filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_24822
from flask import render_template, url_for, flash, redirect, request, Blueprint, jsonify, abort, Response, current_app from flask_jwt_extended import ( JWTManager, jwt_required, get_jwt_identity, create_access_token, create_refresh_token, jwt_refresh_token_required, get_raw_jwt ) from backend import db, bcrypt from backend.models import Users, UsersSchema, Follow_Relationship from backend.auth.utils import session_cache_path, db_write_spotify_token, is_users_spotify_linked, send_reset_email, validate_register, validate_login, validate_profile_edit, get_user_info_from_token from backend.errors.handlers import InvalidAPIUsage from flask_restful import Resource, Api, reqparse import os import datetime import jwt import spotipy auth = Blueprint('auth', __name__) @auth.route("/api/auth/register", methods=['GET', 'POST']) def register(): data = request.json users_schema = UsersSchema() validate_register(data) hashed_password = bcrypt.generate_password_hash(data['password']).decode('utf-8') user = Users(username=data['username'], email=data['email'], password=hashed_password, firstname=data['firstname'], lastname=data['lastname']) db.session.add(user) db.session.commit() return jsonify(users_schema.dump(user)), 200 @auth.route("/api/auth/login", methods=['GET', 'POST']) def login(): data = request.json validate_login(data) user = Users.query.filter_by(email=data['email']).first() try: authorized = bcrypt.check_password_hash(user.password, data['password']) if not authorized: raise InvalidAPIUsage('Login unsuccessful', status_code=410) # Incorrect password except: raise InvalidAPIUsage('Login unsuccessful', status_code=410) # Incorrect email expires = datetime.timedelta(days=7) users_schema = UsersSchema() spotify_linked = is_users_spotify_linked(user.username) ret = users_schema.dump(user) ret['access_token'] = create_access_token(identity=users_schema.dump(user), expires_delta=expires) ret['refresh_token'] = create_refresh_token(identity=users_schema.dump(user), expires_delta=expires) ret['spotify_linked'] = spotify_linked return jsonify(ret), 200 # Standard refresh endpoint. A blacklisted refresh token # will not be able to access this endpoint @auth.route('/api/auth/refresh', methods=['POST']) @jwt_refresh_token_required def refresh(): current_user = get_jwt_identity() ret = { 'access_token': create_access_token(identity=current_user) } return jsonify(ret), 200 # Endpoint for revoking the current users access token @auth.route('/api/auth/logout', methods=['DELETE']) @jwt_required def logout(): jti = get_raw_jwt()['jti'] blacklist.add(jti) return jsonify({"msg": "Successfully logged out"}), 200 # Endpoint for revoking the current users refresh token @auth.route('/api/auth/logout2', methods=['DELETE']) @jwt_refresh_token_required def logout2(): jti = get_raw_jwt()['jti'] blacklist.add(jti) return jsonify({"msg": "Successfully logged out"}), 200 # This will now prevent users with blacklisted tokens from # accessing this endpoint @auth.route('/api/auth/protected', methods=['GET']) @jwt_required def protected(): return jsonify({'hello': 'world'}) @auth.route("/api/auth/get_user_info/<username>", methods=['GET']) @jwt_required def getUserInfo(username): users_schema = UsersSchema() current_user = get_user_info_from_token(request) current_username = current_user['username'] current_user_id = current_user['user_id'] user = Users.query.filter_by(username=username).first() # Is user linked to Spotify spotify_linked = is_users_spotify_linked(user.username) # Does requesting user follow user if current_username != username: follows = db.session.query(Follow_Relationship).join(Users, (Users.user_id == Follow_Relationship.followed_id and current_user_id == Follow_Relationship.follower_id))\ .filter(Users.username == username).first() if follows is not None: user_followed = True else: user_followed = False else: user_followed = None # Follower count follower_count = db.session.query(Follow_Relationship).join(Users, (Users.user_id == Follow_Relationship.followed_id))\ .filter(Users.username == username).count() # Following count following_count = db.session.query(Follow_Relationship).join(Users, (Users.user_id == Follow_Relationship.follower_id))\ .filter(Users.username == username).count() userInfo = users_schema.dump(user) userInfo['spotify_linked'] = spotify_linked userInfo['user_followed'] = user_followed userInfo['follower_count'] = follower_count userInfo['following_count'] = following_count return jsonify({ 'status': 'success', 'userInfo': userInfo }), 200 @auth.route("/api/auth/reset_password", methods=['GET', 'POST']) def reset_request(): data = request.json user = Users.query.filter_by(email=data['email']).first() send_reset_email(user) return jsonify({ 'status': 'success' }), 200 @auth.route("/api/auth/reset_password_token", methods=['GET', 'POST']) def reset_token(): data = request.json user = Users.verify_reset_token(data['token']) hashed_password = bcrypt.generate_password_hash(data['password']).decode('utf-8') user.password = hashed_password db.session.commit() return jsonify({ 'status': 'success' }), 200 @auth.route("/api/auth/update_profile", methods=['GET', 'POST']) @jwt_required def update_profile(): data = request.json validate_profile_edit(data) current_user = get_user_info_from_token(request) current_username = current_user['username'] user = Users.query.filter_by(username=current_username).first() user.firstname = data['firstname'] user.lastname = data['lastname'] user.username = data['username'] user.email = data['email'] user.bio = data['bio'] db.session.commit() expires = datetime.timedelta(days=7) users_schema = UsersSchema() spotify_linked = is_users_spotify_linked(user.username) ret = users_schema.dump(user) ret['access_token'] = create_access_token(identity=users_schema.dump(user), expires_delta=expires) ret['refresh_token'] = create_refresh_token(identity=users_schema.dump(user), expires_delta=expires) ret['spotify_linked'] = spotify_linked return jsonify(ret), 200 @auth.route("/api/auth/update_appcolor", methods=['GET', 'POST']) @jwt_required def update_appcolor(): data = request.json current_user = get_user_info_from_token(request) current_username = current_user['username'] user = Users.query.filter_by(username=current_username).first() user.appcolor = data['appcolor'] db.session.commit() users_schema = UsersSchema() spotify_linked = is_users_spotify_linked(user.username) ret = users_schema.dump(user) ret['spotify_linked'] = spotify_linked return jsonify(ret), 200 @auth.route("/api/auth/link_spotify", methods=['GET', 'POST']) @jwt_required def link_spotify(): data = request.json current_user = get_user_info_from_token(request) current_username = current_user['username'] user = Users.query.filter_by(username=current_username).first() user.spotify_account = data['spotify_account'] db.session.commit() expires = datetime.timedelta(days=7) users_schema = UsersSchema() cache_file = str(data['spotify_account']) auth_manager = spotipy.oauth2.SpotifyOAuth( client_id=current_app.config['SPOTIFY_CLIENT_ID'], client_secret=current_app.config['SPOTIFY_SECRET_ID'], redirect_uri=current_app.config['SPOTIFY_REDIRECT_URI'], show_dialog=True, cache_path=session_cache_path(cache_file), scope=current_app.config['SCOPE'] ) auth_url = None if not auth_manager.get_cached_token(): auth_url = auth_manager.get_authorize_url() expires = datetime.timedelta(days=7) users_schema = UsersSchema() spotify_linked = is_users_spotify_linked(user.username) token = users_schema.dump(user) token['access_token'] = create_access_token(identity=users_schema.dump(user), expires_delta=expires) token['refresh_token'] = create_refresh_token(identity=users_schema.dump(user), expires_delta=expires) ret = {} ret['token'] = token ret['spotify_linked'] = spotify_linked ret['auth_url'] = auth_url return jsonify(ret), 200 @auth.route("/api/auth/link_spotify_callback", methods=['GET', 'POST']) def link_spotify_callback(): cache_file = 'temp' auth_manager = spotipy.oauth2.SpotifyOAuth( client_id=current_app.config['SPOTIFY_CLIENT_ID'], client_secret=current_app.config['SPOTIFY_SECRET_ID'], redirect_uri=current_app.config['SPOTIFY_REDIRECT_URI'], show_dialog=True, cache_path=session_cache_path(cache_file), scope=current_app.config['SCOPE'] ) if request.args.get('code'): auth_manager.get_access_token(request.args.get("code")) redirect('/api/auth/link_spotify_callback') spotify = spotipy.Spotify(auth_manager=auth_manager) sp_user = spotify.current_user() from_file = open(session_cache_path(cache_file), 'r') token_data = from_file.read() from_file.close() os.remove(session_cache_path(cache_file)) to_file = open(session_cache_path(str(sp_user['id'])), 'w') to_file.write(token_data) to_file.close() db_write_spotify_token(token_data, str(sp_user['id'])) user = Users.query.filter_by(spotify_account=sp_user['id']).first() return redirect(current_app.config['FRONTEND_URL'] + 'findyourtune/#/u/' + user.username)
the-stack_0_24823
#!/usr/bin/python # # Copyright 2018-2020 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Polyaxon SDKs and REST API specification. Polyaxon SDKs and REST API specification. # noqa: E501 The version of the OpenAPI document: 1.0.79 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from polyaxon_sdk.configuration import Configuration class V1Termination(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {"max_retries": "int", "ttl": "int", "timeout": "int"} attribute_map = {"max_retries": "max_retries", "ttl": "ttl", "timeout": "timeout"} def __init__( self, max_retries=None, ttl=None, timeout=None, local_vars_configuration=None ): # noqa: E501 """V1Termination - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._max_retries = None self._ttl = None self._timeout = None self.discriminator = None if max_retries is not None: self.max_retries = max_retries if ttl is not None: self.ttl = ttl if timeout is not None: self.timeout = timeout @property def max_retries(self): """Gets the max_retries of this V1Termination. # noqa: E501 :return: The max_retries of this V1Termination. # noqa: E501 :rtype: int """ return self._max_retries @max_retries.setter def max_retries(self, max_retries): """Sets the max_retries of this V1Termination. :param max_retries: The max_retries of this V1Termination. # noqa: E501 :type: int """ self._max_retries = max_retries @property def ttl(self): """Gets the ttl of this V1Termination. # noqa: E501 :return: The ttl of this V1Termination. # noqa: E501 :rtype: int """ return self._ttl @ttl.setter def ttl(self, ttl): """Sets the ttl of this V1Termination. :param ttl: The ttl of this V1Termination. # noqa: E501 :type: int """ self._ttl = ttl @property def timeout(self): """Gets the timeout of this V1Termination. # noqa: E501 :return: The timeout of this V1Termination. # noqa: E501 :rtype: int """ return self._timeout @timeout.setter def timeout(self, timeout): """Sets the timeout of this V1Termination. :param timeout: The timeout of this V1Termination. # noqa: E501 :type: int """ self._timeout = timeout def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list( map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value) ) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict( map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items(), ) ) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1Termination): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1Termination): return True return self.to_dict() != other.to_dict()
the-stack_0_24824
import numpy as np # from terminaltables import AsciiTable from .bbox_overlaps import bbox_overlaps def _recalls(all_ious, proposal_nums, thrs): img_num = all_ious.shape[0] total_gt_num = sum([ious.shape[0] for ious in all_ious]) _ious = np.zeros((proposal_nums.size, total_gt_num), dtype=np.float32) for k, proposal_num in enumerate(proposal_nums): tmp_ious = np.zeros(0) for i in range(img_num): ious = all_ious[i][:, :proposal_num].copy() gt_ious = np.zeros((ious.shape[0])) if ious.size == 0: tmp_ious = np.hstack((tmp_ious, gt_ious)) continue for j in range(ious.shape[0]): gt_max_overlaps = ious.argmax(axis=1) max_ious = ious[np.arange(0, ious.shape[0]), gt_max_overlaps] gt_idx = max_ious.argmax() gt_ious[j] = max_ious[gt_idx] box_idx = gt_max_overlaps[gt_idx] ious[gt_idx, :] = -1 ious[:, box_idx] = -1 tmp_ious = np.hstack((tmp_ious, gt_ious)) _ious[k, :] = tmp_ious _ious = np.fliplr(np.sort(_ious, axis=1)) recalls = np.zeros((proposal_nums.size, thrs.size)) for i, thr in enumerate(thrs): recalls[:, i] = (_ious >= thr).sum(axis=1) / float(total_gt_num) return recalls def set_recall_param(proposal_nums, iou_thrs): """Check proposal_nums and iou_thrs and set correct format. """ if isinstance(proposal_nums, list): _proposal_nums = np.array(proposal_nums) elif isinstance(proposal_nums, int): _proposal_nums = np.array([proposal_nums]) else: _proposal_nums = proposal_nums if iou_thrs is None: _iou_thrs = np.array([0.5]) elif isinstance(iou_thrs, list): _iou_thrs = np.array(iou_thrs) elif isinstance(iou_thrs, float): _iou_thrs = np.array([iou_thrs]) else: _iou_thrs = iou_thrs return _proposal_nums, _iou_thrs def eval_recalls(gts, proposals, proposal_nums=None, iou_thrs=None, print_summary=True): """Calculate recalls. Args: gts(list or ndarray): a list of arrays of shape (n, 4) proposals(list or ndarray): a list of arrays of shape (k, 4) or (k, 5) proposal_nums(int or list of int or ndarray): top N proposals thrs(float or list or ndarray): iou thresholds Returns: ndarray: recalls of different ious and proposal nums """ img_num = len(gts) assert img_num == len(proposals) proposal_nums, iou_thrs = set_recall_param(proposal_nums, iou_thrs) all_ious = [] for i in range(img_num): if proposals[i].ndim == 2 and proposals[i].shape[1] == 5: scores = proposals[i][:, 4] sort_idx = np.argsort(scores)[::-1] img_proposal = proposals[i][sort_idx, :] else: img_proposal = proposals[i] prop_num = min(img_proposal.shape[0], proposal_nums[-1]) if gts[i] is None or gts[i].shape[0] == 0: ious = np.zeros((0, img_proposal.shape[0]), dtype=np.float32) else: ious = bbox_overlaps(gts[i], img_proposal[:prop_num, :4]) all_ious.append(ious) all_ious = np.array(all_ious) recalls = _recalls(all_ious, proposal_nums, iou_thrs) if print_summary: print_recall_summary(recalls, proposal_nums, iou_thrs) return recalls def print_recall_summary(recalls, proposal_nums, iou_thrs, row_idxs=None, col_idxs=None): """Print recalls in a table. Args: recalls(ndarray): calculated from `bbox_recalls` proposal_nums(ndarray or list): top N proposals iou_thrs(ndarray or list): iou thresholds row_idxs(ndarray): which rows(proposal nums) to print col_idxs(ndarray): which cols(iou thresholds) to print """ proposal_nums = np.array(proposal_nums, dtype=np.int32) iou_thrs = np.array(iou_thrs) if row_idxs is None: row_idxs = np.arange(proposal_nums.size) if col_idxs is None: col_idxs = np.arange(iou_thrs.size) row_header = [''] + iou_thrs[col_idxs].tolist() table_data = [row_header] for i, num in enumerate(proposal_nums[row_idxs]): row = [ '{:.3f}'.format(val) for val in recalls[row_idxs[i], col_idxs].tolist() ] row.insert(0, num) table_data.append(row) table = AsciiTable(table_data) print(table.table) def plot_num_recall(recalls, proposal_nums): """Plot Proposal_num-Recalls curve. Args: recalls(ndarray or list): shape (k,) proposal_nums(ndarray or list): same shape as `recalls` """ if isinstance(proposal_nums, np.ndarray): _proposal_nums = proposal_nums.tolist() else: _proposal_nums = proposal_nums if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot([0] + _proposal_nums, [0] + _recalls) plt.xlabel('Proposal num') plt.ylabel('Recall') plt.axis([0, proposal_nums.max(), 0, 1]) f.show() def plot_iou_recall(recalls, iou_thrs): """Plot IoU-Recalls curve. Args: recalls(ndarray or list): shape (k,) iou_thrs(ndarray or list): same shape as `recalls` """ if isinstance(iou_thrs, np.ndarray): _iou_thrs = iou_thrs.tolist() else: _iou_thrs = iou_thrs if isinstance(recalls, np.ndarray): _recalls = recalls.tolist() else: _recalls = recalls import matplotlib.pyplot as plt f = plt.figure() plt.plot(_iou_thrs + [1.0], _recalls + [0.]) plt.xlabel('IoU') plt.ylabel('Recall') plt.axis([iou_thrs.min(), 1, 0, 1]) f.show()
the-stack_0_24825
""" Limits ====== Implemented according to the PhD thesis http://www.cybertester.com/data/gruntz.pdf, which contains very thorough descriptions of the algorithm including many examples. We summarize here the gist of it. All functions are sorted according to how rapidly varying they are at infinity using the following rules. Any two functions f and g can be compared using the properties of L: L=lim log|f(x)| / log|g(x)| (for x -> oo) We define >, < ~ according to:: 1. f > g .... L=+-oo we say that: - f is greater than any power of g - f is more rapidly varying than g - f goes to infinity/zero faster than g 2. f < g .... L=0 we say that: - f is lower than any power of g 3. f ~ g .... L!=0, +-oo we say that: - both f and g are bounded from above and below by suitable integral powers of the other Examples ======== :: 2 < x < exp(x) < exp(x**2) < exp(exp(x)) 2 ~ 3 ~ -5 x ~ x**2 ~ x**3 ~ 1/x ~ x**m ~ -x exp(x) ~ exp(-x) ~ exp(2x) ~ exp(x)**2 ~ exp(x+exp(-x)) f ~ 1/f So we can divide all the functions into comparability classes (x and x^2 belong to one class, exp(x) and exp(-x) belong to some other class). In principle, we could compare any two functions, but in our algorithm, we don't compare anything below the class 2~3~-5 (for example log(x) is below this), so we set 2~3~-5 as the lowest comparability class. Given the function f, we find the list of most rapidly varying (mrv set) subexpressions of it. This list belongs to the same comparability class. Let's say it is {exp(x), exp(2x)}. Using the rule f ~ 1/f we find an element "w" (either from the list or a new one) from the same comparability class which goes to zero at infinity. In our example we set w=exp(-x) (but we could also set w=exp(-2x) or w=exp(-3x) ...). We rewrite the mrv set using w, in our case {1/w, 1/w^2}, and substitute it into f. Then we expand f into a series in w:: f = c0*w^e0 + c1*w^e1 + ... + O(w^en), where e0<e1<...<en, c0!=0 but for x->oo, lim f = lim c0*w^e0, because all the other terms go to zero, because w goes to zero faster than the ci and ei. So:: for e0>0, lim f = 0 for e0<0, lim f = +-oo (the sign depends on the sign of c0) for e0=0, lim f = lim c0 We need to recursively compute limits at several places of the algorithm, but as is shown in the PhD thesis, it always finishes. Important functions from the implementation: compare(a, b, x) compares "a" and "b" by computing the limit L. mrv(e, x) returns list of most rapidly varying (mrv) subexpressions of "e" rewrite(e, Omega, x, wsym) rewrites "e" in terms of w leadterm(f, x) returns the lowest power term in the series of f mrv_leadterm(e, x) returns the lead term (c0, e0) for e limitinf(e, x) computes lim e (for x->oo) limit(e, z, z0) computes any limit by converting it to the case x->oo All the functions are really simple and straightforward except rewrite(), which is the most difficult/complex part of the algorithm. When the algorithm fails, the bugs are usually in the series expansion (i.e. in SymPy) or in rewrite. This code is almost exact rewrite of the Maple code inside the Gruntz thesis. Debugging --------- Because the gruntz algorithm is highly recursive, it's difficult to figure out what went wrong inside a debugger. Instead, turn on nice debug prints by defining the environment variable SYMPY_DEBUG. For example: [user@localhost]: SYMPY_DEBUG=True ./bin/isympy In [1]: limit(sin(x)/x, x, 0) limitinf(_x*sin(1/_x), _x) = 1 +-mrv_leadterm(_x*sin(1/_x), _x) = (1, 0) | +-mrv(_x*sin(1/_x), _x) = set([_x]) | | +-mrv(_x, _x) = set([_x]) | | +-mrv(sin(1/_x), _x) = set([_x]) | | +-mrv(1/_x, _x) = set([_x]) | | +-mrv(_x, _x) = set([_x]) | +-mrv_leadterm(exp(_x)*sin(exp(-_x)), _x, set([exp(_x)])) = (1, 0) | +-rewrite(exp(_x)*sin(exp(-_x)), set([exp(_x)]), _x, _w) = (1/_w*sin(_w), -_x) | +-sign(_x, _x) = 1 | +-mrv_leadterm(1, _x) = (1, 0) +-sign(0, _x) = 0 +-limitinf(1, _x) = 1 And check manually which line is wrong. Then go to the source code and debug this function to figure out the exact problem. """ from __future__ import print_function, division from sympy.core import Basic, S, oo, Symbol, I, Dummy, Wild from sympy.functions import log, exp from sympy.series.order import Order from sympy.simplify import powsimp from sympy import cacheit from sympy.core.compatibility import reduce from sympy.utilities.timeutils import timethis timeit = timethis('gruntz') from sympy.utilities.misc import debug_decorator as debug def compare(a, b, x): """Returns "<" if a<b, "=" for a == b, ">" for a>b""" # log(exp(...)) must always be simplified here for termination la, lb = log(a), log(b) if isinstance(a, Basic) and a.func is exp: la = a.args[0] if isinstance(b, Basic) and b.func is exp: lb = b.args[0] c = limitinf(la/lb, x) if c == 0: return "<" elif c.is_unbounded: return ">" else: return "=" class SubsSet(dict): """ Stores (expr, dummy) pairs, and how to rewrite expr-s. The gruntz algorithm needs to rewrite certain expressions in term of a new variable w. We cannot use subs, because it is just too smart for us. For example:: > Omega=[exp(exp(_p - exp(-_p))/(1 - 1/_p)), exp(exp(_p))] > O2=[exp(-exp(_p) + exp(-exp(-_p))*exp(_p)/(1 - 1/_p))/_w, 1/_w] > e = exp(exp(_p - exp(-_p))/(1 - 1/_p)) - exp(exp(_p)) > e.subs(Omega[0],O2[0]).subs(Omega[1],O2[1]) -1/w + exp(exp(p)*exp(-exp(-p))/(1 - 1/p)) is really not what we want! So we do it the hard way and keep track of all the things we potentially want to substitute by dummy variables. Consider the expression:: exp(x - exp(-x)) + exp(x) + x. The mrv set is {exp(x), exp(-x), exp(x - exp(-x))}. We introduce corresponding dummy variables d1, d2, d3 and rewrite:: d3 + d1 + x. This class first of all keeps track of the mapping expr->variable, i.e. will at this stage be a dictionary:: {exp(x): d1, exp(-x): d2, exp(x - exp(-x)): d3}. [It turns out to be more convenient this way round.] But sometimes expressions in the mrv set have other expressions from the mrv set as subexpressions, and we need to keep track of that as well. In this case, d3 is really exp(x - d2), so rewrites at this stage is:: {d3: exp(x-d2)}. The function rewrite uses all this information to correctly rewrite our expression in terms of w. In this case w can be choosen to be exp(-x), i.e. d2. The correct rewriting then is:: exp(-w)/w + 1/w + x. """ def __init__(self): self.rewrites = {} def __repr__(self): return super(SubsSet, self).__repr__() + ', ' + self.rewrites.__repr__() def __getitem__(self, key): if not key in self: self[key] = Dummy() return dict.__getitem__(self, key) def do_subs(self, e): for expr, var in self.items(): e = e.subs(var, expr) return e def meets(self, s2): """Tell whether or not self and s2 have non-empty intersection""" return set(self.keys()).intersection(list(s2.keys())) != set() def union(self, s2, exps=None): """Compute the union of self and s2, adjusting exps""" res = self.copy() tr = {} for expr, var in s2.items(): if expr in self: if exps: exps = exps.subs(var, res[expr]) tr[var] = res[expr] else: res[expr] = var for var, rewr in s2.rewrites.items(): res.rewrites[var] = rewr.subs(tr) return res, exps def copy(self): r = SubsSet() r.rewrites = self.rewrites.copy() for expr, var in self.items(): r[expr] = var return r @debug def mrv(e, x): """Returns a SubsSet of most rapidly varying (mrv) subexpressions of 'e', and e rewritten in terms of these""" e = powsimp(e, deep=True, combine='exp') assert isinstance(e, Basic) if not e.has(x): return SubsSet(), e elif e == x: s = SubsSet() return s, s[x] elif e.is_Mul or e.is_Add: i, d = e.as_independent(x) # throw away x-independent terms if d.func != e.func: s, expr = mrv(d, x) return s, e.func(i, expr) a, b = d.as_two_terms() s1, e1 = mrv(a, x) s2, e2 = mrv(b, x) return mrv_max1(s1, s2, e.func(i, e1, e2), x) elif e.is_Pow: b, e = e.as_base_exp() if e.has(x): return mrv(exp(e * log(b)), x) else: s, expr = mrv(b, x) return s, expr**e elif e.func is log: s, expr = mrv(e.args[0], x) return s, log(expr) elif e.func is exp: # We know from the theory of this algorithm that exp(log(...)) may always # be simplified here, and doing so is vital for termination. if e.args[0].func is log: return mrv(e.args[0].args[0], x) if limitinf(e.args[0], x).is_unbounded: s1 = SubsSet() e1 = s1[e] s2, e2 = mrv(e.args[0], x) su = s1.union(s2)[0] su.rewrites[e1] = exp(e2) return mrv_max3(s1, e1, s2, exp(e2), su, e1, x) else: s, expr = mrv(e.args[0], x) return s, exp(expr) elif e.is_Function: l = [mrv(a, x) for a in e.args] l2 = [s for (s, _) in l if s != SubsSet()] if len(l2) != 1: # e.g. something like BesselJ(x, x) raise NotImplementedError("MRV set computation for functions in" " several variables not implemented.") s, ss = l2[0], SubsSet() args = [ss.do_subs(x[1]) for x in l] return s, e.func(*args) elif e.is_Derivative: raise NotImplementedError("MRV set computation for derviatives" " not implemented yet.") return mrv(e.args[0], x) raise NotImplementedError( "Don't know how to calculate the mrv of '%s'" % e) def mrv_max3(f, expsf, g, expsg, union, expsboth, x): """Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. max() compares (two elements of) f and g and returns either (f, expsf) [if f is larger], (g, expsg) [if g is larger] or (union, expsboth) [if f, g are of the same class]. """ assert isinstance(f, SubsSet) assert isinstance(g, SubsSet) if f == SubsSet(): return g, expsg elif g == SubsSet(): return f, expsf elif f.meets(g): return union, expsboth c = compare(list(f.keys())[0], list(g.keys())[0], x) if c == ">": return f, expsf elif c == "<": return g, expsg else: assert c == "=" return union, expsboth def mrv_max1(f, g, exps, x): """Computes the maximum of two sets of expressions f and g, which are in the same comparability class, i.e. mrv_max1() compares (two elements of) f and g and returns the set, which is in the higher comparability class of the union of both, if they have the same order of variation. Also returns exps, with the appropriate substitutions made. """ u, b = f.union(g, exps) return mrv_max3(f, g.do_subs(exps), g, f.do_subs(exps), u, b, x) @debug @cacheit @timeit def sign(e, x): """ Returns a sign of an expression e(x) for x->oo. :: e > 0 for x sufficiently large ... 1 e == 0 for x sufficiently large ... 0 e < 0 for x sufficiently large ... -1 The result of this function is currently undefined if e changes sign arbitarily often for arbitrarily large x (e.g. sin(x)). Note that this returns zero only if e is *constantly* zero for x sufficiently large. [If e is constant, of course, this is just the same thing as the sign of e.] """ from sympy import sign as _sign assert isinstance(e, Basic) if e.is_positive: return 1 elif e.is_negative: return -1 elif e.is_zero: return 0 elif not e.has(x): return _sign(e) elif e == x: return 1 elif e.is_Mul: a, b = e.as_two_terms() sa = sign(a, x) if not sa: return 0 return sa * sign(b, x) elif e.func is exp: return 1 elif e.is_Pow: s = sign(e.base, x) if s == 1: return 1 if e.exp.is_Integer: return s**e.exp elif e.func is log: return sign(e.args[0] - 1, x) # if all else fails, do it the hard way c0, e0 = mrv_leadterm(e, x) return sign(c0, x) @debug @timeit @cacheit def limitinf(e, x): """Limit e(x) for x-> oo""" #rewrite e in terms of tractable functions only e = e.rewrite('tractable', deep=True) if not e.has(x): return e # e is a constant if e.has(Order): e = e.expand().removeO() if not x.is_positive: # We make sure that x.is_positive is True so we # get all the correct mathematical bechavior from the expression. # We need a fresh variable. p = Dummy('p', positive=True, bounded=True) e = e.subs(x, p) x = p c0, e0 = mrv_leadterm(e, x) sig = sign(e0, x) if sig == 1: return S.Zero # e0>0: lim f = 0 elif sig == -1: # e0<0: lim f = +-oo (the sign depends on the sign of c0) if c0.match(I*Wild("a", exclude=[I])): return c0*oo s = sign(c0, x) #the leading term shouldn't be 0: assert s != 0 return s*oo elif sig == 0: return limitinf(c0, x) # e0=0: lim f = lim c0 def moveup2(s, x): r = SubsSet() for expr, var in s.items(): r[expr.subs(x, exp(x))] = var for var, expr in s.rewrites.items(): r.rewrites[var] = s.rewrites[var].subs(x, exp(x)) return r def moveup(l, x): return [e.subs(x, exp(x)) for e in l] @debug @timeit def calculate_series(e, x, skip_abs=False, logx=None): """ Calculates at least one term of the series of "e" in "x". This is a place that fails most often, so it is in its own function. """ from sympy.core.exprtools import factor_terms n = 1 while 1: series = e.nseries(x, n=n, logx=logx) if not series.has(Order): # The series expansion is locally exact. return series series = series.removeO() series = factor_terms(series, fraction=True) if series and ((not skip_abs) or series.has(x)): return series n *= 2 @debug @timeit @cacheit def mrv_leadterm(e, x): """Returns (c0, e0) for e.""" Omega = SubsSet() if not e.has(x): return (e, S.Zero) if Omega == SubsSet(): Omega, exps = mrv(e, x) if not Omega: # e really does not depend on x after simplification series = calculate_series(e, x) c0, e0 = series.leadterm(x) assert e0 == 0 return c0, e0 if x in Omega: #move the whole omega up (exponentiate each term): Omega_up = moveup2(Omega, x) e_up = moveup([e], x)[0] exps_up = moveup([exps], x)[0] # NOTE: there is no need to move this down! e = e_up Omega = Omega_up exps = exps_up # # The positive dummy, w, is used here so log(w*2) etc. will expand; # a unique dummy is needed in this algorithm # # For limits of complex functions, the algorithm would have to be # improved, or just find limits of Re and Im components separately. # w = Dummy("w", real=True, positive=True, bounded=True) f, logw = rewrite(exps, Omega, x, w) series = calculate_series(f, w, logx=logw) series = series.subs(log(w), logw) # this should not be necessary return series.leadterm(w) def build_expression_tree(Omega, rewrites): r""" Helper function for rewrite. We need to sort Omega (mrv set) so that we replace an expression before we replace any expression in terms of which it has to be rewritten:: e1 ---> e2 ---> e3 \ -> e4 Here we can do e1, e2, e3, e4 or e1, e2, e4, e3. To do this we assemble the nodes into a tree, and sort them by height. This function builds the tree, rewrites then sorts the nodes. """ class Node: def ht(self): return reduce(lambda x, y: x + y, [x.ht() for x in self.before], 1) nodes = {} for expr, v in Omega: n = Node() n.before = [] n.var = v n.expr = expr nodes[v] = n for _, v in Omega: if v in rewrites: n = nodes[v] r = rewrites[v] for _, v2 in Omega: if r.has(v2): n.before.append(nodes[v2]) return nodes @debug @timeit def rewrite(e, Omega, x, wsym): """e(x) ... the function Omega ... the mrv set wsym ... the symbol which is going to be used for w Returns the rewritten e in terms of w and log(w). See test_rewrite1() for examples and correct results. """ from sympy import ilcm assert isinstance(Omega, SubsSet) assert len(Omega) != 0 #all items in Omega must be exponentials for t in Omega.keys(): assert t.func is exp rewrites = Omega.rewrites Omega = list(Omega.items()) nodes = build_expression_tree(Omega, rewrites) Omega.sort(key=lambda x: nodes[x[1]].ht(), reverse=True) g, _ = Omega[-1] # g is going to be the "w" - the simplest one in the mrv set sig = sign(g.args[0], x) if sig == 1: wsym = 1/wsym # if g goes to oo, substitute 1/w elif sig != -1: raise NotImplementedError('Result depends on the sign of %s' % sig) #O2 is a list, which results by rewriting each item in Omega using "w" O2 = [] denominators = [] for f, var in Omega: c = limitinf(f.args[0]/g.args[0], x) if c.is_Rational: denominators.append(c.q) arg = f.args[0] if var in rewrites: assert rewrites[var].func is exp arg = rewrites[var].args[0] O2.append((var, exp((arg - c*g.args[0]).expand())*wsym**c)) #Remember that Omega contains subexpressions of "e". So now we find #them in "e" and substitute them for our rewriting, stored in O2 # the following powsimp is necessary to automatically combine exponentials, # so that the .subs() below succeeds: # TODO this should not be necessary f = powsimp(e, deep=True, combine='exp') for a, b in O2: f = f.subs(a, b) for _, var in Omega: assert not f.has(var) #finally compute the logarithm of w (logw). logw = g.args[0] if sig == 1: logw = -logw # log(w)->log(1/w)=-log(w) # Some parts of sympy have difficulty computing series expansions with # non-integral exponents. The following heuristic improves the situation: exponent = reduce(ilcm, denominators, 1) f = f.subs(wsym, wsym**exponent) logw /= exponent return f, logw def gruntz(e, z, z0, dir="+"): """ Compute the limit of e(z) at the point z0 using the Gruntz algorithm. z0 can be any expression, including oo and -oo. For dir="+" (default) it calculates the limit from the right (z->z0+) and for dir="-" the limit from the left (z->z0-). For infinite z0 (oo or -oo), the dir argument doesn't matter. This algorithm is fully described in the module docstring in the gruntz.py file. It relies heavily on the series expansion. Most frequently, gruntz() is only used if the faster limit() function (which uses heuristics) fails. """ if not isinstance(z, Symbol): raise NotImplementedError("Second argument must be a Symbol") #convert all limits to the limit z->oo; sign of z is handled in limitinf r = None if z0 == oo: r = limitinf(e, z) elif z0 == -oo: r = limitinf(e.subs(z, -z), z) else: if dir == "-": e0 = e.subs(z, z0 - 1/z) elif dir == "+": e0 = e.subs(z, z0 + 1/z) else: raise NotImplementedError("dir must be '+' or '-'") r = limitinf(e0, z) # This is a bit of a heuristic for nice results... we always rewrite # tractable functions in terms of familiar intractable ones. # It might be nicer to rewrite the exactly to what they were initially, # but that would take some work to implement. return r.rewrite('intractable', deep=True)
the-stack_0_24827
# Copyright 2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import os from collections import defaultdict import pandas as pd from wa import Workload, Parameter, ConfigError, TargetError, WorkloadError from wa.utils.exec_control import once class Mongoperf(Workload): name = 'mongoperf' description = """ A utility to check disk I/O performance independently of MongoDB. It times tests of random disk I/O and presents the results. You can use mongoperf for any case apart from MongoDB. The mmf true mode is completely generic. .. note:: ``mongoperf`` seems to ramp up threads in powers of two over a period of tens of seconds (there doesn't appear to be a way to change that). Bear this in mind when setting the ``duration``. """ parameters = [ Parameter('duration', kind=int, default=300, description=""" Duration of of the workload. """), Parameter('threads', kind=int, default=16, description=""" Defines the number of threads mongoperf will use in the test. To saturate the system storage system you will need multiple threads. """), Parameter('file_size_mb', kind=int, default=1, description=""" Test file size in MB. """), Parameter('sleep_micros', kind=int, default=0, description=""" mongoperf will pause for this number of microseconds divided by the the number of threads between each operation. """), Parameter('mmf', kind=bool, default=True, description=""" When ``True``, use memory mapped files for the tests. Generally: - when mmf is ``False``, mongoperf tests direct, physical, I/O, without caching. Use a large file size to test heavy random I/O load and to avoid I/O coalescing. - when mmf is ``True``, mongoperf runs tests of the caching system, and can use normal file system cache. Use mmf in this mode to test file system cache behavior with memory mapped files. """), Parameter('read', kind=bool, default=True, aliases=['r'], description=""" When ``True``, perform reads as part of the test. Either ``read`` or ``write`` must be ``True``. """), Parameter('write', kind=bool, default=True, aliases=['w'], description=""" When ``True``, perform writes as part of the test. Either ``read`` or ``write`` must be ``True``. """), Parameter('rec_size_kb', kind=int, default=4, description=""" The size of each write operation """), Parameter('sync_delay', kind=int, default=0, description=""" Seconds between disk flushes. Only use this if ``mmf`` is set to ``True``. """), ] def validate(self): if not self.read and not self.write: raise ConfigError('Either "read" or "write" must be True.') if not self.mmf and self.sync_delay: raise ConfigError('sync_delay can only be set if mmf is True') @once def initialize(self, context): try: self.target.execute('mongoperf -h') except TargetError: raise WorkloadError('Mongoperf must be installed and in $PATH on the target.') def setup(self, context): config = {} config['nThreads'] = self.threads config['fileSizeMB'] = self.file_size_mb config['sleepMicros'] = self.sleep_micros config['mmf'] = self.mmf config['r'] = self.read config['w'] = self.write config['recSizeKB'] = self.rec_size_kb config['syncDelay'] = self.sync_delay config_text = json.dumps(config) self.outfile = self.target.get_workpath('mongperf.out') self.command = 'echo "{}" | mongoperf > {}'.format(config_text, self.outfile) def run(self, context): self.target.kick_off(self.command) self.target.sleep(self.duration) self.target.killall('mongoperf', signal='SIGTERM') def extract_results(self, context): host_outfile = os.path.join(context.output_directory, 'mongoperf.out') self.target.pull(self.outfile, host_outfile) context.add_artifact('mongoperf-output', host_outfile, kind='raw') def update_output(self, context): host_file = context.get_artifact_path('mongoperf-output') results = defaultdict(list) threads = None with open(host_file) as fh: for line in fh: if 'new thread,' in line: threads = int(line.split()[-1]) elif 'ops/sec' in line: results[threads].append(int(line.split()[0])) if not results: raise WorkloadError('No mongoperf results found in the output.') for threads, values in results.items(): rs = pd.Series(values) context.add_metric('ops_per_sec', rs.mean(), classifiers={'threads': threads}) context.add_metric('ops_per_sec_std', rs.std(), lower_is_better=True, classifiers={'threads': threads}) def teardown(self, context): if self.cleanup_assets: self.target.remove(self.outfile)
the-stack_0_24829
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/thumbor/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com [email protected] import asyncio from concurrent.futures import ThreadPoolExecutor from thumbor.utils import logger class ThreadPool: @classmethod def instance(cls, size): """ Cache threadpool since context is recreated for each request """ if not getattr(cls, "_instance", None): cls._instance = {} if size not in cls._instance: cls._instance[size] = ThreadPool(size) return cls._instance[size] @classmethod def reset(cls): if cls._instance is not None: for size in cls._instance: cls._instance[size].cleanup() cls._instance = None def __init__(self, thread_pool_size): if thread_pool_size: self.pool = ThreadPoolExecutor(thread_pool_size) else: self.pool = None async def _execute_in_foreground(self, operation, *args): return operation(*args) async def _execute_in_pool(self, operation, *args): loop = asyncio.get_running_loop() return await loop.run_in_executor(self.pool, operation, *args) async def queue(self, operation, *args): if not self.pool: return await self._execute_in_foreground(operation, *args) return await self._execute_in_pool(operation, *args) def cleanup(self): if self.pool: logger.info("Shutting down threads") self.pool.shutdown()
the-stack_0_24830
import pytest import time import slug from slug import QuickConnect, Pipe def test_through(): pin = Pipe() pout = Pipe() qc = QuickConnect( # noqa side_in=pin.side_out, side_out=pout.side_in, keepopen=False ) pin.side_in.write(b'spameggs') pin.side_in.close() roundtrip = pout.side_out.read() assert roundtrip == b'spameggs' # Broken on windows, see https://github.com/xonsh/slug/issues/7 @pytest.mark.skipif(slug.QuickConnect is slug.base.QuickConnect, reason="Base QuickConnect is broken this way") def test_change_input(): p1 = Pipe() p2 = Pipe() pout = Pipe() qc = QuickConnect( side_in=p1.side_out, side_out=pout.side_in, keepopen=False ) p1.side_in.write(b'spam') p2.side_in.write(b'foo') time.sleep(1.0) qc.side_in = p2.side_out p1.side_in.write(b'eggs') p2.side_in.write(b'bar') p1.side_in.close() p2.side_in.close() roundtrip = pout.side_out.read() assert roundtrip == b'spamfoobar' def test_change_output(): pin = Pipe() p1 = Pipe() p2 = Pipe() qc = QuickConnect( side_in=pin.side_out, side_out=p1.side_in, ) pin.side_in.write(b'spam') time.sleep(1.0) qc.side_out = p2.side_in pin.side_in.write(b'eggs') out1 = p1.side_out.read(4000) out2 = p2.side_out.read(4000) assert out1 == b'spam' assert out2 == b'eggs'
the-stack_0_24832
import gym import numpy as np from typing import Dict, Tuple class NoopResetEnv(gym.Wrapper): def __init__(self, env: gym.Wrapper, no_op_max=30, ): """ Samples initial states by performing a random number of no operations on reset. Slightly modified from OpenAI baselines AtariWrappers. As detailed in Mnih et al. (2015) -- aka Nature paper. :param env: the inner environment :param no_op_max: maximum number of no operations """ super().__init__(env) self.no_op_max = no_op_max self.no_op_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self, **kwargs, ) -> np.ndarray: """ Resets the environment :param kwargs: keyword arguments of the OpenAI core :return: state """ self.env.reset(**kwargs) no_ops = np.random.randint(1, self.no_op_max + 1) state = None for _ in range(no_ops): state, _, done, _ = self.env.step(self.no_op_action) if done: state = self.env.reset(**kwargs) return state def step(self, action: int, ) -> Tuple[np.ndarray, float, bool, Dict]: """ Performs the provided action :param action: the action taken :return: state, reward, done, information dictionary """ return self.env.step(action)
the-stack_0_24834
import os import json from flask import Flask, render_template, abort from dotenv import load_dotenv load_dotenv() app = Flask(__name__) app.config["SECRET_KEY"] = os.environ["SECRET_KEY"] def render_page(root="templates/example"): return render_template("index.html", examples=load_examples()) @app.route("/") def index(): return render_page() @app.route("/example/<name>/") def example(name): with open("templates/example/{}.json".format(name), "r") as fd: code = fd.read() return code def load_examples(): path = os.path.join("templates", "example") for f in os.listdir(path): filename, _ = os.path.splitext(f) with open(os.path.join(path, f), "r") as fd: example_data = json.load(fd) if not "name" in example_data: name = filename.split() else: name = str(example_data["name"]) yield {"name": name, "filename": filename} if __name__ == "__main__": app.run(debug=True, host="0.0.0.0")
the-stack_0_24835
# -*- coding: utf-8 -*- """Tests for single-instance prediction""" from __future__ import print_function import os import unittest from nose.tools import nottest from sklearn.datasets import load_svmlight_file import numpy as np import treelite import treelite.runtime from util import load_txt, os_compatible_toolchains, libname, make_annotation,\ assert_almost_equal dpath = os.path.abspath(os.path.join(os.getcwd(), 'tests/examples/')) class TestSingleInst(unittest.TestCase): @nottest def run_pipeline_test(self, model, dtest_path, libname_fmt, expected_prob_path, expected_margin_path, multiclass, use_annotation, use_quantize): dpath = os.path.abspath(os.path.join(os.getcwd(), 'tests/examples/')) dtest_path = os.path.join(dpath, dtest_path) libpath = libname(libname_fmt) X_test, _ = load_svmlight_file(dtest_path, zero_based=True) expected_prob_path = os.path.join(dpath, expected_prob_path) expected_margin_path = os.path.join(dpath, expected_margin_path) expected_prob = load_txt(expected_prob_path) expected_margin = load_txt(expected_margin_path) if multiclass: nrow = X_test.shape[0] expected_prob = expected_prob.reshape((nrow, -1)) expected_margin = expected_margin.reshape((nrow, -1)) params = {} if use_annotation is not None: params['annotate_in'] = use_annotation if use_quantize: params['quantize'] = 1 for toolchain in os_compatible_toolchains(): model.export_lib(toolchain=toolchain, libpath=libpath, params=params, verbose=True) predictor = treelite.runtime.Predictor(libpath=libpath, verbose=True) for i in range(X_test.shape[0]): x = X_test[i,:] # Scipy CSR matrix out_prob = predictor.predict_instance(x) out_margin = predictor.predict_instance(x, pred_margin=True) assert_almost_equal(out_prob, expected_prob[i]) assert_almost_equal(out_margin, expected_margin[i]) # NumPy 1D array with 0 as missing value x = x.toarray().flatten() out_prob = predictor.predict_instance(x, missing=0.0) out_margin = predictor.predict_instance(x, missing=0.0, pred_margin=True) assert_almost_equal(out_prob, expected_prob[i]) assert_almost_equal(out_margin, expected_margin[i]) # NumPy 1D array with np.nan as missing value np.place(x, x == 0.0, [np.nan]) out_prob = predictor.predict_instance(x, missing=np.nan) out_margin = predictor.predict_instance(x, missing=np.nan, pred_margin=True) assert_almost_equal(out_prob, expected_prob[i]) assert_almost_equal(out_margin, expected_margin[i]) # NumPy 1D array with np.nan as missing value # (default when `missing` parameter is unspecified) out_prob = predictor.predict_instance(x) out_margin = predictor.predict_instance(x, pred_margin=True) assert_almost_equal(out_prob, expected_prob[i]) assert_almost_equal(out_margin, expected_margin[i]) def test_single_inst(self): for model_path, dtrain_path, dtest_path, libname_fmt, \ expected_prob_path, expected_margin_path, multiclass in \ [('mushroom/mushroom.model', 'mushroom/agaricus.train', 'mushroom/agaricus.test', './agaricus{}', 'mushroom/agaricus.test.prob', 'mushroom/agaricus.test.margin', False), ('dermatology/dermatology.model', 'dermatology/dermatology.train', 'dermatology/dermatology.test', './dermatology{}', 'dermatology/dermatology.test.prob', 'dermatology/dermatology.test.margin', True)]: model_path = os.path.join(dpath, model_path) model = treelite.Model.load(model_path, model_format='xgboost') make_annotation(model=model, dtrain_path=dtrain_path, annotation_path='./annotation.json') for use_annotation in ['./annotation.json', None]: for use_quantize in [True, False]: self.run_pipeline_test(model=model, dtest_path=dtest_path, libname_fmt=libname_fmt, expected_prob_path=expected_prob_path, expected_margin_path=expected_margin_path, multiclass=multiclass, use_annotation=use_annotation, use_quantize=use_quantize)
the-stack_0_24838
#!/usr/bin/env python2 # -*- coding: utf-8 -*- from flask import Flask from flask import request from flask import Response from flask import logging from celery import Celery import json import sys import os sys.path.append(''.join([os.getcwd() ])) app = Flask(__name__) logger = logging.getLogger(__name__) from dao.DB import WebScannerDB from utils.IPv4Address import is_ipv4 celery_app = Celery('SheepScanner', include=['sheepscan.tasks']) celery_app.config_from_object('config.celery') db = WebScannerDB('192.168.233.1', 27017) @app.route('/') def main(): index = u""" <html> <head> <meta http-equiv="content-type" content="text/html;charset=utf-8"> <title>管理平台</title> </head> <body> <p>REST API 返回JSON结果</p> <ul> <li>/tasks/all 显示所有任务ID</li> <li>/tasks/add?ip=ip_address 添加IP地址任务</li> <li>/tasks/status?task_id=task_id 查看任务状态</li> </ul> </body> </html> """ return index#Response(index.encode("utf-8"), status=200, content_type='application/json' ) @app.route('/scan/add') def add_scan(): iprange = request.args['hosts'] portrange = request.args.get('ports', 80, type=int) result = celery_app.send_task("sheepscan.tasks.scan_host", args=[iprange, portrange]) or None if result: return json.dumps(dict(status=0, task_id=result.id)) else: return json.dumps(dict(status=1)) @app.route('/tasks/add') def add_task(): ip_address = request.args['ip'] if not is_ipv4(ip_address, skip_local=True): return Response("""{status=1, info="invalid ip address!"}""", status=200, content_type='application/json' ) # 增加任务 #celery_app.test.task(ip_address) result = celery_app.send_task("sheepscan.tasks.http", args=[ip_address]) or None if result: return json.dumps(dict(status=0, task_id=result.id)) else: return json.dumps(dict(status=1)) @app.route('/socks/add') def add_socks(): ip_address = request.args['ip'] port = request.args.get('port', 1080, type=int) if not is_ipv4(ip_address, skip_local=True): return Response("""{status=1, info="invalid ip address!"}""", status=200, content_type='application/json' ) result = celery_app.send_task("sheepscan.tasks.socksv5", args=[ip_address, port]) or None if result: return json.dumps(dict(status=0, task_id=result.id)) else: return json.dumps(dict(status=1)) @app.route('/tasks/status') def show_result(): task_uuid = request.args['task_id'] res = db.query_result(task_uuid) count = res.count() if count < 1: return Response("""{status=1, info="no founded!"}""", status=200, content_type='application/json' ) elif count == 1: rep = dict(status=0) rep.update(**res[0]) rep['date_done'] = rep.get('date_done').isoformat(' ') return Response(json.dumps(rep), status=200, content_type='application/json' ) else: return Response("""{status=1, info="no founded!"}""", status=200, content_type='application/json' ) @app.route('/tasks/all') def show_all_task(): res = db.find() uids = [] for r in res: uids.append(r['_id']) rep = dict(status=0, tasks=uids) return Response(json.dumps(rep), status=200, content_type='application/json' ) if __name__ == '__main__': from config.settings import web app.run(web['host'], web['port'], debug=web['debug'], threaded=True)
the-stack_0_24839
# -*- coding: utf-8 -*- import web , datetime , os, time, re, cgi , json from web import form import conf def parse_config_variables(text:str, conf): """ Parses and replace the variables in the text by their values from config. Parameters ---------- text: str The input string representing the config conf The config module Returns ------- str The same text with the replaced wildards """ params = { '$myEndpoint': conf.myEndpoint, '$myPublicEndpoint': conf.myPublicEndpoint } for k, v in params.items(): text = text.replace(k, v) return text def get_form(json_form): """ read config in 'myform.json' and return a webpy form """ import io with open(json_form) as config_form: # The StringIO wrapper was used to re-use the json.load function # without any other change. text = config_form.read() text = parse_config_variables(text, conf) buf = io.StringIO(text) buf.seek(0) fields = json.load(buf) params = () for field in fields: # all myid = field['id'] description = field['label'] if 'label' in field and len(field['label']) > 0 else 'input' pre_a = "<span class='tip' data-toggle='tooltip' data-placement='bottom' title='" pre_b = "'><i class='fas fa-info-circle'></i></span>" prepend = pre_a+field['prepend']+pre_b if 'prepend' in field and len(field['prepend']) > 0 else '' disabled = 'disabled' if 'disabled' in field and field['disabled'] == "True" else '' classes = field['class'] if 'class' in field and len(field['class']) > 0 else '' classes = classes+' searchWikidata' if 'searchWikidata' in field and field['searchWikidata'] == 'True' else classes classes = classes+' disambiguate' if "disambiguate" in field and field["disambiguate"] == 'True' else classes classes = classes+' ('+conf.main_entity+') '+disabled autocomplete = field['cache_autocomplete'] if 'cache_autocomplete' in field and len(field['cache_autocomplete']) > 0 else '' # text box placeholder = field['placeholder'] if 'placeholder' in field else None default = field['defaultvalue'] if 'defaultvalue' in field else '' # dropdown dropdown_values = [(k,v) for k,v in field['values'].items()] if 'values' in field else None # Text box if field['type'] == 'Textbox': if "disambiguate" in field and field["disambiguate"] == 'True': vpass = form.regexp(r".{1,200}$", 'must be between 1 and 200 characters') params = params + (form.Textbox(myid, vpass, description = description, id=myid, placeholder=placeholder, pre = prepend, class_= classes, value=default) , ) else: params = params + (form.Textbox(myid, description = description, id=myid, placeholder=placeholder, pre = prepend, class_= classes, value=default), ) if field['type'] == 'Dropdown': params = params + (form.Dropdown(myid, description = description, args=dropdown_values, placeholder=placeholder, id=myid, pre = prepend, class_= classes), ) if field['type'] == 'Checkbox': prepend_title = '<section class="checkbox_group_label label col-12">'+description+'</section>' i = 0 params = params + (form.Checkbox(myid+'-'+str(i), value=dropdown_values[0][0]+','+dropdown_values[0][1], description = dropdown_values[0][1], id=myid, pre = prepend_title+prepend, class_= classes+' checkbox_group', checked=False), ) for value in dropdown_values[1:]: i += 1 params = params + (form.Checkbox(myid+'-'+str(i), value=value[0]+','+value[1], description = value[1], id=myid, pre = '', class_= classes+' checkbox_group following_checkbox', checked=False), ) myform = form.Form(*params) return myform searchRecord = form.Form( form.Textbox("search", class_="searchWikidata col-md-11", description="Search", autocomplete="off") ) #searchGeneral = form.Form( #form.Textbox("search", #class_="searchGeneral", #description="search", #autocomplete="off") #)
the-stack_0_24840
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems import re import json from ..utils import sanitize_for_serialization class ConversationCallEventTopicScoredAgent(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ ConversationCallEventTopicScoredAgent - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'agent': 'ConversationCallEventTopicUriReference', 'score': 'int' } self.attribute_map = { 'agent': 'agent', 'score': 'score' } self._agent = None self._score = None @property def agent(self): """ Gets the agent of this ConversationCallEventTopicScoredAgent. :return: The agent of this ConversationCallEventTopicScoredAgent. :rtype: ConversationCallEventTopicUriReference """ return self._agent @agent.setter def agent(self, agent): """ Sets the agent of this ConversationCallEventTopicScoredAgent. :param agent: The agent of this ConversationCallEventTopicScoredAgent. :type: ConversationCallEventTopicUriReference """ self._agent = agent @property def score(self): """ Gets the score of this ConversationCallEventTopicScoredAgent. :return: The score of this ConversationCallEventTopicScoredAgent. :rtype: int """ return self._score @score.setter def score(self, score): """ Sets the score of this ConversationCallEventTopicScoredAgent. :param score: The score of this ConversationCallEventTopicScoredAgent. :type: int """ self._score = score def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """ Returns the model as raw JSON """ return json.dumps(sanitize_for_serialization(self.to_dict())) def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
the-stack_0_24841
from math import sqrt import pygame class Shape: movement_speed = 10 def __init__(self, x, y): self.x, self.y = x, y def move_up(self): self.y -= self.movement_speed def move_down(self): self.y += self.movement_speed def move_left(self): self.x -= self.movement_speed def move_right(self): self.x += self.movement_speed class Circle(Shape): def __init__(self, center_x, center_y, radius): super().__init__(center_x, center_y) self.radius = radius class Rectangle(Shape): def __init__(self, top_left_x, top_left_y, width, height): super().__init__(top_left_x, top_left_y) self.width, self.height = width, height class Line(Shape): def __init__(self, x1, y1, x2, y2): super().__init__(x1, y1) self.x2, self.y2 = x2, y2 def check_collision(rectangle, circle): rectangle_box = (rectangle.x, rectangle.y, rectangle.x + rectangle.width, rectangle.y + rectangle.height) circle_box = (circle.x - circle.radius, circle.y - circle.radius, circle.x + circle.radius, circle.y + circle.radius) if rectangle_box[0] > circle_box[2] \ or rectangle_box[1] > circle_box[3] \ or rectangle_box[2] < circle_box[0] \ or rectangle_box[3] < circle_box[1]: return False for x in (rectangle_box[0], rectangle_box[2]): for y in (rectangle_box[1], rectangle_box[3]): if sqrt((x - circle.x) ^ 2 + (y - circle.y) ^ 2) <= circle.radius: print(sqrt((x - circle.x) ^ 2 + (y - circle.y) ^ 2), circle.radius) return True # Screen parameters BOARD_WID = 500 BOARD_HGT = 500 SIDEBAR_WID = 200 PADD = 15 WINDOW_WID = BOARD_WID + PADD * 2 + SIDEBAR_WID WINDOW_HGT = BOARD_HGT + PADD * 2 WINDOW_CAPTION = "Collision" FPS = 60 # Board borders TOP_Y = PADD BOT_Y = PADD + BOARD_HGT LFT_X = PADD RGT_X = PADD + BOARD_WID # Colors BOARD_COLOR = (240, 240, 240) BACKGROUND_COLOR = (255, 255, 255) OBJECTS_COLOR = (85, 85, 85) TEXT_COLOR = (0, 0, 0) pygame.init() FONT = pygame.font.Font(None, 24) screen = pygame.display.set_mode((WINDOW_WID, WINDOW_HGT)) pygame.display.set_caption(WINDOW_CAPTION) CLOCK = pygame.time.Clock() running = True collision = False objects = [Circle(100, 100, 50), Rectangle(200, 200, 100, 100)] selected_index = 0 while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: running = False elif event.key == pygame.K_1: selected_index = 0 elif event.key == pygame.K_2: selected_index = 1 elif event.key == pygame.K_UP: objects[selected_index].move_up() elif event.key == pygame.K_DOWN: objects[selected_index].move_down() elif event.key == pygame.K_LEFT: objects[selected_index].move_left() elif event.key == pygame.K_RIGHT: objects[selected_index].move_right() screen.fill(BACKGROUND_COLOR) pygame.draw.rect(screen, BOARD_COLOR, [PADD, PADD, BOARD_WID, BOARD_HGT], 0) for obj in objects: if type(obj) is Circle: pygame.draw.circle(screen, OBJECTS_COLOR, (obj.x, obj.y), obj.radius, 0) elif type(obj) is Rectangle: pygame.draw.rect(screen, OBJECTS_COLOR, [obj.x, obj.y, obj.width, obj.height], 0) collision = check_collision(objects[1], objects[0]) instr_text = FONT.render('Selected object %d' % (selected_index + 1), 1, TEXT_COLOR) instr_text_pos = instr_text.get_rect() instr_text_pos.centerx = BOARD_WID + PADD * 2 + SIDEBAR_WID / 2 instr_text_pos.centery = WINDOW_HGT - PADD - instr_text.get_height() / 2 screen.blit(instr_text, instr_text_pos) coll_text = FONT.render('COLLIDING!' if collision else 'Not colliding', 1, TEXT_COLOR) coll_text_pos = coll_text.get_rect() coll_text_pos.centerx = BOARD_WID + PADD * 2 + SIDEBAR_WID / 2 coll_text_pos.centery = WINDOW_HGT / 2 screen.blit(coll_text, coll_text_pos) pygame.display.flip() CLOCK.tick(FPS)
the-stack_0_24843
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines def attestation_create_provider(client, resource_group_name, provider_name, location, tags=None, attestation_policy=None, keys=None): creation_params = {} creation_params['location'] = location creation_params['tags'] = tags creation_params['properties'] = {} creation_params['properties']['attestation_policy'] = attestation_policy creation_params['properties']['policy_signing_certificates'] = {} creation_params['properties']['policy_signing_certificates']['keys'] = keys return client.create(resource_group_name=resource_group_name, offer_type="virtualmachine", provider_name=provider_name, creation_params=creation_params) def attestation_list_operation(client): return client.list() def attestation_attestation_provider_provider_list(client, resource_group_name=None): if resource_group_name: return client.list_by_resource_group(resource_group_name=resource_group_name) return client.list() def attestation_attestation_provider_show(client, resource_group_name, provider_name): return client.get(resource_group_name=resource_group_name, offer_type="virtualmachine", provider_name=provider_name) def attestation_attestation_provider_update(client, resource_group_name, provider_name, tags=None): update_params = {} update_params['tags'] = tags return client.update(resource_group_name=resource_group_name, offer_type="virtualmachine", provider_name=provider_name, update_params=update_params) def attestation_attestation_provider_delete(client, resource_group_name, provider_name): return client.delete(resource_group_name=resource_group_name, offer_type="virtualmachine", provider_name=provider_name)
the-stack_0_24845
""" Kafka Consumer """ import json from confluent_kafka import Consumer from app_name.api.services import purchase_process class KafkaConsumer: """ Kafka Consumer class """ def __init__(self, group_id, offset, topics, kafka_broker="localhost:9092", config=None): """ Kafka consumer's constructor :param group_id: :param offset: :param topics: :param kafka_broker: :param config: """ self.group_id = group_id self.offset = offset self.topics = topics self.kafka_broker = kafka_broker if config is None: config = self.properties self.consumer = Consumer(config) @property def properties(self): """ Properties of consumer :return: dictionary with config to consumer """ properties = { "bootstrap.servers": self.kafka_broker, "group.id": self.group_id, "auto.offset.reset": self.offset, } return properties def subscribe(self, topics): """ Subscribe in topics :param topics: list of topics """ self.consumer.subscribe(topics) def close(self): """ Close application """ self.consumer.close() def run(self): """ Start application """ self.subscribe(self.topics) while True: msg = self.consumer.poll(1.0) if msg is None: continue if msg.error(): print("Consumer error: {}".format(msg.error())) continue if msg.topic() == "PURCHASE_BOOK": print( f'Received key {msg.key().decode("utf-8")} message: {msg.value().decode("utf-8")}' ) purchase_data = json.loads(msg.value()) purchase_process.purchase_process(purchase_data) self.close() if __name__ == "__main__": consumer = KafkaConsumer(group_id=0, offset="earliest", topics=["PURCHASE_BOOK"]) consumer.run()
the-stack_0_24846
# qubit number=4 # total number=35 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[3]) # number=15 prog.cz(input_qubit[0],input_qubit[3]) # number=16 prog.h(input_qubit[3]) # number=17 prog.x(input_qubit[3]) # number=13 prog.h(input_qubit[3]) # number=20 prog.cz(input_qubit[0],input_qubit[3]) # number=21 prog.h(input_qubit[3]) # number=22 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.h(input_qubit[0]) # number=5 prog.x(input_qubit[3]) # number=32 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[1]) # number=29 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.h(input_qubit[0]) # number=23 prog.cz(input_qubit[2],input_qubit[0]) # number=24 prog.h(input_qubit[0]) # number=25 prog.y(input_qubit[2]) # number=30 prog.cx(input_qubit[2],input_qubit[0]) # number=11 prog.cx(input_qubit[2],input_qubit[0]) # number=18 prog.h(input_qubit[0]) # number=26 prog.x(input_qubit[2]) # number=31 prog.cz(input_qubit[2],input_qubit[0]) # number=27 prog.h(input_qubit[0]) # number=28 prog.y(input_qubit[3]) # number=33 prog.y(input_qubit[3]) # number=34 # circuit end return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('statevector_simulator') sample_shot =8000 info = execute(prog, backend=backend).result().get_statevector() qubits = round(log2(len(info))) info = { np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3) for i in range(2 ** qubits) } backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_Class2347.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
the-stack_0_24847
# Copyright 2020 Filippo Aleotti, Fabio Tosi, Li Zhang, Matteo Poggi, Stefano Mattoccia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import torch import torch.nn as nn import torch.nn.functional as F class Loss(nn.modules.Module): def __init__(self, loss_weights): super(Loss, self).__init__() self.loss_weights = loss_weights def _expand_dims(self, x): if len(x.shape) == 3: x = x.unsqueeze(1) return x def _get_valid(self, target): target = torch.squeeze(target, 1) mask = target > 0 mask = self._expand_dims(mask) target = self._expand_dims(target) mask.detach() valid = target[mask].size()[0] return mask, valid def forward(self, predictions, target): mask, valid = self._get_valid(target) if valid > 0: loss = [ F.smooth_l1_loss(predictions[i][mask], target[mask]) * self.loss_weights[i] for i in range(len(predictions)) ] loss = torch.stack(loss) return torch.mean(loss) else: return 0.0
the-stack_0_24850
from ..controller import PontoVerificacaoController, UsuarioController from ..util.authorization import Authorization from flask_restful import reqparse, request, Resource class PontoVerificacaoResource(Resource): ENDPOINT = 'ponto_verificacao' ROUTE = '/pontos_verificacao/ponto_verificacao' @Authorization.token_required(with_usuario=True) def get(self, usuario): return PontoVerificacaoController.get_by_usuario(usuario.id_usuario) @Authorization.token_required() def post(self): res = request.json ponto_verificacao_body = res.get("ponto_verificacao") usuario_body = res.get("usuario") usuario = UsuarioController.create_usuario(usuario_body) return PontoVerificacaoController.post(ponto_verificacao_body, usuario=usuario) @Authorization.token_required() def put(self): body = request.json return PontoVerificacaoController.put(body) @Authorization.token_required() def delete(self): parser = reqparse.RequestParser() parser.add_argument('id_ponto_verificacao', type=int, required=True, help='Required query string id_ponto_verificacao.') args = parser.parse_args() id_ponto_verificacao = args.get('id_ponto_verificacao') return PontoVerificacaoController.delete(id_ponto_verificacao) class ListaPontoVerificacaoResource(Resource): ENDPOINT = 'pontos_verificacao' ROUTE = '/pontos_verificacao' @Authorization.token_required() def get(self): return PontoVerificacaoController.get_list()
the-stack_0_24852
from typing import Callable, Dict, List from goji.harvester.harvester import Harvester from goji.util.ws_message import WsRpcMessage, create_payload_dict class HarvesterRpcApi: def __init__(self, harvester: Harvester): self.service = harvester self.service_name = "goji_harvester" def get_routes(self) -> Dict[str, Callable]: return { "/get_plots": self.get_plots, "/refresh_plots": self.refresh_plots, "/delete_plot": self.delete_plot, "/add_plot_directory": self.add_plot_directory, "/get_plot_directories": self.get_plot_directories, "/remove_plot_directory": self.remove_plot_directory, } async def _state_changed(self, change: str) -> List[WsRpcMessage]: if change == "plots": data = await self.get_plots({}) payload = create_payload_dict("get_plots", data, self.service_name, "wallet_ui") return [payload] return [] async def get_plots(self, request: Dict) -> Dict: plots, failed_to_open, not_found = self.service.get_plots() return { "plots": plots, "failed_to_open_filenames": failed_to_open, "not_found_filenames": not_found, } async def refresh_plots(self, request: Dict) -> Dict: await self.service.refresh_plots() return {} async def delete_plot(self, request: Dict) -> Dict: filename = request["filename"] if self.service.delete_plot(filename): return {} raise ValueError(f"Not able to delete file {filename}") async def add_plot_directory(self, request: Dict) -> Dict: directory_name = request["dirname"] if await self.service.add_plot_directory(directory_name): return {} raise ValueError(f"Did not add plot directory {directory_name}") async def get_plot_directories(self, request: Dict) -> Dict: plot_dirs = await self.service.get_plot_directories() return {"directories": plot_dirs} async def remove_plot_directory(self, request: Dict) -> Dict: directory_name = request["dirname"] if await self.service.remove_plot_directory(directory_name): return {} raise ValueError(f"Did not remove plot directory {directory_name}")
the-stack_0_24854
import numpy as np from hyperspectral import HyperspectralCube as Cube def read_hyperspectral_cube(cube): if isinstance(cube, basestring): cube = Cube.from_fits(cube) if not isinstance(cube, Cube): raise TypeError("Provided cube is not a HyperspectralCube") if cube.is_empty(): raise ValueError("Provided cube is empty") return cube def above_percentile(cube, percentile=30): """ Will create a mask that will only allow the pixels *above* the `percentile`. """ cube = read_hyperspectral_cube(cube) img = np.nansum(cube, axis=0) # flatten along spectral axis p = np.nanpercentile(img, percentile) mask = np.copy(img) mask[img >= p] = 1 mask[img < p] = 0 return mask
the-stack_0_24856
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Set of converters between db models, Python and JSON dictionaries, etc.""" __author__ = 'Pavel Simakov ([email protected])' import base64 import datetime import json from google.appengine.ext import db JSON_DATE_FORMAT = '%Y/%m/%d' JSON_TYPES = ['string', 'date', 'text', 'html', 'boolean', 'integer', 'array'] # Prefix to add to all JSON responses to guard against XSSI. Must be kept in # sync with modules/oeditor/oeditor.html. _JSON_XSSI_PREFIX = ")]}'\n" SIMPLE_TYPES = (int, long, float, bool, dict, basestring, list) SUPPORTED_TYPES = (db.GeoPt, datetime.date) def dict_to_json(source_dict, unused_schema): """Converts Python dictionary into JSON dictionary using schema.""" output = {} for key, value in source_dict.items(): if value is None or isinstance(value, SIMPLE_TYPES): output[key] = value elif isinstance(value, datetime.date): output[key] = value.strftime(JSON_DATE_FORMAT) elif isinstance(value, db.GeoPt): output[key] = {'lat': value.lat, 'lon': value.lon} else: raise ValueError( 'Failed to encode key \'%s\' with value \'%s\'.' % (key, value)) return output def dumps(*args, **kwargs): """Wrapper around json.dumps. No additional behavior; present here so this module is a drop-in replacement for json.dumps|loads. Clients should never use json.dumps|loads directly. See usage docs at http://docs.python.org/2/library/json.html. Args: *args: positional arguments delegated to json.dumps. **kwargs: keyword arguments delegated to json.dumps. Returns: string. The converted JSON. """ return json.dumps(*args, **kwargs) def loads(s, prefix=_JSON_XSSI_PREFIX, **kwargs): """Wrapper around json.loads that handles XSSI-protected responses. To prevent XSSI we insert a prefix before our JSON responses during server- side rendering. This loads() removes the prefix and should always be used in place of json.loads. See usage docs at http://docs.python.org/2/library/json.html. Args: s: str or unicode. JSON contents to convert. prefix: string. The XSSI prefix we remove before conversion. **kwargs: keyword arguments delegated to json.loads. Returns: object. Python object reconstituted from the given JSON string. """ if s.startswith(prefix): s = s.lstrip(prefix) return json.loads(s, **kwargs) def json_to_dict(source_dict, schema): """Converts JSON dictionary into Python dictionary using schema.""" output = {} for key, attr in schema['properties'].items(): # Skip schema elements that don't exist in source. if not key in source_dict: continue attr_type = attr['type'] if not attr_type in JSON_TYPES: raise ValueError('Unsupported JSON type: %s' % attr_type) if attr_type == 'date': output[key] = datetime.datetime.strptime( source_dict[key], JSON_DATE_FORMAT).date() elif attr_type == 'array': subschema = attr['items'] array = [] for item in source_dict[key]: array.append(json_to_dict(item, subschema)) output[key] = array else: output[key] = source_dict[key] return output def entity_to_dict(entity, force_utf_8_encoding=False): """Puts model object attributes into a Python dictionary.""" output = {} for key, prop in entity.properties().iteritems(): value = getattr(entity, key) if value is None or isinstance(value, SIMPLE_TYPES) or isinstance( value, SUPPORTED_TYPES): output[key] = value # some values are raw bytes; force utf-8 or base64 encoding if force_utf_8_encoding and isinstance(value, basestring): try: output[key] = value.encode('utf-8') except UnicodeDecodeError: output[key] = { 'type': 'binary', 'encoding': 'base64', 'content': base64.urlsafe_b64encode(value)} else: raise ValueError('Failed to encode: %s' % prop) # explicitly add entity key as a 'string' attribute output['key'] = str(entity.key()) return output def dict_to_entity(entity, source_dict): """Sets model object attributes from a Python dictionary.""" for key, value in source_dict.items(): if value is None or isinstance(value, SIMPLE_TYPES) or isinstance( value, SUPPORTED_TYPES): setattr(entity, key, value) else: raise ValueError('Failed to encode: %s' % value) return entity def string_to_value(string, value_type): """Converts string representation to a value.""" if value_type == str: if not string: return '' else: return string elif value_type == bool: if string == '1' or string == 'True' or string == 1: return True else: return False elif value_type == int or value_type == long: if not string: return 0 else: return long(string) else: raise ValueError('Unknown type: %s' % value_type) def value_to_string(value, value_type): """Converts value to a string representation.""" if value_type == str: return value elif value_type == bool: if value: return 'True' else: return 'False' elif value_type == int or value_type == long: return str(value) else: raise ValueError('Unknown type: %s' % value_type) def dict_to_instance(adict, instance, defaults=None): """Populates instance attributes using data dictionary.""" for key, unused_value in instance.__dict__.iteritems(): if not key.startswith('_'): if key in adict: setattr(instance, key, adict[key]) elif defaults and key in defaults: setattr(instance, key, defaults[key]) else: raise KeyError(key) def instance_to_dict(instance): """Populates data dictionary from instance attrs.""" adict = {} for key, unused_value in instance.__dict__.iteritems(): if not key.startswith('_'): adict[key] = getattr(instance, key) return adict def send_json_response( handler, status_code, message, payload_dict=None, xsrf_token=None): """Formats and sends out a JSON REST response envelope and body.""" handler.response.headers[ 'Content-Type'] = 'application/javascript; charset=utf-8' handler.response.headers['X-Content-Type-Options'] = 'nosniff' handler.response.headers['Content-Disposition'] = 'attachment' response = {} response['status'] = status_code response['message'] = message if payload_dict: response['payload'] = dumps(payload_dict) if xsrf_token: response['xsrf_token'] = xsrf_token handler.response.write(_JSON_XSSI_PREFIX + dumps(response)) def send_json_file_upload_response(handler, status_code, message): """Formats and sends out a JSON REST response envelope and body. NOTE: This method has lowered protections against XSSI (compared to send_json_response) and so it MUST NOT be used with dynamic data. Use ONLY constant data originating entirely on the server as arguments. Args: handler: the request handler. status_code: the HTTP status code for the response. message: the text of the message - must not be dynamic data. """ # The correct MIME type for JSON is application/json but there are issues # with our AJAX file uploader in MSIE which require text/plain instead. if 'MSIE' in handler.request.headers.get('user-agent'): content_type = 'text/plain; charset=utf-8' else: content_type = 'application/javascript; charset=utf-8' handler.response.headers['Content-Type'] = content_type handler.response.headers['X-Content-Type-Options'] = 'nosniff' response = {} response['status'] = status_code response['message'] = message handler.response.write(_JSON_XSSI_PREFIX + dumps(response)) class JsonFile(object): """A streaming file-ish interface for JSON content. Usage: writer = JsonFile('path') writer.open('w') writer.write(json_serializable_python_object) # We serialize for you. writer.write(another_json_serializable_python_object) writer.close() # Must close before read. reader = JsonFile('path') reader.open('r') # Only 'r' and 'w' are supported. for entity in reader: do_something_with(entity) # We deserialize back to Python for you. self.reader.reset() # Reset read pointer to head. contents = self.reader.read() # Returns {'rows': [...]}. for entity in contents['rows']: do_something_with(entity) # Again, deserialized back to Python. reader.close() with syntax is not supported. Cannot be used inside the App Engine container where the filesystem is read-only. Internally, each call to write will take a Python object, serialize it, and write the contents as one line to the json file. On __iter__ we deserialize one line at a time, generator-style, to avoid OOM unless serialization/de- serialization of one object exhausts memory. """ # When writing to files use \n instead of os.linesep; see # http://docs.python.org/2/library/os.html. _LINE_TEMPLATE = ',\n %s' _MODE_READ = 'r' _MODE_WRITE = 'w' _MODES = frozenset([_MODE_READ, _MODE_WRITE]) _PREFIX = '{"rows": [' _SUFFIX = ']}' def __init__(self, path): self._first = True self._file = None self._path = path def __iter__(self): assert self._file return self def close(self): """Closes the file; must close before read.""" assert self._file if not self._file.closed: # Like file, allow multiple close calls. if self.mode == self._MODE_WRITE: self._file.write('\n' + self._SUFFIX) self._file.close() @property def mode(self): """Returns the mode the file was opened in.""" assert self._file return self._file.mode @property def name(self): """Returns string name of the file.""" assert self._file return self._file.name def next(self): """Retrieves the next line and deserializes it into a Python object.""" assert self._file line = self._file.readline() if line.startswith(self._PREFIX): line = self._file.readline() if line.endswith(self._SUFFIX): raise StopIteration() line = line.strip() if line.endswith(','): line = line[:-1] return loads(line) def open(self, mode): """Opens the file in the given mode string ('r, 'w' only).""" assert not self._file assert mode in self._MODES self._file = open(self._path, mode) if self.mode == self._MODE_WRITE: self._file.write(self._PREFIX) def read(self): """Reads the file into a single Python object; may exhaust memory. Returns: dict. Format: {'rows': [...]} where the value is a list of de- serialized objects passed to write. """ assert self._file return loads(self._file.read()) def reset(self): """Resets file's position to head.""" assert self._file self._file.seek(0) def write(self, python_object): """Writes serialized JSON representation of python_object to file. Args: python_object: object. Contents to write. Must be JSON-serializable. Raises: ValueError: if python_object cannot be JSON-serialized. """ assert self._file template = self._LINE_TEMPLATE if self._first: template = template[1:] self._first = False self._file.write(template % dumps(python_object)) def run_all_unit_tests(): """Runs all unit tests.""" assert value_to_string(True, bool) == 'True' assert value_to_string(False, bool) == 'False' assert value_to_string(None, bool) == 'False' assert string_to_value('True', bool) assert string_to_value('1', bool) assert string_to_value(1, bool) assert not string_to_value('False', bool) assert not string_to_value('0', bool) assert not string_to_value('5', bool) assert not string_to_value(0, bool) assert not string_to_value(5, bool) assert not string_to_value(None, bool) assert string_to_value('15', int) == 15 assert string_to_value(15, int) == 15 assert string_to_value(None, int) == 0 assert string_to_value('foo', str) == 'foo' assert string_to_value(None, str) == str('') if __name__ == '__main__': run_all_unit_tests()
the-stack_0_24858
# coding=utf8 ''' this file is designed to join pytorch profile's log with nccl's log ''' import json import argparse import os from collections import OrderedDict from dataclasses import dataclass import nccl_log_miner as ncl_miner def _load_py_prof(f_dir): f_list = os.listdir(f_dir) f_list = [os.path.join(f_dir, x) for x in f_list if x.endswith(".json")] f_list.sort(key=lambda x: os.path.getmtime(x)) f_path = f_list[-1] res = [] with open(f_path) as r: obj = json.load(r) evt_obj_arr = obj['traceEvents'] for evt_obj in evt_obj_arr: if 'cat' in evt_obj and 'name' in evt_obj: cat = evt_obj['cat'] name = evt_obj['name'].lower() if 'Kernel' == cat: if 'nccl' in name: res.append(evt_obj) return res def _join_coarsely(nccl_event_arr, ncl_obj_arr, ncl_obj_cnt): res = [] for event in nccl_event_arr: ncl_obj_sub_arr = _filter_sub_arr(event, ncl_obj_arr) ncl_obj_sub_arr = [x for x in ncl_obj_sub_arr if str(x) in ncl_obj_cnt] res.append([event, ncl_obj_sub_arr]) return res def _filter_sub_arr(event, ncl_obj_arr): res = [] for obj in ncl_obj_arr: if _is_match(obj, event): res.append(obj) return res def _is_match(obj, event): name = event['name'].lower() device = int(event['args']['device']) if obj.device != device: return False if obj.op_name.lower() not in name: return False if "_f32" in name and obj.dtype!=7: return False if "_f16" in name and obj.dtype!=6: return False return True def _cons_stream_map(coarse_joined_res): # first stream no to ncl_address map no_2_addr_map_list = [] for evt, ncl_obj_subs in coarse_joined_res: tmp_dict = dict() key = evt['args']['stream'] tmp_dict[key] = [] for ncl_obj in ncl_obj_subs: val = ncl_obj.stream if val not in tmp_dict[key]: tmp_dict[key].append(val) no_2_addr_map_list.append(tmp_dict) # then merge the intersection of the map joined_key2map_list = _find_intersection(no_2_addr_map_list) # thirdly select out one to one map if possible res = OrderedDict() taken = set() for key, val in joined_key2map_list.items(): if len(val) == 1 and val[0] not in taken: res[key] = val taken.add(val[0]) for key, val in joined_key2map_list.items(): if key not in res: new_val = [x for x in val if x not in taken] res[key] = new_val return res def _find_intersection(map_list): tmp_key_arr_map = OrderedDict() for tmp_dict in map_list: for key, val in tmp_dict.items(): if key not in tmp_key_arr_map: tmp_key_arr_map[key] = [] tmp_key_arr_map[key].append(val) res = OrderedDict() for key, val in tmp_key_arr_map.items(): tmp_list = [] is_first = True for cur_list in val: tmp_list = _list_intersect(tmp_list, cur_list, is_first) is_first = False res[key] = tmp_list return res def _list_intersect(list1, list2, is_first=False): if is_first: return list2 res = [] for elem in list1: if elem in list2: res.append(elem) return res def _filter_with_stream(coarse_joined_res, stream_map): res = [] for evt, sub_arr in coarse_joined_res: evt_stream = evt['args']['stream'] obj_streams = stream_map.get(evt_stream, []) tmp_arr = [] for ncl_obj in sub_arr: if ncl_obj not in tmp_arr and ncl_obj.stream in obj_streams: tmp_arr.append(ncl_obj) res.append([evt, tmp_arr]) return res def main(args): f_py_prof = args.f_py_prof nccl_events = _load_py_prof(f_py_prof) print(f"number of events is {len(nccl_events)}") for evt in nccl_events: print("new evt: ") print(evt) ncl_obj_arr, ncl_obj_cnt = ncl_miner.parse_and_mine(args) # step 1 coarsely join coarse_joined_res = _join_coarsely(nccl_events, ncl_obj_arr, ncl_obj_cnt) # step 2 construct stream map stream_map = _cons_stream_map(coarse_joined_res) for key, val in stream_map.items(): print(key) print(val) # step3 filter joined_res by stream map filter_joined_res = _filter_with_stream(coarse_joined_res, stream_map) # save to output with open(args.output, "w") as out_: for evt, sub_arr in filter_joined_res: extra_str = [str(x) for x in sub_arr] evt['extra_nccl'] = extra_str out_str = json.dumps(evt) out_.write(out_str + "\n") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-p', '--f_py_prof', type=str, help="file path to the pytorch profiler") parser.add_argument('-n', '--nccl', type=str, help='file path to log with nccl\'s log') parser.add_argument('--iters', type=int, help='minimum iterations log required from nccl') parser.add_argument('-o', '--output', type=str, help='path to output path about the joined files') args = parser.parse_args() main(args)
the-stack_0_24859
import os import re from setuptools import setup, find_packages from io import open with open(os.path.join(os.path.dirname(__file__), 'cloudscraper', '__init__.py')) as fp: VERSION = re.match(r'.*__version__ = \'(.*?)\'', fp.read(), re.S).group(1) with open('README.md', 'r', encoding='utf-8') as fp: readme = fp.read() setup( name = 'cloudscraper', author = 'VeNoMouS', author_email = '[email protected]', version=VERSION, packages = find_packages(exclude=['tests*']), description = 'A Python module to bypass Cloudflare\'s anti-bot page.', long_description=readme, long_description_content_type='text/markdown', url = 'https://github.com/venomous/cloudscraper', keywords = [ 'cloudflare', 'scraping', 'ddos', 'scrape', 'webscraper', 'anti-bot', 'waf', 'iuam', 'bypass', 'challenge' ], include_package_data = True, install_requires = [ 'requests >= 2.9.2', 'requests_toolbelt >= 0.9.1', 'pyparsing >= 2.4.7' ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Software Development :: Libraries :: Application Frameworks', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
the-stack_0_24861
import kol.Error as Error from GenericRequest import GenericRequest from kol.manager import PatternManager class AutoSellRequest(GenericRequest): "Sells items via the autosell system" ALL = 1 ALL_BUT_ONE = 2 QUANTITY = 3 def __init__(self, session, itemList, howMany, amount=1): super(AutoSellRequest, self).__init__(session) self.url = session.serverURL + "sellstuff_ugly.php" self.requestData["pwd"] = session.pwd self.requestData["action"] = "sell" if howMany == self.ALL: self.requestData["mode"] = self.ALL elif howMany == self.ALL_BUT_ONE: self.requestData["mode"] = self.ALL_BUT_ONE elif howMany == self.QUANTITY: self.requestData["mode"] = self.QUANTITY self.requestData["quantity"] = amount else: raise Error.Error("Invalid AutoSell Mode Selected.", Error.REQUEST_GENERIC) for item in itemList: self.requestData[("item"+str(item["id"]))] = str(item["id"]) def parseResponse(self): salePattern = PatternManager.getOrCompilePattern("autosellResponse") saleMatch = salePattern.search(self.responseText) if saleMatch: multiItemPattern = PatternManager.getOrCompilePattern("autosellItems") finalTwoPattern = PatternManager.getOrCompilePattern("autosellLastTwo") finalOnePattern = PatternManager.getOrCompilePattern("autosellOne") salesTotal = int(saleMatch.group(2).replace(',','')) soldItems = [] lastItemIndex = None for itemMatch in multiItemPattern.finditer(saleMatch.group(1)): # We cannot look up the item because the names are likely pluralized name = itemMatch.group(2) if itemMatch.group(1) == "": quantity = 1 else: quantity = int(itemMatch.group(1).replace(',','')) soldItems.append({"quantity":quantity, "name":name}) lastItemIndex = itemMatch.end(2) if lastItemIndex != None: finalMatch = finalTwoPattern.search(saleMatch.group(1)[lastItemIndex+1:]) else: finalMatch = finalTwoPattern.search(saleMatch.group(1)) if finalMatch: if finalMatch.group(2) != "": name = finalMatch.group(2) if finalMatch.group(1) == "": quantity = 1 else: quantity = int(finalMatch.group(1).replace(',','')) soldItems.append({"quantity":quantity, "name":name}) name = finalMatch.group(4) if finalMatch.group(3) == "": quantity = 1 else: quantity = int(finalMatch.group(3).replace(',','')) soldItems.append({"quantity":quantity, "name":name}) else: singleItem = finalOnePattern.search(saleMatch.group(1)) name = singleItem.group(2) if singleItem.group(1) == "": quantity = 1 else: quantity = int(singleItem.group(1).replace(',','')) soldItems.append({"quantity":quantity, "name":name}) else: salesTotal = 0 soldItems = [] self.responseData["meatGained"] = salesTotal self.responseData["itemsSold"] = soldItems
the-stack_0_24862
def profileEntity(profile) -> dict: return { "eob_id": str(profile["_id"]), "user_id": profile["user_id"], "name": profile["name"], "screen_name": profile["screen_name"], "location": profile["location"], "description": profile["description"], "followers_count": profile["followers_count"], "friends_count": profile["friends_count"], "created_at": profile["created_at"], "verified": profile["verified"], "profile_image_url": profile["profile_image_url"], "profile_banner_url": profile["profile_banner_url"] } def messageEntity(msg) -> dict: return { "id": str(msg['_id']), "msg_id": msg["msg_id"], "full_text":msg["full_text"], "created_at":msg["created_at"], "retweet_count":msg["retweet_count"], "favorite_count":msg["favorite_count"], "retweeted": msg["retweeted"], "lang": msg["lang"] }
the-stack_0_24863
# coding=utf-8 # Copyright 2019 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image Transformer model with model and data parallelism using MTF. Integration of Mesh tensorflow with Image Transformer to do model parallelism. Currently, this supports unconditional image generation. Specify a particular architecture layout in the hparams that specifies how different dimensions are split or replicated along the mesh dimensions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import mesh_tensorflow as mtf from tensor2tensor.layers import common_hparams from tensor2tensor.layers import common_layers from tensor2tensor.utils import mtf_model from tensor2tensor.utils import registry import tensorflow.compat.v1 as tf @registry.register_model class MtfImageTransformer(mtf_model.MtfModel): """Image Transformer in mesh_tensorflow.""" @property def inputs_vocab_dim(self): assert self.has_input return mtf.Dimension("inputs_vocab", self._hparams.num_classes) @property def targets_vocab_dim(self): vocab_size = self._problem_hparams.vocab_size["targets"] if hasattr(self._hparams, "vocab_divisor"): vocab_size += (-vocab_size) % self._hparams.vocab_divisor return mtf.Dimension("vocab", vocab_size) @property def outputs_vocab_dim(self): return mtf.Dimension("output_vocab", 256) @property def pos_dim(self): return mtf.Dimension("pos", self._hparams.img_len) @property def rows_dim(self): return mtf.Dimension("rows", self._hparams.img_len) @property def cols_dim(self): return mtf.Dimension( "cols", self._hparams.img_len*self._hparams.num_channels) @property def orig_cols_dim(self): return mtf.Dimension("orig_cols", self._hparams.img_len) @property def channels_dim(self): return mtf.Dimension("channels", self._hparams.num_channels) @property def model_dim(self): return mtf.Dimension("d_model", self._hparams.hidden_size) @property def max_length_dim(self): return mtf.Dimension( "max_length", self._hparams.img_len*self._hparams.img_len*self._hparams.num_channels) @property def length_dim(self): return mtf.Dimension( "length", self._hparams.img_len*self._hparams.img_len*self._hparams.num_channels) @property def heads_dim(self): return mtf.Dimension("heads", self._hparams.num_heads) @property def kv_dim(self): return mtf.Dimension("d_kv", self._hparams.d_kv) @property def feedforward_dim(self): return mtf.Dimension("d_ff", self._hparams.d_ff) @property def activation_type(self): hparams = self._hparams if hparams.activation_dtype == "float32": activation_dtype = tf.float32 elif hparams.activation_dtype == "float16": activation_dtype = tf.float16 elif hparams.activation_dtype == "bfloat16": activation_dtype = tf.bfloat16 else: raise ValueError( "unknown hparams.activation_dtype %s" % hparams.activation_dtype) return activation_dtype def create_positional_emb_2d(self, targets): """Learned 2d positional embedding for images.""" mesh = targets.mesh positional_emb_rows_var = mtf.get_variable( mesh, "positional_emb_rows", mtf.Shape([self.pos_dim, self.model_dim]), initializer=tf.random_normal_initializer(), activation_dtype=self.activation_type) positional_emb_cols_var = mtf.get_variable( mesh, "positional_emb_cols", mtf.Shape([self.pos_dim, self.model_dim]), initializer=tf.random_normal_initializer(), activation_dtype=self.activation_type) targets_position_x = mtf.range(mesh, self.rows_dim, dtype=tf.int32) targets_position_y = mtf.range(mesh, self.cols_dim, dtype=tf.int32) position_x = mtf.broadcast( mtf.gather(positional_emb_rows_var, targets_position_x, self.pos_dim), mtf.Shape([self.rows_dim, self.cols_dim, self.model_dim])) position_y = mtf.broadcast( mtf.gather(positional_emb_cols_var, targets_position_y, self.pos_dim), mtf.Shape([self.rows_dim, self.cols_dim, self.model_dim])) return position_x + position_y def mtf_model_fn(self, features, mesh): features = copy.copy(features) tf.logging.info("features = %s" % features) hparams = self._hparams activation_dtype = self.activation_type # We assume fixed vocab size for targets targets = tf.to_int32(features["targets"]) # Image preprocessing, reshape into a 1D sequence and shift right. length = hparams.img_len*hparams.img_len*hparams.num_channels targets = tf.reshape(targets, [hparams.batch_size, length]) shifted_targets = common_layers.shift_right_2d(targets) # Declare all the dimensions batch_dim = mtf.Dimension("batch", hparams.batch_size) def import_to_batch_by_length(x, name): return mtf.import_tf_tensor( mesh, x, mtf.Shape([batch_dim, self.length_dim]), name=name) targets = import_to_batch_by_length(targets, "targets") shifted_targets = import_to_batch_by_length( shifted_targets, "shifted_targets") extra_losses = [] # Create targets content and position embeddings. # Create embedding var for targets and positions and do a gather. targets_embedding_var = mtf.get_variable( mesh, "targets_embedding", mtf.Shape([self.targets_vocab_dim, self.model_dim]), initializer=tf.random_normal_initializer(), activation_dtype=activation_dtype) x = mtf.gather(targets_embedding_var, shifted_targets, self.targets_vocab_dim) # Add positional embeddings x += mtf.reshape(self.create_positional_emb_2d(targets), [self.length_dim, self.model_dim]) # If conditional and input is given, add the input embedding to the target. # TODO(nikip): Verify conditional. if self.has_input and not hparams.unconditional: inputs = tf.squeeze(tf.to_int32(features["inputs"]), [2, 3]) inputs = import_to_batch_by_length(inputs, "inputs") # Input embeddings inputs_embedding_var = mtf.layers.embedding( mesh, "input_embedding", mtf.Shape([self.inputs_vocab_dim, self.model_dim]), activation_dtype=activation_dtype) inputs_emb = mtf.gather( inputs_embedding_var, inputs, self.inputs_vocab_dim) x += inputs_emb # Image Transformer Decoder # [ self attention - ffn - residual + dropout] x n if hparams.attention_type == "local1d_spatial": decoder_output = local_attention1d_spatial_decoder( x, self.kv_dim, self.heads_dim, self.feedforward_dim, hparams) elif hparams.attention_type == "local2d_spatial": decoder_output = local_attention2d_spatial_decoder( x, self.kv_dim, self.heads_dim, self.feedforward_dim, hparams) elif hparams.attention_type == "local1d": decoder_output = local_attention1d_masked_decoder( x, self.kv_dim, self.heads_dim, self.feedforward_dim, hparams) else: raise ValueError("Invalid attention type.") # Calculate the logits and loss. logits = mtf.layers.dense( decoder_output, self.outputs_vocab_dim, name="logits") # Need a reshape for logits logits = mtf.reshape( logits, mtf.Shape([batch_dim, self.length_dim, self.outputs_vocab_dim])) soft_targets = mtf.one_hot( targets, self.outputs_vocab_dim, dtype=activation_dtype) loss = mtf.layers.softmax_cross_entropy_with_logits( logits, soft_targets, self.outputs_vocab_dim) loss = mtf.reduce_mean(loss) for l in extra_losses: loss += l # Reshape logits to original target shape. logits = mtf.reshape( logits, mtf.Shape([batch_dim, self.rows_dim, self.orig_cols_dim, self.channels_dim, self.outputs_vocab_dim])) return logits, loss def layer_prepostprocess_dropout(x, hparams): batch_dim = x.shape.dims[0] model_dim = x.shape.dims[-1] return mtf.dropout( x, keep_prob=1.0 - hparams.layer_prepostprocess_dropout, noise_shape=mtf.Shape([batch_dim, model_dim])) def local_attention1d_spatial_decoder(x, kv_dim, heads_dim, feedforward_dim, hparams): """Image Transformer decoder with local1D spatial layers.""" batch_dim, length_dim, model_dim = x.shape.dims blocks_w_dim = mtf.Dimension("blocksw", hparams.block_length) num_w_blocks_dim = mtf.Dimension("num_wblocks", length_dim.size // blocks_w_dim.size) x = mtf.reshape( x, mtf.Shape([batch_dim, num_w_blocks_dim, blocks_w_dim, model_dim])) # [ self attention - ffn - residual + dropout] x n for layer in range(hparams.num_decoder_layers): layer_name = "decoder_layer_%d" % layer with tf.variable_scope(layer_name): # Self attention layer x += layer_prepostprocess_dropout( mtf.layers.local_self_attention_spatial_blocks( mtf.layers.layer_norm(x, model_dim, name="layer_norm_att"), kv_dim, heads_dim, memory_w_dim=blocks_w_dim, mask_right=True, name="self_att"), hparams) # ffn layer x += layer_prepostprocess_dropout( mtf.layers.dense_relu_dense( mtf.layers.layer_norm(x, model_dim, name="layer_norm_ffn"), feedforward_dim, hparams.dropout, dropout_broadcast_dims=[length_dim]), hparams) output = mtf.layers.layer_norm(x, model_dim, name="final_layer_norm") return output def local_attention2d_spatial_decoder(x, kv_dim, heads_dim, feedforward_dim, hparams): """Image Transformer decoder with local2D spatial layers.""" batch_dim, length_dim, model_dim = x.shape.dims blocks_h_dim = mtf.Dimension("blocksh", hparams.block_height) blocks_w_dim = mtf.Dimension("blocksw", hparams.block_width) num_h_blocks_dim = mtf.Dimension("num_h_blocks", hparams.img_len // hparams.block_height) num_w_blocks_dim = mtf.Dimension( "num_w_blocks", hparams.img_len * hparams.num_channels // hparams.block_width) x = mtf.transpose( mtf.reshape( x, mtf.Shape([ batch_dim, num_h_blocks_dim, blocks_h_dim, num_w_blocks_dim, blocks_w_dim, model_dim ])), mtf.Shape([ batch_dim, num_h_blocks_dim, num_w_blocks_dim, blocks_h_dim, blocks_w_dim, model_dim ])) # Image Transformer Decoder # [ self attention - ffn - residual + dropout] x n for layer in range(hparams.num_decoder_layers): layer_name = "decoder_layer_%d" % layer with tf.variable_scope(layer_name): # Self attention layer x += layer_prepostprocess_dropout( mtf.layers.local_2d_self_attention_spatial_blocks( mtf.layers.layer_norm(x, model_dim, name="layer_norm_att"), kv_dim, heads_dim, memory_h_dim=num_h_blocks_dim, memory_w_dim=num_w_blocks_dim, name="self_att"), hparams) # ffn layer x += layer_prepostprocess_dropout( mtf.layers.dense_relu_dense( mtf.layers.layer_norm(x, model_dim, name="layer_norm_ffn"), feedforward_dim, hparams.dropout, dropout_broadcast_dims=[length_dim]), hparams) output = mtf.layers.layer_norm(x, model_dim, name="final_layer_norm") return output def local_attention1d_masked_decoder(x, kv_dim, heads_dim, feedforward_dim, hparams): """Image Transformer decoder with local1D masked layers.""" print(x) _, length_dim, model_dim = x.shape.dims for layer in range(hparams.num_decoder_layers): layer_name = "decoder_layer_%d" % layer with tf.variable_scope(layer_name): # Self attention layer length_per_split = mtf.tensor_dim_to_size_per_split( hparams.layout, hparams.mesh_shape, length_dim) x += layer_prepostprocess_dropout( mtf.layers.masked_local_attention_1d( mtf.layers.layer_norm(x, model_dim, name="layer_norm_att"), kv_dim, heads_dim, window_size=hparams.block_length, length_per_split=length_per_split, name="self_att"), hparams) # ffn layer x += layer_prepostprocess_dropout( mtf.layers.dense_relu_dense( mtf.layers.layer_norm(x, model_dim, name="layer_norm_ffn"), feedforward_dim, hparams.dropout, dropout_broadcast_dims=[length_dim]), hparams) output = mtf.layers.layer_norm(x, model_dim, name="final_layer_norm") return output @registry.register_hparams def mtf_image_transformer_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.no_data_parallelism = True hparams.use_fixed_batch_size = True hparams.batch_size = 1 hparams.max_length = 3072 hparams.hidden_size = 256 hparams.label_smoothing = 0.0 # 8-way model-parallelism hparams.add_hparam("mesh_shape", "batch:8") hparams.add_hparam("layout", "batch:batch") hparams.add_hparam("mtf_mode", True) hparams.add_hparam("num_heads", 8) hparams.add_hparam("filter_size", 1024) hparams.add_hparam("num_encoder_layers", 0) hparams.add_hparam("num_decoder_layers", 6) hparams.add_hparam("attention_key_size", 256) hparams.add_hparam("attention_value_size", 256) # Share weights between input and target embeddings hparams.shared_embedding = True # mixture of experts hparams hparams.add_hparam("ffn_layer", "dense_relu_dense") hparams.add_hparam("moe_overhead_train", 1.0) hparams.add_hparam("moe_overhead_eval", 2.0) hparams.moe_num_experts = 16 hparams.moe_loss_coef = 1e-3 hparams.shared_embedding_and_softmax_weights = True hparams.optimizer = "Adafactor" hparams.learning_rate_schedule = "rsqrt_decay" hparams.learning_rate_warmup_steps = 10000 hparams.add_hparam("d_kv", 64) hparams.add_hparam("d_ff", 2048) # Image related hparams hparams.add_hparam("img_len", 32) hparams.add_hparam("num_channels", 3) hparams.add_hparam("unconditional", True) # Local Attention related params hparams.add_hparam("block_length", 128) hparams.add_hparam("block_height", 16) hparams.add_hparam("block_width", 16) hparams.add_hparam("attention_type", "local1d") return hparams @registry.register_hparams def mtf_image_transformer_tiny(): """Catch bugs locally...""" hparams = mtf_image_transformer_base() hparams.hidden_size = 128 hparams.d_ff = 256 hparams.batch_size = 4 hparams.num_encoder_layers = 1 hparams.num_decoder_layers = 4 hparams.num_heads = 4 hparams.attention_key_size = 128 hparams.attention_value_size = 128 hparams.block_length = 32 # data parallelism and model-parallelism hparams.mesh_shape = "batch:2" hparams.layout = "batch:batch" return hparams @registry.register_hparams def mtf_image_transformer_single(): """Small single parameters.""" hparams = mtf_image_transformer_tiny() hparams.mesh_shape = "" hparams.layout = "" hparams.hidden_size = 32 hparams.filter_size = 32 hparams.batch_size = 1 hparams.num_encoder_layers = 1 hparams.num_decoder_layers = 1 hparams.num_heads = 2 hparams.attention_key_size = 32 hparams.attention_value_size = 32 hparams.block_length = 16 return hparams @registry.register_hparams def mtf_image_transformer_base_single(): """Small single parameters.""" hparams = mtf_image_transformer_base() hparams.num_decoder_layers = 6 hparams.filter_size = 256 hparams.block_length = 128 hparams.mesh_shape = "" hparams.layout = "" return hparams @registry.register_hparams def mtf_image_transformer_tiny_spatial1d(): """Small single parameters.""" hparams = mtf_image_transformer_tiny() hparams.num_decoder_layers = 6 hparams.filter_size = 128 hparams.block_height = 8 hparams.block_width = 8 hparams.attention_type = "local1d_spatial" hparams.mesh_shape = "" hparams.layout = "" return hparams @registry.register_hparams def mtf_image_transformer_tiny_spatial2d(): """Small single parameters.""" hparams = mtf_image_transformer_tiny() hparams.num_decoder_layers = 6 hparams.filter_size = 128 hparams.block_height = 8 hparams.block_width = 8 hparams.attention_type = "local2d_spatial" hparams.mesh_shape = "b1:2,b2:2" hparams.layout = "num_h_blocks:b1,num_wblocks:b2" return hparams @registry.register_hparams def mtf_image_transformer_base_cifar(): """Data parallel CIFAR parameters.""" hparams = mtf_image_transformer_base() hparams.mesh_shape = "batch:8" hparams.layout = "batch:batch" hparams.learning_rate_decay_steps = 13600 # one epoch hparams.batch_size = 32 hparams.num_heads = 4 hparams.num_decoder_layers = 12 hparams.block_length = 256 hparams.hidden_size = 512 hparams.d_ff = 2048 hparams.learning_rate = 0.5 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.3 hparams.unconditional = True return hparams @registry.register_hparams def mtf_image_transformer_cifar_4x(): """Data parallel CIFAR parameters.""" hparams = mtf_image_transformer_base_cifar() hparams.mesh_shape = "batch:32" hparams.layout = "batch:batch" hparams.batch_size = 128 return hparams @registry.register_hparams def mtf_image_transformer_cifar_mp_4x(): """Data parallel CIFAR parameters.""" hparams = mtf_image_transformer_base_cifar() hparams.mesh_shape = "model:4;batch:8" hparams.layout = "batch:batch;d_ff:model;heads:model" hparams.batch_size = 32 hparams.num_heads = 8 hparams.d_ff = 8192 return hparams @registry.register_hparams def mtf_image_transformer_base_imagenet(): """Data parallel CIFAR parameters.""" hparams = mtf_image_transformer_base_cifar() hparams.mesh_shape = "batch:32" hparams.layout = "batch:batch" hparams.batch_size = 128 hparams.d_ff = 2048 hparams.hidden_size = 512 hparams.num_decoder_layers = 12 hparams.learning_rate = 0.5 hparams.learning_rate_warmup_steps = 31250 hparams.layer_preprocess_sequence = "none" hparams.layer_postprocess_sequence = "dan" hparams.layer_prepostprocess_dropout = 0.1 hparams.unconditional = True return hparams @registry.register_hparams def mtf_image_transformer_base_imagenet_mp(): """Model parallel ImageNet parameters.""" hparams = mtf_image_transformer_base_imagenet() hparams.mesh_shape = "model:4;batch:8" hparams.layout = "batch:batch;d_ff:model;heads:model" hparams.batch_size = 32 hparams.num_heads = 8 hparams.d_ff = 8192 hparams.learning_rate_warmup_steps = 31250 hparams.unconditional = True return hparams @registry.register_hparams def mtf_image_transformer_base_imagenet_mp128(): """Model parallel ImageNet parameters.""" hparams = mtf_image_transformer_base_imagenet() hparams.mesh_shape = "model:8;batch:4" hparams.layout = "batch:batch;d_ff:model;heads:model" hparams.batch_size = 8 hparams.img_len = 128 hparams.block_length = 128 hparams.num_heads = 8 hparams.num_decoder_layers = 4 hparams.d_ff = 4096 hparams.learning_rate_warmup_steps = 31250 hparams.unconditional = True hparams.max_length = 256*256*3 return hparams @registry.register_hparams def mtf_image_transformer_base_imagenet_mp_sp(): """Model parallel ImageNet parameters.""" hparams = mtf_image_transformer_base_imagenet_mp128() hparams.mesh_shape = "model:8;batch:4" hparams.layout = "batch:batch;d_ff:model;num_wblocks:model" hparams.batch_size = 8 hparams.img_len = 128 hparams.block_length = 128 hparams.attention_type = "local1d_spatial" return hparams @registry.register_hparams def mtf_image_transformer_base_imagenet_mp64(): """Model parallel ImageNet parameters.""" hparams = mtf_image_transformer_base_imagenet() hparams.mesh_shape = "model:8;batch:4" hparams.layout = "batch:batch;d_ff:model;heads:model" hparams.batch_size = 8 hparams.img_len = 64 hparams.num_decoder_layers = 8 return hparams @registry.register_hparams def mtf_image_transformer_tiny_8gpu(): hparams = mtf_image_transformer_tiny() hparams.mesh_shape = "all:8" hparams.layout = "vocab:all;filter_size:all;heads:all" return hparams @registry.register_hparams def mtf_image_transformer_length_sharded(): hparams = mtf_image_transformer_tiny() hparams.mesh_shape = "all:2" hparams.layout = "length:all" return hparams
the-stack_0_24865
#!/usr/bin/env python # # Copyright 2019 Google LLC # # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Check the DEPS file for correctness.""" import os import re import subprocess import sys import utils INFRA_BOTS_DIR = os.path.dirname(os.path.realpath(__file__)) SKIA_DIR = os.path.abspath(os.path.join(INFRA_BOTS_DIR, os.pardir, os.pardir)) def main(): """Load the DEPS file and verify that all entries are valid.""" # Find gclient.py and run that instead of simply "gclient", which calls into # update_depot_tools. gclient = subprocess.check_output([utils.WHICH, utils.GCLIENT]) gclient_py = os.path.join(os.path.dirname(gclient), 'gclient.py') python = sys.executable or 'python' # Obtain the DEPS mapping. output = subprocess.check_output( [python, gclient_py, 'revinfo'], cwd=SKIA_DIR) # Check each entry. errs = [] for e in output.rstrip().splitlines(): split = e.split(': ') if len(split) != 2: errs.append( 'Failed to parse `gclient revinfo` output; invalid format: %s' % e) if split[0] == 'skia': continue split = split[1].split('@') if len(split) != 2: errs.append( 'Failed to parse `gclient revinfo` output; invalid format: %s' % e) repo = split[0] rev = split[1] if 'chrome-infra-packages' in repo: continue if not 'googlesource.com' in repo: errs.append( 'DEPS must be hosted on googlesource.com; %s is not allowed. ' 'See http://go/new-skia-git-mirror' % repo) if not re.match(r'^[a-z0-9]{40}$', rev): errs.append('%s: "%s" does not look like a commit hash.' % (repo, rev)) if errs: print >> sys.stderr, 'Found problems in DEPS:' for err in errs: print >> sys.stderr, err sys.exit(1) if __name__ == '__main__': main()
the-stack_0_24866
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- import os from setuptools import find_packages, setup import sys this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, "README.md")) as f: long_description = f.read() deps = ["typing", "future"] if sys.version_info[0] == 2 else None setup( name='hdlConvertorAst', version='1.0', description='A library of AST nodes for HDL languages (Verilog, VHDL, ...) and transpiler/compiler utilities', long_description=long_description, long_description_content_type="text/markdown", url='https://github.com/Nic30/hdlConvertorAst', author='Michal Orsak', author_email='[email protected]', keywords=['hdl', 'vhdl', 'verilog', 'systemverilog', 'parser', 'preprocessor', 'antlr4', 'ast', 'code-generator'], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Operating System :: OS Independent', 'Topic :: Software Development :: Build Tools', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)', ], license="MIT", packages=find_packages(exclude=["tests", ]), test_suite='tests.all.suite', install_requires=deps, test_require=deps, )
the-stack_0_24867
import math from .vector2d import Vector2d from .config import RAY_COUNT from .config import FOV_ANGLE from .ray import Ray class FieldOfView(): def __init__(self, angle: float): self.__ang_abs_min = (FOV_ANGLE * -0.5 + math.pi * 2) % (math.pi * 2) self.__ang_abs_max = (FOV_ANGLE * 0.5 + math.pi * 2) % (math.pi * 2) self.__vector2d_ang_min = Vector2d(1, 0) ** self.__ang_abs_min self.__vector2d_ang_max = Vector2d(1, 0) ** self.__ang_abs_max self.__vector2d_ang = Vector2d(1, 0) self.__dist = 0 ray_count = RAY_COUNT - RAY_COUNT % 2 ray_angle = FOV_ANGLE / (RAY_COUNT - 1) self.__rays = [Ray((c * ray_angle) - (FOV_ANGLE / 2)) for c in range(ray_count)] self.rot(angle) @property def ang(self): return self.__vector2d_ang.ang @property def ang_min(self): return self.__vector2d_ang_min.ang @property def ang_max(self): return self.__vector2d_ang_max.ang @property def rays(self): return tuple(self.__rays) def rot(self, rad: float): self.__vector2d_ang = self.__vector2d_ang ** rad self.__vector2d_ang_min = self.__vector2d_ang_min ** rad self.__vector2d_ang_max = self.__vector2d_ang_max ** rad for ray in self.__rays: ray.rot(rad) def cast(self, player, grid): pos = Vector2d(player.x, player.y) for ray in self.__rays: ray.cast_wall(pos, grid) if ray.dist > self.__dist: self.__dist = ray.dist dist = max([ray.dist for ray in self.__rays]) doors = grid.get_doors_by_fov(pos, self.ang, FOV_ANGLE, dist) for ray in self.__rays: ray.cast_doors(pos, doors) if ray.dist > self.__dist: self.__dist = ray.dist dist = max([ray.dist for ray in self.__rays]) items = grid.get_items_by_fov(pos, self.ang, FOV_ANGLE, dist) for ray in self.__rays: ray.cast_items(player, items)
the-stack_0_24869
# coding=utf-8 """ improve_S.py """ from __future__ import print_function import sys, re,codecs class Entry(object): def __init__(self,lines): self.lines = lines if lines[0] != '<entry>': print('Entry start error:','\n'.join(lines)) exit(1) if lines[-1] != '</entry>': print('Entry end error:','\n'.join(lines)) exit(1) self.parse_info() self.parse_groups() return def parse_info(self): if len(self.lines) < 2: print('entry parse_info Error 1','\n'.join(self.lines)) exit(1) infoline = self.lines[1] m = re.search(r'<info L="(.*?)" page="(.*?)" gtypes="(.*?)"/>',infoline) if m == None: print('entry parse_info Error 2','\n'.join(self.lines)) exit(1) self.L = m.group(1) self.page = m.group(2) self.gtypes = m.group(3).split(',') self.info = infoline def parse_groups(self): # groupelts agrees with boesp.dtd groupelts = 'HS,S,D,F,V1,V2,V3,V4,V5'.split(',') groupbegs = ['<%s' % groupelt for groupelt in groupelts] groupends = ['</%s>' % groupelt for groupelt in groupelts] groups = [] ngroup = -1 groupelt = None for iline,line in enumerate(self.lines): if groupelt == None: for i,groupbeg in enumerate(groupbegs): if line.startswith(groupbeg): groupelt = groupelts[i] groupend = groupends[i] group = [line] break elif line.startswith(groupend): group.append(line) groups.append(group) ngroup = ngroup + 1 # check agreement with gtypes if groupelt != self.gtypes[ngroup]: print('parse_groups error 1',groupelt,self.gtypes[ngroup]) print('info=',self.info) exit(1) groupelt = None group = [] else: group.append(line) self.groups = groups if len(groups) != len(self.gtypes): print('parse_groups error 2') print('gtypes=',self.gtypes) print('#groups=',len(groups)) print('info=',self.info) exit(1) def xml_header(xmlroot): # write header lines text = """ <?xml version="1.3" encoding="UTF-8"?> <!DOCTYPE %s SYSTEM "%s.dtd"> <!-- <H> Boehtlingk, Indische Sprüche, 2. Auflage, St. Petersburg 1870 --> <%s> """ % (xmlroot,xmlroot,xmlroot) lines = text.splitlines() lines = [x.strip() for x in lines if x.strip()!=''] return lines def generate_entries(lines): # lines of xml file # yield array of entries inentry = False elines = [] for iline,line in enumerate(lines): if not inentry: line = line.strip() # remove extra spaces if line != '<entry>': continue # start entry inentry = True elines = [line] else: # looking for closing </entry> line1 = line.strip() if line1 == '</entry>': elines.append(line1) entry = Entry(elines) yield entry inentry = False elines = [] else: elines.append(line) return def xml_body(entries,tranin): # generate xml header lines body = [] nentry = 0 for entry in entries: outarr = entrylines(entry,tranin) nentry = nentry + 1 for out in outarr: body.append(out) print(nentry,'entries found') return body def entry_from_group(group,L,page,gtype): # construct new entry lines = ['<entry>'] info = '<info L="%s" page="%s" gtypes="%s"/>' % (L,page,gtype) lines.append(info) for line in group: lines.append(line) lines.append('</entry>') entry = Entry(lines) return entry def S_adjust(entry): """ Return a list of entries. Add n attribute to S element, and for multiple D, return adjusted entry (as a singleton list of entries) """ dbg = False newentries = [] # newgroups = [] # newgtypes = [] L = entry.L page = entry.page changed = False # no changes to this entry # get the single S group: It is the first group # If the first group is instead 'HS', nothing to change info = entry.info if entry.gtypes == ['HS']: return False,[entry] isgroup = 0 sgroup = entry.groups[isgroup] # # get list of verse numbers from info m = re.search(r'<info L="(.*?)"',info) Lstring = m.group(1) versenums = Lstring.split(',') # get list of verses, identified as sequence of lines with # last line ending in '||' (double danda) verselines = sgroup[1:-1] # drop the <S> and </S> of the S-group verses = [] verse = [] pb = None for iline,line in enumerate(verselines): if re.search(r'<pb n=".*?"/>',line): pb = line if (iline+1) != len(verselines): print ('odd pb',info) # there are none continue verse.append(line) if re.search(r'\|\| *$',line): # last line of verse. Assume danda is coded as '||' verses.append(verse) verse = [] if len(verses) != len(versenums): print(info,' numverse = %s, len(verses) = %s' %(len(versenums),len(verses))) return False,entry # construct list of new 'S' groups, one for each verse sgroups = [] for iverse,verse in enumerate(verses): versenum = versenums[iverse] group = [] group.append('<S n="%s">' %versenum) for line in verse: # enclose in 's' (Sanskrit) tag newline = '<s>%s</s>' % line group.append(newline) if pb != None: group.append(pb) group.append('</S>') sgroups.append(group) # construct new groups # from sgroups and the other groups from entry newgroups = sgroups + entry.groups[1:] # construct new lines newlines = ['<entry>'] # revise gtypes attribute info gtypes2 = entry.gtypes[1:] # original list of types, gtypes1 = ['S' for i in range(len(verses))] newgtypes = gtypes1 + gtypes2 newgtypestr = ','.join(newgtypes) newinfo = re.sub(r'gtypes=".*?"', 'gtypes="%s"' % newgtypestr,info) newlines.append(newinfo) for group in newgroups: for line in group: newlines.append(line) newlines.append('</entry>') try: newentry = Entry(newlines) except: print('bad newlines') for i,line in enumerate(newlines): print('newlines[%s]: %s' %(i,line)) exit(1) newentries.append(newentry) changed = True return changed,newentries def read_lines(filein): with codecs.open(filein,encoding='utf-8',mode='r') as f: nprob = 0 lines = [] for iline,line in enumerate(f): line = line.rstrip('\r\n') lines.append(line) print(len(lines),"lines read from",filein) if nprob != 0: print('read_and_clean_lines:',nprob,'problems need to be fixed') exit(1) return lines def write_entries(entries,xmlroot,fileout): head = xml_header(xmlroot) head.append('') body = [] for entry in entries: lines = entry.lines for line in lines: body.append(line) body.append('') tail = ['</%s>'%xmlroot] linesout = head + body + tail with codecs.open(fileout,"w","utf-8") as f: for line in linesout: f.write(line+'\n') print(len(linesout),"lines written to",fileout) if __name__=="__main__": tranin = 'hk' filein = sys.argv[1] # boesp_utf8.xml fileout = sys.argv[2] # boesp_utf8_revised.xml xmlroot = 'boesp' lines = read_lines(filein) entries0 = list(generate_entries(lines)) print(len(entries0),'entries found') entries = [] nadj = 0 for entry0 in entries0: flag,newentries = S_adjust(entry0) if flag: nadj = nadj + 1 for entry in newentries: entries.append(entry) print(nadj,"entries adjusted for S") write_entries(entries,xmlroot,fileout)
the-stack_0_24871
# Note: chat_id's are stored as strings because the int is too large to be stored in a PSQL database. import threading from sqlalchemy import Column, String, Boolean, UnicodeText, Integer, func, distinct from makibot.modules.helper_funcs.msg_types import Types from makibot.modules.sql import SESSION, BASE class Notes(BASE): __tablename__ = "notes" chat_id = Column(String(14), primary_key=True) name = Column(UnicodeText, primary_key=True) value = Column(UnicodeText, nullable=False) file = Column(UnicodeText) is_reply = Column(Boolean, default=False) has_buttons = Column(Boolean, default=False) msgtype = Column(Integer, default=Types.BUTTON_TEXT.value) def __init__(self, chat_id, name, value, msgtype, file=None): self.chat_id = str(chat_id) # ensure string self.name = name self.value = value self.msgtype = msgtype self.file = file def __repr__(self): return "<Note %s>" % self.name class Buttons(BASE): __tablename__ = "note_urls" id = Column(Integer, primary_key=True, autoincrement=True) chat_id = Column(String(14), primary_key=True) note_name = Column(UnicodeText, primary_key=True) name = Column(UnicodeText, nullable=False) url = Column(UnicodeText, nullable=False) same_line = Column(Boolean, default=False) def __init__(self, chat_id, note_name, name, url, same_line=False): self.chat_id = str(chat_id) self.note_name = note_name self.name = name self.url = url self.same_line = same_line Notes.__table__.create(checkfirst=True) Buttons.__table__.create(checkfirst=True) NOTES_INSERTION_LOCK = threading.RLock() BUTTONS_INSERTION_LOCK = threading.RLock() def add_note_to_db(chat_id, note_name, note_data, msgtype, buttons=None, file=None): if not buttons: buttons = [] with NOTES_INSERTION_LOCK: prev = SESSION.query(Notes).get((str(chat_id), note_name)) if prev: with BUTTONS_INSERTION_LOCK: prev_buttons = SESSION.query(Buttons).filter(Buttons.chat_id == str(chat_id), Buttons.note_name == note_name).all() for btn in prev_buttons: SESSION.delete(btn) SESSION.delete(prev) note = Notes(str(chat_id), note_name, note_data or "", msgtype=msgtype.value, file=file) SESSION.add(note) SESSION.commit() for b_name, url, same_line in buttons: add_note_button_to_db(chat_id, note_name, b_name, url, same_line) def get_note(chat_id, note_name): try: return SESSION.query(Notes).get((str(chat_id), note_name)) finally: SESSION.close() def rm_note(chat_id, note_name): with NOTES_INSERTION_LOCK: note = SESSION.query(Notes).get((str(chat_id), note_name)) if note: with BUTTONS_INSERTION_LOCK: buttons = SESSION.query(Buttons).filter(Buttons.chat_id == str(chat_id), Buttons.note_name == note_name).all() for btn in buttons: SESSION.delete(btn) SESSION.delete(note) SESSION.commit() return True else: SESSION.close() return False def get_all_chat_notes(chat_id): try: return SESSION.query(Notes).filter(Notes.chat_id == str(chat_id)).order_by(Notes.name.asc()).all() finally: SESSION.close() def add_note_button_to_db(chat_id, note_name, b_name, url, same_line): with BUTTONS_INSERTION_LOCK: button = Buttons(chat_id, note_name, b_name, url, same_line) SESSION.add(button) SESSION.commit() def get_buttons(chat_id, note_name): try: return SESSION.query(Buttons).filter(Buttons.chat_id == str(chat_id), Buttons.note_name == note_name).order_by( Buttons.id).all() finally: SESSION.close() def num_notes(): try: return SESSION.query(Notes).count() finally: SESSION.close() def num_chats(): try: return SESSION.query(func.count(distinct(Notes.chat_id))).scalar() finally: SESSION.close() def migrate_chat(old_chat_id, new_chat_id): with NOTES_INSERTION_LOCK: chat_notes = SESSION.query(Notes).filter(Notes.chat_id == str(old_chat_id)).all() for note in chat_notes: note.chat_id = str(new_chat_id) with BUTTONS_INSERTION_LOCK: chat_buttons = SESSION.query(Buttons).filter(Buttons.chat_id == str(old_chat_id)).all() for btn in chat_buttons: btn.chat_id = str(new_chat_id) SESSION.commit()
the-stack_0_24872
# coding: utf-8 # Public Domain (-) 2018-present, The Elko Website Authors. # See the Elko Website UNLICENSE file for details. import release from weblite import app, handle, read INSTALL_SCRIPT = read('install.sh') % { 'darwin': release.darwin, 'linux': release.linux, } @handle('/') def root(ctx): if ctx.host == 'get.elko.io': ctx.response_headers['Content-Type'] = 'text/plain; charset=utf-8' return INSTALL_SCRIPT return ctx.render_mako_template( 'site', content=ctx.render_mako_template('home') ) @handle('install.sh') def install_sh(ctx): ctx.response_headers['Content-Type'] = 'text/plain; charset=utf-8' return INSTALL_SCRIPT _ = app
the-stack_0_24874
from rlberry.envs.bandits import NormalBandit, BernoulliBandit from rlberry.agents.bandits import ( IndexAgent, RandomizedAgent, TSAgent, BanditWithSimplePolicy, makeBetaPrior, makeBoundedIMEDIndex, makeBoundedMOSSIndex, makeBoundedNPTSIndex, makeBoundedUCBIndex, makeETCIndex, makeGaussianPrior, makeEXP3Index, makeSubgaussianMOSSIndex, makeSubgaussianUCBIndex, ) from rlberry.utils import check_bandit_agent TEST_SEED = 42 def test_base_bandit(): assert check_bandit_agent(BanditWithSimplePolicy, NormalBandit, seed=TEST_SEED) bounded_indices = { "IMED": makeBoundedIMEDIndex, "MOSS": makeBoundedMOSSIndex, "NPTS": makeBoundedNPTSIndex, "UCB": makeBoundedUCBIndex, } subgaussian_indices = { "UCB": makeSubgaussianUCBIndex, "MOSS": makeSubgaussianMOSSIndex, } misc_indices = { "ETC": makeETCIndex, } def test_bounded_indices(): for agent_name, makeIndex in bounded_indices.items(): class Agent(IndexAgent): name = agent_name def __init__(self, env, **kwargs): index, tracker_params = makeIndex() IndexAgent.__init__( self, env, index, tracker_params=tracker_params, **kwargs ) assert check_bandit_agent(Agent, BernoulliBandit, seed=TEST_SEED) def test_subgaussian_indices(): for agent_name, makeIndex in subgaussian_indices.items(): class Agent(IndexAgent): name = agent_name def __init__(self, env, **kwargs): index, tracker_params = makeIndex() IndexAgent.__init__( self, env, index, tracker_params=tracker_params, **kwargs ) assert check_bandit_agent(Agent, NormalBandit, seed=TEST_SEED) def test_misc_indices(): for agent_name, makeIndex in misc_indices.items(): class Agent(IndexAgent): name = agent_name def __init__(self, env, **kwargs): index, tracker_params = makeIndex() IndexAgent.__init__( self, env, index, tracker_params=tracker_params, **kwargs ) assert check_bandit_agent(Agent, BernoulliBandit, seed=TEST_SEED) def test_randomized_bandits(): class EXP3Agent(RandomizedAgent): name = "EXP3" def __init__(self, env, **kwargs): prob, tracker_params = makeEXP3Index() RandomizedAgent.__init__( self, env, prob, tracker_params=tracker_params, **kwargs ) assert check_bandit_agent(EXP3Agent, BernoulliBandit, seed=TEST_SEED) priors = { "Beta": (makeBetaPrior, BernoulliBandit), "Gaussian": (makeGaussianPrior, NormalBandit), } def test_TS(): for agent_name, (makePrior, Bandit) in priors.items(): class Agent(TSAgent): name = agent_name def __init__(self, env, **kwargs): prior_info, tracker_params = makePrior() TSAgent.__init__( self, env, prior_info, tracker_params=tracker_params, **kwargs ) assert check_bandit_agent(Agent, Bandit, seed=TEST_SEED)
the-stack_0_24875
import logging import re from urllib.parse import unquote, urlparse from streamlink.plugin import Plugin from streamlink.plugin.api import validate from streamlink.stream import HLSStream from streamlink.utils import parse_json, update_scheme log = logging.getLogger(__name__) class Mediaklikk(Plugin): PLAYER_URL = "https://player.mediaklikk.hu/playernew/player.php" _url_re = re.compile(r"https?://(?:www\.)?(?:mediaklikk|m4sport|hirado|petofilive)\.hu/") _re_player_manager = re.compile(r""" mtva_player_manager\.player\s*\(\s* document\.getElementById\(\s*"\w+"\s*\)\s*,\s* (?P<json>{.*?})\s* \)\s*; """, re.VERBOSE | re.DOTALL) _re_player_json = re.compile(r"pl\.setup\s*\(\s*(?P<json>{.*?})\s*\)\s*;", re.DOTALL) @classmethod def can_handle_url(cls, url): return cls._url_re.match(url) is not None def _get_streams(self): params = self.session.http.get(self.url, schema=validate.Schema( validate.transform(self._re_player_manager.search), validate.any(None, validate.all( validate.get("json"), validate.transform(parse_json), { "contentId": validate.any(str, int), validate.optional("streamId"): str, validate.optional("idec"): str, validate.optional("token"): str } )) )) if not params: log.error("Could not find player manager data") return params.update({ "video": (unquote(params.pop("token")) if params.get("token") is not None else params.pop("streamId")), "noflash": "yes", "embedded": "0", }) url_parsed = urlparse(self.url) skip_vods = url_parsed.netloc.endswith("m4sport.hu") and url_parsed.path.startswith("/elo") self.session.http.headers.update({"Referer": self.url}) playlists = self.session.http.get(self.PLAYER_URL, params=params, schema=validate.Schema( validate.transform(self._re_player_json.search), validate.any(None, validate.all( validate.get("json"), validate.transform(parse_json), {"playlist": [{ "file": validate.url(), "type": str }]}, validate.get("playlist"), validate.filter(lambda p: p["type"] == "hls"), validate.filter(lambda p: not skip_vods or "vod" not in p["file"]), validate.map(lambda p: update_scheme(self.url, p["file"])) )) )) for url in playlists or []: yield from HLSStream.parse_variant_playlist(self.session, url).items() __plugin__ = Mediaklikk
the-stack_0_24877
import enum import octoprint.plugin from . import actions, keypad, menu class Tentacles(octoprint.plugin.StartupPlugin, octoprint.plugin.SettingsPlugin, octoprint.plugin.EventHandlerPlugin, octoprint.plugin.TemplatePlugin): def __init__(self): self._tentacles = {} self._mode = menu.Mode.UNINITIALIZED def on_after_startup(self, *args, **kwargs): # Load available actions for tentacles to use (just print them out now) self._logger.debug('Loading actions...') for action in actions.ACTIONS.keys(): self._logger.debug(f'Action: {action}') # This should be dynamic action_init_args = dict(printer=self._printer, tentacles=self) # Load saved tentacle settings from octoprint instance # and map actions to keycodes self._logger.info('Loading tentacles...') tentacles_settings = self._settings.get(['tentacles']) menu_start_key = None for tentacle_code, tentacle_config in tentacles_settings.items(): self._logger.debug(f"Loading tentacle: {tentacle_code}") self._tentacles[tentacle_code] = {} for mode, mode_action in tentacle_config.items(): self._logger.debug(f"Loading action: {mode_action['action']} for mode: {mode}") if ('action' in mode_action) and (mode_action['action'] in actions.ACTIONS) and (menu.Mode[mode.upper()] in menu.Mode): # Find the menu_start key to make it easy to reference later if mode_action['action'] == 'menu_start': menu_start_key = tentacle_code # Init action passing it all arguments for now key_action = actions.ACTIONS[mode_action['action']](**action_init_args) # Configure action with defined args, or use defaults if none exist if 'args' in mode_action: key_action.configure(**mode_action['args']) else: key_action.configure() # Configure name if defined if 'name' in mode_action: action_name = mode_action['name'] else: action_name = mode_action['action'].title() self._tentacles[tentacle_code][menu.Mode[mode.upper()]] = { 'action': key_action, 'name': action_name } else: self._logger.warn(f"Invalid tentacle config: {mode} - {mode_action}") if menu_start_key is not None: # Setup our menu to switch modes menu_start = menu.Mode(menu.Mode.MENU + 1) menu_end = menu.Mode.MAX() # Setup menu button for every mode for mode in range(menu_start, menu_end+1): self._tentacles[menu_start_key][menu.Mode(mode)] = \ self._tentacles[menu_start_key][menu.Mode.MENU] # Clear menu_start button while in MENU mode del self._tentacles[menu_start_key][menu.Mode.MENU] # Init Menu object self._menu = menu.Menu(self._printer, menu_start, menu_end) else: self._logger.warn('No menu key defined! You will not be able to change modes!') # Configure serial port for our tentacle device serial_conf = self._settings.get(['serial'], merged=True) self._logger.info('Starting keypad listening thread...') self._keypad_listener = keypad.KeypadListener(serial_conf['port'], serial_conf['baud'], self._logger, self._event_bus).start() def on_event(self, event, payload, *args, **kwargs): #Listen for key press events that get emitted from our KeypadListener # and execute the action mapped to the keycode if event == 'plugin_tentacle_key_press': keycode = payload['keycode'][0] self._logger.debug(f'Got keypress: {keycode}') try: tentacle_action = self._tentacles[keycode][self._mode]['action'] except KeyError: self._logger.debug(f'Keycode {keycode} is not attached to an action!') return if isinstance(tentacle_action, actions.BaseAction): tentacle_action._run() else: self._logger.err(f"Unknown action: {tentacle_action}") if event == 'plugin_tentacle_key_release': keycode = payload['keycode'][0] - 128 try: tentacle_action = self._tentacles[keycode][self._mode]['action'] except KeyError: self._logger.debug(f'Keycode {keycode} is not attached to an action!') return if isinstance(tentacle_action, actions.BaseAction): if tentacle_action._running: tentacle_action.stop() else: self._logger.err(f"Unknown action: {tentacle_action}") # Change modes on printer state change if event == 'PrinterStateChanged': if payload['state_id'] == 'PRINTING': self._mode = menu.Mode.PRINTING elif payload['state_id'] == 'OPERATIONAL': self._mode = menu.Mode.CONTROL def get_template_vars(self): tentacle_vars = {} for tentacle_code, tentacle_config in self._tentacles.items(): tentacle_vars[tentacle_code] = {} for mode, action in tentacle_config.items(): if isinstance(action['action'], actions.BaseAction): action_name = action['action'].name action_desc = action['name'] else: action_name = action['action'] action_desc = action_name tentacle_vars[tentacle_code][mode.name] = { 'action': action_name, 'name': action_desc } return { 'tentacles': tentacle_vars } # Default setting are no tentacles, and serial0 (default raspi UART) def get_settings_defaults(self): return { 'serial': { 'port': '/dev/serial0', 'baud': 9600 } } def register_tentacle_events(*args, **kwargs): return ['key_press', 'key_release']
the-stack_0_24878
import sys import subprocess as sp from typing import Optional from pprint import pprint from peo.util import format_message from peo.disasm.comment import Comment from peo.disasm.arrow import flow_arrow from peo.disasm.setcolor import setcolor, arrow_clr from peo.disasm.indent import organize, indent, combine def disasm(filepath: str, fcn: Optional[str]=None): proc = sp.run( ["objdump", "-d", "-M", "intel", filepath], encoding="utf-8", stdout=sp.PIPE, stderr=sp.PIPE ) # objdumpがエラーを出したらやめるっピ if proc.returncode != 0: print(proc.stderr) sys.exit(1) msgs = format_message(proc.stdout) # 関数名をしていした場合はそこだけ抜き出す if fcn is not None: tmp = [] fcn_flag = False # その関数内のときTrue for msg in msgs: if len(msg) == 1: if f"<{fcn}>" in msg[0]: fcn_flag = True else: fcn_flag = False if fcn_flag: tmp.append(msg) msgs = tmp msgs = Comment(filepath, msgs).add() msgs = organize(msgs) arrows, arrowcolors = flow_arrow(msgs) indent(arrows, msgs) clr_arrows = arrow_clr(arrows, arrowcolors) msgs = setcolor(msgs) perf_msgs = combine(clr_arrows, msgs) for i in range(len(perf_msgs)): print(" ".join(msgs[i])) if len(msgs[i]) != 1 and i+1 != len(msgs): if len(msgs[i+1]) == 1: print()
the-stack_0_24880
# Copyright (c) Microsoft Corporation and Fairlearn contributors. # Licensed under the MIT License. """Build Fairlearn documentation The static landing page is no longer under the control of Sphinx, since we only want one copy of it as we enable multiple documentation versions. This makes the documentation build a three-stage process: 1. Copy the static pages into the output directory 2. Do the sphinx build 3. Make a duplicate copy of a single SVG in the output directory (a logo) This ordering is in part because shutil.copytree() only acquired the dirs_exist_ok argument in Python 3.8 """ import argparse import logging import os import shutil import subprocess import sys from _utils import _ensure_cwd_is_fairlearn_root_dir, _LogWrapper _logger = logging.getLogger(__file__) logging.basicConfig(level=logging.INFO) landing_page_directory = "static_landing_page" extra_png_src_path = os.path.join("_static", "images", "fairlearn_full_color.svg") def _build_argument_parser(): desc = "Build documentation for Fairlearn" parser = argparse.ArgumentParser(description=desc) parser.add_argument("--documentation-path", help="The path to the documentation sources (conf.py directory)", required=True) parser.add_argument("--output-path", help="The directory for the output files (will be created)", required=True) return parser def _pip_backwards_compatibility(): """Install extra pip packages for backwards compatibility This is specifically targeted at tempeh for v0.4.6. """ extra_packages = ['tempeh'] with _LogWrapper("Running pip install"): subprocess.check_call(["pip", "install"] + extra_packages) def main(argv): _ensure_cwd_is_fairlearn_root_dir() parser = _build_argument_parser() args = parser.parse_args(argv) _pip_backwards_compatibility() with _LogWrapper("copying static files"): shutil.copytree(os.path.join(args.documentation_path, landing_page_directory), args.output_path) with _LogWrapper("running Sphinx-Multiversion"): subprocess.check_call(["sphinx-multiversion", args.documentation_path, args.output_path]) with _LogWrapper("copy of individual PNG"): shutil.copy2(os.path.join(args.documentation_path, extra_png_src_path), os.path.join(args.output_path, "images")) if __name__ == "__main__": main(sys.argv[1:])
the-stack_0_24882
import argparse import asyncio import os import signal import sys import threading from typing import Any, Set from .client import connect from .exceptions import ConnectionClosed, format_close if sys.platform == "win32": def win_enable_vt100() -> None: """ Enable VT-100 for console output on Windows. See also https://bugs.python.org/issue29059. """ import ctypes STD_OUTPUT_HANDLE = ctypes.c_uint(-11) INVALID_HANDLE_VALUE = ctypes.c_uint(-1) ENABLE_VIRTUAL_TERMINAL_PROCESSING = 0x004 handle = ctypes.windll.kernel32.GetStdHandle(STD_OUTPUT_HANDLE) if handle == INVALID_HANDLE_VALUE: raise RuntimeError("unable to obtain stdout handle") cur_mode = ctypes.c_uint() if ctypes.windll.kernel32.GetConsoleMode(handle, ctypes.byref(cur_mode)) == 0: raise RuntimeError("unable to query current console mode") # ctypes ints lack support for the required bit-OR operation. # Temporarily convert to Py int, do the OR and convert back. py_int_mode = int.from_bytes(cur_mode, sys.byteorder) new_mode = ctypes.c_uint(py_int_mode | ENABLE_VIRTUAL_TERMINAL_PROCESSING) if ctypes.windll.kernel32.SetConsoleMode(handle, new_mode) == 0: raise RuntimeError("unable to set console mode") def exit_from_event_loop_thread( loop: asyncio.AbstractEventLoop, stop: "asyncio.Future[None]" ) -> None: loop.stop() if not stop.done(): # When exiting the thread that runs the event loop, raise # KeyboardInterrupt in the main thread to exit the program. if sys.platform == "win32": ctrl_c = signal.CTRL_C_EVENT else: ctrl_c = signal.SIGINT os.kill(os.getpid(), ctrl_c) def print_during_input(string: str) -> None: sys.stdout.write( # Save cursor position "\N{ESC}7" # Add a new line "\N{LINE FEED}" # Move cursor up "\N{ESC}[A" # Insert blank line, scroll last line down "\N{ESC}[L" # Print string in the inserted blank line f"{string}\N{LINE FEED}" # Restore cursor position "\N{ESC}8" # Move cursor down "\N{ESC}[B" ) sys.stdout.flush() def print_over_input(string: str) -> None: sys.stdout.write( # Move cursor to beginning of line "\N{CARRIAGE RETURN}" # Delete current line "\N{ESC}[K" # Print string f"{string}\N{LINE FEED}" ) sys.stdout.flush() async def run_client( uri: str, loop: asyncio.AbstractEventLoop, inputs: "asyncio.Queue[str]", stop: "asyncio.Future[None]", ) -> None: try: websocket = await connect(uri) except Exception as exc: print_over_input(f"Failed to connect to {uri}: {exc}.") exit_from_event_loop_thread(loop, stop) return else: print_during_input(f"Connected to {uri}.") try: while True: incoming: asyncio.Future[Any] = asyncio.ensure_future(websocket.recv()) outgoing: asyncio.Future[Any] = asyncio.ensure_future(inputs.get()) done: Set[asyncio.Future[Any]] pending: Set[asyncio.Future[Any]] done, pending = await asyncio.wait( [incoming, outgoing, stop], return_when=asyncio.FIRST_COMPLETED ) # Cancel pending tasks to avoid leaking them. if incoming in pending: incoming.cancel() if outgoing in pending: outgoing.cancel() if incoming in done: try: message = incoming.result() except ConnectionClosed: break else: if isinstance(message, str): print_during_input("< " + message) else: print_during_input("< (binary) " + message.hex()) if outgoing in done: message = outgoing.result() await websocket.send(message) if stop in done: break finally: await websocket.close() close_status = format_close(websocket.close_code, websocket.close_reason) print_over_input(f"Connection closed: {close_status}.") exit_from_event_loop_thread(loop, stop) def main() -> None: # If we're on Windows, enable VT100 terminal support. if sys.platform == "win32": try: win_enable_vt100() except RuntimeError as exc: sys.stderr.write( f"Unable to set terminal to VT100 mode. This is only " f"supported since Win10 anniversary update. Expect " f"weird symbols on the terminal.\nError: {exc}\n" ) sys.stderr.flush() try: import readline # noqa except ImportError: # Windows has no `readline` normally pass # Parse command line arguments. parser = argparse.ArgumentParser( prog="python -m websockets", description="Interactive WebSocket client.", add_help=False, ) parser.add_argument("uri", metavar="<uri>") args = parser.parse_args() # Create an event loop that will run in a background thread. loop = asyncio.new_event_loop() # Create a queue of user inputs. There's no need to limit its size. inputs: asyncio.Queue[str] = asyncio.Queue(loop=loop) # Create a stop condition when receiving SIGINT or SIGTERM. stop: asyncio.Future[None] = loop.create_future() # Schedule the task that will manage the connection. asyncio.ensure_future(run_client(args.uri, loop, inputs, stop), loop=loop) # Start the event loop in a background thread. thread = threading.Thread(target=loop.run_forever) thread.start() # Read from stdin in the main thread in order to receive signals. try: while True: # Since there's no size limit, put_nowait is identical to put. message = input("> ") loop.call_soon_threadsafe(inputs.put_nowait, message) except (KeyboardInterrupt, EOFError): # ^C, ^D loop.call_soon_threadsafe(stop.set_result, None) # Wait for the event loop to terminate. thread.join() if __name__ == "__main__": main()
the-stack_0_24883
from io import StringIO import pytest from graphql_relay import to_global_id from django.core import management from db.helper.forms import convert_date from db.models import JobPostingState, ProfileState, JobPostingLanguageRelation, UserLanguageRelation, Match # pylint: disable=R0913 # pylint: disable=R0915 @pytest.mark.django_db def test_job_posting_matching(job_posting_object, job_posting_object_2, skill_objects, branch_objects, job_type_objects_date_range, user_employee, soft_skill_objects, cultural_fit_objects, user_student, job_posting_matching, login, language_objects, language_level_objects, user_employee_2, company_fallback_images): branch = branch_objects[0] job_type = job_type_objects_date_range[0] language = language_objects[0] language_level = language_level_objects[0] user_student.student.branch = branch user_student.student.job_type = job_type user_student.student.job_from_date = convert_date('2021-08-01', '%Y-%m-%d') user_student.student.job_to_date = convert_date('2022-07-31', '%Y-%m-%d') user_student.student.state = ProfileState.PUBLIC user_student.student.save() user_student.student.skills.set(skill_objects[:2]) user_student.student.soft_skills.set(soft_skill_objects[:6]) user_student.student.cultural_fits.set(cultural_fit_objects[:6]) user_student.student.save() UserLanguageRelation.objects.create(language=language, language_level=language_level, student=user_student.student) user_employee.company.street = 'street' user_employee.company.zip = '1337' user_employee.company.city = 'nowhere' user_employee.company.save() user_employee.company.soft_skills.set(soft_skill_objects[:6]) user_employee.company.cultural_fits.set(cultural_fit_objects[:6]) user_employee.company.save() # a 100% match job_posting_object.state = JobPostingState.PUBLIC job_posting_object.title = 'title' job_posting_object.slug = 'title' job_posting_object.job_type = job_type job_posting_object.workload = 100 job_posting_object.company = user_employee.company job_posting_object.job_from_date = user_student.student.job_from_date job_posting_object.job_to_date = user_student.student.job_to_date job_posting_object.employee = user_employee.employee job_posting_object.save() job_posting_object.skills.set(skill_objects[:2]) job_posting_object.save() job_posting_object.branches.set([branch]) JobPostingLanguageRelation.objects.create(language=language, language_level=language_level, job_posting=job_posting_object) user_employee_2.company.street = 'street' user_employee_2.company.zip = '1337' user_employee_2.company.city = 'nowhere' user_employee_2.company.save() user_employee_2.company.soft_skills.set(soft_skill_objects[-6:]) user_employee_2.company.cultural_fits.set(cultural_fit_objects[-6:]) user_employee_2.company.save() # a bad match job_posting_object_2.state = JobPostingState.PUBLIC job_posting_object_2.title = 'title2' job_posting_object_2.slug = 'title2' job_posting_object_2.job_type = job_type_objects_date_range[1] job_posting_object_2.workload = 10 job_posting_object_2.company = user_employee_2.company job_posting_object_2.job_from_date = convert_date('2022-08-01', '%Y-%m-%d') job_posting_object_2.job_to_date = convert_date('2023-07-31', '%Y-%m-%d') job_posting_object_2.employee = user_employee_2.employee job_posting_object_2.save() job_posting_object_2.skills.set(skill_objects[-2:]) job_posting_object_2.save() job_posting_object_2.branches.set([branch]) JobPostingLanguageRelation.objects.create(language=language_objects[1], language_level=language_level_objects[1], job_posting=job_posting_object_2) management.call_command('update_index', stdout=StringIO()) Match.objects.create(student=user_student.student, job_posting=job_posting_object, initiator=user_student.type, student_confirmed=True) login(user_student) data, errors = job_posting_matching(user_student, user_student.student.branch, user_student.student.job_type) assert data is not None assert errors is None matches = data.get('matches') assert matches is not None assert len(matches) == 2 # max score for job posting is: 20 (see db/search/calculators/student.py) # job_posting_object is a perfect match --> score = 20 # job_posting_object_2 matches only with branch --> score = 0 best_match = matches[0] assert best_match.get('id') == to_global_id('JobPosting', job_posting_object.id) assert float(best_match.get('score')) == 1 assert float(best_match.get('rawScore')) == 1 match_status = best_match.get('matchStatus') assert match_status is not None assert match_status.get('confirmed') is False assert match_status.get('initiator') == user_student.type.upper() worst_match = matches[1] assert worst_match.get('id') == to_global_id('JobPosting', job_posting_object_2.id) assert float(worst_match.get('score')) == 0 assert float(worst_match.get('rawScore')) == 0 match_status = worst_match.get('matchStatus') assert match_status is None
the-stack_0_24885
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations from typing import DefaultDict, Sequence from unittest import mock import pytest from pants.engine.fs import EMPTY_DIGEST from pants.jvm.resolve.common import Coordinate, Coordinates from pants.jvm.resolve.coursier_fetch import CoursierLockfileEntry, CoursierResolvedLockfile from pants.jvm.resolve.key import CoursierResolveKey coord1 = Coordinate("test", "art1", "1.0.0") coord2 = Coordinate("test", "art2", "1.0.0") coord3 = Coordinate("test", "art3", "1.0.0") coord4 = Coordinate("test", "art4", "1.0.0") coord5 = Coordinate("test", "art5", "1.0.0") # No dependencies (coord1) # 1 direct dependency, more transitive dependencies (coord2) # 1 where direct dependencies provide no transitive dependencies (coord 4) # 1 where direct dependencies provide repeated dependencies (coord5) direct: dict[Coordinate, set[Coordinate]] = { coord1: set(), coord2: { coord3, }, # 1, 2, 3, 4, 5 coord3: {coord1, coord4, coord5}, # 1, 3, 4, 5 coord4: { coord1, }, # 1, 4 coord5: {coord1, coord4}, # 1, 4, 5 } @pytest.fixture def lockfile() -> CoursierResolvedLockfile: # Calculate transitive deps transitive_ = {(i, k) for i, j in direct.items() for k in j} while True: old_len = len(transitive_) transitive_ |= {(i, k) for i, j in transitive_ for k in direct[j]} if old_len == len(transitive_): break transitive = DefaultDict(set) for (i, j) in transitive_: transitive[i].add(j) entries = ( CoursierLockfileEntry( coord=coord, file_name=f"{coord.artifact}.jar", direct_dependencies=Coordinates(direct[coord]), dependencies=Coordinates(transitive[coord]), file_digest=mock.Mock(), ) for coord in direct ) return CoursierResolvedLockfile(entries=tuple(entries)) def test_no_deps(lockfile: CoursierResolvedLockfile) -> None: filtered = filter(coord1, lockfile, False) assert filtered == [coord1] def test_filter_non_transitive_includes_direct_deps(lockfile: CoursierResolvedLockfile) -> None: filtered = filter(coord2, lockfile, False) assert filtered == [coord2, coord3] def test_filter_transitive_includes_transitive_deps(lockfile: CoursierResolvedLockfile) -> None: filtered = filter(coord2, lockfile, True) assert set(filtered) == {coord1, coord2, coord3, coord4, coord5} # Entries should only appear once. assert len(filtered) == 5 def filter(coordinate, lockfile, transitive) -> Sequence[Coordinate]: key = CoursierResolveKey("example", "example.json", EMPTY_DIGEST) root, deps = ( lockfile.dependencies(key, coordinate) if transitive else lockfile.direct_dependencies(key, coordinate) ) return [i.coord for i in (root, *deps)]
the-stack_0_24887
# -*- coding: utf-8 -*- ### basic modules import numpy as np import time, pickle, os, sys, json, PIL, tempfile, warnings, importlib, math, copy, shutil ### torch modules import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR, MultiStepLR import torch.nn.functional as F from torch import autograd from torch.utils.data import Dataset, DataLoader, TensorDataset from torch.optim.lr_scheduler import StepLR, MultiStepLR import argparse def argparser(data='cifar10', model='large', batch_size=128, epochs=200, warmup=10, rampup=121, augmentation=True, seed=0, verbose=200, epsilon=36/255, epsilon_infty=8/255, epsilon_train=36/255, epsilon_train_infty=8/255, starting_epsilon=0.0, opt='adam', lr=0.001, momentum=0.9, weight_decay=0.0, step_size=10, gamma=0.5, lr_scheduler='step', wd_list=None, starting_kappa=1.0, kappa=0.0, niter=100, opt_iter=1, sniter=1, test_opt_iter=1000, test_sniter=1000000): parser = argparse.ArgumentParser() # main settings parser.add_argument('--method', default='BCP') parser.add_argument('--rampup', type=int, default=rampup) ## rampup parser.add_argument('--warmup', type=int, default=warmup) parser.add_argument('--sniter', type=int, default=sniter) ### parser.add_argument('--opt_iter', type=int, default=opt_iter) parser.add_argument('--linfty', action='store_true') parser.add_argument('--no_save', action='store_true') parser.add_argument('--test_pth', default=None) parser.add_argument('--print', action='store_true') parser.add_argument('--bce', action='store_true') parser.add_argument('--pgd', action='store_true') # optimizer settings parser.add_argument('--opt', default='adam') parser.add_argument('--momentum', type=float, default=momentum) parser.add_argument('--weight_decay', type=float, default=weight_decay) parser.add_argument('--epochs', type=int, default=epochs) parser.add_argument("--lr", type=float, default=lr) parser.add_argument("--step_size", type=int, default=step_size) parser.add_argument("--gamma", type=float, default=gamma) parser.add_argument("--wd_list", nargs='*', type=int, default=wd_list) parser.add_argument("--lr_scheduler", default=lr_scheduler) # test settings during training parser.add_argument('--train_method', default='BCP') parser.add_argument('--test_sniter', type=int, default=test_sniter) parser.add_argument('--test_opt_iter', type=int, default=test_opt_iter) # pgd settings parser.add_argument("--epsilon_pgd", type=float, default=epsilon) parser.add_argument("--alpha", type=float, default=epsilon/4) parser.add_argument("--niter", type=float, default=niter) # epsilon settings parser.add_argument("--epsilon", type=float, default=epsilon) parser.add_argument("--epsilon_infty", type=float, default=epsilon_infty) parser.add_argument("--epsilon_train", type=float, default=epsilon_train) parser.add_argument("--epsilon_train_infty", type=float, default=epsilon_train_infty) parser.add_argument("--starting_epsilon", type=float, default=starting_epsilon) parser.add_argument('--schedule_length', type=int, default=rampup) ## rampup # kappa settings parser.add_argument("--kappa", type=float, default=kappa) parser.add_argument("--starting_kappa", type=float, default=starting_kappa) parser.add_argument('--kappa_schedule_length', type=int, default=rampup) ## rampup # model arguments parser.add_argument('--model', default='large') parser.add_argument('--model_factor', type=int, default=8) parser.add_argument('--resnet_N', type=int, default=1) parser.add_argument('--resnet_factor', type=int, default=1) # other arguments parser.add_argument('--prefix') parser.add_argument('--data', default=data) parser.add_argument('--real_time', action='store_true') parser.add_argument('--seed', type=int, default=2019) parser.add_argument('--verbose', type=int, default=200) parser.add_argument('--cuda_ids', type=int, default=0) # loader arguments parser.add_argument('--batch_size', type=int, default=batch_size) parser.add_argument('--test_batch_size', type=int, default=batch_size) parser.add_argument('--normalization', action='store_true') parser.add_argument('--no_augmentation', action='store_true', default=not(augmentation)) parser.add_argument('--drop_last', action='store_true') parser.add_argument('--no_shuffle', action='store_true') args = parser.parse_args() args.augmentation = not(args.no_augmentation) args.shuffle = not(args.no_shuffle) args.save = not(args.no_save) if args.rampup: args.schedule_length = args.rampup args.kappa_schedule_length = args.rampup if args.epsilon_train is None: args.epsilon_train = args.epsilon if args.epsilon_train_infty is None: args.epsilon_train_infty = args.epsilon_infty if args.linfty: print('LINFTY TRAINING') args.epsilon = args.epsilon_infty args.epsilon_train = args.epsilon_train_infty args.epsilon_pgd = args.epsilon args.alpha = args.epsilon/4 if args.starting_epsilon is None: args.starting_epsilon = args.epsilon if args.prefix: args.prefix = 'models/'+args.data+'/'+args.prefix if args.model is not None: args.prefix += '_'+args.model if args.method is not None: args.prefix += '_'+args.method banned = ['verbose', 'prefix', 'resume', 'baseline', 'eval', 'method', 'model', 'cuda_ids', 'load', 'real_time', 'test_batch_size', 'augmentation','batch_size','drop_last','normalization', 'print','save','step_size','epsilon','gamma','linfty','lr_scheduler', 'seed','shuffle','starting_epsilon','kappa','kappa_schedule_length', 'test_sniter','test_opt_iter', 'niter','epsilon_pgd','alpha','schedule_length', 'epsilon_infty','epsilon_train_infty','test_pth','wd_list','momentum', 'weight_decay', 'resnet_N', 'resnet_factor','bce','no_augmentation','no_shuffle','no_save','pgd'] if args.method == 'baseline': banned += ['epsilon', 'starting_epsilon', 'schedule_length', 'l1_test', 'l1_train', 'm', 'l1_proj'] # if not using a model that uses model_factor, # ignore model_factor if args.model not in ['wide', 'deep']: banned += ['model_factor'] for arg in sorted(vars(args)): if arg not in banned and getattr(args,arg) is not None: args.prefix += '_' + arg + '_' +str(getattr(args, arg)) if args.schedule_length > args.epochs: raise ValueError('Schedule length for epsilon ({}) is greater than ' 'number of epochs ({})'.format(args.schedule_length, args.epochs)) else: args.prefix = 'models/'+args.data+'/temporary' if args.cuda_ids is not None: print('Setting CUDA_VISIBLE_DEVICES to {}'.format(args.cuda_ids)) # os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_ids torch.cuda.set_device(args.cuda_ids) return args def select_model(data, m): if data=='mnist': if m == 'large': ### Wong et al. large model = mnist_model_large().cuda() elif m == 'large2': ### Wong et al. large model = mnist_model_large2().cuda() else: ### Wong et al. small model = mnist_model().cuda() elif data=='cifar10': if m == 'large': ### Wong et al. large model = cifar_model_large().cuda() elif m == 'M': ### CROWN-IBP M model = cifar_model_M().cuda() elif m == 'CIBP': ### CROWN-IBP print('CIBP model') model = model_cnn_4layer(3,32,8,512).cuda() elif m == 'CIBP_noinit': ### CROWN-IBP print('CIBP model no init') model = model_cnn_4layer_noinit(3,32,8,512).cuda() elif m == 'c6f2': model = c6f2().cuda() elif m == 'c6f2_': model = c6f2_().cuda() else: ### Wong et al. small model = cifar_model().cuda() elif data=='tinyimagenet': model = tinyimagenet().cuda() return model def mnist_model(): model = nn.Sequential( nn.Conv2d(1, 16, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(32*7*7,100), nn.ReLU(), nn.Linear(100, 10) ) return model def mnist_model_large(): model = nn.Sequential( nn.Conv2d(1, 32, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(64*7*7,512), nn.ReLU(), nn.Linear(512,512), nn.ReLU(), nn.Linear(512,10) ) return model def mnist_model_large2(): model = nn.Sequential( nn.Conv2d(1, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 4, stride=2), nn.ReLU(), nn.Conv2d(32, 64, 3, stride=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2), nn.ReLU(), Flatten(), nn.Linear(1024,512), nn.ReLU(), nn.Linear(512,512), nn.ReLU(), nn.Linear(512,10) ) return model def cifar_model(): model = nn.Sequential( nn.Conv2d(3, 16, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(32*8*8,100), nn.ReLU(), nn.Linear(100, 10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def cifar_model_large(): model = nn.Sequential( nn.Conv2d(3, 32, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(64*8*8,512), nn.ReLU(), nn.Linear(512,512), nn.ReLU(), nn.Linear(512,10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def model_cnn_4layer(in_ch, in_dim, width, linear_size): model = nn.Sequential( nn.Conv2d(in_ch, 4*width, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(4*width, 4*width, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(4*width, 8*width, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(8*width, 8*width, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8*width*(in_dim // 4)*(in_dim // 4),linear_size), nn.ReLU(), nn.Linear(linear_size,linear_size), nn.ReLU(), nn.Linear(linear_size,10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def model_cnn_4layer_noinit(in_ch, in_dim, width, linear_size): model = nn.Sequential( nn.Conv2d(in_ch, 4*width, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(4*width, 4*width, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(4*width, 8*width, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(8*width, 8*width, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8*width*(in_dim // 4)*(in_dim // 4),linear_size), nn.ReLU(), nn.Linear(linear_size,linear_size), nn.ReLU(), nn.Linear(linear_size,10) ) # for m in model.modules(): # if isinstance(m, nn.Conv2d): # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) # m.bias.data.zero_() return model def cifar_model_M(): model = nn.Sequential( nn.Conv2d(3, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 4, stride=2), nn.ReLU(), nn.Conv2d(32, 64, 3, stride=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2), nn.ReLU(), Flatten(), nn.Linear(64*8*8,512), nn.ReLU(), nn.Linear(512,512), nn.ReLU(), nn.Linear(512,10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def c5f2(): model = nn.Sequential( nn.Conv2d(3, 64, 3, stride=1), nn.ReLU(), nn.Conv2d(64, 64, 3, stride=2), nn.ReLU(), nn.Conv2d(64, 128, 3, stride=1), nn.ReLU(), nn.Conv2d(128, 128, 3, stride=2), nn.ReLU(), nn.Conv2d(128, 128, 3, stride=2), nn.ReLU(), Flatten(), nn.Linear(512,512), nn.ReLU(), nn.Linear(512,10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model # def c6f2(): # model = nn.Sequential( # nn.Conv2d(3, 32, 3, stride=1, padding=1), # nn.ReLU(), # nn.Conv2d(32, 32, 3, stride=1, padding=1), # nn.ReLU(), # nn.Conv2d(32, 32, 4, stride=2, padding=1), # nn.ReLU(), # nn.Conv2d(32, 64, 3, stride=1, padding=1), # nn.ReLU(), # nn.Conv2d(64, 64, 3, stride=1, padding=1), # nn.ReLU(), # nn.Conv2d(64, 64, 4, stride=2), # nn.ReLU(), # Flatten(), # nn.Linear(3136,512), # nn.ReLU(), # nn.Linear(512,10) # ) # for m in model.modules(): # if isinstance(m, nn.Conv2d): # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) # m.bias.data.zero_() # return model def c6f2_(): model = nn.Sequential( nn.Conv2d(3, 32, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(4096,512), nn.ReLU(), nn.Linear(512,10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def tinyimagenet(): model = nn.Sequential( nn.Conv2d(3, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2), nn.ReLU(), nn.Conv2d(64, 128, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(128, 128, 4, stride=2), nn.ReLU(), nn.Conv2d(128, 256, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(256, 256, 4, stride=2), nn.ReLU(), Flatten(), nn.Linear(9216,256), nn.ReLU(), nn.Linear(256,200) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model ############################## Flatten / one_hot class Flatten(nn.Module): ## =nn.Flatten() def forward(self, x): return x.view(x.size()[0], -1) def one_hot(batch,depth=10): ones = torch.eye(depth).cuda() return ones.index_select(0,batch) ############################## def train(loader, model, opt, epoch, log, verbose): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() errors = AverageMeter() model.train() end = time.time() for i, (X,y) in enumerate(loader): X,y = X.cuda(), y.cuda() data_time.update(time.time() - end) out = model(Variable(X)) ce = nn.CrossEntropyLoss()(out, Variable(y)) err = (out.max(1)[1] != y).float().sum() / X.size(0) loss = ce opt.zero_grad() loss.backward() opt.step() # measure accuracy and record loss losses.update(ce.item(), X.size(0)) errors.update(err.item(), X.size(0)) # measure elapsed time batch_time.update(time.time()-end) end = time.time() print(epoch, i, ce.item(), file=log) ######## if verbose and (i==0 or i==len(loader)-1 or (i+1) % verbose == 0): print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.4f} ({batch_time.avg:.4f})\t' 'Data {data_time.val:.4f} ({data_time.avg:.4f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Error {errors.val:.4f} ({errors.avg:.4f})'.format( epoch, i+1, len(loader), batch_time=batch_time, data_time=data_time, loss=losses, errors=errors)) log.flush() def evaluate(loader, model, epoch, log, verbose): batch_time = AverageMeter() losses = AverageMeter() errors = AverageMeter() model.eval() end = time.time() for i, (X,y) in enumerate(loader): X,y = X.cuda(), y.cuda() out = model(Variable(X)) ce = nn.CrossEntropyLoss()(out, Variable(y)) err = (out.data.max(1)[1] != y).float().sum() / X.size(0) # print to logfile print(epoch, i, ce.item(), err.item(), file=log) # measure accuracy and record loss losses.update(ce.data, X.size(0)) errors.update(err, X.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if verbose and (i==0 or i==len(loader)-1 or (i+1) % verbose == 0): print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.4f} ({batch_time.avg:.4f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Error {error.val:.4f} ({error.avg:.4f})'.format( i+1, len(loader), batch_time=batch_time, loss=losses, error=errors)) log.flush() print(' * Error {error.avg:.4f}' .format(error=errors)) return errors.avg def pgd_l2(model_eval, X, y, epsilon=36/255, niters=100, alpha=9/255): EPS = 1e-24 X_pgd = Variable(X.data, requires_grad=True) for i in range(niters): opt = optim.Adam([X_pgd], lr=1.) opt.zero_grad() loss = nn.CrossEntropyLoss()(model_eval(X_pgd), y) loss.backward() grad = 1e10*X_pgd.grad.data grad_norm = grad.view(grad.shape[0],-1).norm(2, dim=-1, keepdim=True) grad_norm = grad_norm.view(grad_norm.shape[0],grad_norm.shape[1],1,1) eta = alpha*grad/(grad_norm+EPS) eta_norm = eta.view(eta.shape[0],-1).norm(2,dim=-1) X_pgd = Variable(X_pgd.data + eta, requires_grad=True) eta = X_pgd.data-X.data mask = eta.view(eta.shape[0], -1).norm(2, dim=1) <= epsilon scaling_factor = eta.view(eta.shape[0],-1).norm(2,dim=-1)+EPS scaling_factor[mask] = epsilon eta *= epsilon / (scaling_factor.view(-1, 1, 1, 1)) X_pgd = torch.clamp(X.data + eta, 0, 1) X_pgd = Variable(X_pgd.data, requires_grad=True) return X_pgd.data def pgd(model_eval, X, y, epsilon=8/255, niters=100, alpha=2/255): X_pgd = Variable(X.data, requires_grad=True) for i in range(niters): opt = optim.Adam([X_pgd], lr=1.) opt.zero_grad() loss = nn.CrossEntropyLoss()(model_eval(X_pgd), y) loss.backward() eta = alpha*X_pgd.grad.data.sign() X_pgd = Variable(X_pgd.data + eta, requires_grad=True) eta = torch.clamp(X_pgd.data - X.data, -epsilon, epsilon) X_pgd = torch.clamp(X.data + eta, 0, 1) X_pgd = Variable(X_pgd, requires_grad=True) return X_pgd.data def evaluate_pgd(loader, model, args): losses = AverageMeter() errors = AverageMeter() model.eval() end = time.time() for i, (X,y) in enumerate(loader): X,y = X.cuda(), y.cuda() if args.linfty: X_pgd = pgd(model, X, y, args.epsilon, args.niter, args.alpha) else: X_pgd = pgd_l2(model, X, y, args.epsilon, args.niter, args.alpha) out = model(Variable(X_pgd)) ce = nn.CrossEntropyLoss()(out, Variable(y)) err = (out.data.max(1)[1] != y).float().sum() / X.size(0) losses.update(ce.data, X.size(0)) errors.update(err, X.size(0)) print(' * Error {error.avg:.4f}' .format(error=errors)) return errors.avg class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def test(net_eval, test_data_loader, imagenet=0): st = time.time() n_test = len(test_data_loader.dataset) err = 0 n_done = 0 for j, (batch_images, batch_labels) in enumerate(test_data_loader): X = Variable(batch_images.cuda()) Y = Variable(batch_labels.cuda()) out = net_eval(X) err += (out.max(1)[1].data != (batch_labels-imagenet).cuda()).float().sum() b_size = len(Y) n_done += b_size acc = 100*(1-err/n_done) if j % 10 == 0: print('%.2f %%'%(100*(n_done/n_test)), end='\r') print('test accuracy: %.4f%%'%(acc)) def test_topk(net_eval, test_data_loader, k=5, imagenet=1): st = time.time() n_test = len(test_data_loader.dataset) err = 0 n_done = 0 res = 0 for j, (batch_images, batch_labels) in enumerate(test_data_loader): X = Variable(batch_images.cuda()) Y = Variable(batch_labels.cuda()) out = net_eval(X) b_size = len(Y) n_done += b_size _,pred= out.topk(max((k,)),1,True,True) aa = (batch_labels-imagenet).view(-1, 1).expand_as(pred).cuda() correct = pred.eq(aa) for kk in (k,): correct_k = correct[:,:kk].view(-1).float().sum(0) res += correct_k# (correct_k.mul_(100.0 / b_size)) if j % 10 == 0: print('%.2f %%'%(100*(n_done/n_test)), end='\r') print('test accuracy: %.4f%%'%(100*res/n_done))
the-stack_0_24888
# -*- coding: utf-8 -*- """ Created on Sun Jul 20 09:01:51 2014 @author: perez """ from pylab import * # Coefficient d'apprentissage (plus il est élevé, plus le système apprend vite, mais plus il est nerveux et instable) coeffApprentissage = 0.5 # Ecart de température entre Tint et Tconsigne à partir duquel on va faire l'apprentissage du temps de relance relanceDeltaTint = 2.0 class FuzzyMethodes: """ Méthodes de calcul de logique floue """ ## # Renvoie un vecteur indiquant quelle est l'appartenance en logique floue de l'élément # Exemple : tableau = ([1., 2., 3., 4.]) # si element = 2.25, renvoie ([0., 0.75, 0.25, 0.]) # car 2.25 est compris entre 2 et 3 et plus proche de 2 que de 3 # si element = 4., renvoie ([0., 0., 0., 1.]) @staticmethod def fuzzyAppartenance1D(element, tableau): taille = size(tableau) resultat=zeros(taille) if element < tableau[0]: resultat[0] = 1. return resultat for i in range(taille-1): if (tableau[i] <= element and element <= tableau[i+1]): distance1 = element - tableau[i] distance2 = tableau[i+1] - element distance_total = distance1 + distance2 resultat[i] = distance2 / distance_total resultat[i+1] = distance1 / distance_total return resultat # Si on est arrivé ici, c'est que element est supérieur au dernier élément du tableau resultat[taille-1] = 1. return resultat # Même fonction que fuzzyAppartenance, mais en 2D (tableau 1 = lignes, tableau2 = colonnes) @staticmethod def fuzzyMatriceVerite(element1, tableau1, element2, tableau2): # Calcule la matrice de vérité de Ti et Te verite1 = FuzzyMethodes.fuzzyAppartenance1D(element1, tableau1) verite1.shape = (1, size(verite1)) # Transformation 1D->2D verite2 = FuzzyMethodes.fuzzyAppartenance1D(element2, tableau2) verite2.shape = (1, size(verite2)) # Transformation 1D->2D veriteMatrice = dot(verite1.T, verite2) return veriteMatrice # Corrige la matriceRegles après le constat d'un écart entre la valeur estimée et la valeur réelle @staticmethod def fuzzyCorrection(matriceRegles, matriceVerite, valeurEstimee, valeurReelle, coeffApprentissage): erreur = valeurReelle - valeurEstimee matriceCorrection = coeffApprentissage * erreur * matriceVerite matriceRegles += matriceCorrection return matriceRegles ## # Estime le temps de relance @staticmethod def estimeTempsRelance(tInt, tExt, tCible, tempsRelanceMatrice, tIntSteps, tExtSteps): # Translate le problème en fonction de t_a_atteindre tIntPrime = tInt - (tCible - 20) tExtPrime = tExt - (tCible - 20) veriteMatrice = FuzzyMethodes.fuzzyMatriceVerite(tIntPrime, tIntSteps, tExtPrime, tExtSteps) tempsRelanceEstime = sum(veriteMatrice * tempsRelanceMatrice) return tempsRelanceEstime ## # Corrige la matrice des temps de relance après avoir mesuré le temps de relance réel # @param tIntInitial Tint utilisé lors de l'estimation du temps de relance # @param tExtInitial Text utilisé lors de l'estimation du temps de relance # @param tempsRelanceReel Temps de relance réel mesuré # @param coeffApprentissage Coefficient d'apprentissage # @return tempsRelanceMatrice Nouvelle matrice de temps de relance @staticmethod def corrigeMatrice(tIntInitial, tExtInitial, tCible, tempsRelanceReel, coeffApprentissage, tempsRelanceMatrice, tIntSteps, tExtSteps): # Translate le problème en fonction de t_a_atteindre tIntPrime = tIntInitial - (tCible - 20) tExtPrime = tExtInitial - (tCible - 20) veriteMatrice = FuzzyMethodes.fuzzyMatriceVerite(tIntPrime, tIntSteps, tExtPrime, tExtSteps) tempsRelanceEstime = sum(veriteMatrice * tempsRelanceMatrice) tempsRelanceMatrice = FuzzyMethodes.fuzzyCorrection(tempsRelanceMatrice, veriteMatrice, tempsRelanceEstime, tempsRelanceReel, coeffApprentissage) return tempsRelanceMatrice
the-stack_0_24889
# -*- coding: utf-8 -*- """ Name: BurpScripter Plus Version: 0.1 Author: Ganapati - @G4N4P4T1 Github: https://github.com/Acceis/BurpScripterPlus Description: This extension provide a Python panel for writing custom proxy script. License : THE BEER-WARE LICENSE" (Revision 42): ganapati (@G4N4P4T1) wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day, and you think this stuff is worth it, you can buy me a beer in return. """ from java.awt import Font from java.io import PrintWriter from javax.swing import JScrollPane, JTextPane from javax.swing.text import SimpleAttributeSet from burp import ( IBurpExtender, IExtensionStateListener, IHttpListener, ITab, ) import base64 import urllib import traceback VERSION = "0.1" def get_message( message_info, helpers, message_is_request, callbacks ): """ Return Message or Request according to message :param message_info: message_info from Burp extender :param helpers: helpers from Burp extender :param message_is_request: message_is_request from Burp extender :param callbacks: callbacks from Burp extender :return: Request or Response instance :rtype: Message """ if message_is_request: return Request(message_info, helpers, callbacks) else: return Response(message_info, helpers, callbacks) class Message(object): """ Generic Class for Request and Response Only used as parent class """ def __init__(self, message_info, helpers, callbacks): """ Message constructor :param message_info: message_info from Burp extender :param helpers: helpers from Burp extender :param callbacks: callbacks from Burp extender :return: Message instance (not usable, just a parent class for Request and Response) :rtype: Message """ self.message_info = message_info self.callbacks = callbacks self.helpers = helpers self.is_request = False self.is_response = False self.is_in_scope = callbacks.isInScope( message_info.getUrl() ) def parse_message(self): """ Parse message input from Burp extender Do not use this one, it's only for forcing childs to implement method """ raise NotImplementedError def build_message(self): """ Build a string message from parsed message (created by parse_message) Do not use this one, it's only for forcing childs to implement method """ raise NotImplementedError def update_content_length(self, data): """ Recalculate body length and set it in Content-Length header :param data: data is the body string used for re-calculating Content-Length header :type data: string """ if data is not None: self.headers["Content-Length"] = len(data) class Response(Message): """ Response class Map the entire Response into an object for easier manipulation """ def __init__(self, message_info, helpers, callbacks): """ Response constructor :param message_info: message_info from Burp extender :param helpers: helpers from Burp extender :param callbacks: callbacks from Burp extender :return: Response instance :rtype: Response """ Message.__init__( self, message_info, helpers, callbacks ) self.is_request = False self.is_response = True self.http_version = "" self.response_code = 200 self.response_value = "" self.headers = {} self.body = "" self.parse_message() def parse_message(self): """ Parse message input from Burp extender This method populate the Response object with parsed data """ message = self.message_info.getResponse() parsed_message = self.helpers.analyzeResponse( message ) # Parse headers headers_dict = {} headers = parsed_message.getHeaders() # Reconstruct the headers as dict headers_list = list(headers) self.http_version, self.response_code, self.response_value = headers_list[ 0 ].split( " ", 2 ) for header in headers_list[1:]: k, v = header.split(": ") headers_dict[str(k)] = str(v) self.headers = headers_dict self.body = message[ (parsed_message.getBodyOffset()) : ].tostring() def build_message(self): """ Build Complete message as string from attributes This method takes all Response attributes and build a response string This method is auto-called by extension and you don't have to call build_message yourself """ self.update_content_length(self.body) message = "" message = "%s %s %s\r\n" % ( self.http_version, self.response_code, self.response_value, ) # Add headers for k, v in self.headers.items(): message = message + "%s: %s\r\n" % (k, v) message = message + "\r\n" # Add body message = message + self.body.decode( "utf-8", "replace" ) self.message_info.setResponse(message) class Request(Message): """ Request class Map the entire Request into an object for easier manipulation """ def __init__(self, message_info, helpers, callbacks): """ Request constructor :param message_info: message_info from Burp extender :param helpers: helpers from Burp extender :param callbacks: callbacks from Burp extender :return: Request instance :rtype: Request """ Message.__init__( self, message_info, helpers, callbacks ) self.is_request = True self.is_response = False self.method = "" self.path = "" self.http_version = "" self.params = {} self.headers = {} self.body = {} self.body_str = "" self.parse_message() def parse_parameters(self, line): """ Parse params string to dict This method takes the GET parameters as string and create a dictionnary in params attribute :param line: First line of request as string (ex: GET /foo?bar=baz HTTP/1.1) :type line: string """ self.method, path_params, self.http_version = line.split( " " ) path_params_array = path_params.split("?") self.path = path_params_array[0] if len(path_params_array) > 1: params = path_params_array[1] for _ in params.split("&"): try: k, v = _.split("=") self.params[k] = v except ValueError: k = _.split("=")[0] self.params[k] = "" def build_parameters(self): """ From params dict to string This method takes all key:values from parameters (GET) and build a string :return: GET parameters as string :rtype: string """ params = "" for k, v in self.params.items(): params = params + "%s=%s&" % ( k.strip(), v.strip(), ) if len(params) > 0: params = "?%s" % params[:-1] return params def parse_message(self): """ Parse message input from Burp extender This method populate the Request object with parsed data """ message = self.message_info.getRequest() parsed_message = self.helpers.analyzeRequest( message ) # Parse headers headers_dict = {} headers = parsed_message.getHeaders() # Reconstruct the headers as dict headers_list = list(headers) for header in headers_list[1:]: k, v = header.split(": ") headers_dict[str(k)] = str(v) self.headers = headers_dict self.parse_parameters(headers_list[0]) # Extract body from message body = message[(parsed_message.getBodyOffset()) :] self.body_str = "".join(chr(_) for _ in body) body_dict = {} if "Content-Length" in self.headers.keys(): try: if int(self.headers["Content-Length"]) > 0: for arg in self.body_str.split("&"): k, v = arg.split("=") body_dict[k] = v self.body = body_dict except: self.body = None def build_body(self): """ Transform dict body to string This method takes all key:values items from doby and construct a body string :return: full body string :rtype: string """ body = "" for k, v in self.body.items(): body = body + "%s=%s&" % (k.strip(), v.strip()) return body[:-1] def build_message(self): """ Build Complete message as string from attributes This method takes all Request attributes and build a response string This method is auto-called by extension and you don't have to call build_message yourself """ if isinstance(self.body, dict): self.body_str = self.build_body() else: if self.body is not None: self.body_str = self.body self.update_content_length(self.body_str) message = "" # Add method, path and params message = "%s %s%s %s\r\n" % ( self.method, self.path, self.build_parameters(), self.http_version, ) # Add headers for k, v in self.headers.items(): message = message + "%s: %s\r\n" % (k, v) message = message + "\r\n" # Add body message = message + self.body_str.decode( "utf-8", "replace" ) self.message_info.setRequest(message) class BurpExtender( IBurpExtender, IExtensionStateListener, IHttpListener, ITab, ): def registerExtenderCallbacks(self, callbacks): self.callbacks = callbacks self.helpers = callbacks.helpers callbacks.setExtensionName("Burp Scripter Plus") stdout = PrintWriter(callbacks.getStdout(), True) stdout.println( """Successfully loaded Burp Scripter Plus v""" + VERSION + """\n Repository @ https://github.com/Acceis/BurpScripterPlus Send feedback or bug reports on twitter @G4N4P4T1""" ) self.scriptpane = JTextPane() self.scriptpane.setFont( Font("Monospaced", Font.PLAIN, 12) ) self.scrollpane = JScrollPane() self.scrollpane.setViewportView(self.scriptpane) self._code = compile("", "<string>", "exec") self._script = "" script = callbacks.loadExtensionSetting("script") if script: script = base64.b64decode(script) self.scriptpane.document.insertString( self.scriptpane.document.length, script, SimpleAttributeSet(), ) self._script = script try: self._code = compile( script, "<string>", "exec" ) except Exception as e: traceback.print_exc( file=self.callbacks.getStderr() ) callbacks.registerExtensionStateListener(self) callbacks.registerHttpListener(self) callbacks.customizeUiComponent( self.getUiComponent() ) callbacks.addSuiteTab(self) self.scriptpane.requestFocus() def extensionUnloaded(self): try: self.callbacks.saveExtensionSetting( "script", base64.b64encode( self._script.replace( "\nmessage.build_message()", "" ) ), ) except Exception: traceback.print_exc( file=self.callbacks.getStderr() ) return def processHttpMessage( self, toolFlag, messageIsRequest, messageInfo ): try: globals_ = {} locals_ = { "extender": self, "toolFlag": toolFlag, "messageInfo": messageInfo, "message": get_message( messageInfo, self.helpers, messageIsRequest, self.callbacks, ), } exec(self.script, globals_, locals_) except Exception: traceback.print_exc( file=self.callbacks.getStderr() ) return def getTabCaption(self): return "Script+" def getUiComponent(self): return self.scrollpane @property def script(self): end = self.scriptpane.document.length _script = ( self.scriptpane.document.getText(0, end) + "\nmessage.build_message()" ) if _script == self._script: return self._code self._script = _script self._code = compile(_script, "<string>", "exec") return self._code
the-stack_0_24890
""" logutils ~~~~~~~~ Various logging utilities """ import logging import inspect def create_logger(*args, **kwargs): """Return a logger with a nicely formatted name, depending on the caller. This works by using inspect to grab the frame containing information about the caller of this function. This frame contains the module name, and also the class, function or method names, if any. """ frame_caller = inspect.stack()[1][0] location = module = inspect.getmodule(frame_caller).__name__ _, _, _, loc = inspect.getargvalues(frame_caller) obj = loc.get('self', None) # check if called inside a class if obj is not None: location = '.'.join([module, obj.__class__.__name__]) del frame_caller # to avoid leak logger = logging.getLogger(location) return logger
the-stack_0_24891
# pylint: disable=missing-docstring from resolwe.flow.models import Data, DescriptorSchema, Process from resolwe.test import TestCase class DescriptorTestCase(TestCase): def setUp(self): super().setUp() self.process = Process.objects.create(name="Dummy process", contributor=self.contributor) self.descriptor_schema = DescriptorSchema.objects.create( name='Descriptor schema', contributor=self.contributor, schema=[ {'name': 'test_field', 'type': 'basic:string:', 'default': 'default value'} ] ) def test_default_values(self): data = Data.objects.create( name='Data object', contributor=self.contributor, process=self.process, descriptor_schema=self.descriptor_schema, ) self.assertEqual(data.descriptor['test_field'], 'default value') data = Data.objects.create( name='Data object 2', contributor=self.contributor, process=self.process, descriptor_schema=self.descriptor_schema, descriptor={'test_field': 'changed value'} ) self.assertEqual(data.descriptor['test_field'], 'changed value')
the-stack_0_24893
"""This module contains functions for handling sid's internal period. sid's internal period is similar to Unix time, but the reference date is 2019-01-01 instead of 1970-01-01 and it is not measured in seconds but days. This allows to use a int16 instead of int32 for Unix time. The internal period is used to store dates more efficiently as a int16 instead of the normal datetime64. The advantage of this approach over enumerating periods passed via the ``duration`` argument of :func:`~sid.simulate.get_simulate_func` is that there is still information on the exact dates in the states even if the ``"date"`` column is removed during estimation to reduce memory consumption. """ from functools import partial import pandas as pd from sid.config import DTYPE_SID_PERIOD from sid.config import SID_TIME_START def period_to_timestamp(period, relative_to): return pd.to_datetime(relative_to) + pd.to_timedelta(period, unit="d") def timestamp_to_period(timestamp, relative_to): return DTYPE_SID_PERIOD( (pd.to_datetime(timestamp) - pd.to_datetime(relative_to)).days ) sid_period_to_timestamp = partial(period_to_timestamp, relative_to=SID_TIME_START) timestamp_to_sid_period = partial(timestamp_to_period, relative_to=SID_TIME_START) def get_date(states): """Get date from states.""" if "date" in states.columns: out = states["date"].iloc[0] elif "period" in states.columns: out = sid_period_to_timestamp(states["period"].iloc[0]) else: raise ValueError("'states' does not contain 'date' or 'period'.") return out
the-stack_0_24895
import time import re import pandas as pd from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.common.exceptions import NoSuchElementException chrome_path = '/Users/amy/Downloads/chromedriver' def scrollDown(driver, n_scroll): body = driver.find_element_by_tag_name('body') while n_scroll >=0: body.send_keys(Keys.PAGE_DOWN) n_scroll -=1 return driver driver = webdriver.Chrome(executable_path = chrome_path) url ='https://www.sephora.com' driver.get(url) time.sleep(5) df = pd.DataFrame(columns=['Label', 'URL']) tickers = ['face-wash-for-men','moisturizer-men','mens-grooming-kits-mens-shaving','mens-fragrance','eye-cream-men','deodorant-for-men-body-spray','mens-hair-products'] for ticker in tickers: url = 'https://www.sephora.com/shop/' + ticker + '?pageSize=300' driver.get(url) # xpath = '/html/body/div[5]/div/div/div[1]/div/div/button' # btn = driver.find_element_by_xpath(xpath) # btn.click() # time.sleep(20) browser = scrollDown(driver,20) time.sleep(10) browser = scrollDown(driver,20) time.sleep(10) browser = scrollDown(driver,20) time.sleep(10) browser = scrollDown(driver, 10) element = driver.find_elements_by_class_name('css-ix8km1') subpageURL =[] for a in element: subURL = a.get_attribute('href') subpageURL.append(subURL) dic = {'Label':ticker, 'URL': subpageURL} df =df.append(pd.DataFrame(dic), ignore_index = True) df2 = pd.DataFrame(columns = ['brand_name','product_name','description','price','score','skin_type','ingredients','image_url']) df = pd.concat([df, df2],axis =1) for i in range(len(df)+1): url = df.URL[i] driver.get(url) time.sleep(5) #brand name xpath ='/html/body/div[1]/div[2]/div/main/div/div[1]/div/div[2]/div[1]/div[1]/h1/a/span' df.brand_name[i] = driver.find_element_by_xpath(xpath).text #price xpath1 ='/html/body/div[1]/div[2]/div/main/div/div[1]/div/div[2]/div[1]/div[2]/div[1]/span' df.price[i] = driver.find_element_by_xpath(xpath1).text # product name xpath2 = '/html/body/div[1]/div[2]/div/main/div/div[1]/div/div[2]/div[1]/div[1]/h1/span' df.product_name[i] = driver.find_element_by_xpath(xpath2).text #image url try: img = driver.find_element_by_class_name('css-1rovmyu') df.image_url[i] = img.get_attribute('src') except NoSuchElementException: df.image_url[i] = ' ' # #skin type # xpath = '//*[@id="tabpanel0"]/div/b[2]' # skin_type = driver.find_element_by_xpath(xpath) #product description df.description[i] = driver.find_element_by_class_name('css-1rny024').text # ingredients xpath3 = '//*[@id="tab2"]' btn = driver.find_element_by_xpath(xpath3) btn.click() try: df.ingredients[i] = driver.find_element_by_xpath('//*[@id="tabpanel2"]/div').text except NoSuchElementException: df.ingredients[i] = "No Info" browser = scrollDown(driver,1) time.sleep(5) browser = scrollDown(driver,1) time.sleep(5) # score try: a = driver.find_element_by_class_name('css-1k3n1un').text score = re.match('\d.\d', a).group() df['score'][i] = str(score) except NoSuchElementException: df['score'][i] = 0 df.to_csv('sephora_products.csv', encoding = 'utf-8')
the-stack_0_24896
dir_path = './results/results_semhash_nomissingtag_10runs/' runs = 10 for perc in [0.1, 0.2, 0.3, 0.4, 0.5, 0.8]: str_write = '' for dataset_name in ['snips']: str_write += dataset_name + '\n' acc_avg = 0 acc_max = 0 for run in range(1, runs + 1): acc = 0 subdir_path = dir_path + 'comp_inc_{}_run{}/'.format(perc, run) filename = subdir_path + '{}_f1.txt.txt'.format(dataset_name) f = open(filename, 'r') lines = f.read().split('\n') # Get max acc from 1 run for l in lines: if l is not "": l_split = l.split(': ') l_acc = float(l_split[1]) print(l_acc) if l_acc >= acc: acc = l_acc # Get average acc acc_avg += acc # Get max acc if acc >= acc_max: acc_max = acc acc_avg /= runs str_write += ' Avg-{}: {:.2f}\n'.format(runs, acc_avg * 100) str_write += ' Best-{}: {:.2f}\n\n'.format(runs, acc_max * 100) print("Saving to: {}".format(dir_path + 'comp_inc_{}'.format(perc))) f_out = open(dir_path + 'comp_inc_{}'.format(perc), 'w') f_out.write(str_write)
the-stack_0_24897
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script Language Operators.""" # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import threading # Used by py_util.cc to get tracebacks. import traceback # pylint: disable=unused-import import weakref import numpy as np import six from tensorflow.python import pywrap_tensorflow from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.ops import gen_script_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export # Map from EagerPyFunc token to tuple (tape, eager args, eager outputs); # used for differentiation. tape_cache = {} def _maybe_copy_to_context_device(tensor, device_name): """Copy an EagerTensor to the current device if it's not on `device_name`.""" in_device = tensor.backing_device if device_name == in_device: return tensor else: # Note that EagerTensor._copy bypasses the placer and copies to the context # device, which means e.g. int32 Tensors which would normally be forced onto # the CPU can instead be placed on the GPU. This is necessary so that the # PyFunc kernel always returns Tensors on the device it's executing on. return tensor._copy() # pylint: disable=protected-access class EagerFunc(object): """A wrapper for a function owned by an EagerPyFunc.""" def __init__(self, func, Tout, is_grad_func): """Constructs an EagerFunc. Args: func: The function to wrap. Tout: A list of datatypes for the output; an empty list if the output is None. is_grad_func: Whether this EagerFunc is the gradient of another EagerPyFunc. """ self._func = func self._out_dtypes = Tout self._is_grad_func = is_grad_func def _convert(self, value, dtype): """Converts `value` to a tensor of type `dtype`, with error checking. Args: value: The tensor to convert. dtype: The desired dtype. Returns: A tensor of type `dtype`, or a zeros tensor if value is None and this function is in fact a grdient function. Raises: RuntimeError: if `value` is a variable. """ if isinstance(value, resource_variable_ops.ResourceVariable): raise RuntimeError( "Attempting to return a variable from an eagerly executed py_func. " "Only numeric data structures like Tensors or NumPy arrays should " "be returned; to return the value of a variable, make sure to obtain " "the Tensor backing it by calling `.read_value()` on the variable in " "question: %s" % value) if value is None and self._is_grad_func: # Gradient functions may legitimately return a list that contains # both Tensors and Python Nones. Unfortuantely this breaks the # OpKernel, so for now we replace None objects with zeros, which is # mathematically correct but will prevent short-circuiting gradient # computations. # # TODO(akshayka): Make it possible to return a list of both Tensors and # Nones from an EagerPyFunc. return constant_op.constant(0.0, dtype=dtype) return ops.convert_to_tensor(value, dtype=dtype) def __call__(self, device, token, args): """Passes `args` to `self._func`, which is executed eagerly.""" with context.eager_mode(), backprop.GradientTape() as tape: # Only watch tensors with a floating dtype. for tensor in args: for t in nest.flatten(tensor): if t.dtype.is_floating: tape.watch(t) ret = self._func(*args) # copy the returned tensors to the PyFunc op's device if necessary. device_name = device if device_name is None: # "None" here means "CPU", from the nullptr convention with C++ device # pointers. device_name = "/job:localhost/replica:0/task:0/device:CPU:0" with ops.device(device): if isinstance(ret, (tuple, list)): outputs = [ _maybe_copy_to_context_device(self._convert(x, dtype=dtype), device_name) for (x, dtype) in zip(ret, self._out_dtypes) ] elif ret is None: outputs = None else: outputs = _maybe_copy_to_context_device( self._convert(ret, dtype=self._out_dtypes[0]), device_name) tape_cache[compat.as_bytes(token)] = (tape, args, outputs) return outputs class FuncRegistry(object): """A helper class to keep track of registered py functions. FuncRegistry keeps a map from unique tokens (string) to python functions, which takes numpy arrays and outputs numpy arrays. """ def __init__(self): self._lock = threading.Lock() self._unique_id = 0 # GUARDED_BY(self._lock) # Only store weakrefs to the functions. The strong reference is stored in # the graph. self._funcs = weakref.WeakValueDictionary() @property def _ctx(self): # N.B. This is needed to support calling py_func with GPU tensors, # which must be transferred to CPU if used in any of the NumPy APIs. context.ensure_initialized() return context.context()._handle # pylint: disable=protected-access def insert(self, func): """Registers `func` and returns a unique token for this entry.""" token = self._next_unique_token() # Store a weakref to the function self._funcs[token] = func return token def remove(self, token): """Removes the registered function corresponding to `token`.""" self._funcs.pop(token, None) @staticmethod def _convert(value, dtype=None): """Converts an arg to numpy, avoiding dangerous string and unicode dtypes. Numpy pads with zeros when using string and unicode dtypes if different components of a tensor have different lengths. This is bad: ignoring the padding is wrong for text data, and removing the padding is wrong for binary data. To avoid this bug, we redo the conversion using an object dtype. Additionally, we convert unicode strings to (byte-)strings for compatibility. Args: value: Value to convert to a numpy array. dtype: (Optional.) Desired NumPy type for the returned value. Returns: A numpy array. """ result = np.asarray(value, dtype=dtype, order="C") if result.dtype.char == "S" and result is not value: return np.asarray(value, order="C", dtype=object) elif result.dtype.char == "U" and result is not value: value = np.vectorize(lambda x: x.encode("utf8"))(value) return np.asarray(value, order="C", dtype=object) elif result.dtype.char == "U": return result.astype(np.bytes_) else: return result def __call__(self, token, device, args): """Calls the registered function for `token` with args. Args: token: A key into this `FuncRegistry` identifying which function to call. device: Name of the device on which outputs of `token`'s corresponding operation should be placed. Used iff the function registered for `token` is an EagerPyFunc. args: The arguments to pass to the function registered for `token`. Returns: The output of the function registered for `token`. Raises: ValueError: if no function is registered for `token`. """ func = self._funcs.get(token, None) if func is None: raise ValueError("callback %s is not found" % token) if isinstance(func, EagerFunc): # NB: Different invocations of the same py_func will share the same # token, and the entries they stash in the tape_cache will collide. # In practice, when executing a graph, this should only happen if # the py_func is in a while_loop whose iterations are run in parallel # or if the graph is being driven by concurrent session.run() calls. # # TODO(akshayka): Key the tape cache in a thread-safe way. return func(device, token, args) else: ret = func(*args) # Strings seem to lead to a memory leak here if they're not wrapped in a # list. if isinstance(ret, six.binary_type): ret = [ret] # Ensures that we return either a single numpy array or a list of numpy # arrays. if isinstance(ret, (tuple, list)): return [self._convert(x) for x in ret] else: return self._convert(ret) def size(self): """Returns how many functions are currently registered.""" return len(self._funcs) def _next_unique_token(self): """Returns a unique token.""" with self._lock: uid = self._unique_id self._unique_id += 1 return "pyfunc_%d" % uid # Global registry for py functions. _py_funcs = FuncRegistry() pywrap_tensorflow.InitializePyTrampoline(_py_funcs) def _internal_py_func(func, inp, Tout, stateful=None, eager=False, is_grad_func=False, name=None): """See documentation for py_func and eager_py_func.""" if not callable(func): raise ValueError("Expected func to be callable, got func of type {}".format( type(func))) is_list_or_tuple = False if isinstance(Tout, (list, tuple)): is_list_or_tuple = True else: Tout = [Tout] if eager: func = EagerFunc(func, Tout, is_grad_func) token = _py_funcs.insert(func) # We tie the registered function's lifetime with the current default graph, # i.e., when the current graph is destroyed, we remove its py funcs. graph = ops.get_default_graph() # pylint: disable=protected-access while isinstance(graph, function._FuncGraph): # If the py_func was declared inside a _FuncGraph, its lifetime should be # bound to that of the outer graph instead. graph = graph._outer_graph # TODO(zhifengc): Consider adding a Graph method to collect # `cleanup` objects in one of its member. if not hasattr(graph, "_py_funcs_used_in_graph"): graph._py_funcs_used_in_graph = [] # Store a reference to the function in the graph to ensure it stays alive # as long as the graph lives. When the graph is destroyed, the function # is left to the garbage collector for destruction as well. graph._py_funcs_used_in_graph.append(func) # pylint: enable=protected-access if eager: result = gen_script_ops.eager_py_func( input=inp, token=token, is_async=context.is_async(), Tout=Tout, name=name) else: if stateful: result = gen_script_ops.py_func( input=inp, token=token, Tout=Tout, name=name) else: result = gen_script_ops.py_func_stateless( input=inp, token=token, Tout=Tout, name=name) return result if is_list_or_tuple else result[0] # TODO(akshayka): Implement higher-order derivatives. @ops.RegisterGradient("EagerPyFunc") def _EagerPyFuncGrad(op, *dy): """Computes the gradient of an EagerPyFunc.""" token = op.get_attr("token") def eagerly_executed_grad(*dy): tape, eager_inputs, eager_outputs = tape_cache.pop(compat.as_bytes(token)) return tape.gradient(eager_outputs, eager_inputs, output_gradients=dy) with ops.control_dependencies(op.outputs): return _internal_py_func( func=eagerly_executed_grad, inp=dy, Tout=[tensor.dtype for tensor in op.inputs], eager=True, is_grad_func=True) @tf_export("py_function") def eager_py_func(func, inp, Tout, name=None): """Wraps a python function into a TensorFlow op that executes it eagerly. This function allows expressing computations in a TensorFlow graph as Python functions. In particular, it wraps a Python function `func` in a once-differentiable TensorFlow operation that executes it with eager execution enabled. As a consequence, `tf.py_function` makes it possible to express control flow using Python constructs (`if`, `while`, `for`, etc.), instead of TensorFlow control flow constructs (`tf.cond`, `tf.while_loop`). For example, you might use `tf.py_function` to implement the log huber function: ```python def log_huber(x, m): if tf.abs(x) <= m: return x**2 else: return m**2 * (1 - 2 * tf.math.log(m) + tf.math.log(x**2)) x = tf.compat.v1.placeholder(tf.float32) m = tf.compat.v1.placeholder(tf.float32) y = tf.py_function(func=log_huber, inp=[x, m], Tout=tf.float32) dy_dx = tf.gradients(y, x)[0] with tf.compat.v1.Session() as sess: # The session executes `log_huber` eagerly. Given the feed values below, # it will take the first branch, so `y` evaluates to 1.0 and # `dy_dx` evaluates to 2.0. y, dy_dx = sess.run([y, dy_dx], feed_dict={x: 1.0, m: 2.0}) ``` You can also use `tf.py_function` to debug your models at runtime using Python tools, i.e., you can isolate portions of your code that you want to debug, wrap them in Python functions and insert `pdb` tracepoints or print statements as desired, and wrap those functions in `tf.py_function`. For more information on eager execution, see the [Eager guide](https://tensorflow.org/guide/eager). `tf.py_function` is similar in spirit to `tf.compat.v1.py_func`, but unlike the latter, the former lets you use TensorFlow operations in the wrapped Python function. In particular, while `tf.compat.v1.py_func` only runs on CPUs and wraps functions that take NumPy arrays as inputs and return NumPy arrays as outputs, `tf.py_function` can be placed on GPUs and wraps functions that take Tensors as inputs, execute TensorFlow operations in their bodies, and return Tensors as outputs. Like `tf.compat.v1.py_func`, `tf.py_function` has the following limitations with respect to serialization and distribution: * The body of the function (i.e. `func`) will not be serialized in a `GraphDef`. Therefore, you should not use this function if you need to serialize your model and restore it in a different environment. * The operation must run in the same address space as the Python program that calls `tf.py_function()`. If you are using distributed TensorFlow, you must run a `tf.distribute.Server` in the same process as the program that calls `tf.py_function()` and you must pin the created operation to a device in that server (e.g. using `with tf.device():`). Args: func: A Python function which accepts a list of `Tensor` objects having element types that match the corresponding `tf.Tensor` objects in `inp` and returns a list of `Tensor` objects (or a single `Tensor`, or `None`) having element types that match the corresponding values in `Tout`. inp: A list of `Tensor` objects. Tout: A list or tuple of tensorflow data types or a single tensorflow data type if there is only one, indicating what `func` returns; an empty list if no value is returned (i.e., if the return value is `None`). name: A name for the operation (optional). Returns: A list of `Tensor` or a single `Tensor` which `func` computes; an empty list if `func` returns None. """ return _internal_py_func(func=func, inp=inp, Tout=Tout, eager=True, name=name) def py_func_common(func, inp, Tout, stateful=True, name=None): """Wraps a python function and uses it as a TensorFlow op. Given a python function `func`, which takes numpy arrays as its arguments and returns numpy arrays as its outputs, wrap this function as an operation in a TensorFlow graph. The following snippet constructs a simple TensorFlow graph that invokes the `np.sinh()` NumPy function as a operation in the graph: ```python def my_func(x): # x will be a numpy array with the contents of the placeholder below return np.sinh(x) input = tf.compat.v1.placeholder(tf.float32) y = tf.compat.v1.py_func(my_func, [input], tf.float32) ``` **N.B.** The `tf.compat.v1.py_func()` operation has the following known limitations: * The body of the function (i.e. `func`) will not be serialized in a `GraphDef`. Therefore, you should not use this function if you need to serialize your model and restore it in a different environment. * The operation must run in the same address space as the Python program that calls `tf.compat.v1.py_func()`. If you are using distributed TensorFlow, you must run a `tf.distribute.Server` in the same process as the program that calls `tf.compat.v1.py_func()` and you must pin the created operation to a device in that server (e.g. using `with tf.device():`). Args: func: A Python function, which accepts `ndarray` objects as arguments and returns a list of `ndarray` objects (or a single `ndarray`). This function must accept as many arguments as there are tensors in `inp`, and these argument types will match the corresponding `tf.Tensor` objects in `inp`. The returns `ndarray`s must match the number and types defined `Tout`. Important Note: Input and output numpy `ndarray`s of `func` are not guaranteed to be copies. In some cases their underlying memory will be shared with the corresponding TensorFlow tensors. In-place modification or storing `func` input or return values in python datastructures without explicit (np.)copy can have non-deterministic consequences. inp: A list of `Tensor` objects. Tout: A list or tuple of tensorflow data types or a single tensorflow data type if there is only one, indicating what `func` returns. stateful: (Boolean.) If True, the function should be considered stateful. If a function is stateless, when given the same input it will return the same output and have no observable side effects. Optimizations such as common subexpression elimination are only performed on stateless operations. name: A name for the operation (optional). Returns: A list of `Tensor` or a single `Tensor` which `func` computes. """ if context.executing_eagerly(): result = func(*[x.numpy() for x in inp]) result = nest.flatten(result) result = [x if x is None else ops.convert_to_tensor(x) for x in result] if len(result) == 1: # Mimic the automatic unwrapping in graph-mode py_func result, = result return result return _internal_py_func( func=func, inp=inp, Tout=Tout, stateful=stateful, eager=False, name=name) @deprecation.deprecated( date=None, instructions="""tf.py_func is deprecated in TF V2. Instead, there are two options available in V2. - tf.py_function takes a python function which manipulates tf eager tensors instead of numpy arrays. It's easy to convert a tf eager tensor to an ndarray (just call tensor.numpy()) but having access to eager tensors means `tf.py_function`s can use accelerators such as GPUs as well as being differentiable using a gradient tape. - tf.numpy_function maintains the semantics of the deprecated tf.py_func (it is not differentiable, and manipulates numpy arrays). It drops the stateful argument making all functions stateful. """) @tf_export(v1=["py_func"]) def py_func(func, inp, Tout, stateful=True, name=None): return py_func_common(func, inp, Tout, stateful, name=name) py_func.__doc__ = "%s" % py_func_common.__doc__ @tf_export("numpy_function") def numpy_function(func, inp, Tout, name=None): """Wraps a python function and uses it as a TensorFlow op. Given a python function `func` wrap this function as an operation in a TensorFlow function. `func` must take numpy arrays as its arguments and return numpy arrays as its outputs. The following example creates a TensorFlow graph with `np.sinh()` as an operation in the graph: >>> def my_numpy_func(x): ... # x will be a numpy array with the contents of the input to the ... # tf.function ... return np.sinh(x) >>> @tf.function(input_signature=[tf.TensorSpec(None, tf.float32)]) ... def tf_function(input): ... y = tf.numpy_function(my_numpy_func, [input], tf.float32) ... return y * y >>> tf_function(tf.constant(1.)) <tf.Tensor: id=..., shape=(), dtype=float32, numpy=1.3810978> Comparison to `tf.py_function`: `tf.py_function` and `tf.numpy_function` are very similar, except that `tf.numpy_function` takes numpy arrays, and not `tf.Tensor`s. If you want the function to contain `tf.Tensors`, and have any TensorFlow operations executed in the function be differentiable, please use `tf.py_function`. Note: The `tf.numpy_function` operation has the following known limitations: * The body of the function (i.e. `func`) will not be serialized in a `tf.SavedModel`. Therefore, you should not use this function if you need to serialize your model and restore it in a different environment. * The operation must run in the same address space as the Python program that calls `tf.numpy_function()`. If you are using distributed TensorFlow, you must run a `tf.distribute.Server` in the same process as the program that calls `tf.numpy_function` you must pin the created operation to a device in that server (e.g. using `with tf.device():`). * Since the function takes numpy arrays, you cannot take gradients through a numpy_function. If you require something that is differentiable, please consider using tf.py_function. Args: func: A Python function, which accepts `numpy.ndarray` objects as arguments and returns a list of `numpy.ndarray` objects (or a single `numpy.ndarray`). This function must accept as many arguments as there are tensors in `inp`, and these argument types will match the corresponding `tf.Tensor` objects in `inp`. The returns `numpy.ndarray`s must match the number and types defined `Tout`. Important Note: Input and output `numpy.ndarray`s of `func` are not guaranteed to be copies. In some cases their underlying memory will be shared with the corresponding TensorFlow tensors. In-place modification or storing `func` input or return values in python datastructures without explicit (np.)copy can have non-deterministic consequences. inp: A list of `tf.Tensor` objects. Tout: A list or tuple of tensorflow data types or a single tensorflow data type if there is only one, indicating what `func` returns. stateful (bool): If True, the function should be considered stateful. If a function is stateless, when given the same input it will return the same output and have no observable side effects. Optimizations such as common subexpression elimination are only performed on stateless operations. name: (Optional) A name for the operation. Returns: Single or list of `tf.Tensor` which `func` computes. """ return py_func_common(func, inp, Tout, stateful=True, name=name) ops.NotDifferentiable("PyFunc") ops.NotDifferentiable("PyFuncStateless")
the-stack_0_24900
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. """Provides utilities useful for multiprocessing.""" from multiprocessing import Lock, RawArray from collections.abc import MutableMapping import ctypes import sys class SharedTable(MutableMapping): """Provides a simple shared-memory table of integers, floats, or strings. Use this class as follows: .. code-block:: python tbl = SharedTable({'cnt': 0}) with tbl.get_lock(): tbl['startTime'] = time.time() for i in range(10): with tbl.get_lock(): tbl['cnt'] += 1 """ types = { int: ctypes.c_int, float: ctypes.c_float, bool: ctypes.c_bool, } def __init__(self, init_dict=None): """Create a shared memory version of each element of the initial dictionary. Creates an empty array otherwise, which will extend automatically when keys are added. Each different type (all supported types listed in the ``types`` array above) has its own array. For each key we store an index into the appropriate array as well as the type of value stored for that key. """ # idx is dict of {key: (array_idx, value_type)} self.idx = {} # arrays is dict of {value_type: array_of_ctype} self.arrays = {} self.tensors = {} if init_dict: sizes = {typ: 0 for typ in self.types.keys()} for k, v in init_dict.items(): if 'Tensor' in str(type(v)): # add tensor to tensor dict--don't try to put in rawarray self.tensors[k] = v continue elif type(v) not in sizes: raise TypeError('SharedTable does not support values of ' + 'type ' + str(type(v))) sizes[type(v)] += 1 # pop tensors from init_dict for k in self.tensors.keys(): init_dict.pop(k) # create raw arrays for each type for typ, sz in sizes.items(): self.arrays[typ] = RawArray(self.types[typ], sz) # track indices for each key, assign them to their typed rawarray idxs = {typ: 0 for typ in self.types.keys()} for k, v in init_dict.items(): val_type = type(v) self.idx[k] = (idxs[val_type], val_type) if val_type == str: v = sys.intern(v) self.arrays[val_type][idxs[val_type]] = v idxs[val_type] += 1 # initialize any needed empty arrays for typ, ctyp in self.types.items(): if typ not in self.arrays: self.arrays[typ] = RawArray(ctyp, 0) self.lock = Lock() def __len__(self): return len(self.idx) + len(self.tensors) def __iter__(self): return iter([k for k in self.idx] + [k for k in self.tensors]) def __contains__(self, key): return key in self.idx or key in self.tensors def __getitem__(self, key): """Returns shared value if key is available.""" if key in self.tensors: return self.tensors[key] elif key in self.idx: idx, typ = self.idx[key] return self.arrays[typ][idx] else: raise KeyError('Key "{}" not found in SharedTable'.format(key)) def __setitem__(self, key, value): """If key is in table, update it. Otherwise, extend the array to make room. This uses additive resizing not multiplicative, since the number of keys is not likely to change frequently during a run, so do not abuse it. Raises an error if you try to change the type of the value stored for that key--if you need to do this, you must delete the key first. """ val_type = type(value) if 'Tensor' in str(val_type): self.tensors[key] = value return if val_type not in self.types: raise TypeError('SharedTable does not support type ' + str(type(value))) if val_type == str: value = sys.intern(value) if key in self.idx: idx, typ = self.idx[key] if typ != val_type: raise TypeError(('Cannot change stored type for {key} from ' + '{v1} to {v2}. You need to del the key first' + ' if you need to change value types.' ).format(key=key, v1=typ, v2=val_type)) self.arrays[typ][idx] = value else: raise KeyError('Cannot add more keys to the shared table as ' 'they will not be synced across processes.') def __delitem__(self, key): if key in self.tensors: del self.tensors[key] elif key in self.idx: del self.idx[key] else: raise KeyError('Key "{}" not found in SharedTable'.format(key)) def __str__(self): """Returns simple dict representation of the mapping.""" return '{{{}}}'.format( ', '.join( ['{k}: {v}'.format(k=key, v=self.arrays[typ][idx]) for key, (idx, typ) in self.idx.items()] + ['{k}: {v}'.format(k=k, v=v) for k, v in self.tensors.items()] ) ) def __repr__(self): """Returns the object type and memory location with the mapping.""" representation = super().__repr__() return representation.replace('>', ': {}>'.format(str(self))) def get_lock(self): return self.lock
the-stack_0_24901
import requests from bs4 import BeautifulSoup import webbrowser as web import urllib.parse as urlparse import keyboard from collections import OrderedDict import re import subprocess def copy2clip(txt): return subprocess.check_call( 'echo "'+txt.strip()+'" |clip', shell=True) class Question: def __init__(self,question,options) -> None: self.question = question self.options = options class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class lms_quiz(): def __init__(self,sessionid,url): self.sessionid = sessionid self.url = url self.hot_hey = "ctrl+shift+'" self.headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.212 Safari/537.36', 'Cookie': f"MoodleSession={self.sessionid}" } self.questions = OrderedDict() self.url_parts = list(urlparse.urlparse(self.url)) self.query = dict(urlparse.parse_qsl(self.url_parts[4])) # GET TOTAL QUESTION AND PAGES html_soup = self.get_page(self.url) questions = self.get_total_questins(html_soup) self.question_count = len(questions) # pages are 0 - nth-1 # if more page exits try: self.pages = urlparse.parse_qs(urlparse.urlparse(questions[-1]).query).get('page')[0] except : self.pages = 0 # get question from first page for que in self.get_question(html_soup) : self.questions[que] = None def get_updated_url(self,params): self.query.update(params) self.url_parts[4] = urlparse.urlencode(self.query) return urlparse.urlunparse(self.url_parts) def get_all_question(self): count = 1 print(f"\n{bcolors.OKGREEN}Exploring new Pages.") while self.question_count != len(self.questions): params = {'page':f'{count}'} page_url = self.get_updated_url(params) print(f"{bcolors.OKCYAN} {count} : {page_url}{bcolors.ENDC}") # get the page page_html_soul = self.get_page(page_url) # get the questions and update list of questions for i in self.get_question(page_html_soul): ### need to use it self.questions[i] = None count += 1 if count >= self.question_count: break print() def get_page(self,url): """get the page from url and cookies then return parse resutls""" response = requests.get( url, headers = self.headers ) if response.status_code == 404: print(bcolors.FAIL, "Error in opening page - ", url, bcolors.ENDC) exit() return BeautifulSoup(response.content, 'html.parser') def get_total_questins(self,soup): """take page and return and count total questions""" return [ href for href in [link_['href'] for link_ in \ soup.select("div.qn_buttons.clearfix.multipages a") \ if link_] if href] def get_question(self,soup): """get questions from the soup/ from html page""" content = soup.select(".content .formulation.clearfix") # fix it for the text-area adn file upload questions = [] for question in content: question_ = BeautifulSoup(f"<html>{question}</html>", 'html.parser').text question_ = re.sub(r"[A-Z]{3}[0-9]{2}[A-Z][0-9]{4}[_A-Z0-9:]*","",question_) question_ = question_.replace('\r\n',' ') question_ = question_.replace('Clear my choice','') question_ = question_.replace('Select one:','\n') question_ = question_.replace('Loading...','') question_ = question_.replace('You can drag and drop files here to add them.Drop files here to upload','\n') question_ = question_.replace('Maximum file size: 1MB, ','') question_ = question_.replace('- drag and drop not supported','') question_ = question_.replace('You can drag and drop files here to add them.','') question_ = question_.replace('Drop files here to upload','') question_ = re.sub(r"maximum number of files: \d","",question_) question_ = re.sub(r"Accepted file typesDocument file.*","",question_) question_ = re.sub(r"\nPDF.*","",question_) question_ = question_.replace('\n\n','') # seperate quesiton and its options only_question = re.search(r"^Question text(.*)",question_).group(1) options = [ x.group().strip() \ for x in re.finditer(r"(\n([a-z]\. )?.*)",question_) ] or [] # for x in re.finditer(r"(([a-z]\. |\n).*)",question_) ] or [] # print(question_) # print(only_question) # print(options) # print() questions.append( Question(only_question,options) ) return questions def get_content_urls(self,question): """return the list of url to search reasults""" question = urlparse.quote(question) # update the comments to get more results return [ f"https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q={question}&btnG=",# google scholar f"https://www.google.com/search?q={question}",# google # f"https://en.wikipedia.org/w/index.php?search={question}&title=Special%3ASearch&profile=advanced",# wiki-pedia # f"https://www.quora.com/search?q={question}",# quora f"https://www.answers.com/search?q={question}",# answer f"https://www.toppr.com/ask/search/?query={question}"# toppr ] def open_searches(self,question): "this will open pages to get the results" # can be update according to use for url in self.get_content_urls(question) : web.open(url) def show_answers(self): """show resutls to the user""" for index ,ques in enumerate(self.questions.keys()): print(f"{bcolors.WARNING}[Question:{index+1}] > \n{bcolors.OKBLUE}{ques.question}{bcolors.ENDC}") for op in ques.options: print(f"{bcolors.OKBLUE}{op}{bcolors.ENDC}") copy2clip(ques.question) print(f"{bcolors.OKCYAN}\tQuestion is copied to the clip-board.{bcolors.ENDC}") print(f"{bcolors.HEADER}{bcolors.UNDERLINE}Press hot keys to see the next question results <{self.hot_hey}>.{bcolors.ENDC}") print(f"{bcolors.HEADER}{bcolors.UNDERLINE}\t\tor ctrl+c for next question.{bcolors.ENDC}") try : # on key press event keyboard.wait(f"{self.hot_hey}") except KeyboardInterrupt: print("next questinon") continue print(f"{bcolors.OKGREEN}showing pages{bcolors.ENDC}") self.open_searches(ques.question) @classmethod def runner(cls,sessionid,url): cl = cls(sessionid,url) cl.get_all_question() cl.show_answers() if __name__ == "__main__": # update the sessionid from brower and url sessionid = "" # example - '5gk1ti0t2e65qmgb0772snsdfl7' url = "" # example "https://lms.galgotiasuniversity.edu.in/mod/quiz/attempt.php?attempt=6314102&cmid=484157" # testing sessionid = "lev15q85j50mn8viqlks0ert85" # example - '5gk1ti0t2e65qmgb0772snsdfl7' url = "https://lms.galgotiasuniversity.edu.in/mod/quiz/attempt.php?attempt=6404785&cmid=500516" # example "https://lms.galgotiasuniversity.edu.in/mod/quiz/attempt.php?attempt=6314102&cmid=484157" # url = "http://127.0.0.1:5500/testing10que.html?attempt=6349252&cmid=498254" if not sessionid or not url : raise Exception(f"{bcolors.FAIL}Update the value to use the program {bcolors.ENDC}") lms_quiz.runner( sessionid,url )
the-stack_0_24903
from common.numpy_fast import clip, interp from selfdrive.boardd.boardd import can_list_to_can_capnp from selfdrive.car.toyota.toyotacan import make_can_msg, create_video_target,\ create_steer_command, create_ui_command, \ create_ipas_steer_command, create_accel_command, \ create_fcw_command from selfdrive.car.toyota.values import ECU, STATIC_MSGS from selfdrive.can.packer import CANPacker # Accel limits ACCEL_HYST_GAP = 0.02 # don't change accel command for small oscilalitons within this value ACCEL_MAX = 1.5 # 1.5 m/s2 ACCEL_MIN = -3.0 # 3 m/s2 ACCEL_SCALE = max(ACCEL_MAX, -ACCEL_MIN) # Steer torque limits STEER_MAX = 1000 #1500 STEER_DELTA_UP = 10 # 1.5s time to peak torque STEER_DELTA_DOWN = 25 # always lower than 45 otherwise the Rav4 faults (Prius seems ok with 50) STEER_ERROR_MAX = 350 # max delta between torque cmd and torque motor # Steer angle limits (tested at the Crows Landing track and considered ok) ANGLE_MAX_BP = [0., 5.] ANGLE_MAX_V = [510., 300.] ANGLE_DELTA_BP = [0., 5., 15.] ANGLE_DELTA_V = [5., .8, .15] # windup limit ANGLE_DELTA_VU = [5., 3.5, 0.4] # unwind limit TARGET_IDS = [0x340, 0x341, 0x342, 0x343, 0x344, 0x345, 0x363, 0x364, 0x365, 0x370, 0x371, 0x372, 0x373, 0x374, 0x375, 0x380, 0x381, 0x382, 0x383] def accel_hysteresis(accel, accel_steady, enabled): # for small accel oscillations within ACCEL_HYST_GAP, don't change the accel command if not enabled: # send 0 when disabled, otherwise acc faults accel_steady = 0. elif accel > accel_steady + ACCEL_HYST_GAP: accel_steady = accel - ACCEL_HYST_GAP elif accel < accel_steady - ACCEL_HYST_GAP: accel_steady = accel + ACCEL_HYST_GAP accel = accel_steady return accel, accel_steady def process_hud_alert(hud_alert, audible_alert): # initialize to no alert steer = 0 fcw = 0 sound1 = 0 sound2 = 0 if hud_alert == 'fcw': fcw = 1 elif hud_alert == 'steerRequired': steer = 1 if audible_alert == 'chimeRepeated': sound1 = 1 elif audible_alert in ['beepSingle', 'chimeSingle', 'chimeDouble']: # TODO: find a way to send single chimes sound2 = 1 return steer, fcw, sound1, sound2 def ipas_state_transition(steer_angle_enabled, enabled, ipas_active, ipas_reset_counter): if enabled and not steer_angle_enabled: #ipas_reset_counter = max(0, ipas_reset_counter - 1) #if ipas_reset_counter == 0: # steer_angle_enabled = True #else: # steer_angle_enabled = False #return steer_angle_enabled, ipas_reset_counter return True, 0 elif enabled and steer_angle_enabled: if steer_angle_enabled and not ipas_active: ipas_reset_counter += 1 else: ipas_reset_counter = 0 if ipas_reset_counter > 10: # try every 0.1s steer_angle_enabled = False return steer_angle_enabled, ipas_reset_counter else: return False, 0 class CarController(object): def __init__(self, dbc_name, car_fingerprint, enable_camera, enable_dsu, enable_apg): self.braking = False # redundant safety check with the board self.controls_allowed = True self.last_steer = 0 self.last_angle = 0 self.accel_steady = 0. self.car_fingerprint = car_fingerprint self.alert_active = False self.last_standstill = False self.standstill_req = False self.angle_control = False self.steer_angle_enabled = False self.ipas_reset_counter = 0 self.fake_ecus = set() if enable_camera: self.fake_ecus.add(ECU.CAM) if enable_dsu: self.fake_ecus.add(ECU.DSU) if enable_apg: self.fake_ecus.add(ECU.APGS) self.packer = CANPacker(dbc_name) def update(self, sendcan, enabled, CS, frame, actuators, pcm_cancel_cmd, hud_alert, audible_alert): # *** compute control surfaces *** # gas and brake apply_accel = actuators.gas - actuators.brake apply_accel, self.accel_steady = accel_hysteresis(apply_accel, self.accel_steady, enabled) apply_accel = clip(apply_accel * ACCEL_SCALE, ACCEL_MIN, ACCEL_MAX) # steer torque apply_steer = int(round(actuators.steer * STEER_MAX)) # max_lim = min(max(CS.steer_torque_motor + STEER_ERROR_MAX, STEER_ERROR_MAX), STEER_MAX) # min_lim = max(min(CS.steer_torque_motor - STEER_ERROR_MAX, -STEER_ERROR_MAX), -STEER_MAX) # apply_steer = clip(apply_steer, min_lim, max_lim) # slow rate if steer torque increases in magnitude if self.last_steer > 0: apply_steer = clip(apply_steer, max(self.last_steer - STEER_DELTA_DOWN, - STEER_DELTA_UP), self.last_steer + STEER_DELTA_UP) else: apply_steer = clip(apply_steer, self.last_steer - STEER_DELTA_UP, min(self.last_steer + STEER_DELTA_DOWN, STEER_DELTA_UP)) # dropping torque immediately might cause eps to temp fault. On the other hand, safety_toyota # cuts steer torque immediately anyway TODO: monitor if this is a real issue # only cut torque when steer state is a known fault if not enabled or CS.steer_state in [9, 25]: apply_steer = 0 self.steer_angle_enabled, self.ipas_reset_counter = \ ipas_state_transition(self.steer_angle_enabled, enabled, CS.ipas_active, self.ipas_reset_counter) #print self.steer_angle_enabled, self.ipas_reset_counter, CS.ipas_active # steer angle if self.steer_angle_enabled and CS.ipas_active: apply_angle = actuators.steerAngle angle_lim = interp(CS.v_ego, ANGLE_MAX_BP, ANGLE_MAX_V) apply_angle = clip(apply_angle, -angle_lim, angle_lim) # windup slower if self.last_angle * apply_angle > 0. and abs(apply_angle) > abs(self.last_angle): angle_rate_lim = interp(CS.v_ego, ANGLE_DELTA_BP, ANGLE_DELTA_V) else: angle_rate_lim = interp(CS.v_ego, ANGLE_DELTA_BP, ANGLE_DELTA_VU) apply_angle = clip(apply_angle, self.last_angle - angle_rate_lim, self.last_angle + angle_rate_lim) else: apply_angle = CS.angle_steers if not enabled and CS.pcm_acc_status: # send pcm acc cancel cmd if drive is disabled but pcm is still on, or if the system can't be activated pcm_cancel_cmd = 1 # on entering standstill, send standstill request if CS.standstill and not self.last_standstill: self.standstill_req = True if CS.pcm_acc_status != 8: # pcm entered standstill or it's disabled self.standstill_req = False self.last_steer = apply_steer self.last_angle = apply_angle self.last_accel = apply_accel self.last_standstill = CS.standstill can_sends = [] #*** control msgs *** #print "steer", apply_steer, min_lim, max_lim, CS.steer_torque_motor # toyota can trace shows this message at 42Hz, with counter adding alternatively 1 and 2; # sending it at 100Hz seem to allow a higher rate limit, as the rate limit seems imposed # on consecutive messages if ECU.CAM in self.fake_ecus: if self.angle_control: can_sends.append(create_steer_command(self.packer, 0., frame)) else: can_sends.append(create_steer_command(self.packer, apply_steer, frame)) if self.angle_control: can_sends.append(create_ipas_steer_command(self.packer, apply_angle, self.steer_angle_enabled, ECU.APGS in self.fake_ecus)) elif ECU.APGS in self.fake_ecus: can_sends.append(create_ipas_steer_command(self.packer, 0, 0, True)) # accel cmd comes from DSU, but we can spam can to cancel the system even if we are using lat only control if (frame % 3 == 0 and ECU.DSU in self.fake_ecus) or (pcm_cancel_cmd and ECU.CAM in self.fake_ecus): if ECU.DSU in self.fake_ecus: can_sends.append(create_accel_command(self.packer, apply_accel, pcm_cancel_cmd, self.standstill_req)) else: can_sends.append(create_accel_command(self.packer, 0, pcm_cancel_cmd, False)) if frame % 10 == 0 and ECU.CAM in self.fake_ecus: for addr in TARGET_IDS: can_sends.append(create_video_target(frame/10, addr)) # ui mesg is at 100Hz but we send asap if: # - there is something to display # - there is something to stop displaying alert_out = process_hud_alert(hud_alert, audible_alert) steer, fcw, sound1, sound2 = alert_out if (any(alert_out) and not self.alert_active) or \ (not any(alert_out) and self.alert_active): send_ui = True self.alert_active = not self.alert_active else: send_ui = False if (frame % 100 == 0 or send_ui) and ECU.CAM in self.fake_ecus: can_sends.append(create_ui_command(self.packer, steer, sound1, sound2)) can_sends.append(create_fcw_command(self.packer, fcw)) #*** static msgs *** for (addr, ecu, cars, bus, fr_step, vl) in STATIC_MSGS: if frame % fr_step == 0 and ecu in self.fake_ecus and self.car_fingerprint in cars: # special cases if fr_step == 5 and ecu == ECU.CAM and bus == 1: cnt = (((frame / 5) % 7) + 1) << 5 vl = chr(cnt) + vl elif addr in (0x489, 0x48a) and bus == 0: # add counter for those 2 messages (last 4 bits) cnt = ((frame/100)%0xf) + 1 if addr == 0x48a: # 0x48a has a 8 preceding the counter cnt += 1 << 7 vl += chr(cnt) can_sends.append(make_can_msg(addr, vl, bus, False)) sendcan.send(can_list_to_can_capnp(can_sends, msgtype='sendcan').to_bytes())
the-stack_0_24904
import collections from datetime import datetime, timedelta from typing import Optional from flask import abort, redirect, request from google.appengine.ext import ndb from pyre_extensions import none_throws from werkzeug.wrappers import Response from backend.common.consts import comp_level, playoff_type from backend.common.decorators import cached_public from backend.common.flask_cache import make_cached_response from backend.common.helpers.award_helper import AwardHelper from backend.common.helpers.event_helper import EventHelper from backend.common.helpers.match_helper import MatchHelper from backend.common.helpers.media_helper import MediaHelper from backend.common.helpers.playlist_helper import PlaylistHelper from backend.common.helpers.playoff_advancement_helper import PlayoffAdvancementHelper from backend.common.helpers.season_helper import SeasonHelper from backend.common.helpers.team_helper import TeamHelper from backend.common.models.event import Event from backend.common.models.keys import EventKey, Year from backend.common.queries import district_query, event_query, media_query from backend.web.profiled_render import render_template @cached_public def event_list(year: Optional[Year] = None) -> Response: explicit_year = year is not None if year is None: year = SeasonHelper.get_current_season() valid_years = list(reversed(SeasonHelper.get_valid_years())) if year not in valid_years: abort(404) state_prov = request.args.get("state_prov", None) districts_future = district_query.DistrictsInYearQuery(year).fetch_async() all_events_future = event_query.EventListQuery( year ).fetch_async() # Needed for state_prov if state_prov: events_future = Event.query( Event.year == year, Event.state_prov == state_prov ).fetch_async() else: events_future = all_events_future events = EventHelper.sorted_events(events_future.get_result()) if state_prov == "" or (state_prov and not events): return redirect(request.path) week_events = EventHelper.group_by_week(events) districts = [] # a tuple of (district abbrev, district name) for district in districts_future.get_result(): districts.append((district.abbreviation, district.display_name)) districts = sorted(districts, key=lambda d: d[1]) valid_state_provs = set() for event in all_events_future.get_result(): if event.state_prov: valid_state_provs.add(event.state_prov) valid_state_provs = sorted(valid_state_provs) template_values = { "events": events, "explicit_year": explicit_year, "selected_year": year, "valid_years": valid_years, "week_events": week_events, "districts": districts, "state_prov": state_prov, "valid_state_provs": valid_state_provs, } return make_cached_response( render_template("event_list.html", template_values), ttl=timedelta(minutes=5) if year == datetime.now().year else timedelta(days=1), ) @cached_public def event_detail(event_key: EventKey) -> Response: event: Optional[Event] = event_query.EventQuery(event_key).fetch() if not event: abort(404) event.prep_awards_matches_teams() event.prep_details() medias_future = media_query.EventTeamsPreferredMediasQuery(event_key).fetch_async() district_future = ( district_query.DistrictQuery( none_throws(none_throws(event.district_key).string_id()) ).fetch_async() if event.district_key else None ) event_medias_future = media_query.EventMediasQuery(event_key).fetch_async() # status_sitevar_future = Sitevar.get_by_id_async('apistatus.down_events') event_divisions_future = None event_codivisions_future = None parent_event_future = None if event.divisions: event_divisions_future = ndb.get_multi_async(event.divisions) elif event.parent_event: parent_event_future = none_throws(event.parent_event).get_async() event_codivisions_future = event_query.EventDivisionsQuery( none_throws(none_throws(event.parent_event).string_id()) ).fetch_async() awards = AwardHelper.organize_awards(event.awards) cleaned_matches = event.matches # MatchHelper.delete_invalid_matches(event.matches, event) match_count, matches = MatchHelper.organized_matches(cleaned_matches) teams = TeamHelper.sort_teams(event.teams) # pyre-ignore[6] # Organize medias by team image_medias = MediaHelper.get_images( [media for media in medias_future.get_result()] ) team_medias = collections.defaultdict(list) for image_media in image_medias: for reference in image_media.references: team_medias[reference].append(image_media) team_and_medias = [] for team in teams: team_and_medias.append((team, team_medias.get(team.key, []))) num_teams = len(team_and_medias) middle_value = num_teams // 2 if num_teams % 2 != 0: middle_value += 1 teams_a, teams_b = team_and_medias[:middle_value], team_and_medias[middle_value:] oprs = ( [i for i in event.matchstats["oprs"].items()] if (event.matchstats is not None and "oprs" in event.matchstats) else [] ) oprs = sorted(oprs, key=lambda t: t[1], reverse=True) # sort by OPR oprs = oprs[:15] # get the top 15 OPRs if event.now: matches_recent = MatchHelper.recent_matches(cleaned_matches) matches_upcoming = MatchHelper.upcoming_matches(cleaned_matches) else: matches_recent = None matches_upcoming = None bracket_table = event.playoff_bracket playoff_advancement = event.playoff_advancement double_elim_matches = PlayoffAdvancementHelper.double_elim_matches(event, matches) playoff_template = PlayoffAdvancementHelper.playoff_template(event) # Lazy handle the case when we haven't backfilled the event details if not bracket_table or not playoff_advancement: ( bracket_table2, playoff_advancement2, _, _, ) = PlayoffAdvancementHelper.generate_playoff_advancement(event, matches) bracket_table = bracket_table or bracket_table2 playoff_advancement = playoff_advancement or playoff_advancement2 district_points_sorted = None if event.district_key and event.district_points: district_points_sorted = sorted( none_throws(event.district_points)["points"].items(), key=lambda team_and_points: -team_and_points[1]["total"], ) event_insights = event.details.insights if event.details else None event_insights_template = None if event_insights: event_insights_template = "event_partials/event_insights_{}.html".format( event.year ) district = district_future.get_result() if district_future else None event_divisions = None if event_divisions_future: event_divisions = [e.get_result() for e in event_divisions_future] elif event_codivisions_future: event_divisions = event_codivisions_future.get_result() medias_by_slugname = MediaHelper.group_by_slugname( [media for media in event_medias_future.get_result()] ) has_time_predictions = matches_upcoming and any( match.predicted_time for match in matches_upcoming ) # status_sitevar = status_sitevar_future.get_result() qual_playlist = PlaylistHelper.generate_playlist_link( matches_organized=matches, title=f"{event.year} {event.name} Qualifications", allow_levels=[comp_level.CompLevel.QM], ) elim_playlist = PlaylistHelper.generate_playlist_link( matches_organized=matches, title=f"{event.year} {event.name} Playoffs", allow_levels=comp_level.ELIM_LEVELS, ) template_values = { "event": event, "event_down": False, # status_sitevar and event_key in status_sitevar.contents, "district_name": district.display_name if district else None, "district_abbrev": district.abbreviation if district else None, "matches": matches, "match_count": match_count, "matches_recent": matches_recent, "matches_upcoming": matches_upcoming, "has_time_predictions": has_time_predictions, "awards": awards, "teams_a": teams_a, "teams_b": teams_b, "num_teams": num_teams, "oprs": oprs, "bracket_table": bracket_table, "playoff_advancement": playoff_advancement, "playoff_template": playoff_template, "playoff_advancement_tiebreakers": PlayoffAdvancementHelper.ROUND_ROBIN_TIEBREAKERS.get( event.year, [] ), "district_points_sorted": district_points_sorted, "event_insights_qual": event_insights["qual"] if event_insights else None, "event_insights_playoff": event_insights["playoff"] if event_insights else None, "event_insights_template": event_insights_template, "medias_by_slugname": medias_by_slugname, "event_divisions": event_divisions, "parent_event": parent_event_future.get_result() if parent_event_future else None, "double_elim_matches": double_elim_matches, "double_elim_playoff_types": playoff_type.DOUBLE_ELIM_TYPES, "qual_playlist": qual_playlist, "elim_playlist": elim_playlist, } return make_cached_response( render_template("event_details.html", template_values), ttl=timedelta(seconds=61) if event.within_a_day else timedelta(days=1), )
the-stack_0_24906
from __future__ import division import imp import os import sys import numpy as np from pyrl import utils from pyrl.figtools import Figure #========================================================================================= # Files #========================================================================================= here = utils.get_here(__file__) parent = utils.get_parent(here) # Paths scratchpath = os.environ.get('SCRATCH') if scratchpath is None: scratchpath = os.path.join(os.environ['HOME'], 'scratch') trialspath = os.path.join(scratchpath, 'work', 'pyrl', 'examples') analysispath = os.path.join(parent, 'examples', 'analysis') modelspath = os.path.join(parent, 'examples', 'models') # analysis analysisfile = os.path.join(analysispath, 'postdecisionwager.py') analysis = imp.load_source('postdecisionwager_analysis', analysisfile) # model modelfile = os.path.join(modelspath, 'postdecisionwager.py') model = imp.load_source('model', modelfile) trialsfile_b = os.path.join(trialspath, 'postdecisionwager', 'trials_behavior.pkl') trialsfile_a = os.path.join(trialspath, 'postdecisionwager', 'trials_activity.pkl') #========================================================================================= # Figure #========================================================================================= w = utils.mm_to_inch(114) r = 0.9 thickness = 0.4 axislabelsize = 6 fig = Figure(w=w, r=r, thickness=thickness, ticksize=3, ticklabelsize=5, axislabelsize=axislabelsize, labelpadx=3, labelpady=4.5) x0 = 0.16 y0 = 0.67 DX = 0.1 w_task = 0.82 h_task = 0.3 dy0 = 0.09 dy = 0.12 w_behavior = 0.24 h_behavior = 0.2 y1 = y0-dy0-h_behavior dx = 0.03 w_fr = 0.12 h_fr = 0.18 y2 = y1-dy-h_fr fig.add('task', [x0, y0, w_task, h_task]), fig.add('sure-stimulus-duration', [x0, y1, w_behavior, h_behavior]), fig.add('correct-stimulus-duration', [fig[-1].right+DX, y1, w_behavior, h_behavior]), fig.add('noTs-stimulus', [x0, y2, w_fr, h_fr]), fig.add('noTs-choice', [fig[-1].right+dx, y2, 5/8*w_fr, h_fr]), fig.add('Ts-stimulus', [fig[-1].right+1.1*DX, y2, w_fr, h_fr]), fig.add('Ts-sure', [fig[-1].right+dx, y2, w_fr, h_fr]), fig.add('Ts-choice', [fig[-1].right+dx, y2, 5/8*w_fr, h_fr]) pl_x0 = 0.025 pl_y0 = 0.945 pl_y1 = 0.595 pl_y2 = 0.28 plotlabels = { 'A': (pl_x0, pl_y0), 'B': (pl_x0, pl_y1), 'C': (pl_x0, pl_y2) } fig.plotlabels(plotlabels, fontsize=9) #========================================================================================= # Task #========================================================================================= rng = np.random.RandomState(1) plot = fig['task'] plot.axis_off('left') plot.axis_off('bottom') ms = 2.5 dx_circ = 0.14 dy_above = +0.08 dy_below = -0.1 fontsize = 4.5 def circle(x, y, color): if color is None: plot.plot(x, y, 'o', ms=ms, mew=0.5, mfc='none', mec='k') else: plot.plot(x, y, 'o', ms=ms, mew=0.5, mfc=color, mec=color) def display_actions(x, y, rewards, colors): rF, rL, rR, rS = rewards cF, cL, cR, cS = colors circle(x-1.5*dx_circ, y, cF) plot.text(x-1.5*dx_circ, y+dy_above, 'F', ha='center', va='bottom', fontsize=fontsize) plot.text(x-1.5*dx_circ, y+dy_below, rF, ha='center', va='top', fontsize=fontsize) circle(x-0.5*dx_circ, y, cL) plot.text(x-0.5*dx_circ, y+dy_above, 'L', ha='center', va='bottom', fontsize=fontsize) plot.text(x-0.5*dx_circ, y+dy_below, rL, ha='center', va='top', fontsize=fontsize) circle(x+0.5*dx_circ, y, cR) plot.text(x+0.5*dx_circ, y+dy_above, 'R', ha='center', va='bottom', fontsize=fontsize) plot.text(x+0.5*dx_circ, y+dy_below, rR, ha='center', va='top', fontsize=fontsize) circle(x+1.5*dx_circ, y, cS) plot.text(x+1.5*dx_circ, y+dy_above, 'S', ha='center', va='bottom', fontsize=fontsize) plot.text(x+1.5*dx_circ, y+dy_below, rS, ha='center', va='top', fontsize=fontsize) # Durations durations = {} durations['fixation'] = (0, 1) durations['stimulus'] = (1, 2) durations['delay'] = (2, 4) durations['sure'] = (3, 4) durations['decision'] = (4, 5) trial_t = np.linspace(0, durations['decision'][1], 501)[1:] lw = 0.6 # Baselines y_sure_Ts = 1.75 y_fixation = 1.3 y_stimulus = 0.65 y_sure_noTs = 0.05 def fake_left_axis(ybot, ytop, thickness, ticklabels=None, axislabel=None): plot.plot(np.zeros(2), [ybot, ytop], color='k', lw=thickness) plot.plot([-0.03, 0], ybot*np.ones(2), color='k', lw=thickness) plot.plot([-0.03, 0], ytop*np.ones(2), color='k', lw=thickness) if ticklabels is not None: plot.text(-0.06, ytop, ticklabels[1], ha='right', va='center', fontsize=3.5) plot.text(-0.06, ybot, ticklabels[0], ha='right', va='center', fontsize=3.5) if axislabel is not None: text = plot.text(-0.25, (ybot+ytop)/2, axislabel, ha='right', va='center', fontsize=4.5) #----------------------------------------------------------------------------------------- # Plot fixation #----------------------------------------------------------------------------------------- fixation = np.zeros_like(trial_t) w, = np.where((0 <= trial_t) & (trial_t <= durations['decision'][0])) fixation[w] = 1 def rescale(y): return y_fixation + 0.2*y fake_left_axis(rescale(0), rescale(1), thickness, ticklabels=['OFF', 'ON'], axislabel='Fixation cue') plot.plot(trial_t, rescale(fixation), color=Figure.colors('darkgreen'), lw=lw) #----------------------------------------------------------------------------------------- # Plot stimulus #----------------------------------------------------------------------------------------- coh = 25.6 stimulus_L = np.zeros_like(trial_t) stimulus_R = np.zeros_like(trial_t) w, = np.where((durations['stimulus'][0] < trial_t) & (trial_t <= durations['stimulus'][1])) stimulus_L[w] = model.scale(-coh) + rng.normal(scale=0.15, size=len(w)) stimulus_R[w] = model.scale(+coh) + rng.normal(scale=0.15, size=len(w)) def rescale(y): return y_stimulus + 0.3*y fake_left_axis(rescale(0), rescale(1), thickness, ticklabels=[0, 1], axislabel='Evidence L/R') plot.plot(trial_t, rescale(stimulus_L), color=Figure.colors('red'), lw=lw) plot.plot(trial_t, rescale(stimulus_R), color=Figure.colors('blue'), lw=lw) #----------------------------------------------------------------------------------------- # Plot sure target #----------------------------------------------------------------------------------------- sure = np.zeros_like(trial_t) w, = np.where((durations['sure'][0] < trial_t)) sure[w] = 1 def rescale(y): return y_sure_Ts + 0.2*y fake_left_axis(rescale(0), rescale(1), thickness, ticklabels=['OFF', 'ON'], axislabel='Sure target\n(Wager trials)') plot.plot(trial_t, rescale(sure), color=Figure.colors('magenta'), lw=lw) def rescale(y): return y_sure_noTs + 0.2*y sure = np.zeros_like(trial_t) fake_left_axis(rescale(0), rescale(1), thickness, ticklabels=['OFF', 'ON'], axislabel='Sure target\n(Non-wager trials)') plot.plot(trial_t, rescale(sure), color=Figure.colors('magenta'), lw=lw) #----------------------------------------------------------------------------------------- # Display actions (all trials)) #----------------------------------------------------------------------------------------- shift = 0.55 rewards = ['0', '-1', '-1', '-1'] colors = ['k', None, None, None] display_actions(np.mean(durations['fixation']), y_stimulus+shift, rewards, colors) rewards = ['0', '-1', '-1', '-1'] colors = ['k', None, None, None] display_actions(np.mean(durations['stimulus']), y_stimulus+shift, rewards, colors) rewards = ['0', '-1', '-1', '-1'] colors = ['k', None, None, None] display_actions(np.mean(durations['delay']), y_stimulus+shift, rewards, colors) #----------------------------------------------------------------------------------------- # Display actions (Ts) #----------------------------------------------------------------------------------------- shift = 0.5 rewards = ['0', '0', '1', '0.7'] colors = [None, None, Figure.colors('darkblue'), Figure.colors('blue')] display_actions(np.mean(durations['decision']), y_sure_Ts+shift, rewards, colors) plot.text(durations['sure'][0], y_sure_Ts+shift, 'Sure bet offered', ha='left', va='center', fontsize=fontsize+0.5) #----------------------------------------------------------------------------------------- # Display actions (no Ts) #----------------------------------------------------------------------------------------- shift = 0.3 rewards = ['0', '0', '1', '-1'] colors = [None, None, Figure.colors('darkblue'), None] display_actions(np.mean(durations['decision']), y_sure_noTs+shift, rewards, colors) plot.text(durations['sure'][0], y_sure_noTs+shift, 'Sure bet not offered', ha='left', va='center', fontsize=fontsize+0.5) #----------------------------------------------------------------------------------------- y_timeline = -0.35 # Task timeline plot.plot([0, durations['decision'][1]], y_timeline*np.ones(2), 'k', lw=0.75) for t in [0] + [durations[e][1] for e in ['fixation', 'stimulus', 'delay', 'decision']]: plot.plot(t*np.ones(2), [y_timeline-0.04, y_timeline+0.04], 'k', lw=0.75) # Epoch labels for e, label in zip(['fixation', 'stimulus', 'delay', 'decision'], ['Fixation', 'Stimulus', 'Delay/Sure target', 'Decision']): plot.text(np.mean(durations[e]), y_timeline+0.08, label, ha='center', va='bottom', fontsize=fontsize+0.5) # Epoch durations for e, label in zip(['fixation', 'stimulus', 'delay', 'decision'], ['750 ms', '100-900 ms', '1200-1800 ms\n(Sure target onset 500-750 ms)', '500 ms']): plot.text(np.mean(durations[e]), y_timeline-0.11, label, ha='center', va='top', fontsize=fontsize+0.5) # Limits plot.xlim(0, durations['decision'][1]) plot.ylim(y_timeline, y_sure_Ts+0.2+0.35) #========================================================================================= plot = fig['sure-stimulus-duration'] savefile = os.path.join(here, 'work', 'data', 'sure_stimulus_duration.pkl') if 'fast' in sys.argv and os.path.isfile(savefile): print("Plotting data in {}".format(savefile)) saved = utils.load(savefile) else: saved = None kwargs = dict(ms=3, lw=0.7) saved = analysis.sure_stimulus_duration(trialsfile_b, plot, saved=saved, nbins=10, **kwargs) utils.save(savefile, saved) plot.xticks([100, 300, 500, 700]) plot.yticks([0, 0.2, 0.4, 0.6, 0.8]) plot.xlim(100, 700) plot.ylim(0, 0.8) plot.xlabel('Stimulus duration (ms)') plot.ylabel('Probability sure target') # Legend props = {'prop': {'size': 5}, 'handlelength': 1.2, 'handletextpad': 1.1, 'labelspacing': 0.7} plot.legend(bbox_to_anchor=(3, 0.98), **props) #========================================================================================= plot = fig['correct-stimulus-duration'] savefile = os.path.join(here, 'work', 'data', 'correct_stimulus_duration.pkl') if 'fast' in sys.argv and os.path.isfile(savefile): print("Plotting data in {}".format(savefile)) saved = utils.load(savefile) else: saved = None kwargs = dict(ms=2.5, mew=0.5, lw=0.7, dashes=[3, 1]) saved = analysis.correct_stimulus_duration(trialsfile_b, plot, saved=saved, nbins=10, **kwargs) utils.save(savefile, saved) plot.xticks([100, 300, 500, 700]) plot.xlim(100, 700) plot.ylim(0.5, 1) plot.xlabel('Stimulus duration (ms)') plot.ylabel('Probability correct') #========================================================================================= # Plot unit #========================================================================================= unit = 63 plots = {name: fig[name] for name in ['noTs-stimulus', 'noTs-choice', 'Ts-stimulus', 'Ts-sure', 'Ts-choice']} kwargs = dict(lw=0.8, lw_vline=0.4, dashes=[3, 1.5], dashes_vline=[5, 4]) y = analysis.sort(trialsfile_a, plots, unit=unit, **kwargs) for plot in plots.values(): ylim = plot.lim('y', y, lower=0) plot.vline(0, lw=thickness, linestyle='--', dashes=[3.5, 2]) fig['noTs-choice'].xticks([-400, 0]) fig['Ts-choice'].xticks([-400, 0]) #========================================================================================= fontsize_epoch = 5 y_epoch = 1.03*ylim[1] plot = fig['noTs-stimulus'] plot.xlabel('Time (ms)') plot.ylabel('Firing rate (a.u.)') plot.text(0, y_epoch , 'stimulus', fontsize=fontsize_epoch, ha='left', va='bottom') plot = fig['noTs-choice'] plot.axis_off('left') plot.text(0, y_epoch , 'choice', fontsize=fontsize_epoch, ha='right', va='bottom') plot = fig['Ts-stimulus'] plot.xlabel('Time (ms)') plot.ylabel('Firing rate (a.u.)') plot.text(0, y_epoch , 'stimulus', fontsize=fontsize_epoch, ha='left', va='bottom') plot = fig['Ts-sure'] plot.axis_off('left') plot.text(0, y_epoch , 'sure target', fontsize=fontsize_epoch, ha='left', va='bottom') plot = fig['Ts-choice'] plot.axis_off('left') plot.text(0, y_epoch , 'choice', fontsize=fontsize_epoch, ha='right', va='bottom') #========================================================================================= fig.save()
the-stack_0_24908
import functools import operator import sys import time VECTORS = frozenset([ (1, 1), (3, 1), (5, 1), (7, 1), (1, 2), ]) def main(terrain_data): t = [] for r, d in VECTORS: w = len(terrain_data[0]) h = len(terrain_data) l = p = 0 t.append(0) while True: l += d p += r p = p % (w - 1) t[-1] += terrain_data[l][p] if l + 1 == h: break return functools.reduce(operator.mul, t, 1) def reader(fh): for l in fh: yield list(map(lambda c: c != '.', l)) if __name__ == '__main__': fname = sys.argv[1] with open(fname, 'r') as fh: inputs = list(reader(fh)) start = time.monotonic_ns() result = main(inputs) end = time.monotonic_ns() print(result) print(f'Result calculated in {(end - start) / 1e3:0.3f} microseconds.', file=sys.stderr)
the-stack_0_24910
# IMPORTANT: the same tests are run from "test_xml_etree_c" in order # to ensure consistency between the C implementation and the Python # implementation. # # For this purpose, the module-level "ET" symbol is temporarily # monkey-patched when running the "test_xml_etree_c" test suite. import copy import functools import html import io import itertools import locale import operator import os import pickle import sys import textwrap import types import unittest import warnings import weakref from functools import partial from itertools import product, islice from test import support from test.support import findfile, gc_collect, swap_attr, os_helper from test.support.os_helper import TESTFN from test.support.import_helper import import_fresh_module # pyET is the pure-Python implementation. # # ET is pyET in test_xml_etree and is the C accelerated version in # test_xml_etree_c. pyET = None ET = None SIMPLE_XMLFILE = findfile("simple.xml", subdir="xmltestdata") try: SIMPLE_XMLFILE.encode("utf-8") except UnicodeEncodeError: raise unittest.SkipTest("filename is not encodable to utf8") SIMPLE_NS_XMLFILE = findfile("simple-ns.xml", subdir="xmltestdata") UTF8_BUG_XMLFILE = findfile("expat224_utf8_bug.xml", subdir="xmltestdata") SAMPLE_XML = """\ <body> <tag class='a'>text</tag> <tag class='b' /> <section> <tag class='b' id='inner'>subtext</tag> </section> </body> """ SAMPLE_SECTION = """\ <section> <tag class='b' id='inner'>subtext</tag> <nexttag /> <nextsection> <tag /> </nextsection> </section> """ SAMPLE_XML_NS = """ <body xmlns="http://effbot.org/ns"> <tag>text</tag> <tag /> <section> <tag>subtext</tag> </section> </body> """ SAMPLE_XML_NS_ELEMS = """ <root> <h:table xmlns:h="hello"> <h:tr> <h:td>Apples</h:td> <h:td>Bananas</h:td> </h:tr> </h:table> <f:table xmlns:f="foo"> <f:name>African Coffee Table</f:name> <f:width>80</f:width> <f:length>120</f:length> </f:table> </root> """ ENTITY_XML = """\ <!DOCTYPE points [ <!ENTITY % user-entities SYSTEM 'user-entities.xml'> %user-entities; ]> <document>&entity;</document> """ EXTERNAL_ENTITY_XML = """\ <!DOCTYPE points [ <!ENTITY entity SYSTEM "file:///non-existing-file.xml"> ]> <document>&entity;</document> """ def checkwarnings(*filters, quiet=False): def decorator(test): def newtest(*args, **kwargs): with support.check_warnings(*filters, quiet=quiet): test(*args, **kwargs) functools.update_wrapper(newtest, test) return newtest return decorator class ModuleTest(unittest.TestCase): def test_sanity(self): # Import sanity. from xml.etree import ElementTree from xml.etree import ElementInclude from xml.etree import ElementPath def test_all(self): names = ("xml.etree.ElementTree", "_elementtree") support.check__all__(self, ET, names, not_exported=("HTML_EMPTY",)) def serialize(elem, to_string=True, encoding='unicode', **options): if encoding != 'unicode': file = io.BytesIO() else: file = io.StringIO() tree = ET.ElementTree(elem) tree.write(file, encoding=encoding, **options) if to_string: return file.getvalue() else: file.seek(0) return file def summarize_list(seq): return [elem.tag for elem in seq] class ElementTestCase: @classmethod def setUpClass(cls): cls.modules = {pyET, ET} def pickleRoundTrip(self, obj, name, dumper, loader, proto): save_m = sys.modules[name] try: sys.modules[name] = dumper temp = pickle.dumps(obj, proto) sys.modules[name] = loader result = pickle.loads(temp) except pickle.PicklingError as pe: # pyET must be second, because pyET may be (equal to) ET. human = dict([(ET, "cET"), (pyET, "pyET")]) raise support.TestFailed("Failed to round-trip %r from %r to %r" % (obj, human.get(dumper, dumper), human.get(loader, loader))) from pe finally: sys.modules[name] = save_m return result def assertEqualElements(self, alice, bob): self.assertIsInstance(alice, (ET.Element, pyET.Element)) self.assertIsInstance(bob, (ET.Element, pyET.Element)) self.assertEqual(len(list(alice)), len(list(bob))) for x, y in zip(alice, bob): self.assertEqualElements(x, y) properties = operator.attrgetter('tag', 'tail', 'text', 'attrib') self.assertEqual(properties(alice), properties(bob)) # -------------------------------------------------------------------- # element tree tests class ElementTreeTest(unittest.TestCase): def serialize_check(self, elem, expected): self.assertEqual(serialize(elem), expected) def test_interface(self): # Test element tree interface. def check_string(string): len(string) for char in string: self.assertEqual(len(char), 1, msg="expected one-character string, got %r" % char) new_string = string + "" new_string = string + " " string[:0] def check_mapping(mapping): len(mapping) keys = mapping.keys() items = mapping.items() for key in keys: item = mapping[key] mapping["key"] = "value" self.assertEqual(mapping["key"], "value", msg="expected value string, got %r" % mapping["key"]) def check_element(element): self.assertTrue(ET.iselement(element), msg="not an element") direlem = dir(element) for attr in 'tag', 'attrib', 'text', 'tail': self.assertTrue(hasattr(element, attr), msg='no %s member' % attr) self.assertIn(attr, direlem, msg='no %s visible by dir' % attr) check_string(element.tag) check_mapping(element.attrib) if element.text is not None: check_string(element.text) if element.tail is not None: check_string(element.tail) for elem in element: check_element(elem) element = ET.Element("tag") check_element(element) tree = ET.ElementTree(element) check_element(tree.getroot()) element = ET.Element("t\xe4g", key="value") tree = ET.ElementTree(element) self.assertRegex(repr(element), r"^<Element 't\xe4g' at 0x.*>$") element = ET.Element("tag", key="value") # Make sure all standard element methods exist. def check_method(method): self.assertTrue(hasattr(method, '__call__'), msg="%s not callable" % method) check_method(element.append) check_method(element.extend) check_method(element.insert) check_method(element.remove) check_method(element.getchildren) check_method(element.find) check_method(element.iterfind) check_method(element.findall) check_method(element.findtext) check_method(element.clear) check_method(element.get) check_method(element.set) check_method(element.keys) check_method(element.items) check_method(element.iter) check_method(element.itertext) check_method(element.getiterator) # These methods return an iterable. See bug 6472. def check_iter(it): check_method(it.__next__) check_iter(element.iterfind("tag")) check_iter(element.iterfind("*")) check_iter(tree.iterfind("tag")) check_iter(tree.iterfind("*")) # These aliases are provided: self.assertEqual(ET.XML, ET.fromstring) self.assertEqual(ET.PI, ET.ProcessingInstruction) def test_set_attribute(self): element = ET.Element('tag') self.assertEqual(element.tag, 'tag') element.tag = 'Tag' self.assertEqual(element.tag, 'Tag') element.tag = 'TAG' self.assertEqual(element.tag, 'TAG') self.assertIsNone(element.text) element.text = 'Text' self.assertEqual(element.text, 'Text') element.text = 'TEXT' self.assertEqual(element.text, 'TEXT') self.assertIsNone(element.tail) element.tail = 'Tail' self.assertEqual(element.tail, 'Tail') element.tail = 'TAIL' self.assertEqual(element.tail, 'TAIL') self.assertEqual(element.attrib, {}) element.attrib = {'a': 'b', 'c': 'd'} self.assertEqual(element.attrib, {'a': 'b', 'c': 'd'}) element.attrib = {'A': 'B', 'C': 'D'} self.assertEqual(element.attrib, {'A': 'B', 'C': 'D'}) # TODO: RUSTPYTHON @unittest.expectedFailure def test_simpleops(self): # Basic method sanity checks. elem = ET.XML("<body><tag/></body>") self.serialize_check(elem, '<body><tag /></body>') e = ET.Element("tag2") elem.append(e) self.serialize_check(elem, '<body><tag /><tag2 /></body>') elem.remove(e) self.serialize_check(elem, '<body><tag /></body>') elem.insert(0, e) self.serialize_check(elem, '<body><tag2 /><tag /></body>') elem.remove(e) elem.extend([e]) self.serialize_check(elem, '<body><tag /><tag2 /></body>') elem.remove(e) elem.extend(iter([e])) self.serialize_check(elem, '<body><tag /><tag2 /></body>') elem.remove(e) element = ET.Element("tag", key="value") self.serialize_check(element, '<tag key="value" />') # 1 subelement = ET.Element("subtag") element.append(subelement) self.serialize_check(element, '<tag key="value"><subtag /></tag>') # 2 element.insert(0, subelement) self.serialize_check(element, '<tag key="value"><subtag /><subtag /></tag>') # 3 element.remove(subelement) self.serialize_check(element, '<tag key="value"><subtag /></tag>') # 4 element.remove(subelement) self.serialize_check(element, '<tag key="value" />') # 5 with self.assertRaises(ValueError) as cm: element.remove(subelement) self.assertEqual(str(cm.exception), 'list.remove(x): x not in list') self.serialize_check(element, '<tag key="value" />') # 6 element[0:0] = [subelement, subelement, subelement] self.serialize_check(element[1], '<subtag />') self.assertEqual(element[1:9], [element[1], element[2]]) self.assertEqual(element[:9:2], [element[0], element[2]]) del element[1:2] self.serialize_check(element, '<tag key="value"><subtag /><subtag /></tag>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_cdata(self): # Test CDATA handling (etc). self.serialize_check(ET.XML("<tag>hello</tag>"), '<tag>hello</tag>') self.serialize_check(ET.XML("<tag>&#104;&#101;&#108;&#108;&#111;</tag>"), '<tag>hello</tag>') self.serialize_check(ET.XML("<tag><![CDATA[hello]]></tag>"), '<tag>hello</tag>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_file_init(self): stringfile = io.BytesIO(SAMPLE_XML.encode("utf-8")) tree = ET.ElementTree(file=stringfile) self.assertEqual(tree.find("tag").tag, 'tag') self.assertEqual(tree.find("section/tag").tag, 'tag') tree = ET.ElementTree(file=SIMPLE_XMLFILE) self.assertEqual(tree.find("element").tag, 'element') self.assertEqual(tree.find("element/../empty-element").tag, 'empty-element') # TODO: RUSTPYTHON @unittest.expectedFailure def test_path_cache(self): # Check that the path cache behaves sanely. from xml.etree import ElementPath elem = ET.XML(SAMPLE_XML) for i in range(10): ET.ElementTree(elem).find('./'+str(i)) cache_len_10 = len(ElementPath._cache) for i in range(10): ET.ElementTree(elem).find('./'+str(i)) self.assertEqual(len(ElementPath._cache), cache_len_10) for i in range(20): ET.ElementTree(elem).find('./'+str(i)) self.assertGreater(len(ElementPath._cache), cache_len_10) for i in range(600): ET.ElementTree(elem).find('./'+str(i)) self.assertLess(len(ElementPath._cache), 500) # TODO: RUSTPYTHON @unittest.expectedFailure def test_copy(self): # Test copy handling (etc). import copy e1 = ET.XML("<tag>hello<foo/></tag>") e2 = copy.copy(e1) e3 = copy.deepcopy(e1) e1.find("foo").tag = "bar" self.serialize_check(e1, '<tag>hello<bar /></tag>') self.serialize_check(e2, '<tag>hello<bar /></tag>') self.serialize_check(e3, '<tag>hello<foo /></tag>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_attrib(self): # Test attribute handling. elem = ET.Element("tag") elem.get("key") # 1.1 self.assertEqual(elem.get("key", "default"), 'default') # 1.2 elem.set("key", "value") self.assertEqual(elem.get("key"), 'value') # 1.3 elem = ET.Element("tag", key="value") self.assertEqual(elem.get("key"), 'value') # 2.1 self.assertEqual(elem.attrib, {'key': 'value'}) # 2.2 attrib = {"key": "value"} elem = ET.Element("tag", attrib) attrib.clear() # check for aliasing issues self.assertEqual(elem.get("key"), 'value') # 3.1 self.assertEqual(elem.attrib, {'key': 'value'}) # 3.2 attrib = {"key": "value"} elem = ET.Element("tag", **attrib) attrib.clear() # check for aliasing issues self.assertEqual(elem.get("key"), 'value') # 4.1 self.assertEqual(elem.attrib, {'key': 'value'}) # 4.2 elem = ET.Element("tag", {"key": "other"}, key="value") self.assertEqual(elem.get("key"), 'value') # 5.1 self.assertEqual(elem.attrib, {'key': 'value'}) # 5.2 elem = ET.Element('test') elem.text = "aa" elem.set('testa', 'testval') elem.set('testb', 'test2') self.assertEqual(ET.tostring(elem), b'<test testa="testval" testb="test2">aa</test>') self.assertEqual(sorted(elem.keys()), ['testa', 'testb']) self.assertEqual(sorted(elem.items()), [('testa', 'testval'), ('testb', 'test2')]) self.assertEqual(elem.attrib['testb'], 'test2') elem.attrib['testb'] = 'test1' elem.attrib['testc'] = 'test2' self.assertEqual(ET.tostring(elem), b'<test testa="testval" testb="test1" testc="test2">aa</test>') elem = ET.Element('test') elem.set('a', '\r') elem.set('b', '\r\n') elem.set('c', '\t\n\r ') elem.set('d', '\n\n') self.assertEqual(ET.tostring(elem), b'<test a="&#10;" b="&#10;" c="&#09;&#10;&#10; " d="&#10;&#10;" />') def test_makeelement(self): # Test makeelement handling. elem = ET.Element("tag") attrib = {"key": "value"} subelem = elem.makeelement("subtag", attrib) self.assertIsNot(subelem.attrib, attrib, msg="attrib aliasing") elem.append(subelem) self.serialize_check(elem, '<tag><subtag key="value" /></tag>') elem.clear() self.serialize_check(elem, '<tag />') elem.append(subelem) self.serialize_check(elem, '<tag><subtag key="value" /></tag>') elem.extend([subelem, subelem]) self.serialize_check(elem, '<tag><subtag key="value" /><subtag key="value" /><subtag key="value" /></tag>') elem[:] = [subelem] self.serialize_check(elem, '<tag><subtag key="value" /></tag>') elem[:] = tuple([subelem]) self.serialize_check(elem, '<tag><subtag key="value" /></tag>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_parsefile(self): # Test parsing from file. tree = ET.parse(SIMPLE_XMLFILE) stream = io.StringIO() tree.write(stream, encoding='unicode') self.assertEqual(stream.getvalue(), '<root>\n' ' <element key="value">text</element>\n' ' <element>text</element>tail\n' ' <empty-element />\n' '</root>') tree = ET.parse(SIMPLE_NS_XMLFILE) stream = io.StringIO() tree.write(stream, encoding='unicode') self.assertEqual(stream.getvalue(), '<ns0:root xmlns:ns0="namespace">\n' ' <ns0:element key="value">text</ns0:element>\n' ' <ns0:element>text</ns0:element>tail\n' ' <ns0:empty-element />\n' '</ns0:root>') with open(SIMPLE_XMLFILE) as f: data = f.read() parser = ET.XMLParser() self.assertRegex(parser.version, r'^Expat ') parser.feed(data) self.serialize_check(parser.close(), '<root>\n' ' <element key="value">text</element>\n' ' <element>text</element>tail\n' ' <empty-element />\n' '</root>') target = ET.TreeBuilder() parser = ET.XMLParser(target=target) parser.feed(data) self.serialize_check(parser.close(), '<root>\n' ' <element key="value">text</element>\n' ' <element>text</element>tail\n' ' <empty-element />\n' '</root>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_parseliteral(self): element = ET.XML("<html><body>text</body></html>") self.assertEqual(ET.tostring(element, encoding='unicode'), '<html><body>text</body></html>') element = ET.fromstring("<html><body>text</body></html>") self.assertEqual(ET.tostring(element, encoding='unicode'), '<html><body>text</body></html>') sequence = ["<html><body>", "text</bo", "dy></html>"] element = ET.fromstringlist(sequence) self.assertEqual(ET.tostring(element), b'<html><body>text</body></html>') self.assertEqual(b"".join(ET.tostringlist(element)), b'<html><body>text</body></html>') self.assertEqual(ET.tostring(element, "ascii"), b"<?xml version='1.0' encoding='ascii'?>\n" b"<html><body>text</body></html>") _, ids = ET.XMLID("<html><body>text</body></html>") self.assertEqual(len(ids), 0) _, ids = ET.XMLID("<html><body id='body'>text</body></html>") self.assertEqual(len(ids), 1) self.assertEqual(ids["body"].tag, 'body') # TODO: RUSTPYTHON @unittest.expectedFailure def test_iterparse(self): # Test iterparse interface. iterparse = ET.iterparse context = iterparse(SIMPLE_XMLFILE) action, elem = next(context) self.assertEqual((action, elem.tag), ('end', 'element')) self.assertEqual([(action, elem.tag) for action, elem in context], [ ('end', 'element'), ('end', 'empty-element'), ('end', 'root'), ]) self.assertEqual(context.root.tag, 'root') context = iterparse(SIMPLE_NS_XMLFILE) self.assertEqual([(action, elem.tag) for action, elem in context], [ ('end', '{namespace}element'), ('end', '{namespace}element'), ('end', '{namespace}empty-element'), ('end', '{namespace}root'), ]) events = () context = iterparse(SIMPLE_XMLFILE, events) self.assertEqual([(action, elem.tag) for action, elem in context], []) events = () context = iterparse(SIMPLE_XMLFILE, events=events) self.assertEqual([(action, elem.tag) for action, elem in context], []) events = ("start", "end") context = iterparse(SIMPLE_XMLFILE, events) self.assertEqual([(action, elem.tag) for action, elem in context], [ ('start', 'root'), ('start', 'element'), ('end', 'element'), ('start', 'element'), ('end', 'element'), ('start', 'empty-element'), ('end', 'empty-element'), ('end', 'root'), ]) events = ("start", "end", "start-ns", "end-ns") context = iterparse(SIMPLE_NS_XMLFILE, events) self.assertEqual([(action, elem.tag) if action in ("start", "end") else (action, elem) for action, elem in context], [ ('start-ns', ('', 'namespace')), ('start', '{namespace}root'), ('start', '{namespace}element'), ('end', '{namespace}element'), ('start', '{namespace}element'), ('end', '{namespace}element'), ('start', '{namespace}empty-element'), ('end', '{namespace}empty-element'), ('end', '{namespace}root'), ('end-ns', None), ]) events = ('start-ns', 'end-ns') context = iterparse(io.StringIO(r"<root xmlns=''/>"), events) res = [action for action, elem in context] self.assertEqual(res, ['start-ns', 'end-ns']) events = ("start", "end", "bogus") with open(SIMPLE_XMLFILE, "rb") as f: with self.assertRaises(ValueError) as cm: iterparse(f, events) self.assertFalse(f.closed) self.assertEqual(str(cm.exception), "unknown event 'bogus'") with support.check_no_resource_warning(self): with self.assertRaises(ValueError) as cm: iterparse(SIMPLE_XMLFILE, events) self.assertEqual(str(cm.exception), "unknown event 'bogus'") del cm source = io.BytesIO( b"<?xml version='1.0' encoding='iso-8859-1'?>\n" b"<body xmlns='http://&#233;ffbot.org/ns'\n" b" xmlns:cl\xe9='http://effbot.org/ns'>text</body>\n") events = ("start-ns",) context = iterparse(source, events) self.assertEqual([(action, elem) for action, elem in context], [ ('start-ns', ('', 'http://\xe9ffbot.org/ns')), ('start-ns', ('cl\xe9', 'http://effbot.org/ns')), ]) source = io.StringIO("<document />junk") it = iterparse(source) action, elem = next(it) self.assertEqual((action, elem.tag), ('end', 'document')) with self.assertRaises(ET.ParseError) as cm: next(it) self.assertEqual(str(cm.exception), 'junk after document element: line 1, column 12') self.addCleanup(os_helper.unlink, TESTFN) with open(TESTFN, "wb") as f: f.write(b"<document />junk") it = iterparse(TESTFN) action, elem = next(it) self.assertEqual((action, elem.tag), ('end', 'document')) with support.check_no_resource_warning(self): with self.assertRaises(ET.ParseError) as cm: next(it) self.assertEqual(str(cm.exception), 'junk after document element: line 1, column 12') del cm, it def test_writefile(self): elem = ET.Element("tag") elem.text = "text" self.serialize_check(elem, '<tag>text</tag>') ET.SubElement(elem, "subtag").text = "subtext" self.serialize_check(elem, '<tag>text<subtag>subtext</subtag></tag>') # Test tag suppression elem.tag = None self.serialize_check(elem, 'text<subtag>subtext</subtag>') elem.insert(0, ET.Comment("comment")) self.serialize_check(elem, 'text<!--comment--><subtag>subtext</subtag>') # assumes 1.3 elem[0] = ET.PI("key", "value") self.serialize_check(elem, 'text<?key value?><subtag>subtext</subtag>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_custom_builder(self): # Test parser w. custom builder. with open(SIMPLE_XMLFILE) as f: data = f.read() class Builder(list): def start(self, tag, attrib): self.append(("start", tag)) def end(self, tag): self.append(("end", tag)) def data(self, text): pass builder = Builder() parser = ET.XMLParser(target=builder) parser.feed(data) self.assertEqual(builder, [ ('start', 'root'), ('start', 'element'), ('end', 'element'), ('start', 'element'), ('end', 'element'), ('start', 'empty-element'), ('end', 'empty-element'), ('end', 'root'), ]) with open(SIMPLE_NS_XMLFILE) as f: data = f.read() class Builder(list): def start(self, tag, attrib): self.append(("start", tag)) def end(self, tag): self.append(("end", tag)) def data(self, text): pass def pi(self, target, data): self.append(("pi", target, data)) def comment(self, data): self.append(("comment", data)) def start_ns(self, prefix, uri): self.append(("start-ns", prefix, uri)) def end_ns(self, prefix): self.append(("end-ns", prefix)) builder = Builder() parser = ET.XMLParser(target=builder) parser.feed(data) self.assertEqual(builder, [ ('pi', 'pi', 'data'), ('comment', ' comment '), ('start-ns', '', 'namespace'), ('start', '{namespace}root'), ('start', '{namespace}element'), ('end', '{namespace}element'), ('start', '{namespace}element'), ('end', '{namespace}element'), ('start', '{namespace}empty-element'), ('end', '{namespace}empty-element'), ('end', '{namespace}root'), ('end-ns', ''), ]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_custom_builder_only_end_ns(self): class Builder(list): def end_ns(self, prefix): self.append(("end-ns", prefix)) builder = Builder() parser = ET.XMLParser(target=builder) parser.feed(textwrap.dedent("""\ <?pi data?> <!-- comment --> <root xmlns='namespace' xmlns:p='pns' xmlns:a='ans'> <a:element key='value'>text</a:element> <p:element>text</p:element>tail <empty-element/> </root> """)) self.assertEqual(builder, [ ('end-ns', 'a'), ('end-ns', 'p'), ('end-ns', ''), ]) # TODO: RUSTPYTHON @unittest.expectedFailure # Element.getchildren() and ElementTree.getiterator() are deprecated. @checkwarnings(("This method will be removed in future versions. " "Use .+ instead.", DeprecationWarning)) def test_getchildren(self): # Test Element.getchildren() with open(SIMPLE_XMLFILE, "rb") as f: tree = ET.parse(f) self.assertEqual([summarize_list(elem.getchildren()) for elem in tree.getroot().iter()], [ ['element', 'element', 'empty-element'], [], [], [], ]) self.assertEqual([summarize_list(elem.getchildren()) for elem in tree.getiterator()], [ ['element', 'element', 'empty-element'], [], [], [], ]) elem = ET.XML(SAMPLE_XML) self.assertEqual(len(elem.getchildren()), 3) self.assertEqual(len(elem[2].getchildren()), 1) self.assertEqual(elem[:], elem.getchildren()) child1 = elem[0] child2 = elem[2] del elem[1:2] self.assertEqual(len(elem.getchildren()), 2) self.assertEqual(child1, elem[0]) self.assertEqual(child2, elem[1]) elem[0:2] = [child2, child1] self.assertEqual(child2, elem[0]) self.assertEqual(child1, elem[1]) self.assertNotEqual(child1, elem[0]) elem.clear() self.assertEqual(elem.getchildren(), []) # TODO: RUSTPYTHON @unittest.expectedFailure def test_writestring(self): elem = ET.XML("<html><body>text</body></html>") self.assertEqual(ET.tostring(elem), b'<html><body>text</body></html>') elem = ET.fromstring("<html><body>text</body></html>") self.assertEqual(ET.tostring(elem), b'<html><body>text</body></html>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostring_default_namespace(self): elem = ET.XML('<body xmlns="http://effbot.org/ns"><tag/></body>') self.assertEqual( ET.tostring(elem, encoding='unicode'), '<ns0:body xmlns:ns0="http://effbot.org/ns"><ns0:tag /></ns0:body>' ) self.assertEqual( ET.tostring(elem, encoding='unicode', default_namespace='http://effbot.org/ns'), '<body xmlns="http://effbot.org/ns"><tag /></body>' ) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostring_default_namespace_different_namespace(self): elem = ET.XML('<body xmlns="http://effbot.org/ns"><tag/></body>') self.assertEqual( ET.tostring(elem, encoding='unicode', default_namespace='foobar'), '<ns1:body xmlns="foobar" xmlns:ns1="http://effbot.org/ns"><ns1:tag /></ns1:body>' ) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostring_default_namespace_original_no_namespace(self): elem = ET.XML('<body><tag/></body>') EXPECTED_MSG = '^cannot use non-qualified names with default_namespace option$' with self.assertRaisesRegex(ValueError, EXPECTED_MSG): ET.tostring(elem, encoding='unicode', default_namespace='foobar') # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostring_no_xml_declaration(self): elem = ET.XML('<body><tag/></body>') self.assertEqual( ET.tostring(elem, encoding='unicode'), '<body><tag /></body>' ) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostring_xml_declaration(self): elem = ET.XML('<body><tag/></body>') self.assertEqual( ET.tostring(elem, encoding='utf8', xml_declaration=True), b"<?xml version='1.0' encoding='utf8'?>\n<body><tag /></body>" ) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostring_xml_declaration_unicode_encoding(self): elem = ET.XML('<body><tag/></body>') preferredencoding = locale.getpreferredencoding() self.assertEqual( f"<?xml version='1.0' encoding='{preferredencoding}'?>\n<body><tag /></body>", ET.tostring(elem, encoding='unicode', xml_declaration=True) ) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostring_xml_declaration_cases(self): elem = ET.XML('<body><tag>ø</tag></body>') preferredencoding = locale.getpreferredencoding() TESTCASES = [ # (expected_retval, encoding, xml_declaration) # ... xml_declaration = None (b'<body><tag>&#248;</tag></body>', None, None), (b'<body><tag>\xc3\xb8</tag></body>', 'UTF-8', None), (b'<body><tag>&#248;</tag></body>', 'US-ASCII', None), (b"<?xml version='1.0' encoding='ISO-8859-1'?>\n" b"<body><tag>\xf8</tag></body>", 'ISO-8859-1', None), ('<body><tag>ø</tag></body>', 'unicode', None), # ... xml_declaration = False (b"<body><tag>&#248;</tag></body>", None, False), (b"<body><tag>\xc3\xb8</tag></body>", 'UTF-8', False), (b"<body><tag>&#248;</tag></body>", 'US-ASCII', False), (b"<body><tag>\xf8</tag></body>", 'ISO-8859-1', False), ("<body><tag>ø</tag></body>", 'unicode', False), # ... xml_declaration = True (b"<?xml version='1.0' encoding='us-ascii'?>\n" b"<body><tag>&#248;</tag></body>", None, True), (b"<?xml version='1.0' encoding='UTF-8'?>\n" b"<body><tag>\xc3\xb8</tag></body>", 'UTF-8', True), (b"<?xml version='1.0' encoding='US-ASCII'?>\n" b"<body><tag>&#248;</tag></body>", 'US-ASCII', True), (b"<?xml version='1.0' encoding='ISO-8859-1'?>\n" b"<body><tag>\xf8</tag></body>", 'ISO-8859-1', True), (f"<?xml version='1.0' encoding='{preferredencoding}'?>\n" "<body><tag>ø</tag></body>", 'unicode', True), ] for expected_retval, encoding, xml_declaration in TESTCASES: with self.subTest(f'encoding={encoding} ' f'xml_declaration={xml_declaration}'): self.assertEqual( ET.tostring( elem, encoding=encoding, xml_declaration=xml_declaration ), expected_retval ) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostringlist_default_namespace(self): elem = ET.XML('<body xmlns="http://effbot.org/ns"><tag/></body>') self.assertEqual( ''.join(ET.tostringlist(elem, encoding='unicode')), '<ns0:body xmlns:ns0="http://effbot.org/ns"><ns0:tag /></ns0:body>' ) self.assertEqual( ''.join(ET.tostringlist(elem, encoding='unicode', default_namespace='http://effbot.org/ns')), '<body xmlns="http://effbot.org/ns"><tag /></body>' ) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostringlist_xml_declaration(self): elem = ET.XML('<body><tag/></body>') self.assertEqual( ''.join(ET.tostringlist(elem, encoding='unicode')), '<body><tag /></body>' ) self.assertEqual( b''.join(ET.tostringlist(elem, xml_declaration=True)), b"<?xml version='1.0' encoding='us-ascii'?>\n<body><tag /></body>" ) preferredencoding = locale.getpreferredencoding() stringlist = ET.tostringlist(elem, encoding='unicode', xml_declaration=True) self.assertEqual( ''.join(stringlist), f"<?xml version='1.0' encoding='{preferredencoding}'?>\n<body><tag /></body>" ) self.assertRegex(stringlist[0], r"^<\?xml version='1.0' encoding='.+'?>") self.assertEqual(['<body', '>', '<tag', ' />', '</body>'], stringlist[1:]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_encoding(self): def check(encoding, body=''): xml = ("<?xml version='1.0' encoding='%s'?><xml>%s</xml>" % (encoding, body)) self.assertEqual(ET.XML(xml.encode(encoding)).text, body) self.assertEqual(ET.XML(xml).text, body) check("ascii", 'a') check("us-ascii", 'a') check("iso-8859-1", '\xbd') check("iso-8859-15", '\u20ac') check("cp437", '\u221a') check("mac-roman", '\u02da') def xml(encoding): return "<?xml version='1.0' encoding='%s'?><xml />" % encoding def bxml(encoding): return xml(encoding).encode(encoding) supported_encodings = [ 'ascii', 'utf-8', 'utf-8-sig', 'utf-16', 'utf-16be', 'utf-16le', 'iso8859-1', 'iso8859-2', 'iso8859-3', 'iso8859-4', 'iso8859-5', 'iso8859-6', 'iso8859-7', 'iso8859-8', 'iso8859-9', 'iso8859-10', 'iso8859-13', 'iso8859-14', 'iso8859-15', 'iso8859-16', 'cp437', 'cp720', 'cp737', 'cp775', 'cp850', 'cp852', 'cp855', 'cp856', 'cp857', 'cp858', 'cp860', 'cp861', 'cp862', 'cp863', 'cp865', 'cp866', 'cp869', 'cp874', 'cp1006', 'cp1125', 'cp1250', 'cp1251', 'cp1252', 'cp1253', 'cp1254', 'cp1255', 'cp1256', 'cp1257', 'cp1258', 'mac-cyrillic', 'mac-greek', 'mac-iceland', 'mac-latin2', 'mac-roman', 'mac-turkish', 'iso2022-jp', 'iso2022-jp-1', 'iso2022-jp-2', 'iso2022-jp-2004', 'iso2022-jp-3', 'iso2022-jp-ext', 'koi8-r', 'koi8-t', 'koi8-u', 'kz1048', 'hz', 'ptcp154', ] for encoding in supported_encodings: self.assertEqual(ET.tostring(ET.XML(bxml(encoding))), b'<xml />') unsupported_ascii_compatible_encodings = [ 'big5', 'big5hkscs', 'cp932', 'cp949', 'cp950', 'euc-jp', 'euc-jis-2004', 'euc-jisx0213', 'euc-kr', 'gb2312', 'gbk', 'gb18030', 'iso2022-kr', 'johab', 'shift-jis', 'shift-jis-2004', 'shift-jisx0213', 'utf-7', ] for encoding in unsupported_ascii_compatible_encodings: self.assertRaises(ValueError, ET.XML, bxml(encoding)) unsupported_ascii_incompatible_encodings = [ 'cp037', 'cp424', 'cp500', 'cp864', 'cp875', 'cp1026', 'cp1140', 'utf_32', 'utf_32_be', 'utf_32_le', ] for encoding in unsupported_ascii_incompatible_encodings: self.assertRaises(ET.ParseError, ET.XML, bxml(encoding)) self.assertRaises(ValueError, ET.XML, xml('undefined').encode('ascii')) self.assertRaises(LookupError, ET.XML, xml('xxx').encode('ascii')) # TODO: RUSTPYTHON @unittest.expectedFailure def test_methods(self): # Test serialization methods. e = ET.XML("<html><link/><script>1 &lt; 2</script></html>") e.tail = "\n" self.assertEqual(serialize(e), '<html><link /><script>1 &lt; 2</script></html>\n') self.assertEqual(serialize(e, method=None), '<html><link /><script>1 &lt; 2</script></html>\n') self.assertEqual(serialize(e, method="xml"), '<html><link /><script>1 &lt; 2</script></html>\n') self.assertEqual(serialize(e, method="html"), '<html><link><script>1 < 2</script></html>\n') self.assertEqual(serialize(e, method="text"), '1 < 2\n') # TODO: RUSTPYTHON @unittest.expectedFailure def test_issue18347(self): e = ET.XML('<html><CamelCase>text</CamelCase></html>') self.assertEqual(serialize(e), '<html><CamelCase>text</CamelCase></html>') self.assertEqual(serialize(e, method="html"), '<html><CamelCase>text</CamelCase></html>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_entity(self): # Test entity handling. # 1) good entities e = ET.XML("<document title='&#x8230;'>test</document>") self.assertEqual(serialize(e, encoding="us-ascii"), b'<document title="&#33328;">test</document>') self.serialize_check(e, '<document title="\u8230">test</document>') # 2) bad entities with self.assertRaises(ET.ParseError) as cm: ET.XML("<document>&entity;</document>") self.assertEqual(str(cm.exception), 'undefined entity: line 1, column 10') with self.assertRaises(ET.ParseError) as cm: ET.XML(ENTITY_XML) self.assertEqual(str(cm.exception), 'undefined entity &entity;: line 5, column 10') # 3) custom entity parser = ET.XMLParser() parser.entity["entity"] = "text" parser.feed(ENTITY_XML) root = parser.close() self.serialize_check(root, '<document>text</document>') # 4) external (SYSTEM) entity with self.assertRaises(ET.ParseError) as cm: ET.XML(EXTERNAL_ENTITY_XML) self.assertEqual(str(cm.exception), 'undefined entity &entity;: line 4, column 10') # TODO: RUSTPYTHON @unittest.expectedFailure def test_namespace(self): # Test namespace issues. # 1) xml namespace elem = ET.XML("<tag xml:lang='en' />") self.serialize_check(elem, '<tag xml:lang="en" />') # 1.1 # 2) other "well-known" namespaces elem = ET.XML("<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' />") self.serialize_check(elem, '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />') # 2.1 elem = ET.XML("<html:html xmlns:html='http://www.w3.org/1999/xhtml' />") self.serialize_check(elem, '<html:html xmlns:html="http://www.w3.org/1999/xhtml" />') # 2.2 elem = ET.XML("<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope' />") self.serialize_check(elem, '<ns0:Envelope xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope" />') # 2.3 # 3) unknown namespaces elem = ET.XML(SAMPLE_XML_NS) self.serialize_check(elem, '<ns0:body xmlns:ns0="http://effbot.org/ns">\n' ' <ns0:tag>text</ns0:tag>\n' ' <ns0:tag />\n' ' <ns0:section>\n' ' <ns0:tag>subtext</ns0:tag>\n' ' </ns0:section>\n' '</ns0:body>') def test_qname(self): # Test QName handling. # 1) decorated tags elem = ET.Element("{uri}tag") self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" />') # 1.1 elem = ET.Element(ET.QName("{uri}tag")) self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" />') # 1.2 elem = ET.Element(ET.QName("uri", "tag")) self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" />') # 1.3 elem = ET.Element(ET.QName("uri", "tag")) subelem = ET.SubElement(elem, ET.QName("uri", "tag1")) subelem = ET.SubElement(elem, ET.QName("uri", "tag2")) self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri"><ns0:tag1 /><ns0:tag2 /></ns0:tag>') # 1.4 # 2) decorated attributes elem.clear() elem.attrib["{uri}key"] = "value" self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" ns0:key="value" />') # 2.1 elem.clear() elem.attrib[ET.QName("{uri}key")] = "value" self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" ns0:key="value" />') # 2.2 # 3) decorated values are not converted by default, but the # QName wrapper can be used for values elem.clear() elem.attrib["{uri}key"] = "{uri}value" self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" ns0:key="{uri}value" />') # 3.1 elem.clear() elem.attrib["{uri}key"] = ET.QName("{uri}value") self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" ns0:key="ns0:value" />') # 3.2 elem.clear() subelem = ET.Element("tag") subelem.attrib["{uri1}key"] = ET.QName("{uri2}value") elem.append(subelem) elem.append(subelem) self.serialize_check(elem, '<ns0:tag xmlns:ns0="uri" xmlns:ns1="uri1" xmlns:ns2="uri2">' '<tag ns1:key="ns2:value" />' '<tag ns1:key="ns2:value" />' '</ns0:tag>') # 3.3 # 4) Direct QName tests self.assertEqual(str(ET.QName('ns', 'tag')), '{ns}tag') self.assertEqual(str(ET.QName('{ns}tag')), '{ns}tag') q1 = ET.QName('ns', 'tag') q2 = ET.QName('ns', 'tag') self.assertEqual(q1, q2) q2 = ET.QName('ns', 'other-tag') self.assertNotEqual(q1, q2) self.assertNotEqual(q1, 'ns:tag') self.assertEqual(q1, '{ns}tag') # TODO: RUSTPYTHON @unittest.expectedFailure def test_doctype_public(self): # Test PUBLIC doctype. elem = ET.XML('<!DOCTYPE html PUBLIC' ' "-//W3C//DTD XHTML 1.0 Transitional//EN"' ' "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">' '<html>text</html>') def test_xpath_tokenizer(self): # Test the XPath tokenizer. from xml.etree import ElementPath def check(p, expected, namespaces=None): self.assertEqual([op or tag for op, tag in ElementPath.xpath_tokenizer(p, namespaces)], expected) # tests from the xml specification check("*", ['*']) check("text()", ['text', '()']) check("@name", ['@', 'name']) check("@*", ['@', '*']) check("para[1]", ['para', '[', '1', ']']) check("para[last()]", ['para', '[', 'last', '()', ']']) check("*/para", ['*', '/', 'para']) check("/doc/chapter[5]/section[2]", ['/', 'doc', '/', 'chapter', '[', '5', ']', '/', 'section', '[', '2', ']']) check("chapter//para", ['chapter', '//', 'para']) check("//para", ['//', 'para']) check("//olist/item", ['//', 'olist', '/', 'item']) check(".", ['.']) check(".//para", ['.', '//', 'para']) check("..", ['..']) check("../@lang", ['..', '/', '@', 'lang']) check("chapter[title]", ['chapter', '[', 'title', ']']) check("employee[@secretary and @assistant]", ['employee', '[', '@', 'secretary', '', 'and', '', '@', 'assistant', ']']) # additional tests check("@{ns}attr", ['@', '{ns}attr']) check("{http://spam}egg", ['{http://spam}egg']) check("./spam.egg", ['.', '/', 'spam.egg']) check(".//{http://spam}egg", ['.', '//', '{http://spam}egg']) # wildcard tags check("{ns}*", ['{ns}*']) check("{}*", ['{}*']) check("{*}tag", ['{*}tag']) check("{*}*", ['{*}*']) check(".//{*}tag", ['.', '//', '{*}tag']) # namespace prefix resolution check("./xsd:type", ['.', '/', '{http://www.w3.org/2001/XMLSchema}type'], {'xsd': 'http://www.w3.org/2001/XMLSchema'}) check("type", ['{http://www.w3.org/2001/XMLSchema}type'], {'': 'http://www.w3.org/2001/XMLSchema'}) check("@xsd:type", ['@', '{http://www.w3.org/2001/XMLSchema}type'], {'xsd': 'http://www.w3.org/2001/XMLSchema'}) check("@type", ['@', 'type'], {'': 'http://www.w3.org/2001/XMLSchema'}) check("@{*}type", ['@', '{*}type'], {'': 'http://www.w3.org/2001/XMLSchema'}) check("@{ns}attr", ['@', '{ns}attr'], {'': 'http://www.w3.org/2001/XMLSchema', 'ns': 'http://www.w3.org/2001/XMLSchema'}) # TODO: RUSTPYTHON @unittest.expectedFailure def test_processinginstruction(self): # Test ProcessingInstruction directly self.assertEqual(ET.tostring(ET.ProcessingInstruction('test', 'instruction')), b'<?test instruction?>') self.assertEqual(ET.tostring(ET.PI('test', 'instruction')), b'<?test instruction?>') # Issue #2746 self.assertEqual(ET.tostring(ET.PI('test', '<testing&>')), b'<?test <testing&>?>') self.assertEqual(ET.tostring(ET.PI('test', '<testing&>\xe3'), 'latin-1'), b"<?xml version='1.0' encoding='latin-1'?>\n" b"<?test <testing&>\xe3?>") # TODO: RUSTPYTHON @unittest.expectedFailure def test_html_empty_elems_serialization(self): # issue 15970 # from http://www.w3.org/TR/html401/index/elements.html for element in ['AREA', 'BASE', 'BASEFONT', 'BR', 'COL', 'FRAME', 'HR', 'IMG', 'INPUT', 'ISINDEX', 'LINK', 'META', 'PARAM']: for elem in [element, element.lower()]: expected = '<%s>' % elem serialized = serialize(ET.XML('<%s />' % elem), method='html') self.assertEqual(serialized, expected) serialized = serialize(ET.XML('<%s></%s>' % (elem,elem)), method='html') self.assertEqual(serialized, expected) def test_dump_attribute_order(self): # See BPO 34160 e = ET.Element('cirriculum', status='public', company='example') with support.captured_stdout() as stdout: ET.dump(e) self.assertEqual(stdout.getvalue(), '<cirriculum status="public" company="example" />\n') def test_tree_write_attribute_order(self): # See BPO 34160 root = ET.Element('cirriculum', status='public', company='example') self.assertEqual(serialize(root), '<cirriculum status="public" company="example" />') self.assertEqual(serialize(root, method='html'), '<cirriculum status="public" company="example"></cirriculum>') class XMLPullParserTest(unittest.TestCase): def _feed(self, parser, data, chunk_size=None): if chunk_size is None: parser.feed(data) else: for i in range(0, len(data), chunk_size): parser.feed(data[i:i+chunk_size]) def assert_events(self, parser, expected, max_events=None): self.assertEqual( [(event, (elem.tag, elem.text)) for event, elem in islice(parser.read_events(), max_events)], expected) def assert_event_tuples(self, parser, expected, max_events=None): self.assertEqual( list(islice(parser.read_events(), max_events)), expected) def assert_event_tags(self, parser, expected, max_events=None): events = islice(parser.read_events(), max_events) self.assertEqual([(action, elem.tag) for action, elem in events], expected) # TODO: RUSTPYTHON @unittest.expectedFailure def test_simple_xml(self): for chunk_size in (None, 1, 5): with self.subTest(chunk_size=chunk_size): parser = ET.XMLPullParser() self.assert_event_tags(parser, []) self._feed(parser, "<!-- comment -->\n", chunk_size) self.assert_event_tags(parser, []) self._feed(parser, "<root>\n <element key='value'>text</element", chunk_size) self.assert_event_tags(parser, []) self._feed(parser, ">\n", chunk_size) self.assert_event_tags(parser, [('end', 'element')]) self._feed(parser, "<element>text</element>tail\n", chunk_size) self._feed(parser, "<empty-element/>\n", chunk_size) self.assert_event_tags(parser, [ ('end', 'element'), ('end', 'empty-element'), ]) self._feed(parser, "</root>\n", chunk_size) self.assert_event_tags(parser, [('end', 'root')]) self.assertIsNone(parser.close()) # TODO: RUSTPYTHON @unittest.expectedFailure def test_feed_while_iterating(self): parser = ET.XMLPullParser() it = parser.read_events() self._feed(parser, "<root>\n <element key='value'>text</element>\n") action, elem = next(it) self.assertEqual((action, elem.tag), ('end', 'element')) self._feed(parser, "</root>\n") action, elem = next(it) self.assertEqual((action, elem.tag), ('end', 'root')) with self.assertRaises(StopIteration): next(it) # TODO: RUSTPYTHON @unittest.expectedFailure def test_simple_xml_with_ns(self): parser = ET.XMLPullParser() self.assert_event_tags(parser, []) self._feed(parser, "<!-- comment -->\n") self.assert_event_tags(parser, []) self._feed(parser, "<root xmlns='namespace'>\n") self.assert_event_tags(parser, []) self._feed(parser, "<element key='value'>text</element") self.assert_event_tags(parser, []) self._feed(parser, ">\n") self.assert_event_tags(parser, [('end', '{namespace}element')]) self._feed(parser, "<element>text</element>tail\n") self._feed(parser, "<empty-element/>\n") self.assert_event_tags(parser, [ ('end', '{namespace}element'), ('end', '{namespace}empty-element'), ]) self._feed(parser, "</root>\n") self.assert_event_tags(parser, [('end', '{namespace}root')]) self.assertIsNone(parser.close()) # TODO: RUSTPYTHON @unittest.expectedFailure def test_ns_events(self): parser = ET.XMLPullParser(events=('start-ns', 'end-ns')) self._feed(parser, "<!-- comment -->\n") self._feed(parser, "<root xmlns='namespace'>\n") self.assertEqual( list(parser.read_events()), [('start-ns', ('', 'namespace'))]) self._feed(parser, "<element key='value'>text</element") self._feed(parser, ">\n") self._feed(parser, "<element>text</element>tail\n") self._feed(parser, "<empty-element/>\n") self._feed(parser, "</root>\n") self.assertEqual(list(parser.read_events()), [('end-ns', None)]) self.assertIsNone(parser.close()) # TODO: RUSTPYTHON @unittest.expectedFailure def test_ns_events_start(self): parser = ET.XMLPullParser(events=('start-ns', 'start', 'end')) self._feed(parser, "<tag xmlns='abc' xmlns:p='xyz'>\n") self.assert_event_tuples(parser, [ ('start-ns', ('', 'abc')), ('start-ns', ('p', 'xyz')), ], max_events=2) self.assert_event_tags(parser, [ ('start', '{abc}tag'), ], max_events=1) self._feed(parser, "<child />\n") self.assert_event_tags(parser, [ ('start', '{abc}child'), ('end', '{abc}child'), ]) self._feed(parser, "</tag>\n") parser.close() self.assert_event_tags(parser, [ ('end', '{abc}tag'), ]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_ns_events_start_end(self): parser = ET.XMLPullParser(events=('start-ns', 'start', 'end', 'end-ns')) self._feed(parser, "<tag xmlns='abc' xmlns:p='xyz'>\n") self.assert_event_tuples(parser, [ ('start-ns', ('', 'abc')), ('start-ns', ('p', 'xyz')), ], max_events=2) self.assert_event_tags(parser, [ ('start', '{abc}tag'), ], max_events=1) self._feed(parser, "<child />\n") self.assert_event_tags(parser, [ ('start', '{abc}child'), ('end', '{abc}child'), ]) self._feed(parser, "</tag>\n") parser.close() self.assert_event_tags(parser, [ ('end', '{abc}tag'), ], max_events=1) self.assert_event_tuples(parser, [ ('end-ns', None), ('end-ns', None), ]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_events(self): parser = ET.XMLPullParser(events=()) self._feed(parser, "<root/>\n") self.assert_event_tags(parser, []) parser = ET.XMLPullParser(events=('start', 'end')) self._feed(parser, "<!-- text here -->\n") self.assert_events(parser, []) parser = ET.XMLPullParser(events=('start', 'end')) self._feed(parser, "<root>\n") self.assert_event_tags(parser, [('start', 'root')]) self._feed(parser, "<element key='value'>text</element") self.assert_event_tags(parser, [('start', 'element')]) self._feed(parser, ">\n") self.assert_event_tags(parser, [('end', 'element')]) self._feed(parser, "<element xmlns='foo'>text<empty-element/></element>tail\n") self.assert_event_tags(parser, [ ('start', '{foo}element'), ('start', '{foo}empty-element'), ('end', '{foo}empty-element'), ('end', '{foo}element'), ]) self._feed(parser, "</root>") self.assertIsNone(parser.close()) self.assert_event_tags(parser, [('end', 'root')]) parser = ET.XMLPullParser(events=('start',)) self._feed(parser, "<!-- comment -->\n") self.assert_event_tags(parser, []) self._feed(parser, "<root>\n") self.assert_event_tags(parser, [('start', 'root')]) self._feed(parser, "<element key='value'>text</element") self.assert_event_tags(parser, [('start', 'element')]) self._feed(parser, ">\n") self.assert_event_tags(parser, []) self._feed(parser, "<element xmlns='foo'>text<empty-element/></element>tail\n") self.assert_event_tags(parser, [ ('start', '{foo}element'), ('start', '{foo}empty-element'), ]) self._feed(parser, "</root>") self.assertIsNone(parser.close()) # TODO: RUSTPYTHON @unittest.expectedFailure def test_events_comment(self): parser = ET.XMLPullParser(events=('start', 'comment', 'end')) self._feed(parser, "<!-- text here -->\n") self.assert_events(parser, [('comment', (ET.Comment, ' text here '))]) self._feed(parser, "<!-- more text here -->\n") self.assert_events(parser, [('comment', (ET.Comment, ' more text here '))]) self._feed(parser, "<root-tag>text") self.assert_event_tags(parser, [('start', 'root-tag')]) self._feed(parser, "<!-- inner comment-->\n") self.assert_events(parser, [('comment', (ET.Comment, ' inner comment'))]) self._feed(parser, "</root-tag>\n") self.assert_event_tags(parser, [('end', 'root-tag')]) self._feed(parser, "<!-- outer comment -->\n") self.assert_events(parser, [('comment', (ET.Comment, ' outer comment '))]) parser = ET.XMLPullParser(events=('comment',)) self._feed(parser, "<!-- text here -->\n") self.assert_events(parser, [('comment', (ET.Comment, ' text here '))]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_events_pi(self): parser = ET.XMLPullParser(events=('start', 'pi', 'end')) self._feed(parser, "<?pitarget?>\n") self.assert_events(parser, [('pi', (ET.PI, 'pitarget'))]) parser = ET.XMLPullParser(events=('pi',)) self._feed(parser, "<?pitarget some text ?>\n") self.assert_events(parser, [('pi', (ET.PI, 'pitarget some text '))]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_events_sequence(self): # Test that events can be some sequence that's not just a tuple or list eventset = {'end', 'start'} parser = ET.XMLPullParser(events=eventset) self._feed(parser, "<foo>bar</foo>") self.assert_event_tags(parser, [('start', 'foo'), ('end', 'foo')]) class DummyIter: def __init__(self): self.events = iter(['start', 'end', 'start-ns']) def __iter__(self): return self def __next__(self): return next(self.events) parser = ET.XMLPullParser(events=DummyIter()) self._feed(parser, "<foo>bar</foo>") self.assert_event_tags(parser, [('start', 'foo'), ('end', 'foo')]) # TODO: RUSTPYTHON @unittest.expectedFailure def test_unknown_event(self): with self.assertRaises(ValueError): ET.XMLPullParser(events=('start', 'end', 'bogus')) # # xinclude tests (samples from appendix C of the xinclude specification) XINCLUDE = {} XINCLUDE["C1.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>120 Mz is adequate for an average home user.</p> <xi:include href="disclaimer.xml"/> </document> """ XINCLUDE["disclaimer.xml"] = """\ <?xml version='1.0'?> <disclaimer> <p>The opinions represented herein represent those of the individual and should not be interpreted as official policy endorsed by this organization.</p> </disclaimer> """ XINCLUDE["C2.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>This document has been accessed <xi:include href="count.txt" parse="text"/> times.</p> </document> """ XINCLUDE["count.txt"] = "324387" XINCLUDE["C2b.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>This document has been <em>accessed</em> <xi:include href="count.txt" parse="text"/> times.</p> </document> """ XINCLUDE["C3.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>The following is the source of the "data.xml" resource:</p> <example><xi:include href="data.xml" parse="text"/></example> </document> """ XINCLUDE["data.xml"] = """\ <?xml version='1.0'?> <data> <item><![CDATA[Brooks & Shields]]></item> </data> """ XINCLUDE["C5.xml"] = """\ <?xml version='1.0'?> <div xmlns:xi="http://www.w3.org/2001/XInclude"> <xi:include href="example.txt" parse="text"> <xi:fallback> <xi:include href="fallback-example.txt" parse="text"> <xi:fallback><a href="mailto:[email protected]">Report error</a></xi:fallback> </xi:include> </xi:fallback> </xi:include> </div> """ XINCLUDE["default.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>Example.</p> <xi:include href="{}"/> </document> """.format(html.escape(SIMPLE_XMLFILE, True)) # # badly formatted xi:include tags XINCLUDE_BAD = {} XINCLUDE_BAD["B1.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>120 Mz is adequate for an average home user.</p> <xi:include href="disclaimer.xml" parse="BAD_TYPE"/> </document> """ XINCLUDE_BAD["B2.xml"] = """\ <?xml version='1.0'?> <div xmlns:xi="http://www.w3.org/2001/XInclude"> <xi:fallback></xi:fallback> </div> """ class XIncludeTest(unittest.TestCase): def xinclude_loader(self, href, parse="xml", encoding=None): try: data = XINCLUDE[href] except KeyError: raise OSError("resource not found") if parse == "xml": data = ET.XML(data) return data def none_loader(self, href, parser, encoding=None): return None def _my_loader(self, href, parse): # Used to avoid a test-dependency problem where the default loader # of ElementInclude uses the pyET parser for cET tests. if parse == 'xml': with open(href, 'rb') as f: return ET.parse(f).getroot() else: return None # TODO: RUSTPYTHON @unittest.expectedFailure def test_xinclude_default(self): from xml.etree import ElementInclude doc = self.xinclude_loader('default.xml') ElementInclude.include(doc, self._my_loader) self.assertEqual(serialize(doc), '<document>\n' ' <p>Example.</p>\n' ' <root>\n' ' <element key="value">text</element>\n' ' <element>text</element>tail\n' ' <empty-element />\n' '</root>\n' '</document>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_xinclude(self): from xml.etree import ElementInclude # Basic inclusion example (XInclude C.1) document = self.xinclude_loader("C1.xml") ElementInclude.include(document, self.xinclude_loader) self.assertEqual(serialize(document), '<document>\n' ' <p>120 Mz is adequate for an average home user.</p>\n' ' <disclaimer>\n' ' <p>The opinions represented herein represent those of the individual\n' ' and should not be interpreted as official policy endorsed by this\n' ' organization.</p>\n' '</disclaimer>\n' '</document>') # C1 # Textual inclusion example (XInclude C.2) document = self.xinclude_loader("C2.xml") ElementInclude.include(document, self.xinclude_loader) self.assertEqual(serialize(document), '<document>\n' ' <p>This document has been accessed\n' ' 324387 times.</p>\n' '</document>') # C2 # Textual inclusion after sibling element (based on modified XInclude C.2) document = self.xinclude_loader("C2b.xml") ElementInclude.include(document, self.xinclude_loader) self.assertEqual(serialize(document), '<document>\n' ' <p>This document has been <em>accessed</em>\n' ' 324387 times.</p>\n' '</document>') # C2b # Textual inclusion of XML example (XInclude C.3) document = self.xinclude_loader("C3.xml") ElementInclude.include(document, self.xinclude_loader) self.assertEqual(serialize(document), '<document>\n' ' <p>The following is the source of the "data.xml" resource:</p>\n' " <example>&lt;?xml version='1.0'?&gt;\n" '&lt;data&gt;\n' ' &lt;item&gt;&lt;![CDATA[Brooks &amp; Shields]]&gt;&lt;/item&gt;\n' '&lt;/data&gt;\n' '</example>\n' '</document>') # C3 # Fallback example (XInclude C.5) # Note! Fallback support is not yet implemented document = self.xinclude_loader("C5.xml") with self.assertRaises(OSError) as cm: ElementInclude.include(document, self.xinclude_loader) self.assertEqual(str(cm.exception), 'resource not found') self.assertEqual(serialize(document), '<div xmlns:ns0="http://www.w3.org/2001/XInclude">\n' ' <ns0:include href="example.txt" parse="text">\n' ' <ns0:fallback>\n' ' <ns0:include href="fallback-example.txt" parse="text">\n' ' <ns0:fallback><a href="mailto:[email protected]">Report error</a></ns0:fallback>\n' ' </ns0:include>\n' ' </ns0:fallback>\n' ' </ns0:include>\n' '</div>') # C5 # TODO: RUSTPYTHON @unittest.expectedFailure def test_xinclude_failures(self): from xml.etree import ElementInclude # Test failure to locate included XML file. document = ET.XML(XINCLUDE["C1.xml"]) with self.assertRaises(ElementInclude.FatalIncludeError) as cm: ElementInclude.include(document, loader=self.none_loader) self.assertEqual(str(cm.exception), "cannot load 'disclaimer.xml' as 'xml'") # Test failure to locate included text file. document = ET.XML(XINCLUDE["C2.xml"]) with self.assertRaises(ElementInclude.FatalIncludeError) as cm: ElementInclude.include(document, loader=self.none_loader) self.assertEqual(str(cm.exception), "cannot load 'count.txt' as 'text'") # Test bad parse type. document = ET.XML(XINCLUDE_BAD["B1.xml"]) with self.assertRaises(ElementInclude.FatalIncludeError) as cm: ElementInclude.include(document, loader=self.none_loader) self.assertEqual(str(cm.exception), "unknown parse type in xi:include tag ('BAD_TYPE')") # Test xi:fallback outside xi:include. document = ET.XML(XINCLUDE_BAD["B2.xml"]) with self.assertRaises(ElementInclude.FatalIncludeError) as cm: ElementInclude.include(document, loader=self.none_loader) self.assertEqual(str(cm.exception), "xi:fallback tag must be child of xi:include " "('{http://www.w3.org/2001/XInclude}fallback')") # -------------------------------------------------------------------- # reported bugs class BugsTest(unittest.TestCase): def test_bug_xmltoolkit21(self): # marshaller gives obscure errors for non-string values def check(elem): with self.assertRaises(TypeError) as cm: serialize(elem) self.assertEqual(str(cm.exception), 'cannot serialize 123 (type int)') elem = ET.Element(123) check(elem) # tag elem = ET.Element("elem") elem.text = 123 check(elem) # text elem = ET.Element("elem") elem.tail = 123 check(elem) # tail elem = ET.Element("elem") elem.set(123, "123") check(elem) # attribute key elem = ET.Element("elem") elem.set("123", 123) check(elem) # attribute value # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkit25(self): # typo in ElementTree.findtext elem = ET.XML(SAMPLE_XML) tree = ET.ElementTree(elem) self.assertEqual(tree.findtext("tag"), 'text') self.assertEqual(tree.findtext("section/tag"), 'subtext') # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkit28(self): # .//tag causes exceptions tree = ET.XML("<doc><table><tbody/></table></doc>") self.assertEqual(summarize_list(tree.findall(".//thead")), []) self.assertEqual(summarize_list(tree.findall(".//tbody")), ['tbody']) # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkitX1(self): # dump() doesn't flush the output buffer tree = ET.XML("<doc><table><tbody/></table></doc>") with support.captured_stdout() as stdout: ET.dump(tree) self.assertEqual(stdout.getvalue(), '<doc><table><tbody /></table></doc>\n') # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkit39(self): # non-ascii element and attribute names doesn't work tree = ET.XML(b"<?xml version='1.0' encoding='iso-8859-1'?><t\xe4g />") self.assertEqual(ET.tostring(tree, "utf-8"), b'<t\xc3\xa4g />') tree = ET.XML(b"<?xml version='1.0' encoding='iso-8859-1'?>" b"<tag \xe4ttr='v&#228;lue' />") self.assertEqual(tree.attrib, {'\xe4ttr': 'v\xe4lue'}) self.assertEqual(ET.tostring(tree, "utf-8"), b'<tag \xc3\xa4ttr="v\xc3\xa4lue" />') tree = ET.XML(b"<?xml version='1.0' encoding='iso-8859-1'?>" b'<t\xe4g>text</t\xe4g>') self.assertEqual(ET.tostring(tree, "utf-8"), b'<t\xc3\xa4g>text</t\xc3\xa4g>') tree = ET.Element("t\u00e4g") self.assertEqual(ET.tostring(tree, "utf-8"), b'<t\xc3\xa4g />') tree = ET.Element("tag") tree.set("\u00e4ttr", "v\u00e4lue") self.assertEqual(ET.tostring(tree, "utf-8"), b'<tag \xc3\xa4ttr="v\xc3\xa4lue" />') # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkit54(self): # problems handling internally defined entities e = ET.XML("<!DOCTYPE doc [<!ENTITY ldots '&#x8230;'>]>" '<doc>&ldots;</doc>') self.assertEqual(serialize(e, encoding="us-ascii"), b'<doc>&#33328;</doc>') self.assertEqual(serialize(e), '<doc>\u8230</doc>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkit55(self): # make sure we're reporting the first error, not the last with self.assertRaises(ET.ParseError) as cm: ET.XML(b"<!DOCTYPE doc SYSTEM 'doc.dtd'>" b'<doc>&ldots;&ndots;&rdots;</doc>') self.assertEqual(str(cm.exception), 'undefined entity &ldots;: line 1, column 36') # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkit60(self): # Handle crash in stream source. class ExceptionFile: def read(self, x): raise OSError self.assertRaises(OSError, ET.parse, ExceptionFile()) # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_xmltoolkit62(self): # Don't crash when using custom entities. ENTITIES = {'rsquo': '\u2019', 'lsquo': '\u2018'} parser = ET.XMLParser() parser.entity.update(ENTITIES) parser.feed("""<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE patent-application-publication SYSTEM "pap-v15-2001-01-31.dtd" []> <patent-application-publication> <subdoc-abstract> <paragraph id="A-0001" lvl="0">A new cultivar of Begonia plant named &lsquo;BCT9801BEG&rsquo;.</paragraph> </subdoc-abstract> </patent-application-publication>""") t = parser.close() self.assertEqual(t.find('.//paragraph').text, 'A new cultivar of Begonia plant named \u2018BCT9801BEG\u2019.') @unittest.skipIf(sys.gettrace(), "Skips under coverage.") def test_bug_xmltoolkit63(self): # Check reference leak. def xmltoolkit63(): tree = ET.TreeBuilder() tree.start("tag", {}) tree.data("text") tree.end("tag") xmltoolkit63() count = sys.getrefcount(None) for i in range(1000): xmltoolkit63() self.assertEqual(sys.getrefcount(None), count) # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_200708_newline(self): # Preserve newlines in attributes. e = ET.Element('SomeTag', text="def _f():\n return 3\n") self.assertEqual(ET.tostring(e), b'<SomeTag text="def _f():&#10; return 3&#10;" />') self.assertEqual(ET.XML(ET.tostring(e)).get("text"), 'def _f():\n return 3\n') self.assertEqual(ET.tostring(ET.XML(ET.tostring(e))), b'<SomeTag text="def _f():&#10; return 3&#10;" />') # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_200708_close(self): # Test default builder. parser = ET.XMLParser() # default parser.feed("<element>some text</element>") self.assertEqual(parser.close().tag, 'element') # Test custom builder. class EchoTarget: def close(self): return ET.Element("element") # simulate root parser = ET.XMLParser(target=EchoTarget()) parser.feed("<element>some text</element>") self.assertEqual(parser.close().tag, 'element') def test_bug_200709_default_namespace(self): e = ET.Element("{default}elem") s = ET.SubElement(e, "{default}elem") self.assertEqual(serialize(e, default_namespace="default"), # 1 '<elem xmlns="default"><elem /></elem>') e = ET.Element("{default}elem") s = ET.SubElement(e, "{default}elem") s = ET.SubElement(e, "{not-default}elem") self.assertEqual(serialize(e, default_namespace="default"), # 2 '<elem xmlns="default" xmlns:ns1="not-default">' '<elem />' '<ns1:elem />' '</elem>') e = ET.Element("{default}elem") s = ET.SubElement(e, "{default}elem") s = ET.SubElement(e, "elem") # unprefixed name with self.assertRaises(ValueError) as cm: serialize(e, default_namespace="default") # 3 self.assertEqual(str(cm.exception), 'cannot use non-qualified names with default_namespace option') # TODO: RUSTPYTHON @unittest.expectedFailure def test_bug_200709_register_namespace(self): e = ET.Element("{http://namespace.invalid/does/not/exist/}title") self.assertEqual(ET.tostring(e), b'<ns0:title xmlns:ns0="http://namespace.invalid/does/not/exist/" />') ET.register_namespace("foo", "http://namespace.invalid/does/not/exist/") e = ET.Element("{http://namespace.invalid/does/not/exist/}title") self.assertEqual(ET.tostring(e), b'<foo:title xmlns:foo="http://namespace.invalid/does/not/exist/" />') # And the Dublin Core namespace is in the default list: e = ET.Element("{http://purl.org/dc/elements/1.1/}title") self.assertEqual(ET.tostring(e), b'<dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" />') def test_bug_200709_element_comment(self): # Not sure if this can be fixed, really (since the serializer needs # ET.Comment, not cET.comment). a = ET.Element('a') a.append(ET.Comment('foo')) self.assertEqual(a[0].tag, ET.Comment) a = ET.Element('a') a.append(ET.PI('foo')) self.assertEqual(a[0].tag, ET.PI) def test_bug_200709_element_insert(self): a = ET.Element('a') b = ET.SubElement(a, 'b') c = ET.SubElement(a, 'c') d = ET.Element('d') a.insert(0, d) self.assertEqual(summarize_list(a), ['d', 'b', 'c']) a.insert(-1, d) self.assertEqual(summarize_list(a), ['d', 'b', 'd', 'c']) def test_bug_200709_iter_comment(self): a = ET.Element('a') b = ET.SubElement(a, 'b') comment_b = ET.Comment("TEST-b") b.append(comment_b) self.assertEqual(summarize_list(a.iter(ET.Comment)), [ET.Comment]) # -------------------------------------------------------------------- # reported on bugs.python.org def test_bug_1534630(self): bob = ET.TreeBuilder() e = bob.data("data") e = bob.start("tag", {}) e = bob.end("tag") e = bob.close() self.assertEqual(serialize(e), '<tag />') # TODO: RUSTPYTHON @unittest.expectedFailure def test_issue6233(self): e = ET.XML(b"<?xml version='1.0' encoding='utf-8'?>" b'<body>t\xc3\xa3g</body>') self.assertEqual(ET.tostring(e, 'ascii'), b"<?xml version='1.0' encoding='ascii'?>\n" b'<body>t&#227;g</body>') e = ET.XML(b"<?xml version='1.0' encoding='iso-8859-1'?>" b'<body>t\xe3g</body>') self.assertEqual(ET.tostring(e, 'ascii'), b"<?xml version='1.0' encoding='ascii'?>\n" b'<body>t&#227;g</body>') # TODO: RUSTPYTHON @unittest.expectedFailure def test_issue3151(self): e = ET.XML('<prefix:localname xmlns:prefix="${stuff}"/>') self.assertEqual(e.tag, '{${stuff}}localname') t = ET.ElementTree(e) self.assertEqual(ET.tostring(e), b'<ns0:localname xmlns:ns0="${stuff}" />') # TODO: RUSTPYTHON @unittest.expectedFailure def test_issue6565(self): elem = ET.XML("<body><tag/></body>") self.assertEqual(summarize_list(elem), ['tag']) newelem = ET.XML(SAMPLE_XML) elem[:] = newelem[:] self.assertEqual(summarize_list(elem), ['tag', 'tag', 'section']) def test_issue10777(self): # Registering a namespace twice caused a "dictionary changed size during # iteration" bug. ET.register_namespace('test10777', 'http://myuri/') ET.register_namespace('test10777', 'http://myuri/') def test_lost_text(self): # Issue #25902: Borrowed text can disappear class Text: def __bool__(self): e.text = 'changed' return True e = ET.Element('tag') e.text = Text() i = e.itertext() t = next(i) self.assertIsInstance(t, Text) self.assertIsInstance(e.text, str) self.assertEqual(e.text, 'changed') def test_lost_tail(self): # Issue #25902: Borrowed tail can disappear class Text: def __bool__(self): e[0].tail = 'changed' return True e = ET.Element('root') e.append(ET.Element('tag')) e[0].tail = Text() i = e.itertext() t = next(i) self.assertIsInstance(t, Text) self.assertIsInstance(e[0].tail, str) self.assertEqual(e[0].tail, 'changed') # TODO: RUSTPYTHON @unittest.expectedFailure def test_lost_elem(self): # Issue #25902: Borrowed element can disappear class Tag: def __eq__(self, other): e[0] = ET.Element('changed') next(i) return True e = ET.Element('root') e.append(ET.Element(Tag())) e.append(ET.Element('tag')) i = e.iter('tag') try: t = next(i) except ValueError: self.skipTest('generators are not reentrant') self.assertIsInstance(t.tag, Tag) self.assertIsInstance(e[0].tag, str) self.assertEqual(e[0].tag, 'changed') def check_expat224_utf8_bug(self, text): xml = b'<a b="%s"/>' % text root = ET.XML(xml) self.assertEqual(root.get('b'), text.decode('utf-8')) # TODO: RUSTPYTHON @unittest.expectedFailure def test_expat224_utf8_bug(self): # bpo-31170: Expat 2.2.3 had a bug in its UTF-8 decoder. # Check that Expat 2.2.4 fixed the bug. # # Test buffer bounds at odd and even positions. text = b'\xc3\xa0' * 1024 self.check_expat224_utf8_bug(text) text = b'x' + b'\xc3\xa0' * 1024 self.check_expat224_utf8_bug(text) # TODO: RUSTPYTHON @unittest.expectedFailure def test_expat224_utf8_bug_file(self): with open(UTF8_BUG_XMLFILE, 'rb') as fp: raw = fp.read() root = ET.fromstring(raw) xmlattr = root.get('b') # "Parse" manually the XML file to extract the value of the 'b' # attribute of the <a b='xxx' /> XML element text = raw.decode('utf-8').strip() text = text.replace('\r\n', ' ') text = text[6:-4] self.assertEqual(root.get('b'), text) # -------------------------------------------------------------------- class BasicElementTest(ElementTestCase, unittest.TestCase): def test___init__(self): tag = "foo" attrib = { "zix": "wyp" } element_foo = ET.Element(tag, attrib) # traits of an element self.assertIsInstance(element_foo, ET.Element) self.assertIn("tag", dir(element_foo)) self.assertIn("attrib", dir(element_foo)) self.assertIn("text", dir(element_foo)) self.assertIn("tail", dir(element_foo)) # string attributes have expected values self.assertEqual(element_foo.tag, tag) self.assertIsNone(element_foo.text) self.assertIsNone(element_foo.tail) # attrib is a copy self.assertIsNot(element_foo.attrib, attrib) self.assertEqual(element_foo.attrib, attrib) # attrib isn't linked attrib["bar"] = "baz" self.assertIsNot(element_foo.attrib, attrib) self.assertNotEqual(element_foo.attrib, attrib) def test___copy__(self): element_foo = ET.Element("foo", { "zix": "wyp" }) element_foo.append(ET.Element("bar", { "baz": "qix" })) element_foo2 = copy.copy(element_foo) # elements are not the same self.assertIsNot(element_foo2, element_foo) # string attributes are equal self.assertEqual(element_foo2.tag, element_foo.tag) self.assertEqual(element_foo2.text, element_foo.text) self.assertEqual(element_foo2.tail, element_foo.tail) # number of children is the same self.assertEqual(len(element_foo2), len(element_foo)) # children are the same for (child1, child2) in itertools.zip_longest(element_foo, element_foo2): self.assertIs(child1, child2) # attrib is a copy self.assertEqual(element_foo2.attrib, element_foo.attrib) def test___deepcopy__(self): element_foo = ET.Element("foo", { "zix": "wyp" }) element_foo.append(ET.Element("bar", { "baz": "qix" })) element_foo2 = copy.deepcopy(element_foo) # elements are not the same self.assertIsNot(element_foo2, element_foo) # string attributes are equal self.assertEqual(element_foo2.tag, element_foo.tag) self.assertEqual(element_foo2.text, element_foo.text) self.assertEqual(element_foo2.tail, element_foo.tail) # number of children is the same self.assertEqual(len(element_foo2), len(element_foo)) # children are not the same for (child1, child2) in itertools.zip_longest(element_foo, element_foo2): self.assertIsNot(child1, child2) # attrib is a copy self.assertIsNot(element_foo2.attrib, element_foo.attrib) self.assertEqual(element_foo2.attrib, element_foo.attrib) # attrib isn't linked element_foo.attrib["bar"] = "baz" self.assertIsNot(element_foo2.attrib, element_foo.attrib) self.assertNotEqual(element_foo2.attrib, element_foo.attrib) def test_augmentation_type_errors(self): e = ET.Element('joe') self.assertRaises(TypeError, e.append, 'b') self.assertRaises(TypeError, e.extend, [ET.Element('bar'), 'foo']) self.assertRaises(TypeError, e.insert, 0, 'foo') e[:] = [ET.Element('bar')] with self.assertRaises(TypeError): e[0] = 'foo' with self.assertRaises(TypeError): e[:] = [ET.Element('bar'), 'foo'] if hasattr(e, '__setstate__'): state = { 'tag': 'tag', '_children': [None], # non-Element 'attrib': 'attr', 'tail': 'tail', 'text': 'text', } self.assertRaises(TypeError, e.__setstate__, state) if hasattr(e, '__deepcopy__'): class E(ET.Element): def __deepcopy__(self, memo): return None # non-Element e[:] = [E('bar')] self.assertRaises(TypeError, copy.deepcopy, e) # TODO: RUSTPYTHON @unittest.expectedFailure def test_cyclic_gc(self): class Dummy: pass # Test the shortest cycle: d->element->d d = Dummy() d.dummyref = ET.Element('joe', attr=d) wref = weakref.ref(d) del d gc_collect() self.assertIsNone(wref()) # A longer cycle: d->e->e2->d e = ET.Element('joe') d = Dummy() d.dummyref = e wref = weakref.ref(d) e2 = ET.SubElement(e, 'foo', attr=d) del d, e, e2 gc_collect() self.assertIsNone(wref()) # A cycle between Element objects as children of one another # e1->e2->e3->e1 e1 = ET.Element('e1') e2 = ET.Element('e2') e3 = ET.Element('e3') e3.append(e1) e2.append(e3) e1.append(e2) wref = weakref.ref(e1) del e1, e2, e3 gc_collect() self.assertIsNone(wref()) def test_weakref(self): flag = False def wref_cb(w): nonlocal flag flag = True e = ET.Element('e') wref = weakref.ref(e, wref_cb) self.assertEqual(wref().tag, 'e') del e self.assertEqual(flag, True) self.assertEqual(wref(), None) def test_get_keyword_args(self): e1 = ET.Element('foo' , x=1, y=2, z=3) self.assertEqual(e1.get('x', default=7), 1) self.assertEqual(e1.get('w', default=7), 7) def test_pickle(self): # issue #16076: the C implementation wasn't pickleable. for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): for dumper, loader in product(self.modules, repeat=2): e = dumper.Element('foo', bar=42) e.text = "text goes here" e.tail = "opposite of head" dumper.SubElement(e, 'child').append(dumper.Element('grandchild')) e.append(dumper.Element('child')) e.findall('.//grandchild')[0].set('attr', 'other value') e2 = self.pickleRoundTrip(e, 'xml.etree.ElementTree', dumper, loader, proto) self.assertEqual(e2.tag, 'foo') self.assertEqual(e2.attrib['bar'], 42) self.assertEqual(len(e2), 2) self.assertEqualElements(e, e2) # TODO: RUSTPYTHON @unittest.expectedFailure def test_pickle_issue18997(self): for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): for dumper, loader in product(self.modules, repeat=2): XMLTEXT = """<?xml version="1.0"?> <group><dogs>4</dogs> </group>""" e1 = dumper.fromstring(XMLTEXT) if hasattr(e1, '__getstate__'): self.assertEqual(e1.__getstate__()['tag'], 'group') e2 = self.pickleRoundTrip(e1, 'xml.etree.ElementTree', dumper, loader, proto) self.assertEqual(e2.tag, 'group') self.assertEqual(e2[0].tag, 'dogs') class BadElementTest(ElementTestCase, unittest.TestCase): def test_extend_mutable_list(self): class X: @property def __class__(self): L[:] = [ET.Element('baz')] return ET.Element L = [X()] e = ET.Element('foo') try: e.extend(L) except TypeError: pass class Y(X, ET.Element): pass L = [Y('x')] e = ET.Element('foo') e.extend(L) def test_extend_mutable_list2(self): class X: @property def __class__(self): del L[:] return ET.Element L = [X(), ET.Element('baz')] e = ET.Element('foo') try: e.extend(L) except TypeError: pass class Y(X, ET.Element): pass L = [Y('bar'), ET.Element('baz')] e = ET.Element('foo') e.extend(L) @unittest.skip("TODO: RUSTPYTHON, hangs") def test_remove_with_mutating(self): class X(ET.Element): def __eq__(self, o): del e[:] return False e = ET.Element('foo') e.extend([X('bar')]) self.assertRaises(ValueError, e.remove, ET.Element('baz')) e = ET.Element('foo') e.extend([ET.Element('bar')]) self.assertRaises(ValueError, e.remove, X('baz')) @unittest.skipIf(sys.platform == "win32", "TODO: RUSTPYTHON, thread 'main' has overflowed its stack") def test_recursive_repr(self): # Issue #25455 e = ET.Element('foo') with swap_attr(e, 'tag', e): with self.assertRaises(RuntimeError): repr(e) # Should not crash def test_element_get_text(self): # Issue #27863 class X(str): def __del__(self): try: elem.text except NameError: pass b = ET.TreeBuilder() b.start('tag', {}) b.data('ABCD') b.data(X('EFGH')) b.data('IJKL') b.end('tag') elem = b.close() self.assertEqual(elem.text, 'ABCDEFGHIJKL') def test_element_get_tail(self): # Issue #27863 class X(str): def __del__(self): try: elem[0].tail except NameError: pass b = ET.TreeBuilder() b.start('root', {}) b.start('tag', {}) b.end('tag') b.data('ABCD') b.data(X('EFGH')) b.data('IJKL') b.end('root') elem = b.close() self.assertEqual(elem[0].tail, 'ABCDEFGHIJKL') @unittest.skip("TODO: RUSTPYTHON, hangs") def test_subscr(self): # Issue #27863 class X: def __index__(self): del e[:] return 1 e = ET.Element('elem') e.append(ET.Element('child')) e[:X()] # shouldn't crash e.append(ET.Element('child')) e[0:10:X()] # shouldn't crash def test_ass_subscr(self): # Issue #27863 class X: def __index__(self): e[:] = [] return 1 e = ET.Element('elem') for _ in range(10): e.insert(0, ET.Element('child')) e[0:10:X()] = [] # shouldn't crash def test_treebuilder_start(self): # Issue #27863 def element_factory(x, y): return [] b = ET.TreeBuilder(element_factory=element_factory) b.start('tag', {}) b.data('ABCD') self.assertRaises(AttributeError, b.start, 'tag2', {}) del b gc_collect() def test_treebuilder_end(self): # Issue #27863 def element_factory(x, y): return [] b = ET.TreeBuilder(element_factory=element_factory) b.start('tag', {}) b.data('ABCD') self.assertRaises(AttributeError, b.end, 'tag') del b gc_collect() class MutatingElementPath(str): def __new__(cls, elem, *args): self = str.__new__(cls, *args) self.elem = elem return self def __eq__(self, o): del self.elem[:] return True MutatingElementPath.__hash__ = str.__hash__ class BadElementPath(str): def __eq__(self, o): raise 1/0 BadElementPath.__hash__ = str.__hash__ class BadElementPathTest(ElementTestCase, unittest.TestCase): def setUp(self): super().setUp() from xml.etree import ElementPath self.path_cache = ElementPath._cache ElementPath._cache = {} def tearDown(self): from xml.etree import ElementPath ElementPath._cache = self.path_cache super().tearDown() def test_find_with_mutating(self): e = ET.Element('foo') e.extend([ET.Element('bar')]) e.find(MutatingElementPath(e, 'x')) def test_find_with_error(self): e = ET.Element('foo') e.extend([ET.Element('bar')]) try: e.find(BadElementPath('x')) except ZeroDivisionError: pass def test_findtext_with_mutating(self): e = ET.Element('foo') e.extend([ET.Element('bar')]) e.findtext(MutatingElementPath(e, 'x')) def test_findtext_with_error(self): e = ET.Element('foo') e.extend([ET.Element('bar')]) try: e.findtext(BadElementPath('x')) except ZeroDivisionError: pass def test_findall_with_mutating(self): e = ET.Element('foo') e.extend([ET.Element('bar')]) e.findall(MutatingElementPath(e, 'x')) def test_findall_with_error(self): e = ET.Element('foo') e.extend([ET.Element('bar')]) try: e.findall(BadElementPath('x')) except ZeroDivisionError: pass class ElementTreeTypeTest(unittest.TestCase): def test_istype(self): self.assertIsInstance(ET.ParseError, type) self.assertIsInstance(ET.QName, type) self.assertIsInstance(ET.ElementTree, type) self.assertIsInstance(ET.Element, type) self.assertIsInstance(ET.TreeBuilder, type) self.assertIsInstance(ET.XMLParser, type) def test_Element_subclass_trivial(self): class MyElement(ET.Element): pass mye = MyElement('foo') self.assertIsInstance(mye, ET.Element) self.assertIsInstance(mye, MyElement) self.assertEqual(mye.tag, 'foo') # test that attribute assignment works (issue 14849) mye.text = "joe" self.assertEqual(mye.text, "joe") def test_Element_subclass_constructor(self): class MyElement(ET.Element): def __init__(self, tag, attrib={}, **extra): super(MyElement, self).__init__(tag + '__', attrib, **extra) mye = MyElement('foo', {'a': 1, 'b': 2}, c=3, d=4) self.assertEqual(mye.tag, 'foo__') self.assertEqual(sorted(mye.items()), [('a', 1), ('b', 2), ('c', 3), ('d', 4)]) def test_Element_subclass_new_method(self): class MyElement(ET.Element): def newmethod(self): return self.tag mye = MyElement('joe') self.assertEqual(mye.newmethod(), 'joe') def test_Element_subclass_find(self): class MyElement(ET.Element): pass e = ET.Element('foo') e.text = 'text' sub = MyElement('bar') sub.text = 'subtext' e.append(sub) self.assertEqual(e.findtext('bar'), 'subtext') self.assertEqual(e.find('bar').tag, 'bar') found = list(e.findall('bar')) self.assertEqual(len(found), 1, found) self.assertEqual(found[0].tag, 'bar') class ElementFindTest(unittest.TestCase): # TODO: RUSTPYTHON @unittest.expectedFailure def test_find_simple(self): e = ET.XML(SAMPLE_XML) self.assertEqual(e.find('tag').tag, 'tag') self.assertEqual(e.find('section/tag').tag, 'tag') self.assertEqual(e.find('./tag').tag, 'tag') e[2] = ET.XML(SAMPLE_SECTION) self.assertEqual(e.find('section/nexttag').tag, 'nexttag') self.assertEqual(e.findtext('./tag'), 'text') self.assertEqual(e.findtext('section/tag'), 'subtext') # section/nexttag is found but has no text self.assertEqual(e.findtext('section/nexttag'), '') self.assertEqual(e.findtext('section/nexttag', 'default'), '') # tog doesn't exist and 'default' kicks in self.assertIsNone(e.findtext('tog')) self.assertEqual(e.findtext('tog', 'default'), 'default') # Issue #16922 self.assertEqual(ET.XML('<tag><empty /></tag>').findtext('empty'), '') # TODO: RUSTPYTHON @unittest.expectedFailure def test_find_xpath(self): LINEAR_XML = ''' <body> <tag class='a'/> <tag class='b'/> <tag class='c'/> <tag class='d'/> </body>''' e = ET.XML(LINEAR_XML) # Test for numeric indexing and last() self.assertEqual(e.find('./tag[1]').attrib['class'], 'a') self.assertEqual(e.find('./tag[2]').attrib['class'], 'b') self.assertEqual(e.find('./tag[last()]').attrib['class'], 'd') self.assertEqual(e.find('./tag[last()-1]').attrib['class'], 'c') self.assertEqual(e.find('./tag[last()-2]').attrib['class'], 'b') self.assertRaisesRegex(SyntaxError, 'XPath', e.find, './tag[0]') self.assertRaisesRegex(SyntaxError, 'XPath', e.find, './tag[-1]') self.assertRaisesRegex(SyntaxError, 'XPath', e.find, './tag[last()-0]') self.assertRaisesRegex(SyntaxError, 'XPath', e.find, './tag[last()+1]') # TODO: RUSTPYTHON @unittest.expectedFailure def test_findall(self): e = ET.XML(SAMPLE_XML) e[2] = ET.XML(SAMPLE_SECTION) self.assertEqual(summarize_list(e.findall('.')), ['body']) self.assertEqual(summarize_list(e.findall('tag')), ['tag', 'tag']) self.assertEqual(summarize_list(e.findall('tog')), []) self.assertEqual(summarize_list(e.findall('tog/foo')), []) self.assertEqual(summarize_list(e.findall('*')), ['tag', 'tag', 'section']) self.assertEqual(summarize_list(e.findall('.//tag')), ['tag'] * 4) self.assertEqual(summarize_list(e.findall('section/tag')), ['tag']) self.assertEqual(summarize_list(e.findall('section//tag')), ['tag'] * 2) self.assertEqual(summarize_list(e.findall('section/*')), ['tag', 'nexttag', 'nextsection']) self.assertEqual(summarize_list(e.findall('section//*')), ['tag', 'nexttag', 'nextsection', 'tag']) self.assertEqual(summarize_list(e.findall('section/.//*')), ['tag', 'nexttag', 'nextsection', 'tag']) self.assertEqual(summarize_list(e.findall('*/*')), ['tag', 'nexttag', 'nextsection']) self.assertEqual(summarize_list(e.findall('*//*')), ['tag', 'nexttag', 'nextsection', 'tag']) self.assertEqual(summarize_list(e.findall('*/tag')), ['tag']) self.assertEqual(summarize_list(e.findall('*/./tag')), ['tag']) self.assertEqual(summarize_list(e.findall('./tag')), ['tag'] * 2) self.assertEqual(summarize_list(e.findall('././tag')), ['tag'] * 2) self.assertEqual(summarize_list(e.findall('.//tag[@class]')), ['tag'] * 3) self.assertEqual(summarize_list(e.findall('.//tag[@class="a"]')), ['tag']) self.assertEqual(summarize_list(e.findall('.//tag[@class="b"]')), ['tag'] * 2) self.assertEqual(summarize_list(e.findall('.//tag[@id]')), ['tag']) self.assertEqual(summarize_list(e.findall('.//section[tag]')), ['section']) self.assertEqual(summarize_list(e.findall('.//section[element]')), []) self.assertEqual(summarize_list(e.findall('../tag')), []) self.assertEqual(summarize_list(e.findall('section/../tag')), ['tag'] * 2) self.assertEqual(e.findall('section//'), e.findall('section//*')) self.assertEqual(summarize_list(e.findall(".//section[tag='subtext']")), ['section']) self.assertEqual(summarize_list(e.findall(".//section[tag ='subtext']")), ['section']) self.assertEqual(summarize_list(e.findall(".//section[tag= 'subtext']")), ['section']) self.assertEqual(summarize_list(e.findall(".//section[tag = 'subtext']")), ['section']) self.assertEqual(summarize_list(e.findall(".//section[ tag = 'subtext' ]")), ['section']) self.assertEqual(summarize_list(e.findall(".//tag[.='subtext']")), ['tag']) self.assertEqual(summarize_list(e.findall(".//tag[. ='subtext']")), ['tag']) self.assertEqual(summarize_list(e.findall('.//tag[.= "subtext"]')), ['tag']) self.assertEqual(summarize_list(e.findall('.//tag[ . = "subtext" ]')), ['tag']) self.assertEqual(summarize_list(e.findall(".//tag[. = 'subtext']")), ['tag']) self.assertEqual(summarize_list(e.findall(".//tag[. = 'subtext ']")), []) self.assertEqual(summarize_list(e.findall(".//tag[.= ' subtext']")), []) # duplicate section => 2x tag matches e[1] = e[2] self.assertEqual(summarize_list(e.findall(".//section[tag = 'subtext']")), ['section', 'section']) self.assertEqual(summarize_list(e.findall(".//tag[. = 'subtext']")), ['tag', 'tag']) # TODO: RUSTPYTHON @unittest.expectedFailure def test_test_find_with_ns(self): e = ET.XML(SAMPLE_XML_NS) self.assertEqual(summarize_list(e.findall('tag')), []) self.assertEqual( summarize_list(e.findall("{http://effbot.org/ns}tag")), ['{http://effbot.org/ns}tag'] * 2) self.assertEqual( summarize_list(e.findall(".//{http://effbot.org/ns}tag")), ['{http://effbot.org/ns}tag'] * 3) # TODO: RUSTPYTHON @unittest.expectedFailure def test_findall_different_nsmaps(self): root = ET.XML(''' <a xmlns:x="X" xmlns:y="Y"> <x:b><c/></x:b> <b/> <c><x:b/><b/></c><y:b/> </a>''') nsmap = {'xx': 'X'} self.assertEqual(len(root.findall(".//xx:b", namespaces=nsmap)), 2) self.assertEqual(len(root.findall(".//b", namespaces=nsmap)), 2) nsmap = {'xx': 'Y'} self.assertEqual(len(root.findall(".//xx:b", namespaces=nsmap)), 1) self.assertEqual(len(root.findall(".//b", namespaces=nsmap)), 2) nsmap = {'xx': 'X', '': 'Y'} self.assertEqual(len(root.findall(".//xx:b", namespaces=nsmap)), 2) self.assertEqual(len(root.findall(".//b", namespaces=nsmap)), 1) # TODO: RUSTPYTHON @unittest.expectedFailure def test_findall_wildcard(self): root = ET.XML(''' <a xmlns:x="X" xmlns:y="Y"> <x:b><c/></x:b> <b/> <c><x:b/><b/></c><y:b/> </a>''') root.append(ET.Comment('test')) self.assertEqual(summarize_list(root.findall("{*}b")), ['{X}b', 'b', '{Y}b']) self.assertEqual(summarize_list(root.findall("{*}c")), ['c']) self.assertEqual(summarize_list(root.findall("{X}*")), ['{X}b']) self.assertEqual(summarize_list(root.findall("{Y}*")), ['{Y}b']) self.assertEqual(summarize_list(root.findall("{}*")), ['b', 'c']) self.assertEqual(summarize_list(root.findall("{}b")), # only for consistency ['b']) self.assertEqual(summarize_list(root.findall("{}b")), summarize_list(root.findall("b"))) self.assertEqual(summarize_list(root.findall("{*}*")), ['{X}b', 'b', 'c', '{Y}b']) # This is an unfortunate difference, but that's how find('*') works. self.assertEqual(summarize_list(root.findall("{*}*") + [root[-1]]), summarize_list(root.findall("*"))) self.assertEqual(summarize_list(root.findall(".//{*}b")), ['{X}b', 'b', '{X}b', 'b', '{Y}b']) self.assertEqual(summarize_list(root.findall(".//{*}c")), ['c', 'c']) self.assertEqual(summarize_list(root.findall(".//{X}*")), ['{X}b', '{X}b']) self.assertEqual(summarize_list(root.findall(".//{Y}*")), ['{Y}b']) self.assertEqual(summarize_list(root.findall(".//{}*")), ['c', 'b', 'c', 'b']) self.assertEqual(summarize_list(root.findall(".//{}b")), # only for consistency ['b', 'b']) self.assertEqual(summarize_list(root.findall(".//{}b")), summarize_list(root.findall(".//b"))) # TODO: RUSTPYTHON @unittest.expectedFailure def test_bad_find(self): e = ET.XML(SAMPLE_XML) with self.assertRaisesRegex(SyntaxError, 'cannot use absolute path'): e.findall('/tag') # TODO: RUSTPYTHON @unittest.expectedFailure def test_find_through_ElementTree(self): e = ET.XML(SAMPLE_XML) self.assertEqual(ET.ElementTree(e).find('tag').tag, 'tag') self.assertEqual(ET.ElementTree(e).findtext('tag'), 'text') self.assertEqual(summarize_list(ET.ElementTree(e).findall('tag')), ['tag'] * 2) # this produces a warning msg = ("This search is broken in 1.3 and earlier, and will be fixed " "in a future version. If you rely on the current behaviour, " "change it to '.+'") with self.assertWarnsRegex(FutureWarning, msg): it = ET.ElementTree(e).findall('//tag') self.assertEqual(summarize_list(it), ['tag'] * 3) class ElementIterTest(unittest.TestCase): def _ilist(self, elem, tag=None): return summarize_list(elem.iter(tag)) # TODO: RUSTPYTHON @unittest.expectedFailure def test_basic(self): doc = ET.XML("<html><body>this is a <i>paragraph</i>.</body>..</html>") self.assertEqual(self._ilist(doc), ['html', 'body', 'i']) self.assertEqual(self._ilist(doc.find('body')), ['body', 'i']) self.assertEqual(next(doc.iter()).tag, 'html') self.assertEqual(''.join(doc.itertext()), 'this is a paragraph...') self.assertEqual(''.join(doc.find('body').itertext()), 'this is a paragraph.') self.assertEqual(next(doc.itertext()), 'this is a ') # iterparse should return an iterator sourcefile = serialize(doc, to_string=False) self.assertEqual(next(ET.iterparse(sourcefile))[0], 'end') # With an explicit parser too (issue #9708) sourcefile = serialize(doc, to_string=False) parser = ET.XMLParser(target=ET.TreeBuilder()) self.assertEqual(next(ET.iterparse(sourcefile, parser=parser))[0], 'end') tree = ET.ElementTree(None) self.assertRaises(AttributeError, tree.iter) # Issue #16913 doc = ET.XML("<root>a&amp;<sub>b&amp;</sub>c&amp;</root>") self.assertEqual(''.join(doc.itertext()), 'a&b&c&') def test_corners(self): # single root, no subelements a = ET.Element('a') self.assertEqual(self._ilist(a), ['a']) # one child b = ET.SubElement(a, 'b') self.assertEqual(self._ilist(a), ['a', 'b']) # one child and one grandchild c = ET.SubElement(b, 'c') self.assertEqual(self._ilist(a), ['a', 'b', 'c']) # two children, only first with grandchild d = ET.SubElement(a, 'd') self.assertEqual(self._ilist(a), ['a', 'b', 'c', 'd']) # replace first child by second a[0] = a[1] del a[1] self.assertEqual(self._ilist(a), ['a', 'd']) # TODO: RUSTPYTHON @unittest.expectedFailure def test_iter_by_tag(self): doc = ET.XML(''' <document> <house> <room>bedroom1</room> <room>bedroom2</room> </house> <shed>nothing here </shed> <house> <room>bedroom8</room> </house> </document>''') self.assertEqual(self._ilist(doc, 'room'), ['room'] * 3) self.assertEqual(self._ilist(doc, 'house'), ['house'] * 2) # test that iter also accepts 'tag' as a keyword arg self.assertEqual( summarize_list(doc.iter(tag='room')), ['room'] * 3) # make sure both tag=None and tag='*' return all tags all_tags = ['document', 'house', 'room', 'room', 'shed', 'house', 'room'] self.assertEqual(summarize_list(doc.iter()), all_tags) self.assertEqual(self._ilist(doc), all_tags) self.assertEqual(self._ilist(doc, '*'), all_tags) # TODO: RUSTPYTHON @unittest.expectedFailure # Element.getiterator() is deprecated. @checkwarnings(("This method will be removed in future versions. " "Use .+ instead.", DeprecationWarning)) def test_getiterator(self): doc = ET.XML(''' <document> <house> <room>bedroom1</room> <room>bedroom2</room> </house> <shed>nothing here </shed> <house> <room>bedroom8</room> </house> </document>''') self.assertEqual(summarize_list(doc.getiterator('room')), ['room'] * 3) self.assertEqual(summarize_list(doc.getiterator('house')), ['house'] * 2) # test that getiterator also accepts 'tag' as a keyword arg self.assertEqual( summarize_list(doc.getiterator(tag='room')), ['room'] * 3) # make sure both tag=None and tag='*' return all tags all_tags = ['document', 'house', 'room', 'room', 'shed', 'house', 'room'] self.assertEqual(summarize_list(doc.getiterator()), all_tags) self.assertEqual(summarize_list(doc.getiterator(None)), all_tags) self.assertEqual(summarize_list(doc.getiterator('*')), all_tags) def test_copy(self): a = ET.Element('a') it = a.iter() with self.assertRaises(TypeError): copy.copy(it) def test_pickle(self): a = ET.Element('a') it = a.iter() for proto in range(pickle.HIGHEST_PROTOCOL + 1): with self.assertRaises((TypeError, pickle.PicklingError)): pickle.dumps(it, proto) class TreeBuilderTest(unittest.TestCase): sample1 = ('<!DOCTYPE html PUBLIC' ' "-//W3C//DTD XHTML 1.0 Transitional//EN"' ' "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">' '<html>text<div>subtext</div>tail</html>') sample2 = '''<toplevel>sometext</toplevel>''' def _check_sample1_element(self, e): self.assertEqual(e.tag, 'html') self.assertEqual(e.text, 'text') self.assertEqual(e.tail, None) self.assertEqual(e.attrib, {}) children = list(e) self.assertEqual(len(children), 1) child = children[0] self.assertEqual(child.tag, 'div') self.assertEqual(child.text, 'subtext') self.assertEqual(child.tail, 'tail') self.assertEqual(child.attrib, {}) # TODO: RUSTPYTHON @unittest.expectedFailure def test_dummy_builder(self): class BaseDummyBuilder: def close(self): return 42 class DummyBuilder(BaseDummyBuilder): data = start = end = lambda *a: None parser = ET.XMLParser(target=DummyBuilder()) parser.feed(self.sample1) self.assertEqual(parser.close(), 42) parser = ET.XMLParser(target=BaseDummyBuilder()) parser.feed(self.sample1) self.assertEqual(parser.close(), 42) parser = ET.XMLParser(target=object()) parser.feed(self.sample1) self.assertIsNone(parser.close()) def test_treebuilder_comment(self): b = ET.TreeBuilder() self.assertEqual(b.comment('ctext').tag, ET.Comment) self.assertEqual(b.comment('ctext').text, 'ctext') b = ET.TreeBuilder(comment_factory=ET.Comment) self.assertEqual(b.comment('ctext').tag, ET.Comment) self.assertEqual(b.comment('ctext').text, 'ctext') b = ET.TreeBuilder(comment_factory=len) self.assertEqual(b.comment('ctext'), len('ctext')) def test_treebuilder_pi(self): b = ET.TreeBuilder() self.assertEqual(b.pi('target', None).tag, ET.PI) self.assertEqual(b.pi('target', None).text, 'target') b = ET.TreeBuilder(pi_factory=ET.PI) self.assertEqual(b.pi('target').tag, ET.PI) self.assertEqual(b.pi('target').text, "target") self.assertEqual(b.pi('pitarget', ' text ').tag, ET.PI) self.assertEqual(b.pi('pitarget', ' text ').text, "pitarget text ") b = ET.TreeBuilder(pi_factory=lambda target, text: (len(target), text)) self.assertEqual(b.pi('target'), (len('target'), None)) self.assertEqual(b.pi('pitarget', ' text '), (len('pitarget'), ' text ')) # TODO: RUSTPYTHON @unittest.expectedFailure def test_late_tail(self): # Issue #37399: The tail of an ignored comment could overwrite the text before it. class TreeBuilderSubclass(ET.TreeBuilder): pass xml = "<a>text<!-- comment -->tail</a>" a = ET.fromstring(xml) self.assertEqual(a.text, "texttail") parser = ET.XMLParser(target=TreeBuilderSubclass()) parser.feed(xml) a = parser.close() self.assertEqual(a.text, "texttail") xml = "<a>text<?pi data?>tail</a>" a = ET.fromstring(xml) self.assertEqual(a.text, "texttail") xml = "<a>text<?pi data?>tail</a>" parser = ET.XMLParser(target=TreeBuilderSubclass()) parser.feed(xml) a = parser.close() self.assertEqual(a.text, "texttail") # TODO: RUSTPYTHON @unittest.expectedFailure def test_late_tail_mix_pi_comments(self): # Issue #37399: The tail of an ignored comment could overwrite the text before it. # Test appending tails to comments/pis. class TreeBuilderSubclass(ET.TreeBuilder): pass xml = "<a>text<?pi1?> <!-- comment -->\n<?pi2?>tail</a>" parser = ET.XMLParser(target=ET.TreeBuilder(insert_comments=True)) parser.feed(xml) a = parser.close() self.assertEqual(a[0].text, ' comment ') self.assertEqual(a[0].tail, '\ntail') self.assertEqual(a.text, "text ") parser = ET.XMLParser(target=TreeBuilderSubclass(insert_comments=True)) parser.feed(xml) a = parser.close() self.assertEqual(a[0].text, ' comment ') self.assertEqual(a[0].tail, '\ntail') self.assertEqual(a.text, "text ") xml = "<a>text<!-- comment -->\n<?pi data?>tail</a>" parser = ET.XMLParser(target=ET.TreeBuilder(insert_pis=True)) parser.feed(xml) a = parser.close() self.assertEqual(a[0].text, 'pi data') self.assertEqual(a[0].tail, 'tail') self.assertEqual(a.text, "text\n") parser = ET.XMLParser(target=TreeBuilderSubclass(insert_pis=True)) parser.feed(xml) a = parser.close() self.assertEqual(a[0].text, 'pi data') self.assertEqual(a[0].tail, 'tail') self.assertEqual(a.text, "text\n") # TODO: RUSTPYTHON @unittest.expectedFailure def test_treebuilder_elementfactory_none(self): parser = ET.XMLParser(target=ET.TreeBuilder(element_factory=None)) parser.feed(self.sample1) e = parser.close() self._check_sample1_element(e) # TODO: RUSTPYTHON @unittest.expectedFailure def test_subclass(self): class MyTreeBuilder(ET.TreeBuilder): def foobar(self, x): return x * 2 tb = MyTreeBuilder() self.assertEqual(tb.foobar(10), 20) parser = ET.XMLParser(target=tb) parser.feed(self.sample1) e = parser.close() self._check_sample1_element(e) # TODO: RUSTPYTHON @unittest.expectedFailure def test_subclass_comment_pi(self): class MyTreeBuilder(ET.TreeBuilder): def foobar(self, x): return x * 2 tb = MyTreeBuilder(comment_factory=ET.Comment, pi_factory=ET.PI) self.assertEqual(tb.foobar(10), 20) parser = ET.XMLParser(target=tb) parser.feed(self.sample1) parser.feed('<!-- a comment--><?and a pi?>') e = parser.close() self._check_sample1_element(e) # TODO: RUSTPYTHON @unittest.expectedFailure def test_element_factory(self): lst = [] def myfactory(tag, attrib): nonlocal lst lst.append(tag) return ET.Element(tag, attrib) tb = ET.TreeBuilder(element_factory=myfactory) parser = ET.XMLParser(target=tb) parser.feed(self.sample2) parser.close() self.assertEqual(lst, ['toplevel']) def _check_element_factory_class(self, cls): tb = ET.TreeBuilder(element_factory=cls) parser = ET.XMLParser(target=tb) parser.feed(self.sample1) e = parser.close() self.assertIsInstance(e, cls) self._check_sample1_element(e) # TODO: RUSTPYTHON @unittest.expectedFailure def test_element_factory_subclass(self): class MyElement(ET.Element): pass self._check_element_factory_class(MyElement) # TODO: RUSTPYTHON @unittest.expectedFailure def test_element_factory_pure_python_subclass(self): # Mimick SimpleTAL's behaviour (issue #16089): both versions of # TreeBuilder should be able to cope with a subclass of the # pure Python Element class. base = ET._Element_Py # Not from a C extension self.assertEqual(base.__module__, 'xml.etree.ElementTree') # Force some multiple inheritance with a C class to make things # more interesting. class MyElement(base, ValueError): pass self._check_element_factory_class(MyElement) # TODO: RUSTPYTHON @unittest.expectedFailure def test_doctype(self): class DoctypeParser: _doctype = None def doctype(self, name, pubid, system): self._doctype = (name, pubid, system) def close(self): return self._doctype parser = ET.XMLParser(target=DoctypeParser()) parser.feed(self.sample1) self.assertEqual(parser.close(), ('html', '-//W3C//DTD XHTML 1.0 Transitional//EN', 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd')) # TODO: RUSTPYTHON @unittest.expectedFailure def test_builder_lookup_errors(self): class RaisingBuilder: def __init__(self, raise_in=None, what=ValueError): self.raise_in = raise_in self.what = what def __getattr__(self, name): if name == self.raise_in: raise self.what(self.raise_in) def handle(*args): pass return handle ET.XMLParser(target=RaisingBuilder()) # cET also checks for 'close' and 'doctype', PyET does it only at need for event in ('start', 'data', 'end', 'comment', 'pi'): with self.assertRaisesRegex(ValueError, event): ET.XMLParser(target=RaisingBuilder(event)) ET.XMLParser(target=RaisingBuilder(what=AttributeError)) for event in ('start', 'data', 'end', 'comment', 'pi'): parser = ET.XMLParser(target=RaisingBuilder(event, what=AttributeError)) parser.feed(self.sample1) self.assertIsNone(parser.close()) class XMLParserTest(unittest.TestCase): sample1 = b'<file><line>22</line></file>' sample2 = (b'<!DOCTYPE html PUBLIC' b' "-//W3C//DTD XHTML 1.0 Transitional//EN"' b' "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">' b'<html>text</html>') sample3 = ('<?xml version="1.0" encoding="iso-8859-1"?>\n' '<money value="$\xa3\u20ac\U0001017b">$\xa3\u20ac\U0001017b</money>') def _check_sample_element(self, e): self.assertEqual(e.tag, 'file') self.assertEqual(e[0].tag, 'line') self.assertEqual(e[0].text, '22') # TODO: RUSTPYTHON @unittest.expectedFailure def test_constructor_args(self): parser2 = ET.XMLParser(encoding='utf-8', target=ET.TreeBuilder()) parser2.feed(self.sample1) self._check_sample_element(parser2.close()) # TODO: RUSTPYTHON @unittest.expectedFailure def test_subclass(self): class MyParser(ET.XMLParser): pass parser = MyParser() parser.feed(self.sample1) self._check_sample_element(parser.close()) # TODO: RUSTPYTHON @unittest.expectedFailure def test_doctype_warning(self): with warnings.catch_warnings(): warnings.simplefilter('error', DeprecationWarning) parser = ET.XMLParser() parser.feed(self.sample2) parser.close() # TODO: RUSTPYTHON @unittest.expectedFailure def test_subclass_doctype(self): _doctype = None class MyParserWithDoctype(ET.XMLParser): def doctype(self, *args, **kwargs): nonlocal _doctype _doctype = (args, kwargs) parser = MyParserWithDoctype() with self.assertWarnsRegex(RuntimeWarning, 'doctype'): parser.feed(self.sample2) parser.close() self.assertIsNone(_doctype) _doctype = _doctype2 = None with warnings.catch_warnings(): warnings.simplefilter('error', DeprecationWarning) warnings.simplefilter('error', RuntimeWarning) class DoctypeParser: def doctype(self, name, pubid, system): nonlocal _doctype2 _doctype2 = (name, pubid, system) parser = MyParserWithDoctype(target=DoctypeParser()) parser.feed(self.sample2) parser.close() self.assertIsNone(_doctype) self.assertEqual(_doctype2, ('html', '-//W3C//DTD XHTML 1.0 Transitional//EN', 'http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd')) # TODO: RUSTPYTHON @unittest.expectedFailure def test_inherited_doctype(self): '''Ensure that ordinary usage is not deprecated (Issue 19176)''' with warnings.catch_warnings(): warnings.simplefilter('error', DeprecationWarning) warnings.simplefilter('error', RuntimeWarning) class MyParserWithoutDoctype(ET.XMLParser): pass parser = MyParserWithoutDoctype() parser.feed(self.sample2) parser.close() # TODO: RUSTPYTHON @unittest.expectedFailure def test_parse_string(self): parser = ET.XMLParser(target=ET.TreeBuilder()) parser.feed(self.sample3) e = parser.close() self.assertEqual(e.tag, 'money') self.assertEqual(e.attrib['value'], '$\xa3\u20ac\U0001017b') self.assertEqual(e.text, '$\xa3\u20ac\U0001017b') class NamespaceParseTest(unittest.TestCase): # TODO: RUSTPYTHON @unittest.expectedFailure def test_find_with_namespace(self): nsmap = {'h': 'hello', 'f': 'foo'} doc = ET.fromstring(SAMPLE_XML_NS_ELEMS) self.assertEqual(len(doc.findall('{hello}table', nsmap)), 1) self.assertEqual(len(doc.findall('.//{hello}td', nsmap)), 2) self.assertEqual(len(doc.findall('.//{foo}name', nsmap)), 1) class ElementSlicingTest(unittest.TestCase): def _elem_tags(self, elemlist): return [e.tag for e in elemlist] def _subelem_tags(self, elem): return self._elem_tags(list(elem)) def _make_elem_with_children(self, numchildren): """Create an Element with a tag 'a', with the given amount of children named 'a0', 'a1' ... and so on. """ e = ET.Element('a') for i in range(numchildren): ET.SubElement(e, 'a%s' % i) return e def test_getslice_single_index(self): e = self._make_elem_with_children(10) self.assertEqual(e[1].tag, 'a1') self.assertEqual(e[-2].tag, 'a8') self.assertRaises(IndexError, lambda: e[12]) self.assertRaises(IndexError, lambda: e[-12]) def test_getslice_range(self): e = self._make_elem_with_children(6) self.assertEqual(self._elem_tags(e[3:]), ['a3', 'a4', 'a5']) self.assertEqual(self._elem_tags(e[3:6]), ['a3', 'a4', 'a5']) self.assertEqual(self._elem_tags(e[3:16]), ['a3', 'a4', 'a5']) self.assertEqual(self._elem_tags(e[3:5]), ['a3', 'a4']) self.assertEqual(self._elem_tags(e[3:-1]), ['a3', 'a4']) self.assertEqual(self._elem_tags(e[:2]), ['a0', 'a1']) def test_getslice_steps(self): e = self._make_elem_with_children(10) self.assertEqual(self._elem_tags(e[8:10:1]), ['a8', 'a9']) self.assertEqual(self._elem_tags(e[::3]), ['a0', 'a3', 'a6', 'a9']) self.assertEqual(self._elem_tags(e[::8]), ['a0', 'a8']) self.assertEqual(self._elem_tags(e[1::8]), ['a1', 'a9']) self.assertEqual(self._elem_tags(e[3::sys.maxsize]), ['a3']) self.assertEqual(self._elem_tags(e[3::sys.maxsize<<64]), ['a3']) def test_getslice_negative_steps(self): e = self._make_elem_with_children(4) self.assertEqual(self._elem_tags(e[::-1]), ['a3', 'a2', 'a1', 'a0']) self.assertEqual(self._elem_tags(e[::-2]), ['a3', 'a1']) self.assertEqual(self._elem_tags(e[3::-sys.maxsize]), ['a3']) self.assertEqual(self._elem_tags(e[3::-sys.maxsize-1]), ['a3']) self.assertEqual(self._elem_tags(e[3::-sys.maxsize<<64]), ['a3']) def test_delslice(self): e = self._make_elem_with_children(4) del e[0:2] self.assertEqual(self._subelem_tags(e), ['a2', 'a3']) e = self._make_elem_with_children(4) del e[0:] self.assertEqual(self._subelem_tags(e), []) e = self._make_elem_with_children(4) del e[::-1] self.assertEqual(self._subelem_tags(e), []) e = self._make_elem_with_children(4) del e[::-2] self.assertEqual(self._subelem_tags(e), ['a0', 'a2']) e = self._make_elem_with_children(4) del e[1::2] self.assertEqual(self._subelem_tags(e), ['a0', 'a2']) e = self._make_elem_with_children(2) del e[::2] self.assertEqual(self._subelem_tags(e), ['a1']) def test_setslice_single_index(self): e = self._make_elem_with_children(4) e[1] = ET.Element('b') self.assertEqual(self._subelem_tags(e), ['a0', 'b', 'a2', 'a3']) e[-2] = ET.Element('c') self.assertEqual(self._subelem_tags(e), ['a0', 'b', 'c', 'a3']) with self.assertRaises(IndexError): e[5] = ET.Element('d') with self.assertRaises(IndexError): e[-5] = ET.Element('d') self.assertEqual(self._subelem_tags(e), ['a0', 'b', 'c', 'a3']) def test_setslice_range(self): e = self._make_elem_with_children(4) e[1:3] = [ET.Element('b%s' % i) for i in range(2)] self.assertEqual(self._subelem_tags(e), ['a0', 'b0', 'b1', 'a3']) e = self._make_elem_with_children(4) e[1:3] = [ET.Element('b')] self.assertEqual(self._subelem_tags(e), ['a0', 'b', 'a3']) e = self._make_elem_with_children(4) e[1:3] = [ET.Element('b%s' % i) for i in range(3)] self.assertEqual(self._subelem_tags(e), ['a0', 'b0', 'b1', 'b2', 'a3']) def test_setslice_steps(self): e = self._make_elem_with_children(6) e[1:5:2] = [ET.Element('b%s' % i) for i in range(2)] self.assertEqual(self._subelem_tags(e), ['a0', 'b0', 'a2', 'b1', 'a4', 'a5']) e = self._make_elem_with_children(6) with self.assertRaises(ValueError): e[1:5:2] = [ET.Element('b')] with self.assertRaises(ValueError): e[1:5:2] = [ET.Element('b%s' % i) for i in range(3)] with self.assertRaises(ValueError): e[1:5:2] = [] self.assertEqual(self._subelem_tags(e), ['a0', 'a1', 'a2', 'a3', 'a4', 'a5']) e = self._make_elem_with_children(4) e[1::sys.maxsize] = [ET.Element('b')] self.assertEqual(self._subelem_tags(e), ['a0', 'b', 'a2', 'a3']) e[1::sys.maxsize<<64] = [ET.Element('c')] self.assertEqual(self._subelem_tags(e), ['a0', 'c', 'a2', 'a3']) def test_setslice_negative_steps(self): e = self._make_elem_with_children(4) e[2:0:-1] = [ET.Element('b%s' % i) for i in range(2)] self.assertEqual(self._subelem_tags(e), ['a0', 'b1', 'b0', 'a3']) e = self._make_elem_with_children(4) with self.assertRaises(ValueError): e[2:0:-1] = [ET.Element('b')] with self.assertRaises(ValueError): e[2:0:-1] = [ET.Element('b%s' % i) for i in range(3)] with self.assertRaises(ValueError): e[2:0:-1] = [] self.assertEqual(self._subelem_tags(e), ['a0', 'a1', 'a2', 'a3']) e = self._make_elem_with_children(4) e[1::-sys.maxsize] = [ET.Element('b')] self.assertEqual(self._subelem_tags(e), ['a0', 'b', 'a2', 'a3']) e[1::-sys.maxsize-1] = [ET.Element('c')] self.assertEqual(self._subelem_tags(e), ['a0', 'c', 'a2', 'a3']) e[1::-sys.maxsize<<64] = [ET.Element('d')] self.assertEqual(self._subelem_tags(e), ['a0', 'd', 'a2', 'a3']) class IOTest(unittest.TestCase): # TODO: RUSTPYTHON @unittest.expectedFailure def test_encoding(self): # Test encoding issues. elem = ET.Element("tag") elem.text = "abc" self.assertEqual(serialize(elem), '<tag>abc</tag>') for enc in ("utf-8", "us-ascii"): with self.subTest(enc): self.assertEqual(serialize(elem, encoding=enc), b'<tag>abc</tag>') self.assertEqual(serialize(elem, encoding=enc.upper()), b'<tag>abc</tag>') for enc in ("iso-8859-1", "utf-16", "utf-32"): with self.subTest(enc): self.assertEqual(serialize(elem, encoding=enc), ("<?xml version='1.0' encoding='%s'?>\n" "<tag>abc</tag>" % enc).encode(enc)) upper = enc.upper() self.assertEqual(serialize(elem, encoding=upper), ("<?xml version='1.0' encoding='%s'?>\n" "<tag>abc</tag>" % upper).encode(enc)) elem = ET.Element("tag") elem.text = "<&\"\'>" self.assertEqual(serialize(elem), '<tag>&lt;&amp;"\'&gt;</tag>') self.assertEqual(serialize(elem, encoding="utf-8"), b'<tag>&lt;&amp;"\'&gt;</tag>') self.assertEqual(serialize(elem, encoding="us-ascii"), b'<tag>&lt;&amp;"\'&gt;</tag>') for enc in ("iso-8859-1", "utf-16", "utf-32"): self.assertEqual(serialize(elem, encoding=enc), ("<?xml version='1.0' encoding='%s'?>\n" "<tag>&lt;&amp;\"'&gt;</tag>" % enc).encode(enc)) elem = ET.Element("tag") elem.attrib["key"] = "<&\"\'>" self.assertEqual(serialize(elem), '<tag key="&lt;&amp;&quot;\'&gt;" />') self.assertEqual(serialize(elem, encoding="utf-8"), b'<tag key="&lt;&amp;&quot;\'&gt;" />') self.assertEqual(serialize(elem, encoding="us-ascii"), b'<tag key="&lt;&amp;&quot;\'&gt;" />') for enc in ("iso-8859-1", "utf-16", "utf-32"): self.assertEqual(serialize(elem, encoding=enc), ("<?xml version='1.0' encoding='%s'?>\n" "<tag key=\"&lt;&amp;&quot;'&gt;\" />" % enc).encode(enc)) elem = ET.Element("tag") elem.text = '\xe5\xf6\xf6<>' self.assertEqual(serialize(elem), '<tag>\xe5\xf6\xf6&lt;&gt;</tag>') self.assertEqual(serialize(elem, encoding="utf-8"), b'<tag>\xc3\xa5\xc3\xb6\xc3\xb6&lt;&gt;</tag>') self.assertEqual(serialize(elem, encoding="us-ascii"), b'<tag>&#229;&#246;&#246;&lt;&gt;</tag>') for enc in ("iso-8859-1", "utf-16", "utf-32"): self.assertEqual(serialize(elem, encoding=enc), ("<?xml version='1.0' encoding='%s'?>\n" "<tag>åöö&lt;&gt;</tag>" % enc).encode(enc)) elem = ET.Element("tag") elem.attrib["key"] = '\xe5\xf6\xf6<>' self.assertEqual(serialize(elem), '<tag key="\xe5\xf6\xf6&lt;&gt;" />') self.assertEqual(serialize(elem, encoding="utf-8"), b'<tag key="\xc3\xa5\xc3\xb6\xc3\xb6&lt;&gt;" />') self.assertEqual(serialize(elem, encoding="us-ascii"), b'<tag key="&#229;&#246;&#246;&lt;&gt;" />') for enc in ("iso-8859-1", "utf-16", "utf-16le", "utf-16be", "utf-32"): self.assertEqual(serialize(elem, encoding=enc), ("<?xml version='1.0' encoding='%s'?>\n" "<tag key=\"åöö&lt;&gt;\" />" % enc).encode(enc)) # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_filename(self): self.addCleanup(os_helper.unlink, TESTFN) tree = ET.ElementTree(ET.XML('''<site />''')) tree.write(TESTFN) with open(TESTFN, 'rb') as f: self.assertEqual(f.read(), b'''<site />''') # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_text_file(self): self.addCleanup(os_helper.unlink, TESTFN) tree = ET.ElementTree(ET.XML('''<site />''')) with open(TESTFN, 'w', encoding='utf-8') as f: tree.write(f, encoding='unicode') self.assertFalse(f.closed) with open(TESTFN, 'rb') as f: self.assertEqual(f.read(), b'''<site />''') # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_binary_file(self): self.addCleanup(os_helper.unlink, TESTFN) tree = ET.ElementTree(ET.XML('''<site />''')) with open(TESTFN, 'wb') as f: tree.write(f) self.assertFalse(f.closed) with open(TESTFN, 'rb') as f: self.assertEqual(f.read(), b'''<site />''') # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_binary_file_with_bom(self): self.addCleanup(os_helper.unlink, TESTFN) tree = ET.ElementTree(ET.XML('''<site />''')) # test BOM writing to buffered file with open(TESTFN, 'wb') as f: tree.write(f, encoding='utf-16') self.assertFalse(f.closed) with open(TESTFN, 'rb') as f: self.assertEqual(f.read(), '''<?xml version='1.0' encoding='utf-16'?>\n''' '''<site />'''.encode("utf-16")) # test BOM writing to non-buffered file with open(TESTFN, 'wb', buffering=0) as f: tree.write(f, encoding='utf-16') self.assertFalse(f.closed) with open(TESTFN, 'rb') as f: self.assertEqual(f.read(), '''<?xml version='1.0' encoding='utf-16'?>\n''' '''<site />'''.encode("utf-16")) # TODO: RUSTPYTHON @unittest.expectedFailure def test_read_from_stringio(self): tree = ET.ElementTree() stream = io.StringIO('''<?xml version="1.0"?><site></site>''') tree.parse(stream) self.assertEqual(tree.getroot().tag, 'site') # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_stringio(self): tree = ET.ElementTree(ET.XML('''<site />''')) stream = io.StringIO() tree.write(stream, encoding='unicode') self.assertEqual(stream.getvalue(), '''<site />''') # TODO: RUSTPYTHON @unittest.expectedFailure def test_read_from_bytesio(self): tree = ET.ElementTree() raw = io.BytesIO(b'''<?xml version="1.0"?><site></site>''') tree.parse(raw) self.assertEqual(tree.getroot().tag, 'site') # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_bytesio(self): tree = ET.ElementTree(ET.XML('''<site />''')) raw = io.BytesIO() tree.write(raw) self.assertEqual(raw.getvalue(), b'''<site />''') class dummy: pass # TODO: RUSTPYTHON @unittest.expectedFailure def test_read_from_user_text_reader(self): stream = io.StringIO('''<?xml version="1.0"?><site></site>''') reader = self.dummy() reader.read = stream.read tree = ET.ElementTree() tree.parse(reader) self.assertEqual(tree.getroot().tag, 'site') # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_user_text_writer(self): tree = ET.ElementTree(ET.XML('''<site />''')) stream = io.StringIO() writer = self.dummy() writer.write = stream.write tree.write(writer, encoding='unicode') self.assertEqual(stream.getvalue(), '''<site />''') # TODO: RUSTPYTHON @unittest.expectedFailure def test_read_from_user_binary_reader(self): raw = io.BytesIO(b'''<?xml version="1.0"?><site></site>''') reader = self.dummy() reader.read = raw.read tree = ET.ElementTree() tree.parse(reader) self.assertEqual(tree.getroot().tag, 'site') tree = ET.ElementTree() # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_user_binary_writer(self): tree = ET.ElementTree(ET.XML('''<site />''')) raw = io.BytesIO() writer = self.dummy() writer.write = raw.write tree.write(writer) self.assertEqual(raw.getvalue(), b'''<site />''') # TODO: RUSTPYTHON @unittest.expectedFailure def test_write_to_user_binary_writer_with_bom(self): tree = ET.ElementTree(ET.XML('''<site />''')) raw = io.BytesIO() writer = self.dummy() writer.write = raw.write writer.seekable = lambda: True writer.tell = raw.tell tree.write(writer, encoding="utf-16") self.assertEqual(raw.getvalue(), '''<?xml version='1.0' encoding='utf-16'?>\n''' '''<site />'''.encode("utf-16")) # TODO: RUSTPYTHON @unittest.expectedFailure def test_tostringlist_invariant(self): root = ET.fromstring('<tag>foo</tag>') self.assertEqual( ET.tostring(root, 'unicode'), ''.join(ET.tostringlist(root, 'unicode'))) self.assertEqual( ET.tostring(root, 'utf-16'), b''.join(ET.tostringlist(root, 'utf-16'))) # TODO: RUSTPYTHON @unittest.expectedFailure def test_short_empty_elements(self): root = ET.fromstring('<tag>a<x />b<y></y>c</tag>') self.assertEqual( ET.tostring(root, 'unicode'), '<tag>a<x />b<y />c</tag>') self.assertEqual( ET.tostring(root, 'unicode', short_empty_elements=True), '<tag>a<x />b<y />c</tag>') self.assertEqual( ET.tostring(root, 'unicode', short_empty_elements=False), '<tag>a<x></x>b<y></y>c</tag>') class ParseErrorTest(unittest.TestCase): def test_subclass(self): self.assertIsInstance(ET.ParseError(), SyntaxError) def _get_error(self, s): try: ET.fromstring(s) except ET.ParseError as e: return e # TODO: RUSTPYTHON @unittest.expectedFailure def test_error_position(self): self.assertEqual(self._get_error('foo').position, (1, 0)) self.assertEqual(self._get_error('<tag>&foo;</tag>').position, (1, 5)) self.assertEqual(self._get_error('foobar<').position, (1, 6)) # TODO: RUSTPYTHON @unittest.expectedFailure def test_error_code(self): import xml.parsers.expat.errors as ERRORS self.assertEqual(self._get_error('foo').code, ERRORS.codes[ERRORS.XML_ERROR_SYNTAX]) class KeywordArgsTest(unittest.TestCase): # TODO: RUSTPYTHON @unittest.expectedFailure # Test various issues with keyword arguments passed to ET.Element # constructor and methods def test_issue14818(self): x = ET.XML("<a>foo</a>") self.assertEqual(x.find('a', None), x.find(path='a', namespaces=None)) self.assertEqual(x.findtext('a', None, None), x.findtext(path='a', default=None, namespaces=None)) self.assertEqual(x.findall('a', None), x.findall(path='a', namespaces=None)) self.assertEqual(list(x.iterfind('a', None)), list(x.iterfind(path='a', namespaces=None))) self.assertEqual(ET.Element('a').attrib, {}) elements = [ ET.Element('a', dict(href="#", id="foo")), ET.Element('a', attrib=dict(href="#", id="foo")), ET.Element('a', dict(href="#"), id="foo"), ET.Element('a', href="#", id="foo"), ET.Element('a', dict(href="#", id="foo"), href="#", id="foo"), ] for e in elements: self.assertEqual(e.tag, 'a') self.assertEqual(e.attrib, dict(href="#", id="foo")) e2 = ET.SubElement(elements[0], 'foobar', attrib={'key1': 'value1'}) self.assertEqual(e2.attrib['key1'], 'value1') with self.assertRaisesRegex(TypeError, 'must be dict, not str'): ET.Element('a', "I'm not a dict") with self.assertRaisesRegex(TypeError, 'must be dict, not str'): ET.Element('a', attrib="I'm not a dict") # -------------------------------------------------------------------- class NoAcceleratorTest(unittest.TestCase): def setUp(self): if not pyET: raise unittest.SkipTest('only for the Python version') # TODO: RUSTPYTHON @unittest.expectedFailure # Test that the C accelerator was not imported for pyET def test_correct_import_pyET(self): # The type of methods defined in Python code is types.FunctionType, # while the type of methods defined inside _elementtree is # <class 'wrapper_descriptor'> self.assertIsInstance(pyET.Element.__init__, types.FunctionType) self.assertIsInstance(pyET.XMLParser.__init__, types.FunctionType) # -------------------------------------------------------------------- def c14n_roundtrip(xml, **options): return pyET.canonicalize(xml, **options) class C14NTest(unittest.TestCase): maxDiff = None # # simple roundtrip tests (from c14n.py) # TODO: RUSTPYTHON @unittest.expectedFailure def test_simple_roundtrip(self): # Basics self.assertEqual(c14n_roundtrip("<doc/>"), '<doc></doc>') self.assertEqual(c14n_roundtrip("<doc xmlns='uri'/>"), # FIXME '<doc xmlns="uri"></doc>') self.assertEqual(c14n_roundtrip("<prefix:doc xmlns:prefix='uri'/>"), '<prefix:doc xmlns:prefix="uri"></prefix:doc>') self.assertEqual(c14n_roundtrip("<doc xmlns:prefix='uri'><prefix:bar/></doc>"), '<doc><prefix:bar xmlns:prefix="uri"></prefix:bar></doc>') self.assertEqual(c14n_roundtrip("<elem xmlns:wsu='http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd' xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/' />"), '<elem></elem>') # C14N spec self.assertEqual(c14n_roundtrip("<doc>Hello, world!<!-- Comment 1 --></doc>"), '<doc>Hello, world!</doc>') self.assertEqual(c14n_roundtrip("<value>&#x32;</value>"), '<value>2</value>') self.assertEqual(c14n_roundtrip('<compute><![CDATA[value>"0" && value<"10" ?"valid":"error"]]></compute>'), '<compute>value&gt;"0" &amp;&amp; value&lt;"10" ?"valid":"error"</compute>') self.assertEqual(c14n_roundtrip('''<compute expr='value>"0" &amp;&amp; value&lt;"10" ?"valid":"error"'>valid</compute>'''), '<compute expr="value>&quot;0&quot; &amp;&amp; value&lt;&quot;10&quot; ?&quot;valid&quot;:&quot;error&quot;">valid</compute>') self.assertEqual(c14n_roundtrip("<norm attr=' &apos; &#x20;&#13;&#xa;&#9; &apos; '/>"), '<norm attr=" \' &#xD;&#xA;&#x9; \' "></norm>') self.assertEqual(c14n_roundtrip("<normNames attr=' A &#x20;&#13;&#xa;&#9; B '/>"), '<normNames attr=" A &#xD;&#xA;&#x9; B "></normNames>') self.assertEqual(c14n_roundtrip("<normId id=' &apos; &#x20;&#13;&#xa;&#9; &apos; '/>"), '<normId id=" \' &#xD;&#xA;&#x9; \' "></normId>') # fragments from PJ's tests #self.assertEqual(c14n_roundtrip("<doc xmlns:x='http://example.com/x' xmlns='http://example.com/default'><b y:a1='1' xmlns='http://example.com/default' a3='3' xmlns:y='http://example.com/y' y:a2='2'/></doc>"), #'<doc xmlns:x="http://example.com/x"><b xmlns:y="http://example.com/y" a3="3" y:a1="1" y:a2="2"></b></doc>') # Namespace issues xml = '<X xmlns="http://nps/a"><Y targets="abc,xyz"></Y></X>' self.assertEqual(c14n_roundtrip(xml), xml) xml = '<X xmlns="http://nps/a"><Y xmlns="http://nsp/b" targets="abc,xyz"></Y></X>' self.assertEqual(c14n_roundtrip(xml), xml) xml = '<X xmlns="http://nps/a"><Y xmlns:b="http://nsp/b" b:targets="abc,xyz"></Y></X>' self.assertEqual(c14n_roundtrip(xml), xml) # TODO: RUSTPYTHON @unittest.expectedFailure def test_c14n_exclusion(self): xml = textwrap.dedent("""\ <root xmlns:x="http://example.com/x"> <a x:attr="attrx"> <b>abtext</b> </a> <b>btext</b> <c> <x:d>dtext</x:d> </c> </root> """) self.assertEqual( c14n_roundtrip(xml, strip_text=True), '<root>' '<a xmlns:x="http://example.com/x" x:attr="attrx"><b>abtext</b></a>' '<b>btext</b>' '<c><x:d xmlns:x="http://example.com/x">dtext</x:d></c>' '</root>') self.assertEqual( c14n_roundtrip(xml, strip_text=True, exclude_attrs=['{http://example.com/x}attr']), '<root>' '<a><b>abtext</b></a>' '<b>btext</b>' '<c><x:d xmlns:x="http://example.com/x">dtext</x:d></c>' '</root>') self.assertEqual( c14n_roundtrip(xml, strip_text=True, exclude_tags=['{http://example.com/x}d']), '<root>' '<a xmlns:x="http://example.com/x" x:attr="attrx"><b>abtext</b></a>' '<b>btext</b>' '<c></c>' '</root>') self.assertEqual( c14n_roundtrip(xml, strip_text=True, exclude_attrs=['{http://example.com/x}attr'], exclude_tags=['{http://example.com/x}d']), '<root>' '<a><b>abtext</b></a>' '<b>btext</b>' '<c></c>' '</root>') self.assertEqual( c14n_roundtrip(xml, strip_text=True, exclude_tags=['a', 'b']), '<root>' '<c><x:d xmlns:x="http://example.com/x">dtext</x:d></c>' '</root>') self.assertEqual( c14n_roundtrip(xml, exclude_tags=['a', 'b']), '<root>\n' ' \n' ' \n' ' <c>\n' ' <x:d xmlns:x="http://example.com/x">dtext</x:d>\n' ' </c>\n' '</root>') self.assertEqual( c14n_roundtrip(xml, strip_text=True, exclude_tags=['{http://example.com/x}d', 'b']), '<root>' '<a xmlns:x="http://example.com/x" x:attr="attrx"></a>' '<c></c>' '</root>') self.assertEqual( c14n_roundtrip(xml, exclude_tags=['{http://example.com/x}d', 'b']), '<root>\n' ' <a xmlns:x="http://example.com/x" x:attr="attrx">\n' ' \n' ' </a>\n' ' \n' ' <c>\n' ' \n' ' </c>\n' '</root>') # # basic method=c14n tests from the c14n 2.0 specification. uses # test files under xmltestdata/c14n-20. # note that this uses generated C14N versions of the standard ET.write # output, not roundtripped C14N (see above). # TODO: RUSTPYTHON @unittest.expectedFailure def test_xml_c14n2(self): datadir = findfile("c14n-20", subdir="xmltestdata") full_path = partial(os.path.join, datadir) files = [filename[:-4] for filename in sorted(os.listdir(datadir)) if filename.endswith('.xml')] input_files = [ filename for filename in files if filename.startswith('in') ] configs = { filename: { # <c14n2:PrefixRewrite>sequential</c14n2:PrefixRewrite> option.tag.split('}')[-1]: ((option.text or '').strip(), option) for option in ET.parse(full_path(filename) + ".xml").getroot() } for filename in files if filename.startswith('c14n') } tests = { input_file: [ (filename, configs[filename.rsplit('_', 1)[-1]]) for filename in files if filename.startswith(f'out_{input_file}_') and filename.rsplit('_', 1)[-1] in configs ] for input_file in input_files } # Make sure we found all test cases. self.assertEqual(30, len([ output_file for output_files in tests.values() for output_file in output_files])) def get_option(config, option_name, default=None): return config.get(option_name, (default, ()))[0] for input_file, output_files in tests.items(): for output_file, config in output_files: keep_comments = get_option( config, 'IgnoreComments') == 'true' # no, it's right :) strip_text = get_option( config, 'TrimTextNodes') == 'true' rewrite_prefixes = get_option( config, 'PrefixRewrite') == 'sequential' if 'QNameAware' in config: qattrs = [ f"{{{el.get('NS')}}}{el.get('Name')}" for el in config['QNameAware'][1].findall( '{http://www.w3.org/2010/xml-c14n2}QualifiedAttr') ] qtags = [ f"{{{el.get('NS')}}}{el.get('Name')}" for el in config['QNameAware'][1].findall( '{http://www.w3.org/2010/xml-c14n2}Element') ] else: qtags = qattrs = None # Build subtest description from config. config_descr = ','.join( f"{name}={value or ','.join(c.tag.split('}')[-1] for c in children)}" for name, (value, children) in sorted(config.items()) ) with self.subTest(f"{output_file}({config_descr})"): if input_file == 'inNsRedecl' and not rewrite_prefixes: self.skipTest( f"Redeclared namespace handling is not supported in {output_file}") if input_file == 'inNsSuperfluous' and not rewrite_prefixes: self.skipTest( f"Redeclared namespace handling is not supported in {output_file}") if 'QNameAware' in config and config['QNameAware'][1].find( '{http://www.w3.org/2010/xml-c14n2}XPathElement') is not None: self.skipTest( f"QName rewriting in XPath text is not supported in {output_file}") f = full_path(input_file + ".xml") if input_file == 'inC14N5': # Hack: avoid setting up external entity resolution in the parser. with open(full_path('world.txt'), 'rb') as entity_file: with open(f, 'rb') as f: f = io.BytesIO(f.read().replace(b'&ent2;', entity_file.read())) text = ET.canonicalize( from_file=f, with_comments=keep_comments, strip_text=strip_text, rewrite_prefixes=rewrite_prefixes, qname_aware_tags=qtags, qname_aware_attrs=qattrs) with open(full_path(output_file + ".xml"), 'r', encoding='utf8') as f: expected = f.read() if input_file == 'inC14N3': # FIXME: cET resolves default attributes but ET does not! expected = expected.replace(' attr="default"', '') text = text.replace(' attr="default"', '') self.assertEqual(expected, text) # -------------------------------------------------------------------- def test_main(module=None): # When invoked without a module, runs the Python ET tests by loading pyET. # Otherwise, uses the given module as the ET. global pyET pyET = import_fresh_module('xml.etree.ElementTree', blocked=['_elementtree']) if module is None: module = pyET global ET ET = module test_classes = [ ModuleTest, ElementSlicingTest, BasicElementTest, BadElementTest, BadElementPathTest, ElementTreeTest, IOTest, ParseErrorTest, XIncludeTest, ElementTreeTypeTest, ElementFindTest, ElementIterTest, TreeBuilderTest, XMLParserTest, XMLPullParserTest, BugsTest, KeywordArgsTest, C14NTest, ] # These tests will only run for the pure-Python version that doesn't import # _elementtree. We can't use skipUnless here, because pyET is filled in only # after the module is loaded. if pyET is not ET: test_classes.extend([ NoAcceleratorTest, ]) # Provide default namespace mapping and path cache. from xml.etree import ElementPath nsmap = ET.register_namespace._namespace_map # Copy the default namespace mapping nsmap_copy = nsmap.copy() # Copy the path cache (should be empty) path_cache = ElementPath._cache ElementPath._cache = path_cache.copy() # Align the Comment/PI factories. if hasattr(ET, '_set_factories'): old_factories = ET._set_factories(ET.Comment, ET.PI) else: old_factories = None try: support.run_unittest(*test_classes) finally: from xml.etree import ElementPath # Restore mapping and path cache nsmap.clear() nsmap.update(nsmap_copy) ElementPath._cache = path_cache if old_factories is not None: ET._set_factories(*old_factories) # don't interfere with subsequent tests ET = pyET = None if __name__ == '__main__': test_main()
the-stack_0_24911
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import csv import itertools from operator import attrgetter from flask import current_app, json, session from qrcode import QRCode, constants from sqlalchemy import and_, or_ from sqlalchemy.orm import contains_eager, joinedload, load_only, undefer from werkzeug.urls import url_parse from wtforms import BooleanField, ValidationError from indico.core import signals from indico.core.config import config from indico.core.db import db from indico.core.db.sqlalchemy.util.session import no_autoflush from indico.core.errors import UserValueError from indico.modules.events import EventLogKind, EventLogRealm from indico.modules.events.models.events import Event from indico.modules.events.models.persons import EventPerson from indico.modules.events.payment.models.transactions import TransactionStatus from indico.modules.events.registration import logger from indico.modules.events.registration.badges import RegistrantsListToBadgesPDF, RegistrantsListToBadgesPDFFoldable from indico.modules.events.registration.fields.choices import (AccommodationField, ChoiceBaseField, get_field_merged_options) from indico.modules.events.registration.models.form_fields import (RegistrationFormFieldData, RegistrationFormPersonalDataField) from indico.modules.events.registration.models.forms import RegistrationForm from indico.modules.events.registration.models.invitations import InvitationState, RegistrationInvitation from indico.modules.events.registration.models.items import (PersonalDataType, RegistrationFormItemType, RegistrationFormPersonalDataSection) from indico.modules.events.registration.models.registrations import Registration, RegistrationData, RegistrationState from indico.modules.events.registration.notifications import (notify_registration_creation, notify_registration_modification) from indico.modules.users.util import get_user_by_email from indico.util.date_time import format_date from indico.util.i18n import _ from indico.util.spreadsheets import csv_text_io_wrapper, unique_col from indico.util.string import validate_email, validate_email_verbose from indico.web.forms.base import IndicoForm from indico.web.forms.widgets import SwitchWidget def get_title_uuid(regform, title): """Convert a string title to its UUID value. If the title does not exist in the title PD field, it will be ignored and returned as ``None``. """ if not title: return None title_field = next((x for x in regform.active_fields if (x.type == RegistrationFormItemType.field_pd and x.personal_data_type == PersonalDataType.title)), None) if title_field is None: # should never happen return None valid_choices = {x['id'] for x in title_field.current_data.versioned_data['choices']} uuid = next((k for k, v in title_field.data['captions'].items() if v == title), None) return {uuid: 1} if uuid in valid_choices else None def get_event_section_data(regform, management=False, registration=None): data = [] if not registration: return [s.view_data for s in regform.sections if not s.is_deleted and (management or not s.is_manager_only)] registration_data = {r.field_data.field.id: r for r in registration.data} for section in regform.sections: if section.is_deleted or (not management and section.is_manager_only): continue section_data = section.own_data section_data['items'] = [] for child in section.children: if child.is_deleted: continue if child.is_field and isinstance(child.field_impl, (ChoiceBaseField, AccommodationField)): field_data = get_field_merged_options(child, registration_data) else: field_data = child.view_data section_data['items'].append(field_data) data.append(section_data) return data def check_registration_email(regform, email, registration=None, management=False): """Check whether an email address is suitable for registration. :param regform: The registration form :param email: The email address :param registration: The existing registration (in case of modification) :param management: If it's a manager adding a new registration """ email = email.lower().strip() user = get_user_by_email(email) email_registration = regform.get_registration(email=email) user_registration = regform.get_registration(user=user) if user else None if registration is not None: if email_registration and email_registration != registration: return dict(status='error', conflict='email-already-registered') elif user_registration and user_registration != registration: return dict(status='error', conflict='user-already-registered') elif user and registration.user and registration.user != user: return dict(status='warning' if management else 'error', conflict='email-other-user', user=user.full_name) elif not user and registration.user: return dict(status='warning' if management else 'error', conflict='email-no-user', user=registration.user.full_name) elif user: return dict(status='ok', user=user.full_name, self=(not management and user == session.user), same=(user == registration.user)) email_err = validate_email_verbose(email) if email_err: return dict(status='error', conflict='email-invalid', email_error=email_err) if regform.require_user and (management or email != registration.email): return dict(status='warning' if management else 'error', conflict='no-user') else: return dict(status='ok', user=None) else: if email_registration: return dict(status='error', conflict='email-already-registered') elif user_registration: return dict(status='error', conflict='user-already-registered') elif user: return dict(status='ok', user=user.full_name, self=(not management and user == session.user), same=False) email_err = validate_email_verbose(email) if email_err: return dict(status='error', conflict='email-invalid', email_error=email_err) if regform.require_user: return dict(status='warning' if management else 'error', conflict='no-user') else: return dict(status='ok', user=None) def make_registration_form(regform, management=False, registration=None): """Create a WTForm based on registration form fields.""" class RegistrationFormWTF(IndicoForm): if management: notify_user = BooleanField(_('Send email'), widget=SwitchWidget()) def validate_email(self, field): status = check_registration_email(regform, field.data, registration, management=management) if status['status'] == 'error': raise ValidationError('Email validation failed: ' + status['conflict']) for form_item in regform.active_fields: if not management and form_item.parent.is_manager_only: continue field_impl = form_item.field_impl setattr(RegistrationFormWTF, form_item.html_field_name, field_impl.create_wtf_field()) signals.event.registration_form_wtform_created.send(regform, registration=registration, management=management, wtform_cls=RegistrationFormWTF) RegistrationFormWTF.modified_registration = registration return RegistrationFormWTF def create_personal_data_fields(regform): """Create the special section/fields for personal data.""" section = next((s for s in regform.sections if s.type == RegistrationFormItemType.section_pd), None) if section is None: section = RegistrationFormPersonalDataSection(registration_form=regform, title='Personal Data') missing = set(PersonalDataType) else: existing = {x.personal_data_type for x in section.children if x.type == RegistrationFormItemType.field_pd} missing = set(PersonalDataType) - existing for pd_type, data in PersonalDataType.FIELD_DATA: if pd_type not in missing: continue field = RegistrationFormPersonalDataField(registration_form=regform, personal_data_type=pd_type, is_required=pd_type.is_required) if not data.get('is_enabled', True): field.position = data['position'] for key, value in data.items(): setattr(field, key, value) field.data, versioned_data = field.field_impl.process_field_data(data.pop('data', {})) field.current_data = RegistrationFormFieldData(versioned_data=versioned_data) section.children.append(field) def url_rule_to_angular(endpoint): """Convert a flask-style rule to angular style.""" mapping = { 'event_id': 'eventId', 'reg_form_id': 'confFormId', 'section_id': 'sectionId', 'field_id': 'fieldId', } rules = list(current_app.url_map.iter_rules(endpoint)) assert len(rules) == 1 rule = rules[0] assert not rule.defaults segments = [':' + mapping.get(data, data) if is_dynamic else data for is_dynamic, data in rule._trace] prefix = url_parse(config.BASE_URL).path return prefix + ''.join(segments).split('|', 1)[-1] @no_autoflush def create_registration(regform, data, invitation=None, management=False, notify_user=True, skip_moderation=None): user = session.user if session else None registration = Registration(registration_form=regform, user=get_user_by_email(data['email']), base_price=regform.base_price, currency=regform.currency) if skip_moderation is None: skip_moderation = management for form_item in regform.active_fields: if form_item.parent.is_manager_only: value = form_item.field_impl.default_value else: value = data.get(form_item.html_field_name) data_entry = RegistrationData() registration.data.append(data_entry) for attr, value in form_item.field_impl.process_form_data(registration, value).items(): setattr(data_entry, attr, value) if form_item.type == RegistrationFormItemType.field_pd and form_item.personal_data_type.column: setattr(registration, form_item.personal_data_type.column, value) if invitation is None: # Associate invitation based on email in case the user did not use the link invitation = (RegistrationInvitation.query .filter_by(email=data['email'], registration_id=None) .with_parent(regform) .first()) if invitation: invitation.state = InvitationState.accepted invitation.registration = registration registration.sync_state(_skip_moderation=skip_moderation) db.session.flush() signals.event.registration_created.send(registration, management=management, data=data) notify_registration_creation(registration, notify_user) logger.info('New registration %s by %s', registration, user) registration.log(EventLogRealm.management if management else EventLogRealm.participants, EventLogKind.positive, 'Registration', f'New registration: {registration.full_name}', user, data={'Email': registration.email}) return registration @no_autoflush def modify_registration(registration, data, management=False, notify_user=True): old_price = registration.price personal_data_changes = {} regform = registration.registration_form data_by_field = registration.data_by_field if management or not registration.user: registration.user = get_user_by_email(data['email']) billable_items_locked = not management and registration.is_paid for form_item in regform.active_fields: field_impl = form_item.field_impl if management or not form_item.parent.is_manager_only: value = data.get(form_item.html_field_name) elif form_item.id not in data_by_field: # set default value for manager-only field if it didn't have one before value = field_impl.default_value else: # manager-only field that has data which should be preserved continue if form_item.id not in data_by_field: data_by_field[form_item.id] = RegistrationData(registration=registration, field_data=form_item.current_data) attrs = field_impl.process_form_data(registration, value, data_by_field[form_item.id], billable_items_locked=billable_items_locked) for key, val in attrs.items(): setattr(data_by_field[form_item.id], key, val) if form_item.type == RegistrationFormItemType.field_pd and form_item.personal_data_type.column: key = form_item.personal_data_type.column if getattr(registration, key) != value: personal_data_changes[key] = value setattr(registration, key, value) registration.sync_state() db.session.flush() # sanity check if billable_items_locked and old_price != registration.price: raise Exception("There was an error while modifying your registration (price mismatch: %s / %s)", old_price, registration.price) if personal_data_changes: signals.event.registration_personal_data_modified.send(registration, change=personal_data_changes) signals.event.registration_updated.send(registration, management=management, data=data) notify_registration_modification(registration, notify_user) logger.info('Registration %s modified by %s', registration, session.user) registration.log(EventLogRealm.management if management else EventLogRealm.participants, EventLogKind.change, 'Registration', f'Registration modified: {registration.full_name}', session.user, data={'Email': registration.email}) def generate_spreadsheet_from_registrations(registrations, regform_items, static_items): """Generate a spreadsheet data from a given registration list. :param registrations: The list of registrations to include in the file :param regform_items: The registration form items to be used as columns :param static_items: Registration form information as extra columns """ field_names = ['ID', 'Name'] special_item_mapping = { 'reg_date': ('Registration date', lambda x: x.submitted_dt), 'state': ('Registration state', lambda x: x.state.title), 'price': ('Price', lambda x: x.render_price()), 'checked_in': ('Checked in', lambda x: x.checked_in), 'checked_in_date': ('Check-in date', lambda x: x.checked_in_dt if x.checked_in else ''), 'payment_date': ('Payment date', lambda x: (x.transaction.timestamp if (x.transaction is not None and x.transaction.status == TransactionStatus.successful) else '')), } for item in regform_items: field_names.append(unique_col(item.title, item.id)) if item.input_type == 'accommodation': field_names.append(unique_col('{} ({})'.format(item.title, 'Arrival'), item.id)) field_names.append(unique_col('{} ({})'.format(item.title, 'Departure'), item.id)) field_names.extend(title for name, (title, fn) in special_item_mapping.items() if name in static_items) rows = [] for registration in registrations: data = registration.data_by_field registration_dict = { 'ID': registration.friendly_id, 'Name': f"{registration.first_name} {registration.last_name}" } for item in regform_items: key = unique_col(item.title, item.id) if item.input_type == 'accommodation': registration_dict[key] = data[item.id].friendly_data.get('choice') if item.id in data else '' key = unique_col('{} ({})'.format(item.title, 'Arrival'), item.id) arrival_date = data[item.id].friendly_data.get('arrival_date') if item.id in data else None registration_dict[key] = format_date(arrival_date) if arrival_date else '' key = unique_col('{} ({})'.format(item.title, 'Departure'), item.id) departure_date = data[item.id].friendly_data.get('departure_date') if item.id in data else None registration_dict[key] = format_date(departure_date) if departure_date else '' else: registration_dict[key] = data[item.id].friendly_data if item.id in data else '' for name, (title, fn) in special_item_mapping.items(): if name not in static_items: continue value = fn(registration) registration_dict[title] = value rows.append(registration_dict) return field_names, rows def get_registrations_with_tickets(user, event): query = (Registration.query.with_parent(event) .filter(Registration.user == user, Registration.state == RegistrationState.complete, RegistrationForm.tickets_enabled, RegistrationForm.ticket_on_event_page, ~RegistrationForm.is_deleted, ~Registration.is_deleted) .join(Registration.registration_form)) return [r for r in query if not r.is_ticket_blocked] def get_published_registrations(event): """Get a list of published registrations for an event. :param event: the `Event` to get registrations for :return: list of `Registration` objects """ return (Registration.query .filter(Registration.is_publishable, ~RegistrationForm.is_deleted, RegistrationForm.event_id == event.id, RegistrationForm.publish_registrations_enabled) .join(Registration.registration_form) .options(contains_eager(Registration.registration_form)) .order_by(db.func.lower(Registration.first_name), db.func.lower(Registration.last_name), Registration.friendly_id) .all()) def get_events_registered(user, dt=None): """Get the IDs of events where the user is registered. :param user: A `User` :param dt: Only include events taking place on/after that date :return: A set of event ids """ query = (user.registrations .options(load_only('event_id')) .options(joinedload(Registration.registration_form).load_only('event_id')) .join(Registration.registration_form) .join(RegistrationForm.event) .filter(Registration.is_active, ~RegistrationForm.is_deleted, ~Event.is_deleted, Event.ends_after(dt))) return {registration.event_id for registration in query} def build_registrations_api_data(event): api_data = [] query = (RegistrationForm.query.with_parent(event) .options(joinedload('registrations').joinedload('data').joinedload('field_data'))) for regform in query: for registration in regform.active_registrations: registration_info = _build_base_registration_info(registration) registration_info['checkin_secret'] = registration.ticket_uuid api_data.append(registration_info) return api_data def _build_base_registration_info(registration): personal_data = _build_personal_data(registration) return { 'registrant_id': str(registration.id), 'checked_in': registration.checked_in, 'checkin_secret': registration.ticket_uuid, 'full_name': '{} {}'.format(personal_data.get('title', ''), registration.full_name).strip(), 'personal_data': personal_data } def _build_personal_data(registration): personal_data = registration.get_personal_data() personal_data['firstName'] = personal_data.pop('first_name') personal_data['surname'] = personal_data.pop('last_name') personal_data['country'] = personal_data.pop('country', '') personal_data['phone'] = personal_data.pop('phone', '') return personal_data def build_registration_api_data(registration): registration_info = _build_base_registration_info(registration) registration_info['amount_paid'] = registration.price if registration.is_paid else 0 registration_info['ticket_price'] = registration.price registration_info['registration_date'] = registration.submitted_dt.isoformat() registration_info['paid'] = registration.is_paid registration_info['checkin_date'] = registration.checked_in_dt.isoformat() if registration.checked_in_dt else '' registration_info['event_id'] = registration.event_id return registration_info def generate_ticket_qr_code(registration): """Generate a Pillow `Image` with a QR Code encoding a check-in ticket. :param registration: corresponding `Registration` object """ qr = QRCode( version=17, error_correction=constants.ERROR_CORRECT_Q, box_size=3, border=1 ) qr_data = { "registrant_id": registration.id, "checkin_secret": registration.ticket_uuid, "event_id": str(registration.event.id), "server_url": config.BASE_URL, "version": 1 } signals.event.registration.generate_ticket_qr_code.send(registration, ticket_data=qr_data) json_qr_data = json.dumps(qr_data) qr.add_data(json_qr_data) qr.make(fit=True) return qr.make_image()._img def get_event_regforms(event, user, with_registrations=False, only_in_acl=False): """Get registration forms with information about user registrations. :param event: the `Event` to get registration forms for :param user: A `User` :param with_registrations: Whether to return the user's registration instead of just whether they have one :param only_in_acl: Whether to include only registration forms that are in the event's ACL """ if not user: registered_user = db.literal(None if with_registrations else False) elif with_registrations: registered_user = Registration else: registered_user = RegistrationForm.registrations.any((Registration.user == user) & ~Registration.is_deleted) query = (RegistrationForm.query.with_parent(event) .with_entities(RegistrationForm, registered_user) .options(undefer('active_registration_count')) .order_by(db.func.lower(RegistrationForm.title))) if only_in_acl: query = query.filter(RegistrationForm.in_event_acls.any(event=event)) if with_registrations: query = query.outerjoin(Registration, db.and_(Registration.registration_form_id == RegistrationForm.id, Registration.user == user, ~Registration.is_deleted)) return query.all() def get_event_regforms_registrations(event, user, include_scheduled=True, only_in_acl=False): """Get regforms and the associated registrations for an event+user. :param event: the `Event` to get registration forms for :param user: A `User` :param include_scheduled: Whether to include scheduled but not open registration forms :param only_in_acl: Whether to include only registration forms that are in the event's ACL :return: A tuple, which includes: - All registration forms which are scheduled, open or registered. - A dict mapping all registration forms to the user's registration if they have one. """ all_regforms = get_event_regforms(event, user, with_registrations=True, only_in_acl=only_in_acl) if include_scheduled: displayed_regforms = [regform for regform, registration in all_regforms if regform.is_scheduled or registration] else: displayed_regforms = [regform for regform, registration in all_regforms if regform.is_open or registration] return displayed_regforms, dict(all_regforms) def generate_ticket(registration): from indico.modules.designer.util import get_default_ticket_on_category from indico.modules.events.registration.controllers.management.tickets import DEFAULT_TICKET_PRINTING_SETTINGS template = (registration.registration_form.ticket_template or get_default_ticket_on_category(registration.event.category)) registrations = [registration] signals.event.designer.print_badge_template.send(template, regform=registration.registration_form, registrations=registrations) pdf_class = RegistrantsListToBadgesPDFFoldable if template.backside_template else RegistrantsListToBadgesPDF pdf = pdf_class(template, DEFAULT_TICKET_PRINTING_SETTINGS, registration.event, registrations) return pdf.get_pdf() def get_ticket_attachments(registration): return [('Ticket.pdf', generate_ticket(registration).getvalue())] def update_regform_item_positions(regform): """Update positions when deleting/disabling an item in order to prevent gaps.""" section_positions = itertools.count(1) disabled_section_positions = itertools.count(1000) for section in sorted(regform.sections, key=attrgetter('position')): section_active = section.is_enabled and not section.is_deleted section.position = next(section_positions if section_active else disabled_section_positions) # ensure consistent field ordering positions = itertools.count(1) disabled_positions = itertools.count(1000) for child in section.children: child_active = child.is_enabled and not child.is_deleted child.position = next(positions if child_active else disabled_positions) def import_registrations_from_csv(regform, fileobj, skip_moderation=True, notify_users=False): """Import event registrants from a CSV file into a form.""" with csv_text_io_wrapper(fileobj) as ftxt: reader = csv.reader(ftxt.read().splitlines()) reg_data = (db.session.query(Registration.user_id, Registration.email) .with_parent(regform) .filter(Registration.is_active) .all()) registered_user_ids = {rd.user_id for rd in reg_data if rd.user_id is not None} registered_emails = {rd.email for rd in reg_data} used_emails = set() email_row_map = {} todo = [] for row_num, row in enumerate(reader, 1): try: first_name, last_name, affiliation, position, phone, email = [value.strip() for value in row] email = email.lower() except ValueError: raise UserValueError(_('Row {}: malformed CSV data - please check that the number of columns is correct') .format(row_num)) if not email: raise UserValueError(_('Row {}: missing e-mail address').format(row_num)) if not validate_email(email): raise UserValueError(_('Row {}: invalid e-mail address').format(row_num)) if not first_name or not last_name: raise UserValueError(_('Row {}: missing first or last name').format(row_num)) if email in registered_emails: raise UserValueError(_('Row {}: a registration with this email already exists').format(row_num)) user = get_user_by_email(email) if user and user.id in registered_user_ids: raise UserValueError(_('Row {}: a registration for this user already exists').format(row_num)) if email in used_emails: raise UserValueError(_('Row {}: email address is not unique').format(row_num)) if conflict_row_num := email_row_map.get(email): raise UserValueError(_('Row {}: email address belongs to the same user as in row {}') .format(row_num, conflict_row_num)) used_emails.add(email) if user: email_row_map.update((e, row_num) for e in user.all_emails) todo.append({ 'email': email, 'first_name': first_name.title(), 'last_name': last_name.title(), 'affiliation': affiliation, 'phone': phone, 'position': position }) return [create_registration(regform, data, notify_user=notify_users, skip_moderation=skip_moderation) for data in todo] def get_registered_event_persons(event): """Get all registered EventPersons of an event.""" query = event.persons.join(Registration, and_(Registration.event_id == EventPerson.event_id, Registration.is_active, or_(Registration.user_id == EventPerson.user_id, Registration.email == EventPerson.email))) return set(query) def serialize_registration_form(regform): """Serialize registration form to JSON-like object.""" return { 'id': regform.id, 'name': regform.title, 'identifier': f'RegistrationForm:{regform.id}', '_type': 'RegistrationForm' }
the-stack_0_24912
# -*- coding: utf-8 -*- import datetime import itertools import logging import os import tempfile import time from collections import Counter import torch from fvcore.common.checkpoint import PeriodicCheckpointer as _PeriodicCheckpointer from fvcore.common.file_io import PathManager from fvcore.common.timer import Timer from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats import FasterRCNN.utils.comm as comm from FasterRCNN.evaluation.testing import flatten_results_dict from FasterRCNN.utils.events import EventStorage, EventWriter from .train_loop import HookBase __all__ = [ "CallbackHook", "IterationTimer", "PeriodicWriter", "PeriodicCheckpointer", "LRScheduler", "AutogradProfiler", "EvalHook", "PreciseBN", ] """ Implement some common hooks. """ class CallbackHook(HookBase): """ Create a hook using callback functions provided by the user. """ def __init__(self, *, before_train=None, after_train=None, before_step=None, after_step=None): """ Each argument is a function that takes one argument: the trainer. """ self._before_train = before_train self._before_step = before_step self._after_step = after_step self._after_train = after_train def before_train(self): if self._before_train: self._before_train(self.trainer) def after_train(self): if self._after_train: self._after_train(self.trainer) # The functions may be closures that hold reference to the trainer # Therefore, delete them to avoid circular reference. del self._before_train, self._after_train del self._before_step, self._after_step def before_step(self): if self._before_step: self._before_step(self.trainer) def after_step(self): if self._after_step: self._after_step(self.trainer) class IterationTimer(HookBase): """ Track the time spent for each iteration (each run_step call in the trainer). Print a summary in the end of training. This hook uses the time between the call to its :meth:`before_step` and :meth:`after_step` methods. Under the convention that :meth:`before_step` of all hooks should only take negligible amount of time, the :class:`IterationTimer` hook should be placed at the beginning of the list of hooks to obtain accurate timing. """ def __init__(self, warmup_iter=3): """ Args: warmup_iter (int): the number of iterations at the beginning to exclude from timing. """ self._warmup_iter = warmup_iter self._step_timer = Timer() def before_train(self): self._start_time = time.perf_counter() self._total_timer = Timer() self._total_timer.pause() def after_train(self): logger = logging.getLogger(__name__) total_time = time.perf_counter() - self._start_time total_time_minus_hooks = self._total_timer.seconds() hook_time = total_time - total_time_minus_hooks num_iter = self.trainer.iter + 1 - self.trainer.start_iter - self._warmup_iter if num_iter > 0 and total_time_minus_hooks > 0: # Speed is meaningful only after warmup # NOTE this format is parsed by grep in some scripts logger.info( "Overall training speed: {} iterations in {} ({:.4f} s / it)".format( num_iter, str(datetime.timedelta(seconds=int(total_time_minus_hooks))), total_time_minus_hooks / num_iter, ) ) logger.info( "Total training time: {} ({} on hooks)".format( str(datetime.timedelta(seconds=int(total_time))), str(datetime.timedelta(seconds=int(hook_time))), ) ) def before_step(self): self._step_timer.reset() self._total_timer.resume() def after_step(self): # +1 because we're in after_step iter_done = self.trainer.iter - self.trainer.start_iter + 1 if iter_done >= self._warmup_iter: sec = self._step_timer.seconds() self.trainer.storage.put_scalars(time=sec) else: self._start_time = time.perf_counter() self._total_timer.reset() self._total_timer.pause() class PeriodicWriter(HookBase): """ Write events to EventStorage periodically. It is executed every ``period`` iterations and after the last iteration. """ def __init__(self, writers, period=20): """ Args: writers (list[EventWriter]): a list of EventWriter objects period (int): """ self._writers = writers for w in writers: assert isinstance(w, EventWriter), w self._period = period def after_step(self): if (self.trainer.iter + 1) % self._period == 0 or ( self.trainer.iter == self.trainer.max_iter - 1 ): for writer in self._writers: writer.write() def after_train(self): for writer in self._writers: writer.close() class PeriodicCheckpointer(_PeriodicCheckpointer, HookBase): """ Same as :class:`detectron2.checkpoint.PeriodicCheckpointer`, but as a hook. Note that when used as a hook, it is unable to save additional data other than what's defined by the given `checkpointer`. It is executed every ``period`` iterations and after the last iteration. """ def before_train(self): self.max_iter = self.trainer.max_iter def after_step(self): # No way to use **kwargs self.step(self.trainer.iter) class LRScheduler(HookBase): """ A hook which executes a torch builtin LR scheduler and summarizes the LR. It is executed after every iteration. """ def __init__(self, optimizer, scheduler): """ Args: optimizer (torch.optim.Optimizer): scheduler (torch.optim._LRScheduler) """ self._optimizer = optimizer self._scheduler = scheduler # NOTE: some heuristics on what LR to summarize # summarize the param group with most parameters largest_group = max(len(g["params"]) for g in optimizer.param_groups) if largest_group == 1: # If all groups have one parameter, # then find the most common initial LR, and use it for summary lr_count = Counter([g["lr"] for g in optimizer.param_groups]) lr = lr_count.most_common()[0][0] for i, g in enumerate(optimizer.param_groups): if g["lr"] == lr: self._best_param_group_id = i break else: for i, g in enumerate(optimizer.param_groups): if len(g["params"]) == largest_group: self._best_param_group_id = i break def after_step(self): lr = self._optimizer.param_groups[self._best_param_group_id]["lr"] self.trainer.storage.put_scalar("lr", lr, smoothing_hint=False) self._scheduler.step() class AutogradProfiler(HookBase): """ A hook which runs `torch.autograd.profiler.profile`. Examples: .. code-block:: python hooks.AutogradProfiler( lambda trainer: trainer.iter > 10 and trainer.iter < 20, self.cfg.OUTPUT_DIR ) The above example will run the profiler for iteration 10~20 and dump results to ``OUTPUT_DIR``. We did not profile the first few iterations because they are typically slower than the rest. The result files can be loaded in the ``chrome://tracing`` page in chrome browser. Note: When used together with NCCL on older version of GPUs, autograd profiler may cause deadlock because it unnecessarily allocates memory on every device it sees. The memory management calls, if interleaved with NCCL calls, lead to deadlock on GPUs that do not support `cudaLaunchCooperativeKernelMultiDevice`. """ def __init__(self, enable_predicate, output_dir, *, use_cuda=True): """ Args: enable_predicate (callable[trainer -> bool]): a function which takes a trainer, and returns whether to enable the profiler. It will be called once every step, and can be used to select which steps to profile. output_dir (str): the output directory to dump tracing files. use_cuda (bool): same as in `torch.autograd.profiler.profile`. """ self._enable_predicate = enable_predicate self._use_cuda = use_cuda self._output_dir = output_dir def before_step(self): if self._enable_predicate(self.trainer): self._profiler = torch.autograd.profiler.profile(use_cuda=self._use_cuda) self._profiler.__enter__() else: self._profiler = None def after_step(self): if self._profiler is None: return self._profiler.__exit__(None, None, None) out_file = os.path.join( self._output_dir, "profiler-trace-iter{}.json".format(self.trainer.iter) ) if "://" not in out_file: self._profiler.export_chrome_trace(out_file) else: # Support non-posix filesystems with tempfile.TemporaryDirectory(prefix="detectron2_profiler") as d: tmp_file = os.path.join(d, "tmp.json") self._profiler.export_chrome_trace(tmp_file) with open(tmp_file) as f: content = f.read() with PathManager.open(out_file, "w") as f: f.write(content) class EvalHook(HookBase): """ Run an evaluation function periodically, and at the end of training. It is executed every ``eval_period`` iterations and after the last iteration. """ def __init__(self, eval_period, eval_function): """ Args: eval_period (int): the period to run `eval_function`. eval_function (callable): a function which takes no arguments, and returns a nested dict of evaluation metrics. Note: This hook must be enabled in all or none workers. If you would like only certain workers to perform evaluation, give other workers a no-op function (`eval_function=lambda: None`). """ self._period = eval_period self._func = eval_function self._done_eval_at_last = False def _do_eval(self): results = self._func() if results: assert isinstance( results, dict ), "Eval function must return a dict. Got {} instead.".format(results) flattened_results = flatten_results_dict(results) for k, v in flattened_results.items(): try: v = float(v) except Exception: raise ValueError( "[EvalHook] eval_function should return a nested dict of float. " "Got '{}: {}' instead.".format(k, v) ) self.trainer.storage.put_scalars(**flattened_results, smoothing_hint=False) # Evaluation may take different time among workers. # A barrier make them start the next iteration together. comm.synchronize() def after_step(self): next_iter = self.trainer.iter + 1 is_final = next_iter == self.trainer.max_iter if is_final or (self._period > 0 and next_iter % self._period == 0): self._do_eval() if is_final: self._done_eval_at_last = True def after_train(self): if not self._done_eval_at_last: self._do_eval() # func is likely a closure that holds reference to the trainer # therefore we clean it to avoid circular reference in the end del self._func class PreciseBN(HookBase): """ The standard implementation of BatchNorm uses EMA in inference, which is sometimes suboptimal. This class computes the true average of statistics rather than the moving average, and put true averages to every BN layer in the given model. It is executed every ``period`` iterations and after the last iteration. """ def __init__(self, period, model, data_loader, num_iter): """ Args: period (int): the period this hook is run, or 0 to not run during training. The hook will always run in the end of training. model (nn.Module): a module whose all BN layers in training mode will be updated by precise BN. Note that user is responsible for ensuring the BN layers to be updated are in training mode when this hook is triggered. data_loader (iterable): it will produce data to be run by `model(data)`. num_iter (int): number of iterations used to compute the precise statistics. """ self._logger = logging.getLogger(__name__) if len(get_bn_modules(model)) == 0: self._logger.info( "PreciseBN is disabled because model does not contain BN layers in training mode." ) self._disabled = True return self._model = model self._data_loader = data_loader self._num_iter = num_iter self._period = period self._disabled = False self._data_iter = None def after_step(self): next_iter = self.trainer.iter + 1 is_final = next_iter == self.trainer.max_iter if is_final or (self._period > 0 and next_iter % self._period == 0): self.update_stats() def update_stats(self): """ Update the model with precise statistics. Users can manually call this method. """ if self._disabled: return if self._data_iter is None: self._data_iter = iter(self._data_loader) def data_loader(): for num_iter in itertools.count(1): if num_iter % 100 == 0: self._logger.info( "Running precise-BN ... {}/{} iterations.".format(num_iter, self._num_iter) ) # This way we can reuse the same iterator yield next(self._data_iter) with EventStorage(): # capture events in a new storage to discard them self._logger.info( "Running precise-BN for {} iterations... ".format(self._num_iter) + "Note that this could produce different statistics every time." ) update_bn_stats(self._model, data_loader(), self._num_iter)
the-stack_0_24913
if '__file__' in globals(): import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import numpy as np from dezero import Variable, Parameter import dezero.functions as F import dezero.layers as L if __name__ == '__main__': x = Variable(np.array(1.0)) p = Parameter(np.array(2.0)) y = x * p print(isinstance(p, Parameter)) print(isinstance(x, Parameter)) print(isinstance(y, Parameter)) # class Linear(layers.Layer): # def __init__(self, in_size, out_size, nobias=False, dtype=np.float32): # super().__init__() # I, O = in_size, out_size # W_data = np.random.randn(I, O).astype(dtype) * np.sqrt(1 / I) # self.W = Parameter(W_data, name='W') # if nobias: # self.b = None # else: # self.b = Parameter(np.zeros(0, dtype=dtype), name='b') # def forward(self, x): # y = F.linear(x, self.W, self.b) # return y # generate nonlinear data samples np.random.seed(0) x = np.random.rand(100, 1) y = np.sin(2 * np.pi * x) + np.random.rand(100, 1) l1 = L.Linear(10) # 출력 크기 지정 l2 = L.Linear(1) def predict(x): y = l1(x) y = F.sigmoid(y) y = l2(y) return y lr = 0.2 iters = 10000 for i in range(iters): y_pred = predict(x) loss = F.mean_squared_error(y, y_pred) l1.cleargrads() l2.cleargrads() loss.backward() for l in [l1, l2]: for p in l.params(): p.data -= lr * p.grad.data if i % 1000 == 0: print(loss)
the-stack_0_24915
#!/usr/bin/python import subprocess; import os; import sys; import time; import ConfigParser; def started_as_root(): if subprocess.check_output('whoami').strip() == 'root': return True return False def execc( cmds ): return subprocess.check_output(cmds, stderr=subprocess.STDOUT) def findAP( name, list ): theLine = None for line in list.split("\n"): if name in line: theLine = line.strip() break if theLine == None: return theLine else: split = theLine.split(" ") return split[len(split)-1] def createConfig(cmSSID, SSID, PSK): split = cmSSID.split("_"); ssid = split[2] file ="""[service_{1}] Type = wifi Name = {1} Passphrase = {2} """ cmPrefix = "/var/lib/connman" path = "{0}/{1}.config".format(cmPrefix, SSID) configFile = open(path, "w") configFile.write(file.format(cmSSID,SSID,PSK)) configFile.close() print("SSID {0} configured.".format(SSID)); time.sleep(2); def configureWifi(): ### Try to read the config try: config = ConfigParser.ConfigParser() config.readfp(open('/boot/flash/network.cfg')) SSID = config.get("default", "SSID") PSK = config.get("default", "PSK") except IOError: print("No /boot/flash/network.cfg. Ignoring") time.sleep(2) sys.exit(0) ### Scan wifi print(""); print(""); print("##############"); print("Scanning wifi"); execc(['connmanctl','scan','wifi']) output = execc(['connmanctl','services']) print("Locating SSID {0}".format(SSID)); cmSSID = findAP(SSID, output) if cmSSID == None: print("Unable to locate SSID {0}. Could not configure".format(SSID)) time.sleep(2) sys.exit(0) createConfig(cmSSID, SSID, PSK) def main(): if started_as_root(): configureWifi() else: current_script = os.path.realpath(__file__) os.system('sudo -S /usr/bin/python %s' % (current_script)) if __name__ == '__main__': main()
the-stack_0_24916
""" You are given a data structure of employee information, which includes the employee's unique id, his importance value and his direct subordinates' id. For example, employee 1 is the leader of employee 2, and employee 2 is the leader of employee 3. They have importance value 15, 10 and 5, respectively. Then employee 1 has a data structure like [1, 15, [2]], and employee 2 has [2, 10, [3]], and employee 3 has [3, 5, []]. Note that although employee 3 is also a subordinate of employee 1, the relationship is not direct. Now given the employee information of a company, and an employee id, you need to return the total importance value of this employee and all his subordinates. Example 1: Input: [[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1 Output: 11 Explanation: Employee 1 has importance value 5, and he has two direct subordinates: employee 2 and employee 3. They both have importance value 3. So the total importance value of employee 1 is 5 + 3 + 3 = 11. Note: One employee has at most one direct leader and may have several subordinates. The maximum number of employees won't exceed 2000. """ """ # Employee info class Employee(object): def __init__(self, id, importance, subordinates): # It's the unique id of each node. # unique id of this employee self.id = id # the importance value of this employee self.importance = importance # the id of direct subordinates self.subordinates = subordinates """ class Solution(object): def getImportance(self, employees, id): """ :type employees: Employee :type id: int :rtype: int """ r= 0 if not employees: return r tr = {} for em in employees: tr[em.id] = (em.importance, em.subordinates) q = [id] while q: c = q[0] r += tr[c][0] del q[0] q.extend(tr[c][1]) return r
the-stack_0_24917
# Global configuration information used across all the # translations of documentation. # # Import the base theme configuration from cakephpsphinx.config.all import * # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = '2.x' # The search index version. search_version = 'authentication-2' # The marketing display name for the book. version_name = '' # Project name shown in the black header bar project = 'CakePHP Authentication' # Other versions that display in the version picker menu. version_list = [ {'name': '1.x', 'number': '/authentication/1', 'title': '1.x'}, {'name': '2.x', 'number': '/authentication/2', 'title': '2.x', 'current': True}, ] # Languages available. languages = ['en', 'fr', 'ja'] # The GitHub branch name for this version of the docs # for edit links to point at. branch = 'master' # Current version being built version = '2.x' show_root_link = True repository = 'cakephp/authentication' source_path = 'docs/' hide_page_contents = ('search', '404', 'contents')
the-stack_0_24918
# vim: sw=4:ts=4:et import atexit import datetime import logging import os, os.path import secrets import shutil import signal import sys import threading import time import uuid from multiprocessing import Manager, RLock, Pipe, Process from unittest import TestCase from subprocess import Popen, PIPE import saq import saq.engine from saq.analysis import RootAnalysis, _enable_io_tracker, _disable_io_tracker from saq.constants import * from saq.crypto import get_aes_key from saq.database import initialize_database, get_db_connection, use_db, Alert from saq.engine import Engine from saq.error import report_exception from saq.util import storage_dir_from_uuid, workload_storage_dir, abs_path from saq.splunk import SplunkQueryObject test_dir = None UNITTEST_USER_NAME = 'unittest' UNITTEST_USER_ID = None # decorators # def track_io(target_function): def wrapper(*args, **kwargs): try: _enable_io_tracker() return target_function(*args, **kwargs) finally: _disable_io_tracker() return wrapper def force_alerts(target_function): """Alerts will be forced ON for the duration of this function.""" def wrapper(*args, **kwargs): try: saq.FORCED_ALERTS = True return target_function(*args, **kwargs) finally: saq.FORCED_ALERTS = False return wrapper def reset_alerts(target_function): """Deletes all alerts in the database.""" def wrapper(*args, **kwargs): if saq.INSTANCE_TYPE != INSTANCE_TYPE_UNITTEST: raise RuntimeError("invalid instance type") with get_db_connection() as db: c = db.cursor() c.execute("""DELETE FROM alerts""") db.commit() return target_function(*args, **kwargs) return wrapper def verify_instance_type(target_function): """Raises a RuntimeError if the current INSTANCE_TYPE is not UNITTEST.""" def wrapper(*args, **kwargs): if saq.INSTANCE_TYPE != INSTANCE_TYPE_UNITTEST: raise RuntimeError(f"invalid instance type {saq.INSTANCE_TYPE}") return target_function(*args, **kwargs) return wrapper # # utility functions def enable_module(engine_name, module_name): """Adds a module to be enabled.""" saq.CONFIG[module_name]['enabled'] = 'yes' saq.CONFIG[engine_name][module_name] = 'yes' def wait_for(condition, interval=1, timeout=8): """Wait for condition to return True, checking every interval seconds until timeout seconds have elapsed. Return True if condition returned True before timeout was exceeded, False otherwise.""" timeout = datetime.datetime.now() + datetime.timedelta(seconds=timeout) while datetime.datetime.now() < timeout: if condition(): return True time.sleep(interval) return False # test comms pipe is used to communicate between test process and child processes test_comms_p = None test_comms_pid = None test_comms_c = None def open_test_comms(): global test_comms_p global test_comms_pid global test_comms_c test_comms_p, test_comms_c = Pipe() test_comms_pid = os.getpid() def close_test_comms(): test_comms_p.close() test_comms_c.close() def get_test_comm_pipe(): # if we are the original process then we use the "parent" pipe # otherwise we use the "child" pipe if os.getpid() == test_comms_pid: return test_comms_p return test_comms_c def send_test_message(message): get_test_comm_pipe().send(message) def recv_test_message(): return get_test_comm_pipe().recv() test_log_manager = None test_log_sync = None test_log_messages = None memory_log_handler = None class WaitTimedOutError(Exception): pass # # custom logging class MemoryLogHandler(logging.Handler): def acquire(self): test_log_sync.acquire() def release(self): test_log_sync.release() def createLock(self): pass def emit(self, record): try: test_log_messages.append(record) except: sys.stderr.write(str(record) + "\n") def clear(self): with test_log_sync: del test_log_messages[:] def search(self, condition): """Searches and returns all log records for which condition(record) was True. Returns the list of LogRecord that matched.""" result = [] with test_log_sync: for message in test_log_messages: if condition(message): result.append(message) return result def wait_for_log_entry(self, callback, timeout=5, count=1): """Waits for callback to return True count times before timeout seconds expire. callback takes a single LogRecord object as the parameter and returns a boolean.""" # XXX this is a hack but on slower machines the tests are timing out because the system is slow if timeout < 30: timeout = 30 time_limit = datetime.datetime.now() + datetime.timedelta(seconds=timeout) current_index = 0 current_count = 0 while True: with test_log_sync: while current_index < len(test_log_messages): if callback(test_log_messages[current_index]): current_count += 1 if current_count == count: return True current_index += 1 if datetime.datetime.now() >= time_limit: raise WaitTimedOutError() time.sleep(0.1) def _atexit_callback(): global test_log_manager if test_log_manager: try: test_log_manager.shutdown() except Exception as e: print("ERROR: unable to shutdown test log manager: {}".format(e)) def initialize_unittest_logging(): # ACE is multi-process multi-threaded # so we use this special logging mechanism to keep a central repository of the log events generated # that the original process can access global test_log_manager global test_log_sync global test_log_messages global memory_log_handler test_log_manager = Manager() #atexit.register(_atexit_callback) test_log_sync = RLock() test_log_messages = test_log_manager.list() log_format = logging.Formatter(datefmt='%(asctime)s') if memory_log_handler is not None: logging.getLogger().removeHandler(memory_log_handler) memory_log_handler = MemoryLogHandler() memory_log_handler.setLevel(logging.DEBUG) memory_log_handler.setFormatter(log_format) logging.getLogger().addHandler(memory_log_handler) def wait_for_log_entry(*args, **kwargs): return memory_log_handler.wait_for_log_entry(*args, **kwargs) def log_count(text): """Returns the number of times the given text is seen in the logs.""" with test_log_sync: return len([x for x in test_log_messages if text in x.getMessage()]) def wait_for_log_count(text, count, timeout=5): """Waits for text to occur count times in the logs before timeout seconds elapse.""" def condition(e): return text in e.getMessage() return memory_log_handler.wait_for_log_entry(condition, timeout, count) def search_log(text): return memory_log_handler.search(lambda log_record: text in log_record.getMessage()) def search_log_regex(regex): return memory_log_handler.search(lambda log_record: regex.search(log_record.getMessage())) def search_log_condition(func): return memory_log_handler.search(func) def splunk_query(search_string, *args, **kwargs): config = saq.CONFIG['splunk'] q = SplunkQueryObject( uri=config['uri'], username=config['username'], password=config['password'], *args, **kwargs) result = q.query(search_string) return q, result def initialize_test_environment(): global test_dir # there is no reason to run anything as root if os.geteuid() == 0: print("do not run ace as root please") sys.exit(1) # where is ACE? saq_home = '/opt/saq' if 'SAQ_HOME' in os.environ: saq_home = os.environ['SAQ_HOME'] # initialize saq import saq saq.initialize( saq_home=saq_home, config_paths=[], logging_config_path=os.path.join(saq_home, 'etc', 'unittest_logging.ini'), args=None, relative_dir=None) # set the encryption password to 'ace' for the purposes of testing from saq.crypto import set_encryption_password set_encryption_password('ace') if saq.CONFIG['global']['instance_type'] != INSTANCE_TYPE_UNITTEST: sys.stderr.write('\n\n *** CRITICAL ERROR *** \n\ninvalid instance_type setting in configuration\n') sys.exit(1) # additional logging required for testing initialize_unittest_logging() # create a temporary storage directory test_dir = os.path.join(saq.SAQ_HOME, 'var', 'test') if os.path.exists(test_dir): try: shutil.rmtree(test_dir) except Exception as e: logging.error("unable to delete {}: {}".format(test_dir, e)) sys.exit(1) try: os.makedirs(test_dir) except Exception as e: logging.error("unable to create temp dir {}: {}".format(test_dir, e)) # expected values EV_TEST_DATE = datetime.datetime(2017, 11, 11, hour=7, minute=36, second=1, microsecond=1) EV_ROOT_ANALYSIS_TOOL = 'test_tool' EV_ROOT_ANALYSIS_TOOL_INSTANCE = 'test_tool_instance' EV_ROOT_ANALYSIS_ALERT_TYPE = 'test_alert' EV_ROOT_ANALYSIS_DESCRIPTION = 'This is only a test.' EV_ROOT_ANALYSIS_EVENT_TIME = EV_TEST_DATE EV_ROOT_ANALYSIS_NAME = 'test' EV_ROOT_ANALYSIS_UUID = '14ca0ff2-ff7e-4fa1-a375-160dc072ab02' def create_root_analysis(tool=None, tool_instance=None, alert_type=None, desc=None, event_time=None, action_counts=None, details=None, name=None, remediation=None, state=None, uuid=None, location=None, storage_dir=None, company_name=None, company_id=None, analysis_mode=None, queue=None, instructions=None): """Returns a default RootAnalysis object with expected values for testing.""" return RootAnalysis(tool=tool if tool else EV_ROOT_ANALYSIS_TOOL, tool_instance=tool_instance if tool_instance else EV_ROOT_ANALYSIS_TOOL_INSTANCE, alert_type=alert_type if alert_type else EV_ROOT_ANALYSIS_ALERT_TYPE, desc=desc if desc else EV_ROOT_ANALYSIS_DESCRIPTION, event_time=event_time if event_time else EV_TEST_DATE, action_counters=action_counts if action_counts else None, details=details if details else None, name=name if name else EV_ROOT_ANALYSIS_NAME, remediation=remediation if remediation else None, state=state if state else None, uuid=uuid if uuid else EV_ROOT_ANALYSIS_UUID, location=location if location else None, storage_dir=storage_dir if storage_dir else os.path.relpath( workload_storage_dir(uuid if uuid else EV_ROOT_ANALYSIS_UUID), start=saq.SAQ_HOME), company_name=company_name if company_name else None, company_id=company_id if company_id else None, analysis_mode=analysis_mode if analysis_mode else 'test_groups', queue=queue if queue else None, instructions=instructions if instructions else None) def add_fp_alert(): root = create_root_analysis(uuid=str(uuid.uuid4())) root.initialize_storage() root.add_observable(F_FQDN, 'microsoft.com') root.add_observable(F_URL, 'https://google.com') root.add_observable(F_FILE_NAME, 'calc.exe') root.add_observable(F_HOSTNAME, 'localhost') root.save() alert = Alert(storage_dir=root.storage_dir) alert.load() alert.disposition = DISPOSITION_FALSE_POSITIVE alert.disposition_time = datetime.datetime.now() alert.sync() class ServerProcess(object): def __init__(self, args): self.args = args self.process = None self.stdout_reader = None self.stderr_reader = None def start(self): self.process = Popen(self.args, stdout=PIPE, stderr=PIPE, universal_newlines=True) logging.debug("started process for {} with pid {} args {}".format( type(self), self.process.pid, ','.join(self.args))) self.stdout_reader = threading.Thread(target=self.pipe_reader, args=(self.process.stderr, self.handle_stdout)) self.stdout_reader.daemon = True self.stdout_reader.start() self.stderr_reader = threading.Thread(target=self.pipe_reader, args=(self.process.stdout, self.handle_stderr)) self.stderr_reader.daemon = True self.stderr_reader.start() logging.debug("waiting for {} to start...".format(type(self))) wait_for(self.startup_condition) logging.debug("{} started".format(type(self))) def stop(self): if self.process is None: return logging.debug("stopping process {} with pid {}".format(type(self), self.process.pid)) self.process.terminate() self.process.wait() self.process = None logging.debug("stopping process output readers...") self.stdout_reader.join() self.stdout_reader = None self.stderr_reader.join() self.stderr_reader = None def handle_stdout(self, line): #print("STDOUT {}\t{}".format(type(self), line.strip())) pass def handle_stderr(self, line): if '[ERROR]' in line: print("detected error in subprocess: {}".format(line.strip())) #print("STDERR {}\t{}".format(type(self), line.strip())) def pipe_reader(self, pipe, callback): for line in pipe: callback(line.strip()) def started(self): """Returns True if this process has actually started.""" return True class EngineProcess(ServerProcess): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.engine_started = False def startup_condition(self): return self.engine_started def handle_stderr(self, line): if 'engine started' in line: self.engine_started = True ServerProcess.handle_stderr(self, line) class GUIServer(ServerProcess): def __init__(self): super().__init__(['python3', 'saq', '-L', 'etc/console_debug_logging.ini', 'start-gui']) self.saq_init = 0 def handle_stderr(self, line): if 'SAQ initialized' in line: self.saq_init += 1 ServerProcess.handle_stderr(self, line) def startup_condition(self): return self.saq_init > 1 class ACEBasicTestCase(TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.api_server_process = None # a list of temporary test files we've created using self.create_test_file self.tracked_test_files = [] def setUp(self): #saq.DUMP_TRACEBACKS = True self.starting_thread_count = threading.active_count() self.save_signal_handlers() initialize_test_environment() logging.info("TEST: {}".format(self.id())) self.reset() import saq saq.db.remove() open_test_comms() memory_log_handler.clear() self.initialize_test_client() def initialize_test_client(self): from aceapi import create_app self.app = create_app(testing=True) self.app_context = self.app.test_request_context() self.app_context.push() self.client = self.app.test_client() # Hopefully temporary hack to ensure session is cleared after each test import aceapi aceapi.db.session.close() def tearDown(self): close_test_comms() # anything logged at CRITICAL log level will cause the test the fail #self.assertFalse(memory_log_handler.search(lambda e: e.levelno == logging.CRITICAL)) import saq saq.DUMP_TRACEBACKS = False self.stop_api_server() if saq.engine.CURRENT_ENGINE is not None: try: saq.engine.CURRENT_ENGINE.stop() except: pass for file_path in self.tracked_test_files: if os.path.exists(file_path): os.remove(file_path) # clear the database session this test used saq.db.remove() self.restore_signal_handlers() # clear all the registered services import saq.service saq.service._registered_services = [] thread_count_difference = threading.active_count() - self.starting_thread_count if thread_count_difference != 0: logging.warning(f"thread count difference after {self.id()} is {thread_count_difference}") for t in threading.enumerate(): logging.warning(f"running thread: {t}") import saq.database saq.database.reset_pools() test_log_manager.shutdown() def create_test_file(self, file_path='.unittest_test_data', file_content=None, root_analysis=None): """Creates a test file and returns the path to the newly created file. Any file created this way is automatically deleted after the test runs. If file_path is relative then the file is created relative to SAQ_HOME. If root_analysis is a RootAnalysis object then file_path is crated relative to the storage_dir of this analysis. If file_content is not None then it is used as the content of the file. Otherwise, 1024 random bytes are used.""" if not os.path.isabs(file_path): if root_analysis: target_file_path = os.path.join(root_analysis.storage_dir, file_path) else: target_file_path = abs_path(file_path) mode = 'wb' if isinstance(file_content, str): mode = 'w' with open(target_file_path, mode) as fp: if file_content: fp.write(file_content) else: fp.write(secrets.token_bytes(1024)) self.tracked_test_files.append(target_file_path) return file_path def clear_error_reports(self): """Clears out any error reports generated by the test.""" try: shutil.rmtree(os.path.join(saq.DATA_DIR, 'error_reports')) os.makedirs(os.path.join(saq.DATA_DIR, 'error_reports')) except Exception as e: sys.stderr.write("unable to clear error_reports: {}\n".format(e)) def wait_for_log_entry(self, *args, **kwargs): try: return wait_for_log_entry(*args, **kwargs) except WaitTimedOutError: return False def wait_for_condition(self, condition, timeout=5, delay=1): """Waits for condition to return True. condition is checked every delay seconds until it return True or timeout seconds have elapsed.""" time_limit = datetime.datetime.now() + datetime.timedelta(seconds=timeout) while True: if condition(): return True if datetime.datetime.now() > time_limit: raise WaitTimedOutError() time.sleep(delay) @verify_instance_type def reset(self): """Resets everything back to the default state.""" self.reset_config() self.reset_brocess() self.reset_cloudphish() self.reset_correlation() self.reset_email_archive() self.reset_crawlphish() self.reset_log_exports() self.reset_var_dir() self.clear_error_reports() # re-enable encryption in case we disabled it #saq.ENCRYPTION_PASSWORD = get_aes_key('password') @verify_instance_type def reset_var_dir(self): # clears out the var directory shutil.rmtree(os.path.join(saq.DATA_DIR, 'var')) os.mkdir(os.path.join(saq.DATA_DIR, 'var')) os.mkdir(os.path.join(saq.DATA_DIR, 'var', 'tmp')) os.mkdir(os.path.join(saq.DATA_DIR, 'var', 'daemon')) os.mkdir(os.path.join(saq.DATA_DIR, 'var', 'services')) @verify_instance_type def reset_log_exports(self): # reset splunk export logs splunk_log_dir = os.path.join(saq.DATA_DIR, saq.CONFIG['splunk_logging']['splunk_log_dir']) if os.path.isdir(splunk_log_dir): shutil.rmtree(splunk_log_dir) os.mkdir(splunk_log_dir) # reset es export logs es_log_dir = os.path.join(saq.DATA_DIR, saq.CONFIG['elk_logging']['elk_log_dir']) if os.path.isdir(es_log_dir): shutil.rmtree(es_log_dir) os.mkdir(es_log_dir) @verify_instance_type def reset_crawlphish(self): self.whitelist_path = saq.CONFIG['analysis_module_crawlphish']['whitelist_path'] \ = os.path.join('etc', 'crawlphish.unittest.whitelist') self.regex_path = saq.CONFIG['analysis_module_crawlphish']['regex_path'] \ = os.path.join('etc', 'crawlphish.unittest.regex') self.blacklist_path = saq.CONFIG['analysis_module_crawlphish']['blacklist_path'] \ = os.path.join('etc', 'crawlphish.unittest.blacklist') if os.path.exists(self.whitelist_path): os.remove(self.whitelist_path) if os.path.exists(self.regex_path): os.remove(self.regex_path) if os.path.exists(self.blacklist_path): os.remove(self.blacklist_path) with open(self.blacklist_path, 'w') as fp: fp.write('10.0.0.0/8\n') fp.write('127.0.0.1\n') fp.write('localhost.local\n') with open(self.regex_path, 'w') as fp: fp.write('\.(pdf|zip|scr|js|cmd|bat|ps1|doc|docx|xls|xlsx|ppt|pptx|exe|vbs|vbe|jse|wsh|cpl|rar|ace|hta)$\n') with open(self.whitelist_path, 'w') as fp: fp.write('anonfile.xyz\n') @verify_instance_type def reset_config(self): """Resets saq.CONFIG.""" saq.load_configuration() @verify_instance_type @use_db(name='hal9000') def reset_hal9000(self, db, c): c.execute("DELETE FROM observables") db.commit() @verify_instance_type @use_db(name='brocess') def reset_brocess(self, db, c): # clear the brocess db c.execute("""DELETE FROM httplog""") c.execute("""DELETE FROM smtplog""") db.commit() # TODO instead of using harded values pull the limits from the config c.execute("""INSERT INTO httplog ( host, numconnections, firstconnectdate ) VALUES ( 'local', 1000, UNIX_TIMESTAMP(NOW()) ), ( 'xyz', 1000, UNIX_TIMESTAMP(NOW()) ), ( 'test1.local', 70, UNIX_TIMESTAMP(NOW()) ), ( 'test2.local', 69, UNIX_TIMESTAMP(NOW()) )""") db.commit() @verify_instance_type @use_db def reset_cloudphish(self, db, c): # clear cloudphish db c.execute("""DELETE FROM cloudphish_analysis_results""") c.execute("""DELETE FROM cloudphish_content_metadata""") db.commit() # clear cloudphish engine and module cache for cache_dir in [ saq.CONFIG['cloudphish']['cache_dir'] ]: if os.path.isdir(cache_dir): shutil.rmtree(cache_dir) os.makedirs(cache_dir) @verify_instance_type @use_db def reset_correlation(self, db, c): global UNITTEST_USER_ID import saq data_subdir = os.path.join(saq.CONFIG['global']['data_dir'], saq.SAQ_NODE) failed_alert_subdir = os.path.join(saq.SAQ_HOME, '.saq_alerts') subdirs = [ data_subdir, failed_alert_subdir ] if saq.CONFIG['service_engine']['work_dir']: subdirs.append(saq.CONFIG['service_engine']['work_dir']) for subdir in subdirs: if os.path.isdir(subdir): try: shutil.rmtree(subdir) os.mkdir(subdir) except Exception as e: logging.error(f"unable to clear {subdir}: {e}") c.execute("DELETE FROM alerts") c.execute("DELETE FROM workload") c.execute("DELETE FROM observables") c.execute("DELETE FROM tags") c.execute("INSERT INTO tags ( `id`, `name` ) VALUES ( 1, 'whitelisted' )") c.execute("DELETE FROM events") c.execute("DELETE FROM remediation") c.execute("DELETE FROM messages") c.execute("DELETE FROM persistence") c.execute("DELETE FROM persistence_source") c.execute("DELETE FROM company WHERE name != 'default'") c.execute("DELETE FROM nodes WHERE is_local = 1") c.execute("UPDATE nodes SET is_primary = 0") c.execute("DELETE FROM locks") c.execute("DELETE FROM delayed_analysis") c.execute("DELETE FROM users") c.execute("DELETE FROM malware") c.execute("DELETE FROM `config`") c.execute("DELETE FROM incoming_workload") c.execute("DELETE FROM work_distribution") from app.models import User u = User() u.username = 'unittest' u.email = 'unittest@localhost' u.password = 'unittest' c.execute(""" INSERT INTO users ( username, email, password_hash ) VALUES ( %s, %s, %s )""", (u.username, u.email, u.password_hash)) UNITTEST_USER_ID = c.lastrowid logging.debug(f"got user id {UNITTEST_USER_ID} for unittest user") db.commit() import saq.database saq.database.initialize_automation_user() @verify_instance_type def reset_email_archive(self): import socket archive_subdir = os.path.join(saq.DATA_DIR, saq.CONFIG['analysis_module_email_archiver']['archive_dir'], socket.gethostname().lower()) if os.path.exists(archive_subdir): try: shutil.rmtree(archive_subdir) os.mkdir(archive_subdir) except Exception as e: logging.error("unable to clear {}: {}".format(archive_subdir, e)) with get_db_connection('email_archive') as db: c = db.cursor() c.execute("DELETE FROM archive") db.commit() def start_api_server(self, remote_host=None, ssl_verification=None, listen_address=None, listen_port=None, ssl_cert=None, ssl_key=None): """Starts the API server as a separate process.""" self.api_server_process = Process(target=self.execute_api_server, args=(listen_address, listen_port, ssl_cert, ssl_key)) self.api_server_process.start() if remote_host is None: remote_host = saq.API_PREFIX if ssl_verification is None: ssl_verification = saq.CONFIG['SSL']['ca_chain_path'] import ace_api result = None errors = [] for x in range(5): try: result = ace_api.ping(remote_host=remote_host, ssl_verification=ssl_verification) break except Exception as e: errors.append(str(e)) time.sleep(1) if result is None: for error in errors: logging.error(error) self.fail("unable to start api server") def execute_api_server(self, listen_address=None, listen_port=None, ssl_cert=None, ssl_key=None): # https://gist.github.com/rduplain/1705072 # this is a bit weird because I want the urls to be the same as they # are configured for apache, where they are all starting with /api import aceapi from saq.database import initialize_database app = aceapi.create_app(testing=True) from werkzeug.serving import run_simple from werkzeug.wsgi import DispatcherMiddleware from flask import Flask app.config['DEBUG'] = True app.config['APPLICATION_ROOT'] = '/api' application = DispatcherMiddleware(Flask('dummy_app'), { app.config['APPLICATION_ROOT']: app, }) if listen_address is None: listen_address = saq.CONFIG.get('api', 'listen_address') if listen_port is None: listen_port = saq.CONFIG.getint('api', 'listen_port') ssl_context = ( saq.CONFIG.get('api', 'ssl_cert') if ssl_cert is None else ssl_cert, saq.CONFIG.get('api', 'ssl_key') if ssl_key is None else ssl_key ) initialize_database() saq.db = aceapi.db.session logging.info(f"starting api server on {listen_address} port {listen_port}") run_simple(listen_address, listen_port, application, ssl_context=ssl_context, use_reloader=False) def stop_api_server(self): """Stops the API server if it's running.""" if self.api_server_process is None: return import signal os.kill(self.api_server_process.pid, signal.SIGKILL) self.api_server_process.join() self.api_server_process = None def save_signal_handlers(self): self.sigterm_handler = signal.getsignal(signal.SIGTERM) self.sigint_handler = signal.getsignal(signal.SIGINT) self.sighup_handler = signal.getsignal(signal.SIGHUP) def restore_signal_handlers(self): signal.signal(signal.SIGTERM, self.sigterm_handler) signal.signal(signal.SIGINT, self.sigint_handler) signal.signal(signal.SIGHUP, self.sighup_handler) class ACEEngineTestCase(ACEBasicTestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # if we create an engine using self.create_engine() then we track it here self.tracked_engine = None self.server_processes = {} # key = name, value ServerProcess def start_gui_server(self): self.server_processes['gui'] = GUIServer() self.server_processes['gui'].start() def start_cloudphish_server(self): self.server_processes['cloudphish'] = CloudphishServer() self.server_processes['cloudphish'].start() def stop_tracked_engine(self): if self.tracked_engine: try: self.tracked_engine.stop() self.wait_engine(self.tracked_engine) except Exception as e: logging.error("unable to stop tracked engine {}: {}".format(self.tracked_engine, e)) report_exception() finally: self.tracked_engine = None def setUp(self, *args, **kwargs): super().setUp(*args, **kwargs) self.disable_all_modules() def tearDown(self): ACEBasicTestCase.tearDown(self) self.stop_tracked_engine() for key in self.server_processes.keys(): self.server_processes[key].stop() #if saq.engine.CURRENT_ENGINE: #try: #saq.engine.CURRENT_ENGINE.stop() #except: #pass def execute_engine_test(self, engine): try: engine.start() engine.wait() except KeyboardInterrupt: engine.stop() engine.wait() def create_engine(self, cls, *args, **kwargs): try: self.tracked_engine = cls(*args, **kwargs) return self.tracked_engine except Exception as e: logging.error("unable to create engine {}: {}".format(cls, e)) report_exception() self.fail("unable to create engine {}: {}".format(cls, e)) def start_engine(self, engine): try: engine.start() except Exception as e: engine.stop() engine.wait() self.fail("engine failure: {}".format(e)) def wait_engine(self, engine): try: engine.wait() except Exception as e: engine.controlled_stop() engine.wait() self.fail("engine failure: {}".format(e)) def kill_engine(self, engine): try: engine.stop() engine.wait() except Exception as e: self.fail("engine failure: {}".format(e)) def disable_all_modules(self): """Disables all the modules specified in the configuration file. Requires a @reset_config.""" for key in saq.CONFIG.keys(): if key.startswith('analysis_module_'): saq.CONFIG[key]['enabled'] = 'no' #if key.startswith('analysis_mode_'): #delete_list = [] #for value in saq.CONFIG[key].keys(): #if value.startswith('analysis_module_'): #delete_list.append(value) #for analysis_module in delete_list: #logging.debug(f"deleting {analysis_module} from {key}") #del saq.CONFIG[key][analysis_module] #saq.CONFIG[key]['module_groups'] = '' logging.debug("disabled all modules") class CloudphishServer(EngineProcess): def __init__(self): super().__init__(['python3', 'saq', '-L', 'etc/console_debug_logging.ini', '--start', 'cloudphish']) class ACEModuleTestCase(ACEEngineTestCase): pass class TestEngine(Engine): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.disable_alerting() def set_cleanup(self, mode, value): saq.CONFIG[f'analysis_mode_{mode}']['cleanup'] = 'yes' if value else 'no' logging.debug(f"set cleanup to {value} for analysis mode {mode}")
the-stack_0_24920
# Copyright 2016-2022 Swiss National Supercomputing Centre (CSCS/ETH Zurich) # ReFrame Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: BSD-3-Clause import inspect import itertools import json import os import shlex import socket import sys import time import traceback import reframe import reframe.core.config as config import reframe.core.exceptions as errors import reframe.core.logging as logging import reframe.core.runtime as runtime import reframe.core.warnings as warnings import reframe.frontend.argparse as argparse import reframe.frontend.autodetect as autodetect import reframe.frontend.ci as ci import reframe.frontend.dependencies as dependencies import reframe.frontend.filters as filters import reframe.frontend.runreport as runreport import reframe.utility.jsonext as jsonext import reframe.utility.osext as osext import reframe.utility.typecheck as typ from reframe.frontend.distribute import distribute_tests, getallnodes from reframe.frontend.executors.policies import (SerialExecutionPolicy, AsynchronousExecutionPolicy) from reframe.frontend.executors import Runner, generate_testcases from reframe.frontend.loader import RegressionCheckLoader from reframe.frontend.printer import PrettyPrinter def format_env(envvars): ret = '[ReFrame Environment]\n' notset = '<not set>' envvars = [*envvars, 'RFM_INSTALL_PREFIX'] ret += '\n'.join(sorted(f' {e}={os.getenv(e, notset)}' for e in envvars)) return ret def list_checks(testcases, printer, detailed=False, concretized=False): printer.info('[List of matched checks]') unique_checks = set() def dep_lines(u, *, prefix, depth=0, lines=None, printed=None): if lines is None: lines = [] if printed is None: printed = set(unique_checks) adj = u.deps for v in adj: if concretized or (not concretized and v.check.unique_name not in printed): dep_lines(v, prefix=prefix + 2*' ', depth=depth+1, lines=lines, printed=printed) printed.add(v.check.unique_name) if not v.check.is_fixture(): unique_checks.add(v.check.unique_name) if depth: tc_info = '' details = '' if concretized: tc_info = f' @{u.partition.fullname}+{u.environ.name}' location = inspect.getfile(type(u.check)) if detailed: details = f' [id: {u.check.unique_name}, file: {location!r}]' lines.append( f'{prefix}^{u.check.display_name}{tc_info}{details}' ) return lines # We need the leaf test cases to be printed at the leftmost leaf_testcases = list(t for t in testcases if t.in_degree == 0) for t in leaf_testcases: tc_info = '' details = '' if concretized: tc_info = f' @{t.partition.fullname}+{t.environ.name}' location = inspect.getfile(type(t.check)) if detailed: details = f' [id: {t.check.unique_name}, file: {location!r}]' # if not concretized and t.check.name not in unique_checks: if concretized or (not concretized and t.check.unique_name not in unique_checks): printer.info(f'- {t.check.display_name}{tc_info}{details}') if not t.check.is_fixture(): unique_checks.add(t.check.unique_name) for l in reversed(dep_lines(t, prefix=' ')): printer.info(l) if concretized: printer.info(f'Concretized {len(testcases)} test case(s)\n') else: printer.info(f'Found {len(unique_checks)} check(s)\n') def describe_checks(testcases, printer): records = [] unique_names = set() for tc in testcases: if tc.check.is_fixture(): continue if tc.check.name not in unique_names: unique_names.add(tc.check.name) rec = json.loads(jsonext.dumps(tc.check)) # Now manipulate the record to be more user-friendly # # 1. Add other fields that are relevant for users # 2. Remove all private fields rec['unique_name'] = tc.check.unique_name rec['display_name'] = tc.check.display_name rec['pipeline_hooks'] = {} rec['perf_variables'] = list(rec['perf_variables'].keys()) rec['prefix'] = tc.check.prefix rec['variant_num'] = tc.check.variant_num for stage, hooks in tc.check.pipeline_hooks().items(): for hk in hooks: rec['pipeline_hooks'].setdefault(stage, []) rec['pipeline_hooks'][stage].append(hk.__name__) for attr in list(rec.keys()): if attr == '__rfm_class__': rec['@class'] = rec[attr] del rec[attr] elif attr == '__rfm_file__': rec['@file'] = rec[attr] del rec[attr] elif attr.startswith('_'): del rec[attr] # List all required variables required = [] for var in tc.check._rfm_var_space: if not tc.check._rfm_var_space[var].is_defined(): required.append(var) rec['@required'] = required records.append(dict(sorted(rec.items()))) printer.info(jsonext.dumps(records, indent=2)) def list_tags(testcases, printer): printer.info('[List of unique tags]') tags = set() tags = tags.union(*(t.check.tags for t in testcases)) printer.info(', '.join(f'{t!r}' for t in sorted(tags))) printer.info(f'Found {len(tags)} tag(s)\n') def logfiles_message(): log_files = logging.log_files() msg = 'Log file(s) saved in ' if not log_files: msg += '<no log file was generated>' else: msg += f'{", ".join(repr(f) for f in log_files)}' return msg def calc_verbosity(site_config, quiesce): curr_verbosity = site_config.get('general/0/verbose') return curr_verbosity - quiesce def main(): # Setup command line options argparser = argparse.ArgumentParser() output_options = argparser.add_argument_group( 'Options controlling ReFrame output' ) locate_options = argparser.add_argument_group( 'Options for discovering checks' ) select_options = argparser.add_argument_group( 'Options for selecting checks' ) action_options = argparser.add_argument_group( 'Options controlling actions' ) run_options = argparser.add_argument_group( 'Options controlling the execution of checks' ) env_options = argparser.add_argument_group( 'Options controlling the ReFrame environment' ) misc_options = argparser.add_argument_group('Miscellaneous options') # Output directory options output_options.add_argument( '--dont-restage', action='store_false', dest='clean_stagedir', help='Reuse the test stage directory', envvar='RFM_CLEAN_STAGEDIR', configvar='general/clean_stagedir' ) output_options.add_argument( '--keep-stage-files', action='store_true', help='Keep stage directories even for successful checks', envvar='RFM_KEEP_STAGE_FILES', configvar='general/keep_stage_files' ) output_options.add_argument( '-o', '--output', action='store', metavar='DIR', help='Set output directory prefix to DIR', envvar='RFM_OUTPUT_DIR', configvar='systems/outputdir' ) output_options.add_argument( '--perflogdir', action='store', metavar='DIR', help=('Set performance log data directory prefix ' '(relevant only to the filelog log handler)'), envvar='RFM_PERFLOG_DIR', configvar='logging/handlers_perflog/filelog_basedir' ) output_options.add_argument( '--prefix', action='store', metavar='DIR', help='Set general directory prefix to DIR', envvar='RFM_PREFIX', configvar='systems/prefix' ) output_options.add_argument( '--report-file', action='store', metavar='FILE', help="Store JSON run report in FILE", envvar='RFM_REPORT_FILE', configvar='general/report_file' ) output_options.add_argument( '--report-junit', action='store', metavar='FILE', help="Store a JUnit report in FILE", envvar='RFM_REPORT_JUNIT', configvar='general/report_junit' ) output_options.add_argument( '-s', '--stage', action='store', metavar='DIR', help='Set stage directory prefix to DIR', envvar='RFM_STAGE_DIR', configvar='systems/stagedir' ) output_options.add_argument( '--save-log-files', action='store_true', default=False, help='Save ReFrame log files to the output directory', envvar='RFM_SAVE_LOG_FILES', configvar='general/save_log_files' ) output_options.add_argument( '--timestamp', action='store', nargs='?', const='%FT%T', metavar='TIMEFMT', help=('Append a timestamp to the output and stage directory prefixes ' '(default: "%%FT%%T")'), envvar='RFM_TIMESTAMP_DIRS', configvar='general/timestamp_dirs' ) # Check discovery options locate_options.add_argument( '-c', '--checkpath', action='append', metavar='PATH', help="Add PATH to the check search path list", envvar='RFM_CHECK_SEARCH_PATH :', configvar='general/check_search_path' ) locate_options.add_argument( '--ignore-check-conflicts', action='store_true', help=('Skip checks with conflicting names ' '(this option is deprecated and has no effect)'), envvar='RFM_IGNORE_CHECK_CONFLICTS', configvar='general/ignore_check_conflicts' ) locate_options.add_argument( '-R', '--recursive', action='store_true', help='Search for checks in the search path recursively', envvar='RFM_CHECK_SEARCH_RECURSIVE', configvar='general/check_search_recursive' ) # Select options select_options.add_argument( '--cpu-only', action='store_true', help='Select only CPU checks' ) select_options.add_argument( '--failed', action='store_true', help="Select failed test cases (only when '--restore-session' is used)" ) select_options.add_argument( '--gpu-only', action='store_true', help='Select only GPU checks' ) select_options.add_argument( '--maintainer', action='append', dest='maintainers', default=[], metavar='PATTERN', help='Select checks with at least one maintainer matching PATTERN' ) select_options.add_argument( '-n', '--name', action='append', dest='names', default=[], metavar='PATTERN', help='Select checks whose name matches PATTERN' ) # FIXME: The following is the only selection option that has an associated # (undocumented) configuration variable. This is to support pruning of the # partition environments as the runtime is created, similarly to how the # system partitions are treated. Currently, this facilitates the # implementation of fixtures, but we should reconsider it: see discussion # in https://github.com/eth-cscs/reframe/issues/2245 select_options.add_argument( '-p', '--prgenv', action='append', default=[r'.*'], metavar='PATTERN', configvar='general/valid_env_names', help=('Select checks with at least one ' 'programming environment matching PATTERN') ) select_options.add_argument( '-T', '--exclude-tag', action='append', dest='exclude_tags', metavar='PATTERN', default=[], help='Exclude checks whose tag matches PATTERN' ) select_options.add_argument( '-t', '--tag', action='append', dest='tags', metavar='PATTERN', default=[], help='Select checks with at least one tag matching PATTERN' ) select_options.add_argument( '-x', '--exclude', action='append', dest='exclude_names', metavar='PATTERN', default=[], help='Exclude checks whose name matches PATTERN' ) # Action options action_options.add_argument( '--ci-generate', action='store', metavar='FILE', help=('Generate into FILE a Gitlab CI pipeline ' 'for the selected tests and exit'), ) action_options.add_argument( '--describe', action='store_true', help='Give full details on the selected tests' ) action_options.add_argument( '-L', '--list-detailed', nargs='?', const='T', choices=['C', 'T'], help=('List the selected tests (T) or the concretized test cases (C) ' 'providing more details') ) action_options.add_argument( '-l', '--list', nargs='?', const='T', choices=['C', 'T'], help='List the selected tests (T) or the concretized test cases (C)' ) action_options.add_argument( '--list-tags', action='store_true', help='List the unique tags found in the selected tests and exit' ) action_options.add_argument( '-r', '--run', action='store_true', help='Run the selected checks' ) # Run options run_options.add_argument( '--disable-hook', action='append', metavar='NAME', dest='hooks', default=[], help='Disable a pipeline hook for this run' ) run_options.add_argument( '--distribute', action='store', metavar='{all|STATE}', nargs='?', const='idle', help=('Distribute the selected single-node jobs on every node that' 'is in STATE (default: "idle"') ) run_options.add_argument( '--exec-policy', metavar='POLICY', action='store', choices=['async', 'serial'], default='async', help='Set the execution policy of ReFrame (default: "async")' ) run_options.add_argument( '--flex-alloc-nodes', action='store', dest='flex_alloc_nodes', metavar='{all|STATE|NUM}', default=None, help='Set strategy for the flexible node allocation (default: "idle").' ) run_options.add_argument( '--force-local', action='store_true', help='Force local execution of checks' ) run_options.add_argument( '-J', '--job-option', action='append', metavar='OPT', dest='job_options', default=[], help='Pass option OPT to job scheduler' ) run_options.add_argument( '--max-retries', metavar='NUM', action='store', default=0, help='Set the maximum number of times a failed regression test ' 'may be retried (default: 0)', type=int ) run_options.add_argument( '--maxfail', metavar='NUM', action='store', default=sys.maxsize, help='Exit after first NUM failures', type=int ) run_options.add_argument( '--mode', action='store', help='Execution mode to use' ) run_options.add_argument( '--restore-session', action='store', nargs='?', const='', metavar='REPORT', help='Restore a testing session from REPORT file' ) run_options.add_argument( '-S', '--setvar', action='append', metavar='[TEST.]VAR=VAL', dest='vars', default=[], help=('Set test variable VAR to VAL in all tests ' 'or optionally in TEST only') ) run_options.add_argument( '--skip-performance-check', action='store_true', help='Skip performance checking' ) run_options.add_argument( '--skip-prgenv-check', action='store_true', help='Skip programming environment check' ) run_options.add_argument( '--skip-sanity-check', action='store_true', help='Skip sanity checking' ) run_options.add_argument( '--skip-system-check', action='store_true', help='Skip system check' ) run_options.add_argument( '--strict', action='store_true', help='Enforce strict performance checking' ) # Environment options env_options.add_argument( '-M', '--map-module', action='append', metavar='MAPPING', dest='module_mappings', default=[], help='Add a module mapping', envvar='RFM_MODULE_MAPPINGS ,', configvar='general/module_mappings' ) env_options.add_argument( '-m', '--module', action='append', default=[], metavar='MOD', dest='user_modules', help='Load module MOD before running any regression check', envvar='RFM_USER_MODULES ,', configvar='general/user_modules' ) env_options.add_argument( '--module-mappings', action='store', metavar='FILE', dest='module_map_file', help='Load module mappings from FILE', envvar='RFM_MODULE_MAP_FILE', configvar='general/module_map_file' ) env_options.add_argument( '--module-path', action='append', metavar='PATH', dest='module_paths', default=[], help='(Un)use module path PATH before running any regression check', ) env_options.add_argument( '--non-default-craype', action='store_true', help='Test a non-default Cray Programming Environment', envvar='RFM_NON_DEFAULT_CRAYPE', configvar='general/non_default_craype' ) env_options.add_argument( '--purge-env', action='store_true', dest='purge_env', default=False, help='Unload all modules before running any regression check', envvar='RFM_PURGE_ENVIRONMENT', configvar='general/purge_environment' ) env_options.add_argument( '-u', '--unload-module', action='append', metavar='MOD', dest='unload_modules', default=[], help='Unload module MOD before running any regression check', envvar='RFM_UNLOAD_MODULES ,', configvar='general/unload_modules' ) # Miscellaneous options misc_options.add_argument( '-C', '--config-file', action='store', dest='config_file', metavar='FILE', help='Set configuration file', envvar='RFM_CONFIG_FILE' ) misc_options.add_argument( '--detect-host-topology', action='store', nargs='?', const='-', help='Detect the local host topology and exit' ) misc_options.add_argument( '--failure-stats', action='store_true', help='Print failure statistics' ) misc_options.add_argument( '--nocolor', action='store_false', dest='colorize', help='Disable coloring of output', envvar='RFM_COLORIZE', configvar='general/colorize' ) misc_options.add_argument( '--performance-report', action='store_true', help='Print a report for performance tests' ) misc_options.add_argument( '--show-config', action='store', nargs='?', const='all', metavar='PARAM', help='Print the value of configuration parameter PARAM and exit' ) misc_options.add_argument( '--system', action='store', help='Load configuration for SYSTEM', envvar='RFM_SYSTEM' ) misc_options.add_argument( '--upgrade-config-file', action='store', metavar='OLD[:NEW]', help='Upgrade ReFrame 2.x configuration file to ReFrame 3.x syntax' ) misc_options.add_argument( '-V', '--version', action='version', version=osext.reframe_version() ) misc_options.add_argument( '-v', '--verbose', action='count', help='Increase verbosity level of output', envvar='RFM_VERBOSE', configvar='general/verbose' ) misc_options.add_argument( '-q', '--quiet', action='count', default=0, help='Decrease verbosity level of output', ) # Options not associated with command-line arguments argparser.add_argument( dest='autodetect_fqdn', envvar='RFM_AUTODETECT_FQDN', action='store', default=True, type=typ.Bool, help='Use FQDN as host name' ) argparser.add_argument( dest='autodetect_method', envvar='RFM_AUTODETECT_METHOD', action='store', default='hostname', help='Method to detect the system' ) argparser.add_argument( dest='autodetect_xthostname', envvar='RFM_AUTODETECT_XTHOSTNAME', action='store', default=True, type=typ.Bool, help="Use Cray's xthostname file to find the host name" ) argparser.add_argument( dest='git_timeout', envvar='RFM_GIT_TIMEOUT', configvar='general/git_timeout', action='store', help=('Timeout in seconds when checking if the url is a ' 'valid repository.'), type=float ) argparser.add_argument( dest='graylog_server', envvar='RFM_GRAYLOG_ADDRESS', configvar='logging/handlers_perflog/graylog_address', help='Graylog server address' ) argparser.add_argument( dest='httpjson_url', envvar='RFM_HTTPJSON_URL', configvar='logging/handlers_perflog/httpjson_url', help='URL of HTTP server accepting JSON logs' ) argparser.add_argument( dest='ignore_reqnodenotavail', envvar='RFM_IGNORE_REQNODENOTAVAIL', configvar='schedulers/ignore_reqnodenotavail', action='store_true', help='Graylog server address' ) argparser.add_argument( dest='compact_test_names', envvar='RFM_COMPACT_TEST_NAMES', configvar='general/compact_test_names', action='store_true', help='Use a compact test naming scheme' ) argparser.add_argument( dest='dump_pipeline_progress', envvar='RFM_DUMP_PIPELINE_PROGRESS', configvar='general/dump_pipeline_progress', action='store_true', help='Dump progress information for the async execution' ) argparser.add_argument( dest='pipeline_timeout', envvar='RFM_PIPELINE_TIMEOUT', configvar='general/pipeline_timeout', action='store', help='Timeout for advancing the pipeline', type=float ) argparser.add_argument( dest='remote_detect', envvar='RFM_REMOTE_DETECT', configvar='general/remote_detect', action='store_true', help='Detect remote system topology' ) argparser.add_argument( dest='remote_workdir', envvar='RFM_REMOTE_WORKDIR', configvar='general/remote_workdir', action='store', help='Working directory for launching ReFrame remotely' ) argparser.add_argument( dest='resolve_module_conflicts', envvar='RFM_RESOLVE_MODULE_CONFLICTS', configvar='general/resolve_module_conflicts', action='store_true', help='Resolve module conflicts automatically' ) argparser.add_argument( dest='syslog_address', envvar='RFM_SYSLOG_ADDRESS', configvar='logging/handlers_perflog/syslog_address', help='Syslog server address' ) argparser.add_argument( dest='trap_job_errors', envvar='RFM_TRAP_JOB_ERRORS', configvar='general/trap_job_errors', action='store_true', help='Trap job errors in job scripts and fail tests automatically' ) argparser.add_argument( dest='use_login_shell', envvar='RFM_USE_LOGIN_SHELL', configvar='general/use_login_shell', action='store_true', help='Use a login shell for job scripts' ) def restrict_logging(): '''Restrict logging to errors only. This is done when specific options are passed, which generate JSON output and we don't want to pollute the output with other logging output. :returns: :obj:`True` if the logging was restricted, :obj:`False` otherwise. ''' if (options.show_config or options.detect_host_topology or options.describe): logging.getlogger().setLevel(logging.ERROR) return True else: return False # Parse command line options = argparser.parse_args() if len(sys.argv) == 1: argparser.print_help() sys.exit(1) # First configure logging with our generic configuration so as to be able # to print pretty messages; logging will be reconfigured by user's # configuration later site_config = config.load_config( os.path.join(reframe.INSTALL_PREFIX, 'reframe/core/settings.py') ) site_config.select_subconfig('generic') options.update_config(site_config) logging.configure_logging(site_config) printer = PrettyPrinter() printer.colorize = site_config.get('general/0/colorize') if not restrict_logging(): printer.adjust_verbosity(calc_verbosity(site_config, options.quiet)) if os.getenv('RFM_GRAYLOG_SERVER'): printer.warning( 'RFM_GRAYLOG_SERVER environment variable is deprecated; ' 'please use RFM_GRAYLOG_ADDRESS instead' ) os.environ['RFM_GRAYLOG_ADDRESS'] = os.getenv('RFM_GRAYLOG_SERVER') if options.upgrade_config_file is not None: old_config, *new_config = options.upgrade_config_file.split( ':', maxsplit=1 ) new_config = new_config[0] if new_config else None try: new_config = config.convert_old_config(old_config, new_config) except Exception as e: printer.error(f'could not convert file: {e}') sys.exit(1) printer.info( f'Conversion successful! ' f'The converted file can be found at {new_config!r}.' ) sys.exit(0) # Now configure ReFrame according to the user configuration file try: try: printer.debug('Loading user configuration') site_config = config.load_config(options.config_file) except warnings.ReframeDeprecationWarning as e: printer.warning(e) converted = config.convert_old_config(options.config_file) printer.warning( f"configuration file has been converted " f"to the new syntax here: '{converted}'" ) site_config = config.load_config(converted) site_config.validate() site_config.set_autodetect_meth( options.autodetect_method, use_fqdn=options.autodetect_fqdn, use_xthostname=options.autodetect_xthostname ) # We ignore errors about unresolved sections or configuration # parameters here, because they might be defined at the individual # partition level and will be caught when we will instantiating # internally the system and partitions later on. site_config.select_subconfig(options.system, ignore_resolve_errors=True) for err in options.update_config(site_config): printer.warning(str(err)) # Update options from the selected execution mode if options.mode: mode_args = site_config.get(f'modes/@{options.mode}/options') # We lexically split the mode options, because otherwise spaces # will be treated as part of the option argument; see GH bug #1554 mode_args = list(itertools.chain.from_iterable(shlex.split(m) for m in mode_args)) # Parse the mode's options and reparse the command-line options = argparser.parse_args(mode_args) options = argparser.parse_args(namespace=options.cmd_options) options.update_config(site_config) logging.configure_logging(site_config) except (OSError, errors.ConfigError) as e: printer.error(f'failed to load configuration: {e}') printer.error(logfiles_message()) sys.exit(1) printer.colorize = site_config.get('general/0/colorize') if not restrict_logging(): printer.adjust_verbosity(calc_verbosity(site_config, options.quiet)) try: printer.debug('Initializing runtime') runtime.init_runtime(site_config) except errors.ConfigError as e: printer.error(f'failed to initialize runtime: {e}') printer.error(logfiles_message()) sys.exit(1) if site_config.get('general/0/ignore_check_conflicts'): logging.getlogger().warning( "the 'ignore_check_conflicts' option is deprecated " "and will be removed in the future" ) rt = runtime.runtime() try: if site_config.get('general/0/module_map_file'): rt.modules_system.load_mapping_from_file( site_config.get('general/0/module_map_file') ) if site_config.get('general/0/module_mappings'): for m in site_config.get('general/0/module_mappings'): rt.modules_system.load_mapping(m) except (errors.ConfigError, OSError) as e: printer.error('could not load module mappings: %s' % e) sys.exit(1) if (osext.samefile(rt.stage_prefix, rt.output_prefix) and not site_config.get('general/0/keep_stage_files')): printer.error("stage and output refer to the same directory; " "if this is on purpose, please use the " "'--keep-stage-files' option.") printer.error(logfiles_message()) sys.exit(1) # Show configuration after everything is set up if options.show_config: # Restore logging level printer.setLevel(logging.INFO) config_param = options.show_config if config_param == 'all': printer.info(str(rt.site_config)) else: # Create a unique value to differentiate between configuration # parameters with value `None` and invalid ones default = {'token'} value = rt.get_option(config_param, default) if value is default: printer.error( f'no such configuration parameter found: {config_param}' ) else: printer.info(json.dumps(value, indent=2)) sys.exit(0) if options.detect_host_topology: from reframe.utility.cpuinfo import cpuinfo s_cpuinfo = cpuinfo() # Restore logging level printer.setLevel(logging.INFO) topofile = options.detect_host_topology if topofile == '-': printer.info(json.dumps(s_cpuinfo, indent=2)) else: try: with open(topofile, 'w') as fp: json.dump(s_cpuinfo, fp, indent=2) fp.write('\n') except OSError as e: getlogger().error( f'could not write topology file: {topofile!r}' ) sys.exit(1) sys.exit(0) autodetect.detect_topology() printer.debug(format_env(options.env_vars)) # Setup the check loader if options.restore_session is not None: # We need to load the failed checks only from a list of reports if options.restore_session: filenames = options.restore_session.split(',') else: filenames = [runreport.next_report_filename( osext.expandvars(site_config.get('general/0/report_file')), new=False )] report = runreport.load_report(*filenames) check_search_path = list(report.slice('filename', unique=True)) check_search_recursive = False # If `-c` or `-R` are passed explicitly outside the configuration # file, override the values set from the report file if site_config.is_sticky_option('general/check_search_path'): printer.warning( 'Ignoring check search path set in the report file: ' 'search path set explicitly in the command-line or ' 'the environment' ) check_search_path = site_config.get( 'general/0/check_search_path' ) if site_config.is_sticky_option('general/check_search_recursive'): printer.warning( 'Ignoring check search recursive option from the report file: ' 'option set explicitly in the command-line or the environment' ) check_search_recursive = site_config.get( 'general/0/check_search_recursive' ) else: check_search_recursive = site_config.get( 'general/0/check_search_recursive' ) check_search_path = site_config.get('general/0/check_search_path') # Collect any variables set from the command line external_vars = {} for expr in options.vars: try: lhs, rhs = expr.split('=', maxsplit=1) except ValueError: printer.warning( f'invalid test variable assignment: {expr!r}; skipping' ) else: external_vars[lhs] = rhs loader = RegressionCheckLoader(check_search_path, check_search_recursive, external_vars, options.skip_system_check, options.skip_prgenv_check) def print_infoline(param, value): param = param + ':' printer.info(f" {param.ljust(18)} {value}") session_info = { 'cmdline': ' '.join(sys.argv), 'config_file': rt.site_config.filename, 'data_version': runreport.DATA_VERSION, 'hostname': socket.gethostname(), 'prefix_output': rt.output_prefix, 'prefix_stage': rt.stage_prefix, 'user': osext.osuser(), 'version': osext.reframe_version(), 'workdir': os.getcwd(), } # Print command line printer.info(f"[ReFrame Setup]") print_infoline('version', session_info['version']) print_infoline('command', repr(session_info['cmdline'])) print_infoline( f"launched by", f"{session_info['user'] or '<unknown>'}@{session_info['hostname']}" ) print_infoline('working directory', repr(session_info['workdir'])) print_infoline('settings file', f"{session_info['config_file']!r}") print_infoline('check search path', f"{'(R) ' if loader.recurse else ''}" f"{':'.join(loader.load_path)!r}") print_infoline('stage directory', repr(session_info['prefix_stage'])) print_infoline('output directory', repr(session_info['prefix_output'])) printer.info('') try: # Need to parse the cli options before loading the tests parsed_job_options = [] for opt in options.job_options: opt_split = opt.split('=', maxsplit=1) optstr = opt_split[0] valstr = opt_split[1] if len(opt_split) > 1 else '' if opt.startswith('-') or opt.startswith('#'): parsed_job_options.append(opt) elif len(optstr) == 1: parsed_job_options.append(f'-{optstr} {valstr}') else: parsed_job_options.append(f'--{optstr} {valstr}') # Locate and load checks; `force=True` is not needed for normal # invocations from the command line and has practically no effect, but # it is needed to better emulate the behavior of running reframe's CLI # from within the unit tests, which call repeatedly `main()`. checks_found = loader.load_all(force=True) printer.verbose(f'Loaded {len(checks_found)} test(s)') # Generate all possible test cases first; we will need them for # resolving dependencies after filtering testcases_all = generate_testcases(checks_found) testcases = testcases_all printer.verbose(f'Generated {len(testcases)} test case(s)') # Filter test cases by name if options.exclude_names: for name in options.exclude_names: testcases = filter(filters.have_not_name(name), testcases) if options.names: testcases = filter(filters.have_any_name(options.names), testcases) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by name: {len(testcases)} remaining' ) # Filter test cases by tags for tag in options.exclude_tags: testcases = filter(filters.have_not_tag(tag), testcases) for tag in options.tags: testcases = filter(filters.have_tag(tag), testcases) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by tags: {len(testcases)} remaining' ) # Filter test cases by maintainers for maint in options.maintainers: testcases = filter(filters.have_maintainer(maint), testcases) # Filter test cases further if options.gpu_only and options.cpu_only: printer.error("options `--gpu-only' and `--cpu-only' " "are mutually exclusive") sys.exit(1) if options.gpu_only: testcases = filter(filters.have_gpu_only(), testcases) elif options.cpu_only: testcases = filter(filters.have_cpu_only(), testcases) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by other attributes: ' f'{len(testcases)} remaining' ) # Filter in failed cases if options.failed: if options.restore_session is None: printer.error( "the option '--failed' can only be used " "in combination with the '--restore-session' option" ) sys.exit(1) def _case_failed(t): rec = report.case(*t) if not rec: return False return (rec['result'] == 'failure' or rec['result'] == 'aborted') testcases = list(filter(_case_failed, testcases)) printer.verbose( f'Filtering successful test case(s): ' f'{len(testcases)} remaining' ) if options.distribute: node_map = getallnodes(options.distribute, parsed_job_options) # Remove the job options that begin with '--nodelist' and '-w', so # that they do not override those set from the distribute feature. # # NOTE: This is Slurm-specific. When support of distributing tests # is added to other scheduler backends, this needs to be updated, # too. parsed_job_options = [ x for x in parsed_job_options if (not x.startswith('-w') and not x.startswith('--nodelist')) ] testcases = distribute_tests(testcases, node_map) testcases_all = testcases # Prepare for running printer.debug('Building and validating the full test DAG') testgraph, skipped_cases = dependencies.build_deps(testcases_all) if skipped_cases: # Some cases were skipped, so adjust testcases testcases = list(set(testcases) - set(skipped_cases)) printer.verbose( f'Filtering test case(s) due to unresolved dependencies: ' f'{len(testcases)} remaining' ) dependencies.validate_deps(testgraph) printer.debug('Full test DAG:') printer.debug(dependencies.format_deps(testgraph)) restored_cases = [] if len(testcases) != len(testcases_all): testgraph = dependencies.prune_deps( testgraph, testcases, max_depth=1 if options.restore_session is not None else None ) printer.debug('Pruned test DAG') printer.debug(dependencies.format_deps(testgraph)) if options.restore_session is not None: testgraph, restored_cases = report.restore_dangling(testgraph) testcases = dependencies.toposort( testgraph, is_subgraph=options.restore_session is not None ) printer.verbose(f'Final number of test cases: {len(testcases)}') # Disable hooks for tc in testcases: for h in options.hooks: tc.check.disable_hook(h) # Act on checks if options.describe: # Restore logging level printer.setLevel(logging.INFO) describe_checks(testcases, printer) sys.exit(0) if options.list or options.list_detailed: concretized = (options.list == 'C' or options.list_detailed == 'C') detailed = options.list_detailed is not None list_checks(testcases, printer, detailed, concretized) sys.exit(0) if options.list_tags: list_tags(testcases, printer) sys.exit(0) if options.ci_generate: list_checks(testcases, printer) printer.info('[Generate CI]') with open(options.ci_generate, 'wt') as fp: ci.emit_pipeline(fp, testcases) printer.info( f' Gitlab pipeline generated successfully ' f'in {options.ci_generate!r}.\n' ) sys.exit(0) if not options.run: printer.error("No action option specified. Available options:\n" " - `-l'/`-L' for listing\n" " - `-r' for running\n" " - `--list-tags' for listing unique test tags\n" " - `--ci-generate' for generating a CI pipeline\n" f"Try `{argparser.prog} -h' for more options.") sys.exit(1) # Manipulate ReFrame's environment if site_config.get('general/0/purge_environment'): rt.modules_system.unload_all() else: for m in site_config.get('general/0/unload_modules'): rt.modules_system.unload_module(**m) # Load the environment for the current system try: printer.debug(f'Loading environment for current system') runtime.loadenv(rt.system.preload_environ) except errors.EnvironError as e: printer.error("failed to load current system's environment; " "please check your configuration") printer.debug(str(e)) raise def module_use(*paths): try: rt.modules_system.searchpath_add(*paths) except errors.EnvironError as e: printer.warning(f'could not add module paths correctly') printer.debug(str(e)) def module_unuse(*paths): try: rt.modules_system.searchpath_remove(*paths) except errors.EnvironError as e: printer.warning(f'could not remove module paths correctly') printer.debug(str(e)) printer.debug('(Un)using module paths from command line') module_paths = {} for d in options.module_paths: if d.startswith('-'): module_paths.setdefault('-', []) module_paths['-'].append(d[1:]) elif d.startswith('+'): module_paths.setdefault('+', []) module_paths['+'].append(d[1:]) else: module_paths.setdefault('x', []) module_paths['x'].append(d) for op, paths in module_paths.items(): if op == '+': module_use(*paths) elif op == '-': module_unuse(*paths) else: # First empty the current module path in a portable way searchpath = [p for p in rt.modules_system.searchpath if p] if searchpath: rt.modules_system.searchpath_remove(*searchpath) # Treat `A:B` syntax as well in this case paths = itertools.chain(*(p.split(':') for p in paths)) module_use(*paths) printer.debug('Loading user modules from command line') for m in site_config.get('general/0/user_modules'): try: rt.modules_system.load_module(**m, force=True) except errors.EnvironError as e: printer.warning( f'could not load module {m["name"]!r} correctly; ' f'skipping...' ) printer.debug(str(e)) options.flex_alloc_nodes = options.flex_alloc_nodes or 'idle' # Run the tests # Setup the execution policy if options.exec_policy == 'serial': exec_policy = SerialExecutionPolicy() elif options.exec_policy == 'async': exec_policy = AsynchronousExecutionPolicy() else: # This should not happen, since choices are handled by # argparser printer.error("unknown execution policy `%s': Exiting...") sys.exit(1) exec_policy.force_local = options.force_local exec_policy.strict_check = options.strict exec_policy.skip_sanity_check = options.skip_sanity_check exec_policy.skip_performance_check = options.skip_performance_check exec_policy.keep_stage_files = site_config.get( 'general/0/keep_stage_files' ) try: errmsg = "invalid option for --flex-alloc-nodes: '{0}'" sched_flex_alloc_nodes = int(options.flex_alloc_nodes) if sched_flex_alloc_nodes <= 0: raise errors.ConfigError( errmsg.format(options.flex_alloc_nodes) ) except ValueError: sched_flex_alloc_nodes = options.flex_alloc_nodes exec_policy.sched_flex_alloc_nodes = sched_flex_alloc_nodes exec_policy.sched_options = parsed_job_options if options.maxfail < 0: raise errors.ConfigError( f'--maxfail should be a non-negative integer: ' f'{options.maxfail!r}' ) runner = Runner(exec_policy, printer, options.max_retries, options.maxfail) try: time_start = time.time() session_info['time_start'] = time.strftime( '%FT%T%z', time.localtime(time_start), ) runner.runall(testcases, restored_cases) finally: time_end = time.time() session_info['time_end'] = time.strftime( '%FT%T%z', time.localtime(time_end) ) session_info['time_elapsed'] = time_end - time_start # Print a retry report if we did any retries if runner.stats.failed(run=0): printer.info(runner.stats.retry_report()) # Print a failure report if we had failures in the last run success = True if runner.stats.failed(): success = False runner.stats.print_failure_report( printer, not options.distribute ) if options.failure_stats: runner.stats.print_failure_stats(printer) if options.performance_report: printer.info(runner.stats.performance_report()) # Generate the report for this session report_file = os.path.normpath( osext.expandvars(rt.get_option('general/0/report_file')) ) basedir = os.path.dirname(report_file) if basedir: os.makedirs(basedir, exist_ok=True) # Build final JSON report run_stats = runner.stats.json() session_info.update({ 'num_cases': run_stats[0]['num_cases'], 'num_failures': run_stats[-1]['num_failures'] }) json_report = { 'session_info': session_info, 'runs': run_stats, 'restored_cases': [] } if options.restore_session is not None: for c in restored_cases: json_report['restored_cases'].append(report.case(*c)) report_file = runreport.next_report_filename(report_file) try: with open(report_file, 'w') as fp: jsonext.dump(json_report, fp, indent=2) fp.write('\n') printer.info(f'Run report saved in {report_file!r}') except OSError as e: printer.warning( f'failed to generate report in {report_file!r}: {e}' ) # Generate the junit xml report for this session junit_report_file = rt.get_option('general/0/report_junit') if junit_report_file: # Expand variables in filename junit_report_file = osext.expandvars(junit_report_file) junit_xml = runreport.junit_xml_report(json_report) try: with open(junit_report_file, 'w') as fp: runreport.junit_dump(junit_xml, fp) except OSError as e: printer.warning( f'failed to generate report in {junit_report_file!r}: ' f'{e}' ) if not success: sys.exit(1) sys.exit(0) except (Exception, KeyboardInterrupt, errors.ReframeFatalError): exc_info = sys.exc_info() tb = ''.join(traceback.format_exception(*exc_info)) printer.error(f'run session stopped: {errors.what(*exc_info)}') if errors.is_exit_request(*exc_info): # Print stack traces for exit requests only when TOO verbose printer.debug2(tb) elif errors.is_severe(*exc_info): printer.error(tb) else: printer.verbose(tb) sys.exit(1) finally: try: log_files = logging.log_files() if site_config.get('general/0/save_log_files'): log_files = logging.save_log_files(rt.output_prefix) except OSError as e: printer.error(f'could not save log file: {e}') sys.exit(1) finally: if not restrict_logging(): printer.info(logfiles_message())
the-stack_0_24922
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Functions for putting examples into torch format.""" from collections import Counter import torch def vectorize(ex, model, single_answer=False): """Torchify a single example.""" args = model.args word_dict = model.word_dict feature_dict = model.feature_dict # Index words document = torch.LongTensor([word_dict[w] for w in ex['document']]) question = torch.LongTensor([word_dict[w] for w in ex['question']]) # Create extra features vector if len(feature_dict) > 0: features = torch.zeros(len(ex['document']), len(feature_dict)) else: features = None # f_{exact_match} if args.use_in_question: q_words_cased = {w for w in ex['question']} q_words_uncased = {w.lower() for w in ex['question']} q_lemma = {w for w in ex['qlemma']} if args.use_lemma else None for i in range(len(ex['document'])): if ex['document'][i] in q_words_cased: features[i][feature_dict['in_question']] = 1.0 if ex['document'][i].lower() in q_words_uncased: features[i][feature_dict['in_question_uncased']] = 1.0 if q_lemma and ex['lemma'][i] in q_lemma: features[i][feature_dict['in_question_lemma']] = 1.0 # f_{token} (POS) if args.use_pos: for i, w in enumerate(ex['pos']): f = 'pos=%s' % w if f in feature_dict: features[i][feature_dict[f]] = 1.0 # f_{token} (NER) if args.use_ner: for i, w in enumerate(ex['ner']): f = 'ner=%s' % w if f in feature_dict: features[i][feature_dict[f]] = 1.0 # f_{token} (TF) if args.use_tf: counter = Counter([w.lower() for w in ex['document']]) l = len(ex['document']) for i, w in enumerate(ex['document']): features[i][feature_dict['tf']] = counter[w.lower()] * 1.0 / l # Maybe return without target if 'answers' not in ex: return document, features, question, ex['id'] # ...or with target(s) (might still be empty if answers is empty) if single_answer: assert(len(ex['answers']) > 0) start = torch.LongTensor(1).fill_(ex['answers'][0][0]) end = torch.LongTensor(1).fill_(ex['answers'][0][1]) else: start = [a[0] for a in ex['answers']] end = [a[1] for a in ex['answers']] return document, features, question, start, end, ex['id'] def batchify(batch): """Gather a batch of individual examples into one batch.""" NUM_INPUTS = 3 NUM_TARGETS = 2 NUM_EXTRA = 1 ids = [ex[-1] for ex in batch] docs = [ex[0] for ex in batch] features = [ex[1] for ex in batch] questions = [ex[2] for ex in batch] # Batch documents and features max_length = max([d.size(0) for d in docs]) x1 = torch.LongTensor(len(docs), max_length).zero_() x1_mask = torch.ByteTensor(len(docs), max_length).fill_(1) if features[0] is None: x1_f = None else: x1_f = torch.zeros(len(docs), max_length, features[0].size(1)) for i, d in enumerate(docs): x1[i, :d.size(0)].copy_(d) x1_mask[i, :d.size(0)].fill_(0) if x1_f is not None: x1_f[i, :d.size(0)].copy_(features[i]) # Batch questions max_length = max([q.size(0) for q in questions]) x2 = torch.LongTensor(len(questions), max_length).zero_() x2_mask = torch.ByteTensor(len(questions), max_length).fill_(1) for i, q in enumerate(questions): x2[i, :q.size(0)].copy_(q) x2_mask[i, :q.size(0)].fill_(0) # Maybe return without targets if len(batch[0]) == NUM_INPUTS + NUM_EXTRA: return x1, x1_f, x1_mask, x2, x2_mask, ids elif len(batch[0]) == NUM_INPUTS + NUM_EXTRA + NUM_TARGETS: # ...Otherwise add targets if torch.is_tensor(batch[0][3]): y_s = torch.cat([ex[3] for ex in batch]) y_e = torch.cat([ex[4] for ex in batch]) else: y_s = [ex[3] for ex in batch] y_e = [ex[4] for ex in batch] else: raise RuntimeError('Incorrect number of inputs per example.') return x1, x1_f, x1_mask, x2, x2_mask, y_s, y_e, ids
the-stack_0_24927
import json import numpy as np import time import scipy.sparse as sp from scipy.sparse import csr_matrix def construct_feed_dict(placeholders, node_features, support, labels, r_indices, c_indices, dropout, is_train=True): """ Create feed dictionary. """ if not type(support[0]) == tuple: support = [sparse_to_tuple(sup) for sup in support] feed_dict = dict() feed_dict.update({placeholders['node_features']: node_features}) feed_dict.update({placeholders['support'][i]: support[i] for i in range(len(support))}) feed_dict.update({placeholders['labels']: labels}) feed_dict.update({placeholders['row_indices']: r_indices}) feed_dict.update({placeholders['col_indices']: c_indices}) feed_dict.update({placeholders['dropout']: dropout}) feed_dict.update({placeholders['is_train']: is_train}) return feed_dict def support_dropout(sup, do, edge_drop=False): before = time.time() sup = sp.tril(sup) assert do > 0.0 and do < 1.0 n_nodes = sup.shape[0] # nodes that I want to isolate isolate = np.random.choice(range(n_nodes), int(n_nodes*do), replace=False) nnz_rows, nnz_cols = sup.nonzero() # mask the nodes that have been selected mask = np.in1d(nnz_rows, isolate) mask += np.in1d(nnz_cols, isolate) assert mask.shape[0] == sup.data.shape[0] sup.data[mask] = 0 sup.eliminate_zeros() if edge_drop: prob = np.random.uniform(0, 1, size=sup.data.shape) remove = prob < do sup.data[remove] = 0 sup.eliminate_zeros() sup = sup + sup.transpose() return sup def write_log(data, logfile): with open(logfile, 'w') as outfile: json.dump(data, outfile) def get_degree_supports(adj, k, adj_self_con=False, verbose=True): if verbose: print('Computing adj matrices up to {}th degree'.format(k)) supports = [sp.identity(adj.shape[0])] if k == 0: # return Identity matrix (no message passing) return supports assert k > 0 supports = [sp.identity(adj.shape[0]), adj.astype(np.float64) + adj_self_con*sp.identity(adj.shape[0])] prev_power = adj for i in range(k-1): pow = prev_power.dot(adj) new_adj = ((pow) == 1).astype(np.float64) new_adj.setdiag(0) new_adj.eliminate_zeros() supports.append(new_adj) prev_power = pow return supports def normalize_nonsym_adj(adj): degree = np.asarray(adj.sum(1)).flatten() # set zeros to inf to avoid dividing by zero degree[degree == 0.] = np.inf degree_inv_sqrt = 1. / np.sqrt(degree) degree_inv_sqrt_mat = sp.diags([degree_inv_sqrt], [0]) degree_inv = degree_inv_sqrt_mat.dot(degree_inv_sqrt_mat) adj_norm = degree_inv.dot(adj) return adj_norm def sparse_to_tuple(sparse_mx): """ change of format for sparse matrix. This format is used for the feed_dict where sparse matrices need to be linked to placeholders representing sparse matrices. """ if not sp.isspmatrix_coo(sparse_mx): sparse_mx = sparse_mx.tocoo() coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose() values = sparse_mx.data shape = sparse_mx.shape return coords, values, shape class Graph(object): """docstring for Graph.""" def __init__(self, adj): super(Graph, self).__init__() self.adj = adj self.n_nodes = adj.shape[0] self.level = 0 def run_K_BFS(self, n, K): """ Returns a list of K edges, sampled using BFS starting from n """ visited = set() edges = [] self.BFS(n, visited, K, edges) assert len(edges) <= K return edges def BFS(self, n, visited, K, edges): queue = [n] while len(queue) > 0: node = queue.pop(0) if node not in visited: visited.add(node) neighs = list(self.adj[node].nonzero()[1]) for neigh in neighs: if neigh not in visited: edges.append((node, neigh)) queue.append(neigh) if len(edges) == K: return
the-stack_0_24928
import codecs, os.path from setuptools import setup, find_packages # use README.md as readme def readme(): with open('README.md') as f: return f.read() # get __version__ from a file def read(rel_path): here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, rel_path), 'r') as fp: return fp.read() def get_version(rel_path): for line in read(rel_path).splitlines(): if line.startswith('__version__'): delim = '"' if '"' in line else "'" return line.split(delim)[1] else: raise RuntimeError("Unable to find version string.") setup( name='systemd-resolved-docker', url='https://github.com/flaktack/systemd-resolved-docker', license='MIT', author='Zsombor Welker', author_email='[email protected]', install_requires=["docker", "dnslib", "systemd-python", "dbus-python", "pyroute2"], description='systemd-resolved and docker DNS integration', long_description=readme(), long_description_content_type="text/markdown", package_dir={ '': 'src', }, packages=find_packages('src'), entry_points={ 'console_scripts': [ 'systemd-resolved-docker=systemd_resolved_docker.cli:main', ], }, excluded=['rpms/*'], # extract version from source version=get_version("src/systemd_resolved_docker/__init__.py"), )
the-stack_0_24929
import xml.etree.ElementTree as ET import argparse import json def parse_options(): parser = argparse.ArgumentParser() parser.add_option( "-f", "--file", help="xml annotation file", ) parser.add_option( "-o", "--output_file", help="converted via json file", ) return parser.parse_args() class Annotation: """ class to convert cvat xml annotations to via json annotations args: xml cvat file, with annotations made with "polyline" and "polygon" return: save a json file in via format """ def __init__(self, image_id, name, width, height, regions): self.image_id = image_id self.name = name self.width = width self.height = height self.regions = regions self.size = width*height @classmethod def from_xml(cls, image): image_id = image.get('id') name = image.get('name') width = int(image.get('width')) height = int(image.get('height')) regions = cls.get_regions(image) return cls(image_id, name, width, height, regions) def get_regions(image): """ Parse cvat polylines and polygons to via regions """ regions = [] for region in image.findall('polyline')+image.findall('polygon'): clase = region.get('label') points = region.get('points') regions.append(Annotation.via_region(clase, points)) return regions def via_region(clase, points): """ Returns a dict with the region in via format """ all_points_x, all_points_y = Annotation.points_format(points) return { "region_attributes": { "class": clase }, "shape_attributes": { "all_points_x": all_points_x, "all_points_y": all_points_y, "name": "polygon" }, } def points_format(points): """ Change cvat format [x1,y1,x2,y2...] to [x1,x2,x3...][y1,y2,y3...] """ all_points_x = [] all_points_y = [] for point in points.split(";"): x, y = point.split(",") all_points_x.append(round(float(x))) all_points_y.append(round(float(y))) return all_points_x, all_points_y def get_dict(self): """ Returns a dict with the complete image in via format """ return { "filename": self.name, "dimension": [self.width, self.height], "size": self.size, "file_attributes:": {}, "regions": self.regions } def main(): args = parse_options() root = ET.parse(args.file).getroot() dataset = {} for image in root.findall('image'): annotation = Annotation.from_xml(image) dataset[annotation.name] = annotation.get_dict() with open(args.output_file, 'w') as out_file: json.dump(dataset, out_file) if __name__ == "__main__": main()
the-stack_0_24930
from __future__ import absolute_import from __future__ import print_function from keras.optimizers import SGD, RMSprop, Adam, Adamax , Nadam class OptimizerFactory(object): @staticmethod def create_optimizer(opt_type, lr, momentum=0, lr_decay=0., rho=0.9, epsilon=None, beta_1=0.9, beta_2=0.999, clipnorm=10, clipvalue=100, amsgrad=False): if opt_type == 'sgd': return SGD(lr=lr, momentum=momentum, decay=lr_decay, nesterov=False, clipnorm=clipnorm, clipvalue=clipvalue) if opt_type == 'nsgd': return SGD(lr=lr, momentum=momentum, decay=lr_decay, nesterov=True, clipnorm=clipnorm, clipvalue=clipvalue) if opt_type == 'rmsprop': return RMSprop(lr=lr, rho=rho, epsilon=epsilon, decay=lr_decay, clipnorm=clipnorm, clipvalue=clipvalue) if opt_type == 'adam': return Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, decay=lr_decay, amsgrad=amsgrad, clipnorm=clipnorm, clipvalue=clipvalue) if opt_type == 'nadam': return Nadam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, schedule_decay=lr_decay, clipnorm=clipnorm, clipvalue=clipvalue) if opt_type == 'adamax': return Adamax(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, decay=lr_decay, clipnorm=clipnorm, clipvalue=clipvalue) @staticmethod def filter_args(prefix=None, **kwargs): if prefix is None: p = '' else: p = prefix + '_' valid_args = ('opt_type', 'lr', 'momentum', 'lr_decay', 'rho', 'epsilon', 'beta_1', 'beta_2', 'clipnorm', 'clipvalue') return dict((k, kwargs[p+k]) for k in valid_args if p+k in kwargs) @staticmethod def add_argparse_args(parser, prefix=None): if prefix is None: p1 = '--' p2 = '' else: p1 = '--' + prefix + '-' p2 = prefix + '_' parser.add_argument(p1+'optimizer', dest=(p2+'opt_type'), type=str.lower, default='adam', choices=['sgd','nsgd','rmsprop','adam','nadam','adamax'], help=('Optimizers: SGD, ' 'NSGD (SGD with Nesterov momentum), ' 'RMSprop, Adam, Adamax, ' 'Nadam (Adam with Nesterov momentum), ' '(default: %(default)s)')) parser.add_argument(p1+'lr' , dest=(p2+'lr'), default=0.002, type=float, help=('Initial learning rate (default: %(default)s)')) parser.add_argument(p1+'momentum', dest=(p2+'momentum'), default=0.6, type=float, help=('Momentum (default: %(default)s)')) parser.add_argument(p1+'lr-decay', dest=(p2+'lr_decay'), default=1e-6, type=float, help=('Learning rate decay in SGD optimizer ' '(default: %(default)s)')) parser.add_argument(p1+'rho', dest=(p2+'rho'), default=0.9, type=float, help=('Rho in RMSprop optimizer (default: %(default)s)')) parser.add_argument(p1+'epsilon', dest=(p2+'epsilon'), default=1e-8, type=float, help=('Epsilon in RMSprop and Adam optimizers ' '(default: %(default)s)')) parser.add_argument(p1+'amsgrad', dest=(p2+'amsgrad'), default=False, action='store_true', help=('AMSGrad variant of Adam')) parser.add_argument(p1+'beta1', dest=(p2+'beta_1'), default=0.9, type=float, help=('Beta_1 in Adam optimizers (default: %(default)s)')) parser.add_argument(p1+'beta2', dest=(p2+'beta_2'), default=0.999, type=float, help=('Beta_2 in Adam optimizers (default: %(default)s)')) # parser.add_argument(p1+'schedule-decay', dest=(p2+'schedule_decay'), # default=0.004, type=float, # help=('Schedule decay in Nadam optimizer ' # '(default: %(default)s)')) parser.add_argument(p1+'clipnorm', dest=(p2+'clipnorm'), default=10,type=float, help=('Clips the norm of the gradient ' '(default: %(default)s)')) parser.add_argument(p1+'clipvalue', dest=(p2+'clipvalue'), default=100,type=float, help=('Clips the absolute value of the gradient ' '(default: %(default)s)'))
the-stack_0_24932
import os from pathlib import Path from jina import Flow from jina.parsers.helloworld import set_hw_parser if __name__ == '__main__': from helper import ( print_result, write_html, download_data, index_generator, query_generator, ) from my_executors import MyEncoder, MyIndexer, MyEvaluator else: from .helper import ( print_result, write_html, download_data, index_generator, query_generator, ) from .my_executors import MyEncoder, MyIndexer, MyEvaluator cur_dir = os.path.dirname(os.path.abspath(__file__)) def hello_world(args): """ Runs Jina's Hello World. Usage: Use it via CLI :command:`jina hello-world`. Description: It downloads Fashion-MNIST dataset and :term:`Indexer<indexes>` 50,000 images. The index is stored into 4 *shards*. It randomly samples 128 unseen images as :term:`Queries<Searching>` Results are shown in a webpage. More options can be found in :command:`jina hello-world --help` :param args: Argparse object """ Path(args.workdir).mkdir(parents=True, exist_ok=True) targets = { 'index-labels': { 'url': args.index_labels_url, 'filename': os.path.join(args.workdir, 'index-labels'), }, 'query-labels': { 'url': args.query_labels_url, 'filename': os.path.join(args.workdir, 'query-labels'), }, 'index': { 'url': args.index_data_url, 'filename': os.path.join(args.workdir, 'index-original'), }, 'query': { 'url': args.query_data_url, 'filename': os.path.join(args.workdir, 'query-original'), }, } # download the data download_data(targets, args.download_proxy) # reduce the network load by using `fp16`, or even `uint8` os.environ['JINA_ARRAY_QUANT'] = 'fp16' # now comes the real work # load index flow from a YAML file f = ( Flow() .add(uses=MyEncoder, parallel=2) .add(uses=MyIndexer, workspace=args.workdir) .add(uses=MyEvaluator) ) # run it! with f: f.index( index_generator(num_docs=targets['index']['data'].shape[0], target=targets), request_size=args.request_size, ) f.post( '/eval', query_generator( num_docs=args.num_query, target=targets, with_groundtruth=True ), shuffle=True, on_done=print_result, request_size=args.request_size, parameters={'top_k': args.top_k}, ) # write result to html write_html(os.path.join(args.workdir, 'demo.html')) if __name__ == '__main__': args = set_hw_parser().parse_args() hello_world(args)
the-stack_0_24934
from django.conf import settings from django.core.exceptions import ObjectDoesNotExist, ValidationError from django.utils.encoding import smart_text from django.utils.translation import get_language, ugettext_lazy as _ from rest_framework import fields, serializers from olympia.amo.utils import to_language from olympia.api.utils import is_gate_active from olympia.translations.models import Translation class ReverseChoiceField(fields.ChoiceField): """ A ChoiceField that exposes the "human-readable" values of its choices, while storing the "actual" corresponding value as normal. This is useful when you want to expose string constants to clients while storing integers in the database. Note that the values in the `choices_dict` must be unique, since they are used for both serialization and de-serialization. """ def __init__(self, *args, **kwargs): self.reversed_choices = {v: k for k, v in kwargs['choices']} super(ReverseChoiceField, self).__init__(*args, **kwargs) def to_representation(self, value): """ Convert to representation by getting the "human-readable" value from the "actual" one. """ value = self.choices.get(value, None) return super(ReverseChoiceField, self).to_representation(value) def to_internal_value(self, value): """ Convert to internal value by getting the "actual" value from the "human-readable" one that is passed. """ try: value = self.reversed_choices[value] except KeyError: self.fail('invalid_choice', input=value) return super(ReverseChoiceField, self).to_internal_value(value) class TranslationSerializerField(fields.Field): """ Django-rest-framework custom serializer field for our TranslatedFields. In normal operation: - When deserializing, in `to_internal_value`, it accepts a dictionary only. - When serializing, a dict with all translations for the given `field_name` on `obj`, with languages as the keys. However, if the parent's serializer context contains a request that has a method 'GET', and a 'lang' parameter was passed, then only a returns one translation in that dict. If the request lang is available that is returned, otherwise the default locale is returned. If the gate 'l10n_flat_input_output' is active then: - When deserializing, in `to_internal_value`, it accepts both a string or a dictionary. If a string is given, it'll be considered to be in the default language. - When serializing, its behavior depends on the parent's serializer context: If a request was included, and its method is 'GET', and a 'lang' parameter was passed, then only returns one translation (letting the TranslatedField figure out automatically which language to use). Else, just returns a dict with all translations for the given `field_name` on `obj`, with languages as the keys. """ default_error_messages = { 'min_length': _(u'The field must have a length of at least {num} ' u'characters.'), 'unknown_locale': _(u'The language code {lang_code} is invalid.'), 'no_dict': _(u'You must provide an object of {lang-code:value}.') } def __init__(self, *args, **kwargs): self.min_length = kwargs.pop('min_length', None) super().__init__(*args, **kwargs) @property def flat(self): request = self.context.get('request', None) return is_gate_active(request, 'l10n_flat_input_output') def fetch_all_translations(self, obj, source, field): # this property is set by amo.utils.attach_trans_dict if trans_dict := getattr(obj, 'translations', None): translations = trans_dict.get(field.id, []) return {to_language(locale): value for (locale, value) in translations} else: translations = field.__class__.objects.filter( id=field.id, localized_string__isnull=False) return {to_language(trans.locale): str(trans) for trans in translations} def fetch_single_translation(self, obj, source, field, requested_language): return {to_language(field.locale): str(field)} if field else None def get_attribute(self, obj): source = self.source or self.field_name try: field = fields.get_attribute(obj, source.split('.')) except AttributeError: field = None if not field: return None requested_language = None request = self.context.get('request', None) if request and request.method == 'GET' and 'lang' in request.GET: requested_language = request.GET['lang'] if requested_language: single = self.fetch_single_translation(obj, source, field, requested_language) return list(single.values())[0] if single and self.flat else single else: return self.fetch_all_translations(obj, source, field) def to_representation(self, val): return val def to_internal_value(self, data): if isinstance(data, str): self.validate(data) return data.strip() elif isinstance(data, dict): self.validate(data) for key, value in data.items(): data[key] = value and value.strip() return data return str(data) def validate(self, value): if not self.flat and not isinstance(value, dict): raise ValidationError( self.error_messages['no_dict'] ) value_too_short = True if isinstance(value, str): if self.min_length and len(value.strip()) >= self.min_length: value_too_short = False else: for locale, string in value.items(): if locale.lower() not in settings.LANGUAGES: raise ValidationError( self.error_messages['unknown_locale'].format( lang_code=repr(locale))) if self.min_length and string and ( len(string.strip()) >= self.min_length): value_too_short = False break if self.min_length and value_too_short: raise ValidationError( self.error_messages['min_length'].format(num=self.min_length)) class ESTranslationSerializerField(TranslationSerializerField): """ Like TranslationSerializerField, but fetching the data from a dictionary built from ES data that we previously attached on the object. """ suffix = '_translations' _source = None def get_source(self): if self._source is None: return None return self._source + self.suffix def set_source(self, val): self._source = val source = property(get_source, set_source) def attach_translations(self, obj, data, source_name, target_name=None): """ Look for the translation of `source_name` in `data` and create a dict with all translations for this field (which will look like {'en-US': 'mytranslation'}) and attach it to a property on `obj`. The property name is built with `target_name` and `cls.suffix`. If `target_name` is None, `source_name` is used instead. The suffix is necessary for two reasons: 1) The translations app won't let us set the dict on the real field without making db queries 2) This also exactly matches how we store translations in ES, so we can directly fetch the translations in the data passed to this method. """ if target_name is None: target_name = source_name target_key = '%s%s' % (target_name, self.suffix) source_key = '%s%s' % (source_name, self.suffix) target_translations = {v.get('lang', ''): v.get('string', '') for v in data.get(source_key, {}) or {}} setattr(obj, target_key, target_translations) # Serializer might need the single translation in the current language, # so fetch it and attach it directly under `target_name`. We need a # fake Translation() instance to prevent SQL queries from being # automatically made by the translations app. translation = self.fetch_single_translation( obj, target_name, target_translations, get_language()) if translation: locale, value = list(translation.items())[0] translation = Translation(localized_string=value, locale=locale) setattr(obj, target_name, translation) def fetch_all_translations(self, obj, source, field): return field or None def fetch_single_translation(self, obj, source, field, requested_language): translations = self.fetch_all_translations(obj, source, field) or {} locale = None value = None if requested_language in translations: locale = requested_language value = translations.get(requested_language) else: default_locale = getattr( obj, 'default_locale', settings.LANGUAGE_CODE) if default_locale in translations: locale = default_locale value = translations.get(default_locale) return {locale: value} if locale and value else None class SplitField(fields.Field): """ A field composed of two separate fields: one used for input, and another used for output. Most commonly used to accept a primary key for input and use a full serializer for output. Example usage: addon = SplitField(serializers.PrimaryKeyRelatedField(), AddonSerializer()) """ label = None def __init__(self, _input, output, **kwargs): self.input = _input self.output = output kwargs['required'] = _input.required fields.Field.__init__(self, source=_input.source, **kwargs) def bind(self, field_name, parent): fields.Field.bind(self, field_name, parent) self.input.bind(field_name, parent) self.output.bind(field_name, parent) def get_read_only(self): return self._read_only def set_read_only(self, val): self._read_only = val self.input.read_only = val self.output.read_only = val read_only = property(get_read_only, set_read_only) def get_value(self, data): return self.input.get_value(data) def to_internal_value(self, value): return self.input.to_internal_value(value) def get_attribute(self, obj): return self.output.get_attribute(obj) def to_representation(self, value): return self.output.to_representation(value) class SlugOrPrimaryKeyRelatedField(serializers.RelatedField): """ Combines SlugRelatedField and PrimaryKeyRelatedField. Takes a `render_as` argument (either "pk" or "slug") to indicate how to serialize. """ read_only = False def __init__(self, *args, **kwargs): self.render_as = kwargs.pop('render_as', 'pk') if self.render_as not in ['pk', 'slug']: raise ValueError("'render_as' must be one of 'pk' or 'slug', " "not %r" % (self.render_as,)) self.slug_field = kwargs.pop('slug_field', 'slug') super(SlugOrPrimaryKeyRelatedField, self).__init__( *args, **kwargs) def to_representation(self, obj): if self.render_as == 'slug': return getattr(obj, self.slug_field) else: return obj.pk def to_internal_value(self, data): try: return self.queryset.get(pk=data) except Exception: try: return self.queryset.get(**{self.slug_field: data}) except ObjectDoesNotExist: msg = (_('Invalid pk or slug "%s" - object does not exist.') % smart_text(data)) raise ValidationError(msg)
the-stack_0_24935
# uncompyle6 version 3.2.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: lib.coginvasion.toon.ChatBalloon from panda3d.core import VBase4, NodePath, DepthWriteAttrib, AntialiasAttrib class ChatBalloon(NodePath): TEXT_X_OFFSET = -0.05 TEXT_Y_OFFSET = -0.05 TEXT_Z_OFFSET = -(4.0 / 33.0) TEXT_MIN_WIDTH = 1.2 TEXT_MIN_HEIGHT = 1.0 TEXT_GLYPH_SCALE = 1.0 TEXT_GLYPH_SHIFT = 0.1 BALLOON_X_PADDING = 0.55 BALLOON_Z_PADDING = 0.8 BUTTON_SCALE = 6 BUTTON_SHIFT = (0, 0, 0.6) def __init__(self, model, modelWidth, modelHeight, textNode, foreground=VBase4(0, 0, 0, 1), background=VBase4(1, 1, 1, 1), reversed=False, button=None): NodePath.__init__(self, 'chatBalloon') self.model = model self.modelWidth = modelWidth self.modelHeight = modelHeight self.textNode = textNode self.foreground = foreground self.background = background self.button = button self.textNode.setTextColor(self.foreground) self.balloon = self.model.copyTo(self) self.balloon.setColor(self.background) self.balloon.setTransparency(self.background[3] < 1) self.textNodePath = self.attachNewNode(self.textNode) self.textNodePath.setTransparency(self.foreground[3] < 1) self.textNodePath.setAttrib(DepthWriteAttrib.make(0)) middle = self.balloon.find('**/middle') top = self.balloon.find('**/top') self.textWidth = self.textNode.getWidth() if self.textWidth < self.TEXT_MIN_WIDTH: self.textWidth = self.TEXT_MIN_WIDTH paddedWidth = self.textWidth + self.BALLOON_X_PADDING * 2 self.balloon.setSx(paddedWidth / modelWidth) self.textHeight = textNode.getHeight() if self.textHeight < self.TEXT_MIN_HEIGHT: self.textHeight = self.TEXT_MIN_HEIGHT paddedHeight = self.textHeight + self.BALLOON_Z_PADDING * 2 middle.setSz(paddedHeight - 1.5) top.setZ(middle, 1) if reversed: self.balloon.setSx(-self.balloon.getSx()) self.balloon.setTwoSided(True) self.width = paddedWidth self.height = paddedHeight self.center = self.balloon.getBounds().getCenter() self.textNodePath.setPos(self.center) self.textNodePath.setY(self.TEXT_Y_OFFSET) self.textNodePath.setX(self.textNodePath, -(self.textWidth / 2)) if self.textWidth == self.TEXT_MIN_WIDTH: centerX = (self.TEXT_MIN_WIDTH - self.textNode.getWidth()) / 2.0 self.textNodePath.setX(self.textNodePath, centerX) self.textNodePath.setZ(top, -self.BALLOON_Z_PADDING + self.TEXT_Z_OFFSET) if self.textHeight == self.TEXT_MIN_HEIGHT: centerZ = (ChatBalloon.TEXT_MIN_HEIGHT - self.textNode.getHeight()) / 2.0 self.textNodePath.setZ(self.textNodePath, -centerZ) self.textNodePath.setX(self.textNodePath, self.TEXT_X_OFFSET) if self.button is not None: self.buttonNodePath = button.copyTo(self) self.buttonNodePath.setPos(self.textNodePath, self.textWidth, 0, -self.textHeight) self.buttonNodePath.setPos(self.buttonNodePath, ChatBalloon.BUTTON_SHIFT) self.buttonNodePath.setScale(ChatBalloon.BUTTON_SCALE) else: self.buttonNodePath = None self.setAntialias(AntialiasAttrib.MMultisample) return def setForeground(self, foreground): self.foreground = foreground self.textNode.setTextColor(self.foreground) def getForeground(self): return self.foreground def setBackground(self, background): self.background = background self.balloon.setColor(self.background) def getBackground(self): return self.background def setButton(self, button): if self.buttonNodePath is not None: self.buttonNodePath.removeNode() self.buttonNodePath = None if button is not None: self.buttonNodePath = button.copyTo(self) self.buttonNodePath.setPos(self.textNodePath, self.textWidth, 0, -self.textHeight) self.buttonNodePath.setPos(self.buttonNodePath, ChatBalloon.BUTTON_SHIFT) self.buttonNodePath.setScale(ChatBalloon.BUTTON_SCALE) return
the-stack_0_24936
""" This file is part of the Semantic Quality Benchmark for Word Embeddings Tool in Python (SeaQuBe). Copyright (c) 2021 by Benjamin Manns :author: Benjamin Manns """ from os.path import join, basename, dirname import unittest from seaqube.nlp.seaqube_model import SeaQuBeCompressLoader, BaseModelWrapper from seaqube.nlp.tools import gensim_we_model_to_custom_we_model class BaseFTGensimModel(BaseModelWrapper): def get_config(self): return dict(sg=self.model.sg, cbow_mean=self.model.cbow_mean, size=self.model.vector_size, alpha=self.model.alpha, min_alpha=self.model.min_alpha, min_n=self.model.wv.min_n, max_n=self.model.wv.max_n, window=self.model.window, min_count=self.model.vocabulary.min_count, sample=self.model.vocabulary.sample, negative=self.model.negative, workers=self.model.workers, epochs=self.define_epochs(), class_name=str(self)) def _wrap_nlp_model(self, model): return gensim_we_model_to_custom_we_model(model) class TestExampleBasicAugmentation(unittest.TestCase): def test_example001(self): # Import all Augmentation methods from seaqube.augmentation.word import Active2PassiveAugmentation, EDAAugmentation, TranslationAugmentation, EmbeddingAugmentation from seaqube.augmentation.char import QwertyAugmentation from seaqube.augmentation.corpus import UnigramAugmentation from seaqube.tools.io import load_json # prepare corpus and sample data text = 'The quick brown fox jumps over the lazy dog .' corpus = load_json(join(dirname(__file__), "..", "examples", "sick_full_corpus.json")) #print(corpus) # set up all augmentations # a (experimental) active to passive voice transformer. Only one sentences / doc to another a2p = Active2PassiveAugmentation() # easy-data augmentation method implementation (random word swap, insertion, deletion and replacement with synonyms) eda = EDAAugmentation(max_length=2) # translate text to other language and back (with Google Translater) translate = TranslationAugmentation(max_length=2) # replace words by a similiar one using another word embedding embed = EmbeddingAugmentation(max_length=2) # insert typos on text based on a qwerty-keyboard qwerty = QwertyAugmentation(replace_rate=0.07, max_length=2) # based on the UDA algorithm, only the Unigram method, which replace low meaning full words with other low meaning full words # this method needs a corpus, because it need to detect low meaningfull words unigram = UnigramAugmentation(corpus=corpus, max_length=2) ## API - Usage # Every augmentation object have the same possibility # 1. augmenting a string - same syntax as NLPAUG (https://github.com/makcedward/nlpaug) print(qwerty.augment(text)) # or print(translate.augment(text)) # 2. augmenting a doc (token based text) print(unigram.doc_augment(doc=corpus[0])) # doc_augment can also handle text: print(embed.doc_augment(text=text)) # 3. augmenting a whole corpus print(eda(corpus[0:200])) # 4. Active2Passive is still experimental: a2p.doc_augment(doc=['someone', 'is', 'not', 'reading', 'the', 'email']) ## We want to apply a method on a corpus, train a model and measure the performance # tidy up RAM del unigram, embed, translate corpus_augmented = eda(corpus[0:200]) # augment a small subset # save on disk: #save_json(corpus_augmented, "augmented_sick.json") # To use NLP models which matching to or benchmark tool set, it must implement the 'BaseModelWrapper' interface. # We set up a class who implements the fasttext nlp model from the gensim package. # This is only needed to get the benchmark run from gensim.models import FastText class FTModelStd500V5(BaseFTGensimModel): def define_epochs(self): return 100 def define_model(self): return FastText(sg=1, cbow_mean=1, size=300, alpha=0.025, min_alpha=0.0001, min_n=1, max_n=5, window=5, min_count=1, sample=0.001, negative=5, workers=self.cpus - 1) def define_training(self): self.model.build_vocab(sentences=self.data, update=False) self.model.train(sentences=self.data, total_examples=len(self.data), epochs=self.epochs) model = FTModelStd500V5() # train the model # model.train_on_corpus(corpus_augmented) # get a dumped model to store it on disk - or use it in another process # model.get() # dill_dumper(model.get(), "example_model.dill") # or to save a compressed model: # SeaQuBeCompressLoader.save_model_compressed(model.get(), "example_model_compressed.dill") nlp = SeaQuBeCompressLoader.load_compressed_model(join(dirname(__file__), "..", "examples", "example_model_compressed.dill"), "example") del model from seaqube.benchmark.corpus4ir import WordCentroidSimilarityBenchmark from seaqube.benchmark.wordanalogy import WordAnalogyBenchmark from seaqube.benchmark.wordsimilarity import WordSimilarityBenchmark from seaqube.benchmark.wordoutliers import WordOutliersBenchmark wsb = WordSimilarityBenchmark(test_set='simlex999') print(wsb(nlp.model)) # score=0.008905456556563954 wab = WordAnalogyBenchmark('google-analogies') print(wab(nlp.model)) # score=0.0 wob = WordOutliersBenchmark('wikisem500') print(wob(nlp.model)) # score=0.0 c4ir = WordCentroidSimilarityBenchmark(corpus[0:200]) # need the original corpus for setting up IR print(c4ir(nlp.model)) def test_example_aug(self): # Import all Augmentation methods from seaqube.augmentation.word import Active2PassiveAugmentation, EDAAugmentation, TranslationAugmentation, \ EmbeddingAugmentation from seaqube.augmentation.char import QwertyAugmentation from seaqube.augmentation.corpus import UnigramAugmentation # import some tools from seaqube.tools.io import load_json from os.path import join # load example data import json, urllib.request data = urllib.request.urlopen( "https://raw.githubusercontent.com/bees4ever/SeaQuBe/master/examples/sick_full_corpus.json").read() corpus = json.loads(data) text = 'The quick brown fox jumps over the lazy dog .' # a (experimental) active to passive voice transformer. Only one sentences / doc to another a2p = Active2PassiveAugmentation() # easy-data augmentation method implementation (random word swap, insertion, deletion and replacement with synonyms) eda = EDAAugmentation(max_length=2) # translate text to other language and back (with Google Translater) translate = TranslationAugmentation(max_length=2) # replace words by a similiar one using another word embedding embed = EmbeddingAugmentation(max_length=2) # insert typos on text based on a qwerty-keyboard qwerty = QwertyAugmentation(replace_rate=0.07, max_length=2) # based on the UDA algorithm, only the Unigram method, which replace low meaning full words with other low meaning full words # this method needs a corpus, because it need to detect low meaningfull words unigram = UnigramAugmentation(corpus=corpus, max_length=2) # 1. augmenting a string - same syntax as NLPAUG (https://github.com/makcedward/nlpaug) print(qwerty.augment(text)) # or print(translate.augment(text)) # 2. augmenting a doc (token based text) print(unigram.doc_augment(doc=corpus[0])) # doc_augment can also handle text: print(embed.doc_augment(text=text)) # 3. augmenting a whole corpus print(eda(corpus[0:200])) # 4. Active2Passive is still experimental: a2p.doc_augment(doc=['someone', 'is', 'not', 'reading', 'the', 'email']) def test_example_chain(self): from seaqube.augmentation.char.qwerty import QwertyAugmentation from seaqube.augmentation.corpus.unigram import UnigramAugmentation from seaqube.augmentation.word.active2passive import Active2PassiveAugmentation from seaqube.augmentation.word.eda import EDAAugmentation from seaqube.augmentation.word.embedding import EmbeddingAugmentation from seaqube.augmentation.word.translation import TranslationAugmentation TEST_CORPUS = [['till', 'this', 'moment', 'i', 'never', 'knew', 'myself', '.'], ['seldom', ',', 'very', 'seldom', ',', 'does', 'complete', 'truth', 'belong', 'to', 'any', 'human', 'disclosure', ';', 'seldom', 'can', 'it', 'happen', 'that', 'something', 'is', 'not', 'a', 'little', 'disguised', 'or', 'a', 'little', 'mistaken', '.'], ['i', 'declare', 'after', 'all', 'there', 'is', 'no', 'enjoyment', 'like', 'reading', '!', 'how', 'much', 'sooner', 'one', 'tires', 'of', 'anything', 'than', 'of', 'a', 'book', '!', '”'], ['men', 'have', 'had', 'every', 'advantage', 'of', 'us', 'in', 'telling', 'their', 'own', 'story', '.', 'education', 'has', 'been', 'theirs', 'in', 'so', 'much', 'higher', 'a', 'degree'], ['i', 'wish', ',', 'as', 'well', 'as', 'everybody', 'else', ',', 'to', 'be', 'perfectly', 'happy', ';', 'but', ',', 'like', 'everybody', 'else', ',', 'it', 'must', 'be', 'in', 'my', 'own', 'way', '.'], ['there', 'are', 'people', ',', 'who', 'the', 'more', 'you', 'do', 'for', 'them', ',', 'the', 'less', 'they', 'will', 'do', 'for', 'themselves', '.'], ['one', 'half', 'of', 'the', 'world', 'can', 'not', 'understand', 'the', 'pleasures', 'of', 'the', 'other', '.']] from seaqube.augmentation.base import AugmentationStreamer from seaqube.augmentation.reduction.unique_corpus import UniqueCorpusReduction # Here we set up a augmentation stream. Every document will passed trought this augmentation line by line. # This means: a document _d_ will be in the first step translated. # In the second step, this translated document is feed to Qwerty. Now, qwerty returns 2 documents. # This 2 documents will be each feed to EDA. EDA geenrates 4 augmented documents for the two inputs, i.e. one line results in 8 lines output. # AugmentationStreamer can also reduce documents, here it reduce it, using the unique reducer. streamer = AugmentationStreamer( [TranslationAugmentation(max_length=1), QwertyAugmentation(seed=424242, max_length=2), EDAAugmentation(max_length=4)], reduction_chain=[UniqueCorpusReduction()]) augmented_doc = streamer([TEST_CORPUS[0]]) augmented_doc len(augmented_doc) # after reducing documents can be less then 8 streamer(TEST_CORPUS) # apply the full corpus for the streamer corpus = [['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']] from seaqube.tools.chainer import CallOnOneChain from seaqube.nlp.tools import unique_2d_list pipe = CallOnOneChain([TranslationAugmentation(max_length=1), UnigramAugmentation(corpus=TEST_CORPUS, seed=50, max_length=2, replace_threshold=0.9, find_threshold=0.85), QwertyAugmentation(seed=424242, max_length=2), unique_2d_list]) augmented_and_unique = pipe(TEST_CORPUS) augmented_and_unique len(augmented_and_unique) # 8 * 2 * 2 = 32, reducing makes it smaller def test_example_nlp(self): from seaqube.nlp.types import SeaQuBeWordEmbeddingsModel # Lets have a look at a contexted based NLP model, called Context2Vec from seaqube.nlp.context2vec.context2vec import Context2Vec # Import some seaqube tools: from seaqube.nlp.tools import word_count_list from seaqube.nlp.types import RawModelTinCan from seaqube.nlp.seaqube_model import SeaQuBeNLPLoader, SeaQuBeCompressLoader from seaqube.nlp.tools import tokenize_corpus class SeaQuBeWordEmbeddingsModelC2V(SeaQuBeWordEmbeddingsModel): def __init__(self, c2v: Context2Vec): self.c2v = c2v def vocabs(self): return self.c2v.wv.vocabs @property def wv(self): return self.c2v.wv def word_vector(self, word): return self.c2v.wv[word] def matrix(self): return self.c2v.wv.matrix star_wars_cites = ["How you get so big eating food of this kind?", "'Spring the trap!'", "Same as always…", "You came in that thing? You’re braver than I thought!", "Who’s scruffy looking?", "Let the Wookiee win.", "The Emperor is not as forgiving as I am", "I don’t know where you get your delusions, laserbrain.", "Shutting up, sir,", "Boring conversation anyway…", ] corpus = tokenize_corpus(star_wars_cites) c2v = Context2Vec(epoch=3) c2v.train(corpus) seaC2V = SeaQuBeWordEmbeddingsModelC2V(c2v) tin_can = RawModelTinCan(seaC2V, word_count_list(corpus)) SeaQuBeCompressLoader.save_model_compressed(tin_can, "c2v_small") nlp = SeaQuBeNLPLoader.load_model_from_tin_can(tin_can, "c2v") nlp("This is a test") doc = list(nlp("This is a test")); print(doc); type(doc[0]) nlp("This is a test")[0].vector nlp("This is a test").vector nlp("This is a test").sif_vector nlp("Is the Emperor a laserbrain").similarity("Boring conversation anyway…") nlp("Is the Emperor a laserbrain").similarity("Boring conversation anyway…", vector="sif") word = nlp("Is the Emperor a laserbrain?")[2] word word.similarity("Wookiee") nlp.vocab() def test_example_benchmark(self): # import some tools from seaqube.tools.io import load_json from os.path import join from seaqube.nlp.seaqube_model import SeaQuBeCompressLoader main_path = join(dirname(__file__), "..", "examples") nlp = SeaQuBeCompressLoader.load_compressed_model(join(main_path, "example_model_compressed.dill"), "example") import json, urllib.request data = urllib.request.urlopen( "https://raw.githubusercontent.com/bees4ever/SeaQuBe/master/examples/sick_full_corpus.json").read() corpus = json.loads(data) ## import tools from seaqube.benchmark.wordanalogy import WordAnalogyBenchmark from seaqube.benchmark.wordsimilarity import WordSimilarityBenchmark from seaqube.benchmark.wordoutliers import WordOutliersBenchmark from seaqube.benchmark.semantic_wordnet import SemanticWordnetBenchmark # We need to install `vec4ir`, this can be done trough "SeaQuBe": # from seaqube.benchmark.corpus4ir import WordCentroidSimilarityBenchmark from seaqube import download; download('vec4ir') import vec4ir # load module from seaqube.benchmark.corpus4ir import WordCentroidSimilarityBenchmark # perform semantical tests wsb = WordSimilarityBenchmark(test_set='simlex999') print(wsb(nlp.model)) # score=0.008905456556563954 wab = WordAnalogyBenchmark('google-analogies') print(wab(nlp.model)) # score=0.0 wob = WordOutliersBenchmark('wikisem500') print(wob(nlp.model)) # score=0.0 c4ir = WordCentroidSimilarityBenchmark(corpus[0:200]) # need the original corpus for setting up IR print(c4ir(nlp.model)) # The semantic word net benchmark needs a base of word pairs. This pairs can be generated easily: vocabs = nlp.vocab() vocabs = vocabs[0:200] word_pairs, length = SemanticWordnetBenchmark.word_pairs_from_vocab_list(vocabs) print("Pairs Length:", length) swb = SemanticWordnetBenchmark(word_pairs, False) print(swb(nlp.model)) def test_roberta_example(self): from seaqube.nlp.roberta.seaberta import SeaBERTa from seaqube.nlp.types import SeaQuBeWordEmbeddingsModel, SeaQuBeNLPModel2WV import logging logging.basicConfig(level=logging.DEBUG) from seaqube.tools.io import load_json, save_json from os.path import join # Import some seaqube tools: from seaqube.nlp.tools import word_count_list from seaqube.nlp.types import RawModelTinCan from seaqube.nlp.seaqube_model import SeaQuBeNLPLoader, SeaQuBeCompressLoader from seaqube.nlp.tools import tokenize_corpus yoda_cites = [ ["fear", "is", "the", "path", "to", "the", "dark", "side", ".", "fear", "leads", "to", "anger", ".", "anger", "leads", "to", "hate", ".", "hate", "leads", "to", "suffering", "."], ["once", "you", "start", "down", "the", "dark", "path", ",", "forever", "will", "it", "dominate", "your", "destiny", ".", "consume", "you", ",", "it", "will", "."], ["always", "pass", "on", "what", "you", "have", "learned", "."], ["patience", "you", "must", "have", "my", "young", "padawan", "."], ["in", "a", "dark", "place", "we", "find", "ourselves", ",", "and", "a", "little", "more", "knowledge", "lights", "our", "way", "."], ["death", "is", "a", "natural", "part", "of", "life", ".", "rejoice", "for", "those", "around", "you", "who", "transform", "into", "the", "force", ".", "mourn", "them", "do", "not", ".", "miss", "them", "do", "not", ".", "attachment", "leads", "to", "jealously", ".", "the", "shadow", "of", "greed", ",", "that", "is", "."], ["powerful", "you", "have", "become", ",", "the", "dark", "side", "i", "sense", "in", "you", "."], ["train", "yourself", "to", "let", "go", "of", "everything", "you", "fear", "to", "lose", "."], ["feel", "the", "force", "!"], ["truly", "wonderful", "the", "mind", "of", "a", "child", "is", "."], ["do", "or", "do", "not", ".", "there", "is", "no", "try", "."], ["great", "warrior", ".", "wars", "not", "make", "one", "great", "."], ["size", "matters", "not", ".", "look", "at", "me", ".", "judge", "me", "by", "my", "size", ",", "do", "you", "?", "hmm", "?", "hmm", ".", "and", "well", "you", "should", "not", ".", "for", "my", "ally", "is", "the", "force", ",", "and", "a", "powerful", "ally", "it", "is", ".", "life", "creates", "it", ",", "makes", "it", "grow", ".", "its", "energy", "surrounds", "us", "and", "binds", "us", ".", "luminous", "beings", "are", "we", ",", "not", "this", "crude", "matter", ".", "you", "must", "feel", "the", "force", "around", "you", ";", "here", ",", "between", "you", ",", "me", ",", "the", "tree", ",", "the", "rock", ",", "everywhere", ",", "yes", ".", "even", "between", "the", "land", "and", "the", "ship", "."], ["the", "dark", "side", "clouds", "everything", ".", "impossible", "to", "see", "the", "light", ",", "the", "future", "is", "."], ["you", "will", "find", "only", "what", "you", "bring", "in", "."], ["to", "be", "jedi", "is", "to", "face", "the", "truth", ",", "and", "choose", ".", "give", "off", "light", ",", "or", "darkness", ",", "padawan", ".", "be", "a", "candle", ",", "or", "the", "night", "."], ["control", ",", "control", ",", "you", "must", "learn", "control", "!"], ["on", "many", "long", "journeys", "have", "i", "gone", ".", "and", "waited", ",", "too", ",", "for", "others", "to", "return", "from", "journeys", "of", "their", "own", ".", "some", "return", ";", "some", "are", "broken", ";", "some", "come", "back", "so", "different", "only", "their", "names", "remain", "."], ["in", "the", "end", ",", "cowards", "are", "those", "who", "follow", "the", "dark", "side", "."], ["difficult", "to", "see", ".", "always", "in", "motion", "is", "the", "future", "."], ["ready", "are", "you", "?", "what", "know", "you", "of", "ready", "?", "for", "eight", "hundred", "years", "have", "i", "trained", "jedi", ".", "my", "own", "counsel", "will", "i", "keep", "on", "who", "is", "to", "be", "trained", ".", "a", "jedi", "must", "have", "the", "deepest", "commitment", ",", "the", "most", "serious", "mind", ".", "this", "one", "a", "long", "time", "have", "i", "watched", ".", "all", "his", "life", "has", "he", "looked", "away\u2026", "to", "the", "future", ",", "to", "the", "horizon", ".", "never", "his", "mind", "on", "where", "he", "was", ".", "hmm", "?", "what", "he", "was", "doing", ".", "hmph", ".", "adventure", ".", "heh", ".", "excitement", ".", "heh", ".", "a", "jedi", "craves", "not", "these", "things", ".", "you", "are", "reckless", "."], ["secret", ",", "shall", "i", "tell", "you", "?", "grand", "master", "of", "jedi", "order", "am", "i", ".", "won", "this", "job", "in", "a", "raffle", "i", "did", ",", "think", "you", "?", "\u2018", "how", "did", "you", "know", ",", "how", "did", "you", "know", ",", "master", "yoda", "?", "\u2019", "master", "yoda", "knows", "these", "things", ".", "his", "job", "it", "is", "."], ["to", "answer", "power", "with", "power", ",", "the", "jedi", "way", "this", "is", "not", ".", "in", "this", "war", ",", "a", "danger", "there", "is", ",", "of", "losing", "who", "we", "are", "."], ["many", "of", "the", "truths", "that", "we", "cling", "to", "depend", "on", "our", "point", "of", "view", "."], ["named", "must", "your", "fear", "be", "before", "banish", "it", "you", "can", "."], ["you", "think", "yoda", "stops", "teaching", ",", "just", "because", "his", "student", "does", "not", "want", "to", "hear", "?", "a", "teacher", "yoda", "is", ".", "yoda", "teaches", "like", "drunkards", "drink", ",", "like", "killers", "kill", "."], ["do", "not", "assume", "anything", "obi-wan", ".", "clear", "your", "mind", "must", "be", "if", "you", "are", "to", "discover", "the", "real", "villains", "behind", "this", "plot", "."], ["you", "will", "know", "(", "the", "good", "from", "the", "bad", ")", "when", "you", "are", "calm", ",", "at", "peace", ".", "passive", ".", "a", "jedi", "uses", "the", "force", "for", "knowledge", "and", "defense", ",", "never", "for", "attack", "."], ["soon", "will", "i", "rest", ",", "yes", ",", "forever", "sleep", ".", "earned", "it", "i", "have", ".", "twilight", "is", "upon", "me", ",", "soon", "night", "must", "fall", "."], ["when", "you", "look", "at", "the", "dark", "side", ",", "careful", "you", "must", "be", ".", "for", "the", "dark", "side", "looks", "back", "."], ["you", "will", "know", "(", "the", "good", "from", "the", "bad", ")", "when", "you", "are", "calm", ",", "at", "peace", ".", "passive", ".", "a", "jedi", "uses", "the", "force", "for", "knowledge", "and", "defense", ",", "never", "for", "attack", "."], ["smaller", "in", "number", "are", "we", ",", "but", "larger", "in", "mind", "."], ["your", "path", "you", "must", "decide", "."], ["always", "two", "there", "are", ",", "no", "more", ",", "no", "less", ".", "a", "master", "and", "an", "apprentice", "."], ["no", "longer", "certain", ",", "that", "one", "ever", "does", "win", "a", "war", ",", "i", "am", ".", "for", "in", "fighting", "the", "battles", ",", "the", "bloodshed", ",", "already", "lost", "we", "have", ".", "yet", ",", "open", "to", "us", "a", "path", "remains", ".", "that", "unknown", "to", "the", "sith", "is", ".", "through", "this", "path", ",", "victory", "we", "may", "yet", "find", ".", "not", "victory", "in", "the", "clone", "wars", ",", "but", "victory", "for", "all", "time", "."], ["if", "no", "mistake", "you", "have", "made", ",", "losing", "you", "are", ".", "a", "different", "game", "you", "should", "play", "."], ["[", "luke", "skywalker", ":", "]", "i", "can", "\u2019", "t", "believe", "it", ".", "[", "yoda", ":", "]", "that", "is", "why", "you", "fail", "."], ["happens", "to", "every", "guy", "sometimes", "this", "does"], ["adventure", ".", "excitement", ".", "a", "jedi", "craves", "not", "these", "things", "."], ["only", "the", "dark", "lord", "of", "the", "sith", "knows", "of", "our", "weakness", ".", "if", "informed", "the", "senate", "is", ",", "multiply", "our", "adversaries", "will", "."]] main_path = join(dirname(__file__), "..", "examples", "seaberta", "training") train_params = { "per_gpu_eval_batch_size": 4, "do_eval": True, "evaluate_during_training": False, "line_by_line": False, "should_continue": False, "model_name_or_path": False, "mlm": True, "do_train": True, "overwrite_output_dir": True, "overwrite_cache": False, "block_size": 512, "eval_all_checkpoints": 2, "server_ip": "", "mlm_probability": 0.15, "local_rank": -1, # NO GPU, "no_cuda": False, "fp16": False, "fp16_opt_level": 'O1', "max_steps": 10, "warmup_steps": 10, "learning_rate": 5e-5, "per_gpu_train_batch_size": 4, "gradient_accumulation_steps": 4, "weight_decay": 0.01, "adam_epsilon": 1e-6, "max_grad_norm": 100.0, "save_total_limit": 10, "save_steps": 10, "logging_steps": 2, "seed": 0, } roberta = SeaBERTa(main_path, train_params) roberta.train(yoda_cites) roberta.load_trained_model() class SeaQuBeWordEmbeddingsModelSeaBERTa(SeaQuBeWordEmbeddingsModel): def __init__(self, seaberta: SeaBERTa): self.seaberta = seaberta def vocabs(self): return self.seaberta.wv.vocabs @property def wv(self): return self.seaberta.wv def word_vector(self, word): return self.seaberta.wv[word] def matrix(self): return self.seaberta.wv.matrix def context_embedding(self, words, position): return self.seaberta.context_embedding(words, position) seaberta = SeaQuBeWordEmbeddingsModelSeaBERTa(roberta) roberta.context_embedding(["t"], 0), roberta.context_embedding(["t"], 0).shape self.assertEqual(type(roberta.wv.vocabs), list) tin_can = RawModelTinCan(seaberta, word_count_list(yoda_cites)) nlp = SeaQuBeNLPLoader.load_model_from_tin_can(tin_can, "seaberta") doc = nlp("Luke is a Jedi and yoda is a master Jedi!") self.assertEqual(('jedi', 'jedi'), (doc[3].text, doc[9].text)) # both are the same word from seaqube.tools.math import cosine self.assertAlmostEqual(cosine(doc[3].vector, doc[9].vector), 0.9, delta=0.5)
the-stack_0_24937
#!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2021 Beartype authors. # See "LICENSE" for further details. ''' Project-wide **unmemoized class tester** (i.e., unmemoized and thus efficient callable testing various properties of arbitrary classes) utilities. This private submodule is *not* intended for importation by downstream callers. ''' # ....................{ IMPORTS }.................... from beartype.roar._roarexc import _BeartypeUtilTypeException from beartype._cave._cavefast import TestableTypes as TestableTypesTuple from beartype._data.cls.datacls import TYPES_BUILTIN_FAKE from beartype._data.mod.datamod import BUILTINS_MODULE_NAME from beartype._util.utiltyping import ( TypeException, TypeOrTupleTypes, ) # ....................{ VALIDATORS }.................... def die_unless_type( # Mandatory parameters. cls: object, # Optional parameters. exception_cls: TypeException = _BeartypeUtilTypeException, exception_prefix: str = '', ) -> None: ''' Raise an exception of the passed type unless the passed object is a class. Parameters ---------- cls : object Object to be validated. exception_cls : Type[Exception] Type of exception to be raised. Defaults to :exc:`_BeartypeUtilTypeException`. exception_prefix : str, optional Human-readable label prefixing the representation of this object in the exception message. Defaults to the empty string. Raises ---------- :exc:`exception_cls` If this object is *not* a class. ''' # If this object is *NOT* a class, raise an exception. if not isinstance(cls, type): assert isinstance(exception_cls, type), ( 'f{repr(exception_cls)} not exception class.') assert isinstance(exception_prefix, str), ( 'f{repr(exception_prefix)} not string.') raise exception_cls(f'{exception_prefix}{repr(cls)} not class.') #FIXME: Unit test us up. def die_unless_type_or_types( # Mandatory parameters. type_or_types: object, # Optional parameters. exception_cls: TypeException = _BeartypeUtilTypeException, exception_prefix: str = '', ) -> None: ''' Raise an exception of the passed type unless the passed object is either a class *or* tuple of one or more classes. Parameters ---------- type_or_types : object Object to be validated. exception_cls : Type[Exception] Type of exception to be raised. Defaults to :exc:`_BeartypeUtilTypeException`. exception_prefix : str, optional Human-readable label prefixing the representation of this object in the exception message. Defaults to the empty string. Raises ---------- :exc:`exception_cls` If this object is neither a class *nor* tuple of one or more classes. ''' # If this object is neither a class *NOR* tuple of one or more classes, # raise an exception. if not is_type_or_types(type_or_types): assert isinstance(exception_cls, type), ( 'f{repr(exception_cls)} not exception class.') assert isinstance(exception_prefix, str), ( 'f{repr(exception_prefix)} not string.') # Exception message to be raised below. exception_message = ( f'{exception_prefix}{repr(type_or_types)} neither ' f'class nor tuple of one or more classes' ) # If this object is a tuple... if isinstance(type_or_types, tuple): # If this tuple is empty, note that. if not type_or_types: exception_message += ' (i.e., is empty tuple)' # Else, this tuple is non-empty. In this case... else: # For the 0-based index of each tuple item and that item... for cls_index, cls in enumerate(type_or_types): # If this object is *NOT* a class... if not isinstance(cls, type): # Note this. exception_message += ( f' (i.e., tuple item {cls_index} ' f'{repr(cls)} not class)' ) # Halt iteration. break # Else, this object is a class. Continue to the next item. # Else, this object is a non-tuple. In this case, the general-purpose # exception message suffices. # Raise this exception. raise exception_cls(f'{exception_message}.') # ....................{ TESTERS }.................... def is_type_or_types(type_or_types: object) -> bool: ''' ``True`` only if the passed object is either a class *or* tuple of one or more classes. Parameters ---------- type_or_types : object Object to be inspected. Returns ---------- bool ``True`` only if this object is either a class *or* tuple of one or more classes. ''' # Return true only if either... return ( # This object is a class *OR*... isinstance(type_or_types, type) or ( # This object is a tuple *AND*... isinstance(type_or_types, tuple) and # This tuple is non-empty *AND*... bool(type_or_types) and # This tuple contains only classes. all(isinstance(cls, type) for cls in type_or_types) ) ) def is_type_builtin(cls: type) -> bool: ''' ``True`` only if the passed class is **builtin** (i.e., globally accessible C-based type requiring *no* explicit importation). This tester is intentionally *not* memoized (e.g., by the :func:`callable_cached` decorator), as the implementation trivially reduces to an efficient one-liner. Parameters ---------- cls : type Class to be inspected. Returns ---------- bool ``True`` only if this class is builtin. Raises ---------- _BeartypeUtilTypeException If this object is *not* a class. ''' # Avoid circular import dependencies. from beartype._util.mod.utilmodule import ( get_object_type_module_name_or_none) # If this object is *NOT* a type, raise an exception. die_unless_type(cls) # Else, this object is a type. # If this type is a fake builtin (i.e., type that is *NOT* builtin but # erroneously masquerading as being builtin), this type is *NOT* a builtin. # In this case, silently reject this type. if cls in TYPES_BUILTIN_FAKE: return False # Else, this type is *NOT* a fake builtin. # Fully-qualified name of the module defining this type if this type is # defined by a module *OR* "None" otherwise (i.e., if this type is # dynamically defined in-memory). cls_module_name = get_object_type_module_name_or_none(cls) # This return true only if this name is that of the "builtins" module # declaring all builtin types. return cls_module_name == BUILTINS_MODULE_NAME def is_type_subclass( cls: object, base_classes: TypeOrTupleTypes) -> bool: ''' ``True`` only if the passed object is a subclass of either the passed class if passed one class *or* at least one of the passed classes if passed a tuple of classes. Caveats ---------- **This higher-level tester should always be called in lieu of the lower-level** :func:`issubclass` **builtin,** which raises an undescriptive exception when the first passed parameter is *not* a class: e.g., .. code-block:: python >>> issubclass(object(), type) TypeError: issubclass() arg 1 must be a class This tester suffers no such deficits, instead safely returning ``False`` when the first passed parameter is *not* a class. Parameters ---------- obj : object Object to be inspected. base_classes : TestableTypes Class(es) to test whether this object is a subclass of defined as either: * A single class. * A tuple of one or more classes. Returns ---------- bool ``True`` only if this object is a subclass of these class(es). ''' assert isinstance(base_classes, TestableTypesTuple), ( f'{repr(base_classes)} neither class nor tuple of classes.') # One-liners for tremendous bravery. return isinstance(cls, type) and issubclass(cls, base_classes)
the-stack_0_24939
#!/usr/bin/env python3 # Copyright 2012 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Routines to modify keyboard LED state.""" import ast import fcntl import logging import os import sys import threading # Constants from /usr/include/linux/kd.h. KDSETLED = 0x4B32 LED_SCR = 1 LED_NUM = 2 LED_CAP = 4 # Resets LEDs to the default values (console_ioctl.h says that any higher- # order bit than LED_CAP will do). LED_RESET = 8 # Number of VTs on which to set the keyboard LEDs. MAX_VTS = 8 # Set of FDs of all TTYs on which to set LEDs. Lazily initialized by SetLeds. _tty_fds = None _tty_fds_lock = threading.Lock() def SetLeds(state): """Sets the current LEDs on VTs [0,MAX_VTS) to the given state. Errors are ignored. (We set the LED on all VTs because /dev/console may not work reliably under the combination of X and autotest.) Args: pattern: A bitwise OR of zero or more of LED_SCR, LED_NUM, and LED_CAP. Returns: True if able to set at least one LED, and False otherwise. """ global _tty_fds # pylint: disable=global-statement with _tty_fds_lock: if _tty_fds is None: _tty_fds = [] for tty in range(MAX_VTS): dev = '/dev/tty%d' % tty try: _tty_fds.append(os.open(dev, os.O_RDWR)) except Exception: logging.exception('Unable to open %s', dev) if not _tty_fds: return False for fd in _tty_fds: try: fcntl.ioctl(fd, KDSETLED, state) except Exception: pass return True class Blinker: """Blinks LEDs asynchronously according to a particular pattern. Start() and Stop() are not thread-safe and must be invoked from the same thread. This can also be used as a context manager: with leds.Blinker(...): ...do something that will take a while... """ thread = None def __init__(self, pattern): """Constructs the blinker (but does not start it). Args: pattern: A list of tuples. Each element is (state, duration), where state contains the LEDs that should be lit (a bitwise OR of LED_SCR, LED_NUM, and/or LED_CAP). For example, ((LED_SCR|LED_NUM|LED_CAP, .2), (0, .05)) would turn all LEDs on for .2 s, then all off for 0.05 s, ad infinitum. """ self.pattern = pattern self.done = threading.Event() def Start(self): """Starts blinking in a separate thread until Stop is called. May only be invoked once. """ assert not self.thread self.thread = threading.Thread(target=self._Run) self.thread.start() def Stop(self): """Stops blinking.""" self.done.set() if self.thread: self.thread.join() self.thread = None def __enter__(self): self.Start() def __exit__(self, exc_type, exc_value, traceback): del exc_type, exc_value, traceback # Unused. self.Stop() def _Run(self): while True: # Repeat pattern forever for state, duration in self.pattern: if not SetLeds(state): return # Failure, end this thread self.done.wait(duration) if self.done.is_set(): SetLeds(LED_RESET) return def main(): """Blinks the pattern in sys.argv[1] if present, or the famous theme from William Tell otherwise. """ if len(sys.argv) > 1: blinker = Blinker(ast.literal_eval(sys.argv[1])) else: DURATION_SCALE = .125 def Blip(state, duration=1): return [(state, duration * .6 * DURATION_SCALE), (0, duration * .4 * DURATION_SCALE)] blinker = Blinker( 2 * (2 * Blip(LED_NUM) + Blip(LED_NUM, 2)) + 2 * Blip(LED_NUM) + Blip(LED_CAP, 2) + Blip(LED_SCR, 2) + Blip(LED_CAP | LED_SCR, 2) + 2 * Blip(LED_NUM) + Blip(LED_NUM, 2) + 2 * Blip(LED_NUM) + Blip(LED_CAP, 2) + 2 * Blip(LED_SCR) + Blip(LED_CAP, 2) + Blip(LED_NUM, 2) + Blip(LED_CAP | LED_NUM, 2) ) with blinker: # Wait for newline, and then quit gracefully sys.stdin.readline() if __name__ == '__main__': main()
the-stack_0_24943
"""Test script for successful basic authentication.""" import time import json import requests ZOE_API_URI = 'http://127.0.0.1:5100/api/0.7/' ZOE_AUTH = ('admin', 'admin') TIMEOUT = 5 class TestZoeRest: """Test case class.""" id = None def test_info(self, zoe_api_process): """Test info api endpoint.""" print('Test info api endpoint') req = requests.get(ZOE_API_URI + 'info', timeout=TIMEOUT) assert req.status_code == 200 def test_user(self, zoe_api_process): """Test user api endpoint.""" print('Test user api endpoint') req = requests.get(ZOE_API_URI + 'user', auth=ZOE_AUTH, timeout=TIMEOUT) assert req.status_code == 200 def test_list_all_executions(self, zoe_api_process): """Test list all executions api endpoint.""" print('Test list all executions api endpoint') req = requests.get(ZOE_API_URI + 'execution', auth=ZOE_AUTH, timeout=TIMEOUT) assert req.status_code == 200 # def test_7_delete_execution(self): # """Test delete execution api endpoint.""" # print('Test delete execution api endpoint') # req = requests.delete(self.__class__.uri + 'execution/delete/' + self.__class__.id, auth=self.__class__.auth) # if req.status_code != 204: # print('error message: {}'.format(req.json()['message'])) # self.assertEqual(req.status_code, 204) def test_start_stop_execution(self, zoe_api_process, zoe_master_process): """Test start execution api endpoint.""" print('Test start execution api endpoint') with open('integration_tests/zapp.json', encoding='utf-8') as data_file: data = json.loads(data_file.read()) time.sleep(10) # wait for test Zoe to start and load the docker status req = requests.post(ZOE_API_URI + 'execution', auth=ZOE_AUTH, json={"application": data, "name": "requests"}, timeout=TIMEOUT) assert req.status_code == 201 exec_id = str(req.json()['execution_id']) print('execution ID is {}'.format(exec_id)) print('Test execution details api endpoint') while True: req = requests.get(ZOE_API_URI + 'execution/' + exec_id, auth=ZOE_AUTH, timeout=TIMEOUT) assert req.status_code == 200 if req.json()['status'] == 'running': break elif req.json()['status'] == 'error': print(req.json()['error_message']) assert False print('Waiting for ZApp to start (status is {})...'.format(req.json()['status'])) time.sleep(1) print('Test service details api endpoint') req = requests.get(ZOE_API_URI + 'execution/' + exec_id, auth=ZOE_AUTH, timeout=TIMEOUT) sid = req.json()["services"][0] req = requests.get(ZOE_API_URI + 'service/' + str(sid), auth=ZOE_AUTH, timeout=TIMEOUT) assert req.status_code == 200 print('Test terminate execution api endpoint') time.sleep(10) req = requests.delete(ZOE_API_URI + 'execution/' + exec_id, auth=ZOE_AUTH, timeout=TIMEOUT) assert req.status_code == 204 time.sleep(4) def test_zapp_validate(self, zoe_api_process): """Test ZApp validation endpoint""" print("Test ZApp validation endpoint") with open('integration_tests/zapp.json', encoding='utf-8') as data_file: data = json.loads(data_file.read()) req = requests.post(ZOE_API_URI + 'zapp_validate', json=data, timeout=TIMEOUT) if req.status_code != 200: print('Error reason: {}, {}'.format(req.reason, req.text)) assert req.status_code == 200 def test_zapp_validate_fail(self, zoe_api_process): """Test ZApp validation endpoint""" print("Test ZApp validation endpoint") with open('integration_tests/zapp.json', encoding='utf-8') as data_file: data = json.loads(data_file.read()) del data['version'] req = requests.post(ZOE_API_URI + 'zapp_validate', json=data, timeout=TIMEOUT) assert req.status_code == 400
the-stack_0_24944
import json import setuptools kwargs = json.loads( """ { "name": "ros-cdk-memcache", "version": "1.0.3", "description": "Aliyun SDK Copyright (C) Alibaba Cloud Computing All rights reserved. http://www.aliyun.com", "license": "Apache-2.0", "url": "https://github.com/aliyun/Resource-Orchestration-Service-Cloud-Development-Kit.git", "long_description_content_type": "text/markdown", "author": "ROS Development Team", "bdist_wheel": { "universal": true }, "project_urls": { "Source": "https://github.com/aliyun/Resource-Orchestration-Service-Cloud-Development-Kit.git" }, "package_dir": { "": "src" }, "packages": [ "ros_cdk_memcache", "ros_cdk_memcache._jsii" ], "package_data": { "ros_cdk_memcache._jsii": [ "[email protected]" ], "ros_cdk_memcache": [ "py.typed" ] }, "python_requires": ">=3.6", "install_requires": [ "constructs>=3.0.4, <4.0.0", "jsii>=1.49.0, <2.0.0", "publication>=0.0.3", "ros-cdk-core>=1.0.5, <2.0.0" ], "classifiers": [ "Intended Audience :: Developers", "Operating System :: OS Independent", "Programming Language :: JavaScript", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Typing :: Typed", "License :: OSI Approved", "Programming Language :: Python :: 3" ], "scripts": [] } """ ) with open("README.md", encoding="utf8") as fp: kwargs["long_description"] = fp.read() setuptools.setup(**kwargs)
the-stack_0_24945
"""Module contains api objects for executing and checking requests""" from urllib.parse import urlencode import allure import attr from .endpoints import Endpoints from .methods import Methods from .tools import attach_request_log from ..steps.asserts import status_code_should_be, body_should_be @attr.dataclass class Request: """Request for a specific endpoint""" method: Methods endpoint: Endpoints object_id: int = None url_params: dict = {} headers: dict = {} data: dict = {} @attr.dataclass class ExpectedResponse: """Response to be expected. Checking the status code and body if present""" status_code: int body: dict = None class APPApi: """APP api wrapper""" __slots__ = ("_url",) _api_prefix = "" def __init__(self, url="http://localhost:8000"): self._url = url @property def _base_url(self): return f"{self._url}{self._api_prefix}" def exec_request(self, request: Request, expected_response: ExpectedResponse): """ Execute HTTP request based on "request" argument. Assert response params amd values based on "expected_response" argument. """ url = self.get_url_for_endpoint( endpoint=request.endpoint, method=request.method, object_id=request.object_id, ) url_params = request.url_params.copy() step_name = f"Send {request.method.name} {url.replace(self._base_url, '')}" if url_params: step_name += f"?{urlencode(url_params)}" with allure.step(step_name): response = request.method.function( url=url, params=url_params, json=request.data, headers=request.headers, ) attach_request_log(response) status_code_should_be( response=response, status_code=expected_response.status_code ) if expected_response.body is not None: body_should_be(response=response, expected_body=expected_response.body) return response def get_url_for_endpoint( self, endpoint: Endpoints, method: Methods, object_id: int ): """ Return direct link for endpoint object """ if "{id}" in method.url_template: if object_id is None: raise ValueError( "Request template requires 'id', but 'request.object_id' is None" ) url = method.url_template.format(name=endpoint.path, id=object_id) else: url = method.url_template.format(name=endpoint.path) return f"{self._base_url}{url}"
the-stack_0_24948
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import logging from functools import partial import numpy as np import pytest import torch from torch.distributions import biject_to, constraints import pyro import pyro.distributions as dist import pyro.optim as optim from pyro.distributions.transforms import block_autoregressive, iterated from pyro.infer import SVI, Trace_ELBO, TraceMeanField_ELBO from pyro.infer.autoguide import ( AutoDiagonalNormal, AutoIAFNormal, AutoLaplaceApproximation, AutoLowRankMultivariateNormal, AutoMultivariateNormal, ) from pyro.infer.autoguide.guides import AutoNormalizingFlow from tests.common import assert_equal from tests.integration_tests.test_conjugate_gaussian_models import GaussianChain logger = logging.getLogger(__name__) pytestmark = pytest.mark.stage("integration", "integration_batch_2") # conjugate model to test AutoGuide logic from end-to-end (this has a non-mean-field posterior) class AutoGaussianChain(GaussianChain): # this is gross but we need to convert between different posterior factorizations def compute_target(self, N): self.target_auto_mus = torch.zeros(N + 1) self.target_auto_diag_cov = torch.zeros(N + 1) self.target_auto_mus[-1] = self.target_mus[N].item() self.target_auto_diag_cov[-1] = 1.0 / self.lambda_posts[-1].item() for n in range(N - 1, 0, -1): self.target_auto_mus[n] += self.target_mus[n].item() self.target_auto_mus[n] += ( self.target_kappas[n].item() * self.target_auto_mus[n + 1] ) self.target_auto_diag_cov[n] += 1.0 / self.lambda_posts[n].item() self.target_auto_diag_cov[n] += ( self.target_kappas[n].item() ** 2 ) * self.target_auto_diag_cov[n + 1] def test_multivariatate_normal_auto(self): self.do_test_auto(3, reparameterized=True, n_steps=10001) def do_test_auto(self, N, reparameterized, n_steps): logger.debug("\nGoing to do AutoGaussianChain test...") pyro.clear_param_store() self.setUp() self.setup_chain(N) self.compute_target(N) self.guide = AutoMultivariateNormal(self.model) logger.debug( "target auto_loc: {}".format( self.target_auto_mus[1:].detach().cpu().numpy() ) ) logger.debug( "target auto_diag_cov: {}".format( self.target_auto_diag_cov[1:].detach().cpu().numpy() ) ) # TODO speed up with parallel num_particles > 1 adam = optim.Adam({"lr": 0.001, "betas": (0.95, 0.999)}) svi = SVI(self.model, self.guide, adam, loss=Trace_ELBO()) for k in range(n_steps): loss = svi.step(reparameterized) assert np.isfinite(loss), loss if k % 1000 == 0 and k > 0 or k == n_steps - 1: logger.debug( "[step {}] guide mean parameter: {}".format( k, self.guide.loc.detach().cpu().numpy() ) ) L = self.guide.scale_tril diag_cov = torch.mm(L, L.t()).diag() logger.debug( "[step {}] auto_diag_cov: {}".format( k, diag_cov.detach().cpu().numpy() ) ) assert_equal( self.guide.loc.detach(), self.target_auto_mus[1:], prec=0.05, msg="guide mean off", ) assert_equal( diag_cov, self.target_auto_diag_cov[1:], prec=0.07, msg="guide covariance off", ) @pytest.mark.parametrize( "auto_class", [ AutoDiagonalNormal, AutoMultivariateNormal, AutoLowRankMultivariateNormal, AutoLaplaceApproximation, ], ) @pytest.mark.parametrize("Elbo", [Trace_ELBO, TraceMeanField_ELBO]) def test_auto_diagonal_gaussians(auto_class, Elbo): n_steps = 3001 def model(): pyro.sample("x", dist.Normal(-0.2, 1.2)) pyro.sample("y", dist.Normal(0.2, 0.7)) if auto_class is AutoLowRankMultivariateNormal: guide = auto_class(model, rank=1) else: guide = auto_class(model) adam = optim.ClippedAdam( {"lr": 0.01, "betas": (0.95, 0.999), "lrd": 0.1 ** (1 / n_steps)} ) svi = SVI(model, guide, adam, loss=Elbo()) for k in range(n_steps): loss = svi.step() assert np.isfinite(loss), loss if auto_class is AutoLaplaceApproximation: guide = guide.laplace_approximation() loc, scale = guide._loc_scale() expected_loc = torch.tensor([-0.2, 0.2]) assert_equal( loc.detach(), expected_loc, prec=0.05, msg="\n".join( [ "Incorrect guide loc. Expected:", str(expected_loc.cpu().numpy()), "Actual:", str(loc.detach().cpu().numpy()), ] ), ) expected_scale = torch.tensor([1.2, 0.7]) assert_equal( scale.detach(), expected_scale, prec=0.08, msg="\n".join( [ "Incorrect guide scale. Expected:", str(expected_scale.cpu().numpy()), "Actual:", str(scale.detach().cpu().numpy()), ] ), ) @pytest.mark.parametrize( "auto_class", [ AutoDiagonalNormal, AutoMultivariateNormal, AutoLowRankMultivariateNormal, AutoLaplaceApproximation, ], ) def test_auto_transform(auto_class): n_steps = 3500 def model(): pyro.sample("x", dist.LogNormal(0.2, 0.7)) if auto_class is AutoLowRankMultivariateNormal: guide = auto_class(model, rank=1) else: guide = auto_class(model) adam = optim.Adam({"lr": 0.001, "betas": (0.90, 0.999)}) svi = SVI(model, guide, adam, loss=Trace_ELBO()) for k in range(n_steps): loss = svi.step() assert np.isfinite(loss), loss if auto_class is AutoLaplaceApproximation: guide = guide.laplace_approximation() loc, scale = guide._loc_scale() assert_equal(loc.detach(), torch.tensor([0.2]), prec=0.04, msg="guide mean off") assert_equal( scale.detach(), torch.tensor([0.7]), prec=0.04, msg="guide covariance off" ) @pytest.mark.parametrize( "auto_class", [ AutoDiagonalNormal, AutoIAFNormal, AutoMultivariateNormal, AutoLowRankMultivariateNormal, AutoLaplaceApproximation, lambda m: AutoNormalizingFlow(m, partial(iterated, 2, block_autoregressive)), ], ) @pytest.mark.parametrize("Elbo", [Trace_ELBO, TraceMeanField_ELBO]) def test_auto_dirichlet(auto_class, Elbo): num_steps = 2000 prior = torch.tensor([0.5, 1.0, 1.5, 3.0]) data = torch.tensor([0] * 4 + [1] * 2 + [2] * 5).long() posterior = torch.tensor([4.5, 3.0, 6.5, 3.0]) def model(data): p = pyro.sample("p", dist.Dirichlet(prior)) with pyro.plate("data_plate"): pyro.sample("data", dist.Categorical(p).expand_by(data.shape), obs=data) guide = auto_class(model) svi = SVI(model, guide, optim.Adam({"lr": 0.003}), loss=Elbo()) for _ in range(num_steps): loss = svi.step(data) assert np.isfinite(loss), loss expected_mean = posterior / posterior.sum() if isinstance(guide, (AutoIAFNormal, AutoNormalizingFlow)): loc = guide.transform(torch.zeros(guide.latent_dim)) else: loc = guide.loc actual_mean = biject_to(constraints.simplex)(loc) assert_equal( actual_mean, expected_mean, prec=0.2, msg="".join( [ "\nexpected {}".format(expected_mean.detach().cpu().numpy()), "\n actual {}".format(actual_mean.detach().cpu().numpy()), ] ), )
the-stack_0_24949
# Copyright (c) 2017-2021 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 """ Contains functions for working with "native" Python types as they correspond to types over the Ledger API. """ from typing import Any, Dict, Mapping, Tuple __all__ = ["to_record", "to_variant"] VARIANT_KEYS = frozenset(["tag", "value"]) def to_record(obj: "Any") -> "Mapping[str, Any]": """ "Unflattens" fields of a dict to support nested records. """ from collections.abc import Mapping if not isinstance(obj, Mapping): raise ValueError("a mapping is required") # pull out any specialized dotted-field mappings reformatted = dict() # type: Dict[str, Any] for key, value in obj.items(): k1, d, k2 = key.partition(".") if d: v = reformatted.get(k1) if v is None: v = dict() reformatted[k1] = v v[k2] = value else: reformatted[key] = value return reformatted def to_variant(obj: "Any") -> "Tuple[str, Any]": """ Return the constructor and value that is represented by the given object. """ from collections.abc import Mapping if not isinstance(obj, Mapping): raise ValueError(f"cannot coerce {obj!r} to a variant") if VARIANT_KEYS == obj.keys(): return obj["tag"], obj["value"] if len(obj) != 1: raise ValueError(f"variants must be encoded as single-key dicts (got {obj!r} instead)") key = list(obj)[0] value = obj.get(key) return key, value
the-stack_0_24950
# Copyright 2006 Google, Inc. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. """ Python parse tree definitions. This is a very concrete parse tree; we need to keep every token and even the comments and whitespace between tokens. There's also a pattern matching implementation here. """ # mypy: allow-untyped-defs from typing import ( Any, Callable, Dict, Iterator, List, Optional, Text, Tuple, TypeVar, Union, Set, Iterable, Sequence, ) from blib2to3.pgen2.grammar import Grammar __author__ = "Guido van Rossum <[email protected]>" import sys from io import StringIO HUGE: int = 0x7FFFFFFF # maximum repeat count, default max _type_reprs: Dict[int, Union[Text, int]] = {} def type_repr(type_num: int) -> Union[Text, int]: global _type_reprs if not _type_reprs: from .pygram import python_symbols # printing tokens is possible but not as useful # from .pgen2 import token // token.__dict__.items(): for name in dir(python_symbols): val = getattr(python_symbols, name) if type(val) == int: _type_reprs[val] = name return _type_reprs.setdefault(type_num, type_num) _P = TypeVar("_P") NL = Union["Node", "Leaf"] Context = Tuple[Text, Tuple[int, int]] RawNode = Tuple[int, Optional[Text], Optional[Context], Optional[List[NL]]] class Base(object): """ Abstract base class for Node and Leaf. This provides some default functionality and boilerplate using the template pattern. A node may be a subnode of at most one parent. """ # Default values for instance variables type: int # int: token number (< 256) or symbol number (>= 256) parent: Optional["Node"] = None # Parent node pointer, or None children: List[NL] # List of subnodes was_changed: bool = False was_checked: bool = False def __new__(cls, *args, **kwds): """Constructor that prevents Base from being instantiated.""" assert cls is not Base, "Cannot instantiate Base" return object.__new__(cls) def __eq__(self, other: Any) -> bool: """ Compare two nodes for equality. This calls the method _eq(). """ if self.__class__ is not other.__class__: return NotImplemented return self._eq(other) __hash__ = None # type: Any # For Py3 compatibility. @property def prefix(self) -> Text: raise NotImplementedError def _eq(self: _P, other: _P) -> bool: """ Compare two nodes for equality. This is called by __eq__ and __ne__. It is only called if the two nodes have the same type. This must be implemented by the concrete subclass. Nodes should be considered equal if they have the same structure, ignoring the prefix string and other context information. """ raise NotImplementedError def clone(self: _P) -> _P: """ Return a cloned (deep) copy of self. This must be implemented by the concrete subclass. """ raise NotImplementedError def post_order(self) -> Iterator[NL]: """ Return a post-order iterator for the tree. This must be implemented by the concrete subclass. """ raise NotImplementedError def pre_order(self) -> Iterator[NL]: """ Return a pre-order iterator for the tree. This must be implemented by the concrete subclass. """ raise NotImplementedError def replace(self, new: Union[NL, List[NL]]) -> None: """Replace this node with a new one in the parent.""" assert self.parent is not None, str(self) assert new is not None if not isinstance(new, list): new = [new] l_children = [] found = False for ch in self.parent.children: if ch is self: assert not found, (self.parent.children, self, new) if new is not None: l_children.extend(new) found = True else: l_children.append(ch) assert found, (self.children, self, new) self.parent.children = l_children self.parent.changed() self.parent.invalidate_sibling_maps() for x in new: x.parent = self.parent self.parent = None def get_lineno(self) -> Optional[int]: """Return the line number which generated the invocant node.""" node = self while not isinstance(node, Leaf): if not node.children: return None node = node.children[0] return node.lineno def changed(self) -> None: if self.was_changed: return if self.parent: self.parent.changed() self.was_changed = True def remove(self) -> Optional[int]: """ Remove the node from the tree. Returns the position of the node in its parent's children before it was removed. """ if self.parent: for i, node in enumerate(self.parent.children): if node is self: del self.parent.children[i] self.parent.changed() self.parent.invalidate_sibling_maps() self.parent = None return i return None @property def next_sibling(self) -> Optional[NL]: """ The node immediately following the invocant in their parent's children list. If the invocant does not have a next sibling, it is None """ if self.parent is None: return None if self.parent.next_sibling_map is None: self.parent.update_sibling_maps() assert self.parent.next_sibling_map is not None return self.parent.next_sibling_map[id(self)] @property def prev_sibling(self) -> Optional[NL]: """ The node immediately preceding the invocant in their parent's children list. If the invocant does not have a previous sibling, it is None. """ if self.parent is None: return None if self.parent.prev_sibling_map is None: self.parent.update_sibling_maps() assert self.parent.prev_sibling_map is not None return self.parent.prev_sibling_map[id(self)] def leaves(self) -> Iterator["Leaf"]: for child in self.children: yield from child.leaves() def depth(self) -> int: if self.parent is None: return 0 return 1 + self.parent.depth() def get_suffix(self) -> Text: """ Return the string immediately following the invocant node. This is effectively equivalent to node.next_sibling.prefix """ next_sib = self.next_sibling if next_sib is None: return "" prefix = next_sib.prefix return prefix class Node(Base): """Concrete implementation for interior nodes.""" fixers_applied: Optional[List[Any]] used_names: Optional[Set[Text]] def __init__( self, type: int, children: List[NL], context: Optional[Any] = None, prefix: Optional[Text] = None, fixers_applied: Optional[List[Any]] = None, ) -> None: """ Initializer. Takes a type constant (a symbol number >= 256), a sequence of child nodes, and an optional context keyword argument. As a side effect, the parent pointers of the children are updated. """ assert type >= 256, type self.type = type self.children = list(children) for ch in self.children: assert ch.parent is None, repr(ch) ch.parent = self self.invalidate_sibling_maps() if prefix is not None: self.prefix = prefix if fixers_applied: self.fixers_applied = fixers_applied[:] else: self.fixers_applied = None def __repr__(self) -> Text: """Return a canonical string representation.""" assert self.type is not None return "%s(%s, %r)" % ( self.__class__.__name__, type_repr(self.type), self.children, ) def __str__(self) -> Text: """ Return a pretty string representation. This reproduces the input source exactly. """ return "".join(map(str, self.children)) def _eq(self, other) -> bool: """Compare two nodes for equality.""" return (self.type, self.children) == (other.type, other.children) def clone(self) -> "Node": assert self.type is not None """Return a cloned (deep) copy of self.""" return Node( self.type, [ch.clone() for ch in self.children], fixers_applied=self.fixers_applied, ) def post_order(self) -> Iterator[NL]: """Return a post-order iterator for the tree.""" for child in self.children: yield from child.post_order() yield self def pre_order(self) -> Iterator[NL]: """Return a pre-order iterator for the tree.""" yield self for child in self.children: yield from child.pre_order() @property def prefix(self) -> Text: """ The whitespace and comments preceding this node in the input. """ if not self.children: return "" return self.children[0].prefix @prefix.setter def prefix(self, prefix) -> None: if self.children: self.children[0].prefix = prefix def set_child(self, i: int, child: NL) -> None: """ Equivalent to 'node.children[i] = child'. This method also sets the child's parent attribute appropriately. """ child.parent = self self.children[i].parent = None self.children[i] = child self.changed() self.invalidate_sibling_maps() def insert_child(self, i: int, child: NL) -> None: """ Equivalent to 'node.children.insert(i, child)'. This method also sets the child's parent attribute appropriately. """ child.parent = self self.children.insert(i, child) self.changed() self.invalidate_sibling_maps() def append_child(self, child: NL) -> None: """ Equivalent to 'node.children.append(child)'. This method also sets the child's parent attribute appropriately. """ child.parent = self self.children.append(child) self.changed() self.invalidate_sibling_maps() def invalidate_sibling_maps(self) -> None: self.prev_sibling_map: Optional[Dict[int, Optional[NL]]] = None self.next_sibling_map: Optional[Dict[int, Optional[NL]]] = None def update_sibling_maps(self) -> None: _prev: Dict[int, Optional[NL]] = {} _next: Dict[int, Optional[NL]] = {} self.prev_sibling_map = _prev self.next_sibling_map = _next previous: Optional[NL] = None for current in self.children: _prev[id(current)] = previous _next[id(previous)] = current previous = current _next[id(current)] = None class Leaf(Base): """Concrete implementation for leaf nodes.""" # Default values for instance variables value: Text fixers_applied: List[Any] bracket_depth: int opening_bracket: "Leaf" used_names: Optional[Set[Text]] _prefix = "" # Whitespace and comments preceding this token in the input lineno: int = 0 # Line where this token starts in the input column: int = 0 # Column where this token starts in the input def __init__( self, type: int, value: Text, context: Optional[Context] = None, prefix: Optional[Text] = None, fixers_applied: List[Any] = [], ) -> None: """ Initializer. Takes a type constant (a token number < 256), a string value, and an optional context keyword argument. """ assert 0 <= type < 256, type if context is not None: self._prefix, (self.lineno, self.column) = context self.type = type self.value = value if prefix is not None: self._prefix = prefix self.fixers_applied: Optional[List[Any]] = fixers_applied[:] self.children = [] def __repr__(self) -> str: """Return a canonical string representation.""" from .pgen2.token import tok_name assert self.type is not None return "%s(%s, %r)" % ( self.__class__.__name__, tok_name.get(self.type, self.type), self.value, ) def __str__(self) -> Text: """ Return a pretty string representation. This reproduces the input source exactly. """ return self.prefix + str(self.value) def _eq(self, other) -> bool: """Compare two nodes for equality.""" return (self.type, self.value) == (other.type, other.value) def clone(self) -> "Leaf": assert self.type is not None """Return a cloned (deep) copy of self.""" return Leaf( self.type, self.value, (self.prefix, (self.lineno, self.column)), fixers_applied=self.fixers_applied, ) def leaves(self) -> Iterator["Leaf"]: yield self def post_order(self) -> Iterator["Leaf"]: """Return a post-order iterator for the tree.""" yield self def pre_order(self) -> Iterator["Leaf"]: """Return a pre-order iterator for the tree.""" yield self @property def prefix(self) -> Text: """ The whitespace and comments preceding this token in the input. """ return self._prefix @prefix.setter def prefix(self, prefix) -> None: self.changed() self._prefix = prefix def convert(gr: Grammar, raw_node: RawNode) -> NL: """ Convert raw node information to a Node or Leaf instance. This is passed to the parser driver which calls it whenever a reduction of a grammar rule produces a new complete node, so that the tree is build strictly bottom-up. """ type, value, context, children = raw_node if children or type in gr.number2symbol: # If there's exactly one child, return that child instead of # creating a new node. assert children is not None if len(children) == 1: return children[0] return Node(type, children, context=context) else: return Leaf(type, value or "", context=context) _Results = Dict[Text, NL] class BasePattern(object): """ A pattern is a tree matching pattern. It looks for a specific node type (token or symbol), and optionally for a specific content. This is an abstract base class. There are three concrete subclasses: - LeafPattern matches a single leaf node; - NodePattern matches a single node (usually non-leaf); - WildcardPattern matches a sequence of nodes of variable length. """ # Defaults for instance variables type: Optional[int] type = None # Node type (token if < 256, symbol if >= 256) content: Any = None # Optional content matching pattern name: Optional[Text] = None # Optional name used to store match in results dict def __new__(cls, *args, **kwds): """Constructor that prevents BasePattern from being instantiated.""" assert cls is not BasePattern, "Cannot instantiate BasePattern" return object.__new__(cls) def __repr__(self) -> Text: assert self.type is not None args = [type_repr(self.type), self.content, self.name] while args and args[-1] is None: del args[-1] return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, args))) def _submatch(self, node, results=None) -> bool: raise NotImplementedError def optimize(self) -> "BasePattern": """ A subclass can define this as a hook for optimizations. Returns either self or another node with the same effect. """ return self def match(self, node: NL, results: Optional[_Results] = None) -> bool: """ Does this pattern exactly match a node? Returns True if it matches, False if not. If results is not None, it must be a dict which will be updated with the nodes matching named subpatterns. Default implementation for non-wildcard patterns. """ if self.type is not None and node.type != self.type: return False if self.content is not None: r: Optional[_Results] = None if results is not None: r = {} if not self._submatch(node, r): return False if r: assert results is not None results.update(r) if results is not None and self.name: results[self.name] = node return True def match_seq(self, nodes: List[NL], results: Optional[_Results] = None) -> bool: """ Does this pattern exactly match a sequence of nodes? Default implementation for non-wildcard patterns. """ if len(nodes) != 1: return False return self.match(nodes[0], results) def generate_matches(self, nodes: List[NL]) -> Iterator[Tuple[int, _Results]]: """ Generator yielding all matches for this pattern. Default implementation for non-wildcard patterns. """ r: _Results = {} if nodes and self.match(nodes[0], r): yield 1, r class LeafPattern(BasePattern): def __init__( self, type: Optional[int] = None, content: Optional[Text] = None, name: Optional[Text] = None, ) -> None: """ Initializer. Takes optional type, content, and name. The type, if given must be a token type (< 256). If not given, this matches any *leaf* node; the content may still be required. The content, if given, must be a string. If a name is given, the matching node is stored in the results dict under that key. """ if type is not None: assert 0 <= type < 256, type if content is not None: assert isinstance(content, str), repr(content) self.type = type self.content = content self.name = name def match(self, node: NL, results=None): """Override match() to insist on a leaf node.""" if not isinstance(node, Leaf): return False return BasePattern.match(self, node, results) def _submatch(self, node, results=None): """ Match the pattern's content to the node's children. This assumes the node type matches and self.content is not None. Returns True if it matches, False if not. If results is not None, it must be a dict which will be updated with the nodes matching named subpatterns. When returning False, the results dict may still be updated. """ return self.content == node.value class NodePattern(BasePattern): wildcards: bool = False def __init__( self, type: Optional[int] = None, content: Optional[Iterable[Text]] = None, name: Optional[Text] = None, ) -> None: """ Initializer. Takes optional type, content, and name. The type, if given, must be a symbol type (>= 256). If the type is None this matches *any* single node (leaf or not), except if content is not None, in which it only matches non-leaf nodes that also match the content pattern. The content, if not None, must be a sequence of Patterns that must match the node's children exactly. If the content is given, the type must not be None. If a name is given, the matching node is stored in the results dict under that key. """ if type is not None: assert type >= 256, type if content is not None: assert not isinstance(content, str), repr(content) newcontent = list(content) for i, item in enumerate(newcontent): assert isinstance(item, BasePattern), (i, item) if isinstance(item, WildcardPattern): self.wildcards = True self.type = type self.content = newcontent self.name = name def _submatch(self, node, results=None) -> bool: """ Match the pattern's content to the node's children. This assumes the node type matches and self.content is not None. Returns True if it matches, False if not. If results is not None, it must be a dict which will be updated with the nodes matching named subpatterns. When returning False, the results dict may still be updated. """ if self.wildcards: for c, r in generate_matches(self.content, node.children): if c == len(node.children): if results is not None: results.update(r) return True return False if len(self.content) != len(node.children): return False for subpattern, child in zip(self.content, node.children): if not subpattern.match(child, results): return False return True class WildcardPattern(BasePattern): """ A wildcard pattern can match zero or more nodes. This has all the flexibility needed to implement patterns like: .* .+ .? .{m,n} (a b c | d e | f) (...)* (...)+ (...)? (...){m,n} except it always uses non-greedy matching. """ min: int max: int def __init__( self, content: Optional[Text] = None, min: int = 0, max: int = HUGE, name: Optional[Text] = None, ) -> None: """ Initializer. Args: content: optional sequence of subsequences of patterns; if absent, matches one node; if present, each subsequence is an alternative [*] min: optional minimum number of times to match, default 0 max: optional maximum number of times to match, default HUGE name: optional name assigned to this match [*] Thus, if content is [[a, b, c], [d, e], [f, g, h]] this is equivalent to (a b c | d e | f g h); if content is None, this is equivalent to '.' in regular expression terms. The min and max parameters work as follows: min=0, max=maxint: .* min=1, max=maxint: .+ min=0, max=1: .? min=1, max=1: . If content is not None, replace the dot with the parenthesized list of alternatives, e.g. (a b c | d e | f g h)* """ assert 0 <= min <= max <= HUGE, (min, max) if content is not None: f = lambda s: tuple(s) wrapped_content = tuple(map(f, content)) # Protect against alterations # Check sanity of alternatives assert len(wrapped_content), repr(wrapped_content) # Can't have zero alternatives for alt in wrapped_content: assert len(alt), repr(alt) # Can have empty alternatives self.content = wrapped_content self.min = min self.max = max self.name = name def optimize(self) -> Any: """Optimize certain stacked wildcard patterns.""" subpattern = None if ( self.content is not None and len(self.content) == 1 and len(self.content[0]) == 1 ): subpattern = self.content[0][0] if self.min == 1 and self.max == 1: if self.content is None: return NodePattern(name=self.name) if subpattern is not None and self.name == subpattern.name: return subpattern.optimize() if ( self.min <= 1 and isinstance(subpattern, WildcardPattern) and subpattern.min <= 1 and self.name == subpattern.name ): return WildcardPattern( subpattern.content, self.min * subpattern.min, self.max * subpattern.max, subpattern.name, ) return self def match(self, node, results=None) -> bool: """Does this pattern exactly match a node?""" return self.match_seq([node], results) def match_seq(self, nodes, results=None) -> bool: """Does this pattern exactly match a sequence of nodes?""" for c, r in self.generate_matches(nodes): if c == len(nodes): if results is not None: results.update(r) if self.name: results[self.name] = list(nodes) return True return False def generate_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: """ Generator yielding matches for a sequence of nodes. Args: nodes: sequence of nodes Yields: (count, results) tuples where: count: the match comprises nodes[:count]; results: dict containing named submatches. """ if self.content is None: # Shortcut for special case (see __init__.__doc__) for count in range(self.min, 1 + min(len(nodes), self.max)): r = {} if self.name: r[self.name] = nodes[:count] yield count, r elif self.name == "bare_name": yield self._bare_name_matches(nodes) else: # The reason for this is that hitting the recursion limit usually # results in some ugly messages about how RuntimeErrors are being # ignored. We only have to do this on CPython, though, because other # implementations don't have this nasty bug in the first place. if hasattr(sys, "getrefcount"): save_stderr = sys.stderr sys.stderr = StringIO() try: for count, r in self._recursive_matches(nodes, 0): if self.name: r[self.name] = nodes[:count] yield count, r except RuntimeError: # We fall back to the iterative pattern matching scheme if the recursive # scheme hits the recursion limit. for count, r in self._iterative_matches(nodes): if self.name: r[self.name] = nodes[:count] yield count, r finally: if hasattr(sys, "getrefcount"): sys.stderr = save_stderr def _iterative_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: """Helper to iteratively yield the matches.""" nodelen = len(nodes) if 0 >= self.min: yield 0, {} results = [] # generate matches that use just one alt from self.content for alt in self.content: for c, r in generate_matches(alt, nodes): yield c, r results.append((c, r)) # for each match, iterate down the nodes while results: new_results = [] for c0, r0 in results: # stop if the entire set of nodes has been matched if c0 < nodelen and c0 <= self.max: for alt in self.content: for c1, r1 in generate_matches(alt, nodes[c0:]): if c1 > 0: r = {} r.update(r0) r.update(r1) yield c0 + c1, r new_results.append((c0 + c1, r)) results = new_results def _bare_name_matches(self, nodes) -> Tuple[int, _Results]: """Special optimized matcher for bare_name.""" count = 0 r = {} # type: _Results done = False max = len(nodes) while not done and count < max: done = True for leaf in self.content: if leaf[0].match(nodes[count], r): count += 1 done = False break assert self.name is not None r[self.name] = nodes[:count] return count, r def _recursive_matches(self, nodes, count) -> Iterator[Tuple[int, _Results]]: """Helper to recursively yield the matches.""" assert self.content is not None if count >= self.min: yield 0, {} if count < self.max: for alt in self.content: for c0, r0 in generate_matches(alt, nodes): for c1, r1 in self._recursive_matches(nodes[c0:], count + 1): r = {} r.update(r0) r.update(r1) yield c0 + c1, r class NegatedPattern(BasePattern): def __init__(self, content: Optional[Any] = None) -> None: """ Initializer. The argument is either a pattern or None. If it is None, this only matches an empty sequence (effectively '$' in regex lingo). If it is not None, this matches whenever the argument pattern doesn't have any matches. """ if content is not None: assert isinstance(content, BasePattern), repr(content) self.content = content def match(self, node, results=None) -> bool: # We never match a node in its entirety return False def match_seq(self, nodes, results=None) -> bool: # We only match an empty sequence of nodes in its entirety return len(nodes) == 0 def generate_matches(self, nodes) -> Iterator[Tuple[int, _Results]]: if self.content is None: # Return a match if there is an empty sequence if len(nodes) == 0: yield 0, {} else: # Return a match if the argument pattern has no matches for c, r in self.content.generate_matches(nodes): return yield 0, {} def generate_matches( patterns: List[BasePattern], nodes: List[NL] ) -> Iterator[Tuple[int, _Results]]: """ Generator yielding matches for a sequence of patterns and nodes. Args: patterns: a sequence of patterns nodes: a sequence of nodes Yields: (count, results) tuples where: count: the entire sequence of patterns matches nodes[:count]; results: dict containing named submatches. """ if not patterns: yield 0, {} else: p, rest = patterns[0], patterns[1:] for c0, r0 in p.generate_matches(nodes): if not rest: yield c0, r0 else: for c1, r1 in generate_matches(rest, nodes[c0:]): r = {} r.update(r0) r.update(r1) yield c0 + c1, r _Convert = Callable[[Grammar, RawNode], Any]
the-stack_0_24955
from django.contrib.contenttypes.models import ContentType from django.db.models import Q from utilities.querysets import RestrictedQuerySet class PrefixQuerySet(RestrictedQuerySet): def annotate_tree(self): """ Annotate the number of parent and child prefixes for each Prefix. Raw SQL is needed for these subqueries because we need to cast NULL VRF values to integers for comparison. (NULL != NULL). """ return self.extra( select={ 'parents': 'SELECT COUNT(U0."prefix") AS "c" ' 'FROM "ipam_prefix" U0 ' 'WHERE (U0."prefix" >> "ipam_prefix"."prefix" ' 'AND COALESCE(U0."vrf_id", 0) = COALESCE("ipam_prefix"."vrf_id", 0))', 'children': 'SELECT COUNT(U1."prefix") AS "c" ' 'FROM "ipam_prefix" U1 ' 'WHERE (U1."prefix" << "ipam_prefix"."prefix" ' 'AND COALESCE(U1."vrf_id", 0) = COALESCE("ipam_prefix"."vrf_id", 0))', } ) class VLANQuerySet(RestrictedQuerySet): def get_for_device(self, device): """ Return all VLANs available to the specified Device. """ from .models import VLANGroup # Find all relevant VLANGroups q = Q() if device.site.region: q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'region'), scope_id__in=device.site.region.get_ancestors(include_self=True) ) if device.site.group: q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'sitegroup'), scope_id__in=device.site.group.get_ancestors(include_self=True) ) q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'site'), scope_id=device.site_id ) if device.location: q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'location'), scope_id__in=device.location.get_ancestors(include_self=True) ) if device.rack: q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'rack'), scope_id=device.rack_id ) # Return all applicable VLANs return self.filter( Q(group__in=VLANGroup.objects.filter(q)) | Q(site=device.site) | Q(group__isnull=True, site__isnull=True) # Global VLANs ) def get_for_virtualmachine(self, vm): """ Return all VLANs available to the specified VirtualMachine. """ from .models import VLANGroup # Find all relevant VLANGroups q = Q() if vm.cluster.site: if vm.cluster.site.region: q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'region'), scope_id__in=vm.cluster.site.region.get_ancestors(include_self=True) ) if vm.cluster.site.group: q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'sitegroup'), scope_id__in=vm.cluster.site.group.get_ancestors(include_self=True) ) q |= Q( scope_type=ContentType.objects.get_by_natural_key('dcim', 'site'), scope_id=vm.cluster.site_id ) if vm.cluster.group: q |= Q( scope_type=ContentType.objects.get_by_natural_key('virtualization', 'clustergroup'), scope_id=vm.cluster.group_id ) q |= Q( scope_type=ContentType.objects.get_by_natural_key('virtualization', 'cluster'), scope_id=vm.cluster_id ) vlan_groups = VLANGroup.objects.filter(q) # Return all applicable VLANs q = ( Q(group__in=vlan_groups) | Q(group__isnull=True, site__isnull=True) # Global VLANs ) if vm.cluster.site: q |= Q(site=vm.cluster.site) return self.filter(q)
the-stack_0_24956
#! /usr/bin/env python # # Copyright (C) 2018 Raphael Vallat DESCRIPTION = "Yet Another Spindle Algorithm" LONG_DESCRIPTION = """YASA (Yet Another Spindle Algorithm) : fast and robust detection of spindles, slow-waves, and rapid eye movements from sleep EEG recordings.. """ DISTNAME = 'yasa' MAINTAINER = 'Raphael Vallat' MAINTAINER_EMAIL = '[email protected]' URL = 'https://github.com/raphaelvallat/yasa/' LICENSE = 'BSD (3-clause)' DOWNLOAD_URL = 'https://github.com/raphaelvallat/yasa/' VERSION = '0.5.1' PACKAGE_DATA = {'yasa.data.icons': ['*.svg']} INSTALL_REQUIRES = [ 'numpy', 'scipy', 'pandas', 'matplotlib', 'seaborn', 'mne>=0.20.0', 'numba', 'outdated', 'antropy', 'scikit-learn', 'tensorpac>=0.6.5', 'pyriemann>=0.2.7', 'lspopt', 'ipywidgets', 'joblib' ] PACKAGES = [ 'yasa', ] CLASSIFIERS = [ 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'License :: OSI Approved :: BSD License', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS' ] try: from setuptools import setup _has_setuptools = True except ImportError: from distutils.core import setup if __name__ == "__main__": setup(name=DISTNAME, author=MAINTAINER, author_email=MAINTAINER_EMAIL, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, long_description=LONG_DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, install_requires=INSTALL_REQUIRES, include_package_data=True, packages=PACKAGES, package_data=PACKAGE_DATA, classifiers=CLASSIFIERS, )
the-stack_0_24957
# coding: utf-8 """ Fulfillment API Use the Fulfillment API to complete the process of packaging, addressing, handling, and shipping each order on behalf of the seller, in accordance with the payment method and timing specified at checkout. # noqa: E501 OpenAPI spec version: v1.19.10 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class EbayFulfillmentProgram(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'fulfilled_by': 'str' } attribute_map = { 'fulfilled_by': 'fulfilledBy' } def __init__(self, fulfilled_by=None): # noqa: E501 """EbayFulfillmentProgram - a model defined in Swagger""" # noqa: E501 self._fulfilled_by = None self.discriminator = None if fulfilled_by is not None: self.fulfilled_by = fulfilled_by @property def fulfilled_by(self): """Gets the fulfilled_by of this EbayFulfillmentProgram. # noqa: E501 The value returned in this field indicates the party that is handling fulfillment of the order line item. <br /><br />Valid value: <code>EBAY</code> # noqa: E501 :return: The fulfilled_by of this EbayFulfillmentProgram. # noqa: E501 :rtype: str """ return self._fulfilled_by @fulfilled_by.setter def fulfilled_by(self, fulfilled_by): """Sets the fulfilled_by of this EbayFulfillmentProgram. The value returned in this field indicates the party that is handling fulfillment of the order line item. <br /><br />Valid value: <code>EBAY</code> # noqa: E501 :param fulfilled_by: The fulfilled_by of this EbayFulfillmentProgram. # noqa: E501 :type: str """ self._fulfilled_by = fulfilled_by def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(EbayFulfillmentProgram, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, EbayFulfillmentProgram): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_0_24959
_base_ = ['../_base_/datasets/charger_tape.py'] log_level = 'INFO' load_from = None ex_name = "c_litehrnet30_512_hm128_repr_v5" resume_from = "/root/share/tf/mmpose_checkpoints/"+ex_name+"/epoch_5.pth" # resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=1) evaluation = dict(interval=1, metric='acc', save_best='acc') work_dir = "/root/share/tf/mmpose_checkpoints/"+ex_name+"/" optimizer = dict( type='Adam', lr=5e-5, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[2, 3, 6]) total_epochs = 10 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='NeptuneLoggerHook', init_kwargs=dict( run="CHAR-284", project="tnowak/charger") # mode="debug", # project='charger', # api_token="eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiI4NGRmMmFkNi0wMWNjLTQxY2EtYjQ1OS01YjQ0YzRkYmFlNGIifQ==", # name=ex_name, # tags=["LiteHRNet", "512", "HM128", "aug", 'batch4']), # description="repr losss as joint mse" ) ]) target_type = 'GaussianHeatmap' channel_cfg = dict( num_output_channels=4, dataset_joints=4, dataset_channel=[ [0, 1, 2, 3], ], inference_channel=[ 0, 1, 2, 3]) # model settings model = dict( type='TopDownCharger', pretrained=None, backbone=dict( type='LiteHRNet', in_channels=3, extra=dict( stem=dict(stem_channels=32, out_channels=32, expand_ratio=1), num_stages=3, stages_spec=dict( num_modules=(3, 8, 3), num_branches=(2, 3, 4), num_blocks=(2, 2, 2), module_type=('LITE', 'LITE', 'LITE'), with_fuse=(True, True, True), reduce_ratios=(8, 8, 8), num_channels=( (40, 80), (40, 80, 160), (40, 80, 160, 320), )), with_head=True, )), keypoint_head=dict( type='TopdownHeatmapReprHead', in_channels=40, out_channels=channel_cfg['num_output_channels'], num_deconv_layers=0, extra=dict(final_conv_kernel=1, ), loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), train_cfg=dict(), test_cfg=dict( flip_test=True, post_process='default', shift_heatmap=False, target_type=target_type, modulate_kernel=17, use_udp=True)) data_cfg = dict( image_size=[512, 512], heatmap_size=[128, 128], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=False, det_bbox_thr=0.0, bbox_file='', ) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='TopDownGetRandomScaleRotation', rot_factor=5, scale_factor=0.7), dict( type="Albumentation", transforms=[ dict(type="HueSaturationValue", p=0.7), dict(type="GaussianBlur", p=0.3), dict(type="MotionBlur", p=0.3), dict(type="ColorJitter", p=0.4), dict(type="GaussNoise", p=0.1), dict(type="JpegCompression", p=0.6, quality_lower=80), dict(type="RandomFog", p=0.1), dict(type="RandomRain", p=0.1), ], ), dict(type='TopDownAffine', use_udp=True), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='TopDownGenerateTarget', sigma=3, encoding='UDP', target_type=target_type), dict( type='Collect', keys=['img', 'target', 'target_weight'], meta_keys=[ 'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'bbox', 'rotation', 'bbox_score', 'flip_pairs' ]), ] val_pipeline = [ dict(type='LoadImageFromFile'),# channel_order='bgr'), dict(type='TopDownAffine', use_udp=True), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='TopDownGenerateTarget', sigma=3, encoding='UDP', target_type=target_type), dict( type='Collect', keys=['img', "target", "target_weight"], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'bbox', 'flip_pairs' ]), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='TopDownAffine', use_udp=True), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'center', 'scale', 'rotation', 'bbox_score', 'flip_pairs' ]), ] data_root = '/root/share/tf/dataset/final_localization/corners_1.0' data = dict( samples_per_gpu=4, workers_per_gpu=1, val_dataloader=dict(samples_per_gpu=1), test_dataloader=dict(samples_per_gpu=1), train=dict( type='TopDownChargerDataset', ann_dir=f'{data_root}/annotations/', img_prefix=f'{data_root}/images/', data_cfg=data_cfg, pipeline=train_pipeline, dataset_info={{_base_.dataset_info}}), val=dict( type='TopDownChargerDataset', ann_dir=f'{data_root}/val/annotations/', img_prefix=f'{data_root}/val/images/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), test=dict( type='TopDownChargerDataset', ann_dir=f'{data_root}/val/annotations/', img_prefix=f'{data_root}/val/images/', data_cfg=data_cfg, pipeline=val_pipeline, dataset_info={{_base_.dataset_info}}), )
the-stack_0_24962
#!/usr/bin/env python """ _WorkQueue_t_ WorkQueue tests """ from __future__ import print_function import os import threading import time import unittest import logging from retry import retry from WMCore.WMBase import getTestBase from WMCore.ACDC.DataCollectionService import DataCollectionService from WMCore.Configuration import Configuration from WMCore.DAOFactory import DAOFactory from WMCore.DataStructs.File import File as WMFile from WMCore.DataStructs.Run import Run from WMCore.Lexicon import sanitizeURL from WMCore.ResourceControl.ResourceControl import ResourceControl from WMCore.Services.DBS.DBSErrors import DBSReaderError from WMCore.Services.UUIDLib import makeUUID from WMCore.Services.WorkQueue.WorkQueue import WorkQueue as WorkQueueService from WMCore.WMBS.Job import Job from WMCore.WMSpec.StdSpecs.DQMHarvest import DQMHarvestWorkloadFactory from WMCore.WMSpec.StdSpecs.StepChain import StepChainWorkloadFactory from WMCore.WMSpec.StdSpecs.ReReco import ReRecoWorkloadFactory from WMCore.WMSpec.WMWorkload import WMWorkload, WMWorkloadHelper from WMCore.WorkQueue.WorkQueue import WorkQueue, globalQueue, localQueue from WMCore.WorkQueue.WorkQueueExceptions import (WorkQueueWMSpecError, WorkQueueNoMatchingElements, WorkQueueNoWorkError) from WMCore.WorkQueue.DataStructs.WorkQueueElement import STATES from WMQuality.Emulators import EmulatorSetup from WMQuality.Emulators.DataBlockGenerator import Globals from WMQuality.Emulators.PhEDExClient.MockPhEDExApi import PILEUP_DATASET from WMQuality.Emulators.WMSpecGenerator.WMSpecGenerator import createConfig from WMCore_t.WMSpec_t.samples.MultiTaskProductionWorkload \ import workload as MultiTaskProductionWorkload from WMCore_t.WorkQueue_t.WorkQueueTestCase import WorkQueueTestCase NBLOCKS_HICOMM = 47 NFILES_HICOMM = 72 NBLOCKS_COSMIC = 58 NFILES_COSMIC = 108 NFILES_COSMICRAW = 141 TOTAL_EVENTS=10000 def rerecoWorkload(workloadName, arguments, assignArgs=None): factory = ReRecoWorkloadFactory() wmspec = factory.factoryWorkloadConstruction(workloadName, arguments) if assignArgs: args = factory.getAssignTestArguments() args.update(assignArgs) wmspec.updateArguments(args) return wmspec def stepchainWorkload(workloadName, arguments): factory = StepChainWorkloadFactory() wmspec = factory.factoryWorkloadConstruction(workloadName, arguments) return wmspec def getFirstTask(wmspec): """Return the 1st top level task""" return next(wmspec.taskIterator()) def syncQueues(queue, skipWMBS=False): """Sync parent & local queues and split work Workaround having to wait for couchdb replication and splitting polling """ queue.backend.forceQueueSync() time.sleep(2) work = queue.processInboundWork() queue.performQueueCleanupActions(skipWMBS=skipWMBS) queue.backend.forceQueueSync() # after replication need to wait a while to update result time.sleep(2) return work class WorkQueueTest(WorkQueueTestCase): """ _WorkQueueTest_ For /MinimumBias/ComissioningHI-v1/RAW the dataset has 47 blocks with 72 files. The PhEDEx emulator sets the block locations like: 17 at 'T2_XX_SiteA', 'T2_XX_SiteB', 'T2_XX_SiteC' 19 at 'T2_XX_SiteA', 'T2_XX_SiteB' 11 at 'T2_XX_SiteA' only """ def __init__(self, methodName='runTest'): super(WorkQueueTest, self).__init__(methodName=methodName, mockDBS=True, mockPhEDEx=True) def setupConfigCacheAndAgrs(self): self.rerecoArgs = ReRecoWorkloadFactory.getTestArguments() self.rerecoArgs["CouchDBName"] = self.configCacheDB self.rerecoArgs["ConfigCacheID"] = createConfig(self.rerecoArgs["CouchDBName"]) self.mcArgs = StepChainWorkloadFactory.getTestArguments() self.mcArgs["CouchDBName"] = self.configCacheDB self.mcArgs['Step1']["ConfigCacheID"] = createConfig(self.mcArgs["CouchDBName"]) self.parentProcArgs = ReRecoWorkloadFactory.getTestArguments() self.parentProcArgs.update(IncludeParents="True") self.parentProcArgs.update(InputDataset="/Cosmics/ComissioningHI-PromptReco-v1/RECO") self.parentProcArgs["CouchDBName"] = self.configCacheDB self.parentProcArgs["ConfigCacheID"] = createConfig(self.parentProcArgs["CouchDBName"]) self.openRunningProcArgs = ReRecoWorkloadFactory.getTestArguments() self.openRunningProcArgs.update(OpenRunningTimeout=10) self.openRunningProcArgs["CouchDBName"] = self.configCacheDB self.openRunningProcArgs["ConfigCacheID"] = createConfig(self.openRunningProcArgs["CouchDBName"]) self.pileupArgs = StepChainWorkloadFactory.getTestArguments() self.pileupArgs['Step1'].update(MCPileup=PILEUP_DATASET) self.pileupArgs['Step1'].update(InputDataset="/MinimumBias/ComissioningHI-v1/RAW", RequestNumEvents=TOTAL_EVENTS, SplittingAlgo="EventAwareLumiBased") self.pileupArgs["CouchDBName"] = self.configCacheDB self.pileupArgs['Step1']["ConfigCacheID"] = createConfig(self.pileupArgs["CouchDBName"]) self.pileupMcArgs = StepChainWorkloadFactory.getTestArguments() self.pileupMcArgs['Step1'].update(MCPileup=PILEUP_DATASET) self.pileupArgs['Step1'].update(RequestNumEvents=TOTAL_EVENTS) self.pileupMcArgs["CouchDBName"] = self.configCacheDB self.pileupMcArgs['Step1']["ConfigCacheID"] = createConfig(self.pileupMcArgs["CouchDBName"]) def setUp(self): """ If we dont have a wmspec file create one """ # undo any customizations Globals.GlobalParams.resetParams() # set up WMAgent config file for couchdb self.configFile = EmulatorSetup.setupWMAgentConfig() WorkQueueTestCase.setUp(self) self.setupConfigCacheAndAgrs() # Basic production Spec self.spec = stepchainWorkload('testProduction', self.mcArgs) self.spec.setSiteWhitelist(['T2_XX_SiteA', 'T2_XX_SiteB']) getFirstTask(self.spec).addProduction(totalEvents=TOTAL_EVENTS) self.spec.setSpecUrl(os.path.join(self.workDir, 'testworkflow.spec')) self.spec.save(self.spec.specUrl()) # Production spec plus pileup self.productionPileupSpec = stepchainWorkload('testProduction', self.pileupMcArgs) self.productionPileupSpec.setSiteWhitelist(['T2_XX_SiteA', 'T2_XX_SiteB']) getFirstTask(self.productionPileupSpec).addProduction(totalEvents=TOTAL_EVENTS) self.productionPileupSpec.setSpecUrl(os.path.join(self.workDir, 'testworkflowPileupMc.spec')) self.productionPileupSpec.save(self.productionPileupSpec.specUrl()) # Processing spec plus pileup self.processingPileupSpec = stepchainWorkload('testProcessing', self.pileupArgs) self.processingPileupSpec.setSiteWhitelist(['T2_XX_SiteA', 'T2_XX_SiteB', 'T2_XX_SiteC']) getFirstTask(self.processingPileupSpec).addProduction(totalEvents=TOTAL_EVENTS) self.processingPileupSpec.setSpecUrl(os.path.join(self.workDir, 'testworkflowPileup.spec')) self.processingPileupSpec.save(self.processingPileupSpec.specUrl()) # ReReco spec with whitelist self.whitelistSpec = rerecoWorkload('whitelistlistSpec', self.rerecoArgs) self.whitelistSpec.setSpecUrl(os.path.join(self.workDir, 'testWhitelist.spec')) getFirstTask(self.whitelistSpec).data.constraints.sites.whitelist = ['T2_XX_SiteB'] self.whitelistSpec.save(self.whitelistSpec.specUrl()) # ReReco spec with delay for running open self.openRunningSpec = rerecoWorkload('openRunningSpec', self.openRunningProcArgs) self.openRunningSpec.setSpecUrl(os.path.join(self.workDir, 'testOpenRunningSpec.spec')) self.openRunningSpec.save(self.openRunningSpec.specUrl()) # Create queues globalCouchUrl = "%s/%s" % (self.testInit.couchUrl, self.globalQDB) logdbCouchUrl = "%s/%s" % (self.testInit.couchUrl, self.logDBName) reqdbUrl = "%s/%s" % (self.testInit.couchUrl, self.requestDBName) self.globalQueue = globalQueue(DbName=self.globalQDB, InboxDbName=self.globalQInboxDB, QueueURL=globalCouchUrl, central_logdb_url=logdbCouchUrl, log_reporter="WorkQueue_Unittest", UnittestFlag=True, RequestDBURL=reqdbUrl) # self.midQueue = WorkQueue(SplitByBlock = False, # mid-level queue # PopulateFilesets = False, # ParentQueue = self.globalQueue, # CacheDir = None) # ignore mid queue as it causes database duplication's # copy jobStateMachine couchDB configuration here since we don't want/need to pass whole configuration jobCouchConfig = Configuration() jobCouchConfig.section_("JobStateMachine") jobCouchConfig.JobStateMachine.couchurl = os.environ["COUCHURL"] jobCouchConfig.JobStateMachine.couchDBName = "testcouchdb" jobCouchConfig.JobStateMachine.jobSummaryDBName = "wmagent_summary_test" jobCouchConfig.JobStateMachine.summaryStatsDBName = "stat_summary_test" # copy bossAir configuration here since we don't want/need to pass whole configuration bossAirConfig = Configuration() bossAirConfig.section_("BossAir") bossAirConfig.BossAir.pluginDir = "WMCore.BossAir.Plugins" bossAirConfig.BossAir.pluginNames = ["MockPlugin"] bossAirConfig.BossAir.section_("MockPlugin") bossAirConfig.BossAir.MockPlugin.fakeReport = os.path.join(getTestBase(), 'WMComponent_t/JobAccountant_t/fwjrs', "MergeSuccess.pkl") bossAirConfig.section_("Agent") bossAirConfig.Agent.agentName = "TestAgent" bossAirConfig.section_("JobStateMachine") bossAirConfig.JobStateMachine.couchurl = os.environ["COUCHURL"] bossAirConfig.JobStateMachine.couchDBName = "testcouchdb" bossAirConfig.JobStateMachine.jobSummaryDBName = "wmagent_summary_test" bossAirConfig.JobStateMachine.summaryStatsDBName = "stat_summary_test" self.localQueue = localQueue(DbName=self.localQDB, InboxDbName=self.localQInboxDB, ParentQueueCouchUrl=globalCouchUrl, ParentQueueInboxCouchDBName=self.globalQInboxDB, JobDumpConfig=jobCouchConfig, BossAirConfig=bossAirConfig, CacheDir=self.workDir, central_logdb_url=logdbCouchUrl, log_reporter="WorkQueue_Unittest", RequestDBURL=reqdbUrl) self.localQueue2 = localQueue(DbName=self.localQDB2, InboxDbName=self.localQInboxDB2, ParentQueueCouchUrl=globalCouchUrl, ParentQueueInboxCouchDBName=self.globalQInboxDB, JobDumpConfig=jobCouchConfig, BossAirConfig=bossAirConfig, CacheDir=self.workDir, central_logdb_url=logdbCouchUrl, log_reporter="WorkQueue_Unittest", RequestDBURL=reqdbUrl) # configuration for the Alerts messaging framework, work (alerts) and # control channel addresses to which alerts # these are destination addresses where AlertProcessor:Receiver listens config = Configuration() config.section_("Alert") config.Alert.address = "tcp://127.0.0.1:5557" config.Alert.controlAddr = "tcp://127.0.0.1:5559" # standalone queue for unit tests self.queue = WorkQueue(JobDumpConfig=jobCouchConfig, BossAirConfig=bossAirConfig, DbName=self.queueDB, InboxDbName=self.queueInboxDB, CacheDir=self.workDir, config=config, central_logdb_url=logdbCouchUrl, log_reporter="WorkQueue_Unittest", RequestDBURL=reqdbUrl) # create relevant sites in wmbs rc = ResourceControl() site_se_mapping = {'T2_XX_SiteA': 'T2_XX_SiteA', 'T2_XX_SiteB': 'T2_XX_SiteB'} for site, se in site_se_mapping.iteritems(): rc.insertSite(site, 100, 200, se, cmsName=site, plugin="MockPlugin") daofactory = DAOFactory(package="WMCore.WMBS", logger=threading.currentThread().logger, dbinterface=threading.currentThread().dbi) addLocation = daofactory(classname="Locations.New") addLocation.execute(siteName=site, pnn=se) def setupReReco(self, assignArgs=None, **kwargs): # Sample Tier1 ReReco spec self.rerecoArgs.update(kwargs) processingSpec = rerecoWorkload('testProcessing', self.rerecoArgs, assignArgs=assignArgs) processingSpec.setSpecUrl(os.path.join(self.workDir, 'testProcessing.spec')) processingSpec.save(processingSpec.specUrl()) return processingSpec def setupParentProcSpec(self, assignArgs=None, **kwargs): # Sample Tier1 ReReco spec with parent self.parentProcArgs.update(kwargs) parentProcSpec = rerecoWorkload('testParentProcessing', self.parentProcArgs, assignArgs=assignArgs) parentProcSpec.setSpecUrl(os.path.join(self.workDir, 'testParentProcessing.spec')) parentProcSpec.save(parentProcSpec.specUrl()) return parentProcSpec def setupHighPrioReReco(self, assignArgs=None, **kwargs): # High priority ReReco spec self.rerecoArgs.update(kwargs) highPrioReReco = rerecoWorkload('highPrioSpec', self.rerecoArgs, assignArgs=assignArgs) highPrioReReco.data.request.priority = 999998 highPrioReReco.setSpecUrl(os.path.join(self.workDir, 'highPrioSpec.spec')) highPrioReReco.save(highPrioReReco.specUrl()) return highPrioReReco def tearDown(self): """tearDown""" super(WorkQueueTest, self).tearDown() # Delete WMBSAgent config file EmulatorSetup.deleteConfig(self.configFile) def createWQReplication(self, parentQURL, childURL): wqfilter = 'WorkQueue/queueFilter' query_params = {'childUrl': childURL, 'parentUrl': sanitizeURL(parentQURL)['url']} localQInboxURL = "%s_inbox" % childURL replicatorDocs = [] replicatorDocs.append({'source': sanitizeURL(parentQURL)['url'], 'target': localQInboxURL, 'filter': wqfilter, 'query_params': query_params}) replicatorDocs.append({'source': sanitizeURL(localQInboxURL)['url'], 'target': parentQURL, 'filter': wqfilter, 'query_params': query_params}) for rp in replicatorDocs: self.localCouchMonitor.couchServer.replicate( rp['source'], rp['target'], filter=rp['filter'], query_params=rp.get('query_params', False), continuous=False) return def pullWorkWithReplication(self, localQ, resources): localQ.pullWork(resources) self.createWQReplication(localQ.params['ParentQueueCouchUrl'], localQ.params['QueueURL']) def createResubmitSpec(self, serverUrl, couchDB, parentage=False): """ _createResubmitSpec_ Create a bogus resubmit workload. """ site = ["T1_US_FNAL"] workload = WMWorkloadHelper(WMWorkload("TestWorkload")) reco = workload.newTask("reco") workload.setOwnerDetails(name="evansde77", group="DMWM") workload.setSiteWhitelist(site) # first task uses the input dataset reco.addInputDataset(name="/PRIMARY/processed-v1/TIERONE", primary="PRIMARY", processed="processed-v1", tier="TIERONE") reco.data.input.splitting.algorithm = "File" reco.data.input.splitting.include_parents = parentage reco.setTaskType("Processing") cmsRunReco = reco.makeStep("cmsRun1") cmsRunReco.setStepType("CMSSW") reco.applyTemplates() cmsRunRecoHelper = cmsRunReco.getTypeHelper() cmsRunRecoHelper.addOutputModule("outputRECO", primaryDataset="PRIMARY", processedDataset="processed-v2", dataTier="TIERTWO", lfnBase="/store/dunkindonuts", mergedLFNBase="/store/kfc") workload.setTrustLocationFlag(inputFlag=True, pileupFlag=False) dcs = DataCollectionService(url=serverUrl, database=couchDB) def getJob(workload): job = Job() job["task"] = workload.getTask("reco").getPathName() job["workflow"] = workload.name() job["location"] = site job["owner"] = workload.getOwner().get("name") job["group"] = workload.getOwner().get("group") return job testFileA = WMFile(lfn=makeUUID(), size=1024, events=1024, parents=['parent1']) testFileA.setLocation(site) testFileA.addRun(Run(1, 1, 2)) testFileB = WMFile(lfn=makeUUID(), size=1024, events=1024, parents=['parent2']) testFileB.setLocation(site) testFileB.addRun(Run(1, 3, 4)) testJobA = getJob(workload) testJobA.addFile(testFileA) testJobA.addFile(testFileB) dcs.failedJobs([testJobA]) topLevelTask = workload.getTopLevelTask()[0] workload.truncate("Resubmit_TestWorkload", topLevelTask.getPathName(), serverUrl, couchDB) return workload def testProduction(self): """ Enqueue and get work for a production WMSpec. """ specfile = self.spec.specUrl() numUnit = 1 jobSlot = [10] * numUnit # array of jobs per block total = sum(jobSlot) for _ in range(numUnit): self.queue.queueWork(specfile) self.assertEqual(numUnit, len(self.queue)) # try to get work work = self.queue.getWork({'SiteDoesNotExist': jobSlot[0]}, {}) self.assertEqual([], work) # not in whitelist work = self.queue.getWork({'T2_XX_SiteA': 0}, {}) self.assertEqual([], work) work = self.queue.getWork({'T2_XX_SiteA': jobSlot[0]}, {}) self.assertEqual(len(work), 1) # no more work available self.assertEqual(0, len(self.queue.getWork({'T2_XX_SiteA': total}, {}))) def testProductionMultiQueue(self): """Test production with multiple queueus""" specfile = self.spec.specUrl() numUnit = 1 jobSlot = [10] * numUnit # array of jobs per block total = sum(jobSlot) self.globalQueue.queueWork(specfile) self.assertEqual(numUnit, len(self.globalQueue)) # pull work to localQueue2 - check local doesn't get any numWork = self.localQueue2.pullWork({'T2_XX_SiteA': total}) self.assertEqual(numUnit, numWork) self.assertEqual(0, self.localQueue.pullWork({'T2_XX_SiteA': total})) syncQueues(self.localQueue) syncQueues(self.localQueue2) self.assertEqual(0, len(self.localQueue.status(status='Available'))) self.assertEqual(numUnit, len(self.localQueue2.status(status='Available'))) self.assertEqual(numUnit, len(self.globalQueue.status(status='Acquired'))) self.assertEqual(sanitizeURL(self.localQueue2.params['QueueURL'])['url'], self.globalQueue.status()[0]['ChildQueueUrl']) def testPriority(self): """ Test priority change functionality """ jobSlot = 10 totalSlices = 1 self.queue.queueWork(self.spec.specUrl()) self.queue.processInboundWork() # priority change self.queue.setPriority(50, self.spec.name()) # test elements are now cancelled self.assertEqual([x['Priority'] for x in self.queue.status(RequestName=self.spec.name())], [50] * totalSlices) self.assertRaises(RuntimeError, self.queue.setPriority, 50, 'blahhhhh') # claim all work work = self.queue.getWork({'T2_XX_SiteA': jobSlot}, {}) self.assertEqual(len(work), totalSlices) # no more work available self.assertEqual(0, len(self.queue.getWork({'T2_XX_SiteA': jobSlot}, {}))) def testProcessing(self): """ Enqueue and get work for a processing WMSpec. """ processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB", "T2_XX_SiteC"]}) specfile = processingSpec.specUrl() # Queue Work & check accepted self.queue.queueWork(specfile) self.queue.processInboundWork() self.assertEqual(NBLOCKS_HICOMM, len(self.queue)) self.queue.updateLocationInfo() # No resources work = self.queue.getWork({}, {}) self.assertEqual(len(work), 0) work = self.queue.getWork({'T2_XX_SiteA': 0, 'T2_XX_SiteB': 0}, {}) self.assertEqual(len(work), 0) # Get the first bit of work available at site C work = self.queue.getWork({'T2_XX_SiteC': 1}, {}) self.assertEqual(len(work), 1) # Double check A processedBlocks = len(work) processedFiles = work[0]["NumOfFilesAdded"] # Get the rest the of work available at site C work = self.queue.getWork({'T2_XX_SiteC': 1000}, {}) processedBlocks += len(work) for element in work: processedFiles += element["NumOfFilesAdded"] self.assertEqual(processedBlocks, 17) self.assertEqual(processedFiles, 22) # Get the rest the of work available at site B work = self.queue.getWork({'T2_XX_SiteB': 1000}, {}) processedBlocks += len(work) for element in work: processedFiles += element["NumOfFilesAdded"] self.assertEqual(processedBlocks, 17 + 19) self.assertEqual(processedFiles, 22 + 35) # Make sure no work left for B or C work = self.queue.getWork({'T2_XX_SiteB': 1000, 'T2_XX_SiteC': 1000}, {}) self.assertEqual(len(work), 0) # Make sure we get all the work when we include A work = self.queue.getWork({'T2_XX_SiteA': 1000}, {}) processedBlocks += len(work) for element in work: processedFiles += element["NumOfFilesAdded"] self.assertEqual(processedBlocks, NBLOCKS_HICOMM) self.assertEqual(processedFiles, NFILES_HICOMM) # Make sure no remaining work work = self.queue.getWork({'T2_XX_SiteA': 1000, 'T2_XX_SiteB': 1000}, {}) self.assertEqual(len(work), 0) # no more work available def testBlackList(self): """ Black list functionality """ blacklistSpec = self.setupReReco(assignArgs={'SiteWhitelist':["T2_XX_SiteB"], 'SiteBlacklist': ["T2_XX_SiteA"]}) specfile = blacklistSpec.specUrl() # Queue Work & check accepted self.queue.queueWork(specfile) self.queue.processInboundWork() self.assertEqual(NBLOCKS_HICOMM, len(self.queue)) self.queue.updateLocationInfo() # T2_XX_SiteA is in blacklist, no work pulled work = self.queue.getWork({'T2_XX_SiteA': 1000}, {}) self.assertEqual(len(work), 0) # T2_XX_SiteB can run most blocks work = self.queue.getWork({'T2_XX_SiteB': 1000}, {}) self.assertEqual(len(work), 17 + 19) def testWhiteList(self): """ White list functionality """ specfile = self.whitelistSpec.specUrl() # Queue Work & check accepted self.queue.queueWork(specfile) self.queue.processInboundWork() self.assertEqual(NBLOCKS_HICOMM, len(self.queue)) self.queue.updateLocationInfo() # Only SiteB in whitelist work = self.queue.getWork({'T2_XX_SiteA': 1000}, {}) self.assertEqual(len(work), 0) # Site B can run work = self.queue.getWork({'T2_XX_SiteB': 1000, 'T2_XX_SiteAA': 1000}, {}) self.assertEqual(len(work), 17 + 19) def testQueueChaining(self): """ Chain WorkQueues, pull work down and verify splitting """ self.assertEqual(0, len(self.globalQueue)) # check no work in local queue self.assertEqual(0, len(self.localQueue.getWork({'T2_XX_SiteA': 1000}, {}))) # Add work to top most queue processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteD"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue)) # check work isn't passed down to site without subscription self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteD': 1000}), 0) # put at correct site self.globalQueue.updateLocationInfo() # check work isn't passed down to the wrong agent work = self.localQueue.getWork({'T2_XX_SiteD': 1000}, {}) # Not in subscription self.assertEqual(0, len(work)) self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue)) # pull work down to the lowest queue self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1000}), NBLOCKS_HICOMM) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue), NBLOCKS_HICOMM) self.localQueue.updateLocationInfo() work = self.localQueue.getWork({'T2_XX_SiteA': 1000}, {}) self.assertEqual(0, len(self.localQueue)) self.assertEqual(NBLOCKS_HICOMM, len(work)) # check work in local and subscription made for x in work: self.assertTrue(x['SubscriptionId'] > 0) for x in self.localQueue.status(): self.assertTrue(x['SubscriptionId'] > 0) # mark work done & check this passes upto the top level self.localQueue.setStatus('Done', [x.id for x in work]) def testQueueChainingStatusUpdates(self): """Chain workQueues, pass work down and verify lifecycle""" self.assertEqual(0, len(self.globalQueue)) self.assertEqual(0, len(self.localQueue.getWork({'T2_XX_SiteA': 1000}, {}))) # Add work to top most queue processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteD"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.globalQueue.processInboundWork() self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue)) # pull to local queue self.globalQueue.updateLocationInfo() self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1000}), NBLOCKS_HICOMM) syncQueues(self.localQueue) # Tell parent local has acquired self.assertEqual(len(self.globalQueue.status('Acquired')), NBLOCKS_HICOMM) self.assertEqual(len(self.localQueue.status('Available')), NBLOCKS_HICOMM) # run work self.globalQueue.updateLocationInfo() work = self.localQueue.getWork({'T2_XX_SiteA': 1000}, {}) self.assertEqual(len(work), NBLOCKS_HICOMM) # resend info syncQueues(self.localQueue) self.assertEqual(len(self.globalQueue.status('Running')), NBLOCKS_HICOMM) self.assertEqual(len(self.localQueue.status('Running')), NBLOCKS_HICOMM) # finish work locally and propagate to global self.localQueue.doneWork([x.id for x in work]) # just update the elements but not using the result for x in work: self.localQueue.backend.updateElements(x.id, PercentComplete=100, PercentSuccess=99) elements = self.localQueue.status('Done') self.assertEqual(len(elements), len(work)) self.assertEqual([x['PercentComplete'] for x in elements], [100] * len(work)) self.assertEqual([x['PercentSuccess'] for x in elements], [99] * len(work)) syncQueues(self.localQueue, skipWMBS=True) elements = self.globalQueue.status('Done') self.assertEqual(len(elements), NBLOCKS_HICOMM) self.assertEqual([x['PercentComplete'] for x in elements], [100] * NBLOCKS_HICOMM) self.assertEqual([x['PercentSuccess'] for x in elements], [99] * NBLOCKS_HICOMM) self.globalQueue.performQueueCleanupActions() # gq still has 2 elements since elements won't be cleaned up untill requset status updated self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue.status())) elements = self.globalQueue.backend.getInboxElements('Done') self.assertEqual(len(elements), 1) self.assertEqual([x['PercentComplete'] for x in elements], [100]) self.assertEqual([x['PercentSuccess'] for x in elements], [99]) def testMultiTaskProduction(self): """ Test Multi top level task production spec. multiTaskProduction spec consist 2 top level tasks each task has event size 1000 and 2000 respectfully """ # TODO: needs more rigorous test on each element per task # Basic production Spec spec = MultiTaskProductionWorkload for task in spec.taskIterator(): delattr(task.steps().data.application.configuration, 'configCacheUrl') spec.setSpecUrl(os.path.join(self.workDir, 'multiTaskProduction.spec')) spec.setOwnerDetails("evansde77", "DMWM", {'dn': 'MyDN'}) spec.save(spec.specUrl()) specfile = spec.specUrl() numElements = 3 njobs = [10] * numElements # array of jobs per block total = sum(njobs) # Queue Work &njobs check accepted self.queue.queueWork(specfile) self.assertEqual(2, len(self.queue)) # try to get work work = self.queue.getWork({'T2_XX_SiteA': 0}, {}) self.assertEqual([], work) # check individual task whitelists obeyed when getting work work = self.queue.getWork({'T2_XX_SiteA': total}, {}) self.assertEqual(len(work), 1) work2 = self.queue.getWork({'T2_XX_SiteB': total}, {}) self.assertEqual(len(work2), 1) work.extend(work2) self.assertEqual(len(work), 2) self.assertEqual(sum([x['Jobs'] for x in self.queue.status(status='Running')]), total) # check we have all tasks and no extra/missing ones for task in spec.taskIterator(): # note: order of elements in work is undefined (both inserted simultaneously) element = [x for x in work if x['Subscription']['workflow'].task == task.getPathName()] if not element: self.fail("Top level task %s not in wmbs" % task.getPathName()) element = element[0] # check restrictions - only whitelist for now whitelist = element['Subscription'].getWhiteBlackList() whitelist = [x['site_name'] for x in whitelist if x['valid'] == 1] self.assertEqual(sorted(task.siteWhitelist()), sorted(whitelist)) # no more work available self.assertEqual(0, len(self.queue.getWork({'T2_XX_SiteA': total, 'T2_XX_SiteB': total}, {}))) try: os.unlink(specfile) except OSError: pass def testTeams(self): """ Team behaviour """ specfile = self.spec.specUrl() self.globalQueue.queueWork(specfile, team='The A-Team') self.globalQueue.processInboundWork() self.assertEqual(1, len(self.globalQueue)) slots = {'T2_XX_SiteA': 1000, 'T2_XX_SiteB': 1000} # Can't get work for wrong team self.localQueue.params['Team'] = 'other' self.assertEqual(self.localQueue.pullWork(slots), 0) # and with correct team name self.localQueue.params['Team'] = 'The A-Team' self.assertEqual(self.localQueue.pullWork(slots), 1) syncQueues(self.localQueue) # when work leaves the queue in the agent it doesn't care about teams self.localQueue.params['Team'] = 'other' self.assertEqual(len(self.localQueue.getWork(slots, {})), 1) self.assertEqual(0, len(self.globalQueue)) def testSplittingLargeInputs(self): """ _testSplittingLargeInputs_ Check that we can split large inputs and store the processed inputs in the inbox element correctly. """ processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA"]}) self.globalQueue.queueWork(processingSpec.specUrl()) inboxElement = self.globalQueue.backend.getInboxElements(elementIDs=[processingSpec.name()]) self.assertEqual(len(inboxElement[0]['ProcessedInputs']), NBLOCKS_HICOMM) return def testGlobalBlockSplitting(self): """Block splitting at global level""" # force global queue to split work on block self.globalQueue.params['SplittingMapping']['DatasetBlock']['name'] = 'Block' self.globalQueue.params['SplittingMapping']['Block']['name'] = 'Block' self.globalQueue.params['SplittingMapping']['Dataset']['name'] = 'Block' # queue work, globally for block, pass down, report back -> complete totalSpec = 1 totalBlocks = totalSpec * NBLOCKS_HICOMM self.assertEqual(0, len(self.globalQueue)) for _ in range(totalSpec): processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.globalQueue.processInboundWork() self.assertEqual(totalBlocks, len(self.globalQueue)) # both blocks in global belong to same parent, but have different inputs status = self.globalQueue.status() self.assertEqual(status[0]['ParentQueueId'], status[1]['ParentQueueId']) self.assertNotEqual(status[0]['Inputs'], status[1]['Inputs']) # pull to local # location info should already be added # self.globalQueue.updateLocationInfo() self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1000}), totalBlocks) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.status(status='Available')), totalBlocks) # 2 in local # self.localQueue.updateLocationInfo() work = self.localQueue.getWork({'T2_XX_SiteA': 1000, 'T2_XX_SiteB': 1000}, {}) self.assertEqual(len(work), totalBlocks) # both refer to same wmspec self.assertEqual(work[0]['RequestName'], work[1]['RequestName']) self.localQueue.doneWork([str(x.id) for x in work]) # elements in local deleted at end of update, only global ones left self.assertEqual(len(self.localQueue.status(status='Done')), totalBlocks) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.status(status='Done')), totalBlocks) self.assertEqual(len(self.globalQueue.status(status='Done')), totalBlocks) def testGlobalDatasetSplitting(self): """Dataset splitting at global level""" dqmHarvArgs = DQMHarvestWorkloadFactory.getTestArguments() dqmHarvArgs["DQMConfigCacheID"] = createConfig(dqmHarvArgs["CouchDBName"]) factory = DQMHarvestWorkloadFactory() dqmWorkload = factory.factoryWorkloadConstruction('dqmTest', dqmHarvArgs) dqmWorkload.setSpecUrl((os.path.join(self.workDir, 'dqmTest.spec'))) dqmWorkload.setSiteWhitelist('T2_XX_SiteA') dqmWorkload.setTrustLocationFlag() dqmWorkload.save(dqmWorkload.specUrl()) # force global queue to split work on Dataset self.globalQueue.params['SplittingMapping']['DatasetBlock']['name'] = 'Dataset' self.globalQueue.params['SplittingMapping']['Block']['name'] = 'Dataset' self.globalQueue.params['SplittingMapping']['Dataset']['name'] = 'Dataset' # queue work, globally for block, pass down, report back -> complete totalSpec = 1 dummyTotalBlocks = totalSpec * NBLOCKS_HICOMM self.assertEqual(0, len(self.globalQueue)) for _ in range(totalSpec): self.globalQueue.queueWork(dqmWorkload.specUrl()) self.globalQueue.processInboundWork() self.assertEqual(totalSpec, len(self.globalQueue)) # pull to local # self.globalQueue.updateLocationInfo() self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1000}), totalSpec) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.status(status='Available')), totalSpec) self.localQueue.updateLocationInfo() work = self.localQueue.getWork({'T2_XX_SiteA': 1000}, {}) self.assertEqual(len(work), 0) self.localQueue.doneWork([str(x.id) for x in work]) self.assertEqual(len(self.localQueue.status(status='Done')), totalSpec) syncQueues(self.localQueue) # elements are not deleted untill request status is changed self.assertEqual(len(self.localQueue.status(status='Done')), totalSpec) self.assertEqual(len(self.globalQueue.status(status='Done')), totalSpec) def testResetWork(self): """Reset work in global to different child queue""" # TODO: This test sometimes fails - i suspect a race condition (maybe conflict in couch) # Cancel code needs reworking so this will hopefully be fixed then totalBlocks = NBLOCKS_HICOMM processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.globalQueue.updateLocationInfo() self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1000}), totalBlocks) syncQueues(self.localQueue) work = self.localQueue.getWork({'T2_XX_SiteA': 1000, 'T2_XX_SiteB': 1000}, {}) self.assertEqual(len(work), totalBlocks) self.assertEqual(len(self.localQueue.status(status='Running')), totalBlocks) syncQueues(self.localQueue) self.assertEqual(len(self.globalQueue.status(status='Running')), totalBlocks) # Re-assign work in global self.globalQueue.resetWork([x.id for x in self.globalQueue.status(status='Running')]) # work should be canceled in local # TODO: Note the work in local will be orphaned but not canceled syncQueues(self.localQueue) work_at_local = [x for x in self.globalQueue.status(status='Running') \ if x['ChildQueueUrl'] == sanitizeURL(self.localQueue.params['QueueURL'])['url']] self.assertEqual(len(work_at_local), 0) # now 2nd queue calls and acquires work self.assertEqual(self.localQueue2.pullWork({'T2_XX_SiteA': 1000}), totalBlocks) syncQueues(self.localQueue2) # check work in global assigned to local2 self.assertEqual(len(self.localQueue2.status(status='Available')), totalBlocks) # work in local2 work_at_local2 = [x for x in self.globalQueue.status(status='Acquired') if x['ChildQueueUrl'] == sanitizeURL(self.localQueue2.params['QueueURL'])['url']] self.assertEqual(len(work_at_local2), totalBlocks) def testCancelWork(self): """Cancel work""" processingSpec = self.setupReReco(assignArgs={"SiteWhitelist":["T2_XX_SiteA", "T2_XX_SiteB"]}) self.queue.queueWork(processingSpec.specUrl()) elements = len(self.queue) self.queue.updateLocationInfo() self.assertEqual(len(self.queue.status()), NBLOCKS_HICOMM) work = self.queue.getWork({'T2_XX_SiteA': 1000, 'T2_XX_SiteB': 1000}, {}) self.assertEqual(len(self.queue), 0) self.assertEqual(len(self.queue.status(status='Running')), elements) ids = [x.id for x in work] self.assertEqual(len(ids), NBLOCKS_HICOMM) canceled = self.queue.cancelWork(ids) self.assertEqual(sorted(canceled), sorted(ids)) self.assertEqual(len(self.queue.status()), NBLOCKS_HICOMM) self.assertEqual(len(self.queue.status(status='Running')), NBLOCKS_HICOMM) self.assertEqual(len(self.queue.statusInbox(status='Canceled')), 1) # create a new request with one fake file self.queue.queueWork(self.spec.specUrl()) self.assertEqual(len(self.queue), 1) work = self.queue.getWork({'T2_XX_SiteA': 1000, 'T2_XX_SiteB': 1000}, {}) self.assertEqual(len(self.queue.status(status='Running')), len(self.queue.status())) ids = [x.id for x in work] canceled = self.queue.cancelWork(WorkflowName='testProduction') self.assertEqual(canceled, ids) self.assertEqual(len(self.queue), 0) def testCancelWorkGlobal(self): """Cancel work in global queue""" # queue to global & pull an element to local processingSpec = self.setupReReco(assignArgs= {'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 1) syncQueues(self.localQueue) # cancel in global and propagate to local service = WorkQueueService(self.localQueue.backend.parentCouchUrlWithAuth) service.cancelWorkflow(processingSpec.name()) # marked for cancel self.assertEqual(len(self.globalQueue.status(status='CancelRequested')), NBLOCKS_HICOMM) self.assertEqual(len(self.globalQueue.statusInbox(status='Acquired')), 1) # will cancel element left in global, one sent to local queue stays CancelRequested syncQueues(self.globalQueue) self.assertEqual(len(self.globalQueue.status(status='CancelRequested')), 1) self.assertEqual(len(self.globalQueue.status(status='Canceled')), NBLOCKS_HICOMM - 1) self.assertEqual(len(self.globalQueue.statusInbox(status='CancelRequested')), 1) # global parent stays CancelRequested till child queue cancels syncQueues(self.globalQueue) self.assertEqual(len(self.globalQueue.status(status='CancelRequested')), 1) self.assertEqual(len(self.globalQueue.status(status='Canceled')), NBLOCKS_HICOMM - 1) self.assertEqual(len(self.globalQueue.statusInbox(status='CancelRequested')), 1) # during sync local queue will synced with globalQueue but not gets deleted until workflow finished syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.statusInbox(status='Canceled')), 1) # inbox is synced self.assertEqual(len(self.globalQueue.status(status='Canceled')), NBLOCKS_HICOMM) self.assertEqual(len(self.globalQueue.statusInbox(status='CancelRequested')), 1) syncQueues(self.globalQueue) self.assertEqual(len(self.globalQueue.status(status='Canceled')), NBLOCKS_HICOMM) self.assertEqual(len(self.globalQueue.statusInbox(status='Canceled')), 1) syncQueues(self.localQueue) # local cancelded # self.assertEqual(len(self.localQueue.status(status='Canceled')), 1) # clear global self.globalQueue.deleteWorkflows(processingSpec.name()) self.assertEqual(len(self.globalQueue.statusInbox()), 0) ### check cancel of work negotiating in agent works self.globalQueue.queueWork(self.whitelistSpec.specUrl()) self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteB': 1}), 1) self.localQueue.backend.forceQueueSync() time.sleep(2) self.assertEqual(len(self.localQueue.statusInbox(status='Negotiating')), 1) # now cancel service.cancelWorkflow(self.whitelistSpec.name()) syncQueues(self.globalQueue) self.localQueue.backend.forceQueueSync() # pull in cancelation time.sleep(2) self.assertEqual(len(self.globalQueue.status(status='Canceled')), 2 * NBLOCKS_HICOMM - 1) self.assertEqual(len(self.localQueue.statusInbox(status='CancelRequested')), 1) syncQueues(self.localQueue, skipWMBS=True) self.assertEqual(len(self.localQueue.statusInbox(status='Canceled')), 2) syncQueues(self.localQueue) syncQueues(self.globalQueue) self.assertEqual(len(self.localQueue.statusInbox(WorkflowName=self.whitelistSpec.name())), 1) self.assertEqual(len(self.globalQueue.status(WorkflowName=self.whitelistSpec.name())), NBLOCKS_HICOMM) self.assertEqual(len(self.globalQueue.statusInbox(status='Canceled')), 1) # clear global self.globalQueue.deleteWorkflows(self.whitelistSpec.name()) self.assertEqual(len(self.globalQueue.statusInbox()), 0) def testInvalidSpecs(self): """Complain on invalid WMSpecs""" # request != workflow name self.assertRaises(WorkQueueWMSpecError, self.queue.queueWork, self.setupReReco().specUrl(), request='fail_this') # invalid white list mcspec = stepchainWorkload('testProductionInvalid', self.mcArgs) getFirstTask(mcspec).setSiteWhitelist('ThisIsInvalid') mcspec.setSpecUrl(os.path.join(self.workDir, 'testProductionInvalid.spec')) mcspec.save(mcspec.specUrl()) self.assertRaises(WorkQueueWMSpecError, self.queue.queueWork, mcspec.specUrl()) getFirstTask(mcspec).setSiteWhitelist(['T2_XX_SiteB']) self.queue.deleteWorkflows(mcspec.name()) # 0 events getFirstTask(mcspec).addProduction(totalEvents=0) getFirstTask(mcspec).setSiteWhitelist(['T2_XX_SiteB']) mcspec.save(mcspec.specUrl()) self.assertRaises(WorkQueueNoWorkError, self.queue.queueWork, mcspec.specUrl()) # no dataset processingSpec = rerecoWorkload('testProcessingInvalid', self.rerecoArgs) getFirstTask(processingSpec).setSiteWhitelist(['T2_XX_SiteB']) processingSpec.setSpecUrl(os.path.join(self.workDir, 'testProcessingInvalid.spec')) processingSpec.save(processingSpec.specUrl()) getFirstTask(processingSpec).data.input.dataset = None processingSpec.save(processingSpec.specUrl()) self.assertRaises(WorkQueueWMSpecError, self.queue.queueWork, processingSpec.specUrl()) # invalid dbs url processingSpec = rerecoWorkload('testProcessingInvalid', self.rerecoArgs) getFirstTask(processingSpec).setSiteWhitelist(['T2_XX_SiteB']) processingSpec.setSpecUrl(os.path.join(self.workDir, 'testProcessingInvalid.spec')) getFirstTask(processingSpec).data.input.dataset.dbsurl = 'wrongprot://dbs.example.com' processingSpec.save(processingSpec.specUrl()) self.assertRaises(WorkQueueWMSpecError, self.queue.queueWork, processingSpec.specUrl()) self.queue.deleteWorkflows(processingSpec.name()) # invalid dataset name processingSpec = rerecoWorkload('testProcessingInvalid', self.rerecoArgs) getFirstTask(processingSpec).setSiteWhitelist(['T2_XX_SiteB']) processingSpec.setSpecUrl(os.path.join(self.workDir, 'testProcessingInvalid.spec')) getFirstTask(processingSpec).data.input.dataset.name = '/MinimumBias/FAKE-Filter-v1/RECO' processingSpec.save(processingSpec.specUrl()) self.assertRaises(DBSReaderError, self.queue.queueWork, processingSpec.specUrl()) self.queue.deleteWorkflows(processingSpec.name()) # Cant have a slash in primary ds name - validation should fail getFirstTask(processingSpec).data.input.dataset.primary = 'a/b' processingSpec.save(processingSpec.specUrl()) self.assertRaises(DBSReaderError, self.queue.queueWork, processingSpec.specUrl()) self.queue.deleteWorkflows(processingSpec.name()) # dataset splitting with invalid run whitelist processingSpec = rerecoWorkload('testProcessingInvalid', self.rerecoArgs) getFirstTask(processingSpec).setSiteWhitelist(['T2_XX_SiteB']) processingSpec.setSpecUrl(os.path.join(self.workDir, 'testProcessingInvalid.spec')) processingSpec.setStartPolicy('Dataset') processingSpec.setRunWhitelist([666]) # not in this dataset processingSpec.save(processingSpec.specUrl()) self.assertRaises(DBSReaderError, self.queue.queueWork, processingSpec.specUrl()) self.queue.deleteWorkflows(processingSpec.name()) # block splitting with invalid run whitelist processingSpec = rerecoWorkload('testProcessingInvalid', self.rerecoArgs) getFirstTask(processingSpec).setSiteWhitelist(['T2_XX_SiteB']) processingSpec.setSpecUrl(os.path.join(self.workDir, 'testProcessingInvalid.spec')) processingSpec.setStartPolicy('Block') processingSpec.setRunWhitelist([666]) # not in this dataset processingSpec.save(processingSpec.specUrl()) self.assertRaises(DBSReaderError, self.queue.queueWork, processingSpec.specUrl()) self.queue.deleteWorkflows(processingSpec.name()) def testIgnoreDuplicates(self): """Ignore duplicate work""" specfile = self.spec.specUrl() self.globalQueue.queueWork(specfile) self.assertEqual(1, len(self.globalQueue)) # queue work again self.globalQueue.queueWork(specfile) self.assertEqual(1, len(self.globalQueue)) def testConflicts(self): """Resolve conflicts between global & local queue""" self.globalQueue.queueWork(self.spec.specUrl()) self.localQueue.pullWork({'T2_XX_SiteA': TOTAL_EVENTS}) self.localQueue.getWork({'T2_XX_SiteA': TOTAL_EVENTS}, {}) syncQueues(self.localQueue) global_ids = [x.id for x in self.globalQueue.status()] self.localQueue.backend.updateInboxElements(*global_ids, Status='Done', PercentComplete=69) self.globalQueue.backend.updateElements(*global_ids, Status='Canceled') self.localQueue.backend.forceQueueSync() time.sleep(2) self.assertForConflicts() @retry(AssertionError, tries=3, delay=10) def assertForConflicts(self): """ Make the assertions in a separate function so we can use retry """ global_ids = [x.id for x in self.globalQueue.status()] self.localQueue.backend.fixConflicts() self.localQueue.backend.forceQueueSync() time.sleep(2) self.assertEqual([x['Status'] for x in self.globalQueue.status(elementIDs=global_ids)], ['Canceled']) self.assertEqual([x['PercentComplete'] for x in self.globalQueue.status(elementIDs=global_ids)], [69]) self.assertEqual([x for x in self.localQueue.statusInbox()], [x for x in self.globalQueue.status()]) def testDeleteWork(self): """Delete finished work TODO: do emulate the reqmgr2 and change the status of request so actually request gets deleted when performCleanupAction is run. """ self.globalQueue.queueWork(self.spec.specUrl()) self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': TOTAL_EVENTS}), 1) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.getWork({'T2_XX_SiteA': TOTAL_EVENTS}, {})), 1) syncQueues(self.localQueue) self.localQueue.doneWork(WorkflowName=self.spec.name()) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.status(WorkflowName=self.spec.name())), 1) # not deleted until request status is updated self.assertEqual('Done', self.globalQueue.status(WorkflowName=self.spec.name())[0]['Status']) self.globalQueue.performQueueCleanupActions() self.assertEqual('Done', self.globalQueue.statusInbox(WorkflowName=self.spec.name())[0]['Status']) self.assertEqual(len(self.globalQueue.status(WorkflowName=self.spec.name())), 1) # not deleted until request status is update self.globalQueue.deleteWorkflows(self.spec.name()) self.assertEqual(len(self.globalQueue.statusInbox(WorkflowName=self.spec.name())), 0) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.statusInbox(WorkflowName=self.spec.name())), 1) # not deleted until request status is update def testResubmissionWorkflow(self): """Test workflow resubmission via ACDC""" acdcCouchDB = "workqueue_t_acdc" self.testInit.setupCouch(acdcCouchDB, "GroupUser", "ACDC") spec = self.createResubmitSpec(self.testInit.couchUrl, acdcCouchDB) spec.setSpecUrl(os.path.join(self.workDir, 'resubmissionWorkflow.spec')) spec.setSiteWhitelist('T1_US_FNAL') spec.save(spec.specUrl()) self.localQueue.params['Team'] = 'cmsdataops' self.globalQueue.queueWork(spec.specUrl(), "Resubmit_TestWorkload", team="cmsdataops") self.assertEqual(self.localQueue.pullWork({"T1_US_FNAL": 100}), 1) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.getWork({"T1_US_FNAL": 100}, {})), 1) def testResubmissionWithParentsWorkflow(self): """Test workflow resubmission with parentage via ACDC""" acdcCouchDB = "workqueue_t_acdc" self.testInit.setupCouch(acdcCouchDB, "GroupUser", "ACDC") spec = self.createResubmitSpec(self.testInit.couchUrl, acdcCouchDB, parentage=True) spec.setSpecUrl(os.path.join(self.workDir, 'resubmissionWorkflow.spec')) spec.setSiteWhitelist('T1_US_FNAL') spec.save(spec.specUrl()) self.localQueue.params['Team'] = 'cmsdataops' self.globalQueue.queueWork(spec.specUrl(), "Resubmit_TestWorkload", team="cmsdataops") self.localQueue.pullWork({"T1_US_FNAL": 100}) syncQueues(self.localQueue) self.localQueue.getWork({"T1_US_FNAL": 100}, {}) def testResubmissionWorkflowSiteWhitelistLocations(self): """ Test an ACDC workflow where we use the site whitelist as locations""" acdcCouchDB = "workqueue_t_acdc" self.testInit.setupCouch(acdcCouchDB, "GroupUser", "ACDC") spec = self.createResubmitSpec(self.testInit.couchUrl, acdcCouchDB) spec.setSpecUrl(os.path.join(self.workDir, 'resubmissionWorkflow.spec')) spec.setSiteWhitelist('T1_US_FNAL') spec.setTrustLocationFlag(inputFlag=True, pileupFlag=False) spec.save(spec.specUrl()) self.localQueue.params['Team'] = 'cmsdataops' self.globalQueue.queueWork(spec.specUrl(), "Resubmit_TestWorkload", team="cmsdataops") self.assertEqual(self.localQueue.pullWork({"T1_UK_RAL": 100}), 0) self.assertEqual(self.localQueue.pullWork({"T1_US_FNAL": 100}), 1) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.getWork({"T1_US_FNAL": 100}, {})), 1) def testThrottling(self): """Pull work only if all previous work processed in child""" processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue)) self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 1) # further pull will fail till we replicate to child # hopefully couch replication wont happen till we manually sync self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 0) self.assertEqual(NBLOCKS_HICOMM - 1, len(self.globalQueue)) self.assertEqual(0, len(self.localQueue)) syncQueues(self.localQueue) self.assertEqual(1, len(self.localQueue)) # pull works again self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 1) def testSitesFromResourceControl(self): """Test sites from resource control""" # Most tests pull work for specific sites (to give us control) # In reality site list will come from resource control so test # that here (just a simple check that we can get sites from rc) self.globalQueue.queueWork(self.spec.specUrl()) self.assertEqual(self.localQueue.pullWork(), 1) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.status()), 1) def testParentProcessing(self): """ Enqueue and get work for a processing WMSpec. """ parentProcSpec = self.setupParentProcSpec(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB"]}) specfile = parentProcSpec.specUrl() # Queue Work & check accepted self.queue.queueWork(specfile) self.queue.processInboundWork() self.assertEqual(NBLOCKS_COSMIC, len(self.queue)) self.queue.updateLocationInfo() # No resources work = self.queue.getWork({}, {}) self.assertEqual(len(work), 0) work = self.queue.getWork({'T2_XX_SiteA': 0, 'T2_XX_SiteB': 0}, {}) self.assertEqual(len(work), 0) # Get 1 work element when any resources free work = self.queue.getWork({'T2_XX_SiteB': 1}, {}) self.assertEqual(len(work), 1) processedFiles = work[0]["NumOfFilesAdded"] # claim remaining work work = self.queue.getWork({'T2_XX_SiteA': TOTAL_EVENTS, 'T2_XX_SiteB': TOTAL_EVENTS}, {}) self.assertEqual(len(work), NBLOCKS_COSMIC - 1) for element in work: processedFiles += element["NumOfFilesAdded"] self.assertEqual(processedFiles, NFILES_COSMIC + NFILES_COSMICRAW) # no more work available self.assertEqual(0, len(self.queue.getWork({'T2_XX_SiteA': 1000}, {}))) def testWMBSInjectionStatus(self): self.globalQueue.queueWork(self.spec.specUrl()) processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA"]}) self.globalQueue.queueWork(processingSpec.specUrl()) # test globalqueue status (no parent queue case) self.assertEqual(self.globalQueue.getWMBSInjectionStatus(), [{'testProcessing': False}, {'testProduction': False}]) self.assertEqual(self.globalQueue.getWMBSInjectionStatus(self.spec.name()), False) # Amount of work varies, just make sure it's positive self.assertGreater(self.localQueue.pullWork(), 0) # test local queue status with parents (globalQueue is not synced yet self.assertEqual(self.localQueue.getWMBSInjectionStatus(), [{'testProcessing': False}, {'testProduction': False}]) self.assertEqual(self.localQueue.getWMBSInjectionStatus(self.spec.name()), False) syncQueues(self.localQueue) self.localQueue.processInboundWork() self.localQueue.updateLocationInfo() self.localQueue.getWork({'T2_XX_SiteA': 1000}, {}) self.assertEqual(self.localQueue.getWMBSInjectionStatus(), [{'testProcessing': False}, {'testProduction': False}]) self.assertEqual(self.localQueue.getWMBSInjectionStatus(self.spec.name()), False) # update parents status but is still running open since it is the default self.localQueue.performQueueCleanupActions() self.localQueue.backend.sendToParent(continuous=False) self.assertEqual(self.localQueue.getWMBSInjectionStatus(), [{'testProcessing': False}, {'testProduction': False}]) self.assertEqual(self.localQueue.getWMBSInjectionStatus(self.spec.name()), False) # close the global inbox elements, they won't be split anymore self.globalQueue.closeWork(['testProcessing', 'testProduction']) self.localQueue.getWMBSInjectionStatus() time.sleep(1) # There are too many jobs to pull down for testProcessing still has element not in WMBS self.assertEqual(self.localQueue.getWMBSInjectionStatus(), [{'testProcessing': False}, {'testProduction': True}]) self.assertEqual(self.localQueue.getWMBSInjectionStatus(self.spec.name()), True) # test not existing workflow self.assertRaises(WorkQueueNoMatchingElements, self.localQueue.getWMBSInjectionStatus, "NotExistWorkflow") def testEndPolicyNegotiating(self): """Test end policy processing of request before splitting""" processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA"]}) work = self.globalQueue.queueWork(processingSpec.specUrl()) self.assertEqual(work, NBLOCKS_HICOMM) self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 1) self.localQueue.backend.pullFromParent() # pull work into inbox (Negotiating state) self.localQueue.processInboundWork() syncQueues(self.localQueue) self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 1) # should print message but not raise an error self.localQueue.performQueueCleanupActions(skipWMBS=True) self.localQueue.backend.pullFromParent(continuous=False) self.assertEqual(len(self.localQueue.statusInbox(Status='Negotiating')), 1) self.assertEqual(len(self.localQueue), 1) def testSiteStatus(self): """Check that we only pull work on sites in Normal status""" processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.globalQueue.queueWork(self.spec.specUrl()) # acquire 1 element of a wf and then mark site as draining. self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 1) syncQueues(self.localQueue) existing_wf = [x['RequestName'] for x in self.localQueue.statusInbox()] self.assertEqual(1, len(existing_wf)) existing_wf = existing_wf[0] bossAirConfig = Configuration() bossAirConfig.section_("BossAir") bossAirConfig.BossAir.pluginDir = "WMCore.BossAir.Plugins" bossAirConfig.BossAir.pluginNames = [] bossAirConfig.section_("Agent") bossAirConfig.Agent.agentName = "TestAgent" bossAirConfig.section_("JobStateMachine") bossAirConfig.JobStateMachine.couchurl = os.environ["COUCHURL"] bossAirConfig.JobStateMachine.couchDBName = "testcouchdb" rc = ResourceControl(bossAirConfig) rc.changeSiteState('T2_XX_SiteA', 'Draining') rc.changeSiteState('T2_XX_SiteB', 'Draining') # pull more work, no work should be acquired self.localQueue.pullWork() syncQueues(self.localQueue) for x in self.localQueue.statusInbox(): if x['RequestName'] != existing_wf: self.fail('Got new wf %s for draining site' % x['RequestName']) # wmbs injection for draining sites continues to work self.assertTrue(self.localQueue.getWork({'T2_XX_SiteA': 10}, {})) # re-enable site and get remainder of work rc.changeSiteState('T2_XX_SiteA', 'Normal') self.assertTrue(self.localQueue.pullWork()) syncQueues(self.localQueue) self.assertTrue(self.localQueue.getWork({'T2_XX_SiteA': 100}, {})) def test0eventBlock(self): """0 event blocks should be processed as usual""" # use event splitting and 0 events so we get 0 jobs - verify this doesn't cause any problems # FIXME: This does not work currently because we don't actually have 0 event blocks. Globals.GlobalParams.setNumOfEventsPerFile(0) processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA"]}) processingSpec.setStartPolicy('Block', SliceType='NumberOfEvents') processingSpec.save(processingSpec.specUrl()) self.globalQueue.queueWork(processingSpec.specUrl()) # all blocks pulled as each has 0 jobs self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 1) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue.status()), 1) self.assertEqual(len(self.localQueue.getWork({'T2_XX_SiteA': 1}, {})), 1) for element in self.localQueue.status(): # check files added and subscription made self.assertEqual(element['NumOfFilesAdded'], 1) self.assertTrue(element['SubscriptionId'] >= 0) self.assertEqual(element['Jobs'], 1) # complete workflow self.localQueue.performQueueCleanupActions(skipWMBS=True) self.localQueue.doneWork([str(x.id) for x in self.localQueue.status()]) self.assertEqual(len(self.localQueue.status(status='Done')), 1) syncQueues(self.localQueue) self.assertEqual(len(self.globalQueue.status(status='Done')), 1) def testProcessingWithContinuousSplitting(self): """Test the open request handling in the WorkQueue""" # Put normal work in processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB", "T2_XX_SiteC"]}) specfile = processingSpec.specUrl() # Queue work with initial block count logging.info("Queuing work for spec name: %s", processingSpec.name()) self.assertEqual(NBLOCKS_HICOMM, self.globalQueue.queueWork(specfile)) self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue)) # Try adding work, no change in blocks available. No work should be added logging.info("Adding work - already added - for spec name: %s", processingSpec.name()) self.assertEqual(0, self.globalQueue.addWork(processingSpec.name())) self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue)) # Now pull work from the global to the local queue logging.info("Pulling 1 workqueue element from the parent queue") self.localQueue.pullWork({'T2_XX_SiteA': 1}) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue), 1) self.assertEqual(len(self.globalQueue), NBLOCKS_HICOMM - 1) # This time pull work from the local queue into WMBS logging.info("Getting 1 workqueue element from the local queue") dummyWork = self.localQueue.getWork({'T2_XX_SiteA': 1000}, {}) syncQueues(self.localQueue) syncQueues(self.globalQueue) # FIXME: for some reason, it tries to reinsert all those elements again # however, if we call it again, it won't retry anything self.assertEqual(47, self.globalQueue.addWork(processingSpec.name())) self.assertEqual(0, self.globalQueue.addWork(processingSpec.name())) self.assertEqual(NBLOCKS_HICOMM - 1, len(self.globalQueue)) self.assertEqual(len(self.globalQueue.backend.getInboxElements(status="Running")), 1) # Now pull the new work to the local queue self.localQueue.pullWork({'T2_XX_SiteB': 1000, 'T2_XX_SiteC': 1000}) syncQueues(self.localQueue) self.assertEqual(len(self.localQueue), 35) self.assertEqual(len(self.globalQueue), NBLOCKS_HICOMM - 35 - 1) # FIXME: for some reason, it tries to reinsert all those elements again # however, if we call it again, it won't retry anything self.assertEqual(47, self.globalQueue.addWork(processingSpec.name())) self.assertEqual(0, self.globalQueue.addWork(processingSpec.name())) return def testProcessingWithPileup(self): """Test a full WorkQueue cycle in a request with pileup datasets""" specfile = self.processingPileupSpec.specUrl() # Queue work with initial block count self.assertEqual(NBLOCKS_HICOMM, self.globalQueue.queueWork(specfile)) self.assertEqual(NBLOCKS_HICOMM, len(self.globalQueue)) # All blocks are in Site A, B, and C, but the pileup is only at C. # We should not be able to pull all the work. self.assertGreaterEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1, 'T2_XX_SiteB': 1, 'T2_XX_SiteC': 1}), 3) # The PhEDEx emulator will move the pileup blocks to site A self.globalQueue.updateLocationInfo() self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteB': 1, 'T2_XX_SiteC': 1}), 0) # Now try with just site A (no work) self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': 1}), 0) syncQueues(self.localQueue) self.assertGreaterEqual(len(self.localQueue), 3) self.assertEqual(len(self.globalQueue), NBLOCKS_HICOMM - 3) # Pull it to WMBS, first try with an impossible site # The pileup was split again in the local queue so site A is not there self.assertGreaterEqual(len(self.localQueue.getWork({'T2_XX_SiteA': 1, 'T2_XX_SiteB': 1, 'T2_XX_SiteC': 1}, {})), 2) Globals.moveBlock({'%s#1' % PILEUP_DATASET: ['T2_XX_SiteA', 'T2_XX_SiteC'], '%s#2' % PILEUP_DATASET: ['T2_XX_SiteA', 'T2_XX_SiteC']}) self.localQueue.updateLocationInfo() #FIXME: this test gives different results in jenkins and in private tests self.assertGreaterEqual(len(self.localQueue.getWork({'T2_XX_SiteA': 1}, {})), 0) self.assertGreaterEqual(len(self.localQueue.status()), 3) def testPileupOnProduction(self): """Test that we can split properly a Production workflow with pileup""" specfile = self.productionPileupSpec.specUrl() # Sanity check on queueWork only self.assertEqual(1, self.globalQueue.queueWork(specfile)) self.assertEqual(1, len(self.globalQueue)) self.assertEqual(len(self.globalQueue.backend.getActivePileupData()), 1) self.assertNotEqual(self.globalQueue.backend.getActivePileupData()[0]['dbs_url'], None) def testPrioritiesWorkPolling(self): """Test how the priorities and current jobs in the queue affect the workqueue behavior for acquiring and injecting work""" # Queue a low prio workflow and a high prio workflow highPrioReReco = self.setupHighPrioReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA"]}) processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.globalQueue.queueWork(highPrioReReco.specUrl()) # Pull all into local queue self.assertEqual(self.localQueue.pullWork({'T2_XX_SiteA': TOTAL_EVENTS}), 2 * NBLOCKS_HICOMM) syncQueues(self.localQueue) # Try pulling work into WMBS when "there is" a job of higher priority than the high prio workflow self.assertEqual(len(self.localQueue.getWork({'T2_XX_SiteA': 1}, {'T2_XX_SiteA': {highPrioReReco.priority() + 1: 1}})), 0) # Allow one more job slot self.assertEqual(len(self.localQueue.getWork({'T2_XX_SiteA': 2}, {'T2_XX_SiteA': {highPrioReReco.priority() + 1: 1}})), 1) # Allow 1 slot more and many slots occupied by low prio jobs self.assertEqual(len(self.localQueue.getWork({'T2_XX_SiteA': 2}, {'T2_XX_SiteA': {1: 50}})), 1) self.assertEqual(len(self.localQueue.backend.getElements(WorkflowName=highPrioReReco.name())), NBLOCKS_HICOMM) def testMonitorWorkQueue(self): """ Test several WorkQueue couch queries to monitor amount of work in the system """ # Run some bootstrap, same code as in the test above... highPrioReReco = self.setupHighPrioReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB"]}) processingSpec = self.setupReReco(assignArgs={'SiteWhitelist': ["T2_XX_SiteA", "T2_XX_SiteB"]}) self.globalQueue.queueWork(processingSpec.specUrl()) self.globalQueue.queueWork(highPrioReReco.specUrl()) initialStatus = ['Available', 'Negotiating', 'Acquired'] metrics = self.globalQueue.monitorWorkQueue(status=initialStatus) time.sleep(1) # HACKY: query again to get the up-to-date views metrics = self.globalQueue.monitorWorkQueue(status=initialStatus) expectedMetrics = ('workByStatus', 'workByStatusAndPriority', 'workByAgentAndStatus', 'workByAgentAndPriority', 'uniqueJobsPerSiteAAA', 'possibleJobsPerSiteAAA', 'uniqueJobsPerSite', 'possibleJobsPerSite', 'total_query_time') self.assertItemsEqual(metrics.keys(), expectedMetrics) self.assertItemsEqual(metrics['workByStatus'].keys(), STATES) self.assertEqual(metrics['workByStatus']['Available']['sum_jobs'], 678) self.assertEqual(metrics['workByStatus']['Acquired'], {}) self.assertItemsEqual(metrics['workByStatusAndPriority'].keys(), STATES) prios = [item['priority'] for item in metrics['workByStatusAndPriority']['Available']] self.assertItemsEqual(prios, [8000, 999998]) self.assertEqual(metrics['workByStatusAndPriority']['Acquired'], []) self.assertEqual(len(metrics['workByAgentAndStatus']), 1) self.assertEqual(metrics['workByAgentAndStatus'][0]['agent_name'], 'AgentNotDefined') self.assertEqual(metrics['workByAgentAndStatus'][0]['status'], 'Available') self.assertEqual(len(metrics['workByAgentAndPriority']), 2) self.assertEqual(metrics['workByAgentAndPriority'][0]['agent_name'], 'AgentNotDefined') self.assertEqual([item['priority'] for item in metrics['workByAgentAndPriority']], [8000, 999998]) for met in ('uniqueJobsPerSiteAAA', 'possibleJobsPerSiteAAA', 'uniqueJobsPerSite', 'possibleJobsPerSite'): self.assertItemsEqual(metrics[met].keys(), initialStatus) self.assertEqual(len(metrics[met]['Available']), 2) self.assertEqual(len(metrics[met]['Acquired']), 0) self.assertItemsEqual(metrics[met]['Available'].keys(), ['T2_XX_SiteA', 'T2_XX_SiteB']) self.assertTrue(metrics['total_query_time'] >= 0) # Pull all into local queue (get them into Acquired status) self.localQueue.pullWork({'T2_XX_SiteA': 500}) syncQueues(self.localQueue) metrics = self.globalQueue.monitorWorkQueue(status=initialStatus) time.sleep(1) # HACKY: query again to get the up-to-date views metrics = self.globalQueue.monitorWorkQueue(status=initialStatus) self.assertTrue(metrics['workByStatus']['Available']['sum_jobs'] < 200) self.assertTrue(metrics['workByStatus']['Acquired']['sum_jobs'] >= 500) self.assertEqual(len(metrics['workByStatusAndPriority']['Available']), 1) self.assertEqual(len(metrics['workByStatusAndPriority']['Acquired']), 2) self.assertEqual(metrics['workByStatusAndPriority']['Available'][0]['priority'], 8000) prios = [item['priority'] for item in metrics['workByStatusAndPriority']['Acquired']] self.assertItemsEqual(prios, [8000, 999998]) self.assertEqual(len(metrics['workByAgentAndStatus']), 2) for elem in metrics['workByAgentAndStatus']: if elem['status'] == 'Available': self.assertEqual(elem['agent_name'], 'AgentNotDefined') else: # in Acquired self.assertTrue(elem['agent_name'] != 'AgentNotDefined') self.assertEqual(len(metrics['workByAgentAndPriority']), 3) prios = [] for item in metrics['workByAgentAndPriority']: if item['agent_name'] != 'AgentNotDefined': prios.append(item['priority']) self.assertItemsEqual(prios, [8000, 999998]) for met in ('uniqueJobsPerSiteAAA', 'possibleJobsPerSiteAAA', 'uniqueJobsPerSite', 'possibleJobsPerSite'): self.assertItemsEqual(metrics[met].keys(), initialStatus) self.assertEqual(len(metrics[met]['Available']), 2) self.assertEqual(len(metrics[met]['Acquired']), 2) self.assertItemsEqual(metrics[met]['Available'].keys(), ['T2_XX_SiteA', 'T2_XX_SiteB']) self.assertItemsEqual(metrics[met]['Acquired'].keys(), ['T2_XX_SiteA', 'T2_XX_SiteB']) if __name__ == "__main__": unittest.main()
the-stack_0_24963
from math import sqrt from django.contrib.auth.models import User from django.contrib.contenttypes.fields import GenericForeignKey from django.contrib.contenttypes.models import ContentType from django.db import connection def is_gfk(content_field): return isinstance(content_field, GenericForeignKey) def query_has_where(query): where, params = query.get_compiler(using='default').compile(query.where) return where == '' def query_as_sql(query): return query.get_compiler(connection=connection).as_sql() def sim_euclidean_distance(ratings_queryset, factor_a, factor_b): rating_model = ratings_queryset.model if isinstance(factor_a, User): filter_field = 'user_id' match_on = 'hashed' lookup_a = factor_a.pk lookup_b = factor_b.pk else: filter_field = 'hashed' match_on = 'user_id' lookup_a = rating_model(content_object=factor_a).generate_hash() lookup_b = rating_model(content_object=factor_b).generate_hash() sql = """ SELECT r1.score - r2.score AS diff FROM %(ratings_table)s AS r1 INNER JOIN %(ratings_table)s AS r2 ON r1.%(match_on)s = r2.%(match_on)s WHERE r1.%(filter_field)s = '%(lookup_a)s' AND r2.%(filter_field)s = '%(lookup_b)s' %(queryset_filter)s """ rating_query = ratings_queryset.values_list('pk').query if query_has_where(rating_query): queryset_filter = '' else: q, p = query_as_sql(rating_query) rating_qs_sql = q % p queryset_filter = ' AND r1.id IN (%s)' % rating_qs_sql params = { 'ratings_table': rating_model._meta.db_table, 'filter_field': filter_field, 'match_on': match_on, 'lookup_a': lookup_a, 'lookup_b': lookup_b, 'queryset_filter': queryset_filter } cursor = connection.cursor() cursor.execute(sql % params) sum_of_squares = 0 while True: result = cursor.fetchone() if result is None: break sum_of_squares += result[0] ** 2 return 1 / (1 + sum_of_squares) def sim_pearson_correlation(ratings_queryset, factor_a, factor_b): rating_model = ratings_queryset.model if isinstance(factor_a, User): filter_field = 'user_id' match_on = 'hashed' lookup_a = factor_a.pk lookup_b = factor_b.pk else: filter_field = 'hashed' match_on = 'user_id' lookup_a = rating_model(content_object=factor_a).generate_hash() lookup_b = rating_model(content_object=factor_b).generate_hash() sql = """ SELECT SUM(r1.score) AS r1_sum, SUM(r2.score) AS r2_sum, SUM(r1.score*r1.score) AS r1_square_sum, SUM(r2.score*r2.score) AS r2_square_sum, SUM(r1.score*r2.score) AS p_sum, COUNT(r1.id) AS sample_size FROM %(ratings_table)s AS r1 INNER JOIN %(ratings_table)s AS r2 ON r1.%(match_on)s = r2.%(match_on)s WHERE r1.%(filter_field)s = '%(lookup_a)s' AND r2.%(filter_field)s = '%(lookup_b)s' %(queryset_filter)s """ rating_query = ratings_queryset.values_list('pk').query if query_has_where(rating_query): queryset_filter = '' else: q, p = query_as_sql(rating_query) rating_qs_sql = q % p queryset_filter = ' AND r1.id IN (%s)' % rating_qs_sql params = { 'ratings_table': rating_model._meta.db_table, 'filter_field': filter_field, 'match_on': match_on, 'lookup_a': lookup_a, 'lookup_b': lookup_b, 'queryset_filter': queryset_filter } cursor = connection.cursor() cursor.execute(sql % params) result = cursor.fetchone() if not result: return 0 sum1, sum2, sum1_sq, sum2_sq, psum, sample_size = result if sum1 is None or sum2 is None or sample_size == 0: return 0 num = psum - (sum1 * sum2 / sample_size) den = sqrt((sum1_sq - pow(sum1, 2) / sample_size) * (sum2_sq - pow(sum2, 2) / sample_size)) if den == 0: return 0 return num / den def top_matches(ratings_queryset, items, item, n=5, similarity=sim_pearson_correlation): scores = [ (similarity(ratings_queryset, item, other), other) for other in items if other != item ] scores.sort() scores.reverse() return scores[:n] def recommendations(ratings_queryset, people, person, similarity=sim_pearson_correlation): already_rated = ratings_queryset.filter(user=person).values_list('hashed') totals = {} sim_sums = {} for other in people: if other == person: continue sim = similarity(ratings_queryset, person, other) if sim <= 0: continue items = ratings_queryset.filter(user=other).exclude(hashed__in=already_rated) # now, score the items person hasn't rated yet for item in items: totals.setdefault(item.content_object, 0) totals[item.content_object] += (item.score * sim) sim_sums.setdefault(item.content_object, 0) sim_sums[item.content_object] += sim rankings = [(total / sim_sums[pk], pk) for pk, total in totals.items()] rankings.sort() rankings.reverse() return rankings def calculate_similar_items(ratings_queryset, num=10): # get distinct items from the ratings queryset - this can be optimized field = ratings_queryset.model._meta.get_field('content_object') if is_gfk(field): rated_ctypes = ratings_queryset.values_list('content_type', flat=True).distinct() ctypes = ContentType.objects.filter(pk__in=rated_ctypes) for ctype in ctypes: ratings_subset = ratings_queryset.filter(content_type=ctype) rating_ids = ratings_subset.values_list('object_id') model_class = ctype.model_class() queryset = model_class._default_manager.filter(pk__in=rating_ids) _store_top_matches(ratings_queryset, queryset, num, True) else: rated_model = field.rel.to rating_ids = ratings_queryset.values_list('content_object__pk') queryset = rated_model._default_manager.filter(pk__in=rating_ids) _store_top_matches(ratings_queryset, queryset, num, False) def _store_top_matches(ratings_queryset, rated_queryset, num, is_gfk): from ratings.models import SimilarItem ctype = ContentType.objects.get_for_model(rated_queryset.model) rated_queryset.values_list('pk') # fill cache for item in rated_queryset.iterator(): matches = top_matches(ratings_queryset, rated_queryset, item, num) for (score, match) in matches: si, created = SimilarItem.objects.get_or_create( content_type=ctype, object_id=item.pk, similar_content_type=ContentType.objects.get_for_model(match), similar_object_id=match.pk) if created or si.score != score: si.score = score si.save() def recommended_items(ratings_queryset, user): from ratings.models import SimilarItem scores = {} total_sim = {} for item in ratings_queryset.filter(user=user): similar_items = SimilarItem.objects.get_for_item(item.content_object) for similar_item in similar_items: actual = similar_item.similar_object lookup_kwargs = ratings_queryset.model.lookup_kwargs(actual) lookup_kwargs['user'] = user if ratings_queryset.filter(**lookup_kwargs): continue scores.setdefault(actual, 0) scores[actual] += similar_item.score * item.score total_sim.setdefault(actual, 0) total_sim[actual] += similar_item.score rankings = [(score / total_sim[item], item) for item, score in scores.items()] rankings.sort() rankings.reverse() return rankings
the-stack_0_24966
# """ Various entropies. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from texar.losses.losses_utils import mask_and_reduce, reduce_dimensions from texar.utils.shapes import get_rank # pylint: disable=too-many-arguments __all__ = [ "entropy_with_logits", "sequence_entropy_with_logits" ] def _get_entropy(logits): probs = tf.nn.softmax(logits) + 1e-8 entropy = - probs * tf.log(probs) entropy = tf.reduce_sum(entropy, -1) return entropy def entropy_with_logits(logits, rank=None, average_across_batch=True, average_across_remaining=False, sum_over_batch=False, sum_over_remaining=True): """Shannon entropy given logits. Args: logits: Unscaled log probabilities of shape `[batch_size, d_2, ..., d_{rank-1}, distribution_dim]` and of dtype `float32` or `float64`. The rank of the tensor is optionally specified by the argument :attr:`rank`. The tensor is considered as having `[batch_size, .., d_{rank-1}]` elements, each of which has a distribution of length `d_rank` (i.e., `distribution_dim`). So the last dimension is always summed out to compute the entropy. rank (int, optional): The rank of :attr:`logits`. If `None` (default), :attr:`rank` is inferred automatically from :attr:`logits`. If the inferred rank is `None`, :attr:`rank` is set to 2, i.e., assuming :attr:`logits` is of shape `[batch_size, distribution_dim]` average_across_batch (bool): If set, average the entropy across the batch dimension. Must not set :attr:`average_across_batch`' and :attr:`sum_over_batch` at the same time. average_across_remaining (bool): If set, average the entropy across the remaining dimensions. Must not set :attr:`average_across_remaining`' and :attr:`sum_over_remaining` at the same time. Used only when :attr:`logits` has rank >= 3. sum_over_batch (bool): If set, sum the entropy across the batch dimension. Must not set :attr:`average_across_batch` and :attr:`sum_over_batch` at the same time. sum_over_remaining (bool): If set, sum the entropy across the remaining dimension. Must not set :attr:`average_across_remaining` and :attr:`sum_over_remaining` at the same time. Used only when :attr:`logits` has rank >= 3. """ entropy = _get_entropy(logits) if rank is None: rank = get_rank(logits) if rank is None: rank = 2 rank -= 1 # reduced last dimension # Reduces if average_across_batch and sum_over_batch: raise ValueError("Only one of `average_across_batch` and " "`sum_over_batch` can be set.") if average_across_remaining and sum_over_remaining: raise ValueError("Only one of `average_across_remaining` and " "`sum_over_remaining` can be set.") sum_axes, average_axes = [], [] if sum_over_batch: sum_axes.append(0) if average_across_batch: average_axes.append(0) if sum_over_remaining and rank >= 2: sum_axes += list(range(1, rank)) if average_across_remaining and rank >= 2: average_axes += list(range(1, rank)) entropy = reduce_dimensions( entropy, average_axes=average_axes, sum_axes=sum_axes) return entropy def sequence_entropy_with_logits(logits, rank=None, sequence_length=None, average_across_batch=True, average_across_timesteps=False, average_across_remaining=False, sum_over_batch=False, sum_over_timesteps=True, sum_over_remaining=True, time_major=False): """Shannon entropy given logits. Args: logits: Unscaled log probabilities of shape `[batch_size, max_time, d_3, ..., d_{rank-1}, distribution_dim]` and of dtype `float32` or `float64`. The rank of the tensor is optionally specified by the argument :attr:`rank`. The tensor is considered as having `[batch_size, .., d_{rank-1}]` elements, each of which has a distribution of length `d_rank` (i.e., `distribution_dim`). So the last dimension is always summed out to compute the entropy. The batch and time dimensions are exchanged if :attr:`time_major` is `True`. rank (int, optional): The rank of :attr:`logits`. If `None` (default), :attr:`rank` is inferred automatically from :attr:`logits`. If the inferred rank is `None`, :attr:`rank` is set to 3, i.e., assuming :attr:`logits` is of shape `[batch_size, max_time, distribution_dim]` sequence_length (optional): A Tensor of shape `[batch_size]`. Time steps beyond the respective sequence lengths are counted into the entropy. average_across_timesteps (bool): If set, average the entropy across the time dimension. Must not set :attr:`average_across_timesteps` and :attr:`sum_over_timesteps` at the same time. average_across_batch (bool): If set, average the entropy across the batch dimension. Must not set :attr:`average_across_batch`' and :attr:`sum_over_batch` at the same time. average_across_remaining (bool): If set, average the entropy across the remaining dimensions. Must not set :attr:`average_across_remaining`' and :attr:`sum_over_remaining` at the same time. Used only when :attr:`logits` has rank >= 4. sum_over_timesteps (bool): If set, sum the entropy across the time dimension. Must not set :attr:`average_across_timesteps` and :attr:`sum_over_timesteps` at the same time. sum_over_batch (bool): If set, sum the entropy across the batch dimension. Must not set :attr:`average_across_batch` and :attr:`sum_over_batch` at the same time. sum_over_remaining (bool): If set, sum the entropy across the remaining dimension. Must not set :attr:`average_across_remaining` and :attr:`sum_over_remaining` at the same time. Used only when :attr:`logits` has rank >= 4. time_major (bool): The shape format of the inputs. If `True`, :attr:`logits` must have shape `[max_time, batch_size, ...]`. If `False` (default), it must have shape `[batch_size, max_time, ...]`. """ entropy = _get_entropy(logits) if rank is None: rank = get_rank(logits) if rank is None: rank = 3 rank -= 1 # reduced last dimension entropy = mask_and_reduce( entropy, sequence_length, rank=rank, average_across_batch=average_across_batch, average_across_timesteps=average_across_timesteps, average_across_remaining=average_across_remaining, sum_over_batch=sum_over_batch, sum_over_timesteps=sum_over_timesteps, sum_over_remaining=sum_over_remaining, time_major=time_major) return entropy
the-stack_0_24967
""" lambda_function.py is a script file destinated to be executed by AWS lambda service as a cron job. The idea is to check if the proxy is working and if not, the swict to the failover. Data comes in likes the following, or at least it is what the 'event' argument should look like: { "domain_test": "www.google.com", "proxy_port": 3128 } If the contend of the even is null, then the variables are assumed as when in the handler is specified. @return: A Dictionary if there was a fail over, nothing otherwise @author: Fauzi Gomez @email: [email protected] """ import json import boto3 import os import random import urllib.request import urllib.parse import socket import http.client outcome = {} """ function to get autoscaling groups @var String name [Optional]: the name of the autoscaling group you want. @return Dictionary containing the ASG looked up, them all if the variable is omited """ def get_asg(name=None): client = boto3.client('autoscaling') if name != None and os.environ.get('vpc_name') != None: ASG = client.describe_auto_scaling_groups(AutoScalingGroupNames=[name])['AutoScalingGroups'] del client else: ASG = client.describe_auto_scaling_groups()['AutoScalingGroups'] del client return ASG """ function to get the vpc_id of a specific instance @var list instance_info should contain the output of the function get_instances_info @return String the vpc id of the instance in question """ def get_instance_vpc_id(instance_info): for reservation in instance_info['Reservations']: for instance in reservation['Instances']: return instance['VpcId'] """ funtion to ge the instances id of an autoscaling group @var list autoscaling_group autoscaling groups from the function get_asg @return list with the list of instances id found """ def get_instances_id(autoscaling_group): ids_list = [] for instances in autoscaling_group: for instance in instances['Instances']: ids_list.append(instance['InstanceId']) return ids_list """ function to get a list of instances with a "Healthy" status according to an autoscaling group @var list autoscaling_group autoscaling groups from the function get_asg @return list containing the ids of the healthy instances """ def get_healthy_instances_id(autoscaling_group): ids_list = [] for instances in autoscaling_group: for instance in instances['Instances']: if instance['HealthStatus'] == "Healthy": ids_list.append(instance['InstanceId']) return ids_list """ function to get status of instances according to hte instance information @var list id_list list with the instances id you want to know the status @return list status of the instances in question """ def get_instances_status(id_list): client = boto3.client('ec2') status = client.describe_instance_status(InstanceIds=id_list) del client return status """ function to get an instance information based on a ENI id @var string ENI the eni id @returm dictionary with the result of describe_instances """ def get_instance_by_eni(eni): client = boto3.client('ec2') reservations = client.describe_instances(Filters=[{'Name':'network-interface.network-interface-id','Values': [eni]}]) del client for reservation in reservations['Reservations']: for instance in reservation['Instances']: return instance #return instance['Reservations'][0]['Instances'][0] """ function to get the eni ids of an instance @var list instances_id list with the instances id you want to know the eni ids @return list with the eni ids of the instances """ def get_instances_eni(instances_id): reservations = get_instances_info(instances_id) ni_id = [] for reservation in reservations['Reservations']: for instance in reservation['Instances']: for network_interfaces in instance['NetworkInterfaces']: ni_id.append(network_interfaces['NetworkInterfaceId']) return ni_id """ function to ge the private ip of instances @var list instances_id list with the instances id you want to know the eni ids @return list with the private ips of the instances in the variable """ def get_instances_priv_ip(instances_id): reservations = get_instances_info(instances_id) priv_ip = [] for reservation in reservations['Reservations']: for instance in reservation['Instances']: priv_ip.append(instance['PrivateIpAddress']) return priv_ip """ function to get the information of instances @var list id_list list with the instances id you want to get the description @return list instances info """ def get_instances_info(id_list): client = boto3.client('ec2') instances = client.describe_instances(InstanceIds=id_list) del client return instances """ function to get a vpc based on an instance id @var String vpc_id the id of the vpc you want to get @return Dict containing the vpc data """ def get_vpc(vpc_id): client = boto3.resource('ec2') vpc = client.Vpc(vpc_id) return vpc """ function to get route tables information @var String vpc_id id of the VPC where the route belongs to String name name of the route in question @return Dict containing the information of the table """ def get_route_table(vpc_id,name): client = boto3.client('ec2') route_table = client.describe_route_tables(Filters=[{'Name':'tag:Name','Values': [name]},{'Name':'vpc-id','Values':[vpc_id]}]) del client return route_table """ function to get the routing table id of a routing table @var Dict route_table expexted the value of the function get_route_table @return String the routing table id """ def get_route_table_id(route_table): for table in route_table['RouteTables']: for association in table['Associations']: return association['RouteTableId'] # There should always be one single RouteTables, otherwise we only care for the first one ? #return route_table['RouteTables'][0]['RouteTableId'] """ function to request an address from the internet. The whole lambda funtion is expected to be within a single VPC and associated to the same subnets where the EKS workers are to fairly simulate traffic out to the internet from the workers @var String ulr address to attempt a request @return Int with the HTTP response code """ def test_proxy(url): response = '' try: """ #url = 'https://%s' % (url) #f = urllib.request.urlopen(url) #print(f.read()) #response = f.getcode() """ # The only reason we don't do https on checkups is because in the proxy only the IP is reported instead of the domain. # We want to know the domain this function is calling out # conn = http.client.HTTPSConnection(url) conn = http.client.HTTPConnection(url,timeout=3) conn.request("GET", "/") response = conn.getresponse().status except Exception as e: outcome['test_proxy'] = "The url '%s' check failed with the following message: '%s'" % (url,e) #print(e) if str(e) == 'HTTP Error 403: Forbidden': response = 403 elif 'Connection refused' in str(e): # if we get <urlopen error [Errno 111] Connection refused> then we know the squid is busted or something similar response = 111 else: # if anything else, then let's assume the current default GW is not working response = 112 return response """ function that searches for a default gateway in a defined routing table @var string rtid the id of the routing table to be queried @return Dictionary with a boto response of the request """ def exist_default_gw(rtid): client = boto3.client('ec2') response = client.describe_route_tables(Filters=[{'Name': 'route.destination-cidr-block','Values':['0.0.0.0/0']}],RouteTableIds=[rtid]) del client return response """ function to delete a default gateway of a routing table @var String rtid routing table id where you want the default GW deleted @return Int with the response of the attemp. HTTP code """ def del_default_gw(rtid): client = boto3.client('ec2') response = client.delete_route(DestinationCidrBlock='0.0.0.0/0',RouteTableId=rtid) del client return response """ function to set a default route to a routing table @var String eni eni id that will be handing the traffic String rtid routing table id you want to set the default GW @return Int with the response of the attemp. HTTP code """ def set_default_gw(eni,rtid): client = boto3.client('ec2') #print(eni) response = exist_default_gw(rtid) if len(response['RouteTables']) > 0: response = del_default_gw(rtid) if response['ResponseMetadata'] and response['ResponseMetadata']['HTTPStatusCode'] == 200: response = client.create_route(DestinationCidrBlock='0.0.0.0/0',NetworkInterfaceId=eni,RouteTableId=rtid) if response['Return'] and response['ResponseMetadata']['HTTPStatusCode'] == 200: outcome[rtid] = "Route %s default GW successfully changed to %s" % (rtid,eni) #print("Route %s changed successfully" % rtid) else: outcome[eni] = response #print(response) else: outcome[eni] = response #print(response) del client return response """ function to check if a port is open for an address @var String addr address you want to check for the port Int port port to check @return int 0 if open, something else if otherwise """ def check_port(addr,port): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(5.0) result = sock.connect_ex((addr, port)) sock.close return result """ function to get a hosted zone in route53 based on the comments @var String comment what you are looking for @return Dict with the hosted zone information """ def get_hosted_zone(comment): client = boto3.client('route53') zones = client.list_hosted_zones() del client for zone in zones['HostedZones']: if comment in zone['Config']['Comment']: return zone """ function to get the recordsets of a hosted zone @var String zone_id id of the zone you want the recordsets @return Dict with the recordsets """ def get_record_sets(zone_id): client = boto3.client('route53') record_sets = client.list_resource_record_sets(HostedZoneId=zone_id) del client return record_sets """ function to determine if a recordset exist in a hosted zone @var list record_sets expected the value of the function get_record_sets String name name of the record set you are looking for @return Boool if it exist or not """ def exist_record_set(record_sets, name): for record_set in record_sets['ResourceRecordSets']: if name in record_set['Name']: return True return False """ function to get a vpc base upon its name @var string name name of the vpc you want @return dictionary with the vpc description """ def get_vpc(name): client = boto3.client('ec2') vpcs = client.describe_vpcs(Filters=[{'Name':'tag:Name','Values':[name]}]) del client for vpc in vpcs['Vpcs']: return vpc """ function to set a recordset in a hosted zone @var String zone_id the zone you want the recordset created String name of the record you want created String action ["CREATE", "UPSERT", "DELETE"] String type type of the record ["A", "AAAA", "CNAME", ...] Int ttl time to live for the record String value where the record will point to @return nothing """ def change_resource_record_sets(zone_id,name,action,type,ttl,value): try: client = boto3.client('route53') response = client.change_resource_record_sets( HostedZoneId=zone_id, ChangeBatch= { 'Comment': '%s %s record' % (action, value), 'Changes': [ { 'Action': action, 'ResourceRecordSet': { 'Name': name, 'Type': type, 'TTL': ttl, 'ResourceRecords': [{'Value': value}] } }] }) except Exception as e: print(e) """ function to find the instance attribute sourceDestinationCheck for a single instance this must be set to false if we want our instance to serve as proxy and be the default gateway for a specific route table @var string instance_id the id of the instance we want to know the value of the attibue @return boolean True or False based on the attribute value """ def get_sourceDestinationCheck_attr(instance_id): client = boto3.client('ec2') response = client.describe_instance_attribute(InstanceId=instance_id, Attribute='sourceDestCheck') del client return response['SourceDestCheck']['Value'] """ function to set the attribute sourceDestinationCheck to false for a single instance @var string instance_id the id of the instance we want to know the value set to false @return dictionary with the execution results """ def set_sourceDestinationCheck_attr(instance_id,value=False): client = boto3.client('ec2') response = client.modify_instance_attribute(InstanceId=instance_id, SourceDestCheck={'Value': value}) del client return response def lambda_handler(event, context): if 'domain_test' in event: domain = event['domain_test'] elif os.environ.get('domain_test') is not None: domain = os.environ['domain_test'] else: domain = 'gen3.org' #print(domain) http_code = test_proxy(domain) #print (http_code) #data = socket.gethostbyname_ex(domain) #print ("\n\nThe IP Address of the Domain Name is: "+repr(data)) #conn = http.client.HTTPSConnection(domain) #conn.request("GET", "/") #r1 = conn.getresponse() #print(r1.status, r1.reason) if 'proxy_port' in event: proxy_port = event['proxy_port'] elif os.environ.get('proxy_port') is not None: proxy_port = os.environ['proxy_port'] else: proxy_port = 3128 #return #internal controls statusCode = 200 if http_code != 200: if os.environ.get('vpc_name') is not None: autoscaling_group = get_asg("squid-auto-"+os.environ['vpc_name']) instances_ids = get_healthy_instances_id(autoscaling_group) if len(instances_ids) > 0: for instance_id in instances_ids: instance_priv_ip = get_instances_priv_ip([instance_id]) if get_sourceDestinationCheck_attr(instance_id): set_sourceDestinationCheck_attr(instance_id) outcome['sourceDestinationCheck'] = "sourceDestinationCheck set to false for %s" % instance_id #print("sourceDestinationCheck set to false for %s" % instance_id) if check_port(instance_priv_ip[0],proxy_port) == 0: healthy_instance_eni = get_instances_eni([instance_id]) healthy_instance_priv_ip = get_instances_priv_ip([instance_id]) vpc_id = get_instance_vpc_id(get_instances_info([instance_id])) eks_private_route_table_id = get_route_table_id(get_route_table(vpc_id,'eks_private')) private_kube_route_table_id = get_route_table_id(get_route_table(vpc_id,'private_kube')) try: set_default_gw(healthy_instance_eni[0],eks_private_route_table_id) outcome['eks_private'] = 'succefully changed the default route for eks_private routing table' #print('succefully changed the default route for eks_private routing table') except Exception as e: statusCode = statusCode + 1 outcome['eks_private'] = e #print(e) try: set_default_gw(healthy_instance_eni[0],private_kube_route_table_id) outcome['private_kube'] = 'succefully changed the default route for private_kube routing table' #print('succefully changed the default route for private_kube routing table') except Exception as e: statusCode = statusCode + 1 outcome['private_kube'] = e #print(e) zone = get_hosted_zone(os.environ['vpc_name']) zone_id = zone['Id'] #print(zone_id) record_sets = get_record_sets(zone_id) if exist_record_set(record_sets,'cloud-proxy'): try: change_resource_record_sets(zone_id,'cloud-proxy.internal.io','UPSERT','A',300,instance_priv_ip[0]) outcome['cloud-proxy'] = "subdomain cloud-proxy.internal.io changed for %s with ip: %s" % (zone_id,instance_priv_ip[0]) except Exception as e: statusCode = statusCode + 1 outcome['cloud-proxy'] = e #outcome['cloud-proxy'] = "subdomain cloud-proxy.internal.io changed for %s" % zone_id #print("subdomain cloud-proxy.internal.io changed for %s" % zone_id) else: try: change_resource_record_sets(zone_id,'cloud-proxy.internal.io','CREATE','A',300,instance_priv_ip[0]) outcome['cloud-proxy'] = "subdomain cloud-proxy.internal.io created for %s with ip: %s" % (zone_id,instance_priv_ip[0]) except Exception as e: statusCode = statusCode + 1 outcome['cloud-proxy'] = e #print("subdomain cloud-proxy.internal.io created for %s" % zone_id) if statusCode != 200: outcome['message'] = 'Proxy switch partially successfull' else: outcome['message'] = 'Proxy switch successfull' break else: outcome['message'] = 'No healthy instances found' else: outcome['message'] = 'ERROR: The VPC name has not been specified, cannot continue' print(json.dumps(outcome)) return json.dumps(outcome) else: zone = get_hosted_zone(os.environ['vpc_name']) zone_id = zone['Id'] record_sets = get_record_sets(zone_id) if not exist_record_set(record_sets,'cloud-proxy'): try: vpc_id = get_vpc(os.environ['vpc_name']) #print(vpc_id) route_tables = get_route_table(vpc_id['VpcId'],'eks_private') ip = '' for route_table in route_tables['RouteTables']: for route in route_table['Routes']: if route['DestinationCidrBlock'] == '0.0.0.0/0': ip = get_instance_by_eni(route['NetworkInterfaceId'])['PrivateIpAddress'] break if ip: change_resource_record_sets(zone_id,'cloud-proxy.internal.io','CREATE','A',300,ip) outcome['cloud-proxy'] = "subdomain cloud-proxy.internal.io created for %s with ip: %s" % (zone_id,ip) else: statusCode = statusCode + 1 outcome['cloud-proxy'] = "subdomain cloud-proxy.internal.io could not be created for %s, no ip was found" % zone_id except Exception as e: statusCode = statusCode + 1 outcome['cloud-proxy'] = e if statusCode != 200: outcome['message'] = 'Proxy switch partially successfull' else: outcome['message'] = 'Proxy switch successfull' print(json.dumps(outcome)) return json.dumps(outcome)
the-stack_0_24968
#!/usr/bin/env python3 # # This file is part of LiteX-Boards. # # Copyright (c) 2018-2019 Rohit Singh <[email protected]> # Copyright (c) 2019 Florent Kermarrec <[email protected]> # SPDX-License-Identifier: BSD-2-Clause import os import argparse import sys from migen import * from litex_boards.platforms import nereid from litex.soc.interconnect.csr import * from litex.soc.integration.soc_core import * from litex.soc.integration.soc_sdram import * from litex.soc.integration.builder import * from litex.soc.cores.clock import * from litedram.modules import MT8KTF51264 from litedram.phy import s7ddrphy from litepcie.phy.s7pciephy import S7PCIEPHY from litepcie.core import LitePCIeEndpoint, LitePCIeMSI from litepcie.frontend.dma import LitePCIeDMA from litepcie.frontend.wishbone import LitePCIeWishboneBridge from litepcie.software import generate_litepcie_software # CRG ---------------------------------------------------------------------------------------------- class CRG(Module): def __init__(self, platform, sys_clk_freq): self.clock_domains.cd_sys = ClockDomain() self.clock_domains.cd_sys4x = ClockDomain(reset_less=True) self.clock_domains.cd_idelay = ClockDomain() # Clk/Rst clk100 = platform.request("clk100") # PLL self.submodules.pll = pll = S7PLL() pll.register_clkin(clk100, 100e6) pll.create_clkout(self.cd_sys, sys_clk_freq) pll.create_clkout(self.cd_sys4x, 4*sys_clk_freq) pll.create_clkout(self.cd_idelay, 200e6) self.submodules.idelayctrl = S7IDELAYCTRL(self.cd_idelay) # BaseSoC ----------------------------------------------------------------------------------------- class BaseSoC(SoCCore): def __init__(self, platform, with_pcie=False, **kwargs): sys_clk_freq = int(100e6) # SoCCore ---------------------------------------------------------------------------------- SoCCore.__init__(self, platform, sys_clk_freq, ident = "LiteX SoC on Nereid", ident_version = True, **kwargs) # CRG -------------------------------------------------------------------------------------- self.submodules.crg = CRG(platform, sys_clk_freq) self.add_csr("crg") # DDR3 SDRAM ------------------------------------------------------------------------------- if not self.integrated_main_ram_size: self.submodules.ddrphy = s7ddrphy.K7DDRPHY(platform.request("ddram"), memtype = "DDR3", nphases = 4, sys_clk_freq = sys_clk_freq, iodelay_clk_freq = 200e6) self.add_csr("ddrphy") self.add_sdram("sdram", phy = self.ddrphy, module = MT8KTF51264(sys_clk_freq, "1:4", speedgrade="800"), origin = self.mem_map["main_ram"], size = kwargs.get("max_sdram_size", 0x40000000), l2_cache_size = kwargs.get("l2_size", 8192), l2_cache_min_data_width = kwargs.get("min_l2_data_width", 128), l2_cache_reverse = True ) # PCIe ------------------------------------------------------------------------------------- if with_pcie: # PHY self.submodules.pcie_phy = S7PCIEPHY(platform, platform.request("pcie_x4"), data_width = 128, bar0_size = 0x20000) platform.add_false_path_constraints(self.crg.cd_sys.clk, self.pcie_phy.cd_pcie.clk) self.add_csr("pcie_phy") # Endpoint self.submodules.pcie_endpoint = LitePCIeEndpoint(self.pcie_phy, max_pending_requests=8) # Wishbone bridge self.submodules.pcie_bridge = LitePCIeWishboneBridge(self.pcie_endpoint, base_address = self.mem_map["csr"]) self.add_wb_master(self.pcie_bridge.wishbone) # DMA0 self.submodules.pcie_dma0 = LitePCIeDMA(self.pcie_phy, self.pcie_endpoint, with_buffering = True, buffering_depth=1024, with_loopback = True) self.add_csr("pcie_dma0") self.add_constant("DMA_CHANNELS", 1) # MSI self.submodules.pcie_msi = LitePCIeMSI() self.add_csr("pcie_msi") self.comb += self.pcie_msi.source.connect(self.pcie_phy.msi) self.interrupts = { "PCIE_DMA0_WRITER": self.pcie_dma0.writer.irq, "PCIE_DMA0_READER": self.pcie_dma0.reader.irq, } for i, (k, v) in enumerate(sorted(self.interrupts.items())): self.comb += self.pcie_msi.irqs[i].eq(v) self.add_constant(k + "_INTERRUPT", i) # Build -------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteX SoC on Nereid") parser.add_argument("--build", action="store_true", help="Build bitstream") parser.add_argument("--with-pcie", action="store_true", help="Enable PCIe support") parser.add_argument("--driver", action="store_true", help="Generate LitePCIe driver") parser.add_argument("--load", action="store_true", help="Load bitstream") builder_args(parser) soc_sdram_args(parser) args = parser.parse_args() # Enforce arguments args.csr_data_width = 32 platform = nereid.Platform() soc = BaseSoC(platform, with_pcie=args.with_pcie, **soc_sdram_argdict(args)) builder = Builder(soc, **builder_argdict(args)) builder.build(run=args.build) if args.driver: generate_litepcie_software(soc, os.path.join(builder.output_dir, "driver")) if args.load: prog = soc.platform.create_programmer() prog.load_bitstream(os.path.join(builder.gateware_dir, soc.build_name + ".bit")) if __name__ == "__main__": main()
the-stack_0_24969
#!/usr/bin/env python # Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <[email protected]> # import copy import time import ctypes import numpy import scipy.linalg from pyscf import lib from pyscf import scf from pyscf.lib import logger from pyscf.ao2mo import _ao2mo libri = lib.load_library('libri') def density_fit(mf, auxbasis=None, with_df=None, only_dfj=False): '''For the given SCF object, update the J, K matrix constructor with corresponding density fitting integrals. Args: mf : an SCF object Kwargs: auxbasis : str or basis dict Same format to the input attribute mol.basis. If auxbasis is None, optimal auxiliary basis based on AO basis (if possible) or even-tempered Gaussian basis will be used. only_dfj : str Compute Coulomb integrals only and no approximation for HF exchange. Same to RIJONX in ORCA Returns: An SCF object with a modified J, K matrix constructor which uses density fitting integrals to compute J and K Examples: >>> mol = gto.M(atom='H 0 0 0; F 0 0 1', basis='ccpvdz', verbose=0) >>> mf = scf.density_fit(scf.RHF(mol)) >>> mf.scf() -100.005306000435510 >>> mol.symmetry = 1 >>> mol.build(0, 0) >>> mf = scf.density_fit(scf.UHF(mol)) >>> mf.scf() -100.005306000435510 ''' from pyscf import df from pyscf.scf import dhf from pyscf.soscf import newton_ah assert(isinstance(mf, scf.hf.SCF)) if with_df is None: if isinstance(mf, dhf.UHF): with_df = df.DF4C(mf.mol) else: with_df = df.DF(mf.mol) with_df.max_memory = mf.max_memory with_df.stdout = mf.stdout with_df.verbose = mf.verbose with_df.auxbasis = auxbasis mf_class = mf.__class__ if isinstance(mf, _DFHF): if mf.with_df is None: mf.with_df = with_df elif getattr(mf.with_df, 'auxbasis', None) != auxbasis: #logger.warn(mf, 'DF might have been initialized twice.') mf = copy.copy(mf) mf.with_df = with_df mf.only_dfj = only_dfj return mf class DFHF(_DFHF, mf_class): __doc__ = ''' Density fitting SCF class Attributes for density-fitting SCF: auxbasis : str or basis dict Same format to the input attribute mol.basis. The default basis 'weigend+etb' means weigend-coulomb-fit basis for light elements and even-tempered basis for heavy elements. with_df : DF object Set mf.with_df = None to switch off density fitting mode. See also the documents of class %s for other SCF attributes. ''' % mf_class def __init__(self, mf, df, only_dfj): self.__dict__.update(mf.__dict__) self._eri = None self.with_df = df self.only_dfj = only_dfj self._keys = self._keys.union(['with_df', 'only_dfj']) def get_jk(self, mol=None, dm=None, hermi=1, with_j=True, with_k=True, omega=None): if dm is None: dm = self.make_rdm1() if self.with_df and self.only_dfj: vj = vk = None if with_j: vj, vk = self.with_df.get_jk(dm, hermi, True, False, self.direct_scf_tol, omega) if with_k: vk = mf_class.get_jk(self, mol, dm, hermi, False, True, omega)[1] elif self.with_df: vj, vk = self.with_df.get_jk(dm, hermi, with_j, with_k, self.direct_scf_tol, omega) else: vj, vk = mf_class.get_jk(self, mol, dm, hermi, with_j, with_k, omega) return vj, vk # for pyscf 1.0, 1.1 compatibility @property def _cderi(self): naux = self.with_df.get_naoaux() return next(self.with_df.loop(blksize=naux)) @_cderi.setter def _cderi(self, x): self.with_df._cderi = x @property def auxbasis(self): return getattr(self.with_df, 'auxbasis', None) return DFHF(mf, with_df, only_dfj) # 1. A tag to label the derived SCF class # 2. A hook to register DF specific methods, such as nuc_grad_method. class _DFHF(object): def nuc_grad_method(self): from pyscf.df.grad import rhf, uhf, rks, uks if isinstance(self, (scf.uhf.UHF, scf.rohf.ROHF)): if getattr(self, 'xc', None): return uks.Gradients(self) else: return uhf.Gradients(self) elif isinstance(self, scf.rhf.RHF): if getattr(self, 'xc', None): return rks.Gradients(self) else: return rhf.Gradients(self) else: raise NotImplementedError Gradients = nuc_grad_method def Hessian(self): from pyscf.df.hessian import rhf, uhf, rks, uks if isinstance(self, (scf.uhf.UHF, scf.rohf.ROHF)): if getattr(self, 'xc', None): return uks.Hessian(self) else: return uhf.Hessian(self) elif isinstance(self, scf.rhf.RHF): if getattr(self, 'xc', None): return rks.Hessian(self) else: return rhf.Hessian(self) else: raise NotImplementedError def method_not_implemented(self, *args, **kwargs): raise NotImplementedError NMR = method_not_implemented NSR = method_not_implemented Polarizability = method_not_implemented RotationalGTensor = method_not_implemented MP2 = method_not_implemented CISD = method_not_implemented CCSD = method_not_implemented CASCI = method_not_implemented CASSCF = method_not_implemented def get_jk(dfobj, dm, hermi=1, with_j=True, with_k=True, direct_scf_tol=1e-13): assert(with_j or with_k) if (not with_k and not dfobj.mol.incore_anyway and # 3-center integral tensor is not initialized dfobj._cderi is None): return get_j(dfobj, dm, hermi, direct_scf_tol), None t0 = t1 = (time.clock(), time.time()) log = logger.Logger(dfobj.stdout, dfobj.verbose) fmmm = _ao2mo.libao2mo.AO2MOmmm_bra_nr_s2 fdrv = _ao2mo.libao2mo.AO2MOnr_e2_drv ftrans = _ao2mo.libao2mo.AO2MOtranse2_nr_s2 null = lib.c_null_ptr() dms = numpy.asarray(dm) dm_shape = dms.shape nao = dm_shape[-1] dms = dms.reshape(-1,nao,nao) nset = dms.shape[0] vj = 0 vk = numpy.zeros_like(dms) if with_j: idx = numpy.arange(nao) dmtril = lib.pack_tril(dms + dms.conj().transpose(0,2,1)) dmtril[:,idx*(idx+1)//2+idx] *= .5 if not with_k: for eri1 in dfobj.loop(): rho = numpy.einsum('ix,px->ip', dmtril, eri1) vj += numpy.einsum('ip,px->ix', rho, eri1) elif getattr(dm, 'mo_coeff', None) is not None: #TODO: test whether dm.mo_coeff matching dm mo_coeff = numpy.asarray(dm.mo_coeff, order='F') mo_occ = numpy.asarray(dm.mo_occ) nmo = mo_occ.shape[-1] mo_coeff = mo_coeff.reshape(-1,nao,nmo) mo_occ = mo_occ.reshape(-1,nmo) if mo_occ.shape[0] * 2 == nset: # handle ROHF DM mo_coeff = numpy.vstack((mo_coeff, mo_coeff)) mo_occa = numpy.array(mo_occ> 0, dtype=numpy.double) mo_occb = numpy.array(mo_occ==2, dtype=numpy.double) assert(mo_occa.sum() + mo_occb.sum() == mo_occ.sum()) mo_occ = numpy.vstack((mo_occa, mo_occb)) orbo = [] for k in range(nset): c = numpy.einsum('pi,i->pi', mo_coeff[k][:,mo_occ[k]>0], numpy.sqrt(mo_occ[k][mo_occ[k]>0])) orbo.append(numpy.asarray(c, order='F')) max_memory = dfobj.max_memory - lib.current_memory()[0] blksize = max(4, int(min(dfobj.blockdim, max_memory*.3e6/8/nao**2))) buf = numpy.empty((blksize*nao,nao)) for eri1 in dfobj.loop(blksize): naux, nao_pair = eri1.shape assert(nao_pair == nao*(nao+1)//2) if with_j: rho = numpy.einsum('ix,px->ip', dmtril, eri1) vj += numpy.einsum('ip,px->ix', rho, eri1) for k in range(nset): nocc = orbo[k].shape[1] if nocc > 0: buf1 = buf[:naux*nocc] fdrv(ftrans, fmmm, buf1.ctypes.data_as(ctypes.c_void_p), eri1.ctypes.data_as(ctypes.c_void_p), orbo[k].ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), ctypes.c_int(nao), (ctypes.c_int*4)(0, nocc, 0, nao), null, ctypes.c_int(0)) vk[k] += lib.dot(buf1.T, buf1) t1 = log.timer_debug1('jk', *t1) else: #:vk = numpy.einsum('pij,jk->pki', cderi, dm) #:vk = numpy.einsum('pki,pkj->ij', cderi, vk) rargs = (ctypes.c_int(nao), (ctypes.c_int*4)(0, nao, 0, nao), null, ctypes.c_int(0)) dms = [numpy.asarray(x, order='F') for x in dms] max_memory = dfobj.max_memory - lib.current_memory()[0] blksize = max(4, int(min(dfobj.blockdim, max_memory*.22e6/8/nao**2))) buf = numpy.empty((2,blksize,nao,nao)) for eri1 in dfobj.loop(blksize): naux, nao_pair = eri1.shape if with_j: rho = numpy.einsum('ix,px->ip', dmtril, eri1) vj += numpy.einsum('ip,px->ix', rho, eri1) for k in range(nset): buf1 = buf[0,:naux] fdrv(ftrans, fmmm, buf1.ctypes.data_as(ctypes.c_void_p), eri1.ctypes.data_as(ctypes.c_void_p), dms[k].ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), *rargs) buf2 = lib.unpack_tril(eri1, out=buf[1]) vk[k] += lib.dot(buf1.reshape(-1,nao).T, buf2.reshape(-1,nao)) t1 = log.timer_debug1('jk', *t1) if with_j: vj = lib.unpack_tril(vj, 1).reshape(dm_shape) if with_k: vk = vk.reshape(dm_shape) logger.timer(dfobj, 'df vj and vk', *t0) return vj, vk def get_j(dfobj, dm, hermi=1, direct_scf_tol=1e-13): from pyscf.scf import _vhf from pyscf.scf import jk from pyscf.df import addons t0 = t1 = (time.clock(), time.time()) mol = dfobj.mol if dfobj._vjopt is None: dfobj.auxmol = auxmol = addons.make_auxmol(mol, dfobj.auxbasis) opt = _vhf.VHFOpt(mol, 'int3c2e', 'CVHFnr3c2e_schwarz_cond') opt.direct_scf_tol = direct_scf_tol # q_cond part 1: the regular int2e (ij|ij) for mol's basis opt.init_cvhf_direct(mol, 'int2e', 'CVHFsetnr_direct_scf') mol_q_cond = lib.frompointer(opt._this.contents.q_cond, mol.nbas**2) # Update q_cond to include the 2e-integrals (auxmol|auxmol) j2c = auxmol.intor('int2c2e', hermi=1) j2c_diag = numpy.sqrt(abs(j2c.diagonal())) aux_loc = auxmol.ao_loc aux_q_cond = [j2c_diag[i0:i1].max() for i0, i1 in zip(aux_loc[:-1], aux_loc[1:])] q_cond = numpy.hstack((mol_q_cond, aux_q_cond)) fsetqcond = _vhf.libcvhf.CVHFset_q_cond fsetqcond(opt._this, q_cond.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(q_cond.size)) try: opt.j2c = j2c = scipy.linalg.cho_factor(j2c, lower=True) opt.j2c_type = 'cd' except scipy.linalg.LinAlgError: opt.j2c = j2c opt.j2c_type = 'regular' # jk.get_jk function supports 4-index integrals. Use bas_placeholder # (l=0, nctr=1, 1 function) to hold the last index. bas_placeholder = numpy.array([0, 0, 1, 1, 0, 0, 0, 0], dtype=numpy.int32) fakemol = mol + auxmol fakemol._bas = numpy.vstack((fakemol._bas, bas_placeholder)) opt.fakemol = fakemol dfobj._vjopt = opt t1 = logger.timer_debug1(dfobj, 'df-vj init_direct_scf', *t1) opt = dfobj._vjopt fakemol = opt.fakemol dm = numpy.asarray(dm, order='C') dm_shape = dm.shape nao = dm_shape[-1] dm = dm.reshape(-1,nao,nao) n_dm = dm.shape[0] # First compute the density in auxiliary basis # j3c = fauxe2(mol, auxmol) # jaux = numpy.einsum('ijk,ji->k', j3c, dm) # rho = numpy.linalg.solve(auxmol.intor('int2c2e'), jaux) nbas = mol.nbas nbas1 = mol.nbas + dfobj.auxmol.nbas shls_slice = (0, nbas, 0, nbas, nbas, nbas1, nbas1, nbas1+1) with lib.temporary_env(opt, prescreen='CVHFnr3c2e_vj_pass1_prescreen', _dmcondname='CVHFsetnr_direct_scf_dm'): jaux = jk.get_jk(fakemol, dm, ['ijkl,ji->kl']*n_dm, 'int3c2e', aosym='s2ij', hermi=0, shls_slice=shls_slice, vhfopt=opt) # remove the index corresponding to bas_placeholder jaux = numpy.array(jaux)[:,:,0] t1 = logger.timer_debug1(dfobj, 'df-vj pass 1', *t1) if opt.j2c_type == 'cd': rho = scipy.linalg.cho_solve(opt.j2c, jaux.T) else: rho = scipy.linalg.solve(opt.j2c, jaux.T) # transform rho to shape (:,1,naux), to adapt to 3c2e integrals (ij|k) rho = rho.T[:,numpy.newaxis,:] t1 = logger.timer_debug1(dfobj, 'df-vj solve ', *t1) # Next compute the Coulomb matrix # j3c = fauxe2(mol, auxmol) # vj = numpy.einsum('ijk,k->ij', j3c, rho) with lib.temporary_env(opt, prescreen='CVHFnr3c2e_vj_pass2_prescreen', _dmcondname=None): # CVHFnr3c2e_vj_pass2_prescreen requires custom dm_cond aux_loc = dfobj.auxmol.ao_loc dm_cond = [abs(rho[:,:,i0:i1]).max() for i0, i1 in zip(aux_loc[:-1], aux_loc[1:])] dm_cond = numpy.array(dm_cond) fsetcond = _vhf.libcvhf.CVHFset_dm_cond fsetcond(opt._this, dm_cond.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(dm_cond.size)) vj = jk.get_jk(fakemol, rho, ['ijkl,lk->ij']*n_dm, 'int3c2e', aosym='s2ij', hermi=1, shls_slice=shls_slice, vhfopt=opt) t1 = logger.timer_debug1(dfobj, 'df-vj pass 2', *t1) logger.timer(dfobj, 'df-vj', *t0) return numpy.asarray(vj).reshape(dm_shape) def r_get_jk(dfobj, dms, hermi=1, with_j=True, with_k=True): '''Relativistic density fitting JK''' t0 = (time.clock(), time.time()) mol = dfobj.mol c1 = .5 / lib.param.LIGHT_SPEED tao = mol.tmap() ao_loc = mol.ao_loc_2c() n2c = ao_loc[-1] def fjk(dm): dm = numpy.asarray(dm, dtype=numpy.complex128) fmmm = libri.RIhalfmmm_r_s2_bra_noconj fdrv = _ao2mo.libao2mo.AO2MOr_e2_drv ftrans = libri.RItranse2_r_s2 vj = numpy.zeros_like(dm) vk = numpy.zeros_like(dm) fcopy = libri.RImmm_r_s2_transpose rargs = (ctypes.c_int(n2c), (ctypes.c_int*4)(0, n2c, 0, 0), tao.ctypes.data_as(ctypes.c_void_p), ao_loc.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(mol.nbas)) dmll = numpy.asarray(dm[:n2c,:n2c], order='C') dmls = numpy.asarray(dm[:n2c,n2c:], order='C') * c1 dmsl = numpy.asarray(dm[n2c:,:n2c], order='C') * c1 dmss = numpy.asarray(dm[n2c:,n2c:], order='C') * c1**2 for erill, eriss in dfobj.loop(): naux, nao_pair = erill.shape buf = numpy.empty((naux,n2c,n2c), dtype=numpy.complex) buf1 = numpy.empty((naux,n2c,n2c), dtype=numpy.complex) fdrv(ftrans, fmmm, buf.ctypes.data_as(ctypes.c_void_p), erill.ctypes.data_as(ctypes.c_void_p), dmll.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), *rargs) # buf == (P|LL) rho = numpy.einsum('kii->k', buf) fdrv(ftrans, fcopy, buf1.ctypes.data_as(ctypes.c_void_p), erill.ctypes.data_as(ctypes.c_void_p), dmll.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), *rargs) # buf1 == (P|LL) vk[:n2c,:n2c] += numpy.dot(buf1.reshape(-1,n2c).T, buf.reshape(-1,n2c)) fdrv(ftrans, fmmm, buf.ctypes.data_as(ctypes.c_void_p), eriss.ctypes.data_as(ctypes.c_void_p), dmls.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), *rargs) # buf == (P|LS) vk[:n2c,n2c:] += numpy.dot(buf1.reshape(-1,n2c).T, buf.reshape(-1,n2c)) * c1 fdrv(ftrans, fmmm, buf.ctypes.data_as(ctypes.c_void_p), eriss.ctypes.data_as(ctypes.c_void_p), dmss.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), *rargs) # buf == (P|SS) rho += numpy.einsum('kii->k', buf) vj[:n2c,:n2c] += lib.unpack_tril(numpy.dot(rho, erill), 1) vj[n2c:,n2c:] += lib.unpack_tril(numpy.dot(rho, eriss), 1) * c1**2 fdrv(ftrans, fcopy, buf1.ctypes.data_as(ctypes.c_void_p), eriss.ctypes.data_as(ctypes.c_void_p), dmss.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), *rargs) # buf == (P|SS) vk[n2c:,n2c:] += numpy.dot(buf1.reshape(-1,n2c).T, buf.reshape(-1,n2c)) * c1**2 if hermi != 1: fdrv(ftrans, fmmm, buf.ctypes.data_as(ctypes.c_void_p), erill.ctypes.data_as(ctypes.c_void_p), dmsl.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(naux), *rargs) # buf == (P|SL) vk[n2c:,:n2c] += numpy.dot(buf1.reshape(-1,n2c).T, buf.reshape(-1,n2c)) * c1 if hermi == 1: vk[n2c:,:n2c] = vk[:n2c,n2c:].T.conj() return vj, vk if isinstance(dms, numpy.ndarray) and dms.ndim == 2: vj, vk = fjk(dms) else: vjk = [fjk(dm) for dm in dms] vj = numpy.array([x[0] for x in vjk]) vk = numpy.array([x[1] for x in vjk]) logger.timer(dfobj, 'vj and vk', *t0) return vj, vk if __name__ == '__main__': import pyscf.gto import pyscf.scf mol = pyscf.gto.Mole() mol.build( verbose = 0, atom = [["O" , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)] ], basis = 'ccpvdz', ) method = density_fit(pyscf.scf.RHF(mol), 'weigend') method.max_memory = 0 energy = method.scf() print(energy, -76.0259362997) method = density_fit(pyscf.scf.DHF(mol), 'weigend') energy = method.scf() print(energy, -76.0807386770) # normal DHF energy is -76.0815679438127 method = density_fit(pyscf.scf.UKS(mol), 'weigend') energy = method.scf() print(energy, -75.8547753298) mol.build( verbose = 0, atom = [["O" , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)] ], basis = 'ccpvdz', spin = 1, charge = 1, ) method = density_fit(pyscf.scf.UHF(mol), 'weigend') energy = method.scf() print(energy, -75.6310072359) method = density_fit(pyscf.scf.RHF(mol), 'weigend') energy = method.scf() print(energy, -75.6265157244)
the-stack_0_24971
from __future__ import print_function, division from sympy.core.add import Add from sympy.core.compatibility import is_sequence from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.relational import Equality, Relational from sympy.core.singleton import S from sympy.core.symbol import Symbol, Dummy from sympy.core.sympify import sympify from sympy.functions.elementary.piecewise import (piecewise_fold, Piecewise) from sympy.logic.boolalg import BooleanFunction from sympy.tensor.indexed import Idx from sympy.sets.sets import Interval from sympy.sets.fancysets import Range from sympy.utilities import flatten from sympy.utilities.iterables import sift def _common_new(cls, function, *symbols, **assumptions): """Return either a special return value or the tuple, (function, limits, orientation). This code is common to both ExprWithLimits and AddWithLimits.""" function = sympify(function) if hasattr(function, 'func') and isinstance(function, Equality): lhs = function.lhs rhs = function.rhs return Equality(cls(lhs, *symbols, **assumptions), \ cls(rhs, *symbols, **assumptions)) if function is S.NaN: return S.NaN if symbols: limits, orientation = _process_limits(*symbols) for i, li in enumerate(limits): if len(li) == 4: function = function.subs(li[0], li[-1]) limits[i] = Tuple(*li[:-1]) else: # symbol not provided -- we can still try to compute a general form free = function.free_symbols if len(free) != 1: raise ValueError( "specify dummy variables for %s" % function) limits, orientation = [Tuple(s) for s in free], 1 # denest any nested calls while cls == type(function): limits = list(function.limits) + limits function = function.function # Any embedded piecewise functions need to be brought out to the # top level. We only fold Piecewise that contain the integration # variable. reps = {} symbols_of_integration = set([i[0] for i in limits]) for p in function.atoms(Piecewise): if not p.has(*symbols_of_integration): reps[p] = Dummy() # mask off those that don't function = function.xreplace(reps) # do the fold function = piecewise_fold(function) # remove the masking function = function.xreplace({v: k for k, v in reps.items()}) return function, limits, orientation def _process_limits(*symbols): """Process the list of symbols and convert them to canonical limits, storing them as Tuple(symbol, lower, upper). The orientation of the function is also returned when the upper limit is missing so (x, 1, None) becomes (x, None, 1) and the orientation is changed. """ limits = [] orientation = 1 for V in symbols: if isinstance(V, (Relational, BooleanFunction)): variable = V.atoms(Symbol).pop() V = (variable, V.as_set()) if isinstance(V, Symbol) or getattr(V, '_diff_wrt', False): if isinstance(V, Idx): if V.lower is None or V.upper is None: limits.append(Tuple(V)) else: limits.append(Tuple(V, V.lower, V.upper)) else: limits.append(Tuple(V)) continue elif is_sequence(V, Tuple): if len(V) == 2 and isinstance(V[1], Range): lo = V[1].inf hi = V[1].sup dx = abs(V[1].step) V = [V[0]] + [0, (hi - lo)//dx, dx*V[0] + lo] V = sympify(flatten(V)) # a list of sympified elements if isinstance(V[0], (Symbol, Idx)) or getattr(V[0], '_diff_wrt', False): newsymbol = V[0] if len(V) == 2 and isinstance(V[1], Interval): # 2 -> 3 # Interval V[1:] = [V[1].start, V[1].end] elif len(V) == 3: # general case if V[2] is None and not V[1] is None: orientation *= -1 V = [newsymbol] + [i for i in V[1:] if i is not None] if not isinstance(newsymbol, Idx) or len(V) == 3: if len(V) == 4: limits.append(Tuple(*V)) continue if len(V) == 3: if isinstance(newsymbol, Idx): # Idx represents an integer which may have # specified values it can take on; if it is # given such a value, an error is raised here # if the summation would try to give it a larger # or smaller value than permitted. None and Symbolic # values will not raise an error. lo, hi = newsymbol.lower, newsymbol.upper try: if lo is not None and not bool(V[1] >= lo): raise ValueError("Summation will set Idx value too low.") except TypeError: pass try: if hi is not None and not bool(V[2] <= hi): raise ValueError("Summation will set Idx value too high.") except TypeError: pass limits.append(Tuple(*V)) continue if len(V) == 1 or (len(V) == 2 and V[1] is None): limits.append(Tuple(newsymbol)) continue elif len(V) == 2: limits.append(Tuple(newsymbol, V[1])) continue raise ValueError('Invalid limits given: %s' % str(symbols)) return limits, orientation class ExprWithLimits(Expr): __slots__ = ['is_commutative'] def __new__(cls, function, *symbols, **assumptions): pre = _common_new(cls, function, *symbols, **assumptions) if type(pre) is tuple: function, limits, _ = pre else: return pre # limits must have upper and lower bounds; the indefinite form # is not supported. This restriction does not apply to AddWithLimits if any(len(l) != 3 or None in l for l in limits): raise ValueError('ExprWithLimits requires values for lower and upper bounds.') obj = Expr.__new__(cls, **assumptions) arglist = [function] arglist.extend(limits) obj._args = tuple(arglist) obj.is_commutative = function.is_commutative # limits already checked return obj @property def function(self): """Return the function applied across limits. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x >>> Integral(x**2, (x,)).function x**2 See Also ======== limits, variables, free_symbols """ return self._args[0] @property def limits(self): """Return the limits of expression. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, i >>> Integral(x**i, (i, 1, 3)).limits ((i, 1, 3),) See Also ======== function, variables, free_symbols """ return self._args[1:] @property def variables(self): """Return a list of the limit variables. >>> from sympy import Sum >>> from sympy.abc import x, i >>> Sum(x**i, (i, 1, 3)).variables [i] See Also ======== function, limits, free_symbols as_dummy : Rename dummy variables sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable """ return [l[0] for l in self.limits] @property def bound_symbols(self): """Return only variables that are dummy variables. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, i, j, k >>> Integral(x**i, (i, 1, 3), (j, 2), k).bound_symbols [i, j] See Also ======== function, limits, free_symbols as_dummy : Rename dummy variables sympy.integrals.integrals.Integral.transform : Perform mapping on the dummy variable """ return [l[0] for l in self.limits if len(l) != 1] @property def free_symbols(self): """ This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols). Examples ======== >>> from sympy import Sum >>> from sympy.abc import x, y >>> Sum(x, (x, y, 1)).free_symbols {y} """ # don't test for any special values -- nominal free symbols # should be returned, e.g. don't return set() if the # function is zero -- treat it like an unevaluated expression. function, limits = self.function, self.limits isyms = function.free_symbols for xab in limits: if len(xab) == 1: isyms.add(xab[0]) continue # take out the target symbol if xab[0] in isyms: isyms.remove(xab[0]) # add in the new symbols for i in xab[1:]: isyms.update(i.free_symbols) return isyms @property def is_number(self): """Return True if the Sum has no free symbols, else False.""" return not self.free_symbols def _eval_interval(self, x, a, b): limits = [(i if i[0] != x else (x, a, b)) for i in self.limits] integrand = self.function return self.func(integrand, *limits) def _eval_subs(self, old, new): """ Perform substitutions over non-dummy variables of an expression with limits. Also, can be used to specify point-evaluation of an abstract antiderivative. Examples ======== >>> from sympy import Sum, oo >>> from sympy.abc import s, n >>> Sum(1/n**s, (n, 1, oo)).subs(s, 2) Sum(n**(-2), (n, 1, oo)) >>> from sympy import Integral >>> from sympy.abc import x, a >>> Integral(a*x**2, x).subs(x, 4) Integral(a*x**2, (x, 4)) See Also ======== variables : Lists the integration variables transform : Perform mapping on the dummy variable for integrals change_index : Perform mapping on the sum and product dummy variables """ from sympy.core.function import AppliedUndef, UndefinedFunction func, limits = self.function, list(self.limits) # If one of the expressions we are replacing is used as a func index # one of two things happens. # - the old variable first appears as a free variable # so we perform all free substitutions before it becomes # a func index. # - the old variable first appears as a func index, in # which case we ignore. See change_index. # Reorder limits to match standard mathematical practice for scoping limits.reverse() if not isinstance(old, Symbol) or \ old.free_symbols.intersection(self.free_symbols): sub_into_func = True for i, xab in enumerate(limits): if 1 == len(xab) and old == xab[0]: if new._diff_wrt: xab = (new,) else: xab = (old, old) limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if len(xab[0].free_symbols.intersection(old.free_symbols)) != 0: sub_into_func = False break if isinstance(old, AppliedUndef) or isinstance(old, UndefinedFunction): sy2 = set(self.variables).intersection(set(new.atoms(Symbol))) sy1 = set(self.variables).intersection(set(old.args)) if not sy2.issubset(sy1): raise ValueError( "substitution can not create dummy dependencies") sub_into_func = True if sub_into_func: func = func.subs(old, new) else: # old is a Symbol and a dummy variable of some limit for i, xab in enumerate(limits): if len(xab) == 3: limits[i] = Tuple(xab[0], *[l._subs(old, new) for l in xab[1:]]) if old == xab[0]: break # simplify redundant limits (x, x) to (x, ) for i, xab in enumerate(limits): if len(xab) == 2 and (xab[0] - xab[1]).is_zero: limits[i] = Tuple(xab[0], ) # Reorder limits back to representation-form limits.reverse() return self.func(func, *limits) @property def has_finite_limits(self): """ Returns True if the limits are known to be finite, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known to be infinite, based on the bounds. None if not enough information is available to determine. Examples ======== >>> from sympy import Sum, Integral, Product, oo, Symbol >>> x = Symbol('x') >>> Sum(x, (x, 1, 8)).has_finite_limits True >>> Integral(x, (x, 1, oo)).has_finite_limits False >>> M = Symbol('M') >>> Sum(x, (x, 1, M)).has_finite_limits >>> N = Symbol('N', integer=True) >>> Product(x, (x, 1, N)).has_finite_limits True See Also ======== has_reversed_limits """ ret_None = False for lim in self.limits: if len(lim) == 3: if any(l.is_infinite for l in lim[1:]): # Any of the bounds are +/-oo return False elif any(l.is_infinite is None for l in lim[1:]): # Maybe there are assumptions on the variable? if lim[0].is_infinite is None: ret_None = True else: if lim[0].is_infinite is None: ret_None = True if ret_None: return None return True @property def has_reversed_limits(self): """ Returns True if the limits are known to be in reversed order, either by the explicit bounds, assumptions on the bounds, or assumptions on the variables. False if known to be in normal order, based on the bounds. None if not enough information is available to determine. Examples ======== >>> from sympy import Sum, Integral, Product, oo, Symbol >>> x = Symbol('x') >>> Sum(x, (x, 8, 1)).has_reversed_limits True >>> Sum(x, (x, 1, oo)).has_reversed_limits False >>> M = Symbol('M') >>> Integral(x, (x, 1, M)).has_reversed_limits >>> N = Symbol('N', integer=True, positive=True) >>> Sum(x, (x, 1, N)).has_reversed_limits False >>> Product(x, (x, 2, N)).has_reversed_limits >>> Product(x, (x, 2, N)).subs(N, N + 2).has_reversed_limits False See Also ======== sympy.concrete.expr_with_intlimits.ExprWithIntLimits.has_empty_sequence """ ret_None = False for lim in self.limits: if len(lim) == 3: var, a, b = lim dif = b - a if dif.is_extended_negative: return True elif dif.is_extended_nonnegative: continue else: ret_None = True else: return None if ret_None: return None return False class AddWithLimits(ExprWithLimits): r"""Represents unevaluated oriented additions. Parent class for Integral and Sum. """ def __new__(cls, function, *symbols, **assumptions): pre = _common_new(cls, function, *symbols, **assumptions) if type(pre) is tuple: function, limits, orientation = pre else: return pre obj = Expr.__new__(cls, **assumptions) arglist = [orientation*function] # orientation not used in ExprWithLimits arglist.extend(limits) obj._args = tuple(arglist) obj.is_commutative = function.is_commutative # limits already checked return obj def _eval_adjoint(self): if all([x.is_real for x in flatten(self.limits)]): return self.func(self.function.adjoint(), *self.limits) return None def _eval_conjugate(self): if all([x.is_real for x in flatten(self.limits)]): return self.func(self.function.conjugate(), *self.limits) return None def _eval_transpose(self): if all([x.is_real for x in flatten(self.limits)]): return self.func(self.function.transpose(), *self.limits) return None def _eval_factor(self, **hints): if 1 == len(self.limits): summand = self.function.factor(**hints) if summand.is_Mul: out = sift(summand.args, lambda w: w.is_commutative \ and not set(self.variables) & w.free_symbols) return Mul(*out[True])*self.func(Mul(*out[False]), \ *self.limits) else: summand = self.func(self.function, *self.limits[0:-1]).factor() if not summand.has(self.variables[-1]): return self.func(1, [self.limits[-1]]).doit()*summand elif isinstance(summand, Mul): return self.func(summand, self.limits[-1]).factor() return self def _eval_expand_basic(self, **hints): from sympy.matrices.matrices import MatrixBase summand = self.function.expand(**hints) if summand.is_Add and summand.is_commutative: return Add(*[self.func(i, *self.limits) for i in summand.args]) elif isinstance(summand, MatrixBase): return summand.applyfunc(lambda x: self.func(x, *self.limits)) elif summand != self.function: return self.func(summand, *self.limits) return self
the-stack_0_24972
#!/usr/bin/env python3 # coding: utf8 # /*########################################################################## # # Copyright (c) 2015-2019 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "31/01/2020" __status__ = "stable" import io import sys import os import platform import shutil import logging import glob logging.basicConfig(level=logging.INFO) logger = logging.getLogger("pyFAI.setup") from distutils.command.clean import clean as Clean from distutils.command.build import build as _build try: from setuptools import Command from setuptools.command.build_py import build_py as _build_py from setuptools.command.build_ext import build_ext from setuptools.command.sdist import sdist logger.info("Use setuptools") except ImportError: try: from numpy.distutils.core import Command except ImportError: from distutils.core import Command from distutils.command.build_py import build_py as _build_py from distutils.command.build_ext import build_ext from distutils.command.sdist import sdist logger.info("Use distutils") try: import sphinx import sphinx.util.console sphinx.util.console.color_terminal = lambda: False from sphinx.setup_command import BuildDoc except ImportError: sphinx = None PROJECT = "pyFAI" if "LANG" not in os.environ and sys.platform == "darwin" and sys.version_info[0] > 2: print("""WARNING: the LANG environment variable is not defined, an utf-8 LANG is mandatory to use setup.py, you may face unexpected UnicodeError. export LANG=en_US.utf-8 export LC_ALL=en_US.utf-8 """) def get_version(): """Returns current version number from version.py file""" dirname = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, dirname) import version sys.path = sys.path[1:] return version.strictversion def get_readme(): """Returns content of README.rst file""" dirname = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(dirname, "README.rst") with io.open(filename, "r", encoding="utf-8") as fp: long_description = fp.read() return long_description # double check classifiers on https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers = ["Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Programming Language :: Cython", "Environment :: Console", "Environment :: X11 Applications :: Qt", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Topic :: Software Development :: Libraries :: Python Modules", "Operating System :: Microsoft :: Windows", "Operating System :: Unix", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX", "Topic :: Scientific/Engineering :: Physics" ] # ########## # # version.py # # ########## # class build_py(_build_py): """ Enhanced build_py which copies version.py to <PROJECT>._version.py """ def find_package_modules(self, package, package_dir): modules = _build_py.find_package_modules(self, package, package_dir) if package == PROJECT: modules.append((PROJECT, '_version', 'version.py')) return modules ######## # Test # ######## class PyTest(Command): """Command to start tests running the script: run_tests.py""" user_options = [] description = "Execute the unittests" def initialize_options(self): pass def finalize_options(self): pass def run(self): import subprocess errno = subprocess.call([sys.executable, 'run_tests.py']) if errno != 0: raise SystemExit(errno) # ################### # # build_doc command # # ################### # if sphinx is None: class SphinxExpectedCommand(Command): """Command to inform that sphinx is missing""" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): raise RuntimeError( 'Sphinx is required to build or test the documentation.\n' 'Please install Sphinx (http://www.sphinx-doc.org).') class BuildMan(Command): """Command to build man pages""" description = "Build man pages of the provided entry points" user_options = [] def initialize_options(self): pass def finalize_options(self): pass def entry_points_iterator(self): """Iterate other entry points available on the project.""" entry_points = self.distribution.entry_points console_scripts = entry_points.get('console_scripts', []) gui_scripts = entry_points.get('gui_scripts', []) scripts = [] scripts.extend(console_scripts) scripts.extend(gui_scripts) for script in scripts: # Remove ending extra dependencies script = script.split("[")[0] elements = script.split("=") target_name = elements[0].strip() elements = elements[1].split(":") module_name = elements[0].strip() function_name = elements[1].strip() yield target_name, module_name, function_name def run_targeted_script(self, target_name, script_name, env, log_output=False): """Execute targeted script using --help and --version to help checking errors. help2man is not very helpful to do it for us. :return: True is both return code are equal to 0 :rtype: bool """ import subprocess if log_output: extra_args = {} else: try: # Python 3 from subprocess import DEVNULL except ImportError: # Python 2 import os DEVNULL = open(os.devnull, 'wb') extra_args = {'stdout': DEVNULL, 'stderr': DEVNULL} succeeded = True command_line = [sys.executable, script_name, "--help"] if log_output: logger.info("See the following execution of: %s", " ".join(command_line)) p = subprocess.Popen(command_line, env=env, **extra_args) status = p.wait() if log_output: logger.info("Return code: %s", status) succeeded = succeeded and status == 0 command_line = [sys.executable, script_name, "--version"] if log_output: logger.info("See the following execution of: %s", " ".join(command_line)) p = subprocess.Popen(command_line, env=env, **extra_args) status = p.wait() if log_output: logger.info("Return code: %s", status) succeeded = succeeded and status == 0 return succeeded @staticmethod def _write_script(target_name, lst_lines=None): """Write a script to a temporary file and return its name :paran target_name: base of the script name :param lst_lines: list of lines to be written in the script :return: the actual filename of the script (for execution or removal) """ import tempfile import stat script_fid, script_name = tempfile.mkstemp(prefix="%s_" % target_name, text=True) with os.fdopen(script_fid, 'wt') as script: for line in lst_lines: if not line.endswith("\n"): line += "\n" script.write(line) # make it executable mode = os.stat(script_name).st_mode os.chmod(script_name, mode + stat.S_IEXEC) return script_name def get_synopsis(self, module_name, env, log_output=False): """Execute a script to retrieve the synopsis for help2man :return: synopsis :rtype: single line string """ import subprocess script_name = None synopsis = None script = ["#!%s\n" % sys.executable, "import logging", "logging.basicConfig(level=logging.ERROR)", "import %s as app" % module_name, "print(app.__doc__)"] try: script_name = self._write_script(module_name, script) command_line = [sys.executable, script_name] p = subprocess.Popen(command_line, env=env, stdout=subprocess.PIPE) status = p.wait() if status != 0: logger.warning("Error while getting synopsis for module '%s'.", module_name) synopsis = p.stdout.read().decode("utf-8").strip() if synopsis == 'None': synopsis = None finally: # clean up the script if script_name is not None: os.remove(script_name) return synopsis def run(self): build = self.get_finalized_command('build') path = sys.path path.insert(0, os.path.abspath(build.build_lib)) env = dict((str(k), str(v)) for k, v in os.environ.items()) env["PYTHONPATH"] = os.pathsep.join(path) if not os.path.isdir("build/man"): os.makedirs("build/man") import subprocess script_name = None entry_points = self.entry_points_iterator() for target_name, module_name, function_name in entry_points: logger.info("Build man for entry-point target '%s'" % target_name) # help2man expect a single executable file to extract the help # we create it, execute it, and delete it at the end py3 = sys.version_info >= (3, 0) try: script = ["#!%s" % sys.executable, "import logging", "logging.basicConfig(level=logging.ERROR)", "import %s as app" % module_name, "app.%s()" % function_name] script_name = self._write_script(target_name, script) # execute help2man man_file = "build/man/%s.1" % target_name command_line = ["help2man", "-N", script_name, "-o", man_file] synopsis = self.get_synopsis(module_name, env) if synopsis: command_line += ["-n", synopsis] if not py3: # Before Python 3.4, ArgParser --version was using # stderr to print the version command_line.append("--no-discard-stderr") # Then we dont know if the documentation will contains # durtty things succeeded = self.run_targeted_script(target_name, script_name, env, False) if not succeeded: logger.info("Error while generating man file for target '%s'.", target_name) self.run_targeted_script(target_name, script_name, env, True) raise RuntimeError("Fail to generate '%s' man documentation" % target_name) p = subprocess.Popen(command_line, env=env) status = p.wait() if status != 0: logger.info("Error while generating man file for target '%s'.", target_name) self.run_targeted_script(target_name, script_name, env, True) raise RuntimeError("Fail to generate '%s' man documentation" % target_name) finally: # clean up the script if script_name is not None: os.remove(script_name) if sphinx is not None: class BuildDocCommand(BuildDoc): """Command to build documentation using sphinx. Project should have already be built. """ def run(self): # make sure the python path is pointing to the newly built # code so that the documentation is built on this and not a # previously installed version build = self.get_finalized_command('build') sys.path.insert(0, os.path.abspath(build.build_lib)) # # Copy .ui files to the path: # dst = os.path.join( # os.path.abspath(build.build_lib), "silx", "gui") # if not os.path.isdir(dst): # os.makedirs(dst) # for i in os.listdir("gui"): # if i.endswith(".ui"): # src = os.path.join("gui", i) # idst = os.path.join(dst, i) # if not os.path.exists(idst): # shutil.copy(src, idst) # Build the Users Guide in HTML and TeX format for builder in ['html', 'latex']: self.builder = builder self.builder_target_dir = os.path.join(self.build_dir, builder) self.mkpath(self.builder_target_dir) BuildDoc.run(self) sys.path.pop(0) else: BuildDocCommand = SphinxExpectedCommand # ################### # # test_doc command # # ################### # if sphinx is not None: class TestDocCommand(BuildDoc): """Command to test the documentation using sphynx doctest. http://www.sphinx-doc.org/en/1.4.8/ext/doctest.html """ def run(self): # make sure the python path is pointing to the newly built # code so that the documentation is built on this and not a # previously installed version build = self.get_finalized_command('build') sys.path.insert(0, os.path.abspath(build.build_lib)) # Build the Users Guide in HTML and TeX format for builder in ['doctest']: self.builder = builder self.builder_target_dir = os.path.join(self.build_dir, builder) self.mkpath(self.builder_target_dir) BuildDoc.run(self) sys.path.pop(0) else: TestDocCommand = SphinxExpectedCommand # ############################# # # numpy.distutils Configuration # # ############################# # def configuration(parent_package='', top_path=None): """Recursive construction of package info to be used in setup(). See http://docs.scipy.org/doc/numpy/reference/distutils.html#numpy.distutils.misc_util.Configuration """ try: from numpy.distutils.misc_util import Configuration except ImportError: raise ImportError( "To install this package, you must install numpy first\n" "(See https://pypi.python.org/pypi/numpy)") config = Configuration(None, parent_package, top_path) config.set_options( ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage(PROJECT) return config # ############## # # Compiler flags # # ############## # class Build(_build): """Command to support more user options for the build.""" user_options = [ ('no-openmp', None, "do not use OpenMP for compiled extension modules"), ('openmp', None, "use OpenMP for the compiled extension modules"), ('no-cython', None, "do not compile Cython extension modules (use default compiled c-files)"), ('force-cython', None, "recompile all Cython extension modules"), ] user_options.extend(_build.user_options) boolean_options = ['no-openmp', 'openmp', 'no-cython', 'force-cython'] boolean_options.extend(_build.boolean_options) def initialize_options(self): _build.initialize_options(self) self.no_openmp = None self.openmp = None self.no_cython = None self.force_cython = None def finalize_options(self): _build.finalize_options(self) self.finalize_cython_options(min_version='0.21.1') self.finalize_openmp_options() def _parse_env_as_bool(self, key): content = os.environ.get(key, "") value = content.lower() if value in ["1", "true", "yes", "y"]: return True if value in ["0", "false", "no", "n"]: return False if value in ["none", ""]: return None msg = "Env variable '%s' contains '%s'. But a boolean or an empty \ string was expected. Variable ignored." logger.warning(msg, key, content) return None def finalize_openmp_options(self): """Check if extensions must be compiled with OpenMP. The result is stored into the object. """ if self.openmp: use_openmp = True elif self.no_openmp: use_openmp = False else: env_force_cython = self._parse_env_as_bool("WITH_OPENMP") if env_force_cython is not None: use_openmp = env_force_cython else: # Use it by default use_openmp = True if use_openmp: if platform.system() == "Darwin": # By default Xcode5 & XCode6 do not support OpenMP, Xcode4 is OK. osx = tuple([int(i) for i in platform.mac_ver()[0].split(".")]) if osx >= (10, 8): logger.warning("OpenMP support ignored. Your platform does not support it.") use_openmp = False # Remove attributes used by distutils parsing # use 'use_openmp' instead del self.no_openmp del self.openmp self.use_openmp = use_openmp def finalize_cython_options(self, min_version=None): """ Check if cythonization must be used for the extensions. The result is stored into the object. """ if self.force_cython: use_cython = "force" elif self.no_cython: use_cython = "no" else: env_force_cython = self._parse_env_as_bool("FORCE_CYTHON") env_with_cython = self._parse_env_as_bool("WITH_CYTHON") if env_force_cython is True: use_cython = "force" elif env_with_cython is True: use_cython = "yes" elif env_with_cython is False: use_cython = "no" else: # Use it by default use_cython = "yes" if use_cython in ["force", "yes"]: try: import Cython.Compiler.Version if min_version and Cython.Compiler.Version.version < min_version: msg = "Cython version is too old. At least version is %s \ expected. Cythonization is skipped." logger.warning(msg, str(min_version)) use_cython = "no" except ImportError: msg = "Cython is not available. Cythonization is skipped." logger.warning(msg) use_cython = "no" # Remove attribute used by distutils parsing # use 'use_cython' and 'force_cython' instead del self.no_cython self.force_cython = use_cython == "force" self.use_cython = use_cython in ["force", "yes"] class BuildExt(build_ext): """Handle extension compilation. Command-line argument and environment can custom: - The use of cython to cythonize files, else a default version is used - Build extension with support of OpenMP (by default it is enabled) - If building with MSVC, compiler flags are converted from gcc flags. """ COMPILE_ARGS_CONVERTER = {'-fopenmp': '/openmp'} LINK_ARGS_CONVERTER = {'-fopenmp': ''} description = 'Build extensions' def finalize_options(self): build_ext.finalize_options(self) build_obj = self.distribution.get_command_obj("build") self.use_openmp = build_obj.use_openmp self.use_cython = build_obj.use_cython self.force_cython = build_obj.force_cython def patch_with_default_cythonized_files(self, ext): """Replace cython files by .c or .cpp files in extension's sources. It replaces the *.pyx and *.py source files of the extensions to either *.cpp or *.c source files. No compilation is performed. :param Extension ext: An extension to patch. """ new_sources = [] for source in ext.sources: base, file_ext = os.path.splitext(source) if file_ext in ('.pyx', '.py'): if ext.language == 'c++': cythonized = base + '.cpp' else: cythonized = base + '.c' if not os.path.isfile(cythonized): raise RuntimeError("Source file not found: %s. Cython is needed" % cythonized) print("Use default cythonized file for %s" % source) new_sources.append(cythonized) else: new_sources.append(source) ext.sources = new_sources def patch_extension(self, ext): """ Patch an extension according to requested Cython and OpenMP usage. :param Extension ext: An extension """ # Cytonize if not self.use_cython: self.patch_with_default_cythonized_files(ext) else: from Cython.Build import cythonize patched_exts = cythonize( [ext], compiler_directives={'embedsignature': True, 'language_level': 3}, force=self.force_cython, ) ext.sources = patched_exts[0].sources # Remove OpenMP flags if OpenMP is disabled if not self.use_openmp: ext.extra_compile_args = [ f for f in ext.extra_compile_args if f != '-fopenmp'] ext.extra_link_args = [ f for f in ext.extra_link_args if f != '-fopenmp'] # Convert flags from gcc to MSVC if required if self.compiler.compiler_type == 'msvc': extra_compile_args = [self.COMPILE_ARGS_CONVERTER.get(f, f) for f in ext.extra_compile_args] # Avoid empty arg ext.extra_compile_args = [arg for arg in extra_compile_args if arg] extra_link_args = [self.LINK_ARGS_CONVERTER.get(f, f) for f in ext.extra_link_args] # Avoid empty arg ext.extra_link_args = [arg for arg in extra_link_args if arg] elif self.compiler.compiler_type == 'unix': # Avoids runtime symbol collision for manylinux1 platform # See issue #1070 extern = 'extern "C" ' if ext.language == 'c++' else '' return_type = 'void' if sys.version_info[0] <= 2 else 'PyObject*' ext.extra_compile_args.append('-fvisibility=hidden') import numpy numpy_version = [int(i) for i in numpy.version.short_version.split(".", 2)[:2]] if numpy_version < [1, 16]: ext.extra_compile_args.append( '''-D'PyMODINIT_FUNC=%s__attribute__((visibility("default"))) %s ' ''' % (extern, return_type)) else: ext.define_macros.append( ('PyMODINIT_FUNC', '%s__attribute__((visibility("default"))) %s ' % (extern, return_type))) def is_debug_interpreter(self): """ Returns true if the script is executed with a debug interpreter. It looks to be a non-standard code. It is not working for Windows and Mac. But it have to work at least for Debian interpreters. :rtype: bool """ if sys.version_info >= (3, 0): # It is normalized on Python 3 # But it is not available on Windows CPython if hasattr(sys, "abiflags"): return "d" in sys.abiflags else: # It's a Python 2 interpreter # pydebug is not available on Windows/Mac OS interpreters if hasattr(sys, "pydebug"): return sys.pydebug # We can't know if we uses debug interpreter return False def patch_compiler(self): """ Patch the compiler to: - always compile extensions with debug symboles (-g) - only compile asserts in debug mode (-DNDEBUG) Plus numpy.distutils/setuptools/distutils inject a lot of duplicated flags. This function tries to clean up default debug options. """ build_obj = self.distribution.get_command_obj("build") if build_obj.debug: debug_mode = build_obj.debug else: # Force debug_mode also when it uses python-dbg # It is needed for Debian packaging debug_mode = self.is_debug_interpreter() if self.compiler.compiler_type == "unix": args = list(self.compiler.compiler_so) # clean up debug flags -g is included later in another way must_be_cleaned = ["-DNDEBUG", "-g"] args = filter(lambda x: x not in must_be_cleaned, args) args = list(args) # always insert symbols args.append("-g") # only strip asserts in release mode if not debug_mode: args.append('-DNDEBUG') # patch options self.compiler.compiler_so = list(args) def build_extensions(self): self.patch_compiler() for ext in self.extensions: self.patch_extension(ext) build_ext.build_extensions(self) ################################################################################ # Clean command ################################################################################ class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def expand(self, path_list): """Expand a list of path using glob magic. :param list[str] path_list: A list of path which may contains magic :rtype: list[str] :returns: A list of path without magic """ path_list2 = [] for path in path_list: if glob.has_magic(path): iterator = glob.iglob(path) path_list2.extend(iterator) else: path_list2.append(path) return path_list2 def find(self, path_list): """Find a file pattern if directories. Could be done using "**/*.c" but it is only supported in Python 3.5. :param list[str] path_list: A list of path which may contains magic :rtype: list[str] :returns: A list of path without magic """ import fnmatch path_list2 = [] for pattern in path_list: for root, _, filenames in os.walk('.'): for filename in fnmatch.filter(filenames, pattern): path_list2.append(os.path.join(root, filename)) return path_list2 def run(self): Clean.run(self) cython_files = self.find(["*.pyx"]) cythonized_files = [path.replace(".pyx", ".c") for path in cython_files] cythonized_files += [path.replace(".pyx", ".cpp") for path in cython_files] # really remove the directories # and not only if they are empty to_remove = [self.build_base] to_remove = self.expand(to_remove) to_remove += cythonized_files if not self.dry_run: for path in to_remove: try: if os.path.isdir(path): shutil.rmtree(path) else: os.remove(path) logger.info("removing '%s'", path) except OSError: pass ################################################################################ # Source tree ################################################################################ class SourceDistWithCython(sdist): """ Force cythonization of the extensions before generating the source distribution. To provide the widest compatibility the cythonized files are provided without suppport of OpenMP. """ description = "Create a source distribution including cythonized files (tarball, zip file, etc.)" def finalize_options(self): sdist.finalize_options(self) self.extensions = self.distribution.ext_modules def run(self): self.cythonize_extensions() sdist.run(self) def cythonize_extensions(self): from Cython.Build import cythonize cythonize( self.extensions, compiler_directives={'embedsignature': True, 'language_level': 3}, force=True, ) ################################################################################ # Debian source tree ################################################################################ class sdist_debian(sdist): """ Tailor made sdist for debian * remove auto-generated doc * remove cython generated .c files * remove cython generated .cpp files * remove .bat files * include .l man files """ description = "Create a source distribution for Debian (tarball, zip file, etc.)" @staticmethod def get_debian_name(): import version name = "%s_%s" % (PROJECT, version.debianversion) return name def prune_file_list(self): sdist.prune_file_list(self) to_remove = ["doc/build", "doc/pdf", "doc/html", "pylint", "epydoc"] print("Removing files for debian") for rm in to_remove: self.filelist.exclude_pattern(pattern="*", anchor=False, prefix=rm) # this is for Cython files specifically: remove C & html files search_root = os.path.dirname(os.path.abspath(__file__)) for root, _, files in os.walk(search_root): for afile in files: if os.path.splitext(afile)[1].lower() == ".pyx": base_file = os.path.join(root, afile)[len(search_root) + 1:-4] self.filelist.exclude_pattern(pattern=base_file + ".c") self.filelist.exclude_pattern(pattern=base_file + ".cpp") self.filelist.exclude_pattern(pattern=base_file + ".html") # do not include third_party/_local files self.filelist.exclude_pattern(pattern="*", prefix="pyFAI/third_party/_local") def make_distribution(self): self.prune_file_list() sdist.make_distribution(self) dest = self.archive_files[0] dirname, basename = os.path.split(dest) base, ext = os.path.splitext(basename) while ext in [".zip", ".tar", ".bz2", ".gz", ".Z", ".lz", ".orig"]: base, ext = os.path.splitext(base) if ext: dest = "".join((base, ext)) else: dest = base # sp = dest.split("-") # base = sp[:-1] # nr = sp[-1] debian_arch = os.path.join(dirname, self.get_debian_name() + ".orig.tar.gz") os.rename(self.archive_files[0], debian_arch) self.archive_files = [debian_arch] print("Building debian .orig.tar.gz in %s" % self.archive_files[0]) ################# # PyFAI specific ################# class PyFaiTestData(Command): """ Tailor made tarball with test data """ user_options = [] def initialize_options(self): pass def finalize_options(self): pass def download_images(self): """ Download all test images and """ root_dir = os.path.dirname(os.path.abspath(__file__)) test_dir = os.path.join(root_dir, PROJECT, "test") sys.path.insert(0, test_dir) from utilstest import UtilsTest image_home = os.path.join(root_dir, "testimages") testimages = os.path.join(image_home, "all_testimages.json") UtilsTest.image_home = image_home UtilsTest.testimages = testimages if os.path.exists(testimages): import json with open(testimages) as f: all_files = set(json.load(f)) else: raise(RuntimeError("Please run 'python setup.py build test' to download all images")) return list(all_files) def run(self): datafiles = self.download_images() dist = "dist" arch = os.path.join(dist, PROJECT + "-testimages.tar.gz") print("Building testdata tarball in %s" % arch) if not os.path.isdir(dist): os.mkdir(dist) if os.path.exists(arch): os.unlink(arch) import tarfile with tarfile.open(name=arch, mode='w:gz') as tarball: for afile in datafiles: tarball.add(os.path.join("testimages", afile), afile) # ##### # # setup # # ##### # def get_project_configuration(dry_run): """Returns project arguments for setup""" # Use installed numpy version as minimal required version # This is useful for wheels to advertise the numpy version they were built with if dry_run: numpy_requested_version = "" else: from numpy.version import version as numpy_version numpy_requested_version = ">=%s" % numpy_version logger.info("Install requires: numpy %s", numpy_requested_version) install_requires = [ "numpy%s" % numpy_requested_version, # h5py was removed from dependencies cause it creates an issue with # Debian 8. Pip is not aware that h5py is installed and pkg_resources # check dependencies and in this case raise an exception # FIXME we still have to investigate # "h5py", "fabio>=0.5", "matplotlib", "scipy", "numexpr", # for the use of pkg_resources on script launcher "setuptools", "silx>=0.10"] setup_requires = [ "setuptools", "numpy"] package_data = { 'pyFAI.resources': [ # Add here all resources files 'calibration/*.D', 'gui/*.ui', 'gui/icons/*.svg', 'gui/icons/*.png', 'gui/images/*.svg', 'gui/images/*.png', 'gui/styles/*.json', 'openCL/*.cl', ] } gui_requires = ['PyQt5', 'h5py', 'hdf5plugin', 'PyOpenGL'] opencl_requires = ['pyopencl'] extras_require = { 'calib2': gui_requires, # Keep compatibility 'gui': gui_requires, 'opencl': opencl_requires, 'full': gui_requires + opencl_requires, } console_scripts = [ 'check_calib = pyFAI.app.check_calib:main', 'detector2nexus = pyFAI.app.detector2nexus:main', 'diff_map = pyFAI.app.diff_map:main', 'diff_tomo = pyFAI.app.diff_tomo:main', 'eiger-mask = pyFAI.app.eiger_mask:main', 'MX-calibrate = pyFAI.app.mx_calibrate:main', 'pyFAI-average = pyFAI.app.average:main', 'pyFAI-benchmark = pyFAI.app.benchmark:main', 'pyFAI-calib = pyFAI.app.calib:main', 'pyFAI-calib2 = pyFAI.app.calib2:main', 'pyFAI-drawmask = pyFAI.app.drawmask:main', 'pyFAI-diffmap = pyFAI.app.diff_map:main', 'pyFAI-integrate = pyFAI.app.integrate:main', 'pyFAI-recalib = pyFAI.app.recalib:main', 'pyFAI-saxs = pyFAI.app.saxs:main', 'pyFAI-waxs = pyFAI.app.waxs:main', ] entry_points = { 'console_scripts': console_scripts, # 'gui_scripts': [], } cmdclass = dict( build=Build, build_py=build_py, test=PyTest, build_doc=BuildDocCommand, test_doc=TestDocCommand, build_ext=BuildExt, build_man=BuildMan, clean=CleanCommand, sdist=SourceDistWithCython, debian_src=sdist_debian, testimages=PyFaiTestData, ) if dry_run: # DRY_RUN implies actions which do not require NumPy # # And they are required to succeed without Numpy for example when # pip is used to install silx when Numpy is not yet present in # the system. setup_kwargs = {} else: config = configuration() setup_kwargs = config.todict() setup_kwargs.update(name=PROJECT, version=get_version(), url="https://github.com/silx-kit/pyFAI", download_url="https://github.com/silx-kit/pyFAI/releases", author="Jérôme Kieffer (algo) & Valentin Valls (gui)", author_email="[email protected]", classifiers=classifiers, description='Python implementation of fast azimuthal integration', long_description=get_readme(), install_requires=install_requires, setup_requires=setup_requires, extras_require=extras_require, cmdclass=cmdclass, package_data=package_data, zip_safe=False, entry_points=entry_points, ) return setup_kwargs def setup_package(): """Run setup(**kwargs) Depending on the command, it either runs the complete setup which depends on numpy, or a *dry run* setup with no dependency on numpy. """ # Check if action requires build/install dry_run = len(sys.argv) == 1 or (len(sys.argv) >= 2 and ( '--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean', '--name'))) if dry_run: # DRY_RUN implies actions which do not require dependencies, like NumPy try: from setuptools import setup logger.info("Use setuptools.setup") except ImportError: from distutils.core import setup logger.info("Use distutils.core.setup") else: try: from setuptools import setup except ImportError: from numpy.distutils.core import setup logger.info("Use numpy.distutils.setup") setup_kwargs = get_project_configuration(dry_run) setup(**setup_kwargs) if __name__ == "__main__": setup_package()
the-stack_0_24973
import os src_folders = ["stix_shifter_utils", "stix_shifter", "stix_shifter_modules"] install_requires = set() requirements_files = [] for src_folder in src_folders: for r, d, f in os.walk(src_folder): for file in f: if 'requirements.txt'==file and not os.path.isfile(os.path.join(r, 'SKIP.ME')): requirements_files.append(os.path.join(r, file)) print('requirements_files: %s' % requirements_files) for requirements_file in requirements_files: with open(requirements_file) as f: lines = f.readlines() lines = [x.strip() for x in lines] lines = list(filter(lambda s: len(s)>0, lines)) install_requires.update(lines) install_requires = list(install_requires) install_requires.sort() print('install_requires: %s' % install_requires) with open('requirements.txt', 'w') as out_file: for item in install_requires: out_file.write(item) out_file.write('\n')
the-stack_0_24975
# -*- coding: utf-8 -*- """This module implements all CAD database manipulations using skill commands. """ from typing import List, Dict, Optional, Any, Tuple import os import shutil import yaml from jinja2 import Template import bag.io from .database import DbAccess calibre_tmp = bag.io.read_resource(bag.__name__, os.path.join('virtuoso_files', 'calibreview_setup.pytemp')) try: import cybagoa except ImportError: cybagoa = None def _dict_to_pcell_params(table): """Convert given parameter dictionary to pcell parameter list format. Parameters ---------- table : dict[str, any] the parameter dictionary. Returns ------- param_list : list[any] the Pcell parameter list """ param_list = [] for key, val in table.items(): # python 2/3 compatibility: convert raw bytes to string. val = bag.io.fix_string(val) if isinstance(val, float): param_list.append([key, "float", val]) elif isinstance(val, str): # unicode string param_list.append([key, "string", val]) elif isinstance(val, int): param_list.append([key, "int", val]) elif isinstance(val, bool): param_list.append([key, "bool", val]) else: raise Exception('Unsupported parameter %s with type: %s' % (key, type(val))) return param_list def to_skill_list_str(pylist): """Convert given python list to a skill list string. Parameters ---------- pylist : list[str] a list of string. Returns ------- ans : str a string representation of the equivalent skill list. """ content = ' '.join(('"%s"' % val for val in pylist)) return "'( %s )" % content def _handle_reply(reply): """Process the given reply.""" if isinstance(reply, dict): if reply.get('type') == 'error': if 'data' not in reply: raise Exception('Unknown reply format: %s' % reply) raise VirtuosoException(reply['data']) else: try: return reply['data'] except Exception: raise Exception('Unknown reply format: %s' % reply) else: raise Exception('Unknown reply format: %s' % reply) class VirtuosoException(Exception): """Exception raised when Virtuoso returns an error.""" def __init__(self, *args, **kwargs): # noinspection PyArgumentList Exception.__init__(self, *args, **kwargs) class SkillInterface(DbAccess): """Skill interface between bag and Virtuoso. This class sends all bag's database and simulation operations to an external Virtuoso process, then get the result from it. Parameters ---------- dealer : :class:`bag.interface.ZMQDealer` the socket used to communicate with :class:`~bag.interface.SkillOceanServer`. tmp_dir : string temporary file directory for DbAccess. db_config : dict[str, any] the database configuration dictionary. """ def __init__(self, dealer, tmp_dir, db_config): """Initialize a new SkillInterface object. """ DbAccess.__init__(self, tmp_dir, db_config) self.handler = dealer self._rcx_jobs = {} def close(self): """Terminate the database server gracefully. """ self.handler.send_obj(dict(type='exit')) self.handler.close() def _eval_skill(self, expr, input_files=None, out_file=None): # type: (str, Optional[Dict[str, Any]], Optional[str]) -> str """Send a request to evaluate the given skill expression. Because Virtuoso has a limit on the input/output data (< 4096 bytes), if your input is large, you need to write it to a file and have Virtuoso open the file to parse it. Similarly, if you expect a large output, you need to make Virtuoso write the result to the file, then read it yourself. The parameters input_files and out_file help you achieve this functionality. For example, if you need to evaluate "skill_fun(arg fname)", where arg is a file containing the list [1 2 3], and fname is the output file name, you will call this function with: expr = "skill_fun({arg} {fname})" input_files = { "arg": [1 2 3] } out_file = "fname" the bag server will then a temporary file for arg and fname, write the list [1 2 3] into the file for arg, call Virtuoso, then read the output file fname and return the result. Parameters ---------- expr : string the skill expression to evaluate. input_files : dict[string, any] or None A dictionary of input files content. out_file : string or None the output file name argument in expr. Returns ------- result : str a string representation of the result. Raises ------ :class: `.VirtuosoException` : if virtuoso encounters errors while evaluating the expression. """ request = dict( type='skill', expr=expr, input_files=input_files, out_file=out_file, ) self.handler.send_obj(request) reply = self.handler.recv_obj() return _handle_reply(reply) def parse_schematic_template(self, lib_name, cell_name): """Parse the given schematic template. Parameters ---------- lib_name : str name of the library. cell_name : str name of the cell. Returns ------- template : str the content of the netlist structure file. """ cmd = 'parse_cad_sch( "%s" "%s" {netlist_info} )' % (lib_name, cell_name) return self._eval_skill(cmd, out_file='netlist_info') def get_cells_in_library(self, lib_name): """Get a list of cells in the given library. Returns an empty list if the given library does not exist. Parameters ---------- lib_name : str the library name. Returns ------- cell_list : list[str] a list of cells in the library """ cmd = 'get_cells_in_library_file( "%s" {cell_file} )' % lib_name return self._eval_skill(cmd, out_file='cell_file').split() def create_library(self, lib_name, lib_path=''): """Create a new library if one does not exist yet. Parameters ---------- lib_name : string the library name. lib_path : string directory to create the library in. If Empty, use default location. """ lib_path = lib_path or self.default_lib_path tech_lib = self.db_config['schematic']['tech_lib'] return self._eval_skill('create_or_erase_library("%s" "%s" "%s" nil)' % (lib_name, tech_lib, lib_path)) def create_implementation(self, lib_name, template_list, change_list, lib_path=''): """Create implementation of a design in the CAD database. Parameters ---------- lib_name : str implementation library name. template_list : list a list of schematic templates to copy to the new library. change_list : a list of changes to be performed on each copied templates. lib_path : str directory to create the library in. If Empty, use default location. """ lib_path = lib_path or self.default_lib_path tech_lib = self.db_config['schematic']['tech_lib'] if cybagoa is not None and self.db_config['schematic'].get('use_cybagoa', False): cds_lib_path = os.environ.get('CDS_LIB_PATH', './cds.lib') sch_name = 'schematic' sym_name = 'symbol' encoding = bag.io.get_encoding() # release write locks cell_view_list = [] for _, _, cell_name in template_list: cell_view_list.append((cell_name, sch_name)) cell_view_list.append((cell_name, sym_name)) self.release_write_locks(lib_name, cell_view_list) # create library in case it doesn't exist self.create_library(lib_name, lib_path) # write schematic with cybagoa.PyOASchematicWriter(cds_lib_path, lib_name, encoding) as writer: for temp_info, change_info in zip(template_list, change_list): sch_cell = cybagoa.PySchCell(temp_info[0], temp_info[1], temp_info[2], encoding) for old_pin, new_pin in change_info['pin_map']: sch_cell.rename_pin(old_pin, new_pin) for inst_name, rinst_list in change_info['inst_list']: sch_cell.add_inst(inst_name, lib_name, rinst_list) writer.add_sch_cell(sch_cell) writer.create_schematics(sch_name, sym_name) copy = 'nil' else: copy = "'t" in_files = {'template_list': template_list, 'change_list': change_list} sympin = to_skill_list_str(self.db_config['schematic']['sympin']) ipin = to_skill_list_str(self.db_config['schematic']['ipin']) opin = to_skill_list_str(self.db_config['schematic']['opin']) iopin = to_skill_list_str(self.db_config['schematic']['iopin']) simulators = to_skill_list_str(self.db_config['schematic']['simulators']) cmd = ('create_concrete_schematic( "%s" "%s" "%s" {template_list} ' '{change_list} %s %s %s %s %s %s)' % (lib_name, tech_lib, lib_path, sympin, ipin, opin, iopin, simulators, copy)) return self._eval_skill(cmd, input_files=in_files) def configure_testbench(self, tb_lib, tb_cell): """Update testbench state for the given testbench. This method fill in process-specific information for the given testbench. Parameters ---------- tb_lib : str testbench library name. tb_cell : str testbench cell name. Returns ------- cur_env : str the current simulation environment. envs : list[str] a list of available simulation environments. parameters : dict[str, str] a list of testbench parameter values, represented as string. """ tb_config = self.db_config['testbench'] cmd = ('instantiate_testbench("{tb_cell}" "{targ_lib}" ' + '"{config_libs}" "{config_views}" "{config_stops}" ' + '"{default_corner}" "{corner_file}" {def_files} ' + '"{tech_lib}" {result_file})') cmd = cmd.format(tb_cell=tb_cell, targ_lib=tb_lib, config_libs=tb_config['config_libs'], config_views=tb_config['config_views'], config_stops=tb_config['config_stops'], default_corner=tb_config['default_env'], corner_file=tb_config['env_file'], def_files=to_skill_list_str(tb_config['def_files']), tech_lib=self.db_config['schematic']['tech_lib'], result_file='{result_file}') output = yaml.load(self._eval_skill(cmd, out_file='result_file')) return tb_config['default_env'], output['corners'], output['parameters'], output['outputs'] def get_testbench_info(self, tb_lib, tb_cell): """Returns information about an existing testbench. Parameters ---------- tb_lib : str testbench library. tb_cell : str testbench cell. Returns ------- cur_envs : list[str] the current simulation environments. envs : list[str] a list of available simulation environments. parameters : dict[str, str] a list of testbench parameter values, represented as string. outputs : dict[str, str] a list of testbench output expressions. """ cmd = 'get_testbench_info("{tb_lib}" "{tb_cell}" {result_file})' cmd = cmd.format(tb_lib=tb_lib, tb_cell=tb_cell, result_file='{result_file}') output = yaml.load(self._eval_skill(cmd, out_file='result_file')) return output['enabled_corners'], output['corners'], output['parameters'], output['outputs'] def update_testbench(self, lib, cell, parameters, sim_envs, config_rules, env_parameters): # type: (str, str, Dict[str, str], List[str], List[List[str]], List[List[Tuple[str, str]]]) -> None """Update the given testbench configuration. Parameters ---------- lib : str testbench library. cell : str testbench cell. parameters : Dict[str, str] testbench parameters. sim_envs : List[str] list of enabled simulation environments. config_rules : List[List[str]] config view mapping rules, list of (lib, cell, view) rules. env_parameters : List[List[Tuple[str, str]]] list of param/value list for each simulation environment. """ cmd = 'modify_testbench("%s" "%s" {conf_rules} {run_opts} {sim_envs} {params} {env_params})' % (lib, cell) in_files = {'conf_rules': config_rules, 'run_opts': [], 'sim_envs': sim_envs, 'params': list(parameters.items()), 'env_params': list(zip(sim_envs, env_parameters)), } self._eval_skill(cmd, input_files=in_files) def instantiate_layout_pcell(self, lib_name, cell_name, view_name, inst_lib, inst_cell, params, pin_mapping): """Create a layout cell with a single pcell instance. Parameters ---------- lib_name : str layout library name. cell_name : str layout cell name. view_name : str layout view name, default is "layout". inst_lib : str pcell library name. inst_cell : str pcell cell name. params : dict[str, any] the parameter dictionary. pin_mapping: dict[str, str] the pin mapping dictionary. """ # create library in case it doesn't exist self.create_library(lib_name) # convert parameter dictionary to pcell params list format param_list = _dict_to_pcell_params(params) cmd = ('create_layout_with_pcell( "%s" "%s" "%s" "%s" "%s"' '{params} {pin_mapping} )' % (lib_name, cell_name, view_name, inst_lib, inst_cell)) in_files = {'params': param_list, 'pin_mapping': list(pin_mapping.items())} return self._eval_skill(cmd, input_files=in_files) def instantiate_layout(self, lib_name, view_name, via_tech, layout_list): """Create a batch of layouts. Parameters ---------- lib_name : str layout library name. view_name : str layout view name. via_tech : str via technology library name. layout_list : list[any] a list of layouts to create """ # create library in case it doesn't exist self.create_library(lib_name) # convert parameter dictionary to pcell params list format new_layout_list = [] for info_list in layout_list: new_inst_list = [] for inst in info_list[1]: if 'params' in inst: inst = inst.copy() inst['params'] = _dict_to_pcell_params(inst['params']) new_inst_list.append(inst) new_info_list = info_list[:] new_info_list[1] = new_inst_list new_layout_list.append(new_info_list) cmd = 'create_layout( "%s" "%s" "%s" {layout_list} )' % (lib_name, view_name, via_tech) in_files = {'layout_list': new_layout_list} return self._eval_skill(cmd, input_files=in_files) def release_write_locks(self, lib_name, cell_view_list): """Release write locks from all the given cells. Parameters ---------- lib_name : string the library name. cell_view_list : List[(string, string)] list of cell/view name tuples. """ cmd = 'release_write_locks( "%s" {cell_view_list} )' % lib_name in_files = {'cell_view_list': cell_view_list} return self._eval_skill(cmd, input_files=in_files) def create_schematic_from_netlist(self, netlist, lib_name, cell_name, sch_view=None, **kwargs): # type: (str, str, str, Optional[str], **kwargs) -> None """Create a schematic from a netlist. This is mainly used to create extracted schematic from an extracted netlist. Parameters ---------- netlist : str the netlist file name. lib_name : str library name. cell_name : str cell_name sch_view : Optional[str] schematic view name. The default value is implemendation dependent. **kwargs additional implementation-dependent arguments. """ calview_config = self.db_config.get('calibreview', None) use_calibreview = self.db_config.get('use_calibreview', True) if calview_config is not None and use_calibreview: # create calibre view from extraction netlist cell_map = calview_config['cell_map'] sch_view = sch_view or calview_config['view_name'] # create calibre view config file content = Template(calibre_tmp).render(netlist_file=netlist, lib_name=lib_name, cell_name=cell_name, calibre_cellmap=cell_map, view_name=sch_view) with bag.io.open_temp(prefix='calview', dir=self.tmp_dir, delete=False) as f: fname = f.name f.write(content) # delete old calibre view cmd = 'delete_cellview( "%s" "%s" "%s" )' % (lib_name, cell_name, sch_view) self._eval_skill(cmd) # make extracted schematic cmd = 'mgc_rve_load_setup_file( "%s" )' % fname self._eval_skill(cmd) else: # get netlists to copy netlist_dir = os.path.dirname(netlist) netlist_files = self.checker.get_rcx_netlists(lib_name, cell_name) if not netlist_files: # some error checking. Shouldn't be needed but just in case raise ValueError('RCX did not generate any netlists') # copy netlists to a "netlist" subfolder in the CAD database cell_dir = self.get_cell_directory(lib_name, cell_name) targ_dir = os.path.join(cell_dir, 'netlist') os.makedirs(targ_dir, exist_ok=True) for fname in netlist_files: shutil.copy(os.path.join(netlist_dir, fname), targ_dir) # create symbolic link as aliases symlink = os.path.join(targ_dir, 'netlist') try: os.remove(symlink) except FileNotFoundError: pass os.symlink(netlist_files[0], symlink) def get_cell_directory(self, lib_name, cell_name): # type: (str, str) -> str """Returns the directory name of the given cell. Parameters ---------- lib_name : str library name. cell_name : str cell name. Returns ------- cell_dir : str path to the cell directory. """ # use yaml.load to remove outermost quotation marks lib_dir = yaml.load(self._eval_skill('get_lib_directory( "%s" )' % lib_name)) if not lib_dir: raise ValueError('Library %s not found.' % lib_name) return os.path.join(lib_dir, cell_name) def create_verilog_view(self, verilog_file, lib_name, cell_name, **kwargs): # type: (str, str, str, **kwargs) -> None """Create a verilog view for mix-signal simulation. Parameters ---------- verilog_file : str the verilog file name. lib_name : str library name. cell_name : str cell name. **kwargs additional implementation-dependent arguments. """ # delete old verilog view cmd = 'delete_cellview( "%s" "%s" "verilog" )' % (lib_name, cell_name) self._eval_skill(cmd) cmd = 'schInstallHDL("%s" "%s" "verilog" "%s" t)' % (lib_name, cell_name, verilog_file) self._eval_skill(cmd)
the-stack_0_24981
import inspect import logging import os import warnings from abc import ABCMeta, abstractmethod from typing import Dict, Optional, Sequence, Type, Union from uuid import uuid4 import numpy as np import pyro import rich import torch from anndata import AnnData from scvi import settings from scvi.data.anndata import AnnDataManager from scvi.data.anndata._compat import manager_from_setup_dict from scvi.data.anndata._constants import ( _MODEL_NAME_KEY, _SCVI_UUID_KEY, _SETUP_ARGS_KEY, ) from scvi.data.anndata._utils import _assign_adata_uuid from scvi.dataloaders import AnnDataLoader from scvi.model._utils import parse_use_gpu_arg from scvi.module.base import PyroBaseModuleClass from scvi.utils import setup_anndata_dsp from ._utils import _initialize_model, _load_saved_files, _validate_var_names logger = logging.getLogger(__name__) _UNTRAINED_WARNING_MESSAGE = "Trying to query inferred values from an untrained model. Please train the model first." _SETUP_INPUTS_EXCLUDED_PARAMS = {"adata", "kwargs"} class BaseModelMetaClass(ABCMeta): """ Metaclass for :class:`~scvi.model.base.BaseModelClass`. Constructs model class-specific mappings for :class:`~scvi.data.anndata.AnnDataManager` instances. ``cls._setup_adata_manager_store`` maps from AnnData object UUIDs to :class:`~scvi.data.anndata.AnnDataManager` instances. This mapping is populated everytime ``cls.setup_anndata()`` is called. ``cls._per_isntance_manager_store`` maps from model instance UUIDs to AnnData UUID::class:`~scvi.data.anndata.AnnDataManager` mappings. These :class:`~scvi.data.anndata.AnnDataManager` instances are tied to a single model instance and populated either during model initialization or after running ``self._validate_anndata()``. """ def __init__(cls, name, bases, dct): cls._setup_adata_manager_store: Dict[ str, Type[AnnDataManager] ] = dict() # Maps adata id to AnnDataManager instances. cls._per_instance_manager_store: Dict[ str, Dict[str, Type[AnnDataManager]] ] = dict() # Maps model instance id to AnnDataManager mappings. super().__init__(name, bases, dct) class BaseModelClass(metaclass=BaseModelMetaClass): """Abstract class for scvi-tools models.""" def __init__(self, adata: Optional[AnnData] = None): self.id = str(uuid4()) # Used for cls._manager_store keys. if adata is not None: self._adata = adata self._adata_manager = self._get_most_recent_anndata_manager( adata, required=True ) self._register_manager_for_instance(self.adata_manager) # Suffix registry instance variable with _ to include it when saving the model. self.registry_ = self._adata_manager.registry self.summary_stats = self._adata_manager.summary_stats self.is_trained_ = False self._model_summary_string = "" self.train_indices_ = None self.test_indices_ = None self.validation_indices_ = None self.history_ = None self._data_loader_cls = AnnDataLoader @property def adata(self) -> AnnData: """Data attached to model instance.""" return self._adata @adata.setter def adata(self, adata: AnnData): if adata is None: raise ValueError("adata cannot be None.") self._validate_anndata(adata) self._adata = adata self._adata_manager = self.get_anndata_manager(adata, required=True) self.registry_ = self._adata_manager.registry self.summary_stats = self._adata_manager.summary_stats @property def adata_manager(self) -> AnnDataManager: """Manager instance associated with self.adata.""" return self._adata_manager def to_device(self, device: Union[str, int]): """ Move model to device. Parameters ---------- device Device to move model to. Options: 'cpu' for CPU, integer GPU index (eg. 0), or 'cuda:X' where X is the GPU index (eg. 'cuda:0'). See torch.device for more info. Examples -------- >>> adata = scvi.data.synthetic_iid() >>> model = scvi.model.SCVI(adata) >>> model.to_device('cpu') # moves model to CPU >>> model.to_device('cuda:0') # moves model to GPU 0 >>> model.to_device(0) # also moves model to GPU 0 """ my_device = torch.device(device) self.module.to(my_device) @property def device(self): return self.module.device @staticmethod def _get_setup_method_args(**setup_locals) -> dict: """ Returns a dictionary organizing the arguments used to call ``setup_anndata``. Must be called with ``**locals()`` at the start of the ``setup_anndata`` method to avoid the inclusion of any extraneous variables. """ cls = setup_locals.pop("cls") model_name = cls.__name__ setup_args = dict() for k, v in setup_locals.items(): if k not in _SETUP_INPUTS_EXCLUDED_PARAMS: setup_args[k] = v return {_MODEL_NAME_KEY: model_name, _SETUP_ARGS_KEY: setup_args} @classmethod def register_manager(cls, adata_manager: AnnDataManager): """ Registers an :class:`~scvi.data.anndata.AnnDataManager` instance with this model class. """ adata_id = adata_manager.adata_uuid cls._setup_adata_manager_store[adata_id] = adata_manager def _register_manager_for_instance(self, adata_manager: AnnDataManager): """ Registers an :class:`~scvi.data.anndata.AnnDataManager` instance with this model instance. Creates a model-instance specific mapping in ``cls._per_instance_manager_store`` for this :class:`~scvi.data.anndata.AnnDataManager` instance. """ if self.id not in self._per_instance_manager_store: self._per_instance_manager_store[self.id] = dict() adata_id = adata_manager.adata_uuid instance_manager_store = self._per_instance_manager_store[self.id] instance_manager_store[adata_id] = adata_manager @classmethod def _get_most_recent_anndata_manager( cls, adata: AnnData, required: bool = False ) -> Optional[AnnDataManager]: """ Retrieves the :class:`~scvi.data.anndata.AnnDataManager` for a given AnnData object specific to this model class. Checks for the most recent :class:`~scvi.data.anndata.AnnDataManager` created for the given AnnData object via ``setup_anndata()`` on model initialization. Unlike :meth:`scvi.model.base.BaseModelClass.get_anndata_manager`, this method is not model instance specific and can be called before a model is fully initialized. Parameters ---------- adata AnnData object to find manager instance for. required If True, errors on missing manager. Otherwise, returns None when manager is missing. """ if _SCVI_UUID_KEY not in adata.uns: if required: raise ValueError( f"Please set up your AnnData with {cls.__name__}.setup_anndata first." ) return None adata_id = adata.uns[_SCVI_UUID_KEY] if adata_id not in cls._setup_adata_manager_store: if required: raise ValueError( f"Please set up your AnnData with {cls.__name__}.setup_anndata first. " "It appears the AnnData object has been setup with a different model." ) return None adata_manager = cls._setup_adata_manager_store[adata_id] if adata_manager.adata is not adata: raise ValueError( "The provided AnnData object does not match the AnnData object " "previously provided for setup. Did you make a copy?" ) return adata_manager def get_anndata_manager( self, adata: AnnData, required: bool = False ) -> Optional[AnnDataManager]: """ Retrieves the :class:`~scvi.data.anndata.AnnDataManager` for a given AnnData object specific to this model instance. Requires ``self.id`` has been set. Checks for an :class:`~scvi.data.anndata.AnnDataManager` specific to this model instance. Parameters ---------- adata AnnData object to find manager instance for. required If True, errors on missing manager. Otherwise, returns None when manager is missing. """ cls = self.__class__ if _SCVI_UUID_KEY not in adata.uns: if required: raise ValueError( f"Please set up your AnnData with {cls.__name__}.setup_anndata first." ) return None adata_id = adata.uns[_SCVI_UUID_KEY] if self.id not in cls._per_instance_manager_store: if required: raise AssertionError( "Unable to find instance specific manager store. " "The model has likely not been initialized with an AnnData object." ) return None elif adata_id not in cls._per_instance_manager_store[self.id]: if required: raise AssertionError( "Please call ``self._validate_anndata`` on this AnnData object." ) return None adata_manager = cls._per_instance_manager_store[self.id][adata_id] if adata_manager.adata is not adata: raise ValueError( "The provided AnnData object does not match the AnnData object " "previously provided for setup. Did you make a copy?" ) return adata_manager def get_from_registry( self, adata: AnnData, registry_key: str, ) -> np.ndarray: """ Returns the object in AnnData associated with the key in the data registry. AnnData object should be registered with the model prior to calling this function via the ``self._validate_anndata`` method. Parameters ---------- registry_key key of object to get from data registry. adata AnnData to pull data from. Returns ------- The requested data as a NumPy array. """ adata_manager = self.get_anndata_manager(adata) if adata_manager is None: raise AssertionError( "AnnData not registered with model. Call `self._validate_anndata` " "prior to calling this function." ) return adata_manager.get_from_registry(registry_key) def _make_data_loader( self, adata: AnnData, indices: Optional[Sequence[int]] = None, batch_size: Optional[int] = None, shuffle: bool = False, data_loader_class=None, **data_loader_kwargs, ): """ Create a AnnDataLoader object for data iteration. Parameters ---------- adata AnnData object with equivalent structure to initial AnnData. indices Indices of cells in adata to use. If `None`, all cells are used. batch_size Minibatch size for data loading into model. Defaults to `scvi.settings.batch_size`. shuffle Whether observations are shuffled each iteration though data_loader_class Class to use for data loader data_loader_kwargs Kwargs to the class-specific data loader class """ adata_manager = self.get_anndata_manager(adata) if adata_manager is None: raise AssertionError( "AnnDataManager not found. Call `self._validate_anndata` prior to calling this function." ) adata = adata_manager.adata if batch_size is None: batch_size = settings.batch_size if indices is None: indices = np.arange(adata.n_obs) if data_loader_class is None: data_loader_class = self._data_loader_cls if "num_workers" not in data_loader_kwargs: data_loader_kwargs.update({"num_workers": settings.dl_num_workers}) dl = data_loader_class( adata_manager, shuffle=shuffle, indices=indices, batch_size=batch_size, **data_loader_kwargs, ) return dl def _validate_anndata( self, adata: Optional[AnnData] = None, copy_if_view: bool = True ) -> AnnData: """Validate anndata has been properly registered, transfer if necessary.""" if adata is None: adata = self.adata if adata.is_view: if copy_if_view: logger.info("Received view of anndata, making copy.") adata = adata.copy() # Reassign AnnData UUID to produce a separate AnnDataManager. _assign_adata_uuid(adata, overwrite=True) else: raise ValueError("Please run `adata = adata.copy()`") adata_manager = self.get_anndata_manager(adata) if adata_manager is None: logger.info( "Input AnnData not setup with scvi-tools. " + "attempting to transfer AnnData setup" ) self._register_manager_for_instance( self.adata_manager.transfer_setup(adata) ) else: # Case where correct AnnDataManager is found, replay registration as necessary. adata_manager.validate() return adata def _check_if_trained( self, warn: bool = True, message: str = _UNTRAINED_WARNING_MESSAGE ): """ Check if the model is trained. If not trained and `warn` is True, raise a warning, else raise a RuntimeError. """ if not self.is_trained_: if warn: warnings.warn(message) else: raise RuntimeError(message) @property def is_trained(self): return self.is_trained_ @property def test_indices(self): return self.test_indices_ @property def train_indices(self): return self.train_indices_ @property def validation_indices(self): return self.validation_indices_ @train_indices.setter def train_indices(self, value): self.train_indices_ = value @test_indices.setter def test_indices(self, value): self.test_indices_ = value @validation_indices.setter def validation_indices(self, value): self.validation_indices_ = value @is_trained.setter def is_trained(self, value): self.is_trained_ = value @property def history(self): """Returns computed metrics during training.""" return self.history_ def _get_user_attributes(self): """Returns all the self attributes defined in a model class, e.g., self.is_trained_.""" attributes = inspect.getmembers(self, lambda a: not (inspect.isroutine(a))) attributes = [ a for a in attributes if not (a[0].startswith("__") and a[0].endswith("__")) ] attributes = [a for a in attributes if not a[0].startswith("_abc_")] return attributes def _get_init_params(self, locals): """ Returns the model init signature with associated passed in values. Ignores the initial AnnData. """ init = self.__init__ sig = inspect.signature(init) parameters = sig.parameters.values() init_params = [p.name for p in parameters] all_params = {p: locals[p] for p in locals if p in init_params} all_params = { k: v for (k, v) in all_params.items() if not isinstance(v, AnnData) } # not very efficient but is explicit # seperates variable params (**kwargs) from non variable params into two dicts non_var_params = [p.name for p in parameters if p.kind != p.VAR_KEYWORD] non_var_params = {k: v for (k, v) in all_params.items() if k in non_var_params} var_params = [p.name for p in parameters if p.kind == p.VAR_KEYWORD] var_params = {k: v for (k, v) in all_params.items() if k in var_params} user_params = {"kwargs": var_params, "non_kwargs": non_var_params} return user_params @abstractmethod def train(self): """Trains the model.""" def save( self, dir_path: str, prefix: Optional[str] = None, overwrite: bool = False, save_anndata: bool = False, **anndata_write_kwargs, ): """ Save the state of the model. Neither the trainer optimizer state nor the trainer history are saved. Model files are not expected to be reproducibly saved and loaded across versions until we reach version 1.0. Parameters ---------- dir_path Path to a directory. prefix Prefix to prepend to saved file names. overwrite Overwrite existing data or not. If `False` and directory already exists at `dir_path`, error will be raised. save_anndata If True, also saves the anndata anndata_write_kwargs Kwargs for :meth:`~anndata.AnnData.write` """ if not os.path.exists(dir_path) or overwrite: os.makedirs(dir_path, exist_ok=overwrite) else: raise ValueError( "{} already exists. Please provide an unexisting directory for saving.".format( dir_path ) ) file_name_prefix = prefix or "" if save_anndata: self.adata.write( os.path.join(dir_path, f"{file_name_prefix}adata.h5ad"), **anndata_write_kwargs, ) model_save_path = os.path.join(dir_path, f"{file_name_prefix}model.pt") # save the model state dict and the trainer state dict only model_state_dict = self.module.state_dict() var_names = self.adata.var_names.astype(str) var_names = var_names.to_numpy() # get all the user attributes user_attributes = self._get_user_attributes() # only save the public attributes with _ at the very end user_attributes = {a[0]: a[1] for a in user_attributes if a[0][-1] == "_"} torch.save( dict( model_state_dict=model_state_dict, var_names=var_names, attr_dict=user_attributes, ), model_save_path, ) @classmethod def load( cls, dir_path: str, prefix: Optional[str] = None, adata: Optional[AnnData] = None, use_gpu: Optional[Union[str, int, bool]] = None, ): """ Instantiate a model from the saved output. Parameters ---------- dir_path Path to saved outputs. prefix Prefix of saved file names. adata AnnData organized in the same way as data used to train model. It is not necessary to run setup_anndata, as AnnData is validated against the saved `scvi` setup dictionary. If None, will check for and load anndata saved with the model. use_gpu Load model on default GPU if available (if None or True), or index of GPU to use (if int), or name of GPU (if str), or use CPU (if False). Returns ------- Model with loaded state dictionaries. Examples -------- >>> model = ModelClass.load(save_path, adata) # use the name of the model class used to save >>> model.get_.... """ load_adata = adata is None use_gpu, device = parse_use_gpu_arg(use_gpu) ( attr_dict, var_names, model_state_dict, new_adata, ) = _load_saved_files(dir_path, load_adata, map_location=device, prefix=prefix) adata = new_adata if new_adata is not None else adata _validate_var_names(adata, var_names) # Legacy support for old setup dict format. if "scvi_setup_dict_" in attr_dict: scvi_setup_dict = attr_dict.pop("scvi_setup_dict_") cls.register_manager(manager_from_setup_dict(cls, adata, scvi_setup_dict)) else: registry = attr_dict.pop("registry_") if ( _MODEL_NAME_KEY in registry and registry[_MODEL_NAME_KEY] != cls.__name__ ): raise ValueError( "It appears you are loading a model from a different class." ) if _SETUP_ARGS_KEY not in registry: raise ValueError( "Saved model does not contain original setup inputs. " "Cannot load the original setup." ) # Calling ``setup_anndata`` method with the original arguments passed into # the saved model. This enables simple backwards compatibility in the case of # newly introduced fields or parameters. cls.setup_anndata( adata, source_registry=registry, **registry[_SETUP_ARGS_KEY] ) model = _initialize_model(cls, adata, attr_dict) # some Pyro modules with AutoGuides may need one training step try: model.module.load_state_dict(model_state_dict) except RuntimeError as err: if isinstance(model.module, PyroBaseModuleClass): old_history = model.history_.copy() logger.info("Preparing underlying module for load") model.train(max_steps=1) model.history_ = old_history pyro.clear_param_store() model.module.load_state_dict(model_state_dict) else: raise err model.to_device(device) model.module.eval() model._validate_anndata(adata) return model def __repr__( self, ): summary_string = self._model_summary_string summary_string += "\nTraining status: {}".format( "Trained" if self.is_trained_ else "Not Trained" ) rich.print(summary_string) return "" @classmethod @abstractmethod @setup_anndata_dsp.dedent def setup_anndata( cls, adata: AnnData, *args, **kwargs, ): """ %(summary)s. Each model class deriving from this class provides parameters to this method according to its needs. To operate correctly with the model initialization, the implementation must call :meth:`~scvi.model.base.BaseModelClass.register_manager` on a model-specific instance of :class:`~scvi.data.anndata.AnnDataManager`. """ @staticmethod def view_setup_args(dir_path: str, prefix: Optional[str] = None) -> None: """ Print args used to setup a saved model. Parameters ---------- dir_path Path to saved outputs. prefix Prefix of saved file names. """ attr_dict = _load_saved_files(dir_path, False, prefix=prefix)[0] # Legacy support for old setup dict format. if "scvi_setup_dict_" in attr_dict: raise NotImplementedError( "Viewing setup args for pre v0.15.0 models is unsupported. " "Load and resave the model to use this function." ) registry = attr_dict.pop("registry_") AnnDataManager.view_setup_method_args(registry) def view_anndata_setup( self, adata: Optional[AnnData] = None, hide_state_registries: bool = False ) -> None: """ Print summary of the setup for the initial AnnData or a given AnnData object. Parameters ---------- adata AnnData object setup with ``setup_anndata`` or :meth:`~scvi.data.anndata.AnnDataManager.transfer_setup`. hide_state_registries If True, prints a shortened summary without details of each state registry. """ if adata is None: adata = self.adata try: adata_manager = self.get_anndata_manager(adata, required=True) except ValueError: raise ValueError( f"Given AnnData not setup with {self.__class__.__name__}. " "Cannot view setup summary." ) adata_manager.view_registry(hide_state_registries=hide_state_registries)
the-stack_0_24982
# Author: Bichen Wu ([email protected]) 08/25/2016 """SqueezeDet model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import joblib from utils import util from easydict import EasyDict as edict import numpy as np import tensorflow as tf from nn_skeleton import ModelSkeleton class SqueezeDet(ModelSkeleton): def __init__(self, mc, gpu_id=0): with tf.device('/gpu:{}'.format(gpu_id)): ModelSkeleton.__init__(self, mc) self._add_forward_graph() self._add_interpretation_graph() self._add_loss_graph() self._add_train_graph() self._add_viz_graph() def _add_forward_graph(self): """NN architecture.""" mc = self.mc if mc.LOAD_PRETRAINED_MODEL: assert tf.gfile.Exists(mc.PRETRAINED_MODEL_PATH), \ 'Cannot find pretrained model at the given path:' \ ' {}'.format(mc.PRETRAINED_MODEL_PATH) self.caffemodel_weight = joblib.load(mc.PRETRAINED_MODEL_PATH) conv1 = self._conv_layer( 'conv1', self.image_input, filters=64, size=3, stride=2, padding='SAME', freeze=True) pool1 = self._pooling_layer( 'pool1', conv1, size=3, stride=2, padding='SAME') fire2 = self._fire_layer( 'fire2', pool1, s1x1=16, e1x1=64, e3x3=64, freeze=False) fire3 = self._fire_layer( 'fire3', fire2, s1x1=16, e1x1=64, e3x3=64, freeze=False) pool3 = self._pooling_layer( 'pool3', fire3, size=3, stride=2, padding='SAME') fire4 = self._fire_layer( 'fire4', pool3, s1x1=32, e1x1=128, e3x3=128, freeze=False) fire5 = self._fire_layer( 'fire5', fire4, s1x1=32, e1x1=128, e3x3=128, freeze=False) pool5 = self._pooling_layer( 'pool5', fire5, size=3, stride=2, padding='SAME') fire6 = self._fire_layer( 'fire6', pool5, s1x1=48, e1x1=192, e3x3=192, freeze=False) fire7 = self._fire_layer( 'fire7', fire6, s1x1=48, e1x1=192, e3x3=192, freeze=False) fire8 = self._fire_layer( 'fire8', fire7, s1x1=64, e1x1=256, e3x3=256, freeze=False) fire9 = self._fire_layer( 'fire9', fire8, s1x1=64, e1x1=256, e3x3=256, freeze=False) # Two extra fire modules that are not trained before fire10 = self._fire_layer( 'fire10', fire9, s1x1=96, e1x1=384, e3x3=384, freeze=False) fire11 = self._fire_layer( 'fire11', fire10, s1x1=96, e1x1=384, e3x3=384, freeze=False) dropout11 = tf.nn.dropout(fire11, self.keep_prob, name='drop11') num_output = mc.ANCHOR_PER_GRID * (mc.CLASSES + 1 + 4) self.preds = self._conv_layer( 'conv12', dropout11, filters=num_output, size=3, stride=1, padding='SAME', xavier=False, relu=False, stddev=0.0001) def _fire_layer(self, layer_name, inputs, s1x1, e1x1, e3x3, stddev=0.01, freeze=False): """Fire layer constructor. Args: layer_name: layer name inputs: input tensor s1x1: number of 1x1 filters in squeeze layer. e1x1: number of 1x1 filters in expand layer. e3x3: number of 3x3 filters in expand layer. freeze: if true, do not train parameters in this layer. Returns: fire layer operation. """ sq1x1 = self._conv_layer( layer_name+'/squeeze1x1', inputs, filters=s1x1, size=1, stride=1, padding='SAME', stddev=stddev, freeze=freeze) ex1x1 = self._conv_layer( layer_name+'/expand1x1', sq1x1, filters=e1x1, size=1, stride=1, padding='SAME', stddev=stddev, freeze=freeze) ex3x3 = self._conv_layer( layer_name+'/expand3x3', sq1x1, filters=e3x3, size=3, stride=1, padding='SAME', stddev=stddev, freeze=freeze) #return tf.concat([ex1x1, ex3x3], 3, name=layer_name+'/concat') values = [ex1x1, ex3x3] axis = 3 name = layer_name+'/concat' try: # calling the new concat, if available return tf.concat(axis, values, name=name) except TypeError: # fallback to the old concat return tf.concat(values, axis, name=name)
the-stack_0_24983
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = ['Click>=7.0', ] setup_requirements = ['pytest-runner', ] test_requirements = ['pytest>=3', ] setup( author="Pablo Delgado", author_email='[email protected]', python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], description="Mesos framework logger", entry_points={ 'console_scripts': [ 'frameworker=frameworker.cli:main', ], }, install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='frameworker', name='frameworker', packages=find_packages(include=['frameworker', 'frameworker.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/pablete/frameworker', version='0.1.1', zip_safe=False, )
the-stack_0_24984
from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from future import standard_library standard_library.install_aliases() # NOQA import argparse import sys import chainer from chainer import optimizers import gym gym.undo_logger_setup() # NOQA from gym import spaces import gym.wrappers import numpy as np from chainerrl.agents.ddpg import DDPG from chainerrl.agents.ddpg import DDPGModel from chainerrl import experiments from chainerrl import explorers from chainerrl import misc from chainerrl import policy from chainerrl import q_functions from chainerrl import replay_buffer def main(): import logging logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser() parser.add_argument('--outdir', type=str, default='results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--env', type=str, default='Humanoid-v1') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 32)') parser.add_argument('--gpu', type=int, default=0) parser.add_argument('--final-exploration-steps', type=int, default=10 ** 6) parser.add_argument('--actor-lr', type=float, default=1e-4) parser.add_argument('--critic-lr', type=float, default=1e-3) parser.add_argument('--load', type=str, default='') parser.add_argument('--steps', type=int, default=10 ** 7) parser.add_argument('--n-hidden-channels', type=int, default=300) parser.add_argument('--n-hidden-layers', type=int, default=3) parser.add_argument('--replay-start-size', type=int, default=5000) parser.add_argument('--n-update-times', type=int, default=1) parser.add_argument('--target-update-interval', type=int, default=1) parser.add_argument('--target-update-method', type=str, default='soft', choices=['hard', 'soft']) parser.add_argument('--soft-update-tau', type=float, default=1e-2) parser.add_argument('--update-interval', type=int, default=4) parser.add_argument('--eval-n-runs', type=int, default=100) parser.add_argument('--eval-interval', type=int, default=10 ** 5) parser.add_argument('--gamma', type=float, default=0.995) parser.add_argument('--minibatch-size', type=int, default=200) parser.add_argument('--render', action='store_true') parser.add_argument('--demo', action='store_true') parser.add_argument('--use-bn', action='store_true', default=False) parser.add_argument('--monitor', action='store_true') parser.add_argument('--reward-scale-factor', type=float, default=1e-2) args = parser.parse_args() args.outdir = experiments.prepare_output_dir( args, args.outdir, argv=sys.argv) print('Output files are saved in {}'.format(args.outdir)) # Set a random seed used in ChainerRL misc.set_random_seed(args.seed, gpus=(args.gpu,)) def clip_action_filter(a): return np.clip(a, action_space.low, action_space.high) def reward_filter(r): return r * args.reward_scale_factor def make_env(test): env = gym.make(args.env) # Use different random seeds for train and test envs env_seed = 2 ** 32 - 1 - args.seed if test else args.seed env.seed(env_seed) if args.monitor: env = gym.wrappers.Monitor(env, args.outdir) if isinstance(env.action_space, spaces.Box): misc.env_modifiers.make_action_filtered(env, clip_action_filter) if not test: misc.env_modifiers.make_reward_filtered(env, reward_filter) if args.render and not test: misc.env_modifiers.make_rendered(env) return env env = make_env(test=False) timestep_limit = env.spec.tags.get( 'wrapper_config.TimeLimit.max_episode_steps') obs_size = np.asarray(env.observation_space.shape).prod() action_space = env.action_space action_size = np.asarray(action_space.shape).prod() if args.use_bn: q_func = q_functions.FCBNLateActionSAQFunction( obs_size, action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, normalize_input=True) pi = policy.FCBNDeterministicPolicy( obs_size, action_size=action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, min_action=action_space.low, max_action=action_space.high, bound_action=True, normalize_input=True) else: q_func = q_functions.FCSAQFunction( obs_size, action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers) pi = policy.FCDeterministicPolicy( obs_size, action_size=action_size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, min_action=action_space.low, max_action=action_space.high, bound_action=True) model = DDPGModel(q_func=q_func, policy=pi) opt_a = optimizers.Adam(alpha=args.actor_lr) opt_c = optimizers.Adam(alpha=args.critic_lr) opt_a.setup(model['policy']) opt_c.setup(model['q_function']) opt_a.add_hook(chainer.optimizer.GradientClipping(1.0), 'hook_a') opt_c.add_hook(chainer.optimizer.GradientClipping(1.0), 'hook_c') rbuf = replay_buffer.ReplayBuffer(5 * 10 ** 5) def phi(obs): return obs.astype(np.float32) def random_action(): a = action_space.sample() if isinstance(a, np.ndarray): a = a.astype(np.float32) return a ou_sigma = (action_space.high - action_space.low) * 0.2 explorer = explorers.AdditiveOU(sigma=ou_sigma) agent = DDPG(model, opt_a, opt_c, rbuf, gamma=args.gamma, explorer=explorer, replay_start_size=args.replay_start_size, target_update_method=args.target_update_method, target_update_interval=args.target_update_interval, update_interval=args.update_interval, soft_update_tau=args.soft_update_tau, n_times_update=args.n_update_times, phi=phi, gpu=args.gpu, minibatch_size=args.minibatch_size) if len(args.load) > 0: agent.load(args.load) eval_env = make_env(test=True) if args.demo: eval_stats = experiments.eval_performance( env=eval_env, agent=agent, n_runs=args.eval_n_runs, max_episode_len=timestep_limit) print('n_runs: {} mean: {} median: {} stdev {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: experiments.train_agent_with_evaluation( agent=agent, env=env, steps=args.steps, eval_env=eval_env, eval_n_runs=args.eval_n_runs, eval_interval=args.eval_interval, outdir=args.outdir, max_episode_len=timestep_limit) if __name__ == '__main__': main()