual(repr(m.hello.call_args), text) #Issue21270 overrides tuple methods for mock.call objects def test_override_tuple_methods(self): c = call.count() i = call.index(132,'hello') m = Mock() m.count() m.index(132,"hello") self.assertEqual(m.method_calls[0], c) self.assertEqual(m.method_calls[1], i) def test_reset_return_sideeffect(self): m = Mock(return_value=10, side_effect=[2,3]) m.reset_mock(return_value=True, side_effect=True) self.assertIsInstance(m.return_value, Mock) self.assertEqual(m.side_effect, None) def test_reset_return(self): m = Mock(return_value=10, side_effect=[2,3]) m.reset_mock(return_value=True) self.assertIsInstance(m.return_value, Mock) self.assertNotEqual(m.side_effect, None) def test_reset_sideeffect(self): m = Mock(return_value=10, side_effect=[2, 3]) m.reset_mock(side_effect=True) self.assertEqual(m.return_value, 10) self.assertEqual(m.side_effect, None) def test_reset_return_with_children(self): m = MagicMock(f=MagicMock(return_value=1)) self.assertEqual(m.f(), 1) m.reset_mock(return_value=True) self.assertNotEqual(m.f(), 1) def test_reset_return_with_children_side_effect(self): m = MagicMock(f=MagicMock(side_effect=[2, 3])) self.assertNotEqual(m.f.side_effect, None) m.reset_mock(side_effect=True) self.assertEqual(m.f.side_effect, None) def test_mock_add_spec(self): class _One(object): one = 1 class _Two(object): two = 2 class Anything(object): one = two = three = 'four' klasses = [ Mock, MagicMock, NonCallableMock, NonCallableMagicMock ] for Klass in list(klasses): klasses.append(lambda K=Klass: K(spec=Anything)) klasses.append(lambda K=Klass: K(spec_set=Anything)) for Klass in klasses: for kwargs in dict(), dict(spec_set=True): mock = Klass() #no error mock.one, mock.two, mock.three for One, Two in [(_One, _Two), (['one'], ['two'])]: for kwargs in dict(), dict(spec_set=True): mock.mock_add_spec(One, **kwargs) mock.one self.assertRaises( AttributeError, getattr, mock, 'two' ) self.assertRaises( AttributeError, getattr, mock, 'three' ) if 'spec_set' in kwargs: self.assertRaises( AttributeError, setattr, mock, 'three', None ) mock.mock_add_spec(Two, **kwargs) self.assertRaises( AttributeError, getattr, mock, 'one' ) mock.two self.assertRaises( AttributeError, getattr, mock, 'three' ) if 'spec_set' in kwargs: self.assertRaises( AttributeError, setattr, mock, 'three', None ) # note that creating a mock, setting an instance attribute, and # *then* setting a spec doesn't work. Not the intended use case def test_mock_add_spec_magic_methods(self): for Klass in MagicMock, NonCallableMagicMock: mock = Klass() int(mock) mock.mock_add_spec(object) self.assertRaises(TypeError, int, mock) mock = Klass() mock['foo'] mock.__int__.return_value =4 mock.mock_add_spec(int) self.assertEqual(int(mock), 4) self.assertRaises(TypeError, lambda: mock['foo']) def test_adding_child_mock(self): for Klass in (NonCallableMock, Mock, MagicMock, NonCallableMagicMock, AsyncMock): mock = Klass() mock.foo = Mock() mock.foo() self.assertEqual(mock.method_calls, [call.foo()]) self.assertEqual(mock.mock_calls, [call.foo()]) mock = Klass() mock.bar = Mock(name='name') mock.bar() self.assertEqual(mock.method_calls, []) self.assertEqual(mock.mock_calls, []) # mock with an existing _new_parent but no name mock = Klass() mock.baz = MagicMock()() mock.baz() self.assertEqual(mock.method_calls, []) self.assertEqual(mock.mock_calls, []) def test_adding_return_value_mock(self): for Klass in Mock, MagicMock: mock = Klass() mock.return_value = MagicMock() mock()() self.assertEqual(mock.mock_calls, [call(), call()()]) def test_manager_mock(self): class Foo(object): one = 'one' two = 'two' manager = Mock() p1 = patch.object(Foo, 'one') p2 = patch.object(Foo, 'two') mock_one = p1.start() self.addCleanup(p1.stop) mock_two = p2.start() self.addCleanup(p2.stop) manager.attach_mock(mock_one, 'one') manager.attach_mock(mock_two, 'two') Foo.two() Foo.one() self.assertEqual(manager.mock_calls, [call.two(), call.one()]) def test_magic_methods_mock_calls(self): for Klass in Mock, MagicMock: m = Klass() m.__int__ = Mock(return_value=3) m.__float__ = MagicMock(return_value=3.0) int(m) float(m) self.assertEqual(m.mock_calls, [call.__int__(), call.__float__()]) self.assertEqual(m.method_calls, []) def test_mock_open_reuse_issue_21750(self): mocked_open = mock.mock_open(read_data='data') f1 = mocked_open('a-name') f1_data = f1.read() f2 = mocked_open('another-name') f2_data = f2.read() self.assertEqual(f1_data, f2_data) def test_mock_open_dunder_iter_issue(self): # Test dunder_iter method generates the expected result and # consumes the iterator. mocked_open = mock.mock_open(read_data='Remarkable\nNorwegian Blue') f1 = mocked_open('a-name') lines = [line for line in f1] self.assertEqual(lines[0], 'Remarkable\n') self.assertEqual(lines[1], 'Norwegian Blue') self.assertEqual(list(f1), []) def test_mock_open_using_next(self): mocked_open = mock.mock_open(read_data='1st line\n2nd line\n3rd line') f1 = mocked_open('a-name') line1 = next(f1) line2 = f1.__next__() lines = [line for line in f1] self.assertEqual(line1, '1st line\n') self.assertEqual(line2, '2nd line\n') self.assertEqual(lines[0], '3rd line') self.assertEqual(list(f1), []) with self.assertRaises(StopIteration): next(f1) def test_mock_open_next_with_readline_with_return_value(self): mopen = mock.mock_open(read_data='foo\nbarn') mopen.return_value.readline.return_value = 'abc' self.assertEqual('abc', next(mopen())) def test_mock_open_write(self): # Test exception in file writing write() mock_namedtemp = mock.mock_open(mock.MagicMock(name='JLV')) with mock.patch('tempfile.NamedTemporaryFile', mock_namedtemp): mock_filehandle = mock_namedtemp.return_value mock_write = mock_filehandle.write mock_write.side_effect = OSError('Test 2 Error') def attempt(): tempfile.NamedTemporaryFile().write('asd') self.assertRaises(OSError, attempt) def test_mock_open_alter_readline(self): mopen = mock.mock_open(read_data='foo\nbarn') mopen.return_value.readline.side_effect = lambda *args:'abc' first = mopen().readline() second = mopen().readline() self.assertEqual('abc', first) self.assertEqual('abc', second) def test_mock_open_after_eof(self): # read, readline and readlines should work after end of file. _open = mock.mock_open(read_data='foo') h = _open('bar') h.read() self.assertEqual('', h.read()) self.assertEqual('', h.read()) self.assertEqual('', h.readline()) self.assertEqual('', h.readline()) self.assertEqual([], h.readlines()) self.assertEqual([], h.readlines()) def test_mock_parents(self): for Klass in Mock, MagicMock: m = Klass() original_repr = repr(m) m.return_value = m self.assertIs(m(), m) self.assertEqual(repr(m), original_repr) m.reset_mock() self.assertIs(m(), m) self.assertEqual(repr(m), original_repr) m = Klass() m.b = m.a self.assertIn("name='mock.a'", repr(m.b)) self.assertIn("name='mock.a'", repr(m.a)) m.reset_mock() self.assertIn("name='mock.a'", repr(m.b)) self.assertIn("name='mock.a'", repr(m.a)) m = Klass() original_repr = repr(m) m.a = m() m.a.return_value = m self.assertEqual(repr(m), original_repr) self.assertEqual(repr(m.a()), original_repr) def test_attach_mock(self): classes = Mock, MagicMock, NonCallableMagicMock, NonCallableMock for Klass in classes: for Klass2 in classes: m = Klass() m2 = Klass2(name='foo') m.attach_mock(m2, 'bar') self.assertIs(m.bar, m2) self.assertIn("name='mock.bar'", repr(m2)) m.bar.baz(1) self.assertEqual(m.mock_calls, [call.bar.baz(1)]) self.assertEqual(m.method_calls, [call.bar.baz(1)]) def test_attach_mock_return_value(self): classes = Mock, MagicMock, NonCallableMagicMock, NonCallableMock for Klass in Mock, MagicMock: for Klass2 in classes: m = Klass() m2 = Klass2(name='foo') m.attach_mock(m2, 'return_value') self.assertIs(m(), m2) self.assertIn("name='mock()'", repr(m2)) m2.foo() self.assertEqual(m.mock_calls, call().foo().call_list()) def test_attach_mock_patch_autospec(self): parent = Mock() with mock.patch(f'{__name__}.something', autospec=True) as mock_func: self.assertEqual(mock_func.mock._extract_mock_name(), 'something') parent.attach_mock(mock_func, 'child') parent.child(1) something(2) mock_func(3) parent_calls = [call.child(1), call.child(2), call.child(3)] child_calls = [call(1), call(2), call(3)] self.assertEqual(parent.mock_calls, parent_calls) self.assertEqual(parent.child.mock_calls, child_calls) self.assertEqual(something.mock_calls, child_calls) self.assertEqual(mock_func.mock_calls, child_calls) self.assertIn('mock.child', repr(parent.child.mock)) self.assertEqual(mock_func.mock._extract_mock_name(), 'mock.child') def test_attach_mock_patch_autospec_signature(self): with mock.patch(f'{__name__}.Something.meth', autospec=True) as mocked: manager = Mock() manager.attach_mock(mocked, 'attach_meth') obj = Something() obj.meth(1, 2, 3, d=4) manager.assert_has_calls([call.attach_meth(mock.ANY, 1, 2, 3, d=4)]) obj.meth.assert_has_calls([call(mock.ANY, 1, 2, 3, d=4)]) mocked.assert_has_calls([call(mock.ANY, 1, 2, 3, d=4)]) with mock.patch(f'{__name__}.something', autospec=True) as mocked: manager = Mock() manager.attach_mock(mocked, 'attach_func') something(1) manager.assert_has_calls([call.attach_func(1)]) something.assert_has_calls([call(1)]) mocked.assert_has_calls([call(1)]) with mock.patch(f'{__name__}.Something', autospec=True) as mocked: manager = Mock() manager.attach_mock(mocked, 'attach_obj') obj = Something() obj.meth(1, 2, 3, d=4) manager.assert_has_calls([call.attach_obj(), call.attach_obj().meth(1, 2, 3, d=4)]) obj.meth.assert_has_calls([call(1, 2, 3, d=4)]) mocked.assert_has_calls([call(), call().meth(1, 2, 3, d=4)]) def test_attribute_deletion(self): for mock in (Mock(), MagicMock(), NonCallableMagicMock(), NonCallableMock()): self.assertTrue(hasattr(mock, 'm')) del mock.m self.assertFalse(hasattr(mock, 'm')) del mock.f self.assertFalse(hasattr(mock, 'f')) self.assertRaises(AttributeError, getattr, mock, 'f') def test_mock_does_not_raise_on_repeated_attribute_deletion(self): # bpo-20239: Assigning and deleting twice an attribute raises. for mock in (Mock(), MagicMock(), NonCallableMagicMock(), NonCallableMock()): mock.foo = 3 self.assertTrue(hasattr(mock, 'foo')) self.assertEqual(mock.foo, 3) del mock.foo self.assertFalse(hasattr(mock, 'foo')) mock.foo = 4 self.assertTrue(hasattr(mock, 'foo')) self.assertEqual(mock.foo, 4) del mock.foo self.assertFalse(hasattr(mock, 'foo')) def test_mock_raises_when_deleting_nonexistent_attribute(self): for mock in (Mock(), MagicMock(), NonCallableMagicMock(), NonCallableMock()): del mock.foo with self.assertRaises(AttributeError): del mock.foo def test_reset_mock_does_not_raise_on_attr_deletion(self): # bpo-31177: reset_mock should not raise AttributeError when attributes # were deleted in a mock instance mock = Mock() mock.child = True del mock.child mock.reset_mock() self.assertFalse(hasattr(mock, 'child')) def test_class_assignable(self): for mock in Mock(), MagicMock(): self.assertNotIsInstance(mock, int) mock.__class__ = int self.assertIsInstance(mock, int) mock.foo def test_name_attribute_of_call(self): # bpo-35357: _Call should not disclose any attributes whose names # may clash with popular ones (such as ".name") self.assertIsNotNone(call.name) self.assertEqual(type(call.name), _Call) self.assertEqual(type(call.name().name), _Call) def test_parent_attribute_of_call(self): # bpo-35357: _Call should not disclose any attributes whose names # may clash with popular ones (such as ".parent") self.assertIsNotNone(call.parent) self.assertEqual(type(call.parent), _Call) self.assertEqual(type(call.parent().parent), _Call) def test_parent_propagation_with_create_autospec(self): def foo(a, b): pass mock = Mock() mock.child = create_autospec(foo) mock.child(1, 2) self.assertRaises(TypeError, mock.child, 1) self.assertEqual(mock.mock_calls, [call.child(1, 2)]) self.assertIn('mock.child', repr(mock.child.mock)) def test_parent_propagation_with_autospec_attach_mock(self): def foo(a, b): pass parent = Mock() parent.attach_mock(create_autospec(foo, name='bar'), 'child') parent.child(1, 2) self.assertRaises(TypeError, parent.child, 1) self.assertEqual(parent.child.mock_calls, [call.child(1, 2)]) self.assertIn('mock.child', repr(parent.child.mock)) def test_isinstance_under_settrace(self): # bpo-36593 : __class__ is not set for a class that has __class__ # property defined when it's used with sys.settrace(trace) set. # Delete the module to force reimport with tracing function set # restore the old reference later since there are other tests that are # dependent on unittest.mock.patch. In testpatch.PatchTest # test_patch_dict_test_prefix and test_patch_test_prefix not restoring # causes the objects patched to go out of sync old_patch = mock_module.patch # Directly using __setattr__ on unittest.mock causes current imported # reference to be updated. Use a lambda so that during cleanup the # re-imported new reference is updated. self.addCleanup(lambda patch: setattr(mock_module, 'patch', patch), old_patch) with patch.dict('sys.modules'): del sys.modules['mock'] # This trace will stop coverage being measured ;-) def trace(frame, event, arg): # pragma: no cover return trace self.addCleanup(sys.settrace, sys.gettrace()) sys.settrace(trace) from mock.mock import ( Mock, MagicMock, NonCallableMock, NonCallableMagicMock ) mocks = [ Mock, MagicMock, NonCallableMock, NonCallableMagicMock, AsyncMock ] for mock in mocks: obj = mock(spec=Something) self.assertIsInstance(obj, Something) def test_bool_not_called_when_passing_spec_arg(self): class Something: def __init__(self): self.obj_with_bool_func = mock_module.MagicMock() obj = Something() with mock_module.patch.object(obj, 'obj_with_bool_func', autospec=True): pass self.assertEqual(obj.obj_with_bool_func.__bool__.call_count, 0) if __name__ == '__main__': unittest.main()
the-stack_0_24326
#!/usr/bin/env python """Pancake turning.""" def remove_end_plus(s): """Remove plusses at the end.""" r = s[::-1] new_s = "" seen_minus = False for el in r: if not seen_minus: if el == "-": seen_minus = True new_s = el else: new_s += el return new_s[::-1] def solve(pancakes): """ Get the minimal number of switchings. Parameters ---------- pancakes : string Returns ------- int Examples -------- >>> solve("-") 1 >>> solve("-+") 1 >>> solve("+-") 2 >>> solve("+++") 0 """ if "-" not in pancakes: return 0 else: pancakes = remove_end_plus(pancakes) last = pancakes[0] switches = 1 for el in pancakes[1:]: if el != last: switches += 1 last = el return switches if __name__ == "__main__": testcases = input() for caseNr in xrange(1, testcases+1): cipher = raw_input() print("Case #%i: %s" % (caseNr, solve(cipher)))
the-stack_0_24327
import copy import logging import time from functools import partial from pathlib import Path import numpy as np import pandas as pd from autogluon.core.constants import REGRESSION, BINARY, MULTICLASS from autogluon.core.utils import try_import_fastai_v1 from autogluon.core.utils.files import make_temp_directory from autogluon.core.utils.loaders import load_pkl from autogluon.core.utils.multiprocessing_utils import is_fork_enabled from autogluon.core.utils.savers import save_pkl from autogluon.core.features.types import R_OBJECT, R_INT, R_FLOAT, R_DATETIME, R_CATEGORY, R_BOOL from .hyperparameters.parameters import get_param_baseline from .hyperparameters.searchspaces import get_default_searchspace from autogluon.core.models import AbstractModel from autogluon.core.models.abstract.model_trial import skip_hpo # FIXME: Has a leak somewhere, training additional models in a single python script will slow down training for each additional model. Gets very slow after 20+ models (10x+ slowdown) # Slowdown does not appear to impact Mac OS # Reproduced with raw torch: https://github.com/pytorch/pytorch/issues/31867 # https://forums.fast.ai/t/runtimeerror-received-0-items-of-ancdata/48935 # https://github.com/pytorch/pytorch/issues/973 # https://pytorch.org/docs/master/multiprocessing.html#file-system-file-system # Slowdown bug not experienced on Linux if 'torch.multiprocessing.set_sharing_strategy('file_system')' commented out # NOTE: If below line is commented out, Torch uses many file descriptors. If issues arise, increase ulimit through 'ulimit -n 2048' or larger. Default on Linux is 1024. # torch.multiprocessing.set_sharing_strategy('file_system') # MacOS issue: torchvision==0.7.0 + torch==1.6.0 can cause segfaults; use torch==1.2.0 torchvision==0.4.0 LABEL = '__label__' MISSING = '__!#ag_internal_missing#!__' logger = logging.getLogger(__name__) # TODO: Takes extremely long time prior to training start if many (10000) continuous features from ngrams, debug - explore TruncateSVD option to reduce input dimensionality # TODO: currently fastai automatically detect and use CUDA if available - add code to honor autogluon settings class NNFastAiTabularModel(AbstractModel): """ Class for fastai v1 neural network models that operate on tabular data. Hyperparameters: y_scaler: on a regression problems, the model can give unreasonable predictions on unseen data. This attribute allows to pass a scaler for y values to address this problem. Please note that intermediate iteration metrics will be affected by this transform and as a result intermediate iteration scores will be different from the final ones (these will be correct). https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing 'layers': list of hidden layers sizes; None - use model's heuristics; default is None 'emb_drop': embedding layers dropout; defaut is 0.1 'ps': linear layers dropout - list of values applied to every layer in `layers`; default is [0.1] 'bs': batch size; default is 256 'lr': maximum learning rate for one cycle policy; default is 1e-2; see also https://fastai1.fast.ai/train.html#fit_one_cycle, One-cycle policy paper: https://arxiv.org/abs/1803.09820 'epochs': number of epochs; default is 30 # Early stopping settings. See more details here: https://fastai1.fast.ai/callbacks.tracker.html#EarlyStoppingCallback 'early.stopping.min_delta': 0.0001, 'early.stopping.patience': 10, 'smoothing': If > 0, then use LabelSmoothingCrossEntropy loss function for binary/multi-class classification; otherwise use default loss function for this type of problem; default is 0.0. See: https://docs.fast.ai/layers.html#LabelSmoothingCrossEntropy """ model_internals_file_name = 'model-internals.pkl' def __init__(self, **kwargs): super().__init__(**kwargs) self.cat_columns = None self.cont_columns = None self.columns_fills = None self.procs = None self.y_scaler = None self._inner_features = None def _preprocess_train(self, X_train, y_train, X_val, y_val, num_workers): from fastai.data_block import FloatList from fastai.tabular import TabularList X_train = self.preprocess(X_train, fit=True) if X_val is not None: X_val = self.preprocess(X_val) from fastai.tabular import FillMissing, Categorify, Normalize self.procs = [FillMissing, Categorify, Normalize] if self.problem_type == REGRESSION and self.y_scaler is not None: y_train_norm = pd.Series(self.y_scaler.fit_transform(y_train.values.reshape(-1, 1)).reshape(-1)) y_val_norm = pd.Series(self.y_scaler.transform(y_val.values.reshape(-1, 1)).reshape(-1)) if y_val is not None else None logger.log(0, f'Training with scaled targets: {self.y_scaler} - !!! NN training metric will be different from the final results !!!') else: y_train_norm = y_train y_val_norm = y_val logger.log(15, f'Using {len(self.cont_columns)} cont features') df_train, train_idx, val_idx = self._generate_datasets(X_train, y_train_norm, X_val, y_val_norm) label_class = FloatList if self.problem_type == REGRESSION else None # Copy cat_columns and cont_columns because TabularList is mutating the list data = (TabularList.from_df(df_train, path=self.path, cat_names=self.cat_columns.copy(), cont_names=self.cont_columns.copy(), procs=self.procs) .split_by_idxs(train_idx, val_idx) .label_from_df(cols=LABEL, label_cls=label_class) .databunch(bs=self.params['bs'] if len(X_train) > self.params['bs'] else 32, num_workers=num_workers)) return data def _preprocess(self, X: pd.DataFrame, fit=False, **kwargs): X = super()._preprocess(X=X, **kwargs) if fit: self.cat_columns = self.feature_metadata.get_features(valid_raw_types=[R_OBJECT, R_CATEGORY, R_BOOL]) self.cont_columns = self.feature_metadata.get_features(valid_raw_types=[R_INT, R_FLOAT, R_DATETIME]) try: X_train_stats = X.describe(include='all').T.reset_index() cat_cols_to_drop = X_train_stats[(X_train_stats['unique'] > self.params.get('max_unique_categorical_values', 10000)) | (X_train_stats['unique'].isna())]['index'].values except: cat_cols_to_drop = [] cat_cols_to_keep = [col for col in X.columns.values if (col not in cat_cols_to_drop)] cat_cols_to_use = [col for col in self.cat_columns if col in cat_cols_to_keep] logger.log(15, f'Using {len(cat_cols_to_use)}/{len(self.cat_columns)} categorical features') self.cat_columns = cat_cols_to_use self.cat_columns = [feature for feature in self.cat_columns if feature in list(X.columns)] self.cont_columns = [feature for feature in self.cont_columns if feature in list(X.columns)] self.columns_fills = {} for c in self.cat_columns: self.columns_fills[c] = MISSING for c in self.cont_columns: self.columns_fills[c] = X[c].mean() self._inner_features = self.cat_columns + self.cont_columns return self._fill_missing(X) def _fill_missing(self, df: pd.DataFrame) -> pd.DataFrame: df = df[self._inner_features].copy() for c in self.cat_columns: df[c] = df[c].cat.add_categories(MISSING) df[c] = df[c].fillna(self.columns_fills[c]) for c in self.cont_columns: df[c] = df[c].fillna(self.columns_fills[c]) return df def _fit(self, X_train, y_train, X_val=None, y_val=None, time_limit=None, num_cpus=None, num_gpus=0, **kwargs): try_import_fastai_v1() import torch from fastai.layers import LabelSmoothingCrossEntropy from fastai.tabular import tabular_learner from fastai.utils.mod_display import progress_disabled_ctx from fastai.core import defaults from .callbacks import EarlyStoppingCallbackWithTimeLimit, SaveModelCallback start_time = time.time() params = self.params.copy() self.y_scaler = params.get('y_scaler', None) if self.y_scaler is not None: self.y_scaler = copy.deepcopy(self.y_scaler) if num_cpus is None: num_cpus = defaults.cpus # additional workers are helping only when fork is enabled; in other mp modes, communication overhead reduces performance num_workers = int(num_cpus / 2) if not is_fork_enabled(): num_workers = 0 if num_gpus is not None: if num_gpus == 0: # TODO: Does not obviously impact inference speed defaults.device = torch.device('cpu') else: defaults.device = torch.device('cuda') logger.log(15, f'Fitting Neural Network with parameters {params}...') data = self._preprocess_train(X_train, y_train, X_val, y_val, num_workers=num_workers) nn_metric, objective_func_name = self.__get_objective_func_name() objective_func_name_to_monitor = self.__get_objective_func_to_monitor(objective_func_name) objective_optim_mode = 'min' if objective_func_name in [ 'root_mean_squared_error', 'mean_squared_error', 'mean_absolute_error', 'r2' # Regression objectives ] else 'auto' # TODO: calculate max emb concat layer size and use 1st layer as that value and 2nd in between number of classes and the value if params.get('layers', None) is not None: layers = params['layers'] elif self.problem_type in [REGRESSION, BINARY]: layers = [200, 100] else: base_size = max(len(data.classes) * 2, 100) layers = [base_size * 2, base_size] loss_func = None if self.problem_type in [BINARY, MULTICLASS] and params.get('smoothing', 0.0) > 0.0: loss_func = LabelSmoothingCrossEntropy(params['smoothing']) ps = params['ps'] if type(ps) != list: ps = [ps] if time_limit: time_elapsed = time.time() - start_time time_left = time_limit - time_elapsed else: time_left = None best_epoch_stop = params.get("best_epoch", None) # Use best epoch for refit_full. early_stopping_fn = partial(EarlyStoppingCallbackWithTimeLimit, monitor=objective_func_name_to_monitor, mode=objective_optim_mode, min_delta=params['early.stopping.min_delta'], patience=params['early.stopping.patience'], time_limit=time_left, best_epoch_stop=best_epoch_stop) self.model = tabular_learner( data, layers=layers, ps=ps, emb_drop=params['emb_drop'], metrics=nn_metric, loss_func=loss_func, callback_fns=[early_stopping_fn] ) logger.log(15, self.model.model) with make_temp_directory() as temp_dir: save_callback = SaveModelCallback(self.model, monitor=objective_func_name_to_monitor, mode=objective_optim_mode, name=self.name, best_epoch_stop=best_epoch_stop) with progress_disabled_ctx(self.model) as model: original_path = model.path model.path = Path(temp_dir) model.fit_one_cycle(params['epochs'], params['lr'], callbacks=save_callback) # Load the best one and export it model.load(self.name) if objective_func_name == 'log_loss': eval_result = model.validate()[0] else: eval_result = model.validate()[1].numpy().reshape(-1)[0] logger.log(15, f'Model validation metrics: {eval_result}') model.path = original_path self.params_trained['best_epoch'] = save_callback.best_epoch def _generate_datasets(self, X_train, y_train, X_val, y_val): df_train = pd.concat([X_train, X_val], ignore_index=True) df_train[LABEL] = pd.concat([y_train, y_val], ignore_index=True) train_idx = np.arange(len(X_train)) if X_val is None: val_idx = train_idx # use validation set for refit_full case - it's not going to be used for early stopping else: val_idx = np.arange(len(X_val)) + len(X_train) return df_train, train_idx, val_idx def __get_objective_func_name(self): from fastai.metrics import root_mean_squared_error, mean_squared_error, mean_absolute_error, accuracy, FBeta, AUROC, Precision, Recall, r2_score metrics_map = { # Regression 'root_mean_squared_error': root_mean_squared_error, 'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error, 'r2': r2_score, # Not supported: median_absolute_error # Classification 'accuracy': accuracy, 'f1': FBeta(beta=1), 'f1_macro': FBeta(beta=1, average='macro'), 'f1_micro': FBeta(beta=1, average='micro'), 'f1_weighted': FBeta(beta=1, average='weighted'), # this one has some issues 'roc_auc': AUROC(), 'precision': Precision(), 'precision_macro': Precision(average='macro'), 'precision_micro': Precision(average='micro'), 'precision_weighted': Precision(average='weighted'), 'recall': Recall(), 'recall_macro': Recall(average='macro'), 'recall_micro': Recall(average='micro'), 'recall_weighted': Recall(average='weighted'), 'log_loss': None, # Not supported: pac_score } # Unsupported metrics will be replaced by defaults for a given problem type objective_func_name = self.stopping_metric.name if objective_func_name not in metrics_map.keys(): if self.problem_type == REGRESSION: objective_func_name = 'mean_squared_error' else: objective_func_name = 'log_loss' logger.warning(f'Metric {self.stopping_metric.name} is not supported by this model - using {objective_func_name} instead') if objective_func_name in metrics_map.keys(): nn_metric = metrics_map[objective_func_name] else: nn_metric = None return nn_metric, objective_func_name def __get_objective_func_to_monitor(self, objective_func_name): monitor_obj_func = { 'roc_auc': 'auroc', 'f1': 'f_beta', 'f1_macro': 'f_beta', 'f1_micro': 'f_beta', 'f1_weighted': 'f_beta', 'precision_macro': 'precision', 'precision_micro': 'precision', 'precision_weighted': 'precision', 'recall_macro': 'recall', 'recall_micro': 'recall', 'recall_weighted': 'recall', 'log_loss': 'valid_loss', } objective_func_name_to_monitor = objective_func_name if objective_func_name in monitor_obj_func: objective_func_name_to_monitor = monitor_obj_func[objective_func_name] return objective_func_name_to_monitor def _predict_proba(self, X, **kwargs): from fastai.basic_data import DatasetType from fastai.tabular import TabularList from fastai.utils.mod_display import progress_disabled_ctx X = self.preprocess(X, **kwargs) single_row = len(X) == 1 # fastai has issues predicting on a single row, duplicating the row as a workaround if single_row: X = pd.concat([X, X]).reset_index(drop=True) # Copy cat_columns and cont_columns because TabularList is mutating the list self.model.data.add_test(TabularList.from_df( X, cat_names=self.cat_columns.copy(), cont_names=self.cont_columns.copy(), procs=self.procs)) with progress_disabled_ctx(self.model) as model: preds, _ = model.get_preds(ds_type=DatasetType.Test) if single_row: preds = preds[:1, :] if self.problem_type == REGRESSION: if self.y_scaler is not None: return self.y_scaler.inverse_transform(preds.numpy()).reshape(-1) else: return preds.numpy().reshape(-1) if self.problem_type == BINARY: return preds[:, 1].numpy() else: return preds.numpy() def save(self, path: str = None, verbose=True) -> str: __model = self.model self.model = None path_final = super().save(path=path, verbose=verbose) self.model = __model # Export model save_pkl.save_with_fn(f'{path_final}{self.model_internals_file_name}', self.model, lambda m, buffer: m.export(buffer), verbose=verbose) return path_final @classmethod def load(cls, path: str, reset_paths=True, verbose=True): from fastai.basic_train import load_learner model = super().load(path, reset_paths=reset_paths, verbose=verbose) model.model = load_pkl.load_with_fn(f'{model.path}{model.model_internals_file_name}', lambda p: load_learner(model.path, p), verbose=verbose) return model def _set_default_params(self): """ Specifies hyperparameter values to use by default """ default_params = get_param_baseline(self.problem_type) for param, val in default_params.items(): self._set_default_param_value(param, val) def _get_default_searchspace(self): return get_default_searchspace(self.problem_type, num_classes=None) # TODO: add warning regarding dataloader leak: https://github.com/pytorch/pytorch/issues/31867 # TODO: Add HPO def _hyperparameter_tune(self, **kwargs): return skip_hpo(self, **kwargs) def _get_default_auxiliary_params(self) -> dict: default_auxiliary_params = super()._get_default_auxiliary_params() extra_auxiliary_params = dict( ignored_type_group_raw=[R_OBJECT], ) default_auxiliary_params.update(extra_auxiliary_params) return default_auxiliary_params
the-stack_0_24328
""" Link extraction for auto scraping """ import re import os import posixpath from six.moves.urllib.parse import urlparse from scrapy.linkextractors import IGNORED_EXTENSIONS _ONCLICK_LINK_RE = re.compile("(?P<sep>('|\"))(?P<url>.+?)(?P=sep)") _ignored_exts = frozenset(['.' + e for e in IGNORED_EXTENSIONS]) # allowed protocols ALLOWED_SCHEMES = frozenset(['http', 'https', None, '']) class BaseLinkExtractor(object): def __init__(self, max_url_len=2083, ignore_extensions=_ignored_exts, allowed_schemes=ALLOWED_SCHEMES): """Creates a new LinkExtractor The defaults are a good guess for the first time crawl. After that, we expect that they can be learned. """ self.max_url_len = max_url_len self.ignore_extensions = ignore_extensions self.allowed_schemes = allowed_schemes def _extract_links(self, source): raise NotImplementedError def links_to_follow(self, source): """Returns normalized extracted links""" for link in self._extract_links(source): link = self.normalize_link(link) if link is not None: yield link def normalize_link(self, link): """Normalize a link >>> from scrapy.link import Link >>> le = BaseLinkExtractor() >>> l = Link('http://scrapinghub.com/some/path/../dir') >>> le.normalize_link(l).url 'http://scrapinghub.com/some/dir' >>> l = Link('http://scrapinghub.com/some//./path/') >>> le.normalize_link(l).url 'http://scrapinghub.com/some/path/' Files with disallowed extentions or protocols are not returned >>> le.normalize_link(Link('myimage.jpg')) is None True >>> le.normalize_link(Link('file:///tmp/mydoc.htm')) is None True >>> le.normalize_link(Link('http://scrapinghub.com')).url 'http://scrapinghub.com/' Fragments are removed >>> le.normalize_link(Link('http://example.com/#something')).url 'http://example.com/' >>> le.normalize_link(Link('http://example.com/#something')).fragment 'something' >>> le.normalize_link(Link('http://scrapinghub.com#some fragment')).url 'http://scrapinghub.com/' Ajax crawling >>> le.normalize_link(Link('http://example.com/#!something')).url 'http://example.com/?_escaped_fragment_=something' >>> le.normalize_link(Link('http://example.com/page.html?arg=1#!something')).url 'http://example.com/page.html?arg=1&_escaped_fragment_=something' """ if len(link.url) > self.max_url_len: return parsed = urlparse(link.url) extention = os.path.splitext(parsed.path)[1].lower() if parsed.scheme not in self.allowed_schemes or \ extention in self.ignore_extensions: return # path normalization path = parsed.path or '/' path = path if path[0] != '.' else '/' + path path = posixpath.normpath(path) if parsed.path.endswith('/') and not path.endswith('/'): path += '/' if parsed.fragment.startswith('!'): query = '_escaped_fragment_=%s' % parsed.fragment[1:] query = parsed.query + '&' + query if parsed.query else query parsed = parsed._replace(query=query) link.fragment = parsed.fragment if path != parsed.path or parsed.fragment: link.url = parsed._replace(path=path, fragment='').geturl() return link
the-stack_0_24329
from django.shortcuts import render, redirect from django.http import HttpResponse from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from .forms import PostComment,PostImageForm,PostProfile from .models import Images, Profiles, Comments # Create your views here. @login_required(login_url='/accounts/register/') def index(request): images = Images.get_all_images() return render(request,'index.html',{'images':images}) @login_required(login_url='/accounts/login/') def profile(request,username): user = User.objects.get(username=username) profile = Profiles.filter_profile_by_id(user.id) title = f'{user.username}\'s Profile ' images = Images.get_profile_images(user.id) return render(request, 'profile/profile.html',{'title':title,'users':user,'profile':profile,'images':images}) @login_required(login_url='/accounts/login/') def post_image(request): current_user = request.user if request.method == 'POST': form = PostImageForm(request.POST,request.FILES) if form.is_valid(): image = form.save(commit=False) image.profile = current_user image.save() return redirect('profile',username=request.user) else: form = PostImageForm() return render(request,'profile/post_image.html',{'form':form}) @login_required(login_url='/accounts/login/') def edit_profile(request): current_user = request.user if request.method == 'POST': form = PostProfile(request.POST, request.FILES) if form.is_valid(): profile = form.save(commit=False) profile.user = current_user profile.save() return redirect('editProfile') else: form = PostProfile() return render(request,'profile/edit_profile.html',{'form':form}) @login_required(login_url='/accounts/login/') def view_single_image(request,image_id): image = Images.get_image_by_id(image_id) comments = Comments.get_comment_by_image(image_id) current_user = request.user if request.method == 'POST': form = PostComment(request.POST) if form.is_valid(): comment = form.save(commit=False) comment.image = image comment.user = request.user comment.save() return redirect('singleImage',image_id=image_id) else: form = PostComment() return render(request, 'image.html',{'image':image,'form':form,'comments':comments}) def search(request): if 'search' in request.GET and request.GET['search']: search_term = request.GET.get('search') profiles = Profiles.get_profile_by_name(search_term) message = f'{search_term}' return render(request,'search.html',{'message':message,'profiles':profiles}) else: message = 'Search Username' return render(request,'search.html',{'message':message})
the-stack_0_24330
from __future__ import print_function import datetime import io import os import sys import time import config try: input = raw_input except NameError: pass import azure.storage.blob as azureblob import azure.batch.batch_service_client as batch import azure.batch.batch_auth as batchauth import azure.batch.models as batchmodels sys.path.append('.') sys.path.append('..') # Update the Batch and Storage account credential strings in config.py with values # unique to your accounts. These are used when constructing connection strings # for the Batch and Storage client objects. def query_yes_no(question, default="yes"): """ Prompts the user for yes/no input, displaying the specified question text. :param str question: The text of the prompt for input. :param str default: The default if the user hits <ENTER>. Acceptable values are 'yes', 'no', and None. :rtype: str :return: 'yes' or 'no' """ valid = {'y': 'yes', 'n': 'no'} if default is None: prompt = ' [y/n] ' elif default == 'yes': prompt = ' [Y/n] ' elif default == 'no': prompt = ' [y/N] ' else: raise ValueError("Invalid default answer: '{}'".format(default)) while 1: choice = input(question + prompt).lower() if default and not choice: return default try: return valid[choice[0]] except (KeyError, IndexError): print("Please respond with 'yes' or 'no' (or 'y' or 'n').\n") def print_batch_exception(batch_exception): """ Prints the contents of the specified Batch exception. :param batch_exception: """ print('-------------------------------------------') print('Exception encountered:') if batch_exception.error and \ batch_exception.error.message and \ batch_exception.error.message.value: print(batch_exception.error.message.value) if batch_exception.error.values: print() for mesg in batch_exception.error.values: print('{}:\t{}'.format(mesg.key, mesg.value)) print('-------------------------------------------') def upload_file_to_container(block_blob_client, container_name, file_path): """ Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ blob_name = os.path.basename(file_path) print('Uploading file {} to container [{}]...'.format(file_path, container_name)) block_blob_client.create_blob_from_path(container_name, blob_name, file_path) # Obtain the SAS token for the container. sas_token = get_container_sas_token(block_blob_client, container_name, azureblob.BlobPermissions.READ) sas_url = block_blob_client.make_blob_url(container_name, blob_name, sas_token=sas_token) return batchmodels.ResourceFile(file_path=blob_name, http_url=sas_url) def get_container_sas_token(block_blob_client, container_name, blob_permissions): """ Obtains a shared access signature granting the specified permissions to the container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param BlobPermissions blob_permissions: :rtype: str :return: A SAS token granting the specified permissions to the container. """ # Obtain the SAS token for the container, setting the expiry time and # permissions. In this case, no start time is specified, so the shared # access signature becomes valid immediately. Expiration is in 2 hours. container_sas_token = \ block_blob_client.generate_container_shared_access_signature( container_name, permission=blob_permissions, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=2)) return container_sas_token def get_container_sas_url(block_blob_client, container_name, blob_permissions): """ Obtains a shared access signature URL that provides write access to the ouput container to which the tasks will upload their output. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param BlobPermissions blob_permissions: :rtype: str :return: A SAS URL granting the specified permissions to the container. """ # Obtain the SAS token for the container. sas_token = get_container_sas_token(block_blob_client, container_name, azureblob.BlobPermissions.WRITE) # Construct SAS URL for the container container_sas_url = "https://{}.blob.core.windows.net/{}?{}".format(config._STORAGE_ACCOUNT_NAME, container_name, sas_token) return container_sas_url def create_pool(batch_service_client, pool_id): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sky """ print('Creating pool [{}]...'.format(pool_id)) # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ # The start task installs ffmpeg on each node from an available repository, using # an administrator user identity. new_pool = batch.models.PoolAddParameter( id=pool_id, virtual_machine_configuration=batchmodels.VirtualMachineConfiguration( image_reference=batchmodels.ImageReference( publisher="Canonical", offer="UbuntuServer", sku="18.04-LTS", version="latest" ), node_agent_sku_id="batch.node.ubuntu 18.04"), vm_size=config._POOL_VM_SIZE, target_dedicated_nodes=config._DEDICATED_POOL_NODE_COUNT, target_low_priority_nodes=config._LOW_PRIORITY_POOL_NODE_COUNT, start_task=batchmodels.StartTask( command_line="/bin/bash -c \"apt-get update && apt-get install -y ffmpeg\"", wait_for_success=True, user_identity=batchmodels.UserIdentity( auto_user=batchmodels.AutoUserSpecification( scope=batchmodels.AutoUserScope.pool, elevation_level=batchmodels.ElevationLevel.admin)), ) ) batch_service_client.pool.add(new_pool) def create_job(batch_service_client, job_id, pool_id): """ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. """ print('Creating job [{}]...'.format(job_id)) job = batch.models.JobAddParameter( id=job_id, pool_info=batch.models.PoolInformation(pool_id=pool_id)) batch_service_client.job.add(job) def add_tasks(batch_service_client, job_id, input_files, output_container_sas_url): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: A collection of input files. One task will be created for each input file. :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. """ print('Adding {} tasks to job [{}]...'.format(len(input_files), job_id)) tasks = list() for idx, input_file in enumerate(input_files): input_file_path=input_file.file_path output_file_path="".join((input_file_path).split('.')[:-1]) + '.mp3' command = "/bin/bash -c \"ffmpeg -i {} {} \"".format(input_file_path, output_file_path) tasks.append(batch.models.TaskAddParameter( id='Task{}'.format(idx), command_line=command, resource_files=[input_file], output_files=[batchmodels.OutputFile( file_pattern=output_file_path, destination=batchmodels.OutputFileDestination( container=batchmodels.OutputFileBlobContainerDestination( container_url=output_container_sas_url)), upload_options=batchmodels.OutputFileUploadOptions( upload_condition=batchmodels.OutputFileUploadCondition.task_success))] ) ) batch_service_client.task.add_collection(job_id, tasks) def wait_for_tasks_to_complete(batch_service_client, job_id, timeout): """ Returns when all tasks in the specified job reach the Completed state. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The id of the job whose tasks should be monitored. :param timedelta timeout: The duration to wait for task completion. If all tasks in the specified job do not reach Completed state within this time period, an exception will be raised. """ timeout_expiration = datetime.datetime.now() + timeout print("Monitoring all tasks for 'Completed' state, timeout in {}..." .format(timeout), end='') while datetime.datetime.now() < timeout_expiration: print('.', end='') sys.stdout.flush() tasks = batch_service_client.task.list(job_id) incomplete_tasks = [task for task in tasks if task.state != batchmodels.TaskState.completed] if not incomplete_tasks: print() return True else: time.sleep(1) print() raise RuntimeError("ERROR: Tasks did not reach 'Completed' state within " "timeout period of " + str(timeout)) if __name__ == '__main__': start_time = datetime.datetime.now().replace(microsecond=0) print('Sample start: {}'.format(start_time)) print() # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config._STORAGE_ACCOUNT_NAME, account_key=config._STORAGE_ACCOUNT_KEY) # Use the blob client to create the containers in Azure Storage if they # don't yet exist. input_container_name = 'input' output_container_name = 'output' blob_client.create_container(input_container_name, fail_on_exist=False) blob_client.create_container(output_container_name, fail_on_exist=False) print('Container [{}] created.'.format(input_container_name)) print('Container [{}] created.'.format(output_container_name)) # Create a list of all MP4 files in the InputFiles directory. input_file_paths = [] for folder, subs, files in os.walk(os.path.join(sys.path[0],'InputFiles')): for filename in files: if filename.endswith(".mp4"): input_file_paths.append(os.path.abspath(os.path.join(folder, filename))) # Upload the input files. This is the collection of files that are to be processed by the tasks. input_files = [ upload_file_to_container(blob_client, input_container_name, file_path) for file_path in input_file_paths] # Obtain a shared access signature URL that provides write access to the output # container to which the tasks will upload their output. output_container_sas_url = get_container_sas_url( blob_client, output_container_name, azureblob.BlobPermissions.WRITE) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batchauth.SharedKeyCredentials(config._BATCH_ACCOUNT_NAME, config._BATCH_ACCOUNT_KEY) batch_client = batch.BatchServiceClient( credentials, batch_url=config._BATCH_ACCOUNT_URL) try: # Create the pool that will contain the compute nodes that will execute the # tasks. create_pool(batch_client, config._POOL_ID) # Create the job that will run the tasks. create_job(batch_client, config._JOB_ID, config._POOL_ID) # Add the tasks to the job. Pass the input files and a SAS URL # to the storage container for output files. add_tasks(batch_client, config._JOB_ID, input_files, output_container_sas_url) # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete(batch_client, config._JOB_ID, datetime.timedelta(minutes=30)) print(" Success! All tasks reached the 'Completed' state within the " "specified timeout period.") except batchmodels.BatchErrorException as err: print_batch_exception(err) raise # Delete input container in storage print('Deleting container [{}]...'.format(input_container_name)) blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print('Sample end: {}'.format(end_time)) print('Elapsed time: {}'.format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if query_yes_no('Delete job?') == 'yes': batch_client.job.delete(config._JOB_ID) if query_yes_no('Delete pool?') == 'yes': batch_client.pool.delete(config._POOL_ID) print() input('Press ENTER to exit...')
the-stack_0_24331
import os def buildTests(): os.chdir("tests") with open("README.md", 'w', encoding="utf-8") as readme: print("<h1 align=\"center\">Tests</h1>\n", file=readme) test_folders = [foldername for foldername in os.listdir() if os.path.isdir(foldername) and foldername != "small"] headers = ["|", "BLAST", "My plot", "History GIF", "History text output"] table = [] for test_folder in test_folders: # os.chdir(test_folder) blast_link = "https://raw.githubusercontent.com/npanuhin/BIOCAD_BWA/master/tests/{}/BLAST.png".format(test_folder) plot_link = "https://raw.githubusercontent.com/npanuhin/BIOCAD_BWA/master/tests/{}/sam_analyze.png".format(test_folder) histor_gif_link = "https://raw.githubusercontent.com/npanuhin/BIOCAD_BWA/master/tests/{}/history.gif".format(test_folder) history_text_link = "https://github.com/npanuhin/BIOCAD_BWA/blob/master/tests/{}/history.txt".format(test_folder) table.append([ test_folder, "[BLAST]({} \"View image\")".format(blast_link.replace(' ', "%20")), "[My plot]({} \"View image\")".format(plot_link.replace(' ', "%20")), "[History GIF]({} \"View GIF\")".format(histor_gif_link.replace(' ', "%20")), "[History text output]({} \"View JSON file\")".format(history_text_link.replace(' ', "%20")) ]) # os.chdir("../") print("|".join(headers), file=readme) print("|".join([":-:"] * len(headers)), file=readme) for line in table: print("|".join(line), file=readme) os.chdir("../") def main(root_path): start_path = os.getcwd() os.chdir(root_path) buildTests() os.chdir(start_path) if __name__ == "__main__": main("../")
the-stack_0_24333
# One thousand thanks to Dave Humphrey's documentation # http://en.uesp.net/morrow/tech/mw_esm.txt import sys import os import traceback import argparse from parse_config import parse_config from normalize_path import normalize_path from record_classes import ESData from load_es_file import read_elder_scrolls_file from file_load_progress import update_load_progress from explorer_commands import * from command_help_text import * # https://docs.python.org/2/library/readline.html # https://stackoverflow.com/a/15416166/4099022 try: import readline except ImportError: pass config = {} arg_parser = argparse.ArgumentParser() arg_parser.add_argument("--no-colors", action="store_true") arg_parser.add_argument("--script-colors", action="store_true") arg_parser.add_argument("--substring-colors", action="store_true") arg_parser.add_argument("--function-colors", action="store_true") arg_parser.add_argument("--npcat-colors", action="store_true") arg_parser.add_argument("--load-paths", type=str, nargs="+") arg_parser.add_argument("--config-path", type=str) args = arg_parser.parse_args() if args.script_colors: config["script_syntax_highlighting"] = True if args.substring_colors: config["substring_highlighting"] = True if args.function_colors: config["info_function_highlighting"] = True if args.npcat_colors: config["npcat_list_highlighting"] = False if args.no_colors: config["substring_highlighting"] = False config["script_syntax_highlighting"] = False config["info_function_highlighting"] = False config["npcat_list_highlighting"] = False config_path = "config.ini" if args.config_path: config_path = args.config_path # os.path.join(os.getcwd(), args.config_path) if os.path.exists(config_path): parsed_config_object = None try: parsed_config_object = parse_config(config_path) except Exception as e: print("Failed to parse config file: " + str(e)) if parsed_config_object: for key in parsed_config_object: if key not in config: config[key] = parsed_config_object[key] elif args.config_path: print("Couldn't find config file at \"%s\"." % config_path) es = ESData([]) load_path_list = [] if isinstance(config.get("load_paths"), list): load_path_list.extend(config.get("load_paths")) if args.load_paths: load_path_list.extend(args.load_paths) if len(load_path_list): loaded_count = 0 for load_path in config["load_paths"]: path = os.path.normpath(normalize_path(load_path)) if not os.path.exists(path): print("File \"%s\" not found." % path) continue try: with open(path, "rb") as binary_file: es_file = read_elder_scrolls_file(path, binary_file, after_read_record=update_load_progress(path) ) es.add_file(es_file) loaded_count += 1 print("") except: print("") print("FILE LOAD ERROR. Please report bugs online at") print(" https://github.com/pineapplemachine/mwde/issues") print(traceback.format_exc()) if len(config["load_paths"]): print("Finished loading %d data files." % loaded_count) # "E:/SteamLibrary/steamapps/common/Morrowind/Data Files/Morrowind.esm", # "E:/SteamLibrary/steamapps/common/Morrowind/Data Files/Tribunal.esm", # "E:/SteamLibrary/steamapps/common/Morrowind/Data Files/Bloodmoon.esm", # "E:/SteamLibrary/steamapps/common/Morrowind/Data Files/MoreQuests_WolverineMages.ESP", def parse_command(input_text): command = "" options = {} text = "" first_space = False last_was_space = False in_text = False in_option = False for char in input_text.strip(): if not in_text and (char == " " or char == "\t"): first_space = True last_was_space = True elif last_was_space and not in_text and char == "-": in_option = True last_was_space = False elif in_option: options[char] = True in_option = False elif not first_space: command += char else: text += char in_text = True return (command, options, text) try: get_input = raw_input except NameError: get_input = input if config.get("substring_highlighting") or config.get("script_syntax_highlighting"): sys.stdout.write("\033[0m") print("\nMorrowind Dialog Explorer v1.2 is ready.") while True: try: command, flags, text = parse_command(get_input("query > ")) if command == "help": print("\n" + { "sub": sub_help_text, "re": re_help_text, "npc": npc_help_text, "race": race_help_text, "faction": faction_help_text, "cell": cell_help_text, "topic": topic_help_text, "journal": journal_help_text, "quest": quest_help_text, "npcat": npcat_help_text, "load": load_help_text, "reload": reload_help_text, "unload": unload_help_text, "about": about_text, "quit": quit_help_text, "exit": quit_help_text, }.get(text, help_text) + "\n") elif command == "about": print("\n" + about_text + "\n") elif command == "quit" or command == "exit": print("\nExiting Morrowind Dialog Explorer.\n") break elif command == "sub": do_sub(es, config, text, flags) elif command == "re": do_re(es, config, text, flags) elif command == "npc": do_npc(es, config, text, flags) elif command == "race": do_race(es, config, text, flags) elif command == "faction": do_faction(es, config, text, flags) elif command == "cell": do_cell(es, config, text, flags) elif command == "topic": do_topic(es, config, text, flags) elif command == "journal": do_journal(es, config, text, flags) elif command == "quest": do_quest(es, config, text, flags) elif command == "npcat": do_npcat(es, config, text, flags) elif command == "load": do_load(es, config, text, flags) elif command == "reload": do_reload(es, config, text, flags) elif command == "unload": do_unload(es, config, text, flags) elif len(command): print("Unknown command. Type \"help\" for help.") except EOFError: print("") # Happens sometimes with funny control keys except SystemError: pass # Happens sometimes with funny control keys except KeyboardInterrupt: print("\n\nExiting Morrowind Dialog Explorer.\n") break except Exception as e: print("\nCOMMAND ERROR. Please report bugs online at") print(" https://github.com/pineapplemachine/mwde/issues") print(traceback.format_exc())