filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_25516
import speech_recognition as spr for index, name in enumerate(spr.Microphone.list_microphone_names()): print("Microphone with name \"{1}\" found for `Microphone(device_index={0})`".format(index, name)) import pyttsx3 import pyaudio import webbrowser import datetime import wikipedia import time import pywhatkit import wolframalpha import os import cv2 import pyautogui import requests import bs4 import pandas from ecapture import ecapture as ec from pyowm import OWM import re import sys import numpy as np shihab = pyttsx3.init('sapi5') voices = shihab.getProperty('voices') shihab.setProperty('voice', voices[0].id) def intro(): hour = int(datetime.datetime.now().hour) if (hour != 0): reply("Assalamu Alaikum ! I am SK voice assistant , I am waiting to help you!") def reply(text): shihab.say(text) shihab.runAndWait() #def Hello(): # reply("Hello ! Shihab Sir , Assalamu Alaikum") def Greetings(): hour = int(datetime.datetime.now().hour) if hour >= 0 and hour < 10: greeting = 'Good morning , shihab!' elif hour >= 10 and hour < 15: greeting = 'Good afternoon!' elif hour >= 18 and hour < 5: greeting = 'Good night' else: greeting = 'Good evening!' reply(greeting) def order(): global command listener = spr.Recognizer() with spr.Microphone() as source: listener.adjust_for_ambient_noise(source) print('I am listening...') reply('I am listening!!') voice = listener.listen(source) try: #command = None # (<-- !!!) command = listener.recognize_google(voice) print(command) if 'shihab' in command: command = command.replace('shihab', '') except Exception as e: print("Try again , sir!") pass return command def msk(): command = order() if 'hello' in command: a=command.replace('hello' , '') reply("Hi , How are you? I am waiting for your order") time.sleep(3) elif 'about you' in command: reply('Assalamu Alaikum. I am SK voice assistant and I was developed by Md. Jafril Alam Shihab.He is a student of CSE of Khulna University of Engineering and Technology. My features are awesome!') time.sleep(2) elif ('my friend') in command: reply("What is the name of your friend") name1 = order() reply('welcome and best wishes Mr ' + name1) time.sleep(3) elif 'SK' in command: #a=command.replace('hello' , '') reply("Lots of love for you!!") time.sleep(2) elif 'infopedia' in command: reply('Sir , Ask me any question.') ask = order() app_id = "EVEEQL-J3RQPHTQ8W" client = wolframalpha.Client('EVEEQL-J3RQPHTQ8W') result = client.query(ask) answer = next(result.results).text print(answer) reply(answer) time.sleep(3) elif 'time' in command: a = command.replace('time','') strTime = datetime.datetime.now().strftime("%H:%M:%S") reply(f"the time is {strTime}") time.sleep(3) elif 'play' in command: song = command.replace('play', '') reply('playing ' + song) pywhatkit.playonyt(song) time.sleep(3) elif 'play movie' in command: movie = command.replace('play movie', '') reply('playing ' + movie) pywhatkit.playonyt(movie) time.sleep(3) elif 'map' in command: content = command.replace('map', '') url = 'https://www.google.com/maps/place/' + content + '/&amp' webbrowser.get().open(url) reply(content) time.sleep(3) elif 'shut up' in command: command.replace('shut up','') reply("Good bye , Md. Jafril Alam shihab ! You are welcomed ") exit() elif 'search' in command: content = command.replace('Google search' , '') reply('Searching your content , wait' + content) url = 'https://www.google.com/search?q=' + content webbrowser.get().open(url) reply("Your result has found!") time.sleep(3) elif 'open browser' in command: command.replace('open browser', '') reply('Opening our browser ') webbrowser.open('https://www.google.com.bd/') webbrowser.get('mozilla') time.sleep(3) elif 'camera' in command: print("Sir ,Camera is opening!") reply("Sir ,Camera is opening!") reply("Sir ,What is the file name?") name = order() img = cv2.VideoCapture(0) image = img.read()[1] #display = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imshow("Camera",image) if cv2.waitKey(0) == ord('s'): cv2.imwrite(f"{name}.jpg",image) cv2.destroyAllWindows() time.sleep(3) elif 'videocamera' in command: print("Sir ,video Camera is opening!") reply("Sir ,video Camera is opening!") #reply("Sir , say name of the file ") #name = order() img = cv2.VideoCapture(0) while (True): ret , frame = img.read() shot = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('frame', shot) if cv2.waitKey(1) == ord('s'): #cv2.imwrite(f"{name}.png",img) break img.release() cv2.destroyAllWindows() time.sleep(3) elif 'screenshot' in command: reply("And the file name would be...") name = order() p=pyautogui.screenshot(f"desktop{name}.png") reply("The screenshot has captured!!") #ss.save(r"C:\Users\asus\Pictures\Saved Pictures\{name}.png") #os.startfile(r"C:\Users\asus\PycharmProjects\SK_assistant\venv\{name}") time.sleep(3) elif 'weather of' in command: city = command.replace('weather of', '') owm = OWM(API_key='170f3e42dec9a08a4ea288e533ca533c') obs = owm.weather_at_place(city) w = obs.get_weather() w_status = w.get_status() w_t = w.get_temperature(unit='celsius') w_wi = w.get_wind() w_humidity = w.get_humidity() w_cld = w.get_clouds() print('Weather of %s is %s . Temperature is %0.4f . Wind speed is %0.2f and humidity is %0.2f percent and cloud is %d' % (city, w_status, w_t['temp'], w_wi['speed'], w_humidity,w_cld)) reply('Weather of %s is %s . Temperature is %0.4f . Wind speed is %0.2f and humidity is %0.2f percent and cloud is %d' % (city, w_status, w_t['temp'], w_wi['speed'], w_humidity,w_cld)) time.sleep(3) elif 'when did' in command or 'what is ' or 'what do' or 'what does' or 'what did' or 'what are' or 'who is ' or 'who are' or 'who does' or 'who did' or 'where is ' or 'where are' or 'where do' or 'where does' or 'where did' or 'when do' or 'when does' in command or ('wikipedia' in command): reply('Searching Wikipedia...') output = command.replace('wikipedia', '') output = command.replace('what is', '') output = command.replace('what are', '') output = command.replace('what do', '') output = command.replace('what did', '') output = command.replace('what does', '') output = command.replace('who is', '') output = command.replace('who are', '') output = command.replace('who does', '') output = command.replace('who did', '') output = command.replace('where is', '') output = command.replace('where are', '') output = command.replace('where do', '') output = command.replace('where does', '') output = command.replace('where did', '') output = command.replace('when do', '') output = command.replace('when does', '') output = command.replace('when did', '') search_results = wikipedia.summary(output, 10) print(search_results) reply(search_results) time.sleep(3) else: reply('Ups !! Cannot finding it') pywhatkit.search(command) #Hello() intro() Greetings() while True: msk() time.sleep(10)
the-stack_0_25517
# ex:ts=4:sw=4:sts=4:et # -*- tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- import binascii import copy import os import random import re import time from datetime import datetime from datetime import timedelta from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers import algorithms from cryptography.hazmat.primitives.ciphers import Cipher from cryptography.hazmat.primitives.ciphers import modes from svtplay_dl.error import ServiceError from svtplay_dl.error import UIException from svtplay_dl.fetcher import VideoRetriever from svtplay_dl.subtitle import subtitle from svtplay_dl.utils.http import get_full_url from svtplay_dl.utils.output import ETA from svtplay_dl.utils.output import output from svtplay_dl.utils.output import progress_stream from svtplay_dl.utils.output import progressbar class HLSException(UIException): def __init__(self, url, message): self.url = url super().__init__(message) class LiveHLSException(HLSException): def __init__(self, url): super().__init__(url, "This is a live HLS stream, and they are not supported.") def hlsparse(config, res, url, **kwargs): streams = {} if not res: return streams if res.status_code > 400: streams[0] = ServiceError(f"Can't read HLS playlist. {res.status_code}") return streams m3u8 = M3U8(res.text) keycookie = kwargs.pop("keycookie", None) authorization = kwargs.pop("authorization", None) httpobject = kwargs.pop("httpobject", None) output = kwargs.pop("output", None) channels = kwargs.pop("channels", None) codec = kwargs.pop("codec", "h264") media = {} subtitles = {} segments = None if m3u8.master_playlist: for i in m3u8.master_playlist: audio_url = None vcodec = None chans = None if i["TAG"] == "EXT-X-MEDIA": if "AUTOSELECT" in i and (i["AUTOSELECT"].upper() == "YES"): if i["TYPE"] and i["TYPE"] != "SUBTITLES": if "URI" in i: if segments is None: segments = True if i["GROUP-ID"] not in media: media[i["GROUP-ID"]] = [] if "CHANNELS" in i: if i["CHANNELS"] == "6": chans = "51" media[i["GROUP-ID"]].append([i["URI"], chans]) else: segments = False if i["TYPE"] == "SUBTITLES": if "URI" in i: if i["GROUP-ID"] not in subtitles: subtitles[i["GROUP-ID"]] = [] item = [i["URI"], i["LANGUAGE"]] if item not in subtitles[i["GROUP-ID"]]: subtitles[i["GROUP-ID"]].append(item) continue elif i["TAG"] == "EXT-X-STREAM-INF": if "AVERAGE-BANDWIDTH" in i: bit_rate = float(i["AVERAGE-BANDWIDTH"]) / 1000 else: bit_rate = float(i["BANDWIDTH"]) / 1000 if "CODECS" in i: if i["CODECS"][:3] == "hvc": vcodec = "hevc" if i["CODECS"][:3] == "avc": vcodec = "h264" if "AUDIO" in i and (i["AUDIO"] in media): chans = media[i["AUDIO"]][0][1] audio_url = get_full_url(media[i["AUDIO"]][0][0], url) urls = get_full_url(i["URI"], url) else: continue # Needs to be changed to utilise other tags. chans = chans if audio_url else channels codec = vcodec if vcodec else codec streams[int(bit_rate)] = HLS( copy.copy(config), urls, bit_rate, cookies=res.cookies, keycookie=keycookie, authorization=authorization, audio=audio_url, output=output, segments=bool(segments), channels=chans, codec=codec, **kwargs, ) if subtitles and httpobject: for sub in list(subtitles.keys()): for n in subtitles[sub]: m3u8s = M3U8(httpobject.request("get", get_full_url(n[0], url), cookies=res.cookies).text) if "cmore" in url: subtype = "wrstsegment" # this have been seen in tv4play else: subtype = "wrst" streams[int(random.randint(1, 40))] = subtitle( copy.copy(config), subtype, get_full_url(m3u8s.media_segment[0]["URI"], url), subfix=n[1], output=copy.copy(output), m3u8=m3u8s, ) elif m3u8.media_segment: config.set("segments", False) streams[0] = HLS( copy.copy(config), url, 0, cookies=res.cookies, keycookie=keycookie, authorization=authorization, output=output, segments=False, ) else: streams[0] = ServiceError("Can't find HLS playlist in m3u8 file.") return streams class HLS(VideoRetriever): @property def name(self): return "hls" def download(self): self.output_extention = "ts" if self.segments: if self.audio and not self.config.get("only_video"): self._download(self.audio, file_name=(copy.copy(self.output), "audio.ts")) if not self.config.get("only_audio"): self._download(self.url, file_name=(self.output, "ts")) else: # Ignore audio self.audio = None self._download(self.url, file_name=(self.output, "ts")) def _download(self, url, file_name): cookies = self.kwargs.get("cookies", None) start_time = time.time() m3u8 = M3U8(self.http.request("get", url, cookies=cookies).text) key = None def random_iv(): return os.urandom(16) file_d = output(file_name[0], self.config, file_name[1]) if file_d is None: return if "EXT-X-MAP" in m3u8.media_segment[0]: entry = {"URI": get_full_url(m3u8.media_segment[0]["EXT-X-MAP"]["URI"], url), "EXTINF": {"duration": 0}} if "EXT-X-KEY" in m3u8.media_segment[0]: entry["EXT-X-KEY"] = {"URI": m3u8.media_segment[0]["EXT-X-KEY"]["URI"]} m3u8.media_segment.insert(0, entry) hls_time_stamp = self.kwargs.pop("hls_time_stamp", False) decryptor = None size_media = len(m3u8.media_segment) eta = ETA(size_media) total_duration = 0 duration = 0 max_duration = 0 for index, i in enumerate(m3u8.media_segment): if "duration" in i["EXTINF"]: duration = i["EXTINF"]["duration"] max_duration = max(max_duration, duration) total_duration += duration item = get_full_url(i["URI"], url) if not self.config.get("silent"): if self.config.get("live"): progressbar(size_media, index + 1, "".join(["DU: ", str(timedelta(seconds=int(total_duration)))])) else: eta.increment() progressbar(size_media, index + 1, "".join(["ETA: ", str(eta)])) data = self.http.request("get", item, cookies=cookies) if data.status_code == 404: break data = data.content if m3u8.encrypted: headers = {} if self.keycookie: keycookies = self.keycookie else: keycookies = cookies if self.authorization: headers["authorization"] = self.authorization # Update key/decryptor if "EXT-X-KEY" in i: keyurl = get_full_url(i["EXT-X-KEY"]["URI"], url) if keyurl and keyurl[:4] == "skd:": raise HLSException(keyurl, "Can't decrypt beacuse of DRM") key = self.http.request("get", keyurl, cookies=keycookies, headers=headers).content iv = binascii.unhexlify(i["EXT-X-KEY"]["IV"][2:].zfill(32)) if "IV" in i["EXT-X-KEY"] else random_iv() backend = default_backend() cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend) decryptor = cipher.decryptor() # In some cases the playlist say its encrypted but the files is not. # This happen on svtplay 5.1ch stream where it started with ID3.. # Adding the other ones is header for mpeg-ts files. third byte is 10 or 11.. if data[:3] != b"ID3" and data[:3] != b"\x47\x40\x11" and data[:3] != b"\x47\x40\x10" and data[4:12] != b"ftypisom": if decryptor: data = decryptor.update(data) else: raise ValueError("No decryptor found for encrypted hls steam.") file_d.write(data) if self.config.get("capture_time") > 0 and total_duration >= self.config.get("capture_time") * 60: break if (size_media == (index + 1)) and self.config.get("live"): sleep_int = (start_time + max_duration * 2) - time.time() if sleep_int > 0: time.sleep(sleep_int) size_media_old = size_media while size_media_old == size_media: start_time = time.time() if hls_time_stamp: end_time_stamp = (datetime.utcnow() - timedelta(minutes=1, seconds=max_duration * 2)).replace(microsecond=0) start_time_stamp = end_time_stamp - timedelta(minutes=1) base_url = url.split(".m3u8")[0] url = f"{base_url}.m3u8?in={start_time_stamp.isoformat()}&out={end_time_stamp.isoformat()}?" new_m3u8 = M3U8(self.http.request("get", url, cookies=cookies).text) for n_m3u in new_m3u8.media_segment: if not any(d["URI"] == n_m3u["URI"] for d in m3u8.media_segment): m3u8.media_segment.append(n_m3u) size_media = len(m3u8.media_segment) if size_media_old == size_media: time.sleep(max_duration) file_d.close() if not self.config.get("silent"): progress_stream.write("\n") self.finished = True class M3U8: # Created for hls version <=7 # https://tools.ietf.org/html/rfc8216 MEDIA_SEGMENT_TAGS = ("EXTINF", "EXT-X-BYTERANGE", "EXT-X-DISCONTINUITY", "EXT-X-KEY", "EXT-X-MAP", "EXT-X-PROGRAM-DATE-TIME", "EXT-X-DATERANGE") MEDIA_PLAYLIST_TAGS = ( "EXT-X-TARGETDURATION", "EXT-X-MEDIA-SEQUENCE", "EXT-X-DISCONTINUITY-SEQUENCE", "EXT-X-ENDLIST", "EXT-X-PLAYLIST-TYPE", "EXT-X-I-FRAMES-ONLY", ) MASTER_PLAYLIST_TAGS = ("EXT-X-MEDIA", "EXT-X-STREAM-INF", "EXT-X-I-FRAME-STREAM-INF", "EXT-X-SESSION-DATA", "EXT-X-SESSION-KEY") MEDIA_OR_MASTER_PLAYLIST_TAGS = ("EXT-X-INDEPENDENT-SEGMENTS", "EXT-X-START") TAG_TYPES = {"MEDIA_SEGMENT": 0, "MEDIA_PLAYLIST": 1, "MASTER_PLAYLIST": 2} def __init__(self, data): self.version = None self.media_segment = [] self.media_playlist = {} self.master_playlist = [] self.encrypted = False self.independent_segments = False self.parse_m3u(data) def __str__(self): return "Version: {}\nMedia Segment: {}\nMedia Playlist: {}\nMaster Playlist: {}\nEncrypted: {}\tIndependent_segments: {}".format( self.version, self.media_segment, self.media_playlist, self.master_playlist, self.encrypted, self.independent_segments, ) def parse_m3u(self, data): if not data.startswith("#EXTM3U"): raise ValueError("Does not appear to be an 'EXTM3U' file.") data = data.replace("\r\n", "\n") lines = data.split("\n")[1:] last_tag_type = None tag_type = None media_segment_info = {} for index, l in enumerate(lines): if not l: continue elif l.startswith("#EXT"): info = {} tag, attr = _get_tag_attribute(l) if tag == "EXT-X-VERSION": self.version = int(attr) # 4.3.2. Media Segment Tags elif tag in M3U8.MEDIA_SEGMENT_TAGS: tag_type = M3U8.TAG_TYPES["MEDIA_SEGMENT"] # 4.3.2.1. EXTINF if tag == "EXTINF": if "," in attr: dur, title = attr.split(",", 1) else: dur = attr title = None info["duration"] = float(dur) info["title"] = title # 4.3.2.2. EXT-X-BYTERANGE elif tag == "EXT-X-BYTERANGE": if "@" in attr: n, o = attr.split("@", 1) info["n"], info["o"] = (int(n), int(o)) else: info["n"] = int(attr) info["o"] = 0 # 4.3.2.3. EXT-X-DISCONTINUITY elif tag == "EXT-X-DISCONTINUITY": pass # 4.3.2.4. EXT-X-KEY elif tag == "EXT-X-KEY": self.encrypted = True info = _get_tuple_attribute(attr) # 4.3.2.5. EXT-X-MAP elif tag == "EXT-X-MAP": info = _get_tuple_attribute(attr) # 4.3.2.6. EXT-X-PROGRAM-DATE-TIME" elif tag == "EXT-X-PROGRAM-DATE-TIME": info = attr # 4.3.2.7. EXT-X-DATERANGE elif tag == "EXT-X-DATERANGE": info = _get_tuple_attribute(attr) media_segment_info[tag] = info # 4.3.3. Media Playlist Tags elif tag in M3U8.MEDIA_PLAYLIST_TAGS: tag_type = M3U8.TAG_TYPES["MEDIA_PLAYLIST"] # 4.3.3.1. EXT-X-TARGETDURATION if tag == "EXT-X-TARGETDURATION": info = int(attr) # 4.3.3.2. EXT-X-MEDIA-SEQUENCE elif tag == "EXT-X-MEDIA-SEQUENCE": info = int(attr) # 4.3.3.3. EXT-X-DISCONTINUITY-SEQUENCE elif tag == "EXT-X-DISCONTINUITY-SEQUENCE": info = int(attr) # 4.3.3.4. EXT-X-ENDLIST elif tag == "EXT-X-ENDLIST": break # 4.3.3.5. EXT-X-PLAYLIST-TYPE elif tag == "EXT-X-PLAYLIST-TYPE": info = attr # 4.3.3.6. EXT-X-I-FRAMES-ONLY elif tag == "EXT-X-I-FRAMES-ONLY": pass self.media_playlist[tag] = info # 4.3.4. Master Playlist Tags elif tag in M3U8.MASTER_PLAYLIST_TAGS: tag_type = M3U8.TAG_TYPES["MASTER_PLAYLIST"] # 4.3.4.1. EXT-X-MEDIA if tag == "EXT-X-MEDIA": info = _get_tuple_attribute(attr) # 4.3.4.2. EXT-X-STREAM-INF elif tag == "EXT-X-STREAM-INF": info = _get_tuple_attribute(attr) if "BANDWIDTH" not in info: raise ValueError("Can't find 'BANDWIDTH' in 'EXT-X-STREAM-INF'") info["URI"] = lines[index + 1] # 4.3.4.3. EXT-X-I-FRAME-STREAM-INF elif tag == "EXT-X-I-FRAME-STREAM-INF": info = _get_tuple_attribute(attr) # 4.3.4.4. EXT-X-SESSION-DATA elif tag == "EXT-X-SESSION-DATA": info = _get_tuple_attribute(attr) # 4.3.4.5. EXT-X-SESSION-KEY elif tag == "EXT-X-SESSION-KEY": self.encrypted = True info = _get_tuple_attribute(attr) info["TAG"] = tag self.master_playlist.append(info) # 4.3.5. Media or Master Playlist Tags elif tag in M3U8.MEDIA_OR_MASTER_PLAYLIST_TAGS: tag_type = M3U8.TAG_TYPES["MEDIA_PLAYLIST"] # 4.3.5.1. EXT-X-INDEPENDENT-SEGMENTS if tag == "EXT-X-INDEPENDENT-SEGMENTS": self.independent_segments = True # 4.3.5.2. EXT-X-START elif tag == "EXT-X-START": info = _get_tuple_attribute(attr) self.media_playlist[tag] = info # Unused tags else: pass # This is a comment elif l.startswith("#"): pass # This must be a url/uri else: tag_type = None if last_tag_type is M3U8.TAG_TYPES["MEDIA_SEGMENT"]: media_segment_info["URI"] = l self.media_segment.append(media_segment_info) media_segment_info = {} last_tag_type = tag_type if self.media_segment and self.master_playlist: raise ValueError("This 'M3U8' file contains data for both 'Media Segment' and 'Master Playlist'. This is not allowed.") def _get_tag_attribute(line): line = line[1:] try: search_line = re.search(r"^([A-Z\-]*):(.*)", line) return search_line.group(1), search_line.group(2) except Exception: return line, None def _get_tuple_attribute(attribute): attr_tuple = {} for art_l in re.split(""",(?=(?:[^'"]|'[^']*'|"[^"]*")*$)""", attribute): if art_l: name, value = art_l.split("=", 1) name = name.strip() # Checks for attribute name if not re.match(r"^[A-Z0-9\-]*$", name): raise ValueError("Not a valid attribute name.") # Remove extra quotes of string if value.startswith('"') and value.endswith('"'): value = value[1:-1] attr_tuple[name] = value return attr_tuple
the-stack_0_25518
from copy import deepcopy import json import pytest import time import threading import requests from tests.conftest import ( ARXIV_URL, PDF_EXTRACTOR_URL, API_KEY, CAT, MAX_RESULTS, TIME_STEP, MAX_CONCURRENT_REQUEST_THREADS ) def test_constructor_success(arxiv_parser): assert arxiv_parser assert arxiv_parser._arxiv_url == ARXIV_URL assert arxiv_parser._pdf_extractor_url == PDF_EXTRACTOR_URL assert arxiv_parser._api_key == API_KEY assert arxiv_parser._cat == CAT assert arxiv_parser._max_results == MAX_RESULTS assert arxiv_parser._time_step == TIME_STEP assert arxiv_parser._max_concurrent_request_threads == MAX_CONCURRENT_REQUEST_THREADS assert arxiv_parser._run_thread == None assert arxiv_parser._conc_req_num_obs_thread == None assert arxiv_parser._stopping == None assert arxiv_parser._request_threads_list == [] assert type(arxiv_parser._fetch_lock) == type(threading.Lock()) assert type(arxiv_parser._pdfs_data_lock) == type(threading.Lock()) assert type(arxiv_parser._thread_being_modified_lock) == type(threading.Lock()) assert type( arxiv_parser._run_new_request_thread_permission ) == type(arxiv_parser.RunNewRequestThreadPermission()) def test__fetch_atom_feed_from_arxiv_api(arxiv_parser, feed, mocker): # Success mocker.patch('src.core.arxiv_parser.request.urlopen', return_value = feed) assert arxiv_parser._fetch_atom_feed_from_arxiv_api() == feed def test__extract_pdf_metadatas_from_atom_feed(arxiv_parser, feed, pdf_metadatas_reference): # Success pdf_metadatas = arxiv_parser._extract_pdf_metadatas_from_atom_feed(feed) assert pdf_metadatas == pdf_metadatas_reference # Empty atom feed pdf_metadatas = arxiv_parser._extract_pdf_metadatas_from_atom_feed(b'svdfvdfv') assert pdf_metadatas == [] def test__fetch_new_pdf_data(arxiv_parser, feed, pdf_metadatas_reference, mocker): # Success mocker.patch( 'src.core.arxiv_parser.ArXivParser._fetch_atom_feed_from_arxiv_api', side_effect = [feed, None] ) expected_feed_extraction_results = [pdf_metadatas_reference[0], pdf_metadatas_reference[1]] mocker.patch( 'src.core.arxiv_parser.ArXivParser._extract_pdf_metadatas_from_atom_feed', side_effect = [expected_feed_extraction_results, None] ) expected_extraction_results = deepcopy(expected_feed_extraction_results) for i in range(len(expected_extraction_results)): expected_extraction_results[i]['references'] = [] mocker.patch( 'src.core.arxiv_parser.ArXivParser._process_metadatas_batch' ) mocked_push_to_task_queue = mocker.patch( 'src.core.arxiv_parser.ArXivParser._push_to_task_queue', ) arxiv_parser._fetch_new_pdf_data() mocked_push_to_task_queue.assert_called_once() def test__request_extraction( arxiv_parser, pdf_metadatas_reference, pdf_extractor_full_response_reference, mocker ): # Success post_mocker = mocker.patch( 'src.core.arxiv_parser.requests.post', return_value = pdf_extractor_full_response_reference ) authenticator = requests.auth.HTTPBasicAuth('api_key', arxiv_parser._api_key) mocker.patch( 'src.core.arxiv_parser.requests.auth.HTTPBasicAuth', return_value = authenticator ) pdfs_data = [] arxiv_parser._request_extraction(pdf_metadatas_reference[0], pdfs_data) post_mocker.assert_called_once_with( arxiv_parser._pdf_extractor_url, data = json.dumps(pdf_metadatas_reference[0], indent=4, sort_keys=True), headers={'Content-Type':'application/json'}, auth=authenticator, timeout=120 ) def test__push_to_task_queue(): assert True def test__run(arxiv_parser, mocker): def side_effect(): time.sleep(0.1) fetch_mocker = mocker.patch( 'src.core.arxiv_parser.ArXivParser._fetch_new_pdf_data', side_effect = side_effect ) arxiv_parser._time_step = 0 run_thread = threading.Thread(target=arxiv_parser._run, args=()) run_thread.start() time.sleep(0.3) arxiv_parser._stopping = True assert fetch_mocker.call_count >= 1 run_thread.join(0.5) assert not run_thread.is_alive() def test_start_stop_cron(arxiv_parser, mocker): mocker.patch('src.core.arxiv_parser.ArXivParser._fetch_new_pdf_data') arxiv_parser._time_step = 0.1 arxiv_parser.start_cron() assert arxiv_parser._run_thread.is_alive() assert arxiv_parser._conc_req_num_obs_thread.is_alive() arxiv_parser.stop_cron() assert not arxiv_parser._run_thread assert not arxiv_parser._conc_req_num_obs_thread assert not arxiv_parser._stopping
the-stack_0_25519
# -*- coding: utf-8 -*- from __future__ import with_statement, print_function, absolute_import import json import requests from requests_oauthlib import OAuth1 from trello.board import Board from trello.card import Card from trello.trellolist import List from trello.organization import Organization from trello.member import Member from trello.webhook import WebHook from trello.exceptions import * from trello.label import Label from trello.star import Star try: # PyOpenSSL works around some issues in python ssl modules # In particular in python < 2.7.9 and python < 3.2 # It is not a hard requirement, so it's not listed in requirements.txt # More info https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning import urllib3.contrib.pyopenssl urllib3.contrib.pyopenssl.inject_into_urllib3() except: pass class TrelloClient(object): """ Base class for Trello API access """ def __init__(self, api_key, api_secret=None, token=None, token_secret=None, http_service=requests): """ Constructor :api_key: API key generated at https://trello.com/1/appKey/generate :api_secret: the secret component of api_key :token: OAuth token generated by the user in trello.util.create_oauth_token :token_secret: the OAuth client secret for the given OAuth token """ # client key and secret for oauth1 session if token or token_secret: self.oauth = OAuth1(client_key=api_key, client_secret=api_secret, resource_owner_key=token, resource_owner_secret=token_secret) else: self.oauth = None self.public_only = token is None self.api_key = api_key self.api_secret = api_secret self.resource_owner_key = token self.resource_owner_secret = token_secret self.http_service = http_service def info_for_all_boards(self, actions): """ Use this if you want to retrieve info for all your boards in one swoop """ if self.public_only: return None else: json_obj = self.fetch_json( '/members/me/boards/all', query_params={'actions': actions}) self.all_info = json_obj def logout(self): """Log out of Trello.""" # TODO: This function. raise NotImplementedError() def list_boards(self, board_filter="all"): """ Returns all boards for your Trello user :return: a list of Python objects representing the Trello boards. :rtype: list of Board Each board has the following noteworthy attributes: - id: the board's identifier - name: Name of the board - desc: Description of the board (optional - may be missing from the returned JSON) - closed: Boolean representing whether this board is closed or not - url: URL to the board """ json_obj = self.fetch_json('/members/me/boards/?filter=%s' % board_filter) return [Board.from_json(self, json_obj=obj) for obj in json_obj] def list_organizations(self): """ Returns all organizations for your Trello user :return: a list of Python objects representing the Trello organizations. :rtype: list of Organization Each organization has the following noteworthy attributes: - id: the organization's identifier - name: Name of the organization - desc: Description of the organization (optional - may be missing from the returned JSON) - closed: Boolean representing whether this organization is closed or not - url: URL to the organization """ json_obj = self.fetch_json('members/me/organizations') return [Organization.from_json(self, obj) for obj in json_obj] def get_organization(self, organization_id): """Get organization :rtype: Organization """ obj = self.fetch_json('/organizations/' + organization_id) return Organization.from_json(self, obj) def get_board(self, board_id): """Get board :rtype: Board """ obj = self.fetch_json('/boards/' + board_id) return Board.from_json(self, json_obj=obj) def add_board(self, board_name, source_board=None, organization_id=None, permission_level='private', default_lists=True): """Create board :param board_name: Name of the board to create :param source_board: Optional Board to copy :param permission_level: Permission level, defaults to private :rtype: Board """ post_args = {'name': board_name, 'prefs_permissionLevel': permission_level} if source_board is not None: post_args['idBoardSource'] = source_board.id if organization_id is not None: post_args['idOrganization'] = organization_id if not default_lists: post_args['defaultLists'] = False obj = self.fetch_json('/boards', http_method='POST', post_args=post_args) return Board.from_json(self, json_obj=obj) def get_member(self, member_id): """Get member :rtype: Member """ return Member(self, member_id).fetch() def get_card(self, card_id): """Get card :rtype: Card """ card_json = self.fetch_json('/cards/' + card_id) list_json = self.fetch_json('/lists/' + card_json['idList']) board = self.get_board(card_json['idBoard']) return Card.from_json(List.from_json(board, list_json), card_json) def get_list(self, list_id): """Get list :rtype: List """ list_json = self.fetch_json('/lists/' + list_id) board = self.get_board(list_json['idBoard']) return List.from_json(board, list_json) def get_label(self, label_id, board_id): """Get Label Requires the parent board id the label is on :rtype: Label """ board = self.get_board(board_id) label_json = self.fetch_json('/labels/' + label_id) return Label.from_json(board, label_json) def fetch_json( self, uri_path, http_method='GET', headers=None, query_params=None, post_args=None, files=None): """ Fetch some JSON from Trello """ # explicit values here to avoid mutable default values if headers is None: headers = {} if query_params is None: query_params = {} if post_args is None: post_args = {} # if files specified, we don't want any data data = None if files is None: data = json.dumps(post_args) # set content type and accept headers to handle JSON if http_method in ("POST", "PUT", "DELETE") and not files: headers['Content-Type'] = 'application/json; charset=utf-8' headers['Accept'] = 'application/json' # construct the full URL without query parameters if uri_path[0] == '/': uri_path = uri_path[1:] url = 'https://api.trello.com/1/%s' % uri_path if self.oauth is None: query_params['key'] = self.api_key query_params['token'] = self.api_secret # perform the HTTP requests, if possible uses OAuth authentication response = self.http_service.request(http_method, url, params=query_params, headers=headers, data=data, auth=self.oauth, files=files) if response.status_code == 401: raise Unauthorized("%s at %s" % (response.text, url), response) if response.status_code != 200: raise ResourceUnavailable("%s at %s" % (response.text, url), response) return response.json() def list_hooks(self, token=None): """ Returns a list of all hooks associated with a specific token. If you don't pass in a token, it tries to use the token associated with the TrelloClient object (if it exists) """ token = token or self.resource_owner_key if token is None: raise TokenError("You need to pass an auth token in to list hooks.") else: url = "/tokens/%s/webhooks" % token return self._existing_hook_objs(self.fetch_json(url), token) def _existing_hook_objs(self, hooks, token): """ Given a list of hook dicts passed from list_hooks, creates the hook objects """ all_hooks = [] for hook in hooks: new_hook = WebHook(self, token, hook['id'], hook['description'], hook['idModel'], hook['callbackURL'], hook['active']) all_hooks.append(new_hook) return all_hooks def create_hook(self, callback_url, id_model, desc=None, token=None): """ Creates a new webhook. Returns the WebHook object created. There seems to be some sort of bug that makes you unable to create a hook using httplib2, so I'm using urllib2 for that instead. """ token = token or self.resource_owner_key if token is None: raise TokenError("You need to pass an auth token in to create a hook.") url = "https://trello.com/1/tokens/%s/webhooks/" % token data = {'callbackURL': callback_url, 'idModel': id_model, 'description': desc} response = self.http_service.post(url, data=data, auth=self.oauth) if response.status_code == 200: hook_id = response.json()['id'] return WebHook(self, token, hook_id, desc, id_model, callback_url, True) else: return False def search(self, query, partial_match=False, models=[], board_ids=[], org_ids=[], card_ids=[]): """ Search trello given a query string. :param str query: A query string up to 16K characters :param bool partial_match: True means that trello will look for content that starts with any of the words in your query. :param list models: Comma-separated list of types of objects to search. This can be 'actions', 'boards', 'cards', 'members', or 'organizations'. The default is 'all' models. :param list board_ids: Comma-separated list of boards to limit search :param org_ids: Comma-separated list of organizations to limit search :param card_ids: Comma-separated list of cards to limit search :return: All objects matching the search criterial. These can be Cards, Boards, Organizations, and Members. The attributes of the objects in the results are minimal; the user must call the fetch method on the resulting objects to get a full set of attributes populated. :rtype list: """ query_params = {'query': query} if partial_match: query_params['partial'] = 'true' # Limit search to one or more object types if models: query_params['modelTypes'] = models # Limit search to a particular subset of objects if board_ids: query_params['idBoards'] = board_ids if org_ids: query_params['idOrganizations'] = org_ids if card_ids: query_params['idCards'] = card_ids # Request result fields required to instantiate class objects query_params['board_fields'] = ['name,url,desc,closed'] query_params['member_fields'] = ['fullName,initials,username'] query_params['organization_fields'] = ['name,url,desc'] json_obj = self.fetch_json('/search', query_params=query_params) if not json_obj: return [] results = [] board_cache = {} for board_json in json_obj.get('boards', []): # Cache board objects if board_json['id'] not in board_cache: board_cache[board_json['id']] = Board.from_json( self, json_obj=board_json) results.append(board_cache[board_json['id']]) for card_json in json_obj.get('cards', []): # Cache board objects if card_json['idBoard'] not in board_cache: board_cache[card_json['idBoard']] = Board( self, card_json['idBoard']) # Fetch the board attributes as the Board object created # from the card initially result lacks a URL and name. # This Board will be stored in Card.parent board_cache[card_json['idBoard']].fetch() results.append(Card.from_json(board_cache[card_json['idBoard']], card_json)) for member_json in json_obj.get('members', []): results.append(Member.from_json(self, member_json)) for org_json in json_obj.get('organizations', []): org = Organization.from_json(self, org_json) results.append(org) return results def list_stars(self): """ Returns all boardStars for your Trello user :return: a list of Python objects representing the Trello board stars. :rtype: list of Board Stars Each board has the following noteworthy attributes: - id: the board star's identifier - idBoard: ID of starred board - pos: position of the board star """ json_obj = self.fetch_json('/members/me/boardStars') return [Star.from_json(json_obj=obj) for obj in json_obj] def add_star(self, board_id, position="bottom"): """Create a star :param board_iid: Id of the board to star :param position: Optional position of the board star :rtype: Star """ post_args = {'idBoard': board_id, 'pos': position} obj = self.fetch_json('members/me/boardStars', http_method='POST', post_args=post_args) return Star.from_json(json_obj=obj) def delete_star(self, star): """Deletes a star :param board_iid: Id of the board to star :param position: Optional position of the board star :rtype: Star """ self.fetch_json('members/me/boardStars/{}'.format(star.id), http_method='DELETE') return star
the-stack_0_25522
from panda3d.core import * from direct.distributed import DistributedObject from direct.directnotify import DirectNotifyGlobal from toontown.toonbase import ToontownGlobals from direct.showbase import PythonUtil class WelcomeValleyManager(DistributedObject.DistributedObject): notify = DirectNotifyGlobal.directNotify.newCategory('WelcomeValleyManager') neverDisable = 1 def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) def generate(self): if base.cr.welcomeValleyManager != None: base.cr.welcomeValleyManager.delete() base.cr.welcomeValleyManager = self DistributedObject.DistributedObject.generate(self) return def disable(self): self.ignore(ToontownGlobals.SynchronizeHotkey) base.cr.welcomeValleyManager = None DistributedObject.DistributedObject.disable(self) return def delete(self): self.ignore(ToontownGlobals.SynchronizeHotkey) base.cr.welcomeValleyManager = None DistributedObject.DistributedObject.delete(self) return def requestZoneId(self, origZoneId, callback): context = self.getCallbackContext(callback) self.sendUpdate('requestZoneIdMessage', [origZoneId, context]) def requestZoneIdResponse(self, zoneId, context): self.doCallbackContext(context, [zoneId])
the-stack_0_25523
""""Contains views to register, login reset password and logout user""" from flask import Blueprint, request, jsonify from flask_jwt_extended import jwt_required, get_jwt_identity from app.models import Business, Review from app.utils import ( require_json, check_missing_field, remove_more_spaces) from app.base_view import BaseView rev = Blueprint('rev', __name__, url_prefix='/api/v1/businesses/<int:business_id>/reviews') class ReviewManipulation(BaseView): """Method to manipulate business endpoints""" @jwt_required @require_json def post(self, business_id): """Endpoint to save the data to the database""" data = request.get_json() description = data.get('description') rating = data.get('rating') current_user = get_jwt_identity() data = dict(description=description, rating=rating) if check_missing_field(**data): return jsonify(check_missing_field(**data)), 422 description = remove_more_spaces(description) business = Business.query.filter_by(id=business_id).first() if business.user_id == current_user: response = {'message': 'The operation is forbidden for' + ' own business'} return jsonify(response), 403 review = Review(description, rating, business_id, current_user) review.save() response = {'message': 'Review for business with id' + f' {business_id} created'} return jsonify(response), 201 review_view = ReviewManipulation.as_view('reviews') rev.add_url_rule('', view_func=review_view, methods=['POST'])
the-stack_0_25525
import random import torch from PIL import Image from glob import glob class Places2(torch.utils.data.Dataset): def __init__(self, img_root, mask_root, img_transform, mask_transform, split='train'): super(Places2, self).__init__() self.img_transform = img_transform self.mask_transform = mask_transform # use about 8M images in the challenge dataset if split == 'train': self.paths = glob('{:s}/data_large/**/*.jpg'.format(img_root), recursive=True) else: #self.paths = glob('C:/Users/yatha/OneDrive/Desktop/Github_clones/pytorch-inpainting-with-partial-conv/data/data_large/*.jpg') self.paths = glob('{:s}/{:s}_large/*'.format(img_root, split)) #self.mask_paths = glob('C:/Users/yatha/OneDrive/Desktop/Github_clones/pytorch-inpainting-with-partial-conv/data/mask_root/*.jpg') self.mask_paths = glob('{:s}/*.jpg'.format(mask_root)) self.N_mask = len(self.mask_paths) def __getitem__(self, index): gt_img = Image.open(self.paths[index]) gt_img = self.img_transform(gt_img.convert('RGB')) mask = Image.open(self.mask_paths[random.randint(0, self.N_mask - 1)]) mask = self.mask_transform(mask.convert('RGB')) return gt_img * mask, mask, gt_img def __len__(self): return len(self.paths)
the-stack_0_25526
import sys DELIMITERS = ". , ; : ? $ @ ^ < > # % ` ! * - = ( ) [ ] { } / \" '".split() def load_text(filename): """ Load lines from a plain-text file and return these as a list, with trailing newlines stripped. """ with open(filename, "r", encoding="utf-8") as input_fd: lines = input_fd.read().splitlines() return lines def save_word_counts(filename, counts): """ Save a list of [word, count, percentage] lists to a file, in the form "word count percentage", one tuple per line. """ with open(filename, 'w', encoding="utf-8") as output: for count in counts: output.write("%s\n" % " ".join(str(c) for c in count)) def load_word_counts(filename): """ Load a list of (word, count, percentage) tuples from a file where each line is of the form "word count percentage". Lines starting with # are ignored. """ counts = [] with open(filename, "r", encoding="utf-8") as input_fd: for line in input_fd: if not line.startswith("#"): fields = line.split() counts.append((fields[0], int(fields[1]), float(fields[2]))) return counts def update_word_counts(line, counts): """ Given a string, parse the string and update a dictionary of word counts (mapping words to counts of their frequencies). DELIMITERS are removed before the string is parsed. The function is case-insensitive and words in the dictionary are in lower-case. """ for purge in DELIMITERS: line = line.replace(purge, " ") words = line.split() for word in words: word = word.lower().strip() if word in counts: counts[word] += 1 else: counts[word] = 1 def calculate_word_counts(lines): """ Given a list of strings, parse each string and create a dictionary of word counts (mapping words to counts of their frequencies). DELIMITERS are removed before the string is parsed. The function is case-insensitive and words in the dictionary are in lower-case. """ counts = {} for line in lines: update_word_counts(line, counts) return counts def word_count_dict_to_tuples(counts, decrease=True): """ Given a dictionary of word counts (mapping words to counts of their frequencies), convert this into an ordered list of tuples (word, count). The list is ordered by decreasing count, unless increase is True. """ return sorted(list(counts.items()), key=lambda key_value: key_value[1], reverse=decrease) def filter_word_counts(counts, min_length=1): """ Given a list of (word, count) tuples, create a new list with only those tuples whose word is >= min_length. """ stripped = [] for (word, count) in counts: if len(word) >= min_length: stripped.append((word, count)) return stripped def calculate_percentages(counts): """ Given a list of (word, count) tuples, create a new list (word, count, percentage) where percentage is the percentage number of occurrences of this word compared to the total number of words. """ total = 0 for count in counts: total += count[1] tuples = [(word, count, (float(count) / total) * 100.0) for (word, count) in counts] return tuples def word_count(input_file, output_file, min_length=1): """ Load a file, calculate the frequencies of each word in the file and save in a new file the words, counts and percentages of the total in descending order. Only words whose length is >= min_length are included. """ lines = load_text(input_file) counts = calculate_word_counts(lines) sorted_counts = word_count_dict_to_tuples(counts) sorted_counts = filter_word_counts(sorted_counts, min_length) percentage_counts = calculate_percentages(sorted_counts) save_word_counts(output_file, percentage_counts) if __name__ == '__main__': input_file = sys.argv[1] output_file = sys.argv[2] min_length = 1 if len(sys.argv) > 3: min_length = int(sys.argv[3]) word_count(input_file, output_file, min_length)
the-stack_0_25527
# Copyright 2018-2022 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import setuptools import sys from setuptools.command.install import install # Import Pipenv. We support multiple versions. try: from pipenv.project import Project try: # Pipenv 2022.4.8 from pipenv.utils.dependencies import convert_deps_to_pip except: # Older Pipenv from pipenv.utils import convert_deps_to_pip except: exit_msg = ( "pipenv is required to package Streamlit. Please install pipenv and try again." ) sys.exit(exit_msg) VERSION = "1.10.0" # PEP-440 NAME = "streamlit" DESCRIPTION = "The fastest way to build data apps in Python" LONG_DESCRIPTION = ( "Streamlit's open-source app framework is the easiest way " "for data scientists and machine learning engineers to " "create beautiful, performant apps in only a few hours! " "All in pure Python. All for free." ) pipfile = Project(chdir=False).parsed_pipfile packages = pipfile["packages"].copy() requirements = convert_deps_to_pip(packages, r=False) class VerifyVersionCommand(install): """Custom command to verify that the git tag matches our version""" description = "verify that the git tag matches our version" def run(self): tag = os.getenv("CIRCLE_TAG") if tag != VERSION: info = "Git tag: {0} does not match the version of this app: {1}".format( tag, VERSION ) sys.exit(info) setuptools.setup( name=NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, url="https://streamlit.io", project_urls={ "Source": "https://github.com/streamlit/streamlit", }, author="Streamlit Inc", author_email="[email protected]", python_requires=">=3.7", license="Apache 2", # PEP 561: https://mypy.readthedocs.io/en/stable/installed_packages.html package_data={"streamlit": ["py.typed", "hello/**/*.py"]}, packages=setuptools.find_packages(exclude=["tests", "tests.*"]), # Requirements install_requires=requirements, zip_safe=False, # install source files not egg include_package_data=True, # copy html and friends entry_points={"console_scripts": ["streamlit = streamlit.cli:main"]}, # For Windows so that streamlit * commands work ie. # - streamlit version # - streamlit hello scripts=["bin/streamlit.cmd"], cmdclass={ "verify": VerifyVersionCommand, }, )
the-stack_0_25529
#!/usr/bin/python # -- Content-Encoding: UTF-8 -- """ Utility methods, for compatibility between Python version :author: Thomas Calmant :copyright: Copyright 2020, Thomas Calmant :license: Apache License 2.0 :version: 0.4.1 .. Copyright 2020 Thomas Calmant Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys # ------------------------------------------------------------------------------ # Module version __version_info__ = (0, 4, 1) __version__ = ".".join(str(x) for x in __version_info__) # Documentation strings format __docformat__ = "restructuredtext en" # ------------------------------------------------------------------------------ if sys.version_info[0] < 3: # Python 2 # pylint: disable=E1101 import types try: STRING_TYPES = ( types.StringType, types.UnicodeType ) except NameError: # Python built without unicode support STRING_TYPES = (types.StringType,) NUMERIC_TYPES = ( types.IntType, types.LongType, types.FloatType ) def to_bytes(string): """ Converts the given string into bytes """ # pylint: disable=E0602 if type(string) is unicode: return str(string) return string def from_bytes(data): """ Converts the given bytes into a string """ if type(data) is str: return data return str(data) else: # Python 3 # pylint: disable=E1101 STRING_TYPES = ( bytes, str ) NUMERIC_TYPES = ( int, float ) def to_bytes(string): """ Converts the given string into bytes """ if type(string) is bytes: return string return bytes(string, "UTF-8") def from_bytes(data): """ Converts the given bytes into a string """ if type(data) is str: return data return str(data, "UTF-8") # ------------------------------------------------------------------------------ # Enumerations try: import enum def is_enum(obj): """ Checks if an object is from an enumeration class :param obj: Object to test :return: True if the object is an enumeration item """ return isinstance(obj, enum.Enum) except ImportError: # Pre-Python 3.4 def is_enum(_): """ Before Python 3.4, enumerations didn't exist. :param _: Object to test :return: Always False """ return False # ------------------------------------------------------------------------------ # Common DictType = dict ListType = list TupleType = tuple ITERABLE_TYPES = ( list, set, frozenset, tuple ) VALUE_TYPES = ( bool, type(None) ) PRIMITIVE_TYPES = STRING_TYPES + NUMERIC_TYPES + VALUE_TYPES
the-stack_0_25530
import glob import cv2 import pickle import numpy as np struct = {} info = np.loadtxt('./list.csv', dtype=str, delimiter=',') for item in info[1:]: if not item[0] in struct: struct[item[0]] = [] struct[item[0]].append((int(item[1]), int(item[2]), item[3])) blk_list = [ '0f8deb9380bed80d9c93c28b146f3b71', '0d0f07bc631a890372f7a920fad9edd4' ] imgs = {} def draw(m, x, y, sigma, r): src = 255 for i in range(0, r): for alpha in range(0, 256): dx = 1.*i*np.cos(alpha/128.*np.pi) dy = 1.*i*np.sin(alpha/128.*np.pi) dx = int(dx) dy = int(dy) try: m[x+dx,y+dy] = src*np.exp(-1./2*(i**2)/(sigma**2)) except IndexError: continue for fn in struct: if fn in blk_list: continue img1 = cv2.imread('./merge/%s_b.jpg' % (fn),-1) img2 = cv2.imread('./merge/%s_c.jpg' % (fn),-1) imgx = np.zeros_like(img1) x = struct[fn][0][0] try: y = struct[fn][0][1] except: print(struct[fn]) raise draw(imgx, y, x, 2, 8) label = struct[fn][0][2] rl = 1 if label in ['noise','ghost','pity']: rl = 0 imgs[fn] = [ img1, img2, imgx, rl ] with open('merged_data_2.pk','wb') as f: pickle.dump(imgs, f) import IPython IPython.embed()
the-stack_0_25534
import logging from abc import abstractmethod from mpi4py import MPI from ..communication.gRPC.grpc_comm_manager import GRPCCommManager from ..communication.message import Message from ..communication.mpi.com_manager import MpiCommunicationManager from ..communication.mqtt.mqtt_comm_manager import MqttCommManager from ..communication.observer import Observer from ..communication.trpc.trpc_comm_manager import TRPCCommManager class ClientManager(Observer): def __init__(self, args, comm=None, rank=0, size=0): self.args = args self.size = size self.rank = rank self.backend = args.communication_method if args.communication_method == "MPI": self.com_manager = MpiCommunicationManager(comm, rank, size, node_type="client") elif args.communication_method == "MQTT": self.com_manager = MqttCommManager( args.communication_host, args.communication_port, client_id=rank, client_num=size - 1) elif args.communication_method == "GRPC": self.com_manager = GRPCCommManager( args.communication_host, args.communication_port + rank, ip_config_path=args.grpc_ipconfig_path, client_id=rank, client_num=size - 1 ) elif args.communication_method == "TRPC": self.com_manager = TRPCCommManager(args.trpc_master_config_path, process_id=rank, world_size=size) else: self.com_manager = MpiCommunicationManager(comm, rank, size, node_type="client") self.com_manager.add_observer(self) self.message_handler_dict = dict() def run(self): self.register_message_receive_handlers() self.com_manager.handle_receive_message() def get_sender_id(self): return self.rank def receive_message(self, msg_type, msg_params) -> None: # logging.info("receive_message. rank_id = %d, msg_type = %s. msg_params = %s" % ( # self.rank, str(msg_type), str(msg_params.get_content()))) handler_callback_func = self.message_handler_dict[msg_type] handler_callback_func(msg_params) def send_message(self, message): msg = Message() msg.add(Message.MSG_ARG_KEY_TYPE, message.get_type()) msg.add(Message.MSG_ARG_KEY_SENDER, message.get_sender_id()) msg.add(Message.MSG_ARG_KEY_RECEIVER, message.get_receiver_id()) for key, value in message.get_params().items(): # logging.info("%s == %s" % (key, value)) msg.add(key, value) self.com_manager.send_message(msg) @abstractmethod def register_message_receive_handlers(self) -> None: pass def register_message_receive_handler(self, msg_type, handler_callback_func): self.message_handler_dict[msg_type] = handler_callback_func def finish(self): logging.info("__finish server") if self.backend == "MPI": MPI.COMM_WORLD.Abort() elif self.backend == "MQTT": self.com_manager.stop_receive_message() elif self.backend == "GRPC": self.com_manager.stop_receive_message() elif self.backend == "TRPC": self.com_manager.stop_receive_message()
the-stack_0_25535
# -*- coding: utf-8 -*- import io import demjson import pandas as pd import requests from zvdata.api import df_to_db, init_entities from zvdata.recorder import Recorder from zvt.api.common import china_stock_code_to_id from zvt.domain import StockIndex from zvt.utils.time_utils import to_pd_timestamp class ChinaIndexListSpider(Recorder): data_schema = StockIndex def __init__(self, batch_size=10, force_update=False, sleeping_time=2.0, provider='exchange') -> None: self.provider = provider super(ChinaIndexListSpider, self).__init__(batch_size, force_update, sleeping_time) def run(self): # 上证、中证 self.fetch_csi_index() # 深证 self.fetch_szse_index() # 国证 self.fetch_cni_index() def fetch_csi_index(self) -> None: """ 抓取上证、中证指数列表 """ url = 'http://www.csindex.com.cn/zh-CN/indices/index' \ '?page={}&page_size={}&data_type=json&class_1=1&class_2=2&class_7=7&class_10=10' index_list = [] page = 1 page_size = 50 while True: query_url = url.format(page, page_size) response = requests.get(query_url) response_dict = demjson.decode(response.text) response_index_list = response_dict.get('list', []) if len(response_index_list) == 0: break index_list.extend(response_index_list) self.logger.info(f'上证、中证指数第 {page} 页抓取完成...') page += 1 self.sleep() df = pd.DataFrame(index_list) df = df[['base_date', 'base_point', 'index_code', 'indx_sname', 'online_date', 'class_eseries']] df.columns = ['timestamp', 'base_point', 'code', 'name', 'list_date', 'class_eseries'] df['category'] = df['class_eseries'].apply(lambda x: x.split(' ')[0].lower()) df = df.drop('class_eseries', axis=1) df = df.loc[df['code'].str.contains(r'^\d{6}$')] self.persist_index(df) self.logger.info('上证、中证指数列表抓取完成...') # 抓取上证、中证指数成分股 self.fetch_csi_index_component(df) self.logger.info('上证、中证指数成分股抓取完成...') def fetch_csi_index_component(self, df: pd.DataFrame): """ 抓取上证、中证指数成分股 """ query_url = 'http://www.csindex.com.cn/uploads/file/autofile/cons/{}cons.xls' for _, index in df.iterrows(): index_code = index['code'] url = query_url.format(index_code) try: response = requests.get(url) response.raise_for_status() except requests.HTTPError as error: self.logger.error(f'{index["name"]} - {index_code} 成分股抓取错误 ({error})') continue response_df = pd.read_excel(io.BytesIO(response.content)) index_id = f'index_cn_{index_code}' response_df = response_df[['成分券代码Constituent Code']].rename(columns={'成分券代码Constituent Code': 'stock_code'}) response_df['id'] = response_df['stock_code'].apply( lambda x: f'{index_id}_{china_stock_code_to_id(str(x))}') response_df['entity_id'] = response_df['id'] response_df['stock_id'] = response_df['stock_code'].apply(lambda x: china_stock_code_to_id(str(x))) response_df['index_id'] = index_id response_df.drop('stock_code', axis=1, inplace=True) df_to_db(data_schema=self.data_schema, df=response_df, provider=self.provider) self.logger.info(f'{index["name"]} - {index_code} 成分股抓取完成...') self.sleep() def fetch_szse_index(self) -> None: """ 抓取深证指数列表 """ url = 'http://www.szse.cn/api/report/ShowReport?SHOWTYPE=xlsx&CATALOGID=1812_zs&TABKEY=tab1' response = requests.get(url) df = pd.read_excel(io.BytesIO(response.content), dtype='str') df.columns = ['code', 'name', 'timestamp', 'base_point', 'list_date'] df['category'] = 'szse' df = df.loc[df['code'].str.contains(r'^\d{6}$')] self.persist_index(df) self.logger.info('深证指数列表抓取完成...') # 抓取深证指数成分股 self.fetch_szse_index_component(df) self.logger.info('深证指数成分股抓取完成...') def fetch_szse_index_component(self, df: pd.DataFrame): """ 抓取深证指数成分股 """ query_url = 'http://www.szse.cn/api/report/ShowReport?SHOWTYPE=xlsx&CATALOGID=1747_zs&TABKEY=tab1&ZSDM={}' for _, index in df.iterrows(): index_code = index['code'] url = query_url.format(index_code) response = requests.get(url) response_df = pd.read_excel(io.BytesIO(response.content), dtype='str') index_id = f'index_cn_{index_code}' response_df = response_df[['证券代码']] response_df['id'] = response_df['证券代码'].apply(lambda x: f'{index_id}_{china_stock_code_to_id(str(x))}') response_df['entity_id'] = response_df['id'] response_df['stock_id'] = response_df['证券代码'].apply(lambda x: china_stock_code_to_id(str(x))) response_df['index_id'] = index_id response_df.drop('证券代码', axis=1, inplace=True) df_to_db(data_schema=self.data_schema, df=response_df, provider=self.provider) self.logger.info(f'{index["name"]} - {index_code} 成分股抓取完成...') self.sleep() def fetch_cni_index(self) -> None: """ 抓取国证指数列表 """ url = 'http://www.cnindex.com.cn/zstx/jcxl/' response = requests.get(url) response.encoding = 'utf-8' dfs = pd.read_html(response.text) # 第 9 个 table 之后为非股票指数 dfs = dfs[1:9] result_df = pd.DataFrame() for df in dfs: header = df.iloc[0] df = df[1:] df.columns = header df.astype('str') result_df = pd.concat([result_df, df]) result_df = result_df.drop('样本股数量', axis=1) result_df.columns = ['name', 'code', 'timestamp', 'base_point', 'list_date'] result_df['timestamp'] = result_df['timestamp'].apply(lambda x: x.replace('-', '')) result_df['list_date'] = result_df['list_date'].apply(lambda x: x.replace('-', '')) result_df['category'] = 'csi' result_df = result_df.loc[result_df['code'].str.contains(r'^\d{6}$')] self.persist_index(result_df) self.logger.info('国证指数列表抓取完成...') # 抓取国证指数成分股 self.fetch_cni_index_component(result_df) self.logger.info('国证指数成分股抓取完成...') def fetch_cni_index_component(self, df: pd.DataFrame): """ 抓取国证指数成分股 """ query_url = 'http://www.cnindex.com.cn/docs/yb_{}.xls' for _, index in df.iterrows(): index_code = index['code'] url = query_url.format(index_code) try: response = requests.get(url) response.raise_for_status() except requests.HTTPError as error: self.logger.error(f'{index["name"]} - {index_code} 成分股抓取错误 ({error})') continue response_df = pd.read_excel(io.BytesIO(response.content), dtype='str') index_id = f'index_cn_{index_code}' try: response_df = response_df[['样本股代码']] except KeyError: response_df = response_df[['证券代码']] response_df.columns = ['stock_code'] response_df['id'] = response_df['stock_code'].apply( lambda x: f'{index_id}_{china_stock_code_to_id(str(x))}') response_df['entity_id'] = response_df['id'] response_df['stock_id'] = response_df['stock_code'].apply(lambda x: china_stock_code_to_id(str(x))) response_df['index_id'] = index_id response_df.drop('stock_code', axis=1, inplace=True) df_to_db(data_schema=self.data_schema, df=response_df, provider=self.provider) self.logger.info(f'{index["name"]} - {index_code} 成分股抓取完成...') self.sleep() def persist_index(self, df) -> None: df['timestamp'] = df['timestamp'].apply(lambda x: to_pd_timestamp(x)) df['list_date'] = df['list_date'].apply(lambda x: to_pd_timestamp(x)) df['id'] = df['code'].apply(lambda code: f'index_cn_{code}') df['entity_id'] = df['id'] df['exchange'] = 'cn' df['entity_type'] = 'index' df['is_delisted'] = False df = df.dropna(axis=0, how='any') df = df.drop_duplicates(subset='id', keep='last') init_entities(df, entity_type='index', provider=self.provider) if __name__ == '__main__': spider = ChinaIndexListSpider(provider='exchange') spider.run()
the-stack_0_25536
"""Allow to set up simple automation rules via the config file.""" import importlib import logging from typing import Any, Awaitable, Callable, List, Optional, Set import voluptuous as vol from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_NAME, CONF_DEVICE_ID, CONF_ENTITY_ID, CONF_ID, CONF_PLATFORM, CONF_ZONE, EVENT_AUTOMATION_TRIGGERED, EVENT_HOMEASSISTANT_START, SERVICE_RELOAD, SERVICE_TOGGLE, SERVICE_TURN_OFF, SERVICE_TURN_ON, STATE_ON, ) from homeassistant.core import Context, CoreState, HomeAssistant, callback from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import condition, extract_domain_configs, script import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import ToggleEntity from homeassistant.helpers.entity_component import EntityComponent from homeassistant.helpers.restore_state import RestoreEntity from homeassistant.helpers.service import async_register_admin_service from homeassistant.helpers.typing import TemplateVarsType from homeassistant.loader import bind_hass from homeassistant.util.dt import parse_datetime, utcnow # mypy: allow-untyped-calls, allow-untyped-defs # mypy: no-check-untyped-defs, no-warn-return-any DOMAIN = "automation" ENTITY_ID_FORMAT = DOMAIN + ".{}" GROUP_NAME_ALL_AUTOMATIONS = "all automations" CONF_ALIAS = "alias" CONF_DESCRIPTION = "description" CONF_HIDE_ENTITY = "hide_entity" CONF_CONDITION = "condition" CONF_ACTION = "action" CONF_TRIGGER = "trigger" CONF_CONDITION_TYPE = "condition_type" CONF_INITIAL_STATE = "initial_state" CONF_SKIP_CONDITION = "skip_condition" CONDITION_USE_TRIGGER_VALUES = "use_trigger_values" CONDITION_TYPE_AND = "and" CONDITION_TYPE_OR = "or" DEFAULT_CONDITION_TYPE = CONDITION_TYPE_AND DEFAULT_HIDE_ENTITY = False DEFAULT_INITIAL_STATE = True ATTR_LAST_TRIGGERED = "last_triggered" ATTR_VARIABLES = "variables" SERVICE_TRIGGER = "trigger" _LOGGER = logging.getLogger(__name__) AutomationActionType = Callable[[HomeAssistant, TemplateVarsType], Awaitable[None]] def _platform_validator(config): """Validate it is a valid platform.""" try: platform = importlib.import_module( ".{}".format(config[CONF_PLATFORM]), __name__ ) except ImportError: raise vol.Invalid("Invalid platform specified") from None return platform.TRIGGER_SCHEMA(config) _TRIGGER_SCHEMA = vol.All( cv.ensure_list, [ vol.All( vol.Schema({vol.Required(CONF_PLATFORM): str}, extra=vol.ALLOW_EXTRA), _platform_validator, ) ], ) _CONDITION_SCHEMA = vol.All(cv.ensure_list, [cv.CONDITION_SCHEMA]) PLATFORM_SCHEMA = vol.All( cv.deprecated(CONF_HIDE_ENTITY, invalidation_version="0.107"), vol.Schema( { # str on purpose CONF_ID: str, CONF_ALIAS: cv.string, vol.Optional(CONF_DESCRIPTION): cv.string, vol.Optional(CONF_INITIAL_STATE): cv.boolean, vol.Optional(CONF_HIDE_ENTITY, default=DEFAULT_HIDE_ENTITY): cv.boolean, vol.Required(CONF_TRIGGER): _TRIGGER_SCHEMA, vol.Optional(CONF_CONDITION): _CONDITION_SCHEMA, vol.Required(CONF_ACTION): cv.SCRIPT_SCHEMA, } ), ) @bind_hass def is_on(hass, entity_id): """ Return true if specified automation entity_id is on. Async friendly. """ return hass.states.is_state(entity_id, STATE_ON) @callback def automations_with_entity(hass: HomeAssistant, entity_id: str) -> List[str]: """Return all automations that reference the entity.""" if DOMAIN not in hass.data: return [] component = hass.data[DOMAIN] results = [] for automation_entity in component.entities: if entity_id in automation_entity.referenced_entities: results.append(automation_entity.entity_id) return results @callback def entities_in_automation(hass: HomeAssistant, entity_id: str) -> List[str]: """Return all entities in a scene.""" if DOMAIN not in hass.data: return [] component = hass.data[DOMAIN] automation_entity = component.get_entity(entity_id) if automation_entity is None: return [] return list(automation_entity.referenced_entities) @callback def automations_with_device(hass: HomeAssistant, device_id: str) -> List[str]: """Return all automations that reference the device.""" if DOMAIN not in hass.data: return [] component = hass.data[DOMAIN] results = [] for automation_entity in component.entities: if device_id in automation_entity.referenced_devices: results.append(automation_entity.entity_id) return results @callback def devices_in_automation(hass: HomeAssistant, entity_id: str) -> List[str]: """Return all devices in a scene.""" if DOMAIN not in hass.data: return [] component = hass.data[DOMAIN] automation_entity = component.get_entity(entity_id) if automation_entity is None: return [] return list(automation_entity.referenced_devices) async def async_setup(hass, config): """Set up the automation.""" hass.data[DOMAIN] = component = EntityComponent(_LOGGER, DOMAIN, hass) await _async_process_config(hass, config, component) async def trigger_service_handler(entity, service_call): """Handle automation triggers.""" await entity.async_trigger( service_call.data[ATTR_VARIABLES], skip_condition=service_call.data[CONF_SKIP_CONDITION], context=service_call.context, ) component.async_register_entity_service( SERVICE_TRIGGER, { vol.Optional(ATTR_VARIABLES, default={}): dict, vol.Optional(CONF_SKIP_CONDITION, default=True): bool, }, trigger_service_handler, ) component.async_register_entity_service(SERVICE_TOGGLE, {}, "async_toggle") component.async_register_entity_service(SERVICE_TURN_ON, {}, "async_turn_on") component.async_register_entity_service(SERVICE_TURN_OFF, {}, "async_turn_off") async def reload_service_handler(service_call): """Remove all automations and load new ones from config.""" conf = await component.async_prepare_reload() if conf is None: return await _async_process_config(hass, conf, component) async_register_admin_service( hass, DOMAIN, SERVICE_RELOAD, reload_service_handler, schema=vol.Schema({}), ) return True class AutomationEntity(ToggleEntity, RestoreEntity): """Entity to show status of entity.""" def __init__( self, automation_id, name, trigger_config, cond_func, action_script, hidden, initial_state, ): """Initialize an automation entity.""" self._id = automation_id self._name = name self._trigger_config = trigger_config self._async_detach_triggers = None self._cond_func = cond_func self.action_script = action_script self._last_triggered = None self._hidden = hidden self._initial_state = initial_state self._is_enabled = False self._referenced_entities: Optional[Set[str]] = None self._referenced_devices: Optional[Set[str]] = None @property def name(self): """Name of the automation.""" return self._name @property def unique_id(self): """Return unique ID.""" return self._id @property def should_poll(self): """No polling needed for automation entities.""" return False @property def state_attributes(self): """Return the entity state attributes.""" return {ATTR_LAST_TRIGGERED: self._last_triggered} @property def hidden(self) -> bool: """Return True if the automation entity should be hidden from UIs.""" return self._hidden @property def is_on(self) -> bool: """Return True if entity is on.""" return self._async_detach_triggers is not None or self._is_enabled @property def referenced_devices(self): """Return a set of referenced devices.""" if self._referenced_devices is not None: return self._referenced_devices referenced = self.action_script.referenced_devices if self._cond_func is not None: for conf in self._cond_func.config: referenced |= condition.async_extract_devices(conf) for conf in self._trigger_config: device = _trigger_extract_device(conf) if device is not None: referenced.add(device) self._referenced_devices = referenced return referenced @property def referenced_entities(self): """Return a set of referenced entities.""" if self._referenced_entities is not None: return self._referenced_entities referenced = self.action_script.referenced_entities if self._cond_func is not None: for conf in self._cond_func.config: referenced |= condition.async_extract_entities(conf) for conf in self._trigger_config: for entity_id in _trigger_extract_entities(conf): referenced.add(entity_id) self._referenced_entities = referenced return referenced async def async_added_to_hass(self) -> None: """Startup with initial state or previous state.""" await super().async_added_to_hass() state = await self.async_get_last_state() if state: enable_automation = state.state == STATE_ON last_triggered = state.attributes.get("last_triggered") if last_triggered is not None: self._last_triggered = parse_datetime(last_triggered) _LOGGER.debug( "Loaded automation %s with state %s from state " " storage last state %s", self.entity_id, enable_automation, state, ) else: enable_automation = DEFAULT_INITIAL_STATE _LOGGER.debug( "Automation %s not in state storage, state %s from default is used.", self.entity_id, enable_automation, ) if self._initial_state is not None: enable_automation = self._initial_state _LOGGER.debug( "Automation %s initial state %s overridden from " "config initial_state", self.entity_id, enable_automation, ) if enable_automation: await self.async_enable() async def async_turn_on(self, **kwargs: Any) -> None: """Turn the entity on and update the state.""" await self.async_enable() async def async_turn_off(self, **kwargs: Any) -> None: """Turn the entity off.""" await self.async_disable() async def async_trigger(self, variables, skip_condition=False, context=None): """Trigger automation. This method is a coroutine. """ if ( not skip_condition and self._cond_func is not None and not self._cond_func(variables) ): return # Create a new context referring to the old context. parent_id = None if context is None else context.id trigger_context = Context(parent_id=parent_id) self.async_set_context(trigger_context) self.hass.bus.async_fire( EVENT_AUTOMATION_TRIGGERED, {ATTR_NAME: self._name, ATTR_ENTITY_ID: self.entity_id}, context=trigger_context, ) _LOGGER.info("Executing %s", self._name) try: await self.action_script.async_run(variables, trigger_context) except Exception as err: # pylint: disable=broad-except self.action_script.async_log_exception( _LOGGER, f"Error while executing automation {self.entity_id}", err ) self._last_triggered = utcnow() await self.async_update_ha_state() async def async_will_remove_from_hass(self): """Remove listeners when removing automation from Home Assistant.""" await super().async_will_remove_from_hass() await self.async_disable() async def async_enable(self): """Enable this automation entity. This method is a coroutine. """ if self._is_enabled: return self._is_enabled = True # HomeAssistant is starting up if self.hass.state != CoreState.not_running: self._async_detach_triggers = await self._async_attach_triggers() self.async_write_ha_state() return async def async_enable_automation(event): """Start automation on startup.""" # Don't do anything if no longer enabled or already attached if not self._is_enabled or self._async_detach_triggers is not None: return self._async_detach_triggers = await self._async_attach_triggers() self.hass.bus.async_listen_once( EVENT_HOMEASSISTANT_START, async_enable_automation ) self.async_write_ha_state() async def async_disable(self): """Disable the automation entity.""" if not self._is_enabled: return self._is_enabled = False if self._async_detach_triggers is not None: self._async_detach_triggers() self._async_detach_triggers = None self.async_write_ha_state() async def _async_attach_triggers(self): """Set up the triggers.""" removes = [] info = {"name": self._name} for conf in self._trigger_config: platform = importlib.import_module( ".{}".format(conf[CONF_PLATFORM]), __name__ ) remove = await platform.async_attach_trigger( self.hass, conf, self.async_trigger, info ) if not remove: _LOGGER.error("Error setting up trigger %s", self._name) continue _LOGGER.info("Initialized trigger %s", self._name) removes.append(remove) if not removes: return None @callback def remove_triggers(): """Remove attached triggers.""" for remove in removes: remove() return remove_triggers @property def device_state_attributes(self): """Return automation attributes.""" if self._id is None: return None return {CONF_ID: self._id} async def _async_process_config(hass, config, component): """Process config and add automations. This method is a coroutine. """ entities = [] for config_key in extract_domain_configs(config, DOMAIN): conf = config[config_key] for list_no, config_block in enumerate(conf): automation_id = config_block.get(CONF_ID) name = config_block.get(CONF_ALIAS) or f"{config_key} {list_no}" hidden = config_block[CONF_HIDE_ENTITY] initial_state = config_block.get(CONF_INITIAL_STATE) action_script = script.Script(hass, config_block.get(CONF_ACTION, {}), name) if CONF_CONDITION in config_block: cond_func = await _async_process_if(hass, config, config_block) if cond_func is None: continue else: cond_func = None entity = AutomationEntity( automation_id, name, config_block[CONF_TRIGGER], cond_func, action_script, hidden, initial_state, ) entities.append(entity) if entities: await component.async_add_entities(entities) async def _async_process_if(hass, config, p_config): """Process if checks.""" if_configs = p_config[CONF_CONDITION] checks = [] for if_config in if_configs: try: checks.append(await condition.async_from_config(hass, if_config, False)) except HomeAssistantError as ex: _LOGGER.warning("Invalid condition: %s", ex) return None def if_action(variables=None): """AND all conditions.""" return all(check(hass, variables) for check in checks) if_action.config = if_configs return if_action @callback def _trigger_extract_device(trigger_conf: dict) -> Optional[str]: """Extract devices from a trigger config.""" if trigger_conf[CONF_PLATFORM] != "device": return None return trigger_conf[CONF_DEVICE_ID] @callback def _trigger_extract_entities(trigger_conf: dict) -> List[str]: """Extract entities from a trigger config.""" if trigger_conf[CONF_PLATFORM] in ("state", "numeric_state"): return trigger_conf[CONF_ENTITY_ID] if trigger_conf[CONF_PLATFORM] == "zone": return trigger_conf[CONF_ENTITY_ID] + [trigger_conf[CONF_ZONE]] if trigger_conf[CONF_PLATFORM] == "geo_location": return [trigger_conf[CONF_ZONE]] if trigger_conf[CONF_PLATFORM] == "sun": return ["sun.sun"] return []
the-stack_0_25537
import math import numpy as np def load_codebook(net, path, max_conv_bits, max_fc_bits): conv_layer_num = 0 fc_layer_num = 0 fin = open(path, 'rb') for name, x in net.named_parameters(): if name.endswith('mask'): continue if name.startswith('conv'): conv_layer_num += 1 elif name.startswith('fc'): fc_layer_num += 1 nz_num = np.fromfile(fin, dtype=np.uint32, count=conv_layer_num + fc_layer_num) conv_diff_num = sum(nz_num[:conv_layer_num]) conv_diff = np.fromfile(fin, dtype=np.uint8, count=conv_diff_num) fc_merge_num = math.floor((sum(nz_num[conv_layer_num:]) + 1) / 2) fc_merge_diff = np.fromfile(fin, dtype=np.uint8, count=fc_merge_num) # print(nz_num) # print(len(conv_diff), conv_diff[-10:]) # print(len(fc_merge_diff), fc_merge_diff[-10:]) # [ 304 11 5353 1 400000 500 5000 10] # 5669 [ 0 2 0 1 1 1 0 9 8 44] # 202755 [0 0 0 0 0 0 0 0 0 0] # Split 8 bits index to 4 bits index fc_diff = [] for i in range(len(fc_merge_diff)): fc_diff.append(int(fc_merge_diff[i] / max_fc_bits)) # first 4 bits fc_diff.append(fc_merge_diff[i] % max_fc_bits) # last 4 bits fc_num_sum = nz_num[conv_layer_num:].sum() if fc_num_sum % 2 != 0: fc_diff = fc_diff[:fc_num_sum] fc_diff = np.asarray(fc_diff, dtype=np.uint8) conv_codebook_index = np.fromfile(fin, dtype=np.uint8, count=conv_diff_num) fc_codebook_index_merge = np.fromfile(fin, dtype=np.uint8, count=fc_merge_num) codebook_value_num = int(max_conv_bits * (conv_layer_num / 2) + (2 ** max_fc_bits) * (fc_layer_num / 2)) codebook_value = np.fromfile(fin, dtype=np.float32, count=codebook_value_num) # print(len(conv_codebook_index), conv_codebook_index[-10:]) # print(len(fc_codebook_index_merge), fc_codebook_index_merge[-10:]) # print(len(codebook_value), codebook_value[-10:]) # 5669 [ 2 228 211 229 76 152 23 116 111 25] # 202755 [200 66 71 152 140 171 86 151 87 197] # 544 [-0.11808116 -0.06328904 0.1446653 0.05191407 -0.03960273 -0.0174285 # -0.0174285 0.00504891 0.22879101 0.05191407] # Split 8 bits index to 4 bits index fc_codebook_index = [] for i in range(len(fc_codebook_index_merge)): fc_codebook_index.append(int(fc_codebook_index_merge[i] / max_fc_bits)) # first 4 bits fc_codebook_index.append(fc_codebook_index_merge[i] % max_fc_bits) # last 4 bits if fc_num_sum % 2 != 0: fc_codebook_index = fc_codebook_index[:fc_num_sum] fc_codebook_index = np.asarray(fc_codebook_index, dtype=np.uint8) print("if_error_more_15", (fc_codebook_index > 15).sum()) print("if_error_less_0", (fc_codebook_index < 0).sum()) print("fc_diff", (fc_codebook_index).sum()) # print(nz_num) # print(len(conv_diff), conv_diff[-10:]) # print(len(fc_diff), fc_diff[-10:]) # print(len(conv_codebook_index), conv_codebook_index[-10:]) # print(len(fc_codebook_index), fc_codebook_index[-10:]) # print(len(codebook_value), codebook_value[-10:]) # [ 304 11 5353 1 400000 500 5000 10] # 5669 [ 0 2 0 1 1 1 0 9 8 44] # 405510 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # 5669 [ 2 228 211 229 76 152 23 116 111 25] # 405510 [10 11 5 6 9 7 5 7 12 5] # 544 [-0.11808116 -0.06328904 0.1446653 0.05191407 -0.03960273 -0.0174285 # -0.0174285 0.00504891 0.22879101 0.05191407] return conv_layer_num, nz_num, conv_diff, fc_diff, conv_codebook_index, fc_codebook_index, codebook_value def codebook_to_init(net, conv_layer_length, nz_num, conv_diff, fc_diff, conv_codebook_index, fc_codebook_index, codebook_value, max_conv_bits, max_fc_bits): state_dict = net.state_dict() conv_layer_index = 0 fc_layer_index = 0 codebook_value_index = 0 layer_codebook_value = [] for i, (key, value) in enumerate(state_dict.items()): shape = value.shape value = value.view(-1) value.zero_() if i < conv_layer_length: layer_diff = conv_diff[conv_layer_index:conv_layer_index + nz_num[i]] layer_codebook_index = conv_codebook_index[conv_layer_index:conv_layer_index + nz_num[i]] if not key.endswith('bias'): layer_codebook_value = codebook_value[codebook_value_index:codebook_value_index + max_conv_bits] codebook_value_index += max_conv_bits conv_layer_index += nz_num[i] else: layer_diff = fc_diff[fc_layer_index:fc_layer_index + nz_num[i]] layer_codebook_index = fc_codebook_index[fc_layer_index:fc_layer_index + nz_num[i]] if not key.endswith('bias'): layer_codebook_value = codebook_value[codebook_value_index:codebook_value_index + max_fc_bits] codebook_value_index += max_fc_bits fc_layer_index += nz_num[i] dense_index = 0 sparse_index = 0 while sparse_index < len(layer_diff): dense_index += layer_diff[sparse_index] value[dense_index] = float(layer_codebook_value[layer_codebook_index[sparse_index]]) sparse_index += 1 dense_index += 1 value.reshape(shape)
the-stack_0_25540
# coding=utf-8 from __future__ import absolute_import, print_function import sys from six import string_types __author__ = 'Tyler Butler <[email protected]>' def add_to_path_if_needed(path): """ Adds *path* to the system path if it is not already on it. Prevents unnecessary 'pollution' of the path with a bunch of redundant entries. """ if path not in sys.path: sys.path.append(path) def dict_to_querystring(dictionary): """Converts a dict to a querystring suitable to be appended to a URL.""" s = u"" for d in dictionary.keys(): s = unicode.format(u"{0}{1}={2}&", s, d, dictionary[d]) return s[:-1] def get_class(class_string): """Given a string representing a path to a class, instantiates that class.""" parts = class_string.split('.') module = ".".join(parts[:-1]) m = __import__(module) for comp in parts[1:]: m = getattr(m, comp) return m def get_class_string(obj): if isinstance(obj, string_types): return obj mod = obj.__module__ cls = getattr(obj, '__name__', obj.__class__.__name__) return '.'.join((mod, cls))
the-stack_0_25541
"""Download Files to your local server Syntax: .download .download url | file.name to download files from a Public Link""" import asyncio import math import os import time from datetime import datetime import aiohttp from pySmartDL import SmartDL from telethon import events from telethon.tl.types import DocumentAttributeVideo from uniborg.util import admin_cmd, humanbytes, progress, time_formatter from sample_config import Config @borg.on(admin_cmd(pattern="download ?(.*)", allow_sudo=True)) async def _(event): if event.fwd_from: return mone = await event.edit("Processing ...") input_str = event.pattern_match.group(1) if not os.path.isdir(Config.TMP_DOWNLOAD_DIRECTORY): os.makedirs(Config.TMP_DOWNLOAD_DIRECTORY) if event.reply_to_msg_id: start = datetime.now() reply_message = await event.get_reply_message() try: c_time = time.time() downloaded_file_name = await borg.download_media( reply_message, Config.TMP_DOWNLOAD_DIRECTORY, progress_callback=lambda d, t: asyncio.get_event_loop().create_task( progress(d, t, mone, c_time, "trying to download") ) ) except Exception as e: # pylint:disable=C0103,W0703 await mone.edit(str(e)) else: end = datetime.now() ms = (end - start).seconds await mone.edit("Downloaded to `{}` in {} seconds.".format(downloaded_file_name, ms)) elif input_str: start = datetime.now() url = input_str file_name = os.path.basename(url) to_download_directory = Config.TMP_DOWNLOAD_DIRECTORY if "|" in input_str: url, file_name = input_str.split("|") url = url.strip() file_name = file_name.strip() downloaded_file_name = os.path.join(to_download_directory, file_name) downloader = SmartDL(url, downloaded_file_name, progress_bar=False) downloader.start(blocking=False) display_message = "" c_time = time.time() while not downloader.isFinished(): total_length = downloader.filesize if downloader.filesize else None downloaded = downloader.get_dl_size() now = time.time() diff = now - c_time percentage = downloader.get_progress() * 100 speed = downloader.get_speed() elapsed_time = round(diff) * 1000 progress_str = "[{0}{1}]\nProgress: {2}%".format( ''.join(["█" for i in range(math.floor(percentage / 5))]), ''.join(["░" for i in range(20 - math.floor(percentage / 5))]), round(percentage, 2)) estimated_total_time = downloader.get_eta(human=True) try: current_message = f"trying to download\n" current_message += f"URL: {url}\n" current_message += f"File Name: {file_name}\n" current_message += f"{progress_str}\n" current_message += f"{humanbytes(downloaded)} of {humanbytes(total_length)}\n" current_message += f"ETA: {estimated_total_time}" if round(diff % 10.00) == 0 and current_message != display_message: await mone.edit(current_message) display_message = current_message except Exception as e: logger.info(str(e)) end = datetime.now() ms = (end - start).seconds if os.path.exists(downloaded_file_name): await mone.edit("Downloaded to `{}` in {} seconds.".format(downloaded_file_name, ms)) else: await mone.edit("Incorrect URL\n {}".format(input_str)) else: await mone.edit("Reply to a message to download to my local server.") async def download_coroutine(session, url, file_name, event, start): CHUNK_SIZE = 2341 downloaded = 0 display_message = "" async with session.get(url) as response: total_length = int(response.headers["Content-Length"]) content_type = response.headers["Content-Type"] if "text" in content_type and total_length < 500: return await response.release() await event.edit("""Initiating Download URL: {} File Name: {} File Size: {}""".format(url, file_name, humanbytes(total_length))) with open(file_name, "wb") as f_handle: while True: chunk = await response.content.read(CHUNK_SIZE) if not chunk: break f_handle.write(chunk) downloaded += CHUNK_SIZE now = time.time() diff = now - start if round(diff % 5.00) == 0 or downloaded == total_length: percentage = downloaded * 100 / total_length speed = downloaded / diff elapsed_time = round(diff) * 1000 time_to_completion = round( (total_length - downloaded) / speed) * 1000 estimated_total_time = elapsed_time + time_to_completion try: current_message = """**Download Status** URL: {} File Name: {} File Size: {} Downloaded: {} ETA: {}""".format( url, file_name, humanbytes(total_length), humanbytes(downloaded), time_formatter(estimated_total_time) ) if current_message != display_message: await event.edit(current_message) display_message = current_message except Exception as e: logger.info(str(e)) pass return await response.release()
the-stack_0_25542
from random import randint computador = randint(0, 10) print('Sou seu computador.. acabei de pensar em um número entre 0 e 10.') print('será que você consegue adivinhar qual foi? ') acertou = False palpites = 0 while not acertou: jogador = int(input('Qual Seu palpite? ')) palpites += 1 if jogador == computador: acertou = True else: if jogador < computador: print('Mais... Tente mais uma vez.') elif jogador > computador: print('Menos... Tente mais uma vez.') print('Acertou com {} tentativas. Parabéns'.format(palpites))
the-stack_0_25545
import json __author__ = 'Joe' def export(field_desc): """ :param field_desc: :type field_desc: bitcoder.bitcoder.Encoded :return: """ output = {} for name, field in field_desc.fields().iteritems(): output[name] = { 'mask': 1**field.length << field.start, 'start': field.start, } output = {field_desc.__class__.__name__: output} return json.dumps(output, sort_keys=True, indent=2)
the-stack_0_25550
#!/usr/bin/env python # Copyright (c) 2011 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys assert len(sys.argv) == 4, sys.argv (in_file, c_file, h_file) = sys.argv[1:] def write_file(filename, contents): open(filename, 'wb').write(contents) write_file(c_file, open(in_file, 'rb').read()) write_file(h_file, '#define NAME "%s"\n' % in_file) sys.exit(0)
the-stack_0_25551
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """preprocess""" import os import argparse from PIL import Image import numpy as np parser = argparse.ArgumentParser(description="Preporcess") parser.add_argument("--dataset_path", type=str, default="/cache/data", help="dataset path.") parser.add_argument("--dataset_type", type=str, default="Set5", help="dataset type.") parser.add_argument("--save_path", type=str, default="/cache/data", help="save lr dataset path.") parser.add_argument("--scale", type=int, default="2", help="scale.") args = parser.parse_args() MAX_HR_SIZE = 2040 def padding(img, target_shape): h, w = target_shape[0], target_shape[1] img_h, img_w, _ = img.shape dh, dw = h - img_h, w - img_w if dh < 0 or dw < 0: raise RuntimeError(f"target_shape is bigger than img.shape, {target_shape} > {img.shape}") if dh != 0 or dw != 0: img = np.pad(img, ((0, int(dh)), (0, int(dw)), (0, 0)), "constant") return img def run_pre_process(dataset_path, dataset_type, scale, save_path): """run pre process""" lr_path = os.path.join(dataset_path, dataset_type, "LR_bicubic/X" + str(scale)) files = os.listdir(lr_path) for file in files: lr = Image.open(os.path.join(lr_path, file)) lr = lr.convert('RGB') lr = np.array(lr) target_shape = [MAX_HR_SIZE / scale, MAX_HR_SIZE / scale] img = padding(lr, target_shape) save_lr_path = os.path.join(save_path, file) os.makedirs(save_path, exist_ok=True) Image.fromarray(img).save(save_lr_path) if __name__ == "__main__": run_pre_process(args.dataset_path, args.dataset_type, args.scale, args.save_path)
the-stack_0_25552
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2014-2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import logging import os import sys from six import iteritems import psutil from prometheus_client import Gauge from twisted.application import service from twisted.internet import defer, reactor from twisted.web.resource import EncodingResourceWrapper, NoResource from twisted.web.server import GzipEncoderFactory from twisted.web.static import File import synapse import synapse.config.logger from synapse import events from synapse.api.urls import ( CONTENT_REPO_PREFIX, FEDERATION_PREFIX, LEGACY_MEDIA_PREFIX, MEDIA_PREFIX, SERVER_KEY_V2_PREFIX, STATIC_PREFIX, WEB_CLIENT_PREFIX, ) from synapse.app import _base from synapse.app._base import listen_ssl, listen_tcp, quit_with_error from synapse.config._base import ConfigError from synapse.config.homeserver import HomeServerConfig from synapse.crypto import context_factory from synapse.federation.transport.server import TransportLayerServer from synapse.http.additional_resource import AdditionalResource from synapse.http.server import RootRedirect from synapse.http.site import SynapseSite from synapse.metrics import RegistryProxy from synapse.metrics.background_process_metrics import run_as_background_process from synapse.metrics.resource import METRICS_PREFIX, MetricsResource from synapse.module_api import ModuleApi from synapse.python_dependencies import check_requirements from synapse.replication.http import REPLICATION_PREFIX, ReplicationRestResource from synapse.replication.tcp.resource import ReplicationStreamProtocolFactory from synapse.rest import ClientRestResource from synapse.rest.key.v2 import KeyApiV2Resource from synapse.rest.media.v0.content_repository import ContentRepoResource from synapse.server import HomeServer from synapse.storage import DataStore, are_all_users_on_domain from synapse.storage.engines import IncorrectDatabaseSetup, create_engine from synapse.storage.prepare_database import UpgradeDatabaseException, prepare_database from synapse.util.caches import CACHE_SIZE_FACTOR from synapse.util.httpresourcetree import create_resource_tree from synapse.util.logcontext import LoggingContext from synapse.util.manhole import manhole from synapse.util.module_loader import load_module from synapse.util.rlimit import change_resource_limit from synapse.util.versionstring import get_version_string logger = logging.getLogger("synapse.app.homeserver") def gz_wrap(r): return EncodingResourceWrapper(r, [GzipEncoderFactory()]) class SynapseHomeServer(HomeServer): DATASTORE_CLASS = DataStore def _listener_http(self, config, listener_config): port = listener_config["port"] bind_addresses = listener_config["bind_addresses"] tls = listener_config.get("tls", False) site_tag = listener_config.get("tag", port) if tls and config.no_tls: return resources = {} for res in listener_config["resources"]: for name in res["names"]: resources.update(self._configure_named_resource( name, res.get("compress", False), )) additional_resources = listener_config.get("additional_resources", {}) logger.debug("Configuring additional resources: %r", additional_resources) module_api = ModuleApi(self, self.get_auth_handler()) for path, resmodule in additional_resources.items(): handler_cls, config = load_module(resmodule) handler = handler_cls(config, module_api) resources[path] = AdditionalResource(self, handler.handle_request) #if WEB_CLIENT_PREFIX in resources: # root_resource = RootRedirect(WEB_CLIENT_PREFIX) #else: # root_resource = NoResource() root_resource = NoResource() root_resource = create_resource_tree(resources, root_resource) if tls: listen_ssl( bind_addresses, port, SynapseSite( "synapse.access.https.%s" % (site_tag,), site_tag, listener_config, root_resource, self.version_string, ), self.tls_server_context_factory, ) else: listen_tcp( bind_addresses, port, SynapseSite( "synapse.access.http.%s" % (site_tag,), site_tag, listener_config, root_resource, self.version_string, ) ) logger.info("Synapse now listening on port %d", port) def _configure_named_resource(self, name, compress=False): """Build a resource map for a named resource Args: name (str): named resource: one of "client", "federation", etc compress (bool): whether to enable gzip compression for this resource Returns: dict[str, Resource]: map from path to HTTP resource """ resources = {} if name == "client": client_resource = ClientRestResource(self) if compress: client_resource = gz_wrap(client_resource) resources.update({ "/_matrix/client/api/v1": client_resource, "/_matrix/client/r0": client_resource, "/_matrix/client/unstable": client_resource, "/_matrix/client/v2_alpha": client_resource, "/_matrix/client/versions": client_resource, }) if name == "consent": from synapse.rest.consent.consent_resource import ConsentResource consent_resource = ConsentResource(self) if compress: consent_resource = gz_wrap(consent_resource) resources.update({ "/_matrix/consent": consent_resource, }) if name == "federation": resources.update({ FEDERATION_PREFIX: TransportLayerServer(self), }) if name in ["static", "client"]: resources.update({ STATIC_PREFIX: File( os.path.join(os.path.dirname(synapse.__file__), "static") ), }) if name in ["media", "federation", "client"]: if self.get_config().enable_media_repo: media_repo = self.get_media_repository_resource() resources.update({ MEDIA_PREFIX: media_repo, LEGACY_MEDIA_PREFIX: media_repo, CONTENT_REPO_PREFIX: ContentRepoResource( self, self.config.uploads_path ), }) elif name == "media": raise ConfigError( "'media' resource conflicts with enable_media_repo=False", ) if name in ["keys", "federation"]: resources[SERVER_KEY_V2_PREFIX] = KeyApiV2Resource(self) if name == "metrics" and self.get_config().enable_metrics: resources[METRICS_PREFIX] = MetricsResource(RegistryProxy) if name == "replication": resources[REPLICATION_PREFIX] = ReplicationRestResource(self) return resources def start_listening(self): config = self.get_config() for listener in config.listeners: if listener["type"] == "http": self._listener_http(config, listener) elif listener["type"] == "manhole": listen_tcp( listener["bind_addresses"], listener["port"], manhole( username="matrix", password="rabbithole", globals={"hs": self}, ) ) elif listener["type"] == "replication": bind_addresses = listener["bind_addresses"] for address in bind_addresses: factory = ReplicationStreamProtocolFactory(self) server_listener = reactor.listenTCP( listener["port"], factory, interface=address ) reactor.addSystemEventTrigger( "before", "shutdown", server_listener.stopListening, ) elif listener["type"] == "metrics": if not self.get_config().enable_metrics: logger.warn(("Metrics listener configured, but " "enable_metrics is not True!")) else: _base.listen_metrics(listener["bind_addresses"], listener["port"]) else: logger.warn("Unrecognized listener type: %s", listener["type"]) def run_startup_checks(self, db_conn, database_engine): all_users_native = are_all_users_on_domain( db_conn.cursor(), database_engine, self.hostname ) if not all_users_native: quit_with_error( "Found users in database not native to %s!\n" "You cannot changed a synapse server_name after it's been configured" % (self.hostname,) ) try: database_engine.check_database(db_conn.cursor()) except IncorrectDatabaseSetup as e: quit_with_error(str(e)) # Gauges to expose monthly active user control metrics current_mau_gauge = Gauge("synapse_admin_mau:current", "Current MAU") max_mau_gauge = Gauge("synapse_admin_mau:max", "MAU Limit") registered_reserved_users_mau_gauge = Gauge( "synapse_admin_mau:registered_reserved_users", "Registered users with reserved threepids" ) def setup(config_options): """ Args: config_options_options: The options passed to Synapse. Usually `sys.argv[1:]`. Returns: HomeServer """ try: config = HomeServerConfig.load_or_generate_config( "Synapse Homeserver", config_options, ) except ConfigError as e: sys.stderr.write("\n" + str(e) + "\n") sys.exit(1) if not config: # If a config isn't returned, and an exception isn't raised, we're just # generating config files and shouldn't try to continue. sys.exit(0) synapse.config.logger.setup_logging(config, use_worker_options=False) # check any extra requirements we have now we have a config check_requirements(config) events.USE_FROZEN_DICTS = config.use_frozen_dicts tls_server_context_factory = context_factory.ServerContextFactory(config) tls_client_options_factory = context_factory.ClientTLSOptionsFactory(config) database_engine = create_engine(config.database_config) config.database_config["args"]["cp_openfun"] = database_engine.on_new_connection hs = SynapseHomeServer( config.server_name, db_config=config.database_config, tls_server_context_factory=tls_server_context_factory, tls_client_options_factory=tls_client_options_factory, config=config, version_string="Synapse/" + get_version_string(synapse), database_engine=database_engine, ) logger.info("Preparing database: %s...", config.database_config['name']) try: with hs.get_db_conn(run_new_connection=False) as db_conn: prepare_database(db_conn, database_engine, config=config) database_engine.on_new_connection(db_conn) hs.run_startup_checks(db_conn, database_engine) db_conn.commit() except UpgradeDatabaseException: sys.stderr.write( "\nFailed to upgrade database.\n" "Have you checked for version specific instructions in" " UPGRADES.rst?\n" ) sys.exit(1) logger.info("Database prepared in %s.", config.database_config['name']) hs.setup() hs.start_listening() def start(): hs.get_pusherpool().start() hs.get_datastore().start_profiling() hs.get_datastore().start_doing_background_updates() reactor.callWhenRunning(start) return hs class SynapseService(service.Service): """A twisted Service class that will start synapse. Used to run synapse via twistd and a .tac. """ def __init__(self, config): self.config = config def startService(self): hs = setup(self.config) change_resource_limit(hs.config.soft_file_limit) if hs.config.gc_thresholds: gc.set_threshold(*hs.config.gc_thresholds) def stopService(self): return self._port.stopListening() def run(hs): PROFILE_SYNAPSE = False if PROFILE_SYNAPSE: def profile(func): from cProfile import Profile from threading import current_thread def profiled(*args, **kargs): profile = Profile() profile.enable() func(*args, **kargs) profile.disable() ident = current_thread().ident profile.dump_stats("/tmp/%s.%s.%i.pstat" % ( hs.hostname, func.__name__, ident )) return profiled from twisted.python.threadpool import ThreadPool ThreadPool._worker = profile(ThreadPool._worker) reactor.run = profile(reactor.run) clock = hs.get_clock() start_time = clock.time() stats = {} # Contains the list of processes we will be monitoring # currently either 0 or 1 stats_process = [] def start_phone_stats_home(): return run_as_background_process("phone_stats_home", phone_stats_home) @defer.inlineCallbacks def phone_stats_home(): logger.info("Gathering stats for reporting") now = int(hs.get_clock().time()) uptime = int(now - start_time) if uptime < 0: uptime = 0 stats["homeserver"] = hs.config.server_name stats["timestamp"] = now stats["uptime_seconds"] = uptime version = sys.version_info stats["python_version"] = "{}.{}.{}".format( version.major, version.minor, version.micro ) stats["total_users"] = yield hs.get_datastore().count_all_users() total_nonbridged_users = yield hs.get_datastore().count_nonbridged_users() stats["total_nonbridged_users"] = total_nonbridged_users daily_user_type_results = yield hs.get_datastore().count_daily_user_type() for name, count in iteritems(daily_user_type_results): stats["daily_user_type_" + name] = count room_count = yield hs.get_datastore().get_room_count() stats["total_room_count"] = room_count stats["daily_active_users"] = yield hs.get_datastore().count_daily_users() stats["daily_active_rooms"] = yield hs.get_datastore().count_daily_active_rooms() stats["daily_messages"] = yield hs.get_datastore().count_daily_messages() r30_results = yield hs.get_datastore().count_r30_users() for name, count in iteritems(r30_results): stats["r30_users_" + name] = count daily_sent_messages = yield hs.get_datastore().count_daily_sent_messages() stats["daily_sent_messages"] = daily_sent_messages stats["cache_factor"] = CACHE_SIZE_FACTOR stats["event_cache_size"] = hs.config.event_cache_size if len(stats_process) > 0: stats["memory_rss"] = 0 stats["cpu_average"] = 0 for process in stats_process: stats["memory_rss"] += process.memory_info().rss stats["cpu_average"] += int(process.cpu_percent(interval=None)) logger.info("Reporting stats to matrix.org: %s" % (stats,)) try: yield hs.get_simple_http_client().put_json( "https://matrix.org/report-usage-stats/push", stats ) except Exception as e: logger.warn("Error reporting stats: %s", e) def performance_stats_init(): try: process = psutil.Process() # Ensure we can fetch both, and make the initial request for cpu_percent # so the next request will use this as the initial point. process.memory_info().rss process.cpu_percent(interval=None) logger.info("report_stats can use psutil") stats_process.append(process) except (AttributeError): logger.warning( "Unable to read memory/cpu stats. Disabling reporting." ) def generate_user_daily_visit_stats(): return run_as_background_process( "generate_user_daily_visits", hs.get_datastore().generate_user_daily_visits, ) # Rather than update on per session basis, batch up the requests. # If you increase the loop period, the accuracy of user_daily_visits # table will decrease clock.looping_call(generate_user_daily_visit_stats, 5 * 60 * 1000) # monthly active user limiting functionality def reap_monthly_active_users(): return run_as_background_process( "reap_monthly_active_users", hs.get_datastore().reap_monthly_active_users, ) clock.looping_call(reap_monthly_active_users, 1000 * 60 * 60) reap_monthly_active_users() @defer.inlineCallbacks def generate_monthly_active_users(): current_mau_count = 0 reserved_count = 0 store = hs.get_datastore() if hs.config.limit_usage_by_mau: current_mau_count = yield store.get_monthly_active_count() reserved_count = yield store.get_registered_reserved_users_count() current_mau_gauge.set(float(current_mau_count)) registered_reserved_users_mau_gauge.set(float(reserved_count)) max_mau_gauge.set(float(hs.config.max_mau_value)) def start_generate_monthly_active_users(): return run_as_background_process( "generate_monthly_active_users", generate_monthly_active_users, ) start_generate_monthly_active_users() if hs.config.limit_usage_by_mau: clock.looping_call(start_generate_monthly_active_users, 5 * 60 * 1000) # End of monthly active user settings if hs.config.report_stats: logger.info("Scheduling stats reporting for 3 hour intervals") clock.looping_call(start_phone_stats_home, 3 * 60 * 60 * 1000) # We need to defer this init for the cases that we daemonize # otherwise the process ID we get is that of the non-daemon process clock.call_later(0, performance_stats_init) # We wait 5 minutes to send the first set of stats as the server can # be quite busy the first few minutes clock.call_later(5 * 60, start_phone_stats_home) if hs.config.daemonize and hs.config.print_pidfile: print(hs.config.pid_file) _base.start_reactor( "synapse-homeserver", hs.config.soft_file_limit, hs.config.gc_thresholds, hs.config.pid_file, hs.config.daemonize, hs.config.cpu_affinity, logger, ) def main(): with LoggingContext("main"): # check base requirements check_requirements() hs = setup(sys.argv[1:]) run(hs) if __name__ == '__main__': main()
the-stack_0_25556
import cv2 from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog import json import torch import pycocotools.mask as mask_util import numpy as np from detectron2.structures import Instances, Boxes def json_to_d2(pred_dict, device): """ Client side helper function to deserialize the JSON msg back to d2 outputs """ # pred_dict = json.loads(predictions) for k, v in pred_dict.items(): if k=="pred_boxes": boxes_to_tensor = torch.FloatTensor(v).to(device) pred_dict[k] = Boxes(boxes_to_tensor) if k=="scores": pred_dict[k] = torch.Tensor(v).to(device) if k=="pred_classes": pred_dict[k] = torch.Tensor(v).to(device).to(torch.uint8) height, width = pred_dict['image_size'] del pred_dict['image_size'] inst = Instances((height, width,), **pred_dict) return {'instances':inst} def d2_to_json(predictions): """ Server side helper function to serialize the d2 detections into JSON for API passing """ instances = predictions["instances"] output = {} # Iterate over fields in Instances for k,v in instances.get_fields().items(): if k in ["scores", "pred_classes"]: output[k] = v.tolist() if k=="pred_boxes": output[k] = v.tensor.tolist() output['image_size'] = instances.image_size output = json.dumps(output) return output
the-stack_0_25557
# Copyright (c) 2016-2018 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import opentracing.tracer from jaeger_client import Config, ConstSampler, ProbabilisticSampler, RateLimitingSampler from jaeger_client import constants from jaeger_client.config import DEFAULT_THROTTLER_PORT from jaeger_client.metrics import MetricsFactory from jaeger_client.reporter import NullReporter from tests.test_utils import MockSampler class ConfigTests(unittest.TestCase): def test_enabled(self): c = Config({'enabled': True}, service_name='x') assert c.enabled c = Config({'enabled': False}, service_name='x') assert not c.enabled def test_reporter_batch_size(self): c = Config({'reporter_batch_size': 12345}, service_name='x') assert c.reporter_batch_size == 12345 c = Config({}, service_name='x') assert c.reporter_batch_size == 10 def test_tags(self): os.environ['JAEGER_TAGS'] = 'a=b,c=d' c = Config({'tags': {'e': 'f'}}, service_name='x') assert c.tags == {'a': 'b', 'c': 'd', 'e': 'f'} c.create_tracer(NullReporter(), ConstSampler(True)) def test_no_sampler(self): c = Config({}, service_name='x') assert c.sampler is None def test_const_sampler(self): c = Config({'sampler': {'type': 'const', 'param': True}}, service_name='x') assert type(c.sampler) is ConstSampler assert c.sampler.decision c = Config({'sampler': {'type': 'const', 'param': False}}, service_name='x') assert type(c.sampler) is ConstSampler assert not c.sampler.decision def test_probabilistic_sampler(self): with self.assertRaises(Exception): cfg = {'sampler': {'type': 'probabilistic', 'param': 'xx'}} Config(cfg, service_name='x').sampler c = Config({'sampler': {'type': 'probabilistic', 'param': 0.5}}, service_name='x') assert type(c.sampler) is ProbabilisticSampler assert c.sampler.rate == 0.5 def test_rate_limiting_sampler(self): with self.assertRaises(Exception): cfg = {'sampler': {'type': 'rate_limiting', 'param': 'xx'}} Config(cfg, service_name='x').sampler c = Config({'sampler': {'type': 'rate_limiting', 'param': 1234}}, service_name='x') assert type(c.sampler) is RateLimitingSampler assert c.sampler.traces_per_second == 1234 def test_bad_sampler(self): c = Config({'sampler': {'type': 'bad-sampler'}}, service_name='x') with self.assertRaises(ValueError): c.sampler.is_sampled(0) def test_object_sampler_sampler(self): sampler = MockSampler() c = Config({'sampler': sampler}, service_name='x') assert c.sampler is sampler def test_agent_reporting_host(self): c = Config({}, service_name='x') assert c.local_agent_reporting_host == 'localhost' c = Config({'local_agent': {'reporting_host': 'jaeger.local'}}, service_name='x') assert c.local_agent_reporting_host == 'jaeger.local' os.environ['JAEGER_AGENT_HOST'] = 'jaeger-env.local' c = Config({}, service_name='x') assert c.local_agent_reporting_host == 'jaeger-env.local' def test_max_tag_value_length(self): c = Config({}, service_name='x') assert c.max_tag_value_length == constants.MAX_TAG_VALUE_LENGTH c = Config({'max_tag_value_length': 333}, service_name='x') assert c.max_tag_value_length == 333 t = c.create_tracer(NullReporter(), ConstSampler(True)) assert t.max_tag_value_length == 333 def test_max_traceback_length(self): c = Config({}, service_name='x') assert c.max_traceback_length == constants.MAX_TRACEBACK_LENGTH c = Config({'max_traceback_length': 333}, service_name='x') assert c.max_traceback_length == 333 t = c.create_tracer(NullReporter(), ConstSampler(True)) assert t.max_traceback_length == 333 def test_propagation(self): c = Config({}, service_name='x') assert c.propagation == {} c = Config({'propagation': 'b3'}, service_name='x') assert len(c.propagation) == 1 def test_throttler(self): c = Config({ 'throttler': {} }, service_name='x') assert not c.throttler_group() assert c.throttler_port == DEFAULT_THROTTLER_PORT assert c.throttler_refresh_interval == constants.DEFAULT_THROTTLER_REFRESH_INTERVAL c = Config({ 'throttler': { 'port': '1234', 'refresh_interval': '10' } }, service_name='x') assert c.throttler_group() assert c.throttler_port == 1234 assert c.throttler_refresh_interval == 10 c = Config({}, service_name='x') assert c.throttler_group() is None assert c.throttler_port is None assert c.throttler_refresh_interval is None def test_for_unexpected_config_entries(self): with self.assertRaises(Exception): Config({'unexpected': 'value'}, validate=True) def test_reporter_queue_size_valid(self): config = Config({'reporter_queue_size': 100}, service_name='x', validate=True) assert config.reporter_queue_size == 100 def test_missing_service_name(self): with self.assertRaises(ValueError): Config({}) def test_disable_metrics(self): config = Config({'metrics': False}, service_name='x') assert isinstance(config._metrics_factory, MetricsFactory) def test_initialize_tracer(self): c = Config({}, service_name='x') tracer = c.initialize_tracer() assert opentracing.global_tracer() == tracer def test_initialize_tracer_twice(self): c = Config({}, service_name='x') tracer = c.initialize_tracer() tracer = c.initialize_tracer() assert tracer is None def test_default_local_agent_reporting_port(self): c = Config({}, service_name='x') assert c.local_agent_reporting_port == 6831 assert c.local_agent_enabled is True def test_generate_128bit_trace_id(self): c = Config({}, service_name='x') assert c.generate_128bit_trace_id is False c = Config({'generate_128bit_trace_id': True}, service_name='x') assert c.generate_128bit_trace_id is True os.environ['JAEGER_TRACEID_128BIT'] = 'true' c = Config({'generate_128bit_trace_id': False}, service_name='x') assert c.generate_128bit_trace_id is False c = Config({}, service_name='x') assert c.generate_128bit_trace_id is True os.environ.pop('JAEGER_TRACEID_128BIT') assert os.getenv('JAEGER_TRACEID_128BIT', None) is None
the-stack_0_25558
#!/usr/bin/env python3 import sys def set_path(path: str): try: sys.path.index(path) except ValueError: sys.path.insert(0, path) from matplotlib.backends.backend_agg import FigureCanvasAgg from utils import render, datautils, arguments, pfnet_loss from gibson2.utils.assets_utils import get_scene_path from gibson2.envs.igibson_env import iGibsonEnv import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import pybullet as p import numpy as np import cv2 import gym import os # set programatically the path to 'pfnet' directory (alternately can also set PYTHONPATH) set_path('/media/suresh/research/awesome-robotics/active-slam/catkin_ws/src/sim-environment/src/tensorflow/pfnet') # set_path('/home/guttikon/awesome_robotics/sim-environment/src/tensorflow/pfnet') import pfnet class LocalizeGibsonEnv(iGibsonEnv): def __init__(self, params): self.params = params # create pf model self.pfnet_model = pfnet.pfnet_model(self.params) # load model from checkpoint file if self.params.pfnet_load: self.pfnet_model.load_weights(self.params.pfnet_load) print("=====> Loaded pf model from " + params.pfnet_load) super(LocalizeGibsonEnv, self).__init__(config_file=self.params.config_filename, scene_id=None, mode=self.params.mode, action_timestep=1/10.0, physics_timestep=1/240.0, device_idx=self.params.gpu_num, render_to_tensor=False, automatic_reset=False) output_size = 18 + np.prod((56, 56, 3)) # override self.observation_space = gym.spaces.Box( low=-np.inf, high=np.inf, shape=(output_size, ), dtype=np.float32) self.task.termination_conditions[0].max_collisions_allowed = self.params.max_step self.task.termination_conditions[1].max_step = self.params.max_step print("=====> iGibsonEnv initialized") if self.params.use_plot: # code related to displaying results in matplotlib self.fig = plt.figure(figsize=(7, 7)) self.plt_ax = None self.env_plts = { 'map_plt': None, 'robot_gt_plt': { 'position_plt': None, 'heading_plt': None, }, 'robot_est_plt': { 'position_plt': None, 'heading_plt': None, 'particles_plt': None, }, 'step_txt_plt': None, } #HACK FigureCanvasAgg and ion is not working together if self.params.store_plot: self.canvas = FigureCanvasAgg(self.fig) else: plt.ion() plt.show() def load_miscellaneous_variables(self): """ Load miscellaneous variables for book keeping """ super(LocalizeGibsonEnv, self).load_miscellaneous_variables() self.obstacle_map = None self.pfnet_state = None self.floor_map = None self.robot_obs = None self.robot_pose = None self.plt_images = [] def reset_variables(self): """ Reset bookkeeping variables for the next new episode """ super(LocalizeGibsonEnv, self).reset_variables() self.obstacle_map = None self.pfnet_state = None self.floor_map = None self.robot_obs = None self.robot_pose = None self.plt_images = [] def step(self, action): trajlen = 1 batch_size = self.params.batch_size num_particles = self.params.num_particles old_obs = self.robot_obs floor_map = self.floor_map[0] old_pfnet_state = self.pfnet_state old_pose = self.robot_pose[0].numpy() # perform env step state, reward, done, info = super(LocalizeGibsonEnv, self).step(action) # process new env observation rgb = datautils.process_raw_image(state['rgb']) robot_state = self.robots[0].calc_state() custom_state = np.concatenate([robot_state, np.reshape(rgb, [-1])], 0) # process new robot state new_pose = self.get_robot_pose(robot_state, floor_map.shape) # calculate actual odometry b/w old pose and new pose assert list(old_pose.shape) == [3] and list(new_pose.shape) == [3] odom = datautils.calc_odometry(old_pose, new_pose) new_obs = tf.expand_dims( tf.convert_to_tensor(rgb, dtype=tf.float32) , axis=0) odom = tf.expand_dims( tf.convert_to_tensor(odom, dtype=tf.float32) , axis=0) new_pose = tf.expand_dims( tf.convert_to_tensor(new_pose, dtype=tf.float32) , axis=0) odometry = tf.expand_dims(odom, axis=1) observation = tf.expand_dims(old_obs, axis=1) # sanity check assert list(odometry.shape) == [batch_size, trajlen, 3] assert list(observation.shape) == [batch_size, trajlen, 56, 56, 3] assert list(old_pfnet_state[0].shape) == [batch_size, num_particles, 3] assert list(old_pfnet_state[1].shape) == [batch_size, num_particles] input = [observation, odometry] model_input = (input, old_pfnet_state) # if stateful: reset RNN s.t. initial_state is set to initial particles and weights # if non-stateful: pass the state explicity every step if self.params.stateful: self.pfnet_model.layers[-1].reset_states(old_pfnet_state) # RNN layer # forward pass output, new_pfnet_state = self.pfnet_model(model_input, training=False) # compute loss particles, particle_weights = output # before transition update true_pose = tf.expand_dims(self.robot_pose, axis=1) assert list(true_pose.shape) == [batch_size, trajlen, 3] assert list(particles.shape) == [batch_size, trajlen, num_particles, 3] assert list(particle_weights.shape) == [batch_size, trajlen, num_particles] loss_dict = pfnet_loss.compute_loss(particles, particle_weights, true_pose, self.params.map_pixel_in_meters) reward = reward - tf.squeeze(loss_dict['coords']).numpy() # self.pfnet_state = new_pfnet_state self.robot_pose = new_pose self.robot_obs = new_obs return custom_state, reward, done, info def reset(self): batch_size = self.params.batch_size map_size = self.params.global_map_size num_particles = self.params.num_particles particles_cov = self.params.init_particles_cov particles_distr = self.params.init_particles_distr if self.params.use_plot: #clear subplots plt.clf() self.plt_ax = self.fig.add_subplot(111) self.env_plts = { 'map_plt': None, 'robot_gt_plt': { 'position_plt': None, 'heading_plt': None, }, 'robot_est_plt': { 'position_plt': None, 'heading_plt': None, 'particles_plt': None, }, 'step_txt_plt': None, } self.store_results() # perform env reset state = super(LocalizeGibsonEnv, self).reset() # process new env observation rgb = datautils.process_raw_image(state['rgb']) robot_state = self.robots[0].calc_state() custom_state = np.concatenate([robot_state, np.reshape(rgb, [-1])], 0) # process new env map floor_map = self.get_floor_map() obstacle_map = self.get_obstacle_map() # process new robot state true_pose = self.get_robot_pose(robot_state, floor_map.shape) obs = tf.expand_dims( tf.convert_to_tensor(rgb, dtype=tf.float32) , axis=0) true_pose = tf.expand_dims( tf.convert_to_tensor(true_pose, dtype=tf.float32) , axis=0) floor_map = tf.expand_dims( tf.convert_to_tensor(floor_map, dtype=tf.float32) , axis=0) obstacle_map = tf.expand_dims( tf.convert_to_tensor(obstacle_map, dtype=tf.float32) , axis=0) init_particles = tf.convert_to_tensor( self.get_random_particles( num_particles, particles_distr, true_pose.numpy(), floor_map, particles_cov) , dtype=tf.float32) init_particle_weights = tf.constant( np.log(1.0/float(num_particles)), shape=(batch_size, num_particles), dtype=tf.float32) # sanity check assert list(true_pose.shape) == [batch_size, 3] assert list(obs.shape) == [batch_size, 56, 56, 3] assert list(init_particles.shape) == [batch_size, num_particles, 3] assert list(init_particle_weights.shape) == [batch_size, num_particles] assert list(floor_map.shape) == [batch_size, map_size[0], map_size[1], map_size[2]] assert list(obstacle_map.shape) == [batch_size, map_size[0], map_size[1], map_size[2]] self.pfnet_state = [init_particles, init_particle_weights, obstacle_map] self.obstacle_map = obstacle_map self.floor_map = floor_map self.robot_pose = true_pose self.robot_obs = obs return custom_state def get_robot_pose(self, robot_state, floor_map_shape): robot_pos = robot_state[0:3] # [x, y, z] robot_orn = robot_state[3:6] # [r, p, y] # transform from co-ordinate space to pixel space robot_pos_xy = datautils.transform_pose(robot_pos[:2], floor_map_shape, self.scene.trav_map_resolution**2) # [x, y] robot_pose = np.array([robot_pos_xy[0], robot_pos_xy[1], robot_orn[2]]) # [x, y, theta] return robot_pose def get_est_pose(self, particles, lin_weights): batch_size = self.params.batch_size num_particles = self.params.num_particles assert list(particles.shape) == [batch_size, num_particles, 3] assert list(lin_weights.shape) == [batch_size, num_particles] est_pose = tf.math.reduce_sum(tf.math.multiply( particles[:, :, :], lin_weights[:, :, None] ), axis=1) assert list(est_pose.shape) == [batch_size, 3] # normalize between [-pi, +pi] part_x, part_y, part_th = tf.unstack(est_pose, axis=-1, num=3) # (k, 3) part_th = tf.math.floormod(part_th + np.pi, 2*np.pi) - np.pi est_pose = tf.stack([part_x, part_y, part_th], axis=-1) return est_pose def get_obstacle_map(self): """ Get the scene obstacle map """ obstacle_map = np.array(Image.open( os.path.join(get_scene_path(self.config.get('scene_id')), f'floor_{self.task.floor_num}.png') )) # process image for training obstacle_map = datautils.process_floor_map(obstacle_map) return obstacle_map def get_floor_map(self): """ Get the scene floor map (traversability map + obstacle map) :return ndarray: floor map of current scene (H, W, 1) """ obstacle_map = np.array(Image.open( os.path.join(get_scene_path(self.config.get('scene_id')), f'floor_{self.task.floor_num}.png') )) trav_map = np.array(Image.open( os.path.join(get_scene_path(self.config.get('scene_id')), f'floor_trav_{self.task.floor_num}.png') )) trav_map[obstacle_map == 0] = 0 trav_map_erosion=self.config.get('trav_map_erosion', 2) trav_map = cv2.erode(trav_map, np.ones((trav_map_erosion, trav_map_erosion))) trav_map[trav_map < 255] = 0 # process image for training floor_map = datautils.process_floor_map(trav_map) return floor_map def get_random_particles(self, num_particles, particles_distr, robot_pose, scene_map, particles_cov): """ Sample random particles based on the scene :param particles_distr: string type of distribution, possible value: [gaussian, uniform] :param robot_pose: ndarray indicating the robot pose ([batch_size], 3) in pixel space if None, random particle poses are sampled using unifrom distribution otherwise, sampled using gaussian distribution around the robot_pose :param particles_cov: for tracking Gaussian covariance matrix (3, 3) :param num_particles: integer indicating the number of random particles per batch :return ndarray: random particle poses (batch_size, num_particles, 3) in pixel space """ assert list(robot_pose.shape) == [1, 3] assert list(particles_cov.shape) == [3, 3] particles = [] batches = robot_pose.shape[0] if particles_distr == 'uniform': # iterate per batch_size for b_idx in range(batches): sample_i = 0 b_particles = [] # get bounding box for more efficient sampling # rmin, rmax, cmin, cmax = self.bounding_box(self.floor_map) rmin, rmax, cmin, cmax = self.bounding_box(scene_map, robot_pose[b_idx], lmt=100) while sample_i < num_particles: particle = np.random.uniform(low=(cmin, rmin, 0.0), high=(cmax, rmax, 2.0*np.pi), size=(3, )) # reject if mask is zero if not scene_map[int(np.rint(particle[1])), int(np.rint(particle[0]))]: continue b_particles.append(particle) sample_i = sample_i + 1 particles.append(b_particles) elif particles_distr == 'gaussian': # iterate per batch_size for b_idx in range(batches): # sample offset from the Gaussian center = np.random.multivariate_normal(mean=robot_pose[b_idx], cov=particles_cov) # sample particles from the Gaussian, centered around the offset particles.append(np.random.multivariate_normal(mean=center, cov=particles_cov, size=num_particles)) else: raise ValueError particles = np.stack(particles) # [batch_size, num_particles, 3] return particles def bounding_box(self, img, robot_pose=None, lmt=100): """ Bounding box of non-zeros in an array. :param img: numpy array :param robot_pose: numpy array of robot pose :param lmt: integer representing width/length of bounding box :return (int, int, int, int): bounding box indices top_row, bottom_row, left_column, right_column """ rows = np.any(img, axis=1) cols = np.any(img, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] if robot_pose is not None: # futher constraint the bounding box x, y, _ = robot_pose rmin = np.rint(y-lmt) if (y-lmt) > rmin else rmin rmax = np.rint(y+lmt) if (y+lmt) < rmax else rmax cmin = np.rint(x-lmt) if (x-lmt) > cmin else cmin cmax = np.rint(x+lmt) if (x+lmt) < cmax else cmax return rmin, rmax, cmin, cmax def render(self, mode='human'): """ Render plots """ # super(LocalizeGibsonEnv, self).render(mode) if self.params.use_plot: # environment map floor_map = self.floor_map[0].numpy() map_plt = self.env_plts['map_plt'] map_plt = render.draw_floor_map(floor_map, self.plt_ax, map_plt) self.env_plts['map_plt'] = map_plt # ground truth robot pose and heading color = '#7B241C' robot_pose = self.robot_pose[0].numpy() position_plt = self.env_plts['robot_gt_plt']['position_plt'] heading_plt = self.env_plts['robot_gt_plt']['heading_plt'] position_plt, heading_plt = render.draw_robot_pose( robot_pose, color, floor_map.shape, self.plt_ax, position_plt, heading_plt) self.env_plts['robot_gt_plt']['position_plt'] = position_plt self.env_plts['robot_gt_plt']['heading_plt'] = heading_plt particles, particle_weights, _ = self.pfnet_state # after transition update lin_weights = tf.nn.softmax(particle_weights, axis=-1) # estimated robot pose and heading color = '#515A5A' est_pose = self.get_est_pose(particles, lin_weights)[0].numpy() + 10 position_plt = self.env_plts['robot_est_plt']['position_plt'] heading_plt = self.env_plts['robot_est_plt']['heading_plt'] position_plt, heading_plt = render.draw_robot_pose( est_pose, color, floor_map.shape, self.plt_ax, position_plt, heading_plt) self.env_plts['robot_est_plt']['position_plt'] = position_plt self.env_plts['robot_est_plt']['heading_plt'] = heading_plt # particles color coded using weights particles_plt = self.env_plts['robot_est_plt']['particles_plt'] particles_plt = render.draw_particles_pose( particles[0].numpy(), lin_weights[0].numpy(), floor_map.shape, particles_plt) self.env_plts['robot_est_plt']['particles_plt'] = particles_plt # episode info step_txt_plt = self.env_plts['step_txt_plt'] step_txt_plt = render.draw_text( f'episode: {self.current_episode}, step: {self.current_step}', '#7B241C', self.plt_ax, step_txt_plt) self.env_plts['step_txt_plt'] = step_txt_plt self.plt_ax.legend([self.env_plts['robot_gt_plt']['position_plt'], self.env_plts['robot_est_plt']['position_plt']], ["gt_pose", "est_pose"], loc='upper left') if self.params.store_plot: self.canvas.draw() plt_img = np.array(self.canvas.renderer._renderer) plt_img = cv2.cvtColor(plt_img, cv2.COLOR_RGB2BGR) self.plt_images.append(plt_img) else: plt.draw() plt.pause(0.00000000001) def close(self): """ environment close() """ super(LocalizeGibsonEnv, self).close() if self.params.use_plot: if self.params.store_plot: self.store_results() else: # to prevent plot from closing after environment is closed plt.ioff() plt.show() print("=====> iGibsonEnv closed") def store_results(self): if len(self.plt_images) > 0: fps = 30 frameSize = (self.plt_images[0].shape[0], self.plt_images[0].shape[1]) out = cv2.VideoWriter( self.params.out_folder + f'episode_run_{self.current_episode}.avi', cv2.VideoWriter_fourcc(*'XVID'), fps, frameSize) for img in self.plt_images: out.write(img) out.release()
the-stack_0_25560
# Copyright 2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import contextlib import datetime from neutron_lib import context as neutron_context from neutron_lib.plugins import constants from neutron_lib.plugins import directory from neutron_lib.utils import helpers from oslo_config import cfg from oslo_log import log from oslo_utils import timeutils from ovs.stream import Stream from ovsdbapp.backend.ovs_idl import connection from ovsdbapp.backend.ovs_idl import event as row_event from ovsdbapp.backend.ovs_idl import idlutils from neutron.common.ovn import constants as ovn_const from neutron.common.ovn import exceptions from neutron.common.ovn import hash_ring_manager from neutron.common.ovn import utils from neutron.conf.plugins.ml2.drivers.ovn import ovn_conf from neutron.db import ovn_hash_ring_db from neutron.plugins.ml2.drivers.ovn.agent import neutron_agent as n_agent CONF = cfg.CONF LOG = log.getLogger(__name__) class BaseEvent(row_event.RowEvent): table = None events = tuple() def __init__(self): self.event_name = self.__class__.__name__ super(BaseEvent, self).__init__(self.events, self.table, None) @abc.abstractmethod def match_fn(self, event, row, old=None): """Define match criteria other than table/event""" def matches(self, event, row, old=None): if row._table.name != self.table or event not in self.events: return False if not self.match_fn(event, row, old): return False LOG.debug("%s : Matched %s, %s, %s %s", self.event_name, self.table, event, self.conditions, self.old_conditions) return True class ChassisEvent(row_event.RowEvent): """Chassis create update delete event.""" def __init__(self, driver): self.driver = driver self.l3_plugin = directory.get_plugin(constants.L3) table = 'Chassis' events = (self.ROW_CREATE, self.ROW_UPDATE, self.ROW_DELETE) super(ChassisEvent, self).__init__(events, table, None) self.event_name = 'ChassisEvent' def handle_ha_chassis_group_changes(self, event, row, old): """Handle HA Chassis Group changes. This method handles the inclusion and removal of Chassis to/from the default HA Chassis Group. """ if not self.driver._ovn_client.is_external_ports_supported(): return is_gw_chassis = utils.is_gateway_chassis(row) # If the Chassis being created is not a gateway, ignore it if not is_gw_chassis and event == self.ROW_CREATE: return if event == self.ROW_UPDATE: is_old_gw = utils.is_gateway_chassis(old) if is_gw_chassis and is_old_gw: return elif not is_gw_chassis and is_old_gw: # Chassis is not a gateway anymore, treat it as deletion event = self.ROW_DELETE elif is_gw_chassis and not is_old_gw: # Chassis is now a gateway, treat it as creation event = self.ROW_CREATE if event == self.ROW_CREATE: default_group = self.driver.nb_ovn.ha_chassis_group_get( ovn_const.HA_CHASSIS_GROUP_DEFAULT_NAME).execute( check_error=True) # Find what's the lowest priority number current in the group # and add the new chassis as the new lowest min_priority = min( [ch.priority for ch in default_group.ha_chassis], default=ovn_const.HA_CHASSIS_GROUP_HIGHEST_PRIORITY) self.driver.nb_ovn.ha_chassis_group_add_chassis( ovn_const.HA_CHASSIS_GROUP_DEFAULT_NAME, row.name, priority=min_priority - 1).execute(check_error=True) elif event == self.ROW_DELETE: self.driver.nb_ovn.ha_chassis_group_del_chassis( ovn_const.HA_CHASSIS_GROUP_DEFAULT_NAME, row.name, if_exists=True).execute(check_error=True) def match_fn(self, event, row, old): if event != self.ROW_UPDATE: return True # NOTE(lucasgomes): If the external_ids column wasn't updated # (meaning, Chassis "gateway" status didn't change) just returns if not hasattr(old, 'external_ids') and event == self.ROW_UPDATE: return if (old.external_ids.get('ovn-bridge-mappings') != row.external_ids.get('ovn-bridge-mappings')): return True f = utils.is_gateway_chassis return f(old) != f(row) def run(self, event, row, old): host = row.hostname phy_nets = [] if event != self.ROW_DELETE: bridge_mappings = row.external_ids.get('ovn-bridge-mappings', '') mapping_dict = helpers.parse_mappings(bridge_mappings.split(','), unique_values=False) phy_nets = list(mapping_dict) self.driver.update_segment_host_mapping(host, phy_nets) if utils.is_ovn_l3(self.l3_plugin): # If chassis lost physnet or has been # deleted we can limit the scope and # reschedule only ports from this chassis. # In other cases we need to reschedule all gw ports. kwargs = {'event_from_chassis': None} if event == self.ROW_DELETE: kwargs['event_from_chassis'] = row.name elif event == self.ROW_UPDATE: old_mappings = old.external_ids.get('ovn-bridge-mappings', set()) or set() new_mappings = row.external_ids.get('ovn-bridge-mappings', set()) or set() if old_mappings: old_mappings = set(old_mappings.split(',')) if new_mappings: new_mappings = set(new_mappings.split(',')) mappings_removed = old_mappings - new_mappings mappings_added = new_mappings - old_mappings if mappings_removed and not mappings_added: # Mapping has been only removed. So we can # limit scope of rescheduling only to impacted # gateway chassis. kwargs['event_from_chassis'] = row.name self.l3_plugin.schedule_unhosted_gateways(**kwargs) self.handle_ha_chassis_group_changes(event, row, old) class PortBindingChassisUpdateEvent(row_event.RowEvent): """Event for matching a port moving chassis If the LSP is up and the Port_Binding chassis has just changed, there is a good chance the host died without cleaning up the chassis column on the Port_Binding. The port never goes down, so we won't see update the driver with the LogicalSwitchPortUpdateUpEvent which only monitors for transitions from DOWN to UP. """ def __init__(self, driver): self.driver = driver table = 'Port_Binding' events = (self.ROW_UPDATE,) super(PortBindingChassisUpdateEvent, self).__init__( events, table, None) self.event_name = self.__class__.__name__ def match_fn(self, event, row, old=None): # NOTE(twilson) ROW_UPDATE events always pass old, but chassis will # only be set if chassis has changed old_chassis = getattr(old, 'chassis', None) if not (row.chassis and old_chassis) or row.chassis == old_chassis: return False if row.type == ovn_const.OVN_CHASSIS_REDIRECT: return False try: lsp = self.driver.nb_ovn.lookup('Logical_Switch_Port', row.logical_port) except idlutils.RowNotFound: LOG.warning("Logical Switch Port %(port)s not found for " "Port_Binding %(binding)s", {'port': row.logical_port, 'binding': row.uuid}) return False return bool(lsp.up) def run(self, event, row, old=None): self.driver.set_port_status_up(row.logical_port) class ChassisAgentEvent(BaseEvent): GLOBAL = True # NOTE (twilson) Do not run new transactions out of a GLOBAL Event since # it will be running on every single process, and you almost certainly # don't want to insert/update/delete something a bajillion times. def __init__(self, driver): self.driver = driver super().__init__() @property def table(self): # It probably doesn't matter, but since agent_chassis_table changes # in post_fork_initialize(), resolve this at runtime return self.driver.agent_chassis_table @table.setter def table(self, value): pass class ChassisAgentDownEvent(ChassisAgentEvent): events = (BaseEvent.ROW_DELETE,) def run(self, event, row, old): for agent in n_agent.AgentCache().agents_by_chassis_private(row): agent.set_down = True def match_fn(self, event, row, old=None): return True class ChassisAgentDeleteEvent(ChassisAgentEvent): events = (BaseEvent.ROW_UPDATE,) table = 'SB_Global' def match_fn(self, event, row, old=None): try: return (old.external_ids.get('delete_agent') != row.external_ids['delete_agent']) except (AttributeError, KeyError): return False def run(self, event, row, old): del n_agent.AgentCache()[row.external_ids['delete_agent']] class ChassisAgentWriteEvent(ChassisAgentEvent): events = (BaseEvent.ROW_CREATE, BaseEvent.ROW_UPDATE) def match_fn(self, event, row, old=None): # On updates to Chassis_Private because the Chassis has been deleted, # don't update the AgentCache. We use chassis_private.chassis to return # data about the agent. return event == self.ROW_CREATE or ( getattr(old, 'nb_cfg', False) and not (self.table == 'Chassis_Private' and not row.chassis)) def run(self, event, row, old): n_agent.AgentCache().update(ovn_const.OVN_CONTROLLER_AGENT, row, clear_down=event == self.ROW_CREATE) class ChassisMetadataAgentWriteEvent(ChassisAgentEvent): events = (BaseEvent.ROW_CREATE, BaseEvent.ROW_UPDATE) @staticmethod def _metadata_nb_cfg(row): return int( row.external_ids.get(ovn_const.OVN_AGENT_METADATA_SB_CFG_KEY, -1)) @staticmethod def agent_id(row): return row.external_ids.get(ovn_const.OVN_AGENT_METADATA_ID_KEY) def match_fn(self, event, row, old=None): if not self.agent_id(row): # Don't create a cached object with an agent_id of 'None' return False if event == self.ROW_CREATE: return True try: # On updates to Chassis_Private because the Chassis has been # deleted, don't update the AgentCache. We use # chassis_private.chassis to return data about the agent. if self.table == 'Chassis_Private' and not row.chassis: return False return self._metadata_nb_cfg(row) != self._metadata_nb_cfg(old) except (AttributeError, KeyError): return False def run(self, event, row, old): n_agent.AgentCache().update(ovn_const.OVN_METADATA_AGENT, row, clear_down=True) class PortBindingChassisEvent(row_event.RowEvent): """Port_Binding update event - set chassis for chassisredirect port. When a chassisredirect port is updated with chassis, this event get generated. We will update corresponding router's gateway port with the chassis's host_id. Later, users can check router's gateway port host_id to find the location of primary HA router. """ def __init__(self, driver): self.driver = driver self.l3_plugin = directory.get_plugin(constants.L3) table = 'Port_Binding' events = (self.ROW_UPDATE,) super(PortBindingChassisEvent, self).__init__( events, table, (('type', '=', ovn_const.OVN_CHASSIS_REDIRECT),)) self.event_name = 'PortBindingChassisEvent' def run(self, event, row, old): if not utils.is_ovn_l3(self.l3_plugin): return router = host = None chassis = getattr(row, 'chassis', None) if chassis: router = row.datapath.external_ids.get('name', '').replace( 'neutron-', '') host = chassis[0].hostname LOG.info("Router %(router)s is bound to host %(host)s", {'router': router, 'host': host}) self.l3_plugin.update_router_gateway_port_bindings( router, host) class LogicalSwitchPortCreateUpEvent(row_event.RowEvent): """Row create event - Logical_Switch_Port 'up' = True. On connection, we get a dump of all ports, so if there is a neutron port that is down that has since been activated, we'll catch it here. This event will not be generated for new ports getting created. """ def __init__(self, driver): self.driver = driver table = 'Logical_Switch_Port' events = (self.ROW_CREATE,) super(LogicalSwitchPortCreateUpEvent, self).__init__( events, table, (('up', '=', True),)) self.event_name = 'LogicalSwitchPortCreateUpEvent' def run(self, event, row, old): self.driver.set_port_status_up(row.name) class LogicalSwitchPortCreateDownEvent(row_event.RowEvent): """Row create event - Logical_Switch_Port 'up' = False On connection, we get a dump of all ports, so if there is a neutron port that is up that has since been deactivated, we'll catch it here. This event will not be generated for new ports getting created. """ def __init__(self, driver): self.driver = driver table = 'Logical_Switch_Port' events = (self.ROW_CREATE,) super(LogicalSwitchPortCreateDownEvent, self).__init__( events, table, (('up', '=', False),)) self.event_name = 'LogicalSwitchPortCreateDownEvent' def run(self, event, row, old): self.driver.set_port_status_down(row.name) class LogicalSwitchPortUpdateUpEvent(row_event.RowEvent): """Row update event - Logical_Switch_Port 'up' going from False to True This happens when the VM goes up. New value of Logical_Switch_Port 'up' will be True and the old value will be False. """ def __init__(self, driver): self.driver = driver table = 'Logical_Switch_Port' events = (self.ROW_UPDATE,) super(LogicalSwitchPortUpdateUpEvent, self).__init__( events, table, (('up', '=', True),), old_conditions=(('up', '=', False),)) self.event_name = 'LogicalSwitchPortUpdateUpEvent' def run(self, event, row, old): self.driver.set_port_status_up(row.name) class LogicalSwitchPortUpdateDownEvent(row_event.RowEvent): """Row update event - Logical_Switch_Port 'up' going from True to False This happens when the VM goes down. New value of Logical_Switch_Port 'up' will be False and the old value will be True. """ def __init__(self, driver): self.driver = driver table = 'Logical_Switch_Port' events = (self.ROW_UPDATE,) super(LogicalSwitchPortUpdateDownEvent, self).__init__( events, table, (('up', '=', False),), old_conditions=(('up', '=', True),)) self.event_name = 'LogicalSwitchPortUpdateDownEvent' def run(self, event, row, old): self.driver.set_port_status_down(row.name) class FIPAddDeleteEvent(row_event.RowEvent): """Row event - NAT 'dnat_and_snat' entry added or deleted This happens when a FIP is created or removed. """ def __init__(self, driver): self.driver = driver table = 'NAT' events = (self.ROW_CREATE, self.ROW_DELETE) super(FIPAddDeleteEvent, self).__init__( events, table, (('type', '=', 'dnat_and_snat'),)) self.event_name = 'FIPAddDeleteEvent' def run(self, event, row, old): # When a FIP is added or deleted, we will delete all entries in the # MAC_Binding table of SB OVSDB corresponding to that IP Address. # TODO(dalvarez): Remove this workaround once fixed in core OVN: # https://mail.openvswitch.org/pipermail/ovs-discuss/2018-October/047604.html self.driver.delete_mac_binding_entries(row.external_ip) class NeutronPgDropPortGroupCreated(row_event.WaitEvent): """WaitEvent for neutron_pg_drop Create event.""" def __init__(self): table = 'Port_Group' events = (self.ROW_CREATE,) conditions = (('name', '=', ovn_const.OVN_DROP_PORT_GROUP_NAME),) super(NeutronPgDropPortGroupCreated, self).__init__( events, table, conditions) self.event_name = 'PortGroupCreated' class OvnDbNotifyHandler(row_event.RowEventHandler): def __init__(self, driver): self.driver = driver super(OvnDbNotifyHandler, self).__init__() try: self._lock = self._RowEventHandler__lock self._watched_events = self._RowEventHandler__watched_events except AttributeError: pass def notify(self, event, row, updates=None, global_=False): row = idlutils.frozen_row(row) matching = self.matching_events(event, row, updates, global_) for match in matching: self.notifications.put((match, event, row, updates)) def matching_events(self, event, row, updates, global_=False): with self._lock: return tuple(t for t in self._watched_events if getattr(t, 'GLOBAL', False) == global_ and self.match(t, event, row, updates)) class Ml2OvnIdlBase(connection.OvsdbIdl): def __init__(self, remote, schema, probe_interval=(), **kwargs): if probe_interval == (): # None is a valid value to pass probe_interval = ovn_conf.get_ovn_ovsdb_probe_interval() super(Ml2OvnIdlBase, self).__init__( remote, schema, probe_interval=probe_interval, **kwargs) class BaseOvnIdl(Ml2OvnIdlBase): def __init__(self, remote, schema): self.notify_handler = row_event.RowEventHandler() super(BaseOvnIdl, self).__init__(remote, schema) @classmethod def from_server(cls, connection_string, helper): helper.register_all() return cls(connection_string, helper) def notify(self, event, row, updates=None): self.notify_handler.notify(event, row, updates) class BaseOvnSbIdl(Ml2OvnIdlBase): def __init__(self, remote, schema): self.notify_handler = row_event.RowEventHandler() super().__init__(remote, schema) @classmethod def from_server(cls, connection_string, helper): helper.register_table('Chassis') helper.register_table('Encap') helper.register_table('Port_Binding') helper.register_table('Datapath_Binding') return cls(connection_string, helper) class OvnIdl(BaseOvnIdl): def __init__(self, driver, remote, schema): super(OvnIdl, self).__init__(remote, schema) self.driver = driver self.notify_handler = OvnDbNotifyHandler(driver) # ovsdb lock name to acquire. # This event lock is used to handle the notify events sent by idl.Idl # idl.Idl will call notify function for the "update" rpc method it # receives from the ovsdb-server. # This event lock is required for the following reasons # - If there are multiple neutron servers running, OvnWorkers of # these neutron servers would receive the notify events from # idl.Idl # # - we do not want all the neutron servers to handle these events # # - only the neutron server which has the lock will handle the # notify events. # # - In case the neutron server which owns this lock goes down, # ovsdb server would assign the lock to one of the other neutron # servers. self.event_lock_name = "neutron_ovn_event_lock" def notify(self, event, row, updates=None): # Do not handle the notification if the event lock is requested, # but not granted by the ovsdb-server. if self.is_lock_contended: return self.notify_handler.notify(event, row, updates) @abc.abstractmethod def post_connect(self): """Should be called after the idl has been initialized""" class OvnIdlDistributedLock(BaseOvnIdl): def __init__(self, driver, remote, schema): super(OvnIdlDistributedLock, self).__init__(remote, schema) self.driver = driver self.notify_handler = OvnDbNotifyHandler(driver) self._node_uuid = self.driver.node_uuid self._hash_ring = hash_ring_manager.HashRingManager( self.driver.hash_ring_group) self._last_touch = None # This is a map of tables that may be new after OVN database is updated self._tables_to_register = { 'OVN_Southbound': ['Chassis_Private'], } def handle_db_schema_changes(self, event, row): if (event == row_event.RowEvent.ROW_CREATE and row._table.name == 'Database'): try: tables = self._tables_to_register[row.name] except KeyError: return self.update_tables(tables, row.schema[0]) if 'Chassis_Private' == self.driver.agent_chassis_table: if 'Chassis_Private' not in self.tables: self.driver.agent_chassis_table = 'Chassis' else: if 'Chassis_Private' in self.tables: self.driver.agent_chassis_table = 'Chassis_Private' def notify(self, event, row, updates=None): self.handle_db_schema_changes(event, row) self.notify_handler.notify(event, row, updates, global_=True) try: target_node = self._hash_ring.get_node(str(row.uuid)) except exceptions.HashRingIsEmpty as e: LOG.error('HashRing is empty, error: %s', e) return if target_node != self._node_uuid: return # If the worker hasn't been health checked by the maintenance # thread (see bug #1834498), indicate that it's alive here time_now = timeutils.utcnow() touch_timeout = time_now - datetime.timedelta( seconds=ovn_const.HASH_RING_TOUCH_INTERVAL) if not self._last_touch or touch_timeout >= self._last_touch: # NOTE(lucasagomes): Guard the db operation with an exception # handler. If heartbeating fails for whatever reason, log # the error and continue with processing the event try: ctx = neutron_context.get_admin_context() ovn_hash_ring_db.touch_node(ctx, self._node_uuid) self._last_touch = time_now except Exception: LOG.exception('Hash Ring node %s failed to heartbeat', self._node_uuid) LOG.debug('Hash Ring: Node %(node)s (host: %(hostname)s) ' 'handling event "%(event)s" for row %(row)s ' '(table: %(table)s)', {'node': self._node_uuid, 'hostname': CONF.host, 'event': event, 'row': row.uuid, 'table': row._table.name}) self.notify_handler.notify(event, row, updates) @abc.abstractmethod def post_connect(self): """Should be called after the idl has been initialized""" class OvnNbIdl(OvnIdlDistributedLock): def __init__(self, driver, remote, schema): super(OvnNbIdl, self).__init__(driver, remote, schema) self._lsp_update_up_event = LogicalSwitchPortUpdateUpEvent(driver) self._lsp_update_down_event = LogicalSwitchPortUpdateDownEvent(driver) self._lsp_create_up_event = LogicalSwitchPortCreateUpEvent(driver) self._lsp_create_down_event = LogicalSwitchPortCreateDownEvent(driver) self._fip_create_delete_event = FIPAddDeleteEvent(driver) self.notify_handler.watch_events([self._lsp_create_up_event, self._lsp_create_down_event, self._lsp_update_up_event, self._lsp_update_down_event, self._fip_create_delete_event]) @classmethod def from_server(cls, connection_string, helper, driver): helper.register_all() return cls(driver, connection_string, helper) def unwatch_logical_switch_port_create_events(self): """Unwatch the logical switch port create events. When the ovs idl client connects to the ovsdb-server, it gets a dump of all logical switch ports as events and we need to process them at start up. After the startup, there is no need to watch these events. So unwatch these events. """ self.notify_handler.unwatch_events([self._lsp_create_up_event, self._lsp_create_down_event]) self._lsp_create_up_event = None self._lsp_create_down_event = None def post_connect(self): self.unwatch_logical_switch_port_create_events() class OvnSbIdl(OvnIdlDistributedLock): def __init__(self, driver, remote, schema): super(OvnSbIdl, self).__init__(driver, remote, schema) self.notify_handler.watch_events([ ChassisAgentDeleteEvent(self.driver), ChassisAgentDownEvent(self.driver), ChassisAgentWriteEvent(self.driver), ChassisMetadataAgentWriteEvent(self.driver)]) @classmethod def from_server(cls, connection_string, helper, driver): if 'Chassis_Private' in helper.schema_json['tables']: helper.register_table('Chassis_Private') if 'FDB' in helper.schema_json['tables']: helper.register_table('FDB') helper.register_table('Chassis') helper.register_table('Encap') helper.register_table('Port_Binding') helper.register_table('Datapath_Binding') helper.register_table('MAC_Binding') helper.register_columns('SB_Global', ['external_ids']) return cls(driver, connection_string, helper) def post_connect(self): """Watch Chassis events. When the ovs idl client connects to the ovsdb-server, it gets a dump of all Chassis create event. We don't need to process them because there will be sync up at startup. After that, we will watch the events to make notify work. """ self._chassis_event = ChassisEvent(self.driver) self._portbinding_event = PortBindingChassisEvent(self.driver) self.notify_handler.watch_events( [self._chassis_event, self._portbinding_event, PortBindingChassisUpdateEvent(self.driver)]) class OvnInitPGNbIdl(OvnIdl): """Very limited OVN NB IDL. This IDL is intended to be used only in initialization phase with short living DB connections. """ tables = ['Port_Group', 'Logical_Switch_Port', 'ACL'] def __init__(self, driver, remote, schema): super(OvnInitPGNbIdl, self).__init__(driver, remote, schema) self.cond_change( 'Port_Group', [['name', '==', ovn_const.OVN_DROP_PORT_GROUP_NAME]]) self.neutron_pg_drop_event = NeutronPgDropPortGroupCreated() self.notify_handler.watch_event(self.neutron_pg_drop_event) @classmethod def from_server(cls, connection_string, helper, driver, pg_only=False): if pg_only: helper.register_table('Port_Group') else: for table in cls.tables: helper.register_table(table) return cls(driver, connection_string, helper) @contextlib.contextmanager def short_living_ovsdb_api(api_class, idl): """Context manager for short living connections to the database. :param api_class: Class implementing the database calls (e.g. from the impl_idl module) :param idl: An instance of IDL class (e.g. instance of OvnNbIdl) """ conn = connection.Connection( idl, timeout=ovn_conf.get_ovn_ovsdb_timeout()) api = api_class(conn) try: yield api finally: api.ovsdb_connection.stop() def _check_and_set_ssl_files(schema_name): if schema_name == 'OVN_Southbound': priv_key_file = ovn_conf.get_ovn_sb_private_key() cert_file = ovn_conf.get_ovn_sb_certificate() ca_cert_file = ovn_conf.get_ovn_sb_ca_cert() else: priv_key_file = ovn_conf.get_ovn_nb_private_key() cert_file = ovn_conf.get_ovn_nb_certificate() ca_cert_file = ovn_conf.get_ovn_nb_ca_cert() if priv_key_file: Stream.ssl_set_private_key_file(priv_key_file) if cert_file: Stream.ssl_set_certificate_file(cert_file) if ca_cert_file: Stream.ssl_set_ca_cert_file(ca_cert_file)
the-stack_0_25562
#!/usr/bin/env python3 # Dependencies from lxml import html, etree import requests import pandas as pd import datetime as dt class _GetDataFromURL(object): """This "private" class does all the heavy lifting of fetching data from the URL provided, and then returns data to the main `rightmove_data` class instance. The reason for this is so that all the validation and web-scraping is done when an instance is created, and afterwards the data is accessible quickly via methods on the `rightmove_data` instance.""" def __init__(self, url): """Initialize an instance of the scraper by passing a URL from the results of a property search on www.rightmove.co.uk.""" self.url = url self.first_page = self.make_request(self.url) self.validate_url() self.get_results = self.__get_results def validate_url(self): """Basic validation that the URL at least starts in the right format and returns status code 200.""" real_url = "{}://www.rightmove.co.uk/{}/find.html?" protocols = ["http", "https"] types = ["property-to-rent", "property-for-sale", "new-homes-for-sale"] left_urls = [real_url.format(p, t) for p in protocols for t in types] conditions = [self.url.startswith(u) for u in left_urls] conditions.append(self.first_page[1] == 200) if not any(conditions): raise ValueError("Invalid rightmove URL:\n\n\t{}".format(self.url)) @property def rent_or_sale(self): """Tag to determine if the search is for properties for rent or sale. Required beacuse the Xpaths are different for the target elements.""" if "/property-for-sale/" in self.url \ or "/new-homes-for-sale/" in self.url: return "sale" elif "/property-to-rent/" in self.url: return "rent" else: raise ValueError("Invalid rightmove URL:\n\n\t{}".format(self.url)) @property def results_count(self): """Returns an integer of the total number of listings as displayed on the first page of results. Note that not all listings are available to scrape because rightmove limits the number of accessible pages.""" tree = html.fromstring(self.first_page[0]) xpath = """//span[@class="searchHeader-resultCount"]/text()""" return int(tree.xpath(xpath)[0].replace(",", "")) @property def page_count(self): """Returns the number of result pages returned by the search URL. There are 24 results per page. Note that the website limits results to a maximum of 42 accessible pages.""" page_count = self.results_count // 24 if self.results_count % 24 > 0: page_count += 1 # Rightmove will return a maximum of 42 results pages, hence: if page_count > 42: page_count = 42 return page_count @staticmethod def make_request(url): r = requests.get(url) # Minimise the amount returned to reduce overheads: return r.content, r.status_code def get_page(self, request_content): """Method to scrape data from a single page of search results. Used iteratively by the `get_results` method to scrape data from every page returned by the search.""" # Process the html: tree = html.fromstring(request_content) # Set xpath for price: if self.rent_or_sale == "rent": xp_prices = """//span[@class="propertyCard-priceValue"]/text()""" elif self.rent_or_sale == "sale": xp_prices = """//div[@class="propertyCard-priceValue"]/text()""" # Set xpaths for listing title, property address, URL, and agent URL: xp_titles = """//div[@class="propertyCard-details"]\ //a[@class="propertyCard-link"]\ //h2[@class="propertyCard-title"]/text()""" xp_addresses = """//address[@class="propertyCard-address"]//span/text()""" xp_weblinks = """//div[@class="propertyCard-details"]\ //a[@class="propertyCard-link"]/@href""" xp_agent_urls = """//div[@class="propertyCard-contactsItem"]\ //div[@class="propertyCard-branchLogo"]\ //a[@class="propertyCard-branchLogo-link"]/@href""" # Create data lists from xpaths: price_pcm = tree.xpath(xp_prices) titles = tree.xpath(xp_titles) addresses = tree.xpath(xp_addresses) base = "http://www.rightmove.co.uk" weblinks = ["{}{}".format(base, tree.xpath(xp_weblinks)[w]) \ for w in range(len(tree.xpath(xp_weblinks)))] agent_urls = ["{}{}".format(base, tree.xpath(xp_agent_urls)[a]) \ for a in range(len(tree.xpath(xp_agent_urls)))] # Store the data in a Pandas DataFrame: data = [price_pcm, titles, addresses, weblinks, agent_urls] temp_df = pd.DataFrame(data) temp_df = temp_df.transpose() temp_df.columns = ["price", "type", "address", "url", "agent_url"] # Drop empty rows which come from placeholders in the html: temp_df = temp_df[temp_df["address"].notnull()] return temp_df @property def __get_results(self): """Pandas DataFrame with all results returned by the search.""" # Create DataFrame of the first page (which has already been requested): results = self.get_page(self.first_page[0]) # Iterate through the rest of the pages scraping results: if self.page_count > 1: for p in range(1, self.page_count + 1, 1): # Create the URL of the specific results page: p_url = "{}&index={}".format(str(self.url), str((p * 24))) # Make the request: rc = self.make_request(p_url) # Requests to scrape lots of pages eventually get status 400, so: if rc[1] != 200: break # Create a temporary dataframe of page results: temp_df = self.get_page(rc[0]) # Concatenate the temporary dataframe with the full dataframe: frames = [results, temp_df] results = pd.concat(frames) # Reset the index: results.reset_index(inplace=True, drop=True) # Convert price column to numeric type: results["price"].replace(regex=True, inplace=True, to_replace=r"\D", value=r"") results["price"] = pd.to_numeric(results["price"]) # Extract postcodes to a separate column: pat = r"\b([A-Za-z][A-Za-z]?[0-9][0-9]?[A-Za-z]?)\b" results["postcode"] = results["address"].str.extract(pat, expand=True) # Extract number of bedrooms from "type" to a separate column: pat = r"\b([\d][\d]?)\b" results["number_bedrooms"] = results.type.str.extract(pat, expand=True) results.loc[results["type"].str.contains("studio", case=False), "number_bedrooms"] = 0 # Clean up annoying white spaces and newlines in "type" column: for row in range(len(results)): type_str = results.loc[row, "type"] clean_str = type_str.strip("\n").strip() results.loc[row, "type"] = clean_str # Add column with datetime when the search was run (i.e. now): now = dt.datetime.today() results["search_date"] = now return results class rightmove_data(object): """The `rightmove_data` web scraper collects structured data on properties returned by a search performed on www.rightmove.co.uk An instance of the class created with a rightmove URL provides attributes to easily access data from the search results, the most useful being `get_results`, which returns all results as a Pandas DataFrame object. """ def __init__(self, url): """Initialize the scraper with a URL from the results of a property search performed on www.rightmove.co.uk""" self.__request_object = _GetDataFromURL(url) self.__url = url @property def url(self): return self.__url @property def get_results(self): """Pandas DataFrame of all results returned by the search.""" return self.__request_object.get_results @property def results_count(self): """Total number of results returned by `get_results`. Note that the rightmove website may state a much higher number of results; this is because they artificially restrict the number of results pages that can be accessed to 42.""" return len(self.get_results) @property def average_price(self): """Average price of all results returned by `get_results` (ignoring results which don't list a price).""" total = self.get_results["price"].dropna().sum() return int(total / self.results_count) def summary(self, by="number_bedrooms"): """Pandas DataFrame summarising the the results by mean price and count. By default grouped by the `number_bedrooms` column but will accept any column name from `get_results` as a grouper.""" df = self.get_results.dropna(axis=0, subset=["price"]) groupers = {"price":["count", "mean"]} df = df.groupby(df[by]).agg(groupers).astype(int) df.columns = df.columns.get_level_values(1) df.reset_index(inplace=True) if "number_bedrooms" in df.columns: df["number_bedrooms"] = df["number_bedrooms"].astype(int) df.sort_values(by=["number_bedrooms"], inplace=True) else: df.sort_values(by=["count"], inplace=True, ascending=False) return df.reset_index(drop=True)
the-stack_0_25563
import numpy as np import torch from numpy import linalg as la, random as rnd import pymanopt from pymanopt.manifolds import Sphere from pymanopt.solvers import TrustRegions def dominant_eigenvector(A): """ Returns the dominant eigenvector of the symmetric matrix A. Note: For the same A, this should yield the same as the dominant invariant subspace example with p = 1. """ m, n = A.shape assert m == n, "matrix must be square" assert np.allclose(np.sum(A - A.T), 0), "matrix must be symmetric" manifold = Sphere(n) solver = TrustRegions() @pymanopt.function.PyTorch def cost(x): return -x.matmul(torch.from_numpy(A).matmul(x)) problem = pymanopt.Problem(manifold, cost) xopt = solver.solve(problem) return xopt.squeeze() if __name__ == "__main__": # Generate random problem data. n = 128 A = rnd.randn(n, n) A = 0.5 * (A + A.T) # Calculate the actual solution by a conventional eigenvalue decomposition. w, v = la.eig(A) x = v[:, np.argmax(w)] # Solve the problem with pymanopt. xopt = dominant_eigenvector(A) # Make sure both vectors have the same direction. Both are valid # eigenvectors, of course, but for comparison we need to get rid of the # ambiguity. if np.sign(x[0]) != np.sign(xopt[0]): xopt = -xopt # Print information about the solution. print('') print("l2-norm of x: %f" % la.norm(x)) print("l2-norm of xopt: %f" % la.norm(xopt)) print("solution found: %s" % np.allclose(x, xopt, rtol=1e-3)) print("l2-error: %f" % la.norm(x - xopt))
the-stack_0_25564
# --------------------------------------------------------------------- # fm.reportalarmdetail application # --------------------------------------------------------------------- # Copyright (C) 2007-2020 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # Python modules import datetime from io import BytesIO from zipfile import ZipFile, ZIP_DEFLATED from tempfile import TemporaryFile # Third-party modules from django.http import HttpResponse, HttpResponseBadRequest, HttpResponseNotFound # NOC modules from noc.lib.app.extapplication import ExtApplication, view from noc.sa.interfaces.base import StringParameter, IntParameter, ObjectIdParameter from noc.sa.models.useraccess import UserAccess from noc.sa.models.administrativedomain import AdministrativeDomain from noc.core.translation import ugettext as _ from noc.lib.app.reportdatasources.base import ReportDataSource from noc.lib.app.reportdatasources.loader import loader class ReportAlarmDetailApplication(ExtApplication): menu = _("Reports") + "|" + _("Alarm Detail") title = _("Alarm Detail") SEGMENT_PATH_DEPTH = 7 CONTAINER_PATH_DEPTH = 7 @view( "^download/$", method=["GET"], access="launch", api=True, validate={ "from_date": StringParameter(required=False), "to_date": StringParameter(required=False), "min_duration": IntParameter(required=False), "max_duration": IntParameter(required=False), "min_objects": IntParameter(required=False), "min_subscribers": IntParameter(required=False), "source": StringParameter( default="both", choices=["active", "both", "archive", "long_archive"] ), "segment": ObjectIdParameter(required=False), "administrative_domain": IntParameter(required=False), "resource_group": ObjectIdParameter(required=False), "ex_resource_group": StringParameter(required=False), "alarm_class": ObjectIdParameter(required=False), "subscribers": StringParameter(required=False), "ids": StringParameter(required=False), "columns": StringParameter(required=False), "o_format": StringParameter(choices=["csv", "csv_zip", "xlsx"]), }, ) def api_report( self, request, o_format, from_date=None, to_date=None, min_duration=0, max_duration=0, min_objects=0, min_subscribers=0, segment=None, administrative_domain=None, resource_group=None, ex_resource_group=None, columns=None, source="both", alarm_class=None, subscribers=None, ids=None, enable_autowidth=False, ): filters = [] ads = [] if administrative_domain: ads = AdministrativeDomain.get_nested_ids(administrative_domain) if not request.user.is_superuser: user_ads = UserAccess.get_domains(request.user) if administrative_domain and ads: if administrative_domain not in user_ads: ads = list(set(ads) & set(user_ads)) if not ads: return HttpResponse( "<html><body>Permission denied: Invalid Administrative Domain</html></body>" ) else: ads = user_ads if ids: ids = ids.split() fd = datetime.datetime.now() td = None elif from_date: fd = datetime.datetime.strptime(from_date, "%d.%m.%Y") td = datetime.datetime.strptime(to_date, "%d.%m.%Y") + datetime.timedelta(days=1) else: return HttpResponseBadRequest(_("One param - FROM_DATE or IDS required")) for name, values in [ ("min_duration", min_duration), ("max_duration", max_duration), ("min_objects", min_objects), ("min_subscribers", min_subscribers), ("segment", segment), ("adm_path", ads), ("resource_group", resource_group), ("ex_resource_group", ex_resource_group), ("alarm_class", alarm_class), ("subscribers", subscribers), ("source", source), ]: if not values: continue if values and isinstance(values, list): filters += [{"name": name, "values": values}] elif values: filters += [{"name": name, "values": [values]}] if source in ["long_archive"]: report_ds = "reportdsalarmsbiarchive" o_format = "csv_zip" if td - fd > datetime.timedelta(days=390): return HttpResponseBadRequest( _( "Report more than 1 year not allowed. If nedeed - request it from Administrator" ) ) else: report_ds = "reportdsalarms" report: ReportDataSource = loader[report_ds] if not report: return HttpResponseNotFound(_(f"Report DataSource {report_ds} Not found")) data = report( fields=columns.split(","), objectids=ids or [], allobjectids=False, start=fd, end=td, filters=filters, ) # filename = f'{report_name}_detail_report_{datetime.datetime.now().strftime("%Y%m%d")}' filename = "alarms.csv" if o_format == "csv": response = HttpResponse(data.report_csv(), content_type="text/csv") response["Content-Disposition"] = 'attachment; filename="%s"' % filename return response elif o_format == "csv_zip": response = BytesIO() f = TemporaryFile(mode="w+b") f.write(data.report_csv()) f.seek(0) with ZipFile(response, "w", compression=ZIP_DEFLATED) as zf: zf.writestr(filename, f.read()) zf.filename = "%s.zip" % filename response.seek(0) response = HttpResponse(response.getvalue(), content_type="application/zip") response["Content-Disposition"] = 'attachment; filename="%s.zip"' % filename return response elif o_format == "xlsx": response = HttpResponse(data.report_xlsx(), content_type="application/vnd.ms-excel") response["Content-Disposition"] = 'attachment; filename="alarms.xlsx"' response.close() return response
the-stack_0_25565
#!/usr/bin/env python # Copyright 2021 Takenori Yoshimura # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import argparse import re if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--skip-header", action="store_true", help="if true, skip first line" ) parser.add_argument("text", type=str, help="text to be cleaned") args = parser.parse_args() with open(args.text, "r", encoding="utf-8") as fid: if args.skip_header: fid.readline() for line in fid.readlines(): id, content = line.split(",") content = re.sub("(.*?)", "", content.rstrip()) content = re.sub("「(.*?)」", "\\1", content) print("%s %s" % (id, content))
the-stack_0_25567
# Copyright (c) 2013 Ondrej Kipila <ok100 at openmailbox dot org> # This work is free. You can redistribute it and/or modify it under the # terms of the Do What The Fuck You Want To Public License, Version 2, # as published by Sam Hocevar. See the COPYING file for more details. """Metadata-related code.""" import os import random from threading import Lock import plyr import lyvi class Metadata: """A class which holds metadata for the currently playing song.""" artist = None album = None title = None file = None _lyrics = None _artistbio = None _guitartabs = None _backdrops = None _cover = None @property def lyrics(self): return self._lyrics @lyrics.setter def lyrics(self, value): """Update ui and save the lyrics.""" self._lyrics = value lyvi.ui.update() if lyvi.ui.autoscroll: lyvi.ui.autoscroll.reset() if lyvi.config['save_lyrics']: self.save('lyrics', lyvi.config['save_lyrics']) @property def artistbio(self): return self._artistbio @artistbio.setter def artistbio(self, value): """Update UI.""" self._artistbio = value lyvi.ui.update() @property def guitartabs(self): return self._guitartabs @guitartabs.setter def guitartabs(self, value): """Update UI.""" self._guitartabs = value lyvi.ui.update() @property def backdrops(self): return self._backdrops @backdrops.setter def backdrops(self, value): """Update background.""" self._backdrops = value if lyvi.bg: lyvi.bg.update() @property def cover(self): return self._cover @cover.setter def cover(self, value): """Update background and save the cover.""" self._cover = value if lyvi.bg: lyvi.bg.update() if lyvi.config['save_cover']: self.save('cover', lyvi.config['save_cover_filename']) def __init__(self): """Initialize the class.""" cache_dir = os.path.join(os.environ['HOME'], '.local/share/lyvi') if not os.path.exists(cache_dir): os.makedirs(cache_dir) self.cache = plyr.Database(cache_dir) self.lock = Lock() def set_tags(self): """Set all tag properties to the actual values.""" self.artist = lyvi.player.artist self.title = lyvi.player.title self.album = lyvi.player.album self.file = lyvi.player.file def reset_tags(self): """Set all tag and metadata properties to None.""" self.artist = self.title = self.album = self.file = None self.lyrics = self.artistbio = self.guitartabs = None self.backdrops = self.cover = None def delete(self, type, artist, title, album): """Delete metadata from the cache. Keyword arguments: type -- type of the metadata artist -- artist tag title -- title tag album -- album tag """ if artist and title and album: self.cache.delete(plyr.Query(get_type=type, artist=artist, title=title, album=album)) def save(self, type, file): """Save the given metadata type. Keyword arguments: type -- type of the metadata file -- path to the file metadata will be saved to Some special substrings can be used in the filename: <filename> -- name of the current song without extension <songdir> -- directory containing the current song <artist> -- artist of the current song <title> -- title of the current song <album> -- album of the current song """ data = getattr(self, type) if self.file and data and data != 'Searching...': for k, v in { '<filename>': os.path.splitext(os.path.basename(self.file))[0], '<songdir>': os.path.dirname(self.file), '<artist>': self.artist, '<title>': self.title, '<album>': self.album }.items(): file = file.replace(k, v) if not os.path.exists(os.path.dirname(file)): os.makedirs(os.path.dirname(file)) if not os.path.exists(file): mode = 'wb' if isinstance(data, bytes) else 'w' with open(file, mode) as f: f.write(data) def _query(self, type, normalize=True, number=1): """Return a list containing results from glyr.Query, or None if some tags are missing. Keyword arguments: type -- type of the metadata normalize -- whether the search strings should be normalized by glyr """ try: query = plyr.Query( number=number, parallel=20, get_type=type, artist=self.artist or '', title=self.title or '', album=self.album or '' ) except AttributeError: # Missing tags? return None query.useragent = lyvi.USERAGENT query.database = self.cache if not normalize: query.normalize = ('none', 'artist', 'album', 'title') return query.commit() def get(self, type): """Download and set the metadata for the given property. Keyword arguments: type -- type of the metadata """ if lyvi.ui.view == type: lyvi.ui.home() artist = self.artist title = self.title number = 1 if type in ('lyrics', 'artistbio', 'guitartabs'): setattr(self, type, 'Searching...') elif type in ('backdrops', 'cover'): setattr(self, type, None) if type == 'backdrops': number = 20 items = (self._query(type, number=number) or self._query(type, number=number, normalize=False)) data = None if items: if type == 'backdrops': data = random.choice(items).data elif type == 'cover': data = items[0].data else: data = items[0].data.decode() with self.lock: if artist == self.artist and title == self.title: setattr(self, type, data)
the-stack_0_25568
#!/usr/bin/env python # # Simple VXI-11 commandline interface # # Copyright (c) 2014-2017 Michael Walle # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # Description: # Commands are sent to the VXI-11 device after every newline. If the command # ends in '?' the response is received. # import time import sys import logging import readline from optparse import OptionParser from . import __version__ from .vxi11 import Instrument, Vxi11Exception try: input = raw_input except NameError: pass LOCAL_COMMANDS = { '%SLEEP': (1, 1, lambda a: time.sleep(float(a[0])/1000)), } def process_local_command(cmd): args = cmd.split() if args[0] in LOCAL_COMMANDS: cmd_info = LOCAL_COMMANDS[args[0]] if cmd_info[0] <= len(args[1:]) <= cmd_info[1]: cmd_info[2](args[1:]) else: print('Invalid number of arguments for command %s' % args[0]) else: print('Unknown command "%s"' % cmd) def main(): usage = 'usage: %prog [options] <host> [<name>]' parser = OptionParser(usage=usage) parser.add_option('-d', action='store_true', dest='debug', help='enable debug messages') parser.add_option('-v', action='store_true', dest='verbose', help='be more verbose') parser.add_option('-V', action='store_true', dest='version', help='show version') parser.add_option('--always-check-esr', action='store_true', dest='check_esr', help='Check the error status register after every command') (options, args) = parser.parse_args() if options.version: print('vxi11-cli v%s' % (__version__,)) sys.exit(0) logging.basicConfig() if options.verbose: logging.getLogger('vxi11').setLevel(logging.INFO) if options.debug: logging.getLogger('vxi11').setLevel(logging.DEBUG) if len(args) < 1: print(parser.format_help()) sys.exit(1) host = args[0] name = None if len(args) > 1: name = args[1] v = Instrument(host, name) v.open() print("Enter command to send. Quit with 'q'. Read with '?'.") try: while True: cmd = input('=> ') if cmd == 'q': break if cmd.startswith('%'): process_local_command(cmd) continue if len(cmd) > 0: is_query = cmd.split(' ')[0][-1] == '?' try: if is_query: if len(cmd) > 1: v.write(cmd) print(v.read()) else: v.write(cmd) if options.check_esr: esr = int(v.ask('*ESR?').strip()) if esr != 0: print('Warning: ESR was %d' % esr) except Vxi11Exception: e = sys.exc_info()[1] print('ERROR: %s' % e) except EOFError: print('exiting...') v.close() if __name__ == '__main__': main()
the-stack_0_25571
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. A meta data loader for sampling from different datasets / training tasks A prefetch loader to speedup data loading Modified from Nvidia Deep Learning Examples (https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch). """ import random import torch from torch.utils.data import DataLoader from utils.distributed import any_broadcast class MetaLoader(object): """ wraps multiple data loader """ def __init__(self, loaders, accum_steps=1, distributed=False): assert isinstance(loaders, dict) self.name2loader = {} self.name2iter = {} self.sampling_pools = [] for n, l in loaders.items(): if isinstance(l, tuple): l, r = l elif isinstance(l, DataLoader): r = 1 else: raise ValueError() self.name2loader[n] = l self.name2iter[n] = iter(l) self.sampling_pools.extend([n]*r) self.accum_steps = accum_steps self.distributed = distributed self.step = 0 def __iter__(self): """ this iterator will run indefinitely """ task = self.sampling_pools[0] while True: if self.step % self.accum_steps == 0: task = random.choice(self.sampling_pools) if self.distributed: # make sure all process is training same task task = any_broadcast(task, 0) self.step += 1 iter_ = self.name2iter[task] try: batch = next(iter_) except StopIteration: iter_ = iter(self.name2loader[task]) batch = next(iter_) self.name2iter[task] = iter_ yield task, batch def move_to_cuda(batch): if isinstance(batch, torch.Tensor): return batch.cuda(non_blocking=True) elif isinstance(batch, list): new_batch = [move_to_cuda(t) for t in batch] elif isinstance(batch, tuple): new_batch = tuple(move_to_cuda(t) for t in batch) elif isinstance(batch, dict): new_batch = {n: move_to_cuda(t) for n, t in batch.items()} else: return batch return new_batch def record_cuda_stream(batch): if isinstance(batch, torch.Tensor): batch.record_stream(torch.cuda.current_stream()) elif isinstance(batch, list) or isinstance(batch, tuple): for t in batch: record_cuda_stream(t) elif isinstance(batch, dict): for t in batch.values(): record_cuda_stream(t) else: pass class PrefetchLoader(object): """ overlap compute and cuda data transfer (copied and then modified from nvidia apex) """ def __init__(self, loader): self.loader = loader self.stream = torch.cuda.Stream() def __iter__(self): loader_it = iter(self.loader) self.preload(loader_it) batch = self.next(loader_it) while batch is not None: yield batch batch = self.next(loader_it) def __len__(self): return len(self.loader) def preload(self, it): try: self.batch = next(it) except StopIteration: self.batch = None return # if record_stream() doesn't work, another option is to make sure # device inputs are created on the main stream. # self.next_input_gpu = torch.empty_like(self.next_input, # device='cuda') # self.next_target_gpu = torch.empty_like(self.next_target, # device='cuda') # Need to make sure the memory allocated for next_* is not still in use # by the main stream at the time we start copying to next_*: # self.stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.stream): self.batch = move_to_cuda(self.batch) # more code for the alternative if record_stream() doesn't work: # copy_ will record the use of the pinned source tensor in this # side stream. # self.next_input_gpu.copy_(self.next_input, non_blocking=True) # self.next_target_gpu.copy_(self.next_target, non_blocking=True) # self.next_input = self.next_input_gpu # self.next_target = self.next_target_gpu def next(self, it): torch.cuda.current_stream().wait_stream(self.stream) batch = self.batch if batch is not None: record_cuda_stream(batch) self.preload(it) return batch def __getattr__(self, name): method = self.loader.__getattribute__(name) return method
the-stack_0_25572
"""findcdn is a security research and reporting tool. findcdn determine what CDN a domain has and prints or exports the results as json. EXIT STATUS This utility exits with one of the following values: 0 The list of domain's CDNs were successfully exported or printed to a file. >0 An error occurred. Usage: findcdn file <fileIn> [options] findcdn list <domain>... [options] findcdn (-h | --help) Options: -h --help Show this message. --version Show the current version. -o FILE --output=FILE If specified, then the JSON output file will be created at the specified value. -v --verbose Includes additional print statements. --all Includes domains with and without a CDN in output. -d --double Run the checks twice to increase accuracy. -t --threads=<thread_count> Number of threads, otherwise use default. --timeout=<timeout> Max duration in seconds to wait for a domain to conclude processing, otherwise use default. --user_agent=<user_agent> Set the user agent to use, otherwise use default. --checks=<checks> Select detection types; possible values: cname (c), HTTP headers (h), nameservers (n), whois data (w). Default: "chnw" """ # Standard Python Libraries import datetime import json import os import sys from typing import Any, Dict, List # Third-Party Libraries import docopt from schema import And, Or, Schema, SchemaError, Use import validators # Internal Libraries from ._version import __version__ from .cdnEngine import run_checks from .findcdn_err import FileWriteError, InvalidDomain, NoDomains, OutputFileExists # Global Variables USER_AGENT = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36" TIMEOUT = 60 # Time in seconds THREADS = 0 # If 0 then cdnEngine uses CPU count to set thread count CHECKS = "chnw" # cnames, headers, nameservers, whois_data def write_json(json_dump: str, output: str, verbose: bool, interactive: bool): """Write dict as JSON to output file.""" try: with open(output, "x") as outfile: outfile.write(json_dump) except FileExistsError: raise OutputFileExists(output) except Exception as e: raise FileWriteError(e) def main( domain_list: List[str], output_path: str = None, verbose: bool = False, all_domains: bool = False, interactive: bool = False, double_in: bool = False, threads: int = THREADS, timeout: int = TIMEOUT, user_agent: str = USER_AGENT, checks: str = CHECKS, ) -> str: """Take in a list of domains and determine the CDN for each return (JSON, number of successful jobs).""" # Make sure the list passed is got something in it if len(domain_list) <= 0: raise NoDomains("error") # Validate domains in list for item in domain_list: if validators.domain(item) is not True: raise InvalidDomain(item) # Show the validated domains if in verbose mode if verbose: print("%d Domains Validated" % len(domain_list)) # Define domain dict and counter for json domain_dict = {} CDN_count = 0 # Check domain list processed_list, cnt = run_checks( domain_list, threads, timeout, user_agent, interactive, verbose, double_in, checks, ) # Parse the domain data for domain in processed_list: # Track the count of the domain has cdns if len(domain.cdns) > 0: CDN_count += 1 # Setup formatting for json output if len(domain.cdns) > 0 or all_domains: domain_dict[domain.url] = { "IP": str(domain.ip)[1:-1], "cdns": str(domain.cdns)[1:-1], "cdns_by_names": str(domain.cdns_by_name)[1:-1], } # Create JSON from the results and return (results, successful jobs) json_dict = {} json_dict["date"] = datetime.datetime.now().strftime("%m/%d/%Y, %H:%M:%S") json_dict["cdn_count"] = str(CDN_count) json_dict["domains"] = domain_dict # type: ignore json_dump = json.dumps(json_dict, indent=4, sort_keys=False) # Show the dump to stdout if verbose or interactive if (output_path is None and interactive) or verbose: print(json_dump) # Export to file if file provided if output_path is not None: write_json(json_dump, output_path, verbose, interactive) if interactive or verbose: print( "Domain processing completed.\n%d domains had CDN's out of %d." % (CDN_count, len(domain_list)) ) if verbose: print(f"{cnt} jobs completed!") # Return json dump to callee return json_dump def interactive() -> None: """Collect command arguments and run the main program.""" # Obtain arguments from docopt args: Dict[str, str] = docopt.docopt(__doc__, version=__version__) # Check for None params then set default if found if args["--user_agent"] is None: args["--user_agent"] = USER_AGENT if args["--threads"] is None: args["--threads"] = THREADS if args["--timeout"] is None: args["--timeout"] = TIMEOUT if args["--checks"] is None: args["--checks"] = CHECKS # Validate and convert arguments as needed with schema schema: Schema = Schema( { "--output": Or( None, And( str, lambda filename: not os.path.isfile(filename), error='Output file "' + str(args["--output"]) + '" already exists!', ), ), "<fileIn>": Or( None, And( str, lambda filename: os.path.isfile(filename), error='Input file "' + str(args["<fileIn>"]) + '" does not exist!', ), ), "--threads": And( Use(int), lambda thread_count: thread_count >= 0, error="Thread count must be a positive number", ), "--timeout": And( Use(int), lambda timeout: timeout > 0, error="The timeout duration must be a number greater than 0", ), "--user_agent": And( str, error="The user agent must be a string.", ), "--checks": And( str, lambda checks: set(checks) <= {'c', 'h', 'n', 'w'}, error="Checks can be the following characters: chnw" ), "<domain>": And(list, error="Please format the domains as a list."), str: object, # Don't care about other keys, if any } ) try: validated_args: Dict[str, Any] = schema.validate(args) except SchemaError as err: # Exit because one or more of the arguments were invalid print(err, file=sys.stderr) sys.exit(1) # Add domains to a list domain_list = [] if validated_args["file"]: try: with open(validated_args["<fileIn>"]) as f: domain_list = [line.rstrip() for line in f] except IOError as e: print("A file error occurred: %s" % e, file=sys.stderr) sys.exit(1) else: domain_list = validated_args["<domain>"] # Start main runner of program with supplied inputs. try: main( domain_list, validated_args["--output"], validated_args["--verbose"], validated_args["--all"], True, # Launch in interactive mode. validated_args["--double"], validated_args["--threads"], validated_args["--timeout"], validated_args["--user_agent"], validated_args["--checks"] ) # Check for all potential exceptions except OutputFileExists as ofe: print(ofe.message) sys.exit(1) except FileWriteError as fwe: print(fwe.message) sys.exit(2) except InvalidDomain as invdom: print(invdom.message) sys.exit(3) except NoDomains as nd: print(nd.message) sys.exit(4)
the-stack_0_25573
# coding=utf-8 # Copyright Studio Ousia and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LUKE model. """ import math from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN, gelu from ...file_utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward from ...utils import logging from .configuration_luke import LukeConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LukeConfig" _TOKENIZER_FOR_DOC = "LukeTokenizer" _CHECKPOINT_FOR_DOC = "studio-ousia/luke-base" LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = [ "studio-ousia/luke-base", "studio-ousia/luke-large", # See all LUKE models at https://huggingface.co/models?filter=luke ] @dataclass class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling): """ Base class for outputs of the LUKE model. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): Sequence of entity hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length + entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ entity_last_hidden_state: torch.FloatTensor = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BaseLukeModelOutput(BaseModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`): Sequence of entity hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ entity_last_hidden_state: torch.FloatTensor = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class LukeMaskedLMOutput(ModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): The sum of masked language modeling (MLM) loss and entity prediction loss. mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked language modeling (MLM) loss. mep_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked entity prediction (MEP) loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mlm_loss: Optional[torch.FloatTensor] = None mep_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None entity_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class EntityClassificationOutput(ModelOutput): """ Outputs of entity classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class EntityPairClassificationOutput(ModelOutput): """ Outputs of entity pair classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class EntitySpanClassificationOutput(ModelOutput): """ Outputs of entity span classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each layer plus the initial entity embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class LukeEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class LukeEntityEmbeddings(nn.Module): def __init__(self, config: LukeConfig): super().__init__() self.config = config self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0) if config.entity_emb_size != config.hidden_size: self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None ): if token_type_ids is None: token_type_ids = torch.zeros_like(entity_ids) entity_embeddings = self.entity_embeddings(entity_ids) if self.config.entity_emb_size != self.config.hidden_size: entity_embeddings = self.entity_embedding_dense(entity_embeddings) position_embeddings = self.position_embeddings(position_ids.clamp(min=0)) position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1) position_embeddings = position_embeddings * position_embedding_mask position_embeddings = torch.sum(position_embeddings, dim=-2) position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = entity_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LukeSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.use_entity_aware_attention = config.use_entity_aware_attention self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) if self.use_entity_aware_attention: self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) if entity_hidden_states is None: concat_hidden_states = word_hidden_states else: concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) key_layer = self.transpose_for_scores(self.key(concat_hidden_states)) value_layer = self.transpose_for_scores(self.value(concat_hidden_states)) if self.use_entity_aware_attention and entity_hidden_states is not None: # compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e) # query layers w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states)) w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states)) e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states)) e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states)) # compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above w2w_key_layer = key_layer[:, :, :word_size, :] e2w_key_layer = key_layer[:, :, :word_size, :] w2e_key_layer = key_layer[:, :, word_size:, :] e2e_key_layer = key_layer[:, :, word_size:, :] # compute attention scores based on the dot product between the query and key vectors w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2)) w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2)) e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2)) e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2)) # combine attention scores to create the final attention score matrix word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3) entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3) attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2) else: query_layer = self.transpose_for_scores(self.query(concat_hidden_states)) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in LukeModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) output_word_hidden_states = context_layer[:, :word_size, :] if entity_hidden_states is None: output_entity_hidden_states = None else: output_entity_hidden_states = context_layer[:, word_size:, :] if output_attentions: outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs) else: outputs = (output_word_hidden_states, output_entity_hidden_states) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class LukeSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LukeAttention(nn.Module): def __init__(self, config): super().__init__() self.self = LukeSelfAttention(config) self.output = LukeSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError("LUKE does not support the pruning of attention heads") def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_outputs = self.self( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions, ) if entity_hidden_states is None: concat_self_outputs = self_outputs[0] concat_hidden_states = word_hidden_states else: concat_self_outputs = torch.cat(self_outputs[:2], dim=1) concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) attention_output = self.output(concat_self_outputs, concat_hidden_states) word_attention_output = attention_output[:, :word_size, :] if entity_hidden_states is None: entity_attention_output = None else: entity_attention_output = attention_output[:, word_size:, :] # add attentions if we output them outputs = (word_attention_output, entity_attention_output) + self_outputs[2:] return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LukeIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class LukeOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LukeLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LukeAttention(config) self.intermediate = LukeIntermediate(config) self.output = LukeOutput(config) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_attention_outputs = self.attention( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) if entity_hidden_states is None: concat_attention_output = self_attention_outputs[0] else: concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1) outputs = self_attention_outputs[2:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output ) word_layer_output = layer_output[:, :word_size, :] if entity_hidden_states is None: entity_layer_output = None else: entity_layer_output = layer_output[:, word_size:, :] outputs = (word_layer_output, entity_layer_output) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class LukeEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_word_hidden_states = () if output_hidden_states else None all_entity_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, ) else: layer_outputs = layer_module( word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, output_attentions, ) word_hidden_states = layer_outputs[0] if entity_hidden_states is not None: entity_hidden_states = layer_outputs[1] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) if not return_dict: return tuple( v for v in [ word_hidden_states, all_word_hidden_states, all_self_attentions, entity_hidden_states, all_entity_hidden_states, ] if v is not None ) return BaseLukeModelOutput( last_hidden_state=word_hidden_states, hidden_states=all_word_hidden_states, attentions=all_self_attentions, entity_last_hidden_state=entity_hidden_states, entity_hidden_states=all_entity_hidden_states, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LukePooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class EntityPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.entity_emb_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class EntityPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transform = EntityPredictionHeadTransform(config) self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states class LukePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LukeConfig base_model_prefix = "luke" supports_gradient_checkpointing = True def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): if module.embedding_dim == 1: # embedding for bias parameters module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LukeEncoder): module.gradient_checkpointing = value LUKE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LukeConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LUKE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`LukeTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) entity_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`): Indices of entity tokens in the entity vocabulary. Indices can be obtained using [`LukeTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. entity_attention_mask (`torch.FloatTensor` of shape `(batch_size, entity_length)`, *optional*): Mask to avoid performing attention on padding entity token indices. Mask values selected in `[0, 1]`: - 1 for entity tokens that are **not masked**, - 0 for entity tokens that are **masked**. entity_token_type_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): Segment token indices to indicate first and second portions of the entity token inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *portion A* entity token, - 1 corresponds to a *portion B* entity token. entity_position_ids (`torch.LongTensor` of shape `(batch_size, entity_length, max_mention_length)`, *optional*): Indices of positions of each input entity in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LUKE model transformer outputting raw hidden-states for both word tokens and entities without any specific head on top.", LUKE_START_DOCSTRING, ) class LukeModel(LukePreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = LukeEmbeddings(config) self.entity_embeddings = LukeEntityEmbeddings(config) self.encoder = LukeEncoder(config) self.pooler = LukePooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def get_entity_embeddings(self): return self.entity_embeddings.entity_embeddings def set_entity_embeddings(self, value): self.entity_embeddings.entity_embeddings = value def _prune_heads(self, heads_to_prune): raise NotImplementedError("LUKE does not support the pruning of attention heads") @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeModel >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base") >>> model = LukeModel.from_pretrained("studio-ousia/luke-base") # Compute the contextualized entity representation corresponding to the entity mention "Beyoncé" >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state # Input Wikipedia entities to obtain enriched contextualized representations of word tokens >>> text = "Beyoncé lives in Los Angeles." >>> entities = ["Beyoncé", "Los Angeles"] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" >>> entity_spans = [(0, 7), (17, 28)] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> encoding = tokenizer(text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if entity_ids is not None: entity_seq_length = entity_ids.size(1) if entity_attention_mask is None: entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device) if entity_token_type_ids is None: entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # First, compute word embeddings word_embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) # Second, compute extended attention mask extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask) # Third, compute entity embeddings and concatenate with word embeddings if entity_ids is None: entity_embedding_output = None else: entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids) # Fourth, send embeddings through the model encoder_outputs = self.encoder( word_embedding_output, entity_embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size) sequence_output = encoder_outputs[0] # Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseLukeModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, entity_last_hidden_state=encoder_outputs.entity_last_hidden_state, entity_hidden_states=encoder_outputs.entity_hidden_states, ) def get_extended_attention_mask( self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor] ): """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: word_attention_mask (`torch.LongTensor`): Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore. entity_attention_mask (`torch.LongTensor`, *optional*): Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ attention_mask = word_attention_mask if entity_attention_mask is not None: attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1) if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})") extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead class LukeLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias @add_start_docstrings( """ The LUKE model with a language modeling head and entity prediction head on top for masked language modeling and masked entity prediction. """, LUKE_START_DOCSTRING, ) class LukeForMaskedLM(LukePreTrainedModel): _keys_to_ignore_on_save = [ r"lm_head.decoder.weight", r"lm_head.decoder.bias", r"entity_predictions.decoder.weight", ] _keys_to_ignore_on_load_missing = [ r"position_ids", r"lm_head.decoder.weight", r"lm_head.decoder.bias", r"entity_predictions.decoder.weight", ] def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.lm_head = LukeLMHead(config) self.entity_predictions = EntityPredictionHead(config) self.loss_fn = nn.CrossEntropyLoss(ignore_index=-1) # Initialize weights and apply final processing self.post_init() def tie_weights(self): super().tie_weights() self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings) def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, labels=None, entity_labels=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) loss = None mlm_loss = None logits = self.lm_head(outputs.last_hidden_state) if labels is not None: mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1)) if loss is None: loss = mlm_loss mep_loss = None entity_logits = self.entity_predictions(outputs.entity_last_hidden_state) if entity_labels is not None: mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1)) if loss is None: loss = mep_loss else: loss = loss + mep_loss if not return_dict: output = (logits, entity_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions) if mlm_loss is not None and mep_loss is not None: return (loss, mlm_loss, mep_loss) + output elif mlm_loss is not None: return (loss, mlm_loss) + output elif mep_loss is not None: return (loss, mep_loss) + output else: return output return LukeMaskedLMOutput( loss=loss, mlm_loss=mlm_loss, mep_loss=mep_loss, logits=logits, entity_logits=entity_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a classification head on top (a linear layer on top of the hidden state of the first entity token) for entity classification tasks, such as Open Entity. """, LUKE_START_DOCSTRING, ) class LukeForEntityClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeForEntityClassification >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: person ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = outputs.entity_last_hidden_state[:, 0, :] feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: output = ( logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ) return ((loss,) + output) if loss is not None else output return EntityClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a classification head on top (a linear layer on top of the hidden states of the two entity tokens) for entity pair classification tasks, such as TACRED. """, LUKE_START_DOCSTRING, ) class LukeForEntityPairClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeForEntityPairClassification >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7), (17, 28)] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: per:cities_of_residence ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = torch.cat( [outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1 ) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: output = ( logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ) return ((loss,) + output) if loss is not None else output return EntityPairClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ The LUKE model with a span classification head on top (a linear layer on top of the hidden states output) for tasks such as named entity recognition. """, LUKE_START_DOCSTRING, ) class LukeForEntitySpanClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, entity_ids=None, entity_attention_mask=None, entity_token_type_ids=None, entity_position_ids=None, entity_start_positions=None, entity_end_positions=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" entity_start_positions (`torch.LongTensor`): The start positions of entities in the word token sequence. entity_end_positions (`torch.LongTensor`): The end positions of entities in the word token sequence. labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import LukeTokenizer, LukeForEntitySpanClassification >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> text = "Beyoncé lives in Los Angeles" # List all possible entity spans in the text >>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens >>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens >>> entity_spans = [] >>> for i, start_pos in enumerate(word_start_positions): ... for end_pos in word_end_positions[i:]: ... entity_spans.append((start_pos, end_pos)) >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_indices = logits.argmax(-1).squeeze().tolist() >>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices): ... if predicted_class_idx != 0: ... print(text[span[0]:span[1]], model.config.id2label[predicted_class_idx]) Beyoncé PER Los Angeles LOC ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) hidden_size = outputs.last_hidden_state.size(-1) entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size) start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions) entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size) end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions) feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 2: loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: output = ( logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ) return ((loss,) + output) if loss is not None else output return EntitySpanClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
the-stack_0_25574
import unicodedata import os import time import json import re import sys import ctypes import copy import numpy as np import socket import subprocess import paramiko import platform import decouple from datetime import datetime from pylabnet.network.core.generic_server import GenericServer import pyqtgraph as pg import pyqtgraph.exporters #import netifaces as ni def str_to_float(in_val): """Convert human-readable exponential form to float. :param in_val: (str) input string of the following formats: 'float_number' --> float_number 'float_number + white_space + exp_prefix + unit_string' --> float_number * 10**exp_value Supported exp prefixes: ['T', 'G', 'M', 'k', '', 'm', 'u', 'n', 'p'] Warning: format 'just exp_prefix without unit_string' is not supported: if only one symbol is given after 'float_number', it will be interpreted as unit and exponent will be set to 10**0. Examples: '1.2 us' --> 1.2e-6 '-4.5 mV' --> -4.5e-3 '10.1 GHz' --> 1.01e10 '1.56 s' --> 1.56 '1.56 m' --> 1.56 [interpreted as 1.56 meters, not as 1.56e-3] :return: (float) extracted value without unit """ if isinstance(in_val, (float, int)): return in_val # Split string into mantissa and exp_prefix + unit item_list = in_val.split() # Extract mantissa exp_prefix if included mantissa = float(item_list[0]) # Extract exp_prefix (a single letter) if included try: exp_prefix_unit = item_list[1] if len(exp_prefix_unit) > 1: exp_prefix = item_list[1][0] else: exp_prefix = '' except IndexError: exp_prefix = '' # Convert exp_prefix into exp_value if exp_prefix == 'T': exp_value = 12 elif exp_prefix == 'G': exp_value = 9 elif exp_prefix == 'M': exp_value = 6 elif exp_prefix == 'k': exp_value = 3 elif exp_prefix == '': exp_value = 0 elif exp_prefix == 'm': exp_value = -3 elif exp_prefix == 'u': exp_value = -6 elif exp_prefix == 'n': exp_value = -9 elif exp_prefix == 'p': exp_value = -12 else: # The case of multi-letter unit without prefix: '1.5 Hz' # the first letter 'H' is not an exp prefix exp_value = 0 return mantissa * (10 ** exp_value) def pwr_to_float(in_val): # FIXME: implement # if isinstance(in_val, float): # return in_val # # # # Determine whether the power is given in Volts or dBm # # # # Split string into mantissa and exp_prefix + unit # item_list = in_val.split() # # # Extract exp_prefix (a single letter) if included # try: # exp_prefix_unit = item_list[1] # # if len(exp_prefix_unit) > 1: # exp_prefix = item_list[1][0] # else: # exp_prefix = '' # except IndexError: # exp_prefix = '' return str_to_float(in_val=in_val) def slugify(value, allow_unicode=False): """ Convert to ASCII if 'allow_unicode' is False. Convert spaces to hyphens. Remove characters that aren't alphanumerics, underscores, or hyphens. Convert to lowercase. Also strip leading and trailing whitespace. From Django 2.2 """ value = str(value) if allow_unicode: value = unicodedata.normalize('NFKC', value) else: value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii') value = re.sub(r'[^\w\s-]', '', value.lower()).strip() return re.sub(r'[-\s]+', '-', value) def get_dated_subdirectory_filepath(directory, filename=None): '''Creates directory structure folder_path/YEAR/MONTH/DAY/filename :folder_path: Upper level directory :filename: Name of file. Will be slugified. If None just returns directory Return: :filepath: Path to file in newly created structure. ''' # Create subdirectory structure: YEAR/MONTH/DAY dated_path = os.path.join(directory, time.strftime('%Y'), time.strftime('%m'), time.strftime('%d')) # create folders if they don't exists yet os.makedirs(dated_path, exist_ok=True) # Define full file path if filename is None: filepath = dated_path else: filepath = os.path.join(dated_path, f'{slugify(filename)}') return filepath def dict_to_str(dic, separate='\n'): """ Converts a dictionary to a nicely formatted string :param dic: (dict) to convert :param separate: (str) string to use to separate dictionary elements :return: (str) of dictionary content """ dict_str = '' for key, value in dic.items(): dict_str += '{}: {}{}'.format(key, value, separate) return dict_str.rstrip() def remove_spaces(st): """ Removes spaces from a string :param st: (str) input string with spaces :return: (str) string without any spaces """ return st.replace(' ', '') def parse_args(): """ Parses command line arguments into dictionary format, assuming keywords of the form --kw for each argument""" arg_index = 1 arg_dict = {} while arg_index < len(sys.argv) - 1: arg_dict[sys.argv[arg_index][2:]] = sys.argv[arg_index + 1] arg_index += 2 return arg_dict def unpack_launcher(**kwargs): """ Unpacks the launcher kwargs for easy use in launcher method definition within script modules. Copy paste the following implementation at the top of script.launch() method: logger, loghost logport, clients, guis, params = unpack_launcher(**kwargs) :param kwargs: (dict) contains all keyword arguments required for launching a script from launcher module e.g.: dict(logger=log, loghost='localhost', clients=[client1, client2], guis=[gui_client1, gui_client2]), logport=1234, params=experimental_parameters_container) Note that experimental parameters should go in "params" and can be customized to contain all other script specific stuff :return: (tuple) logger, logport, clients, guis, params """ logger = kwargs['logger'] loghost = kwargs['loghost'] clients = kwargs['clients'] guis = kwargs['guis'] logport = kwargs['logport'] params = kwargs['params'] return logger, loghost, logport, clients, guis, params def show_console(): """ Shows the active console. Useful for processes where console is typically hidden but user input is suddenly required """ operating_system = get_os() if operating_system == 'Windows': ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 9) def hide_console(): """ Hides the active console. Useful for processes where console is not needed (isntead, there is a GUI to use) :os: (string) Which operating system is used ('Windows' and 'Linux' supported) """ operating_system = get_os() if operating_system == 'Windows': ctypes.windll.user32.ShowWindow(ctypes.windll.kernel32.GetConsoleWindow(), 0) def create_server(service, logger=None, host='localhost'): """ Attempts to create a server with randomly chosen port numbers :param service: service from which to launch a server :param logger: instance of LogClient for logging :param host: (optinal) IP address of host :return: (tuple) instance of server created, port number (int) created on """ timeout = 0 while timeout < 1000: try: port = np.random.randint(1024, 49151) server = GenericServer( host=host, port=port, service=service ) timeout = 9999 except ConnectionRefusedError: msg_str = f'Failed to create update server with port {port}' if logger is None: print(msg_str) else: logger.warn(f'Failed to create update server with port {port}') timeout += 1 return server, port def setup_full_service(service_class, module, logger=None, host='localhost'): """ Creates a Service and a server, adds info to logger and starts server :param service_class: Service class to instantiate (not the instance itself) :param module: module to assign to service :param logger: instance of LogClient :param host: (str) hostname """ service = service_class() service.assign_module(module) server, port = create_server(service, logger=logger, host=host) logger.update_data(data=dict(port=port)) server.start() def value_to_bitval(value, bits=8, min=0, max=1): """ Converts a value to a bits-bit number for range min to max :param value: (float) value to convert :param bits: (int) number of bits of resolution :param min: (float) minimum of range :param max: (float) maximum of range :return: (int) value in bits-bit (e.g. 8-bit from 0 to 2^8-1) """ # Convert value to scale of 0 to 1 scaled_value = (value - min) / (max - min) return int(scaled_value * (2**bits - 1)) def bitval_to_value(bitval, bits=8, min=0, max=1): """ Converts a bits-bit number into its physical value for range from min to max :param bitval: (int) value in bits-bit (e.g. 8-bit from 0 to 2^8-1) :param bits: (int) number of bits of resolution :param min: (float) minimum of range :param max: (float) maximum of range :return: (float) physical value """ # Convert value to scale of 0 to 1 scaled_value = bitval / (2**bits - 1) return scaled_value * (max - min) + min def generate_widgets(widget_dict): """ Generates a list of widget names based on a supplied dictionary Assumes widgets follow a naming convention of "widget_base_name_i" where i is the index (this function is helpful when one has many widgets with the same base_name) :param widget_dict: (dict) containing widget base names as keys, and number of instances as values """ widgets = () for widget_name, instances in widget_dict.items(): widgets = widgets + ([f'{widget_name}_{instance+1}' for instance in range(instances)],) return widgets def generate_filepath(filename=None, directory=None, date_dir=False): """ Generates filepath for saving. :param dir: (str) directory to save to :param filename: (str) name of file to save :param date_dir: (bool) whether or not to use date sub-directory """ if directory is None: directory = os.getcwd() if filename is None: filename = str(datetime.now().strftime('%H_%M_%S')) else: filename += str(datetime.now().strftime('_%H_%M_%S')) if date_dir: filepath = get_dated_subdirectory_filepath(directory, filename) else: filepath = os.path.join(directory, filename) return filepath def generic_save(data, filename=None, directory=None, date_dir=False): """ Saves data as txt file :param dir: (str) directory to save to :param filename: (str) name of file to save :param date_dir: (bool) whether or not to use date sub-directory """ filepath = generate_filepath(filename, directory, date_dir) if not filepath.endswith('.txt'): filepath += '.txt' try: np.savetxt(filepath, data) except OSError: os.mkdir(directory) np.savetxt(filepath, data) except ValueError: # TODO: Potentially incorporate with logger and except hook pass def save_metadata(log, filename=None, directory=None, date_dir=False): """ Saves metadata stored in the logger :param log: (LogClient) :param dir: (str) directory to save to :param filename: (str) name of file to save :param date_dir: (bool) whether or not to use date sub-directory """ filepath = generate_filepath(f'{filename}_metadata', directory, date_dir) if not filepath.endswith('.json'): filepath += '.json' try: with open(filepath, 'w') as outfile: json.dump(log.get_metadata(), outfile, indent=4) except TypeError: log.warn('Did not save metadata') except OSError: log.warn('Did not save metadata') def plotly_figure_save(plotly_figure, filename=None, directory=None, date_dir=False): """ Saves plotly_figure as png :param dir: (str) directory to save to :param filename: (str) name of file to save :param date_dir: (bool) whether or not to use date sub-directory """ filepath = generate_filepath(filename, directory, date_dir) plotly_figure.write_image(f'{filepath}.png') def pyqtgraph_save(widget, filename=None, directory=None, date_dir=False): """ Saves pyqtgraph figure to png :param dir: (str) directory to save to :param filename: (str) name of file to save :param date_dir: (bool) whether or not to use date sub-directory """ filepath = generate_filepath(filename, directory, date_dir) + '.png' exporter = pg.exporters.ImageExporter(widget) exporter.export(filepath) def load_config(config_filename, folder_root=None, logger=None): """ Load configuration data stored in JSON format :config_filename: (str) Name of config. file, wihtout the .json ending :folder_root: (str) Name of folder where the config files are stored. If None, use pylabnet/config :logger: (object) Instance of logger. Returns data as python dictionary, or None if """ filepath = get_config_filepath(config_filename, folder_root) try: # Opening JSON file f = open(filepath) # returns JSON object as # a dictionary data = json.load(f) try: logger.info(f'Successfully loaded settings from {config_filename}.json.') # Dont raise error if logger doesn't exist except AttributeError: pass except FileNotFoundError: data = None try: logger.error(f'Settings file {filepath} not found.') except AttributeError: raise return data def get_config_directory(): """ Returns the config directory """ return os.path.abspath(os.path.join( os.path.dirname(__file__), '..', 'configs' )) def load_device_config(device, config, logger=None): """ Returns the device config directory :param device: (str) name of the device folder :param config: (str) name of the specific device config file :param logger: instance of LogHandler """ filepath = os.path.join(get_config_directory(), 'devices', device, f'{config}.json') try: f = open(filepath) # returns JSON object as # a dictionary data = json.load(f) try: logger.info(f'Successfully loaded settings from {config}.json.') # Dont raise error if logger doesn't exist except AttributeError: pass except FileNotFoundError: data = None try: logger.error(f'Settings file {filepath} not found.') except AttributeError: raise return data def load_script_config(script, config, logger=None): """ Returns the script config directory :param script: (str) name of the script folder :param config: (str) name of the specific script config file :param logger: instance of LogHandler """ filepath = os.path.join(get_config_directory(), 'scripts', script, f'{config}.json') try: f = open(filepath) # returns JSON object as # a dictionary data = json.load(f) try: logger.info(f'Successfully loaded settings from {config}.json.') # Dont raise error if logger doesn't exist except AttributeError: pass except FileNotFoundError: data = None try: logger.error(f'Settings file {filepath} not found.') except AttributeError: raise return data def get_config_filepath(config_filename, folder_root=None): """ Gets the config filepath :param config_filename: (str) name of configuration file to save. Can be an existing config file with other configuration parameters :folder_root: (str) Name of folder where the config files are stored. If None, use pylabnet/config """ if folder_root is None: filepath = os.path.abspath( os.path.join( os.path.dirname(__file__), '..', 'configs', f'{config_filename}.json' ) ) else: filepath = os.path.join(folder_root, f'{config_filename}.json') return filepath def get_gui_widgets(gui, **kwargs): """ Returns the GUI widget objects specified in kwargs :param gui: (Window) main window gui object containing other widgets :param kwargs: keyword arguments with argument name being the name of the widget (str, widget_name) and argument value an integer specifying the number of copies of that widget For more than 1 widget copy, assumes the name is assigned as widget_name_1, widget_name_2, etc. :return: (dict) dictionary with keywords as widget name and values as either individual widgets or list of widgets in case of multiple similarly named widgets """ widgets = dict() for widget_name, widget_number in kwargs.items(): # Check if it is multiple named widgets if widget_number > 1: widget_list = [] for widget_index in range(widget_number): widget_list.append(getattr( gui, f'{widget_name}_{widget_index+1}' )) widgets[widget_name] = widget_list else: widgets[widget_name] = getattr(gui, widget_name) return widgets def get_legend_from_graphics_view(legend_widget: pg.GraphicsView): """ Configures and returns a legend widget given a GraphicsView :param legend_widget: instance of GraphicsView object :return: pg.LegendItem """ legend = pg.LegendItem() view_box = pg.ViewBox() legend_widget.setCentralWidget(view_box) legend.setParentItem(view_box) legend.anchor((0, 0), (0, 0)) return legend def add_to_legend(legend: pg.LegendItem, curve: pg.PlotItem, curve_name): """ Adds a curve to a legend :param legend: pg.LegendItem to add to :param curve: pg.PlotItem containing the relevant curve :param curve_name: (str) name of curve """ legend.addItem( curve, ' - ' + curve_name ) def fill_2dlist(list_in): """ Turns a 2D list of irregular dimensions into a 2D numpy array Assuming only last dimension of list is incomplete :param list_in: input list :return: (numpy.ndarray) 2D array with missing elements padded as zeros """ list_manipulate = copy.deepcopy(list_in) if len(list_in) > 1: list_manipulate[-1] += [list_manipulate[-1][0]] * (len(list_manipulate[0]) - len(list_manipulate[-1])) return np.array(list_manipulate) def find_keys(input_dict, key_name): """Returns value of dictionary if key_name is either the key of the dict (normal dictionary lookup), or an element of a key that is a tuple or list. :input_dict: Dictionary to search. :key_name: Key to lookup. """ found = [] for k, v in input_dict.items(): if type(k) in [list, tuple, dict] and key_name in k: found.append(v) elif key_name == k: found.append(v) return found def find_client(clients, settings, client_type, client_config=None, logger=None): """ Finds a particular client from client dictionary passed from launcher :param clients: (dict) client dictionary :param settings: (dict) configuration dictionary for script :param client_type: (str) type of server (e.g. nidaqmx) :param client_config: (str, optional) name of config file for specific device only needed if multiple devices of the same type are used in this script :param logger: (LogHandler) """ found_clients = find_keys(clients, client_type) num_clients = len(found_clients) # If no matched clients, log an error if num_clients == 0: logger.error(f'Client {client_type} could not be found') # If > 1 matched clients, try to use the device config file to match elif num_clients > 1: if client_config is not None: device_settings = load_device_config(client_type, client_config, logger) # Search through clients using device IDs found_clients = find_keys(clients, device_settings['device_id']) # If single client, return, otherwise log error num_clients = len(found_clients) if num_clients == 1: return found_clients[0] elif num_clients == 0: logger.error(f'Client ID {device_settings["device_id"]} not found') else: logger.error(f'Multiple clients with client ID {device_settings["device_id"]} found') # If only 1 matched client, just return else: return found_clients[0] def launch_device_server(server, dev_config, log_ip, log_port, server_port, debug=False, logger=None): """ Launches a new device server :param server: (str) name of the server. Should be the directory in which the relevant server config file is located, and should have a corresponding launch file server.py in pylabnet.launchers.servers :param dev_config: (str) name of the config file for the server, which specifies the device_id and also any SSH info :param log_ip: (str) logger IP address :param log_port: (int) logger port number :param server_port: (int) port number of server to use :param debug: (bool) whether or not to debug the server launching :param logger: (LogHandler) """ # First load device config into dict config_dict = load_device_config(server, dev_config) if 'disabled' in config_dict and config_dict['disabled'] == 'True': msg_str = f'Device {server} launching is disabled' if logger is None: print(msg_str) else: logger.error(msg_str) return # Check if we should SSH in if 'ssh_config' in config_dict: ssh = True # Load SSH parameters ssh_params = config_dict['ssh_config'] hostname = ssh_params['hostname'] host_ip = ssh_params['ip'] # SSH in ssh = paramiko.SSHClient() ssh.load_system_host_keys() try: ssh.connect(host_ip, username=hostname, password=decouple.config('LOCALHOST_PW')) msg_str = f'Successfully connected via SSH to {hostname}@{host_ip}' if logger is None: print(msg_str) else: logger.info(msg_str) except TimeoutError: msg_str = f'Failed to setup SSH connection to {hostname}@{host_ip}' if logger is None: print(msg_str) else: logger.error(msg_str) # Set command arguments python_path = ssh_params['python_path'] launch_path = ssh_params['script_path'] start = "" # Kill processes if required if 'kill_all' in ssh_params and ssh_params['kill_all'] == "True": msg_str = f'Killing all python processes on {hostname}@{host_ip}' if logger is None: print(msg_str) else: logger.warn(msg_str) ssh.exec_command('taskkill /F /IM python.exe /T') else: ssh = False start = f'start "{server}_server, ' start += time.strftime("%Y-%m-%d, %H:%M:%S", time.gmtime()) start += '" ' host_ip = get_ip() python_path = sys.executable launch_path = os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'launchers', 'pylabnet_server.py' ) if server_port is None: server_port = np.random.randint(1024, 49151) # Build command() operating_system = get_os() if operating_system == 'Windows': cmd = f'{start}"{python_path}" "{launch_path}" ' elif operating_system == 'Linux': cmd = f'{python_path} {launch_path} ' else: raise UnsupportedOSException cmd += f'--logip {log_ip} --logport {log_port} ' cmd += f'--serverport {server_port} --server {server} ' cmd += f'--device_id "{config_dict["device_id"]}" ' cmd += f'--config {dev_config} --debug {debug}' if len(cmd) > 8191: if logger is not None: logger.error('Cmd too long! Server will not instantiate!') return else: if logger is not None: logger.info("Cmd len: " + str(len(cmd))) if ssh: msg_str = f'Executing command on {hostname}:\n{cmd}' if logger is None: print(msg_str) else: logger.info(msg_str) ssh.exec_command(cmd) else: subprocess.Popen(cmd, shell=True) return host_ip, server_port def launch_script(script, config, log_ip, log_port, debug_flag, server_debug_flag, num_clients, client_cmd, logger=None): """ Launches a script :param script: (str) name of the script. Should be the directory in which the relevant script config file is located :param config: (str) name of the config file for the script, which specifies the device server info and script launching directory (and also script parameters, if desired) :param log_ip: (str) logger IP address :param log_port: (int) logger port number :param debug_flag: (bool) whether or not to debug the script/launcher :param server_debug_flag: (bool) whether or not to debug on the server-launching level :param num_clients: (int) total number of clients to the log server :param client_cmd: (str) a series of commandline arguments specifying the client dictionary details for passing to the launcher """ launch_path = os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'launchers', 'launcher.py' ) # Build command operating_system = get_os() if operating_system == 'Windows': cmd = f'start "{script}_server, ' cmd += time.strftime("%Y-%m-%d, %H:%M:%S", time.gmtime()) cmd += f'" "{sys.executable}" "{launch_path}" ' elif operating_system == 'Linux': cmd = f'{sys.executable} {launch_path} ' else: raise UnsupportedOSException cmd += f'--logip {log_ip} --logport {log_port} ' cmd += f'--script {script} --num_clients {num_clients} ' cmd += f'--config {config} --debug {debug_flag} ' cmd += f'--server_debug {server_debug_flag}' cmd += client_cmd if len(cmd) > 8191: if logger is not None: logger.error('Cmd too long! Server will not instantiate!') return else: if logger is not None: logger.info("Cmd len: " + str(len(cmd))) subprocess.Popen(cmd, shell=True) def get_ip(): """ Returns a primary IP address :network_interface: (str) Used for Linux compatibility. Network interface of target IP address. Can be found out by running ifconfig. """ operating_system = get_os() if operating_system == 'Linux': import netifaces as ni if operating_system == 'Windows': # Retrieve subnet from config dict try: subnet = load_config('network_configuration')['subnet'] except: subnet = '140' ip_list = socket.gethostbyname_ex(socket.gethostname())[2] if len(ip_list) == 1: return ip_list[0] else: filtered_ip = [ip for ip in ip_list if ip.startswith(subnet)] if len(filtered_ip) == 0: return ip_list[0] else: return filtered_ip[0] elif operating_system == 'Linux': try: network_interface = load_config('network_config')['network_interface'] except AttributeError: return socket.gethostbyname(socket.gethostname()) import netifaces as ni ip = ni.ifaddresses(network_interface)[ni.AF_INET][0]['addr'] return ip def HDAWG_to_breakout_box(pin): if pin < 8 or (pin < 24 and pin >= 16): print("these pins are not mapped to the dio breakout box") return None else: if int(np.floor(pin / 4)) == 2: board = 0 if int(np.floor(pin / 4)) == 3: board = 1 if int(np.floor(pin / 4)) == 6: board = 2 if int(np.floor(pin / 4)) == 7: board = 3 channel = np.mod(pin, 4) return board, channel def breakout_box_to_HDAWG(board, channel): if board > 4 or channel > 4: print("non existing board or channel for dio breakout box") return None else: if board == 0: pin = 8 if board == 1: pin = 12 if board == 2: pin = 24 if board == 3: pin = 28 pin = pin + channel return pin def get_os(): """Read out operating system""" pf = platform.system() if pf == 'Linux': operating_system = 'Linux' elif pf == 'Windows': operating_system = 'Windows' elif pf == "Darwin": operating_system = 'mac_os' else: operating_system = pf return operating_system def set_graph_background(widget): """ Sets the background color for pyqtgraph related widgets to pylabnet style :param widget: base graph or legend widget """ try: widget.getViewBox().setBackgroundColor('#19232D') # In case this widget does ont have a parent viewBox except AttributeError: pass try: widget.setBackground('#19232D') # In case this widget does ont have a parent viewBox except AttributeError: pass class UnsupportedOSException(Exception): """Raised when the operating system is not supported."""
the-stack_0_25575
# # File that determines what each URL points to. This uses _Python_ regular # expressions, not Perl's. # # See: # http://diveintopython.org/regular_expressions/street_addresses.html#re.matching.2.3 # from django.conf.urls import url from .views import ( topic, list_commands, list_topics, list_recipes, display_org, command_help, lore_categories, ) urlpatterns = [ url(r"^recipes/", list_recipes, name="list_recipes"), url(r"^org/(?P<object_id>[\w\s]+)/$", display_org, name="display_org"), url(r"^commands/(?P<cmd_key>[\+@\_\w\s]+)/$", command_help, name="command_help"), url(r"^commands/$", list_commands, name="list_commands"), url(r"^(?P<object_key>[\w\s]+)/$", topic, name="topic"), url(r"^$", list_topics, name="list_topics"), url(r"^lore/(?P<object_id>[\w\s]+)/$", lore_categories, name="lore"), ]
the-stack_0_25576
# Copyright 2018 Martin Haesemeyer. All rights reserved. # # Licensed under the MIT license """ Script for quantitative correspondence between zebrafish and neural network activity clusters """ import numpy as np from scipy.signal import convolve import matplotlib.pyplot as pl import matplotlib as mpl import seaborn as sns import h5py from typing import Dict import pickle import os from global_defs import GlobalDefs import analysis as a import core as c from mo_types import MoTypes from Figure4 import mpath class RegionResults: """ This is an exact copy from analyzeSensMotor.py of ImagingAnalysis """ def __init__(self, name, activities, membership, regressors, original_labels, region_indices): self.name = name self.region_acts = activities self.region_mem = membership self.regressors = regressors self.regs_clust_labels = original_labels self.region_indices = region_indices self.full_averages = None # file definitions base_path = "./model_data/Adam_1e-4/sepInput_mixTrain/" paths_512 = [f+'/' for f in os.listdir(base_path) if "_3m512_" in f] def create_corr_mat(network, zfish, times, start_time, end_time=None): corr_mat = np.full((network.shape[1], zfish.shape[1]), np.nan) if end_time is None or end_time < start_time: valid = times >= start_time else: valid = np.logical_and(times <= end_time, times >= start_time) for n in range(corr_mat.shape[0]): net_act = network[valid, n] for z in range(corr_mat.shape[1]): zf_reg = zfish[valid, z] corr_mat[n, z] = np.corrcoef(net_act, zf_reg)[0, 1] return corr_mat def greedy_max_clust(corr_mat, threshold, col_names): """ Tries to find best correlated row above threshold for each column giving preference to making a match for each column even if this requires picking a worse match in another column :param corr_mat: The pairwise correlations :param threshold: The minimal correlation to consider :param col_names: The names of the columns :return: Dictionary with rows as keys and matched column names as values """ col_matches = np.full(corr_mat.shape[1], -2) work_mat = corr_mat.copy() work_mat[corr_mat < threshold] = 0 first_run = True while np.any(col_matches == -2): for col in range(corr_mat.shape[1]): if col_matches[col] > -2: continue if np.all(work_mat[:, col] == 0): # no possible assignment - mark as completed but un-assigned col_matches[col] = -1 continue if np.sum(work_mat[:, col] > 0) == 1: # if this is the only choice, assign and mark that row as used col_matches[col] = np.argmax(work_mat[:, col]) work_mat[col_matches[col], :] = 0 continue if not first_run: col_matches[col] = np.argmax(work_mat[:, col]) work_mat[col_matches[col], :] = 0 # indicate that all "loners" have already been assigned first_run = False # recode column matches into row matches row_matches = np.full(corr_mat.shape[0], -1) for ix, cm in enumerate(col_matches): if cm < 0: continue row_matches[cm] = ix return {ix: col_names[row_matches[ix]] if row_matches[ix] != -1 else ix for ix in range(corr_mat.shape[0])} if __name__ == "__main__": save_folder = "./DataFigures/ZF_ANN_Correspondence/" if not os.path.exists(save_folder): os.makedirs(save_folder) sns.reset_orig() mpl.rcParams['pdf.fonttype'] = 42 mo = MoTypes(False) std = c.GradientData.load_standards("gd_training_data.hdf5") ana = a.Analyzer(mo, std, "sim_store.hdf5", "activity_store.hdf5") # load zebrafish region results and create Rh56 regressor matrix for FastON, SlowON, FastOFF, SlowOFF result_labels = ["Rh6"] region_results = {} # type: Dict[str, RegionResults] analysis_file = h5py.File('regiondata.hdf5', 'r') for rl in result_labels: region_results[rl] = pickle.loads(np.array(analysis_file[rl])) analysis_file.close() rh_56_calcium = region_results["Rh6"].regressors[:, :-1] # the names of these regressors according to Haesemeyer et al., 2018 reg_names = ["Fast ON", "Slow ON", "Fast OFF", "Slow OFF"] # load and interpolate temperature stimulus dfile = h5py.File("stimFile.hdf5", 'r') tsin = np.array(dfile['sine_L_H_temp']) x = np.arange(tsin.size) # stored at 20 Hz ! xinterp = np.linspace(0, tsin.size, tsin.size * GlobalDefs.frame_rate // 20) temperature = np.interp(xinterp, x, tsin) dfile.close() # get activity data all_cells = [] all_ids = [] for i, p in enumerate(paths_512): cell_res, ids = ana.temperature_activity(mpath(base_path, p), temperature, i) all_cells.append(cell_res) all_ids.append(ids) all_cells = np.hstack(all_cells) all_ids = np.hstack(all_ids) # convolve activity with nuclear gcamp calcium kernel tau_on = 1.4 # seconds tau_on *= GlobalDefs.frame_rate # in frames tau_off = 2 # seconds tau_off *= GlobalDefs.frame_rate # in frames kframes = np.arange(10 * GlobalDefs.frame_rate) # 10 s long kernel kernel = 2 ** (-kframes / tau_off) * (1 - 2 ** (-kframes / tau_on)) kernel = kernel / kernel.sum() # convolve with our kernel for i in range(all_cells.shape[1]): all_cells[:, i] = convolve(all_cells[:, i], kernel, mode='full')[:all_cells.shape[0]] # load activity clusters from file or create if necessary clust_ids = a.cluster_activity(8, all_cells, "cluster_info.hdf5")[0] # create ANN cluster centroid matrix ann_cluster_centroids = np.zeros((all_cells.shape[0]//3, 8)) for i in range(8): centroid = np.mean(all_cells[:, clust_ids == i], 1) ann_cluster_centroids[:, i] = a.trial_average(centroid[:, None], 3).ravel() # interpolate fish calcium data to network time base ca_time = np.linspace(0, 165, rh_56_calcium.shape[0]) net_time = np.linspace(0, 165, ann_cluster_centroids.shape[0]) zf_cluster_centroids = np.zeros((net_time.size, rh_56_calcium.shape[1])) for i in range(rh_56_calcium.shape[1]): zf_cluster_centroids[:, i] = np.interp(net_time, ca_time, rh_56_calcium[:, i]) # perform all pairwise correlations between the network and zebrafish units during sine stimulus phase cm_sine = create_corr_mat(ann_cluster_centroids, zf_cluster_centroids, net_time, 60, 105) assignment = greedy_max_clust(cm_sine, 0.6, reg_names) assign_labels = [assignment[k] for k in range(cm_sine.shape[0])] # plot correlation matrix fig, ax = pl.subplots() sns.heatmap(cm_sine, vmin=-1, vmax=1, center=0, annot=True, xticklabels=reg_names, yticklabels=assign_labels, ax=ax, cmap="RdBu_r") ax.set_xlabel("Zebrafish cell types") ax.set_ylabel("ANN clusters") fig.tight_layout() fig.savefig(save_folder + "ZFish_ANN_Correspondence.pdf", type="pdf")
the-stack_0_25578
import os import numpy as np import time import torch from utilities import pad_truncate_sequence def move_data_to_device(x, device): if 'float' in str(x.dtype): x = torch.Tensor(x) elif 'int' in str(x.dtype): x = torch.LongTensor(x) else: return x return x.to(device) def append_to_dict(dict, key, value): if key in dict.keys(): dict[key].append(value) else: dict[key] = [value] def forward(model, x, batch_size): """Forward data to model in mini-batch. Args: model: object x: (N, segment_samples) batch_size: int Returns: output_dict: dict, e.g. { 'frame_output': (segments_num, frames_num, classes_num), 'onset_output': (segments_num, frames_num, classes_num), ...} """ output_dict = {} device = next(model.parameters()).device pointer = 0 total_segments = int(np.ceil(len(x) / batch_size)) while True: print('Segment {} / {}'.format(pointer, total_segments)) if pointer >= len(x): break batch_waveform = move_data_to_device(x[pointer : pointer + batch_size], device) pointer += batch_size with torch.no_grad(): model.eval() batch_output_dict = model(batch_waveform) for key in batch_output_dict.keys(): append_to_dict(output_dict, key, batch_output_dict[key].data.cpu().numpy()) for key in output_dict.keys(): output_dict[key] = np.concatenate(output_dict[key], axis=0) return output_dict
the-stack_0_25579
# imports # import splinter, beautifulsoup and chrome driver from splinter import Browser from bs4 import BeautifulSoup as soup import pandas as pd import datetime as dt from webdriver_manager.chrome import ChromeDriverManager # scrape all function def scrape_all(): #set up splinter executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) #goal is to return json with all the data, so it can be loaded into MongoDB #get info from the news page news_title, news_p = scrape_news(browser) # build dictionary using info from scrapes marsData = { "newsTitle": news_title, "newsParagraph": news_p, "featuredImage": scrape_feature_img(browser), "facts": scrape_facts_page(browser), "hemispheres": scrape_hemispheres(browser), "lastUpdated": dt.datetime.now() } # stop webdriver browser.quit() #display output return marsData # scrape mars news page def scrape_news(browser): # go to Mars Nasa news site url = 'https://redplanetscience.com/' browser.visit(url) # Optional delay for loading the page browser.is_element_present_by_css('div.list_text', wait_time=1) # convert browser html into soup object html = browser.html news_soup = soup(html, 'html.parser') slide_elem = news_soup.select_one('div.list_text') # grab title news_title = slide_elem.find('div', class_='content_title').get_text() # grab paragraph news_p = slide_elem.find('div', class_='article_teaser_body').get_text() #return title and news paragraph return news_title, news_p # scrape through featured image page def scrape_feature_img(browser): #visit url url = 'https://spaceimages-mars.com/' browser.visit(url) # find full image button full_image_link = browser.find_by_tag('button')[1] full_image_link.click() #parse resulting html with soup html = browser.html image_soup = soup(html, 'html.parser') #find image url img_url_rel = image_soup.find('img', class_='fancybox-image').get('src') #use base url to create absolute url img_url = f'https://spaceimages-mars.com/{img_url_rel}' #return image url return img_url # scrape through facts page def scrape_facts_page(browser): url = 'https://galaxyfacts-mars.com/' #browser.visit(url) tb=pd.read_html(url) table=tb[1] table.to_html() html = browser.html fact_soup = soup(html, 'html.parser') #facts location #factsLocation = fact_soup.find('div', class_="diamgram mt-4") #factsTable = factsLocation.find('table') # grab the html code for table #create empty string facts = "" #add text to empty string then return #facts += str(factsTable) return facts # scrape through hemispheres pages def scrape_hemispheres(browser): #base url url = 'https://marshemispheres.com/' browser.visit(url) hemisphere_image_urls = [] #set up loop for i in range(4): #loops through each page #hemisphere info dictionary hemisphereInfo = {} # We have to find the elements on each loop to avoid a stale element exception browser.find_by_css('a.product-item img')[i].click() # Next, we find the Sample image anchor tag and extract the href sample = browser.links.find_by_text('Sample').first hemisphereInfo["img_url"] = sample['href'] # Get Hemisphere title hemisphereInfo['title'] = browser.find_by_css('h2.title').text # Append hemisphere object to list hemisphere_image_urls.append(hemisphereInfo) # Finally, we navigate backwards browser.back() #return hemisphere urls with titles return hemisphere_image_urls # set up as flask app if __name__ == "__main__": print(scrape_all())
the-stack_0_25582
""" ========================================== ORB feature detector and binary descriptor ========================================== This example demonstrates the ORB feature detection and binary description algorithm. It uses an oriented FAST detection method and the rotated BRIEF descriptors. Unlike BRIEF, ORB is comparatively scale- and rotation-invariant while still employing the very efficient Hamming distance metric for matching. As such, it is preferred for real-time applications. """ from skimage import data from skimage import transform as tf from skimage.feature import (match_descriptors, corner_harris, corner_peaks, ORB, plot_matches) from skimage.color import rgb2gray import matplotlib.pyplot as plt img1 = rgb2gray(data.lena()) img2 = tf.rotate(img1, 180) tform = tf.AffineTransform(scale=(1.3, 1.1), rotation=0.5, translation=(0, -200)) img3 = tf.warp(img1, tform) descriptor_extractor = ORB(n_keypoints=200) descriptor_extractor.detect_and_extract(img1) keypoints1 = descriptor_extractor.keypoints descriptors1 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(img2) keypoints2 = descriptor_extractor.keypoints descriptors2 = descriptor_extractor.descriptors descriptor_extractor.detect_and_extract(img3) keypoints3 = descriptor_extractor.keypoints descriptors3 = descriptor_extractor.descriptors matches12 = match_descriptors(descriptors1, descriptors2, cross_check=True) matches13 = match_descriptors(descriptors1, descriptors3, cross_check=True) fig, ax = plt.subplots(nrows=2, ncols=1) plt.gray() plot_matches(ax[0], img1, img2, keypoints1, keypoints2, matches12) ax[0].axis('off') plot_matches(ax[1], img1, img3, keypoints1, keypoints3, matches13) ax[1].axis('off') plt.show()
the-stack_0_25583
import torch import matplotlib.pyplot as plt import numpy as np from src.utils import bmtm, bmtv, bmmt, bbmv from src.lie_algebra import SO3 class BaseNet(torch.nn.Module): def __init__(self, in_dim, out_dim, c0, dropout, ks, ds, momentum): super().__init__() self.in_dim = in_dim self.out_dim = out_dim # channel dimension c1 = 2*c0 c2 = 2*c1 c3 = 2*c2 # kernel dimension (odd number) k0 = ks[0] k1 = ks[1] k2 = ks[2] k3 = ks[3] # dilation dimension d0 = ds[0] d1 = ds[1] d2 = ds[2] # padding p0 = (k0-1) + d0*(k1-1) + d0*d1*(k2-1) + d0*d1*d2*(k3-1)#510,make up for dilation in NN # nets self.cnn = torch.nn.Sequential( torch.nn.ReplicationPad1d((p0, 0)), # padding at start torch.nn.Conv1d(in_dim, c0, k0, dilation=1), torch.nn.BatchNorm1d(c0, momentum=momentum), torch.nn.GELU(), torch.nn.Dropout(dropout), torch.nn.Conv1d(c0, c1, k1, dilation=d0), torch.nn.BatchNorm1d(c1, momentum=momentum), torch.nn.GELU(), torch.nn.Dropout(dropout), torch.nn.Conv1d(c1, c2, k2, dilation=d0*d1), torch.nn.BatchNorm1d(c2, momentum=momentum), torch.nn.GELU(), torch.nn.Dropout(dropout), torch.nn.Conv1d(c2, c3, k3, dilation=d0*d1*d2), torch.nn.BatchNorm1d(c3, momentum=momentum), torch.nn.GELU(), torch.nn.Dropout(dropout), torch.nn.Conv1d(c3, out_dim, 1, dilation=1), torch.nn.ReplicationPad1d((0, 0)), # no padding at end ) # for normalizing inputs self.mean_u = torch.nn.Parameter(torch.zeros(in_dim), requires_grad=False) self.std_u = torch.nn.Parameter(torch.ones(in_dim), requires_grad=False) def forward(self, us): u = self.norm(us).transpose(1, 2) y = self.cnn(u) return y def norm(self, us): return (us-self.mean_u)/self.std_u def set_normalized_factors(self, mean_u, std_u): self.mean_u = torch.nn.Parameter(mean_u.cuda(), requires_grad=False) self.std_u = torch.nn.Parameter(std_u.cuda(), requires_grad=False) class GyroNet(BaseNet): def __init__(self, in_dim, out_dim, c0, dropout, ks, ds, momentum, gyro_std): super().__init__(in_dim, out_dim, c0, dropout, ks, ds, momentum) gyro_std = torch.Tensor(gyro_std) self.gyro_std = torch.nn.Parameter(gyro_std, requires_grad=False) gyro_Rot = 0.05*torch.randn(3, 3).cuda() self.gyro_Rot = torch.nn.Parameter(gyro_Rot)# !! C, and set it as parameter to optimize? self.Id3 = torch.eye(3).cuda() def forward(self, us): ys = super().forward(us) Rots = (self.Id3 + self.gyro_Rot).expand(us.shape[0], us.shape[1], 3, 3) # random noise on Rot Rot_us = bbmv(Rots, us[:, :, :3]) return self.gyro_std*ys.transpose(1, 2) + Rot_us #fomula 5,(3,1)*()???
the-stack_0_25589
# 训练 from datetime import datetime import os import pickle import numpy as np import config import torch from torch import optim,nn from process.dataloader_classify import train_loader,train_data from process.dataloader_classify import test_loader,test_data from model.C3D_denseNeXt import DenseNet from tools.common_tools import show_confMat,plot_line,ModelTrainer # 由于训练不能一次性完成,所以选择加载模型文件的方式分步训练 if __name__ == '__main__': # =========================== mat_list_ = [] loss_rec = {"train": [], "valid": []} acc_rec = {"train": [], "valid": []} with open(r'D:\modelling/files/acc_classify_.json', 'rb') as file1: acc_rec = pickle.load(file1) with open(r'D:\modelling/files/loss_classify_.json', 'rb') as file2: loss_rec = pickle.load(file2) with open(r'D:\modelling/files/mat_classify_.json', 'rb') as file3: mat_list_ = pickle.load(file3) # ============================ model = DenseNet(n_input_channels=1, num_init_features=64, growth_rate=32, block_config=(3, 6, 12, 8), num_classes=4).to(config.device) # adam优化器加上动量吃显存 densenet 本身就吃显存 # 在前几个训练过程中观察到好像有振荡的行为 optimizer = optim.SGD(params=model.parameters(), lr=config.lr, momentum=0.9, weight_decay=1e-4) # 选择优化器 # optimizer = optim.Adam(model.parameters(), lr=config.lr,weight_decay=1e-4) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, gamma=0.1, milestones=config.milestones) model.load_state_dict(torch.load('D:\modelling/checkpoint/model23.pkl')) optimizer.load_state_dict(torch.load('D:\modelling/checkpoint/optimizer23.pkl')) # todo 训练的时候不一定加载最好的,但是测试要加载最好的 # todo 我们加载进入模型的那几个(字典)列表可能有重复 # todo 中间略过了个回合(训练时,先一个回合,中午6个回合,下午两个回合,这两个回合相当于中午那三个567回合白干了)对应于列表里的456到时候删除即可 # todo 发现准确率在之前总是忽高忽低,这可能是由于我们学习率设置太大的缘故 # todo 一般batch_size大的话,学习率才设置大一些 # 1702 777 1150 855 这个是平衡比例后的权重设计(0.38 + 0.17 + 0.26 + 0.19) # 为了增大红色预警召回率,增大后面。 loss_function = torch.nn.CrossEntropyLoss(weight=torch.from_numpy(np.array([0.19,0.17,0.26,0.19 * 2])).float())# 在这里加上weight loss_function.to(config.device) modelName = 'DenseNet' # Options: C3D or R2Plus1D or R3D # print("Device being used:", config.device) # TODO 需要修改的地方就是加载的模型 每运行一次都要进行修改 还有train/epoch best_acc = max(acc_rec["valid"]) best_epoch = 0 # 配置超参数 num_classes = 4 MAX_EPOCH = 300 # 参考论文中 4.2 Training BATCH_SIZE = 64 # 参考论文中 4.2 Training log_interval = 1 val_interval = 1 start_epoch = -1 class_names = ("none","yellow","orange","red") now_time = datetime.now() time_str = datetime.strftime(now_time, '%m-%d_%H-%M') log_dir = os.path.join(config.current_file, "results", time_str) if not os.path.exists(log_dir): os.makedirs(log_dir) # print(log_dir) for epoch in range(24, 30): # 走过多少个epoch,就从几开始,接下来就是7 # 训练(data_loader, model, loss_f, optimizer, epoch_id, device, max_epoch) loss_train, acc_train, mat_train = ModelTrainer.train(train_loader, model, loss_function, optimizer, epoch, config.device, MAX_EPOCH) loss_valid, acc_valid, mat_valid = ModelTrainer.valid(test_loader, model, loss_function, config.device) # 统计 mat_list_.append((mat_train,mat_valid)) # 统计用于绘图 print("Epoch[{:0>3}/{:0>3}] Train Acc: {:.2%} Valid Acc:{:.2%} Train loss:{:.4f} Valid loss:{:.4f} LR:{}".format( epoch + 1, MAX_EPOCH, acc_train, acc_valid, loss_train, loss_valid, optimizer.param_groups[0]["lr"])) # 看一下学习率是多少 # optimizer.param_groups[0]:长度为6的字典,包括[‘amsgrad’, ‘params’, ‘lr’, ‘betas’, ‘weight_decay’, ‘eps’]这6个参数 scheduler.step() # 更新学习率 # 绘图 loss_rec["train"].append(loss_train), loss_rec["valid"].append(loss_valid) acc_rec["train"].append(acc_train), acc_rec["valid"].append(acc_valid) # show_confMat(mat_train, class_names, "train", log_dir, verbose=epoch == MAX_EPOCH-1) # show_confMat(mat_valid, class_names, "valid", log_dir, verbose=epoch == MAX_EPOCH-1) # # plt_x = np.arange(1, epoch+2) # plot_line(plt_x, loss_rec["train"], plt_x, loss_rec["valid"], mode="loss", out_dir=log_dir) # plot_line(plt_x, acc_rec["train"], plt_x, acc_rec["valid"], mode="acc", out_dir=log_dir) if (epoch % 1 == 0) or (best_acc < max(acc_rec["valid"])): best_acc = max(acc_rec["valid"]) checkpoint = {"model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "epoch": epoch, "best_acc": best_acc} path_checkpoint = os.path.join(log_dir, "checkpoint_best{}.pkl".format(epoch)) torch.save(checkpoint, path_checkpoint) torch.save(model.state_dict(), "D:\modelling/checkpoint/model{}.pkl".format(epoch)) torch.save(optimizer.state_dict(),"D:\modelling/checkpoint/optimizer{}.pkl".format(epoch)) print(" done ~~~~ {}, best acc: {} in :{} epochs. ".format(datetime.strftime(datetime.now(), '%m-%d_%H-%M'), best_acc, best_epoch)) now_time = datetime.now() time_str = datetime.strftime(now_time, '%m-%d_%H-%M') print(time_str) # 考虑如何执行这段代码 # 1:首先不要设置过多的epoch,训练几个回合 # 2:训练完成以后,保存loss和acc # 3:在下次训练回合之前,读入之前保存的loss,acc,并且读入pkl文件 with open(r'D:\modelling/files/acc_classify_.json','wb') as file1: pickle.dump(acc_rec,file=file1) # wb 覆盖原先文件 with open(r'D:\modelling/files/loss_classify_.json', 'wb') as file2: pickle.dump(loss_rec, file=file2) with open(r'D:\modelling/files/mat_classify_.json', 'wb') as file3: pickle.dump(mat_list_, file=file3) # todo 建立一个map字典 以表示对应关系 # {'label_1': 0, 'label_2': 1, 'label_3': 2, 'label_4': 3} # ########################################################## # 之前我们选择的十分类模型其参数已经基本上训练的很好了,如何才能迁移到新的分类模型上呢? # 在这里保持我们的卷积层参数不变 其线性层发生了较大的变化 希望模型训练起来比较容易一点 # model_dict = model.state_dict() # 这里的 model 是我们新训练的模型,其参数仅仅是何凯明参数 # pretrained_dict = torch.load('D://modelling//checkpoint_classify//previeus//model32.pkl') # # 这是导入我们之前10分类模型的参数 这里的参数跟新模型有所不同 我们只保留卷积参数 # pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias', 'conv3.weight', 'conv3.bias', 'conv4a.weight', 'conv4a.bias', 'conv4b.weight', 'conv4b.bias', 'conv5a.weight', 'conv5a.bias', 'conv5b.weight', 'conv5b.bias', 'conv6a.weight', 'conv6a.bias', 'conv6b.weight', 'conv6b.bias']} # # 这一步是筛选 # model_dict.update(pretrained_dict) # 更新新模型卷积层的参数 # model.load_state_dict(model_dict) # 运行一次以后 就消掉 因为有更好的保存下来 # ##########################################################
the-stack_0_25590
from enum import Enum, auto class Colors: """Hex Color values""" Error = 0xE20000 ClemsonOrange = 0xF56600 class DesignatedChannels(Enum): """Enum that defines possible designated channels for the bot to use""" message_log = auto() moderation_log = auto() error_log = auto() startup_log = auto() user_join_log = auto() class DiscordLimits: MessageLength = 1900
the-stack_0_25591
"""yatube URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.contrib.flatpages import views from django.conf.urls.static import static from django.conf.urls import handler404, handler500 from . import settings urlpatterns = [ path("about/", include("django.contrib.flatpages.urls")), path("auth/", include("users.urls")), path("auth/", include("django.contrib.auth.urls")), path("admin/", admin.site.urls), path('about-us/', views.flatpage, {'url': '/about-us/'}, name='about'), path('terms/', views.flatpage, {'url': '/terms/'}, name='terms'), path('about-author/', views.flatpage, {'url': '/about-author/'}, name='about-author'), path('about-spec/', views.flatpage, {'url': '/about-spec/'}, name='about-spec'), path("", include("posts.urls")), ] handler404 = "posts.views.page_not_found" # noqa handler500 = "posts.views.server_error" # noqa if settings.DEBUG: import debug_toolbar urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += (path("__debug__/", include(debug_toolbar.urls)),)
the-stack_0_25594
import json import uuid from django.db.models import Q from django_filters.rest_framework import DjangoFilterBackend from rest_framework import status from rest_framework.decorators import api_view, permission_classes, action from django.http import Http404 from rest_framework.exceptions import PermissionDenied, ValidationError from rest_framework.filters import SearchFilter from rest_framework.generics import get_object_or_404 from rest_framework.permissions import AllowAny from rest_framework.response import Response from rest_framework.settings import api_settings from rest_framework.viewsets import ModelViewSet from rest_framework_csv import renderers from profiles.models import Organization, Membership from tasks.models import Task from api.serializers.submissions import SubmissionCreationSerializer, SubmissionSerializer, SubmissionFilesSerializer from competitions.models import Submission, Phase, CompetitionParticipant from leaderboards.strategies import put_on_leaderboard_by_submission_rule from leaderboards.models import SubmissionScore, Column, Leaderboard class SubmissionViewSet(ModelViewSet): queryset = Submission.objects.all().order_by('-pk') permission_classes = [] filter_backends = (DjangoFilterBackend, SearchFilter) filter_fields = ('phase__competition', 'phase', 'status') search_fields = ('data__data_file', 'description', 'name', 'owner__username') renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES + [renderers.CSVRenderer] def check_object_permissions(self, request, obj): if self.action in ['submission_leaderboard_connection']: if obj.is_specific_task_re_run: raise PermissionDenied("Cannot add task-specific submission re-runs to leaderboards.") return if self.request and self.request.method in ('POST', 'PUT', 'PATCH'): not_bot_user = self.request.user.is_authenticated and not self.request.user.is_bot if self.action in ['update_fact_sheet', 're_run_submission']: # get_queryset will stop us from re-running something we're not supposed to pass elif not self.request.user.is_authenticated or not_bot_user: try: if request.data.get('secret') is None or uuid.UUID(request.data.get('secret')) != obj.secret: raise PermissionDenied("Submission secrets do not match") except TypeError: raise ValidationError(f"Secret: ({request.data.get('secret')}) not a valid UUID") def get_serializer_class(self): if self.request and self.request.method in ('POST', 'PUT', 'PATCH'): return SubmissionCreationSerializer else: return SubmissionSerializer def get_queryset(self): # On GETs lets optimize the query to reduce DB calls qs = super().get_queryset() if self.request.method == 'GET': if not self.request.user.is_authenticated: return Submission.objects.none() if not self.request.user.is_superuser and not self.request.user.is_staff and not self.request.user.is_bot: # if you're the creator of the submission or a collaborator on the competition qs = qs.filter( Q(owner=self.request.user) | Q(phase__competition__created_by=self.request.user) | Q(phase__competition__collaborators__in=[self.request.user.pk]) ) qs = qs.select_related( 'phase', 'phase__competition', 'participant', 'participant__user', 'owner', 'data', ).prefetch_related( 'children', 'scores', 'scores__column', 'task', ) elif self.action in ['delete_many', 're_run_many_submissions']: try: pks = list(self.request.data) except TypeError as err: raise ValidationError(f'Error {err}') qs = qs.filter(pk__in=pks) if not self.request.user.is_superuser and not self.request.user.is_staff: if qs.filter( Q(owner=self.request.user) | Q(phase__competition__created_by=self.request.user) | Q(phase__competition__collaborators__in=[self.request.user.pk]) ) is not qs: ValidationError("Request Contained Submissions you don't have authorization for") if self.action in ['re_run_many_submissions']: print(f'debug {qs}') print(f'debug {qs.first().status}') qs = qs.filter(status__in=[Submission.FINISHED, Submission.FAILED, Submission.CANCELLED]) print(f'debug {qs}') return qs def create(self, request, *args, **kwargs): if 'organization' in request.data and request.data['organization'] is not None: organization = get_object_or_404(Organization, pk=request.data['organization']) try: membership = organization.membership_set.get(user=request.user) except Membership.DoesNotExist: raise ValidationError('You must be apart of a organization to submit for them') if membership.group not in Membership.PARTICIPANT_GROUP: raise ValidationError('You do not have participant permissions for this group') return super(SubmissionViewSet, self).create(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): submission = self.get_object() if request.user != submission.owner and not self.has_admin_permission(request.user, submission): raise PermissionDenied("Cannot interact with submission you did not make") self.perform_destroy(submission) return Response(status=status.HTTP_204_NO_CONTENT) @action(detail=False, methods=('DELETE',)) def delete_many(self, request, *args, **kwargs): qs = self.get_queryset() if not qs: return Response({'Submission search returned empty'}, status=status.HTTP_404_NOT_FOUND) qs.delete() return Response({}) def get_renderer_context(self): """We override this to pass some context to the CSV renderer""" context = super().get_renderer_context() # The CSV renderer will only include these fields in context["header"] # Human names for the fields context["labels"] = { 'owner': 'Owner', 'created_when': 'Created When', 'status': 'Status', 'phase_name': 'Phase', } context["header"] = [k for k in context["labels"].keys()] return context def has_admin_permission(self, user, submission): competition = submission.phase.competition return user.is_authenticated and (user.is_superuser or user in competition.all_organizers or user.is_bot) @action(detail=True, methods=('POST', 'DELETE')) def submission_leaderboard_connection(self, request, pk): submission = self.get_object() phase = submission.phase if not (request.user.is_superuser or request.user == submission.owner): if not phase.competition.collaborators.filter(pk=request.user.pk).exists(): raise Http404 if submission.phase.leaderboard.submission_rule in Leaderboard.AUTO_SUBMISSION_RULES and not request.user.is_superuser: raise ValidationError("Users are not allowed to edit the leaderboard on this Competition") if request.method == 'POST': # Removing any existing submissions on leaderboard unless multiples are allowed if submission.phase.leaderboard.submission_rule != Leaderboard.ADD_DELETE_MULTIPLE: Submission.objects.filter(phase=phase, owner=submission.owner).update(leaderboard=None) leaderboard = phase.leaderboard if submission.has_children: Submission.objects.filter(parent=submission).update(leaderboard=leaderboard) else: submission.leaderboard = leaderboard submission.save() if request.method == 'DELETE': if submission.phase.leaderboard.submission_rule not in [Leaderboard.ADD_DELETE, Leaderboard.ADD_DELETE_MULTIPLE]: raise ValidationError("You are not allowed to remove a submission on this phase") submission.leaderboard = None submission.save() Submission.objects.filter(parent=submission).update(leaderboard=None) return Response({}) @action(detail=True, methods=('GET',)) def cancel_submission(self, request, pk): submission = self.get_object() if not self.has_admin_permission(request.user, submission): if submission.owner != request.user: raise PermissionDenied(f'You do not have permission to cancel submissions') for child in submission.children.all(): child.cancel() canceled = submission.cancel() return Response({'canceled': canceled}) @action(detail=True, methods=('POST',)) def re_run_submission(self, request, pk): submission = self.get_object() task_key = request.query_params.get('task_key') if not self.has_admin_permission(request.user, submission): raise PermissionDenied('You do not have permission to re-run submissions') # We want to avoid re-running a submission that isn't finished yet, because the tasks associated # with the submission and maybe other important details have not been finalized yet. I.e. if you # rapidly click the "re-run submission" button, a submission may not have been processed by a # site worker and be in a funky state (race condition) -- this should resolve that if submission.status not in (Submission.FINISHED, Submission.FAILED, Submission.CANCELLED): raise PermissionDenied('Cannot request a re-run on a submission that has not finished processing.') # Rerun submission on different task. Will flag submission with is_specific_task_re_run=True if task_key: rerun_kwargs = { 'task': get_object_or_404(Task, key=task_key), } else: rerun_kwargs = {} new_sub = submission.re_run(**rerun_kwargs) return Response({'id': new_sub.id}) @action(detail=False, methods=('POST',)) def re_run_many_submissions(self, request): qs = self.get_queryset() for submission in qs: submission.re_run() return Response({}) @action(detail=True, methods=('GET',)) def get_details(self, request, pk): submission = super().get_object() if submission.phase.hide_output: if not self.has_admin_permission(self.request.user, submission): raise PermissionDenied("Cannot access submission details while phase marked to hide output.") data = SubmissionFilesSerializer(submission, context=self.get_serializer_context()).data return Response(data) @action(detail=True, methods=('GET',)) def toggle_public(self, request, pk): submission = super().get_object() if not self.has_admin_permission(request.user, submission): raise PermissionDenied(f'You do not have permission to publish this submissions') is_public = not submission.is_public submission.data.is_public = is_public submission.data.save(send=False) submission.is_public = is_public submission.save() return Response({}) @action(detail=True, methods=('PATCH',)) def update_fact_sheet(self, request, pk): if not isinstance(request.data, dict): if isinstance(request.data, str): try: request_data = json.loads(request.data) except ValueError: return ValidationError('Invalid JSON') else: request_data = request.data request_submission = super().get_object() top_level_submission = request_submission.parent or request_submission # Validate fact_sheet using serializer data = self.get_serializer(top_level_submission).data data['fact_sheet_answers'] = request.data serializer = self.get_serializer(data=data, instance=top_level_submission) serializer.is_valid(raise_exception=True) # Use Queryset to update Submissions Submission.objects.filter(Q(parent=top_level_submission) | Q(id=top_level_submission.id)).update(fact_sheet_answers=request_data) return Response({}) @api_view(['POST']) @permission_classes((AllowAny,)) # permissions are checked via the submission secret def upload_submission_scores(request, submission_pk): submission = get_object_or_404(Submission, pk=submission_pk) submission_rule = submission.phase.leaderboard.submission_rule try: if uuid.UUID(request.data.get("secret")) != submission.secret: raise PermissionDenied("Submission secrets do not match") except TypeError: raise ValidationError("Secret not a valid UUID") if "scores" not in request.data: raise ValidationError("'scores' required.") competition_columns = submission.phase.leaderboard.columns.values_list('key', flat=True) for column_key, score in request.data.get("scores").items(): if column_key not in competition_columns: continue score = SubmissionScore.objects.create( score=score, column=Column.objects.get(leaderboard=submission.phase.leaderboard, key=column_key) ) submission.scores.add(score) if submission.parent: submission.parent.scores.add(score) submission.parent.calculate_scores() else: submission.calculate_scores() put_on_leaderboard_by_submission_rule(request, submission_pk, submission_rule) return Response() @api_view(('GET',)) def can_make_submission(request, phase_id): phase = get_object_or_404(Phase, id=phase_id) user_is_approved = phase.competition.participants.filter( user=request.user, status=CompetitionParticipant.APPROVED ).exists() if request.user.is_bot and phase.competition.allow_robot_submissions and not user_is_approved: CompetitionParticipant.objects.create( user=request.user, competition=phase.competition, status=CompetitionParticipant.APPROVED ) user_is_approved = True if user_is_approved: can_make_submission, reason_why_not = phase.can_user_make_submissions(request.user) else: can_make_submission, reason_why_not = False, "User not approved to participate in this competition" return Response({ "can": can_make_submission, "reason": reason_why_not, })
the-stack_0_25595
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2021 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Provides support utility for rescaling data.""" from typing import Callable, List, Optional, Tuple, Union import numpy as np from iris.cube import Cube from numpy import ndarray def rescale( data: ndarray, data_range: Optional[Union[Tuple[float, float], List[float]]] = None, scale_range: Union[Tuple[float, float], List[float]] = (0.0, 1.0), clip: bool = False, ) -> ndarray: """ Rescale data array so that data_min => scale_min and data_max => scale max. All adjustments are linear Args: data: Source values data_range: List containing two floats Lowest and highest source value to rescale. Default value of None is converted to [min(data), max(data)] scale_range: List containing two floats Lowest and highest value after rescaling. Defaults to (0., 1.) clip: If True, points where data were outside the scaling range will be set to the scale min or max appropriately. Default is False which continues the scaling beyond min and max. Returns: Output array of scaled data. Has same shape as data. """ data_min = np.min(data) if data_range is None else data_range[0] data_max = np.max(data) if data_range is None else data_range[1] scale_min = scale_range[0] scale_max = scale_range[1] # Range check if data_min == data_max: raise ValueError( "Cannot rescale a zero input range ({} -> {})".format(data_min, data_max) ) if scale_min == scale_max: raise ValueError( "Cannot rescale a zero output range ({} -> {})".format(scale_min, scale_max) ) result = ( (data - data_min) * (scale_max - scale_min) / (data_max - data_min) ) + scale_min if clip: result = np.clip(result, scale_min, scale_max) return result def apply_double_scaling( data_cube: Cube, scaled_cube: Cube, data_vals: Tuple[float, float, float], scaling_vals: Tuple[float, float, float], combine_function: Callable[[ndarray, ndarray], ndarray] = np.minimum, ) -> ndarray: """ From data_cube, an array of limiting values is created based on a linear rescaling from three data_vals to three scaling_vals. The three values refer to a lower-bound, a mid-point and an upper-bound. This rescaled data_cube is combined with scaled_cube to produce an array containing either the higher or lower value as needed. Args: data_cube: Data from which to create a rescaled data array scaled_cube: Data already in the rescaled frame of reference which will be combined with the rescaled data_cube using the combine_function. data_vals: Lower, mid and upper points to rescale data_cube from scaling_vals: Lower, mid and upper points to rescale data_cube to combine_function: Function that takes two arrays of the same shape and returns one array of the same shape. Expected to be numpy.minimum (default) or numpy.maximum. Returns: Output data from data_cube after rescaling and combining with scaled_cube. This array will have the same dimensions as scaled_cube. """ # Where data are below the specified mid-point (data_vals[1]): # Set rescaled_data to be a rescaled value between the first and mid-point # Elsewhere # Set rescaled_data to be a rescaled value between the mid- and last point rescaled_data = np.where( data_cube.data < data_vals[1], rescale( data_cube.data, data_range=(data_vals[0], data_vals[1]), scale_range=(scaling_vals[0], scaling_vals[1]), clip=True, ), rescale( data_cube.data, data_range=(data_vals[1], data_vals[2]), scale_range=(scaling_vals[1], scaling_vals[2]), clip=True, ), ) # Ensure scaled_cube is no larger or smaller than the rescaled_data: return combine_function(scaled_cube.data, rescaled_data)
the-stack_0_25596
# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. import torch import torch_mlir # RUN: %PYTHON %s | npcomp-opt | FileCheck %s mb = torch_mlir.ModuleBuilder() N = 3 Cin = 16 Cout = 4 w = 10 h = 10 model = torch.nn.Conv2d(Cin, Cout, (3,3)) ref_model = torch.nn.Conv2d(Cin, Cout, (3,3)) ref_model.weight.data = model.weight.clone() ref_model.bias.data = model.bias.clone() softmax = torch.nn.LogSoftmax(dim=1) loss = torch.nn.NLLLoss() tensor = torch.randn(N, Cin, h, w) with mb.capture_function("conv2d_fwd", [tensor]) as f: result = model(tensor) f.returns([result]) # Generated with mlir/utils/generate-test-checks.py # This is very deterministic and a change test is appropriate. # CHECK-LABEL: func @conv2d_fwd( # CHECK-SAME: %[[VAL_0:.*]]: !numpy.ndarray<[3,16,10,10]:f32>) -> !numpy.ndarray<[3,4,8,8]:f32> { # CHECK: %[[VAL_1:.*]] = constant opaque<"", "0xDEADBEEF"> : tensor<4x16x3x3xf32> # CHECK: %[[VAL_2:.*]] = constant opaque<"", "0xDEADBEEF"> : tensor<4xf32> # CHECK: %[[VAL_3:.*]] = constant 1 : i64 # CHECK: %[[VAL_4:.*]] = constant 1 : i64 # CHECK: %[[VAL_5:.*]] = basicpy.build_list %[[VAL_3]], %[[VAL_4]] : (i64, i64) -> !basicpy.ListType # CHECK: %[[VAL_6:.*]] = constant 0 : i64 # CHECK: %[[VAL_7:.*]] = constant 0 : i64 # CHECK: %[[VAL_8:.*]] = basicpy.build_list %[[VAL_6]], %[[VAL_7]] : (i64, i64) -> !basicpy.ListType # CHECK: %[[VAL_9:.*]] = constant 1 : i64 # CHECK: %[[VAL_10:.*]] = constant 1 : i64 # CHECK: %[[VAL_11:.*]] = basicpy.build_list %[[VAL_9]], %[[VAL_10]] : (i64, i64) -> !basicpy.ListType # CHECK: %[[VAL_12:.*]] = constant false # CHECK: %[[VAL_13:.*]] = constant 0 : i64 # CHECK: %[[VAL_14:.*]] = constant 0 : i64 # CHECK: %[[VAL_15:.*]] = basicpy.build_list %[[VAL_13]], %[[VAL_14]] : (i64, i64) -> !basicpy.ListType # CHECK: %[[VAL_16:.*]] = constant 1 : i64 # CHECK: %[[VAL_17:.*]] = numpy.create_array_from_tensor %[[VAL_1]] : (tensor<4x16x3x3xf32>) -> !numpy.ndarray<[4,16,3,3]:f32> # CHECK: %[[VAL_18:.*]] = numpy.create_array_from_tensor %[[VAL_2]] : (tensor<4xf32>) -> !numpy.ndarray<[4]:f32> # CHECK: %[[VAL_19:.*]] = torch.kernel_call "aten::convolution" %[[VAL_0]], %[[VAL_17]], %[[VAL_18]], %[[VAL_5]], %[[VAL_8]], %[[VAL_11]], %[[VAL_12]], %[[VAL_15]], %[[VAL_16]] : (!numpy.ndarray<[3,16,10,10]:f32>, !numpy.ndarray<[4,16,3,3]:f32>, !numpy.ndarray<[4]:f32>, !basicpy.ListType, !basicpy.ListType, !basicpy.ListType, i1, !basicpy.ListType, i64) -> !numpy.ndarray<[3,4,8,8]:f32> # CHECK: return %[[VAL_19]] : !numpy.ndarray<[3,4,8,8]:f32> # CHECK: } mb.module.operation.print(large_elements_limit=2) #print(mb.module)
the-stack_0_25598
# Webhooks for external integrations. import json import os from typing import Any, Dict from django.http import HttpRequest, HttpResponse from zerver.decorator import api_key_only_webhook_view from zerver.lib.request import REQ, has_request_variables from zerver.lib.response import json_success from zerver.lib.webhooks.common import check_send_webhook_message from zerver.models import UserProfile MESSAGE_TEMPLATE = ( 'Author: {}\n' 'Build status: {} {}\n' 'Details: [build log]({})\n' 'Comment: {}' ) @api_key_only_webhook_view('Gocd') @has_request_variables def api_gocd_webhook(request: HttpRequest, user_profile: UserProfile, payload: Dict[str, Any]=REQ(argument_type='body'), ) -> HttpResponse: modifications = payload['build_cause']['material_revisions'][0]['modifications'][0] result = payload['stages'][0]['result'] material = payload['build_cause']['material_revisions'][0]['material'] if result == "Passed": emoji = ':thumbs_up:' elif result == "Failed": emoji = ':thumbs_down:' build_details_file = os.path.join(os.path.dirname(__file__), 'fixtures/build_details.json') with open(build_details_file) as f: contents = json.load(f) build_link = contents["build_details"]["_links"]["pipeline"]["href"] body = MESSAGE_TEMPLATE.format( modifications['user_name'], result, emoji, build_link, modifications['comment'], ) branch = material['description'].split(",") topic = branch[0].split(" ")[1] check_send_webhook_message(request, user_profile, topic, body) return json_success()
the-stack_0_25602
from datetime import datetime, timedelta from provider.utils import content_size_match URL = "http://burgerking.hu/offers" IMG_URL = "http://burgerking.hu/sites/burgerking.hu/files/HetkozNapiBKmenu_Mindentermek_lista_1000x550px.jpg" burgerking_menu = { 0: "Whopper", 1: "Big King", 2: "Western Whopper", 3: "Whopper", 4: "Deluxe csirkemell" } def getMenu(today): day = today.weekday() IMG_SIZE = "181621" if content_size_match(IMG_URL, IMG_SIZE) and day < 5: menu = f"Akciós napi menü: {burgerking_menu[day]}" else: menu = '' return menu menu = { 'name': 'Burger King', 'id': 'bk', 'url': URL, 'get': getMenu, 'ttl': timedelta(hours=12), 'cards': ['szep', 'erzs'] }
the-stack_0_25605
import pytest from hyperopt import STATUS_OK from hyperas.distributions import choice, uniform import six.moves.cPickle as pickle from elephas.hyperparam import HyperParamModel pytest.mark.usefixtures("spark_context") def data(): from keras.datasets import mnist from keras.utils import np_utils (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000, 784) X_test = X_test.reshape(10000, 784) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 nb_classes = 10 Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) return X_train, Y_train, X_test, Y_test def model(X_train, Y_train, X_test, Y_test): from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import RMSprop model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense({{choice([256, 512, 1024])}})) model.add(Activation('relu')) model.add(Dropout({{uniform(0, 1)}})) model.add(Dense(10)) model.add(Activation('softmax')) rms = RMSprop() model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['acc']) model.fit(X_train, Y_train, batch_size={{choice([64, 128])}}, epochs=1, verbose=2, validation_data=(X_test, Y_test)) score, acc = model.evaluate(X_test, Y_test, verbose=0) print('Test accuracy:', acc) return {'loss': -acc, 'status': STATUS_OK, 'model': model.to_yaml(), 'weights': pickle.dumps(model.get_weights())} def test_hyper_param_model(spark_context): hyperparam_model = HyperParamModel(spark_context) hyperparam_model.minimize(model=model, data=data, max_evals=1)
the-stack_0_25607
import glob import re import os.path as osp from ..utils.data import BaseImageDataset class SYSU(BaseImageDataset): """ Market1501 Reference: Zheng et al. Scalable Person Re-identification: A Benchmark. ICCV 2015. URL: http://www.liangzheng.org/Project/project_reid.html Dataset statistics: # identities: 1501 (+1 for background) # images: 12936 (train) + 3368 (query) + 15913 (gallery) """ dataset_dir = 'sysu_reid' def __init__(self, root='/home/haoluo/data', verbose=True, **kwargs): super(SYSU, self).__init__() self.dataset_dir = osp.join(root, self.dataset_dir) self.train_dir = osp.join(self.dataset_dir, 'train_raw') self.query_dir = osp.join(self.dataset_dir, 'query_raw') self.gallery_dir = osp.join(self.dataset_dir, 'test_raw') self._check_before_run() train = self._process_dir(self.train_dir, relabel=True) query = self._process_dir(self.query_dir, relabel=False) gallery = self._process_dir(self.gallery_dir, relabel=False) if verbose: print("=> SYSU loaded") self.print_dataset_statistics(train, query, gallery) self.train = train self.query = query self.gallery = gallery self.num_train_pids, self.num_train_imgs, self.num_train_cams = self.get_imagedata_info(self.train) self.num_query_pids, self.num_query_imgs, self.num_query_cams = self.get_imagedata_info(self.query) self.num_gallery_pids, self.num_gallery_imgs, self.num_gallery_cams = self.get_imagedata_info(self.gallery) def _check_before_run(self): """Check if all files are available before going deeper""" if not osp.exists(self.dataset_dir): raise RuntimeError("'{}' is not available".format(self.dataset_dir)) if not osp.exists(self.train_dir): raise RuntimeError("'{}' is not available".format(self.train_dir)) if not osp.exists(self.query_dir): raise RuntimeError("'{}' is not available".format(self.query_dir)) if not osp.exists(self.gallery_dir): raise RuntimeError("'{}' is not available".format(self.gallery_dir)) def _process_dir(self, dir_path, relabel=False): img_paths = glob.glob(osp.join(dir_path, '*.jpg')) pattern = re.compile(r'pid_([-\d]+)_s([-\d]+)') pid_container = set() for img_path in img_paths: pid, _ = map(int, pattern.search(img_path).groups()) if pid == -1: continue # junk images are just ignored pid_container.add(pid) pid2label = {pid: label for label, pid in enumerate(pid_container)} dataset = [] for img_path in img_paths: pid, camid = map(int, pattern.search(img_path).groups()) if pid == -1: continue # junk images are just ignored assert 0 <= pid <= 5531 # pid == 0 means background if relabel: pid = pid2label[pid] dataset.append((img_path, pid, camid)) return dataset
the-stack_0_25608
""" This file is very long and growing, but it was decided to not split it yet, as it's still manageable (2020-03-17, ~1.1k LoC). See gh-31989 Instead of splitting it was decided to define sections here: - Configuration / Settings - Autouse fixtures - Common arguments - Missing values & co. - Classes - Indices - Series' - DataFrames - Operators & Operations - Data sets/files - Time zones - Dtypes - Misc """ from collections import abc from datetime import ( date, datetime, time, timedelta, timezone, ) from decimal import Decimal import operator import os from dateutil.tz import ( tzlocal, tzutc, ) import hypothesis from hypothesis import strategies as st import numpy as np import pytest from pytz import ( FixedOffset, utc, ) import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import ( DatetimeTZDtype, IntervalDtype, ) import pandas as pd from pandas import ( DataFrame, Interval, Period, Series, Timedelta, Timestamp, ) import pandas._testing as tm from pandas.core import ops from pandas.core.indexes.api import ( Index, MultiIndex, ) try: import pyarrow as pa except ImportError: has_pyarrow = False else: del pa has_pyarrow = True zoneinfo = None if pd.compat.PY39: # Import "zoneinfo" could not be resolved (reportMissingImports) import zoneinfo # type: ignore[no-redef] # Until https://github.com/numpy/numpy/issues/19078 is sorted out, just suppress suppress_npdev_promotion_warning = pytest.mark.filterwarnings( "ignore:Promotion of numbers and bools:FutureWarning" ) # ---------------------------------------------------------------- # Configuration / Settings # ---------------------------------------------------------------- # pytest def pytest_addoption(parser): parser.addoption("--skip-slow", action="store_true", help="skip slow tests") parser.addoption("--skip-network", action="store_true", help="skip network tests") parser.addoption("--skip-db", action="store_true", help="skip db tests") parser.addoption( "--run-high-memory", action="store_true", help="run high memory tests" ) parser.addoption("--only-slow", action="store_true", help="run only slow tests") parser.addoption( "--strict-data-files", action="store_true", help="Fail if a test is skipped for missing data file.", ) def ignore_doctest_warning(item: pytest.Item, path: str, message: str) -> None: """Ignore doctest warning. Parameters ---------- item : pytest.Item pytest test item. path : str Module path to Python object, e.g. "pandas.core.frame.DataFrame.append". A warning will be filtered when item.name ends with in given path. So it is sufficient to specify e.g. "DataFrame.append". message : str Message to be filtered. """ if item.name.endswith(path): item.add_marker(pytest.mark.filterwarnings(f"ignore:{message}")) def pytest_collection_modifyitems(items, config): skip_slow = config.getoption("--skip-slow") only_slow = config.getoption("--only-slow") skip_network = config.getoption("--skip-network") skip_db = config.getoption("--skip-db") marks = [ (pytest.mark.slow, "slow", skip_slow, "--skip-slow"), (pytest.mark.network, "network", skip_network, "--network"), (pytest.mark.db, "db", skip_db, "--skip-db"), ] # Warnings from doctests that can be ignored; place reason in comment above. # Each entry specifies (path, message) - see the ignore_doctest_warning function ignored_doctest_warnings = [ # Deprecations where the docstring will emit a warning ("DataFrame.append", "The frame.append method is deprecated"), ("Series.append", "The series.append method is deprecated"), ("dtypes.common.is_categorical", "is_categorical is deprecated"), ("Categorical.replace", "Categorical.replace is deprecated"), ("dtypes.common.is_extension_type", "'is_extension_type' is deprecated"), ("Index.is_mixed", "Index.is_mixed is deprecated"), ("MultiIndex._is_lexsorted", "MultiIndex.is_lexsorted is deprecated"), # Docstring divides by zero to show behavior difference ("missing.mask_zero_div_zero", "divide by zero encountered"), # Docstring demonstrates the call raises a warning ("_validators.validate_axis_style_args", "Use named arguments"), ] for item in items: if config.getoption("--doctest-modules") or config.getoption( "--doctest-cython", default=False ): # autouse=True for the add_doctest_imports can lead to expensive teardowns # since doctest_namespace is a session fixture item.add_marker(pytest.mark.usefixtures("add_doctest_imports")) for path, message in ignored_doctest_warnings: ignore_doctest_warning(item, path, message) # mark all tests in the pandas/tests/frame directory with "arraymanager" if "/frame/" in item.nodeid: item.add_marker(pytest.mark.arraymanager) item.add_marker(suppress_npdev_promotion_warning) for (mark, kwd, skip_if_found, arg_name) in marks: if kwd in item.keywords: # If we're skipping, no need to actually add the marker or look for # other markers if skip_if_found: item.add_marker(pytest.mark.skip(f"skipping due to {arg_name}")) break item.add_marker(mark) if only_slow and "slow" not in item.keywords: item.add_marker(pytest.mark.skip("skipping due to --only-slow")) # Hypothesis hypothesis.settings.register_profile( "ci", # Hypothesis timing checks are tuned for scalars by default, so we bump # them from 200ms to 500ms per test case as the global default. If this # is too short for a specific test, (a) try to make it faster, and (b) # if it really is slow add `@settings(deadline=...)` with a working value, # or `deadline=None` to entirely disable timeouts for that test. # 2022-02-09: Changed deadline from 500 -> None. Deadline leads to # non-actionable, flaky CI failures (# GH 24641, 44969, 45118, 44969) deadline=None, suppress_health_check=(hypothesis.HealthCheck.too_slow,), ) hypothesis.settings.load_profile("ci") # Registering these strategies makes them globally available via st.from_type, # which is use for offsets in tests/tseries/offsets/test_offsets_properties.py for name in "MonthBegin MonthEnd BMonthBegin BMonthEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds(cls, n=st.integers(-99, 99), normalize=st.booleans()) ) for name in "YearBegin YearEnd BYearBegin BYearEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds( cls, n=st.integers(-5, 5), normalize=st.booleans(), month=st.integers(min_value=1, max_value=12), ), ) for name in "QuarterBegin QuarterEnd BQuarterBegin BQuarterEnd".split(): cls = getattr(pd.tseries.offsets, name) st.register_type_strategy( cls, st.builds( cls, n=st.integers(-24, 24), normalize=st.booleans(), startingMonth=st.integers(min_value=1, max_value=12), ), ) @pytest.fixture def add_doctest_imports(doctest_namespace): """ Make `np` and `pd` names available for doctests. """ doctest_namespace["np"] = np doctest_namespace["pd"] = pd # ---------------------------------------------------------------- # Autouse fixtures # ---------------------------------------------------------------- @pytest.fixture(autouse=True) def configure_tests(): """ Configure settings for all tests and test modules. """ pd.set_option("chained_assignment", "raise") # ---------------------------------------------------------------- # Common arguments # ---------------------------------------------------------------- @pytest.fixture(params=[0, 1, "index", "columns"], ids=lambda x: f"axis={repr(x)}") def axis(request): """ Fixture for returning the axis numbers of a DataFrame. """ return request.param axis_frame = axis @pytest.fixture(params=[1, "columns"], ids=lambda x: f"axis={repr(x)}") def axis_1(request): """ Fixture for returning aliases of axis 1 of a DataFrame. """ return request.param @pytest.fixture(params=[True, False, None]) def observed(request): """ Pass in the observed keyword to groupby for [True, False] This indicates whether categoricals should return values for values which are not in the grouper [False / None], or only values which appear in the grouper [True]. [None] is supported for future compatibility if we decide to change the default (and would need to warn if this parameter is not passed). """ return request.param @pytest.fixture(params=[True, False, None]) def ordered(request): """ Boolean 'ordered' parameter for Categorical. """ return request.param @pytest.fixture(params=["first", "last", False]) def keep(request): """ Valid values for the 'keep' parameter used in .duplicated or .drop_duplicates """ return request.param @pytest.fixture(params=["both", "neither", "left", "right"]) def inclusive_endpoints_fixture(request): """ Fixture for trying all interval 'inclusive' parameters. """ return request.param @pytest.fixture(params=["left", "right", "both", "neither"]) def closed(request): """ Fixture for trying all interval closed parameters. """ return request.param @pytest.fixture(params=["left", "right", "both", "neither"]) def other_closed(request): """ Secondary closed fixture to allow parametrizing over all pairs of closed. """ return request.param @pytest.fixture( params=[ None, "gzip", "bz2", "zip", "xz", "tar", pytest.param("zstd", marks=td.skip_if_no("zstandard")), ] ) def compression(request): """ Fixture for trying common compression types in compression tests. """ return request.param @pytest.fixture( params=[ "gzip", "bz2", "zip", "xz", "tar", pytest.param("zstd", marks=td.skip_if_no("zstandard")), ] ) def compression_only(request): """ Fixture for trying common compression types in compression tests excluding uncompressed case. """ return request.param @pytest.fixture(params=[True, False]) def writable(request): """ Fixture that an array is writable. """ return request.param @pytest.fixture(params=["inner", "outer", "left", "right"]) def join_type(request): """ Fixture for trying all types of join operations. """ return request.param @pytest.fixture(params=["nlargest", "nsmallest"]) def nselect_method(request): """ Fixture for trying all nselect methods. """ return request.param # ---------------------------------------------------------------- # Missing values & co. # ---------------------------------------------------------------- @pytest.fixture(params=tm.NULL_OBJECTS, ids=lambda x: type(x).__name__) def nulls_fixture(request): """ Fixture for each null type in pandas. """ return request.param nulls_fixture2 = nulls_fixture # Generate cartesian product of nulls_fixture @pytest.fixture(params=[None, np.nan, pd.NaT]) def unique_nulls_fixture(request): """ Fixture for each null type in pandas, each null type exactly once. """ return request.param # Generate cartesian product of unique_nulls_fixture: unique_nulls_fixture2 = unique_nulls_fixture @pytest.fixture(params=tm.NP_NAT_OBJECTS, ids=lambda x: type(x).__name__) def np_nat_fixture(request): """ Fixture for each NaT type in numpy. """ return request.param # Generate cartesian product of np_nat_fixture: np_nat_fixture2 = np_nat_fixture # ---------------------------------------------------------------- # Classes # ---------------------------------------------------------------- @pytest.fixture(params=[DataFrame, Series]) def frame_or_series(request): """ Fixture to parametrize over DataFrame and Series. """ return request.param # error: List item 0 has incompatible type "Type[Index]"; expected "Type[IndexOpsMixin]" @pytest.fixture( params=[Index, Series], ids=["index", "series"] # type: ignore[list-item] ) def index_or_series(request): """ Fixture to parametrize over Index and Series, made necessary by a mypy bug, giving an error: List item 0 has incompatible type "Type[Series]"; expected "Type[PandasObject]" See GH#29725 """ return request.param # Generate cartesian product of index_or_series fixture: index_or_series2 = index_or_series @pytest.fixture(params=[Index, Series, pd.array], ids=["index", "series", "array"]) def index_or_series_or_array(request): """ Fixture to parametrize over Index, Series, and ExtensionArray """ return request.param @pytest.fixture(params=[Index, Series, DataFrame, pd.array], ids=lambda x: x.__name__) def box_with_array(request): """ Fixture to test behavior for Index, Series, DataFrame, and pandas Array classes """ return request.param box_with_array2 = box_with_array @pytest.fixture def dict_subclass(): """ Fixture for a dictionary subclass. """ class TestSubDict(dict): def __init__(self, *args, **kwargs) -> None: dict.__init__(self, *args, **kwargs) return TestSubDict @pytest.fixture def non_dict_mapping_subclass(): """ Fixture for a non-mapping dictionary subclass. """ class TestNonDictMapping(abc.Mapping): def __init__(self, underlying_dict) -> None: self._data = underlying_dict def __getitem__(self, key): return self._data.__getitem__(key) def __iter__(self): return self._data.__iter__() def __len__(self): return self._data.__len__() return TestNonDictMapping # ---------------------------------------------------------------- # Indices # ---------------------------------------------------------------- @pytest.fixture def multiindex_year_month_day_dataframe_random_data(): """ DataFrame with 3 level MultiIndex (year, month, day) covering first 100 business days from 2000-01-01 with random data """ tdf = tm.makeTimeDataFrame(100) ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels]) ymd.index.set_names(["year", "month", "day"], inplace=True) return ymd @pytest.fixture def lexsorted_two_level_string_multiindex(): """ 2-level MultiIndex, lexsorted, with string names. """ return MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) @pytest.fixture def multiindex_dataframe_random_data(lexsorted_two_level_string_multiindex): """DataFrame with 2 level MultiIndex with random data""" index = lexsorted_two_level_string_multiindex return DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp") ) def _create_multiindex(): """ MultiIndex used to test the general functionality of this object """ # See Also: tests.multi.conftest.idx major_axis = Index(["foo", "bar", "baz", "qux"]) minor_axis = Index(["one", "two"]) major_codes = np.array([0, 0, 1, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 0, 1]) index_names = ["first", "second"] return MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes], names=index_names, verify_integrity=False, ) def _create_mi_with_dt64tz_level(): """ MultiIndex with a level that is a tzaware DatetimeIndex. """ # GH#8367 round trip with pickle return MultiIndex.from_product( [[1, 2], ["a", "b"], pd.date_range("20130101", periods=3, tz="US/Eastern")], names=["one", "two", "three"], ) indices_dict = { "string": tm.makeStringIndex(100), "datetime": tm.makeDateIndex(100), "datetime-tz": tm.makeDateIndex(100, tz="US/Pacific"), "period": tm.makePeriodIndex(100), "timedelta": tm.makeTimedeltaIndex(100), "int": tm.makeIntIndex(100), "uint": tm.makeUIntIndex(100), "range": tm.makeRangeIndex(100), "float": tm.makeFloatIndex(100), "complex64": tm.makeFloatIndex(100).astype("complex64"), "complex128": tm.makeFloatIndex(100).astype("complex128"), "num_int64": tm.makeNumericIndex(100, dtype="int64"), "num_int32": tm.makeNumericIndex(100, dtype="int32"), "num_int16": tm.makeNumericIndex(100, dtype="int16"), "num_int8": tm.makeNumericIndex(100, dtype="int8"), "num_uint64": tm.makeNumericIndex(100, dtype="uint64"), "num_uint32": tm.makeNumericIndex(100, dtype="uint32"), "num_uint16": tm.makeNumericIndex(100, dtype="uint16"), "num_uint8": tm.makeNumericIndex(100, dtype="uint8"), "num_float64": tm.makeNumericIndex(100, dtype="float64"), "num_float32": tm.makeNumericIndex(100, dtype="float32"), "bool-object": tm.makeBoolIndex(10).astype(object), "bool-dtype": Index(np.random.randn(10) < 0), "categorical": tm.makeCategoricalIndex(100), "interval": tm.makeIntervalIndex(100), "empty": Index([]), "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])), "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(), "multi": _create_multiindex(), "repeats": Index([0, 0, 1, 1, 2, 2]), "nullable_int": Index(np.arange(100), dtype="Int64"), "nullable_uint": Index(np.arange(100), dtype="UInt16"), "nullable_float": Index(np.arange(100), dtype="Float32"), "nullable_bool": Index(np.arange(100).astype(bool), dtype="boolean"), "string-python": Index(pd.array(tm.makeStringIndex(100), dtype="string[python]")), } if has_pyarrow: idx = Index(pd.array(tm.makeStringIndex(100), dtype="string[pyarrow]")) indices_dict["string-pyarrow"] = idx @pytest.fixture(params=indices_dict.keys()) def index(request): """ Fixture for many "simple" kinds of indices. These indices are unlikely to cover corner cases, e.g. - no names - no NaTs/NaNs - no values near implementation bounds - ... """ # copy to avoid mutation, e.g. setting .name return indices_dict[request.param].copy() # Needed to generate cartesian product of indices index_fixture2 = index @pytest.fixture( params=[ key for key in indices_dict if not isinstance(indices_dict[key], MultiIndex) ] ) def index_flat(request): """ index fixture, but excluding MultiIndex cases. """ key = request.param return indices_dict[key].copy() # Alias so we can test with cartesian product of index_flat index_flat2 = index_flat @pytest.fixture( params=[ key for key in indices_dict if not isinstance(indices_dict[key], MultiIndex) and indices_dict[key].is_unique ] ) def index_flat_unique(request): """ index_flat with uniqueness requirement. """ key = request.param return indices_dict[key].copy() @pytest.fixture( params=[ key for key in indices_dict if not ( key in ["int", "uint", "range", "empty", "repeats", "bool-dtype"] or key.startswith("num_") ) and not isinstance(indices_dict[key], MultiIndex) ] ) def index_with_missing(request): """ Fixture for indices with missing values. Integer-dtype and empty cases are excluded because they cannot hold missing values. MultiIndex is excluded because isna() is not defined for MultiIndex. """ # GH 35538. Use deep copy to avoid illusive bug on np-dev # GHA pipeline that writes into indices_dict despite copy ind = indices_dict[request.param].copy(deep=True) vals = ind.values if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]: # For setting missing values in the top level of MultiIndex vals = ind.tolist() vals[0] = (None,) + vals[0][1:] vals[-1] = (None,) + vals[-1][1:] return MultiIndex.from_tuples(vals) else: vals[0] = None vals[-1] = None return type(ind)(vals) # ---------------------------------------------------------------- # Series' # ---------------------------------------------------------------- @pytest.fixture def string_series(): """ Fixture for Series of floats with Index of unique strings """ s = tm.makeStringSeries() s.name = "series" return s @pytest.fixture def object_series(): """ Fixture for Series of dtype object with Index of unique strings """ s = tm.makeObjectSeries() s.name = "objects" return s @pytest.fixture def datetime_series(): """ Fixture for Series of floats with DatetimeIndex """ s = tm.makeTimeSeries() s.name = "ts" return s def _create_series(index): """Helper for the _series dict""" size = len(index) data = np.random.randn(size) return Series(data, index=index, name="a") _series = { f"series-with-{index_id}-index": _create_series(index) for index_id, index in indices_dict.items() } @pytest.fixture def series_with_simple_index(index): """ Fixture for tests on series with changing types of indices. """ return _create_series(index) @pytest.fixture def series_with_multilevel_index(): """ Fixture with a Series with a 2-level MultiIndex. """ arrays = [ ["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] tuples = zip(*arrays) index = MultiIndex.from_tuples(tuples) data = np.random.randn(8) ser = Series(data, index=index) ser[3] = np.NaN return ser _narrow_series = { f"{dtype.__name__}-series": tm.make_rand_series(name="a", dtype=dtype) for dtype in tm.NARROW_NP_DTYPES } _index_or_series_objs = {**indices_dict, **_series, **_narrow_series} @pytest.fixture(params=_index_or_series_objs.keys()) def index_or_series_obj(request): """ Fixture for tests on indexes, series and series with a narrow dtype copy to avoid mutation, e.g. setting .name """ return _index_or_series_objs[request.param].copy(deep=True) # ---------------------------------------------------------------- # DataFrames # ---------------------------------------------------------------- @pytest.fixture def int_frame(): """ Fixture for DataFrame of ints with index of unique strings Columns are ['A', 'B', 'C', 'D'] A B C D vpBeWjM651 1 0 1 0 5JyxmrP1En -1 0 0 0 qEDaoD49U2 -1 1 0 0 m66TkTfsFe 0 0 0 0 EHPaNzEUFm -1 0 -1 0 fpRJCevQhi 2 0 0 0 OlQvnmfi3Q 0 0 -2 0 ... .. .. .. .. uB1FPlz4uP 0 0 0 1 EcSe6yNzCU 0 0 -1 0 L50VudaiI8 -1 1 -2 0 y3bpw4nwIp 0 -1 0 0 H0RdLLwrCT 1 1 0 0 rY82K0vMwm 0 0 0 0 1OPIUjnkjk 2 0 0 0 [30 rows x 4 columns] """ return DataFrame(tm.getSeriesData()).astype("int64") @pytest.fixture def datetime_frame(): """ Fixture for DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D'] A B C D 2000-01-03 -1.122153 0.468535 0.122226 1.693711 2000-01-04 0.189378 0.486100 0.007864 -1.216052 2000-01-05 0.041401 -0.835752 -0.035279 -0.414357 2000-01-06 0.430050 0.894352 0.090719 0.036939 2000-01-07 -0.620982 -0.668211 -0.706153 1.466335 2000-01-10 -0.752633 0.328434 -0.815325 0.699674 2000-01-11 -2.236969 0.615737 -0.829076 -1.196106 ... ... ... ... ... 2000-02-03 1.642618 -0.579288 0.046005 1.385249 2000-02-04 -0.544873 -1.160962 -0.284071 -1.418351 2000-02-07 -2.656149 -0.601387 1.410148 0.444150 2000-02-08 -1.201881 -1.289040 0.772992 -1.445300 2000-02-09 1.377373 0.398619 1.008453 -0.928207 2000-02-10 0.473194 -0.636677 0.984058 0.511519 2000-02-11 -0.965556 0.408313 -1.312844 -0.381948 [30 rows x 4 columns] """ return DataFrame(tm.getTimeSeriesData()) @pytest.fixture def float_frame(): """ Fixture for DataFrame of floats with index of unique strings Columns are ['A', 'B', 'C', 'D']. A B C D P7GACiRnxd -0.465578 -0.361863 0.886172 -0.053465 qZKh6afn8n -0.466693 -0.373773 0.266873 1.673901 tkp0r6Qble 0.148691 -0.059051 0.174817 1.598433 wP70WOCtv8 0.133045 -0.581994 -0.992240 0.261651 M2AeYQMnCz -1.207959 -0.185775 0.588206 0.563938 QEPzyGDYDo -0.381843 -0.758281 0.502575 -0.565053 r78Jwns6dn -0.653707 0.883127 0.682199 0.206159 ... ... ... ... ... IHEGx9NO0T -0.277360 0.113021 -1.018314 0.196316 lPMj8K27FA -1.313667 -0.604776 -1.305618 -0.863999 qa66YMWQa5 1.110525 0.475310 -0.747865 0.032121 yOa0ATsmcE -0.431457 0.067094 0.096567 -0.264962 65znX3uRNG 1.528446 0.160416 -0.109635 -0.032987 eCOBvKqf3e 0.235281 1.622222 0.781255 0.392871 xSucinXxuV -1.263557 0.252799 -0.552247 0.400426 [30 rows x 4 columns] """ return DataFrame(tm.getSeriesData()) @pytest.fixture def mixed_type_frame(): """ Fixture for DataFrame of float/int/string columns with RangeIndex Columns are ['a', 'b', 'c', 'float32', 'int32']. """ return DataFrame( { "a": 1.0, "b": 2, "c": "foo", "float32": np.array([1.0] * 10, dtype="float32"), "int32": np.array([1] * 10, dtype="int32"), }, index=np.arange(10), ) @pytest.fixture def rand_series_with_duplicate_datetimeindex(): """ Fixture for Series with a DatetimeIndex that has duplicates. """ dates = [ datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5), ] return Series(np.random.randn(len(dates)), index=dates) # ---------------------------------------------------------------- # Scalars # ---------------------------------------------------------------- @pytest.fixture( params=[ (Interval(left=0, right=5), IntervalDtype("int64", "right")), (Interval(left=0.1, right=0.5), IntervalDtype("float64", "right")), (Period("2012-01", freq="M"), "period[M]"), (Period("2012-02-01", freq="D"), "period[D]"), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), (Timedelta(seconds=500), "timedelta64[ns]"), ] ) def ea_scalar_and_dtype(request): return request.param # ---------------------------------------------------------------- # Operators & Operations # ---------------------------------------------------------------- _all_arithmetic_operators = [ "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__floordiv__", "__rfloordiv__", "__truediv__", "__rtruediv__", "__pow__", "__rpow__", "__mod__", "__rmod__", ] @pytest.fixture(params=_all_arithmetic_operators) def all_arithmetic_operators(request): """ Fixture for dunder names for common arithmetic operations. """ return request.param @pytest.fixture( params=[ operator.add, ops.radd, operator.sub, ops.rsub, operator.mul, ops.rmul, operator.truediv, ops.rtruediv, operator.floordiv, ops.rfloordiv, operator.mod, ops.rmod, operator.pow, ops.rpow, operator.eq, operator.ne, operator.lt, operator.le, operator.gt, operator.ge, operator.and_, ops.rand_, operator.xor, ops.rxor, operator.or_, ops.ror_, ] ) def all_binary_operators(request): """ Fixture for operator and roperator arithmetic, comparison, and logical ops. """ return request.param @pytest.fixture( params=[ operator.add, ops.radd, operator.sub, ops.rsub, operator.mul, ops.rmul, operator.truediv, ops.rtruediv, operator.floordiv, ops.rfloordiv, operator.mod, ops.rmod, operator.pow, ops.rpow, ] ) def all_arithmetic_functions(request): """ Fixture for operator and roperator arithmetic functions. Notes ----- This includes divmod and rdivmod, whereas all_arithmetic_operators does not. """ return request.param _all_numeric_reductions = [ "sum", "max", "min", "mean", "prod", "std", "var", "median", "kurt", "skew", ] @pytest.fixture(params=_all_numeric_reductions) def all_numeric_reductions(request): """ Fixture for numeric reduction names. """ return request.param _all_boolean_reductions = ["all", "any"] @pytest.fixture(params=_all_boolean_reductions) def all_boolean_reductions(request): """ Fixture for boolean reduction names. """ return request.param _all_reductions = _all_numeric_reductions + _all_boolean_reductions @pytest.fixture(params=_all_reductions) def all_reductions(request): """ Fixture for all (boolean + numeric) reduction names. """ return request.param @pytest.fixture( params=[ operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le, ] ) def comparison_op(request): """ Fixture for operator module comparison functions. """ return request.param @pytest.fixture(params=["__le__", "__lt__", "__ge__", "__gt__"]) def compare_operators_no_eq_ne(request): """ Fixture for dunder names for compare operations except == and != * >= * > * < * <= """ return request.param @pytest.fixture( params=["__and__", "__rand__", "__or__", "__ror__", "__xor__", "__rxor__"] ) def all_logical_operators(request): """ Fixture for dunder names for common logical operations * | * & * ^ """ return request.param # ---------------------------------------------------------------- # Data sets/files # ---------------------------------------------------------------- @pytest.fixture def strict_data_files(pytestconfig): """ Returns the configuration for the test setting `--strict-data-files`. """ return pytestconfig.getoption("--strict-data-files") @pytest.fixture def datapath(strict_data_files): """ Get the path to a data file. Parameters ---------- path : str Path to the file, relative to ``pandas/tests/`` Returns ------- path including ``pandas/tests``. Raises ------ ValueError If the path doesn't exist and the --strict-data-files option is set. """ BASE_PATH = os.path.join(os.path.dirname(__file__), "tests") def deco(*args): path = os.path.join(BASE_PATH, *args) if not os.path.exists(path): if strict_data_files: raise ValueError( f"Could not find file {path} and --strict-data-files is set." ) else: pytest.skip(f"Could not find {path}.") return path return deco @pytest.fixture def iris(datapath): """ The iris dataset as a DataFrame. """ return pd.read_csv(datapath("io", "data", "csv", "iris.csv")) # ---------------------------------------------------------------- # Time zones # ---------------------------------------------------------------- TIMEZONES = [ None, "UTC", "US/Eastern", "Asia/Tokyo", "dateutil/US/Pacific", "dateutil/Asia/Singapore", "+01:15", "-02:15", "UTC+01:15", "UTC-02:15", tzutc(), tzlocal(), FixedOffset(300), FixedOffset(0), FixedOffset(-300), timezone.utc, timezone(timedelta(hours=1)), timezone(timedelta(hours=-1), name="foo"), ] if zoneinfo is not None: TIMEZONES.extend([zoneinfo.ZoneInfo("US/Pacific"), zoneinfo.ZoneInfo("UTC")]) TIMEZONE_IDS = [repr(i) for i in TIMEZONES] @td.parametrize_fixture_doc(str(TIMEZONE_IDS)) @pytest.fixture(params=TIMEZONES, ids=TIMEZONE_IDS) def tz_naive_fixture(request): """ Fixture for trying timezones including default (None): {0} """ return request.param @td.parametrize_fixture_doc(str(TIMEZONE_IDS[1:])) @pytest.fixture(params=TIMEZONES[1:], ids=TIMEZONE_IDS[1:]) def tz_aware_fixture(request): """ Fixture for trying explicit timezones: {0} """ return request.param # Generate cartesian product of tz_aware_fixture: tz_aware_fixture2 = tz_aware_fixture _UTCS = ["utc", "dateutil/UTC", utc, tzutc(), timezone.utc] if zoneinfo is not None: _UTCS.append(zoneinfo.ZoneInfo("UTC")) @pytest.fixture(params=_UTCS) def utc_fixture(request): """ Fixture to provide variants of UTC timezone strings and tzinfo objects. """ return request.param utc_fixture2 = utc_fixture # ---------------------------------------------------------------- # Dtypes # ---------------------------------------------------------------- @pytest.fixture(params=tm.STRING_DTYPES) def string_dtype(request): """ Parametrized fixture for string dtypes. * str * 'str' * 'U' """ return request.param @pytest.fixture( params=[ "string[python]", pytest.param( "string[pyarrow]", marks=td.skip_if_no("pyarrow", min_version="1.0.0") ), ] ) def nullable_string_dtype(request): """ Parametrized fixture for string dtypes. * 'string[python]' * 'string[pyarrow]' """ return request.param @pytest.fixture( params=[ "python", pytest.param("pyarrow", marks=td.skip_if_no("pyarrow", min_version="1.0.0")), ] ) def string_storage(request): """ Parametrized fixture for pd.options.mode.string_storage. * 'python' * 'pyarrow' """ return request.param # Alias so we can test with cartesian product of string_storage string_storage2 = string_storage @pytest.fixture(params=tm.BYTES_DTYPES) def bytes_dtype(request): """ Parametrized fixture for bytes dtypes. * bytes * 'bytes' """ return request.param @pytest.fixture(params=tm.OBJECT_DTYPES) def object_dtype(request): """ Parametrized fixture for object dtypes. * object * 'object' """ return request.param @pytest.fixture( params=[ "object", "string[python]", pytest.param( "string[pyarrow]", marks=td.skip_if_no("pyarrow", min_version="1.0.0") ), ] ) def any_string_dtype(request): """ Parametrized fixture for string dtypes. * 'object' * 'string[python]' * 'string[pyarrow]' """ return request.param @pytest.fixture(params=tm.DATETIME64_DTYPES) def datetime64_dtype(request): """ Parametrized fixture for datetime64 dtypes. * 'datetime64[ns]' * 'M8[ns]' """ return request.param @pytest.fixture(params=tm.TIMEDELTA64_DTYPES) def timedelta64_dtype(request): """ Parametrized fixture for timedelta64 dtypes. * 'timedelta64[ns]' * 'm8[ns]' """ return request.param @pytest.fixture def fixed_now_ts(): """ Fixture emits fixed Timestamp.now() """ return Timestamp( year=2021, month=1, day=1, hour=12, minute=4, second=13, microsecond=22 ) @pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES) def float_numpy_dtype(request): """ Parameterized fixture for float dtypes. * float * 'float32' * 'float64' """ return request.param @pytest.fixture(params=tm.FLOAT_EA_DTYPES) def float_ea_dtype(request): """ Parameterized fixture for float dtypes. * 'Float32' * 'Float64' """ return request.param @pytest.fixture(params=tm.FLOAT_NUMPY_DTYPES + tm.FLOAT_EA_DTYPES) def any_float_dtype(request): """ Parameterized fixture for float dtypes. * float * 'float32' * 'float64' * 'Float32' * 'Float64' """ return request.param @pytest.fixture(params=tm.COMPLEX_DTYPES) def complex_dtype(request): """ Parameterized fixture for complex dtypes. * complex * 'complex64' * 'complex128' """ return request.param @pytest.fixture(params=tm.SIGNED_INT_NUMPY_DTYPES) def any_signed_int_numpy_dtype(request): """ Parameterized fixture for signed integer dtypes. * int * 'int8' * 'int16' * 'int32' * 'int64' """ return request.param @pytest.fixture(params=tm.UNSIGNED_INT_NUMPY_DTYPES) def any_unsigned_int_numpy_dtype(request): """ Parameterized fixture for unsigned integer dtypes. * 'uint8' * 'uint16' * 'uint32' * 'uint64' """ return request.param @pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES) def any_int_numpy_dtype(request): """ Parameterized fixture for any integer dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' """ return request.param @pytest.fixture(params=tm.ALL_INT_EA_DTYPES) def any_int_ea_dtype(request): """ Parameterized fixture for any nullable integer dtype. * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' """ return request.param @pytest.fixture(params=tm.ALL_INT_NUMPY_DTYPES + tm.ALL_INT_EA_DTYPES) def any_int_dtype(request): """ Parameterized fixture for any nullable integer dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' """ return request.param @pytest.fixture(params=tm.ALL_INT_EA_DTYPES + tm.FLOAT_EA_DTYPES) def any_numeric_ea_dtype(request): """ Parameterized fixture for any nullable integer dtype and any float ea dtypes. * 'UInt8' * 'Int8' * 'UInt16' * 'Int16' * 'UInt32' * 'Int32' * 'UInt64' * 'Int64' * 'Float32' * 'Float64' """ return request.param @pytest.fixture(params=tm.SIGNED_INT_EA_DTYPES) def any_signed_int_ea_dtype(request): """ Parameterized fixture for any signed nullable integer dtype. * 'Int8' * 'Int16' * 'Int32' * 'Int64' """ return request.param @pytest.fixture(params=tm.ALL_REAL_NUMPY_DTYPES) def any_real_numpy_dtype(request): """ Parameterized fixture for any (purely) real numeric dtype. * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' """ return request.param @pytest.fixture(params=tm.ALL_NUMPY_DTYPES) def any_numpy_dtype(request): """ Parameterized fixture for all numpy dtypes. * bool * 'bool' * int * 'int8' * 'uint8' * 'int16' * 'uint16' * 'int32' * 'uint32' * 'int64' * 'uint64' * float * 'float32' * 'float64' * complex * 'complex64' * 'complex128' * str * 'str' * 'U' * bytes * 'bytes' * 'datetime64[ns]' * 'M8[ns]' * 'timedelta64[ns]' * 'm8[ns]' * object * 'object' """ return request.param # categoricals are handled separately _any_skipna_inferred_dtype = [ ("string", ["a", np.nan, "c"]), ("string", ["a", pd.NA, "c"]), ("mixed", ["a", pd.NaT, "c"]), # pd.NaT not considered valid by is_string_array ("bytes", [b"a", np.nan, b"c"]), ("empty", [np.nan, np.nan, np.nan]), ("empty", []), ("mixed-integer", ["a", np.nan, 2]), ("mixed", ["a", np.nan, 2.0]), ("floating", [1.0, np.nan, 2.0]), ("integer", [1, np.nan, 2]), ("mixed-integer-float", [1, np.nan, 2.0]), ("decimal", [Decimal(1), np.nan, Decimal(2)]), ("boolean", [True, np.nan, False]), ("boolean", [True, pd.NA, False]), ("datetime64", [np.datetime64("2013-01-01"), np.nan, np.datetime64("2018-01-01")]), ("datetime", [Timestamp("20130101"), np.nan, Timestamp("20180101")]), ("date", [date(2013, 1, 1), np.nan, date(2018, 1, 1)]), # The following two dtypes are commented out due to GH 23554 # ('complex', [1 + 1j, np.nan, 2 + 2j]), # ('timedelta64', [np.timedelta64(1, 'D'), # np.nan, np.timedelta64(2, 'D')]), ("timedelta", [timedelta(1), np.nan, timedelta(2)]), ("time", [time(1), np.nan, time(2)]), ("period", [Period(2013), pd.NaT, Period(2018)]), ("interval", [Interval(0, 1), np.nan, Interval(0, 2)]), ] ids, _ = zip(*_any_skipna_inferred_dtype) # use inferred type as fixture-id @pytest.fixture(params=_any_skipna_inferred_dtype, ids=ids) def any_skipna_inferred_dtype(request): """ Fixture for all inferred dtypes from _libs.lib.infer_dtype The covered (inferred) types are: * 'string' * 'empty' * 'bytes' * 'mixed' * 'mixed-integer' * 'mixed-integer-float' * 'floating' * 'integer' * 'decimal' * 'boolean' * 'datetime64' * 'datetime' * 'date' * 'timedelta' * 'time' * 'period' * 'interval' Returns ------- inferred_dtype : str The string for the inferred dtype from _libs.lib.infer_dtype values : np.ndarray An array of object dtype that will be inferred to have `inferred_dtype` Examples -------- >>> import pandas._libs.lib as lib >>> >>> def test_something(any_skipna_inferred_dtype): ... inferred_dtype, values = any_skipna_inferred_dtype ... # will pass ... assert lib.infer_dtype(values, skipna=True) == inferred_dtype """ inferred_dtype, values = request.param values = np.array(values, dtype=object) # object dtype to avoid casting # correctness of inference tested in tests/dtypes/test_inference.py return inferred_dtype, values # ---------------------------------------------------------------- # Misc # ---------------------------------------------------------------- @pytest.fixture def ip(): """ Get an instance of IPython.InteractiveShell. Will raise a skip if IPython is not installed. """ pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.interactiveshell import InteractiveShell # GH#35711 make sure sqlite history file handle is not leaked from traitlets.config import Config # isort:skip c = Config() c.HistoryManager.hist_file = ":memory:" return InteractiveShell(config=c) @pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"]) def spmatrix(request): """ Yields scipy sparse matrix classes. """ from scipy import sparse return getattr(sparse, request.param + "_matrix") @pytest.fixture( params=[ getattr(pd.offsets, o) for o in pd.offsets.__all__ if issubclass(getattr(pd.offsets, o), pd.offsets.Tick) ] ) def tick_classes(request): """ Fixture for Tick based datetime offsets available for a time series. """ return request.param @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Simple fixture for testing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param @pytest.fixture() def fsspectest(): pytest.importorskip("fsspec") from fsspec import register_implementation from fsspec.implementations.memory import MemoryFileSystem from fsspec.registry import _registry as registry class TestMemoryFS(MemoryFileSystem): protocol = "testmem" test = [None] def __init__(self, **kwargs) -> None: self.test[0] = kwargs.pop("test", None) super().__init__(**kwargs) register_implementation("testmem", TestMemoryFS, clobber=True) yield TestMemoryFS() registry.pop("testmem", None) TestMemoryFS.test[0] = None TestMemoryFS.store.clear() @pytest.fixture( params=[ ("foo", None, None), ("Egon", "Venkman", None), ("NCC1701D", "NCC1701D", "NCC1701D"), # possibly-matching NAs (np.nan, np.nan, np.nan), (np.nan, pd.NaT, None), (np.nan, pd.NA, None), (pd.NA, pd.NA, pd.NA), ] ) def names(request): """ A 3-tuple of names, the first two for operands, the last for a result. """ return request.param @pytest.fixture(params=[tm.setitem, tm.loc, tm.iloc]) def indexer_sli(request): """ Parametrize over __setitem__, loc.__setitem__, iloc.__setitem__ """ return request.param @pytest.fixture(params=[tm.loc, tm.iloc]) def indexer_li(request): """ Parametrize over loc.__getitem__, iloc.__getitem__ """ return request.param @pytest.fixture(params=[tm.setitem, tm.iloc]) def indexer_si(request): """ Parametrize over __setitem__, iloc.__setitem__ """ return request.param @pytest.fixture(params=[tm.setitem, tm.loc]) def indexer_sl(request): """ Parametrize over __setitem__, loc.__setitem__ """ return request.param @pytest.fixture(params=[tm.at, tm.loc]) def indexer_al(request): """ Parametrize over at.__setitem__, loc.__setitem__ """ return request.param @pytest.fixture(params=[tm.iat, tm.iloc]) def indexer_ial(request): """ Parametrize over iat.__setitem__, iloc.__setitem__ """ return request.param @pytest.fixture def using_array_manager(): """ Fixture to check if the array manager is being used. """ return pd.options.mode.data_manager == "array"
the-stack_0_25609
import requests from requests.adapters import HTTPAdapter from bs4 import BeautifulSoup import sys se = requests.Session() # 模拟登陆 requests.adapters.DEFAULT_RETRIES = 15 se.mount('http://', HTTPAdapter(max_retries=3)) # 重联 se.mount('https://', HTTPAdapter(max_retries=3)) class Pixiv(object): def __init__(self): self.base_url = 'https://accounts.pixiv.net/login?lang=zh&source=pc&view_type=page&ref=wwwtop_accounts_index' self.login_url = 'https://accounts.pixiv.net/api/login?lang=zh' self.search_url = 'https://www.pixiv.net/search.php' self.main_url = 'https://www.pixiv.net' self.target_url = 'https://www.pixiv.net/member_illust.php?mode=medium&illust_id=' self.headers = { 'Referer': 'https://accounts.pixiv.net/login?lang=zh&source=pc&view_type=page&ref=wwwtop_accounts_index', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)' ' AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36', } self.pixiv_id = '[email protected]', # [email protected] self.password = 'yjw3616807', # knxy0616 self.post_key = [] self.return_to = 'https://www.pixiv.net/' self.load_path = './id_pic/' # 存放图片路径 def login(self): post_key_xml = se.get(self.base_url, headers=self.headers).text post_key_soup = BeautifulSoup(post_key_xml, 'lxml') self.post_key = post_key_soup.find('input')['value'] # 构造请求体 data = { 'pixiv_id': self.pixiv_id, 'password': self.password, 'post_key': self.post_key, 'return_to': self.return_to } se.post(self.login_url, data=data, headers=self.headers) def download(self): pixiv_id=sys.argv[1] # 获取原图url temp_url = self.target_url+pixiv_id temp_clear = se.get(temp_url, headers=self.headers) clear_soup = BeautifulSoup(temp_clear.text, features="html.parser") #name = self.validateTitle(title[i].text) # 图片名称 op = clear_soup.prettify().find('"original":"') ed = clear_soup.prettify().find('},"tags') original_url = clear_soup.prettify()[op + 12:ed - 1] adapt_url = original_url.replace('\/', '/') img = se.get(adapt_url, headers=self.headers) with open(self.load_path + pixiv_id + '.jpg', 'wb') as f: # 图片要用b,对text要合法化处理 f.write(img.content) # 保存图片 if __name__ == '__main__': pixiv = Pixiv() pixiv.login() pixiv.download() print("System Exit")
the-stack_0_25610
import sys import numpy as np sys.path.append('..') import utils def test_morph_denoise(): params = dict( size_open = 3, size_close = 5, not_used_1 = 50, not_used_50 = "some_string" ) np.random.seed(0) img = np.random.random((50, 50, 1)) img = (img > 0.5).astype(float) img = utils.morph_denoise(img, **params) assert img is not None
the-stack_0_25611
#!/usr/bin/env python from __future__ import print_function import socket import sys import time import string import random import signal import sys import os import re INTERVAL = 1000 #unit ms LEN =64 IP="" PORT=0 MAX_TEST_COUNT=1 count=0 count_of_received=0 rtt_sum=0.0 rtt_min=99999999.0 rtt_max=0.0 fail_count=0 def signal_handler(signal, frame): if count!=0 and count_of_received!=0: print('') print('--- ping statistics ---') if count!=0: print('%d packets transmitted, %d received, %.2f%% packet loss'%(count,count_of_received, (count-count_of_received)*100.0/count)) if count_of_received!=0: print('rtt min/avg/max = %.2f/%.2f/%.2f ms'%(rtt_min,rtt_sum/count_of_received,rtt_max)) os._exit(0) def random_string(length): return ''.join(random.choice(string.ascii_letters+ string.digits ) for m in range(length)) def is_domain(domain): domain_regex = re.compile( r'(?:[A-Z0-9_](?:[A-Z0-9-_]{0,247}[A-Z0-9])?\.)+(?:[A-Z]{2,6}|[A-Z0-9-]{2,}(?<!-))\Z', re.IGNORECASE) return True if domain_regex.match(domain) else False if len(sys.argv) != 3 and len(sys.argv)!=4 : print(""" usage:""") print(""" this_program <dest_ip> <dest_port>""") print(""" this_program <dest_ip> <dest_port> "<options>" """) print() print(""" options:""") print(""" LEN the length of payload, unit:byte""") print(""" INTERVAL the seconds waited between sending each packet, as well as the timeout for reply packet, unit: ms""") print() print(" examples:") print(" ./udpping.py 44.55.66.77 4000") print(' ./udpping.py 44.55.66.77 4000 "LEN=400;INTERVAL=2000;MAX_TEST_COUNT=1"') print(" ./udpping.py fe80::5400:ff:aabb:ccdd 4000") print() exit() IP=sys.argv[1] PORT=int(sys.argv[2]) is_ipv6=0 if is_domain(IP): IP = socket.gethostbyname(IP) if IP.find(":")!=-1: is_ipv6=1 if len(sys.argv)==4: exec(sys.argv[3]) if LEN<5: print("LEN must be >=5") exit() if INTERVAL<50: print("INTERVAL must be >=50") exit() signal.signal(signal.SIGINT, signal_handler) if not is_ipv6: sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) else: sock = socket.socket(socket.AF_INET6,socket.SOCK_DGRAM) print("UDPping %s via port %d with %d bytes of payload"% (IP,PORT,LEN)) sys.stdout.flush() while True: if count >= MAX_TEST_COUNT: break payload= random_string(LEN) sock.sendto(payload.encode(), (IP, PORT)) time_of_send=time.time() deadline = time.time() + INTERVAL/1000.0 received=0 rtt=0.0 while True: timeout=deadline - time.time() if timeout <0: break #print "timeout=",timeout sock.settimeout(timeout) try: recv_data,addr = sock.recvfrom(65536) if recv_data== payload.encode() and addr[0]==IP and addr[1]==PORT: rtt=((time.time()-time_of_send)*1000) print("Reply from",IP,"seq=%d"%count, "time=%.2f"%(rtt),"ms") sys.stdout.flush() received=1 break except socket.timeout: break except : pass count+= 1 if received==1: count_of_received+=1 rtt_sum+=rtt rtt_max=max(rtt_max,rtt) rtt_min=min(rtt_min,rtt) else: print("Request timed out") fail_count+=1 sys.stdout.flush() time_remaining=deadline-time.time() if(time_remaining>0): time.sleep(time_remaining) if fail_count >= MAX_TEST_COUNT: exit(1)
the-stack_0_25612
import random from datetime import timedelta from typing import Any, Dict, List, Mapping, Optional, Sequence, Set, Union from unittest import mock import ujson from django.conf import settings from django.core.exceptions import ValidationError from django.http import HttpRequest, HttpResponse from django.utils.timezone import now as timezone_now from zerver.decorator import JsonableError from zerver.lib import cache from zerver.lib.actions import ( bulk_add_subscriptions, bulk_get_subscriber_user_ids, bulk_remove_subscriptions, can_access_stream_user_ids, create_stream_if_needed, do_add_default_stream, do_add_streams_to_default_stream_group, do_change_default_stream_group_description, do_change_default_stream_group_name, do_change_stream_post_policy, do_change_user_role, do_create_default_stream_group, do_create_realm, do_deactivate_stream, do_deactivate_user, do_get_streams, do_remove_default_stream, do_remove_default_stream_group, do_remove_streams_from_default_stream_group, do_set_realm_property, ensure_stream, gather_subscriptions, gather_subscriptions_helper, get_average_weekly_stream_traffic, get_default_streams_for_realm, get_stream, lookup_default_stream_groups, round_to_2_significant_digits, validate_user_access_to_subscribers_helper, ) from zerver.lib.message import aggregate_unread_data, get_raw_unread_data from zerver.lib.response import json_error, json_success from zerver.lib.stream_recipient import StreamRecipientMap from zerver.lib.stream_subscription import ( get_active_subscriptions_for_stream_id, num_subscribers_for_stream_id, ) from zerver.lib.streams import ( access_stream_by_id, access_stream_by_name, create_streams_if_needed, filter_stream_authorization, list_to_streams, ) from zerver.lib.test_classes import ZulipTestCase from zerver.lib.test_helpers import ( get_subscription, queries_captured, reset_emails_in_zulip_realm, tornado_redirected_to_list, ) from zerver.lib.test_runner import slow from zerver.models import ( DefaultStream, DefaultStreamGroup, Message, Realm, Recipient, Stream, Subscription, UserMessage, UserProfile, active_non_guest_user_ids, flush_per_request_caches, get_client, get_default_stream_groups, get_realm, get_user, get_user_profile_by_id_in_realm, ) from zerver.views.streams import compose_views class TestMiscStuff(ZulipTestCase): def test_empty_results(self) -> None: # These are essentially just tests to ensure line # coverage for codepaths that won't ever really be # called in practice. user_profile = self.example_user('cordelia') result = bulk_get_subscriber_user_ids( stream_dicts=[], user_profile=user_profile, sub_dict={}, stream_recipient=StreamRecipientMap(), ) self.assertEqual(result, {}) streams = do_get_streams( user_profile=user_profile, include_public=False, include_subscribed=False, include_all_active=False, include_default=False, ) self.assertEqual(streams, []) class TestCreateStreams(ZulipTestCase): def test_creating_streams(self) -> None: stream_names = ['new1', 'new2', 'new3'] stream_descriptions = ['des1', 'des2', 'des3'] realm = get_realm('zulip') # Test stream creation events. events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): ensure_stream(realm, "Public stream", invite_only=False) self.assert_length(events, 1) self.assertEqual(events[0]['event']['type'], 'stream') self.assertEqual(events[0]['event']['op'], 'create') # Send public stream creation event to all active users. self.assertEqual(events[0]['users'], active_non_guest_user_ids(realm.id)) self.assertEqual(events[0]['event']['streams'][0]['name'], "Public stream") events = [] with tornado_redirected_to_list(events): ensure_stream(realm, "Private stream", invite_only=True) self.assert_length(events, 1) self.assertEqual(events[0]['event']['type'], 'stream') self.assertEqual(events[0]['event']['op'], 'create') # Send private stream creation event to only realm admins. self.assertEqual(len(events[0]['users']), 2) self.assertTrue(self.example_user("iago").id in events[0]['users']) self.assertTrue(self.example_user("desdemona").id in events[0]['users']) self.assertEqual(events[0]['event']['streams'][0]['name'], "Private stream") new_streams, existing_streams = create_streams_if_needed( realm, [{"name": stream_name, "description": stream_description, "invite_only": True, "stream_post_policy": Stream.STREAM_POST_POLICY_ADMINS} for (stream_name, stream_description) in zip(stream_names, stream_descriptions)]) self.assertEqual(len(new_streams), 3) self.assertEqual(len(existing_streams), 0) actual_stream_names = {stream.name for stream in new_streams} self.assertEqual(actual_stream_names, set(stream_names)) actual_stream_descriptions = {stream.description for stream in new_streams} self.assertEqual(actual_stream_descriptions, set(stream_descriptions)) for stream in new_streams: self.assertTrue(stream.invite_only) self.assertTrue(stream.stream_post_policy == Stream.STREAM_POST_POLICY_ADMINS) new_streams, existing_streams = create_streams_if_needed( realm, [{"name": stream_name, "description": stream_description, "invite_only": True} for (stream_name, stream_description) in zip(stream_names, stream_descriptions)]) self.assertEqual(len(new_streams), 0) self.assertEqual(len(existing_streams), 3) actual_stream_names = {stream.name for stream in existing_streams} self.assertEqual(actual_stream_names, set(stream_names)) actual_stream_descriptions = {stream.description for stream in existing_streams} self.assertEqual(actual_stream_descriptions, set(stream_descriptions)) for stream in existing_streams: self.assertTrue(stream.invite_only) def test_create_api_multiline_description(self) -> None: user = self.example_user("hamlet") realm = user.realm self.login_user(user) post_data = {'subscriptions': ujson.dumps([{"name": 'new_stream', "description": "multi\nline\ndescription"}]), 'invite_only': ujson.dumps(False)} result = self.api_post(user, "/api/v1/users/me/subscriptions", post_data, subdomain="zulip") self.assert_json_success(result) stream = get_stream("new_stream", realm) self.assertEqual(stream.description, 'multi line description') def test_history_public_to_subscribers_on_stream_creation(self) -> None: realm = get_realm('zulip') stream_dicts: List[Mapping[str, Any]] = [ { "name": "publicstream", "description": "Public stream with public history", }, { "name": "privatestream", "description": "Private stream with non-public history", "invite_only": True, }, { "name": "privatewithhistory", "description": "Private stream with public history", "invite_only": True, "history_public_to_subscribers": True, }, { "name": "publictrywithouthistory", "description": "Public stream without public history (disallowed)", "invite_only": False, "history_public_to_subscribers": False, }, ] created, existing = create_streams_if_needed(realm, stream_dicts) self.assertEqual(len(created), 4) self.assertEqual(len(existing), 0) for stream in created: if stream.name == 'publicstream': self.assertTrue(stream.history_public_to_subscribers) if stream.name == 'privatestream': self.assertFalse(stream.history_public_to_subscribers) if stream.name == 'privatewithhistory': self.assertTrue(stream.history_public_to_subscribers) if stream.name == 'publictrywithouthistory': self.assertTrue(stream.history_public_to_subscribers) def test_history_public_to_subscribers_zephyr_realm(self) -> None: realm = get_realm('zephyr') stream, created = create_stream_if_needed(realm, "private_stream", invite_only=True) self.assertTrue(created) self.assertTrue(stream.invite_only) self.assertFalse(stream.history_public_to_subscribers) stream, created = create_stream_if_needed(realm, "public_stream", invite_only=False) self.assertTrue(created) self.assertFalse(stream.invite_only) self.assertFalse(stream.history_public_to_subscribers) def test_auto_mark_stream_created_message_as_read_for_stream_creator(self) -> None: # This test relies on email == delivery_email for # convenience. reset_emails_in_zulip_realm() realm = Realm.objects.get(name='Zulip Dev') iago = self.example_user('iago') hamlet = self.example_user('hamlet') cordelia = self.example_user('cordelia') aaron = self.example_user('aaron') # Establish a stream for notifications. announce_stream = ensure_stream(realm, "announce", False, "announcements here.") realm.notifications_stream_id = announce_stream.id realm.save(update_fields=['notifications_stream_id']) self.subscribe(iago, announce_stream.name) self.subscribe(hamlet, announce_stream.name) notification_bot = UserProfile.objects.get(full_name="Notification Bot") self.login_user(iago) initial_message_count = Message.objects.count() initial_usermessage_count = UserMessage.objects.count() data = { "subscriptions": '[{"name":"brand new stream","description":""}]', "history_public_to_subscribers": 'true', "invite_only": 'false', "announce": 'true', "principals": ujson.dumps([iago.id, aaron.id, cordelia.id, hamlet.id]), "stream_post_policy": '1', } response = self.client_post("/json/users/me/subscriptions", data) final_message_count = Message.objects.count() final_usermessage_count = UserMessage.objects.count() expected_response = { "result": "success", "msg": "", "subscribed": { "[email protected]": ["brand new stream"], "[email protected]": ["brand new stream"], "[email protected]": ["brand new stream"], "[email protected]": ["brand new stream"], }, "already_subscribed": {}, } self.assertEqual(response.status_code, 200) self.assertEqual(ujson.loads(response.content.decode()), expected_response) # 2 messages should be created, one in announce and one in the new stream itself. self.assertEqual(final_message_count - initial_message_count, 2) # 4 UserMessages per subscriber: One for each of the subscribers, plus 1 for # each user in the notifications stream. announce_stream_subs = Subscription.objects.filter(recipient=announce_stream.recipient) self.assertEqual(final_usermessage_count - initial_usermessage_count, 4 + announce_stream_subs.count()) def get_unread_stream_data(user: UserProfile) -> List[Dict[str, Any]]: raw_unread_data = get_raw_unread_data(user) aggregated_data = aggregate_unread_data(raw_unread_data) return aggregated_data['streams'] stream_id = Stream.objects.get(name='brand new stream').id iago_unread_messages = get_unread_stream_data(iago) hamlet_unread_messages = get_unread_stream_data(hamlet) # The stream creation messages should be unread for Hamlet self.assertEqual(len(hamlet_unread_messages), 2) # According to the code in zerver/views/streams/add_subscriptions_backend # the notification stream message is sent first, then the new stream's message. self.assertEqual(hamlet_unread_messages[0]['sender_ids'][0], notification_bot.id) self.assertEqual(hamlet_unread_messages[1]['stream_id'], stream_id) # But it should be marked as read for Iago, the stream creator. self.assertEqual(len(iago_unread_messages), 0) class RecipientTest(ZulipTestCase): def test_recipient(self) -> None: realm = get_realm('zulip') stream = get_stream('Verona', realm) recipient = Recipient.objects.get( type_id=stream.id, type=Recipient.STREAM, ) self.assertEqual(str(recipient), f'<Recipient: Verona ({stream.id}, {Recipient.STREAM})>') class StreamAdminTest(ZulipTestCase): def test_make_stream_public(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.make_stream('private_stream', invite_only=True) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) params = { 'stream_name': ujson.dumps('private_stream'), 'is_private': ujson.dumps(False), } stream_id = get_stream('private_stream', user_profile.realm).id result = self.client_patch(f"/json/streams/{stream_id}", params) self.assert_json_error(result, 'Invalid stream id') stream = self.subscribe(user_profile, 'private_stream') self.assertFalse(stream.is_in_zephyr_realm) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) params = { 'stream_name': ujson.dumps('private_stream'), 'is_private': ujson.dumps(False), } result = self.client_patch(f"/json/streams/{stream_id}", params) self.assert_json_success(result) realm = user_profile.realm stream = get_stream('private_stream', realm) self.assertFalse(stream.invite_only) self.assertTrue(stream.history_public_to_subscribers) def test_make_stream_private(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) realm = user_profile.realm self.make_stream('public_stream', realm=realm) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) params = { 'stream_name': ujson.dumps('public_stream'), 'is_private': ujson.dumps(True), } stream_id = get_stream('public_stream', realm).id result = self.client_patch(f"/json/streams/{stream_id}", params) self.assert_json_success(result) stream = get_stream('public_stream', realm) self.assertTrue(stream.invite_only) self.assertFalse(stream.history_public_to_subscribers) def test_make_stream_public_zephyr_mirror(self) -> None: user_profile = self.mit_user('starnine') self.login_user(user_profile) realm = user_profile.realm self.make_stream('target_stream', realm=realm, invite_only=True) self.subscribe(user_profile, 'target_stream') do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) params = { 'stream_name': ujson.dumps('target_stream'), 'is_private': ujson.dumps(False), } stream_id = get_stream('target_stream', realm).id result = self.client_patch(f"/json/streams/{stream_id}", params, subdomain="zephyr") self.assert_json_success(result) stream = get_stream('target_stream', realm) self.assertFalse(stream.invite_only) self.assertFalse(stream.history_public_to_subscribers) def test_make_stream_private_with_public_history(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) realm = user_profile.realm self.make_stream('public_history_stream', realm=realm) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) params = { 'stream_name': ujson.dumps('public_history_stream'), 'is_private': ujson.dumps(True), 'history_public_to_subscribers': ujson.dumps(True), } stream_id = get_stream('public_history_stream', realm).id result = self.client_patch(f"/json/streams/{stream_id}", params) self.assert_json_success(result) stream = get_stream('public_history_stream', realm) self.assertTrue(stream.invite_only) self.assertTrue(stream.history_public_to_subscribers) def test_try_make_stream_public_with_private_history(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) realm = user_profile.realm self.make_stream('public_stream', realm=realm) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) params = { 'stream_name': ujson.dumps('public_stream'), 'is_private': ujson.dumps(False), 'history_public_to_subscribers': ujson.dumps(False), } stream_id = get_stream('public_stream', realm).id result = self.client_patch(f"/json/streams/{stream_id}", params) self.assert_json_success(result) stream = get_stream('public_stream', realm) self.assertFalse(stream.invite_only) self.assertTrue(stream.history_public_to_subscribers) def test_deactivate_stream_backend(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) stream = self.make_stream('new_stream') self.subscribe(user_profile, stream.name) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) result = self.client_delete(f'/json/streams/{stream.id}') self.assert_json_success(result) subscription_exists = get_active_subscriptions_for_stream_id(stream.id).filter( user_profile=user_profile, ).exists() self.assertFalse(subscription_exists) def test_deactivate_stream_removes_default_stream(self) -> None: stream = self.make_stream('new_stream') do_add_default_stream(stream) self.assertEqual(1, DefaultStream.objects.filter(stream_id=stream.id).count()) do_deactivate_stream(stream) self.assertEqual(0, DefaultStream.objects.filter(stream_id=stream.id).count()) def test_deactivate_stream_removes_stream_from_default_stream_groups(self) -> None: realm = get_realm('zulip') streams_to_keep = [] for stream_name in ["stream1", "stream2"]: stream = ensure_stream(realm, stream_name) streams_to_keep.append(stream) streams_to_remove = [] stream = ensure_stream(realm, "stream3") streams_to_remove.append(stream) all_streams = streams_to_keep + streams_to_remove def get_streams(group: DefaultStreamGroup) -> List[Stream]: return list(group.streams.all().order_by('name')) group_name = "group1" description = "This is group1" do_create_default_stream_group(realm, group_name, description, all_streams) default_stream_groups = get_default_stream_groups(realm) self.assertEqual(get_streams(default_stream_groups[0]), all_streams) do_deactivate_stream(streams_to_remove[0]) self.assertEqual(get_streams(default_stream_groups[0]), streams_to_keep) def test_vacate_private_stream_removes_default_stream(self) -> None: stream = self.make_stream('new_stream', invite_only=True) self.subscribe(self.example_user("hamlet"), stream.name) do_add_default_stream(stream) self.assertEqual(1, DefaultStream.objects.filter(stream_id=stream.id).count()) self.unsubscribe(self.example_user("hamlet"), stream.name) self.assertEqual(0, DefaultStream.objects.filter(stream_id=stream.id).count()) # Fetch stream again from database. stream = Stream.objects.get(id=stream.id) self.assertTrue(stream.deactivated) def test_deactivate_stream_backend_requires_existing_stream(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.make_stream('new_stream') do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) result = self.client_delete('/json/streams/999999999') self.assert_json_error(result, 'Invalid stream id') def test_deactivate_stream_backend_requires_realm_admin(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.subscribe(user_profile, 'new_stream') stream_id = get_stream('new_stream', user_profile.realm).id result = self.client_delete(f'/json/streams/{stream_id}') self.assert_json_error(result, 'Must be an organization administrator') def test_private_stream_live_updates(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) self.make_stream('private_stream', invite_only=True) self.subscribe(user_profile, 'private_stream') self.subscribe(self.example_user("cordelia"), 'private_stream') events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): stream_id = get_stream('private_stream', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'description': ujson.dumps('Test description')}) self.assert_json_success(result) # Should be just a description change event self.assert_length(events, 1) cordelia = self.example_user('cordelia') prospero = self.example_user('prospero') notified_user_ids = set(events[-1]['users']) self.assertIn(user_profile.id, notified_user_ids) self.assertIn(cordelia.id, notified_user_ids) self.assertNotIn(prospero.id, notified_user_ids) events = [] with tornado_redirected_to_list(events): stream_id = get_stream('private_stream', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('whatever')}) self.assert_json_success(result) # Should be a name event, an email address event and a notification event self.assert_length(events, 3) notified_user_ids = set(events[0]['users']) self.assertIn(user_profile.id, notified_user_ids) self.assertIn(cordelia.id, notified_user_ids) self.assertNotIn(prospero.id, notified_user_ids) notified_with_bot_users = events[-1]['users'] notified_with_bot_user_ids = [] notified_with_bot_user_ids.append(notified_with_bot_users[0]['id']) notified_with_bot_user_ids.append(notified_with_bot_users[1]['id']) self.assertIn(user_profile.id, notified_with_bot_user_ids) self.assertIn(cordelia.id, notified_with_bot_user_ids) self.assertNotIn(prospero.id, notified_with_bot_user_ids) def test_rename_stream(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) realm = user_profile.realm stream = self.subscribe(user_profile, 'stream_name1') do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) result = self.client_patch(f'/json/streams/{stream.id}', {'new_name': ujson.dumps('stream_name1')}) self.assert_json_error(result, "Stream already has that name!") result = self.client_patch(f'/json/streams/{stream.id}', {'new_name': ujson.dumps('Denmark')}) self.assert_json_error(result, "Stream name 'Denmark' is already taken.") result = self.client_patch(f'/json/streams/{stream.id}', {'new_name': ujson.dumps('denmark ')}) self.assert_json_error(result, "Stream name 'denmark' is already taken.") # Do a rename that is case-only--this should succeed. result = self.client_patch(f'/json/streams/{stream.id}', {'new_name': ujson.dumps('sTREAm_name1')}) self.assert_json_success(result) events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): stream_id = get_stream('stream_name1', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('stream_name2')}) self.assert_json_success(result) event = events[1]['event'] self.assertEqual(event, dict( op='update', type='stream', property='name', value='stream_name2', stream_id=stream_id, name='sTREAm_name1', )) notified_user_ids = set(events[1]['users']) self.assertRaises(Stream.DoesNotExist, get_stream, 'stream_name1', realm) stream_name2_exists = get_stream('stream_name2', realm) self.assertTrue(stream_name2_exists) self.assertEqual(notified_user_ids, set(active_non_guest_user_ids(realm.id))) self.assertIn(user_profile.id, notified_user_ids) self.assertIn(self.example_user('prospero').id, notified_user_ids) self.assertNotIn(self.example_user('polonius').id, notified_user_ids) # Test case to handle unicode stream name change # *NOTE: Here Encoding is needed when Unicode string is passed as an argument* with tornado_redirected_to_list(events): stream_id = stream_name2_exists.id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('नया नाम'.encode())}) self.assert_json_success(result) # While querying, system can handle unicode strings. stream_name_uni_exists = get_stream('नया नाम', realm) self.assertTrue(stream_name_uni_exists) # Test case to handle changing of unicode stream name to newer name # NOTE: Unicode string being part of URL is handled cleanly # by client_patch call, encoding of URL is not needed. with tornado_redirected_to_list(events): stream_id = stream_name_uni_exists.id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('नाम में क्या रक्खा हे'.encode())}) self.assert_json_success(result) # While querying, system can handle unicode strings. self.assertRaises(Stream.DoesNotExist, get_stream, 'नया नाम', realm) stream_name_new_uni_exists = get_stream('नाम में क्या रक्खा हे', realm) self.assertTrue(stream_name_new_uni_exists) # Test case to change name from one language to other. with tornado_redirected_to_list(events): stream_id = stream_name_new_uni_exists.id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('français'.encode())}) self.assert_json_success(result) stream_name_fr_exists = get_stream('français', realm) self.assertTrue(stream_name_fr_exists) # Test case to change name to mixed language name. with tornado_redirected_to_list(events): stream_id = stream_name_fr_exists.id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('français name'.encode())}) self.assert_json_success(result) stream_name_mixed_exists = get_stream('français name', realm) self.assertTrue(stream_name_mixed_exists) # Test case for notified users in private streams. stream_private = self.make_stream('stream_private_name1', realm=user_profile.realm, invite_only=True) self.subscribe(self.example_user('cordelia'), 'stream_private_name1') del events[:] with tornado_redirected_to_list(events): stream_id = get_stream('stream_private_name1', realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('stream_private_name2')}) self.assert_json_success(result) notified_user_ids = set(events[1]['users']) self.assertEqual(notified_user_ids, can_access_stream_user_ids(stream_private)) self.assertIn(self.example_user('cordelia').id, notified_user_ids) # An important corner case is that all organization admins are notified. self.assertIn(self.example_user('iago').id, notified_user_ids) # The current user, Hamlet was made an admin and thus should be notified too. self.assertIn(user_profile.id, notified_user_ids) self.assertNotIn(self.example_user('prospero').id, notified_user_ids) def test_rename_stream_requires_realm_admin(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.make_stream('stream_name1') stream_id = get_stream('stream_name1', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('stream_name2')}) self.assert_json_error(result, 'Must be an organization administrator') def test_notify_on_stream_rename(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.make_stream('stream_name1') stream = self.subscribe(user_profile, 'stream_name1') do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) result = self.client_patch(f'/json/streams/{stream.id}', {'new_name': ujson.dumps('stream_name2')}) self.assert_json_success(result) # Inspect the notification message sent message = self.get_last_message() actual_stream = Stream.objects.get(id=message.recipient.type_id) message_content = f'@_**King Hamlet|{user_profile.id}** renamed stream **stream_name1** to **stream_name2**.' self.assertEqual(actual_stream.name, 'stream_name2') self.assertEqual(actual_stream.realm_id, user_profile.realm_id) self.assertEqual(message.recipient.type, Recipient.STREAM) self.assertEqual(message.content, message_content) self.assertEqual(message.sender.email, '[email protected]') self.assertEqual(message.sender.realm, get_realm(settings.SYSTEM_BOT_REALM)) def test_realm_admin_can_update_unsub_private_stream(self) -> None: iago = self.example_user('iago') hamlet = self.example_user('hamlet') self.login_user(iago) result = self.common_subscribe_to_streams(iago, ["private_stream"], dict(principals=ujson.dumps([hamlet.id])), invite_only=True) self.assert_json_success(result) stream_id = get_stream('private_stream', iago.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'new_name': ujson.dumps('new_private_stream')}) self.assert_json_success(result) result = self.client_patch(f'/json/streams/{stream_id}', {'new_description': ujson.dumps('new description')}) self.assert_json_success(result) # But cannot change stream type. result = self.client_patch(f'/json/streams/{stream_id}', {'stream_name': ujson.dumps('private_stream'), 'is_private': ujson.dumps(True)}) self.assert_json_error(result, "Invalid stream id") def test_change_stream_description(self) -> None: user_profile = self.example_user('iago') self.login_user(user_profile) realm = user_profile.realm self.subscribe(user_profile, 'stream_name1') events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): stream_id = get_stream('stream_name1', realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'description': ujson.dumps('Test description')}) self.assert_json_success(result) event = events[0]['event'] self.assertEqual(event, dict( op='update', type='stream', property='description', value='Test description', rendered_description='<p>Test description</p>', stream_id=stream_id, name='stream_name1', )) notified_user_ids = set(events[0]['users']) stream = get_stream('stream_name1', realm) self.assertEqual(notified_user_ids, set(active_non_guest_user_ids(realm.id))) self.assertIn(user_profile.id, notified_user_ids) self.assertIn(self.example_user('prospero').id, notified_user_ids) self.assertNotIn(self.example_user('polonius').id, notified_user_ids) self.assertEqual('Test description', stream.description) result = self.client_patch(f'/json/streams/{stream_id}', {'description': ujson.dumps('a' * 1025)}) self.assert_json_error( result, f"description is too long (limit: {Stream.MAX_DESCRIPTION_LENGTH} characters)", ) result = self.client_patch(f'/json/streams/{stream_id}', {'description': ujson.dumps('a\nmulti\nline\ndescription')}) self.assert_json_success(result) stream = get_stream('stream_name1', realm) self.assertEqual(stream.description, 'a multi line description') # Verify that we don't render inline URL previews in this code path. with self.settings(INLINE_URL_EMBED_PREVIEW=True): result = self.client_patch(f'/json/streams/{stream_id}', {'description': ujson.dumps('See https://zulip.com/team')}) self.assert_json_success(result) stream = get_stream('stream_name1', realm) self.assertEqual( stream.rendered_description, '<p>See <a href="https://zulip.com/team">https://zulip.com/team</a></p>', ) def test_change_stream_description_requires_realm_admin(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.subscribe(user_profile, 'stream_name1') do_change_user_role(user_profile, UserProfile.ROLE_MEMBER) stream_id = get_stream('stream_name1', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'description': ujson.dumps('Test description')}) self.assert_json_error(result, 'Must be an organization administrator') def test_change_to_stream_post_policy_admins(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.subscribe(user_profile, 'stream_name1') do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) stream_id = get_stream('stream_name1', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'is_announcement_only': ujson.dumps(True)}) self.assert_json_success(result) stream = get_stream('stream_name1', user_profile.realm) self.assertTrue(stream.stream_post_policy == Stream.STREAM_POST_POLICY_ADMINS) def test_change_stream_post_policy_requires_realm_admin(self) -> None: user_profile = self.example_user('hamlet') self.login_user(user_profile) self.subscribe(user_profile, 'stream_name1') do_change_user_role(user_profile, UserProfile.ROLE_MEMBER) do_set_realm_property(user_profile.realm, 'waiting_period_threshold', 10) def test_non_admin(how_old: int, is_new: bool, policy: int) -> None: user_profile.date_joined = timezone_now() - timedelta(days=how_old) user_profile.save() self.assertEqual(user_profile.is_new_member, is_new) stream_id = get_stream('stream_name1', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'stream_post_policy': ujson.dumps(policy)}) self.assert_json_error(result, 'Must be an organization administrator') policies = [Stream.STREAM_POST_POLICY_ADMINS, Stream.STREAM_POST_POLICY_RESTRICT_NEW_MEMBERS] for policy in policies: test_non_admin(how_old=15, is_new=False, policy=policy) test_non_admin(how_old=5, is_new=True, policy=policy) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) for policy in policies: stream_id = get_stream('stream_name1', user_profile.realm).id result = self.client_patch(f'/json/streams/{stream_id}', {'stream_post_policy': ujson.dumps(policy)}) self.assert_json_success(result) stream = get_stream('stream_name1', user_profile.realm) self.assertEqual(stream.stream_post_policy, policy) def set_up_stream_for_deletion(self, stream_name: str, invite_only: bool=False, subscribed: bool=True) -> Stream: """ Create a stream for deletion by an administrator. """ user_profile = self.example_user('hamlet') self.login_user(user_profile) stream = self.make_stream(stream_name, invite_only=invite_only) # For testing deleting streams you aren't on. if subscribed: self.subscribe(user_profile, stream_name) do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) return stream def delete_stream(self, stream: Stream) -> None: """ Delete the stream and assess the result. """ active_name = stream.name realm = stream.realm stream_id = stream.id # Simulate that a stream by the same name has already been # deactivated, just to exercise our renaming logic: ensure_stream(realm, "!DEACTIVATED:" + active_name) events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): result = self.client_delete('/json/streams/' + str(stream_id)) self.assert_json_success(result) # We no longer send subscription events for stream deactivations. sub_events = [e for e in events if e['event']['type'] == 'subscription'] self.assertEqual(sub_events, []) stream_events = [e for e in events if e['event']['type'] == 'stream'] self.assertEqual(len(stream_events), 1) event = stream_events[0]['event'] self.assertEqual(event['op'], 'delete') self.assertEqual(event['streams'][0]['stream_id'], stream.id) with self.assertRaises(Stream.DoesNotExist): Stream.objects.get(realm=get_realm("zulip"), name=active_name) # A deleted stream's name is changed, is deactivated, is invite-only, # and has no subscribers. deactivated_stream_name = "!!DEACTIVATED:" + active_name deactivated_stream = get_stream(deactivated_stream_name, realm) self.assertTrue(deactivated_stream.deactivated) self.assertTrue(deactivated_stream.invite_only) self.assertEqual(deactivated_stream.name, deactivated_stream_name) subscribers = self.users_subscribed_to_stream( deactivated_stream_name, realm) self.assertEqual(subscribers, []) # It doesn't show up in the list of public streams anymore. result = self.client_get("/json/streams?include_subscribed=false") public_streams = [s["name"] for s in result.json()["streams"]] self.assertNotIn(active_name, public_streams) self.assertNotIn(deactivated_stream_name, public_streams) # Even if you could guess the new name, you can't subscribe to it. result = self.client_post( "/json/users/me/subscriptions", {"subscriptions": ujson.dumps([{"name": deactivated_stream_name}])}) self.assert_json_error( result, f"Unable to access stream ({deactivated_stream_name}).") def test_you_must_be_realm_admin(self) -> None: """ You must be on the realm to create a stream. """ user_profile = self.example_user('hamlet') self.login_user(user_profile) other_realm = Realm.objects.create(string_id='other') stream = self.make_stream('other_realm_stream', realm=other_realm) result = self.client_delete('/json/streams/' + str(stream.id)) self.assert_json_error(result, 'Must be an organization administrator') # Even becoming a realm admin doesn't help us for an out-of-realm # stream. do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) result = self.client_delete('/json/streams/' + str(stream.id)) self.assert_json_error(result, 'Invalid stream id') def test_delete_public_stream(self) -> None: """ When an administrator deletes a public stream, that stream is not visible to users at all anymore. """ stream = self.set_up_stream_for_deletion("newstream") self.delete_stream(stream) def test_delete_private_stream(self) -> None: """ Administrators can delete private streams they are on. """ stream = self.set_up_stream_for_deletion("newstream", invite_only=True) self.delete_stream(stream) def test_delete_streams_youre_not_on(self) -> None: """ Administrators can delete public streams they aren't on, including private streams in their realm. """ pub_stream = self.set_up_stream_for_deletion( "pubstream", subscribed=False) self.delete_stream(pub_stream) priv_stream = self.set_up_stream_for_deletion( "privstream", subscribed=False, invite_only=True) self.delete_stream(priv_stream) def attempt_unsubscribe_of_principal(self, query_count: int, target_users: List[UserProfile], is_admin: bool=False, is_subbed: bool=True, invite_only: bool=False, target_users_subbed: bool=True, using_legacy_emails: bool=False, other_sub_users: Sequence[UserProfile]=[]) -> HttpResponse: # Set up the main user, who is in most cases an admin. if is_admin: user_profile = self.example_user('iago') else: user_profile = self.example_user('hamlet') self.login_user(user_profile) # Set up the stream. stream_name = "hümbüǵ" self.make_stream(stream_name, invite_only=invite_only) # Set up the principal to be unsubscribed. principals = [] for user in target_users: if using_legacy_emails: principals.append(user.email) else: principals.append(user.id) # Subscribe the admin and/or principal as specified in the flags. if is_subbed: self.subscribe(user_profile, stream_name) if target_users_subbed: for user in target_users: self.subscribe(user, stream_name) for user in other_sub_users: self.subscribe(user, stream_name) with queries_captured() as queries: result = self.client_delete( "/json/users/me/subscriptions", {"subscriptions": ujson.dumps([stream_name]), "principals": ujson.dumps(principals)}) self.assert_length(queries, query_count) # If the removal succeeded, then assert that Cordelia is no longer subscribed. if result.status_code not in [400]: subbed_users = self.users_subscribed_to_stream(stream_name, user_profile.realm) for user in target_users: self.assertNotIn(user, subbed_users) return result def test_cant_remove_others_from_stream(self) -> None: """ If you're not an admin, you can't remove other people from streams. """ result = self.attempt_unsubscribe_of_principal( query_count=3, target_users=[self.example_user('cordelia')], is_admin=False, is_subbed=True, invite_only=False, target_users_subbed=True) self.assert_json_error( result, "This action requires administrative rights") def test_admin_remove_others_from_public_stream(self) -> None: """ If you're an admin, you can remove people from public streams, even those you aren't on. """ result = self.attempt_unsubscribe_of_principal( query_count=21, target_users=[self.example_user('cordelia')], is_admin=True, is_subbed=True, invite_only=False, target_users_subbed=True) json = self.assert_json_success(result) self.assertEqual(len(json["removed"]), 1) self.assertEqual(len(json["not_removed"]), 0) def test_admin_remove_multiple_users_from_stream(self) -> None: """ If you're an admin, you can remove multiple users from a stream, """ result = self.attempt_unsubscribe_of_principal( query_count=30, target_users=[self.example_user('cordelia'), self.example_user('prospero')], is_admin=True, is_subbed=True, invite_only=False, target_users_subbed=True) json = self.assert_json_success(result) self.assertEqual(len(json["removed"]), 2) self.assertEqual(len(json["not_removed"]), 0) def test_admin_remove_others_from_subbed_private_stream(self) -> None: """ If you're an admin, you can remove other people from private streams you are on. """ result = self.attempt_unsubscribe_of_principal( query_count=21, target_users=[self.example_user('cordelia')], is_admin=True, is_subbed=True, invite_only=True, target_users_subbed=True) json = self.assert_json_success(result) self.assertEqual(len(json["removed"]), 1) self.assertEqual(len(json["not_removed"]), 0) def test_admin_remove_others_from_unsubbed_private_stream(self) -> None: """ If you're an admin, you can remove people from private streams you aren't on. """ result = self.attempt_unsubscribe_of_principal( query_count=21, target_users=[self.example_user('cordelia')], is_admin=True, is_subbed=False, invite_only=True, target_users_subbed=True, other_sub_users=[self.example_user("othello")]) json = self.assert_json_success(result) self.assertEqual(len(json["removed"]), 1) self.assertEqual(len(json["not_removed"]), 0) def test_cant_remove_others_from_stream_legacy_emails(self) -> None: result = self.attempt_unsubscribe_of_principal( query_count=3, is_admin=False, is_subbed=True, invite_only=False, target_users=[self.example_user('cordelia')], target_users_subbed=True, using_legacy_emails=True) self.assert_json_error( result, "This action requires administrative rights") def test_admin_remove_others_from_stream_legacy_emails(self) -> None: result = self.attempt_unsubscribe_of_principal( query_count=21, target_users=[self.example_user('cordelia')], is_admin=True, is_subbed=True, invite_only=False, target_users_subbed=True, using_legacy_emails=True) json = self.assert_json_success(result) self.assertEqual(len(json["removed"]), 1) self.assertEqual(len(json["not_removed"]), 0) def test_admin_remove_multiple_users_from_stream_legacy_emails(self) -> None: result = self.attempt_unsubscribe_of_principal( query_count=30, target_users=[self.example_user('cordelia'), self.example_user('prospero')], is_admin=True, is_subbed=True, invite_only=False, target_users_subbed=True, using_legacy_emails=True) json = self.assert_json_success(result) self.assertEqual(len(json["removed"]), 2) self.assertEqual(len(json["not_removed"]), 0) def test_create_stream_policy_setting(self) -> None: """ When realm.create_stream_policy setting is Realm.POLICY_MEMBERS_ONLY then test that any user can create a stream. When realm.create_stream_policy setting is Realm.POLICY_ADMINS_ONLY then test that only admins can create a stream. When realm.create_stream_policy setting is Realm.POLICY_FULL_MEMBERS_ONLY then test that admins and users with accounts older than the waiting period can create a stream. """ user_profile = self.example_user('hamlet') user_profile.date_joined = timezone_now() user_profile.save() self.login_user(user_profile) do_change_user_role(user_profile, UserProfile.ROLE_MEMBER) # Allow all members to create streams. do_set_realm_property(user_profile.realm, 'create_stream_policy', Realm.POLICY_MEMBERS_ONLY) # Set waiting period to 10 days. do_set_realm_property(user_profile.realm, 'waiting_period_threshold', 10) # Can successfully create stream despite being less than waiting period and not an admin, # due to create stream policy. stream_name = ['all_members'] result = self.common_subscribe_to_streams(user_profile, stream_name) self.assert_json_success(result) # Allow only administrators to create streams. do_set_realm_property(user_profile.realm, 'create_stream_policy', Realm.POLICY_ADMINS_ONLY) # Cannot create stream because not an admin. stream_name = ['admins_only'] result = self.common_subscribe_to_streams(user_profile, stream_name) self.assert_json_error(result, 'User cannot create streams.') # Make current user an admin. do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) # Can successfully create stream as user is now an admin. stream_name = ['admins_only'] result = self.common_subscribe_to_streams(user_profile, stream_name) self.assert_json_success(result) # Allow users older than the waiting period to create streams. do_set_realm_property(user_profile.realm, 'create_stream_policy', Realm.POLICY_FULL_MEMBERS_ONLY) # Can successfully create stream despite being under waiting period because user is admin. stream_name = ['waiting_period_as_admin'] result = self.common_subscribe_to_streams(user_profile, stream_name) self.assert_json_success(result) # Make current user no longer an admin. do_change_user_role(user_profile, UserProfile.ROLE_MEMBER) # Cannot create stream because user is not an admin and is not older than the waiting # period. stream_name = ['waiting_period'] result = self.common_subscribe_to_streams(user_profile, stream_name) self.assert_json_error(result, 'User cannot create streams.') # Make user account 11 days old.. user_profile.date_joined = timezone_now() - timedelta(days=11) user_profile.save() # Can successfully create stream now that account is old enough. stream_name = ['waiting_period'] result = self.common_subscribe_to_streams(user_profile, stream_name) self.assert_json_success(result) def test_invite_to_stream_by_invite_period_threshold(self) -> None: """ Non admin users with account age greater or equal to the invite to stream threshold should be able to invite others to a stream. """ hamlet_user = self.example_user('hamlet') hamlet_user.date_joined = timezone_now() hamlet_user.save() cordelia_user = self.example_user('cordelia') cordelia_user.date_joined = timezone_now() cordelia_user.save() do_set_realm_property(hamlet_user.realm, 'invite_to_stream_policy', Realm.POLICY_FULL_MEMBERS_ONLY) cordelia_user_id = cordelia_user.id self.login_user(hamlet_user) do_change_user_role(hamlet_user, UserProfile.ROLE_REALM_ADMINISTRATOR) # Hamlet creates a stream as an admin.. stream_name = ['waitingperiodtest'] result = self.common_subscribe_to_streams(hamlet_user, stream_name) self.assert_json_success(result) # Can only invite users to stream if their account is ten days old.. do_change_user_role(hamlet_user, UserProfile.ROLE_MEMBER) do_set_realm_property(hamlet_user.realm, 'waiting_period_threshold', 10) # Attempt and fail to invite Cordelia to the stream.. result = self.common_subscribe_to_streams(hamlet_user, stream_name, {"principals": ujson.dumps([cordelia_user_id])}) self.assert_json_error(result, "Your account is too new to modify other users' subscriptions.") # Anyone can invite users.. do_set_realm_property(hamlet_user.realm, 'waiting_period_threshold', 0) # Attempt and succeed to invite Cordelia to the stream.. result = self.common_subscribe_to_streams(hamlet_user, stream_name, {"principals": ujson.dumps([cordelia_user_id])}) self.assert_json_success(result) # Set threshold to 20 days.. do_set_realm_property(hamlet_user.realm, 'waiting_period_threshold', 20) # Make Hamlet's account 21 days old.. hamlet_user.date_joined = timezone_now() - timedelta(days=21) hamlet_user.save() # Unsubscribe Cordelia.. self.unsubscribe(cordelia_user, stream_name[0]) # Attempt and succeed to invite Aaron to the stream.. result = self.common_subscribe_to_streams(hamlet_user, stream_name, {"principals": ujson.dumps([cordelia_user_id])}) self.assert_json_success(result) def test_remove_already_not_subbed(self) -> None: """ Trying to unsubscribe someone who already isn't subscribed to a stream fails gracefully. """ result = self.attempt_unsubscribe_of_principal( query_count=11, target_users=[self.example_user('cordelia')], is_admin=True, is_subbed=False, invite_only=False, target_users_subbed=False) json = self.assert_json_success(result) self.assertEqual(len(json["removed"]), 0) self.assertEqual(len(json["not_removed"]), 1) def test_remove_invalid_user(self) -> None: """ Trying to unsubscribe an invalid user from a stream fails gracefully. """ admin = self.example_user('iago') self.login_user(admin) self.assertTrue(admin.is_realm_admin) stream_name = "hümbüǵ" self.make_stream(stream_name) result = self.client_delete("/json/users/me/subscriptions", {"subscriptions": ujson.dumps([stream_name]), "principals": ujson.dumps([99])}) self.assert_json_error( result, "User not authorized to execute queries on behalf of '99'", status_code=403) class DefaultStreamTest(ZulipTestCase): def get_default_stream_names(self, realm: Realm) -> Set[str]: streams = get_default_streams_for_realm(realm.id) stream_names = [s.name for s in streams] return set(stream_names) def test_add_and_remove_default_stream(self) -> None: realm = get_realm("zulip") stream = ensure_stream(realm, "Added Stream") orig_stream_names = self.get_default_stream_names(realm) do_add_default_stream(stream) new_stream_names = self.get_default_stream_names(realm) added_stream_names = new_stream_names - orig_stream_names self.assertEqual(added_stream_names, {'Added Stream'}) # idempotentcy--2nd call to add_default_stream should be a noop do_add_default_stream(stream) self.assertEqual(self.get_default_stream_names(realm), new_stream_names) # start removing do_remove_default_stream(stream) self.assertEqual(self.get_default_stream_names(realm), orig_stream_names) # idempotentcy--2nd call to remove_default_stream should be a noop do_remove_default_stream(stream) self.assertEqual(self.get_default_stream_names(realm), orig_stream_names) def test_api_calls(self) -> None: user_profile = self.example_user('hamlet') do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) self.login_user(user_profile) stream_name = 'stream ADDED via api' stream = ensure_stream(user_profile.realm, stream_name) result = self.client_post('/json/default_streams', dict(stream_id=stream.id)) self.assert_json_success(result) self.assertTrue(stream_name in self.get_default_stream_names(user_profile.realm)) # look for it self.subscribe(user_profile, stream_name) payload = dict( include_public='true', include_default='true', ) result = self.client_get('/json/streams', payload) self.assert_json_success(result) streams = result.json()['streams'] default_streams = { stream['name'] for stream in streams if stream['is_default'] } self.assertEqual(default_streams, {stream_name}) other_streams = { stream['name'] for stream in streams if not stream['is_default'] } self.assertTrue(len(other_streams) > 0) # and remove it result = self.client_delete('/json/default_streams', dict(stream_id=stream.id)) self.assert_json_success(result) self.assertFalse(stream_name in self.get_default_stream_names(user_profile.realm)) # Test admin can't add unsubscribed private stream stream_name = "private_stream" stream = self.make_stream(stream_name, invite_only=True) self.subscribe(self.example_user('iago'), stream_name) result = self.client_post('/json/default_streams', dict(stream_id=stream.id)) self.assert_json_error(result, "Invalid stream id") self.subscribe(user_profile, stream_name) result = self.client_post('/json/default_streams', dict(stream_id=stream.id)) self.assert_json_success(result) self.assertTrue(stream_name in self.get_default_stream_names(user_profile.realm)) # Test admin can remove unsubscribed private stream self.unsubscribe(user_profile, stream_name) result = self.client_delete('/json/default_streams', dict(stream_id=stream.id)) self.assert_json_success(result) self.assertFalse(stream_name in self.get_default_stream_names(user_profile.realm)) class DefaultStreamGroupTest(ZulipTestCase): def test_create_update_and_remove_default_stream_group(self) -> None: realm = get_realm("zulip") # Test creating new default stream group default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 0) streams = [] for stream_name in ["stream1", "stream2", "stream3"]: stream = ensure_stream(realm, stream_name) streams.append(stream) def get_streams(group: DefaultStreamGroup) -> List[Stream]: return list(group.streams.all().order_by('name')) group_name = "group1" description = "This is group1" do_create_default_stream_group(realm, group_name, description, streams) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, group_name) self.assertEqual(default_stream_groups[0].description, description) self.assertEqual(get_streams(default_stream_groups[0]), streams) # Test adding streams to existing default stream group group = lookup_default_stream_groups(["group1"], realm)[0] new_stream_names = ["stream4", "stream5"] new_streams = [] for new_stream_name in new_stream_names: new_stream = ensure_stream(realm, new_stream_name) new_streams.append(new_stream) streams.append(new_stream) do_add_streams_to_default_stream_group(realm, group, new_streams) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, group_name) self.assertEqual(get_streams(default_stream_groups[0]), streams) # Test removing streams from existing default stream group do_remove_streams_from_default_stream_group(realm, group, new_streams) remaining_streams = streams[0:3] default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, group_name) self.assertEqual(get_streams(default_stream_groups[0]), remaining_streams) # Test changing default stream group description new_description = "group1 new description" do_change_default_stream_group_description(realm, group, new_description) default_stream_groups = get_default_stream_groups(realm) self.assertEqual(default_stream_groups[0].description, new_description) self.assert_length(default_stream_groups, 1) # Test changing default stream group name new_group_name = "new group1" do_change_default_stream_group_name(realm, group, new_group_name) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, new_group_name) self.assertEqual(get_streams(default_stream_groups[0]), remaining_streams) # Test removing default stream group do_remove_default_stream_group(realm, group) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 0) # Test creating a default stream group which contains a default stream do_add_default_stream(remaining_streams[0]) with self.assertRaisesRegex( JsonableError, "'stream1' is a default stream and cannot be added to 'new group1'"): do_create_default_stream_group(realm, new_group_name, "This is group1", remaining_streams) def test_api_calls(self) -> None: self.login('hamlet') user_profile = self.example_user('hamlet') realm = user_profile.realm do_change_user_role(user_profile, UserProfile.ROLE_REALM_ADMINISTRATOR) # Test creating new default stream group stream_names = ["stream1", "stream2", "stream3"] group_name = "group1" description = "This is group1" streams = [] default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 0) for stream_name in stream_names: stream = ensure_stream(realm, stream_name) streams.append(stream) result = self.client_post('/json/default_stream_groups/create', {"group_name": group_name, "description": description, "stream_names": ujson.dumps(stream_names)}) self.assert_json_success(result) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, group_name) self.assertEqual(default_stream_groups[0].description, description) self.assertEqual(list(default_stream_groups[0].streams.all().order_by("id")), streams) # Try adding the same streams to the group. result = self.client_post('/json/default_stream_groups/create', {"group_name": group_name, "description": description, "stream_names": ujson.dumps(stream_names)}) self.assert_json_error(result, "Default stream group 'group1' already exists") # Test adding streams to existing default stream group group_id = default_stream_groups[0].id new_stream_names = ["stream4", "stream5"] new_streams = [] for new_stream_name in new_stream_names: new_stream = ensure_stream(realm, new_stream_name) new_streams.append(new_stream) streams.append(new_stream) result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"stream_names": ujson.dumps(new_stream_names)}) self.assert_json_error(result, "Missing 'op' argument") result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "invalid", "stream_names": ujson.dumps(new_stream_names)}) self.assert_json_error(result, 'Invalid value for "op". Specify one of "add" or "remove".') result = self.client_patch("/json/default_stream_groups/12345/streams", {"op": "add", "stream_names": ujson.dumps(new_stream_names)}) self.assert_json_error(result, "Default stream group with id '12345' does not exist.") result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "add"}) self.assert_json_error(result, "Missing 'stream_names' argument") do_add_default_stream(new_streams[0]) result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "add", "stream_names": ujson.dumps(new_stream_names)}) self.assert_json_error(result, "'stream4' is a default stream and cannot be added to 'group1'") do_remove_default_stream(new_streams[0]) result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "add", "stream_names": ujson.dumps(new_stream_names)}) self.assert_json_success(result) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, group_name) self.assertEqual(list(default_stream_groups[0].streams.all().order_by('name')), streams) result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "add", "stream_names": ujson.dumps(new_stream_names)}) self.assert_json_error(result, "Stream 'stream4' is already present in default stream group 'group1'") # Test removing streams from default stream group result = self.client_patch("/json/default_stream_groups/12345/streams", {"op": "remove", "stream_names": ujson.dumps(new_stream_names)}) self.assert_json_error(result, "Default stream group with id '12345' does not exist.") result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "remove", "stream_names": ujson.dumps(["random stream name"])}) self.assert_json_error(result, "Invalid stream name 'random stream name'") streams.remove(new_streams[0]) result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "remove", "stream_names": ujson.dumps([new_stream_names[0]])}) self.assert_json_success(result) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, group_name) self.assertEqual(list(default_stream_groups[0].streams.all().order_by('name')), streams) result = self.client_patch(f"/json/default_stream_groups/{group_id}/streams", {"op": "remove", "stream_names": ujson.dumps(new_stream_names)}) self.assert_json_error(result, "Stream 'stream4' is not present in default stream group 'group1'") # Test changing description of default stream group new_description = "new group1 description" result = self.client_patch(f"/json/default_stream_groups/{group_id}", {"group_name": group_name, "op": "change"}) self.assert_json_error(result, 'You must pass "new_description" or "new_group_name".') result = self.client_patch("/json/default_stream_groups/12345", {"op": "change", "new_description": ujson.dumps(new_description)}) self.assert_json_error(result, "Default stream group with id '12345' does not exist.") result = self.client_patch(f"/json/default_stream_groups/{group_id}", {"group_name": group_name, "op": "change", "new_description": ujson.dumps(new_description)}) self.assert_json_success(result) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, group_name) self.assertEqual(default_stream_groups[0].description, new_description) # Test changing name of default stream group new_group_name = "new group1" do_create_default_stream_group(realm, "group2", "", []) result = self.client_patch(f"/json/default_stream_groups/{group_id}", {"op": "change", "new_group_name": ujson.dumps("group2")}) self.assert_json_error(result, "Default stream group 'group2' already exists") new_group = lookup_default_stream_groups(["group2"], realm)[0] do_remove_default_stream_group(realm, new_group) result = self.client_patch(f"/json/default_stream_groups/{group_id}", {"op": "change", "new_group_name": ujson.dumps(group_name)}) self.assert_json_error(result, "This default stream group is already named 'group1'") result = self.client_patch(f"/json/default_stream_groups/{group_id}", {"op": "change", "new_group_name": ujson.dumps(new_group_name)}) self.assert_json_success(result) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 1) self.assertEqual(default_stream_groups[0].name, new_group_name) self.assertEqual(default_stream_groups[0].description, new_description) # Test deleting a default stream group result = self.client_delete(f'/json/default_stream_groups/{group_id}') self.assert_json_success(result) default_stream_groups = get_default_stream_groups(realm) self.assert_length(default_stream_groups, 0) result = self.client_delete(f'/json/default_stream_groups/{group_id}') self.assert_json_error(result, f"Default stream group with id '{group_id}' does not exist.") def test_invalid_default_stream_group_name(self) -> None: self.login('iago') user_profile = self.example_user('iago') realm = user_profile.realm stream_names = ["stream1", "stream2", "stream3"] description = "This is group1" streams = [] for stream_name in stream_names: stream = ensure_stream(realm, stream_name) streams.append(stream) result = self.client_post('/json/default_stream_groups/create', {"group_name": "", "description": description, "stream_names": ujson.dumps(stream_names)}) self.assert_json_error(result, "Invalid default stream group name ''") result = self.client_post('/json/default_stream_groups/create', {"group_name": 'x'*100, "description": description, "stream_names": ujson.dumps(stream_names)}) self.assert_json_error(result, "Default stream group name too long (limit: {} characters)" .format(DefaultStreamGroup.MAX_NAME_LENGTH)) result = self.client_post('/json/default_stream_groups/create', {"group_name": "abc\000", "description": description, "stream_names": ujson.dumps(stream_names)}) self.assert_json_error(result, "Default stream group name 'abc\000' contains NULL (0x00) characters.") # Also test that lookup_default_stream_groups raises an # error if we pass it a bad name. This function is used # during registration, but it's a bit heavy to do a full # test of that. with self.assertRaisesRegex(JsonableError, 'Invalid default stream group invalid-name'): lookup_default_stream_groups(['invalid-name'], realm) class SubscriptionPropertiesTest(ZulipTestCase): def test_set_stream_color(self) -> None: """ A POST request to /api/v1/users/me/subscriptions/properties with stream_id and color data sets the stream color, and for that stream only. Also, make sure that any invalid hex color codes are bounced. """ test_user = self.example_user('hamlet') self.login_user(test_user) old_subs, _ = gather_subscriptions(test_user) sub = old_subs[0] stream_id = sub['stream_id'] new_color = "#ffffff" # TODO: ensure that this is different from old_color result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "color", "stream_id": stream_id, "value": "#ffffff"}])}) self.assert_json_success(result) new_subs = gather_subscriptions(test_user)[0] found_sub = None for sub in new_subs: if sub['stream_id'] == stream_id: found_sub = sub break assert(found_sub is not None) self.assertEqual(found_sub['color'], new_color) new_subs.remove(found_sub) for sub in old_subs: if sub['stream_id'] == stream_id: found_sub = sub break old_subs.remove(found_sub) self.assertEqual(old_subs, new_subs) invalid_color = "3ffrff" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "color", "stream_id": stream_id, "value": invalid_color}])}) self.assert_json_error(result, "color is not a valid hex color code") def test_set_color_missing_stream_id(self) -> None: """ Updating the color property requires a `stream_id` key. """ test_user = self.example_user('hamlet') self.login_user(test_user) result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "color", "value": "#ffffff"}])}) self.assert_json_error( result, "stream_id key is missing from subscription_data[0]") def test_set_color_unsubscribed_stream_id(self) -> None: """ Updating the color property requires a subscribed stream. """ test_user = self.example_user("hamlet") self.login_user(test_user) subscribed, unsubscribed, never_subscribed = gather_subscriptions_helper(test_user) not_subbed = unsubscribed + never_subscribed result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "color", "stream_id": not_subbed[0]["stream_id"], "value": "#ffffff"}])}) self.assert_json_error( result, "Not subscribed to stream id {}".format(not_subbed[0]["stream_id"])) def test_set_color_missing_color(self) -> None: """ Updating the color property requires a color. """ test_user = self.example_user('hamlet') self.login_user(test_user) subs = gather_subscriptions(test_user)[0] result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "color", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error( result, "value key is missing from subscription_data[0]") def test_set_stream_wildcard_mentions_notify(self) -> None: """ A POST request to /api/v1/users/me/subscriptions/properties with wildcard_mentions_notify sets the property. """ test_user = self.example_user('hamlet') self.login_user(test_user) subs = gather_subscriptions(test_user)[0] sub = subs[0] result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "wildcard_mentions_notify", "stream_id": sub["stream_id"], "value": True}])}) self.assert_json_success(result) updated_sub = get_subscription(sub['name'], test_user) self.assertIsNotNone(updated_sub) self.assertEqual(updated_sub.wildcard_mentions_notify, True) def test_set_pin_to_top(self) -> None: """ A POST request to /api/v1/users/me/subscriptions/properties with stream_id and pin_to_top data pins the stream. """ user = self.example_user('hamlet') self.login_user(user) old_subs, _ = gather_subscriptions(user) sub = old_subs[0] stream_id = sub['stream_id'] new_pin_to_top = not sub['pin_to_top'] result = self.api_post(user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "pin_to_top", "stream_id": stream_id, "value": new_pin_to_top}])}) self.assert_json_success(result) updated_sub = get_subscription(sub['name'], user) self.assertIsNotNone(updated_sub) self.assertEqual(updated_sub.pin_to_top, new_pin_to_top) def test_change_is_muted(self) -> None: test_user = self.example_user('hamlet') self.login_user(test_user) subs = gather_subscriptions(test_user)[0] sub = Subscription.objects.get(recipient__type=Recipient.STREAM, recipient__type_id=subs[0]["stream_id"], user_profile=test_user) self.assertEqual(sub.is_muted, False) events: List[Mapping[str, Any]] = [] property_name = "is_muted" with tornado_redirected_to_list(events): result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": True, "stream_id": subs[0]["stream_id"]}])}) self.assert_json_success(result) self.assert_length(events, 1) self.assertEqual(events[0]['event']['property'], 'in_home_view') self.assertEqual(events[0]['event']['value'], False) sub = Subscription.objects.get(recipient__type=Recipient.STREAM, recipient__type_id=subs[0]["stream_id"], user_profile=test_user) self.assertEqual(sub.is_muted, True) events = [] legacy_property_name = 'in_home_view' with tornado_redirected_to_list(events): result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": legacy_property_name, "value": True, "stream_id": subs[0]["stream_id"]}])}) self.assert_json_success(result) self.assert_length(events, 1) self.assertEqual(events[0]['event']['property'], 'in_home_view') self.assertEqual(events[0]['event']['value'], True) self.assert_json_success(result) sub = Subscription.objects.get(recipient__type=Recipient.STREAM, recipient__type_id=subs[0]["stream_id"], user_profile=test_user) self.assertEqual(sub.is_muted, False) events = [] with tornado_redirected_to_list(events): result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": legacy_property_name, "value": False, "stream_id": subs[0]["stream_id"]}])}) self.assert_json_success(result) self.assert_length(events, 1) self.assertEqual(events[0]['event']['property'], 'in_home_view') self.assertEqual(events[0]['event']['value'], False) sub = Subscription.objects.get(recipient__type=Recipient.STREAM, recipient__type_id=subs[0]["stream_id"], user_profile=test_user) self.assertEqual(sub.is_muted, True) def test_set_subscription_property_incorrect(self) -> None: """ Trying to set a property incorrectly returns a JSON error. """ test_user = self.example_user('hamlet') self.login_user(test_user) subs = gather_subscriptions(test_user)[0] property_name = "is_muted" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f'{property_name} is not a boolean') property_name = "in_home_view" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f'{property_name} is not a boolean') property_name = "desktop_notifications" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f'{property_name} is not a boolean') property_name = "audible_notifications" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f'{property_name} is not a boolean') property_name = "push_notifications" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f'{property_name} is not a boolean') property_name = "email_notifications" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f'{property_name} is not a boolean') property_name = "wildcard_mentions_notify" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f"{property_name} is not a boolean") property_name = "color" result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": property_name, "value": False, "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, f'{property_name} is not a string') def test_json_subscription_property_invalid_stream(self) -> None: test_user = self.example_user("hamlet") self.login_user(test_user) stream_id = 1000 result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "is_muted", "stream_id": stream_id, "value": False}])}) self.assert_json_error(result, "Invalid stream id") def test_set_invalid_property(self) -> None: """ Trying to set an invalid property returns a JSON error. """ test_user = self.example_user('hamlet') self.login_user(test_user) subs = gather_subscriptions(test_user)[0] result = self.api_post(test_user, "/api/v1/users/me/subscriptions/properties", {"subscription_data": ujson.dumps([{"property": "bad", "value": "bad", "stream_id": subs[0]["stream_id"]}])}) self.assert_json_error(result, "Unknown subscription property: bad") class SubscriptionRestApiTest(ZulipTestCase): def test_basic_add_delete(self) -> None: user = self.example_user('hamlet') self.login_user(user) # add request = { 'add': ujson.dumps([{'name': 'my_test_stream_1'}]), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_success(result) streams = self.get_streams(user) self.assertTrue('my_test_stream_1' in streams) # now delete the same stream request = { 'delete': ujson.dumps(['my_test_stream_1']), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_success(result) streams = self.get_streams(user) self.assertTrue('my_test_stream_1' not in streams) def test_add_with_color(self) -> None: user = self.example_user('hamlet') self.login_user(user) # add with color proposition request = { 'add': ujson.dumps([{'name': 'my_test_stream_2', 'color': '#afafaf'}]), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_success(result) # incorrect color format request = { 'subscriptions': ujson.dumps([{'name': 'my_test_stream_3', 'color': '#0g0g0g'}]), } result = self.api_post(user, "/api/v1/users/me/subscriptions", request) self.assert_json_error(result, 'subscriptions[0]["color"] is not a valid hex color code') def test_api_valid_property(self) -> None: """ Trying to set valid json returns success message. """ user = self.example_user('hamlet') self.login_user(user) subs = gather_subscriptions(user)[0] result = self.api_patch(user, "/api/v1/users/me/subscriptions/{}".format(subs[0]["stream_id"]), {'property': 'color', 'value': '#c2c2c2'}) self.assert_json_success(result) def test_api_invalid_property(self) -> None: """ Trying to set an invalid property returns a JSON error. """ user = self.example_user('hamlet') self.login_user(user) subs = gather_subscriptions(user)[0] result = self.api_patch(user, "/api/v1/users/me/subscriptions/{}".format(subs[0]["stream_id"]), {'property': 'invalid', 'value': 'somevalue'}) self.assert_json_error(result, "Unknown subscription property: invalid") def test_api_invalid_stream_id(self) -> None: """ Trying to set an invalid stream id returns a JSON error. """ user = self.example_user("hamlet") self.login_user(user) result = self.api_patch(user, "/api/v1/users/me/subscriptions/121", {'property': 'is_muted', 'value': 'somevalue'}) self.assert_json_error(result, "Invalid stream id") def test_bad_add_parameters(self) -> None: user = self.example_user('hamlet') self.login_user(user) def check_for_error(val: Any, expected_message: str) -> None: request = { 'add': ujson.dumps(val), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_error(result, expected_message) check_for_error(['foo'], 'add[0] is not a dict') check_for_error([{'bogus': 'foo'}], 'name key is missing from add[0]') check_for_error([{'name': {}}], 'add[0]["name"] is not a string') def test_bad_principals(self) -> None: user = self.example_user('hamlet') self.login_user(user) request = { 'add': ujson.dumps([{'name': 'my_new_stream'}]), 'principals': ujson.dumps([{}]), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_error(result, 'principals is not an allowed_type') def test_bad_delete_parameters(self) -> None: user = self.example_user('hamlet') self.login_user(user) request = { 'delete': ujson.dumps([{'name': 'my_test_stream_1'}]), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_error(result, "delete[0] is not a string") def test_add_or_delete_not_specified(self) -> None: user = self.example_user('hamlet') self.login_user(user) result = self.api_patch(user, "/api/v1/users/me/subscriptions", {}) self.assert_json_error(result, 'Nothing to do. Specify at least one of "add" or "delete".') def test_patch_enforces_valid_stream_name_check(self) -> None: """ Only way to force an error is with a empty string. """ user = self.example_user('hamlet') self.login_user(user) invalid_stream_name = "" request = { 'delete': ujson.dumps([invalid_stream_name]), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_error(result, f"Invalid stream name '{invalid_stream_name}'") def test_stream_name_too_long(self) -> None: user = self.example_user('hamlet') self.login_user(user) long_stream_name = "a" * 61 request = { 'delete': ujson.dumps([long_stream_name]), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_error(result, "Stream name too long (limit: 60 characters).") def test_stream_name_contains_null(self) -> None: user = self.example_user('hamlet') self.login_user(user) stream_name = "abc\000" request = { 'delete': ujson.dumps([stream_name]), } result = self.api_patch(user, "/api/v1/users/me/subscriptions", request) self.assert_json_error(result, f"Stream name '{stream_name}' contains NULL (0x00) characters.") def test_compose_views_rollback(self) -> None: ''' The compose_views function() is used under the hood by update_subscriptions_backend. It's a pretty simple method in terms of control flow, but it uses a Django rollback, which may make it brittle code when we upgrade Django. We test the functions's rollback logic here with a simple scenario to avoid false positives related to subscription complications. ''' user_profile = self.example_user('hamlet') user_profile.full_name = 'Hamlet' user_profile.save() def method1(req: HttpRequest, user_profile: UserProfile) -> HttpResponse: user_profile.full_name = 'Should not be committed' user_profile.save() return json_success() def method2(req: HttpRequest, user_profile: UserProfile) -> HttpResponse: return json_error('random failure') with self.assertRaises(JsonableError): compose_views(None, user_profile, [(method1, {}), (method2, {})]) user_profile = self.example_user('hamlet') self.assertEqual(user_profile.full_name, 'Hamlet') class SubscriptionAPITest(ZulipTestCase): def setUp(self) -> None: """ All tests will be logged in as hamlet. Also save various useful values as attributes that tests can access. """ super().setUp() self.user_profile = self.example_user('hamlet') self.test_email = self.user_profile.email self.test_user = self.user_profile self.login_user(self.user_profile) self.test_realm = self.user_profile.realm self.streams = self.get_streams(self.user_profile) def make_random_stream_names(self, existing_stream_names: List[str]) -> List[str]: """ Helper function to make up random stream names. It takes existing_stream_names and randomly appends a digit to the end of each, but avoids names that appear in the list names_to_avoid. """ random_streams = [] all_stream_names = [stream.name for stream in Stream.objects.filter(realm=self.test_realm)] for stream in existing_stream_names: random_stream = stream + str(random.randint(0, 9)) if random_stream not in all_stream_names: random_streams.append(random_stream) return random_streams def test_successful_subscriptions_list(self) -> None: """ Calling /api/v1/users/me/subscriptions should successfully return your subscriptions. """ result = self.api_get(self.test_user, "/api/v1/users/me/subscriptions") self.assert_json_success(result) json = result.json() self.assertIn("subscriptions", json) for stream in json['subscriptions']: self.assertIsInstance(stream['name'], str) self.assertIsInstance(stream['color'], str) self.assertIsInstance(stream['invite_only'], bool) # check that the stream name corresponds to an actual # stream; will throw Stream.DoesNotExist if it doesn't get_stream(stream['name'], self.test_realm) list_streams = [stream['name'] for stream in json["subscriptions"]] # also check that this matches the list of your subscriptions self.assertEqual(sorted(list_streams), sorted(self.streams)) def helper_check_subs_before_and_after_add(self, subscriptions: List[str], other_params: Dict[str, Any], subscribed: List[str], already_subscribed: List[str], email: str, new_subs: List[str], realm: Realm, invite_only: bool=False) -> None: """ Check result of adding subscriptions. You can add subscriptions for yourself or possibly many principals, which is why e-mails map to subscriptions in the result. The result json is of the form {"msg": "", "result": "success", "already_subscribed": {self.example_email("iago"): ["Venice", "Verona"]}, "subscribed": {self.example_email("iago"): ["Venice8"]}} """ result = self.common_subscribe_to_streams(self.test_user, subscriptions, other_params, invite_only=invite_only) self.assert_json_success(result) json = result.json() self.assertEqual(sorted(subscribed), sorted(json["subscribed"][email])) self.assertEqual(sorted(already_subscribed), sorted(json["already_subscribed"][email])) user = get_user(email, realm) new_streams = self.get_streams(user) self.assertEqual(sorted(new_streams), sorted(new_subs)) def test_successful_subscriptions_add(self) -> None: """ Calling POST /json/users/me/subscriptions should successfully add streams, and should determine which are new subscriptions vs which were already subscribed. We add 2 new streams to the list of subscriptions and confirm the right number of events are generated. """ self.assertNotEqual(len(self.streams), 0) # necessary for full test coverage add_streams = ["Verona2", "Denmark5"] self.assertNotEqual(len(add_streams), 0) # necessary for full test coverage events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): self.helper_check_subs_before_and_after_add(self.streams + add_streams, {}, add_streams, self.streams, self.test_email, self.streams + add_streams, self.test_realm) self.assert_length(events, 8) def test_successful_subscriptions_add_with_announce(self) -> None: """ Calling POST /json/users/me/subscriptions should successfully add streams, and should determine which are new subscriptions vs which were already subscribed. We add 2 new streams to the list of subscriptions and confirm the right number of events are generated. """ self.assertNotEqual(len(self.streams), 0) add_streams = ["Verona2", "Denmark5"] self.assertNotEqual(len(add_streams), 0) events: List[Mapping[str, Any]] = [] other_params = { 'announce': 'true', } notifications_stream = get_stream(self.streams[0], self.test_realm) self.test_realm.notifications_stream_id = notifications_stream.id self.test_realm.save() # Delete the UserProfile from the cache so the realm change will be # picked up cache.cache_delete(cache.user_profile_by_email_cache_key(self.test_email)) with tornado_redirected_to_list(events): self.helper_check_subs_before_and_after_add(self.streams + add_streams, other_params, add_streams, self.streams, self.test_email, self.streams + add_streams, self.test_realm) self.assertEqual(len(events), 9) def test_successful_subscriptions_notifies_pm(self) -> None: """ Calling POST /json/users/me/subscriptions should notify when a new stream is created. """ invitee = self.example_user("iago") current_stream = self.get_streams(invitee)[0] invite_streams = self.make_random_stream_names([current_stream])[:1] result = self.common_subscribe_to_streams( invitee, invite_streams, extra_post_data={ 'announce': 'true', 'principals': ujson.dumps([self.user_profile.id]), }, ) self.assert_json_success(result) def test_successful_subscriptions_notifies_stream(self) -> None: """ Calling POST /json/users/me/subscriptions should notify when a new stream is created. """ invitee = self.example_user("iago") invitee_full_name = 'Iago' current_stream = self.get_streams(invitee)[0] invite_streams = self.make_random_stream_names([current_stream])[:1] notifications_stream = get_stream(current_stream, self.test_realm) self.test_realm.notifications_stream_id = notifications_stream.id self.test_realm.save() # Delete the UserProfile from the cache so the realm change will be # picked up cache.cache_delete(cache.user_profile_by_email_cache_key(invitee.email)) result = self.common_subscribe_to_streams( invitee, invite_streams, extra_post_data=dict( announce='true', principals= ujson.dumps([self.user_profile.id]), ), ) self.assert_json_success(result) msg = self.get_second_to_last_message() self.assertEqual(msg.recipient.type, Recipient.STREAM) self.assertEqual(msg.sender_id, self.notification_bot().id) expected_msg = f"@_**{invitee_full_name}|{invitee.id}** created a new stream #**{invite_streams[0]}**." self.assertEqual(msg.content, expected_msg) def test_successful_cross_realm_notification(self) -> None: """ Calling POST /json/users/me/subscriptions in a new realm should notify with a proper new stream link """ realm = do_create_realm("testrealm", "Test Realm") notifications_stream = Stream.objects.get(name='general', realm=realm) realm.notifications_stream = notifications_stream realm.save() invite_streams = ["cross_stream"] user = self.example_user('AARON') user.realm = realm user.save() # Delete the UserProfile from the cache so the realm change will be # picked up cache.cache_delete(cache.user_profile_by_email_cache_key(user.email)) result = self.common_subscribe_to_streams( user, invite_streams, extra_post_data=dict( announce='true', ), subdomain="testrealm", ) self.assert_json_success(result) msg = self.get_second_to_last_message() self.assertEqual(msg.recipient.type, Recipient.STREAM) self.assertEqual(msg.sender_id, self.notification_bot().id) stream_id = Stream.objects.latest('id').id expected_rendered_msg = f'<p><span class="user-mention silent" data-user-id="{user.id}">{user.full_name}</span> created a new stream <a class="stream" data-stream-id="{stream_id}" href="/#narrow/stream/{stream_id}-{invite_streams[0]}">#{invite_streams[0]}</a>.</p>' self.assertEqual(msg.rendered_content, expected_rendered_msg) def test_successful_subscriptions_notifies_with_escaping(self) -> None: """ Calling POST /json/users/me/subscriptions should notify when a new stream is created. """ invitee_full_name = 'Iago' invitee = self.example_user('iago') current_stream = self.get_streams(invitee)[0] notifications_stream = get_stream(current_stream, self.test_realm) self.test_realm.notifications_stream_id = notifications_stream.id self.test_realm.save() invite_streams = ['strange ) \\ test'] result = self.common_subscribe_to_streams( invitee, invite_streams, extra_post_data={ 'announce': 'true', 'principals': ujson.dumps([self.user_profile.id]), }, ) self.assert_json_success(result) msg = self.get_second_to_last_message() self.assertEqual(msg.sender_id, self.notification_bot().id) expected_msg = f"@_**{invitee_full_name}|{invitee.id}** created a new stream #**{invite_streams[0]}**." self.assertEqual(msg.content, expected_msg) def test_non_ascii_stream_subscription(self) -> None: """ Subscribing to a stream name with non-ASCII characters succeeds. """ self.helper_check_subs_before_and_after_add(self.streams + ["hümbüǵ"], {}, ["hümbüǵ"], self.streams, self.test_email, self.streams + ["hümbüǵ"], self.test_realm) def test_subscriptions_add_too_long(self) -> None: """ Calling POST /json/users/me/subscriptions on a stream whose name is >60 characters should return a JSON error. """ # character limit is 60 characters long_stream_name = "a" * 61 result = self.common_subscribe_to_streams(self.test_user, [long_stream_name]) self.assert_json_error(result, "Stream name too long (limit: 60 characters).") def test_subscriptions_add_stream_with_null(self) -> None: """ Calling POST /json/users/me/subscriptions on a stream whose name contains null characters should return a JSON error. """ stream_name = "abc\000" result = self.common_subscribe_to_streams(self.test_user, [stream_name]) self.assert_json_error(result, f"Stream name '{stream_name}' contains NULL (0x00) characters.") def test_user_settings_for_adding_streams(self) -> None: with mock.patch('zerver.models.UserProfile.can_create_streams', return_value=False): result = self.common_subscribe_to_streams(self.test_user, ['stream1']) self.assert_json_error(result, 'User cannot create streams.') with mock.patch('zerver.models.UserProfile.can_create_streams', return_value=True): result = self.common_subscribe_to_streams(self.test_user, ['stream2']) self.assert_json_success(result) # User should still be able to subscribe to an existing stream with mock.patch('zerver.models.UserProfile.can_create_streams', return_value=False): result = self.common_subscribe_to_streams(self.test_user, ['stream2']) self.assert_json_success(result) def test_can_create_streams(self) -> None: othello = self.example_user('othello') othello.role = UserProfile.ROLE_REALM_ADMINISTRATOR self.assertTrue(othello.can_create_streams()) othello.role = UserProfile.ROLE_MEMBER othello.realm.create_stream_policy = Realm.POLICY_ADMINS_ONLY self.assertFalse(othello.can_create_streams()) othello.realm.create_stream_policy = Realm.POLICY_MEMBERS_ONLY othello.role = UserProfile.ROLE_GUEST self.assertFalse(othello.can_create_streams()) othello.role = UserProfile.ROLE_MEMBER othello.realm.waiting_period_threshold = 1000 othello.realm.create_stream_policy = Realm.POLICY_FULL_MEMBERS_ONLY othello.date_joined = timezone_now() - timedelta(days=(othello.realm.waiting_period_threshold - 1)) self.assertFalse(othello.can_create_streams()) othello.date_joined = timezone_now() - timedelta(days=(othello.realm.waiting_period_threshold + 1)) self.assertTrue(othello.can_create_streams()) def test_user_settings_for_subscribing_other_users(self) -> None: """ You can't subscribe other people to streams if you are a guest or your account is not old enough. """ user_profile = self.example_user("cordelia") invitee_user_id = user_profile.id realm = user_profile.realm do_set_realm_property(realm, "create_stream_policy", Realm.POLICY_MEMBERS_ONLY) do_set_realm_property(realm, "invite_to_stream_policy", Realm.POLICY_ADMINS_ONLY) result = self.common_subscribe_to_streams( self.test_user, ['stream1'], {"principals": ujson.dumps([invitee_user_id])}) self.assert_json_error( result, "Only administrators can modify other users' subscriptions.") do_set_realm_property(realm, "invite_to_stream_policy", Realm.POLICY_MEMBERS_ONLY) result = self.common_subscribe_to_streams( self.test_user, ['stream2'], {"principals": ujson.dumps([ self.test_user.id, invitee_user_id])}) self.assert_json_success(result) self.unsubscribe(user_profile, "stream2") do_set_realm_property(realm, "invite_to_stream_policy", Realm.POLICY_FULL_MEMBERS_ONLY) do_set_realm_property(realm, "waiting_period_threshold", 100000) result = self.common_subscribe_to_streams( self.test_user, ['stream2'], {"principals": ujson.dumps([invitee_user_id])}) self.assert_json_error( result, "Your account is too new to modify other users' subscriptions.") do_set_realm_property(realm, "waiting_period_threshold", 0) result = self.common_subscribe_to_streams( self.test_user, ['stream2'], {"principals": ujson.dumps([invitee_user_id])}) self.assert_json_success(result) def test_can_subscribe_other_users(self) -> None: """ You can't subscribe other people to streams if you are a guest or your account is not old enough. """ othello = self.example_user('othello') do_change_user_role(othello, UserProfile.ROLE_REALM_ADMINISTRATOR) self.assertTrue(othello.can_subscribe_other_users()) do_change_user_role(othello, UserProfile.ROLE_MEMBER) do_change_user_role(othello, UserProfile.ROLE_GUEST) self.assertFalse(othello.can_subscribe_other_users()) do_change_user_role(othello, UserProfile.ROLE_MEMBER) do_set_realm_property(othello.realm, "waiting_period_threshold", 1000) do_set_realm_property(othello.realm, "invite_to_stream_policy", Realm.POLICY_FULL_MEMBERS_ONLY) othello.date_joined = timezone_now() - timedelta(days=(othello.realm.waiting_period_threshold - 1)) self.assertFalse(othello.can_subscribe_other_users()) othello.date_joined = timezone_now() - timedelta(days=(othello.realm.waiting_period_threshold + 1)) self.assertTrue(othello.can_subscribe_other_users()) def test_subscriptions_add_invalid_stream(self) -> None: """ Calling POST /json/users/me/subscriptions on a stream whose name is invalid (as defined by valid_stream_name in zerver/views.py) should return a JSON error. """ # currently, the only invalid name is the empty string invalid_stream_name = "" result = self.common_subscribe_to_streams(self.test_user, [invalid_stream_name]) self.assert_json_error(result, f"Invalid stream name '{invalid_stream_name}'") def assert_adding_subscriptions_for_principal(self, invitee_data: Union[str, int], invitee_realm: Realm, streams: List[str], invite_only: bool=False) -> None: """ Calling POST /json/users/me/subscriptions on behalf of another principal (for whom you have permission to add subscriptions) should successfully add those subscriptions and send a message to the subscribee notifying them. """ if isinstance(invitee_data, str): other_profile = get_user(invitee_data, invitee_realm) else: other_profile = get_user_profile_by_id_in_realm(invitee_data, invitee_realm) current_streams = self.get_streams(other_profile) self.assertIsInstance(other_profile, UserProfile) self.assertNotEqual(len(current_streams), 0) # necessary for full test coverage self.assertNotEqual(len(streams), 0) # necessary for full test coverage streams_to_sub = streams[:1] # just add one, to make the message easier to check streams_to_sub.extend(current_streams) self.helper_check_subs_before_and_after_add(streams_to_sub, {"principals": ujson.dumps([invitee_data])}, streams[:1], current_streams, other_profile.email, streams_to_sub, invitee_realm, invite_only=invite_only) # verify that a welcome message was sent to the stream msg = self.get_last_message() self.assertEqual(msg.recipient.type, msg.recipient.STREAM) self.assertEqual(msg.topic_name(), 'stream events') self.assertEqual(msg.sender.email, settings.NOTIFICATION_BOT) self.assertIn('Stream created by @_**', msg.content) def test_multi_user_subscription(self) -> None: user1 = self.example_user("cordelia") user2 = self.example_user("iago") realm = get_realm("zulip") streams_to_sub = ['multi_user_stream'] events: List[Mapping[str, Any]] = [] flush_per_request_caches() with tornado_redirected_to_list(events): with queries_captured() as queries: self.common_subscribe_to_streams( self.test_user, streams_to_sub, dict(principals=ujson.dumps([user1.id, user2.id])), ) self.assert_length(queries, 39) self.assert_length(events, 7) for ev in [x for x in events if x['event']['type'] not in ('message', 'stream')]: if ev['event']['op'] == 'add': self.assertEqual( set(ev['event']['subscriptions'][0]['subscribers']), {user1.id, user2.id}, ) else: # Check "peer_add" events for streams users were # never subscribed to, in order for the neversubscribed # structure to stay up-to-date. self.assertEqual(ev['event']['op'], 'peer_add') stream = get_stream('multi_user_stream', realm) self.assertEqual(num_subscribers_for_stream_id(stream.id), 2) # Now add ourselves events = [] with tornado_redirected_to_list(events): with queries_captured() as queries: self.common_subscribe_to_streams( self.test_user, streams_to_sub, dict(principals=ujson.dumps([self.test_user.id])), ) self.assert_length(queries, 14) self.assert_length(events, 2) add_event, add_peer_event = events self.assertEqual(add_event['event']['type'], 'subscription') self.assertEqual(add_event['event']['op'], 'add') self.assertEqual(add_event['users'], [get_user(self.test_email, self.test_realm).id]) self.assertEqual( set(add_event['event']['subscriptions'][0]['subscribers']), {user1.id, user2.id, self.test_user.id}, ) self.assertNotIn(self.example_user('polonius').id, add_peer_event['users']) self.assertEqual(len(add_peer_event['users']), 11) self.assertEqual(add_peer_event['event']['type'], 'subscription') self.assertEqual(add_peer_event['event']['op'], 'peer_add') self.assertEqual(add_peer_event['event']['user_id'], self.user_profile.id) stream = get_stream('multi_user_stream', realm) self.assertEqual(num_subscribers_for_stream_id(stream.id), 3) # Finally, add othello. events = [] user_profile = self.example_user('othello') email3 = user_profile.email user3 = user_profile realm3 = user_profile.realm stream = get_stream('multi_user_stream', realm) with tornado_redirected_to_list(events): bulk_add_subscriptions([stream], [user_profile]) self.assert_length(events, 2) add_event, add_peer_event = events self.assertEqual(add_event['event']['type'], 'subscription') self.assertEqual(add_event['event']['op'], 'add') self.assertEqual(add_event['users'], [get_user(email3, realm3).id]) self.assertEqual( set(add_event['event']['subscriptions'][0]['subscribers']), {user1.id, user2.id, user3.id, self.test_user.id}, ) # We don't send a peer_add event to othello self.assertNotIn(user_profile.id, add_peer_event['users']) self.assertNotIn(self.example_user('polonius').id, add_peer_event['users']) self.assertEqual(len(add_peer_event['users']), 11) self.assertEqual(add_peer_event['event']['type'], 'subscription') self.assertEqual(add_peer_event['event']['op'], 'peer_add') self.assertEqual(add_peer_event['event']['user_id'], user_profile.id) def test_private_stream_subscription(self) -> None: realm = get_realm("zulip") # Create a private stream with Hamlet subscribed stream_name = "private" stream = ensure_stream(realm, stream_name, invite_only=True) existing_user_profile = self.example_user('hamlet') bulk_add_subscriptions([stream], [existing_user_profile]) # Now subscribe Cordelia to the stream, capturing events user_profile = self.example_user('cordelia') events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): bulk_add_subscriptions([stream], [user_profile]) self.assert_length(events, 3) create_event, add_event, add_peer_event = events self.assertEqual(create_event['event']['type'], 'stream') self.assertEqual(create_event['event']['op'], 'create') self.assertEqual(create_event['users'], [user_profile.id]) self.assertEqual(create_event['event']['streams'][0]['name'], stream_name) self.assertEqual(add_event['event']['type'], 'subscription') self.assertEqual(add_event['event']['op'], 'add') self.assertEqual(add_event['users'], [user_profile.id]) self.assertEqual( set(add_event['event']['subscriptions'][0]['subscribers']), {user_profile.id, existing_user_profile.id}, ) # We don't send a peer_add event to othello, but we do send peer_add event to # all realm admins. self.assertNotIn(user_profile.id, add_peer_event['users']) self.assertEqual(len(add_peer_event['users']), 3) self.assertEqual(add_peer_event['event']['type'], 'subscription') self.assertEqual(add_peer_event['event']['op'], 'peer_add') self.assertEqual(add_peer_event['event']['user_id'], user_profile.id) # Do not send stream creation event to realm admin users # even if realm admin is subscribed to stream cause realm admin already get # private stream creation event on stream creation. new_stream = ensure_stream(realm, "private stream", invite_only=True) events = [] with tornado_redirected_to_list(events): bulk_add_subscriptions([new_stream], [self.example_user("iago")]) self.assert_length(events, 3) create_event, add_event, add_peer_event = events self.assertEqual(create_event['event']['type'], 'stream') self.assertEqual(create_event['event']['op'], 'create') self.assertEqual(create_event['users'], []) self.assertEqual(add_event['event']['type'], 'subscription') self.assertEqual(add_event['event']['op'], 'add') self.assertEqual(add_event['users'], [self.example_user("iago").id]) self.assertEqual(len(add_peer_event['users']), 1) self.assertEqual(add_peer_event['event']['type'], 'subscription') self.assertEqual(add_peer_event['event']['op'], 'peer_add') self.assertEqual(add_peer_event['event']['user_id'], self.example_user("iago").id) def test_subscribe_to_stream_post_policy_admins_stream(self) -> None: """ Members can subscribe to streams where only admins can post """ member = self.example_user("AARON") stream = self.make_stream('stream1') do_change_stream_post_policy(stream, Stream.STREAM_POST_POLICY_ADMINS) result = self.common_subscribe_to_streams(member, ["stream1"]) self.assert_json_success(result) json = result.json() self.assertEqual(json["subscribed"], {member.email: ["stream1"]}) self.assertEqual(json["already_subscribed"], {}) def test_subscribe_to_stream_post_policy_restrict_new_members_stream(self) -> None: """ New members can subscribe to streams where they can not post """ new_member_email = self.nonreg_email('test') self.register(new_member_email, "test") new_member = self.nonreg_user('test') do_set_realm_property(new_member.realm, 'waiting_period_threshold', 10) self.assertTrue(new_member.is_new_member) stream = self.make_stream('stream1') do_change_stream_post_policy(stream, Stream.STREAM_POST_POLICY_RESTRICT_NEW_MEMBERS) result = self.common_subscribe_to_streams(new_member, ["stream1"]) self.assert_json_success(result) json = result.json() self.assertEqual(json["subscribed"], {new_member.email: ["stream1"]}) self.assertEqual(json["already_subscribed"], {}) def test_guest_user_subscribe(self) -> None: """Guest users cannot subscribe themselves to anything""" guest_user = self.example_user("polonius") result = self.common_subscribe_to_streams(guest_user, ["Denmark"]) self.assert_json_error(result, "Not allowed for guest users") # Verify the internal checks also block guest users. stream = get_stream("Denmark", guest_user.realm) self.assertEqual(filter_stream_authorization(guest_user, [stream]), ([], [stream])) # Test UserProfile.can_create_streams for guest users. streams_raw = [{ 'invite_only': False, 'history_public_to_subscribers': None, 'name': 'new_stream', 'stream_post_policy': Stream.STREAM_POST_POLICY_EVERYONE, }] with self.assertRaisesRegex(JsonableError, "User cannot create streams."): list_to_streams(streams_raw, guest_user) stream = self.make_stream('private_stream', invite_only=True) result = self.common_subscribe_to_streams(guest_user, ["private_stream"]) self.assert_json_error(result, "Not allowed for guest users") self.assertEqual(filter_stream_authorization(guest_user, [stream]), ([], [stream])) def test_users_getting_add_peer_event(self) -> None: """ Check users getting add_peer_event is correct """ streams_to_sub = ['multi_user_stream'] othello = self.example_user('othello') cordelia = self.example_user('cordelia') iago = self.example_user('iago') orig_user_ids_to_subscribe = [self.test_user.id, othello.id] self.common_subscribe_to_streams( self.test_user, streams_to_sub, dict(principals=ujson.dumps(orig_user_ids_to_subscribe))) new_user_ids_to_subscribe = [iago.id, cordelia.id] events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): self.common_subscribe_to_streams( self.test_user, streams_to_sub, dict(principals=ujson.dumps(new_user_ids_to_subscribe)), ) add_peer_events = [events[2], events[3]] for add_peer_event in add_peer_events: self.assertEqual(add_peer_event['event']['type'], 'subscription') self.assertEqual(add_peer_event['event']['op'], 'peer_add') event_sent_to_ids = add_peer_event['users'] for user_id in new_user_ids_to_subscribe: # Make sure new users subscribed to stream is not in # peer_add event recipient list self.assertNotIn(user_id, event_sent_to_ids) for old_user in orig_user_ids_to_subscribe: # Check non new users are in peer_add event recipient list. self.assertIn(old_user, event_sent_to_ids) def test_users_getting_remove_peer_event(self) -> None: """ Check users getting add_peer_event is correct """ user1 = self.example_user("othello") user2 = self.example_user("cordelia") user3 = self.example_user("hamlet") user4 = self.example_user("iago") user5 = self.example_user("AARON") stream1 = self.make_stream('stream1') stream2 = self.make_stream('stream2') private = self.make_stream('private_stream', invite_only=True) self.subscribe(user1, 'stream1') self.subscribe(user2, 'stream1') self.subscribe(user3, 'stream1') self.subscribe(user2, 'stream2') self.subscribe(user1, 'private_stream') self.subscribe(user2, 'private_stream') self.subscribe(user3, 'private_stream') events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): bulk_remove_subscriptions( [user1, user2], [stream1, stream2, private], get_client("website"), ) peer_events = [e for e in events if e['event'].get('op') == 'peer_remove'] notifications = set() for event in peer_events: for user_id in event['users']: for stream_name in event['event']['subscriptions']: removed_user_id = event['event']['user_id'] notifications.add((user_id, removed_user_id, stream_name)) # POSITIVE CASES FIRST self.assertIn((user3.id, user1.id, 'stream1'), notifications) self.assertIn((user4.id, user1.id, 'stream1'), notifications) self.assertIn((user3.id, user2.id, 'stream1'), notifications) self.assertIn((user4.id, user2.id, 'stream1'), notifications) self.assertIn((user1.id, user2.id, 'stream2'), notifications) self.assertIn((user3.id, user2.id, 'stream2'), notifications) self.assertIn((user4.id, user2.id, 'stream2'), notifications) self.assertIn((user3.id, user1.id, 'private_stream'), notifications) self.assertIn((user3.id, user2.id, 'private_stream'), notifications) self.assertIn((user4.id, user1.id, 'private_stream'), notifications) self.assertIn((user4.id, user2.id, 'private_stream'), notifications) # NEGATIVE # don't be notified if you are being removed yourself self.assertNotIn((user1.id, user1.id, 'stream1'), notifications) # don't send false notifications for folks that weren't actually # subscribed int he first place self.assertNotIn((user3.id, user1.id, 'stream2'), notifications) # don't send notifications for random people self.assertNotIn((user3.id, user4.id, 'stream2'), notifications) # don't send notifications to unsubscribed non realm admin users for private streams self.assertNotIn((user5.id, user1.id, 'private_stream'), notifications) def test_bulk_subscribe_MIT(self) -> None: mit_user = self.mit_user('starnine') realm = get_realm("zephyr") stream_names = [f"stream_{i}" for i in range(40)] streams = [ self.make_stream(stream_name, realm=realm) for stream_name in stream_names] for stream in streams: stream.is_in_zephyr_realm = True stream.save() events: List[Mapping[str, Any]] = [] with tornado_redirected_to_list(events): with queries_captured() as queries: self.common_subscribe_to_streams( mit_user, stream_names, dict(principals=ujson.dumps([mit_user.id])), subdomain="zephyr", ) # Make sure Zephyr mirroring realms such as MIT do not get # any tornado subscription events self.assert_length(events, 0) self.assert_length(queries, 5) events = [] with tornado_redirected_to_list(events): bulk_remove_subscriptions( users=[mit_user], streams=streams, acting_client=get_client('website'), ) self.assert_length(events, 0) def test_bulk_subscribe_many(self) -> None: # Create a whole bunch of streams streams = [f"stream_{i}" for i in range(20)] for stream_name in streams: self.make_stream(stream_name) with queries_captured() as queries: self.common_subscribe_to_streams( self.test_user, streams, dict(principals=ujson.dumps([self.test_user.id])), ) # Make sure we don't make O(streams) queries self.assert_length(queries, 16) def test_subscriptions_add_for_principal(self) -> None: """ You can subscribe other people to streams. """ invitee = self.example_user("iago") current_streams = self.get_streams(invitee) invite_streams = self.make_random_stream_names(current_streams) self.assert_adding_subscriptions_for_principal(invitee.id, invitee.realm, invite_streams) def test_subscriptions_add_for_principal_legacy_emails(self) -> None: invitee = self.example_user("iago") current_streams = self.get_streams(invitee) invite_streams = self.make_random_stream_names(current_streams) self.assert_adding_subscriptions_for_principal(invitee.email, invitee.realm, invite_streams) def test_subscriptions_add_for_principal_deactivated(self) -> None: """ You can't subscribe deactivated people to streams. """ target_profile = self.example_user("cordelia") post_data = dict( principals=ujson.dumps([target_profile.id]), ) result = self.common_subscribe_to_streams(self.test_user, "Verona", post_data) self.assert_json_success(result) do_deactivate_user(target_profile) result = self.common_subscribe_to_streams(self.test_user, "Denmark", post_data) self.assert_json_error( result, f"User not authorized to execute queries on behalf of '{target_profile.id}'", status_code=403) def test_subscriptions_add_for_principal_invite_only(self) -> None: """ You can subscribe other people to invite only streams. """ invitee = self.example_user("iago") current_streams = self.get_streams(invitee) invite_streams = self.make_random_stream_names(current_streams) self.assert_adding_subscriptions_for_principal(invitee.id, invitee.realm, invite_streams, invite_only=True) def test_non_ascii_subscription_for_principal(self) -> None: """ You can subscribe other people to streams even if they containing non-ASCII characters. """ iago = self.example_user('iago') self.assert_adding_subscriptions_for_principal(iago.id, get_realm('zulip'), ["hümbüǵ"]) def test_subscription_add_invalid_principal_legacy_emails(self) -> None: """ Calling subscribe on behalf of a principal that does not exist should return a JSON error. """ invalid_principal = "[email protected]" invalid_principal_realm = get_realm("zulip") # verify that invalid_principal actually doesn't exist with self.assertRaises(UserProfile.DoesNotExist): get_user(invalid_principal, invalid_principal_realm) result = self.common_subscribe_to_streams(self.test_user, self.streams, {"principals": ujson.dumps([invalid_principal])}) self.assert_json_error( result, f"User not authorized to execute queries on behalf of '{invalid_principal}'", status_code=403, ) def test_subscription_add_invalid_principal(self) -> None: invalid_principal = 999 invalid_principal_realm = get_realm("zulip") with self.assertRaises(UserProfile.DoesNotExist): get_user_profile_by_id_in_realm(invalid_principal, invalid_principal_realm) result = self.common_subscribe_to_streams(self.test_user, self.streams, {"principals": ujson.dumps([invalid_principal])}) self.assert_json_error( result, f"User not authorized to execute queries on behalf of '{invalid_principal}'", status_code=403, ) def test_subscription_add_principal_other_realm(self) -> None: """ Calling subscribe on behalf of a principal in another realm should return a JSON error. """ profile = self.mit_user('starnine') principal = profile.id # verify that principal exists (thus, the reason for the error is the cross-realming) self.assertIsInstance(profile, UserProfile) result = self.common_subscribe_to_streams(self.test_user, self.streams, {"principals": ujson.dumps([principal])}) self.assert_json_error( result, f"User not authorized to execute queries on behalf of '{principal}'", status_code=403, ) def helper_check_subs_before_and_after_remove(self, subscriptions: List[str], json_dict: Dict[str, Any], email: str, new_subs: List[str], realm: Realm) -> None: """ Check result of removing subscriptions. Unlike adding subscriptions, you can only remove subscriptions for yourself, so the result format is different. {"msg": "", "removed": ["Denmark", "Scotland", "Verona"], "not_removed": ["Rome"], "result": "success"} """ result = self.client_delete("/json/users/me/subscriptions", {"subscriptions": ujson.dumps(subscriptions)}) self.assert_json_success(result) json = result.json() for key, val in json_dict.items(): self.assertEqual(sorted(val), sorted(json[key])) # we don't care about the order of the items user = get_user(email, realm) new_streams = self.get_streams(user) self.assertEqual(sorted(new_streams), sorted(new_subs)) def test_successful_subscriptions_remove(self) -> None: """ Calling DELETE /json/users/me/subscriptions should successfully remove streams, and should determine which were removed vs which weren't subscribed to. We cannot randomly generate stream names because the remove code verifies whether streams exist. """ self.assertGreaterEqual(len(self.streams), 2) streams_to_remove = self.streams[1:] not_subbed = [] for stream in Stream.objects.all(): if stream.name not in self.streams: not_subbed.append(stream.name) random.shuffle(not_subbed) self.assertNotEqual(len(not_subbed), 0) # necessary for full test coverage try_to_remove = not_subbed[:3] # attempt to remove up to 3 streams not already subbed to streams_to_remove.extend(try_to_remove) self.helper_check_subs_before_and_after_remove(streams_to_remove, {"removed": self.streams[1:], "not_removed": try_to_remove}, self.test_email, [self.streams[0]], self.test_realm) def test_subscriptions_remove_fake_stream(self) -> None: """ Calling DELETE /json/users/me/subscriptions on a stream that doesn't exist should return a JSON error. """ random_streams = self.make_random_stream_names(self.streams) self.assertNotEqual(len(random_streams), 0) # necessary for full test coverage streams_to_remove = random_streams[:1] # pick only one fake stream, to make checking the error message easy result = self.client_delete("/json/users/me/subscriptions", {"subscriptions": ujson.dumps(streams_to_remove)}) self.assert_json_error(result, f"Stream(s) ({random_streams[0]}) do not exist") def helper_subscriptions_exists(self, stream: str, expect_success: bool, subscribed: bool) -> None: """ Call /json/subscriptions/exists on a stream and expect a certain result. """ result = self.client_post("/json/subscriptions/exists", {"stream": stream}) json = result.json() if expect_success: self.assert_json_success(result) else: self.assertEqual(result.status_code, 404) if subscribed: self.assertIn("subscribed", json) self.assertEqual(json["subscribed"], subscribed) def test_successful_subscriptions_exists_subbed(self) -> None: """ Calling /json/subscriptions/exist on a stream to which you are subbed should return that it exists and that you are subbed. """ self.assertNotEqual(len(self.streams), 0) # necessary for full test coverage self.helper_subscriptions_exists(self.streams[0], True, True) def test_successful_subscriptions_exists_not_subbed(self) -> None: """ Calling /json/subscriptions/exist on a stream to which you are not subbed should return that it exists and that you are not subbed. """ all_stream_names = [stream.name for stream in Stream.objects.filter(realm=self.test_realm)] streams_not_subbed = list(set(all_stream_names) - set(self.streams)) self.assertNotEqual(len(streams_not_subbed), 0) # necessary for full test coverage self.helper_subscriptions_exists(streams_not_subbed[0], True, False) def test_subscriptions_does_not_exist(self) -> None: """ Calling /json/subscriptions/exist on a stream that doesn't exist should return that it doesn't exist. """ random_streams = self.make_random_stream_names(self.streams) self.assertNotEqual(len(random_streams), 0) # necessary for full test coverage self.helper_subscriptions_exists(random_streams[0], False, False) def test_subscriptions_exist_invalid_name(self) -> None: """ Calling /json/subscriptions/exist on a stream whose name is invalid (as defined by valid_stream_name in zerver/views.py) should return a JSON error. """ # currently, the only invalid stream name is the empty string invalid_stream_name = "" result = self.client_post("/json/subscriptions/exists", {"stream": invalid_stream_name}) self.assert_json_error(result, "Invalid stream name ''") def test_existing_subscriptions_autosubscription(self) -> None: """ Call /json/subscriptions/exist on an existing stream and autosubscribe to it. """ stream_name = "new_public_stream" cordelia = self.example_user('cordelia') result = self.common_subscribe_to_streams(cordelia, [stream_name], invite_only=False) result = self.client_post("/json/subscriptions/exists", {"stream": stream_name, "autosubscribe": "false"}) self.assert_json_success(result) self.assertIn("subscribed", result.json()) self.assertFalse(result.json()["subscribed"]) result = self.client_post("/json/subscriptions/exists", {"stream": stream_name, "autosubscribe": "true"}) self.assert_json_success(result) self.assertIn("subscribed", result.json()) self.assertTrue(result.json()["subscribed"]) def test_existing_subscriptions_autosubscription_private_stream(self) -> None: """Call /json/subscriptions/exist on an existing private stream with autosubscribe should fail. """ stream_name = "Saxony" cordelia = self.example_user('cordelia') result = self.common_subscribe_to_streams(cordelia, [stream_name], invite_only=True) stream = get_stream(stream_name, self.test_realm) result = self.client_post("/json/subscriptions/exists", {"stream": stream_name, "autosubscribe": "true"}) # We can't see invite-only streams here self.assert_json_error(result, "Invalid stream name 'Saxony'", status_code=404) # Importantly, we are not now subscribed self.assertEqual(num_subscribers_for_stream_id(stream.id), 1) # A user who is subscribed still sees the stream exists self.login('cordelia') result = self.client_post("/json/subscriptions/exists", {"stream": stream_name, "autosubscribe": "false"}) self.assert_json_success(result) self.assertIn("subscribed", result.json()) self.assertTrue(result.json()["subscribed"]) def get_subscription(self, user_profile: UserProfile, stream_name: str) -> Subscription: stream = get_stream(stream_name, self.test_realm) return Subscription.objects.get( user_profile=user_profile, recipient__type=Recipient.STREAM, recipient__type_id=stream.id, ) def test_subscriptions_add_notification_default_none(self) -> None: """ When creating a subscription, the desktop, push, and audible notification settings for that stream are none. A value of None means to use the values inherited from the global notification settings. """ user_profile = self.example_user('iago') invitee_user_id = user_profile.id invitee_realm = user_profile.realm user_profile.enable_stream_desktop_notifications = True user_profile.enable_stream_push_notifications = True user_profile.enable_stream_audible_notifications = True user_profile.enable_stream_email_notifications = True user_profile.save() current_stream = self.get_streams(user_profile)[0] invite_streams = self.make_random_stream_names([current_stream]) self.assert_adding_subscriptions_for_principal(invitee_user_id, invitee_realm, invite_streams) subscription = self.get_subscription(user_profile, invite_streams[0]) with mock.patch('zerver.models.Recipient.__str__', return_value='recip'): self.assertEqual(str(subscription), '<Subscription: ' f'<UserProfile: {user_profile.email} {user_profile.realm}> -> recip>') self.assertIsNone(subscription.desktop_notifications) self.assertIsNone(subscription.push_notifications) self.assertIsNone(subscription.audible_notifications) self.assertIsNone(subscription.email_notifications) def test_mark_messages_as_unread_on_unsubscribe(self) -> None: realm = get_realm("zulip") user = self.example_user("iago") random_user = self.example_user("hamlet") stream1 = ensure_stream(realm, "stream1", invite_only=False) stream2 = ensure_stream(realm, "stream2", invite_only=False) private = ensure_stream(realm, "private_stream", invite_only=True) self.subscribe(user, "stream1") self.subscribe(user, "stream2") self.subscribe(user, "private_stream") self.subscribe(random_user, "stream1") self.subscribe(random_user, "stream2") self.subscribe(random_user, "private_stream") self.send_stream_message(random_user, "stream1", "test", "test") self.send_stream_message(random_user, "stream2", "test", "test") self.send_stream_message(random_user, "private_stream", "test", "test") def get_unread_stream_data() -> List[Dict[str, Any]]: raw_unread_data = get_raw_unread_data(user) aggregated_data = aggregate_unread_data(raw_unread_data) return aggregated_data['streams'] result = get_unread_stream_data() self.assert_length(result, 3) self.assertEqual(result[0]['stream_id'], stream1.id) self.assertEqual(result[1]['stream_id'], stream2.id) self.assertEqual(result[2]['stream_id'], private.id) # Unsubscribing should mark all the messages in stream2 as read self.unsubscribe(user, "stream2") self.unsubscribe(user, "private_stream") self.subscribe(user, "stream2") self.subscribe(user, "private_stream") result = get_unread_stream_data() self.assert_length(result, 1) self.assertEqual(result[0]['stream_id'], stream1.id) def test_gather_subscriptions_excludes_deactivated_streams(self) -> None: """ Check that gather_subscriptions_helper does not include deactivated streams in its results. """ realm = get_realm("zulip") admin_user = self.example_user("iago") non_admin_user = self.example_user("cordelia") self.login_user(admin_user) for stream_name in ["stream1", "stream2", "stream3"]: self.make_stream(stream_name, realm=realm, invite_only=False) self.subscribe(admin_user, stream_name) self.subscribe(non_admin_user, stream_name) self.subscribe(self.example_user("othello"), stream_name) def delete_stream(stream_name: str) -> None: stream_id = get_stream(stream_name, realm).id result = self.client_delete(f'/json/streams/{stream_id}') self.assert_json_success(result) # Deleted/deactivated stream should not be returned in the helper results admin_before_delete = gather_subscriptions_helper(admin_user) non_admin_before_delete = gather_subscriptions_helper(non_admin_user) # Delete our stream delete_stream("stream1") # Get subs after delete admin_after_delete = gather_subscriptions_helper(admin_user) non_admin_after_delete = gather_subscriptions_helper(non_admin_user) # Compare results - should be 1 stream less self.assertTrue( len(admin_before_delete[0]) == len(admin_after_delete[0]) + 1, 'Expected exactly 1 less stream from gather_subscriptions_helper') self.assertTrue( len(non_admin_before_delete[0]) == len(non_admin_after_delete[0]) + 1, 'Expected exactly 1 less stream from gather_subscriptions_helper') def test_validate_user_access_to_subscribers_helper(self) -> None: """ Ensure the validate_user_access_to_subscribers_helper is properly raising ValidationError on missing user, user not-in-realm. """ user_profile = self.example_user('othello') realm_name = 'no_othello_allowed' realm = do_create_realm(realm_name, 'Everyone but Othello is allowed') stream_dict = { 'name': 'publicstream', 'description': 'Public stream with public history', 'realm_id': realm.id, } # For this test to work, othello can't be in the no_othello_here realm self.assertNotEqual(user_profile.realm.id, realm.id, 'Expected othello user to not be in this realm.') # This should result in missing user with self.assertRaises(ValidationError): validate_user_access_to_subscribers_helper(None, stream_dict, lambda: True) # This should result in user not in realm with self.assertRaises(ValidationError): validate_user_access_to_subscribers_helper(user_profile, stream_dict, lambda: True) def test_subscriptions_query_count(self) -> None: """ Test database query count when creating stream with api/v1/users/me/subscriptions. """ user1 = self.example_user("cordelia") user2 = self.example_user("iago") new_streams = [ 'query_count_stream_1', 'query_count_stream_2', 'query_count_stream_3', ] # Test creating a public stream when realm does not have a notification stream. with queries_captured() as queries: self.common_subscribe_to_streams( self.test_user, [new_streams[0]], dict(principals=ujson.dumps([user1.id, user2.id])), ) self.assert_length(queries, 39) # Test creating private stream. with queries_captured() as queries: self.common_subscribe_to_streams( self.test_user, [new_streams[1]], dict(principals=ujson.dumps([user1.id, user2.id])), invite_only=True, ) self.assert_length(queries, 39) # Test creating a public stream with announce when realm has a notification stream. notifications_stream = get_stream(self.streams[0], self.test_realm) self.test_realm.notifications_stream_id = notifications_stream.id self.test_realm.save() with queries_captured() as queries: self.common_subscribe_to_streams( self.test_user, [new_streams[2]], dict( announce='true', principals=ujson.dumps([user1.id, user2.id]), ), ) self.assert_length(queries, 50) class GetStreamsTest(ZulipTestCase): def test_streams_api_for_bot_owners(self) -> None: hamlet = self.example_user('hamlet') test_bot = self.create_test_bot('foo', hamlet, bot_owner=hamlet) assert test_bot is not None realm = get_realm('zulip') self.login_user(hamlet) # Check it correctly lists the bot owner's subs with # include_owner_subscribed=true result = self.api_get( test_bot, "/api/v1/streams?include_owner_subscribed=true&include_public=false&include_subscribed=false") owner_subs = self.api_get(hamlet, "/api/v1/users/me/subscriptions") self.assert_json_success(result) json = result.json() self.assertIn("streams", json) self.assertIsInstance(json["streams"], list) self.assert_json_success(owner_subs) owner_subs_json = ujson.loads(owner_subs.content) self.assertEqual(sorted([s["name"] for s in json["streams"]]), sorted([s["name"] for s in owner_subs_json["subscriptions"]])) # Check it correctly lists the bot owner's subs and the # bot's subs self.subscribe(test_bot, 'Scotland') result = self.api_get( test_bot, "/api/v1/streams?include_owner_subscribed=true&include_public=false&include_subscribed=true", ) self.assert_json_success(result) json = result.json() self.assertIn("streams", json) self.assertIsInstance(json["streams"], list) actual = sorted([s["name"] for s in json["streams"]]) expected = [s["name"] for s in owner_subs_json["subscriptions"]] expected.append('Scotland') expected.sort() self.assertEqual(actual, expected) # Check it correctly lists the bot owner's subs + all public streams self.make_stream('private_stream', realm=realm, invite_only=True) self.subscribe(test_bot, 'private_stream') result = self.api_get( test_bot, "/api/v1/streams?include_owner_subscribed=true&include_public=true&include_subscribed=false", ) self.assert_json_success(result) json = result.json() self.assertIn("streams", json) self.assertIsInstance(json["streams"], list) actual = sorted([s["name"] for s in json["streams"]]) expected = [s["name"] for s in owner_subs_json["subscriptions"]] expected.extend(['Rome', 'Venice', 'Scotland']) expected.sort() self.assertEqual(actual, expected) # Check it correctly lists the bot owner's subs + all public streams + # the bot's subs result = self.api_get( test_bot, "/api/v1/streams?include_owner_subscribed=true&include_public=true&include_subscribed=true", ) self.assert_json_success(result) json = result.json() self.assertIn("streams", json) self.assertIsInstance(json["streams"], list) actual = sorted([s["name"] for s in json["streams"]]) expected = [s["name"] for s in owner_subs_json["subscriptions"]] expected.extend(['Rome', 'Venice', 'Scotland', 'private_stream']) expected.sort() self.assertEqual(actual, expected) def test_all_active_streams_api(self) -> None: url = '/api/v1/streams?include_all_active=true' # Check non-superuser can't use include_all_active normal_user = self.example_user('cordelia') result = self.api_get(normal_user, url) self.assertEqual(result.status_code, 400) # Even realm admin users can't see all # active streams (without additional privileges). admin_user = self.example_user('iago') self.assertTrue(admin_user.is_realm_admin) result = self.api_get(admin_user, url) self.assertEqual(result.status_code, 400) ''' HAPPY PATH: We can get all active streams ONLY if we are an API "super user". We typically create api-super-user accounts for things like Zephyr/Jabber mirror API users, but here we just "knight" Hamlet for testing expediency. ''' super_user = self.example_user('hamlet') super_user.is_api_super_user = True super_user.save() result = self.api_get(super_user, url) self.assert_json_success(result) json = result.json() self.assertIn('streams', json) self.assertIsInstance(json['streams'], list) stream_names = {s['name'] for s in json['streams']} self.assertEqual( stream_names, {'Venice', 'Denmark', 'Scotland', 'Verona', 'Rome'}, ) def test_public_streams_api(self) -> None: """ Ensure that the query we use to get public streams successfully returns a list of streams """ user = self.example_user('hamlet') realm = get_realm('zulip') self.login_user(user) # Check it correctly lists the user's subs with include_public=false result = self.api_get(user, "/api/v1/streams?include_public=false") result2 = self.api_get(user, "/api/v1/users/me/subscriptions") self.assert_json_success(result) json = result.json() self.assertIn("streams", json) self.assertIsInstance(json["streams"], list) self.assert_json_success(result2) json2 = ujson.loads(result2.content) self.assertEqual(sorted([s["name"] for s in json["streams"]]), sorted([s["name"] for s in json2["subscriptions"]])) # Check it correctly lists all public streams with include_subscribed=false result = self.api_get(user, "/api/v1/streams?include_public=true&include_subscribed=false") self.assert_json_success(result) json = result.json() all_streams = [stream.name for stream in Stream.objects.filter(realm=realm)] self.assertEqual(sorted(s["name"] for s in json["streams"]), sorted(all_streams)) class StreamIdTest(ZulipTestCase): def test_get_stream_id(self) -> None: user = self.example_user('hamlet') self.login_user(user) stream = gather_subscriptions(user)[0][0] result = self.client_get("/json/get_stream_id?stream={}".format(stream['name'])) self.assert_json_success(result) self.assertEqual(result.json()['stream_id'], stream['stream_id']) def test_get_stream_id_wrong_name(self) -> None: user = self.example_user('hamlet') self.login_user(user) result = self.client_get("/json/get_stream_id?stream=wrongname") self.assert_json_error(result, "Invalid stream name 'wrongname'") class InviteOnlyStreamTest(ZulipTestCase): def test_must_be_subbed_to_send(self) -> None: """ If you try to send a message to an invite-only stream to which you aren't subscribed, you'll get a 400. """ user = self.example_user('hamlet') self.login_user(user) # Create Saxony as an invite-only stream. self.assert_json_success( self.common_subscribe_to_streams(user, ["Saxony"], invite_only=True)) cordelia = self.example_user("cordelia") with self.assertRaises(JsonableError): self.send_stream_message(cordelia, "Saxony") def test_list_respects_invite_only_bit(self) -> None: """ Make sure that /api/v1/users/me/subscriptions properly returns the invite-only bit for streams that are invite-only """ user = self.example_user('hamlet') self.login_user(user) result1 = self.common_subscribe_to_streams(user, ["Saxony"], invite_only=True) self.assert_json_success(result1) result2 = self.common_subscribe_to_streams(user, ["Normandy"], invite_only=False) self.assert_json_success(result2) result = self.api_get(user, "/api/v1/users/me/subscriptions") self.assert_json_success(result) self.assertIn("subscriptions", result.json()) for sub in result.json()["subscriptions"]: if sub['name'] == "Normandy": self.assertEqual(sub['invite_only'], False, "Normandy was mistakenly marked private") if sub['name'] == "Saxony": self.assertEqual(sub['invite_only'], True, "Saxony was not properly marked private") @slow("lots of queries") def test_inviteonly(self) -> None: # Creating an invite-only stream is allowed hamlet = self.example_user('hamlet') othello = self.example_user('othello') stream_name = "Saxony" result = self.common_subscribe_to_streams(hamlet, [stream_name], invite_only=True) self.assert_json_success(result) json = result.json() self.assertEqual(json["subscribed"], {hamlet.email: [stream_name]}) self.assertEqual(json["already_subscribed"], {}) # Subscribing oneself to an invite-only stream is not allowed self.login_user(othello) result = self.common_subscribe_to_streams(othello, [stream_name]) self.assert_json_error(result, 'Unable to access stream (Saxony).') # authorization_errors_fatal=False works self.login_user(othello) result = self.common_subscribe_to_streams(othello, [stream_name], extra_post_data={'authorization_errors_fatal': ujson.dumps(False)}) self.assert_json_success(result) json = result.json() self.assertEqual(json["unauthorized"], [stream_name]) self.assertEqual(json["subscribed"], {}) self.assertEqual(json["already_subscribed"], {}) # Inviting another user to an invite-only stream is allowed self.login_user(hamlet) result = self.common_subscribe_to_streams( hamlet, [stream_name], extra_post_data={'principals': ujson.dumps([othello.id])}) self.assert_json_success(result) json = result.json() self.assertEqual(json["subscribed"], {othello.email: [stream_name]}) self.assertEqual(json["already_subscribed"], {}) # Make sure both users are subscribed to this stream stream_id = get_stream(stream_name, hamlet.realm).id result = self.api_get(hamlet, f"/api/v1/streams/{stream_id}/members") self.assert_json_success(result) json = result.json() self.assertTrue(othello.email in json['subscribers']) self.assertTrue(hamlet.email in json['subscribers']) class GetSubscribersTest(ZulipTestCase): def setUp(self) -> None: super().setUp() self.user_profile = self.example_user('hamlet') self.login_user(self.user_profile) def assert_user_got_subscription_notification(self, expected_msg: str) -> None: # verify that the user was sent a message informing them about the subscription msg = self.get_last_message() self.assertEqual(msg.recipient.type, msg.recipient.PERSONAL) self.assertEqual(msg.sender_id, self.notification_bot().id) def non_ws(s: str) -> str: return s.replace('\n', '').replace(' ', '') self.assertEqual(non_ws(msg.content), non_ws(expected_msg)) def check_well_formed_result(self, result: Dict[str, Any], stream_name: str, realm: Realm) -> None: """ A successful call to get_subscribers returns the list of subscribers in the form: {"msg": "", "result": "success", "subscribers": [self.example_email("hamlet"), self.example_email("prospero")]} """ self.assertIn("subscribers", result) self.assertIsInstance(result["subscribers"], list) true_subscribers = [user_profile.email for user_profile in self.users_subscribed_to_stream( stream_name, realm)] self.assertEqual(sorted(result["subscribers"]), sorted(true_subscribers)) def make_subscriber_request(self, stream_id: int, user: Optional[UserProfile]=None) -> HttpResponse: if user is None: user = self.user_profile return self.api_get(user, f"/api/v1/streams/{stream_id}/members") def make_successful_subscriber_request(self, stream_name: str) -> None: stream_id = get_stream(stream_name, self.user_profile.realm).id result = self.make_subscriber_request(stream_id) self.assert_json_success(result) self.check_well_formed_result(result.json(), stream_name, self.user_profile.realm) def test_subscriber(self) -> None: """ get_subscribers returns the list of subscribers. """ stream_name = gather_subscriptions(self.user_profile)[0][0]['name'] self.make_successful_subscriber_request(stream_name) @slow("common_subscribe_to_streams is slow") def test_gather_subscriptions(self) -> None: """ gather_subscriptions returns correct results with only 3 queries (We also use this test to verify subscription notifications to folks who get subscribed to streams.) """ streams = [f"stream_{i}" for i in range(10)] for stream_name in streams: self.make_stream(stream_name) users_to_subscribe = [ self.user_profile.id, self.example_user("othello").id, self.example_user("cordelia").id, ] ret = self.common_subscribe_to_streams( self.user_profile, streams, dict(principals=ujson.dumps(users_to_subscribe))) self.assert_json_success(ret) msg = ''' @**King Hamlet** subscribed you to the following streams: * #**stream_0** * #**stream_1** * #**stream_2** * #**stream_3** * #**stream_4** * #**stream_5** * #**stream_6** * #**stream_7** * #**stream_8** * #**stream_9** ''' self.assert_user_got_subscription_notification(msg) # Subscribe ourself first. ret = self.common_subscribe_to_streams( self.user_profile, ["stream_invite_only_1"], dict(principals=ujson.dumps([self.user_profile.id])), invite_only=True) self.assert_json_success(ret) # Now add in other users, and this should trigger messages # to notify the user. ret = self.common_subscribe_to_streams( self.user_profile, ["stream_invite_only_1"], dict(principals=ujson.dumps(users_to_subscribe)), invite_only=True) self.assert_json_success(ret) msg = ''' @**King Hamlet** subscribed you to the stream #**stream_invite_only_1**. ''' self.assert_user_got_subscription_notification(msg) with queries_captured() as queries: subscribed_streams, _ = gather_subscriptions( self.user_profile, include_subscribers=True) self.assertTrue(len(subscribed_streams) >= 11) for sub in subscribed_streams: if not sub["name"].startswith("stream_"): continue self.assertTrue(len(sub["subscribers"]) == len(users_to_subscribe)) self.assert_length(queries, 6) @slow("common_subscribe_to_streams is slow") def test_never_subscribed_streams(self) -> None: """ Check never_subscribed streams are fetched correctly and not include invite_only streams. """ realm = get_realm("zulip") users_to_subscribe = [ self.example_user("othello").id, self.example_user("cordelia").id, ] public_streams = [ 'test_stream_public_1', 'test_stream_public_2', 'test_stream_public_3', 'test_stream_public_4', 'test_stream_public_5', ] private_streams = [ 'test_stream_invite_only_1', 'test_stream_invite_only_2', ] def create_public_streams() -> None: for stream_name in public_streams: self.make_stream(stream_name, realm=realm) ret = self.common_subscribe_to_streams( self.user_profile, public_streams, dict(principals=ujson.dumps(users_to_subscribe)), ) self.assert_json_success(ret) create_public_streams() def create_private_streams() -> None: ret = self.common_subscribe_to_streams( self.user_profile, private_streams, dict(principals=ujson.dumps(users_to_subscribe)), invite_only=True, ) self.assert_json_success(ret) create_private_streams() def get_never_subscribed() -> List[Dict[str, Any]]: with queries_captured() as queries: sub_data = gather_subscriptions_helper(self.user_profile) never_subscribed = sub_data[2] self.assert_length(queries, 5) # Ignore old streams. never_subscribed = [ dct for dct in never_subscribed if dct['name'].startswith('test_') ] return never_subscribed never_subscribed = get_never_subscribed() # Invite only stream should not be there in never_subscribed streams self.assertEqual(len(never_subscribed), len(public_streams)) for stream_dict in never_subscribed: name = stream_dict['name'] self.assertFalse('invite_only' in name) self.assertTrue(len(stream_dict["subscribers"]) == len(users_to_subscribe)) # Send private stream subscribers to all realm admins. def test_admin_case() -> None: self.user_profile.role = UserProfile.ROLE_REALM_ADMINISTRATOR # Test realm admins can get never subscribed private stream's subscribers. never_subscribed = get_never_subscribed() self.assertEqual( len(never_subscribed), len(public_streams) + len(private_streams), ) for stream_dict in never_subscribed: self.assertTrue(len(stream_dict["subscribers"]) == len(users_to_subscribe)) test_admin_case() def test_gather_subscribed_streams_for_guest_user(self) -> None: guest_user = self.example_user("polonius") stream_name_sub = "public_stream_1" self.make_stream(stream_name_sub, realm=get_realm("zulip")) self.subscribe(guest_user, stream_name_sub) stream_name_unsub = "public_stream_2" self.make_stream(stream_name_unsub, realm=get_realm("zulip")) self.subscribe(guest_user, stream_name_unsub) self.unsubscribe(guest_user, stream_name_unsub) stream_name_never_sub = "public_stream_3" self.make_stream(stream_name_never_sub, realm=get_realm("zulip")) normal_user = self.example_user("aaron") self.subscribe(normal_user, stream_name_sub) self.subscribe(normal_user, stream_name_unsub) self.subscribe(normal_user, stream_name_unsub) subs, unsubs, neversubs = gather_subscriptions_helper(guest_user) # Guest users get info about subscribed public stream's subscribers expected_stream_exists = False for sub in subs: if sub["name"] == stream_name_sub: expected_stream_exists = True self.assertEqual(len(sub["subscribers"]), 2) self.assertTrue(expected_stream_exists) # Guest users don't get info about unsubscribed public stream's subscribers expected_stream_exists = False for unsub in unsubs: if unsub["name"] == stream_name_unsub: expected_stream_exists = True self.assertNotIn("subscribers", unsub) self.assertTrue(expected_stream_exists) # Guest user don't get data about never subscribed public stream's data self.assertEqual(len(neversubs), 0) def test_previously_subscribed_private_streams(self) -> None: admin_user = self.example_user("iago") non_admin_user = self.example_user("cordelia") stream_name = "private_stream" self.make_stream(stream_name, realm=get_realm("zulip"), invite_only=True) self.subscribe(admin_user, stream_name) self.subscribe(non_admin_user, stream_name) self.subscribe(self.example_user("othello"), stream_name) self.unsubscribe(admin_user, stream_name) self.unsubscribe(non_admin_user, stream_name) # Test admin user gets previously subscribed private stream's subscribers. sub_data = gather_subscriptions_helper(admin_user) unsubscribed_streams = sub_data[1] self.assertEqual(len(unsubscribed_streams), 1) self.assertEqual(len(unsubscribed_streams[0]["subscribers"]), 1) # Test non admin users cannot get previously subscribed private stream's subscribers. sub_data = gather_subscriptions_helper(non_admin_user) unsubscribed_streams = sub_data[1] self.assertEqual(len(unsubscribed_streams), 1) self.assertFalse('subscribers' in unsubscribed_streams[0]) def test_gather_subscriptions_mit(self) -> None: """ gather_subscriptions returns correct results with only 3 queries """ # Subscribe only ourself because invites are disabled on mit.edu mit_user_profile = self.mit_user('starnine') user_id = mit_user_profile.id users_to_subscribe = [user_id, self.mit_user("espuser").id] for email in users_to_subscribe: stream = self.subscribe(mit_user_profile, "mit_stream") self.assertTrue(stream.is_in_zephyr_realm) ret = self.common_subscribe_to_streams( mit_user_profile, ["mit_invite_only"], dict(principals=ujson.dumps(users_to_subscribe)), invite_only=True, subdomain="zephyr") self.assert_json_success(ret) with queries_captured() as queries: subscribed_streams, _ = gather_subscriptions( mit_user_profile, include_subscribers=True) self.assertTrue(len(subscribed_streams) >= 2) for sub in subscribed_streams: if not sub["name"].startswith("mit_"): raise AssertionError("Unexpected stream!") if sub["name"] == "mit_invite_only": self.assertTrue(len(sub["subscribers"]) == len(users_to_subscribe)) else: self.assertTrue(len(sub["subscribers"]) == 0) self.assert_length(queries, 6) def test_nonsubscriber(self) -> None: """ Even a non-subscriber to a public stream can query a stream's membership with get_subscribers. """ # Create a stream for which Hamlet is the only subscriber. stream_name = "Saxony" self.common_subscribe_to_streams(self.user_profile, [stream_name]) other_user = self.example_user("othello") # Fetch the subscriber list as a non-member. self.login_user(other_user) self.make_successful_subscriber_request(stream_name) def test_subscriber_private_stream(self) -> None: """ A subscriber to a private stream can query that stream's membership. """ stream_name = "Saxony" self.common_subscribe_to_streams(self.user_profile, [stream_name], invite_only=True) self.make_successful_subscriber_request(stream_name) stream_id = get_stream(stream_name, self.user_profile.realm).id # Verify another user can't get the data. self.login('cordelia') result = self.client_get(f"/json/streams/{stream_id}/members") self.assert_json_error(result, 'Invalid stream id') # But an organization administrator can self.login('iago') result = self.client_get(f"/json/streams/{stream_id}/members") self.assert_json_success(result) def test_json_get_subscribers_stream_not_exist(self) -> None: """ json_get_subscribers also returns the list of subscribers for a stream. """ stream_id = 99999999 result = self.client_get(f"/json/streams/{stream_id}/members") self.assert_json_error(result, 'Invalid stream id') def test_json_get_subscribers(self) -> None: """ json_get_subscribers in zerver/views/streams.py also returns the list of subscribers for a stream, when requested. """ stream_name = gather_subscriptions(self.user_profile)[0][0]['name'] stream_id = get_stream(stream_name, self.user_profile.realm).id expected_subscribers = gather_subscriptions( self.user_profile, include_subscribers=True)[0][0]['subscribers'] result = self.client_get(f"/json/streams/{stream_id}/members") self.assert_json_success(result) result_dict = result.json() self.assertIn('subscribers', result_dict) self.assertIsInstance(result_dict['subscribers'], list) subscribers: List[str] = [] for subscriber in result_dict['subscribers']: self.assertIsInstance(subscriber, str) subscribers.append(subscriber) self.assertEqual(set(subscribers), set(expected_subscribers)) def test_nonsubscriber_private_stream(self) -> None: """ A non-subscriber non realm admin user to a private stream can't query that stream's membership. But unsubscribed realm admin users can query private stream's membership. """ # Create a private stream for which Hamlet is the only subscriber. stream_name = "NewStream" self.common_subscribe_to_streams(self.user_profile, [stream_name], invite_only=True) user_profile = self.example_user('othello') # Try to fetch the subscriber list as a non-member & non-realm-admin-user. stream_id = get_stream(stream_name, user_profile.realm).id result = self.make_subscriber_request(stream_id, user=user_profile) self.assert_json_error(result, "Invalid stream id") # Try to fetch the subscriber list as a non-member & realm-admin-user. self.login('iago') self.make_successful_subscriber_request(stream_name) class AccessStreamTest(ZulipTestCase): def test_access_stream(self) -> None: """ A comprehensive security test for the access_stream_by_* API functions. """ # Create a private stream for which Hamlet is the only subscriber. hamlet = self.example_user('hamlet') stream_name = "new_private_stream" self.login_user(hamlet) self.common_subscribe_to_streams(hamlet, [stream_name], invite_only=True) stream = get_stream(stream_name, hamlet.realm) othello = self.example_user('othello') # Nobody can access a stream that doesn't exist with self.assertRaisesRegex(JsonableError, "Invalid stream id"): access_stream_by_id(hamlet, 501232) with self.assertRaisesRegex(JsonableError, "Invalid stream name 'invalid stream'"): access_stream_by_name(hamlet, "invalid stream") # Hamlet can access the private stream (stream_ret, rec_ret, sub_ret) = access_stream_by_id(hamlet, stream.id) self.assertEqual(stream.id, stream_ret.id) assert sub_ret is not None self.assertEqual(sub_ret.recipient, rec_ret) self.assertEqual(sub_ret.recipient.type_id, stream.id) (stream_ret2, rec_ret2, sub_ret2) = access_stream_by_name(hamlet, stream.name) self.assertEqual(stream_ret.id, stream_ret2.id) self.assertEqual(sub_ret, sub_ret2) self.assertEqual(rec_ret, rec_ret2) # Othello cannot access the private stream with self.assertRaisesRegex(JsonableError, "Invalid stream id"): access_stream_by_id(othello, stream.id) with self.assertRaisesRegex(JsonableError, "Invalid stream name 'new_private_stream'"): access_stream_by_name(othello, stream.name) # Both Othello and Hamlet can access a public stream that only # Hamlet is subscribed to in this realm public_stream_name = "public_stream" self.common_subscribe_to_streams(hamlet, [public_stream_name], invite_only=False) public_stream = get_stream(public_stream_name, hamlet.realm) access_stream_by_id(othello, public_stream.id) access_stream_by_name(othello, public_stream.name) access_stream_by_id(hamlet, public_stream.id) access_stream_by_name(hamlet, public_stream.name) # Nobody can access a public stream in another realm mit_realm = get_realm("zephyr") mit_stream = ensure_stream(mit_realm, "mit_stream", invite_only=False) sipbtest = self.mit_user("sipbtest") with self.assertRaisesRegex(JsonableError, "Invalid stream id"): access_stream_by_id(hamlet, mit_stream.id) with self.assertRaisesRegex(JsonableError, "Invalid stream name 'mit_stream'"): access_stream_by_name(hamlet, mit_stream.name) with self.assertRaisesRegex(JsonableError, "Invalid stream id"): access_stream_by_id(sipbtest, stream.id) with self.assertRaisesRegex(JsonableError, "Invalid stream name 'new_private_stream'"): access_stream_by_name(sipbtest, stream.name) # MIT realm users cannot access even public streams in their realm with self.assertRaisesRegex(JsonableError, "Invalid stream id"): access_stream_by_id(sipbtest, mit_stream.id) with self.assertRaisesRegex(JsonableError, "Invalid stream name 'mit_stream'"): access_stream_by_name(sipbtest, mit_stream.name) # But they can access streams they are subscribed to self.common_subscribe_to_streams(sipbtest, [mit_stream.name], subdomain="zephyr") access_stream_by_id(sipbtest, mit_stream.id) access_stream_by_name(sipbtest, mit_stream.name) def test_stream_access_by_guest(self) -> None: guest_user_profile = self.example_user('polonius') self.login_user(guest_user_profile) stream_name = "public_stream_1" stream = self.make_stream(stream_name, guest_user_profile.realm, invite_only=False) # Guest user don't have access to unsubscribed public streams with self.assertRaisesRegex(JsonableError, "Invalid stream id"): access_stream_by_id(guest_user_profile, stream.id) # Guest user have access to subscribed public streams self.subscribe(guest_user_profile, stream_name) (stream_ret, rec_ret, sub_ret) = access_stream_by_id(guest_user_profile, stream.id) assert sub_ret is not None self.assertEqual(stream.id, stream_ret.id) self.assertEqual(sub_ret.recipient, rec_ret) self.assertEqual(sub_ret.recipient.type_id, stream.id) stream_name = "private_stream_1" stream = self.make_stream(stream_name, guest_user_profile.realm, invite_only=True) # Obviously, a guest user doesn't have access to unsubscribed private streams either with self.assertRaisesRegex(JsonableError, "Invalid stream id"): access_stream_by_id(guest_user_profile, stream.id) # Guest user have access to subscribed private streams self.subscribe(guest_user_profile, stream_name) (stream_ret, rec_ret, sub_ret) = access_stream_by_id(guest_user_profile, stream.id) assert sub_ret is not None self.assertEqual(stream.id, stream_ret.id) self.assertEqual(sub_ret.recipient, rec_ret) self.assertEqual(sub_ret.recipient.type_id, stream.id) class StreamTrafficTest(ZulipTestCase): def test_average_weekly_stream_traffic_calculation(self) -> None: # No traffic data for the stream self.assertEqual( get_average_weekly_stream_traffic(42, timezone_now() - timedelta(days=300), {1: 4003}), 0) # using high numbers here to make it more likely to catch small errors in the denominators # of the calculations. That being said we don't want to go over 100, since then the 2 # significant digits calculation gets applied # old stream self.assertEqual( get_average_weekly_stream_traffic(42, timezone_now() - timedelta(days=300), {42: 98*4+3}), 98) # stream between 7 and 27 days old self.assertEqual( get_average_weekly_stream_traffic(42, timezone_now() - timedelta(days=10), {42: (98*10+9) // 7}), 98) # stream less than 7 days old self.assertEqual( get_average_weekly_stream_traffic(42, timezone_now() - timedelta(days=5), {42: 100}), None) # average traffic between 0 and 1 self.assertEqual( get_average_weekly_stream_traffic(42, timezone_now() - timedelta(days=300), {42: 1}), 1) def test_round_to_2_significant_digits(self) -> None: self.assertEqual(120, round_to_2_significant_digits(116))
the-stack_0_25614
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.framework.ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import gc import numpy as np import os import threading import weakref from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.autograph.core import ag_ctx from tensorflow.python.client import session from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.eager import function as eager_function from tensorflow.python.eager import wrap_function from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import constant_op from tensorflow.python.framework import device as pydev from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import function from tensorflow.python.framework import indexed_slices from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import tensor_util from tensorflow.python.framework import test_ops from tensorflow.python.framework import test_util from tensorflow.python.framework import type_spec from tensorflow.python.framework import versions from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import resources from tensorflow.python.ops import special_math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables import tensorflow.python.ops.gradients # pylint: disable=unused-import from tensorflow.python.platform import googletest from tensorflow.python.util import compat class ResourceTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testBuildGraph(self): with self.cached_session(): pt = test_ops.stub_resource_handle_op(container="a", shared_name="b") test_ops.resource_create_op(pt).run() @test_util.run_deprecated_v1 def testInitialize(self): with self.cached_session(): handle = test_ops.stub_resource_handle_op(container="a", shared_name="b") resources.register_resource( handle=handle, create_op=test_ops.resource_create_op(handle), is_initialized_op=test_ops.resource_initialized_op(handle)) self.assertEquals( len( resources.report_uninitialized_resources( resources.shared_resources()).eval()), 1) resources.initialize_resources(resources.shared_resources()).run() self.assertEquals( len( resources.report_uninitialized_resources( resources.shared_resources()).eval()), 0) class TensorAndShapeTest(test_util.TensorFlowTestCase): def testShape(self): op = ops.Operation( ops._NodeDef("FloatOutput", "myop"), ops.Graph(), [], [dtypes.float32]) t = op.outputs[0] self.assertEqual(tensor_shape.unknown_shape(), t.get_shape()) t.set_shape([1, 2, 3]) self.assertEqual([1, 2, 3], t.get_shape()) def testIterable(self): if not context.executing_eagerly(): self.skipTest("Eager-mode test") op = ops.Operation( ops._NodeDef("FloatOutput", "myop"), ops.Graph(), [], [dtypes.float32]) t = op.outputs[0] with self.assertRaisesRegexp(TypeError, "Cannot iterate"): next(iter(t)) def testIterableGraph(self): if context.executing_eagerly(): self.skipTest("Graph-mode test") op = ops.Operation( ops._NodeDef("FloatOutput", "myop"), ops.Graph(), [], [dtypes.float32]) t = op.outputs[0] with self.assertRaisesRegexp(TypeError, "iterating.*not allowed in Graph"): next(iter(t)) with self.assertRaisesRegexp( TypeError, "iterating.*AutoGraph did not convert"): with ag_ctx.ControlStatusCtx(ag_ctx.Status.ENABLED): next(iter(t)) with self.assertRaisesRegexp( TypeError, "iterating.*AutoGraph is disabled"): with ag_ctx.ControlStatusCtx(ag_ctx.Status.DISABLED): next(iter(t)) def testImplicitBool(self): op = ops.Operation( ops._NodeDef("FloatOutput", "myop"), ops.Graph(), [], [dtypes.bool]) t = op.outputs[0] with self.assertRaisesRegexp( TypeError, "using.*as a.*bool.*not allowed in Graph"): bool(t) with self.assertRaisesRegexp( TypeError, "using.*as a.*bool.*AutoGraph did not convert"): with ag_ctx.ControlStatusCtx(ag_ctx.Status.ENABLED): bool(t) with self.assertRaisesRegexp( TypeError, "using.*as a.*bool.*AutoGraph is disabled"): with ag_ctx.ControlStatusCtx(ag_ctx.Status.DISABLED): bool(t) def testAddShape(self): with self.cached_session(): a = array_ops.zeros([2, 3]) b = array_ops.ones([1, 3]) c = a + b self.assertEqual([2, 3], c.shape) @test_util.run_deprecated_v1 def testUnknownDim(self): with self.cached_session(): a = array_ops.placeholder(dtype=dtypes.float32, shape=[2, None, 3]) b = array_ops.placeholder(dtype=dtypes.float32, shape=[2, None, 3]) c = a + b self.assertEqual([2, None, 3], c.shape.as_list()) @test_util.run_deprecated_v1 def testUnknownShape(self): with self.cached_session(): a = array_ops.placeholder(dtype=dtypes.float32, shape=None) b = array_ops.ones([1, 3]) c = a + b self.assertEqual(tensor_shape.unknown_shape(), c.shape) @test_util.run_deprecated_v1 def testScalarShape(self): with self.cached_session(): a = array_ops.placeholder(dtype=dtypes.float32, shape=[]) b = array_ops.ones([]) c = a + b self.assertEqual(tensor_shape.TensorShape([]), c.shape) @test_util.run_deprecated_v1 def testShapeFunctionError(self): with self.cached_session(): a = array_ops.ones([1, 2, 3]) b = array_ops.ones([4, 5, 6]) with self.assertRaisesRegexp( ValueError, r"Dimensions must be equal, but are 2 and 5 for .*add" r".*Add(V2)?.* with input shapes: \[1,2,3\], \[4,5,6\]."): _ = a + b def testNumpyArray(self): with ops.Graph().as_default(): x = array_ops.ones((3, 4), name="test_ones") with self.assertRaisesRegexp(NotImplementedError, r"Cannot convert a symbolic.+test_ones"): np.array(x) with self.assertRaisesRegexp(TypeError, "not well defined.+test_ones"): len(x) # EagerTensors should still behave as numpy arrays. with context.eager_mode(): x = array_ops.ones((3, 4)) self.assertAllEqual(x, np.ones((3, 4))) self.assertAllEqual(np.array(x), np.ones((3, 4))) self.assertEqual(len(x), 3) def testRef(self): x1 = constant_op.constant(3) x2 = x1 y = constant_op.constant(3) z = constant_op.constant([6, 10]) w = variables.Variable(5) self.assertEqual(x1.experimental_ref(), x1.experimental_ref()) self.assertEqual(x2.experimental_ref(), x2.experimental_ref()) self.assertEqual(x1.experimental_ref(), x2.experimental_ref()) self.assertEqual(y.experimental_ref(), y.experimental_ref()) self.assertEqual(z.experimental_ref(), z.experimental_ref()) self.assertEqual(w.experimental_ref(), w.experimental_ref()) self.assertNotEqual(x1.experimental_ref(), y.experimental_ref()) self.assertNotEqual(x1.experimental_ref(), z.experimental_ref()) self.assertNotEqual(x1.experimental_ref(), w.experimental_ref()) self.assertNotEqual(y.experimental_ref(), z.experimental_ref()) self.assertNotEqual(y.experimental_ref(), w.experimental_ref()) self.assertNotEqual(z.experimental_ref(), w.experimental_ref()) def testRefDeref(self): x1 = constant_op.constant(3) x2 = x1 y = constant_op.constant(3) z = constant_op.constant([6, 10]) w = variables.Variable(5) self.assertIs(x1, x1.experimental_ref().deref()) self.assertIs(x2, x2.experimental_ref().deref()) self.assertIs(x1, x2.experimental_ref().deref()) self.assertIs(x2, x1.experimental_ref().deref()) self.assertIs(y, y.experimental_ref().deref()) self.assertIs(z, z.experimental_ref().deref()) self.assertIsNot(x1, y.experimental_ref().deref()) self.assertIsNot(x1, z.experimental_ref().deref()) self.assertIsNot(x1, w.experimental_ref().deref()) self.assertIsNot(y, z.experimental_ref().deref()) self.assertIsNot(y, w.experimental_ref().deref()) self.assertIsNot(z, w.experimental_ref().deref()) def testRefInSet(self): x1 = constant_op.constant(3) x2 = x1 y = constant_op.constant(3) z = constant_op.constant([6, 10]) w = variables.Variable(5) self.assertEqual(x1.experimental_ref(), x2.experimental_ref()) tensor_set = { x1.experimental_ref(), x2.experimental_ref(), y.experimental_ref(), z.experimental_ref(), w.experimental_ref(), } self.assertEqual(len(tensor_set), 4) self.assertIn(x1.experimental_ref(), tensor_set) self.assertIn(x2.experimental_ref(), tensor_set) self.assertIn(y.experimental_ref(), tensor_set) self.assertIn(z.experimental_ref(), tensor_set) self.assertIn(w.experimental_ref(), tensor_set) def testRefInDict(self): x1 = constant_op.constant(3) x2 = x1 y = constant_op.constant(3) z = constant_op.constant([6, 10]) w = variables.Variable(5) self.assertEqual(x1.experimental_ref(), x2.experimental_ref()) tensor_dict = { x1.experimental_ref(): "x1", y.experimental_ref(): "y", z.experimental_ref(): "z", w.experimental_ref(): "w", } self.assertEqual(len(tensor_dict), 4) # Overwriting x1 tensor_dict[x2.experimental_ref()] = "x2" self.assertEqual(len(tensor_dict), 4) self.assertEqual(tensor_dict[x1.experimental_ref()], "x2") self.assertEqual(tensor_dict[x2.experimental_ref()], "x2") self.assertEqual(tensor_dict[y.experimental_ref()], "y") self.assertEqual(tensor_dict[z.experimental_ref()], "z") self.assertEqual(tensor_dict[w.experimental_ref()], "w") def testTensorRefStrong(self): x = constant_op.constant(1.) x_ref = x.experimental_ref() del x self.assertIsNotNone(x_ref.deref()) def testVariableRefStrong(self): x = variables.Variable(1.) x_ref = x.experimental_ref() del x self.assertIsNotNone(x_ref.deref()) @test_util.run_all_in_graph_and_eager_modes class IndexedSlicesTest(test_util.TensorFlowTestCase): def testToTensor(self): values = constant_op.constant([2, 3, 5, 7], shape=[2, 2]) indices = constant_op.constant([0, 2]) x = ops.IndexedSlices(values, indices) with self.assertRaises(ValueError): tensor = ops.convert_to_tensor(x, name="tensor") self.assertEqual(tensor_shape.TensorShape(None), x.shape) dense_shape = constant_op.constant([3, 2]) y = ops.IndexedSlices(values, indices, dense_shape) tensor = ops.convert_to_tensor(y, name="tensor") self.assertAllEqual(tensor.shape, y.shape) self.assertAllEqual(self.evaluate(tensor), [[2, 3], [0, 0], [5, 7]]) @test_util.run_gpu_only def testEagerCopy(self): with context.eager_mode(): var = variables.Variable([[0.0], [0.0], [0.0], [0.0]], name="tensor") with backprop.GradientTape() as tape: a = array_ops.gather(array_ops.gather(var, [0, 1]), [0, 1]) b = array_ops.gather(array_ops.gather(var, [2, 3]), [0, 1]) r = special_math_ops.einsum("ij,ij->i", a, b) g = tape.gradient(r, [var])[0] values = g.values if isinstance(g, ops.IndexedSlices) else g self.assertAllEqual(values.get_shape(), [4, 1]) def testNegation(self): values = constant_op.constant([2, 3, 5, 7], shape=[2, 2]) indices = constant_op.constant([0, 2]) x = -ops.IndexedSlices(values, indices) self.assertAllEqual(x.values, [[-2, -3], [-5, -7]]) self.assertAllEqual(x.indices, [0, 2]) def testScalarMul(self): values = constant_op.constant([2, 3, 5, 7], shape=[2, 2]) indices = constant_op.constant([0, 2]) x = math_ops.scalar_mul(-2, ops.IndexedSlices(values, indices)) self.assertAllEqual(x.values, [[-4, -6], [-10, -14]]) self.assertAllEqual(x.indices, [0, 2]) @test_util.run_all_in_graph_and_eager_modes class IndexedSlicesSpecTest(test_util.TensorFlowTestCase, parameterized.TestCase): def assertAllTensorsEqual(self, list1, list2): self.assertLen(list1, len(list2)) for (t1, t2) in zip(list1, list2): self.assertAllEqual(t1, t2) def testConstruction(self): spec1 = indexed_slices.IndexedSlicesSpec() self.assertEqual(spec1._shape.rank, None) self.assertEqual(spec1._values_dtype, dtypes.float32) self.assertEqual(spec1._indices_dtype, dtypes.int64) self.assertEqual(spec1._dense_shape_dtype, None) self.assertEqual(spec1._indices_shape.as_list(), [None]) spec2 = indexed_slices.IndexedSlicesSpec([None, None], dtypes.string, dtypes.int32, dtypes.int64, [10]) self.assertEqual(spec2._shape.as_list(), [None, None]) self.assertEqual(spec2._values_dtype, dtypes.string) self.assertEqual(spec2._indices_dtype, dtypes.int32) self.assertEqual(spec2._dense_shape_dtype, dtypes.int64) self.assertEqual(spec2._indices_shape.as_list(), [10]) def testValueType(self): spec1 = indexed_slices.IndexedSlicesSpec() self.assertEqual(spec1.value_type, ops.IndexedSlices) @parameterized.parameters([ (indexed_slices.IndexedSlicesSpec(), (tensor_shape.TensorShape(None), dtypes.float32, dtypes.int64, None, tensor_shape.TensorShape([None]))), (indexed_slices.IndexedSlicesSpec(shape=[5, None, None]), (tensor_shape.TensorShape([5, None, None]), dtypes.float32, dtypes.int64, None, tensor_shape.TensorShape([None]))), (indexed_slices.IndexedSlicesSpec( dtype=dtypes.int32, dense_shape_dtype=dtypes.int64), (tensor_shape.TensorShape(None), dtypes.int32, dtypes.int64, dtypes.int64, tensor_shape.TensorShape([None]))), (indexed_slices.IndexedSlicesSpec(indices_shape=[100]), (tensor_shape.TensorShape(None), dtypes.float32, dtypes.int64, None, tensor_shape.TensorShape([100]))), ]) # pyformat: disable def testSerialize(self, spec, expected): serialization = spec._serialize() # TensorShape has an unconventional definition of equality, so we can't use # assertEqual directly here. But repr() is deterministic and lossless for # the expected values, so we can use that instead. self.assertEqual(repr(serialization), repr(expected)) @parameterized.parameters([ (indexed_slices.IndexedSlicesSpec(dtype=dtypes.string), ( tensor_spec.TensorSpec(None, dtypes.string), tensor_spec.TensorSpec([None], dtypes.int64), )), (indexed_slices.IndexedSlicesSpec( dtype=dtypes.string, dense_shape_dtype=dtypes.int32), ( tensor_spec.TensorSpec(None, dtypes.string), tensor_spec.TensorSpec([None], dtypes.int64), tensor_spec.TensorSpec([None], dtypes.int32), )), (indexed_slices.IndexedSlicesSpec( shape=[5, 10, 15], dense_shape_dtype=dtypes.int32), ( tensor_spec.TensorSpec([None, 10, 15], dtypes.float32), tensor_spec.TensorSpec([None], dtypes.int64), tensor_spec.TensorSpec([3], dtypes.int32), )), (indexed_slices.IndexedSlicesSpec( shape=[5, 10, 15], dense_shape_dtype=dtypes.int32, indices_shape=[20]), ( tensor_spec.TensorSpec([20, 10, 15], dtypes.float32), tensor_spec.TensorSpec([20], dtypes.int64), tensor_spec.TensorSpec([3], dtypes.int32), )), ]) def testComponentSpecs(self, spec, expected): self.assertEqual(spec._component_specs, expected) @parameterized.parameters([ { "spec": indexed_slices.IndexedSlicesSpec(), "values": [3.0, 5.0], "indices": [5, 10] }, { "spec": indexed_slices.IndexedSlicesSpec(dense_shape_dtype=dtypes.int32), "values": [3.0, 5.0], "indices": [5, 10], "dense_shape": [100] }, ]) def testToFromComponents(self, spec, indices, values, dense_shape=None): x = ops.IndexedSlices(indices, values, dense_shape) actual_components = spec._to_components(x) if dense_shape is None: self.assertAllTensorsEqual(actual_components, [indices, values]) else: self.assertAllTensorsEqual(actual_components, [indices, values, dense_shape]) st_reconstructed = spec._from_components(actual_components) self.assertAllEqual(x.indices, st_reconstructed.indices) self.assertAllEqual(x.values, st_reconstructed.values) if dense_shape is None: self.assertIs(st_reconstructed.dense_shape, None) else: self.assertAllEqual(x.dense_shape, st_reconstructed.dense_shape) @test_util.run_v1_only("IndexedSlicesValue is deprecated in v2") def testFromNumpyComponents(self): indices = np.array([3, 8]) values = np.array([1.0, 9.0]) dense_shape = np.array([100]) spec1 = indexed_slices.IndexedSlicesSpec(dense_shape_dtype=dtypes.int32) st1 = spec1._from_components((values, indices, dense_shape)) self.assertIsInstance(st1, indexed_slices.IndexedSlicesValue) self.assertAllEqual(st1.indices, indices) self.assertAllEqual(st1.values, values) self.assertAllEqual(st1.dense_shape, dense_shape) spec2 = indexed_slices.IndexedSlicesSpec() st2 = spec2._from_components((values, indices)) self.assertIsInstance(st2, indexed_slices.IndexedSlicesValue) self.assertAllEqual(st2.indices, indices) self.assertAllEqual(st2.values, values) self.assertIs(st2.dense_shape, None) class NodeDefConstructorTest(test_util.TensorFlowTestCase): def testNoArgs(self): nodedef = ops._NodeDef("None", "bar") self.assertProtoEquals("op: 'None' name: 'bar'", nodedef) def _apply_op(g, *args, **kwargs): op = g.create_op(*args, **kwargs) if len(op.outputs) == 1: return op.outputs[0] else: return op.outputs class OperationTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testNoInputs(self): op = test_ops.float_output_string_output(name="myop").a.op self.assertEqual(2, len(op.values())) self.assertEqual(0, len(op.inputs)) self.assertEqual("myop", op.name) float_t, label_str_t = op.values() self.assertEqual(dtypes.float32, float_t.dtype) self.assertEqual(op, float_t.op) self.assertEqual(0, float_t._value_index) self.assertEqual(0, len(float_t.consumers())) self.assertEqual("myop", float_t._as_node_def_input()) self.assertEqual(dtypes.string, label_str_t.dtype) self.assertEqual(op, label_str_t.op) self.assertEqual(1, label_str_t._value_index) self.assertEqual(0, len(label_str_t.consumers())) self.assertEqual("myop:1", label_str_t._as_node_def_input()) self.assertProtoEquals("op:'FloatOutputStringOutput' name:'myop'", op.node_def) @test_util.run_deprecated_v1 def testNoOutputs(self): op1 = test_ops.float_output(name="myop1").op float_t, = op1.values() op2 = test_ops.float_input(float_t, name="myop2") self.assertEqual(0, len(op2.values())) self.assertEqual(1, len(op2.inputs)) self.assertIs(float_t, op2.inputs[0]) self.assertEqual(1, len(float_t.consumers())) self.assertEqual(op2, float_t.consumers()[0]) self.assertProtoEquals("op:'FloatOutput' name:'myop1'", op1.node_def) self.assertProtoEquals("op:'FloatInput' name:'myop2' input:'myop1'", op2.node_def) @test_util.run_deprecated_v1 def testInputsAndOutputs(self): op1 = test_ops.float_output(name="myop1").op self.assertEqual(1, len(op1.values())) float1_t, = op1.values() op2 = test_ops.float_output_string_output(name="myop2").a.op self.assertEqual(2, len(op2.values())) float2_t, label2_str_t = op2.values() # Note that we consume label2_str_t twice here. op3 = test_ops.foo2(float1_t, label2_str_t, label2_str_t, name="myop3").d.op self.assertEqual(2, len(op3.values())) self.assertEqual(1, len(float1_t.consumers())) self.assertEqual(op3, float1_t.consumers()[0]) self.assertEqual(0, len(float2_t.consumers())) self.assertEqual(2, len(label2_str_t.consumers())) self.assertEqual(op3, label2_str_t.consumers()[0]) self.assertEqual(op3, label2_str_t.consumers()[1]) self.assertProtoEquals(""" op:'Foo2' name:'myop3' input:'myop1' input:'myop2:1' input:'myop2:1' """, op3.node_def) def testDeviceObject(self): op = ops.Operation(ops._NodeDef("None", "myop"), ops.Graph(), [], []) op._set_device("/job:goo/device:GPU:0") self.assertProtoEquals( "op:'None' name:'myop' device:'/job:goo/device:GPU:0' ", op.node_def) op = ops.Operation(ops._NodeDef("None", "op2"), ops.Graph(), [], []) op._set_device( pydev.DeviceSpec( job="muu", device_type="CPU", device_index=0)) self.assertProtoEquals( "op:'None' name:'op2' device:'/job:muu/device:CPU:0'", op.node_def) def testReferenceInput(self): g = ops.Graph() op1 = ops.Operation( ops._NodeDef("RefOutputFloatOutput", "op1"), g, [], [dtypes.float32_ref, dtypes.float32]) self.assertProtoEquals("op:'RefOutputFloatOutput' name:'op1'", op1.node_def) self.assertEquals([], list(op1.inputs)) ref_t, nonref_t = op1.values() # NOTE(mrry): Must specify input_types to preserve ref-typed input. op2 = ops.Operation( ops._NodeDef("RefInputFloatInput", "op2"), g, [ref_t, nonref_t], [], input_types=[dtypes.float32_ref, dtypes.float32]) self.assertProtoEquals( "op:'RefInputFloatInput' name:'op2' input:'op1' input:'op1:1'", op2.node_def) self.assertEquals([ref_t, nonref_t], list(op2.inputs)) op3 = ops.Operation( ops._NodeDef("TwoFloatInputs", "op3"), g, [ref_t, nonref_t], []) self.assertProtoEquals( "op:'TwoFloatInputs' name:'op3' input:'op1' input:'op1:1'", op3.node_def) def testInvalidNames(self): g = ops.Graph() with self.assertRaises(ValueError): ops.Operation(ops._NodeDef("op", ""), g) with self.assertRaises(ValueError): ops.Operation(ops._NodeDef("op", "_invalid"), g) with self.assertRaises(ValueError): ops.Operation(ops._NodeDef("op", "-invalid"), g) with self.assertRaises(ValueError): ops.Operation(ops._NodeDef("op", "/invalid"), g) with self.assertRaises(ValueError): ops.Operation(ops._NodeDef("op", "invalid:0"), g) @test_util.run_deprecated_v1 def testNoShapeFunction(self): op = test_ops.a() self.assertEqual(tensor_shape.unknown_shape(), op.get_shape()) @test_util.run_in_graph_and_eager_modes def testConvertToTensorNestedArray(self): values = [[2], [3], [5], [7]] tensor = ops.convert_to_tensor(values) self.assertAllEqual((4, 1), tensor.get_shape().as_list()) self.assertAllEqual(values, self.evaluate(tensor)) def testShapeTuple(self): with self.cached_session(): c = constant_op.constant(1) self.assertEqual(c._shape_tuple(), ()) # pylint: disable=protected-access def testConvertToTensorEager(self): with context.eager_mode(): t = constant_op.constant(1) self.assertTrue(isinstance(t, ops.EagerTensor)) converted = ops.convert_to_tensor(t) self.assertTrue(isinstance(converted, ops.EagerTensor)) converted = ops.convert_to_tensor(1) self.assertTrue(isinstance(converted, ops.EagerTensor)) @test_util.run_in_graph_and_eager_modes def testConvertToTensorNestedTuple(self): values = ((2,), (3,), (5,), (7,)) tensor = ops.convert_to_tensor(values) self.assertAllEqual((4, 1), tensor.get_shape().as_list()) self.assertAllEqual(values, self.evaluate(ops.convert_to_tensor(values))) @test_util.run_in_graph_and_eager_modes def testConvertToTensorNestedTensors(self): values = ((2,), (3,), (5,), (7,)) tensor = ops.convert_to_tensor( [constant_op.constant(row) for row in values]) self.assertAllEqual((4, 1), tensor.get_shape().as_list()) self.assertAllEqual(values, self.evaluate(tensor)) tensor = ops.convert_to_tensor( [[constant_op.constant(v) for v in row] for row in values]) self.assertAllEqual((4, 1), tensor.get_shape().as_list()) self.assertAllEqual(values, self.evaluate(tensor)) @test_util.run_in_graph_and_eager_modes def testConvertToTensorNestedMix(self): values = ([2], (3,), [constant_op.constant(5)], constant_op.constant([7])) tensor = ops.convert_to_tensor(values) self.assertAllEqual((4, 1), tensor.get_shape().as_list()) self.assertAllEqual(((2,), (3,), (5,), (7,)), self.evaluate(tensor)) @test_util.run_in_graph_and_eager_modes def testConvertToTensorPreferred(self): values = [2, 3, 5, 7] tensor = ops.convert_to_tensor(values, preferred_dtype=dtypes.float32) self.assertEqual(dtypes.float32, tensor.dtype) # Convert empty tensor to anything. values = [] tensor = ops.convert_to_tensor(values, preferred_dtype=dtypes.int64) self.assertEqual(dtypes.int64, tensor.dtype) # The preferred dtype is a type error and will convert to # float32 instead. values = [1.23] tensor = ops.convert_to_tensor(values, preferred_dtype=dtypes.int64) self.assertEqual(dtypes.float32, tensor.dtype) @test_util.run_in_graph_and_eager_modes def testConvertToInvalidTensorType(self): with self.assertRaises(TypeError): # Forcing an invalid dtype should fail with a type error. values = [1.23] ops.convert_to_tensor(values, dtype=dtypes.int64) @test_util.run_in_graph_and_eager_modes def testConvertToLongLongTensorType(self): tensor = ops.convert_to_tensor( # Get a numpy array of dtype NPY_LONGLONG np.prod(constant_op.constant([1])._shape_tuple())) self.assertEqual(dtypes.int64, tensor.dtype) @test_util.run_in_graph_and_eager_modes def testConvertToTensorFromInvalidTensor(self): tensor = constant_op.constant(42.0, dtype=dtypes.float32) with self.assertRaises(ValueError): ops.convert_to_tensor(tensor, dtype=dtypes.int32) @test_util.run_deprecated_v1 def testNoConvert(self): # Operation cannot be converted to Tensor. op = control_flow_ops.no_op() with self.assertRaisesRegexp(TypeError, r"Can't convert Operation '.*' to Tensor"): ops.convert_to_tensor(op) def testStr(self): node_def = ops._NodeDef("None", "op1") op = ops.Operation(node_def, ops.Graph(), [], [dtypes.float32]) self.assertEqual(str(node_def), str(op)) def testRepr(self): op = ops.Operation( ops._NodeDef("None", "op1"), ops.Graph(), [], [dtypes.float32]) self.assertEqual("<tf.Operation 'op1' type=None>", repr(op)) @test_util.run_deprecated_v1 def testGetAttr(self): op = test_ops.default_attrs() self.assertEqual(op.get_attr("string_val"), b"abc") self.assertEqual(op.get_attr("string_list_val"), [b"abc", b""]) self.assertEqual(op.get_attr("int_val"), 123) self.assertEqual(op.get_attr("int_list_val"), [1, 2, 3]) self.assertEqual(op.get_attr("float_val"), 10.0) self.assertEqual(op.get_attr("float_list_val"), [10.0]) self.assertEqual(op.get_attr("bool_val"), True) self.assertEqual(op.get_attr("bool_list_val"), [True, False]) self.assertEqual(op.get_attr("shape_val"), tensor_shape.as_shape([2, 1]).as_proto()) self.assertEqual(op.get_attr("shape_list_val"), [tensor_shape.as_shape([]).as_proto(), tensor_shape.as_shape([1]).as_proto()]) self.assertEqual(op.get_attr("tensor_val"), tensor_util.make_tensor_proto(1, dtypes.int32)) self.assertEqual(op.get_attr("tensor_list_val"), [tensor_util.make_tensor_proto(1, dtypes.int32)]) type_val = op.get_attr("type_val") # First check that type_val is a DType, because the assertEquals will work # no matter what since DType overrides __eq__ self.assertIsInstance(type_val, dtypes.DType) self.assertEqual(type_val, dtypes.int32) type_list_val = op.get_attr("type_list_val") self.assertTrue(all(isinstance(x, dtypes.DType) for x in type_list_val)) self.assertEqual(type_list_val, [dtypes.int32, dtypes.float32]) @function.Defun(dtypes.float32, func_name="MyFunc") def func(x): return x op = test_ops.func_attr(func) self.assertEqual(op.get_attr("f"), attr_value_pb2.NameAttrList(name="MyFunc")) # Try fetching missing attr with self.assertRaisesRegexp( ValueError, "Operation 'FuncAttr' has no attr named 'FakeAttr'."): op.get_attr("FakeAttr") # TODO(b/65162920): remove this test when users who are directly mutating the # node_def have been updated to proper usage. @test_util.run_deprecated_v1 def testSetAttr(self): op = test_ops.int_attr().op op._set_attr("foo", attr_value_pb2.AttrValue(i=2)) # TODO(skyewm): add node_def check self.assertEqual(op.get_attr("foo"), 2) # TODO(nolivia): test all error cases def testAddControlInput(self): with ops.Graph().as_default(): x = constant_op.constant(1).op y = constant_op.constant(2).op z = constant_op.constant(3).op z._add_control_input(x) # pylint: disable=protected-access self.assertEqual(z.control_inputs, [x]) z._add_control_input(x) # pylint: disable=protected-access self.assertEqual(z.control_inputs, [x]) z._add_control_inputs([x, y, y]) # pylint: disable=protected-access self.assertEqual(z.control_inputs, [x, y]) self.assertEqual(x._control_outputs, [z]) @test_util.run_deprecated_v1 def testRemoveAllControlInputs(self): a = constant_op.constant(1) with ops.control_dependencies([a]): b = constant_op.constant(2) c = constant_op.constant(3) d = constant_op.constant(4) e = constant_op.constant(5) with ops.control_dependencies([a, c]): f = d + e self.assertEqual(a.op.control_inputs, []) self.assertEqual(b.op.control_inputs, [a.op]) self.assertEqual(f.op.control_inputs, [a.op, c.op]) a.op._remove_all_control_inputs() # pylint: disable=protected-access self.assertEqual(a.op.control_inputs, []) b.op._remove_all_control_inputs() # pylint: disable=protected-access self.assertEqual(b.op.control_inputs, []) f.op._remove_all_control_inputs() # pylint: disable=protected-access self.assertEqual(f.op.control_inputs, []) self.assertEqual(list(f.op.inputs), [d, e]) @test_util.run_deprecated_v1 def testControlInputCycle(self): graph = ops.Graph() with graph.as_default(): z = constant_op.constant(0) x = constant_op.constant(1) y = constant_op.constant(2) y.op._add_control_input(z.op) # pylint: disable=protected-access y.op._add_control_input(x.op) # pylint: disable=protected-access x.op._add_control_input(y.op) # pylint: disable=protected-access with self.session(graph=graph) as sess: with self.assertRaisesRegexp( errors.InvalidArgumentError, "Graph is invalid, contains a cycle with 2 nodes"): self.evaluate(x) def testUpdateInput(self): g = ops.Graph() with g.as_default(): x = constant_op.constant(1) y = constant_op.constant(2) z = x + y z.op._update_input(0, y) # pylint: disable=protected-access self.assertEquals(list(z.op.inputs), [y, y]) self.assertEquals(x.consumers(), []) self.assertEquals(y.consumers(), [z.op, z.op]) with session.Session(graph=g) as sess: self.assertEquals(self.evaluate(z), 4) z.op._update_input(0, x) # pylint: disable=protected-access self.assertEquals(list(z.op.inputs), [x, y]) self.assertEquals(x.consumers(), [z.op]) self.assertEquals(y.consumers(), [z.op]) with session.Session(graph=g) as sess: self.assertEquals(self.evaluate(z), 3) z.op._update_input(1, y) # pylint: disable=protected-access self.assertEquals(list(z.op.inputs), [x, y]) self.assertEquals(x.consumers(), [z.op]) self.assertEquals(y.consumers(), [z.op]) with session.Session(graph=g) as sess: self.assertEquals(self.evaluate(z), 3) def testUpdateInputGraphError(self): g_0 = ops.Graph() g_1 = ops.Graph() with g_0.as_default(): x = constant_op.constant(1) with g_1.as_default(): y = constant_op.constant(2) z = y * 2 with self.assertRaisesRegexp(ValueError, "must be from the same graph"): z.op._update_input(0, x) # pylint: disable=protected-access def testUpdateInputTypeError(self): g = ops.Graph() with g.as_default(): w = constant_op.constant(0) x = constant_op.constant("") y = constant_op.constant(1) z = y + w z.op._update_input(0, x) # pylint: disable=protected-access with session.Session(graph=g) as sess: with self.assertRaisesRegexp( errors.InvalidArgumentError, "Input 0 of node add was passed string from Const_1:0 incompatible " "with expected int32"): self.evaluate(z) def testUpdateInputShapeError(self): g = ops.Graph() with g.as_default(): w = constant_op.constant(2, shape=[3, 1]) x = constant_op.constant(0, shape=[3, 1]) y = constant_op.constant(1, shape=[2, 2]) z = w + x with self.assertRaisesRegexp( errors.InvalidArgumentError, r"Cannot update edge, incompatible shapes: \[2,2\] and \[3,1\]"): z.op._update_input(0, y) # pylint: disable=protected-access def testUpdateInputOutOfRange(self): g = ops.Graph() with g.as_default(): x = constant_op.constant(1) with self.assertRaisesRegexp( errors.OutOfRangeError, r"Cannot update edge. Input index \[1\] is greater than the number of " r"total inputs \[0\]." ): x.op._update_input(1, x) # pylint: disable=protected-access @test_util.enable_control_flow_v2 @test_util.run_v1_only("b/120545219") def testAddWhileInput(self): @eager_function.defun def test(): output = control_flow_ops.while_loop(lambda x: x < 3, lambda x: x + 1, [1]) while_op = output.op self.assertEqual(while_op.type, "StatelessWhile") orig_num_inputs = len(while_op.inputs) # Make sure we can handle the while op having a control input. while_op._add_control_input(constant_op.constant(0).op) new_input1 = constant_op.constant(1.0) new_input2 = constant_op.constant(True) # Clear output shapes to bypass shape checking. while_op._set_shape_list_attr("output_shapes", []) while_op._set_type_list_attr("T", [t.dtype for t in while_op.inputs] + [new_input1.dtype, new_input2.dtype]) while_op._add_while_inputs([new_input1, new_input2]) # Can't add an edge beyond what's specified by "T" with self.assertRaises(errors.OutOfRangeError): while_op._add_while_inputs([new_input2]) self.assertEqual(len(while_op.inputs), orig_num_inputs + 2) # pylint: disable=g-deprecated-assert test() @test_util.run_deprecated_v1 def testOpDef(self): x = constant_op.constant(0) y = constant_op.constant(1) z = x + y self.assertEqual(x.op.op_def.name, "Const") self.assertEqual(len(x.op.op_def.input_arg), 0) self.assertEqual(len(x.op.op_def.output_arg), 1) self.assertRegexpMatches(z.op.op_def.name, "Add(V2)?") self.assertEqual(len(z.op.op_def.input_arg), 2) self.assertEqual(len(z.op.op_def.output_arg), 1) def testInputFromDifferentGraphError(self): g_0 = ops.Graph() g_1 = ops.Graph() with g_0.as_default(): x = constant_op.constant(1) with g_1.as_default(): y = constant_op.constant(2) with self.assertRaisesRegexp(ValueError, "must be from the same graph"): y * x # pylint: disable=pointless-statement def testInputsAreImmutable(self): g = ops.Graph() with g.as_default(): x = test_ops.int_output() op = test_ops.int_input_int_output(x, name="myop").op with self.assertRaisesRegexp( AttributeError, "'tuple' object has no attribute 'append'"): op.inputs.append(None) class CreateOpTest(test_util.TensorFlowTestCase): def testNodeDefArgs(self): g = ops.Graph() op1 = g.create_op("FloatOutput", [], [dtypes.float32], None, name="myop1") with g.device("/device:GPU:0"): op2 = g.create_op( "FloatOutputStringOutput", [], [dtypes.float32, dtypes.string], None, name="myop2") op3 = g.create_op( "Foo3", [list(op1.values())[0], list(op2.values())[1], list(op2.values())[0]], [dtypes.float32, dtypes.int32], None, name="myop3") self.assertDeviceEqual(None, op1.device) self.assertDeviceEqual("/device:GPU:0", op2.device) self.assertDeviceEqual(None, op3.device) self.assertProtoEquals("name:'myop1' op:'FloatOutput'", op1.node_def) self.assertProtoEquals( "name:'myop2' op:'FloatOutputStringOutput' device:'/device:GPU:0'", op2.node_def) self.assertProtoEquals( "name:'myop3' input:'myop1' input:'myop2:1' input:'myop2' op:'Foo3'", op3.node_def) def testReferenceInput(self): g = ops.Graph() op1 = g.create_op( "RefOutputFloatOutput", [], [dtypes.float32_ref, dtypes.float32], name="op1") self.assertProtoEquals("op:'RefOutputFloatOutput' name:'op1'", op1.node_def) ref_t, nonref_t = op1.values() # NOTE(mrry): Must specify input_types to preserve ref-typed input. op2 = g.create_op( "RefInputFloatInput", [ref_t, nonref_t], [], input_types=[dtypes.float32_ref, dtypes.float32], name="op2") self.assertProtoEquals( "op:'RefInputFloatInput' name:'op2' input:'op1' input:'op1:1'", op2.node_def) op3 = g.create_op("TwoFloatInputs", [ref_t, nonref_t], [], name="op3") self.assertProtoEquals( "op:'TwoFloatInputs' name:'op3' input:'op1' input:'op1:1'", op3.node_def) def testFinalized(self): g = ops.Graph() g.finalize() with self.assertRaises(RuntimeError): g.create_op("FloatOutput", [], [dtypes.float32], None, name="myop1") # Test unfinalize. g._unsafe_unfinalize() g.create_op("FloatOutput", [], [dtypes.float32], None, name="myop1") # NOTE(skyewm): these cases test the private Graph._create_op_from_tf_operation # method. Arguably we should only test the public APIs that depend on this # method. However, this logic is complex and tricky, and it can be difficult to # ascertain if we have adequate coverage (e.g. a graph may run successfully if # the control flow context isn't set properly, but a more complicated use case # that might not be obvious to test will fail). Thus we instead explicitly test # the low-level behavior. class CreateOpFromTFOperationTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testBasic(self): g = ops.Graph() with g.as_default(): x = test_ops.int_output() c_op = ops._create_c_op( g, ops._NodeDef("IntInputIntOutput", "myop"), [x], []) op = g._create_op_from_tf_operation(c_op) self.assertEqual(op.name, "myop") self.assertEqual(op.type, "IntInputIntOutput") self.assertEqual(len(op.outputs), 1) self.assertEqual(op.outputs[0].shape, tensor_shape.unknown_shape()) self.assertEqual(list(op.inputs), [x]) self.assertEqual(op.control_inputs, []) self.assertEqual(op.graph, g) self.assertEqual(x.consumers(), [op]) self.assertIsNotNone(op.traceback) self.assertEqual(g.get_operation_by_name("myop"), op) self.assertEqual(g.get_tensor_by_name("myop:0"), op.outputs[0]) def testShape(self): g = ops.Graph() with g.as_default(): x = constant_op.constant([[1, 2, 3], [4, 5, 6]]) c_op = ops._create_c_op(g, ops._NodeDef("Identity", "myop"), [x], []) op = g._create_op_from_tf_operation(c_op) self.assertEqual(op.name, "myop") self.assertEqual(op.type, "Identity") self.assertEqual(len(op.outputs), 1) self.assertEqual(op.outputs[0].shape, tensor_shape.TensorShape([2, 3])) def testUniqueName(self): g = ops.Graph() with g.as_default(): c_op = ops._create_c_op(g, ops._NodeDef("IntOutput", "myop"), [], []) c_op2 = ops._create_c_op(g, ops._NodeDef("IntOutput", "myop_1"), [], []) op = g._create_op_from_tf_operation(c_op) op2 = g._create_op_from_tf_operation(c_op2) # Create ops with same names as op1 and op2. We expect the new names to be # uniquified. op3 = test_ops.int_output(name="myop").op op4 = test_ops.int_output(name="myop_1").op self.assertEqual(op.name, "myop") self.assertEqual(op2.name, "myop_1") self.assertEqual(op3.name, "myop_2") self.assertEqual(op4.name, "myop_1_1") @test_util.run_v1_only("b/120545219") def testCond(self): g = ops.Graph() with g.as_default(): x = test_ops.int_output() def true_fn(): ops._create_c_op(ops.get_default_graph(), ops._NodeDef("IntInput", "cond/myop"), [x], []) new_ops = g._add_new_tf_operations() self.assertEqual(len(new_ops), 1) return x control_flow_ops.cond(x < 10, true_fn, lambda: x) op = g.get_operation_by_name("cond/myop") self.assertIsNotNone(op) self.assertEqual(op.name, "cond/myop") self.assertEqual(op.type, "IntInput") self.assertEqual(op.outputs, []) op_input = op.inputs[0].op self.assertEqual(op_input.type, "Switch") self.assertEqual(op_input.inputs[0], x) self.assertEqual(op.graph, g) # pylint: disable=protected-access self.assertIsNotNone(op._get_control_flow_context()) self.assertEqual(op._get_control_flow_context().name, "cond/cond_text") # pylint: enable=protected-access @test_util.run_v1_only("b/120545219") def testWhileLoop(self): g = ops.Graph() with g.as_default(): x = test_ops.int_output() def body(i): ops._create_c_op(ops.get_default_graph(), ops._NodeDef("IntInput", "myloop/myop"), [x], []) new_ops = g._add_new_tf_operations() self.assertEqual(len(new_ops), 1) return i control_flow_ops.while_loop(lambda i: i < 10, body, [0], name="myloop") op = g.get_operation_by_name("myloop/myop") self.assertIsNotNone(op) self.assertEqual(op.name, "myloop/myop") self.assertEqual(op.type, "IntInput") self.assertEqual(op.outputs, []) op_input = op.inputs[0].op self.assertEqual(op_input.type, "Enter") self.assertEqual(list(op_input.inputs), [x]) self.assertEqual(op.graph, g) # pylint: disable=protected-access self.assertIsNotNone(op._get_control_flow_context()) self.assertEqual(op._get_control_flow_context().name, "myloop/while_context") # pylint: enable=protected-access @test_util.run_v1_only("b/120545219") def testWhileLoopWithInternalControlDep(self): g = ops.Graph() with g.as_default(): x = test_ops.int_output() def body(i): c = constant_op.constant(1.0, name="c") ops._create_c_op(ops.get_default_graph(), ops._NodeDef("IntInput", "myloop/myop"), [x], []) with ops.control_dependencies([c]): new_ops = g._add_new_tf_operations() self.assertEqual(len(new_ops), 1) return i control_flow_ops.while_loop(lambda i: i < 10, body, [0], name="myloop") op = g.get_operation_by_name("myloop/myop") self.assertIsNotNone(op) c = g.get_operation_by_name("myloop/c") self.assertIsNotNone(c) # Internal control dep is preserved self.assertEqual(op.control_inputs, [c]) @test_util.run_v1_only("b/120545219") def testWhileLoopWithExternalControlDep(self): g = ops.Graph() with g.as_default(): x = test_ops.int_output() c = constant_op.constant(1.0) def body(i): ops._create_c_op(ops.get_default_graph(), ops._NodeDef("IntInput", "myloop/myop"), [x], []) with ops.control_dependencies([c]): new_ops = g._add_new_tf_operations() self.assertEqual(len(new_ops), 1) return i control_flow_ops.while_loop(lambda i: i < 10, body, [0], name="myloop") op = g.get_operation_by_name("myloop/myop") self.assertIsNotNone(op) # External control dep is removed and replaced with internal control dep self.assertNotEqual(op.control_inputs[0], c.op) self.assertIsNotNone(op.control_inputs[0]._get_control_flow_context()) class ApplyOpTest(test_util.TensorFlowTestCase): def testNodeDefArgs(self): g = ops.Graph() t1 = _apply_op(g, "FloatOutput", [], [dtypes.float32], name="myop1") with g.device("/device:GPU:0"): t2 = _apply_op( g, "TwoIntOutputs", [], [dtypes.int32, dtypes.int32], name="myop2") t3 = _apply_op( g, "Foo1", [t1, t2[1], t2[0]], [dtypes.float32, dtypes.int32], name="myop3") self.assertTrue(isinstance(t1, ops.Tensor)) self.assertTrue(isinstance(t2, list)) self.assertTrue(isinstance(t3, list)) self.assertTrue(isinstance(t3[0], ops.Tensor)) self.assertEqual("myop1", t1._as_node_def_input()) self.assertEqual("myop2", t2[0]._as_node_def_input()) self.assertEqual("myop2:1", t2[1]._as_node_def_input()) self.assertEqual("myop3", t3[0]._as_node_def_input()) # Validate that we got the right ops as well self.assertProtoEquals("name:'myop1' op:'FloatOutput'", t1.op.node_def) self.assertProtoEquals( "name:'myop2' op:'TwoIntOutputs' device:'/device:GPU:0'", t2[0].op.node_def) self.assertProtoEquals( "name:'myop3' input:'myop1' input:'myop2:1' input:'myop2' op:'Foo1'", t3[0].op.node_def) def testReferenceInput(self): g = ops.Graph() ref_t, nonref_t = _apply_op( g, "RefOutputFloatOutput", [], [dtypes.float32_ref, dtypes.float32], name="op1") self.assertProtoEquals("op:'RefOutputFloatOutput' name:'op1'", ref_t.op.node_def) # NOTE(mrry): Must specify input_types to preserve ref-typed input. out_2 = _apply_op( g, "RefInputFloatInputIntOutput", [ref_t, nonref_t], [dtypes.int32], input_types=[dtypes.float32_ref, dtypes.float32], name="op2") self.assertProtoEquals( "op:'RefInputFloatInputIntOutput' name:'op2' input:'op1' input:'op1:1'", out_2.op.node_def) out_3 = _apply_op( g, "TwoFloatInputsIntOutput", [ref_t, nonref_t], [dtypes.int32], name="op3") self.assertProtoEquals( "op:'TwoFloatInputsIntOutput' name:'op3' input:'op1' input:'op1:1'", out_3.op.node_def) class NameStackTest(test_util.TensorFlowTestCase): def testBasics(self): g = ops.Graph() self.assertEqual("foo", g.unique_name("foo", mark_as_used=False)) self.assertEqual("foo", g.unique_name("foo", mark_as_used=False)) self.assertEqual("foo", g.unique_name("foo")) self.assertEqual("foo_1", g.unique_name("foo", mark_as_used=False)) self.assertEqual("foo_1", g.unique_name("foo")) self.assertEqual("foo_2", g.unique_name("foo", mark_as_used=False)) self.assertEqual("foo_2", g.unique_name("foo")) self.assertEqual("foo_1_1", g.unique_name("foo_1", mark_as_used=False)) self.assertEqual("foo_1_1", g.unique_name("foo_1")) self.assertEqual("foo_1_2", g.unique_name("foo_1", mark_as_used=False)) self.assertEqual("foo_1_2", g.unique_name("foo_1")) self.assertEqual("foo_1_2_1", g.unique_name("foo_1_2", mark_as_used=False)) self.assertEqual("foo_1_2_1", g.unique_name("foo_1_2")) with g.name_scope("bar"): self.assertEqual("bar/foo", g.unique_name("foo", mark_as_used=False)) self.assertEqual("bar/foo", g.unique_name("foo")) self.assertEqual("bar/foo_1", g.unique_name("foo", mark_as_used=False)) self.assertEqual("bar/foo_1", g.unique_name("foo")) with g.name_scope(None): self.assertEqual("foo_3", g.unique_name("foo", mark_as_used=False)) self.assertEqual("foo_3", g.unique_name("foo")) with g.name_scope("baz"): self.assertEqual( "bar/baz/foo", g.unique_name( "foo", mark_as_used=False)) self.assertEqual("bar/baz/foo", g.unique_name("foo")) self.assertEqual( "bar/baz/foo_1", g.unique_name( "foo", mark_as_used=False)) self.assertEqual("bar/baz/foo_1", g.unique_name("foo")) with g.name_scope("baz"): self.assertEqual( "bar/baz_1/foo", g.unique_name( "foo", mark_as_used=False)) self.assertEqual("bar/baz_1/foo", g.unique_name("foo")) self.assertEqual( "bar/baz_1/foo_1", g.unique_name( "foo", mark_as_used=False)) self.assertEqual("bar/baz_1/foo_1", g.unique_name("foo")) with g.name_scope("quux"): self.assertEqual("quux/foo", g.unique_name("foo", mark_as_used=False)) self.assertEqual("quux/foo", g.unique_name("foo")) with g.name_scope("bar"): with g.name_scope("baz"): self.assertEqual( "bar_1/baz/foo", g.unique_name( "foo", mark_as_used=False)) self.assertEqual("bar_1/baz/foo", g.unique_name("foo")) self.assertEqual("foo_4", g.unique_name("foo", mark_as_used=False)) self.assertEqual("foo_4", g.unique_name("foo")) self.assertEqual("bar_2", g.unique_name("bar", mark_as_used=False)) self.assertEqual("bar_2", g.unique_name("bar")) @test_util.run_deprecated_v1 def testNameAndVariableScope(self): with self.cached_session() as sess: with sess.graph.name_scope("l0"): with variable_scope.variable_scope("l1"): with sess.graph.name_scope("l1") as scope: self.assertEqual("l0/l1/l1/", scope) self.assertEqual( "l0/l1/l1/foo", sess.graph.unique_name( "foo", mark_as_used=False)) self.assertEqual("l0/l1/l1/foo", sess.graph.unique_name("foo")) with sess.graph.name_scope("l2") as scope: self.assertEqual("l0/l1/l2/", scope) self.assertEqual( "l0/l1/l2/foo", sess.graph.unique_name( "foo", mark_as_used=False)) self.assertEqual("l0/l1/l2/foo", sess.graph.unique_name("foo")) def testOutOfOrderUniqueName(self): g = ops.Graph() self.assertEqual("foo_2", g.unique_name("foo_2")) self.assertEqual("foo", g.unique_name("foo")) self.assertEqual("foo_1", g.unique_name("foo")) self.assertEqual("foo_3", g.unique_name("foo")) def testUniqueNameCaseInsensitivity(self): g = ops.Graph() self.assertEqual("foo", g.unique_name("foo")) self.assertEqual("Foo_1", g.unique_name("Foo")) with g.name_scope("bar"): self.assertEqual("bar/foo", g.unique_name("foo")) with g.name_scope("Bar"): self.assertEqual("Bar_1/foo", g.unique_name("foo")) def testInvalidNameRaisesError(self): g = ops.Graph() with g.name_scope(""): # Should not raise pass with g.name_scope("foo/"): # Should not raise with g.name_scope("_bar"): # Should not raise pass with self.assertRaises(ValueError): with g.name_scope("foo:0"): pass with self.assertRaises(ValueError): with g.name_scope("_bar"): pass class NameTest(test_util.TensorFlowTestCase): def testGenerateName(self): g = ops.Graph() op0 = g.create_op("TwoFloatOutputs", [], [dtypes.float32, dtypes.float32]) self.assertEqual("TwoFloatOutputs", op0.name) self.assertEqual("TwoFloatOutputs:0", op0.outputs[0].name) self.assertEqual("TwoFloatOutputs:1", op0.outputs[1].name) op1 = g.create_op("FloatOutput", [], [dtypes.float32]) self.assertEqual("FloatOutput", op1.name) self.assertEqual("FloatOutput:0", op1.outputs[0].name) op2 = g.create_op("FloatOutput", [], [dtypes.float32]) self.assertEqual("FloatOutput_1", op2.name) self.assertEqual("FloatOutput_1:0", op2.outputs[0].name) op3 = g.create_op("FloatOutput", [], [dtypes.float32], name="my_op") self.assertEqual("my_op", op3.name) self.assertEqual("my_op:0", op3.outputs[0].name) def testNameScope(self): g = ops.Graph() with g.name_scope("foo") as foo: self.assertEqual("foo/", foo) with g.name_scope("foo2") as foo2: self.assertEqual("foo/foo2/", foo2) with g.name_scope(None) as empty1: self.assertEqual("", empty1) with g.name_scope("foo3") as foo3: self.assertEqual("foo3/", foo3) with g.name_scope("") as empty2: self.assertEqual("", empty2) self.assertEqual("FloatOutput", g.create_op("FloatOutput", [], [dtypes.float32]).name) with g.name_scope("bar") as scope: self.assertEqual("bar/FloatOutput", g.create_op("FloatOutput", [], [dtypes.float32]).name) self.assertEqual("bar/FloatOutput_1", g.create_op("FloatOutput", [], [dtypes.float32]).name) # If you use the value from "with .. as", that values is used as-is. self.assertEqual( "bar", g.create_op( "FloatOutput", [], [dtypes.float32], name=scope).name) with g.name_scope("baz") as scope: with g.name_scope("quux"): self.assertEqual("baz/quux/FloatOutput", g.create_op("FloatOutput", [], [dtypes.float32]).name) # If you use the value from the enclosing "with .. as", nothing is pushed. with g.name_scope(scope): self.assertEqual("baz/FloatOutput", g.create_op("FloatOutput", [], [dtypes.float32]).name) self.assertEqual( "baz", g.create_op( "FloatOutput", [], [dtypes.float32], name=scope).name) self.assertEqual( "trailing", g.create_op( "FloatOutput", [], [dtypes.float32], name="trailing/").name) with g.name_scope("bar"): self.assertEqual("bar_1/FloatOutput", g.create_op("FloatOutput", [], [dtypes.float32]).name) with g.name_scope("bar/"): self.assertEqual("bar/FloatOutput_2", g.create_op("FloatOutput", [], [dtypes.float32]).name) class DeviceTest(test_util.TensorFlowTestCase): def testNoDevice(self): g = ops.Graph() op = g.create_op("FloatOutput", [], [dtypes.float32]) self.assertDeviceEqual(None, op.device) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" } """, gd) def testEagerBackingDevice(self): with context.eager_mode(): with ops.device("/device:CPU:0"): t = constant_op.constant(1.0) self.assertRegexpMatches(t.device, "/device:CPU:0") self.assertRegexpMatches(t.backing_device, "/device:CPU:0") def testDevicePartialString(self): g = ops.Graph() with g.device("/job:worker/replica:2"): g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:worker/replica:2" } """, gd) def testDeviceFull(self): g = ops.Graph() with g.device( pydev.DeviceSpec( job="worker", replica=2, task=0, device_type="CPU", device_index=3)): g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:worker/replica:2/task:0/device:CPU:3" } """, gd) def testNesting(self): g = ops.Graph() with g.device("/job:worker/replica:2"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/job:worker/replica:3/task:0"): g.create_op("FloatOutput", [], [dtypes.float32]) g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:worker/replica:2" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:worker/replica:3/task:0" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/replica:2" } """, gd) def testNestingString(self): g = ops.Graph() with g.device("/job:worker/replica:2"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/job:worker/replica:3/task:0"): g.create_op("FloatOutput", [], [dtypes.float32]) g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:worker/replica:2" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:worker/replica:3/task:0" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/replica:2" } """, gd) def testNestingOverrideGpuCpu(self): g = ops.Graph() with g.device("/job:worker/replica:2/device:CPU:1"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/job:worker/replica:2/device:GPU:2"): g.create_op("FloatOutput", [], [dtypes.float32]) g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:worker/replica:2/device:CPU:1" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:worker/replica:2/device:GPU:2" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/replica:2/device:CPU:1" } """, gd) def testNestingWithMergeDeviceFunction(self): g = ops.Graph() with g.device(pydev.merge_device("/device:GPU:0")): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(pydev.merge_device("/job:worker")): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(pydev.merge_device("/device:CPU:0")): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(pydev.merge_device("/job:ps")): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(pydev.merge_device(None)): g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/device:GPU:0" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:worker/device:GPU:0" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/device:CPU:0" } node { name: "FloatOutput_3" op: "FloatOutput" device: "/job:ps/device:CPU:0" } node { name: "FloatOutput_4" op: "FloatOutput" device: "/job:ps/device:CPU:0" } """, gd) def testNestingWithDeviceStrings(self): g = ops.Graph() with g.device("/device:GPU:0"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/job:worker"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/device:CPU:0"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/job:ps"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(""): g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/device:GPU:0" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:worker/device:GPU:0" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/device:CPU:0" } node { name: "FloatOutput_3" op: "FloatOutput" device: "/job:ps/device:CPU:0" } node { name: "FloatOutput_4" op: "FloatOutput" device: "/job:ps/device:CPU:0" } """, gd) def testNestingWithDeviceStringWildcard(self): g = ops.Graph() with g.device("/device:GPU:7"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/device:GPU:*"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/device:CPU:*"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/device:CPU:5"): g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/device:GPU:7" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/device:GPU:7" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/device:CPU:*" } node { name: "FloatOutput_3" op: "FloatOutput" device: "/device:CPU:5" } """, gd) def testNestingErrorGraph(self): g = ops.Graph() scope = g.device("/device:GPU:8") scope.__enter__() with g.device("/device:GPU:9"): with self.assertRaises(RuntimeError): scope.__exit__(None, None, None) def testNestingErrorEager(self): with context.eager_mode(): scope = ops.device("/device:CPU:0") scope.__enter__() with ops.device(None): with self.assertRaises(RuntimeError): scope.__exit__(None, None, None) def testNoneClearsDefault(self): g = ops.Graph() with g.device("/job:worker/replica:2/device:CPU:1"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(None): g.create_op("FloatOutput", [], [dtypes.float32]) g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:worker/replica:2/device:CPU:1" } node { name: "FloatOutput_1" op: "FloatOutput" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/replica:2/device:CPU:1" } """, gd) def testNoneIgnoresOuterDeviceFunction(self): g = ops.Graph() with g.device(lambda op: "/job:worker/replica:2/device:CPU:1"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(None): g.create_op("FloatOutput", [], [dtypes.float32]) g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:worker/replica:2/device:CPU:1" } node { name: "FloatOutput_1" op: "FloatOutput" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/replica:2/device:CPU:1" } """, gd) def _overwritingDeviceFunction(self, unused_op): # This device function unconditionally overwrites the device of ops. # # NOTE(mrry): Writing device functions like this is not # recommended. Instead, in most cases you should use # `pydev.merge_device("/job:ps")` or simply `"/job:ps"` as the # argument to `tf.device()` and the device component will be merged in. return "/job:overwrite" def testOverwritingBehavior(self): g = ops.Graph() with g.device(self._overwritingDeviceFunction): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device("/job:ps"): # Will be overwritten. g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(pydev.merge_device("/job:ps")): # Will be overwritten. g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(None): # Disables overwriting device function with g.device("/job:ps"): g.create_op("FloatOutput", [], [dtypes.float32]) with g.device(None): # Disables overwriting device function with g.device(pydev.merge_device("/job:ps")): g.create_op("FloatOutput", [], [dtypes.float32]) gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput" op: "FloatOutput" device: "/job:overwrite" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:overwrite" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:overwrite" } node { name: "FloatOutput_3" op: "FloatOutput" device: "/job:ps" } node { name: "FloatOutput_4" op: "FloatOutput" device: "/job:ps" } """, gd) class MultithreadedGraphStateTest(test_util.TensorFlowTestCase): class TestThread(threading.Thread): def __init__(self, graph, replica_id): super(MultithreadedGraphStateTest.TestThread, self).__init__() self._graph = graph self._replica_id = replica_id # This thread sets this event when it mutated the graph. The caller can # wait for that. self.has_mutated_graph = threading.Event() # This thread waits for when it should continue. The caller can set this # event. self.should_continue = threading.Event() def run(self): # Mutate a graph's stack, then set `has_mutated_graph`, then wait for # `should_continue`, then add an op to the graph affected by the graph's # stack. raise NotImplementedError("must be implemented in descendants") def testDeviceFunctionStack(self): class DeviceSettingThread(self.TestThread): def run(self): with g.device("/job:worker/replica:{}".format(self._replica_id)): self.has_mutated_graph.set() self.should_continue.wait() self.should_continue.clear() g.create_op( "FloatOutput", [], [dtypes.float32], name="FloatOutput_{}".format(self._replica_id)) g = ops.Graph() # If `switch_to_thread` isn't called, then device placement of the ops # below is not deterministic. g.switch_to_thread_local() threads = [DeviceSettingThread(g, i) for i in range(3)] for t in threads: t.start() t.has_mutated_graph.wait() t.has_mutated_graph.clear() for t in threads: t.should_continue.set() t.join() gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "FloatOutput_0" op: "FloatOutput" device: "/job:worker/replica:0" } node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:worker/replica:1" } node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/replica:2" } """, gd) def testColocateWith(self): class ColocatingThread(self.TestThread): def __init__(self, graph, replica_id, op_to_colocate_with): super(ColocatingThread, self).__init__(graph, replica_id) self._op_to_colocate_with = op_to_colocate_with def run(self): with g.colocate_with(self._op_to_colocate_with): self.has_mutated_graph.set() self.should_continue.wait() self.should_continue.clear() g.create_op( "FloatOutput", [], [dtypes.float32], name="FloatOutput_{}".format(self._replica_id)) g = ops.Graph() ops_to_colocate_with = [] for i in range(3): with g.device("/job:worker/replica:{}".format(i)): ops_to_colocate_with.append( g.create_op( "FloatOutput", [], [dtypes.float32], name="ColocateWithMe_{}".format(i))) # If `switch_to_thread` isn't called, then `device` and `attr` values for # the ops below are not deterministic. g.switch_to_thread_local() threads = [ ColocatingThread(g, i, ops_to_colocate_with[i]) for i in range(3) ] for t in threads: t.start() t.has_mutated_graph.wait() t.has_mutated_graph.clear() for t in threads: t.should_continue.set() t.join() gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "ColocateWithMe_0" op: "FloatOutput" device: "/job:worker/replica:0" } node { name: "ColocateWithMe_1" op: "FloatOutput" device: "/job:worker/replica:1" } node { name: "ColocateWithMe_2" op: "FloatOutput" device: "/job:worker/replica:2" } node { name: "FloatOutput_0" op: "FloatOutput" device: "/job:worker/replica:0" attr { key: "_class" value { list { s: "loc:@ColocateWithMe_0"}}}} node { name: "FloatOutput_1" op: "FloatOutput" device: "/job:worker/replica:1" attr { key: "_class" value { list { s: "loc:@ColocateWithMe_1"}}}} node { name: "FloatOutput_2" op: "FloatOutput" device: "/job:worker/replica:2" attr { key: "_class" value { list { s: "loc:@ColocateWithMe_2"}}}} """, gd) def testControlDependencies(self): class DependingThread(self.TestThread): def __init__(self, graph, replica_id, dependency_op): super(DependingThread, self).__init__(graph, replica_id) self._dependency_op = dependency_op def run(self): with g.control_dependencies([self._dependency_op]): self.has_mutated_graph.set() self.should_continue.wait() self.should_continue.clear() g.create_op( "FloatOutput", [], [dtypes.float32], name="FloatOutput_{}".format(self._replica_id)) g = ops.Graph() dependency_ops = [] for i in range(3): dependency_ops.append( g.create_op( "FloatOutput", [], [dtypes.float32], name="ColocateWithMe_{}".format(i))) # If `switch_to_thread` isn't called, then `input` values for the ops below # are not deterministic. g.switch_to_thread_local() threads = [DependingThread(g, i, dependency_ops[i]) for i in range(3)] for t in threads: t.start() t.has_mutated_graph.wait() t.has_mutated_graph.clear() for t in threads: t.should_continue.set() t.join() gd = g.as_graph_def() self.assertProtoEqualsVersion(""" node { name: "ColocateWithMe_0" op: "FloatOutput" } node { name: "ColocateWithMe_1" op: "FloatOutput" } node { name: "ColocateWithMe_2" op: "FloatOutput" } node { name: "FloatOutput_0" op: "FloatOutput" input: "^ColocateWithMe_0" } node { name: "FloatOutput_1" op: "FloatOutput" input: "^ColocateWithMe_1" } node { name: "FloatOutput_2" op: "FloatOutput" input: "^ColocateWithMe_2" } """, gd) def testNameStack(self): class NameSettingThread(self.TestThread): def run(self): with g.name_scope("foo"): op1 = g.create_op("FloatOutput", [], [dtypes.float32]) self.has_mutated_graph.set() self.should_continue.wait() self.should_continue.clear() op2 = g.create_op("FloatOutput", [], [dtypes.float32]) self.result = (op1, op2) g = ops.Graph() threads = [NameSettingThread(g, i) for i in range(3)] for t in threads: t.start() t.has_mutated_graph.wait() t.has_mutated_graph.clear() for t in threads: t.should_continue.set() t.join() suffixes = ["", "_1", "_2"] for t, s in zip(threads, suffixes): self.assertEquals("foo" + s + "/FloatOutput", t.result[0].name) self.assertEquals("foo" + s + "/FloatOutput_1", t.result[1].name) class ObjectWithName(object): def __init__(self, name): self._name = name @property def name(self): return self._name class CollectionTest(test_util.TensorFlowTestCase): def test_get_collections(self): g = ops.Graph() self.assertSequenceEqual(g.collections, []) g.add_to_collection("key", 12) g.add_to_collection("key", 15) self.assertSequenceEqual(g.collections, ["key"]) g.add_to_collection("other", "foo") self.assertSequenceEqual(sorted(g.collections), ["key", "other"]) self.assertSequenceEqual( sorted(g.get_all_collection_keys()), ["key", "other"]) def test_add_to_collection(self): g = ops.Graph() g.add_to_collection("key", 12) g.add_to_collection("other", "foo") g.add_to_collection("key", 34) # Note that only blank1 is returned. g.add_to_collection("blah", 27) blank1 = ObjectWithName("prefix/foo") g.add_to_collection("blah", blank1) blank2 = ObjectWithName("junk/foo") g.add_to_collection("blah", blank2) self.assertEqual([12, 34], g.get_collection("key")) self.assertEqual([], g.get_collection("nothing")) self.assertEqual([27, blank1, blank2], g.get_collection("blah")) self.assertEqual([blank1], g.get_collection("blah", "prefix")) self.assertEqual([blank1], g.get_collection("blah", ".*x")) # Make sure that get_collection() returns a first-level # copy of the collection, while get_collection_ref() returns # the original list. other_collection_snapshot = g.get_collection("other") other_collection_ref = g.get_collection_ref("other") self.assertEqual(["foo"], other_collection_snapshot) self.assertEqual(["foo"], other_collection_ref) g.add_to_collection("other", "bar") self.assertEqual(["foo"], other_collection_snapshot) self.assertEqual(["foo", "bar"], other_collection_ref) self.assertEqual(["foo", "bar"], g.get_collection("other")) self.assertTrue(other_collection_ref is g.get_collection_ref("other")) # Verify that getting an empty collection ref returns a modifiable list. empty_coll_ref = g.get_collection_ref("empty") self.assertEqual([], empty_coll_ref) empty_coll = g.get_collection("empty") self.assertEqual([], empty_coll) self.assertFalse(empty_coll is empty_coll_ref) empty_coll_ref2 = g.get_collection_ref("empty") self.assertTrue(empty_coll_ref2 is empty_coll_ref) # Add to the collection. empty_coll_ref.append("something") self.assertEqual(["something"], empty_coll_ref) self.assertEqual(["something"], empty_coll_ref2) self.assertEqual([], empty_coll) self.assertEqual(["something"], g.get_collection("empty")) empty_coll_ref3 = g.get_collection_ref("empty") self.assertTrue(empty_coll_ref3 is empty_coll_ref) def test_add_to_collections_uniquify(self): g = ops.Graph() g.add_to_collections([1, 2, 1], "key") # Make sure "key" is not added twice self.assertEqual(["key"], g.get_collection(1)) def test_add_to_collections_from_list(self): g = ops.Graph() g.add_to_collections(["abc", "123"], "key") self.assertEqual(["key"], g.get_collection("abc")) self.assertEqual(["key"], g.get_collection("123")) def test_add_to_collections_from_tuple(self): g = ops.Graph() g.add_to_collections(("abc", "123"), "key") self.assertEqual(["key"], g.get_collection("abc")) self.assertEqual(["key"], g.get_collection("123")) def test_add_to_collections_from_generator(self): g = ops.Graph() def generator(): yield "abc" yield "123" g.add_to_collections(generator(), "key") self.assertEqual(["key"], g.get_collection("abc")) self.assertEqual(["key"], g.get_collection("123")) def test_add_to_collections_from_set(self): g = ops.Graph() g.add_to_collections(set(["abc", "123"]), "key") self.assertEqual(["key"], g.get_collection("abc")) self.assertEqual(["key"], g.get_collection("123")) def test_add_to_collections_from_string(self): g = ops.Graph() g.add_to_collections("abc", "key") self.assertEqual(["key"], g.get_collection("abc")) def test_default_graph(self): with ops.Graph().as_default(): ops.add_to_collection("key", 90) ops.add_to_collection("key", 100) # Collections are ordered. self.assertEqual([90, 100], ops.get_collection("key")) def test_defun(self): with context.eager_mode(): @eager_function.defun def defun(): ops.add_to_collection("int", 1) ops.add_to_collection("tensor", constant_op.constant(2)) @eager_function.defun def inner_defun(): self.assertEqual(ops.get_collection("int"), [1]) three = ops.get_collection("tensor")[0] + ops.get_collection("int")[0] ops.add_to_collection("int", 2) self.assertEqual(ops.get_collection("int"), [1, 2]) ops.add_to_collection("foo", "bar") self.assertEqual(ops.get_collection("foo"), ["bar"]) return three self.assertEqual(ops.get_collection("int"), [1]) three = inner_defun() self.assertEqual(ops.get_collection("int"), [1]) self.assertEqual(ops.get_collection("foo"), []) return three three = defun() self.assertEqual(three.numpy(), 3) ops.NotDifferentiable("FloatOutput") @ops.RegisterGradient("CopyOp") def _CopyGrad(op, x_grad): # pylint: disable=invalid-name _ = op return x_grad @ops.RegisterGradient("copy_override") def _CopyOverrideGrad(op, x_grad): # pylint: disable=invalid-name _ = op return x_grad class RegistrationTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testRegisterGradients(self): x = test_ops.float_output() y = test_ops.copy_op(x) fn = ops.get_gradient_function(y.op) self.assertEqual(_CopyGrad, fn) def testOverrideGradients(self): g = ops.Graph() with g.as_default(): x = test_ops.float_output() with g.gradient_override_map({"CopyOp": "copy_override"}): y = test_ops.copy_op(x) fn = ops.get_gradient_function(y.op) self.assertEqual(_CopyOverrideGrad, fn) def testNonExistentOverride(self): g = ops.Graph() with g.as_default(): x = test_ops.float_output() with g.gradient_override_map({"CopyOp": "unknown_override"}): y = test_ops.copy_op(x) with self.assertRaisesRegexp(LookupError, "unknown_override"): ops.get_gradient_function(y.op) class ComparisonTest(test_util.TensorFlowTestCase): def testMembershipAllowed(self): g = ops.Graph() t1 = _apply_op(g, "FloatOutput", [], [dtypes.float32], name="myop1") t2 = _apply_op(g, "FloatOutput", [], [dtypes.float32], name="myop2") self.assertTrue(isinstance(t1, ops.Tensor)) self.assertTrue(isinstance(t2, ops.Tensor)) self.assertTrue(t1 in [t1]) self.assertTrue(t1 not in [t2]) class ControlDependenciesTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testBasic(self): g = ops.Graph() with g.as_default(): # Creating unregistered ops with _apply_op() doesn't work with the C API # TODO(skyewm): address this more consistently. Possible solutions are # to use registered ops in all tests, create a way to register ops in # Python tests, or conditionally disable the op registration check in # the C API. a = constant_op.constant(1.0) b = constant_op.constant(1.0) with g.control_dependencies([a]): c = constant_op.constant(1.0) d = array_ops.identity(b) e = array_ops.identity(c) self.assertEqual(c.op.control_inputs, [a.op]) self.assertEqual(d.op.control_inputs, [a.op]) # e should be dominated by c. self.assertEqual(e.op.control_inputs, []) @test_util.run_in_graph_and_eager_modes def testEager(self): def future(): future.calls += 1 return constant_op.constant(2.0) future.calls = 0 if context.executing_eagerly(): a = constant_op.constant(1.0) b = future with ops.control_dependencies([a, b]): c = constant_op.constant(3.0) self.assertEqual(future.calls, 1) else: g = ops.Graph() with g.as_default(): a = constant_op.constant(1.0) b = future() with g.control_dependencies([a, b]): c = constant_op.constant(3.0) self.assertEqual(c.op.control_inputs, [a.op, b.op]) self.assertEqual(future.calls, 1) def testBasicWithConversion(self): g = ops.Graph() a = _apply_op(g, "FloatOutput", [], [dtypes.float32]) class ConvertibleObj(object): def _as_graph_element(self): return a with g.control_dependencies([ConvertibleObj()]): c = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertEqual(c.op.control_inputs, [a.op]) def testNested(self): g = ops.Graph() a_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_3 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_4 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a_1, a_2, a_3, a_4]): b_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a_1]): with g.control_dependencies([a_2]): with g.control_dependencies([a_3]): with g.control_dependencies([a_4]): b_2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertItemsEqual([a_1.op, a_2.op, a_3.op, a_4.op], b_1.op.control_inputs) self.assertItemsEqual(b_1.op.control_inputs, b_2.op.control_inputs) def testClear(self): g = ops.Graph() a_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_3 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_4 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a_1]): with g.control_dependencies([a_2]): with g.control_dependencies(None): with g.control_dependencies([a_3]): with g.control_dependencies([a_4]): # deps [a_3, a_4] b_3_4 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps = [a_3] b_3 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps back to None b_none = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps back to [a_1, a_2] b_1_2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps back to [a_1] b_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies(None): # deps are None again b_none2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertItemsEqual([a_3.op, a_4.op], b_3_4.op.control_inputs) self.assertItemsEqual([a_3.op], b_3.op.control_inputs) self.assertItemsEqual([], b_none.op.control_inputs) self.assertItemsEqual([a_1.op, a_2.op], b_1_2.op.control_inputs) self.assertItemsEqual([a_1.op], b_1.op.control_inputs) self.assertItemsEqual([], b_none2.op.control_inputs) def testComplex(self): g = ops.Graph() # Usage pattern: # * Nodes a_i are constants defined at the outermost scope, and are used # as control inputs for the ith nested scope. # * Nodes b_i are defined as Mul(a_3, a_4) at each scope. # * Nodes c_i are defined as Mul(a_1, b_1) at each scope. # * Nodes d_i are defined as Mul(b_i, c_i) at each scope. # * Nodes e_i are defined as Mul(e_i-1, e_i-1) at each scope i > 1. a_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_3 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_4 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a_1]): b_1 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_3, a_4], [dtypes.float32]) c_1 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_1, b_1], [dtypes.float32]) d_1 = _apply_op(g, "TwoFloatInputsFloatOutput", [b_1, c_1], [dtypes.float32]) e_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a_2]): b_2 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_3, a_4], [dtypes.float32]) c_2 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_1, b_1], [dtypes.float32]) d_2 = _apply_op(g, "TwoFloatInputsFloatOutput", [b_2, c_2], [dtypes.float32]) e_2 = _apply_op(g, "TwoFloatInputsFloatOutput", [e_1, e_1], [dtypes.float32]) with g.control_dependencies([a_3]): b_3 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_3, a_4], [dtypes.float32]) c_3 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_1, b_1], [dtypes.float32]) d_3 = _apply_op(g, "TwoFloatInputsFloatOutput", [b_3, c_3], [dtypes.float32]) e_3 = _apply_op(g, "TwoFloatInputsFloatOutput", [e_2, e_2], [dtypes.float32]) with g.control_dependencies([a_4]): b_4 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_3, a_4], [dtypes.float32]) c_4 = _apply_op(g, "TwoFloatInputsFloatOutput", [a_1, b_1], [dtypes.float32]) d_4 = _apply_op(g, "TwoFloatInputsFloatOutput", [b_4, c_4], [dtypes.float32]) e_4 = _apply_op(g, "TwoFloatInputsFloatOutput", [e_3, e_3], [dtypes.float32]) self.assertItemsEqual([a_1.op], b_1.op.control_inputs) self.assertItemsEqual([a_1.op, a_2.op], b_2.op.control_inputs) self.assertItemsEqual([a_1.op, a_2.op], b_3.op.control_inputs) self.assertItemsEqual([a_1.op, a_2.op], b_4.op.control_inputs) self.assertItemsEqual([], c_1.op.control_inputs) self.assertItemsEqual([a_2.op], c_2.op.control_inputs) self.assertItemsEqual([a_2.op, a_3.op], c_3.op.control_inputs) self.assertItemsEqual([a_2.op, a_3.op, a_4.op], c_4.op.control_inputs) self.assertItemsEqual([], d_1.op.control_inputs) self.assertItemsEqual([], d_2.op.control_inputs) self.assertItemsEqual([], d_3.op.control_inputs) self.assertItemsEqual([], d_4.op.control_inputs) self.assertItemsEqual([a_1.op], e_1.op.control_inputs) self.assertItemsEqual([a_2.op], e_2.op.control_inputs) self.assertItemsEqual([a_3.op], e_3.op.control_inputs) self.assertItemsEqual([a_4.op], e_4.op.control_inputs) def testRepeatedDependency(self): g = ops.Graph() a = g.create_op("TwoFloatOutputs", [], [dtypes.float32, dtypes.float32]) a_0, a_1 = a.outputs with g.control_dependencies([a_0]): b = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a_1]): c = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertEqual(b.op.control_inputs, [a]) self.assertEqual(c.op.control_inputs, [a]) def testNoControlDependencyWithDataDependency(self): g = ops.Graph() a = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a]): b = _apply_op(g, "Identity", [a], [dtypes.float32]) self.assertEqual(b.op.control_inputs, []) class OpScopeTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes def testNames(self): with ops.name_scope("foo", skip_on_eager=False) as foo: self.assertEqual("foo/", foo) with ops.name_scope("foo2", skip_on_eager=False) as foo2: self.assertEqual("foo/foo2/", foo2) with ops.name_scope(None, skip_on_eager=False) as empty1: self.assertEqual("", empty1) with ops.name_scope("foo3", skip_on_eager=False) as foo3: self.assertEqual("foo3/", foo3) with ops.name_scope("", skip_on_eager=False) as empty2: self.assertEqual("", empty2) with ops.name_scope("foo/", skip_on_eager=False) as outer_foo: self.assertEqual("foo/", outer_foo) with ops.name_scope("", skip_on_eager=False) as empty3: self.assertEqual("", empty3) with ops.name_scope("foo4", skip_on_eager=False) as foo4: self.assertEqual("foo/foo4/", foo4) with ops.name_scope("foo5//", skip_on_eager=False) as foo5: self.assertEqual("foo5//", foo5) with ops.name_scope("foo6", skip_on_eager=False) as foo6: self.assertEqual("foo5//foo6/", foo6) with ops.name_scope("/", skip_on_eager=False) as foo7: self.assertEqual("/", foo7) with ops.name_scope("//", skip_on_eager=False) as foo8: self.assertEqual("//", foo8) with ops.name_scope("a//b/c", skip_on_eager=False) as foo9: self.assertEqual("foo/a//b/c/", foo9) with ops.name_scope("a//b/c", skip_on_eager=False) as foo10: self.assertEqual("a//b/c/", foo10) @test_util.run_in_graph_and_eager_modes def testEagerDefaultScopeName(self): with ops.name_scope(None, "default", skip_on_eager=False) as scope: self.assertEqual(scope, "default/") with ops.name_scope(None, "default2", skip_on_eager=False) as scope2: self.assertEqual(scope2, "default/default2/") @test_util.run_in_graph_and_eager_modes def testNameScopeV2IsReEntrant(self): foo = ops.name_scope_v2("foo") bar = ops.name_scope_v2("bar") with foo as scope_name: self.assertEqual("foo/", scope_name) with foo as scope_name: self.assertEqual("foo/foo/", scope_name) with bar as scope_name: self.assertEqual("foo/bar/", scope_name) with foo as scope_name: self.assertEqual("foo/bar/foo/", scope_name) with bar as scope_name: self.assertEqual("bar/", scope_name) @test_util.run_deprecated_v1 def testNoScopeName(self): g0 = ops.Graph() values = [ g0.create_op("A", [], [dtypes.float32]), g0.create_op("B", [], [dtypes.float32]) ] with self.assertRaises(ValueError): with ops.name_scope(None, values=values): pass with self.assertRaises(ValueError): with ops.name_scope(None, None, values): pass @test_util.run_deprecated_v1 def testEmptyScopeName(self): g0 = ops.Graph() a = g0.create_op("A", [], [dtypes.float32]) b = g0.create_op("B", [], [dtypes.float32]) with ops.name_scope("", values=[a, b]) as scope: self.assertEqual("", scope) self.assertEqual(g0, ops.get_default_graph()) with ops.name_scope("", "my_default_scope", [a, b]) as scope: self.assertEqual("", scope) self.assertEqual(g0, ops.get_default_graph()) @test_util.run_deprecated_v1 def testDefaultScopeName(self): g0 = ops.Graph() a = g0.create_op("A", [], [dtypes.float32]) b = g0.create_op("B", [], [dtypes.float32]) scope_name = "my_scope" default_scope_name = "my_default_scope" with ops.name_scope(scope_name, default_scope_name, [a, b]) as scope: self.assertEqual("%s/" % scope_name, scope) self.assertEqual(g0, ops.get_default_graph()) with ops.name_scope(None, default_scope_name, [a, b]) as scope: self.assertEqual("%s/" % default_scope_name, scope) self.assertEqual(g0, ops.get_default_graph()) with self.assertRaises(TypeError): with ops.name_scope(scope_name, [a, b]): pass def _testGraphElements(self, graph_elements): scope_name = "my_scope" with ops.name_scope(scope_name, values=graph_elements) as scope: self.assertEqual("%s/" % scope_name, scope) self.assertEqual(graph_elements[0].graph, ops.get_default_graph()) g1 = ops.Graph() a = g1.create_op("A", [], [dtypes.float32]) with self.assertRaises(ValueError): with ops.name_scope(scope_name, values=graph_elements + [a]): pass @test_util.run_deprecated_v1 def testTensor(self): g0 = ops.Graph() a = g0.create_op("A", [], [dtypes.float32]) b = g0.create_op("B", [], [dtypes.float32]) self._testGraphElements([a, b]) @test_util.run_deprecated_v1 def testSparseTensor(self): g0 = ops.Graph() a = g0.create_op("A", [], [dtypes.float32]) b = g0.create_op("B", [], [dtypes.float32]) sparse = sparse_tensor.SparseTensor( _apply_op(g0, "Int64Output", [], [dtypes.int64]), _apply_op(g0, "FloatOutput", [], [dtypes.float32]), _apply_op(g0, "Int64Output", [], [dtypes.int64])) self._testGraphElements([a, sparse, b]) @test_util.run_deprecated_v1 def testVariable(self): g0 = ops.Graph() with g0.as_default(): variable = variables.Variable([1.0]) a = g0.create_op("A", [], [dtypes.float32]) b = g0.create_op("B", [], [dtypes.float32]) self._testGraphElements([a, variable, b]) class InitScopeTest(test_util.TensorFlowTestCase): def testClearsControlDependencies(self): g = ops.Graph() a_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_3 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) a_4 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.as_default(): with g.control_dependencies([a_1]): with g.control_dependencies([a_2]): with ops.init_scope(): with g.control_dependencies([a_3]): with g.control_dependencies([a_4]): # deps [a_3, a_4] b_3_4 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps = [a_3] b_3 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps back to None b_none = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps back to [a_1, a_2] b_1_2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) # deps back to [a_1] b_1 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with ops.init_scope(): # deps are None again b_none2 = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertItemsEqual([a_3.op, a_4.op], b_3_4.op.control_inputs) self.assertItemsEqual([a_3.op], b_3.op.control_inputs) self.assertItemsEqual([], b_none.op.control_inputs) self.assertItemsEqual([a_1.op, a_2.op], b_1_2.op.control_inputs) self.assertItemsEqual([a_1.op], b_1.op.control_inputs) self.assertItemsEqual([], b_none2.op.control_inputs) def testLiftsOpsFromFunctions(self): g0 = ops.Graph() g1 = ops.Graph() g1._building_function = True # pylint: disable=protected-access g2 = ops.Graph() g2._building_function = True # pylint: disable=protected-access with g0.as_default(): with g1.as_default(): with g2.as_default(): with ops.init_scope(): _ = constant_op.constant(1.0) self.assertEqual(len(g2.get_operations()), 0) self.assertEqual(len(g1.get_operations()), 0) self.assertEqual(len(g0.get_operations()), 1) def testPreservesDevices(self): g0 = ops.Graph() with g0.as_default(), ops.device("CPU:0"): g1 = ops.Graph() g1._building_function = True # pylint: disable=protected-access with g1.as_default(): with ops.device("GPU:0"): with ops.init_scope(): # init_scope should preserve device set under `g1`. on_gpu = constant_op.constant(1.0) self.assertEqual(on_gpu.device, "/device:GPU:0") still_on_gpu = constant_op.constant(1.0) self.assertEqual(still_on_gpu.device, "/device:GPU:0") blank = constant_op.constant(1.0) self.assertEqual(blank.device, "") with ops.init_scope(): now_on_cpu = constant_op.constant(1.0) self.assertEqual(now_on_cpu.device, "/device:CPU:0") on_cpu = constant_op.constant(1.0) self.assertEqual(on_cpu.device, "/device:CPU:0") def testComposes(self): g0 = ops.Graph() g1 = ops.Graph() g1._building_function = True # pylint: disable=protected-access g2 = ops.Graph() g2._building_function = True # pylint: disable=protected-access g3 = ops.Graph() g3._building_function = False # pylint: disable=protected-access with g0.as_default(): with g1.as_default(): with ops.init_scope(): # This op should be lifted into g0. _ = constant_op.constant(1.0) self.assertIs(g0, ops.get_default_graph()) self.assertEqual(len(g2.get_operations()), 0) self.assertEqual(len(g1.get_operations()), 0) self.assertEqual(len(g0.get_operations()), 1) with g2.as_default(): with ops.init_scope(): # This op should be lifted into g0. _ = constant_op.constant(1.0) self.assertIs(g0, ops.get_default_graph()) with g3.as_default(): with ops.init_scope(): # This op should be lifted into g3, because g3 is not building a # function. _ = constant_op.constant(1.0) self.assertIs(g3, ops.get_default_graph()) self.assertEqual(len(g3.get_operations()), 1) self.assertEqual(len(g2.get_operations()), 0) self.assertEqual(len(g1.get_operations()), 0) self.assertEqual(len(g0.get_operations()), 2) def testEscapesToEagerContext(self): g = ops.Graph() g._building_function = True # pylint: disable=protected-access with context.eager_mode(): with context.graph_mode(): with g.as_default(): with ops.init_scope(): # Because g is building a function, init_scope should # escape out to the eager context. self.assertTrue(context.executing_eagerly()) # g should be reinstated as the default graph, and the # graph context should be re-entered. self.assertIs(g, ops.get_default_graph()) self.assertFalse(context.executing_eagerly()) def testStaysInEagerWhenOnlyEagerContextActive(self): with context.eager_mode(): with ops.init_scope(): self.assertTrue(context.eager_mode()) self.assertTrue(context.eager_mode()) def testEscapesDefunWhenInEagerMode(self): def function_with_variables(): with ops.init_scope(): self.v = resource_variable_ops.ResourceVariable(3) return self.v.assign_add(1) with context.eager_mode(): # Each invocation of function_with_variables recreates a variable. self.assertEqual(4, int(function_with_variables())) self.assertEqual(4, int(function_with_variables())) compiled = eager_function.defun(function_with_variables) # The init_scope in function_with_variables lifts the variable out # of the graph function constructed by defun; hence, # compiled now appears to be stateful. self.assertEqual(4, int(compiled())) self.assertEqual(5, int(compiled())) def testEscapesDefunWhenInGraphMode(self): def function_with_variables(name): with ops.init_scope(): _ = variable_scope.get_variable(name, shape=(1,)) g = ops.Graph() with g.as_default(): with self.cached_session(): # First ensure that graphs that are not building functions are # not escaped. function_with_variables("foo") with self.assertRaisesRegexp(ValueError, r"Variable foo already exists.*"): # This will fail because reuse is not set to True. function_with_variables("foo") compiled = eager_function.defun(function_with_variables) compiled("bar") self.assertEqual( len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)), 2) # The second call to `compiled` should not create variables: the # init_scope has lifted the variable creation code out of the defun. compiled("bar") self.assertEqual( len(ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)), 2) def testEscapesNestedDefun(self): def inner_function(): with ops.init_scope(): self.v = resource_variable_ops.ResourceVariable(1) return self.v.assign_add(2) def outer_function(inner=None): with ops.init_scope(): self.v0 = resource_variable_ops.ResourceVariable(0) return self.v0.assign_add(1) + inner() with context.eager_mode(): # Each invocation of outer_function recreates variables. self.assertEqual(4, int(outer_function(inner=inner_function))) self.assertEqual(4, int(outer_function(inner=inner_function))) compiled_inner = eager_function.defun(inner_function) compiled_outer = eager_function.defun(outer_function) # The init_scope lifts variables out of the graph functions # constructed by defun; hence, compiled_outer should now appear to be # stateful. self.assertEqual(4, int(compiled_outer(inner=compiled_inner))) self.assertEqual(7, int(compiled_outer(inner=compiled_inner))) @test_util.run_v1_only("b/120545219") def testFallsBackToGlobalGraphWhenAllGraphsAreBuildingFunctions(self): with context.graph_mode(): ops.reset_default_graph() # This doesn't push anything onto the graph stack, but it does # set the stack's global graph. global_graph = ops.get_default_graph() fn_graph = ops.Graph() # pylint: disable=protected-access fn_graph._building_function = True self.assertEqual(len(ops._default_graph_stack.stack), 0) with fn_graph.as_default(): self.assertEqual(len(ops._default_graph_stack.stack), 1) with ops.init_scope(): self.assertGreater(len(ops._default_graph_stack.stack), 1) dummy = constant_op.constant(1.0) self.assertEqual(len(ops._default_graph_stack.stack), 1) # Note that the global graph is _not_ on the graph stack. self.assertEqual(len(ops._default_graph_stack.stack), 0) # Ensure that `dummy` was added to the global graph. self.assertEqual(global_graph, dummy.graph) # pylint: enable=protected-access def testInstallsDefaultGraphWhenGraphStackIsEmptyInGraphMode(self): with context.graph_mode(): # pylint: disable=protected-access self.assertEqual(len(ops._default_graph_stack.stack), 0) with ops.init_scope(): self.assertGreater(len(ops._default_graph_stack.stack), 0) self.assertEqual(len(ops._default_graph_stack.stack), 0) # pylint: enable=protected-access def testPreservesNameScopeInGraphConstruction(self): with ops.Graph().as_default(): function_graph = ops.Graph() with function_graph.as_default(): with ops.name_scope("inner", skip_on_eager=False), ops.init_scope(): self.assertEqual(ops.get_name_scope(), "inner") self.assertEqual(ops.get_name_scope(), "") def testEnteringGraphFromEagerIsSticky(self): with context.eager_mode(): g = ops.Graph() with g.as_default(): with ops.init_scope(): self.assertFalse(context.executing_eagerly()) self.assertEqual(g, ops.get_default_graph()) def testMixGraphEager(self): with context.eager_mode(): c = constant_op.constant(1.0) with ops.Graph().as_default(): with self.assertRaisesRegexp( RuntimeError, "Attempting to capture an EagerTensor"): math_ops.add(c, c) c2 = constant_op.constant(2.0) with self.assertRaisesRegexp( TypeError, "Graph tensors"): math_ops.add(c2, c2) def testPreservesNameScopeInEagerExecution(self): with context.eager_mode(): def foo(): with ops.name_scope("inner", skip_on_eager=False), ops.init_scope(): if context.executing_eagerly(): # A trailing slash is always appended when eager execution is # enabled. self.assertEqual(context.context().scope_name, "inner/") else: self.assertEqual(ops.get_name_scope(), "inner") foo() self.assertEqual(ops.get_name_scope(), "") foo_compiled = eager_function.defun(foo) foo_compiled() self.assertEqual(ops.get_name_scope(), "") def testExecutingEagerlyOutsideFunctions(self): @def_function.function def f(): return ops.executing_eagerly_outside_functions() with context.graph_mode(): self.assertFalse(ops.executing_eagerly_outside_functions()) with session.Session(): # Need self.evaluate for these as the return type of functions is # tensors. self.assertFalse(self.evaluate(f())) with context.eager_mode(): self.assertTrue(ops.executing_eagerly_outside_functions()) self.assertTrue(f()) with ops.Graph().as_default(): self.assertFalse(ops.executing_eagerly_outside_functions()) with session.Session(): self.assertFalse(self.evaluate(f())) class GraphTest(test_util.TensorFlowTestCase): def setUp(self): ops.reset_default_graph() def _AssertDefault(self, expected): self.assertIs(expected, ops.get_default_graph()) def testResetDefaultGraphNesting(self): g0 = ops.Graph() with self.assertRaises(AssertionError): with g0.as_default(): ops.reset_default_graph() def testGraphContextManagerCancelsEager(self): with context.eager_mode(): with ops.Graph().as_default(): self.assertFalse(context.executing_eagerly()) def testGraphContextManager(self): g0 = ops.Graph() with g0.as_default() as g1: self.assertIs(g0, g1) def testDefaultGraph(self): orig = ops.get_default_graph() self.assertFalse(ops.has_default_graph()) self._AssertDefault(orig) g0 = ops.Graph() self.assertFalse(ops.has_default_graph()) self._AssertDefault(orig) context_manager_0 = g0.as_default() self.assertFalse(ops.has_default_graph()) self._AssertDefault(orig) with context_manager_0 as g0: self._AssertDefault(g0) with ops.Graph().as_default() as g1: self.assertTrue(ops.has_default_graph()) self._AssertDefault(g1) self._AssertDefault(g0) self._AssertDefault(orig) self.assertFalse(ops.has_default_graph()) def testPreventFeeding(self): g = ops.Graph() a = constant_op.constant(2.0) self.assertTrue(g.is_feedable(a)) g.prevent_feeding(a) self.assertFalse(g.is_feedable(a)) @test_util.run_deprecated_v1 def testPreventFetching(self): g = ops.Graph() a = constant_op.constant(2.0) self.assertTrue(g.is_fetchable(a)) g.prevent_fetching(a.op) self.assertFalse(g.is_fetchable(a)) def testAsGraphElementConversions(self): class ConvertibleObj(object): def _as_graph_element(self): return "FloatOutput:0" class NonConvertibleObj(object): pass g = ops.Graph() a = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertEqual(a, g.as_graph_element(ConvertibleObj())) with self.assertRaises(TypeError): g.as_graph_element(NonConvertibleObj()) # Regression test against creating custom __del__ functions in classes # involved in cyclic references, e.g. Graph and Operation. (Python won't gc # cycles that require calling a __del__ method, because the __del__ method can # theoretically increase the object's refcount to "save" it from gc, and any # already-deleted objects in the cycle would have be to restored.) def testGarbageCollected(self): # Create a graph we can delete and a weak reference to monitor if it's gc'd g = ops.Graph() g_ref = weakref.ref(g) # Create some ops with g.as_default(): a = constant_op.constant(2.0) b = constant_op.constant(3.0) c = math_ops.add(a, b) # Create a session we can delete with session.Session(graph=g) as sess: self.evaluate(c) # Delete all references and trigger gc del g del a del b del c del sess gc.collect() self.assertIsNone(g_ref()) def testRunnableAfterInvalidShape(self): with ops.Graph().as_default(): with self.assertRaises(ValueError): math_ops.add([1, 2], [1, 2, 3]) a = constant_op.constant(1) with session.Session() as sess: self.evaluate(a) def testRunnableAfterInvalidShapeWithKernelLabelMap(self): g = ops.Graph() with g.as_default(): with g._kernel_label_map({"KernelLabelRequired": "overload_1"}): with self.assertRaises(ValueError): test_ops.kernel_label_required(1) a = constant_op.constant(1) with session.Session() as sess: self.evaluate(a) class AttrScopeTest(test_util.TensorFlowTestCase): def _get_test_attrs(self): x = control_flow_ops.no_op() try: a = compat.as_text(x.get_attr("_A")) except ValueError: a = None try: b = compat.as_text(x.get_attr("_B")) except ValueError: b = None return (a, b) @test_util.run_deprecated_v1 def testNoLabel(self): with self.cached_session(): self.assertAllEqual((None, None), self._get_test_attrs()) @test_util.run_deprecated_v1 def testLabelMap(self): with self.cached_session() as sess: a1 = self._get_test_attrs() with sess.graph._attr_scope({ "_A": attr_value_pb2.AttrValue(s=compat.as_bytes("foo")) }): a2 = self._get_test_attrs() with sess.graph._attr_scope({ "_A": None, "_B": attr_value_pb2.AttrValue(s=compat.as_bytes("bar")) }): a3 = self._get_test_attrs() with sess.graph._attr_scope({ "_A": attr_value_pb2.AttrValue(s=compat.as_bytes("baz")) }): a4 = self._get_test_attrs() a5 = self._get_test_attrs() a6 = self._get_test_attrs() a7 = self._get_test_attrs() self.assertAllEqual((None, None), a1) self.assertAllEqual(("foo", None), a2) self.assertAllEqual((None, "bar"), a3) self.assertAllEqual(("baz", "bar"), a4) self.assertAllEqual((None, "bar"), a5) self.assertAllEqual(("foo", None), a6) self.assertAllEqual((None, None), a7) class KernelLabelTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testNoLabel(self): with self.cached_session(): self.assertAllEqual(b"My label is: default", test_ops.kernel_label().eval()) @test_util.run_deprecated_v1 def testLabelMap(self): with self.cached_session() as sess: default_1 = test_ops.kernel_label() # pylint: disable=protected-access with sess.graph._kernel_label_map({"KernelLabel": "overload_1"}): overload_1_1 = test_ops.kernel_label() with sess.graph._kernel_label_map({"KernelLabel": "overload_2"}): overload_2 = test_ops.kernel_label() with sess.graph._kernel_label_map({"KernelLabel": ""}): default_2 = test_ops.kernel_label() overload_1_2 = test_ops.kernel_label() # pylint: enable=protected-access default_3 = test_ops.kernel_label() self.assertAllEqual(b"My label is: default", self.evaluate(default_1)) self.assertAllEqual(b"My label is: default", self.evaluate(default_2)) self.assertAllEqual(b"My label is: default", self.evaluate(default_3)) self.assertAllEqual(b"My label is: overload_1", self.evaluate(overload_1_1)) self.assertAllEqual(b"My label is: overload_1", self.evaluate(overload_1_2)) self.assertAllEqual(b"My label is: overload_2", self.evaluate(overload_2)) class AsGraphDefTest(test_util.TensorFlowTestCase): def testGraphDefVersion(self): """Test that the graphdef version is plumbed through to kernels.""" with ops.Graph().as_default() as g: version = g.graph_def_versions.producer with self.session(graph=g): v = test_ops.graph_def_version().eval() self.assertEqual(version, v) def testAddShapes(self): with ops.Graph().as_default() as g: t1, t2, t3, t4, t5 = _apply_op(g, "FiveFloatOutputs", [], [dtypes.float32] * 5) t1.set_shape(None) t2.set_shape([]) t3.set_shape([None]) t4.set_shape([43, 37]) t5.set_shape([43, None]) b = constant_op.constant(1.0) # pylint: disable=unused-variable gd = g.as_graph_def(add_shapes=True) self.assertProtoEqualsVersion(""" node { name: "FiveFloatOutputs" op: "FiveFloatOutputs" attr { key: "_output_shapes" value { list { shape { unknown_rank: true } shape { } shape { dim { size: -1 } } shape { dim { size: 43 } dim { size: 37 } } shape { dim { size: 43 } dim { size: -1 } } } } } } node { name: "Const" op: "Const" attr { key: "_output_shapes" value { list { shape { } } } } attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "value" value { tensor { dtype: DT_FLOAT tensor_shape { } float_val: 1.0 } } } } """, gd) @ops.RegisterStatistics("a", "flops") def _calc_a_forward_flops(unused_graph, unused_node): return ops.OpStats("flops", 20) class StatisticsTest(test_util.TensorFlowTestCase): def testRegisteredNode(self): graph = ops.Graph() node = ops._NodeDef("a", "an_a") flops = ops.get_stats_for_node_def(graph, node, "flops") self.assertEqual(20, flops.value) missing_stat = ops.get_stats_for_node_def(graph, node, "missing_stat") self.assertEqual(None, missing_stat.value) def testUnregisteredNode(self): graph = ops.Graph() node = ops._NodeDef("b", "a_b") weight_params = ops.get_stats_for_node_def(graph, node, "weight_params") self.assertEqual(None, weight_params.value) def testAccumulateStatistics(self): flops_total = ops.OpStats("flops") self.assertEqual(None, flops_total.value) second_flops = ops.OpStats("flops", 3) flops_total += second_flops self.assertEqual(3, flops_total.value) class DeviceStackTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testBasicDeviceAssignmentMetadata(self): def device_func(unused_op): return "/cpu:*" const_zero = constant_op.constant([0.0], name="zero") with ops.device("/cpu"): const_one = constant_op.constant([1.0], name="one") with ops.device("/cpu:0"): const_two = constant_op.constant([2.0], name="two") with ops.device(device_func): const_three = constant_op.constant(3.0, name="three") self.assertEqual(0, len(const_zero.op._device_assignments)) one_list = const_one.op._device_assignments self.assertEqual(1, len(one_list)) self.assertEqual("/cpu", one_list[0].obj) self.assertEqual("ops_test.py", os.path.basename(one_list[0].filename)) two_list = const_two.op._device_assignments self.assertEqual(2, len(two_list)) devices = [t.obj for t in two_list] self.assertEqual(set(["/cpu", "/cpu:0"]), set(devices)) three_list = const_three.op._device_assignments self.assertEqual(1, len(three_list)) func_description = three_list[0].obj expected_regex = r"device_func<.*ops_test.py, [0-9]+" self.assertRegexpMatches(func_description, expected_regex) @test_util.run_deprecated_v1 def testDeviceAssignmentMetadataForGraphDeviceAndTfDeviceFunctions(self): with ops.device("/cpu"): const_one = constant_op.constant([1.0], name="one") with ops.get_default_graph().device("/cpu"): const_two = constant_op.constant([2.0], name="two") one_metadata = const_one.op._device_assignments[0] two_metadata = const_two.op._device_assignments[0] # Verify both types of device assignment return the right stack info. self.assertRegexpMatches("ops_test.py", os.path.basename(one_metadata.filename)) self.assertEqual(one_metadata.filename, two_metadata.filename) self.assertEqual(one_metadata.lineno + 2, two_metadata.lineno) class ColocationGroupTest(test_util.TensorFlowTestCase): @test_util.run_deprecated_v1 def testBasic(self): a = constant_op.constant([2.0], name="a") with ops.colocate_with(a.op): b = constant_op.constant(3.0) c = constant_op.constant(4.0) self.assertEqual([b"loc:@a"], a.op.colocation_groups()) self.assertEqual([b"loc:@a"], b.op.colocation_groups()) with self.assertRaises(ValueError): c.op.get_attr("_class") @test_util.run_deprecated_v1 def testBasicColocationMetadata(self): const_two = constant_op.constant([2.0], name="two") with ops.colocate_with(const_two.op): const_three = constant_op.constant(3.0, name="three") locations_dict = const_three.op._colocation_dict self.assertIn("two", locations_dict) metadata = locations_dict["two"] self.assertIsNone(metadata.obj) # Check that this test's filename is recorded as the file containing the # colocation statement. self.assertEqual("ops_test.py", os.path.basename(metadata.filename)) @test_util.run_deprecated_v1 def testColocationDeviceInteraction(self): with ops.device("/cpu:0"): with ops.device("/device:GPU:0"): a = constant_op.constant([2.0], name="a") with ops.colocate_with(a.op): # 'b' is created in the scope of /cpu:0, but it is # colocated with 'a', which is on '/device:GPU:0'. colocate_with # overrides devices because it is a stronger constraint. b = constant_op.constant(3.0) self.assertEqual([b"loc:@a"], b.op.colocation_groups()) self.assertEqual(a.op.device, b.op.device) @test_util.run_deprecated_v1 def testColocationCanonicalization(self): with ops.device("/device:GPU:0"): _ = constant_op.constant(2.0) with ops.device(lambda op: "/device:GPU:0"): b = constant_op.constant(3.0) with ops.get_default_graph().colocate_with(b): with ops.device("/device:GPU:0"): c = constant_op.constant(4.0) # A's device will be /device:GPU:0 # B's device will be /device:GPU:0 # C's device will be /device:GPU:0 because it # inherits B's device name, after canonicalizing the names. self.assertEqual(b.op.device, c.op.device) @test_util.run_deprecated_v1 def testLocationOverrides(self): with ops.device("/cpu:0"): with ops.device("/device:GPU:0"): a = constant_op.constant([2.0], name="a") # Note that this colocation is "redundant", since we are # within the scope of "/device:GPU:0". However, we would like to # preserve in the GraphDef that these two ops should be # colocated in a portable way. with ops.colocate_with(a.op): b = constant_op.constant(3.0) c = constant_op.constant(4.0) d = constant_op.constant(5.0) self.assertEqual([b"loc:@a"], b.op.colocation_groups()) self.assertEqual("/device:GPU:0", a.op.device) self.assertEqual(a.op.device, b.op.device) # Test that device function stack is restored. self.assertEqual("/device:GPU:0", c.op.device) self.assertEqual("/device:CPU:0", d.op.device) @test_util.run_deprecated_v1 def testNestedColocateWith(self): a = constant_op.constant([2.0], name="a") with ops.colocate_with(a.op): b = constant_op.constant(3.0) with ops.colocate_with(b.op): c = constant_op.constant(4.0) self.assertEqual([b"loc:@a"], b.op.colocation_groups()) self.assertEqual([b"loc:@a"], c.op.colocation_groups()) @test_util.run_deprecated_v1 def testMultiColocationGroups(self): a = constant_op.constant([2.0], name="a") b = constant_op.constant(3.0, name="b") with ops.colocate_with(a.op): with ops.colocate_with(b.op): c = constant_op.constant(4.0) self.assertEqual(set([b"loc:@a", b"loc:@b"]), set(c.op.colocation_groups())) @test_util.run_deprecated_v1 def testColocationIgnoreStack(self): a = constant_op.constant([2.0], name="a") b = constant_op.constant(3.0, name="b") with ops.colocate_with(a.op): with ops.colocate_with(b.op, ignore_existing=True): c = constant_op.constant(4.0) self.assertEqual(set([b"loc:@b"]), set(c.op.colocation_groups())) @test_util.run_deprecated_v1 def testColocateWithReset(self): a = constant_op.constant([2.0], name="a") with ops.colocate_with(a.op): b = constant_op.constant(3.0, name="b") with ops.colocate_with(None, ignore_existing=True): c = constant_op.constant(4.0, name="c") self.assertEqual([b"loc:@a"], b.op.colocation_groups()) self.assertEqual([b"loc:@c"], c.op.colocation_groups()) @test_util.run_deprecated_v1 def testColocateWithInitialNoneThenNested(self): a = constant_op.constant([2.0], name="a") with ops.colocate_with(a.op): with ops.colocate_with(None, ignore_existing=True): b = constant_op.constant(3.0, name="b") with ops.colocate_with(b.op): c = constant_op.constant(4.0, name="c") self.assertEqual([b"loc:@b"], b.op.colocation_groups()) self.assertEqual([b"loc:@b"], c.op.colocation_groups()) @test_util.run_deprecated_v1 def testColocateVariables(self): a = variables.Variable([2.0], name="a") with ops.colocate_with(a.op): b = variables.Variable([3.0], name="b") self.assertEqual([b"loc:@a"], b.op.colocation_groups()) def testColocateWithVariableInFunction(self): v = variables.Variable(1.) @def_function.function def f(): with ops.colocate_with(v): return array_ops.ones([], name="output") f() graph_def = f.get_concrete_function().graph.as_graph_def() wrap_function.function_from_graph_def(graph_def, [], ["output"]) class DeprecatedTest(test_util.TensorFlowTestCase): def testSuccess(self): with ops.Graph().as_default() as g: test_util.set_producer_version(g, 7) old = test_ops.old() with self.session(graph=g): old.run() def _error(self): return ((r"Op Old is not available in GraphDef version %d\. " r"It has been removed in version 8\. For reasons\.") % versions.GRAPH_DEF_VERSION) def testGraphConstructionFail(self): with ops.Graph().as_default(): with self.assertRaisesRegexp(NotImplementedError, self._error()): test_ops.old() class DenseTensorLikeTypeTest(test_util.TensorFlowTestCase): def testSuccess(self): op = ops.Operation( ops._NodeDef("FloatOutput", "myop"), ops.Graph(), [], [dtypes.float32]) t = op.outputs[0] self.assertTrue(ops.is_dense_tensor_like(t)) v = variables.Variable([17]) self.assertTrue(ops.is_dense_tensor_like(v)) class BadClassNoName(object): pass class BadClassBadName(object): def name(self): pass class BadClassNoDtype(object): @property def name(self): pass class BadClassBadDtype(object): @property def name(self): pass def dtype(self): pass def testBadClass(self): with self.assertRaisesRegexp(TypeError, "`name`"): ops.register_dense_tensor_like_type( DenseTensorLikeTypeTest.BadClassNoName) with self.assertRaisesRegexp(TypeError, "`name`"): ops.register_dense_tensor_like_type( DenseTensorLikeTypeTest.BadClassBadName) with self.assertRaisesRegexp(TypeError, "`dtype`"): ops.register_dense_tensor_like_type( DenseTensorLikeTypeTest.BadClassNoDtype) with self.assertRaisesRegexp(TypeError, "`dtype`"): ops.register_dense_tensor_like_type( DenseTensorLikeTypeTest.BadClassBadDtype) class NameScopeTest(test_util.TensorFlowTestCase): def testStripAndPrependScope(self): strs = [ "hidden1/hidden1/weights", # Same prefix. Should strip. "hidden1///hidden1/weights", # Extra "/". Should strip. "^hidden1/hidden1/weights", # Same prefix. Should strip. "loc:@hidden1/hidden1/weights", # Same prefix. Should strip. "hhidden1/hidden1/weights", # Different prefix. Should keep. "hidden1" ] # Not a prefix. Should keep. expected_striped = [ "hidden1/weights", "hidden1/weights", "^hidden1/weights", "loc:@hidden1/weights", "hhidden1/hidden1/weights", "hidden1" ] expected_prepended = [ "hidden2/hidden1/weights", "hidden2/hidden1/weights", "^hidden2/hidden1/weights", "loc:@hidden2/hidden1/weights", "hidden2/hhidden1/hidden1/weights", "hidden2/hidden1" ] name_scope_to_strip = "hidden1" name_scope_to_add = "hidden2" for es, ep, s in zip(expected_striped, expected_prepended, strs): striped = ops.strip_name_scope(s, name_scope_to_strip) self.assertEqual(es, striped) self.assertEqual(ep, ops.prepend_name_scope(striped, name_scope_to_add)) def testGetNameScope(self): with ops.Graph().as_default() as g: with ops.name_scope("scope1"): with ops.name_scope("scope2"): with ops.name_scope("scope3"): self.assertEqual("scope1/scope2/scope3", g.get_name_scope()) self.assertEqual("scope1/scope2", g.get_name_scope()) self.assertEqual("scope1", g.get_name_scope()) self.assertEqual("", g.get_name_scope()) def testTwoGraphs(self): def f(): g1 = ops.Graph() g2 = ops.Graph() with g1.as_default(): with g2.as_default(): with ops.name_scope("_"): pass self.assertRaisesRegexp(ValueError, "'_' is not a valid scope name", f) class EnableEagerExecutionTest(test_util.TensorFlowTestCase): @test_util.run_v1_only("b/120545219") def testBadArgumentsToEnableEagerExecution(self): with self.assertRaisesRegexp(TypeError, "config must be a tf.ConfigProto"): ops.enable_eager_execution(context.DEVICE_PLACEMENT_SILENT) with self.assertRaisesRegexp(ValueError, "device_policy must be one of"): c = config_pb2.ConfigProto() ops.enable_eager_execution(c, c) with self.assertRaisesRegexp(ValueError, "execution_mode must be one of"): c = config_pb2.ConfigProto() ops.enable_eager_execution(c, execution_mode=c) class _TupleTensor(composite_tensor.CompositeTensor): """`Tensor`-like `tuple`-like for custom `Tensor` conversion masquerading.""" def __init__(self, components): super(_TupleTensor, self).__init__() self._components = tuple(ops.convert_to_tensor(c) for c in components) @property def _type_spec(self): return _TupleTensorSpec(type_spec.from_value(c) for c in self._components) def __getitem__(self, key): return self._components[key] def __len__(self): return len(self._components) def __iter__(self): return iter(self._components) class _TupleTensorSpec(type_spec.TypeSpec): def __init__(self, specs): self._specs = specs value_type = property(lambda self: _TupleTensor) _component_specs = property(lambda self: self._specs) def _to_components(self, value): return value._components def _from_components(self, components): return _TupleTensor(*components) def _serialize(self): return (self._specs,) class _MyTuple(object): """Pretend user-side class for `ConvertToCompositeTensorTest .""" def __init__(self, components): super(_MyTuple, self).__init__() self._components = tuple(components) def __getitem__(self, key): return self._components[key] def __len__(self): return len(self._components) def __iter__(self): return iter(self._components) ops.register_tensor_conversion_function( _MyTuple, conversion_func=lambda x, *_, **__: _TupleTensor(x)) class CustomConvertToCompositeTensorTest(test_util.TensorFlowTestCase): def testCompositeTensorConversion(self): """Tests that a user can register a CompositeTensor converter.""" x = _MyTuple((1, [2., 3.], [[4, 5], [6, 7]])) y = ops.convert_to_tensor_or_composite(x) self.assertFalse(tensor_util.is_tensor(y)) self.assertIsInstance(y, _TupleTensor) self.assertLen(y, len(x)) for x_, y_ in zip(x, y): self.assertIsInstance(y_, ops.Tensor) self.assertTrue(tensor_util.is_tensor(y_)) self.assertAllEqual(x_, tensor_util.constant_value(y_)) if __name__ == "__main__": googletest.main()
the-stack_0_25618
""" 1 - Chamando uma variavel como uma funcao def fala_oi(): print("oi") variavel = fala_oi print(variavel()) #chamando uma variavel que é uma func""" """#2 - Chamando uma funcao que está dentro de outra funcao def master(): def slave(): return "oi" return slave #tenho que chamar dentro da funcao mae variavel = master() print(variavel())""" """# exemplo 03 - funcao decoradora def master(funcao): def slave(): print("Agora estou decorada") funcao() return slave @master # ou posso usar: fala_oi = master(fala_oi) ou def fala_oi(): print("oi") fala_oi() # Esta é por si só uma func DECORADORA""" """# Exemplo 04 - Decoradores com funcoes com argumentos def master(funcao): def slave(*args,**kargs): #inicialmente slave nao leva argumento, por isso quando decoro outra func com master, da erro. print("Agora estou decorada") funcao(*args,**kargs) return slave @master def outra_func(msg): print(msg) outra_func("Amigo estou aqui")""" # Exemplo 05 - Testando a velocidade com o que uma func é executada from time import time from time import sleep def velocidade(funcao): def interna(*args,**kwargs): start_time = time() resultado = funcao(*args, **kwargs) end_time = time() tempo_gasto = (end_time - start_time) * 1000 print(f"A função {funcao.__name__} levou {tempo_gasto:.2f} ms para ser executada") return resultado return interna @velocidade def demora(): for i in range(5): sleep(1) demora()
the-stack_0_25621
import functools from typing import Any, Dict, List, Tuple import torch.nn as nn from ..blocks import SwinBlock from ..classifiers import LinearClassifier from ..downsamples import SwinDownsample from ..heads import SwinHead from ..junctions import AddJunction from ..loaders import load_swin_parameters from ..modules import LayerNorm2d from ..operations import SwinOperation from ..stems import SwinPatchStem def clone_params(params, **kwargs): new_params = params.copy() new_params.update(kwargs) return new_params def make_swin_layers( depths: List[int], channels: int, feature_size: int, window_size: int, attn_heads: int, ) -> List[Tuple[int, int, Dict[str, Any]]]: layers = [] attn_params = {'operation_type': 'attn', 'window_size': window_size} mlp_params = {'operation_type': 'mlp', 'window_size': 0, 'shift_size': 0, 'attn_heads': 0} for i, depth in enumerate(depths): attn_params['feature_size'] = feature_size attn_params['attn_heads'] = attn_heads mlp_params['feature_size'] = feature_size for d in range(depth): stride = 2 if i != 0 and d == 0 else 1 if d % 2 == 1 and feature_size > window_size: attn_params['shift_size'] = window_size // 2 else: attn_params['shift_size'] = 0 layers.append((channels, stride, attn_params.copy())) layers.append((channels, 1, mlp_params.copy())) channels *= 2 feature_size //= 2 attn_heads *= 2 return layers imagenet_params = dict( stem=SwinPatchStem, block=SwinBlock, operation=SwinOperation, downsample=SwinDownsample, junction=AddJunction, head=SwinHead, classifier=LinearClassifier, normalization=functools.partial(nn.LayerNorm, eps=1e-5), activation=lambda *args, **kwargs: nn.GELU(), gate_normalization=functools.partial(LayerNorm2d, eps=1e-5), gate_activation=lambda *args, **kwargs: nn.GELU(), ) imagenet_models = { 'SwinTinyPatch4-224': clone_params( imagenet_params, layers=make_swin_layers( depths=[2, 2, 6, 2], channels=96, feature_size=56, window_size=7, attn_heads=3), stem_channels=96, head_channels=768, patch_size=4, mlp_ratio=4.0, timm_name='swin_tiny_patch4_window7_224', timm_loader=load_swin_parameters), 'SwinSmallPatch4-224': clone_params( imagenet_params, layers=make_swin_layers( depths=[2, 2, 18, 2], channels=96, feature_size=56, window_size=7, attn_heads=3), stem_channels=96, head_channels=768, patch_size=4, mlp_ratio=4.0, timm_name='swin_small_patch4_window7_224', timm_loader=load_swin_parameters), 'SwinBasePatch4-224': clone_params( imagenet_params, layers=make_swin_layers( depths=[2, 2, 18, 2], channels=128, feature_size=56, window_size=7, attn_heads=4), stem_channels=128, head_channels=1024, patch_size=4, mlp_ratio=4.0, timm_name='swin_base_patch4_window7_224', timm_loader=load_swin_parameters), 'SwinBasePatch4-384': clone_params( imagenet_params, layers=make_swin_layers( depths=[2, 2, 18, 2], channels=128, feature_size=96, window_size=12, attn_heads=4), stem_channels=128, head_channels=1024, patch_size=4, mlp_ratio=4.0, timm_name='swin_base_patch4_window12_384', timm_loader=load_swin_parameters), 'SwinLargePatch4-224': clone_params( imagenet_params, layers=make_swin_layers( depths=[2, 2, 18, 2], channels=192, feature_size=56, window_size=7, attn_heads=6), stem_channels=192, head_channels=1536, patch_size=4, mlp_ratio=4.0, timm_name='swin_large_patch4_window7_224', timm_loader=load_swin_parameters), 'SwinLargePatch4-384': clone_params( imagenet_params, layers=make_swin_layers( depths=[2, 2, 18, 2], channels=192, feature_size=96, window_size=12, attn_heads=6), stem_channels=192, head_channels=1536, patch_size=4, mlp_ratio=4.0, timm_name='swin_large_patch4_window12_384', timm_loader=load_swin_parameters), } imagenet_models.update({ 'SwinBasePatch4-224-22k': clone_params( imagenet_models['SwinBasePatch4-224'], timm_name='swin_base_patch4_window7_224_in22k', ), 'SwinBasePatch4-384-22k': clone_params( imagenet_models['SwinBasePatch4-384'], timm_name='swin_base_patch4_window12_384_in22k', ), 'SwinLargePatch4-224-22k': clone_params( imagenet_models['SwinLargePatch4-224'], timm_name='swin_large_patch4_window7_224_in22k', ), 'SwinLargePatch4-384-22k': clone_params( imagenet_models['SwinLargePatch4-384'], timm_name='swin_large_patch4_window12_384_in22k', ), })
the-stack_0_25622
import difflib import json import posixpath import sys import threading import unittest from collections import Counter from contextlib import contextmanager from copy import copy from difflib import get_close_matches from functools import wraps from unittest.util import safe_repr from urllib.parse import ( parse_qsl, unquote, urlencode, urljoin, urlparse, urlsplit, urlunparse, ) from urllib.request import url2pathname from django.apps import apps from django.conf import settings from django.core import mail from django.core.exceptions import ImproperlyConfigured, ValidationError from django.core.files import locks from django.core.handlers.wsgi import WSGIHandler, get_path_info from django.core.management import call_command from django.core.management.color import no_style from django.core.management.sql import emit_post_migrate_signal from django.core.servers.basehttp import ThreadedWSGIServer, WSGIRequestHandler from django.db import DEFAULT_DB_ALIAS, connection, connections, transaction from django.forms.fields import CharField from django.http import QueryDict from django.http.request import split_domain_port, validate_host from django.test.client import Client from django.test.html import HTMLParseError, parse_html from django.test.signals import setting_changed, template_rendered from django.test.utils import ( CaptureQueriesContext, ContextList, compare_xml, modify_settings, override_settings, ) from django.utils.decorators import classproperty from django.views.static import serve __all__ = ('TestCase', 'TransactionTestCase', 'SimpleTestCase', 'skipIfDBFeature', 'skipUnlessDBFeature') def to_list(value): """ Put value into a list if it's not already one. Return an empty list if value is None. """ if value is None: value = [] elif not isinstance(value, list): value = [value] return value def assert_and_parse_html(self, html, user_msg, msg): try: dom = parse_html(html) except HTMLParseError as e: standardMsg = '%s\n%s' % (msg, e) self.fail(self._formatMessage(user_msg, standardMsg)) return dom class _AssertNumQueriesContext(CaptureQueriesContext): def __init__(self, test_case, num, connection): self.test_case = test_case self.num = num super().__init__(connection) def __exit__(self, exc_type, exc_value, traceback): super().__exit__(exc_type, exc_value, traceback) if exc_type is not None: return executed = len(self) self.test_case.assertEqual( executed, self.num, "%d queries executed, %d expected\nCaptured queries were:\n%s" % ( executed, self.num, '\n'.join( '%d. %s' % (i, query['sql']) for i, query in enumerate(self.captured_queries, start=1) ) ) ) class _AssertTemplateUsedContext: def __init__(self, test_case, template_name): self.test_case = test_case self.template_name = template_name self.rendered_templates = [] self.rendered_template_names = [] self.context = ContextList() def on_template_render(self, sender, signal, template, context, **kwargs): self.rendered_templates.append(template) self.rendered_template_names.append(template.name) self.context.append(copy(context)) def test(self): return self.template_name in self.rendered_template_names def message(self): return '%s was not rendered.' % self.template_name def __enter__(self): template_rendered.connect(self.on_template_render) return self def __exit__(self, exc_type, exc_value, traceback): template_rendered.disconnect(self.on_template_render) if exc_type is not None: return if not self.test(): message = self.message() if self.rendered_templates: message += ' Following templates were rendered: %s' % ( ', '.join(self.rendered_template_names) ) else: message += ' No template was rendered.' self.test_case.fail(message) class _AssertTemplateNotUsedContext(_AssertTemplateUsedContext): def test(self): return self.template_name not in self.rendered_template_names def message(self): return '%s was rendered.' % self.template_name class _DatabaseFailure: def __init__(self, wrapped, message): self.wrapped = wrapped self.message = message def __call__(self): raise AssertionError(self.message) class SimpleTestCase(unittest.TestCase): # The class we'll use for the test client self.client. # Can be overridden in derived classes. client_class = Client _overridden_settings = None _modified_settings = None databases = set() _disallowed_database_msg = ( 'Database %(operation)s to %(alias)r are not allowed in SimpleTestCase ' 'subclasses. Either subclass TestCase or TransactionTestCase to ensure ' 'proper test isolation or add %(alias)r to %(test)s.databases to silence ' 'this failure.' ) _disallowed_connection_methods = [ ('connect', 'connections'), ('temporary_connection', 'connections'), ('cursor', 'queries'), ('chunked_cursor', 'queries'), ] @classmethod def setUpClass(cls): super().setUpClass() if cls._overridden_settings: cls._cls_overridden_context = override_settings(**cls._overridden_settings) cls._cls_overridden_context.enable() if cls._modified_settings: cls._cls_modified_context = modify_settings(cls._modified_settings) cls._cls_modified_context.enable() cls._add_databases_failures() @classmethod def _validate_databases(cls): if cls.databases == '__all__': return frozenset(connections) for alias in cls.databases: if alias not in connections: message = '%s.%s.databases refers to %r which is not defined in settings.DATABASES.' % ( cls.__module__, cls.__qualname__, alias, ) close_matches = get_close_matches(alias, list(connections)) if close_matches: message += ' Did you mean %r?' % close_matches[0] raise ImproperlyConfigured(message) return frozenset(cls.databases) @classmethod def _add_databases_failures(cls): cls.databases = cls._validate_databases() for alias in connections: if alias in cls.databases: continue connection = connections[alias] for name, operation in cls._disallowed_connection_methods: message = cls._disallowed_database_msg % { 'test': '%s.%s' % (cls.__module__, cls.__qualname__), 'alias': alias, 'operation': operation, } method = getattr(connection, name) setattr(connection, name, _DatabaseFailure(method, message)) @classmethod def _remove_databases_failures(cls): for alias in connections: if alias in cls.databases: continue connection = connections[alias] for name, _ in cls._disallowed_connection_methods: method = getattr(connection, name) setattr(connection, name, method.wrapped) @classmethod def tearDownClass(cls): cls._remove_databases_failures() if hasattr(cls, '_cls_modified_context'): cls._cls_modified_context.disable() delattr(cls, '_cls_modified_context') if hasattr(cls, '_cls_overridden_context'): cls._cls_overridden_context.disable() delattr(cls, '_cls_overridden_context') super().tearDownClass() def __call__(self, result=None): """ Wrapper around default __call__ method to perform common Django test set up. This means that user-defined Test Cases aren't required to include a call to super().setUp(). """ testMethod = getattr(self, self._testMethodName) skipped = ( getattr(self.__class__, "__unittest_skip__", False) or getattr(testMethod, "__unittest_skip__", False) ) if not skipped: try: self._pre_setup() except Exception: result.addError(self, sys.exc_info()) return super().__call__(result) if not skipped: try: self._post_teardown() except Exception: result.addError(self, sys.exc_info()) return def _pre_setup(self): """ Perform pre-test setup: * Create a test client. * Clear the mail test outbox. """ self.client = self.client_class() mail.outbox = [] def _post_teardown(self): """Perform post-test things.""" pass def settings(self, **kwargs): """ A context manager that temporarily sets a setting and reverts to the original value when exiting the context. """ return override_settings(**kwargs) def modify_settings(self, **kwargs): """ A context manager that temporarily applies changes a list setting and reverts back to the original value when exiting the context. """ return modify_settings(**kwargs) def assertRedirects(self, response, expected_url, status_code=302, target_status_code=200, msg_prefix='', fetch_redirect_response=True): """ Assert that a response redirected to a specific URL and that the redirect URL can be loaded. Won't work for external links since it uses the test client to do a request (use fetch_redirect_response=False to check such links without fetching them). """ if msg_prefix: msg_prefix += ": " if hasattr(response, 'redirect_chain'): # The request was a followed redirect self.assertTrue( response.redirect_chain, msg_prefix + "Response didn't redirect as expected: Response code was %d (expected %d)" % (response.status_code, status_code) ) self.assertEqual( response.redirect_chain[0][1], status_code, msg_prefix + "Initial response didn't redirect as expected: Response code was %d (expected %d)" % (response.redirect_chain[0][1], status_code) ) url, status_code = response.redirect_chain[-1] scheme, netloc, path, query, fragment = urlsplit(url) self.assertEqual( response.status_code, target_status_code, msg_prefix + "Response didn't redirect as expected: Final Response code was %d (expected %d)" % (response.status_code, target_status_code) ) else: # Not a followed redirect self.assertEqual( response.status_code, status_code, msg_prefix + "Response didn't redirect as expected: Response code was %d (expected %d)" % (response.status_code, status_code) ) url = response.url scheme, netloc, path, query, fragment = urlsplit(url) # Prepend the request path to handle relative path redirects. if not path.startswith('/'): url = urljoin(response.request['PATH_INFO'], url) path = urljoin(response.request['PATH_INFO'], path) if fetch_redirect_response: # netloc might be empty, or in cases where Django tests the # HTTP scheme, the convention is for netloc to be 'testserver'. # Trust both as "internal" URLs here. domain, port = split_domain_port(netloc) if domain and not validate_host(domain, settings.ALLOWED_HOSTS): raise ValueError( "The test client is unable to fetch remote URLs (got %s). " "If the host is served by Django, add '%s' to ALLOWED_HOSTS. " "Otherwise, use assertRedirects(..., fetch_redirect_response=False)." % (url, domain) ) redirect_response = response.client.get(path, QueryDict(query), secure=(scheme == 'https')) # Get the redirection page, using the same client that was used # to obtain the original response. self.assertEqual( redirect_response.status_code, target_status_code, msg_prefix + "Couldn't retrieve redirection page '%s': response code was %d (expected %d)" % (path, redirect_response.status_code, target_status_code) ) self.assertURLEqual( url, expected_url, msg_prefix + "Response redirected to '%s', expected '%s'" % (url, expected_url) ) def assertURLEqual(self, url1, url2, msg_prefix=''): """ Assert that two URLs are the same, ignoring the order of query string parameters except for parameters with the same name. For example, /path/?x=1&y=2 is equal to /path/?y=2&x=1, but /path/?a=1&a=2 isn't equal to /path/?a=2&a=1. """ def normalize(url): """Sort the URL's query string parameters.""" url = str(url) # Coerce reverse_lazy() URLs. scheme, netloc, path, params, query, fragment = urlparse(url) query_parts = sorted(parse_qsl(query)) return urlunparse((scheme, netloc, path, params, urlencode(query_parts), fragment)) self.assertEqual( normalize(url1), normalize(url2), msg_prefix + "Expected '%s' to equal '%s'." % (url1, url2) ) def _assert_contains(self, response, text, status_code, msg_prefix, html): # If the response supports deferred rendering and hasn't been rendered # yet, then ensure that it does get rendered before proceeding further. if hasattr(response, 'render') and callable(response.render) and not response.is_rendered: response.render() if msg_prefix: msg_prefix += ": " self.assertEqual( response.status_code, status_code, msg_prefix + "Couldn't retrieve content: Response code was %d" " (expected %d)" % (response.status_code, status_code) ) if response.streaming: content = b''.join(response.streaming_content) else: content = response.content if not isinstance(text, bytes) or html: text = str(text) content = content.decode(response.charset) text_repr = "'%s'" % text else: text_repr = repr(text) if html: content = assert_and_parse_html(self, content, None, "Response's content is not valid HTML:") text = assert_and_parse_html(self, text, None, "Second argument is not valid HTML:") real_count = content.count(text) return (text_repr, real_count, msg_prefix) def assertContains(self, response, text, count=None, status_code=200, msg_prefix='', html=False): """ Assert that a response indicates that some content was retrieved successfully, (i.e., the HTTP status code was as expected) and that ``text`` occurs ``count`` times in the content of the response. If ``count`` is None, the count doesn't matter - the assertion is true if the text occurs at least once in the response. """ text_repr, real_count, msg_prefix = self._assert_contains( response, text, status_code, msg_prefix, html) if count is not None: self.assertEqual( real_count, count, msg_prefix + "Found %d instances of %s in response (expected %d)" % (real_count, text_repr, count) ) else: self.assertTrue(real_count != 0, msg_prefix + "Couldn't find %s in response" % text_repr) def assertNotContains(self, response, text, status_code=200, msg_prefix='', html=False): """ Assert that a response indicates that some content was retrieved successfully, (i.e., the HTTP status code was as expected) and that ``text`` doesn't occurs in the content of the response. """ text_repr, real_count, msg_prefix = self._assert_contains( response, text, status_code, msg_prefix, html) self.assertEqual(real_count, 0, msg_prefix + "Response should not contain %s" % text_repr) def assertFormError(self, response, form, field, errors, msg_prefix=''): """ Assert that a form used to render the response has a specific field error. """ if msg_prefix: msg_prefix += ": " # Put context(s) into a list to simplify processing. contexts = to_list(response.context) if not contexts: self.fail(msg_prefix + "Response did not use any contexts to render the response") # Put error(s) into a list to simplify processing. errors = to_list(errors) # Search all contexts for the error. found_form = False for i, context in enumerate(contexts): if form not in context: continue found_form = True for err in errors: if field: if field in context[form].errors: field_errors = context[form].errors[field] self.assertTrue( err in field_errors, msg_prefix + "The field '%s' on form '%s' in" " context %d does not contain the error '%s'" " (actual errors: %s)" % (field, form, i, err, repr(field_errors)) ) elif field in context[form].fields: self.fail( msg_prefix + "The field '%s' on form '%s' in context %d contains no errors" % (field, form, i) ) else: self.fail( msg_prefix + "The form '%s' in context %d does not contain the field '%s'" % (form, i, field) ) else: non_field_errors = context[form].non_field_errors() self.assertTrue( err in non_field_errors, msg_prefix + "The form '%s' in context %d does not" " contain the non-field error '%s'" " (actual errors: %s)" % (form, i, err, non_field_errors or 'none') ) if not found_form: self.fail(msg_prefix + "The form '%s' was not used to render the response" % form) def assertFormsetError(self, response, formset, form_index, field, errors, msg_prefix=''): """ Assert that a formset used to render the response has a specific error. For field errors, specify the ``form_index`` and the ``field``. For non-field errors, specify the ``form_index`` and the ``field`` as None. For non-form errors, specify ``form_index`` as None and the ``field`` as None. """ # Add punctuation to msg_prefix if msg_prefix: msg_prefix += ": " # Put context(s) into a list to simplify processing. contexts = to_list(response.context) if not contexts: self.fail(msg_prefix + 'Response did not use any contexts to ' 'render the response') # Put error(s) into a list to simplify processing. errors = to_list(errors) # Search all contexts for the error. found_formset = False for i, context in enumerate(contexts): if formset not in context: continue found_formset = True for err in errors: if field is not None: if field in context[formset].forms[form_index].errors: field_errors = context[formset].forms[form_index].errors[field] self.assertTrue( err in field_errors, msg_prefix + "The field '%s' on formset '%s', " "form %d in context %d does not contain the " "error '%s' (actual errors: %s)" % (field, formset, form_index, i, err, repr(field_errors)) ) elif field in context[formset].forms[form_index].fields: self.fail( msg_prefix + "The field '%s' on formset '%s', form %d in context %d contains no errors" % (field, formset, form_index, i) ) else: self.fail( msg_prefix + "The formset '%s', form %d in context %d does not contain the field '%s'" % (formset, form_index, i, field) ) elif form_index is not None: non_field_errors = context[formset].forms[form_index].non_field_errors() self.assertFalse( not non_field_errors, msg_prefix + "The formset '%s', form %d in context %d " "does not contain any non-field errors." % (formset, form_index, i) ) self.assertTrue( err in non_field_errors, msg_prefix + "The formset '%s', form %d in context %d " "does not contain the non-field error '%s' (actual errors: %s)" % (formset, form_index, i, err, repr(non_field_errors)) ) else: non_form_errors = context[formset].non_form_errors() self.assertFalse( not non_form_errors, msg_prefix + "The formset '%s' in context %d does not " "contain any non-form errors." % (formset, i) ) self.assertTrue( err in non_form_errors, msg_prefix + "The formset '%s' in context %d does not " "contain the non-form error '%s' (actual errors: %s)" % (formset, i, err, repr(non_form_errors)) ) if not found_formset: self.fail(msg_prefix + "The formset '%s' was not used to render the response" % formset) def _assert_template_used(self, response, template_name, msg_prefix): if response is None and template_name is None: raise TypeError('response and/or template_name argument must be provided') if msg_prefix: msg_prefix += ": " if template_name is not None and response is not None and not hasattr(response, 'templates'): raise ValueError( "assertTemplateUsed() and assertTemplateNotUsed() are only " "usable on responses fetched using the Django test Client." ) if not hasattr(response, 'templates') or (response is None and template_name): if response: template_name = response response = None # use this template with context manager return template_name, None, msg_prefix template_names = [t.name for t in response.templates if t.name is not None] return None, template_names, msg_prefix def assertTemplateUsed(self, response=None, template_name=None, msg_prefix='', count=None): """ Assert that the template with the provided name was used in rendering the response. Also usable as context manager. """ context_mgr_template, template_names, msg_prefix = self._assert_template_used( response, template_name, msg_prefix) if context_mgr_template: # Use assertTemplateUsed as context manager. return _AssertTemplateUsedContext(self, context_mgr_template) if not template_names: self.fail(msg_prefix + "No templates used to render the response") self.assertTrue( template_name in template_names, msg_prefix + "Template '%s' was not a template used to render" " the response. Actual template(s) used: %s" % (template_name, ', '.join(template_names)) ) if count is not None: self.assertEqual( template_names.count(template_name), count, msg_prefix + "Template '%s' was expected to be rendered %d " "time(s) but was actually rendered %d time(s)." % (template_name, count, template_names.count(template_name)) ) def assertTemplateNotUsed(self, response=None, template_name=None, msg_prefix=''): """ Assert that the template with the provided name was NOT used in rendering the response. Also usable as context manager. """ context_mgr_template, template_names, msg_prefix = self._assert_template_used( response, template_name, msg_prefix ) if context_mgr_template: # Use assertTemplateNotUsed as context manager. return _AssertTemplateNotUsedContext(self, context_mgr_template) self.assertFalse( template_name in template_names, msg_prefix + "Template '%s' was used unexpectedly in rendering the response" % template_name ) @contextmanager def _assert_raises_or_warns_cm(self, func, cm_attr, expected_exception, expected_message): with func(expected_exception) as cm: yield cm self.assertIn(expected_message, str(getattr(cm, cm_attr))) def _assertFooMessage(self, func, cm_attr, expected_exception, expected_message, *args, **kwargs): callable_obj = None if args: callable_obj, *args = args cm = self._assert_raises_or_warns_cm(func, cm_attr, expected_exception, expected_message) # Assertion used in context manager fashion. if callable_obj is None: return cm # Assertion was passed a callable. with cm: callable_obj(*args, **kwargs) def assertRaisesMessage(self, expected_exception, expected_message, *args, **kwargs): """ Assert that expected_message is found in the message of a raised exception. Args: expected_exception: Exception class expected to be raised. expected_message: expected error message string value. args: Function to be called and extra positional args. kwargs: Extra kwargs. """ return self._assertFooMessage( self.assertRaises, 'exception', expected_exception, expected_message, *args, **kwargs ) def assertWarnsMessage(self, expected_warning, expected_message, *args, **kwargs): """ Same as assertRaisesMessage but for assertWarns() instead of assertRaises(). """ return self._assertFooMessage( self.assertWarns, 'warning', expected_warning, expected_message, *args, **kwargs ) def assertFieldOutput(self, fieldclass, valid, invalid, field_args=None, field_kwargs=None, empty_value=''): """ Assert that a form field behaves correctly with various inputs. Args: fieldclass: the class of the field to be tested. valid: a dictionary mapping valid inputs to their expected cleaned values. invalid: a dictionary mapping invalid inputs to one or more raised error messages. field_args: the args passed to instantiate the field field_kwargs: the kwargs passed to instantiate the field empty_value: the expected clean output for inputs in empty_values """ if field_args is None: field_args = [] if field_kwargs is None: field_kwargs = {} required = fieldclass(*field_args, **field_kwargs) optional = fieldclass(*field_args, **{**field_kwargs, 'required': False}) # test valid inputs for input, output in valid.items(): self.assertEqual(required.clean(input), output) self.assertEqual(optional.clean(input), output) # test invalid inputs for input, errors in invalid.items(): with self.assertRaises(ValidationError) as context_manager: required.clean(input) self.assertEqual(context_manager.exception.messages, errors) with self.assertRaises(ValidationError) as context_manager: optional.clean(input) self.assertEqual(context_manager.exception.messages, errors) # test required inputs error_required = [required.error_messages['required']] for e in required.empty_values: with self.assertRaises(ValidationError) as context_manager: required.clean(e) self.assertEqual(context_manager.exception.messages, error_required) self.assertEqual(optional.clean(e), empty_value) # test that max_length and min_length are always accepted if issubclass(fieldclass, CharField): field_kwargs.update({'min_length': 2, 'max_length': 20}) self.assertIsInstance(fieldclass(*field_args, **field_kwargs), fieldclass) def assertHTMLEqual(self, html1, html2, msg=None): """ Assert that two HTML snippets are semantically the same. Whitespace in most cases is ignored, and attribute ordering is not significant. The arguments must be valid HTML. """ dom1 = assert_and_parse_html(self, html1, msg, 'First argument is not valid HTML:') dom2 = assert_and_parse_html(self, html2, msg, 'Second argument is not valid HTML:') if dom1 != dom2: standardMsg = '%s != %s' % ( safe_repr(dom1, True), safe_repr(dom2, True)) diff = ('\n' + '\n'.join(difflib.ndiff( str(dom1).splitlines(), str(dom2).splitlines(), ))) standardMsg = self._truncateMessage(standardMsg, diff) self.fail(self._formatMessage(msg, standardMsg)) def assertHTMLNotEqual(self, html1, html2, msg=None): """Assert that two HTML snippets are not semantically equivalent.""" dom1 = assert_and_parse_html(self, html1, msg, 'First argument is not valid HTML:') dom2 = assert_and_parse_html(self, html2, msg, 'Second argument is not valid HTML:') if dom1 == dom2: standardMsg = '%s == %s' % ( safe_repr(dom1, True), safe_repr(dom2, True)) self.fail(self._formatMessage(msg, standardMsg)) def assertInHTML(self, needle, haystack, count=None, msg_prefix=''): needle = assert_and_parse_html(self, needle, None, 'First argument is not valid HTML:') haystack = assert_and_parse_html(self, haystack, None, 'Second argument is not valid HTML:') real_count = haystack.count(needle) if count is not None: self.assertEqual( real_count, count, msg_prefix + "Found %d instances of '%s' in response (expected %d)" % (real_count, needle, count) ) else: self.assertTrue(real_count != 0, msg_prefix + "Couldn't find '%s' in response" % needle) def assertJSONEqual(self, raw, expected_data, msg=None): """ Assert that the JSON fragments raw and expected_data are equal. Usual JSON non-significant whitespace rules apply as the heavyweight is delegated to the json library. """ try: data = json.loads(raw) except json.JSONDecodeError: self.fail("First argument is not valid JSON: %r" % raw) if isinstance(expected_data, str): try: expected_data = json.loads(expected_data) except ValueError: self.fail("Second argument is not valid JSON: %r" % expected_data) self.assertEqual(data, expected_data, msg=msg) def assertJSONNotEqual(self, raw, expected_data, msg=None): """ Assert that the JSON fragments raw and expected_data are not equal. Usual JSON non-significant whitespace rules apply as the heavyweight is delegated to the json library. """ try: data = json.loads(raw) except json.JSONDecodeError: self.fail("First argument is not valid JSON: %r" % raw) if isinstance(expected_data, str): try: expected_data = json.loads(expected_data) except json.JSONDecodeError: self.fail("Second argument is not valid JSON: %r" % expected_data) self.assertNotEqual(data, expected_data, msg=msg) def assertXMLEqual(self, xml1, xml2, msg=None): """ Assert that two XML snippets are semantically the same. Whitespace in most cases is ignored and attribute ordering is not significant. The arguments must be valid XML. """ try: result = compare_xml(xml1, xml2) except Exception as e: standardMsg = 'First or second argument is not valid XML\n%s' % e self.fail(self._formatMessage(msg, standardMsg)) else: if not result: standardMsg = '%s != %s' % (safe_repr(xml1, True), safe_repr(xml2, True)) diff = ('\n' + '\n'.join( difflib.ndiff(xml1.splitlines(), xml2.splitlines()) )) standardMsg = self._truncateMessage(standardMsg, diff) self.fail(self._formatMessage(msg, standardMsg)) def assertXMLNotEqual(self, xml1, xml2, msg=None): """ Assert that two XML snippets are not semantically equivalent. Whitespace in most cases is ignored and attribute ordering is not significant. The arguments must be valid XML. """ try: result = compare_xml(xml1, xml2) except Exception as e: standardMsg = 'First or second argument is not valid XML\n%s' % e self.fail(self._formatMessage(msg, standardMsg)) else: if result: standardMsg = '%s == %s' % (safe_repr(xml1, True), safe_repr(xml2, True)) self.fail(self._formatMessage(msg, standardMsg)) class TransactionTestCase(SimpleTestCase): # Subclasses can ask for resetting of auto increment sequence before each # test case reset_sequences = False # Subclasses can enable only a subset of apps for faster tests available_apps = None # Subclasses can define fixtures which will be automatically installed. fixtures = None databases = {DEFAULT_DB_ALIAS} _disallowed_database_msg = ( 'Database %(operation)s to %(alias)r are not allowed in this test. ' 'Add %(alias)r to %(test)s.databases to ensure proper test isolation ' 'and silence this failure.' ) # If transactions aren't available, Django will serialize the database # contents into a fixture during setup and flush and reload them # during teardown (as flush does not restore data from migrations). # This can be slow; this flag allows enabling on a per-case basis. serialized_rollback = False def _pre_setup(self): """ Perform pre-test setup: * If the class has an 'available_apps' attribute, restrict the app registry to these applications, then fire the post_migrate signal -- it must run with the correct set of applications for the test case. * If the class has a 'fixtures' attribute, install those fixtures. """ super()._pre_setup() if self.available_apps is not None: apps.set_available_apps(self.available_apps) setting_changed.send( sender=settings._wrapped.__class__, setting='INSTALLED_APPS', value=self.available_apps, enter=True, ) for db_name in self._databases_names(include_mirrors=False): emit_post_migrate_signal(verbosity=0, interactive=False, db=db_name) try: self._fixture_setup() except Exception: if self.available_apps is not None: apps.unset_available_apps() setting_changed.send( sender=settings._wrapped.__class__, setting='INSTALLED_APPS', value=settings.INSTALLED_APPS, enter=False, ) raise # Clear the queries_log so that it's less likely to overflow (a single # test probably won't execute 9K queries). If queries_log overflows, # then assertNumQueries() doesn't work. for db_name in self._databases_names(include_mirrors=False): connections[db_name].queries_log.clear() @classmethod def _databases_names(cls, include_mirrors=True): # Only consider allowed database aliases, including mirrors or not. return [ alias for alias in connections if alias in cls.databases and ( include_mirrors or not connections[alias].settings_dict['TEST']['MIRROR'] ) ] def _reset_sequences(self, db_name): conn = connections[db_name] if conn.features.supports_sequence_reset: sql_list = conn.ops.sequence_reset_by_name_sql( no_style(), conn.introspection.sequence_list()) if sql_list: with transaction.atomic(using=db_name): with conn.cursor() as cursor: for sql in sql_list: cursor.execute(sql) def _fixture_setup(self): for db_name in self._databases_names(include_mirrors=False): # Reset sequences if self.reset_sequences: self._reset_sequences(db_name) # Provide replica initial data from migrated apps, if needed. if self.serialized_rollback and hasattr(connections[db_name], "_test_serialized_contents"): if self.available_apps is not None: apps.unset_available_apps() connections[db_name].creation.deserialize_db_from_string( connections[db_name]._test_serialized_contents ) if self.available_apps is not None: apps.set_available_apps(self.available_apps) if self.fixtures: # We have to use this slightly awkward syntax due to the fact # that we're using *args and **kwargs together. call_command('loaddata', *self.fixtures, **{'verbosity': 0, 'database': db_name}) def _should_reload_connections(self): return True def _post_teardown(self): """ Perform post-test things: * Flush the contents of the database to leave a clean slate. If the class has an 'available_apps' attribute, don't fire post_migrate. * Force-close the connection so the next test gets a clean cursor. """ try: self._fixture_teardown() super()._post_teardown() if self._should_reload_connections(): # Some DB cursors include SQL statements as part of cursor # creation. If you have a test that does a rollback, the effect # of these statements is lost, which can affect the operation of # tests (e.g., losing a timezone setting causing objects to be # created with the wrong time). To make sure this doesn't # happen, get a clean connection at the start of every test. for conn in connections.all(): conn.close() finally: if self.available_apps is not None: apps.unset_available_apps() setting_changed.send(sender=settings._wrapped.__class__, setting='INSTALLED_APPS', value=settings.INSTALLED_APPS, enter=False) def _fixture_teardown(self): # Allow TRUNCATE ... CASCADE and don't emit the post_migrate signal # when flushing only a subset of the apps for db_name in self._databases_names(include_mirrors=False): # Flush the database inhibit_post_migrate = ( self.available_apps is not None or ( # Inhibit the post_migrate signal when using serialized # rollback to avoid trying to recreate the serialized data. self.serialized_rollback and hasattr(connections[db_name], '_test_serialized_contents') ) ) call_command('flush', verbosity=0, interactive=False, database=db_name, reset_sequences=False, allow_cascade=self.available_apps is not None, inhibit_post_migrate=inhibit_post_migrate) def assertQuerysetEqual(self, qs, values, transform=repr, ordered=True, msg=None): items = map(transform, qs) if not ordered: return self.assertEqual(Counter(items), Counter(values), msg=msg) values = list(values) # For example qs.iterator() could be passed as qs, but it does not # have 'ordered' attribute. if len(values) > 1 and hasattr(qs, 'ordered') and not qs.ordered: raise ValueError("Trying to compare non-ordered queryset " "against more than one ordered values") return self.assertEqual(list(items), values, msg=msg) def assertNumQueries(self, num, func=None, *args, using=DEFAULT_DB_ALIAS, **kwargs): conn = connections[using] context = _AssertNumQueriesContext(self, num, conn) if func is None: return context with context: func(*args, **kwargs) def connections_support_transactions(aliases=None): """ Return whether or not all (or specified) connections support transactions. """ conns = connections.all() if aliases is None else (connections[alias] for alias in aliases) return all(conn.features.supports_transactions for conn in conns) class TestCase(TransactionTestCase): """ Similar to TransactionTestCase, but use `transaction.atomic()` to achieve test isolation. In most situations, TestCase should be preferred to TransactionTestCase as it allows faster execution. However, there are some situations where using TransactionTestCase might be necessary (e.g. testing some transactional behavior). On database backends with no transaction support, TestCase behaves as TransactionTestCase. """ @classmethod def _enter_atomics(cls): """Open atomic blocks for multiple databases.""" atomics = {} for db_name in cls._databases_names(): atomics[db_name] = transaction.atomic(using=db_name) atomics[db_name].__enter__() return atomics @classmethod def _rollback_atomics(cls, atomics): """Rollback atomic blocks opened by the previous method.""" for db_name in reversed(cls._databases_names()): transaction.set_rollback(True, using=db_name) atomics[db_name].__exit__(None, None, None) @classmethod def _databases_support_transactions(cls): return connections_support_transactions(cls.databases) @classmethod def setUpClass(cls): super().setUpClass() if not cls._databases_support_transactions(): return cls.cls_atomics = cls._enter_atomics() if cls.fixtures: for db_name in cls._databases_names(include_mirrors=False): try: call_command('loaddata', *cls.fixtures, **{'verbosity': 0, 'database': db_name}) except Exception: cls._rollback_atomics(cls.cls_atomics) cls._remove_databases_failures() raise try: cls.setUpTestData() except Exception: cls._rollback_atomics(cls.cls_atomics) cls._remove_databases_failures() raise @classmethod def tearDownClass(cls): if cls._databases_support_transactions(): cls._rollback_atomics(cls.cls_atomics) for conn in connections.all(): conn.close() super().tearDownClass() @classmethod def setUpTestData(cls): """Load initial data for the TestCase.""" pass def _should_reload_connections(self): if self._databases_support_transactions(): return False return super()._should_reload_connections() def _fixture_setup(self): if not self._databases_support_transactions(): # If the backend does not support transactions, we should reload # class data before each test self.setUpTestData() return super()._fixture_setup() assert not self.reset_sequences, 'reset_sequences cannot be used on TestCase instances' self.atomics = self._enter_atomics() def _fixture_teardown(self): if not self._databases_support_transactions(): return super()._fixture_teardown() try: for db_name in reversed(self._databases_names()): if self._should_check_constraints(connections[db_name]): connections[db_name].check_constraints() finally: self._rollback_atomics(self.atomics) def _should_check_constraints(self, connection): return ( connection.features.can_defer_constraint_checks and not connection.needs_rollback and connection.is_usable() ) class CheckCondition: """Descriptor class for deferred condition checking.""" def __init__(self, *conditions): self.conditions = conditions def add_condition(self, condition, reason): return self.__class__(*self.conditions, (condition, reason)) def __get__(self, instance, cls=None): # Trigger access for all bases. if any(getattr(base, '__unittest_skip__', False) for base in cls.__bases__): return True for condition, reason in self.conditions: if condition(): # Override this descriptor's value and set the skip reason. cls.__unittest_skip__ = True cls.__unittest_skip_why__ = reason return True return False def _deferredSkip(condition, reason, name): def decorator(test_func): nonlocal condition if not (isinstance(test_func, type) and issubclass(test_func, unittest.TestCase)): @wraps(test_func) def skip_wrapper(*args, **kwargs): if (args and isinstance(args[0], unittest.TestCase) and connection.alias not in getattr(args[0], 'databases', {})): raise ValueError( "%s cannot be used on %s as %s doesn't allow queries " "against the %r database." % ( name, args[0], args[0].__class__.__qualname__, connection.alias, ) ) if condition(): raise unittest.SkipTest(reason) return test_func(*args, **kwargs) test_item = skip_wrapper else: # Assume a class is decorated test_item = test_func databases = getattr(test_item, 'databases', None) if not databases or connection.alias not in databases: # Defer raising to allow importing test class's module. def condition(): raise ValueError( "%s cannot be used on %s as it doesn't allow queries " "against the '%s' database." % ( name, test_item, connection.alias, ) ) # Retrieve the possibly existing value from the class's dict to # avoid triggering the descriptor. skip = test_func.__dict__.get('__unittest_skip__') if isinstance(skip, CheckCondition): test_item.__unittest_skip__ = skip.add_condition(condition, reason) elif skip is not True: test_item.__unittest_skip__ = CheckCondition((condition, reason)) return test_item return decorator def skipIfDBFeature(*features): """Skip a test if a database has at least one of the named features.""" return _deferredSkip( lambda: any(getattr(connection.features, feature, False) for feature in features), "Database has feature(s) %s" % ", ".join(features), 'skipIfDBFeature', ) def skipUnlessDBFeature(*features): """Skip a test unless a database has all the named features.""" return _deferredSkip( lambda: not all(getattr(connection.features, feature, False) for feature in features), "Database doesn't support feature(s): %s" % ", ".join(features), 'skipUnlessDBFeature', ) def skipUnlessAnyDBFeature(*features): """Skip a test unless a database has any of the named features.""" return _deferredSkip( lambda: not any(getattr(connection.features, feature, False) for feature in features), "Database doesn't support any of the feature(s): %s" % ", ".join(features), 'skipUnlessAnyDBFeature', ) class QuietWSGIRequestHandler(WSGIRequestHandler): """ A WSGIRequestHandler that doesn't log to standard output any of the requests received, so as to not clutter the test result output. """ def log_message(*args): pass class FSFilesHandler(WSGIHandler): """ WSGI middleware that intercepts calls to a directory, as defined by one of the *_ROOT settings, and serves those files, publishing them under *_URL. """ def __init__(self, application): self.application = application self.base_url = urlparse(self.get_base_url()) super().__init__() def _should_handle(self, path): """ Check if the path should be handled. Ignore the path if: * the host is provided as part of the base_url * the request's path isn't under the media path (or equal) """ return path.startswith(self.base_url[2]) and not self.base_url[1] def file_path(self, url): """Return the relative path to the file on disk for the given URL.""" relative_url = url[len(self.base_url[2]):] return url2pathname(relative_url) def get_response(self, request): from django.http import Http404 if self._should_handle(request.path): try: return self.serve(request) except Http404: pass return super().get_response(request) def serve(self, request): os_rel_path = self.file_path(request.path) os_rel_path = posixpath.normpath(unquote(os_rel_path)) # Emulate behavior of django.contrib.staticfiles.views.serve() when it # invokes staticfiles' finders functionality. # TODO: Modify if/when that internal API is refactored final_rel_path = os_rel_path.replace('\\', '/').lstrip('/') return serve(request, final_rel_path, document_root=self.get_base_dir()) def __call__(self, environ, start_response): if not self._should_handle(get_path_info(environ)): return self.application(environ, start_response) return super().__call__(environ, start_response) class _StaticFilesHandler(FSFilesHandler): """ Handler for serving static files. A private class that is meant to be used solely as a convenience by LiveServerThread. """ def get_base_dir(self): return settings.STATIC_ROOT def get_base_url(self): return settings.STATIC_URL class _MediaFilesHandler(FSFilesHandler): """ Handler for serving the media files. A private class that is meant to be used solely as a convenience by LiveServerThread. """ def get_base_dir(self): return settings.MEDIA_ROOT def get_base_url(self): return settings.MEDIA_URL class LiveServerThread(threading.Thread): """Thread for running a live http server while the tests are running.""" def __init__(self, host, static_handler, connections_override=None, port=0): self.host = host self.port = port self.is_ready = threading.Event() self.error = None self.static_handler = static_handler self.connections_override = connections_override super().__init__() def run(self): """ Set up the live server and databases, and then loop over handling HTTP requests. """ if self.connections_override: # Override this thread's database connections with the ones # provided by the main thread. for alias, conn in self.connections_override.items(): connections[alias] = conn try: # Create the handler for serving static and media files handler = self.static_handler(_MediaFilesHandler(WSGIHandler())) self.httpd = self._create_server() # If binding to port zero, assign the port allocated by the OS. if self.port == 0: self.port = self.httpd.server_address[1] self.httpd.set_app(handler) self.is_ready.set() self.httpd.serve_forever() except Exception as e: self.error = e self.is_ready.set() finally: connections.close_all() def _create_server(self): return ThreadedWSGIServer((self.host, self.port), QuietWSGIRequestHandler, allow_reuse_address=False) def terminate(self): if hasattr(self, 'httpd'): # Stop the WSGI server self.httpd.shutdown() self.httpd.server_close() self.join() class LiveServerTestCase(TransactionTestCase): """ Do basically the same as TransactionTestCase but also launch a live HTTP server in a separate thread so that the tests may use another testing framework, such as Selenium for example, instead of the built-in dummy client. It inherits from TransactionTestCase instead of TestCase because the threads don't share the same transactions (unless if using in-memory sqlite) and each thread needs to commit all their transactions so that the other thread can see the changes. """ host = 'localhost' port = 0 server_thread_class = LiveServerThread static_handler = _StaticFilesHandler @classproperty def live_server_url(cls): return 'http://%s:%s' % (cls.host, cls.server_thread.port) @classproperty def allowed_host(cls): return cls.host @classmethod def setUpClass(cls): super().setUpClass() connections_override = {} for conn in connections.all(): # If using in-memory sqlite databases, pass the connections to # the server thread. if conn.vendor == 'sqlite' and conn.is_in_memory_db(): # Explicitly enable thread-shareability for this connection conn.inc_thread_sharing() connections_override[conn.alias] = conn cls._live_server_modified_settings = modify_settings( ALLOWED_HOSTS={'append': cls.allowed_host}, ) cls._live_server_modified_settings.enable() cls.server_thread = cls._create_server_thread(connections_override) cls.server_thread.daemon = True cls.server_thread.start() # Wait for the live server to be ready cls.server_thread.is_ready.wait() if cls.server_thread.error: # Clean up behind ourselves, since tearDownClass won't get called in # case of errors. cls._tearDownClassInternal() raise cls.server_thread.error @classmethod def _create_server_thread(cls, connections_override): return cls.server_thread_class( cls.host, cls.static_handler, connections_override=connections_override, port=cls.port, ) @classmethod def _tearDownClassInternal(cls): # There may not be a 'server_thread' attribute if setUpClass() for some # reasons has raised an exception. if hasattr(cls, 'server_thread'): # Terminate the live server's thread cls.server_thread.terminate() # Restore sqlite in-memory database connections' non-shareability. for conn in cls.server_thread.connections_override.values(): conn.dec_thread_sharing() @classmethod def tearDownClass(cls): cls._tearDownClassInternal() cls._live_server_modified_settings.disable() super().tearDownClass() class SerializeMixin: """ Enforce serialization of TestCases that share a common resource. Define a common 'lockfile' for each set of TestCases to serialize. This file must exist on the filesystem. Place it early in the MRO in order to isolate setUpClass()/tearDownClass(). """ lockfile = None @classmethod def setUpClass(cls): if cls.lockfile is None: raise ValueError( "{}.lockfile isn't set. Set it to a unique value " "in the base class.".format(cls.__name__)) cls._lockfile = open(cls.lockfile) locks.lock(cls._lockfile, locks.LOCK_EX) super().setUpClass() @classmethod def tearDownClass(cls): super().tearDownClass() cls._lockfile.close()
the-stack_0_25624
from pythonwarrior.units.base import UnitBase class Archer(UnitBase): def __init__(self): super(Archer, self).__init__() self.max_health = 7 self.add_abilities('shoot_', 'look') @property def shoot_power(self): return 3 @property def character(self): return 'a' def play_turn(self, turn): for direction in ['forward', 'left', 'right']: for space in turn.look(direction): if space.is_player(): turn.shoot_(direction) return elif not space.is_empty(): break
the-stack_0_25626
# -*- coding: utf-8 -*- # # Copyright (C) 2010-2016 PPMessage. # Guijin Ding, [email protected] # # from .basehandler import BaseHandler from ppmessage.db.models import OrgGroup from ppmessage.db.models import AppInfo from ppmessage.db.models import FileInfo from ppmessage.db.models import DeviceUser from ppmessage.db.models import ConversationInfo from ppmessage.db.models import ConversationUserData from ppmessage.core.redis import redis_hash_to_dict from ppmessage.api.error import API_ERR from ppmessage.core.constant import API_LEVEL from ppmessage.core.constant import REDIS_AMD_KEY from ppmessage.core.constant import CONVERSATION_TYPE from ppmessage.core.constant import CONVERSATION_STATUS import copy import uuid import json import time import hashlib import logging import datetime class PPComCreateConversationHandler(BaseHandler): """ For the member_list length == 1, if the conversation has been created return the existed conversation For the group_uuid != None, if the conversation has been created return the existed conversation """ def _return(self, _conversation_uuid, _request): _redis = self.application.redis _app_uuid = _request.get("app_uuid") _user_uuid = _request.get("user_uuid") _conversation = redis_hash_to_dict(_redis, ConversationInfo, _conversation_uuid) if _conversation == None: self.setErrorCode(API_ERR.NO_CONVERSATION) return _r = self.getReturnData() _r.update(_conversation) _key = ConversationUserData.__tablename__ + ".app_uuid." + _app_uuid + \ ".user_uuid." + _user_uuid + ".conversation_uuid." + _conversation_uuid _data_uuid = _redis.get(_key) if _data_uuid != None: _key = ConversationUserData.__tablename__ + ".uuid." + _data_uuid logging.info(_redis.hgetall(_key)) _data = _redis.hmget(_key, ["conversation_name", "conversation_icon"]) logging.info("---------%s--------" % str(_data)) _r["conversation_name"] = _data[0] _r["conversation_icon"] = _data[1] logging.info(_r) return def _create(self, _member_uuid, _request): _app_uuid = _request.get("app_uuid") _user_uuid = _request.get("user_uuid") _redis = self.application.redis _key = DeviceUser.__tablename__ + ".uuid." + _user_uuid _portal_user_name = _redis.hget(_key, "user_fullname") _portal_user_icon = _redis.hget(_key, "user_icon") _key = DeviceUser.__tablename__ + ".uuid." + _member_uuid _member_user_name = _redis.hget(_key, "user_fullname") _member_user_icon = _redis.hget(_key, "user_icon") _conversation_uuid = str(uuid.uuid1()) _values = { "uuid": _conversation_uuid, "app_uuid": _app_uuid, "user_uuid": _user_uuid, "assigned_uuid": _member_uuid, "conversation_type": CONVERSATION_TYPE.P2S, "status": CONVERSATION_STATUS.NEW, } # create it _row = ConversationInfo(**_values) _row.async_add(_redis) _row.create_redis_keys(_redis) _row = ConversationUserData(uuid=str(uuid.uuid1()), app_uuid=_app_uuid, user_uuid=_user_uuid, conversation_uuid=_conversation_uuid, conversation_type=CONVERSATION_TYPE.P2S, conversation_name=_member_user_name, conversation_icon=_member_user_icon, conversation_status=CONVERSATION_STATUS.NEW) _row.async_add(_redis) _row.create_redis_keys(_redis) _row = ConversationUserData(uuid=str(uuid.uuid1()), app_uuid=_app_uuid, user_uuid=_member_uuid, conversation_uuid=_conversation_uuid, conversation_type=CONVERSATION_TYPE.P2S, conversation_name=_portal_user_name, conversation_icon=_portal_user_icon, conversation_status=CONVERSATION_STATUS.NEW) _row.async_add(_redis) _row.create_redis_keys(_redis) self._return(_conversation_uuid, _request) return def _existed(self, _request): _app_uuid = _request.get("app_uuid") _user_uuid = _request.get("user_uuid") _member_list = _request.get("member_list") _redis = self.application.redis if _member_list != None and isinstance(_member_list, list) == True and len(_member_list) == 1: _assigned_uuid = _member_list[0] if _assigned_uuid == None: return False _key = ConversationInfo.__tablename__ + ".app_uuid." + _app_uuid + \ ".user_uuid." + _user_uuid + ".assigned_uuid." + _assigned_uuid _conversation_uuid = _redis.get(_key) if _conversation_uuid != None: _key = ConversationUserData.__tablename__ + ".conversation_uuid." + _conversation_uuid _count = _redis.scard(_key) if _count == 2: self._return(_conversation_uuid, _request) _r = self.getReturnData() return True return False if _member_list == None: _key = ConversationUserData.__tablename__ + ".app_uuid." + _app_uuid + ".user_uuid." + _user_uuid _conversations = _redis.smembers(_key) if len(_conversations) == 0: return False _pi = _redis.pipeline() for _conversation_uuid in _conversations: _key = ConversationInfo.__tablename__ + ".uuid." + _conversation_uuid _pi.hget(_key, "updatetime") _updatetime = _pi.execute() _unsorted = zip(_conversations, _updatetime) _sorted = sorted(_unsorted, lambda x,y: cmp(x[1], y[1]), reverse=True) self._return(_sorted[0][0], _request) return True return False def initialize(self): self.addPermission(app_uuid=True) self.addPermission(api_level=API_LEVEL.PPCOM) return def _Task(self): super(PPComCreateConversationHandler, self)._Task() _request = json.loads(self.request.body) _app_uuid = _request.get("app_uuid") _user_uuid = _request.get("user_uuid") _member_list = _request.get("member_list") if _app_uuid == None or _user_uuid == None: self.setErrorCode(API_ERR.NO_PARA) return if self._existed(_request): return # assume ppcom only want to talk with only one if _member_list != None and isinstance(_member_list, list) == True and len(_member_list) == 1: self._create(_member_list[0], _request) return _value = {"app_uuid": _app_uuid, "user_uuid": _user_uuid} _value = json.dumps(_value) _hash = hashlib.sha1(_value) _key = REDIS_AMD_KEY + ".amd_hash." + _hash self.application.redis.set(_key, _value) _key = REDIS_AMD_KEY self.application.redis.rpush(_key, _hash) _key = REDIS_AMD_KEY + ".app_uuid." + _app_uuid self.application.redis.sadd(_key, _hash) return
the-stack_0_25627
import json import unittest from unittest.mock import patch, call, Mock, MagicMock, mock_open from botocore.exceptions import ClientError from datetime import datetime from workteam.src import workteam from common import _utils from . import test_utils required_args = [ '--region', 'us-west-2', '--team_name', 'test-team', '--description', 'fake team' ] class WorkTeamTestCase(unittest.TestCase): @classmethod def setUpClass(cls): parser = workteam.create_parser() cls.parser = parser def test_create_parser(self): self.assertIsNotNone(self.parser) def test_main(self): # Mock out all of utils except parser workteam._utils = MagicMock() workteam._utils.add_default_client_arguments = _utils.add_default_client_arguments # Set some static returns workteam._utils.create_workteam.return_value = 'arn:aws:sagemaker:us-east-1:999999999999:work-team' with patch('builtins.open', mock_open()) as file_open: workteam.main(required_args) # Check if correct requests were created and triggered workteam._utils.create_workteam.assert_called() # Check the file outputs file_open.assert_has_calls([ call('/tmp/workteam_arn.txt', 'w') ]) file_open().write.assert_has_calls([ call('arn:aws:sagemaker:us-east-1:999999999999:work-team') ]) def test_workteam(self): mock_client = MagicMock() mock_args = self.parser.parse_args(required_args) response = _utils.create_workteam(mock_client, vars(mock_args)) mock_client.create_workteam.assert_called_once_with( Description='fake team', MemberDefinitions=[{'CognitoMemberDefinition': {'UserPool': '', 'UserGroup': '', 'ClientId': ''}}], Tags=[], WorkteamName='test-team' ) def test_sagemaker_exception_in_workteam(self): mock_client = MagicMock() mock_exception = ClientError({"Error": {"Message": "SageMaker broke"}}, "workteam") mock_client.create_workteam.side_effect = mock_exception mock_args = self.parser.parse_args(required_args) with self.assertRaises(Exception): _utils.create_workteam(mock_client, vars(mock_args)) def test_get_workteam_output_from_job(self): mock_client = MagicMock() mock_client.create_workteam.return_value = {"WorkteamArn": "fake-arn"} self.assertEqual(_utils.create_workteam(mock_client, vars(self.parser.parse_args(required_args))), 'fake-arn') def test_pass_most_arguments(self): arguments = required_args + ['--sns_topic', 'fake-topic', '--tags', '{"fake_key": "fake_value"}'] response = _utils.create_workteam_request(vars(self.parser.parse_args(arguments))) self.assertEqual(response, {'WorkteamName': 'test-team', 'MemberDefinitions': [{'CognitoMemberDefinition': {'UserPool': '', 'UserGroup': '', 'ClientId': ''}}], 'Description': 'fake team', 'NotificationConfiguration' : {'NotificationTopicArn': 'fake-topic'}, 'Tags': [{'Key': 'fake_key', 'Value': 'fake_value'}] })
the-stack_0_25628
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ShowTranscodingsTemplateResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'total': 'int', 'domain': 'str', 'templates': 'list[AppQualityInfo]' } attribute_map = { 'total': 'total', 'domain': 'domain', 'templates': 'templates' } def __init__(self, total=None, domain=None, templates=None): """ShowTranscodingsTemplateResponse - a model defined in huaweicloud sdk""" super(ShowTranscodingsTemplateResponse, self).__init__() self._total = None self._domain = None self._templates = None self.discriminator = None if total is not None: self.total = total if domain is not None: self.domain = domain if templates is not None: self.templates = templates @property def total(self): """Gets the total of this ShowTranscodingsTemplateResponse. 查询结果的总元素数量 :return: The total of this ShowTranscodingsTemplateResponse. :rtype: int """ return self._total @total.setter def total(self, total): """Sets the total of this ShowTranscodingsTemplateResponse. 查询结果的总元素数量 :param total: The total of this ShowTranscodingsTemplateResponse. :type: int """ self._total = total @property def domain(self): """Gets the domain of this ShowTranscodingsTemplateResponse. 播放域名 :return: The domain of this ShowTranscodingsTemplateResponse. :rtype: str """ return self._domain @domain.setter def domain(self, domain): """Sets the domain of this ShowTranscodingsTemplateResponse. 播放域名 :param domain: The domain of this ShowTranscodingsTemplateResponse. :type: str """ self._domain = domain @property def templates(self): """Gets the templates of this ShowTranscodingsTemplateResponse. 转码模板 :return: The templates of this ShowTranscodingsTemplateResponse. :rtype: list[AppQualityInfo] """ return self._templates @templates.setter def templates(self, templates): """Sets the templates of this ShowTranscodingsTemplateResponse. 转码模板 :param templates: The templates of this ShowTranscodingsTemplateResponse. :type: list[AppQualityInfo] """ self._templates = templates def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowTranscodingsTemplateResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_0_25629
import torch import random import torch.autograd as autograd import torch.nn as nn import os import numpy as np import pandas as pd from utils.conf import args, set_random_seed from models.Set2Seq2Choice import Set2Seq2Choice from preprocesses.DataIterator import ChooseDataset, FruitSeqDataset from preprocesses.Voc import Voc from analysis.training_sim_check import sim_check from models.Losses import seq_cross_entropy_loss from train_models.train_set2seq2choice import get_batches4sim_check, eval_model from train_models.train_set2seq2seq_3phases import knowledge_generation_phase def game_play_phase( model, train_set, dev_set, sim_chk_inset, sim_chk_batchset, m_optimiser, s_optimiser, l_optimiser, clip=args.clip, generation_idx=0, alpha=0.1 ): max_dev_acc = 0. print_loss = 0. print_acc = 0. training_losses = [] training_acc = [] training_in_spkh_sim = [] training_in_msg_sim = [] training_in_lish_sim = [] training_spk_lis_sim = [] eval_acc = [] num_play_iter = args.num_play_iter+1 # if not generation_idx == args.num_generation else args.num_play_iter*3+1 accumulated_acc = 0. for iter in range(1, num_play_iter): for data_batch in train_set: acc, loss = train_epoch( model, data_batch, m_optimiser, s_optimiser, l_optimiser ) print_loss += loss print_acc += acc break_flag = False if iter % args.print_freq == 0: print_loss_avg = print_loss / (args.print_freq * len(train_set)) print_acc_avg = print_acc / (args.print_freq * len(train_set)) print("Generation: {}; Iteration: {}; Percent complete: {:.1f}%; Avg loss: {:.4f}; Avg acc: {:.4f};".format( generation_idx, iter, iter / args.num_play_iter * 100, print_loss_avg, print_acc_avg)) training_acc.append(print_acc_avg) training_losses.append(print_loss_avg) accumulated_acc = accumulated_acc * (1 - alpha) + print_acc_avg * alpha if accumulated_acc > args.early_stop: break_flag = True print_acc = 0. print_loss = 0. if iter % args.eval_freq == 0 or break_flag: dev_acc, dev_loss = eval_model(model, dev_set) if dev_acc > max_dev_acc: max_dev_acc = dev_acc eval_acc.append(dev_acc) print("Generation: {}; [EVAL]Iteration: {}; Loss: {:.4f}; Avg Acc: {:.4f}; Best Acc: {:.4f}".format( generation_idx, iter, dev_loss, dev_acc, max_dev_acc)) if iter % args.sim_chk_freq == 0 or break_flag: in_spk_sim, in_msg_sim, in_lis_sim, spk_lis_sim = sim_check( model, sim_chk_inset, sim_chk_batchset ) training_in_spkh_sim.append(in_spk_sim) training_in_msg_sim.append(in_msg_sim) training_in_lish_sim.append(in_lis_sim) training_spk_lis_sim.append(spk_lis_sim) print('Generation: {}; [SIM]Iteration: {}; In-SpkHidden Sim: {:.4f}; In-Msg Sim: {:.4f}; In-LisHidden Sim: {:.4f}'.format( generation_idx, iter, in_spk_sim, in_msg_sim, in_lis_sim)) if break_flag: break return training_losses, training_acc, training_in_spkh_sim, training_in_msg_sim, training_in_lish_sim, training_spk_lis_sim, eval_acc def listener_warming_up_phase( model, train_set, dev_set, m_optimiser, s_optimiser, l_optimiser, clip=args.clip, generation_idx=0 ): print_loss = 0. print_acc = 0. model.speaker.eval() for iter in range(1, args.num_lwarmup_iter+1): for data_batch in train_set: acc, loss = train_epoch( model, data_batch, m_optimiser, s_optimiser, l_optimiser ) print_loss += loss print_acc += acc if iter % args.print_freq == 0: print_loss_avg = print_loss / (args.print_freq * len(train_set)) print_acc_avg = print_acc / (args.print_freq * len(train_set)) print("Generation: {}; Warming Up Iteration: {}; Percent complete: {:.1f}%; Avg loss: {:.4f}; Avg acc: {:.4f};".format( generation_idx, iter, iter / args.num_lwarmup_iter * 100, print_loss_avg, print_acc_avg )) print_loss = 0. print_acc = 0. model.speaker.train() def _speaker_learn_(model, data_batch, target, tgt_mask): input_var = data_batch['correct']['input'] input_mask = data_batch['correct']['input_mask'] message, msg_logits, _ = model.speaker(input_var, input_mask) loss_max_len = min(message.shape[0], target.shape[0]) loss, _, _, _, tok_acc, seq_acc\ = seq_cross_entropy_loss(msg_logits, target, tgt_mask, loss_max_len) return loss, tok_acc, seq_acc def speaker_learning_phase(model, m_optimizer, s_optimizer, input_set, target_set, tgt_mask_set, generation_idx=0, clip=args.clip): assert len(input_set) == len(target_set) assert len(target_set) == len(tgt_mask_set) print_loss = 0. print_seq_acc = 0. print_tok_acc = 0. for iter in range(1, args.num_spklearn_iter+1): for idx, data_batch in enumerate(input_set): m_optimizer.zero_grad() s_optimizer.zero_grad() loss, tok_acc, seq_acc = \ _speaker_learn_(model, data_batch, target_set[idx], tgt_mask_set[idx]) loss.mean().backward() nn.utils.clip_grad_norm_(model.speaker.parameters(), clip) m_optimizer.step() s_optimizer.step() print_loss += loss.mean() print_seq_acc += seq_acc print_tok_acc += tok_acc if iter % args.print_freq == 0: print_loss_avg = print_loss / (args.print_freq * len(input_set)) print_seq_acc_avg = print_seq_acc / (args.print_freq * len(input_set)) print_tok_acc_avg = print_tok_acc / (args.print_freq * len(input_set)) print("Generation: {}; Speaker Learning Phase; Iteration: {}; Percent complete: {:.1f}%; Avg loss: {:.4f}; Avg seq acc: {:.4f}; Avg tok acc: {:.4f}".format( generation_idx, iter, iter / args.num_spklearn_iter * 100, print_loss_avg, print_seq_acc_avg, print_tok_acc_avg )) print_loss = 0. print_seq_acc = 0. print_tok_acc = 0. def train_generation( model, train_set, dev_set, learn_set, sim_chk_inset, sim_chk_batchset, clip=args.clip, generation_idx=0 ): m_optimiser = args.optimiser(model.parameters(), lr=args.learning_rate) s_optimiser = args.optimiser(model.speaker.decoder.parameters(), lr=args.learning_rate * args.speaker_ratio) l_optimiser = args.optimiser(model.listener.parameters(), lr=args.learning_rate * args.listener_ratio) training_losses, training_acc, training_in_spkh_sim, training_in_msg_sim, \ training_in_lish_sim, training_spk_lis_sim, eval_acc = \ game_play_phase(model, train_set, dev_set, sim_chk_inset, sim_chk_batchset, m_optimiser, s_optimiser, l_optimiser, clip, generation_idx) if not generation_idx == args.num_generation: random.shuffle(learn_set.databatch_set) reproduced_msg_set, reproduced_msg_masks = \ knowledge_generation_phase(model, learn_set) print('Generation: {}; Message Reproduction Phase Done.'.format(generation_idx)) model.reset_speaker() print('Generation: {}; Speaker Reset Done.'.format(generation_idx)) model.reset_listener() print('Generation: {}; Listener Reset Done.'.format(generation_idx)) m_optimiser = args.optimiser(model.parameters(), lr=args.learning_rate) s_optimiser = args.optimiser(model.speaker.decoder.parameters(), lr=args.learning_rate * args.speaker_ratio) l_optimiser = args.optimiser(model.listener.parameters(), lr=args.learning_rate * args.listener_ratio) speaker_learning_phase(model, m_optimiser, s_optimiser, \ learn_set, reproduced_msg_set, reproduced_msg_masks, generation_idx, clip) print('Generation: {}; Speaker Learning Phase Done.'.format(generation_idx)) listener_warming_up_phase(model, train_set, dev_set, m_optimiser, s_optimiser, l_optimiser, clip, generation_idx) print('Generation: {}; Listener Warming Up Phase Done.'.format(generation_idx)) del reproduced_msg_set del reproduced_msg_masks return training_losses, training_acc, training_in_spkh_sim, training_in_msg_sim, training_in_lish_sim, eval_acc def train_epoch(model, data_batch, m_optimiser, s_optimiser, l_optimiser, clip=args.clip): m_optimiser.zero_grad() s_optimiser.zero_grad() l_optimiser.zero_grad() # model.speaker.eval() loss, print_loss, acc, c_correct, log_msg_prob, log_choose_prob,\ baseline, spk_entropy = model(data_batch) if args.msg_mode == 'REINFORCE': (c_correct.detach() * log_msg_prob + 0.05 * spk_entropy).mean().backward() (c_correct.detach() * log_choose_prob).mean().backward() elif args.msg_mode == 'SCST': ((c_correct.detach()-baseline.detach()) * log_msg_prob).mean().backward() ((c_correct.detach()-baseline.detach()) * log_choose_prob).mean().backward() elif args.msg_mode == 'GUMBEL': loss.mean().backward() else: raise NotImplementedError nn.utils.clip_grad_norm_(model.parameters(), clip) m_optimiser.step() s_optimiser.step() l_optimiser.step() return acc, print_loss def train(): print('building vocabulary...') voc = Voc() print('done') print('loading data and building batches...') train_set = ChooseDataset(voc, dataset_file_path=args.train_file) dev_set = ChooseDataset(voc, dataset_file_path=args.dev_file) learn_set = ChooseDataset(voc, dataset_file_path=args.train_file, batch_size=1) print('done') if args.param_file is not None: print('loading saved parameters from ' + args.param_file + '...') checkpoint = torch.load(args.param_file, map_location=args.device) train_args = checkpoint['args'] voc = checkpoint['voc'] print('done') print('arguments for training:') print(train_args) print('rebuilding model...') model = Set2Seq2Choice(voc.num_words).to(args.device) model.load_state_dict(checkpoint['model']) print('\tdone') else: print('building model...') model = Set2Seq2Choice(voc.num_words).to(args.device) print('done') print('preparing data for testing topological similarity...') sim_chk_inset, sim_chk_batchset = get_batches4sim_check(voc, args.data_file) print('done') print('initialising...') start_iteration = 1 training_losses = [] training_acc = [] training_in_spkh_sim = [] training_in_msg_sim = [] training_in_lish_sim = [] training_spk_lis_sim = [] eval_acc = [] print('done') in_spk_sim, in_msg_sim, in_lis_sim = sim_check( model, sim_chk_inset, sim_chk_batchset ) print('[SIM]Iteration: {}; In-SpkHidden Sim: {:.4f}; In-Msg Sim: {:.4f}; In-LisHidden Sim: {:.4f}'.format( 0, in_spk_sim, in_msg_sim, in_lis_sim)) print('training...') for iter in range(start_iteration, args.num_generation+1): training_records = train_generation( model, train_set, dev_set, learn_set, sim_chk_inset, sim_chk_batchset, generation_idx=iter ) training_losses += training_records[0] training_acc += training_records[1] training_in_spkh_sim += training_records[2] training_in_msg_sim+= training_records[3] training_in_lish_sim += training_records[4] training_spk_lis_sim += training_records[5] eval_acc += training_records[6] if iter % args.save_freq == 0: path_join = 'set2seq2choice_' + str(args.num_words) + '_' + args.msg_mode path_join += '_hard' if not args.soft else '_soft' directory = os.path.join(args.save_dir, path_join) if not os.path.exists(directory): os.makedirs(directory) torch.save({ 'iteration': iter, 'model': model.state_dict(), 'voc': voc, 'args': args, 'records': { 'training_loss': training_losses, 'training_acc': training_acc, 'training_in_spkh_sim': training_in_spkh_sim, 'training_in_msg_sim': training_in_msg_sim, 'training_in_lish_sim': training_in_lish_sim, 'training_spkh_lish_sim': training_spk_lis_sim, 'eval_acc': eval_acc, } }, os.path.join(directory, '{}_{:.4f}_{}.tar'.format(iter, eval_acc[-1], 'checkpoint'))) if __name__ == '__main__': set_random_seed(1234) with autograd.detect_anomaly(): print('with detect_anomaly') if args.test: # test() raise NotImplementedError else: train()
the-stack_0_25630
# Copyright (c) 2016, Manito Networks, LLC # All rights reserved. # Array of protocol numbers and names according to IANA http:{"Name": ""},//www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml protocol_type = { 0:{"Name":"HOPOPT"}, 1:{"Name": "ICMP","Category":"ICMP"}, 2:{"Name": "IGMP","Category":"Multicast"}, 3:{"Name": "GGP"}, 4:{"Name": "IP-in-IP","Category":"Tunnel"}, 5:{"Name": "ST"}, 6:{"Name": "TCP","Category":"Transport"}, 7:{"Name": "CBT"}, 8:{"Name": "EGP","Category":"Routing"}, 9:{"Name": "IGP","Category":"Routing"}, 10:{"Name": "BBN-RCC-MON"}, 11:{"Name": "NVP-II"}, 12:{"Name": "PUP"}, 13:{"Name": "ARGUS"}, 14:{"Name": "EMCON"}, 15:{"Name": "XNET"}, 16:{"Name": "CHAOS"}, 17:{"Name": "UDP","Category":"Transport"}, 18:{"Name": "MUX"}, 19:{"Name": "DCN-MEAS"}, 20:{"Name": "HMP"}, 21:{"Name": "PRM"}, 22:{"Name": "XNS-IDP"}, 23:{"Name": "TRUNK-1"}, 24:{"Name": "TRUNK-2"}, 25:{"Name": "LEAF-1"}, 26:{"Name": "LEAF-2"}, 27:{"Name": "RDP"}, 28:{"Name": "IRTP"}, 29:{"Name": "ISO-TP4"}, 30:{"Name": "NETBLT"}, 31:{"Name": "MFE-NSP"}, 32:{"Name": "MERIT-INP"}, 33:{"Name": "DCCP"}, 34:{"Name": "3PC"}, 35:{"Name": "IDPR"}, 36:{"Name": "XTP"}, 37:{"Name": "DDP"}, 38:{"Name": "IDPR-CMTP"}, 39:{"Name": "TP++"}, 40:{"Name": "IL"}, 41:{"Name": "IPv6 6in4","Category":"Tunnel"}, 42:{"Name": "SDRP","Category":"Routing"}, 43:{"Name": "IPv6 Routing","Category":"IPv6"}, 44:{"Name": "IPv6 Fragment","Category":"IPv6"}, 45:{"Name": "IDRP"}, 46:{"Name": "RSVP"}, 47:{"Name": "GRE","Category":"Tunnel"}, 48:{"Name": "DSR"}, 49:{"Name": "BNA"}, 50:{"Name": "ESP","Category":"Tunnel"}, 51:{"Name": "AH","Category":"Tunnel"}, 52:{"Name": "I-NLSP"}, 53:{"Name": "SWIPE"}, 54:{"Name": "NARP"}, 55:{"Name": "IP Mobility"}, 56:{"Name": "TLSP"}, 57:{"Name": "SKIP"}, 58:{"Name": "IPv6 ICMP","Category":"ICMP"}, 59:{"Name": "IPv6 NoNxt","Category":"IPv6"}, 60:{"Name": "IPv6 Options","Category":"IPv6"}, 61:{"Name": "Host Internal Protocol"}, 62:{"Name": "CFTP"}, 63:{"Name": "Local Network"}, 64:{"Name": "SAT-EXPAK"}, 65:{"Name": "KRYPTOLAN"}, 66:{"Name": "RVD"}, 67:{"Name": "IPPC"}, 68:{"Name": "Distributed File System"}, 69:{"Name": "SAT-MON"}, 70:{"Name": "VISA"}, 71:{"Name": "IPCV"}, 72:{"Name": "CPNX"}, 73:{"Name": "CPHB"}, 74:{"Name": "WSN"}, 75:{"Name": "PVP"}, 76:{"Name": "BR-SAT-MON"}, 77:{"Name": "SUN-ND"}, 78:{"Name": "WB-MON"}, 79:{"Name": "WB-EXPAK"}, 80:{"Name": "ISO-IP"}, 81:{"Name": "VMTP"}, 82:{"Name": "SECURE-VMTP"}, 83:{"Name": "VINES"}, 84:{"Name": "TTP / IPTM"}, 85:{"Name": "NSFNET-IGP"}, 86:{"Name": "DGP"}, 87:{"Name": "TCF"}, 88:{"Name": "EIGRP","Category":"Routing"}, 89:{"Name": "OSPF","Category":"Routing"}, 90:{"Name": "Sprite-RPC"}, 91:{"Name": "LARP"}, 92:{"Name": "MTP"}, 93:{"Name": "AX.25"}, 94:{"Name": "IPIP","Category":"Tunnel"}, 95:{"Name": "MICP"}, 96:{"Name": "SCC-SP"}, 97:{"Name": "ETHERIP","Category":"Tunnel"}, 98:{"Name": "ENCAP","Category":"Tunnel"}, 99:{"Name": "Private Encryption Scheme"}, 100:{"Name": "GMTP"}, 101:{"Name": "IFMP"}, 102:{"Name": "PNNI"}, 103:{"Name": "PIM","Category":"Multicast"}, 104:{"Name": "ARIS"}, 105:{"Name": "SCPS"}, 106:{"Name": "QNX"}, 107:{"Name": "A/N"}, 108:{"Name": "IPComp"}, 109:{"Name": "SNP"}, 110:{"Name": "Compaq-Peer"}, 111:{"Name": "IPX-in-IP","Category":"Tunnel"}, 112:{"Name": "VRRP","Category":"Failover"}, 113:{"Name": "PGM"}, 114:{"Name": "0-Hop Protocol"}, 115:{"Name": "L2TP","Category":"Tunnel"}, 116:{"Name": "DDX"}, 117:{"Name": "IATP"}, 118:{"Name": "STP"}, 119:{"Name": "SRP"}, 120:{"Name": "UTI"}, 121:{"Name": "SMP"}, 122:{"Name": "SM"}, 123:{"Name": "PTP"}, 124:{"Name": "ISIS","Category":"Routing"}, 125:{"Name": "FIRE"}, 126:{"Name": "CRTP"}, 127:{"Name": "CRUDP"}, 128:{"Name": "SSCOPMCE"}, 129:{"Name": "IPLT"}, 130:{"Name": "SPS"}, 131:{"Name": "PIPE"}, 132:{"Name": "SCTP"}, 133:{"Name": "Fibre Channel"}, 134:{"Name": "RSVP-E2E-IGNORE"}, 135:{"Name": "Mobility Header"}, 136:{"Name": "UDPLite"}, 137:{"Name": "MPLS-in-IP"}, 138:{"Name": "MANET"}, 139:{"Name": "HIP"}, 140:{"Name": "Shim6","Category":"IPv6"}, 141:{"Name": "WESP"}, 142:{"Name": "ROHC"}, 253:{"Name": "Experimentation and Testing"}, 254:{"Name": "Experimentation and Testing"}, 255:{"Name": "Reserved"} }
the-stack_0_25631
import re class MessageHandler: __track_template = u'<b>{username}</b> is listening to <a href="{track_url}">{track}</a> of artist <i>{artist}</i>' def __init__(self, logger, lastfm_client, telegram_botapi_client): self.__logger = logger self.__lastfm_client = lastfm_client self.__telegram_botapi_client = telegram_botapi_client def handle_message(self, message): self.__logger.info('Handling message ' + str(message.message_id)) if message.text == None: self.__logger.info('No text in message ' + str(message.message_id)) return m = re.search(r'/recent_tracks (\S+)', message.text) or re.search(r'^What is (\S+) listening to?', message.text) if m != None: username = m.group(1) tracks = self.__lastfm_client.get_recent_tracks(username) if len(tracks) > 0: first_track = tracks[0] self.__logger.info('Found track ' + first_track.name + ' for user ' + username) chat_id = message.chat.chat_id formatted_msg = self.__track_template.format(username=username, \ track_url=first_track.url, \ track=first_track.name, \ artist=first_track.artist) self.__telegram_botapi_client.send_message(chat_id, formatted_msg, 'HTML') else: self.__logger.info('Message did not match any known command')
the-stack_0_25634
import os import numpy as np import cv2 import csv import utils def argsProcessor(): import argparse parser = argparse.ArgumentParser() parser.add_argument("-o", "--outputDir", help="output Directory of Data") parser.add_argument("-i", "--inputDir", help="input Directory of data") return parser.parse_args() args = argsProcessor() outputDir = args.outputDir inputDir = args.inputDir if (not os.path.isdir(outputDir)): os.mkdir(outputDir) import csv with open(outputDir+ "/gt.csv", 'a') as csvfile: spamwriter_1 = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for image in os.listdir(inputDir): if image.endswith("jpg"): if os.path.isfile(inputDir+ "/"+image+ ".csv"): with open(inputDir+ "/"+image+ ".csv", 'r') as csvfile: spamwriter = csv.reader(csvfile, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL) img = cv2.imread(inputDir + "/" + image) print (image) gt= [] for row in spamwriter: gt.append(row) # img = cv2.circle(img, (int(float(row[0])), int(float(row[1]))), 2,(255,0,0),90) gt =np.array(gt).astype(np.float32) # print gt gt = gt / (img.shape[0], img.shape[1]) gt = gt * (1080, int((1080.0 / img.shape[0] * img.shape[1]))) img = cv2.resize(img, ( int((1080.0/img.shape[0]*img.shape[1])),1080)) # for a in range(0,4): # img = cv2.circle(img, tuple((gt[a].astype(int))), 2, (255, 0, 0), 9) # cv2.imwrite("asda.jpg", img) # 0/0 for angle in range(0,271,90): img_rotate, gt_rotate = utils.rotate(img, gt,angle) for random_crop in range(0,1): img_list, gt_list = utils.getCorners(img_rotate, gt_rotate) for a in range(0,4): cv2.circle(img_list[a], tuple(gt_list[a]), 2,(255,0,0),2) cv2.imwrite(outputDir + "/" + image + str(angle) + str(random_crop) + str(a) + ".jpg", img_list[a]) spamwriter_1.writerow(( image + str(angle) +str(random_crop) + str(a) +".jpg", tuple(gt_list[a])))
the-stack_0_25636
r""" Solve SAT problems Integer Linear Programming The class defined here is a :class:`~sage.sat.solvers.satsolver.SatSolver` that solves its instance using :class:`MixedIntegerLinearProgram`. Its performance can be expected to be slower than when using :class:`~sage.sat.solvers.cryptominisat.cryptominisat.CryptoMiniSat`. """ from satsolver import SatSolver from sage.numerical.mip import MixedIntegerLinearProgram, MIPSolverException class SatLP(SatSolver): def __init__(self, solver=None): r""" Initializes the instance INPUT: - ``solver`` -- (default: ``None``) Specify a Linear Program (LP) solver to be used. If set to ``None``, the default one is used. For more information on LP solvers and which default solver is used, see the method :meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>` of the class :class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`. EXAMPLE:: sage: S=SAT(solver="LP"); S an ILP-based SAT Solver """ SatSolver.__init__(self) self._LP = MixedIntegerLinearProgram() self._vars = self._LP.new_variable(binary=True) def var(self): """ Return a *new* variable. EXAMPLE:: sage: S=SAT(solver="LP"); S an ILP-based SAT Solver sage: S.var() 1 """ nvars = n = self._LP.number_of_variables() while nvars==self._LP.number_of_variables(): n += 1 self._vars[n] # creates the variable if needed return n def nvars(self): """ Return the number of variables. EXAMPLE:: sage: S=SAT(solver="LP"); S an ILP-based SAT Solver sage: S.var() 1 sage: S.var() 2 sage: S.nvars() 2 """ return self._LP.number_of_variables() def add_clause(self, lits): """ Add a new clause to set of clauses. INPUT: - ``lits`` - a tuple of integers != 0 .. note:: If any element ``e`` in ``lits`` has ``abs(e)`` greater than the number of variables generated so far, then new variables are created automatically. EXAMPLE:: sage: S=SAT(solver="LP"); S an ILP-based SAT Solver sage: for u,v in graphs.CycleGraph(6).edges(labels=False): ....: u,v = u+1,v+1 ....: S.add_clause((u,v)) ....: S.add_clause((-u,-v)) """ if 0 in lits: raise ValueError("0 should not appear in the clause: {}".format(lits)) p = self._LP p.add_constraint(p.sum(self._vars[x] if x>0 else 1-self._vars[-x] for x in lits) >=1) def __call__(self): """ Solve this instance. OUTPUT: - If this instance is SAT: A tuple of length ``nvars()+1`` where the ``i``-th entry holds an assignment for the ``i``-th variables (the ``0``-th entry is always ``None``). - If this instance is UNSAT: ``False`` EXAMPLE:: sage: def is_bipartite_SAT(G): ....: S=SAT(solver="LP"); S ....: for u,v in G.edges(labels=False): ....: u,v = u+1,v+1 ....: S.add_clause((u,v)) ....: S.add_clause((-u,-v)) ....: return S sage: S = is_bipartite_SAT(graphs.CycleGraph(6)) sage: S() # random [None, True, False, True, False, True, False] sage: True in S() True sage: S = is_bipartite_SAT(graphs.CycleGraph(7)) sage: S() False """ try: self._LP.solve() except MIPSolverException: return False b = self._LP.get_values(self._vars) n = max(b) return [None]+[bool(b.get(i,0)) for i in range(1,n+1)] def __repr__(self): """ TESTS:: sage: S=SAT(solver="LP"); S an ILP-based SAT Solver """ return "an ILP-based SAT Solver"
the-stack_0_25637
import pickle from pathlib import Path from definitions import OUTPUT_DIR from bs4 import BeautifulSoup import os class UserManual: def __init__(self): self.base_path = Path(OUTPUT_DIR) / "user_manual" def extract_md(self, md_file): with open(md_file, "r", encoding='utf-8') as file_obj: content = file_obj.read() content = (content.replace("#", "")) return content def get_files(self): file_names = [os.path.join(path, file_name) for path, _, file_list in os.walk(str(self.base_path)) for file_name in file_list if file_name.endswith('.md')] return file_names def extract_all(self): file_names = self.get_files() res = [] for file_path in file_names: res.append(self.extract_md(file_path)) self.save(res) return res def save_2_pickle(self, path, res): """ 将结果序列化保存到文件 :return: """ with open(path, "wb") as file_handler: pickle.dump(res, file_handler, protocol=pickle.HIGHEST_PROTOCOL) def save(self, res): self.save_2_pickle(str(Path(OUTPUT_DIR) / "user_manual.pickle"), res) if __name__ == '__main__': user_manual_service = UserManual() user_manual_service.extract_all()
the-stack_0_25638
from easydict import EasyDict as edict # init __C_CARPK = edict() cfg_data = __C_CARPK __C_CARPK.STD_SIZE = (544,960) __C_CARPK.TRAIN_SIZE = (408,720) __C_CARPK.DATA_PATH = '/home/zhangli/yhs/ProcessedData/ProcessedData/CARPK' __C_CARPK.MEAN_STD = ([0.452016860247, 0.447249650955, 0.431981861591],[0.23242045939, 0.224925786257, 0.221840232611]) __C_CARPK.LABEL_FACTOR = 1 __C_CARPK.LOG_PARA = 1000. __C_CARPK.RESUME_MODEL = ''#model path __C_CARPK.TRAIN_BATCH_SIZE = 4 #imgs __C_CARPK.VAL_BATCH_SIZE = 4 # __C_CARPK.TEST_BATCH_SIZE = 4 #
the-stack_0_25639
"""Define our own locale negotiator that looks at the browser preferences, as well as the ``_`` translation function. """ from pyramid.i18n import TranslationStringFactory from webob.acceptparse import NilAccept _ = TranslationStringFactory('brouz') def locale_negotiator(request): """Return a locale name by looking at the ``Accept-Language`` HTTP header. """ settings = request.registry.settings available_languages = settings['pyramid.available_languages'].split() header = request.accept_language if isinstance(header, NilAccept): # If the header is absent or empty, we get a 'NilAccept' # object, whose 'best_match()' method returns the first item # in 'available_languages'. This may or may not be our default # locale name, so here we will work around this. return None return header.best_match(available_languages)
the-stack_0_25641
# Copyright 2021 The Tekton Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 """ Tekton Tekton Pipeline # noqa: E501 The version of the OpenAPI document: v0.17.2 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from tekton_pipeline.configuration import Configuration class V1beta1CloudEventDelivery(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'status': 'V1beta1CloudEventDeliveryState', 'target': 'str' } attribute_map = { 'status': 'status', 'target': 'target' } def __init__(self, status=None, target=None, local_vars_configuration=None): # noqa: E501 """V1beta1CloudEventDelivery - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._status = None self._target = None self.discriminator = None if status is not None: self.status = status if target is not None: self.target = target @property def status(self): """Gets the status of this V1beta1CloudEventDelivery. # noqa: E501 :return: The status of this V1beta1CloudEventDelivery. # noqa: E501 :rtype: V1beta1CloudEventDeliveryState """ return self._status @status.setter def status(self, status): """Sets the status of this V1beta1CloudEventDelivery. :param status: The status of this V1beta1CloudEventDelivery. # noqa: E501 :type: V1beta1CloudEventDeliveryState """ self._status = status @property def target(self): """Gets the target of this V1beta1CloudEventDelivery. # noqa: E501 Target points to an addressable # noqa: E501 :return: The target of this V1beta1CloudEventDelivery. # noqa: E501 :rtype: str """ return self._target @target.setter def target(self, target): """Sets the target of this V1beta1CloudEventDelivery. Target points to an addressable # noqa: E501 :param target: The target of this V1beta1CloudEventDelivery. # noqa: E501 :type: str """ self._target = target def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta1CloudEventDelivery): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1beta1CloudEventDelivery): return True return self.to_dict() != other.to_dict()
the-stack_0_25643
#!/usr/bin/python # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import csv import os import argparse """ usage: Processes all .jpg, .png, .bmp and .gif files found in the specified directory and its subdirectories. --PATH ( Path to directory of images or path to directory with subdirectory of images). e.g Path/To/Directory/ --Model_PATH path to the tensorflow model """ parser = argparse.ArgumentParser(description='Crystal Detection Program') parser.add_argument('--PATH', type=str, help='path to image directory. Recursively finds all image files in directory and sub directories') # path to image directory or containing sub directories. parser.add_argument('--MODEL_PATH', type=str, default='./savedmodel', help='the file path to the tensorflow model ') args = vars(parser.parse_args()) PATH = args['PATH'] model_path = args['MODEL_PATH'] crystal_images = [os.path.join(dp, f) for dp, dn, filenames in os.walk(PATH) for f in filenames if os.path.splitext(f)[1] in ['.jpg', 'png', 'bmp', 'gif']] size = len(crystal_images) def load_images(file_list): for i in file_list: file = open(i) yield {"image_bytes": [file.read()]}, i iterator = load_images(crystal_images) with open(PATH + 'results.csv', 'w') as csvfile: Writer = csv.writer(csvfile, delimiter=' ', quotechar=' ', quoting=csv.QUOTE_MINIMAL) predicter = tf.contrib.predictor.from_saved_model(model_path) dic = {} k = 0 for _ in range(size): data, name = next(iterator) results = predicter(data) vals = results['scores'][0] vals = vals * 100 print('Image path: ' + name, 'Crystal: ' + str(vals[0]), 'Other: ' + str(vals[1]), 'Precipitate: ' + str(vals[2]), 'Clear ' + str(vals[3])) Writer.writerow(['Image path: ' + name, 'Crystal: ' + str(vals[0]), 'Other: ' + str(vals[1]), 'Precipitate: ' + str(vals[2]), 'Clear: ' + str(vals[3])])
the-stack_0_25644
import re from ztag.annotation import Annotation from ztag.annotation import OperatingSystem from ztag.annotation import Type from ztag.annotation import Manufacturer from ztag import protocols import ztag.test class FtpSony(Annotation): protocol = protocols.FTP subprotocol = protocols.FTP.BANNER port = None manufact_1_re = re.compile( "^220 Welcome to SONY Network Camera", re.IGNORECASE ) manufact_2_re = re.compile("^220-Sony Network Camera", re.IGNORECASE) product_2_re = re.compile("Network Camera ([-A-Z0-9_]+)", re.IGNORECASE) tests = { "FtpSony_1": { "global_metadata": { "device_type": Type.CAMERA, "manufacturer": Manufacturer.SONY, "product": "SNC-EP520" } }, "FtpSony_2": { "global_metadata": { "device_type": Type.CAMERA, "manufacturer": Manufacturer.SONY } }, } def process(self, obj, meta): banner = obj["banner"] if self.manufact_1_re.search(banner): meta.global_metadata.device_type = Type.CAMERA meta.global_metadata.manufacturer = Manufacturer.SONY return meta if self.manufact_2_re.search(banner): meta.global_metadata.device_type = Type.CAMERA meta.global_metadata.manufacturer = Manufacturer.SONY product = self.product_2_re.search(banner).group(1) meta.global_metadata.product = product return meta """ Tests "220-Sony Network Camera SNC-EP520\r\n220 \r\n" "220 Welcome to SONY Network Camera\r\n" "220-Sony Network Camera SNC-CH140\r\n220 \r\n" "220 Welcome to SONY Network Camera\r\n" "220 Welcome to SONY Network Camera\r\n" "220-Sony Network Camera SNC-ER580\r\n220 \r\n" "220-Sony Network Camera SNC-DH160\r\n220 \r\n" """
the-stack_0_25645
from unittest.mock import patch from tests.test_rrpproxy_base import TestRRPProxyBase class TestRRPProxyCheckContact(TestRRPProxyBase): @patch('rrpproxy.RRPProxy.call') def test_calls_call_correctly(self, call_mock): response = self.proxy.check_contact('CONTACT-A') call_mock.assert_called_once_with('CheckContact', contact='CONTACT-A') self.assertEqual(response, call_mock.return_value)
the-stack_0_25647
import sys, random assert sys.version_info >= (3,7), "This script requires at least Python 3.7" import random game_start = input("Hello! Do you want to play a guessing game? [YES/NO]: ") if (game_start == "Yes" or game_start == "yes" or game_start == "YES"): game_type = input("Let's play a guessing game! What kind do you want? [NUMBERS/GAME COMPANIES]: ") if (game_type == "Numbers" or game_type == "numbers" or game_type == "NUMBERS"): number_choice = random.randrange(1, 100) while True: print("I'm thinking of a number between 1 and 100...Guess what number it is!") number_guess = input("Guess: ") if(int(number_guess) == number_choice): print("You got it!") break if(int(number_guess) > number_choice): print("Too high.") if(int(number_guess) < number_choice): print("Too low.") else: ("I don't understand your answer. Please try again.") if (game_type == "Game Companies" or game_type == "game companies" or game_type == "Game companies" or game_type == "GAME COMPANIES"): gamecompanyList = ["Nintendo", "Sega", "Ubisoft", "Naughty Dog", "Telltale", "Square Enix", "Konami", "Electronic Arts", "Microsoft Studios", "Sony Computer Entertainment"] gamecompanyChoice = random.choice(gamecompanyList) while True: print("Out of this list, I'm thinking of a random game company...Guess what it is!") gamecompany_guess = input(str(gamecompanyList) + "Guess: ") if (gamecompany_guess != gamecompanyChoice): print("Try again!") else: print("You got it! Congrats!") break else: print("I don't understand your answer. Please try again.") elif (game_start == "No" or game_start == "no" or game_start == "NO"): print("You're no fun.") else: print("I don't understand your answer. Please try again.")
the-stack_0_25653
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import os import os.path import copy import spack.util.environment class Cp2k(MakefilePackage, CudaPackage): """CP2K is a quantum chemistry and solid state physics software package that can perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems """ homepage = 'https://www.cp2k.org' url = 'https://github.com/cp2k/cp2k/releases/download/v3.0.0/cp2k-3.0.tar.bz2' git = 'https://github.com/cp2k/cp2k.git' list_url = 'https://github.com/cp2k/cp2k/releases' maintainers = ['dev-zero'] version('7.1', sha256='ccd711a09a426145440e666310dd01cc5772ab103493c4ae6a3470898cd0addb') version('6.1', sha256='af803558e0a6b9e9d9ce8a3ab955ba32bacd179922455424e061c82c9fefa34b') version('5.1', sha256='e23613b593354fa82e0b8410e17d94c607a0b8c6d9b5d843528403ab09904412') version('4.1', sha256='4a3e4a101d8a35ebd80a9e9ecb02697fb8256364f1eccdbe4e5a85d31fe21343') version('3.0', sha256='1acfacef643141045b7cbade7006f9b7538476d861eeecd9658c9e468dc61151') version('master', branch='master', submodules="True") variant('mpi', default=True, description='Enable MPI support') variant('openmp', default=True, description='Enable OpenMP support') variant('smm', default='libxsmm', values=('libxsmm', 'libsmm', 'blas'), description='Library for small matrix multiplications') variant('plumed', default=False, description='Enable PLUMED support') variant('libint', default=True, description='Use libint, required for HFX (and possibly others)') variant('libxc', default=True, description='Support additional functionals via libxc') variant('pexsi', default=False, description=('Enable the alternative PEXSI method' 'for density matrix evaluation')) variant('elpa', default=False, description='Enable optimised diagonalisation routines from ELPA') variant('sirius', default=False, description=('Enable planewave electronic structure' ' calculations via SIRIUS')) variant('cosma', default=False, description='Use COSMA for p?gemm') # override cuda_arch from CudaPackage since we only support one arch # at a time and only specific ones for which we have parameter files # for optimal kernels variant('cuda_arch', description='CUDA architecture', default='none', values=('none', '35', '37', '60', '70'), multi=False) variant('cuda_arch_35_k20x', default=False, description=('CP2K (resp. DBCSR) has specific parameter sets for' ' different GPU models. Enable this when building' ' with cuda_arch=35 for a K20x instead of a K40')) variant('cuda_fft', default=False, description=('Use CUDA also for FFTs in the PW part of CP2K')) variant('cuda_blas', default=False, description=('Use CUBLAS for general matrix operations in DBCSR')) HFX_LMAX_RANGE = range(4, 8) variant('lmax', description='Maximum supported angular momentum (HFX and others)', default='5', values=tuple(map(str, HFX_LMAX_RANGE)), multi=False) depends_on('python', type='build') depends_on('blas') depends_on('lapack') depends_on('fftw-api@3') # require libxsmm-1.11+ since 1.10 can leak file descriptors in Fortran depends_on('[email protected]:~header-only', when='smm=libxsmm') # use pkg-config (support added in libxsmm-1.10) to link to libxsmm depends_on('pkgconfig', type='build', when='smm=libxsmm') # ... and in CP2K 7.0+ for linking to libint2 depends_on('pkgconfig', type='build', when='[email protected]:') depends_on('pkgconfig', type='build', when='[email protected]:') # libint & libxc are always statically linked depends_on('[email protected]:1.2', when='[email protected]:6.9', type='build') for lmax in HFX_LMAX_RANGE: # libint2 can be linked dynamically again depends_on('[email protected]:+fortran tune=cp2k-lmax-{0}'.format(lmax), when='[email protected]: lmax={0}'.format(lmax)) depends_on('[email protected]:3.99.0', when='+libxc@:5.5999', type='build') depends_on('[email protected]:4.99.0', when='[email protected]:6.9', type='build') depends_on('[email protected]:4.99.0', when='[email protected]:') depends_on('mpi@2:', when='+mpi') depends_on('scalapack', when='+mpi') depends_on('cosma+scalapack', when='+cosma') depends_on('cosma+cuda+scalapack', when='+cosma+cuda') depends_on('[email protected]:2016.13+openmp', when='+openmp+elpa@:5.999') depends_on('[email protected]:2017.11+openmp', when='[email protected]:6.999') depends_on('[email protected]:+openmp', when='[email protected]:') depends_on('[email protected]:2016.13~openmp', when='~openmp+elpa@:5.999') depends_on('[email protected]:2017.11~openmp', when='[email protected]:6.999') depends_on('[email protected]:~openmp', when='[email protected]:') depends_on('plumed+shared+mpi', when='+plumed+mpi') depends_on('plumed+shared~mpi', when='+plumed~mpi') # while we link statically against PEXSI, its own deps may be linked in # dynamically, therefore can't set this as pure build-type dependency. depends_on('[email protected]:0.9.999', when='+pexsi@:4.999') depends_on('[email protected]:', when='[email protected]:') # only OpenMP should be consistenly used, all other common things # like ELPA, SCALAPACK are independent and Spack will ensure that # a consistent/compat. combination is pulled in to the dependency graph. depends_on('sirius@:6.999+fortran+vdwxc+shared+openmp', when='@:7.999+sirius+openmp') depends_on('sirius@:6.999+fortran+vdwxc+shared~openmp', when='@:7.999+sirius~openmp') depends_on('sirius@7:+fortran+vdwxc+shared+openmp', when='@8:+sirius+openmp') # the bundled libcusmm uses numpy in the parameter prediction (v7+) # which is written using Python 3 depends_on('py-numpy', when='@7:+cuda', type='build') depends_on('[email protected]:', when='@7:+cuda', type='build') # PEXSI, ELPA, COSMA and SIRIUS depend on MPI conflicts('~mpi', '+pexsi') conflicts('~mpi', '+elpa') conflicts('~mpi', '+sirius') conflicts('~mpi', '+cosma') conflicts('+sirius', '@:6.999') # sirius support was introduced in 7+ conflicts('+cosma', '@:7.999') # COSMA support was introduced in 8+ conflicts('~cuda', '+cuda_fft') conflicts('~cuda', '+cuda_blas') # Apparently [email protected] needs an "experimental" version of libwannier.a # which is only available contacting the developer directly. See INSTALL # in the stage of [email protected] depends_on('wannier90', when='@3.0+mpi', type='build') # CP2K needs compiler specific compilation flags, e.g. optflags conflicts('%apple-clang') conflicts('%clang') conflicts('%nag') # please set variants: smm=blas by configuring packages.yaml or install # cp2k with option smm=blas on aarch64 conflicts('smm=libxsmm', when='target=aarch64:', msg='libxsmm is not available on arm') conflicts('^fftw~openmp', when='+openmp') conflicts('^openblas threads=none', when='+openmp') conflicts('^openblas threads=pthreads', when='+openmp') conflicts('~openmp', when='@8:', msg='Building without OpenMP is not supported in CP2K 8+') @property def makefile_architecture(self): return '{0.architecture}-{0.compiler.name}'.format(self.spec) @property def makefile_version(self): return '{prefix}{suffix}'.format( prefix='p' if '+mpi' in self.spec else 's', suffix='smp' if '+openmp' in self.spec else 'opt' ) @property def makefile(self): makefile_basename = '.'.join([ self.makefile_architecture, self.makefile_version ]) return os.path.join('arch', makefile_basename) @property def archive_files(self): return [os.path.join(self.stage.source_path, self.makefile)] def edit(self, spec, prefix): pkgconf = which('pkg-config') if '^fftw' in spec: fftw = spec['fftw:openmp' if '+openmp' in spec else 'fftw'] fftw_header_dir = fftw.headers.directories[0] elif '^intel-mkl' in spec: fftw = spec['intel-mkl'] fftw_header_dir = fftw.headers.directories[0] + '/fftw' elif '^intel-parallel-studio+mkl' in spec: fftw = spec['intel-parallel-studio'] fftw_header_dir = '<NOTFOUND>' for incdir in [join_path(f, 'fftw') for f in fftw.headers.directories]: if os.path.exists(incdir): fftw_header_dir = incdir break optimization_flags = { 'gcc': [ '-O2', '-funroll-loops', '-ftree-vectorize', ], 'intel': ['-O2', '-pc64', '-unroll', ], 'pgi': ['-fast'], 'nvhpc': ['-fast'], 'cray': ['-O2'], 'xl': ['-O3'], } dflags = ['-DNDEBUG'] cppflags = [ '-D__FFTW3', '-I{0}'.format(fftw_header_dir), ] if '^mpi@3:' in spec: cppflags.append('-D__MPI_VERSION=3') elif '^mpi@2:' in spec: cppflags.append('-D__MPI_VERSION=2') cflags = optimization_flags[self.spec.compiler.name][:] cxxflags = optimization_flags[self.spec.compiler.name][:] fcflags = optimization_flags[self.spec.compiler.name][:] nvflags = ['-O3'] ldflags = [] libs = [] gpuver = '' if '%intel' in spec: cflags.append('-fp-model precise') cxxflags.append('-fp-model precise') fcflags += [ '-fp-model precise', '-heap-arrays 64', '-g', '-traceback', ] elif '%gcc' in spec: fcflags += [ '-ffree-form', '-ffree-line-length-none', '-ggdb', # make sure we get proper Fortran backtraces ] elif '%pgi' in spec or '%nvhpc' in spec: fcflags += ['-Mfreeform', '-Mextend'] elif '%cray' in spec: fcflags += ['-emf', '-ffree', '-hflex_mp=strict'] elif '%xl' in spec: fcflags += ['-qpreprocess', '-qstrict', '-q64'] ldflags += ['-Wl,--allow-multiple-definition'] if '+openmp' in spec: cflags.append(self.compiler.openmp_flag) cxxflags.append(self.compiler.openmp_flag) fcflags.append(self.compiler.openmp_flag) ldflags.append(self.compiler.openmp_flag) nvflags.append('-Xcompiler="{0}"'.format( self.compiler.openmp_flag)) elif '%cray' in spec: # Cray enables OpenMP by default cflags += ['-hnoomp'] cxxflags += ['-hnoomp'] fcflags += ['-hnoomp'] ldflags += ['-hnoomp'] if '@7:' in spec: # recent versions of CP2K use C++14 CUDA code cxxflags.append(self.compiler.cxx14_flag) nvflags.append(self.compiler.cxx14_flag) ldflags.append(fftw.libs.search_flags) if '[email protected]' in spec: ldflags.insert(0, '-Wl,--allow-multiple-definition') if '+plumed' in self.spec: dflags.extend(['-D__PLUMED2']) cppflags.extend(['-D__PLUMED2']) libs.extend([ os.path.join(self.spec['plumed'].prefix.lib, 'libplumed.{0}'.format(dso_suffix)) ]) cc = spack_cc if '~mpi' in spec else spec['mpi'].mpicc cxx = spack_cxx if '~mpi' in spec else spec['mpi'].mpicxx fc = spack_fc if '~mpi' in spec else spec['mpi'].mpifc # Intel if '%intel' in spec: cppflags.extend([ '-D__INTEL', '-D__HAS_ISO_C_BINDING', '-D__USE_CP2K_TRACE', ]) fcflags.extend([ '-diag-disable 8290,8291,10010,10212,11060', '-free', '-fpp' ]) # FFTW, LAPACK, BLAS lapack = spec['lapack'].libs blas = spec['blas'].libs ldflags.append((lapack + blas).search_flags) libs.extend([str(x) for x in (fftw.libs, lapack, blas)]) if '^intel-mkl' in spec or '^intel-parallel-studio+mkl' in spec: cppflags += ['-D__MKL'] elif '^accelerate' in spec: cppflags += ['-D__ACCELERATE'] if '+cosma' in spec: # add before ScaLAPACK to override the p?gemm symbols cosma = spec['cosma'].libs ldflags.append(cosma.search_flags) libs.extend(cosma) # MPI if '+mpi' in spec: cppflags.extend([ '-D__parallel', '-D__SCALAPACK' ]) scalapack = spec['scalapack'].libs ldflags.append(scalapack.search_flags) libs.extend(scalapack) libs.extend(spec['mpi:cxx'].libs) libs.extend(self.compiler.stdcxx_libs) if 'wannier90' in spec: cppflags.append('-D__WANNIER90') wannier = os.path.join( spec['wannier90'].libs.directories[0], 'libwannier.a' ) libs.append(wannier) if '+libint' in spec: cppflags += ['-D__LIBINT'] if '@:6.9' in spec: cppflags += [ '-D__LIBINT_MAX_AM=6', '-D__LIBDERIV_MAX_AM1=5', ] # libint-1.x.y has to be linked statically to work around # inconsistencies in its Fortran interface definition # (short-int vs int) which otherwise causes segfaults at # runtime due to wrong offsets into the shared library # symbols. libs.extend([ os.path.join( spec['libint'].libs.directories[0], 'libderiv.a'), os.path.join( spec['libint'].libs.directories[0], 'libint.a'), ]) else: fcflags += pkgconf('--cflags', 'libint2', output=str).split() libs += pkgconf('--libs', 'libint2', output=str).split() if '+libxc' in spec: cppflags += ['-D__LIBXC'] if '@:6.9' in spec: libxc = spec['libxc:fortran,static'] cppflags += [libxc.headers.cpp_flags] ldflags.append(libxc.libs.search_flags) libs.append(str(libxc.libs)) else: fcflags += pkgconf('--cflags', 'libxcf03', output=str).split() libs += pkgconf('--libs', 'libxcf03', output=str).split() if '+pexsi' in spec: cppflags.append('-D__LIBPEXSI') fcflags.append('-I' + os.path.join( spec['pexsi'].prefix, 'fortran')) libs.extend([ os.path.join(spec['pexsi'].libs.directories[0], 'libpexsi.a'), os.path.join(spec['superlu-dist'].libs.directories[0], 'libsuperlu_dist.a'), os.path.join( spec['parmetis'].libs.directories[0], 'libparmetis.{0}'.format(dso_suffix) ), os.path.join( spec['metis'].libs.directories[0], 'libmetis.{0}'.format(dso_suffix) ), ]) if '+elpa' in spec: elpa = spec['elpa'] elpa_suffix = '_openmp' if '+openmp' in elpa else '' elpa_incdir = elpa.headers.directories[0] fcflags += ['-I{0}'.format(os.path.join(elpa_incdir, 'modules'))] libs.append(os.path.join(elpa.libs.directories[0], ('libelpa{elpa_suffix}.{dso_suffix}' .format(elpa_suffix=elpa_suffix, dso_suffix=dso_suffix)))) if spec.satisfies('@:4.999'): if elpa.satisfies('@:2014.5.999'): cppflags.append('-D__ELPA') elif elpa.satisfies('@2014.6:2015.10.999'): cppflags.append('-D__ELPA2') else: cppflags.append('-D__ELPA3') else: cppflags.append('-D__ELPA={0}{1:02d}' .format(elpa.version[0], int(elpa.version[1]))) fcflags += ['-I{0}'.format(os.path.join(elpa_incdir, 'elpa'))] if spec.satisfies('+sirius'): sirius = spec['sirius'] cppflags.append('-D__SIRIUS') fcflags += ['-I{0}'.format(sirius.prefix.include.sirius)] libs += list(sirius.libs) if spec.satisfies('+cuda'): cppflags += ['-D__ACC'] libs += ['-lcudart', '-lnvrtc', '-lcuda'] if spec.satisfies('+cuda_blas'): cppflags += ['-D__DBCSR_ACC=2'] libs += ['-lcublas'] else: cppflags += ['-D__DBCSR_ACC'] if spec.satisfies('+cuda_fft'): cppflags += ['-D__PW_CUDA'] libs += ['-lcufft', '-lcublas'] cuda_arch = spec.variants['cuda_arch'].value if cuda_arch: gpuver = { '35': 'K40', '37': 'K80', '60': 'P100', '70': 'V100', }[cuda_arch] if (cuda_arch == '35' and spec.satisfies('+cuda_arch_35_k20x')): gpuver = 'K20X' if 'smm=libsmm' in spec: lib_dir = os.path.join( 'lib', self.makefile_architecture, self.makefile_version ) mkdirp(lib_dir) try: copy(env['LIBSMM_PATH'], os.path.join(lib_dir, 'libsmm.a')) except KeyError: raise KeyError('Point environment variable LIBSMM_PATH to ' 'the absolute path of the libsmm.a file') except IOError: raise IOError('The file LIBSMM_PATH pointed to does not ' 'exist. Note that it must be absolute path.') cppflags.extend([ '-D__HAS_smm_dnn', '-D__HAS_smm_vec', ]) libs.append('-lsmm') elif 'smm=libxsmm' in spec: cppflags += ['-D__LIBXSMM'] cppflags += pkgconf('--cflags-only-other', 'libxsmmf', output=str).split() fcflags += pkgconf('--cflags-only-I', 'libxsmmf', output=str).split() libs += pkgconf('--libs', 'libxsmmf', output=str).split() dflags.extend(cppflags) cflags.extend(cppflags) cxxflags.extend(cppflags) fcflags.extend(cppflags) nvflags.extend(cppflags) with open(self.makefile, 'w') as mkf: if '+plumed' in spec: mkf.write('# include Plumed.inc as recommended by' 'PLUMED to include libraries and flags') mkf.write('include {0}\n'.format( spec['plumed'].package.plumed_inc )) mkf.write('\n# COMPILER, LINKER, TOOLS\n\n') mkf.write('FC = {0}\n' 'CC = {1}\n' 'CXX = {2}\n' 'LD = {3}\n' .format(fc, cc, cxx, fc)) if '%intel' in spec: intel_bin_dir = ancestor(self.compiler.cc) # CPP is a commented command in Intel arch of CP2K # This is the hack through which cp2k developers avoid doing : # # ${CPP} <file>.F > <file>.f90 # # and use `-fpp` instead mkf.write('CPP = # {0} -P\n'.format(spack_cc)) mkf.write('AR = {0}/xiar -r\n'.format(intel_bin_dir)) else: mkf.write('CPP = # {0} -E\n'.format(spack_cc)) mkf.write('AR = ar -r\n') if spec.satisfies('+cuda'): mkf.write('NVCC = {0}\n'.format( os.path.join(spec['cuda'].prefix, 'bin', 'nvcc'))) # Write compiler flags to file def fflags(var, lst): return '{0} = {1}\n\n'.format( var, ' \\\n\t'.join(lst)) mkf.write('\n# FLAGS & LIBRARIES\n') mkf.write(fflags('DFLAGS', dflags)) mkf.write(fflags('CPPFLAGS', cppflags)) mkf.write(fflags('CFLAGS', cflags)) mkf.write(fflags('CXXFLAGS', cxxflags)) mkf.write(fflags('NVFLAGS', nvflags)) mkf.write(fflags('FCFLAGS', fcflags)) mkf.write(fflags('LDFLAGS', ldflags)) mkf.write(fflags('LIBS', libs)) if '%intel' in spec: mkf.write(fflags('LDFLAGS_C', ldflags + ['-nofor_main'])) mkf.write('# CP2K-specific flags\n\n') mkf.write('GPUVER = {0}\n'.format(gpuver)) mkf.write('DATA_DIR = {0}\n'.format(self.prefix.share.data)) @property def build_directory(self): build_dir = self.stage.source_path if self.spec.satisfies('@:6.9999'): # prior to version 7.1 was the Makefile located in makefiles/ build_dir = os.path.join(build_dir, 'makefiles') return build_dir @property def build_targets(self): return [ 'ARCH={0}'.format(self.makefile_architecture), 'VERSION={0}'.format(self.makefile_version) ] def build(self, spec, prefix): # Apparently the Makefile bases its paths on PWD # so we need to set PWD = self.build_directory with spack.util.environment.set_env(PWD=self.build_directory): super(Cp2k, self).build(spec, prefix) def install(self, spec, prefix): exe_dir = os.path.join('exe', self.makefile_architecture) install_tree(exe_dir, self.prefix.bin) install_tree('data', self.prefix.share.data) def check(self): data_dir = os.path.join(self.stage.source_path, 'data') # CP2K < 7 still uses $PWD to detect the current working dir # and Makefile is in a subdir, account for both facts here: with spack.util.environment.set_env(CP2K_DATA_DIR=data_dir, PWD=self.build_directory): with working_dir(self.build_directory): make('test', *self.build_targets)
the-stack_0_25656
# -*- coding: utf-8 -*- # Copyright (c) 2012-2018, Anima Istanbul # # This module is part of anima-tools and is released under the BSD 2 # License: http://www.opensource.org/licenses/BSD-2-Clause import os import tempfile import re import shutil from anima import logger class Archiver(object): """Archives a Maya scene for external use. This utility class can flatten a maya scene including all its references in to a default maya project folder structure and can retrieve and connect the references to the original ones when the original file is returned back. """ default_workspace_content = """// Anima Archiver Default Project Definition workspace -fr "translatorData" "data"; workspace -fr "offlineEdit" "scenes/edits"; workspace -fr "renderData" "renderData"; workspace -fr "scene" "scenes"; workspace -fr "3dPaintTextures" "sourceimages/3dPaintTextures"; workspace -fr "eps" "data"; workspace -fr "OBJexport" "data"; workspace -fr "mel" "scripts"; workspace -fr "furShadowMap" "renderData/fur/furShadowMap"; workspace -fr "particles" "cache/particles"; workspace -fr "audio" "sound"; workspace -fr "scripts" "scripts"; workspace -fr "sound" "sound"; workspace -fr "DXF_FBX export" "data"; workspace -fr "furFiles" "renderData/fur/furFiles"; workspace -fr "depth" "renderData/depth"; workspace -fr "autoSave" "autosave"; workspace -fr "furAttrMap" "renderData/fur/furAttrMap"; workspace -fr "diskCache" "data"; workspace -fr "fileCache" "cache/nCache"; workspace -fr "ASS Export" "data"; workspace -fr "FBX export" "data"; workspace -fr "sourceImages" "sourceimages"; workspace -fr "FBX" "data"; workspace -fr "DAE_FBX export" "data"; workspace -fr "movie" "movies"; workspace -fr "Alembic" "data"; workspace -fr "DAE_FBX" "data"; workspace -fr "iprImages" "renderData/iprImages"; workspace -fr "mayaAscii" "scenes"; workspace -fr "furImages" "renderData/fur/furImages"; workspace -fr "furEqualMap" "renderData/fur/furEqualMap"; workspace -fr "illustrator" "data"; workspace -fr "DXF_FBX" "data"; workspace -fr "mayaBinary" "scenes"; workspace -fr "move" "data"; workspace -fr "images" "images"; workspace -fr "fluidCache" "cache/nCache/fluid"; workspace -fr "clips" "clips"; workspace -fr "ASS" "data"; workspace -fr "OBJ" "data"; workspace -fr "templates" "assets"; workspace -fr "shaders" "renderData/shaders"; """ default_project_structure = """assets autosave cache cache/nCache cache/nCache/fluid cache/particles clips data images movies renderData renderData/depth renderData/fur renderData/fur/furAttrMap renderData/fur/furEqualMap renderData/fur/furFiles renderData/fur/furImages renderData/fur/furShadowMap renderData/iprImages renderData/shaders scenes scenes/edits scenes/refs scripts sound sourceimages sourceimages/3dPaintTextures""" def __init__(self, exclude_mask=None): if exclude_mask is None: exclude_mask = [] self.exclude_mask = exclude_mask @classmethod def create_default_project(cls, path, name='DefaultProject'): """Creates default maya project structure along with a suitable workspace.mel file. :param str path: The path that the default project structure will be created. :return: """ project_path = os.path.join(path, name) # lets create the structure for dir_name in cls.default_project_structure.split('\n'): dir_path = os.path.join(project_path, dir_name) try: os.makedirs(dir_path) except OSError: pass # create the workspace.mel workspace_mel_path = os.path.join(project_path, 'workspace.mel') with open(workspace_mel_path, 'w+') as f: f.writelines(cls.default_workspace_content) return project_path def flatten(self, path, project_name='DefaultProject'): """Flattens the given maya scene in to a new default project externally that is without opening it and returns the project path. It will also flatten all the referenced files, textures, image planes, Arnold Scene Source and Redshift Proxy files. :param path: The path to the file which wanted to be flattened :return: """ # create a new Default Project tempdir = tempfile.gettempdir() from stalker import Repository all_repos = Repository.query.all() default_project_path = \ self.create_default_project(path=tempdir, name=project_name) logger.debug( 'creating new default project at: %s' % default_project_path ) ref_paths = \ self._move_file_and_fix_references(path, default_project_path) while len(ref_paths): ref_path = ref_paths.pop(0) if self.exclude_mask \ and os.path.splitext(ref_path)[1] in self.exclude_mask: logger.debug('skipping: %s' % ref_path) continue # fix different OS paths for repo in all_repos: if repo.is_in_repo(ref_path): ref_path = repo.to_native_path(ref_path) new_ref_paths = \ self._move_file_and_fix_references( ref_path, default_project_path, scenes_folder='scenes/refs' ) # extend ref_paths with new ones for new_ref_path in new_ref_paths: if new_ref_path not in ref_paths: ref_paths.append(new_ref_path) return default_project_path def _move_file_and_fix_references(self, path, project_path, scenes_folder='scenes', refs_folder='scenes/refs'): """Moves the given maya file to the given project path and moves any references of it to :param str path: The path of the maya file :param str project_path: The project path :param str scenes_folder: The scenes folder to store the original maya scene. :param str refs_folder: The references folder to replace reference paths with. :return list: returns a list of paths """ # fix any env vars path = os.path.expandvars(path) original_file_name = os.path.basename(path) logger.debug('original_file_name: %s' % original_file_name) new_file_path = \ os.path.join(project_path, scenes_folder, original_file_name) scenes_folder_lut = { '.ma': 'scenes/refs', # image files '.jpg': 'sourceimages', '.png': 'sourceimages', '.tif': 'sourceimages', '.tga': 'sourceimages', '.exr': 'sourceimages', '.hdr': 'sourceimages', # RSProxy and arnold proxies '.rs': 'sourceimages', '.ass': 'sourceimages', } ref_paths = [] # skip the file if it doesn't exist if not os.path.exists(path): # return early return ref_paths # only get new ref paths for '.ma' files if path.endswith('.ma'): # read the data of the original file with open(path) as f: data = f.read() ref_paths = self._extract_references(data) # fix all reference paths for ref_path in ref_paths: ref_ext = os.path.splitext(ref_path)[-1] data = data.replace( ref_path, '%s/%s' % ( scenes_folder_lut.get(ref_ext, refs_folder), os.path.basename(ref_path) ) ) # now write all the data back to a new temp scene with open(new_file_path, 'w+') as f: f.write(data) else: # fix for UDIM texture paths # if the path contains 1001 or u1_v1 than find the other # textures # dirty patch # move image files in to the sourceimages folder # along with the RedshiftProxy files file_extension = os.path.splitext(path)[1] new_file_path = \ os.path.join( project_path, scenes_folder_lut.get( file_extension, refs_folder ), original_file_name ) import glob new_file_paths = [new_file_path] if '1001' in new_file_path or 'u1_v1' in new_file_path.lower(): # get the rest of the textures new_file_paths = glob.glob( new_file_path .replace('1001', '*') .replace('u1_v1', 'u*_v*') .replace('U1_V1', 'U*_V*') ) for p in new_file_paths: print(p) # just copy the file for new_file_path in new_file_paths: try: shutil.copy(path, new_file_path) except IOError: pass return ref_paths def _extract_references(self, data): """returns the list of references in the given maya file :param str data: The content of the maya scene file :return: """ path_regex = r'\$REPO[\w\d\/_\.@]+' # so we have all the data # extract references ref_paths = re.findall(path_regex, data) # also check for any paths that is starting with any of the $REPO # variable value for k in os.environ.keys(): if k.startswith('REPO'): # consider this as a repository path and find all of the paths # starting with this value repo_path = os.environ[k] path_regex = r'\%s[\w\d\/_\.@]+' % repo_path temp_ref_paths = re.findall(path_regex, data) ref_paths += temp_ref_paths new_ref_paths = [] for ref_path in ref_paths: if os.path.splitext(ref_path)[1] not in self.exclude_mask: new_ref_paths.append(ref_path) ref_paths = new_ref_paths return ref_paths @classmethod def _extract_local_references(cls, data): """returns the list of local references (references that are referenced from scenes/refs folder) in the given maya file :param str data: The content of the maya scene file :return: """ path_regex = r'scenes/refs/[\w\d\/_\.@]+' # so we have all the data # extract references ref_paths = re.findall(path_regex, data) return ref_paths @classmethod def archive(cls, path): """Creates a zip file containing the given directory. :param path: Path to the archived directory. :return: """ import zipfile dir_name = os.path.basename(path) zip_path = os.path.join(tempfile.gettempdir(), '%s.zip' % dir_name) parent_path = os.path.dirname(path) + '/' with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED, allowZip64=True) as z: for current_dir_path, dir_names, file_names in os.walk(path): for dir_name in dir_names: dir_path = os.path.join(current_dir_path, dir_name) arch_path = dir_path[len(parent_path):] z.write(dir_path, arch_path) for file_name in file_names: file_path = os.path.join(current_dir_path, file_name) arch_path = file_path[len(parent_path):] z.write(file_path, arch_path) return zip_path @classmethod def bind_to_original(cls, path): """Binds all the references to the original Versions in the repository. Given a maya scene file, this method will find the originals of the references in the database and will replace them with the originals. :param str path: The path of the maya file. :return: """ # TODO: This will not fix the sound or texture files, that is anything # other than a maya scene file. # get all reference paths with open(path) as f: data = f.read() ref_paths = cls._extract_local_references(data) for ref_path in ref_paths: ref_file_name = os.path.basename(ref_path) # try to find a corresponding Stalker Version instance with it from stalker import Version version = Version.query\ .filter(Version.full_path.endswith(ref_file_name))\ .first() if version: # replace it data = data.replace( ref_path, version.full_path ) if len(ref_paths): # save the file over itself with open(path, 'w+') as f: f.write(data)
the-stack_0_25657
import logging from collections import namedtuple from .main import special_command, RAW_QUERY TableInfo = namedtuple("TableInfo", ['checks', 'relkind', 'hasindex', 'hasrules', 'hastriggers', 'hasoids', 'tablespace', 'reloptions', 'reloftype', 'relpersistence']) log = logging.getLogger(__name__) @special_command('\\l', '\\l', 'List databases.', arg_type=RAW_QUERY) def list_databases(cur, **_): query = 'SELECT datname FROM pg_database;' cur.execute(query) if cur.description: headers = [x[0] for x in cur.description] return [(None, cur, headers, cur.statusmessage)] else: return [(None, None, None, cur.statusmessage)] @special_command('\\du', '\\du[+] [pattern]', 'List roles.') def list_roles(cur, pattern, verbose): """ Returns (title, rows, headers, status) """ sql = '''SELECT r.rolname, r.rolsuper, r.rolinherit, r.rolcreaterole, r.rolcreatedb, r.rolcanlogin, r.rolconnlimit, r.rolvaliduntil, ARRAY(SELECT b.rolname FROM pg_catalog.pg_auth_members m JOIN pg_catalog.pg_roles b ON (m.roleid = b.oid) WHERE m.member = r.oid) as memberof''' + (''', pg_catalog.shobj_description(r.oid, 'pg_authid') AS description''' if verbose else '') + """, r.rolreplication FROM pg_catalog.pg_roles r """ params = [] if pattern: _, schema = sql_name_pattern(pattern) sql += 'WHERE r.rolname ~ %s' params.append(schema) sql = cur.mogrify(sql + " ORDER BY 1", params) log.debug(sql) cur.execute(sql) if cur.description: headers = [x[0] for x in cur.description] return [(None, cur, headers, cur.statusmessage)] @special_command('\\dn', '\\dn[+] [pattern]', 'List schemas.') def list_schemas(cur, pattern, verbose): """ Returns (title, rows, headers, status) """ sql = '''SELECT n.nspname AS "Name", pg_catalog.pg_get_userbyid(n.nspowner) AS "Owner"''' + (''', pg_catalog.array_to_string(n.nspacl, E'\\n') AS "Access privileges", pg_catalog.obj_description(n.oid, 'pg_namespace') AS "Description"''' if verbose else '') + """ FROM pg_catalog.pg_namespace n WHERE n.nspname """ params = [] if pattern: _, schema = sql_name_pattern(pattern) sql += '~ %s' params.append(schema) else: sql += "!~ '^pg_' AND n.nspname <> 'information_schema'" sql = cur.mogrify(sql + " ORDER BY 1", params) log.debug(sql) cur.execute(sql) if cur.description: headers = [x[0] for x in cur.description] return [(None, cur, headers, cur.statusmessage)] def list_objects(cur, pattern, verbose, relkinds): """ Returns (title, rows, header, status) This method is used by list_tables, list_views, and list_indexes relkinds is a list of strings to filter pg_class.relkind """ schema_pattern, table_pattern = sql_name_pattern(pattern) if verbose: verbose_columns = ''' ,pg_catalog.pg_size_pretty(pg_catalog.pg_table_size(c.oid)) as "Size", pg_catalog.obj_description(c.oid, 'pg_class') as "Description" ''' else: verbose_columns = '' sql = '''SELECT n.nspname as "Schema", c.relname as "Name", CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view' WHEN 'm' THEN 'materialized view' WHEN 'i' THEN 'index' WHEN 'S' THEN 'sequence' WHEN 's' THEN 'special' WHEN 'f' THEN 'foreign table' END as "Type", pg_catalog.pg_get_userbyid(c.relowner) as "Owner" ''' + verbose_columns + ''' FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind = ANY(%s) ''' params = [relkinds] if schema_pattern: sql += ' AND n.nspname ~ %s' params.append(schema_pattern) else: sql += ''' AND n.nspname <> 'pg_catalog' AND n.nspname <> 'information_schema' AND n.nspname !~ '^pg_toast' AND pg_catalog.pg_table_is_visible(c.oid) ''' if table_pattern: sql += ' AND c.relname ~ %s' params.append(table_pattern) sql = cur.mogrify(sql + ' ORDER BY 1, 2', params) log.debug(sql) cur.execute(sql) if cur.description: headers = [x[0] for x in cur.description] return [(None, cur, headers, cur.statusmessage)] @special_command('\\dt', '\\dt[+] [pattern]', 'List tables.') def list_tables(cur, pattern, verbose): return list_objects(cur, pattern, verbose, ['r', '']) @special_command('\\dv', '\\dv[+] [pattern]', 'List views.') def list_views(cur, pattern, verbose): return list_objects(cur, pattern, verbose, ['v', 's', '']) @special_command('\\ds', '\\ds[+] [pattern]', 'List sequences.') def list_sequences(cur, pattern, verbose): return list_objects(cur, pattern, verbose, ['S', 's', '']) @special_command('\\di', '\\di[+] [pattern]', 'List indexes.') def list_indexes(cur, pattern, verbose): return list_objects(cur, pattern, verbose, ['i', 's', '']) @special_command('\\df', '\\df[+] [pattern]', 'List functions.') def list_functions(cur, pattern, verbose): if verbose: verbose_columns = ''' ,CASE WHEN p.provolatile = 'i' THEN 'immutable' WHEN p.provolatile = 's' THEN 'stable' WHEN p.provolatile = 'v' THEN 'volatile' END as "Volatility", pg_catalog.pg_get_userbyid(p.proowner) as "Owner", l.lanname as "Language", p.prosrc as "Source code", pg_catalog.obj_description(p.oid, 'pg_proc') as "Description" ''' verbose_table = ''' LEFT JOIN pg_catalog.pg_language l ON l.oid = p.prolang''' else: verbose_columns = verbose_table = '' sql = ''' SELECT n.nspname as "Schema", p.proname as "Name", pg_catalog.pg_get_function_result(p.oid) as "Result data type", pg_catalog.pg_get_function_arguments(p.oid) as "Argument data types", CASE WHEN p.proisagg THEN 'agg' WHEN p.proiswindow THEN 'window' WHEN p.prorettype = 'pg_catalog.trigger'::pg_catalog.regtype THEN 'trigger' ELSE 'normal' END as "Type" ''' + verbose_columns + ''' FROM pg_catalog.pg_proc p LEFT JOIN pg_catalog.pg_namespace n ON n.oid = p.pronamespace ''' + verbose_table + ''' WHERE ''' schema_pattern, func_pattern = sql_name_pattern(pattern) params = [] if schema_pattern: sql += ' n.nspname ~ %s ' params.append(schema_pattern) else: sql += ' pg_catalog.pg_function_is_visible(p.oid) ' if func_pattern: sql += ' AND p.proname ~ %s ' params.append(func_pattern) if not (schema_pattern or func_pattern): sql += ''' AND n.nspname <> 'pg_catalog' AND n.nspname <> 'information_schema' ''' sql = cur.mogrify(sql + ' ORDER BY 1, 2, 4', params) log.debug(sql) cur.execute(sql) if cur.description: headers = [x[0] for x in cur.description] return [(None, cur, headers, cur.statusmessage)] @special_command('\\dT', '\\dT[S+] [pattern]', 'List data types') def list_datatypes(cur, pattern, verbose): assert True sql = '''SELECT n.nspname as "Schema", pg_catalog.format_type(t.oid, NULL) AS "Name", ''' if verbose: sql += r''' t.typname AS "Internal name", CASE WHEN t.typrelid != 0 THEN CAST('tuple' AS pg_catalog.text) WHEN t.typlen < 0 THEN CAST('var' AS pg_catalog.text) ELSE CAST(t.typlen AS pg_catalog.text) END AS "Size", pg_catalog.array_to_string( ARRAY( SELECT e.enumlabel FROM pg_catalog.pg_enum e WHERE e.enumtypid = t.oid ORDER BY e.enumsortorder ), E'\n') AS "Elements", pg_catalog.array_to_string(t.typacl, E'\n') AS "Access privileges", pg_catalog.obj_description(t.oid, 'pg_type') AS "Description"''' else: sql += ''' pg_catalog.obj_description(t.oid, 'pg_type') as "Description" ''' sql += ''' FROM pg_catalog.pg_type t LEFT JOIN pg_catalog.pg_namespace n ON n.oid = t.typnamespace WHERE (t.typrelid = 0 OR ( SELECT c.relkind = 'c' FROM pg_catalog.pg_class c WHERE c.oid = t.typrelid)) AND NOT EXISTS( SELECT 1 FROM pg_catalog.pg_type el WHERE el.oid = t.typelem AND el.typarray = t.oid) ''' schema_pattern, type_pattern = sql_name_pattern(pattern) params = [] if schema_pattern: sql += ' AND n.nspname ~ %s ' params.append(schema_pattern) else: sql += ' AND pg_catalog.pg_type_is_visible(t.oid) ' if type_pattern: sql += ''' AND (t.typname ~ %s OR pg_catalog.format_type(t.oid, NULL) ~ %s) ''' params.extend(2 * [type_pattern]) if not (schema_pattern or type_pattern): sql += ''' AND n.nspname <> 'pg_catalog' AND n.nspname <> 'information_schema' ''' sql = cur.mogrify(sql + ' ORDER BY 1, 2', params) log.debug(sql) cur.execute(sql) if cur.description: headers = [x[0] for x in cur.description] return [(None, cur, headers, cur.statusmessage)] @special_command('describe', 'DESCRIBE [pattern]', '', hidden=True, case_sensitive=False) @special_command('\\d', '\\d [pattern]', 'List or describe tables, views and sequences.') def describe_table_details(cur, pattern, verbose): """ Returns (title, rows, headers, status) """ # This is a simple \d command. No table name to follow. if not pattern: sql = """SELECT n.nspname as "Schema", c.relname as "Name", CASE c.relkind WHEN 'r' THEN 'table' WHEN 'v' THEN 'view' WHEN 'm' THEN 'materialized view' WHEN 'i' THEN 'index' WHEN 'S' THEN 'sequence' WHEN 's' THEN 'special' WHEN 'f' THEN 'foreign table' END as "Type", pg_catalog.pg_get_userbyid(c.relowner) as "Owner" FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE c.relkind IN ('r','v','m','S','f','') AND n.nspname <> 'pg_catalog' AND n.nspname <> 'information_schema' AND n.nspname !~ '^pg_toast' AND pg_catalog.pg_table_is_visible(c.oid) ORDER BY 1,2 """ log.debug(sql) cur.execute(sql) if cur.description: headers = [x[0] for x in cur.description] return [(None, cur, headers, cur.statusmessage)] # This is a \d <tablename> command. A royal pain in the ass. schema, relname = sql_name_pattern(pattern) where = [] params = [] if not pattern: where.append('pg_catalog.pg_table_is_visible(c.oid)') if schema: where.append('n.nspname ~ %s') params.append(schema) if relname: where.append('c.relname ~ %s') params.append(relname) sql = """SELECT c.oid, n.nspname, c.relname FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace """ + ('WHERE ' + ' AND '.join(where) if where else '') + """ ORDER BY 2,3""" sql = cur.mogrify(sql, params) # Execute the sql, get the results and call describe_one_table_details on each table. log.debug(sql) cur.execute(sql) if not (cur.rowcount > 0): return [(None, None, None, 'Did not find any relation named %s.' % pattern)] results = [] for oid, nspname, relname in cur.fetchall(): results.append(describe_one_table_details(cur, nspname, relname, oid, verbose)) return results def describe_one_table_details(cur, schema_name, relation_name, oid, verbose): if verbose: suffix = """pg_catalog.array_to_string(c.reloptions || array(select 'toast.' || x from pg_catalog.unnest(tc.reloptions) x), ', ')""" else: suffix = "''" sql ="""SELECT c.relchecks, c.relkind, c.relhasindex, c.relhasrules, c.relhastriggers, c.relhasoids, %s, c.reltablespace, CASE WHEN c.reloftype = 0 THEN '' ELSE c.reloftype::pg_catalog.regtype::pg_catalog.text END, c.relpersistence FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_class tc ON (c.reltoastrelid = tc.oid) WHERE c.oid = '%s'""" % (suffix, oid) # Create a namedtuple called tableinfo and match what's in describe.c log.debug(sql) cur.execute(sql) if (cur.rowcount > 0): tableinfo = TableInfo._make(cur.fetchone()) else: return (None, None, None, 'Did not find any relation with OID %s.' % oid) # If it's a seq, fetch it's value and store it for later. if tableinfo.relkind == 'S': # Do stuff here. sql = '''SELECT * FROM "%s"."%s"''' % (schema_name, relation_name) log.debug(sql) cur.execute(sql) if not (cur.rowcount > 0): return (None, None, None, 'Something went wrong.') seq_values = cur.fetchone() # Get column info sql = """SELECT a.attname, pg_catalog.format_type(a.atttypid, a.atttypmod), (SELECT substring(pg_catalog.pg_get_expr(d.adbin, d.adrelid) for 128) FROM pg_catalog.pg_attrdef d WHERE d.adrelid = a.attrelid AND d.adnum = a.attnum AND a.atthasdef), a.attnotnull, a.attnum, (SELECT c.collname FROM pg_catalog.pg_collation c, pg_catalog.pg_type t WHERE c.oid = a.attcollation AND t.oid = a.atttypid AND a.attcollation <> t.typcollation) AS attcollation""" if tableinfo.relkind == 'i': sql += """, pg_catalog.pg_get_indexdef(a.attrelid, a.attnum, TRUE) AS indexdef""" else: sql += """, NULL AS indexdef""" if tableinfo.relkind == 'f': sql += """, CASE WHEN attfdwoptions IS NULL THEN '' ELSE '(' || array_to_string(ARRAY(SELECT quote_ident(option_name) || ' ' || quote_literal(option_value) FROM pg_options_to_table(attfdwoptions)), ', ') || ')' END AS attfdwoptions""" else: sql += """, NULL AS attfdwoptions""" if verbose: sql += """, a.attstorage""" sql += """, CASE WHEN a.attstattarget=-1 THEN NULL ELSE a.attstattarget END AS attstattarget""" if (tableinfo.relkind == 'r' or tableinfo.relkind == 'v' or tableinfo.relkind == 'm' or tableinfo.relkind == 'f' or tableinfo.relkind == 'c'): sql += """, pg_catalog.col_description(a.attrelid, a.attnum)""" sql += """ FROM pg_catalog.pg_attribute a WHERE a.attrelid = '%s' AND a.attnum > 0 AND NOT a.attisdropped ORDER BY a.attnum; """ % oid log.debug(sql) cur.execute(sql) res = cur.fetchall() title = (tableinfo.relkind, schema_name, relation_name) # Set the column names. headers = ['Column', 'Type'] show_modifiers = False if (tableinfo.relkind == 'r' or tableinfo.relkind == 'v' or tableinfo.relkind == 'm' or tableinfo.relkind == 'f' or tableinfo.relkind == 'c'): headers.append('Modifiers') show_modifiers = True if (tableinfo.relkind == 'S'): headers.append("Value") if (tableinfo.relkind == 'i'): headers.append("Definition") if (tableinfo.relkind == 'f'): headers.append("FDW Options") if (verbose): headers.append("Storage") if (tableinfo.relkind == 'r' or tableinfo.relkind == 'm' or tableinfo.relkind == 'f'): headers.append("Stats target") # Column comments, if the relkind supports this feature. */ if (tableinfo.relkind == 'r' or tableinfo.relkind == 'v' or tableinfo.relkind == 'm' or tableinfo.relkind == 'c' or tableinfo.relkind == 'f'): headers.append("Description") view_def = '' # /* Check if table is a view or materialized view */ if ((tableinfo.relkind == 'v' or tableinfo.relkind == 'm') and verbose): sql = """SELECT pg_catalog.pg_get_viewdef('%s'::pg_catalog.oid, true)""" % oid log.debug(sql) cur.execute(sql) if cur.rowcount > 0: view_def = cur.fetchone() # Prepare the cells of the table to print. cells = [] for i, row in enumerate(res): cell = [] cell.append(row[0]) # Column cell.append(row[1]) # Type if show_modifiers: modifier = '' if row[5]: modifier += ' collate %s' % row[5] if row[3]: modifier += ' not null' if row[2]: modifier += ' default %s' % row[2] cell.append(modifier) # Sequence if tableinfo.relkind == 'S': cell.append(seq_values[i]) # Index column if TableInfo.relkind == 'i': cell.append(row[6]) # /* FDW options for foreign table column, only for 9.2 or later */ if tableinfo.relkind == 'f': cell.append(row[7]) if verbose: storage = row[8] if storage[0] == 'p': cell.append('plain') elif storage[0] == 'm': cell.append('main') elif storage[0] == 'x': cell.append('extended') elif storage[0] == 'e': cell.append('external') else: cell.append('???') if (tableinfo.relkind == 'r' or tableinfo.relkind == 'm' or tableinfo.relkind == 'f'): cell.append(row[9]) # /* Column comments, if the relkind supports this feature. */ if (tableinfo.relkind == 'r' or tableinfo.relkind == 'v' or tableinfo.relkind == 'm' or tableinfo.relkind == 'c' or tableinfo.relkind == 'f'): cell.append(row[10]) cells.append(cell) # Make Footers status = [] if (tableinfo.relkind == 'i'): # /* Footer information about an index */ sql = """SELECT i.indisunique, i.indisprimary, i.indisclustered, i.indisvalid, (NOT i.indimmediate) AND EXISTS (SELECT 1 FROM pg_catalog.pg_constraint WHERE conrelid = i.indrelid AND conindid = i.indexrelid AND contype IN ('p','u','x') AND condeferrable) AS condeferrable, (NOT i.indimmediate) AND EXISTS (SELECT 1 FROM pg_catalog.pg_constraint WHERE conrelid = i.indrelid AND conindid = i.indexrelid AND contype IN ('p','u','x') AND condeferred) AS condeferred, a.amname, c2.relname, pg_catalog.pg_get_expr(i.indpred, i.indrelid, true) FROM pg_catalog.pg_index i, pg_catalog.pg_class c, pg_catalog.pg_class c2, pg_catalog.pg_am a WHERE i.indexrelid = c.oid AND c.oid = '%s' AND c.relam = a.oid AND i.indrelid = c2.oid;""" % oid log.debug(sql) cur.execute(sql) (indisunique, indisprimary, indisclustered, indisvalid, deferrable, deferred, indamname, indtable, indpred) = cur.fetchone() if indisprimary: status.append("primary key, ") elif indisunique: status.append("unique, ") status.append("%s, " % indamname) #/* we assume here that index and table are in same schema */ status.append('for table "%s.%s"' % (schema_name, indtable)) if indpred: status.append(", predicate (%s)" % indpred) if indisclustered: status.append(", clustered") if indisvalid: status.append(", invalid") if deferrable: status.append(", deferrable") if deferred: status.append(", initially deferred") status.append('\n') #add_tablespace_footer(&cont, tableinfo.relkind, #tableinfo.tablespace, true); elif tableinfo.relkind == 'S': # /* Footer information about a sequence */ # /* Get the column that owns this sequence */ sql = ("SELECT pg_catalog.quote_ident(nspname) || '.' ||" "\n pg_catalog.quote_ident(relname) || '.' ||" "\n pg_catalog.quote_ident(attname)" "\nFROM pg_catalog.pg_class c" "\nINNER JOIN pg_catalog.pg_depend d ON c.oid=d.refobjid" "\nINNER JOIN pg_catalog.pg_namespace n ON n.oid=c.relnamespace" "\nINNER JOIN pg_catalog.pg_attribute a ON (" "\n a.attrelid=c.oid AND" "\n a.attnum=d.refobjsubid)" "\nWHERE d.classid='pg_catalog.pg_class'::pg_catalog.regclass" "\n AND d.refclassid='pg_catalog.pg_class'::pg_catalog.regclass" "\n AND d.objid=%s \n AND d.deptype='a'" % oid) log.debug(sql) cur.execute(sql) result = cur.fetchone() if result: status.append("Owned by: %s" % result[0]) #/* #* If we get no rows back, don't show anything (obviously). We should #* never get more than one row back, but if we do, just ignore it and #* don't print anything. #*/ elif (tableinfo.relkind == 'r' or tableinfo.relkind == 'm' or tableinfo.relkind == 'f'): #/* Footer information about a table */ if (tableinfo.hasindex): sql = "SELECT c2.relname, i.indisprimary, i.indisunique, i.indisclustered, " sql += "i.indisvalid, " sql += "pg_catalog.pg_get_indexdef(i.indexrelid, 0, true),\n " sql += ("pg_catalog.pg_get_constraintdef(con.oid, true), " "contype, condeferrable, condeferred") sql += ", c2.reltablespace" sql += ("\nFROM pg_catalog.pg_class c, pg_catalog.pg_class c2, " "pg_catalog.pg_index i\n") sql += " LEFT JOIN pg_catalog.pg_constraint con ON (conrelid = i.indrelid AND conindid = i.indexrelid AND contype IN ('p','u','x'))\n" sql += ("WHERE c.oid = '%s' AND c.oid = i.indrelid AND i.indexrelid = c2.oid\n" "ORDER BY i.indisprimary DESC, i.indisunique DESC, c2.relname;") % oid log.debug(sql) result = cur.execute(sql) if (cur.rowcount > 0): status.append("Indexes:\n") for row in cur: #/* untranslated index name */ status.append(' "%s"' % row[0]) #/* If exclusion constraint, print the constraintdef */ if row[7] == "x": status.append(row[6]) else: #/* Label as primary key or unique (but not both) */ if row[1]: status.append(" PRIMARY KEY,") elif row[2]: if row[7] == "u": status.append(" UNIQUE CONSTRAINT,") else: status.append(" UNIQUE,") # /* Everything after "USING" is echoed verbatim */ indexdef = row[5] usingpos = indexdef.find(" USING ") if (usingpos >= 0): indexdef = indexdef[(usingpos + 7):] status.append(" %s" % indexdef) # /* Need these for deferrable PK/UNIQUE indexes */ if row[8]: status.append(" DEFERRABLE") if row[9]: status.append(" INITIALLY DEFERRED") # /* Add these for all cases */ if row[3]: status.append(" CLUSTER") if not row[4]: status.append(" INVALID") status.append('\n') # printTableAddFooter(&cont, buf.data); # /* Print tablespace of the index on the same line */ # add_tablespace_footer(&cont, 'i', # atooid(PQgetvalue(result, i, 10)), # false); # /* print table (and column) check constraints */ if (tableinfo.checks): sql = ("SELECT r.conname, " "pg_catalog.pg_get_constraintdef(r.oid, true)\n" "FROM pg_catalog.pg_constraint r\n" "WHERE r.conrelid = '%s' AND r.contype = 'c'\n" "ORDER BY 1;" % oid) log.debug(sql) cur.execute(sql) if (cur.rowcount > 0): status.append("Check constraints:\n") for row in cur: #/* untranslated contraint name and def */ status.append(" \"%s\" %s" % row) status.append('\n') #/* print foreign-key constraints (there are none if no triggers) */ if (tableinfo.hastriggers): sql = ("SELECT conname,\n" " pg_catalog.pg_get_constraintdef(r.oid, true) as condef\n" "FROM pg_catalog.pg_constraint r\n" "WHERE r.conrelid = '%s' AND r.contype = 'f' ORDER BY 1;" % oid) log.debug(sql) cur.execute(sql) if (cur.rowcount > 0): status.append("Foreign-key constraints:\n") for row in cur: #/* untranslated constraint name and def */ status.append(" \"%s\" %s\n" % row) #/* print incoming foreign-key references (none if no triggers) */ if (tableinfo.hastriggers): sql = ("SELECT conrelid::pg_catalog.regclass, conname,\n" " pg_catalog.pg_get_constraintdef(c.oid, true) as condef\n" "FROM pg_catalog.pg_constraint c\n" "WHERE c.confrelid = '%s' AND c.contype = 'f' ORDER BY 1;" % oid) log.debug(sql) cur.execute(sql) if (cur.rowcount > 0): status.append("Referenced by:\n") for row in cur: status.append(" TABLE \"%s\" CONSTRAINT \"%s\" %s\n" % row) # /* print rules */ if (tableinfo.hasrules and tableinfo.relkind != 'm'): sql = ("SELECT r.rulename, trim(trailing ';' from pg_catalog.pg_get_ruledef(r.oid, true)), " "ev_enabled\n" "FROM pg_catalog.pg_rewrite r\n" "WHERE r.ev_class = '%s' ORDER BY 1;" % oid) log.debug(sql) cur.execute(sql) if (cur.rowcount > 0): for category in range(4): have_heading = False for row in cur: if category == 0 and row[2] == 'O': list_rule = True elif category == 1 and row[2] == 'D': list_rule = True elif category == 2 and row[2] == 'A': list_rule = True elif category == 3 and row[2] == 'R': list_rule = True if not list_rule: continue if not have_heading: if category == 0: status.append("Rules:") if category == 1: status.append("Disabled rules:") if category == 2: status.append("Rules firing always:") if category == 3: status.append("Rules firing on replica only:") have_heading = True # /* Everything after "CREATE RULE" is echoed verbatim */ ruledef = row[1] status.append(" %s" % ruledef) if (view_def): #/* Footer information about a view */ status.append("View definition:\n") status.append("%s \n" % view_def) #/* print rules */ if tableinfo.hasrules: sql = ("SELECT r.rulename, trim(trailing ';' from pg_catalog.pg_get_ruledef(r.oid, true))\n" "FROM pg_catalog.pg_rewrite r\n" "WHERE r.ev_class = '%s' AND r.rulename != '_RETURN' ORDER BY 1;" % oid) log.debug(sql) cur.execute(sql) if (cur.rowcount > 0): status.append("Rules:\n") for row in cur: #/* Everything after "CREATE RULE" is echoed verbatim */ ruledef = row[1] status.append(" %s\n" % ruledef) #/* # * Print triggers next, if any (but only user-defined triggers). This # * could apply to either a table or a view. # */ if tableinfo.hastriggers: sql = ( "SELECT t.tgname, " "pg_catalog.pg_get_triggerdef(t.oid, true), " "t.tgenabled\n" "FROM pg_catalog.pg_trigger t\n" "WHERE t.tgrelid = '%s' AND " % oid); sql += "NOT t.tgisinternal" sql += "\nORDER BY 1;" log.debug(sql) cur.execute(sql) if cur.rowcount > 0: #/* #* split the output into 4 different categories. Enabled triggers, #* disabled triggers and the two special ALWAYS and REPLICA #* configurations. #*/ for category in range(4): have_heading = False; list_trigger = False; for row in cur: #/* # * Check if this trigger falls into the current category # */ tgenabled = row[2] if category ==0: if (tgenabled == 'O' or tgenabled == True): list_trigger = True elif category ==1: if (tgenabled == 'D' or tgenabled == False): list_trigger = True elif category ==2: if (tgenabled == 'A'): list_trigger = True elif category ==3: if (tgenabled == 'R'): list_trigger = True if list_trigger == False: continue; # /* Print the category heading once */ if not have_heading: if category == 0: status.append("Triggers:") elif category == 1: status.append("Disabled triggers:") elif category == 2: status.append("Triggers firing always:") elif category == 3: status.append("Triggers firing on replica only:") status.append('\n') have_heading = True #/* Everything after "TRIGGER" is echoed verbatim */ tgdef = row[1] triggerpos = tgdef.find(" TRIGGER ") if triggerpos >= 0: tgdef = triggerpos + 9; status.append(" %s\n" % row[1][tgdef:]) #/* #* Finish printing the footer information about a table. #*/ if (tableinfo.relkind == 'r' or tableinfo.relkind == 'm' or tableinfo.relkind == 'f'): # /* print foreign server name */ if tableinfo.relkind == 'f': #/* Footer information about foreign table */ sql = ("SELECT s.srvname,\n" " array_to_string(ARRAY(SELECT " " quote_ident(option_name) || ' ' || " " quote_literal(option_value) FROM " " pg_options_to_table(ftoptions)), ', ') " "FROM pg_catalog.pg_foreign_table f,\n" " pg_catalog.pg_foreign_server s\n" "WHERE f.ftrelid = %s AND s.oid = f.ftserver;" % oid) log.debug(sql) cur.execute(sql) row = cur.fetchone() # /* Print server name */ status.append("Server: %s\n" % row[0]) # /* Print per-table FDW options, if any */ if (row[1]): status.append("FDW Options: (%s)\n" % ftoptions) #/* print inherited tables */ sql = ("SELECT c.oid::pg_catalog.regclass FROM pg_catalog.pg_class c, " "pg_catalog.pg_inherits i WHERE c.oid=i.inhparent AND " "i.inhrelid = '%s' ORDER BY inhseqno;" % oid) log.debug(sql) cur.execute(sql) spacer = '' if cur.rowcount > 0: status.append("Inherits") for row in cur: status.append("%s: %s,\n" % (spacer, row)) spacer = ' ' * len('Inherits') #/* print child tables */ sql = ("SELECT c.oid::pg_catalog.regclass FROM pg_catalog.pg_class c," " pg_catalog.pg_inherits i WHERE c.oid=i.inhrelid AND" " i.inhparent = '%s' ORDER BY" " c.oid::pg_catalog.regclass::pg_catalog.text;" % oid) log.debug(sql) cur.execute(sql) if not verbose: #/* print the number of child tables, if any */ if (cur.rowcount > 0): status.append("Number of child tables: %d (Use \d+ to list" "them.)\n" % cur.rowcount) else: spacer = '' if (cur.rowcount >0): status.append('Child tables') #/* display the list of child tables */ for row in cur: status.append("%s: %s,\n" % (spacer, row)) spacer = ' ' * len('Child tables') #/* Table type */ if (tableinfo.reloftype): status.append("Typed table of type: %s\n" % tableinfo.reloftype) #/* OIDs, if verbose and not a materialized view */ if (verbose and tableinfo.relkind != 'm'): status.append("Has OIDs: %s\n" % ("yes" if tableinfo.hasoids else "no")) #/* Tablespace info */ #add_tablespace_footer(&cont, tableinfo.relkind, tableinfo.tablespace, #true); # /* reloptions, if verbose */ if (verbose and tableinfo.reloptions): status.append("Options: %s\n" % tableinfo.reloptions) return (None, cells, headers, "".join(status)) def sql_name_pattern(pattern): """ Takes a wildcard-pattern and converts to an appropriate SQL pattern to be used in a WHERE clause. Returns: schema_pattern, table_pattern >>> sql_name_pattern('foo*."b""$ar*"') ('^(foo.*)$', '^(b"\\\\$ar\\\\*)$') """ inquotes = False relname = '' schema = None pattern_len = len(pattern) i = 0 while i < pattern_len: c = pattern[i] if c == '"': if inquotes and i + 1 < pattern_len and pattern[i + 1] == '"': relname += '"' i += 1 else: inquotes = not inquotes elif not inquotes and c.isupper(): relname += c.lower() elif not inquotes and c == '*': relname += '.*' elif not inquotes and c == '?': relname += '.' elif not inquotes and c == '.': # Found schema/name separator, move current pattern to schema schema = relname relname = '' else: # Dollar is always quoted, whether inside quotes or not. if c == '$' or inquotes and c in '|*+?()[]{}.^\\': relname += '\\' relname += c i += 1 if relname: relname = '^(' + relname + ')$' if schema: schema = '^(' + schema + ')$' return schema, relname
the-stack_0_25658
# Copyright 2015-2017 Cisco Systems, Inc. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ All BGP constant values """ # some handy things to know BGP_MAX_PACKET_SIZE = 4096 BGP_MARKER_SIZE = 16 # size of BGP marker BGP_HEADER_SIZE = 19 # size of BGP header, including marker BGP_MIN_OPEN_MSG_SIZE = 29 BGP_MIN_UPDATE_MSG_SIZE = 23 BGP_MIN_NOTIFICATION_MSG_SIZE = 21 BGP_MIN_KEEPALVE_MSG_SIZE = BGP_HEADER_SIZE BGP_TCP_PORT = 179 BGP_ROUTE_DISTINGUISHER_SIZE = 8 # BGP message types BGP_OPEN = 1 BGP_UPDATE = 2 BGP_NOTIFICATION = 3 BGP_KEEPALIVE = 4 BGP_ROUTE_REFRESH = 5 BGP_CAPABILITY = 6 BGP_ROUTE_REFRESH_CISCO = 0x80 BGP_SIZE_OF_PATH_ATTRIBUTE = 2 # attribute flags, from RFC1771 BGP_ATTR_FLAG_OPTIONAL = 0x80 BGP_ATTR_FLAG_TRANSITIVE = 0x40 BGP_ATTR_FLAG_PARTIAL = 0x20 BGP_ATTR_FLAG_EXTENDED_LENGTH = 0x10 # SSA flags BGP_SSA_TRANSITIVE = 0x8000 BGP_SSA_TYPE = 0x7FFF # SSA Types BGP_SSA_L2TPv3 = 1 BGP_SSA_mGRE = 2 BGP_SSA_IPSec = 3 BGP_SSA_MPLS = 4 BGP_SSA_L2TPv3_IN_IPSec = 5 BGP_SSA_mGRE_IN_IPSec = 6 # AS_PATH segment types AS_SET = 1 # RFC1771 AS_SEQUENCE = 2 # RFC1771 AS_CONFED_SET = 4 # RFC1965 has the wrong values, corrected in AS_CONFED_SEQUENCE = 3 # draft-ietf-idr-bgp-confed-rfc1965bis-01.txt # OPEN message Optional Parameter types BGP_OPTION_AUTHENTICATION = 1 # RFC1771 BGP_OPTION_CAPABILITY = 2 # RFC2842 # attribute types BGPTYPE_ORIGIN = 1 # RFC1771 BGPTYPE_AS_PATH = 2 # RFC1771 BGPTYPE_NEXT_HOP = 3 # RFC1771 BGPTYPE_MULTI_EXIT_DISC = 4 # RFC1771 BGPTYPE_LOCAL_PREF = 5 # RFC1771 BGPTYPE_ATOMIC_AGGREGATE = 6 # RFC1771 BGPTYPE_AGGREGATOR = 7 # RFC1771 BGPTYPE_COMMUNITIES = 8 # RFC1997 BGPTYPE_ORIGINATOR_ID = 9 # RFC2796 BGPTYPE_CLUSTER_LIST = 10 # RFC2796 BGPTYPE_DPA = 11 # work in progress BGPTYPE_ADVERTISER = 12 # RFC1863 BGPTYPE_RCID_PATH = 13 # RFC1863 BGPTYPE_MP_REACH_NLRI = 14 # RFC2858 BGPTYPE_MP_UNREACH_NLRI = 15 # RFC2858 BGPTYPE_EXTENDED_COMMUNITY = 16 # Draft Ramachandra BGPTYPE_NEW_AS_PATH = 17 # draft-ietf-idr-as4bytes BGPTYPE_NEW_AGGREGATOR = 18 # draft-ietf-idr-as4bytes BGPTYPE_SAFI_SPECIFIC_ATTR = 19 # draft-kapoor-nalawade-idr-bgp-ssa-00.txt BGPTYPE_PMSI_TUNNEL = 22 # RFC 6514 BGPTYPE_TUNNEL_ENCAPS_ATTR = 23 # RFC5512 BGPTYPE_LINK_STATE = 29 BGPTYPE_LARGE_COMMUNITY = 32 BGPTYPE_ATTRIBUTE_SET = 128 # BGP Tunnel Encapsulation Attribute Tunnel Types BGP_TUNNEL_ENCAPS_RESERVED = 0 BGP_TUNNEL_ENCAPS_L2TPV3_OVER_IP = 1 BGP_TUNNEL_ENCAPS_GRE = 2 BGP_TUNNEL_ENCAPS_TRANSMIT_TUNNEL_ENDPOINT = 3 BGP_TUNNEL_ENCAPS_IPSEC_TUNNEL_MODE = 4 BGP_TUNNEL_ENCAPS_IP_IN_IP_TUNNEL_WITH_IPSEC = 5 BGP_TUNNEL_ENCAPS_MPLS_IN_IP_TUNNEL_WITH_IPSEC = 6 BGP_TUNNEL_ENCAPS_IP_IN_IP = 7 BGP_TUNNEL_ENCAPS_VXLAN = 8 BGP_TUNNEL_ENCAPS_NVGRE = 9 BGP_TUNNEL_ENCAPS_MPLS = 10 BGP_TUNNEL_ENCAPS_MPLS_IN_GRE = 11 BGP_TUNNEL_ENCAPS_VXLAN_GRE = 12 BGP_TUNNEL_ENCAPS_MPLS_IN_UDP = 13 BGP_TUNNEL_ENCAPS_IPV6_TUNNEL = 14 BGP_TUNNEL_ENCAPS_SR_TE_POLICY_TYPE = 15 BGP_TUNNEL_ENCAPS_BARE = 16 # Segment Sub-TLV type BGP_SRTE_SEGMENT_SUBTLV_MPLS = 1 BGP_SRTE_SEGMENT_SUBTLV_IPV6 = 2 BGP_SRTE_SEGMENT_SUBTLV_IPV4_SID = 3 BGP_SRTE_SEGMENT_SUBTLV_IPV6_SID = 4 BGP_SRTE_SEGMENT_SUBTLV_IPV4_INDEX_SID = 5 BGP_SRTE_SEGMENT_SUBTLV_IPV4_ADDR_SID = 6 BGP_SRTE_SEGMENT_SUBTLV_IPV6_INDEX_SID = 7 BGP_SRTE_SEGMENT_SUBTLV_IPV6_ADDR_SID = 8 # VPN Route Target # BGP_EXT_COM_RT_0 = 0x0002 # Route Target,Format AS(2bytes):AN(4bytes) BGP_EXT_COM_RT_1 = 0x0102 # Route Target,Format IPv4 address(4bytes):AN(2bytes) BGP_EXT_COM_RT_2 = 0x0202 # Route Target,Format AS(4bytes):AN(2bytes) # Route Origin (SOO site of Origin) BGP_EXT_COM_RO_0 = 0x0003 # Route Origin,Format AS(2bytes):AN(4bytes) BGP_EXT_COM_RO_1 = 0x0103 # Route Origin,Format IP address:AN(2bytes) BGP_EXT_COM_RO_2 = 0x0203 # Route Origin,Format AS(4bytes):AN(2bytes) # BGP Flow Spec BGP_EXT_REDIRECT_NH = 0x0800 # redirect to ipv4/v6 nexthop BGP_EXT_TRA_RATE = 0x8006 # traffic-rate 2-byte as#, 4-byte float BGP_EXT_TRA_ACTION = 0x8007 # traffic-action bitmask BGP_EXT_REDIRECT_VRF = 0x8008 # redirect 6-byte Route Target BGP_EXT_TRA_MARK = 0x8009 # traffic-marking DSCP value # Transitive Opaque BGP_EXT_COM_OSPF_ROUTE_TYPE = 0x0306 # OSPF Route Type BGP_EXT_COM_COLOR = 0x030b # Color BGP_EXT_COM_COLOR_00 = 0x030b0000 # Color-00 BGP_EXT_COM_COLOR_01 = 0x030b4000 # Color-01 BGP_EXT_COM_COLOR_10 = 0x030b8000 # Color-10 BGP_EXT_COM_COLOR_11 = 0x030bc000 # Color-11 BGP_EXT_COM_ENCAP = 0x030c # BGP_EXT_COM_ENCAP = 0x030c BGP_EXT_COM_DEFAULT_GATEWAY = 0x030d # Default Gateway # BGP EVPN BGP_EXT_COM_EVPN_MAC_MOBIL = 0x0600 # Mac Mobility BGP_EXT_COM_EVPN_ESI_MPLS_LABEL = 0x0601 # ESI MPLS Label BGP_EXT_COM_EVPN_ES_IMPORT = 0x0602 # ES Import BGP_EXT_COM_EVPN_ROUTE_MAC = 0x0603 # EVPN Router MAC Extended Community # BGP cost cummunity BGP_EXT_COM_COST = 0x4301 # BGP link bandwith BGP_EXT_COM_LINK_BW = 0x4004 # Unkonw BGP_EXT_COM_UNKNOW = 0x0000 BGP_EXT_COM_DICT = { 'redirect-vrf': 32776, # redirect 6-byte Route Target 'traffic-marking-dscp': 32777, # traffic-marking DSCP value 'traffic-rate': 32774, # traffic-rate 2-byte as#, 4-byte float 'traffic-action': 32775, # traffic-action Sample (bit 46) Terminal Action (bit 47) 'color': 779, # Color # Color, leftmost 2 bits of reserved field = 00, CO bits = 00, # srpolicy -> IGP 'color-00': 51052544, # Color, leftmost 2 bits of reserved field = 01, CO bits = 01, # srpolicy -> same afi null endpoint -> any null endpoint -> IGP 'color-01': 51068928, # Color, leftmost 2 bits of reserved field = 10, CO bits = 10, # srpolicy -> same afi null endpoint -> any null endpoint -> same afi endpoint -> any endpoint -> IGP 'color-10': 51085312, # Color, leftmost 2 bits of reserved field = 11, CO bits = 11, # treated like color-00 'color-11': 51101696, 'encapsulation': 780, # BGP_EXT_COM_ENCAP = 0x030c 'es-import': 1538, # ES Import 'router-mac': 1539 # EVPN Router MAC Extended Community } BGP_EXT_COM_STR_DICT = { 258: 'route-target', 2: 'route-target', 514: 'route-target', 779: 'color', 16388: 'dmzlink-bw', 259: 'route-origin', 515: 'route-origin', 3: 'route-origin', 32776: 'redirect-vrf', 2048: 'redirect-nexthop', 1537: 'esi-label', 1536: 'mac-mobility', 32777: 'traffic-marking-dscp', 32774: 'traffic-rate', 51052544: 'color-00', 51068928: 'color-01', 51085312: 'color-10', 51101696: 'color-11', 780: 'encapsulation', 1538: 'es-import', 1539: 'router-mac', 32775: 'traffic-action' } BGP_EXT_COM_DICT_1 = { 'esi-label': 1537, # ESI MPLS Label 'mac-mobility': 1536, # Mac Mobility } # route distinguisher type BGP_ROUTE_DISTINGUISHER_TYPE_0 = 0x0000 BGP_ROUTE_DISTINGUISHER_TYPE_1 = 0x0001 BGP_ROUTE_DISTINGUISHER_TYPE_2 = 0x0002 # PMSI TUNNEL TYPE PMSI_TUNNEL_TYPE_NO_TUNNEL = 0 PMSI_TUNNEL_TYPE_RSVP_TE_P2MP = 1 PMSI_TUNNEL_TYPE_MLDP_P2MP = 2 PMSI_TUNNEL_TYPE_PIM_SSM_TREE = 3 PMSI_TUNNEL_TYPE_PIM_SM_TREE = 4 PMSI_TUNNEL_TYPE_BIDIR_PIM_TREE = 5 PMSI_TUNNEL_TYPE_INGRESS_REPL = 6 PMSI_TUNNEL_TYPE_MLDP_MP2MP = 7 # NLRI type as define in BGP flow spec RFC BGPNLRI_FSPEC_DST_PFIX = 1 # RFC 5575 BGPNLRI_FSPEC_SRC_PFIX = 2 # RFC 5575 BGPNLRI_FSPEC_IP_PROTO = 3 # RFC 5575 BGPNLRI_FSPEC_PORT = 4 # RFC 5575 BGPNLRI_FSPEC_DST_PORT = 5 # RFC 5575 BGPNLRI_FSPEC_SRC_PORT = 6 # RFC 5575 BGPNLRI_FSPEC_ICMP_TP = 7 # RFC 5575 BGPNLRI_FSPEC_ICMP_CD = 8 # RFC 5575 BGPNLRI_FSPEC_TCP_FLAGS = 9 # RFC 5575 BGPNLRI_FSPEC_PCK_LEN = 10 # RFC 5575 BGPNLRI_FSPEC_DSCP = 11 # RFC 5575 BGPNLRI_FSPEC_FRAGMENT = 12 # RFC 5575 # NLRI type as define in BGP flow spec RFC BGPNLRI_IPV6_FSPEC_DST_PFIX = 1 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_SRC_PFIX = 2 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_NEXT_HEADER = 3 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_PORT = 4 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_DST_PORT = 5 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_SRC_PORT = 6 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_ICMP_TP = 7 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_ICMP_CD = 8 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_TCP_FLAGS = 9 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_PCK_LEN = 10 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_DSCP = 11 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_FRAGMENT = 12 # draft-ietf-idr-flow-spec-v6-09 BGPNLRI_IPV6_FSPEC_FLOW_LABLE = 13 # draft-ietf-idr-flow-spec-v6-09 # Sub-TLVs as defined in SR TE Policy draft BGP_BSID_PREFERENCE_OLD_OR_NEW = 0 BGPSUB_TLV_PREFERENCE = 6 BGPSUB_TLV_REMOTEENDPOINT_NEW = 6 BGPSUB_TLV_BINDGINGSID = 7 BGPSUB_TLV_PREFERENCE_NEW = 12 BGPSUB_TLV_BINDGINGSID_NEW = 13 BGPSUB_TLV_ENLP_NEW = 14 BGPSUB_TLV_PRIORITY_NEW = 15 BGPSUB_TLV_SIDLIST = 128 BGPSUB_TLV_POLICYNAME_NEW = 129 # Sub-TLVs as defined in SR TE Policy draft and used in BGPSUB_TLV_SIDLIST BGPSUB_TLV_WEIGHTED = 9 BGPSUB_TLV_SID = 1 # NLRI type as define in BGP EVPN BGPNLRI_EVPN_ETHERNET_AUTO_DISCOVERY = 1 BGPNLRI_EVPN_MAC_IP_ADVERTISEMENT = 2 BGPNLRI_EVPN_INCLUSIVE_MULTICAST_ETHERNET_TAG = 3 BGPNLRI_EVPN_ETHERNET_SEGMENT = 4 BGPNLRI_EVPN_IP_ROUTE_PREFIX = 5 # ESI type as define in NLRI of BGP EVPN ESI_BGPNLRI_EVPN_TYPE_0 = 0 ESI_BGPNLRI_EVPN_TYPE_1 = 1 ESI_BGPNLRI_EVPN_TYPE_2 = 2 ESI_BGPNLRI_EVPN_TYPE_3 = 3 ESI_BGPNLRI_EVPN_TYPE_4 = 4 ESI_BGPNLRI_EVPN_TYPE_5 = 5 # BGP message Constants VERSION = 4 PORT = 179 HDR_LEN = 19 MAX_LEN = 4096 # BGP messages type MSG_BGP_CLOSED = 0 MSG_OPEN = 1 MSG_UPDATE = 2 MSG_NOTIFICATION = 3 MSG_KEEPALIVE = 4 MSG_ROUTEREFRESH = 5 MSG_CISCOROUTEREFRESH = 128 # BGP Capabilities Support SUPPORT_4AS = False CISCO_ROUTE_REFRESH = False NEW_ROUTE_REFRESH = False GRACEFUL_RESTART = False # AFI_SAFI mapping AFI_SAFI_DICT = { (1, 1): 'ipv4', (2, 1): 'ipv6', (1, 4): 'ipv4_lu', (2, 4): 'ipv6_lu', (1, 133): 'flowspec', (1, 128): 'vpnv4', (2, 128): 'vpnv6', (25, 70): 'evpn', (16388, 71): 'bgpls', (1, 73): 'ipv4_srte', (2, 133): 'ipv6_flowspec' } AFI_SAFI_STR_DICT = { 'ipv6': (2, 1), 'ipv4': (1, 1), 'ipv4_lu': (1, 4), 'ipv6_lu': (2, 4), 'flowspec': (1, 133), 'vpnv4': (1, 128), 'vpnv6': (2, 128), 'evpn': (25, 70), 'bgpls': (16388, 71), 'ipv4_srte': (1, 73), 'ipv6_flowspec': (2, 133) } ADD_PATH_ACT_DICT = { 1: 'receive', 2: 'send', 3: 'both' } # BGP FSM State ST_IDLE = 1 ST_CONNECT = 2 ST_ACTIVE = 3 ST_OPENSENT = 4 ST_OPENCONFIRM = 5 ST_ESTABLISHED = 6 # BGP Timer (seconds) # DELAY_OPEN_TIME = 10 ROUTE_REFRESH_TIME = 10 LARGER_HOLD_TIME = 4 * 60 # CONNECT_RETRY_TIME = 30 # IDLEHOLD_TIME = 30 # HOLD_TIME = 120 stateDescr = { ST_IDLE: "IDLE", ST_CONNECT: "CONNECT", ST_ACTIVE: "ACTIVE", ST_OPENSENT: "OPENSENT", ST_OPENCONFIRM: "OPENCONFIRM", ST_ESTABLISHED: "ESTABLISHED" } # Notification error codes ERR_MSG_HDR = 1 ERR_MSG_OPEN = 2 ERR_MSG_UPDATE = 3 ERR_HOLD_TIMER_EXPIRED = 4 ERR_FSM = 5 ERR_CEASE = 6 ERR_CAP = 7 # Notification error codes dict NOTIFICATION_ERROR_CODES_DICT = { ERR_MSG_HDR: "Message Header Error", ERR_MSG_OPEN: "OPEN Message Error", ERR_MSG_UPDATE: "UPDATE Message Error", ERR_HOLD_TIMER_EXPIRED: "Hold Timer Expired", ERR_FSM: "Finite State Machine Error", ERR_CEASE: "Cease", ERR_CAP: "CAPABILITY Message Error" } # Notification suberror codes for ERR_MSG_HDR ERR_MSG_HDR_CONN_NOT_SYNC = 1 ERR_MSG_HDR_BAD_MSG_LEN = 2 ERR_MSG_HDR_BAD_MSG_TYPE = 3 # Notification suberror codes for ERR_MSG_OPEN ERR_MSG_OPEN_UNSUP_VERSION = 1 ERR_MSG_OPEN_BAD_PEER_AS = 2 ERR_MSG_OPEN_BAD_BGP_ID = 3 ERR_MSG_OPEN_UNSUP_OPT_PARAM = 4 ERR_MSG_OPEN_UNACCPT_HOLD_TIME = 6 ERR_MSG_OPEN_UNSUP_CAPA = 7 # RFC 5492 ERR_MSG_OPEN_UNKNO = 8 # Notification suberror codes for ERR_MSG_UPDATE ERR_MSG_UPDATE_MALFORMED_ATTR_LIST = 1 ERR_MSG_UPDATE_UNRECOGNIZED_WELLKNOWN_ATTR = 2 ERR_MSG_UPDATE_MISSING_WELLKNOWN_ATTR = 3 ERR_MSG_UPDATE_ATTR_FLAGS = 4 ERR_MSG_UPDATE_ATTR_LEN = 5 ERR_MSG_UPDATE_INVALID_ORIGIN = 6 ERR_MSG_UPDATE_INVALID_NEXTHOP = 8 ERR_MSG_UPDATE_OPTIONAL_ATTR = 9 ERR_MSG_UPDATE_INVALID_NETWORK_FIELD = 10 ERR_MSG_UPDATE_MALFORMED_ASPATH = 11 ERR_MSG_UPDATE_UNKOWN_ATTR = 12 # Notification suberror codes for ERR_HOLD_TIMER_EXPIRED ERR_SUB_HOLD_TIMER_EXPIRED = 1 # Notification suberror codes for ERR_FSM ERR_SUB_FSM_ERROR = 1 # Notification suberror codes for ERR_CEASE ERR_MAXIMUM_NUMBER_OF_PREFIXES_REACHED = 1 ERR_ADMINISTRATIVE_SHUTDOWN = 2 ERR_PEER_DECONFIGURED = 3 ERR_ADMINISTRATIVE_RESET = 4 ERR_CONNECTION_RESET = 5 ERR_OTHER_CONFIGURATION_CHANGE = 6 ERR_CONNECTION_COLLISION_RESOLUTION = 7 ERR_OUT_OF_RESOURCES = 8 NOTIFICATION_SUB_ERROR_CODES_DICT = { ERR_MSG_HDR: { ERR_MSG_HDR_CONN_NOT_SYNC: 'Connection Not Synchronized', # 1 ERR_MSG_HDR_BAD_MSG_LEN: 'Bad Message Length', # 2 ERR_MSG_HDR_BAD_MSG_TYPE: 'Bad Message Type' # 3 }, ERR_MSG_OPEN: { ERR_MSG_OPEN_UNSUP_VERSION: 'Unsupported Version Number', ERR_MSG_OPEN_BAD_PEER_AS: 'Bad Peer AS', ERR_MSG_OPEN_BAD_BGP_ID: 'Bad BGP Identifier', ERR_MSG_OPEN_UNSUP_OPT_PARAM: 'Unsupported Optional Parameter', ERR_MSG_OPEN_UNACCPT_HOLD_TIME: 'Unacceptable Hold Time', ERR_MSG_OPEN_UNSUP_CAPA: 'Unsupported Capability', ERR_MSG_OPEN_UNKNO: 'NULL', }, ERR_MSG_UPDATE: { ERR_MSG_UPDATE_MALFORMED_ATTR_LIST: 'Malformed Attribute List', ERR_MSG_UPDATE_UNRECOGNIZED_WELLKNOWN_ATTR: 'Unrecognized Well-known Attribute', ERR_MSG_UPDATE_MISSING_WELLKNOWN_ATTR: 'Missing Well-known Attribute', ERR_MSG_UPDATE_ATTR_FLAGS: 'Attribute Flags Error', ERR_MSG_UPDATE_ATTR_LEN: 'Attribute Length Error', ERR_MSG_UPDATE_INVALID_ORIGIN: 'Invalid ORIGIN Attribute', ERR_MSG_UPDATE_INVALID_NEXTHOP: 'Invalid NEXT_HOP Attribute', ERR_MSG_UPDATE_OPTIONAL_ATTR: 'Optional Attribute Error', ERR_MSG_UPDATE_INVALID_NETWORK_FIELD: 'Invalid Network Field', ERR_MSG_UPDATE_MALFORMED_ASPATH: 'Malformed AS_PATH', ERR_MSG_UPDATE_UNKOWN_ATTR: 'NULL' }, ERR_HOLD_TIMER_EXPIRED: { ERR_SUB_HOLD_TIMER_EXPIRED: 'Hold timer expired' }, ERR_FSM: { ERR_SUB_FSM_ERROR: 'FSM error' }, ERR_CEASE: { ERR_MAXIMUM_NUMBER_OF_PREFIXES_REACHED: 'Maximum number of prefixes reached', ERR_ADMINISTRATIVE_SHUTDOWN: 'Administrative shutdown', ERR_PEER_DECONFIGURED: 'Peer reconfigured', ERR_ADMINISTRATIVE_RESET: 'Administrative reset', ERR_CONNECTION_RESET: 'Connection reset', ERR_OTHER_CONFIGURATION_CHANGE: 'Other configuration change', ERR_CONNECTION_COLLISION_RESOLUTION: 'Connection collision resolution', ERR_OUT_OF_RESOURCES: 'Out of resources' } } ATTRIBUTE_ID_2_STR = { 1: 'ORIGIN', 2: 'AS_PATH', 3: 'NEXT_HOP', 4: 'MULTI_EXIT_DISC', 5: 'LOCAL_PREF', 6: 'ATOMIC_AGGREGATE', 7: 'AGGREGATOR', 8: 'COMMUNITY', 9: 'ORIGINATOR_ID', 10: 'CLUSTER_LIST', 14: 'MP_REACH_NLRI', 15: 'MP_UNREACH_NLRI', 16: 'EXTENDED_COMMUNITY', 17: 'AS4_PATH', 18: 'AS4_AGGREGATOR', 22: 'PMSI_TUNNEL' } ATTRIBUTE_STR_2_ID = dict([(v, k) for (k, v) in ATTRIBUTE_ID_2_STR.items()]) WELL_KNOW_COMMUNITY_INT_2_STR = { 0xFFFF0000: 'PLANNED_SHUT', 0xFFFF0001: 'ACCEPT_OWN', 0xFFFF0002: 'ROUTE_FILTER_TRANSLATED_v4', 0xFFFF0003: 'ROUTE_FILTER_v4', 0xFFFF0004: 'ROUTE_FILTER_TRANSLATED_v6', 0xFFFF0005: 'ROUTE_FILTER_v6', 0xFFFF029A: 'BLACKHOLE', 0xFFFFFF01: 'NO_EXPORT', 0xFFFFFF02: 'NO_ADVERTISE', 0xFFFFFF03: 'NO_EXPORT_SUBCONFED', 0xFFFFFF04: 'NOPEER' } WELL_KNOW_COMMUNITY_STR_2_INT = dict( [(r, l) for (l, r) in WELL_KNOW_COMMUNITY_INT_2_STR.items()]) TCP_MD5SIG_MAXKEYLEN = 80 SS_PADSIZE_IPV4 = 120 TCP_MD5SIG = 14 SS_PADSIZE_IPV6 = 100 SIN6_FLOWINFO = 0 SIN6_SCOPE_ID = 0
the-stack_0_25659
from django.shortcuts import render from .forms import AddForm def add(request): total = 0 if request.GET: form = AddForm(request.GET) if form.is_valid(): total = form.add_numbers() else: form = AddForm() return render(request, 'add/add_form.html', { 'form': form, 'total': total, })
the-stack_0_25660
# -*- coding: utf-8 -*- #Password Hash Secret secret = 'Example' #Sign Up Page Open signup_open = True #Sign Up Invitation Code invitation_code = u"Example" #Order Name Length order_name_len = 8 #Debug Option debug = False
the-stack_0_25663
import datetime # from django.contrib.auth.decorators import user_passes_test import io import json from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.models import Group from django.forms.models import model_to_dict # Create your views here. from django.http import JsonResponse from django.middleware.csrf import get_token from django.shortcuts import HttpResponse, HttpResponseRedirect, render from django.utils.decorators import method_decorator from django.views import View from django_filters.rest_framework import DjangoFilterBackend, OrderingFilter from drf_yasg.utils import swagger_auto_schema from rest_framework import generics, mixins, status, views, viewsets from rest_framework.authentication import (BasicAuthentication, SessionAuthentication) from rest_framework.mixins import ListModelMixin from rest_framework.parsers import JSONParser from rest_framework.permissions import IsAuthenticated from rest_framework.renderers import JSONRenderer from rest_framework.request import Request from rest_framework.response import Response from rest_framework.serializers import ModelSerializer, SerializerMethodField from rest_framework.views import APIView from actor.models import (CURRENT_SEMESTER, CURRENT_SEMESTER_CODE, ordered_to_dict) from helpers.decorators import user_passes_test from initial.models import (AttendanceSheet, Course, CourseStatus, MarkSheet, OfferedCourses, SectionAttendance, SectionMarks, Semester, StudentAttendance, StudentMarks, Transcript) from initial.serializers import (AttendanceSheetSerializer, OfferedCoursesSerializer, TranscriptSerilazer) from student_portal.serializers import StudentSerializerOnlyNameAndUid from .forms import StudentForm, StudentFormValidate from .models import FeeChallan, Student from .serializers import StudentSerializer, StudentSerializerAllData # Create your views here. class UserNotLogged(View): def get(self, request): return JsonResponse({'message': 'Not Authenticated'}, status=401) def check_if_student(user): return bool(user.is_student) class BaseStudentLoginView(APIView): not_user_response = {'message': 'Login Required', 'condtion': False, 'status': 'failure'} not_student_response = {'message': 'User Logged in is Not a Student', 'condtion': False, 'status': 'failure'} @ method_decorator(user_passes_test(lambda u: u.is_authenticated, on_failure_json_response=JsonResponse(not_user_response, status=401))) @ method_decorator(user_passes_test(check_if_student, on_failure_json_response=JsonResponse(not_student_response, status=401))) def dispatch(self, request, *args, **kwargs): return super().dispatch(request, *args, **kwargs) class Home_json(BaseStudentLoginView): def get(self, request): print((request.user)) stud_obj = Student.objects.filter(uid=str(request.user)) print(stud_obj) user_obj = request.user dict_user = model_to_dict(user_obj) dict_user.pop('groups', None) dict_user.pop('password', None) student_data = StudentSerializer(stud_obj, many=True).data dat = {'status': 'success', 'student_data': student_data, 'user_data': dict_user, 'data': student_data} return JsonResponse(dat) class AttendanceView(BaseStudentLoginView): def get(self, request, course_code): from initial.models import AttendanceSheet, OfferedCourses print(dir(self)) print(dir(request.user)) s = Student.objects.get(uid=request.user) csddc = course_code + "_" + s.semester_code at = AttendanceSheet.objects.get( student__uid=request.user, scsddc__endswith=csddc) from initial.serializers import AttendanceSheetSerializer att_serialized = AttendanceSheetSerializer(at, many=True).data return JsonResponse({'message': 'Available Attendacne', 'condition': True, 'attendance': att_serialized}, status=200) class PostAttendanceQR(BaseStudentLoginView): def post(self, request): print(request.POST['qr_code']) request_data = json.loads(request.POST['qr_code']) if isinstance(request_data, int): JsonResponse({'message': 'QR Not Scanned Properly. Please Try again', 'status': 'QR Scan Error', 'condition': False}, status=400) print(request_data) print(request.user) try: att_object = StudentAttendance.objects.get(student=Student.objects.get(uid=str( request.user)), scsddc=request_data['scsddc'], class_date=request_data['class_date'], attendance_slot=request_data['attendance_slot'], section=request_data['section']) except StudentAttendance.DoesNotExist as err: return JsonResponse({'message': 'Student is not enrolled in this Class', 'condition': False, 'error': err}, status=400) if att_object.state == 'P': return JsonResponse({'message': 'Attendance Already Marked', 'condition': True, }, status=200) att_object.state = 'P' att_object.save() from initial.serializers import StudentAttendanceSerializer data = StudentAttendanceSerializer( att_object, context={'request': request}).data return JsonResponse({'message': 'Attendance Marked', 'condition': True, 'attendance': data}, status=200) class TimeTableView(BaseStudentLoginView): def get(self, request): # import requests # uid = str(request.user) # city = uid[2].lower() # rnum = uid[4:] # year = uid[0:2] # url = 'https://timetablenotifier.com/api/fetch.php?email="' + \ # str(city+year+rnum) + '@nu.edu.pk"' # print(url) # r = requests.get(url) # data = r.json() return JsonResponse({'data': [], 'message': 'TimeTable server is down', 'success': 0}) class RegistrationCheck(BaseStudentLoginView): def get(self, request): print(request.user) from institution.models import Department, Degree try: s = Student.objects.get(uid=request.user) dep = Department.objects.get( department_name=s.department_name_enrolled) deg = Degree.objects.get( degree_short=s.degree_short_enrolled, offering_department=dep) except Degree.DoesNotExist as e: return JsonResponse({'message': 'Invalid Student. Degree Does not Exist', 'condition': True, 'error_raised': True, 'error': str(e)}, status=401) except Department.DoesNotExist as e: return JsonResponse({'message': 'Invalid Student. Department Does not Exist', 'condition': True, 'error_raised': True}, status=401) if dep is None or deg is None: return JsonResponse({'message': 'Invalid Student', 'condition': True}, status=401) if(deg.registrations_open == True): return JsonResponse({'message': 'Regisrations are Active', 'condition': True}, status=200) else: return JsonResponse({'message': 'Regisrations are NOT Active', 'condition': False}, status=200) class RegistrationCourses(BaseStudentLoginView): @ swagger_auto_schema() def get(self, request): from institution.models import Department, Degree try: s = Student.objects.get(uid=request.user) if s.warning_count > 0: return JsonResponse({'message': 'Student in Warning. Conatact Academic Office.', 'condition': False}, status=200) from initial.models import Semester, OfferedCourses # sem = Semester.objects.get(semester_code=CURRENT_SEMESTER_CODE) # rg_courses = sem.regular_course_load.get(semester_season=CURRENT_SEMESTER,student_year=s.student_year) # el_courses = sem.elective_course_load.get(semester_season=CURRENT_SEMESTER) current_semester = Semester.objects.filter( current_semester=True).latest() s = OfferedCourses.objects.filter(student__uid=str( request.user), semester_code=current_semester.semester_code) # from rest_framework.request import Request from initial.serializers import OfferedCoursesSerializer offered_courses_to_student = OfferedCoursesSerializer( s, many=True, context={'request': request}).data from pprint import pprint pprint(offered_courses_to_student) except Semester.DoesNotExist as e: return JsonResponse({'message': 'Invalid Semester. Contact Adminstration.', 'condition': False, 'error_raised': True}, status=401) except OfferedCourses.DoesNotExist as e: return JsonResponse({'message': 'Invalid Student. Department Does not Exist', 'condition': False, 'error_raised': True}, status=401) if offered_courses_to_student is None: return JsonResponse({'message': 'No Available Courses', 'condition': False}, status=401) return JsonResponse({'message': 'Available Courses', 'condition': True, 'regular_courses': offered_courses_to_student}, status=200) class StudentSignupView(View): def post(self, request): form = StudentFormValidate(request.POST) if form.is_valid(): print(form.cleaned_data) form.save() return JsonResponse({'status': "Success", 'message': 'Student Sign Up Successful.'}) else: return JsonResponse(form.errors.get_json_data()) class StudentLoginView(APIView): def get(self, request, *args, **kwargs): return HttpResponse("PLease Login" + str(kwargs)) def post(self, request, *args, **kwargs): username = request.POST['username'] password = request.POST['password'] if username is "" or password is "": return JsonResponse({'message': "Empty Usename or Password Field.", 'status': 'failure'}, status=401) user = authenticate(request, username=username, password=password) if user is None: return JsonResponse({'message': "Invalid Id Or Password", 'status': 'failure'}, status=403) if user.is_student == False: return JsonResponse({'message': 'User is Not a Student', 'condtion': False, 'status': 'failure'}, status=401) if user is not None: login(request, user) dict_user = model_to_dict(user) dict_user.pop('groups', None) dict_user.pop('password', None) return JsonResponse({'status': 'success', 'message': 'User Logged In', **dict_user}) else: return JsonResponse({'message': "Invalid Username of Password.", 'status': 'failure'}, status=403) return HttpResponseRedirect('/home') class CustomOfferedCourseSerializer(ModelSerializer): # student = StudentSerializerOnlyNameAndUid() # courses = SerializerMethodField('registered_courses') # def registered_courses(self, offeredCourses): # courses = ['gello'] # # for courseStatus in offeredCourses.courses_offered.all(): # # print(CourseStatus) # # courses.append({ # # 'course_code': courseStatus.course.course_code, # # 'course_name': courseStatus.course.course_name, # # 'section': courseStatus.section # # }) # return courses class Meta: model = OfferedCourses fields = [ # 'courses', 'courses_offered' ] # fields = '__all__' class StudentSectionView(BaseStudentLoginView): serializer_class = OfferedCoursesSerializer renderer_classes = [JSONRenderer] pagination_class = None # queryset = OfferedCourses.objects.all() # filter_backends = [DjangoFilterBackend, OrderingFilter] # def get_queryset(self): # current_semester = Semester.objects.filter( # current_semester=True).latest() # student = Student.objects.get(uid=self.request.user) # courses = OfferedCourses.objects.filter( # courses_offered__status='NR', student=student, semester_code=current_semester.semester_code) # return courses # def filter_queryset(self, queryset): # filter_backends = [DjangoFilterBackend] # for backend in list(filter_backends): # queryset = backend().filter_queryset(self.request, queryset, view=self) # return queryset @ swagger_auto_schema() def get(self, request, *args, **kwargs): current_semester = Semester.objects.filter( current_semester=True).latest() student = Student.objects.get(uid=self.request.user) courses = OfferedCourses.objects.get( student=student, semester_code=current_semester.semester_code) # courses_offered__status='NR', student=student, semester_code=current_semester.semester_code) processed_courses = [] for courseStatus in courses.courses_offered.all(): if courseStatus.status == "R": processed_courses.append({ 'course_code': courseStatus.course.course_code, 'course_name': courseStatus.course.course_name, 'section': courseStatus.section, 'registration_status': courseStatus.status }) # serialized_courses = OfferedCoursesSerializer( # courses, many=True, context={'request': request}).data # student=student, semester_code=current_semester.semester_code) # print(courses) # return Response(courses, status=200) return Response(processed_courses) class StudentAttendanceView(BaseStudentLoginView): def get(self, request, *args, **kwargs): print(kwargs['section']) print(kwargs['course_code']) current_semester = Semester.objects.filter( current_semester=True).latest() student = Student.objects.get(uid=self.request.user) print( f'{kwargs["section"]}_{kwargs["course_code"]}_{current_semester.semester_code}') try: attendance_sheet = AttendanceSheet.objects.filter( student=student, scsddc=f'{kwargs["section"]}_{kwargs["course_code"]}_{current_semester.semester_code}' ) except AttendanceSheet.DoesNotExist as e: return Response({'message': 'Error, Invalid Attendance Sheet Requested. Please contact admin.', 'error': str(e)}, status=400) print(type(attendance_sheet)) sheet_serialized = AttendanceSheetSerializer( attendance_sheet, many=True, context={'request': request}).data return Response(sheet_serialized, status=200) class StudentLogoutView(View): def post(self, request): if request.user.is_authenticated: logout(request) return JsonResponse({'status': 'success', 'message': 'User Logged Out', 'condtion': True}) else: return JsonResponse({'status': 'success', 'message': 'No User Logged in', 'condtion': True}) def get(self, request): if request.user.is_authenticated: logout(request) return JsonResponse({'status': 'success', 'message': 'User Logged Out', 'condtion': True}) else: return JsonResponse({'status': 'success', 'message': 'No User Logged in', 'condtion': True}) # def generate_challan(request): # student = Student.objects.get(user = request.user) # semester = Semester.objects.get(semester_code= request.POST['semester']) # csr = request.POST['course'].split(',') # challan = FeeChallan.object.create(student=student,semester=semester) # fee_per_Cr = semester.fee_per_CR # fee = 0 # for c in csr: # challan.coursea.add(Course.object.get(course_code=c)) # fee+=fee_per_Cr # challan.Tution_fee = fee # challan.total_fee = fee # challan.save() def update_challan(request): ts = int(datetime.datetime.now().timestamp()) EndDate = datetime.date.today() + datetime.timedelta(days=30) admission_fee = request.POST['admission_fee'] student = Student.objects.get(user=request.user) semester = Semester.objects.get(semester_code=request.POST['semester']) challan, created = FeeChallan.objects.get_or_create( student=student, semester=semester) if created == True: transcript = Transcript.objects.get_or_create( student=student, semester=Semester.objects.get(current_semester=True))[0] challan.coActivity_charges = semester.co_circular_fee challan.due_date = EndDate challan.challan_no = ts option = request.POST['action'] code = request.POST['code'] print(code) course = Course.objects.filter(course_name=code).first() credit_hour = course.credit_hour course_fee = semester.fee_per_CR if option == 'drop': challan.courses.remove(course) challan.tution_fee = challan.tution_fee-course_fee*credit_hour challan.total_fee = challan.total_fee-course_fee*credit_hour else: challan.courses.add(course) challan.tution_fee = challan.tution_fee+course_fee*credit_hour challan.total_fee = challan.total_fee+course_fee*credit_hour if(admission_fee != ''): challan.total_fee += int(admission_fee) challan.save() return JsonResponse("Success", safe=False) def get_challan(request): student = Student.objects.get(user=request.user) code = request.POST['code'] print(code) if len(code) > 1: semester = Semester.objects.get(semester_code=code) try: challan = FeeChallan.objects.get( student=student, semester=semester) except: return JsonResponse({"Error": "No Challan"}, safe=False, response=403) else: try: challan = FeeChallan.objects.filter(student=student).values() return JsonResponse(list(challan), safe=False) except: return JsonResponse({"Error": "No challan"}, safe=False, status=403) opt = semester.semester_season if(opt == 1): season = "Fall" elif opt == 2: season = "Spring" else: season = "Summer" challan_obj = { "due_date": challan.due_date, "name": request.user.first_name+request.user.last_name, "roll_no": student.uid, "challan_no": challan.challan_no, "discipline": student.degree_short_enrolled, "semester": season+" "+str(semester.semester_year), "admission_fee": challan.admission_fee, "tution_fee": challan.tution_fee, "fine": challan.Fine, "other": challan.other_charges+challan.coActivity_charges, "arrears": challan.Arrear, "withholding": challan.withholding_tax, "total_amount": challan.total_fee, "fine_per_day": int(challan.total_fee*0.001), "challan_no": challan.challan_no, } return JsonResponse(challan_obj, safe=False) class Student_Transcript(View): def post(self, request): try: student = Student.objects.get(uid=request.POST['id']) transcript = Transcript.objects.filter(student=student) if len(transcript) > 1: json_transcript = TranscriptSerilazer(transcript, many=True) return JsonResponse(json_transcript.data, safe=False) else: transcript = Transcript.objects.get(student=student) json_transcript = TranscriptSerilazer(transcript) return JsonResponse([json_transcript.data], safe=False) except: return JsonResponse({"Error": "No Transcript"}, safe=False, status=420) class StudentMarksView(View): def post(self, request): section = request.POST['section'] code = request.POST['code'] if section == None or section == "" or section == "null" or code == None or code == "" or code == "null": return JsonResponse({"Failed": "Invalid Input Parameters"}, status=403) else: student = Student.objects.get(user=request.user) semester = Semester.objects.get(current_semester=True) scsddc = section+"_"+code+"_"+semester.semester_code marks_info = SectionMarks.objects.filter(scsddc=scsddc) if(len(marks_info) > 0): marks_data = [] for mark in marks_info: marks = StudentMarks.objects.get( student=student, scsddc=scsddc, marks_type=mark.marks_type) obj = { "marks_type": mark.marks_type, "total_marks": marks.total_marks, "weightage": marks.weightage, "obtained_marks": marks.obtained_marks, "obtained_weightage": marks.obtained_weightage, "section": marks.section, "marks_mean": mark.marks_mean, "marks_std_dev": mark.marks_standard_deviation, "weightage_mean": mark.weightage_mean, "weightage_std_dev": mark.weightage_standard_deviation, "min_marks": mark.min_marks, "max_marks": mark.max_marks, } marks_data.append(obj) mark_sheet = MarkSheet.objects.get( scsddc=scsddc, student=student) grand_total = { "total_marks": mark_sheet.grand_total_marks, "obtained_total": mark_sheet.obtained_marks, } return JsonResponse({"Status": "Success", "marks_info": marks_data, "total": [grand_total]}, safe=False, status=200) else: return JsonResponse({"Status": "Failed", "Message": "No Marks Available"}, status=200) def get_scsddc(request): try: section = request.POST['section'] code = request.POST['code'] if code == 'null' or section == "null" or code == "" or section == "": return JsonResponse({"Failed": "Invalid Parameters"}, status=403) except: return JsonResponse({"Failed": "Invalid Parameters"}, status=403) semester = Semester.objects.get( current_semester=True) scsddc = section+"_"+code+"_"+semester.semester_code # mark_sheet = MarkSheet.objects.filter() return JsonResponse({"Status": "Success", "scsddc": scsddc}) def get_latest_transcript(request): student = Student.objects.get(user=request.user) transcript = Transcript.objects.filter(student=student, last=True).values() print(transcript) return JsonResponse(list(transcript), safe=False)
the-stack_0_25666
import csv from datetime import datetime import os.path import time from fritzconnection.lib.fritzstatus import FritzStatus from fritzconnection.core.exceptions import FritzConnectionException from fritz_persist_status import settings, map_value if __name__ == "__main__": try: status = FritzStatus() except FritzConnectionException as e: with open(settings.error_file, mode='a+') as error_file: error_file.write(str(e) + '\n') write_header = not os.path.isfile(settings.output_file) while True: try: with open(settings.output_file, mode='a+') as output_file: writer = csv.writer(output_file) if write_header: write_header = False writer.writerow(['datetime', *settings.attrs]) writer.writerow( [datetime.now().isoformat()] + [ map_value(getattr(status, attr), attr) for attr in settings.attrs ] ) time.sleep(30) except Exception: with open(settings.error_file, mode='a+') as error_file: error_file.write(str(e) + '\n')
the-stack_0_25667
import os.path import shutil import logging from ..optimiser import Optimiser from .animated_gif import OptimiseAnimatedGIF class OptimiseGIF(Optimiser): """ Optimises gifs. If they aren't animated, it converts them to pngs with ImageMagick before optimising them as for pngs. Animated gifs get optimised according to the commands in OptimiseAnimatedGIF """ def __init__(self, **kwargs): super(OptimiseGIF, self).__init__(**kwargs) # the command to execute this optimiser if kwargs.get('quiet') == True: pngcrush = 'pngcrush -rem alla -brute -reduce -q "__INPUT__" "__OUTPUT__"' else: pngcrush = 'pngcrush -rem alla -brute -reduce "__INPUT__" "__OUTPUT__"' self.commands = ('convert "__INPUT__" png:"__OUTPUT__"', 'pngnq -n 256 -o "__OUTPUT__" "__INPUT__"', pngcrush) # variable so we can easily determine whether a gif is animated or not self.animated_gif_optimiser = OptimiseAnimatedGIF() self.converted_to_png = False self.is_animated = False # format as returned by 'identify' self.format = "GIF" def set_input(self, input): super(OptimiseGIF, self).set_input(input) self.converted_to_png = False self.is_animated = False def _is_animated(self, input): """ Tests an image to see whether it's an animated gif """ return self.animated_gif_optimiser._is_acceptable_image(input) def _keep_smallest_file(self, input, output): """ Compares the sizes of two files, and discards the larger one """ input_size = os.path.getsize(input) output_size = os.path.getsize(output) # if the image was optimised (output is smaller than input), overwrite the input file with the output # file. if (output_size < input_size): try: shutil.copyfile(output, input) self.files_optimised += 1 self.bytes_saved += (input_size - output_size) except IOError: logging.error("Unable to copy %s to %s: %s" % (output, input, IOError)) sys.exit(1) if self.iterations == 1 and not self.is_animated: self.converted_to_png = True # delete the output file os.unlink(output) def _get_command(self): """ Returns the next command to apply """ command = False # for the first iteration, return the first command if self.iterations == 0: # if the GIF is animated, optimise it if self._is_animated(self.input): command = self.animated_gif_optimiser.commands[0] self.is_animated = True else: # otherwise convert it to PNG command = self.commands[0] # execute the png optimisations if the gif was converted to a png elif self.converted_to_png and self.iterations < len(self.commands): command = self.commands[self.iterations] self.iterations += 1 return command def _list_only(self, input, output): """ Always keeps input, but still compares the sizes of two files """ input_size = os.path.getsize(input) output_size = os.path.getsize(output) if (output_size > 0 and output_size < input_size): self.files_optimised += 1 self.bytes_saved += (input_size - output_size) self.array_optimised_file.append(input) if self.iterations == 1 and not self.is_animated: self.convert_to_png = True # delete the output file os.unlink(output)
the-stack_0_25668
from contextlib import contextmanager import os import logging.config import numpy as np import torch from torch.nn.utils.rnn import pack_padded_sequence import seq2seq.data.config as config def barrier(): """ Calls all_reduce on dummy tensor.""" if torch.distributed.is_initialized(): torch.distributed.all_reduce(torch.cuda.FloatTensor(1)) torch.cuda.synchronize() def get_rank(): if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = 0 return rank def get_world_size(): if torch.distributed.is_initialized(): world_size = torch.distributed.get_world_size() else: world_size = 1 return world_size @contextmanager def sync_workers(): """ Gets distributed rank and synchronizes workers at exit""" rank = get_rank() yield rank barrier() def setup_logging(log_file='log.log'): """Setup logging configuration """ class RankFilter(logging.Filter): def __init__(self, rank): self.rank = rank def filter(self, record): record.rank = self.rank return True rank = get_rank() rank_filter = RankFilter(rank) logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(rank)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", filename=log_file, filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) formatter = logging.Formatter('%(rank)s: %(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) logging.getLogger('').addFilter(rank_filter) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, skip_first=True): self.reset() self.skip = skip_first def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val if self.skip: self.skip = False else: self.sum += val * n self.count += n self.avg = self.sum / self.count def batch_padded_sequences(seq, batch_first=False, sort=False): if sort: def key(item): return len(item[1]) indices, seq = zip(*sorted(enumerate(seq), key=key, reverse=True)) else: indices = range(len(seq)) lengths = [len(sentence) for sentence in seq] batch_length = max(lengths) seq_tensor = torch.LongTensor(batch_length, len(seq)).fill_(config.PAD) for idx, sentence in enumerate(seq): end_seq = lengths[idx] seq_tensor[:end_seq, idx].copy_(sentence[:end_seq]) if batch_first: seq_tensor = seq_tensor.t() return seq_tensor, lengths, indices def debug_tensor(tensor, name): logging.info(name) tensor = tensor.float().cpu().numpy() logging.info(f'MIN: {tensor.min()} MAX: {tensor.max()} ' f'AVG: {tensor.mean()} STD: {tensor.std()} ' f'NAN: {np.isnan(tensor).sum()} INF: {np.isinf(tensor).sum()}')
the-stack_0_25671
import collections import json from rest_framework.fields import MISSING_ERROR_MESSAGE, SerializerMethodField from rest_framework.relations import * from django.utils.translation import ugettext_lazy as _ from django.db.models.query import QuerySet from django.db.models import Model from rest_framework_json_api.exceptions import Conflict from rest_framework_json_api.utils import Hyperlink, \ get_resource_type_from_queryset, get_resource_type_from_instance, \ get_included_serializers, get_resource_type_from_serializer LINKS_PARAMS = ['self_link_view_name', 'related_link_view_name', 'related_link_lookup_field', 'related_link_url_kwarg'] class ResourceRelatedField(PrimaryKeyRelatedField): self_link_view_name = None related_link_view_name = None related_link_lookup_field = 'pk' links_only = False default_error_messages = { 'required': _('This field is required.'), 'does_not_exist': _('Invalid pk "{pk_value}" - object does not exist.'), 'incorrect_type': _('Incorrect type. Expected resource identifier object, received {data_type}.'), 'incorrect_relation_type': _('Incorrect relation type. Expected {relation_type}, received {received_type}.'), 'missing_type': _('Invalid resource identifier object: missing \'type\' attribute'), 'missing_id': _('Invalid resource identifier object: missing \'id\' attribute'), 'no_match': _('Invalid hyperlink - No URL match.'), } def __init__(self, self_link_view_name=None, related_link_view_name=None, **kwargs): if self_link_view_name is not None: self.self_link_view_name = self_link_view_name if related_link_view_name is not None: self.related_link_view_name = related_link_view_name self.related_link_lookup_field = kwargs.pop('related_link_lookup_field', None) self.related_link_url_kwarg = kwargs.pop('related_link_url_kwarg', self.related_link_lookup_field) self.links_only = kwargs.pop('links_only', self.links_only) # check for a model class that was passed in for the relation type model = kwargs.pop('model', None) if model: self.model = model # We include this simply for dependency injection in tests. # We can't add it as a class attributes or it would expect an # implicit `self` argument to be passed. self.reverse = reverse super(ResourceRelatedField, self).__init__(**kwargs) def use_pk_only_optimization(self): # We need the real object to determine its type... return False def conflict(self, key, **kwargs): """ A helper method that simply raises a validation error. """ try: msg = self.error_messages[key] except KeyError: class_name = self.__class__.__name__ msg = MISSING_ERROR_MESSAGE.format(class_name=class_name, key=key) raise AssertionError(msg) message_string = msg.format(**kwargs) raise Conflict(message_string) def get_url(self, name, view_name, kwargs, request): """ Given a name, view name and kwargs, return the URL that hyperlinks to the object. May raise a `NoReverseMatch` if the `view_name` and `lookup_field` attributes are not configured to correctly match the URL conf. """ # Return None if the view name is not supplied if not view_name: return None # Return the hyperlink, or error if incorrectly configured. try: url = self.reverse(view_name, kwargs=kwargs, request=request) except NoReverseMatch: msg = ( 'Could not resolve URL for hyperlinked relationship using ' 'view name "%s".' ) raise ImproperlyConfigured(msg % view_name) if url is None: return None return Hyperlink(url, name) def get_links(self, obj=None, lookup_field='pk'): request = self.context.get('request', None) view = self.context.get('view', None) return_data = OrderedDict() if obj: kwargs = {lookup_field: getattr(obj, lookup_field)} elif lookup_field in view.kwargs: kwargs = {lookup_field: view.kwargs[lookup_field]} else: kwargs = {} self_kwargs = kwargs.copy() self_kwargs.update({'related_field': self.field_name if self.field_name else self.parent.field_name}) self_link = self.get_url('self', self.self_link_view_name, self_kwargs, request) if obj: related_id = getattr(obj, self.related_link_lookup_field or 'pk') elif self.related_link_lookup_field in view.kwargs: related_id = view.kwargs[self.related_link_lookup_field] else: related_id = None if related_id: if isinstance(related_id, Model): related_id = related_id.pk related_kwargs = {self.related_link_url_kwarg: related_id} related_link = self.get_url('related', self.related_link_view_name, related_kwargs, request) else: related_link = None if self_link: return_data.update({'self': self_link}) if related_link: return_data.update({'related': related_link}) return return_data def to_internal_value(self, data): if isinstance(data, six.text_type): try: data = json.loads(data) except ValueError: # show a useful error if they send a `pk` instead of resource object self.fail('incorrect_type', data_type=type(data).__name__) if not isinstance(data, dict): self.fail('incorrect_type', data_type=type(data).__name__) expected_relation_type = get_resource_type_from_queryset(self.queryset) if 'type' not in data: self.fail('missing_type') if 'id' not in data: self.fail('missing_id') if data['type'] != expected_relation_type: self.conflict('incorrect_relation_type', relation_type=expected_relation_type, received_type=data['type']) return super(ResourceRelatedField, self).to_internal_value(data['id']) def to_representation(self, value): if self.links_only: return None if getattr(self, 'pk_field', None) is not None: pk = self.pk_field.to_representation(value.pk) else: pk = value.pk resource_type = self.get_resource_type_from_included_serializer() if resource_type is None: resource_type = get_resource_type_from_instance(value) return OrderedDict([('type', resource_type), ('id', str(pk))]) def get_resource_type_from_included_serializer(self): """ Check to see it this resource has a different resource_name when included and return that name, or None """ field_name = self.field_name or self.parent.field_name root = self.get_root_serializer() if root is not None: includes = get_included_serializers(root) if field_name in includes.keys(): return get_resource_type_from_serializer(includes[field_name]) return None def get_root_serializer(self): if hasattr(self.parent, 'parent') and self.is_serializer(self.parent.parent): return self.parent.parent elif self.is_serializer(self.parent): return self.parent return None def is_serializer(self, candidate): return hasattr(candidate, 'included_serializers') def get_choices(self, cutoff=None): queryset = self.get_queryset() if queryset is None: # Ensure that field.choices returns something sensible # even when accessed with a read-only field. return {} if cutoff is not None: queryset = queryset[:cutoff] return OrderedDict([ ( json.dumps(self.to_representation(item)), self.display_value(item) ) for item in queryset ]) class SerializerMethodResourceRelatedField(ResourceRelatedField): """ Allows us to use serializer method RelatedFields with return querysets """ def __new__(cls, *args, **kwargs): """ We override this because getting serializer methods fails at the base class when many=True """ if kwargs.pop('many', False): return cls.many_init(*args, **kwargs) return super(ResourceRelatedField, cls).__new__(cls, *args, **kwargs) def __init__(self, child_relation=None, *args, **kwargs): # DRF 3.1 doesn't expect the `many` kwarg kwargs.pop('many', None) model = kwargs.pop('model', None) if child_relation is not None: self.child_relation = child_relation if model: self.model = model super(SerializerMethodResourceRelatedField, self).__init__(*args, **kwargs) @classmethod def many_init(cls, *args, **kwargs): list_kwargs = {k: kwargs.pop(k) for k in LINKS_PARAMS if k in kwargs} list_kwargs['child_relation'] = cls(*args, **kwargs) for key in kwargs.keys(): if key in ('model',) + MANY_RELATION_KWARGS: list_kwargs[key] = kwargs[key] return cls(**list_kwargs) def get_attribute(self, instance): # check for a source fn defined on the serializer instead of the model if self.source and hasattr(self.parent, self.source): serializer_method = getattr(self.parent, self.source) if hasattr(serializer_method, '__call__'): return serializer_method(instance) return super(SerializerMethodResourceRelatedField, self).get_attribute(instance) def to_representation(self, value): if isinstance(value, collections.Iterable): base = super(SerializerMethodResourceRelatedField, self) return [base.to_representation(x) for x in value] return super(SerializerMethodResourceRelatedField, self).to_representation(value) def get_links(self, obj=None, lookup_field='pk'): if hasattr(self, 'child_relation') and getattr(self, 'child_relation'): return super(SerializerMethodResourceRelatedField, self).get_links(obj, lookup_field) if self.source and hasattr(self.parent, self.source): serializer_method = getattr(self.parent, self.source) if hasattr(serializer_method, '__call__'): obj = serializer_method(obj) return super(SerializerMethodResourceRelatedField, self).get_links(obj, lookup_field)
the-stack_0_25673
import base64 import json import os import sys import re from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options class Printer(): def __init__(self): self.pages = [] self.displayHeaderFooter = True self.headerTemplate = '<div style="font-size:8px; margin:auto;">' \ '<span class=title></span>' \ '</div>' self.footerTemplate= '<div style="font-size:8px; margin:auto;">' \ 'Page <span class="pageNumber"></span> of <span class="totalPages"></span>' \ '</div>' self.plugin_path = os.path.dirname(os.path.realpath(__file__)) def set_config(self, display_header_footer, header_template, footer_template): self.displayHeaderFooter = display_header_footer if header_template: self.headerTemplate = header_template if footer_template: self.footerTemplate = footer_template def remove_invalid(self, value, deletechars): for c in deletechars: value = value.replace(c,' ') return value def add_page(self, page, config): pdf_path = os.path.join(config["site_dir"], "pdfs", page.file.url) os.makedirs(pdf_path, exist_ok=True) category = '' if 'category' in page.meta: category = page.meta['category'] title = page.title if 'title_full' in page.meta: title = page.meta['title_full'] title = (category + ('__' if category else '')) + title title = self.remove_invalid(title, '\/:*?"<>|') title = re.sub('\s+', '_', title) pdf_file = os.path.join(pdf_path, title) + ".pdf" relpath = os.path.relpath(pdf_file, os.path.dirname(page.file.abs_dest_path)) page_paths = { "name": page.file.url, "url": "file://" + page.file.abs_dest_path, "pdf_file": pdf_file, "relpath": relpath, } self.pages.append(page_paths) return page_paths def add_download_link(self, output_content, page_paths): soup = BeautifulSoup(output_content, 'html.parser') # soup = self._add_style(soup) soup = self._add_link(soup, page_paths) return str(soup) def _add_style(self, soup): stylesheet = os.path.join(self.plugin_path, "stylesheets", "printer.css") with open(stylesheet, 'r') as file: style = file.read() soup.style.append(style) return soup def _add_link(self, soup, page_paths): icon = BeautifulSoup('' '<span class="twemoji">' '<svg viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">' '<path d="M5 20h14v-2H5m14-9h-4V3H9v6H5l7 7 7-7z"></path>' '</svg>' '</span>', 'html.parser') text = "PDF" btn = soup.new_tag("a", href=page_paths["relpath"]) btn.append(icon) btn.append(text) btn['class'] = 'md-button' bar = soup.find("div", {"class" : "btn-actions"}) if bar: bar.p.insert(0, btn) else: toc = soup.find("div", {"class" : "toc"}) if toc: div = BeautifulSoup('' '<div class="btn-actions screen-only">' '<p></p>' '</div>', 'html.parser') div.p.insert(0, btn) toc.insert_after(div) return soup def print_pages(self): driver = self._create_driver() for page in self.pages: self.print_to_pdf(driver, page) driver.quit() def print_to_pdf(self, driver, page): print(f"[pdf-with-js] - printing '{page['name']}' to file...") driver.get(page["url"]) result = self._send_devtools_command(driver, "Page.printToPDF", self._get_print_options()) self._write_file(result['data'], page["pdf_file"]) def _create_driver(self): webdriver_options = Options() webdriver_options.add_argument('--headless') webdriver_options.add_argument('--disable-gpu') webdriver_options.add_argument('--no-sandbox') webdriver_options.add_argument('--disable-dev-shm-usage') webdriver_options.add_argument('--disable-web-security') webdriver_options.add_argument('--ignore-certificate-errors-spki-list') webdriver_options.add_argument('--allow-file-access-from-files') webdriver_options.add_argument('--allow-insecure-localhost') return webdriver.Chrome(options=webdriver_options) def _get_print_options(self): return { 'landscape': False, 'displayHeaderFooter': self.displayHeaderFooter, 'footerTemplate': self.footerTemplate, 'headerTemplate': self.headerTemplate, 'printBackground': True, 'preferCSSPageSize': True, } def _send_devtools_command(self, driver, cmd, params={}): resource = f"/session/{driver.session_id}/chromium/send_command_and_get_result" url = driver.command_executor._url + resource body = json.dumps({'cmd': cmd, 'params': params}) response = driver.command_executor._request('POST', url, body) return response.get('value') def _write_file(self, b64_data, name): data = base64.b64decode(b64_data) with open(name, 'wb') as file: file.write(data)
the-stack_0_25674
# Adivinhando número com while import random, time pensador = random.randint(0, 10) numero = int(input('Digite um número de 0 a 10: ')) cont = 1 while numero != pensador: cont += 1 print() print('Processando ...') time.sleep(1) print() numero = int(input('Numero errado. Digite outro número de 0 a 10: ')) print() print('Parabéns!!! Você acertou o numero {} em {} tentativas.'.format(numero, cont))
the-stack_0_25676
######################################################## # Author: Andrea Fioraldi <[email protected]> # # License: BSD 2-Clause # # Original Author: UCSB guyz (ShellPhish mainly) # # Original code from https://github.com/angr/angr # ######################################################## from collections import defaultdict import logging import itertools l = logging.getLogger("angrdbg.memory") import claripy from angr.stroage import DUMMY_SYMBOLIC_READ_VALUE from angr.storage.memory import SimMemory, DUMMY_SYMBOLIC_READ_VALUE from angr.storage.memory_object import SimMemoryObject from angr.sim_state_options import SimStateOptions from angr.misc.ux import once from .page_8 import SimDbgMemory DEFAULT_MAX_SEARCH = 8 class MultiwriteAnnotation(claripy.Annotation): @property def eliminatable(self): return False @property def relocateable(self): return True def _multiwrite_filter(mem, ast): #pylint:disable=unused-argument # this is a huge hack, but so is the whole multiwrite crap return any(isinstance(a, MultiwriteAnnotation) for a in ast._uneliminatable_annotations) class SimSymbolicDbgMemory(SimMemory): #pylint:disable=abstract-method _CONCRETIZATION_STRATEGIES = [ 'symbolic', 'symbolic_approx', 'any', 'any_approx', 'max', 'max_approx', 'symbolic_nonzero', 'symbolic_nonzero_approx', 'norepeats' ] _SAFE_CONCRETIZATION_STRATEGIES = [ 'symbolic', 'symbolic_approx' ] def __init__( self, memory_backer=None, permissions_backer=None, mem=None, memory_id="mem", endness=None, abstract_backer=False, check_permissions=None, read_strategies=None, write_strategies=None, stack_region_map=None, generic_region_map=None ): SimMemory.__init__(self, endness=endness, abstract_backer=abstract_backer, stack_region_map=stack_region_map, generic_region_map=generic_region_map ) self.id = memory_id if check_permissions is None: check_permissions = self.category == 'mem' self.mem = SimDbgMemory( memory_backer=memory_backer, permissions_backer=permissions_backer, check_permissions=check_permissions ) if mem is None else mem # set up the strategies self.read_strategies = read_strategies self.write_strategies = write_strategies # # Lifecycle management # @SimMemory.memo def copy(self, _): """ Return a copy of the SimMemory. """ #l.debug("Copying %d bytes of memory with id %s." % (len(self.mem), self.id)) c = SimSymbolicDbgMemory( mem=self.mem.branch(), memory_id=self.id, endness=self.endness, abstract_backer=self._abstract_backer, read_strategies=[ s.copy() for s in self.read_strategies ], write_strategies=[ s.copy() for s in self.write_strategies ], stack_region_map=self._stack_region_map, generic_region_map=self._generic_region_map ) return c # # Merging stuff # def _changes_to_merge(self, others): changed_bytes = set() for o in others: # pylint:disable=redefined-outer-name changed_bytes |= self.changed_bytes(o) return changed_bytes def merge(self, others, merge_conditions, common_ancestor=None): # pylint: disable=unused-argument """ Merge this SimMemory with the other SimMemory """ changed_bytes = self._changes_to_merge(others) l.info("Merging %d bytes", len(changed_bytes)) l.info("... %s has changed bytes %s", self.id, changed_bytes) self.read_strategies = self._merge_strategies(self.read_strategies, *[ o.read_strategies for o in others ]) self.write_strategies = self._merge_strategies(self.write_strategies, *[ o.write_strategies for o in others ]) merged_bytes = self._merge(others, changed_bytes, merge_conditions=merge_conditions) return len(merged_bytes) > 0 @staticmethod def _merge_strategies(*strategy_lists): if len(set(len(sl) for sl in strategy_lists)) != 1: raise SimMergeError("unable to merge memories with amounts of strategies") merged_strategies = [ ] for strategies in zip(*strategy_lists): if len(set(s.__class__ for s in strategies)) != 1: raise SimMergeError("unable to merge memories with different types of strategies") unique = list(set(strategies)) if len(unique) > 1: unique[0].merge(unique[1:]) merged_strategies.append(unique[0]) return merged_strategies def widen(self, others): changed_bytes = self._changes_to_merge(others) l.info("Memory %s widening bytes %s", self.id, changed_bytes) self._merge(others, changed_bytes, is_widening=True) return len(changed_bytes) > 0 def _merge(self, others, changed_bytes, merge_conditions=None, is_widening=False): all_memories = [self] + others if merge_conditions is None: merge_conditions = [ None ] * len(all_memories) merged_to = None merged_objects = set() merged_bytes = set() for b in sorted(changed_bytes): if merged_to is not None and not b >= merged_to: l.info("merged_to = %d ... already merged byte 0x%x", merged_to, b) continue l.debug("... on byte 0x%x", b) memory_objects = [] unconstrained_in = [] # first get a list of all memory objects at that location, and # all memories that don't have those bytes for sm, fv in zip(all_memories, merge_conditions): if b in sm.mem: l.info("... present in %s", fv) memory_objects.append((sm.mem[b], fv)) else: l.info("... not present in %s", fv) unconstrained_in.append((sm, fv)) mos = set(mo for mo,_ in memory_objects) mo_bases = set(mo.base for mo, _ in memory_objects) mo_lengths = set(mo.length for mo, _ in memory_objects) if not unconstrained_in and not (mos - merged_objects): continue # first, optimize the case where we are dealing with the same-sized memory objects if len(mo_bases) == 1 and len(mo_lengths) == 1 and not unconstrained_in: our_mo = self.mem[b] to_merge = [(mo.object, fv) for mo, fv in memory_objects] # Update `merged_to` mo_base = list(mo_bases)[0] merged_to = mo_base + list(mo_lengths)[0] merged_val = self._merge_values( to_merge, memory_objects[0][0].length, is_widening=is_widening ) if options.ABSTRACT_MEMORY in self.state.options: # merge check for abstract memory if not to_merge[0][0].uninitialized and self.state.solver.backends.vsa.identical(merged_val, to_merge[0][0]): continue # do the replacement new_object = self.mem.replace_memory_object(our_mo, merged_val) merged_objects.add(new_object) merged_objects.update(mos) merged_bytes.add(b) else: # get the size that we can merge easily. This is the minimum of # the size of all memory objects and unallocated spaces. min_size = min([mo.length - (b - mo.base) for mo, _ in memory_objects]) for um, _ in unconstrained_in: for i in range(0, min_size): if b + i in um: min_size = i break merged_to = b + min_size l.info("... determined minimum size of %d", min_size) # Now, we have the minimum size. We'll extract/create expressions of that # size and merge them extracted = [(mo.bytes_at(b, min_size), fv) for mo, fv in memory_objects] if min_size != 0 else [] created = [ (self.get_unconstrained_bytes("merge_uc_%s_%x" % (uc.id, b), min_size * self.state.arch.byte_width), fv) for uc, fv in unconstrained_in ] to_merge = extracted + created merged_val = self._merge_values(to_merge, min_size, is_widening=is_widening) if options.ABSTRACT_MEMORY in self.state.options: # merge check for abstract memory if (not unconstrained_in or not unconstrained_in[0][0] is self) \ and self.state.solver.backends.vsa.identical(merged_val, to_merge[0][0]): continue self.store(b, merged_val, endness='Iend_BE', inspect=False) # do not convert endianness again merged_bytes.add(b) return merged_bytes def set_state(self, state): super(SimSymbolicDbgMemory, self).set_state(state) self.mem.state = state._get_weakref() if self.state is not None: if self.read_strategies is None: self._create_default_read_strategies() if self.write_strategies is None: self._create_default_write_strategies() def _create_default_read_strategies(self): self.read_strategies = [ ] if options.APPROXIMATE_MEMORY_INDICES in self.state.options: # first, we try to resolve the read address by approximation self.read_strategies.append( concretization_strategies.SimConcretizationStrategyRange(1024, exact=False), ) # then, we try symbolic reads, with a maximum width of a kilobyte self.read_strategies.append( concretization_strategies.SimConcretizationStrategyRange(1024) ) if options.CONSERVATIVE_READ_STRATEGY not in self.state.options: # finally, we concretize to any one solution self.read_strategies.append( concretization_strategies.SimConcretizationStrategyAny(), ) def _create_default_write_strategies(self): self.write_strategies = [ ] if options.APPROXIMATE_MEMORY_INDICES in self.state.options: if options.SYMBOLIC_WRITE_ADDRESSES not in self.state.options: # we try to resolve a unique solution by approximation self.write_strategies.append( concretization_strategies.SimConcretizationStrategySingle(exact=False), ) else: # we try a solution range by approximation self.write_strategies.append( concretization_strategies.SimConcretizationStrategyRange(128, exact=False) ) if options.SYMBOLIC_WRITE_ADDRESSES in self.state.options: # we try to find a range of values self.write_strategies.append( concretization_strategies.SimConcretizationStrategyRange(128) ) else: # we try to find a range of values, but only for ASTs annotated with the multiwrite annotation self.write_strategies.append(concretization_strategies.SimConcretizationStrategyRange( 128, filter=_multiwrite_filter )) # finally, we just grab the maximum solution if options.CONSERVATIVE_WRITE_STRATEGY not in self.state.options: self.write_strategies.append( concretization_strategies.SimConcretizationStrategyMax() ) # # Symbolicizing! # def make_symbolic(self, name, addr, length=None): """ Replaces `length` bytes starting at `addr` with a symbolic variable named name. Adds a constraint equaling that symbolic variable to the value previously at `addr`, and returns the variable. """ l.debug("making %s bytes symbolic", length) if isinstance(addr, str): addr, length = self.state.arch.registers[addr] else: if length is None: raise Exception("Unspecified length!") r = self.load(addr, length) v = self.get_unconstrained_bytes(name, r.size()) self.store(addr, v) self.state.add_constraints(r == v) l.debug("... eq constraints: %s", r == v) return v # # Address concretization # def _resolve_size_range(self, size): if not self.state.solver.symbolic(size): i = self.state.solver.eval(size) if i > self._maximum_concrete_size: raise SimMemoryLimitError("Concrete size %d outside of allowable limits" % i) return i, i if options.APPROXIMATE_MEMORY_SIZES in self.state.options: max_size_approx = self.state.solver.max_int(size, exact=True) min_size_approx = self.state.solver.min_int(size, exact=True) if max_size_approx < self._maximum_symbolic_size_approx: return min_size_approx, max_size_approx max_size = self.state.solver.max_int(size) min_size = self.state.solver.min_int(size) if min_size > self._maximum_symbolic_size: self.state.history.add_event('memory_limit', message="Symbolic size %d outside of allowable limits" % min_size, size=size) if options.BEST_EFFORT_MEMORY_STORING not in self.state.options: raise SimMemoryLimitError("Symbolic size %d outside of allowable limits" % min_size) else: min_size = self._maximum_symbolic_size return min_size, min(max_size, self._maximum_symbolic_size) # # Concretization strategies # def _apply_concretization_strategies(self, addr, strategies, action): """ Applies concretization strategies on the address until one of them succeeds. """ # we try all the strategies in order for s in strategies: # first, we trigger the SimInspect breakpoint and give it a chance to intervene e = addr self.state._inspect( 'address_concretization', BP_BEFORE, address_concretization_strategy=s, address_concretization_action=action, address_concretization_memory=self, address_concretization_expr=e, address_concretization_add_constraints=True ) s = self.state._inspect_getattr('address_concretization_strategy', s) e = self.state._inspect_getattr('address_concretization_expr', addr) # if the breakpoint None'd out the strategy, we skip it if s is None: continue # let's try to apply it! try: a = s.concretize(self, e) except SimUnsatError: a = None # trigger the AFTER breakpoint and give it a chance to intervene self.state._inspect( 'address_concretization', BP_AFTER, address_concretization_result=a ) a = self.state._inspect_getattr('address_concretization_result', a) # return the result if not None! if a is not None: return a # well, we tried raise SimMemoryAddressError( "Unable to concretize address for %s with the provided strategies." % action ) def concretize_write_addr(self, addr, strategies=None): """ Concretizes an address meant for writing. :param addr: An expression for the address. :param strategies: A list of concretization strategies (to override the default). :returns: A list of concrete addresses. """ if isinstance(addr, int): return [ addr ] elif not self.state.solver.symbolic(addr): return [ self.state.solver.eval(addr) ] strategies = self.write_strategies if strategies is None else strategies return self._apply_concretization_strategies(addr, strategies, 'store') def concretize_read_addr(self, addr, strategies=None): """ Concretizes an address meant for reading. :param addr: An expression for the address. :param strategies: A list of concretization strategies (to override the default). :returns: A list of concrete addresses. """ if isinstance(addr, int): return [ addr ] elif not self.state.solver.symbolic(addr): return [ self.state.solver.eval(addr) ] strategies = self.read_strategies if strategies is None else strategies return self._apply_concretization_strategies(addr, strategies, 'load') def normalize_address(self, addr, is_write=False): return self.concretize_read_addr(addr) # # Memory reading # def _fill_missing(self, addr, num_bytes, inspect=True, events=True): if self.category == 'reg': name = "reg_%s" % (self.state.arch.translate_register_name(addr)) else: name = "%s_%x" % (self.id, addr) all_missing = [ self.get_unconstrained_bytes( name, min(self.mem._page_size, num_bytes)*self.state.arch.byte_width, source=i, inspect=inspect, events=events, key=self.variable_key_prefix + (addr,), eternal=False) # :( for i in range(addr, addr+num_bytes, self.mem._page_size) ] if all_missing: is_mem = self.category == 'mem' and \ options.ZERO_FILL_UNCONSTRAINED_MEMORY not in self.state.options and \ options.SYMBOL_FILL_UNCONSTRAINED_MEMORY not in self.state.options is_reg = self.category == 'reg' and \ options.ZERO_FILL_UNCONSTRAINED_REGISTERS not in self.state.options and \ options.SYMBOL_FILL_UNCONSTRAINED_REGISTERS not in self.state.options if is_mem or is_reg: if once('mem_fill_warning'): l.warning("The program is accessing memory or registers with an unspecified value. " "This could indicate unwanted behavior.") l.warning("angr will cope with this by generating an unconstrained symbolic variable and continuing. " "You can resolve this by:") l.warning("1) setting a value to the initial state") l.warning("2) adding the state option ZERO_FILL_UNCONSTRAINED_{MEMORY,REGISTERS}, " "to make unknown regions hold null") l.warning("3) adding the state option SYMBOL_FILL_UNCONSTRAINED_{MEMORY_REGISTERS}, " "to suppress these messages.") if is_mem: l.warning("Filling memory at %#x with %d unconstrained bytes", addr, num_bytes) else: reg_str = self.state.arch.translate_register_name(addr, size=num_bytes) l.warning("Filling register %s with %d unconstrained bytes", reg_str, num_bytes) if self.category == 'reg' and self.state.arch.register_endness == 'Iend_LE': all_missing = [ a.reversed for a in all_missing ] elif self.category != 'reg' and self.state.arch.memory_endness == 'Iend_LE': all_missing = [ a.reversed for a in all_missing ] b = self.state.solver.Concat(*all_missing) if len(all_missing) > 1 else all_missing[0] if events: self.state.history.add_event('uninitialized', memory_id=self.id, addr=addr, size=num_bytes) default_mo = SimMemoryObject(b, addr, byte_width=self.state.arch.byte_width) self.state.scratch.push_priv(True) self.mem.store_memory_object(default_mo, overwrite=False) self.state.scratch.pop_priv() return default_mo def _read_from(self, addr, num_bytes, inspect=True, events=True, ret_on_segv=False): items = self.mem.load_objects(addr, num_bytes, ret_on_segv=ret_on_segv) # optimize the case where we have a single object return if len(items) == 1 and items[0][1].includes(addr) and items[0][1].includes(addr + num_bytes - 1): return items[0][1].bytes_at(addr, num_bytes) segments = [ ] last_missing = addr + num_bytes - 1 for mo_addr,mo in reversed(items): if not mo.includes(last_missing): # add missing bytes start_addr = mo.last_addr + 1 length = last_missing - mo.last_addr fill_mo = self._fill_missing(start_addr, length, inspect=inspect, events=events) segments.append(fill_mo.bytes_at(start_addr, length).reversed) last_missing = mo.last_addr # add the normal segment segments.append(mo.bytes_at(mo_addr, last_missing - mo_addr + 1)) last_missing = mo_addr - 1 # handle missing bytes at the beginning if last_missing != addr - 1: start_addr = addr end_addr = last_missing - addr + 1 fill_mo = self._fill_missing(start_addr, end_addr, inspect=inspect, events=events) segments.append(fill_mo.bytes_at(start_addr, end_addr)) # reverse the segments to put them in the right order segments.reverse() # and combine if len(segments) > 1: r = segments[0].concat(*segments[1:]) elif len(segments) == 1: r = segments[0] else: r = self.state.solver.BVV(0, 0) return r def _load(self, dst, size, condition=None, fallback=None, inspect=True, events=True, ret_on_segv=False): if self.state.solver.symbolic(size): l.warning("Concretizing symbolic length. Much sad; think about implementing.") # for now, we always load the maximum size _,max_size = self._resolve_size_range(size) if options.ABSTRACT_MEMORY not in self.state.options and self.state.solver.symbolic(size): self.state.add_constraints(size == max_size, action=True) if max_size == 0: self.state.history.add_event('memory_limit', message="0-length read") size = max_size if self.state.solver.symbolic(dst) and options.AVOID_MULTIVALUED_READS in self.state.options: return [ ], self.get_unconstrained_bytes("symbolic_read_unconstrained", size*self.state.arch.byte_width), [ ] # get a concrete set of read addresses try: addrs = self.concretize_read_addr(dst) except SimMemoryError: if options.CONSERVATIVE_READ_STRATEGY in self.state.options: return [ ], self.get_unconstrained_bytes( "symbolic_read_unconstrained", size*self.state.arch.byte_width ), [ ] else: raise constraint_options = [ ] if len(addrs) == 1: # It's not an conditional reaed constraint_options.append(dst == addrs[0]) read_value = self._read_from(addrs[0], size, inspect=inspect, events=events) else: read_value = DUMMY_SYMBOLIC_READ_VALUE # it's a sentinel value and should never be touched for a in addrs: read_value = self.state.solver.If(dst == a, self._read_from(a, size, inspect=inspect, events=events), read_value) constraint_options.append(dst == a) if len(constraint_options) > 1: load_constraint = [ self.state.solver.Or(*constraint_options) ] elif not self.state.solver.symbolic(constraint_options[0]): load_constraint = [ ] else: load_constraint = [ constraint_options[0] ] if condition is not None and fallback is not None: read_value = self.state.solver.If(condition, read_value, fallback) load_constraint = [ self.state.solver.Or(self.state.solver.And(condition, *load_constraint), self.state.solver.Not(condition)) ] return addrs, read_value, load_constraint def _find(self, start, what, max_search=None, max_symbolic_bytes=None, default=None, step=1, disable_actions=False, inspect=True, chunk_size=None): if max_search is None: max_search = DEFAULT_MAX_SEARCH if isinstance(start, int): start = self.state.solver.BVV(start, self.state.arch.bits) constraints = [ ] remaining_symbolic = max_symbolic_bytes seek_size = len(what)//self.state.arch.byte_width symbolic_what = self.state.solver.symbolic(what) l.debug("Search for %d bytes in a max of %d...", seek_size, max_search) chunk_start = 0 if chunk_size is None: chunk_size = max(0x100, seek_size + 0x80) chunk = self.load(start, chunk_size, endness="Iend_BE", disable_actions=disable_actions, inspect=inspect) cases = [ ] match_indices = [ ] offsets_matched = [ ] # Only used in static mode byte_width = self.state.arch.byte_width no_singlevalue_opt = options.SYMBOLIC_MEMORY_NO_SINGLEVALUE_OPTIMIZATIONS in self.state.options cond_prefix = [ ] for i in itertools.count(step=step): l.debug("... checking offset %d", i) if i > max_search - seek_size: l.debug("... hit max size") break if remaining_symbolic is not None and remaining_symbolic == 0: l.debug("... hit max symbolic") break if i - chunk_start > chunk_size - seek_size: l.debug("loading new chunk") chunk_start += chunk_size - seek_size + 1 chunk = self.load(start+chunk_start, chunk_size, endness="Iend_BE", ret_on_segv=True, disable_actions=disable_actions, inspect=inspect) chunk_off = i-chunk_start b = chunk[chunk_size*byte_width - chunk_off*byte_width - 1 : chunk_size*byte_width - chunk_off*byte_width - seek_size*byte_width] condition = b == what if not self.state.solver.is_false(condition): if no_singlevalue_opt and cond_prefix: condition = claripy.And(*(cond_prefix + [condition])) cases.append([condition, claripy.BVV(i, len(start))]) match_indices.append(i) if b.symbolic and no_singlevalue_opt: # in tracing mode, we need to make sure that all previous bytes are not equal to what cond_prefix.append(b != what) if self.state.mode == 'static': si = b._model_vsa what_si = what._model_vsa if isinstance(si, claripy.vsa.StridedInterval): if not si.intersection(what_si).is_empty: offsets_matched.append(start + i) if si.identical(what_si): break if si.cardinality != 1: if remaining_symbolic is not None: remaining_symbolic -= 1 else: # Comparison with other types (like IfProxy or ValueSet) is not supported if remaining_symbolic is not None: remaining_symbolic -= 1 else: # other modes (e.g. symbolic mode) if not b.symbolic and not symbolic_what and self.state.solver.eval(b) == self.state.solver.eval(what): l.debug("... found concrete") break else: if b.symbolic and remaining_symbolic is not None: remaining_symbolic -= 1 if self.state.mode == 'static': r = self.state.solver.ESI(self.state.arch.bits) for off in offsets_matched: r = r.union(off) constraints = [ ] return r, constraints, match_indices else: if default is None: l.debug("... no default specified") default = 0 constraints += [ self.state.solver.Or(*[ c for c,_ in cases]) ] #l.debug("running ite_cases %s, %s", cases, default) r = self.state.solver.ite_cases(cases, default - start) + start return r, constraints, match_indices def __contains__(self, dst): if isinstance(dst, int): addr = dst elif self.state.solver.symbolic(dst): l.warning("Currently unable to do SimMemory.__contains__ on symbolic variables.") return False else: addr = self.state.solver.eval(dst) return addr in self.mem def was_written_to(self, dst): if isinstance(dst, int): addr = dst elif self.state.solver.symbolic(dst): l.warning("Currently unable to do SimMemory.was_written_to on symbolic variables.") return False else: addr = self.state.solver.eval(dst) return self.mem.contains_no_backer(addr) # # Writes # def _store(self, req): l.debug("Doing a store...") req._adjust_condition(self.state) max_bytes = req.data.length//self.state.arch.byte_width if req.size is None: req.size = max_bytes if self.state.solver.symbolic(req.size): if options.AVOID_MULTIVALUED_WRITES in self.state.options: return req if options.CONCRETIZE_SYMBOLIC_WRITE_SIZES in self.state.options: new_size = self.state.solver.eval(req.size) self.state.add_constraints(req.size == new_size) req.size = new_size if self.state.solver.symbolic(req.addr) and options.AVOID_MULTIVALUED_WRITES in self.state.options: return req if not self.state.solver.symbolic(req.size) and self.state.solver.eval(req.size) > req.data.length//self.state.arch.byte_width: raise SimMemoryError("Not enough data for requested storage size (size: {}, data: {})".format(req.size, req.data)) if self.state.solver.symbolic(req.size): self.state.add_constraints(self.state.solver.ULE(req.size, max_bytes)) # # First, resolve the addresses # try: req.actual_addresses = sorted(self.concretize_write_addr(req.addr)) except SimMemoryError: if options.CONSERVATIVE_WRITE_STRATEGY in self.state.options: return req else: raise if type(req.addr) is not int and req.addr.symbolic: conditional_constraint = self.state.solver.Or(*[ req.addr == a for a in req.actual_addresses ]) if (conditional_constraint.symbolic or # if the constraint is symbolic conditional_constraint.is_false()): # if it makes the state go unsat req.constraints.append(conditional_constraint) # # Prepare memory objects # # If we have only one address to write to we handle it as concrete, disregarding symbolic or not is_size_symbolic = self.state.solver.symbolic(req.size) is_addr_symbolic = self.state.solver.symbolic(req.addr) if not is_size_symbolic and len(req.actual_addresses) == 1: store_list = self._store_fully_concrete(req.actual_addresses[0], req.size, req.data, req.endness, req.condition) elif not is_addr_symbolic: store_list = self._store_symbolic_size(req.addr, req.size, req.data, req.endness, req.condition) elif not is_size_symbolic: store_list = self._store_symbolic_addr(req.addr, req.actual_addresses, req.size, req.data, req.endness, req.condition) else: store_list = self._store_fully_symbolic(req.addr, req.actual_addresses, req.size, req.data, req.endness, req.condition) # # store it!!! # req.stored_values = [] if (self.category == 'mem' and options.SIMPLIFY_MEMORY_WRITES in self.state.options) or \ (self.category == 'reg' and options.SIMPLIFY_REGISTER_WRITES in self.state.options): for store_item in store_list: store_item['value'] = self.state.solver.simplify(store_item['value']) if req.endness == "Iend_LE" or (req.endness is None and self.endness == "Iend_LE"): store_item['value'] = store_item['value'].reversed req.stored_values.append(store_item['value']) self._insert_memory_object(store_item['value'], store_item['addr'], store_item['size']) else: for store_item in store_list: if req.endness == "Iend_LE" or (req.endness is None and self.endness == "Iend_LE"): store_item['value'] = store_item['value'].reversed req.stored_values.append(store_item['value']) self._insert_memory_object(store_item['value'], store_item['addr'], store_item['size']) l.debug("... done") req.completed = True return req def _insert_memory_object(self, value, address, size): if self.category == 'mem': self.state.scratch.dirty_addrs.update(range(address, address+size)) mo = SimMemoryObject(value, address, length=size, byte_width=self.state.arch.byte_width) self.mem.store_memory_object(mo) def _store_fully_concrete(self, address, size, data, endness, condition): if type(size) is not int: size = self.state.solver.eval(size) if size < data.length//self.state.arch.byte_width: data = data[len(data)-1:len(data)-size*self.state.arch.byte_width:] if condition is not None: try: original_value = self._read_from(address, size) except Exception as ex: raise ex if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_value = original_value.reversed conditional_value = self.state.solver.If(condition, data, original_value) else: conditional_value = data return [ dict(value=conditional_value, addr=address, size=size) ] def _store_symbolic_size(self, address, size, data, endness, condition): address = self.state.solver.eval(address) max_bytes = data.length//self.state.arch.byte_width original_value = self._read_from(address, max_bytes) if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_value = original_value.reversed befores = original_value.chop(bits=self.state.arch.byte_width) afters = data.chop(bits=self.state.arch.byte_width) stored_value = self.state.solver.Concat(*[ self.state.solver.If(self.state.solver.UGT(size, i), a, b) for i, (a, b) in enumerate(zip(afters, befores)) ]) conditional_value = self.state.solver.If(condition, stored_value, original_value) if condition is not None else stored_value return [ dict(value=conditional_value, addr=address, size=max_bytes) ] def _store_symbolic_addr(self, address, addresses, size, data, endness, condition): size = self.state.solver.eval(size) segments = self._get_segments(addresses, size) if condition is None: condition = claripy.BoolV(True) original_values = [ self._read_from(segment['start'], segment['size']) for segment in segments ] if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_values = [ ov.reversed for ov in original_values ] stored_values = [] for segment, original_value in zip(segments, original_values): conditional_value = original_value for opt in segment['options']: if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): high = ((opt['idx']+segment['size']) * self.state.arch.byte_width)-1 low = opt['idx']*self.state.arch.byte_width else: high = len(data) - 1 - (opt['idx']*self.state.arch.byte_width) low = len(data) - ((opt['idx']+segment['size']) *self.state.arch.byte_width) data_slice = data[high:low] conditional_value = self.state.solver.If(self.state.solver.And(address == segment['start']-opt['idx'], condition), data_slice, conditional_value) stored_values.append(dict(value=conditional_value, addr=segment['start'], size=segment['size'])) return stored_values def flush_pages(self,whitelist): self.mem.flush_pages(whitelist) @staticmethod def _create_segment(addr, size, s_options, idx, segments): segment = dict(start=addr, size=size, options=s_options) segments.insert(idx, segment) @staticmethod def _split_segment(addr, segments): s_idx = SimSymbolicDbgMemory._get_segment_index(addr, segments) segment = segments[s_idx] if segment['start'] == addr: return s_idx assert segment['start'] < addr < segment['start'] + segment['size'] size_prev = addr - segment['start'] size_next = segment['size'] - size_prev assert size_prev != 0 and size_next != 0 segments.pop(s_idx) SimSymbolicDbgMemory._create_segment(segment['start'], size_prev, segment['options'], s_idx, segments) SimSymbolicDbgMemory._create_segment(addr, size_next, [{"idx": opt["idx"] + size_prev} for opt in segment['options']], s_idx + 1, segments) return s_idx + 1 @staticmethod def _add_segments_overlap(idx, addr, segments): for i in range(idx, len(segments)): segment = segments[i] if addr < segment['start'] + segment['size']: segments[i]["options"].append({"idx": segment['start'] - addr}) @staticmethod def _get_segment_index(addr, segments): for i, segment in enumerate(segments): if segment['start'] <= addr < segment['start'] + segment['size']: return i return -1 @staticmethod def _get_segments(addrs, size): segments = [] highest = 0 for addr in addrs: if addr < highest: idx = SimSymbolicDbgMemory._split_segment(addr, segments) SimSymbolicDbgMemory._create_segment(highest, addr + size - highest, [], len(segments), segments) SimSymbolicDbgMemory._add_segments_overlap(idx, addr, segments) else: SimSymbolicDbgMemory._create_segment(addr, size, [{'idx': 0}], len(segments), segments) highest = addr + size return segments def _store_fully_symbolic(self, address, addresses, size, data, endness, condition): stored_values = [ ] byte_dict = defaultdict(list) max_bytes = data.length//self.state.arch.byte_width if condition is None: condition = claripy.BoolV(True) # chop data into byte-chunks original_values = [self._read_from(a, max_bytes) for a in addresses] if endness == "Iend_LE" or (endness is None and self.endness == "Iend_LE"): original_values = [ ov.reversed for ov in original_values ] data_bytes = data.chop(bits=self.state.arch.byte_width) for a, fv in zip(addresses, original_values): original_bytes = fv.chop(self.state.arch.byte_width) for index, (d_byte, o_byte) in enumerate(zip(data_bytes, original_bytes)): # create a dict of all all possible values for a certain address byte_dict[a+index].append((a, index, d_byte, o_byte)) for byte_addr in sorted(byte_dict.keys()): write_list = byte_dict[byte_addr] # If this assertion fails something is really wrong! assert all(v[3] is write_list[0][3] for v in write_list) conditional_value = write_list[0][3] for a, index, d_byte, o_byte in write_list: # create the ast for each byte conditional_value = self.state.solver.If(self.state.solver.And(address == a, size > index, condition), d_byte, conditional_value) stored_values.append(dict(value=conditional_value, addr=byte_addr, size=1)) return stored_values def _store_with_merge(self, req): req._adjust_condition(self.state) dst = req.addr cnt = req.data size = req.size endness = req.endness req.stored_values = [ ] if options.ABSTRACT_MEMORY not in self.state.options: raise SimMemoryError('store_with_merge is not supported without abstract memory.') l.debug("Doing a store with merging...") addrs = self.concretize_write_addr(dst) if len(addrs) == 1: l.debug("... concretized to 0x%x", addrs[0]) else: l.debug("... concretized to %d values", len(addrs)) if size is None: # Full length length = len(cnt) else: raise NotImplementedError() for addr in addrs: # First we load old values old_val = self._read_from(addr, length // self.state.arch.byte_width) assert isinstance(old_val, claripy.Bits) # FIXME: This is a big hack def is_reversed(o): if isinstance(o, claripy.Bits) and o.op == 'Reverse': return True return False def can_be_reversed(o): om = o._model_vsa if isinstance(om, claripy.vsa.StridedInterval) and om.is_integer: return True return False if endness == 'Iend_LE': cnt = cnt.reversed reverse_it = False if is_reversed(cnt): if is_reversed(old_val): cnt = cnt.args[0] old_val = old_val.args[0] reverse_it = True elif can_be_reversed(old_val): cnt = cnt.args[0] reverse_it = True if isinstance(old_val, (int, claripy.bv.BVV)): merged_val = self.state.solver.SI(bits=len(old_val), to_conv=old_val) else: merged_val = old_val merged_val = merged_val.union(cnt) if reverse_it: merged_val = merged_val.reversed # Write the new value self.store(addr, merged_val, size=size) req.stored_values.append(merged_val) req.completed = True # TODO: revisit the following lines req.constraints = [ ] return req def get_unconstrained_bytes(self, name, bits, source=None, key=None, inspect=True, events=True, **kwargs): """ Get some consecutive unconstrained bytes. :param name: Name of the unconstrained variable :param bits: Size of the unconstrained variable :param source: Where those bytes are read from. Currently it is only used in under-constrained symbolic execution so that we can track the allocation depth. :return: The generated variable """ if self.category == 'mem' and options.ZERO_FILL_UNCONSTRAINED_MEMORY in self.state.options: return self.state.solver.BVV(0, bits) elif self.category == 'reg' and options.ZERO_FILL_UNCONSTRAINED_REGISTERS in self.state.options: return self.state.solver.BVV(0, bits) elif options.SPECIAL_MEMORY_FILL in self.state.options and self.state._special_memory_filler is not None: return self.state._special_memory_filler(name, bits, self.state) else: if options.UNDER_CONSTRAINED_SYMEXEC in self.state.options: if source is not None and type(source) is int: alloc_depth = self.state.uc_manager.get_alloc_depth(source) kwargs['uc_alloc_depth'] = 0 if alloc_depth is None else alloc_depth + 1 r = self.state.solver.Unconstrained(name, bits, key=key, inspect=inspect, events=events, **kwargs) return r # Unconstrain a byte def unconstrain_byte(self, addr, inspect=True, events=True): unconstrained_byte = self.get_unconstrained_bytes("%s_unconstrain_%#x" % (self.id, addr), self.state.arch.byte_width, inspect=inspect, events=events, key=('manual_unconstrain', addr)) self.store(addr, unconstrained_byte) # Replaces the differences between self and other with unconstrained bytes. def unconstrain_differences(self, other): changed_bytes = self.changed_bytes(other) l.debug("Will unconstrain %d %s bytes", len(changed_bytes), self.id) for b in changed_bytes: self.unconstrain_byte(b) @staticmethod def _is_uninitialized(a): return getattr(a._model_vsa, 'uninitialized', False) def _merge_values(self, to_merge, merged_size, is_widening=False): if options.ABSTRACT_MEMORY in self.state.options: if self.category == 'reg' and self.state.arch.register_endness == 'Iend_LE': should_reverse = True elif self.state.arch.memory_endness == 'Iend_LE': should_reverse = True else: should_reverse = False merged_val = to_merge[0][0] if should_reverse: merged_val = merged_val.reversed for tm,_ in to_merge[1:]: if should_reverse: tm = tm.reversed if self._is_uninitialized(tm): continue if is_widening: l.info("Widening %s %s...", merged_val, tm) merged_val = merged_val.widen(tm) l.info('... Widened to %s', merged_val) else: l.info("Merging %s %s...", merged_val, tm) merged_val = merged_val.union(tm) l.info("... Merged to %s", merged_val) if should_reverse: merged_val = merged_val.reversed else: merged_val = self.state.solver.BVV(0, merged_size*self.state.arch.byte_width) for tm,fv in to_merge: merged_val = self.state.solver.If(fv, tm, merged_val) return merged_val def dbg_print(self, indent=0): """ Print out debugging information. """ lst = [] more_data = False for i, addr in enumerate(self.mem.keys()): lst.append(addr) if i >= 20: more_data = True break for addr in sorted(lst): data = self.mem[addr] if isinstance(data, SimMemoryObject): memobj = data print("%s%xh: (%s)[%d]" % (" " * indent, addr, memobj, addr - memobj.base)) else: print("%s%xh: <default data>" % (" " * indent, addr)) if more_data: print("%s..." % (" " * indent)) def _copy_contents(self, dst, src, size, condition=None, src_memory=None, dst_memory=None, inspect=True, disable_actions=False): src_memory = self if src_memory is None else src_memory dst_memory = self if dst_memory is None else dst_memory _,max_size = self._resolve_size_range(size) if max_size == 0: return None, [ ] data = src_memory.load(src, max_size, inspect=inspect, disable_actions=disable_actions) dst_memory.store(dst, data, size=size, condition=condition, inspect=inspect, disable_actions=disable_actions) return data # # Things that are actually handled by SimPagedMemory # def changed_bytes(self, other): """ Gets the set of changed bytes between self and `other`. :param other: The other :class:`SimSymbolicDbgMemory`. :returns: A set of differing bytes """ return self.mem.changed_bytes(other.mem) def replace_all(self, old, new): """ Replaces all instances of expression old with expression new. :param old: A claripy expression. Must contain at least one named variable (to make to make it possible to use the name index for speedup) :param new: The new variable to replace it with """ return self.mem.replace_all(old, new) def addrs_for_name(self, n): """ Returns addresses that contain expressions that contain a variable named `n`. """ return self.mem.addrs_for_name(n) def addrs_for_hash(self, h): """ Returns addresses that contain expressions that contain a variable with the hash of `h`. """ return self.mem.addrs_for_hash(h) def replace_memory_object(self, old, new_content): """ Replaces the memory object 'old' with a new memory object containing 'new_content'. :param old: A SimMemoryObject (i.e., one from memory_objects_for_hash() or memory_objects_for_name()) :param new_content: the content (claripy expression) for the new memory object """ return self.mem.replace_memory_object(old, new_content) def memory_objects_for_name(self, n): """ Returns a set of SimMemoryObjects that contain expressions that contain a variable with the name of n. This is useful for replacing those values, in one fell swoop, with replace_memory_object(), even if they've been partially overwritten. """ return self.mem.memory_objects_for_name(n) def memory_objects_for_hash(self, n): """ Returns a set of SimMemoryObjects that contain expressions that contain a variable with the hash of h. This is useful for replacing those values, in one fell swoop, with replace_memory_object(), even if they've been partially overwritten. """ return self.mem.memory_objects_for_hash(n) def permissions(self, addr, permissions=None): """ Retrieve the permissions of the page at address `addr`. :param addr: address to get the page permissions :param permissions: Integer or BVV to optionally set page permissions to :return: AST representing the permissions on the page """ out = self.mem.permissions(addr, permissions) # if unicorn is in play and we've marked a page writable, it must be uncached if permissions is not None and self.state.solver.is_true(permissions & 2 == 2): if self.state.has_plugin('unicorn'): self.state.unicorn.uncache_page(addr) return out def map_region(self, addr, length, permissions, init_zero=False): """ Map a number of pages at address `addr` with permissions `permissions`. :param addr: address to map the pages at :param length: length in bytes of region to map, will be rounded upwards to the page size :param permissions: AST of permissions to map, will be a bitvalue representing flags :param init_zero: Initialize page with zeros """ l.info("Mapping [%#x, %#x] as %s", addr, addr + length - 1, permissions) return self.mem.map_region(addr, length, permissions, init_zero=init_zero) def unmap_region(self, addr, length): """ Unmap a number of pages at address `addr` :param addr: address to unmap the pages at :param length: length in bytes of region to map, will be rounded upwards to the page size """ return self.mem.unmap_region(addr, length) from angr.errors import SimUnsatError, SimMemoryError, SimMemoryLimitError, SimMemoryAddressError, SimMergeError from angr import sim_options as options from angr.state_plugins.inspect import BP_AFTER, BP_BEFORE from angr import concretization_strategies
the-stack_0_25677
from aiohttp import web from certomancer import registry from .csc_dummy_server import CSCWithCertomancer, DummyServiceParams def run_from_file(cfg_path, port, require_hash_pinning=True): cfg = registry.CertomancerConfig.from_file(cfg_path) csc_app = CSCWithCertomancer( cfg, service_params=DummyServiceParams( hash_pinning_required=require_hash_pinning ) ) csc_app.register_routes() web.run_app( csc_app.app, host='localhost', port=port, )
the-stack_0_25678
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries # SPDX-License-Identifier: MIT """Simple test script for 2.13" 250x122 black and white featherwing. Supported products: * Adafruit 2.13" Black and White FeatherWing * https://www.adafruit.com/product/4195 """ import time import board import displayio import adafruit_ssd1675 displayio.release_displays() epd_cs = board.D9 epd_dc = board.D10 display_bus = displayio.FourWire( board.SPI(), command=epd_dc, chip_select=epd_cs, baudrate=1000000 ) time.sleep(1) display = adafruit_ssd1675.SSD1675(display_bus, width=250, height=122, rotation=270) g = displayio.Group() with open("/display-ruler.bmp", "rb") as f: pic = displayio.OnDiskBitmap(f) # CircuitPython 6 & 7 compatible t = displayio.TileGrid( pic, pixel_shader=getattr(pic, "pixel_shader", displayio.ColorConverter()) ) # CircuitPython 7 compatible only # t = displayio.TileGrid(pic, pixel_shader=pic.pixel_shader) g.append(t) display.show(g) display.refresh() print("refreshed") time.sleep(120)
the-stack_0_25680
from goap.utils.os.shell_command import ShellCommand from os import path import unittest import subprocess from pprint import PrettyPrinter import networkx as nx from goap.WorldState import WorldState from goap.Action import Actions from goap.Planner import Planner class PlannerTest(unittest.TestCase): @staticmethod def __reset_environment(): if path.isdir('/tmp/goap_tmp'): subprocess.call(['rm', '-rf', '/tmp/goap_tmp']) def __print(self): self.print.pprint( 'Nodes: {}, Edges: {}'.format( self.planner.graph.nodes, self.planner.graph.edges)) def setUp(self): # init actions self.dir_handler_cmd = Actions() self.lv_act = Actions() # setup actions self.mkdir = ShellCommand(command='mkdir -p /tmp/goap_tmp') self.mktoken = ShellCommand(command='touch /tmp/goap_tmp/.token') self.mkecho = ShellCommand(command='echo mocked') # self.setUpLvmCMD() # self.setUpDirHandlerCMD() # init planner self.print = PrettyPrinter(indent=4) self.init_ws = WorldState( {"tmp_dir_state": False, "tmp_dir_content": False, }) self.gs = WorldState( {"tmp_dir_state": True, "tmp_dir_content": True, }) self.planner = Planner(actions=self.dir_handler_cmd) def tearDown(self) -> None: self.dir_handler_cmd = [] self.lv_act = [] self.init_ws = None self.gs = {} self.planner = None def setUpDirHandlerCMD(self): self.dir_handler_cmd.add( name='CreateTmpDir', conditions={'tmp_dir_state': False, 'tmp_dir_content': False}, effects={'tmp_dir_state': True, 'tmp_dir_content': False}, func=self.mkdir ) self.dir_handler_cmd.add( name='CreateToken', conditions={'tmp_dir_state': True, 'tmp_dir_content': False}, effects={'tmp_dir_state': True, 'tmp_dir_content': True}, func=self.mktoken ) def setUpLvmCMD(self): self.lv_act.add( name='ExpandLV', conditions={ 'lv_need_expansion': True, 'vg_need_expansion': False, }, effects={ 'lv_need_expansion': False, }, func=self.mkecho, cost=1.0 ) self.lv_act.add( name='ExpandVG', conditions={ 'vg_need_expansion': True, 'pv_need_expansion': False, }, effects={ 'vg_need_expansion': False, }, func=self.mkecho, ) self.lv_act.add( name='ExpandPV', conditions={ 'pv_need_expansion': True, }, effects={ 'pv_need_expansion': False, }, func=self.mkecho, cost=1.5, ) def test_set_goal(self): self.planner.goal = self.gs assert self.gs == self.planner.goal def test_graph_isomorphic(self): from goap.Planner import Node from goap.Planner import Edge acts = Actions() acts.add( name='CreateTmpDirIso', conditions={'tmp_dir_state': False, 'tmp_dir_content': False}, effects={'tmp_dir_state': True, 'tmp_dir_content': False}, func=self.mkdir ) acts.add( name='CreateTokenIso', conditions={'tmp_dir_state': True, 'tmp_dir_content': False}, effects={'tmp_dir_state': True, 'tmp_dir_content': True}, func=self.mktoken ) node1 = Node( attributes={ 'tmp_dir_state': False, 'tmp_dir_content': False}) node2 = Node( attributes={ 'tmp_dir_state': True, 'tmp_dir_content': False}) node3 = Node( attributes={ 'tmp_dir_state': True, 'tmp_dir_content': True}) edge1 = Edge( name='CreateTmpDirIso', predecessor=node1, successor=node2, obj=acts.get('CreateTmpDirIso')) edge2 = Edge( name='CreateTokenIso', predecessor=node2, successor=node3, obj=acts.get('CreateTokenIso')) g1 = nx.DiGraph(nodes=[node1, node2, node3], edges=[edge1, edge2]) g2 = self.planner.graph.directed assert nx.is_isomorphic(g1, g2) is True def test_plan(self): self.setUpDirHandlerCMD() create_tmp_dir = self.planner.actions.get('CreateTmpDir') create_token = self.planner.actions.get('CreateToken') plan = self.planner.plan(state=self.init_ws, goal=self.gs) print(type(plan)) print(plan) action_plan = [action[2]['object'] for action in plan] print(action_plan) assert action_plan == [create_tmp_dir, create_token]
the-stack_0_25685
import pyglet window = pyglet.window.Window() label = pyglet.text.Label('PyGLet GUI', font_size=42, x=window.width//2, y=window.height//2, anchor_x='center', anchor_y='center') @window.event def on_draw(): window.clear() label.draw() pyglet.app.run()
the-stack_0_25690
import random import re import string import math import requests local_prefix = 'local-' from os import environ, path import json def get_version_number(): return environ["version"] def get_stage_name(): stage = environ["stage"] return stage[len(local_prefix):] if stage.startswith(local_prefix) else stage def is_production(): return get_stage_name() == "production" def is_staging(): return get_stage_name() == "staging" def is_onprem(): return not is_production() and not is_staging() def is_local(): return environ["stage"].startswith(local_prefix) def generate_salt(): return "".join(random.choices(string.hexdigits, k=36)) def unique_ordered_list(array): uniq = [] [uniq.append(x) for x in array if x not in uniq] return uniq def unique_unordered_list(array): return list(set(array)) def list_to_camel_case(items, flatten=False): for i in range(len(items)): if flatten: items[i] = flatten_nested_dicts(items[i]) items[i] = dict_to_camel_case(items[i]) return items def dict_to_camel_case(variable, delimiter='_', ignore_keys=[]): if variable is None: return None if isinstance(variable, str): return variable elif isinstance(variable, dict): aux = {} for key in variable.keys(): if key in ignore_keys: aux[key] = variable[key] elif isinstance(variable[key], dict): aux[key_to_camel_case(key, delimiter)] = dict_to_camel_case(variable[key]) elif isinstance(variable[key], list): aux[key_to_camel_case(key, delimiter)] = list_to_camel_case(variable[key]) else: aux[key_to_camel_case(key, delimiter)] = variable[key] return aux else: return variable def dict_to_CAPITAL_keys(variable): if variable is None: return None if isinstance(variable, str): return variable.upper() elif isinstance(variable, dict): aux = {} for key in variable.keys(): if isinstance(variable[key], dict): aux[key.upper()] = dict_to_CAPITAL_keys(variable[key]) else: aux[key.upper()] = variable[key] return aux else: return variable def variable_to_snake_case(variable, delimiter='_', split_number=False): if isinstance(variable, str): return key_to_snake_case(variable, delimiter, split_number) elif isinstance(variable, dict): aux = {} for key in variable.keys(): if isinstance(variable[key], dict): aux[key_to_snake_case(key, delimiter, split_number)] = variable_to_snake_case(variable[key], delimiter, split_number) else: aux[key_to_snake_case(key, delimiter, split_number)] = variable[key] return aux else: return variable def key_to_camel_case(snake_str, delimiter='_'): if snake_str.startswith(delimiter): snake_str = snake_str[1:] components = snake_str.split(delimiter) return components[0] + ''.join(x.title() for x in components[1:]) def key_to_snake_case(name, delimiter='_', split_number=False): s1 = re.sub('(.)([A-Z][a-z]+)', fr'\1{delimiter}\2', name) return re.sub('([a-z])([A-Z0-9])' if split_number else '([a-z0-9])([A-Z])', fr'\1{delimiter}\2', s1).lower() TRACK_TIME = True def __sbool_to_bool(value): if value is None or not isinstance(value, str): return False return value.lower() in ["true", "yes", "1"] def allow_captcha(): return environ.get("captcha_server") is not None and environ.get("captcha_key") is not None \ and len(environ["captcha_server"]) > 0 and len(environ["captcha_key"]) > 0 def allow_sentry(): return environ.get("sentryURL") is not None and len(environ["sentryURL"]) > 0 def async_post(endpoint, data): data["auth"] = environ["async_Token"] try: requests.post(endpoint, timeout=1, json=data) except requests.exceptions.ReadTimeout: pass def string_to_sql_like(value): value = re.sub(' +', ' ', value) value = value.replace("*", "%") if value.startswith("^"): value = value[1:] elif not value.startswith("%"): value = '%' + value if value.endswith("$"): value = value[:-1] elif not value.endswith("%"): value = value + '%' # value = value.replace(" ", "%") return value def string_to_sql_like_with_op(value, op): if isinstance(value, list) and len(value) > 0: _value = value[0] else: _value = value if _value is None: return _value if op.lower() != 'ilike': return _value.replace("%", "%%") _value = _value.replace("*", "%") if _value.startswith("^"): _value = _value[1:] elif not _value.startswith("%"): _value = '%' + _value if _value.endswith("$"): _value = _value[:-1] elif not _value.endswith("%"): _value = _value + '%' return _value.replace("%", "%%") def is_valid_email(email): return re.match(r"[^@]+@[^@]+\.[^@]+", email) is not None def is_valid_http_url(url): regex = re.compile( r'^(?:http|ftp)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) return re.match(regex, url) is not None def is_valid_url(url): regex = re.compile( # r'^(?:http|ftp)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' # domain... r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) return re.match(regex, url) is not None def is_alphabet_space(word): r = re.compile("^[a-zA-Z ]*$") return r.match(word) is not None def is_alphabet_latin_space(word): r = re.compile("^[a-zA-Z\u00C0-\u00D6\u00D8-\u00f6\u00f8-\u00ff\s ]*$") return r.match(word) is not None def is_alphabet_space_dash(word): r = re.compile("^[a-zA-Z -]*$") return r.match(word) is not None def is_alphanumeric_space(word): r = re.compile("^[a-zA-Z0-9._\- ]*$") return r.match(word) is not None def merge_lists_by_key(l1, l2, key): merged = {} for item in l1 + l2: if item[key] in merged: merged[item[key]].update(item) else: merged[item[key]] = item return [val for (_, val) in merged.items()] def flatten_nested_dicts(obj): if obj is None: return None result = {} for key in obj.keys(): if isinstance(obj[key], dict): result = {**result, **flatten_nested_dicts(obj[key])} else: result[key] = obj[key] return result def delete_keys_from_dict(d, to_delete): if isinstance(to_delete, str): to_delete = [to_delete] if isinstance(d, dict): for single_to_delete in set(to_delete): if single_to_delete in d: del d[single_to_delete] for k, v in d.items(): delete_keys_from_dict(v, to_delete) elif isinstance(d, list): for i in d: delete_keys_from_dict(i, to_delete) return d def explode_widget(data, key=None): result = [] for k in data.keys(): if k.endswith("Progress") or k == "chart": continue result.append({"key": key_to_snake_case(k) if key is None else key, "data": {"value": data[k]}}) if k + "Progress" in data: result[-1]["data"]["progress"] = data[k + "Progress"] if "chart" in data: result[-1]["data"]["chart"] = [] for c in data["chart"]: result[-1]["data"]["chart"].append({"timestamp": c["timestamp"], "value": c[k]}) return result TEMP_PATH = "./" if is_local() else "/tmp/" def get_issue_title(issue_type): return {'click_rage': "Click Rage", 'dead_click': "Dead Click", 'excessive_scrolling': "Excessive Scrolling", 'bad_request': "Bad Request", 'missing_resource': "Missing Image", 'memory': "High Memory Usage", 'cpu': "High CPU", 'slow_resource': "Slow Resource", 'slow_page_load': "Slow Page", 'crash': "Crash", 'ml_cpu': "High CPU", 'ml_memory': "High Memory Usage", 'ml_dead_click': "Dead Click", 'ml_click_rage': "Click Rage", 'ml_mouse_thrashing': "Mouse Thrashing", 'ml_excessive_scrolling': "Excessive Scrolling", 'ml_slow_resources': "Slow Resource", 'custom': "Custom Event", 'js_exception': "Error", 'custom_event_error': "Custom Error", 'js_error': "Error"}.get(issue_type, issue_type) def __progress(old_val, new_val): return ((old_val - new_val) / new_val) * 100 if new_val > 0 else 0 if old_val == 0 else 100 def __decimal_limit(value, limit): factor = pow(10, limit) value = math.floor(value * factor) if value % factor == 0: return value // factor return value / factor def is_free_open_source_edition(): return __sbool_to_bool(environ.get("isFOS")) def is_enterprise_edition(): return __sbool_to_bool(environ.get("isEE")) stag_config_file = f"chalicelib/.configs/{environ['stage']}.json" if not path.isfile(stag_config_file): print("!! stage config file not found, using .chalice/config.json only") else: print("!! stage config file found, merging with priority to .chalice/config.json") with open(stag_config_file) as json_file: config = json.load(json_file) environ = {**config, **environ} if (is_free_open_source_edition() or is_enterprise_edition()) and environ.get("config_file"): if not path.isfile(environ.get("config_file")): print("!! config file not found, using default environment") else: with open(environ.get("config_file")) as json_file: config = json.load(json_file) environ = {**environ, **config} def get_internal_project_id(project_id64): if project_id64 < 0x10000000000000 or project_id64 >= 0x20000000000000: return None project_id64 = (project_id64 - 0x10000000000000) * 4212451012670231 & 0xfffffffffffff if project_id64 > 0xffffffff: return None project_id = int(project_id64) return project_id def has_smtp(): return environ["EMAIL_HOST"] is not None and len(environ["EMAIL_HOST"]) > 0 def get_edition(): return "foss" if is_free_open_source_edition() else "ee"
the-stack_0_25691
import json import os from sklearn.feature_extraction.text import CountVectorizer from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfTransformer from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import MultiLabelBinarizer import nltk from sklearn.externals import joblib class TweetTagger: def __init__(self, news_file, training_file, tag_map=dict()): self.news_file = news_file self.training_file = training_file self.tag_map = tag_map self.classifier = None self.mlb = None self.category_map = None self.category_map_inverse = None @staticmethod def pre_process(news): img_captions = [] for img in news["images"]: if len(img) > 1: img_captions.append(img[1]) all_captions = "\n".join(img_captions) all_text = "\n".join(news["paragraphs"]) teaser = ("" if "teaser" not in news else news["teaser"]) all_content = "\n\n".join([news["title"], teaser, all_text, all_captions]) return all_content def load_classifier(self, classifier_file): with open(self.news_file, "r") as f: news = json.load(f) with open(self.training_file, "r") as f: train = json.load(f) categories = {} for i, n in enumerate(train): cs = train[n].split(sep=",") for c in cs: cat = c.strip() if len(cat) > 1: categories.setdefault(cat, 0) cat_map = dict(zip(categories.keys(), range(len(categories)))) cat_map_inv = dict(zip(range(len(categories)), categories.keys())) self.category_map = cat_map self.category_map_inverse = cat_map_inv train_data = [] train_target = [] for i, n in enumerate(train): all_content = self.pre_process(news[n]) targets = [] cs = train[n].split(sep=",") for c in cs: cat = c.strip() if len(cat) > 1: targets.append(cat_map[cat]) train_data.append(all_content) train_target.append(targets) mlb = MultiLabelBinarizer() mlb.fit(train_target) train_target_binary = mlb.transform(train_target) print("Number of labels: {}".format(len(train_target_binary[0]))) text_clf = joblib.load(classifier_file) self.classifier = text_clf self.mlb = mlb def train_classifier(self): with open(self.news_file, "r") as f: news = json.load(f) with open(self.training_file, "r") as f: train = json.load(f) stopwords = set(nltk.corpus.stopwords.words("german")) categories = {} for i, n in enumerate(train): cs = train[n].split(sep=",") for c in cs: cat = c.strip() if len(cat) > 1: categories.setdefault(cat, 0) self.category_map = dict(zip(categories.keys(), range(len(categories)))) self.category_map_inverse = dict(zip(range(len(categories)), categories.keys())) train_data = [] train_target = [] for i, n in enumerate(train): all_content = self.pre_process(news[n]) targets = [] cs = train[n].split(sep=",") for c in cs: cat = c.strip() if len(cat) > 1: targets.append(self.category_map[cat]) train_data.append(all_content) train_target.append(targets) self.mlb = MultiLabelBinarizer() self.mlb.fit(train_target) train_target_binary = self.mlb.transform(train_target) self.classifier = Pipeline([("vect", CountVectorizer(stop_words=stopwords, ngram_range=(1, 3))), ("tfidf", TfidfTransformer()), ("clf", KNeighborsClassifier(n_neighbors=5, weights="distance"))]) self.classifier.fit(train_data, train_target_binary) # Test run on all available news that haven't been used for training. test_data = [] test_data_original = [] for i, n in enumerate(news): if n not in train: img_captions = [] for img in news[n]["images"]: if len(img) > 1: img_captions.append(img[1]) all_captions = "\n".join(img_captions) all_text = "\n".join(news[n]["paragraphs"]) teaser = ("" if "teaser" not in news else news["teaser"]) all_content = "\n\n".join([news[n]["title"], teaser, all_text, all_captions]) test_data.append(all_content) test_data_original.append(news[n]) pred = self.classifier.predict(test_data) pred_labels = self.mlb.inverse_transform(pred) news_tagged = 0 tags_used = 0 tag_dict = {} for i, p in enumerate(pred): tags = [] for lid in list(pred_labels[i]): tags.append(self.category_map_inverse[lid]) tag_dict.setdefault(self.category_map_inverse[lid], 0) tag_dict[self.category_map_inverse[lid]] += 1 if len(tags) > 0: # tweet = make_tweet(test_data_original[i], process_tags(tags)) # print("{} ::: {}".format(len(tweet), tweet)) news_tagged += 1 tags_used += len(tags) # Print out some rudimentary metrics. print("=================================================================================================") print("Number of labels: {}".format(len(train_target_binary[0]))) print("{} news tagged... (ca. {}%)".format(news_tagged, round((news_tagged/len(test_data))*100))) print("{} tags used...".format(tags_used)) print("Average tags per tagged news: {}".format(tags_used/news_tagged)) print("{} unique tags".format(len(tag_dict))) print() print(tag_dict) print("=================================================================================================") # joblib.dump(text_clf, "last_classifier.pkl") def suggest_hashtags(self, news): all_content = self.pre_process(news) pred = self.classifier.predict([all_content]) pred_labels = self.mlb.inverse_transform(pred) tags = [] for i, p in enumerate(pred): for lid in list(pred_labels[i]): tag = self.category_map_inverse[lid] if tag in self.tag_map: tag = self.tag_map[tag] else: tag = tag.capitalize() tags.append(tag) return tags
the-stack_0_25692
""" SQLAlchemy-JSONAPI Flask Adapter Colton J. Provias MIT License """ import datetime import json import uuid from functools import wraps from blinker import signal from flask import make_response, request from .constants import Endpoint, Method from .errors import BaseError, MissingContentTypeError from .serializer import JSONAPI class JSONAPIEncoder(json.JSONEncoder): """ JSONEncoder Implementation that allows for UUID and datetime """ def default(self, value): """ Handle UUID, datetime, and callables. :param value: Value to encode """ if isinstance(value, uuid.UUID): return str(value) elif isinstance(value, datetime.datetime): return value.isoformat() elif callable(value): return str(value) return json.JSONEncoder.default(self, value) #: The views to generate views = [ (Method.GET, Endpoint.COLLECTION), (Method.GET, Endpoint.RESOURCE), (Method.GET, Endpoint.RELATED), (Method.GET, Endpoint.RELATIONSHIP), (Method.POST, Endpoint.COLLECTION), (Method.POST, Endpoint.RELATIONSHIP), (Method.PATCH, Endpoint.RESOURCE), (Method.PATCH, Endpoint.RELATIONSHIP), (Method.DELETE, Endpoint.RESOURCE), (Method.DELETE, Endpoint.RELATIONSHIP) ] def override(original, results): """ If a receiver to a signal returns a value, we override the original value with the last returned value. :param original: The original value :param results: The results from the signal """ overrides = [v for fn, v in results if v is not None] if len(overrides) == 0: return original return overrides[-1] class FlaskJSONAPI(object): """ Flask Adapter """ #: Fires before the serializer is called. Functions should implement the #: following args: (sender, method, endpoint, data, req_args) on_request = signal('jsonapi-on-request') #: Fires before we return the response. Included args are: #: (sender, method, endpoint, data, req_args, rendered_response) on_response = signal('jsonapi-on-response') #: Fires after a successful call to the serializer. #: (sender, method, endpoint, data, req_args, response) on_success = signal('jsonapi-on-success') #: Fires when an error is encountered. #: (sender, method, endpoint, data, req_args, error) on_error = signal('jsonapi-on-error') #: JSON Encoder to use json_encoder = JSONAPIEncoder def __init__(self, app=None, sqla=None, namespace='api', route_prefix='/api'): """ Initialize the adapter. If app isn't passed here, it should be passed in init_app. :param app: Flask application :param sqla: Flask-SQLAlchemy instance :param namespace: Prefixes all generated routes :param route_prefix: The base path for the generated routes """ self.app = app self.sqla = sqla self._handler_chains = dict() if app is not None: self._setup_adapter(namespace, route_prefix) def init_app(self, app, sqla, namespace='api', route_prefix='/api'): """ Initialize the adapter if it hasn't already been initialized. :param app: Flask application :param sqla: Flask-SQLAlchemy instance :param namespace: Prefixes all generated routes :param route_prefix: The base path for the generated routes """ self.app = app self.sqla = sqla self._setup_adapter(namespace, route_prefix) def wrap_handler(self, api_types, methods, endpoints): """ Allow for a handler to be wrapped in a chain. :param api_types: Types to wrap handlers for :param methods: Methods to wrap handlers for :param endpoints: Endpoints to wrap handlers for """ def wrapper(fn): @wraps(fn) def wrapped(*args, **kwargs): return fn(*args, **kwargs) for api_type in api_types: for method in methods: for endpoint in endpoints: key = (api_type, method, endpoint) self._handler_chains.setdefault(key, []) self._handler_chains[key].append(wrapped) return wrapped return wrapper def _call_next(self, handler_chain): """ Generates an express-like chain for handling requests. :param handler_chain: The current chain of handlers """ def wrapped(*args, **kwargs): if len(handler_chain) == 1: return handler_chain[0](*args, **kwargs) else: return handler_chain[0](self._call_next(handler_chain[1:]), *args, **kwargs) return wrapped def _setup_adapter(self, namespace, route_prefix): """ Initialize the serializer and loop through the views to generate them. :param namespace: Prefix for generated endpoints :param route_prefix: Prefix for route patterns """ self.serializer = JSONAPI( self.sqla.Model, prefix='{}://{}{}'.format( self.app.config['PREFERRED_URL_SCHEME'], self.app.config['SERVER_NAME'], route_prefix)) for view in views: method, endpoint = view pattern = route_prefix + endpoint.value name = '{}_{}_{}'.format(namespace, method.name, endpoint.name) view = self._generate_view(method, endpoint) self.app.add_url_rule(pattern + '/', name + '_slashed', view, methods=[method.name], strict_slashes=False) self.app.add_url_rule(pattern, name, view, methods=[method.name]) def _generate_view(self, method, endpoint): """ Generate a view for the specified method and endpoint. :param method: HTTP Method :param endpoint: Pattern """ def new_view(**kwargs): if method == Method.GET: data = request.args else: content_length = request.headers.get('content-length', 0) if content_length and int(content_length) > 0: content_type = request.headers.get('content-type', None) if content_type != 'application/vnd.api+json': data = MissingContentTypeError().data data = json.dumps(data, cls=JSONAPIEncoder) response = make_response(data) response.status_code = 409 response.content_type = 'application/vnd.api+json' return response data = request.get_json(force=True) else: data = None event_kwargs = { 'method': method, 'endpoint': endpoint, 'data': data, 'req_args': kwargs } results = self.on_request.send(self, **event_kwargs) data = override(data, results) args = [self.sqla.session, data, kwargs['api_type']] if 'obj_id' in kwargs.keys(): args.append(kwargs['obj_id']) if 'relationship' in kwargs.keys(): args.append(kwargs['relationship']) try: attr = '{}_{}'.format(method.name, endpoint.name).lower() handler = getattr(self.serializer, attr) handler_chain = list(self._handler_chains.get(( kwargs['api_type'], method, endpoint), [])) handler_chain.append(handler) chained_handler = self._call_next(handler_chain) response = chained_handler(*args) results = self.on_success.send(self, response=response, **event_kwargs) response = override(response, results) except BaseError as exc: self.sqla.session.rollback() results = self.on_error.send(self, error=exc, **event_kwargs) response = override(exc, results) rendered_response = make_response('') if response.status_code != 204: data = json.dumps(response.data, cls=self.json_encoder) rendered_response = make_response(data) rendered_response.status_code = response.status_code rendered_response.content_type = 'application/vnd.api+json' results = self.on_response.send(self, response=rendered_response, **event_kwargs) return override(rendered_response, results) return new_view
the-stack_0_25693
#!/usr/bin/python3 # -*- coding: utf-8 -*- import time import unittest from unittest.mock import patch from tests import mockLifepo4weredSO import lifepo4weredPyController class ReaderTests(unittest.TestCase): """ tearDown each test """ def tearDown(self): lifepo4weredPyController.setPeriodicInterval(0.5) lifepo4weredPyController.restartReading() """ Interval """ def testInterval_Set_ShouldChangeInterval(self): # Arrange # Action lifepo4weredPyController.setPeriodicInterval(5) # Assert self.assertEqual(lifepo4weredPyController.getPeriodicInterval(), 5) """ Cease """ @patch('lifepo4weredPy.functions.lifepo4weredSO', new=mockLifepo4weredSO) def testCease_ShouldCeaseReading(self): # Arrange handleCalled = False count = 0 @lifepo4weredPyController.battery.observeElement("voltage") def voltageChangeHandle(previous, actual): nonlocal handleCalled handleCalled = True # Action lifepo4weredPyController.ceaseReading() while count < 3: count += 1 time.sleep(0.5) lifepo4weredPyController.battery.unObserve("voltage", voltageChangeHandle) # Assert self.assertFalse(handleCalled)