filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_26180
import tkinter as tk from PIL import Image, ImageTk class CameraPane(tk.Frame): placeholder = Image.open("./resources/placeholder.jpg") CAMERA_DIM = (160, 120) def __init__(self, master, **kw): super().__init__(master, **kw) self.grid(row=0, column=0) self._cam = None self._debug = None self.cm_label = tk.Label(self) self.dg_label = tk.Label(self) self.cm_label.grid(sticky=tk.N) self.dg_label.grid(row=1, sticky=tk.N) self.set(self.placeholder, self.placeholder) def set(self, camera, debug=None): camera = camera.copy() camera.thumbnail((160, 120), Image.ANTIALIAS) self._cam = ImageTk.PhotoImage(camera) self.cm_label.configure(image=self._cam) if debug is not None: debug = debug.copy() debug.thumbnail((160, 120), Image.ANTIALIAS) self._debug = ImageTk.PhotoImage(debug) self.dg_label.configure(image=self._debug)
the-stack_0_26181
#!/usr/bin/env python from setuptools import setup import os import glob this_directory = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() requirements = [] with open(os.path.join(this_directory, 'requirements.txt'), encoding='utf-8') as r: line = r.readline() while line: requirements.append(line.strip()) line = r.readline() def getFiles(path): files = [] (root, dirNames, fileNames) = next(os.walk(path)) fileNames.sort() dirFiles = [] for fileName in fileNames: dirFiles.append(os.path.join(path, fileName)) files.append((path, dirFiles)) dirNames.sort() for dirName in dirNames: files.extend(getFiles(os.path.join(root, dirName))) return files setup( name='azbacklog', author="Joshua Davis", author_email="[email protected]", url='https://github.com/Azure/Azure-Backlog-Generator', version='0.1.12', description='The Azure Backlog Generator (ABG) is designed to build backlogs for complex processes based on proven practices. The backlogs can be generated in either Azure DevOps or GitHub.', long_description=long_description, long_description_content_type='text/markdown', package_dir={'': 'src'}, packages=[ 'azbacklog', 'azbacklog.entities', 'azbacklog.helpers', 'azbacklog.services' ], data_files=getFiles('workitems'), install_requires=[ 'pygithub' ], extras_require={ 'dev': requirements }, entry_points={ 'console_scripts': { 'azbacklog = azbacklog.azbacklog:main' } }, python_requires='>=3.6' )
the-stack_0_26182
import os import time from glob import glob import numpy as np from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F class Runner(): def __init__(self, model_name, net, optim, torch_device, criterion, epochs, logger, save_dir, save_interval, scheduler, resume_file): self.torch_device = torch_device self.model_name = model_name self.net = net self.criterion = criterion self.optim = optim self.scheduler = scheduler self.epochs = epochs self.logger = logger self.save_dir = save_dir self.save_interval = save_interval self.start_epoch = 0 self.best_metric = -1 self.best_epoch = -1 self.resume(resume_file) def save(self, epoch, filename="train"): """Save current epoch model Save Elements: model_type : model name start_epoch : current epoch network : network parameters optimizer: optimizer parameters best_metric : current best score Parameters: epoch : current epoch filename : model save file name """ torch.save({"model_type": self.model_name, "start_epoch": epoch + 1, "network": self.net.state_dict(), "optimizer": self.optim.state_dict(), "best_metric": self.best_metric }, self.save_dir + "/%s.pth.tar" % (filename)) print("Model saved %d epoch" % (epoch)) def resume(self, filename=""): """ Model load. same with save""" if filename == "": # load last epoch model filenames = sorted(glob(self.save_dir + "/*.pth.tar")) if len(filenames) == 0: print("Not resume") return else: filename = os.path.basename(filenames[-1]) file_path = self.save_dir + "/" + filename if os.path.exists(file_path): print("Load %s to %s File" % (self.save_dir, filename)) ckpoint = torch.load(file_path) if ckpoint["model_type"] != self.model_name: raise ValueError("Ckpoint Model Type is %s" % (ckpoint["model_type"])) self.net.load_state_dict(ckpoint['network']) self.optim.load_state_dict(ckpoint['optimizer']) self.start_epoch = ckpoint['start_epoch'] self.best_metric = ckpoint["best_metric"] print("Load Model Type : %s, epoch : %d acc : %f" % (ckpoint["model_type"], self.start_epoch, self.best_metric)) else: print("Resume Failed, not exists file") def train(self, train_loader, val_loader=None): print("\nStart Train len :", len(train_loader.dataset)) self.net.train() for epoch in range(self.start_epoch, self.epochs): for i, (input_, target_) in enumerate(tqdm(train_loader)): input_ = input_.to(self.torch_device) target_ = target_.to(self.torch_device) if self.scheduler: self.scheduler.step() out = self.net(input_) loss = self.criterion(out, target_) self.optim.zero_grad() loss.backward() self.optim.step() if (i % 50) == 0: self.logger.log_write("train", epoch=epoch, loss=loss.item()) acc = self._get_acc(train_loader) self.logger.log_write("train", epoch=epoch, acc=acc) if val_loader is not None: self.valid(epoch, val_loader) def _get_acc(self, loader): self.net.eval() correct = 0 with torch.no_grad(): for input_, target_ in loader: input_ = input_.to(self.torch_device) out = self.net(input_) out = F.softmax(out, dim=1) _, idx = out.max(dim=1) correct += (target_ == idx).sum().item() self.net.train() return correct / len(loader.dataset) def valid(self, epoch, val_loader): acc = self._get_acc(val_loader) self.logger.log_write("valid", epoch=epoch, acc=acc) if acc > self.best_metric: self.best_metric = acc if acc > self.best_metric or (epoch + 1)%self.save_interval==0: self.save(epoch, "epoch[%05d]_acc[%.4f]" % ( epoch, acc)) def test(self, train_loader, val_loader): print("\n Start Test") self.resume() train_acc = self._get_acc(train_loader) valid_acc = self._get_acc(val_loader) self.logger.log_write("test", fname="test", train_acc=train_acc, valid_acc=valid_acc) return train_acc, valid_acc
the-stack_0_26185
"""This package includes all the modules related to data loading and preprocessing To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset. You need to implement four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point from data loader. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. Now you can use the dataset class by specifying flag '--dataset_mode dummy'. See our template dataset class 'template_dataset.py' for more details. """ import importlib import torch.utils.data from data.base_dataset import BaseDataset from torch.utils import data def find_dataset_using_name(dataset_name): """Import the module "data/[dataset_name]_dataset.py". In the file, the class called DatasetNameDataset() will be instantiated. It has to be a subclass of BaseDataset, and it is case-insensitive. """ dataset_filename = "data." + dataset_name + "_dataset" datasetlib = importlib.import_module(dataset_filename) dataset = None target_dataset_name = dataset_name.replace('_', '') + 'dataset' for name, cls in datasetlib.__dict__.items(): if name.lower() == target_dataset_name.lower() \ and issubclass(cls, BaseDataset): dataset = cls if dataset is None: raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) return dataset def get_option_setter(dataset_name): """Return the static method <modify_commandline_options> of the dataset class.""" dataset_class = find_dataset_using_name(dataset_name) return dataset_class.modify_commandline_options def create_dataset(opt): dataset_class = find_dataset_using_name(opt.dataset_mode) dataset = dataset_class(opt) return dataset def create_dataloader(opt,rank,dataset): data_loader = CustomDatasetDataLoader(opt,rank,dataset) dataset = data_loader.load_data() return dataset def collate_fn(batch): batch = list(filter(lambda x: x is not None, batch)) if len(batch) > 0: return torch.utils.data.dataloader.default_collate(batch) else: return None class CustomDatasetDataLoader(): """Wrapper class of Dataset class that performs multi-threaded data loading""" def __init__(self, opt,rank,dataset): """Initialize this class Step 1: create a dataset instance given the name [dataset_mode] Step 2: create a multi-threaded data loader. """ self.opt = opt self.dataset = dataset if rank==0: print("dataset [%s] was created" % type(self.dataset).__name__) if len(opt.gpu_ids)>1: world_size=len(opt.gpu_ids) sampler=data.distributed.DistributedSampler(self.dataset, num_replicas=world_size, rank=rank, shuffle=not opt.serial_batches) shuffle=False else: sampler=None shuffle=not opt.serial_batches self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batch_size, sampler=sampler, shuffle=shuffle, num_workers=int(opt.num_threads), collate_fn=collate_fn) def load_data(self): return self def __len__(self): """Return the number of data in the dataset""" return min(len(self.dataset), self.opt.max_dataset_size) def __iter__(self): """Return a batch of data""" for i, data in enumerate(self.dataloader): if data is None: continue if i * self.opt.batch_size >= self.opt.max_dataset_size: break yield data
the-stack_0_26187
"""Optimize a 3-qubit circuit to be a toffoli gate.""" from __future__ import annotations import logging import numpy as np from bqskit.ir.circuit import Circuit from bqskit.ir.gates import VariableUnitaryGate from bqskit.ir.opt.cost import HilbertSchmidtCostGenerator from bqskit.qis.unitary import UnitaryMatrix # The next two lines start bqskits's logger. logging.getLogger('bqskit').setLevel(logging.INFO) # We will optimize towards the toffoli unitary. toffoli = np.array([ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ]) toffoli = UnitaryMatrix(toffoli) # Start with the circuit structure circuit = Circuit(3) circuit.append_gate(VariableUnitaryGate(2), [1, 2]) circuit.append_gate(VariableUnitaryGate(2), [0, 2]) circuit.append_gate(VariableUnitaryGate(2), [1, 2]) circuit.append_gate(VariableUnitaryGate(2), [0, 2]) circuit.append_gate(VariableUnitaryGate(2), [0, 1]) # Instantiate the circuit template with qfactor circuit.instantiate( toffoli, method='qfactor', diff_tol_a=1e-12, # Stopping criteria for distance change diff_tol_r=1e-6, # Relative criteria for distance change dist_tol=1e-12, # Stopping criteria for distance max_iters=100000, # Maximum number of iterations min_iters=1000, # Minimum number of iterations slowdown_factor=0, # Larger numbers slowdown optimization # to avoid local minima ) # Calculate and print final distance dist = HilbertSchmidtCostGenerator().calc_cost(circuit, toffoli) print('Final Distance: ', dist) # If you would like to convert the unitary operations to native gates, # you should use the KAK decomposition for 2 qubit unitaries, or # qsearch or qfast for 3+ qubit unitaries.
the-stack_0_26188
import grpc import HelloDroidTLS_pb2 import HelloDroidTLS_pb2_grpc with open('server.crt', 'rb') as f: trusted_certs = f.read() creds = grpc.ssl_channel_credentials(root_certificates=trusted_certs) channel = grpc.secure_channel('localhost:8443', creds) stub = HelloDroidTLS_pb2_grpc.GreeterStub(channel) response = stub.SayHello(HelloDroidTLS_pb2.HelloRequest(name='yourname')) print("Greeter client received: " + response.message)
the-stack_0_26189
# The MIT License (MIT) # # Copyright (c) 2020 Kevin Matocha # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `kmatch98_textmap` ================================================================================ Text graphics handling for CircuitPython, including ttext boxes * Author(s): Kevin Matocha Implementation Notes -------------------- **Hardware:** .. todo:: Add links to any specific hardware product page(s), or category page(s). Use unordered list & hyperlink rST inline format: "* `Link Text <url>`_" **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases .. todo:: Uncomment or remove the Bus Device and/or the Register library dependencies based on the library's use of either. # * Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice # * Adafruit's Register library: https://github.com/adafruit/Adafruit_CircuitPython_Register """ # imports __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/kmatch98/CircuitPython_textMap.git" def bounding_box(text, font, lineSpacing, scale=1): # bounding_box - determines the bounding box size around give text # To be used to calculate if the text will be printed within the bounding_box # This function can used to determine character-wrapping or word-wrapping for a # text terminal box, prior to actually printing the text in the bitmap. # # Note: Scale is not implemented at this time boxHeight = boxWidth = 0 fontHeight = font.get_glyph(ord("M")).height for char in text: myGlyph = font.get_glyph(ord(char)) width = myGlyph.width height = myGlyph.height dx = myGlyph.dx dy = myGlyph.dy shift_x = myGlyph.shift_x shift_y = myGlyph.shift_x # Not working yet*** # This offset is used to match the label.py function from Adafruit_Display_Text library # y_offset = int( # ( # self._font.get_glyph(ord("M")).height # - new_text.count("\n") * self.height * self.line_spacing # ) # / 2 ) # yOffset = int( (fontHeight-height*lineSpacing)/2 ) yOffset = fontHeight - height boxWidth = boxWidth + shift_x boxHeight = max(boxHeight, height - dy + yOffset) return (boxWidth, boxHeight) def placeText( bitmap, text, font, lineSpacing, xPosition, yPosition, paletteIndex=1, scale=1 ): # placeText - Writes text into a bitmap at the specified location. # # (xPosition, yPosition) correspond to upper left corner of the height of the 'M' glyph # To Do: Add anchor positions, and adjust the default baseline position to match # the current "label" function # Verify paletteIndex is working properly with * operator, especially if accommodating multicolored fonts # # Note: Scale is not implemented at this time import terminalio fontHeight = font.get_glyph(ord("M")).height if font == terminalio.FONT: print("terminalio.FONT Found - BuiltinFont not handled by this function") # handle this differently else: bitmapWidth = bitmap.width bitmapHeight = bitmap.height for char in text: myGlyph = font.get_glyph(ord(char)) width = myGlyph.width height = myGlyph.height # print('glyph width: {}, height: {}'.format(width, height)) dx = myGlyph.dx dy = myGlyph.dy shift_x = myGlyph.shift_x shift_y = myGlyph.shift_x # Not working yet*** # This offset is used to match the label.py function from Adafruit_Display_Text library # y_offset = int( # ( # self._font.get_glyph(ord("M")).height # - new_text.count("\n") * self.height * self.line_spacing # ) # / 2 ) # position_y = y - glyph.height - glyph.dy + y_offset # yOffset = int( (fontHeight-height*lineSpacing)/2 ) yOffset = fontHeight - height for y in range(height): for x in range(width): xPlacement = x + xPosition + dx # yPlacement=y+yPosition-height-dy+yOffset yPlacement = y + yPosition - dy + yOffset if ( (xPlacement >= 0) and (yPlacement >= 0) and (xPlacement < bitmapWidth) and (yPlacement < bitmapHeight) ): # print('x: {}, y: {}, value: {}'.format(xPlacement, yPlacement, myGlyph.bitmap[x,y])) bitmap[xPlacement, yPlacement] = ( myGlyph.bitmap[x, y] * paletteIndex ) xPosition = xPosition + shift_x return (xPosition, yPosition) class textBox: def __init__( self, text, width, height, backgroundColor, textColor, font, lineSpacing=1.25 ): import displayio # import terminalio self._text = text # text on the display self._font = font self._lineSpacing = lineSpacing self._fontHeight = self._font.get_glyph(ord("M")).height self._width = width # in pixels self._height = height # in pixels self._backgroundColor = backgroundColor self._textColor = textColor self.bitmap = displayio.Bitmap(self._width, self._height, 2) self.palette = displayio.Palette(2) self.palette[0] = self._backgroundColor self.palette[1] = self._textColor self._cursorX = 1 # controls insertion point for text self._cursorY = 1 self._startX = self._cursorX # the left column start position self._startY = self._cursorY # the top row start position self.addText(self._text) import gc gc.collect() def addText(self, newText): # add text to a textBox # print('startX: {}'.format(self._cursorX) ) import gc for char in newText: (charWidth, charHeight) = bounding_box(char, self._font, self._lineSpacing) if (self._cursorX + charWidth >= self._width - 1) or (char == "\n"): # make a newline self.setCursor( self._startX, self._cursorY + int(self._fontHeight * self._lineSpacing), ) (newX, newY) = placeText( self.bitmap, char, self._font, self._lineSpacing, self._cursorX, self._cursorY, ) # print('newX: {}'.format(newX) ) self.setCursor(newX, newY) self._text = self._text + newText gc.collect() return self.getCursor() # return tuple: (self._cursorX , self._cursorY) def setCursor(self, newCursorX, newCursorY): # set cursor position self._cursorX = newCursorX self._cursorY = newCursorY def getCursor(self): # get current cursor position, tuple return (self._cursorX, self._cursorY) def clearBitmap(self): import gc for x in range(self._width): for y in range(self._height): self.bitmap[x, y] = 0 gc.collect() self.setCursor(self._startX, self._startY)
the-stack_0_26191
from numpy import inf, nan from sklearn.linear_model import SGDRegressor as Op from lale.docstrings import set_docstrings from lale.operators import make_operator class SGDRegressorImpl: def __init__(self, **hyperparams): self._hyperparams = hyperparams self._wrapped_model = Op(**self._hyperparams) def fit(self, X, y=None): if y is not None: self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self def predict(self, X): return self._wrapped_model.predict(X) _hyperparams_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "inherited docstring for SGDRegressor Linear model fitted by minimizing a regularized empirical loss with SGD", "allOf": [ { "type": "object", "required": [ "loss", "penalty", "alpha", "l1_ratio", "fit_intercept", "max_iter", "tol", "shuffle", "verbose", "epsilon", "random_state", "learning_rate", "eta0", "power_t", "early_stopping", "validation_fraction", "n_iter_no_change", "warm_start", "average", ], "relevantToOptimizer": [ "loss", "penalty", "alpha", "fit_intercept", "max_iter", "tol", "shuffle", "epsilon", "learning_rate", "eta0", ], "additionalProperties": False, "properties": { "loss": { "enum": [ "epsilon_insensitive", "huber", "squared_epsilon_insensitive", "squared_loss", ], "default": "squared_loss", "description": "The loss function to be used", }, "penalty": { "XXX TODO XXX": "str, 'none', 'l2', 'l1', or 'elasticnet'", "description": "The penalty (aka regularization term) to be used", "enum": ["elasticnet", "l1", "l2", "none"], "default": "l2", }, "alpha": { "type": "number", "minimumForOptimizer": 1e-10, "maximumForOptimizer": 1.0, "distribution": "loguniform", "default": 0.0001, "description": "Constant that multiplies the regularization term", }, "l1_ratio": { "type": "number", "default": 0.15, "description": "The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1", }, "fit_intercept": { "type": "boolean", "default": True, "description": "Whether the intercept should be estimated or not", }, "max_iter": { "anyOf": [ { "type": "integer", "minimumForOptimizer": 10, "maximumForOptimizer": 1000, "distribution": "uniform", }, {"enum": [None]}, ], "default": None, "description": "The maximum number of passes over the training data (aka epochs)", }, "tol": { "anyOf": [ { "type": "number", "minimumForOptimizer": 1e-08, "maximumForOptimizer": 0.01, "distribution": "loguniform", }, {"enum": [None]}, ], "default": None, "description": "The stopping criterion", }, "shuffle": { "type": "boolean", "default": True, "description": "Whether or not the training data should be shuffled after each epoch", }, "verbose": { "type": "integer", "default": 0, "description": "The verbosity level.", }, "epsilon": { "type": "number", "minimumForOptimizer": 1e-08, "maximumForOptimizer": 1.35, "distribution": "loguniform", "default": 0.1, "description": "Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'", }, "random_state": { "anyOf": [ {"type": "integer"}, {"laleType": "numpy.random.RandomState"}, {"enum": [None]}, ], "default": None, "description": "The seed of the pseudo random number generator to use when shuffling the data", }, "learning_rate": { "enum": ["adaptive", "constant", "optimal", "invscaling"], "default": "invscaling", "description": "The learning rate schedule: 'constant': eta = eta0 'optimal': eta = 1.0 / (alpha * (t + t0)) where t0 is chosen by a heuristic proposed by Leon Bottou", }, "eta0": { "type": "number", "minimumForOptimizer": 0.01, "maximumForOptimizer": 1.0, "distribution": "loguniform", "default": 0.01, "description": "The initial learning rate for the 'constant', 'invscaling' or 'adaptive' schedules", }, "power_t": { "type": "number", "default": 0.25, "description": "The exponent for inverse scaling learning rate [default 0.5].", }, "early_stopping": { "type": "boolean", "default": False, "description": "Whether to use early stopping to terminate training when validation score is not improving", }, "validation_fraction": { "type": "number", "default": 0.1, "description": "The proportion of training data to set aside as validation set for early stopping", }, "n_iter_no_change": { "type": "integer", "default": 5, "description": "Number of iterations with no improvement to wait before early stopping", }, "warm_start": { "type": "boolean", "default": False, "description": "When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution", }, "average": { "anyOf": [{"type": "boolean"}, {"type": "integer"}], "default": False, "description": "When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute", }, }, }, { "XXX TODO XXX": "Parameter: max_iter > only impacts the behavior in the fit method, and not the partial_fit" }, { "description": "epsilon, only if loss is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'", "anyOf": [ {"type": "object", "properties": {"epsilon": {"enum": [0.1]}}}, { "type": "object", "properties": { "loss": { "enum": [ "huber", "epsilon_insensitive", "squared_epsilon_insensitive", ] } }, }, ], }, { "description": "validation_fraction, only used if early_stopping is true", "anyOf": [ { "type": "object", "properties": {"validation_fraction": {"enum": [0.1]}}, }, {"type": "object", "properties": {"early_stopping": {"enum": [True]}}}, ], }, ], } _input_fit_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Fit linear model with Stochastic Gradient Descent.", "type": "object", "required": ["X", "y"], "properties": { "X": { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, "description": "Training data", }, "y": { "type": "array", "items": {"type": "number"}, "description": "Target values", }, "coef_init": { "type": "array", "items": {"type": "number"}, "description": "The initial coefficients to warm-start the optimization.", }, "intercept_init": { "type": "array", "items": {"type": "number"}, "description": "The initial intercept to warm-start the optimization.", }, "sample_weight": { "anyOf": [{"type": "array", "items": {"type": "number"}}, {"enum": [None]}], "default": None, "description": "Weights applied to individual samples (1", }, }, } _input_predict_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Predict using the linear model", "type": "object", "required": ["X"], "properties": { "X": {"type": "array", "items": {"type": "array", "items": {"type": "number"}}} }, } _output_predict_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Predicted target values per element in X.", "type": "array", "items": {"type": "number"}, } _combined_schemas = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Combined schema for expected data and hyperparameters.", "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.SGDRegressor#sklearn-linear_model-sgdregressor", "import_from": "sklearn.linear_model", "type": "object", "tags": {"pre": [], "op": ["estimator", "regressor"], "post": []}, "properties": { "hyperparams": _hyperparams_schema, "input_fit": _input_fit_schema, "input_predict": _input_predict_schema, "output_predict": _output_predict_schema, }, } set_docstrings(SGDRegressorImpl, _combined_schemas) SGDRegressor = make_operator(SGDRegressorImpl, _combined_schemas)
the-stack_0_26193
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """object_detection_evaluation module. ObjectDetectionEvaluation is a class which manages ground truth information of a object detection dataset, and computes frequently used detection metrics such as Precision, Recall, CorLoc of the provided detection results. It supports the following operations: 1) Add ground truth information of images sequentially. 2) Add detection result of images sequentially. 3) Evaluate detection metrics on already inserted detection results. 4) Write evaluation result into a pickle file for future processing or visualization. Note: This module operates on numpy boxes and box lists. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABCMeta from abc import abstractmethod import collections import logging import unicodedata import numpy as np import six from six.moves import range from six.moves import zip import tensorflow.compat.v1 as tf from object_detection.core import standard_fields from object_detection.utils import label_map_util from object_detection.utils import metrics from object_detection.utils import per_image_evaluation class DetectionEvaluator(six.with_metaclass(ABCMeta, object)): """Interface for object detection evalution classes. Example usage of the Evaluator: ------------------------------ evaluator = DetectionEvaluator(categories) # Detections and groundtruth for image 1. evaluator.add_single_groundtruth_image_info(...) evaluator.add_single_detected_image_info(...) # Detections and groundtruth for image 2. evaluator.add_single_groundtruth_image_info(...) evaluator.add_single_detected_image_info(...) metrics_dict = evaluator.evaluate() """ def __init__(self, categories): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. """ self._categories = categories def observe_result_dict_for_single_example(self, eval_dict): """Observes an evaluation result dict for a single example. When executing eagerly, once all observations have been observed by this method you can use `.evaluate()` to get the final metrics. When using `tf.estimator.Estimator` for evaluation this function is used by `get_estimator_eval_metric_ops()` to construct the metric update op. Args: eval_dict: A dictionary that holds tensors for evaluating an object detection model, returned from eval_util.result_dict_for_single_example(). Returns: None when executing eagerly, or an update_op that can be used to update the eval metrics in `tf.estimator.EstimatorSpec`. """ raise NotImplementedError('Not implemented for this evaluator!') @abstractmethod def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary of groundtruth numpy arrays required for evaluations. """ pass @abstractmethod def add_single_detected_image_info(self, image_id, detections_dict): """Adds detections for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. detections_dict: A dictionary of detection numpy arrays required for evaluation. """ pass def get_estimator_eval_metric_ops(self, eval_dict): """Returns dict of metrics to use with `tf.estimator.EstimatorSpec`. Note that this must only be implemented if performing evaluation with a `tf.estimator.Estimator`. Args: eval_dict: A dictionary that holds tensors for evaluating an object detection model, returned from eval_util.result_dict_for_single_example(). Returns: A dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in `tf.estimator.EstimatorSpec`. """ pass @abstractmethod def evaluate(self): """Evaluates detections and returns a dictionary of metrics.""" pass @abstractmethod def clear(self): """Clears the state to prepare for a fresh evaluation.""" pass class ObjectDetectionEvaluator(DetectionEvaluator): """A class to evaluate detections.""" def __init__(self, categories, matching_iou_threshold=0.5, recall_lower_bound=0.0, recall_upper_bound=1.0, evaluate_corlocs=False, evaluate_precision_recall=False, metric_prefix=None, use_weighted_mean_ap=False, evaluate_masks=False, group_of_weight=0.0): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. recall_lower_bound: lower bound of recall operating area. recall_upper_bound: upper bound of recall operating area. evaluate_corlocs: (optional) boolean which determines if corloc scores are to be returned or not. evaluate_precision_recall: (optional) boolean which determines if precision and recall values are to be returned or not. metric_prefix: (optional) string prefix for metric name; if None, no prefix is used. use_weighted_mean_ap: (optional) boolean which determines if the mean average precision is computed directly from the scores and tp_fp_labels of all classes. evaluate_masks: If False, evaluation will be performed based on boxes. If True, mask evaluation will be performed instead. group_of_weight: Weight of group-of boxes.If set to 0, detections of the correct class within a group-of box are ignored. If weight is > 0, then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. Raises: ValueError: If the category ids are not 1-indexed. """ super(ObjectDetectionEvaluator, self).__init__(categories) self._num_classes = max([cat['id'] for cat in categories]) if min(cat['id'] for cat in categories) < 1: raise ValueError('Classes should be 1-indexed.') self._matching_iou_threshold = matching_iou_threshold self._recall_lower_bound = recall_lower_bound self._recall_upper_bound = recall_upper_bound self._use_weighted_mean_ap = use_weighted_mean_ap self._label_id_offset = 1 self._evaluate_masks = evaluate_masks self._group_of_weight = group_of_weight self._evaluation = ObjectDetectionEvaluation( num_groundtruth_classes=self._num_classes, matching_iou_threshold=self._matching_iou_threshold, recall_lower_bound=self._recall_lower_bound, recall_upper_bound=self._recall_upper_bound, use_weighted_mean_ap=self._use_weighted_mean_ap, label_id_offset=self._label_id_offset, group_of_weight=self._group_of_weight) self._image_ids = set([]) self._evaluate_corlocs = evaluate_corlocs self._evaluate_precision_recall = evaluate_precision_recall self._metric_prefix = (metric_prefix + '_') if metric_prefix else '' self._expected_keys = set([ standard_fields.InputDataFields.key, standard_fields.InputDataFields.groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes, standard_fields.InputDataFields.groundtruth_difficult, standard_fields.InputDataFields.groundtruth_instance_masks, standard_fields.DetectionResultFields.detection_boxes, standard_fields.DetectionResultFields.detection_scores, standard_fields.DetectionResultFields.detection_classes, standard_fields.DetectionResultFields.detection_masks ]) self._build_metric_names() def get_internal_state(self): """Returns internal state and image ids that lead to the state. Note that only evaluation results will be returned (e.g. not raw predictions or groundtruth. """ return self._evaluation.get_internal_state(), self._image_ids def merge_internal_state(self, image_ids, state_tuple): """Merges internal state with the existing state of evaluation. If image_id is already seen by evaluator, an error will be thrown. Args: image_ids: list of images whose state is stored in the tuple. state_tuple: state. """ for image_id in image_ids: if image_id in self._image_ids: raise ValueError('Image with id {} already added.'.format(image_id)) self._evaluation.merge_internal_state(state_tuple) def _build_metric_names(self): """Builds a list with metric names.""" if self._recall_lower_bound > 0.0 or self._recall_upper_bound < 1.0: self._metric_names = [ self._metric_prefix + 'Precision/mAP@{}IOU@[{:.1f},{:.1f}]Recall'.format( self._matching_iou_threshold, self._recall_lower_bound, self._recall_upper_bound) ] else: self._metric_names = [ self._metric_prefix + 'Precision/mAP@{}IOU'.format(self._matching_iou_threshold) ] if self._evaluate_corlocs: self._metric_names.append( self._metric_prefix + 'Precision/meanCorLoc@{}IOU'.format(self._matching_iou_threshold)) category_index = label_map_util.create_category_index(self._categories) for idx in range(self._num_classes): if idx + self._label_id_offset in category_index: category_name = category_index[idx + self._label_id_offset]['name'] try: category_name = six.text_type(category_name, 'utf-8') except TypeError: pass category_name = unicodedata.normalize('NFKD', category_name) if six.PY2: category_name = category_name.encode('ascii', 'ignore') self._metric_names.append( self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) if self._evaluate_corlocs: self._metric_names.append( self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. standard_fields.InputDataFields.groundtruth_difficult: Optional length M numpy boolean array denoting whether a ground truth box is a difficult instance or not. This field is optional to support the case that no boxes are difficult. standard_fields.InputDataFields.groundtruth_instance_masks: Optional numpy array of shape [num_boxes, height, width] with values in {0, 1}. Raises: ValueError: On adding groundtruth for an image more than once. Will also raise error if instance masks are not in groundtruth dictionary. """ if image_id in self._image_ids: raise ValueError('Image with id {} already added.'.format(image_id)) groundtruth_classes = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] - self._label_id_offset) # If the key is not present in the groundtruth_dict or the array is empty # (unless there are no annotations for the groundtruth on this image) # use values from the dictionary or insert None otherwise. if (standard_fields.InputDataFields.groundtruth_difficult in six.viewkeys( groundtruth_dict) and (groundtruth_dict[standard_fields.InputDataFields.groundtruth_difficult] .size or not groundtruth_classes.size)): groundtruth_difficult = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_difficult] else: groundtruth_difficult = None if not len(self._image_ids) % 1000: logging.warning( 'image %s does not have groundtruth difficult flag specified', image_id) groundtruth_masks = None if self._evaluate_masks: if (standard_fields.InputDataFields.groundtruth_instance_masks not in groundtruth_dict): raise ValueError('Instance masks not in groundtruth dictionary.') groundtruth_masks = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_instance_masks] self._evaluation.add_single_ground_truth_image_info( image_key=image_id, groundtruth_boxes=groundtruth_dict[ standard_fields.InputDataFields.groundtruth_boxes], groundtruth_class_labels=groundtruth_classes, groundtruth_is_difficult_list=groundtruth_difficult, groundtruth_masks=groundtruth_masks) self._image_ids.update([image_id]) def add_single_detected_image_info(self, image_id, detections_dict): """Adds detections for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. detections_dict: A dictionary containing - standard_fields.DetectionResultFields.detection_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.DetectionResultFields.detection_scores: float32 numpy array of shape [num_boxes] containing detection scores for the boxes. standard_fields.DetectionResultFields.detection_classes: integer numpy array of shape [num_boxes] containing 1-indexed detection classes for the boxes. standard_fields.DetectionResultFields.detection_masks: uint8 numpy array of shape [num_boxes, height, width] containing `num_boxes` masks of values ranging between 0 and 1. Raises: ValueError: If detection masks are not in detections dictionary. """ detection_classes = ( detections_dict[standard_fields.DetectionResultFields.detection_classes] - self._label_id_offset) detection_masks = None if self._evaluate_masks: if (standard_fields.DetectionResultFields.detection_masks not in detections_dict): raise ValueError('Detection masks not in detections dictionary.') detection_masks = detections_dict[ standard_fields.DetectionResultFields.detection_masks] self._evaluation.add_single_detected_image_info( image_key=image_id, detected_boxes=detections_dict[ standard_fields.DetectionResultFields.detection_boxes], detected_scores=detections_dict[ standard_fields.DetectionResultFields.detection_scores], detected_class_labels=detection_classes, detected_masks=detection_masks) def evaluate(self): """Compute evaluation result. Returns: A dictionary of metrics with the following fields - 1. summary_metrics: '<prefix if not empty>_Precision/mAP@<matching_iou_threshold>IOU': mean average precision at the specified IOU threshold. 2. per_category_ap: category specific results with keys of the form '<prefix if not empty>_PerformanceByCategory/ mAP@<matching_iou_threshold>IOU/category'. """ (per_class_ap, mean_ap, per_class_precision, per_class_recall, per_class_corloc, mean_corloc) = ( self._evaluation.evaluate()) pascal_metrics = {self._metric_names[0]: mean_ap} if self._evaluate_corlocs: pascal_metrics[self._metric_names[1]] = mean_corloc category_index = label_map_util.create_category_index(self._categories) for idx in range(per_class_ap.size): if idx + self._label_id_offset in category_index: category_name = category_index[idx + self._label_id_offset]['name'] try: category_name = str(category_name, 'utf-8') except TypeError: pass category_name = unicodedata.normalize('NFKD', category_name) if six.PY2: category_name = category_name.encode('ascii', 'ignore') display_name = ( self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_ap[idx] # Optionally add precision and recall values if self._evaluate_precision_recall: display_name = ( self._metric_prefix + 'PerformanceByCategory/Precision@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_precision[idx] display_name = ( self._metric_prefix + 'PerformanceByCategory/Recall@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_recall[idx] # Optionally add CorLoc metrics.classes if self._evaluate_corlocs: display_name = ( self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_corloc[idx] return pascal_metrics def clear(self): """Clears the state to prepare for a fresh evaluation.""" self._evaluation = ObjectDetectionEvaluation( num_groundtruth_classes=self._num_classes, matching_iou_threshold=self._matching_iou_threshold, use_weighted_mean_ap=self._use_weighted_mean_ap, label_id_offset=self._label_id_offset) self._image_ids.clear() def add_eval_dict(self, eval_dict): """Observes an evaluation result dict for a single example. When executing eagerly, once all observations have been observed by this method you can use `.evaluate()` to get the final metrics. When using `tf.estimator.Estimator` for evaluation this function is used by `get_estimator_eval_metric_ops()` to construct the metric update op. Args: eval_dict: A dictionary that holds tensors for evaluating an object detection model, returned from eval_util.result_dict_for_single_example(). Returns: None when executing eagerly, or an update_op that can be used to update the eval metrics in `tf.estimator.EstimatorSpec`. """ # remove unexpected fields eval_dict_filtered = dict() for key, value in eval_dict.items(): if key in self._expected_keys: eval_dict_filtered[key] = value eval_dict_keys = list(eval_dict_filtered.keys()) def update_op(image_id, *eval_dict_batched_as_list): """Update operation that adds batch of images to ObjectDetectionEvaluator. Args: image_id: image id (single id or an array) *eval_dict_batched_as_list: the values of the dictionary of tensors. """ if np.isscalar(image_id): single_example_dict = dict( zip(eval_dict_keys, eval_dict_batched_as_list)) self.add_single_ground_truth_image_info(image_id, single_example_dict) self.add_single_detected_image_info(image_id, single_example_dict) else: for unzipped_tuple in zip(*eval_dict_batched_as_list): single_example_dict = dict(zip(eval_dict_keys, unzipped_tuple)) image_id = single_example_dict[standard_fields.InputDataFields.key] self.add_single_ground_truth_image_info(image_id, single_example_dict) self.add_single_detected_image_info(image_id, single_example_dict) args = [eval_dict_filtered[standard_fields.InputDataFields.key]] args.extend(six.itervalues(eval_dict_filtered)) return tf.py_func(update_op, args, []) def get_estimator_eval_metric_ops(self, eval_dict): """Returns dict of metrics to use with `tf.estimator.EstimatorSpec`. Note that this must only be implemented if performing evaluation with a `tf.estimator.Estimator`. Args: eval_dict: A dictionary that holds tensors for evaluating an object detection model, returned from eval_util.result_dict_for_single_example(). It must contain standard_fields.InputDataFields.key. Returns: A dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in `tf.estimator.EstimatorSpec`. """ update_op = self.add_eval_dict(eval_dict) def first_value_func(): self._metrics = self.evaluate() self.clear() return np.float32(self._metrics[self._metric_names[0]]) def value_func_factory(metric_name): def value_func(): return np.float32(self._metrics[metric_name]) return value_func # Ensure that the metrics are only evaluated once. first_value_op = tf.py_func(first_value_func, [], tf.float32) eval_metric_ops = {self._metric_names[0]: (first_value_op, update_op)} with tf.control_dependencies([first_value_op]): for metric_name in self._metric_names[1:]: eval_metric_ops[metric_name] = (tf.py_func( value_func_factory(metric_name), [], np.float32), update_op) return eval_metric_ops class PascalDetectionEvaluator(ObjectDetectionEvaluator): """A class to evaluate detections using PASCAL metrics.""" def __init__(self, categories, matching_iou_threshold=0.5): super(PascalDetectionEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='PascalBoxes', use_weighted_mean_ap=False) class WeightedPascalDetectionEvaluator(ObjectDetectionEvaluator): """A class to evaluate detections using weighted PASCAL metrics. Weighted PASCAL metrics computes the mean average precision as the average precision given the scores and tp_fp_labels of all classes. In comparison, PASCAL metrics computes the mean average precision as the mean of the per-class average precisions. This definition is very similar to the mean of the per-class average precisions weighted by class frequency. However, they are typically not the same as the average precision is not a linear function of the scores and tp_fp_labels. """ def __init__(self, categories, matching_iou_threshold=0.5): super(WeightedPascalDetectionEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='WeightedPascalBoxes', use_weighted_mean_ap=True) class PrecisionAtRecallDetectionEvaluator(ObjectDetectionEvaluator): """A class to evaluate detections using precision@recall metrics.""" def __init__(self, categories, matching_iou_threshold=0.5, recall_lower_bound=0.0, recall_upper_bound=1.0): super(PrecisionAtRecallDetectionEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, recall_lower_bound=recall_lower_bound, recall_upper_bound=recall_upper_bound, evaluate_corlocs=False, metric_prefix='PrecisionAtRecallBoxes', use_weighted_mean_ap=False) class PascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator): """A class to evaluate instance masks using PASCAL metrics.""" def __init__(self, categories, matching_iou_threshold=0.5): super(PascalInstanceSegmentationEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='PascalMasks', use_weighted_mean_ap=False, evaluate_masks=True) class WeightedPascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator): """A class to evaluate instance masks using weighted PASCAL metrics. Weighted PASCAL metrics computes the mean average precision as the average precision given the scores and tp_fp_labels of all classes. In comparison, PASCAL metrics computes the mean average precision as the mean of the per-class average precisions. This definition is very similar to the mean of the per-class average precisions weighted by class frequency. However, they are typically not the same as the average precision is not a linear function of the scores and tp_fp_labels. """ def __init__(self, categories, matching_iou_threshold=0.5): super(WeightedPascalInstanceSegmentationEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='WeightedPascalMasks', use_weighted_mean_ap=True, evaluate_masks=True) class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator): """A class to evaluate detections using Open Images V2 metrics. Open Images V2 introduce group_of type of bounding boxes and this metric handles those boxes appropriately. """ def __init__(self, categories, matching_iou_threshold=0.5, evaluate_masks=False, evaluate_corlocs=False, metric_prefix='OpenImagesV2', group_of_weight=0.0): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. evaluate_masks: if True, evaluator evaluates masks. evaluate_corlocs: if True, additionally evaluates and returns CorLoc. metric_prefix: Prefix name of the metric. group_of_weight: Weight of the group-of bounding box. If set to 0 (default for Open Images V2 detection protocol), detections of the correct class within a group-of box are ignored. If weight is > 0, then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. """ super(OpenImagesDetectionEvaluator, self).__init__( categories, matching_iou_threshold, evaluate_corlocs, metric_prefix=metric_prefix, group_of_weight=group_of_weight, evaluate_masks=evaluate_masks) self._expected_keys = set([ standard_fields.InputDataFields.key, standard_fields.InputDataFields.groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes, standard_fields.InputDataFields.groundtruth_group_of, standard_fields.DetectionResultFields.detection_boxes, standard_fields.DetectionResultFields.detection_scores, standard_fields.DetectionResultFields.detection_classes, ]) if evaluate_masks: self._expected_keys.add( standard_fields.InputDataFields.groundtruth_instance_masks) self._expected_keys.add( standard_fields.DetectionResultFields.detection_masks) def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. standard_fields.InputDataFields.groundtruth_group_of: Optional length M numpy boolean array denoting whether a groundtruth box contains a group of instances. Raises: ValueError: On adding groundtruth for an image more than once. """ if image_id in self._image_ids: raise ValueError('Image with id {} already added.'.format(image_id)) groundtruth_classes = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] - self._label_id_offset) # If the key is not present in the groundtruth_dict or the array is empty # (unless there are no annotations for the groundtruth on this image) # use values from the dictionary or insert None otherwise. if (standard_fields.InputDataFields.groundtruth_group_of in six.viewkeys( groundtruth_dict) and (groundtruth_dict[standard_fields.InputDataFields.groundtruth_group_of] .size or not groundtruth_classes.size)): groundtruth_group_of = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_group_of] else: groundtruth_group_of = None if not len(self._image_ids) % 1000: logging.warning( 'image %s does not have groundtruth group_of flag specified', image_id) if self._evaluate_masks: groundtruth_masks = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_instance_masks] else: groundtruth_masks = None self._evaluation.add_single_ground_truth_image_info( image_id, groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes], groundtruth_classes, groundtruth_is_difficult_list=None, groundtruth_is_group_of_list=groundtruth_group_of, groundtruth_masks=groundtruth_masks) self._image_ids.update([image_id]) class OpenImagesChallengeEvaluator(OpenImagesDetectionEvaluator): """A class implements Open Images Challenge metrics. Both Detection and Instance Segmentation evaluation metrics are implemented. Open Images Challenge Detection metric has two major changes in comparison with Open Images V2 detection metric: - a custom weight might be specified for detecting an object contained in a group-of box. - verified image-level labels should be explicitelly provided for evaluation: in case in image has neither positive nor negative image level label of class c, all detections of this class on this image will be ignored. Open Images Challenge Instance Segmentation metric allows to measure per formance of models in case of incomplete annotations: some instances are annotations only on box level and some - on image-level. In addition, image-level labels are taken into account as in detection metric. Open Images Challenge Detection metric default parameters: evaluate_masks = False group_of_weight = 1.0 Open Images Challenge Instance Segmentation metric default parameters: evaluate_masks = True (group_of_weight will not matter) """ def __init__(self, categories, evaluate_masks=False, matching_iou_threshold=0.5, evaluate_corlocs=False, group_of_weight=1.0): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. evaluate_masks: set to true for instance segmentation metric and to false for detection metric. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. evaluate_corlocs: if True, additionally evaluates and returns CorLoc. group_of_weight: Weight of group-of boxes. If set to 0, detections of the correct class within a group-of box are ignored. If weight is > 0, then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. """ if not evaluate_masks: metrics_prefix = 'OpenImagesDetectionChallenge' else: metrics_prefix = 'OpenImagesInstanceSegmentationChallenge' super(OpenImagesChallengeEvaluator, self).__init__( categories, matching_iou_threshold, evaluate_masks=evaluate_masks, evaluate_corlocs=evaluate_corlocs, group_of_weight=group_of_weight, metric_prefix=metrics_prefix) self._evaluatable_labels = {} # Only one of the two has to be provided, but both options are given # for compatibility with previous codebase. self._expected_keys.update([ standard_fields.InputDataFields.groundtruth_image_classes, standard_fields.InputDataFields.groundtruth_labeled_classes]) def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. standard_fields.InputDataFields.groundtruth_image_classes: integer 1D numpy array containing all classes for which labels are verified. standard_fields.InputDataFields.groundtruth_group_of: Optional length M numpy boolean array denoting whether a groundtruth box contains a group of instances. Raises: ValueError: On adding groundtruth for an image more than once. """ super(OpenImagesChallengeEvaluator, self).add_single_ground_truth_image_info(image_id, groundtruth_dict) input_fields = standard_fields.InputDataFields groundtruth_classes = ( groundtruth_dict[input_fields.groundtruth_classes] - self._label_id_offset) image_classes = np.array([], dtype=int) if input_fields.groundtruth_image_classes in groundtruth_dict: image_classes = groundtruth_dict[input_fields.groundtruth_image_classes] elif input_fields.groundtruth_labeled_classes in groundtruth_dict: image_classes = groundtruth_dict[input_fields.groundtruth_labeled_classes] image_classes -= self._label_id_offset self._evaluatable_labels[image_id] = np.unique( np.concatenate((image_classes, groundtruth_classes))) def add_single_detected_image_info(self, image_id, detections_dict): """Adds detections for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. detections_dict: A dictionary containing - standard_fields.DetectionResultFields.detection_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.DetectionResultFields.detection_scores: float32 numpy array of shape [num_boxes] containing detection scores for the boxes. standard_fields.DetectionResultFields.detection_classes: integer numpy array of shape [num_boxes] containing 1-indexed detection classes for the boxes. Raises: ValueError: If detection masks are not in detections dictionary. """ if image_id not in self._image_ids: # Since for the correct work of evaluator it is assumed that groundtruth # is inserted first we make sure to break the code if is it not the case. self._image_ids.update([image_id]) self._evaluatable_labels[image_id] = np.array([]) detection_classes = ( detections_dict[standard_fields.DetectionResultFields.detection_classes] - self._label_id_offset) allowed_classes = np.where( np.isin(detection_classes, self._evaluatable_labels[image_id])) detection_classes = detection_classes[allowed_classes] detected_boxes = detections_dict[ standard_fields.DetectionResultFields.detection_boxes][allowed_classes] detected_scores = detections_dict[ standard_fields.DetectionResultFields.detection_scores][allowed_classes] if self._evaluate_masks: detection_masks = detections_dict[standard_fields.DetectionResultFields .detection_masks][allowed_classes] else: detection_masks = None self._evaluation.add_single_detected_image_info( image_key=image_id, detected_boxes=detected_boxes, detected_scores=detected_scores, detected_class_labels=detection_classes, detected_masks=detection_masks) def clear(self): """Clears stored data.""" super(OpenImagesChallengeEvaluator, self).clear() self._evaluatable_labels.clear() ObjectDetectionEvalMetrics = collections.namedtuple( 'ObjectDetectionEvalMetrics', [ 'average_precisions', 'mean_ap', 'precisions', 'recalls', 'corlocs', 'mean_corloc' ]) class OpenImagesDetectionChallengeEvaluator(OpenImagesChallengeEvaluator): """A class implements Open Images Detection Challenge metric.""" def __init__(self, categories, matching_iou_threshold=0.5, evaluate_corlocs=False): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. evaluate_corlocs: if True, additionally evaluates and returns CorLoc. """ super(OpenImagesDetectionChallengeEvaluator, self).__init__( categories=categories, evaluate_masks=False, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, group_of_weight=1.0) class OpenImagesInstanceSegmentationChallengeEvaluator( OpenImagesChallengeEvaluator): """A class implements Open Images Instance Segmentation Challenge metric.""" def __init__(self, categories, matching_iou_threshold=0.5, evaluate_corlocs=False): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. evaluate_corlocs: if True, additionally evaluates and returns CorLoc. """ super(OpenImagesInstanceSegmentationChallengeEvaluator, self).__init__( categories=categories, evaluate_masks=True, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, group_of_weight=0.0) ObjectDetectionEvaluationState = collections.namedtuple( 'ObjectDetectionEvaluationState', [ 'num_gt_instances_per_class', 'scores_per_class', 'tp_fp_labels_per_class', 'num_gt_imgs_per_class', 'num_images_correctly_detected_per_class', ]) class ObjectDetectionEvaluation(object): """Internal implementation of Pascal object detection metrics.""" def __init__(self, num_groundtruth_classes, matching_iou_threshold=0.5, nms_iou_threshold=1.0, nms_max_output_boxes=10000, recall_lower_bound=0.0, recall_upper_bound=1.0, use_weighted_mean_ap=False, label_id_offset=0, group_of_weight=0.0, per_image_eval_class=per_image_evaluation.PerImageEvaluation): """Constructor. Args: num_groundtruth_classes: Number of ground-truth classes. matching_iou_threshold: IOU threshold used for matching detected boxes to ground-truth boxes. nms_iou_threshold: IOU threshold used for non-maximum suppression. nms_max_output_boxes: Maximum number of boxes returned by non-maximum suppression. recall_lower_bound: lower bound of recall operating area recall_upper_bound: upper bound of recall operating area use_weighted_mean_ap: (optional) boolean which determines if the mean average precision is computed directly from the scores and tp_fp_labels of all classes. label_id_offset: The label id offset. group_of_weight: Weight of group-of boxes.If set to 0, detections of the correct class within a group-of box are ignored. If weight is > 0, then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. per_image_eval_class: The class that contains functions for computing per image metrics. Raises: ValueError: if num_groundtruth_classes is smaller than 1. """ if num_groundtruth_classes < 1: raise ValueError('Need at least 1 groundtruth class for evaluation.') self.per_image_eval = per_image_eval_class( num_groundtruth_classes=num_groundtruth_classes, matching_iou_threshold=matching_iou_threshold, nms_iou_threshold=nms_iou_threshold, nms_max_output_boxes=nms_max_output_boxes, group_of_weight=group_of_weight) self.recall_lower_bound = recall_lower_bound self.recall_upper_bound = recall_upper_bound self.group_of_weight = group_of_weight self.num_class = num_groundtruth_classes self.use_weighted_mean_ap = use_weighted_mean_ap self.label_id_offset = label_id_offset self.groundtruth_boxes = {} self.groundtruth_class_labels = {} self.groundtruth_masks = {} self.groundtruth_is_difficult_list = {} self.groundtruth_is_group_of_list = {} self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float) self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int) self._initialize_detections() def _initialize_detections(self): """Initializes internal data structures.""" self.detection_keys = set() self.scores_per_class = [[] for _ in range(self.num_class)] self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)] self.num_images_correctly_detected_per_class = np.zeros(self.num_class) self.average_precision_per_class = np.empty(self.num_class, dtype=float) self.average_precision_per_class.fill(np.nan) self.precisions_per_class = [np.nan] * self.num_class self.recalls_per_class = [np.nan] * self.num_class self.sum_tp_class = [np.nan] * self.num_class self.corloc_per_class = np.ones(self.num_class, dtype=float) def clear_detections(self): self._initialize_detections() def get_internal_state(self): """Returns internal state of the evaluation. NOTE: that only evaluation results will be returned (e.g. no raw predictions or groundtruth). Returns: internal state of the evaluation. """ return ObjectDetectionEvaluationState( self.num_gt_instances_per_class, self.scores_per_class, self.tp_fp_labels_per_class, self.num_gt_imgs_per_class, self.num_images_correctly_detected_per_class) def merge_internal_state(self, state_tuple): """Merges internal state of the evaluation with the current state. Args: state_tuple: state tuple representing evaluation state: should be of type ObjectDetectionEvaluationState. """ (num_gt_instances_per_class, scores_per_class, tp_fp_labels_per_class, num_gt_imgs_per_class, num_images_correctly_detected_per_class) = ( state_tuple) assert self.num_class == len(num_gt_instances_per_class) assert self.num_class == len(scores_per_class) assert self.num_class == len(tp_fp_labels_per_class) for i in range(self.num_class): self.scores_per_class[i].extend(scores_per_class[i]) self.tp_fp_labels_per_class[i].extend(tp_fp_labels_per_class[i]) self.num_gt_instances_per_class[i] += num_gt_instances_per_class[i] self.num_gt_imgs_per_class[i] += num_gt_imgs_per_class[i] self.num_images_correctly_detected_per_class[ i] += num_images_correctly_detected_per_class[i] def add_single_ground_truth_image_info(self, image_key, groundtruth_boxes, groundtruth_class_labels, groundtruth_is_difficult_list=None, groundtruth_is_group_of_list=None, groundtruth_masks=None): """Adds groundtruth for a single image to be used for evaluation. Args: image_key: A unique string/integer identifier for the image. groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. groundtruth_class_labels: integer numpy array of shape [num_boxes] containing 0-indexed groundtruth classes for the boxes. groundtruth_is_difficult_list: A length M numpy boolean array denoting whether a ground truth box is a difficult instance or not. To support the case that no boxes are difficult, it is by default set as None. groundtruth_is_group_of_list: A length M numpy boolean array denoting whether a ground truth box is a group-of box or not. To support the case that no boxes are groups-of, it is by default set as None. groundtruth_masks: uint8 numpy array of shape [num_boxes, height, width] containing `num_boxes` groundtruth masks. The mask values range from 0 to 1. """ if image_key in self.groundtruth_boxes: logging.warning( 'image %s has already been added to the ground truth database.', image_key) return self.groundtruth_boxes[image_key] = groundtruth_boxes self.groundtruth_class_labels[image_key] = groundtruth_class_labels self.groundtruth_masks[image_key] = groundtruth_masks if groundtruth_is_difficult_list is None: num_boxes = groundtruth_boxes.shape[0] groundtruth_is_difficult_list = np.zeros(num_boxes, dtype=bool) self.groundtruth_is_difficult_list[ image_key] = groundtruth_is_difficult_list.astype(dtype=bool) if groundtruth_is_group_of_list is None: num_boxes = groundtruth_boxes.shape[0] groundtruth_is_group_of_list = np.zeros(num_boxes, dtype=bool) if groundtruth_masks is None: num_boxes = groundtruth_boxes.shape[0] mask_presence_indicator = np.zeros(num_boxes, dtype=bool) else: mask_presence_indicator = (np.sum(groundtruth_masks, axis=(1, 2)) == 0).astype(dtype=bool) self.groundtruth_is_group_of_list[ image_key] = groundtruth_is_group_of_list.astype(dtype=bool) self._update_ground_truth_statistics( groundtruth_class_labels, groundtruth_is_difficult_list.astype(dtype=bool) | mask_presence_indicator, # ignore boxes without masks groundtruth_is_group_of_list.astype(dtype=bool)) def add_single_detected_image_info(self, image_key, detected_boxes, detected_scores, detected_class_labels, detected_masks=None): """Adds detections for a single image to be used for evaluation. Args: image_key: A unique string/integer identifier for the image. detected_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. detected_scores: float32 numpy array of shape [num_boxes] containing detection scores for the boxes. detected_class_labels: integer numpy array of shape [num_boxes] containing 0-indexed detection classes for the boxes. detected_masks: np.uint8 numpy array of shape [num_boxes, height, width] containing `num_boxes` detection masks with values ranging between 0 and 1. Raises: ValueError: if the number of boxes, scores and class labels differ in length. """ if (len(detected_boxes) != len(detected_scores) or len(detected_boxes) != len(detected_class_labels)): raise ValueError( 'detected_boxes, detected_scores and ' 'detected_class_labels should all have same lengths. Got' '[%d, %d, %d]' % len(detected_boxes), len(detected_scores), len(detected_class_labels)) if image_key in self.detection_keys: logging.warning( 'image %s has already been added to the detection result database', image_key) return self.detection_keys.add(image_key) if image_key in self.groundtruth_boxes: groundtruth_boxes = self.groundtruth_boxes[image_key] groundtruth_class_labels = self.groundtruth_class_labels[image_key] # Masks are popped instead of look up. The reason is that we do not want # to keep all masks in memory which can cause memory overflow. groundtruth_masks = self.groundtruth_masks.pop(image_key) groundtruth_is_difficult_list = self.groundtruth_is_difficult_list[ image_key] groundtruth_is_group_of_list = self.groundtruth_is_group_of_list[ image_key] else: groundtruth_boxes = np.empty(shape=[0, 4], dtype=float) groundtruth_class_labels = np.array([], dtype=int) if detected_masks is None: groundtruth_masks = None else: groundtruth_masks = np.empty(shape=[0, 1, 1], dtype=float) groundtruth_is_difficult_list = np.array([], dtype=bool) groundtruth_is_group_of_list = np.array([], dtype=bool) scores, tp_fp_labels, is_class_correctly_detected_in_image = ( self.per_image_eval.compute_object_detection_metrics( detected_boxes=detected_boxes, detected_scores=detected_scores, detected_class_labels=detected_class_labels, groundtruth_boxes=groundtruth_boxes, groundtruth_class_labels=groundtruth_class_labels, groundtruth_is_difficult_list=groundtruth_is_difficult_list, groundtruth_is_group_of_list=groundtruth_is_group_of_list, detected_masks=detected_masks, groundtruth_masks=groundtruth_masks)) for i in range(self.num_class): if scores[i].shape[0] > 0: self.scores_per_class[i].append(scores[i]) self.tp_fp_labels_per_class[i].append(tp_fp_labels[i]) (self.num_images_correctly_detected_per_class ) += is_class_correctly_detected_in_image def _update_ground_truth_statistics(self, groundtruth_class_labels, groundtruth_is_difficult_list, groundtruth_is_group_of_list): """Update grouth truth statitistics. 1. Difficult boxes are ignored when counting the number of ground truth instances as done in Pascal VOC devkit. 2. Difficult boxes are treated as normal boxes when computing CorLoc related statitistics. Args: groundtruth_class_labels: An integer numpy array of length M, representing M class labels of object instances in ground truth groundtruth_is_difficult_list: A boolean numpy array of length M denoting whether a ground truth box is a difficult instance or not groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box is a group-of box or not """ for class_index in range(self.num_class): num_gt_instances = np.sum(groundtruth_class_labels[ ~groundtruth_is_difficult_list & ~groundtruth_is_group_of_list] == class_index) num_groupof_gt_instances = self.group_of_weight * np.sum( groundtruth_class_labels[ groundtruth_is_group_of_list & ~groundtruth_is_difficult_list] == class_index) self.num_gt_instances_per_class[ class_index] += num_gt_instances + num_groupof_gt_instances if np.any(groundtruth_class_labels == class_index): self.num_gt_imgs_per_class[class_index] += 1 def evaluate(self): """Compute evaluation result. Returns: A named tuple with the following fields - average_precision: float numpy array of average precision for each class. mean_ap: mean average precision of all classes, float scalar precisions: List of precisions, each precision is a float numpy array recalls: List of recalls, each recall is a float numpy array corloc: numpy float array mean_corloc: Mean CorLoc score for each class, float scalar """ if (self.num_gt_instances_per_class == 0).any(): logging.warning( 'The following classes have no ground truth examples: %s', np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) + self.label_id_offset) if self.use_weighted_mean_ap: all_scores = np.array([], dtype=float) all_tp_fp_labels = np.array([], dtype=bool) for class_index in range(self.num_class): if self.num_gt_instances_per_class[class_index] == 0: continue if not self.scores_per_class[class_index]: scores = np.array([], dtype=float) tp_fp_labels = np.array([], dtype=float) else: scores = np.concatenate(self.scores_per_class[class_index]) tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index]) if self.use_weighted_mean_ap: all_scores = np.append(all_scores, scores) all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels) precision, recall = metrics.compute_precision_recall( scores, tp_fp_labels, self.num_gt_instances_per_class[class_index]) recall_within_bound_indices = [ index for index, value in enumerate(recall) if value >= self.recall_lower_bound and value <= self.recall_upper_bound ] recall_within_bound = recall[recall_within_bound_indices] precision_within_bound = precision[recall_within_bound_indices] self.precisions_per_class[class_index] = precision_within_bound self.recalls_per_class[class_index] = recall_within_bound self.sum_tp_class[class_index] = tp_fp_labels.sum() average_precision = metrics.compute_average_precision( precision_within_bound, recall_within_bound) self.average_precision_per_class[class_index] = average_precision logging.info('average_precision: %f', average_precision) self.corloc_per_class = metrics.compute_cor_loc( self.num_gt_imgs_per_class, self.num_images_correctly_detected_per_class) if self.use_weighted_mean_ap: num_gt_instances = np.sum(self.num_gt_instances_per_class) precision, recall = metrics.compute_precision_recall( all_scores, all_tp_fp_labels, num_gt_instances) recall_within_bound_indices = [ index for index, value in enumerate(recall) if value >= self.recall_lower_bound and value <= self.recall_upper_bound ] recall_within_bound = recall[recall_within_bound_indices] precision_within_bound = precision[recall_within_bound_indices] mean_ap = metrics.compute_average_precision(precision_within_bound, recall_within_bound) else: mean_ap = np.nanmean(self.average_precision_per_class) mean_corloc = np.nanmean(self.corloc_per_class) return ObjectDetectionEvalMetrics(self.average_precision_per_class, mean_ap, self.precisions_per_class, self.recalls_per_class, self.corloc_per_class, mean_corloc)
the-stack_0_26195
from pandac.PandaModules import * from direct.distributed.ClockDelta import * from direct.interval.IntervalGlobal import * from otp.level import BasicEntities from direct.directnotify import DirectNotifyGlobal from direct.fsm import ClassicFSM, State from direct.fsm import State import LiftConstants import MovingPlatform class DistributedLift(BasicEntities.DistributedNodePathEntity): notify = DirectNotifyGlobal.directNotify.newCategory('DistributedLift') def __init__(self, cr): BasicEntities.DistributedNodePathEntity.__init__(self, cr) def generateInit(self): self.notify.debug('generateInit') BasicEntities.DistributedNodePathEntity.generateInit(self) self.moveSnd = base.loader.loadSfx('phase_9/audio/sfx/CHQ_FACT_elevator_up_down.mp3') self.fsm = ClassicFSM.ClassicFSM('DistributedLift', [State.State('off', self.enterOff, self.exitOff, ['moving']), State.State('moving', self.enterMoving, self.exitMoving, ['waiting']), State.State('waiting', self.enterWaiting, self.exitWaiting, ['moving'])], 'off', 'off') self.fsm.enterInitialState() def generate(self): self.notify.debug('generate') BasicEntities.DistributedNodePathEntity.generate(self) self.platform = self.attachNewNode('platParent') def setStateTransition(self, toState, fromState, arrivalTimestamp): self.notify.debug('setStateTransition: %s->%s' % (fromState, toState)) if not self.isGenerated(): self.initialState = toState self.initialFromState = fromState self.initialStateTimestamp = arrivalTimestamp else: self.fsm.request('moving', [toState, fromState, arrivalTimestamp]) def announceGenerate(self): self.notify.debug('announceGenerate') BasicEntities.DistributedNodePathEntity.announceGenerate(self) self.initPlatform() self.state = None self.fsm.request('moving', [self.initialState, self.initialFromState, self.initialStateTimestamp]) del self.initialState del self.initialStateTimestamp return def disable(self): self.notify.debug('disable') self.ignoreAll() self.fsm.requestFinalState() BasicEntities.DistributedNodePathEntity.disable(self) def delete(self): self.notify.debug('delete') del self.moveSnd del self.fsm self.destroyPlatform() self.platform.removeNode() del self.platform BasicEntities.DistributedNodePathEntity.delete(self) def initPlatform(self): model = loader.loadModel(self.modelPath) if model is None: return model.setScale(self.modelScale) if self.floorName is None: return self.platformModel = MovingPlatform.MovingPlatform() self.platformModel.setupCopyModel(self.getParentToken(), model, self.floorName) self.accept(self.platformModel.getEnterEvent(), self.localToonEntered) self.accept(self.platformModel.getExitEvent(), self.localToonLeft) self.startGuard = None self.endGuard = None zoneNp = self.getZoneNode() if len(self.startGuardName): self.startGuard = zoneNp.find('**/%s' % self.startGuardName) if len(self.endGuardName): self.endGuard = zoneNp.find('**/%s' % self.endGuardName) side2srch = {'front': '**/wall_front', 'back': '**/wall_back', 'left': '**/wall_left', 'right': '**/wall_right'} for side in side2srch.values(): np = self.platformModel.find(side) if not np.isEmpty(): np.setScale(1.0, 1.0, 2.0) np.setZ(-10) np.flattenLight() self.startBoardColl = NodePathCollection() self.endBoardColl = NodePathCollection() for side in self.startBoardSides: np = self.platformModel.find(side2srch[side]) if np.isEmpty(): DistributedLift.warning("couldn't find %s board collision" % side) else: self.startBoardColl.addPath(np) for side in self.endBoardSides: np = self.platformModel.find(side2srch[side]) if np.isEmpty(): DistributedLift.warning("couldn't find %s board collision" % side) else: self.endBoardColl.addPath(np) self.platformModel.reparentTo(self.platform) return def destroyPlatform(self): if hasattr(self, 'platformModel'): self.ignore(self.platformModel.getEnterEvent()) self.ignore(self.platformModel.getExitEvent()) self.platformModel.destroy() del self.platformModel if self.startGuard is not None: self.startGuard.unstash() if self.endGuard is not None: self.endGuard.unstash() del self.startGuard del self.endGuard del self.startBoardColl del self.endBoardColl return def localToonEntered(self): self.sendUpdate('setAvatarEnter') def localToonLeft(self): self.sendUpdate('setAvatarLeave') def enterOff(self): self.notify.debug('enterOff') def exitOff(self): pass def getPosition(self, state): if state is LiftConstants.Down: return self.startPos else: return self.endPos def getGuard(self, state): if state is LiftConstants.Down: return self.startGuard else: return self.endGuard def getBoardColl(self, state): if state is LiftConstants.Down: return self.startBoardColl else: return self.endBoardColl def enterMoving(self, toState, fromState, arrivalTimestamp): self.notify.debug('enterMoving, %s->%s' % (fromState, toState)) if self.state == toState: self.notify.warning('already in state %s' % toState) startPos = self.getPosition(fromState) endPos = self.getPosition(toState) startGuard = self.getGuard(fromState) endGuard = self.getGuard(toState) startBoardColl = self.getBoardColl(fromState) endBoardColl = self.getBoardColl(toState) def startMoving(self = self, guard = startGuard, boardColl = startBoardColl): if guard is not None and not guard.isEmpty(): guard.unstash() boardColl.unstash() self.soundIval = SoundInterval(self.moveSnd, node=self.platform) self.soundIval.loop() return def doneMoving(self = self, guard = endGuard, boardColl = endBoardColl, newState = toState): self.state = newState if hasattr(self, 'soundIval'): self.soundIval.pause() del self.soundIval if guard is not None and not guard.isEmpty(): guard.stash() boardColl.stash() self.fsm.request('waiting') return self.moveIval = Sequence(Func(startMoving), LerpPosInterval(self.platform, self.duration, endPos, startPos=startPos, blendType='easeInOut', name='lift-%s-move' % self.entId, fluid=1), Func(doneMoving)) ivalStartT = globalClockDelta.networkToLocalTime(arrivalTimestamp, bits=32) - self.moveIval.getDuration() self.moveIval.start(globalClock.getFrameTime() - ivalStartT) def exitMoving(self): if hasattr(self, 'soundIval'): self.soundIval.pause() del self.soundIval self.moveIval.pause() del self.moveIval def enterWaiting(self): self.notify.debug('enterWaiting') def exitWaiting(self): pass if __dev__: def attribChanged(self, *args): BasicEntities.DistributedNodePathEntity.attribChanged(self, *args) self.destroyPlatform() self.initPlatform()
the-stack_0_26196
# -*- coding: utf-8 -*- """ Provides classes representing different transform types suitable for use with visuals and scenes. Adapted from vispy.visuals.transforms Copyright (c) Vispy Development Team. All Rights Reserved. Distributed under the (new) BSD License. See vispy/LICENSE.txt for more info. """ from .base_transform import BaseTransform, InverseTransform from .linear import NullTransform, TTransform, STTransform, AffineTransform from .nonlinear import LogTransform, PolarTransform from .composite import CompositeTransform, SimplifiedCompositeTransform from ._util import arg_to_array, arg_to_vec, as_vec, TransformCache def transform_types(): typs = [BaseTransform] i = 0 while i < len(typs): typs.extend(typs[i].__subclasses__()) i += 1 return typs[1:] _cached_types = None def create_transform(type, params): global _cached_types if _cached_types is None or type not in _cached_types: _cached_types = {tr.__name__: tr for tr in transform_types()} if type not in _cached_types: raise TypeError('Unknown transform type %r' % type) return _cached_types[type](**params)
the-stack_0_26198
import logging import sqlite3 import pandas as pd class DB: logger = logging.getLogger(__name__) db_file = "db/mixpanel3_exports.sqlite" def __init__(self): self.logger.info("Starting db client") self.conn = sqlite3.connect(self.db_file) self.logger.info("Starting db client - done") def append(self, date_from, date_to, event_name, file_size): """ :return: Logs all events including file_size """ df = pd.DataFrame({'date_from': pd.Timestamp(date_from), 'date_to': pd.Timestamp(date_to), 'event': event_name, 'file_size': file_size}, index=[0]) try: df.to_sql("exports", self.conn, if_exists="append", index=False) except pd.io.sql.DatabaseError as e: self.logger.warning("DatabaseError: Table currencies most probably does not exist", e) return None
the-stack_0_26199
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class to hold a library of OpDefs and use it to create Brain operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.core.framework import tensor_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import op_callbacks from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import tf_contextlib def _Attr(op_def, name): for attr in op_def.attr: if attr.name == name: return attr raise TypeError("Inconsistent OpDef for '%s', missing attr '%s'" % (op_def.name, name)) def _AttrValue(attr_protos, name): if name in attr_protos: return attr_protos[name] raise TypeError("Inconsistent OpDef, missing attr '%s' from '%s'." % (name, attr_protos)) def _SatisfiesTypeConstraint(dtype, attr_def, param_name): if attr_def.HasField("allowed_values"): allowed_list = attr_def.allowed_values.list.type if dtype not in allowed_list: raise TypeError( "Value passed to parameter '%s' has DataType %s not in list of " "allowed values: %s" % (param_name, dtypes.as_dtype(dtype).name, ", ".join(dtypes.as_dtype(x).name for x in allowed_list))) def _IsListParameter(arg): if arg.number_attr: return True elif arg.type_list_attr: return True return False def _NumTypeFields(arg): num = 0 if arg.type != types_pb2.DT_INVALID: num += 1 if arg.type_attr: num += 1 if arg.type_list_attr: num += 1 return num def _IsListValue(v): return isinstance(v, (list, tuple)) def _Flatten(l): """Converts [1, 2, [3, 4], [5]] to [1, 2, 3, 4, 5].""" # [1, 2, [3, 4], [5]] -> [[1], [2], [3, 4], [5]] l_of_l = [x if _IsListValue(x) else [x] for x in l] # [[1], [2], [3, 4], [5]] -> [1, 2, 3, 4, 5] return [item for sublist in l_of_l for item in sublist] def _Restructure(l, structure): """Returns the elements of list l structured according to the given structure. A structure is represented by a list whose elements are either `None` or a non-negative integer. `None` corresponds to a single element in the output list, and an integer N corresponds to a nested list of length N. The function returns a data structure whose shape is given by `structure`, and whose elements are taken from `l`. If `structure` is a singleton, the function returns the single data structure implied by the 0th element of `structure`. For example: _Restructure(["foo", "bar", "baz", "qux"], [None, 2, None]) -> ["foo", ["bar", "baz"], "qux"] _Restructure(["foo"], [None]) -> "foo" _Restructure(["foo"], [1]) -> ["foo"] _Restructure([], [0]) -> [] Args: l: A list. structure: A list whose elements are either `None` or a non-negative integer. Returns: The elements of `l`, restructured according to `structure`. If `structure` is a list of length 1, this function returns the single data structure implied by `structure[0]`. """ result = [] current_index = 0 for element in structure: if element is None: result.append(l[current_index]) current_index += 1 else: result.append(l[current_index:current_index+element]) current_index += element if len(result) == 1: return result[0] else: return tuple(result) def _MakeFloat(v, arg_name): if not isinstance(v, compat.real_types): raise TypeError("Expected float for argument '%s' not %s." % (arg_name, repr(v))) return float(v) def _MakeInt(v, arg_name): if isinstance(v, six.string_types): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v))) try: return int(v) except (ValueError, TypeError): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v))) def _MakeStr(v, arg_name): if not isinstance(v, compat.bytes_or_text_types): raise TypeError("Expected string for argument '%s' not %s." % (arg_name, repr(v))) return compat.as_bytes(v) # Convert unicode strings to bytes. def _MakeBool(v, arg_name): if not isinstance(v, bool): raise TypeError("Expected bool for argument '%s' not %s." % (arg_name, repr(v))) return v def _MakeType(v, attr_def): try: v = dtypes.as_dtype(v).base_dtype except TypeError: raise TypeError("Expected DataType for argument '%s' not %s." % (attr_def.name, repr(v))) i = v.as_datatype_enum _SatisfiesTypeConstraint(i, attr_def, param_name=attr_def.name) return i def _MakeShape(v, arg_name): """Convert v into a TensorShapeProto.""" # Args: # v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape. # arg_name: String, for error messages. # Returns: # A TensorShapeProto. if isinstance(v, tensor_shape_pb2.TensorShapeProto): for d in v.dim: if d.name: logging.warning("Warning: TensorShapeProto with a named dimension: %s", str(v)) break return v try: return tensor_shape.as_shape(v).as_proto() except TypeError as e: raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e)) except ValueError as e: raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e)) def _MakeTensor(v, arg_name): """Ensure v is a TensorProto.""" if isinstance(v, tensor_pb2.TensorProto): return v raise TypeError( "Don't know how to convert %s to a TensorProto for argument '%s'" % (repr(v), arg_name)) def _MakeFunc(v, arg_name): """Ensure v is a func.""" if isinstance(v, attr_value_pb2.NameAttrList): return v fn_attr = attr_value_pb2.NameAttrList() if isinstance(v, compat.bytes_or_text_types): fn_attr.name = v elif hasattr(v, "add_to_graph"): v.add_to_graph(ops.get_default_graph()) fn_attr.name = v.name else: raise TypeError("Don't know how to convert {} to a func for " "argument {}".format(v, arg_name)) return fn_attr class _OpInfo(object): """All per-Op state we would like to precompute/validate.""" def __init__(self, op_def): self.op_def = op_def # TODO(josh11b): SWIG the ValidateOpDef() function from C++ and call it # here, instead of these checks. for arg in list(op_def.input_arg) + list(op_def.output_arg): num_type_fields = _NumTypeFields(arg) if num_type_fields != 1: raise TypeError("Arg '%s' of '%s' must have one type field not %d" % (arg.name, op_def.name, num_type_fields)) if arg.type_attr: attr_type = _Attr(op_def, arg.type_attr).type if attr_type != "type": raise TypeError("Attr '%s' of '%s' used as a type_attr " "but has type %s" % (arg.type_attr, op_def.name, attr_type)) if arg.type_list_attr: attr_type = _Attr(op_def, arg.type_list_attr).type if attr_type != "list(type)": raise TypeError( "Attr '%s' of '%s' used as a type_list_attr but has type %s" % (arg.type_attr, op_def.name, attr_type)) if arg.number_attr: attr_type = _Attr(op_def, arg.number_attr).type if attr_type != "int": raise TypeError( "Attr '%s' of '%s' used as a number_attr but has type %s" % (arg.number_attr, op_def.name, attr_type)) # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def _MaybeColocateWith(inputs): """A context manager for (maybe) colocating with a list of input tensors. Args: inputs: A list of `Tensor` or `Operation` objects. Returns: A context manager. """ if not inputs: yield else: # NOTE(mrry): The `ops.colocate_with()` function accepts only a single # op or tensor, so we create one context manager per element in the list. with ops.colocate_with(inputs[0]), _MaybeColocateWith(inputs[1:]): yield # pylint: enable=g-doc-return-or-yield class OpDefLibrary(object): """Holds a collection of OpDefs, can add the corresponding Ops to a graph.""" def __init__(self): self._ops = {} # pylint: disable=invalid-name def add_op(self, op_def): """Register an OpDef. May call apply_op with the name afterwards.""" if not isinstance(op_def, op_def_pb2.OpDef): raise TypeError("%s is %s, not an op_def_pb2.OpDef" % (op_def, type(op_def))) if not op_def.name: raise ValueError("%s missing name." % op_def) if op_def.name in self._ops: raise RuntimeError("Op name %s registered twice." % op_def.name) self._ops[op_def.name] = _OpInfo(op_def) def add_op_list(self, op_list): """Register the OpDefs from an OpList.""" if not isinstance(op_list, op_def_pb2.OpList): raise TypeError("%s is %s, not an op_def_pb2.OpList" % (op_list, type(op_list))) for op_def in op_list.op: self.add_op(op_def) def apply_op(self, op_type_name, name=None, **keywords): # pylint: disable=g-doc-args """Add a node invoking a registered Op to a graph. Example usage: # input1 and input2 can be Tensors or anything ops.convert_to_tensor() # will convert to a Tensor. op_def_library.apply_op("op", input1=input1, input2=input2) # Can specify a node name. op_def_library.apply_op("op", input1=input1, name="node_name") # Must use keyword arguments, with the names specified in the OpDef. op_def_library.apply_op("op", input_name=input, attr_name=attr) All attrs must either be inferred from an input or specified. (If inferred, the attr must not be specified.) If an attr has a default value specified in the Op's OpDef, then you may pass None as the value of that attr to get the default. Args: op_type_name: string. Must match the name field of a registered Op. name: string. Optional name of the created op. **keywords: input Tensor and attr arguments specified by name, and optional parameters to pass when constructing the Operation. Returns: The Tensor(s) representing the output of the operation, or the Operation itself if there are no outputs. Raises: RuntimeError: On some errors. TypeError: On some errors. ValueError: On some errors. """ output_structure, is_stateful, op = self._apply_op_helper( op_type_name, name, **keywords) if output_structure: outputs = op.outputs res = _Restructure(ops.convert_n_to_tensor(outputs), output_structure) if isinstance(res, list) and not res and is_stateful: return op else: return res else: return op def _apply_op_helper(self, op_type_name, name=None, **keywords): """Implementation of apply_op that returns output_structure, op.""" op_info = self._ops.get(op_type_name, None) if op_info is None: raise RuntimeError("Unrecognized Op name " + op_type_name) op_def = op_info.op_def # Determine the graph context. try: # Need to flatten all the arguments into a list. # pylint: disable=protected-access g = ops._get_graph_from_inputs(_Flatten(keywords.values())) # pylint: enable=protected-access except AssertionError as e: raise RuntimeError( "Cannot determine graph for Op '%s' due to: %s" % (op_type_name, e.message)) # Default name if not specified. if name is None: name = op_type_name # Check for deprecation deprecation_version = op_def.deprecation.version if deprecation_version: producer = g.graph_def_versions.producer if producer >= deprecation_version: raise NotImplementedError( ("Op %s is not available in GraphDef version %d. " "It has been removed in version %d. %s.") % (op_type_name, producer, deprecation_version, op_def.deprecation.explanation)) # Fill in the list of default types for all "type" attrs. This # will be used to choose a preferred dtype to convert to in the # absence of input type information. # # TODO(b/31302892): Currently the defaults don't work in the right # way if you have two inputs, one of whose type resolution depends # on the other. Handling this will require restructuring this code # significantly. default_type_attr_map = {} for attr_def in op_def.attr: if attr_def.type != "type": continue key = attr_def.name if attr_def.HasField("default_value"): default_type_attr_map[key] = dtypes.as_dtype( attr_def.default_value.type) # Requires that op_def has passed validation (using the C++ # ValidateOpDef() from ../framework/op_def_util.h). attrs = {} inputs = [] input_types = [] with g.as_default(), ops.name_scope(name) as scope: # Perform input type inference inferred_from = {} for input_arg in op_def.input_arg: input_name = input_arg.name if input_name in keywords: values = keywords.pop(input_name) elif input_name + "_" in keywords: # Handle the case where the name is a keyword or built-in # for Python so we use the name + _ instead. input_name += "_" values = keywords.pop(input_name) else: raise TypeError("No argument for input " + input_name) # Goals: # * Convert values to Tensors if it contains constants. # * Verify that values is a list if that matches the input_arg's # type. # * If the input_arg's type is determined by attrs, either set # those attrs and validate those attr values are legal (if # they have not yet been set) or validate the input matches # the type indicated by the attrs (if they have already been # inferred via an earlier input). # * If the input_arg has an explicit type, make sure the input # conforms. if _IsListParameter(input_arg): if not _IsListValue(values): raise TypeError( "Expected list for '%s' argument to '%s' Op, not %s." % (input_name, op_type_name, values)) # In cases where we expect all elements of the list to have the # same dtype, try to cast non-Tensor elements to that type. dtype = None default_dtype = None if input_arg.type != types_pb2.DT_INVALID: dtype = input_arg.type elif input_arg.number_attr: if input_arg.type_attr in attrs: dtype = attrs[input_arg.type_attr] else: for t in values: if isinstance(t, ops.Tensor): dtype = t.dtype break # dtype still not found, prefer using the default dtype # from the attr. if dtype is None and input_arg.type_attr in default_type_attr_map: default_dtype = default_type_attr_map[input_arg.type_attr] try: if not input_arg.is_ref and dtype: dtype = dtypes.as_dtype(dtype).base_dtype values = ops.internal_convert_n_to_tensor( values, name=input_arg.name, dtype=dtype if dtype else None, preferred_dtype=default_dtype, as_ref=input_arg.is_ref) if input_arg.number_attr and len( set(v.dtype.base_dtype for v in values)) > 1: raise TypeError() # All types should match. except (TypeError, ValueError): # What types does the conversion function think values have? observed_types = [] for value in values: try: converted_value = ops.internal_convert_to_tensor( value, as_ref=input_arg.is_ref) observed_types.append(converted_value.dtype.base_dtype.name) except (TypeError, ValueError): observed_types.append("<NOT CONVERTIBLE TO TENSOR>") observed = ", ".join(observed_types) prefix = ( "Tensors in list passed to '%s' of '%s' Op have types [%s]" % (input_name, op_type_name, observed)) if input_arg.number_attr: if input_arg.type != types_pb2.DT_INVALID: raise TypeError("%s that do not match expected type %s." % (prefix, dtype.name)) elif input_arg.type_attr in attrs: raise TypeError("%s that do not match type %s inferred from " "earlier arguments." % (prefix, dtype.name)) else: raise TypeError("%s that don't all match." % prefix) else: raise TypeError( "%s that are invalid. Tensors: %s" % (prefix, values)) types = [x.dtype for x in values] inputs.extend(values) else: # In cases where we have an expected type, try to convert non-Tensor # arguments to that type. dtype = None default_dtype = None if input_arg.type != types_pb2.DT_INVALID: dtype = input_arg.type elif input_arg.type_attr in attrs: dtype = attrs[input_arg.type_attr] elif input_arg.type_attr in default_type_attr_map: # The dtype could not be inferred solely from the inputs, # so we prefer the attr's default, so code that adds a new attr # with a default is backwards compatible. default_dtype = default_type_attr_map[input_arg.type_attr] try: values = ops.internal_convert_to_tensor( values, name=input_arg.name, dtype=dtype, as_ref=input_arg.is_ref, preferred_dtype=default_dtype) except TypeError as err: if dtype is None: raise err else: raise TypeError( "Expected %s passed to parameter '%s' of op '%s', got %s of " "type '%s' instead. Error: %s" % (dtypes.as_dtype(dtype).name, input_arg.name, op_type_name, repr(values), type(values).__name__, err)) except ValueError: # What type does convert_to_tensor think it has? try: observed = ops.internal_convert_to_tensor( values, as_ref=input_arg.is_ref).dtype.name except ValueError as err: raise ValueError( "Tried to convert '%s' to a tensor and failed. Error: %s" % (input_name, err)) prefix = ("Input '%s' of '%s' Op has type %s that does not match" % (input_name, op_type_name, observed)) if input_arg.type != types_pb2.DT_INVALID: raise TypeError("%s expected type of %s." % (prefix, dtypes.as_dtype(input_arg.type).name)) else: # Update the maps with the default, if needed. k = input_arg.type_attr if k in default_type_attr_map: if k not in attrs: attrs[k] = default_type_attr_map[k] if k not in inferred_from: inferred_from[k] = "Default in OpDef" raise TypeError( "%s type %s of argument '%s'." % (prefix, dtypes.as_dtype(attrs[input_arg.type_attr]).name, inferred_from[input_arg.type_attr])) types = [values.dtype] inputs.append(values) base_types = [x.base_dtype for x in types] if input_arg.number_attr: # <number-attr> * <type> or <number-attr> * <type-attr> if input_arg.number_attr in attrs: if len(values) != attrs[input_arg.number_attr]: raise ValueError( "List argument '%s' to '%s' Op with length %d must match " "length %d of argument '%s'." % (input_name, op_type_name, len(values), attrs[input_arg.number_attr], inferred_from[input_arg.number_attr])) else: attrs[input_arg.number_attr] = len(values) inferred_from[input_arg.number_attr] = input_name num_attr = _Attr(op_def, input_arg.number_attr) if num_attr.has_minimum and len(values) < num_attr.minimum: raise ValueError( "List argument '%s' to '%s' Op with length %d shorter " "than minimum length %d." % (input_name, op_type_name, len(values), num_attr.minimum)) # All tensors must have the same base type. if any(bt != base_types[0] for bt in base_types): raise TypeError( "All tensors passed to '%s' of '%s' Op " "must have the same type." % (input_name, op_type_name)) if input_arg.type != types_pb2.DT_INVALID: # <number-attr> * <type> case if base_types and base_types[0] != input_arg.type: assert False, "Unreachable" elif input_arg.type_attr in attrs: # <number-attr> * <type-attr> case, where <type-attr> already # has an inferred value. if base_types and base_types[0] != attrs[input_arg.type_attr]: assert False, "Unreachable" else: # <number-attr> * <type-attr> case, where we are now setting # the <type-attr> based on this input if not base_types: raise TypeError( "Don't know how to infer type variable from empty input " "list passed to input '%s' of '%s' Op." % (input_name, op_type_name)) attrs[input_arg.type_attr] = base_types[0] inferred_from[input_arg.type_attr] = input_name type_attr = _Attr(op_def, input_arg.type_attr) _SatisfiesTypeConstraint(base_types[0], type_attr, param_name=input_name) elif input_arg.type_attr: # <type-attr> attr_value = base_types[0] if input_arg.type_attr in attrs: if attrs[input_arg.type_attr] != attr_value: raise TypeError( "Input '%s' of '%s' Op has type %s that does not " "match type %s of argument '%s'." % (input_name, op_type_name, dtypes.as_dtype(attr_value).name, dtypes.as_dtype(attrs[input_arg.type_attr]).name, inferred_from[input_arg.type_attr])) else: for base_type in base_types: _SatisfiesTypeConstraint(base_type, _Attr(op_def, input_arg.type_attr), param_name=input_name) attrs[input_arg.type_attr] = attr_value inferred_from[input_arg.type_attr] = input_name elif input_arg.type_list_attr: # <type-list-attr> attr_value = base_types if input_arg.type_list_attr in attrs: if attrs[input_arg.type_list_attr] != attr_value: raise TypeError( "Input '%s' of '%s' Op has type list of %s that does not " "match type list %s of argument '%s'." % (input_name, op_type_name, ", ".join(dtypes.as_dtype(x).name for x in attr_value), ", ".join(dtypes.as_dtype(x).name for x in attrs[input_arg.type_list_attr]), inferred_from[input_arg.type_list_attr])) else: for base_type in base_types: _SatisfiesTypeConstraint(base_type, _Attr(op_def, input_arg.type_list_attr), param_name=input_name) attrs[input_arg.type_list_attr] = attr_value inferred_from[input_arg.type_list_attr] = input_name else: # single Tensor with specified type if base_types[0] != input_arg.type: assert False, "Unreachable" if input_arg.is_ref: if not all(x._is_ref_dtype for x in types): # pylint: disable=protected-access raise TypeError( ("'%s' Op requires that input '%s' be a mutable tensor " "(e.g.: a tf.Variable)") % (op_type_name, input_name)) input_types.extend(types) else: input_types.extend(base_types) # Process remaining attrs for attr in op_def.attr: # Skip attrs that have already had their values inferred if attr.name in attrs: if attr.name in keywords: raise TypeError( "Should not specify value for inferred attr '%s'." % attr.name) continue if attr.name in keywords: attrs[attr.name] = keywords.pop(attr.name) elif attr.name + "_" in keywords: # Attrs whose names match Python keywords have an extra '_' # appended, so we must check for that as well. attrs[attr.name] = keywords.pop(attr.name + "_") else: raise TypeError("No argument for attr " + attr.name) # Convert attr values to AttrValue protos. attr_protos = {} for attr_def in op_def.attr: key = attr_def.name value = attrs[key] attr_value = attr_value_pb2.AttrValue() if attr_def.HasField("default_value") and value is None: attr_value.CopyFrom(attr_def.default_value) attr_protos[key] = attr_value continue if attr_def.type.startswith("list("): if not _IsListValue(value): raise TypeError("Expected list for attr " + key) if attr_def.has_minimum: if len(value) < attr_def.minimum: raise ValueError("Attr '%s' of '%s' Op passed list of length %d " "less than minimum %d." % (key, op_type_name, len(value), attr_def.minimum)) attr_value.list.SetInParent() if attr_def.type == "string": attr_value.s = _MakeStr(value, key) if attr_def.HasField("allowed_values"): if attr_value.s not in attr_def.allowed_values.list.s: raise ValueError( "Attr '%s' of '%s' Op passed string '%s' not in: \"%s\"." % (key, op_type_name, compat.as_text(attr_value.s), '", "'.join(map(compat.as_text, attr_def.allowed_values.list.s)))) elif attr_def.type == "list(string)": attr_value.list.s.extend([_MakeStr(x, key) for x in value]) if attr_def.HasField("allowed_values"): for x in attr_value.list.s: if x not in attr_def.allowed_values.list.s: raise ValueError( "Attr '%s' of '%s' Op passed string '%s' not in: \"%s\"." % (key, op_type_name, compat.as_text(x), '", "'.join(map(compat.as_text, attr_def.allowed_values.list.s)))) elif attr_def.type == "int": attr_value.i = _MakeInt(value, key) if attr_def.has_minimum: if attr_value.i < attr_def.minimum: raise ValueError( "Attr '%s' of '%s' Op passed %d less than minimum %d." % (key, op_type_name, attr_value.i, attr_def.minimum)) elif attr_def.type == "list(int)": attr_value.list.i.extend([_MakeInt(x, key) for x in value]) elif attr_def.type == "float": attr_value.f = _MakeFloat(value, key) elif attr_def.type == "list(float)": attr_value.list.f.extend([_MakeFloat(x, key) for x in value]) elif attr_def.type == "bool": attr_value.b = _MakeBool(value, key) elif attr_def.type == "list(bool)": attr_value.list.b.extend([_MakeBool(x, key) for x in value]) elif attr_def.type == "type": attr_value.type = _MakeType(value, attr_def) elif attr_def.type == "list(type)": attr_value.list.type.extend( [_MakeType(x, attr_def) for x in value]) elif attr_def.type == "shape": attr_value.shape.CopyFrom(_MakeShape(value, key)) elif attr_def.type == "list(shape)": attr_value.list.shape.extend( [_MakeShape(x, key) for x in value]) elif attr_def.type == "tensor": attr_value.tensor.CopyFrom(_MakeTensor(value, key)) elif attr_def.type == "list(tensor)": attr_value.list.tensor.extend( [_MakeTensor(x, key) for x in value]) elif attr_def.type == "func": attr_value.func.CopyFrom(_MakeFunc(value, key)) elif attr_def.type == "list(func)": attr_value.list.func.extend([_MakeFunc(x, key) for x in value]) else: raise TypeError("Unrecognized Attr type " + attr_def.type) attr_protos[key] = attr_value del attrs # attrs is no longer authoritative, use attr_protos instead # Determine output types (possibly using attrs) output_structure = [] for arg in op_def.output_arg: if arg.number_attr: n = _AttrValue(attr_protos, arg.number_attr).i output_structure.append(n) elif arg.type_attr: t = _AttrValue(attr_protos, arg.type_attr) output_structure.append(None) elif arg.type_list_attr: t = _AttrValue(attr_protos, arg.type_list_attr) output_structure.append(len(t.list.type)) else: output_structure.append(None) if keywords: raise TypeError("apply_op() got unexpected keyword arguments: " + ", ".join(sorted(keywords.keys()))) # NOTE(mrry): We add an explicit colocation constraint between # the newly created op and any of its reference-typed inputs. must_colocate_inputs = [val for arg, val in zip(op_def.input_arg, inputs) if arg.is_ref] with _MaybeColocateWith(must_colocate_inputs): # Add Op to graph # pylint: disable=protected-access op = g._create_op_internal(op_type_name, inputs, dtypes=None, name=scope, input_types=input_types, attrs=attr_protos, op_def=op_def) # Conditionally invoke tfdbg v2's op callback(s). if op_callbacks.should_invoke_op_callbacks(): callback_outputs = op_callbacks.invoke_op_callbacks( op.node_def.op, tuple(op.inputs), attr_protos, tuple(op.outputs), op_name=op.name, graph=g) if callback_outputs is not None: for slot_index, callback_output in enumerate(callback_outputs): op.outputs[slot_index] = callback_output return output_structure, op_def.is_stateful, op # pylint: enable=invalid-name
the-stack_0_26200
# Copyright (c) 2017-2019 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Copyright (c) 2007 The Regents of The University of Michigan # Copyright (c) 2010 The Hewlett-Packard Development Company # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nathan Binkert # Andreas Sandberg from __future__ import print_function from __future__ import absolute_import import m5 import math import sys import _m5.stats from m5.objects import Root from m5.params import isNullPointer from m5.util import attrdict, fatal import m5.mcpat as mcpat from m5.mcpat.autogen import generate_xml import m5.vpi_shm as vpi_shm import time # Stat exports from _m5.stats import schedStatEvent as schedEvent from _m5.stats import periodicStatDump outputList = [] # Dictionary of stat visitor factories populated by the _url_factory # visitor. factories = { } # List of all factories. Contains tuples of (factory, schemes, # enabled). all_factories = [] def _url_factory(schemes, enable=True): """Wrap a plain Python function with URL parsing helpers Wrap a plain Python function f(fn, **kwargs) to expect a URL that has been split using urlparse.urlsplit. First positional argument is assumed to be a filename, this is created as the concatenation of the netloc (~hostname) and path in the parsed URL. Keyword arguments are derived from the query values in the URL. Arguments: schemes: A list of URL schemes to use for this function. Keyword arguments: enable: Enable/disable this factory. Typically used when the presence of a function depends on some runtime property. For example: wrapped_f(urlparse.urlsplit("text://stats.txt?desc=False")) -> f("stats.txt", desc=False) """ from functools import wraps def decorator(func): @wraps(func) def wrapper(url): try: from urllib.parse import parse_qs except ImportError: # Python 2 fallback from urlparse import parse_qs from ast import literal_eval qs = parse_qs(url.query, keep_blank_values=True) # parse_qs returns a list of values for each parameter. Only # use the last value since kwargs don't allow multiple values # per parameter. Use literal_eval to transform string param # values into proper Python types. def parse_value(key, values): if len(values) == 0 or (len(values) == 1 and not values[0]): fatal("%s: '%s' doesn't have a value." % ( url.geturl(), key)) elif len(values) > 1: fatal("%s: '%s' has multiple values." % ( url.geturl(), key)) else: try: return key, literal_eval(values[0]) except ValueError: fatal("%s: %s isn't a valid Python literal" \ % (url.geturl(), values[0])) kwargs = dict([ parse_value(k, v) for k, v in qs.items() ]) try: return func("%s%s" % (url.netloc, url.path), **kwargs) except TypeError: fatal("Illegal stat visitor parameter specified") all_factories.append((wrapper, schemes, enable)) for scheme in schemes: assert scheme not in factories factories[scheme] = wrapper if enable else None return wrapper return decorator @_url_factory([ None, "", "text", "file", ]) def _textFactory(fn, desc=True): from m5 import options """Output stats in text format. Text stat files contain one stat per line with an optional description. The description is enabled by default, but can be disabled by setting the desc parameter to False. Parameters: * desc (bool): Output stat descriptions (default: True) Example: text://stats.txt?desc=False """ return _m5.stats.initText(fn, desc, not options.stats_disable_file_io, options.write_stripped_stats) @_url_factory([ "h5", ], enable=hasattr(_m5.stats, "initHDF5")) def _hdf5Factory(fn, chunking=10, desc=True, formulas=True): """Output stats in HDF5 format. The HDF5 file format is a structured binary file format. It has the multiple benefits over traditional text stat files: * Efficient storage of time series (multiple stat dumps) * Fast lookup of stats * Plenty of existing tooling (e.g., Python libraries and graphical viewers) * File format can be used to store frame buffers together with normal stats. There are some drawbacks compared to the default text format: * Large startup cost (single stat dump larger than text equivalent) * Stat dumps are slower than text Known limitations: * Distributions and histograms currently unsupported. * No support for forking. Parameters: * chunking (unsigned): Number of time steps to pre-allocate (default: 10) * desc (bool): Output stat descriptions (default: True) * formulas (bool): Output derived stats (default: True) Example: h5://stats.h5?desc=False;chunking=100;formulas=False """ return _m5.stats.initHDF5(fn, chunking, desc, formulas) def addStatVisitor(url): """Add a stat visitor specified using a URL string Stat visitors are specified using URLs on the following format: format://path[?param=value[;param=value]] The available formats are listed in the factories list. Factories are called with the path as the first positional parameter and the parameters are keyword arguments. Parameter values must be valid Python literals. """ try: from urllib.parse import urlsplit except ImportError: # Python 2 fallback from urlparse import urlsplit parsed = urlsplit(url) try: factory = factories[parsed.scheme] except KeyError: fatal("Illegal stat file type '%s' specified." % parsed.scheme) if factory is None: fatal("Stat type '%s' disabled at compile time" % parsed.scheme) outputList.append(factory(parsed)) def printStatVisitorTypes(): """List available stat visitors and their documentation""" import inspect def print_doc(doc): for line in doc.splitlines(): print("| %s" % line) print() enabled_visitors = [ x for x in all_factories if x[2] ] for factory, schemes, _ in enabled_visitors: print("%s:" % ", ".join(filter(lambda x: x is not None, schemes))) # Try to extract the factory doc string print_doc(inspect.getdoc(factory)) def initSimStats(): _m5.stats.initSimStats() _m5.stats.registerPythonStatsHandlers() def _visit_groups(visitor, root=None): if root is None: root = Root.getInstance() for group in root.getStatGroups().values(): visitor(group) _visit_groups(visitor, root=group) def _visit_stats(visitor, root=None): def for_each_stat(g): for stat in g.getStats(): visitor(g, stat) _visit_groups(for_each_stat, root=root) def _bindStatHierarchy(root): def _bind_obj(name, obj): if isNullPointer(obj): return if m5.SimObject.isSimObjectVector(obj): if len(obj) == 1: _bind_obj(name, obj[0]) else: for idx, obj in enumerate(obj): _bind_obj("{}{}".format(name, idx), obj) else: # We need this check because not all obj.getCCObject() is an # instance of Stat::Group. For example, sc_core::sc_module, the C++ # class of SystemC_ScModule, is not a subclass of Stat::Group. So # it will cause a type error if obj is a SystemC_ScModule when # calling addStatGroup(). if isinstance(obj.getCCObject(), _m5.stats.Group): parent = root while parent: if hasattr(parent, 'addStatGroup'): parent.addStatGroup(name, obj.getCCObject()) break parent = parent.get_parent(); _bindStatHierarchy(obj) for name, obj in root._children.items(): _bind_obj(name, obj) names = [] stats_dict = {} stats_list = [] def enable(): '''Enable the statistics package. Before the statistics package is enabled, all statistics must be created and initialized and once the package is enabled, no more statistics can be created.''' def check_stat(group, stat): if not stat.check() or not stat.baseCheck(): fatal("statistic '%s' (%d) was not properly initialized " \ "by a regStats() function\n", stat.name, stat.id) if not (stat.flags & flags.display): stat.name = "__Stat%06d" % stat.id # Legacy stat global stats_list stats_list = list(_m5.stats.statsList()) for stat in stats_list: check_stat(None, stat) stats_list.sort(key=lambda s: s.name.split('.')) for stat in stats_list: stats_dict[stat.name] = stat stat.enable() # New stats _visit_stats(check_stat) _visit_stats(lambda g, s: s.enable()) _m5.stats.enable(); def prepare(): '''Prepare all stats for data access. This must be done before dumping and serialization.''' # Legacy stats for stat in stats_list: stat.prepare() # New stats _visit_stats(lambda g, s: s.prepare()) stat_strings = [] def _dump_to_visitor(visitor, root=None): global stat_strings # Legacy stats if root is None: for stat in stats_list: stat_strings.append(stat.visit(visitor)) # New stats def dump_group(group): global stat_strings for stat in group.getStats(): stat_strings.append(stat.visit(visitor)) for n, g in group.getStatGroups().items(): visitor.beginGroup(n) #visitor is type output dump_group(g) visitor.endGroup() if root is not None: for p in root.path_list(): visitor.beginGroup(p) dump_group(root if root is not None else Root.getInstance()) if root is not None: for p in reversed(root.path_list()): visitor.endGroup() lastDump = 0 numDump = 0 init_ncsim = True lastVoltage = 0 lastCurrent = 0 runtime_begin_profile=False profiling = False lv = 0 committedInstrs = 0 def beginProfile(): global runtime_begin_profile runtime_begin_profile = True def get_current(): if not profiling: return 0 global lastCurrent return lastCurrent def get_core_runtime_dynamic(core_id = 0): path = "Processor:Core"+str(core_id) return mcpat.get_runtime_dynamic(path) def get_total_runtime_dynamic(): path = "Processor" return mcpat.get_runtime_dynamic(path) def get_voltage(): if not profiling: return 1 global lastVoltage return lastVoltage def get_profiling(): return runtime_begin_profile def setCommittedInstr(num): global committedInstrs committedInstrs = num def dump(root=None, exit=False): '''Dump all statistics data to the registered outputs''' from m5 import options now = m5.curTick() global lastDump global numDump assert lastDump <= now global stat_strings stat_strings = [] new_dump = lastDump != now lastDump = now # Don't allow multiple global stat dumps in the same tick. It's # still possible to dump a multiple sub-trees. if not new_dump and root is None: return numDump+=1 if new_dump: _m5.stats.processDumpQueue() sim_root = Root.getInstance() if sim_root: sim_root.preDumpStats(); prepare() for output in outputList: if output.valid(): output.begin() _dump_to_visitor(output, root=root) output.end() # max_instr = options.power_profile_instrs max_dump = options.power_profile_duration print("Num Dumps: ",numDump) if(numDump == max_dump or exit): print("Ending after "+str(numDump)+ " datapoints") sys.exit() def dump_verilog(root=None, exit=False): print("******************DUMP_VERILOG******************") '''Dump all statistics data to the registered outputs''' from m5 import options now = m5.curTick() global lastDump global numDump global init_ncsim global lastVoltage global lastCurrent global runtime_begin_profile global committedInstrs global profiling global lv assert lastDump <= now global stat_strings stat_strings = [] new_dump = lastDump != now lastDump = now # Don't allow multiple global stat dumps in the same tick. It's # still possible to dump a multiple sub-trees. # if not new_dump and root is None: # return 0 if(options.mcpat_enable): if((options.power_profile_start != -1 and now >= options.power_profile_start) or runtime_begin_profile): mcpat.set_flags(options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) # profiling = True # numDump += 1 new_dump = True if new_dump: _m5.stats.processDumpQueue() sim_root = Root.getInstance() if sim_root: sim_root.preDumpStats(); #predumping does nothing unless overriden prepare() #prepare for scalar stats does nothing: statistic.h - class statstor.prepare() for output in outputList: if output.valid(): stat_strings.append(output.begin()) _dump_to_visitor(output, root=root) stat_strings.append(output.end()) #print("".join(stat_strings)) #sys.exit(1) # Initialilze the Verilog Sim: power = 0 resistance = 0 voltage = 0 current = 0 mp_v = vpi_shm.mp_get_voltage_set() mp_f = [] for i in range(vpi_shm.mp_get_ncores()): mp_f.append(vpi_shm.mp_get_freq(i)) if(options.ncverilog_enable): if init_ncsim: # Run an Initial McPAT stats run with 1.0v mcpat.m5_to_mcpat(stat_strings,\ options.stats_read_from_file, mp_v, mp_f, \ 380.0, options.mcpat_device_type) resistance = mcpat.get_last_r(mp_v, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) current = mcpat.get_last_i(mp_v, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) power = mcpat.get_last_p(mp_v, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) # Run Init and warmup PowerSupply vpi_shm.initialize(options.mcpat_testname) for i in range(int(options.ncverilog_warmup)): vpi_shm.set_driver_signals(current, 0) lv = vpi_shm.get_voltage() lastVoltage=lv lastCurrent=vpi_shm.get_current() vpi_shm.ack_supply() init_ncsim = False else: if options.ncverilog_feedback: mcpat.m5_to_mcpat(stat_strings,\ options.stats_read_from_file, lv, mp_f, \ 380.0, options.mcpat_device_type) resistance = mcpat.get_last_r(lv, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) current = mcpat.get_last_i(lv, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) power = mcpat.get_last_p(lv, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) else: mcpat.m5_to_mcpat(stat_strings,\ options.stats_read_from_file, mp_v, mp_f, \ 380.0, options.mcpat_device_type) resistance = mcpat.get_last_r(mp_v, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) current = mcpat.get_last_i(mp_v, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) power = mcpat.get_last_p(mp_v, \ options.mcpat_use_fg_pg, \ options.mcpat_scale_factor) vpi_shm.set_driver_signals(current, 0) lv = vpi_shm.get_voltage() lastVoltage=lv lastCurrent=vpi_shm.get_current() vpi_shm.ack_supply() else: mcpat.m5_to_mcpat(stat_strings,\ options.stats_read_from_file, 1.4, [4000], \ 380.0, options.mcpat_device_type) # max_dump = options.power_profile_duration # max_instr = options.power_profile_instrs # if(numDump == max_dump or exit or committedInstrs >= max_instr): # mcpat.dump() # runtime_begin_profile = False # print("Ending after "+str(numDump)+ # " stat dumps") # # Clean up simulation: # if(options.ncverilog_enable): # current = mcpat.get_last_i(mp_v) # vpi_shm.set_driver_signals(current, 1) # lastVoltage=vpi_shm.get_voltage() # lastCurrent=vpi_shm.get_current() # vpi_shm.ack_supply() # sys.exit() else: if new_dump: _m5.stats.processDumpQueue() sim_root = Root.getInstance() if sim_root: sim_root.preDumpStats(); prepare() for output in outputList: if output.valid(): output.begin() _dump_to_visitor(output, root=root) output.end() power_ret = mcpat.get_last_p(voltage=1.4, power_gating=True, scale_factor=1.0) if power_ret is None: return 0 return power_ret def create_xml(frequency): from m5 import options import os global stat_strings stat_strings = [] _m5.stats.processDumpQueue() sim_root = Root.getInstance() if sim_root: sim_root.preDumpStats(); #predumping does nothing unless overriden prepare() #prepare for scalar stats does nothing: statistic.h - class statstor.prepare() for output in outputList: if output.valid(): stat_strings.append(output.begin()) _dump_to_visitor(output, None) stat_strings.append(output.end()) m5_stats_file = os.path.join(options.outdir, options.stats_file) m5_config_file = os.path.join(options.outdir, options.dump_config) mcpat_output_path = os.path.join(options.mcpat_out, options.mcpat_testname) if not os.path.isdir(mcpat_output_path): os.mkdir(mcpat_output_path) #TODO jimmy change these stats from hardcoded to params fr = [4E9 / 1E6] i_f = os.path.join(mcpat_output_path,"serial_mp.xml") generate_xml(m5_stats_file, m5_config_file, i_f, stat_strings, \ True, voltage=1.4, frequency=fr, temperature=380.0, \ device_type=options.mcpat_device_type) def reset(): '''Reset all statistics to the base state''' # call reset stats on all SimObjects root = Root.getInstance() if root: root.resetStats() # call any other registered legacy stats reset callbacks for stat in stats_list: stat.reset() _m5.stats.processResetQueue() flags = attrdict({ 'none' : 0x0000, 'init' : 0x0001, 'display' : 0x0002, 'total' : 0x0010, 'pdf' : 0x0020, 'cdf' : 0x0040, 'dist' : 0x0080, 'nozero' : 0x0100, 'nonan' : 0x0200, })
the-stack_0_26202
#!/usr/bin/env python3 from include.common import * analyze_up_to = 5000 print_table_up_to = 10 def print_builtin_decision(csv_file, id, ids, i, print_latex_table, decision): query = "SELECT ID, BUILTIN_NAME, count FROM UniqueBuiltinCounts WHERE ID = ?" result = c.execute(query, (id,)).fetchone() total_count_percentage_query = "SELECT 100-COUNT(DISTINCT GITHUB_PROJECT_ID) * 100.0 / (SELECT COUNT(DISTINCT GITHUB_PROJECT_ID) FROM TempUniqueBuiltinsPerProject), (SELECT COUNT(DISTINCT GITHUB_PROJECT_ID) FROM TempUniqueBuiltinsPerProject) - COUNT(DISTINCT GITHUB_PROJECT_ID) FROM TempUniqueBuiltinsPerProject WHERE ID NOT IN (" + "?," * (len(ids)-1) + "?)" total_count_percentage = c.execute(total_count_percentage_query, ids).fetchone() if i <= print_table_up_to and print_latex_table: print("%s & %0.2f & %d \\\\" % (escape_latex(result[1]), total_count_percentage[0], total_count_percentage[1])) csv_file.write("%d;%0.2f;%s;%s\n" % (i, total_count_percentage[0], decision, result[1])) csv_file.flush() def get_nr_unsupported_projects_temp(project_ids): if len(project_ids) == 0: count_unsupported_projects_query = "SELECT COUNT(DISTINCT GITHUB_PROJECT_ID) FROM TempUniqueBuiltinsPerProject" else: count_unsupported_projects_query = "SELECT COUNT(DISTINCT GITHUB_PROJECT_ID) FROM TempUniqueBuiltinsPerProject WHERE ID NOT IN (" + "?," * (len(project_ids)-1) + "?)" count_unsupported_projects = c.execute(count_unsupported_projects_query, project_ids).fetchone()[0] return count_unsupported_projects def create_temp_table(): c.execute(""" DROP TABLE IF EXISTS TempUniqueBuiltinsPerProject """) c.execute(""" CREATE TABLE TempUniqueBuiltinsPerProject AS SELECT * FROM UniqueBuiltinsPerProject WHERE BUILTIN_CATEGORY IS NOT 'Unknown' """) conn.commit() def drop_temp_table(): c.execute(""" DROP TABLE TempUniqueBuiltinsPerProject """) conn.commit() def compute(file_name, assume_libc_builtins_to_already_be_implemented, assume_platform_specific_builtins_to_already_be_implemented, print_latex_table=False): csv_file = open(file_name, 'w') csv_file.write('nr_builtins;perc_projects;decision;name\n') create_temp_table() builtin_ids, selected_ids = get_start_configuration(assume_libc_builtins_to_already_be_implemented, assume_platform_specific_builtins_to_already_be_implemented) if print_latex_table: print_tabular_start(name="implementationordertable", columns=3, caption="Greedy order of implementing builtins and cumulative percentage and number of supported projects") print("Builtin & \% projects & \# projects \\\\") print("\\midrule{}%") min_progress = 1 for i in range(1, analyze_up_to+1): if len(builtin_ids) == 0: break min_unsupported_projects_count = None min_unsupported_projects_id = None unsupported_without_new_project = get_nr_unsupported_projects_temp(selected_ids) for builtin_id in builtin_ids: test_selected_ids = selected_ids + [builtin_id] count_unsupported_projects = get_nr_unsupported_projects_temp(test_selected_ids) if (min_unsupported_projects_count is None or count_unsupported_projects < min_unsupported_projects_count) and (unsupported_without_new_project >= count_unsupported_projects - min_progress): min_unsupported_projects_id = builtin_id min_unsupported_projects_count = count_unsupported_projects no_greedy_candidate = min_unsupported_projects_id is None if no_greedy_candidate: min_unsupported_projects_id = c.execute("SELECT ID FROM TempUniqueBuiltinsPerProject WHERE ID NOT IN (" + "?," * (len(selected_ids)-1) + "?) ORDER BY github_project_count DESC LIMIT 1 ", selected_ids).fetchone()[0] selected_ids += [min_unsupported_projects_id] print_builtin_decision(csv_file, min_unsupported_projects_id, selected_ids, i, print_latex_table, 'most-frequent' if no_greedy_candidate else 'greedy') builtin_ids.remove(min_unsupported_projects_id) if print_latex_table: print_tabular_end(label="tbl:implementationorder") csv_file.close() drop_temp_table() def get_start_configuration(assume_libc_builtins_to_already_be_implemented, assume_platform_specific_builtins_to_already_be_implemented): if assume_platform_specific_builtins_to_already_be_implemented and assume_libc_builtins_to_already_be_implemented: builtin_candidates = 'SELECT ID FROM UniqueBuiltinCounts WHERE BUILTIN_CATEGORY IS NOT "Unknown" AND MACHINE_SPECIFIC IS NOT 1 AND BUILTIN_CATEGORY IS NOT "other-libc"' start_ids = [row[0] for row in c.execute('SELECT ID FROM UniqueBuiltinCounts WHERE MACHINE_SPECIFIC IS NOT 1 OR BUILTIN_CATEGORY IS "other-libc"').fetchall()] elif assume_platform_specific_builtins_to_already_be_implemented: builtin_candidates = 'SELECT ID FROM UniqueBuiltinCounts WHERE BUILTIN_CATEGORY IS NOT "Unknown" AND MACHINE_SPECIFIC IS NOT 1' start_ids = [row[0] for row in c.execute('SELECT ID FROM UniqueBuiltinCounts WHERE MACHINE_SPECIFIC IS 1').fetchall()] elif assume_libc_builtins_to_already_be_implemented: builtin_candidates = 'SELECT ID FROM UniqueBuiltinCounts WHERE BUILTIN_CATEGORY IS NOT "Unknown" AND BUILTIN_CATEGORY IS NOT "other-libc"' start_ids = [row[0] for row in c.execute('SELECT ID FROM UniqueBuiltinCounts WHERE BUILTIN_CATEGORY IS "other-libc"').fetchall()] else: builtin_candidates = 'SELECT ID FROM UniqueBuiltinCounts WHERE BUILTIN_CATEGORY IS NOT "Unknown"' start_ids = [] builtin_candidate_ids = [row[0] for row in c.execute(builtin_candidates).fetchall()] return (builtin_candidate_ids, start_ids) # Selects the implementation order by choosing the most frequent builtin def by_frequency(file_name, assume_libc_builtins_to_already_be_implemented, assume_platform_specific_builtins_to_already_be_implemented): create_temp_table() csv_file = open(file_name, 'w') csv_file.write('nr_builtins;perc_projects;decision;name\n') builtin_ids, selected_ids = get_start_configuration(assume_libc_builtins_to_already_be_implemented, assume_platform_specific_builtins_to_already_be_implemented) for i in range(1, analyze_up_to+1): if len(builtin_ids) == 0: break current_id = builtin_ids.pop(0) selected_ids += [current_id] count_unsupported_projects = get_nr_unsupported_projects_temp(selected_ids) print_builtin_decision(csv_file, current_id, selected_ids, i, False, 'most-frequent') csv_file.close() drop_temp_table() by_frequency(current_dir + '/../../generated/most-frequent-all.csv', False, False) by_frequency(current_dir + '/../../generated/most-frequent-machine-independent.csv', False, True) compute(current_dir + '/../../generated/greedy-all.csv', False, False, print_latex_table=True) compute(current_dir + '/../../generated/greedy-machine-independent.csv', False, True)
the-stack_0_26204
""" 自定义链表 """ # link list node class Node: def __init__(self, elem, _next=None): self.elem = elem self.next = _next class SingleLinkList: def __init__(self): self._head = None def is_empty(self): return self._head is None def length(self): cur = self._head count = 0 while cur is not None: count += 1 cur = cur.next return count def travel(self): cur = self._head while cur is not None: print(cur.elem, end='\t') cur = cur.next print() def add(self, elem): """ 头部添加 :param elem: :return: """ node = Node(elem) node.next = self._head self._head = node def append(self, elem): """ 尾添加 :param elem: :return: """ node = Node(elem) if self.is_empty(): self._head = node else: cur = self._head while cur.next is not None: cur = cur.next cur.next = node def insert(self, elem, pos): """ 指定位置添加 :param elem: :param pos: :return: """ # pos < 0 时 if pos <= 0: self.add(elem) # pos > max length 时 elif pos > (self.length() - 1): self.append(elem) # 插入指定位置 else: node = Node(elem) count = 0 pre = self._head while count < (pos - 1): count += 1 pre = pre.next node.next = pre.next pre.next = node def remove(self, elem): cur = self._head pre = None while cur is not None: # 找到了指定元素 if cur.elem == elem: # 如果第一个元素就是指定的节点 if not pre: self._head = cur.next else: pre.next = cur.next break else: # 后移节点 pre = cur cur = cur.next def search(self, elem): cur = self._head while cur is not None: if cur.elem == elem: return True cur = cur.next return False if __name__ == '__main__': # test ll = SingleLinkList() ll.add(1) ll.add(2) ll.add(3) ll.insert(4, 2) ll.travel() print(ll.search(4)) ll.remove(1) ll.travel()
the-stack_0_26205
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. #!/usr/bin/env python import glob import os import torch from setuptools import find_packages from setuptools import setup from torch.utils.cpp_extension import CUDA_HOME from torch.utils.cpp_extension import CppExtension from torch.utils.cpp_extension import CUDAExtension requirements = ["torch", "torchvision"] def get_extensions(): this_dir = os.path.dirname(os.path.abspath(__file__)) extensions_dir = os.path.join(this_dir, "maskrcnn_benchmark", "csrc") main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp")) source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu")) sources = main_file + source_cpu extension = CppExtension extra_compile_args = {"cxx": []} define_macros = [] if torch.cuda.is_available() and CUDA_HOME is not None: extension = CUDAExtension sources += source_cuda define_macros += [("WITH_CUDA", None)] extra_compile_args["nvcc"] = [ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] sources = [os.path.join(extensions_dir, s) for s in sources] include_dirs = [extensions_dir] ext_modules = [ extension( "maskrcnn_benchmark._C", sources, include_dirs=include_dirs, define_macros=define_macros, extra_compile_args=extra_compile_args, ) ] return ext_modules setup( name="maskrcnn_benchmark", description="object detection in pytorch", packages=find_packages(exclude=("configs", "tests",)), # install_requires=requirements, ext_modules=get_extensions(), cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension.with_options(use_ninja=False)}, )
the-stack_0_26206
# Copyright (C) 2021 Open Source Robotics Foundation # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # You can plot the data generated by this program by following these # steps. # # 1. Run this program and save the output to a file: # ./rand_example normal > normal.data # ./rand_example uniform > uniform.data # # 2. Use gnuplot to create a plot: # gnuplot -c rand_view_normal.gp > normal.jpg # gnuplot -c rand_view_uniform.gp > uniform.jpg from ignition.math import Rand import sys if (len(sys.argv) < 2): print("python rand_example [normal, uniform]") else: for i in range(100000): value = 0 if (sys.argv[1] == "uniform"): value = Rand.dbl_uniform(0, 1000); elif (sys.argv[1] == "normal"): value = Rand.dbl_normal(0, 100); print(value)
the-stack_0_26208
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # S_EllipsoidTestMicroprice [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=S_EllipsoidTestMicroprice&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=IIDHFmicroprice). # ## Prepare the environment # + import os import os.path as path import sys sys.path.append(path.abspath('../../functions-legacy')) import numpy as np from numpy import arange, interp, floor, diff from scipy.io import loadmat import matplotlib.pyplot as plt from matplotlib.pyplot import figure plt.style.use('seaborn') from CONFIG import GLOBAL_DB, TEMPORARY_DB from ARPM_utils import save_plot from autocorrelation import autocorrelation from InvarianceTestEllipsoid import InvarianceTestEllipsoid # - # ## Load the database generated by the script S_HighFreqVolumeTime # + try: db = loadmat(os.path.join(GLOBAL_DB, 'db_HighFreqVolumeTime'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_HighFreqVolumeTime'), squeeze_me=True) # generated by S_HighFreqVolumeTime p_mic = db['p_mic'].reshape(1,-1) t_k = db['t_k'] t_ms = db['t_ms'] q_t = db['q_t'] q = db['q'] # - # ## Compute microprice time series # + delta_t = 2000 # selecting observations every 2 seconds p_mic_t = p_mic[[0],::delta_t] delta_q = floor((np.nanmax(q_t) - np.nanmin(q_t)) / p_mic_t.shape[1]) # width of activity time bins volume_time = arange(np.nanmin(q_t),np.nanmax(q_t)+delta_q,delta_q).reshape(1,-1) # vector of volume times t_q = interp(volume_time, q, t_k) # vector of wall clock time as a function of volume time p_mic_q = interp(t_q, t_ms, p_mic[0]) # time changed microprice, i.e. microprice as a function of volume time # - # ## Compute microprice increments delta_p_mic_t = diff(p_mic_t) delta_p_mic_q = diff(p_mic_q) # ## Compute autocorrelations at different lags lag_ = 10 acf_t = autocorrelation(delta_p_mic_t, lag_) acf_q = autocorrelation(delta_p_mic_q, lag_) # ## Plot the results of the IID test # + lag = 10 # lag to be printed ell_scale = 2 # ellipsoid radius coefficient fit = 0 # normal fitting f = figure(figsize=(12,6)) # changes in implied vol InvarianceTestEllipsoid(delta_p_mic_t, acf_t[0,1:], lag, fit, ell_scale, [], 'IID test on the increments of microprice'); # save_plot(ax=plt.gca(), extension='png', scriptname=os.path.basename('.')[:-3], count=plt.get_fignums()[-1]) f = figure(figsize=(12,6)) # changes in log implied vol pos = {} pos[0]= [.2, .45, .3866, .43] # scatter plot pos[1]= [.2905, .12, .205, .2157] # epsi pos[2]= [.045, .45, .1437, .43] # epsi_lagged pos[3]= [.6, .45, .3366, .43] # autocorrelation pos[4]= [.085, .228, .11, .1] # leg InvarianceTestEllipsoid(delta_p_mic_q,acf_q[0,1:], lag, fit, ell_scale, pos, 'IID test on the increments of time-changed microprice'); # save_plot(ax=plt.gca(), extension='png', scriptname=os.path.basename('.')[:-3], count=plt.get_fignums()[-1])
the-stack_0_26210
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import sys from pathlib import Path from typing import Callable, Dict, List, Optional import nox # WARNING - WARNING - WARNING - WARNING - WARNING # WARNING - WARNING - WARNING - WARNING - WARNING # DO NOT EDIT THIS FILE EVER! # WARNING - WARNING - WARNING - WARNING - WARNING # WARNING - WARNING - WARNING - WARNING - WARNING BLACK_VERSION = "black==19.10b0" # Copy `noxfile_config.py` to your directory and modify it instead. # `TEST_CONFIG` dict is a configuration hook that allows users to # modify the test configurations. The values here should be in sync # with `noxfile_config.py`. Users will copy `noxfile_config.py` into # their directory and modify it. TEST_CONFIG = { # You can opt out from the test for specific Python versions. "ignored_versions": [], # Old samples are opted out of enforcing Python type hints # All new samples should feature them "enforce_type_hints": False, # An envvar key for determining the project id to use. Change it # to 'BUILD_SPECIFIC_GCLOUD_PROJECT' if you want to opt in using a # build specific Cloud project. You can also use your own string # to use your own Cloud project. "gcloud_project_env": "GOOGLE_CLOUD_PROJECT", # 'gcloud_project_env': 'BUILD_SPECIFIC_GCLOUD_PROJECT', # If you need to use a specific version of pip, # change pip_version_override to the string representation # of the version number, for example, "20.2.4" "pip_version_override": None, # A dictionary you want to inject into your test. Don't put any # secrets here. These values will override predefined values. "envs": {}, } try: # Ensure we can import noxfile_config in the project's directory. sys.path.append(".") from noxfile_config import TEST_CONFIG_OVERRIDE except ImportError as e: print("No user noxfile_config found: detail: {}".format(e)) TEST_CONFIG_OVERRIDE = {} # Update the TEST_CONFIG with the user supplied values. TEST_CONFIG.update(TEST_CONFIG_OVERRIDE) def get_pytest_env_vars() -> Dict[str, str]: """Returns a dict for pytest invocation.""" ret = {} # Override the GCLOUD_PROJECT and the alias. env_key = TEST_CONFIG["gcloud_project_env"] # This should error out if not set. ret["GOOGLE_CLOUD_PROJECT"] = os.environ[env_key] # Apply user supplied envs. ret.update(TEST_CONFIG["envs"]) return ret # DO NOT EDIT - automatically generated. # All versions used to test samples. ALL_VERSIONS = ["3.6", "3.7", "3.8", "3.9", "3.10"] # Any default versions that should be ignored. IGNORED_VERSIONS = TEST_CONFIG["ignored_versions"] TESTED_VERSIONS = sorted([v for v in ALL_VERSIONS if v not in IGNORED_VERSIONS]) INSTALL_LIBRARY_FROM_SOURCE = os.environ.get("INSTALL_LIBRARY_FROM_SOURCE", False) in ( "True", "true", ) # Error if a python version is missing nox.options.error_on_missing_interpreters = True # # Style Checks # def _determine_local_import_names(start_dir: str) -> List[str]: """Determines all import names that should be considered "local". This is used when running the linter to insure that import order is properly checked. """ file_ext_pairs = [os.path.splitext(path) for path in os.listdir(start_dir)] return [ basename for basename, extension in file_ext_pairs if extension == ".py" or os.path.isdir(os.path.join(start_dir, basename)) and basename not in ("__pycache__") ] # Linting with flake8. # # We ignore the following rules: # E203: whitespace before ‘:’ # E266: too many leading ‘#’ for block comment # E501: line too long # I202: Additional newline in a section of imports # # We also need to specify the rules which are ignored by default: # ['E226', 'W504', 'E126', 'E123', 'W503', 'E24', 'E704', 'E121'] FLAKE8_COMMON_ARGS = [ "--show-source", "--builtin=gettext", "--max-complexity=20", "--import-order-style=google", "--exclude=.nox,.cache,env,lib,generated_pb2,*_pb2.py,*_pb2_grpc.py", "--ignore=E121,E123,E126,E203,E226,E24,E266,E501,E704,W503,W504,I202", "--max-line-length=88", ] @nox.session def lint(session: nox.sessions.Session) -> None: if not TEST_CONFIG["enforce_type_hints"]: session.install("flake8", "flake8-import-order") else: session.install("flake8", "flake8-import-order", "flake8-annotations") local_names = _determine_local_import_names(".") args = FLAKE8_COMMON_ARGS + [ "--application-import-names", ",".join(local_names), ".", ] session.run("flake8", *args) # # Black # @nox.session def blacken(session: nox.sessions.Session) -> None: session.install(BLACK_VERSION) python_files = [path for path in os.listdir(".") if path.endswith(".py")] session.run("black", *python_files) # # Sample Tests # PYTEST_COMMON_ARGS = ["--junitxml=sponge_log.xml"] def _session_tests( session: nox.sessions.Session, post_install: Callable = None ) -> None: if TEST_CONFIG["pip_version_override"]: pip_version = TEST_CONFIG["pip_version_override"] session.install(f"pip=={pip_version}") """Runs py.test for a particular project.""" if os.path.exists("requirements.txt"): if os.path.exists("constraints.txt"): session.install("-r", "requirements.txt", "-c", "constraints.txt") else: session.install("-r", "requirements.txt") if os.path.exists("requirements-test.txt"): if os.path.exists("constraints-test.txt"): session.install("-r", "requirements-test.txt", "-c", "constraints-test.txt") else: session.install("-r", "requirements-test.txt") if INSTALL_LIBRARY_FROM_SOURCE: session.install("-e", _get_repo_root()) if post_install: post_install(session) session.run( "pytest", *(PYTEST_COMMON_ARGS + session.posargs), # Pytest will return 5 when no tests are collected. This can happen # on travis where slow and flaky tests are excluded. # See http://doc.pytest.org/en/latest/_modules/_pytest/main.html success_codes=[0, 5], env=get_pytest_env_vars(), ) @nox.session(python=ALL_VERSIONS) def py(session: nox.sessions.Session) -> None: """Runs py.test for a sample using the specified version of Python.""" if session.python in TESTED_VERSIONS: _session_tests(session) else: session.skip( "SKIPPED: {} tests are disabled for this sample.".format( session.python) ) # # Readmegen # def _get_repo_root() -> Optional[str]: """ Returns the root folder of the project. """ # Get root of this repository. Assume we don't have directories nested deeper than 10 items. p = Path(os.getcwd()) for i in range(10): if p is None: break if Path(p / ".git").exists(): return str(p) # .git is not available in repos cloned via Cloud Build # setup.py is always in the library's root, so use that instead # https://github.com/googleapis/synthtool/issues/792 if Path(p / "setup.py").exists(): return str(p) p = p.parent raise Exception("Unable to detect repository root.") GENERATED_READMES = sorted([x for x in Path(".").rglob("*.rst.in")]) @nox.session @nox.parametrize("path", GENERATED_READMES) def readmegen(session: nox.sessions.Session, path: str) -> None: """(Re-)generates the readme for a sample.""" session.install("jinja2", "pyyaml") dir_ = os.path.dirname(path) if os.path.exists(os.path.join(dir_, "requirements.txt")): session.install("-r", os.path.join(dir_, "requirements.txt")) in_file = os.path.join(dir_, "README.rst.in") session.run( "python", _get_repo_root() + "/scripts/readme-gen/readme_gen.py", in_file )
the-stack_0_26216
""" Cross Site Request Forgery Middleware. This module provides a middleware that implements protection against request forgeries from other sites. """ from django.conf import settings from django.http import HttpResponseForbidden from django.utils.safestring import mark_safe import md5 import re import itertools _ERROR_MSG = mark_safe('<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"><body><h1>403 Forbidden</h1><p>Cross Site Request Forgery detected. Request aborted.</p></body></html>') _POST_FORM_RE = \ re.compile(r'(<form\W[^>]*\bmethod=(\'|"|)POST(\'|"|)\b[^>]*>)', re.IGNORECASE) _HTML_TYPES = ('text/html', 'application/xhtml+xml') def _make_token(session_id): return md5.new(settings.SECRET_KEY + session_id).hexdigest() class CsrfMiddleware(object): """Django middleware that adds protection against Cross Site Request Forgeries by adding hidden form fields to POST forms and checking requests for the correct value. In the list of middlewares, SessionMiddleware is required, and must come after this middleware. CsrfMiddleWare must come after compression middleware. If a session ID cookie is present, it is hashed with the SECRET_KEY setting to create an authentication token. This token is added to all outgoing POST forms and is expected on all incoming POST requests that have a session ID cookie. If you are setting cookies directly, instead of using Django's session framework, this middleware will not work. """ def process_request(self, request): if request.method == 'POST': try: session_id = request.COOKIES[settings.SESSION_COOKIE_NAME] except KeyError: # No session, no check required return None csrf_token = _make_token(session_id) # check incoming token try: request_csrf_token = request.POST['csrfmiddlewaretoken'] except KeyError: return HttpResponseForbidden(_ERROR_MSG) if request_csrf_token != csrf_token: return HttpResponseForbidden(_ERROR_MSG) return None def process_response(self, request, response): csrf_token = None try: cookie = response.cookies[settings.SESSION_COOKIE_NAME] csrf_token = _make_token(cookie.value) except KeyError: # No outgoing cookie to set session, but # a session might already exist. try: session_id = request.COOKIES[settings.SESSION_COOKIE_NAME] csrf_token = _make_token(session_id) except KeyError: # no incoming or outgoing cookie pass if csrf_token is not None and \ response['Content-Type'].split(';')[0] in _HTML_TYPES: # ensure we don't add the 'id' attribute twice (HTML validity) idattributes = itertools.chain(("id='csrfmiddlewaretoken'",), itertools.repeat('')) def add_csrf_field(match): """Returns the matched <form> tag plus the added <input> element""" return mark_safe(match.group() + "<div style='display:none;'>" + \ "<input type='hidden' " + idattributes.next() + \ " name='csrfmiddlewaretoken' value='" + csrf_token + \ "' /></div>") # Modify any POST forms response.content = _POST_FORM_RE.sub(add_csrf_field, response.content) return response
the-stack_0_26217
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np from extensions.front.Pack import Pack from extensions.front.TransposeOrderNormalizer import TransposeOrderNormalizer from extensions.front.eltwise_n import EltwiseNReplacement from extensions.front.tf.pad_tf_to_pad import PadTFToPad from extensions.ops.DetectionOutput import DetectionOutput from extensions.ops.activation_ops import Sigmoid from extensions.ops.priorbox_clustered import PriorBoxClusteredOp from mo.front.common.partial_infer.utils import int64_array from mo.front.tf.replacement import FrontReplacementFromConfigFileGeneral from mo.graph.graph import Graph, Node from mo.middle.passes.convert_data_type import data_type_str_to_np from mo.ops.concat import Concat from mo.ops.const import Const from mo.ops.reshape import Reshape from mo.ops.result import Result class EfficientDet(FrontReplacementFromConfigFileGeneral): replacement_id = 'AutomlEfficientDet' run_not_recursively = True def run_before(self): from extensions.front.ExpandDimsToUnsqueeze import ExpandDimsToUnsqueeze return [ExpandDimsToUnsqueeze, Pack, TransposeOrderNormalizer, PadTFToPad, EltwiseNReplacement] class AnchorGenerator: def __init__(self, min_level, aspect_ratios, num_scales, anchor_scale): self.min_level = min_level self.aspect_ratios = aspect_ratios self.anchor_scale = anchor_scale self.scales = [2 ** (float(s) / num_scales) for s in range(num_scales)] def get(self, layer_id): widths = [] heights = [] for s in self.scales: for a in self.aspect_ratios: base_anchor_size = 2 ** (self.min_level + layer_id) * self.anchor_scale heights.append(base_anchor_size * s * a[1]) widths.append(base_anchor_size * s * a[0]) return widths, heights def transform_graph(self, graph: Graph, replacement_descriptions: dict): parameter_node = graph.get_op_nodes(op='Parameter')[0] parameter_node['data_type'] = data_type_str_to_np(parameter_node.graph.graph['cmd_params'].data_type) parameter_node.out_port(0).disconnect() # remove existing Result operations to remove unsupported sub-graph graph.remove_nodes_from([node.id for node in graph.get_op_nodes(op='Result')] + ['detections']) # determine if the op which is a input/final result of mean value and scale applying to the input tensor # then connect it to the input of the first convolution of the model, so we remove the image pre-processing # which includes padding and resizing from the model preprocessing_input_node_id = replacement_descriptions['preprocessing_input_node'] assert preprocessing_input_node_id in graph.nodes, 'The node with name "{}" is not found in the graph. This ' \ 'should be a last node before image normalization and is specified' \ ' in the json file.'.format(preprocessing_input_node_id) preprocessing_input_node = Node(graph, preprocessing_input_node_id) consumer_node = preprocessing_input_node.out_port(0).get_connection().get_destination().node consumer_node.in_port(0).get_connection().set_source(parameter_node.out_port(0)) preprocessing_output_node_id = replacement_descriptions['preprocessing_output_node'] assert preprocessing_output_node_id in graph.nodes, 'The node with name "{}" is not found in the graph. This ' \ 'node should provide scaled image output and is specified' \ ' in the json file.'.format(preprocessing_output_node_id) preprocessing_output_node = Node(graph, preprocessing_output_node_id) preprocessing_output_node.out_port(0).disconnect() convolution_nodes = [n for n in graph.pseudo_topological_sort() if n.soft_get('type') == 'Convolution'] convolution_nodes[0].in_port(0).get_connection().set_source(preprocessing_output_node.out_port(0)) # create prior boxes (anchors) generator aspect_ratios = replacement_descriptions['aspect_ratios'] assert len(aspect_ratios) % 2 == 0 aspect_ratios = list(zip(aspect_ratios[::2], aspect_ratios[1::2])) priors_generator = self.AnchorGenerator(min_level=int(replacement_descriptions['min_level']), aspect_ratios=aspect_ratios, num_scales=int(replacement_descriptions['num_scales']), anchor_scale=replacement_descriptions['anchor_scale']) prior_boxes = [] for i in range(100): inp_name = 'box_net/box-predict{}/BiasAdd'.format('_%d' % i if i else '') if inp_name not in graph: break widths, heights = priors_generator.get(i) prior_box_op = PriorBoxClusteredOp(graph, {'width': np.array(widths), 'height': np.array(heights), 'clip': 0, 'flip': 0, 'variance': replacement_descriptions['variance'], 'offset': 0.5}) prior_boxes.append(prior_box_op.create_node([Node(graph, inp_name), parameter_node])) # concatenate prior box operations concat_prior_boxes = Concat(graph, {'axis': -1}).create_node() for idx, node in enumerate(prior_boxes): concat_prior_boxes.add_input_port(idx) concat_prior_boxes.in_port(idx).connect(node.out_port(0)) conf = Sigmoid(graph, dict(name='concat/sigmoid')).create_node([Node(graph, 'concat')]) reshape_size_node = Const(graph, {'value': int64_array([0, -1])}).create_node([]) logits = Reshape(graph, dict(name=conf.name + '/Flatten')).create_node([conf, reshape_size_node]) deltas = Reshape(graph, dict(name='concat_1/Flatten')).create_node([Node(graph, 'concat_1'), reshape_size_node]) # revert convolution boxes prediction weights from yxYX to xyXY (convolutions share weights and bias) weights = Node(graph, 'box_net/box-predict/pointwise_kernel') weights.value = weights.value.reshape(-1, 4)[:, [1, 0, 3, 2]].reshape(weights.shape) bias = Node(graph, 'box_net/box-predict/bias') bias.value = bias.value.reshape(-1, 4)[:, [1, 0, 3, 2]].reshape(bias.shape) detection_output_node = DetectionOutput(graph, dict( name='detections', share_location=1, background_label_id=int(replacement_descriptions['num_classes']) + 1, nms_threshold=replacement_descriptions['nms_threshold'], confidence_threshold=replacement_descriptions['confidence_threshold'], top_k=100, keep_top_k=100, code_type='caffe.PriorBoxParameter.CENTER_SIZE', )).create_node([deltas, logits, concat_prior_boxes]) output_op = Result(graph, dict(name='output')) output_op.create_node([detection_output_node])
the-stack_0_26218
import json from datetime import date, timedelta from django import forms from django.utils.translation import ugettext_lazy as _lazy, ugettext as _ from kitsune.questions.marketplace import submit_ticket from kitsune.questions.models import Answer # labels and help text SITE_AFFECTED_LABEL = _lazy(u"URL of affected site") CRASH_ID_LABEL = _lazy(u"Crash ID(s)") CRASH_ID_HELP = _lazy( u"If you submit information to Mozilla when you crash, " u"you'll be given a crash ID which uniquely identifies " u"your crash and lets us look at details that may help " u"identify the cause. To find your recently submitted " u"crash IDs, go to <strong>about:crashes</strong> in " u"your location bar. <a href='https://support.mozilla." u"com/en-US/kb/Firefox+crashes#Getting_the_most_" u"accurate_help_with_your_Firefox_crash' " u"target='_blank'>Click for detailed instructions</a>." ) TROUBLESHOOTING_LABEL = _lazy(u"Troubleshooting Information") TROUBLESHOOTING_HELP = _lazy( u"This information gives details about the " u"internal workings of your browser that will " u"help in answering your question." ) FREQUENCY_LABEL = _lazy(u"This happens") FREQUENCY_CHOICES = [ (u"", u""), (u"NOT_SURE", _lazy(u"Not sure how often")), (u"ONCE_OR_TWICE", _lazy(u"Just once or twice")), (u"FEW_TIMES_WEEK", _lazy(u"A few times a week")), (u"EVERY_TIME", _lazy(u"Every time Firefox opened")), ] STARTED_LABEL = _lazy(u"This started when...") TITLE_LABEL = _lazy(u"Question") CONTENT_LABEL = _lazy(u"Details") EMAIL_LABEL = _lazy(u"Email") EMAIL_HELP = _lazy( u"A confirmation email will be sent to this address in " u"order to post your question." ) FF_VERSION_LABEL = _lazy(u"Firefox version") OS_LABEL = _lazy(u"Operating system") PLUGINS_LABEL = _lazy(u"Installed plugins") ADDON_LABEL = _lazy(u"Extension/plugin you are having trouble with") DEVICE_LABEL = _lazy(u"Mobile device") # Validation error messages MSG_TITLE_REQUIRED = _lazy(u"Please provide a question.") MSG_TITLE_SHORT = _lazy( u"Your question is too short (%(show_value)s " u"characters). It must be at least %(limit_value)s " u"characters." ) MSG_TITLE_LONG = _lazy( u"Please keep the length of your question to " u"%(limit_value)s characters or less. It is currently " u"%(show_value)s characters." ) MSG_CONTENT_REQUIRED = _lazy(u"Please provide content.") MSG_CONTENT_SHORT = _lazy( u"Your content is too short (%(show_value)s " u"characters). It must be at least %(limit_value)s " u"characters." ) MSG_CONTENT_LONG = _lazy( u"Please keep the length of your content to " u"%(limit_value)s characters or less. It is " u"currently %(show_value)s characters." ) REPLY_PLACEHOLDER = _lazy(u"Enter your reply here.") # Marketplace AAQ form EMAIL_PLACEHOLDER = _lazy(u"Enter your email address here.") SUBJECT_PLACEHOLDER = _lazy(u"Enter a subject here.") SUBJECT_CONTENT_REQUIRED = _lazy(u"Please provide a subject.") SUBJECT_CONTENT_SHORT = _lazy( u"The subject is too short (%(show_value)s " u"characters). It must be at least %(limit_value)s " u"characters." ) SUBJECT_CONTENT_LONG = _lazy( u"Please keep the length of the subject to " u"%(limit_value)s characters or less. It is " u"currently %(show_value)s characters." ) BODY_PLACEHOLDER = _lazy(u"Describe your issue here.") BODY_CONTENT_REQUIRED = _lazy(u"Please describe your issue in the body.") BODY_CONTENT_SHORT = _lazy( u"The body content is too short (%(show_value)s " u"characters). It must be at least %(limit_value)s " u"characters." ) BODY_CONTENT_LONG = _lazy( u"Please keep the length of the body content to " u"%(limit_value)s characters or less. It is " u"currently %(show_value)s characters." ) CATEGORY_CHOICES = [ (u"account", _lazy(u"Account Issues")), (u"installation", _lazy(u"Installation Issues")), (u"payment", _lazy(u"Payment Issues")), (u"application", _lazy(u"Application Issues")), ] # Marketplace Request Refund form TRANSACTION_ID_PLACEHOLDER = _lazy(u"Enter the Transaction ID here.") TRANSACTION_ID_REQUIRED = _lazy(u"Please provide the Transaction ID.") REFUND_CATEGORY_CHOICES = [ (u"Defective", _lazy(u"Defective")), (u"Malware", _lazy(u"Malware")), (u"Did not work as expected", _lazy(u"Did not work as expected")), (u"Seller will not provide support", _lazy(u"Seller will not provide support")), ] # Marketplace Developer Request form DEVELOPER_REQUEST_CATEGORY_CHOICES = [ (u"Account Administration", _lazy(u"Account Administration")), (u"Review Process", _lazy(u"Review Process")), (u"Payments/Settlement", _lazy(u"Payments/Settlement")), ] class EditQuestionForm(forms.Form): """Form to edit an existing question""" def __init__(self, product=None, category=None, *args, **kwargs): """Init the form. We are adding fields here and not declaratively because the form fields to include depend on the selected product/category. """ super(EditQuestionForm, self).__init__(*args, **kwargs) # Extra fields required by product/category selected extra_fields = [] if product: extra_fields += product.get("extra_fields", []) if category: extra_fields += category.get("extra_fields", []) # Add the fields to the form title_error_messages = { "required": MSG_TITLE_REQUIRED, "min_length": MSG_TITLE_SHORT, "max_length": MSG_TITLE_LONG, } title_field = forms.CharField( label=TITLE_LABEL, min_length=5, max_length=160, widget=forms.TextInput(), error_messages=title_error_messages, ) self.fields["title"] = title_field content_error_messages = { "required": MSG_CONTENT_REQUIRED, "min_length": MSG_CONTENT_SHORT, "max_length": MSG_CONTENT_LONG, } field = forms.CharField( label=CONTENT_LABEL, min_length=5, max_length=10000, widget=forms.Textarea(), error_messages=content_error_messages, ) self.fields["content"] = field if "sites_affected" in extra_fields: field = forms.CharField( label=SITE_AFFECTED_LABEL, initial="http://", required=False, max_length=255, widget=forms.TextInput(), ) self.fields["sites_affected"] = field if "crash_id" in extra_fields: field = forms.CharField( label=CRASH_ID_LABEL, help_text=CRASH_ID_HELP, required=False, max_length=255, widget=forms.TextInput(), ) self.fields["crash_id"] = field if "frequency" in extra_fields: field = forms.ChoiceField( label=FREQUENCY_LABEL, choices=FREQUENCY_CHOICES, required=False ) self.fields["frequency"] = field if "started" in extra_fields: field = forms.CharField( label=STARTED_LABEL, required=False, max_length=255, widget=forms.TextInput(), ) self.fields["started"] = field if "addon" in extra_fields: field = forms.CharField( label=ADDON_LABEL, required=False, max_length=255, widget=forms.TextInput(), ) self.fields["addon"] = field if "troubleshooting" in extra_fields: widget = forms.Textarea(attrs={"class": "troubleshooting"}) field = forms.CharField( label=TROUBLESHOOTING_LABEL, help_text=TROUBLESHOOTING_HELP, required=False, max_length=655360, widget=widget, ) self.fields["troubleshooting"] = field if "ff_version" in extra_fields: self.fields["ff_version"] = forms.CharField( label=FF_VERSION_LABEL, required=False, ) if "device" in extra_fields: self.fields["device"] = forms.CharField(label=DEVICE_LABEL, required=False,) if "os" in extra_fields: self.fields["os"] = forms.CharField(label=OS_LABEL, required=False,) if "plugins" in extra_fields: widget = forms.Textarea(attrs={"class": "plugins"}) self.fields["plugins"] = forms.CharField( label=PLUGINS_LABEL, required=False, widget=widget, ) @property def metadata_field_keys(self): """Returns the keys of the metadata fields for the current form instance""" non_metadata_fields = ["title", "content", "email"] def metadata_filter(x): return x not in non_metadata_fields return filter(metadata_filter, self.fields.keys()) @property def cleaned_metadata(self): """Returns a dict with cleaned metadata values. Omits fields with empty string value.""" clean = {} for key in self.metadata_field_keys: if key in self.data and self.data[key] != u"": clean[key] = self.cleaned_data[key] # Clean up the troubleshooting data if we have it. troubleshooting = clean.get("troubleshooting") if troubleshooting: try: parsed = json.loads(troubleshooting) except ValueError: parsed = None if parsed: # Clean out unwanted garbage preferences. if "modifiedPreferences" in parsed and isinstance( parsed["modifiedPreferences"], dict ): for pref in parsed["modifiedPreferences"].keys(): if pref.startswith("print.macosx.pagesetup"): del parsed["modifiedPreferences"][pref] clean["troubleshooting"] = json.dumps(parsed) # Override ff_version with the version in troubleshooting # which is more precise for the dot releases. version = parsed.get("application", {}).get("version") if version: clean["ff_version"] = version return clean class NewQuestionForm(EditQuestionForm): """Form to start a new question""" def __init__(self, product=None, category=None, *args, **kwargs): """Add fields particular to new questions.""" super(NewQuestionForm, self).__init__( product=product, category=category, *args, **kwargs ) # Collect user agent only when making a question for the first time. # Otherwise, we could grab moderators' user agents. self.fields["useragent"] = forms.CharField( widget=forms.HiddenInput(), required=False ) class AnswerForm(forms.Form): """Form for replying to a question.""" content = forms.CharField( label=_lazy("Content:"), min_length=5, max_length=10000, widget=forms.Textarea(attrs={"placeholder": REPLY_PLACEHOLDER}), error_messages={ "required": MSG_CONTENT_REQUIRED, "min_length": MSG_CONTENT_SHORT, "max_length": MSG_CONTENT_LONG, }, ) class Meta: model = Answer fields = ("content",) class WatchQuestionForm(forms.Form): """Form to subscribe to question updates.""" EVENT_TYPE_CHOICES = ( ("reply", "when anybody replies."), ("solution", "when a solution is found."), ) email = forms.EmailField( required=False, widget=forms.TextInput(attrs={"placeholder": EMAIL_PLACEHOLDER}) ) event_type = forms.ChoiceField(choices=EVENT_TYPE_CHOICES, widget=forms.RadioSelect) def __init__(self, user, *args, **kwargs): # Initialize with logged in user's email. self.user = user super(WatchQuestionForm, self).__init__(*args, **kwargs) def clean_email(self): if not self.user.is_authenticated() and not self.cleaned_data["email"]: raise forms.ValidationError(_("Please provide an email.")) elif not self.user.is_authenticated(): return self.cleaned_data["email"] # Clear out the email for logged in users, we don't want to use it. return None class BaseZendeskForm(forms.Form): """Base Form class for all Zendesk forms.""" def __init__(self, user, *args, **kwargs): super(BaseZendeskForm, self).__init__(*args, **kwargs) self.user = user # Add email field for users not logged in. if not user.is_authenticated(): email = forms.EmailField( label=_lazy(u"Email:"), widget=forms.TextInput(attrs={"placeholder": EMAIL_PLACEHOLDER}), ) self.fields["email"] = email subject = forms.CharField( label=_lazy(u"Subject:"), min_length=4, max_length=255, widget=forms.TextInput(attrs={"placeholder": SUBJECT_PLACEHOLDER}), error_messages={ "required": SUBJECT_CONTENT_REQUIRED, "min_length": SUBJECT_CONTENT_SHORT, "max_length": SUBJECT_CONTENT_LONG, }, ) body = forms.CharField( label=_lazy(u"Body:"), min_length=5, max_length=10000, widget=forms.Textarea(attrs={"placeholder": BODY_PLACEHOLDER}), error_messages={ "required": BODY_CONTENT_REQUIRED, "min_length": BODY_CONTENT_SHORT, "max_length": BODY_CONTENT_LONG, }, ) def ticket_body(self, email): """Body of the ticket to submit to Zendesk.""" return "Email: {email}\n{body}".format( email=email, body=self.cleaned_data["body"] ) def submit_ticket(self): """Submit the ticket to Zendesk.""" if self.user.is_authenticated(): email = self.user.email else: email = self.cleaned_data["email"] submit_ticket( email, self.cleaned_data["category"], self.cleaned_data["subject"], self.ticket_body(email), [], ) class MarketplaceAaqForm(BaseZendeskForm): category = forms.ChoiceField(label=_lazy(u"Category:"), choices=CATEGORY_CHOICES) class MarketplaceRefundForm(BaseZendeskForm): transaction_id = forms.CharField( label=_lazy(u"Transaction ID:"), widget=forms.TextInput(attrs={"placeholder": TRANSACTION_ID_PLACEHOLDER}), error_messages={"required": TRANSACTION_ID_REQUIRED}, ) category = forms.ChoiceField( label=_lazy(u"Category:"), choices=REFUND_CATEGORY_CHOICES ) def ticket_body(self, email): """Body of the ticket to submit to Zendesk.""" return "Email: {email}\nTransaction ID: {id}\nCategory: {category}\n{body}".format( email=email, id=self.cleaned_data["transaction_id"], category=self.cleaned_data["category"], body=self.cleaned_data["body"], ) class MarketplaceDeveloperRequestForm(BaseZendeskForm): category = forms.ChoiceField( label=_lazy(u"Category:"), choices=DEVELOPER_REQUEST_CATEGORY_CHOICES ) def ticket_body(self, email): """Body of the ticket to submit to Zendesk.""" return "Email: {email}\nCategory: {category}\n{body}".format( email=email, category=self.cleaned_data["category"], body=self.cleaned_data["body"], ) bucket_choices = [(1, "1 day"), (7, "1 week"), (30, "1 month")] class StatsForm(forms.Form): bucket = forms.IntegerField( min_value=1, required=False, label=_lazy(u"Interval"), widget=forms.Select(choices=bucket_choices), ) start = forms.DateField(required=False, label=_lazy(u"Start")) end = forms.DateField(required=False, label=_lazy(u"End")) def clean_bucket(self): if self.cleaned_data.get("bucket") is None: return 1 return self.cleaned_data["bucket"] def clean_start(self): if self.cleaned_data.get("start") is None: return date.today() - timedelta(days=30) return self.cleaned_data["start"] def clean_end(self): if self.cleaned_data.get("end") is None: return date.today() return self.cleaned_data["end"] def clean(self): start = self.cleaned_data.get("start") end = self.cleaned_data.get("end") if start and end and start > end: raise forms.ValidationError("Start must be less than end.") return self.cleaned_data
the-stack_0_26219
# # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from __future__ import print_function __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" import SCons.compat import copy import io import os import sys import unittest from collections import UserDict as UD, UserList as UL import TestCmd import TestUnit from SCons.Environment import * import SCons.Warnings def diff_env(env1, env2): s1 = "env1 = {\n" s2 = "env2 = {\n" d = {} for k in list(env1._dict.keys()) + list(env2._dict.keys()): d[k] = None for k in sorted(d.keys()): if k in env1: if k in env2: if env1[k] != env2[k]: s1 = s1 + " " + repr(k) + " : " + repr(env1[k]) + "\n" s2 = s2 + " " + repr(k) + " : " + repr(env2[k]) + "\n" else: s1 = s1 + " " + repr(k) + " : " + repr(env1[k]) + "\n" elif k in env2: s2 = s2 + " " + repr(k) + " : " + repr(env2[k]) + "\n" s1 = s1 + "}\n" s2 = s2 + "}\n" return s1 + s2 def diff_dict(d1, d2): s1 = "d1 = {\n" s2 = "d2 = {\n" d = {} for k in list(d1.keys()) + list(d2.keys()): d[k] = None for k in sorted(d.keys()): if k in d1: if k in d2: if d1[k] != d2[k]: s1 = s1 + " " + repr(k) + " : " + repr(d1[k]) + "\n" s2 = s2 + " " + repr(k) + " : " + repr(d2[k]) + "\n" else: s1 = s1 + " " + repr(k) + " : " + repr(d1[k]) + "\n" elif k in d2: s2 = s2 + " " + repr(k) + " : " + repr(d2[k]) + "\n" s1 = s1 + "}\n" s2 = s2 + "}\n" return s1 + s2 called_it = {} built_it = {} class Builder(SCons.Builder.BuilderBase): """A dummy Builder class for testing purposes. "Building" a target is simply setting a value in the dictionary. """ def __init__(self, name = None): self.name = name def __call__(self, env, target=None, source=None, **kw): global called_it called_it['target'] = target called_it['source'] = source called_it.update(kw) def execute(self, target = None, **kw): global built_it built_it[target] = 1 scanned_it = {} class Scanner(object): """A dummy Scanner class for testing purposes. "Scanning" a target is simply setting a value in the dictionary. """ def __init__(self, name, skeys=[]): self.name = name self.skeys = skeys def __call__(self, filename): global scanned_it scanned_it[filename] = 1 def __eq__(self, other): try: return self.__dict__ == other.__dict__ except AttributeError: return False def get_skeys(self, env): return self.skeys def __str__(self): return self.name class CLVar(UL): def __init__(self, seq): if isinstance(seq, str): seq = seq.split() UL.__init__(self, seq) def __add__(self, other): return UL.__add__(self, CLVar(other)) def __radd__(self, other): return UL.__radd__(self, CLVar(other)) class DummyNode(object): def __init__(self, name): self.name = name def __str__(self): return self.name def rfile(self): return self def get_subst_proxy(self): return self def test_tool( env ): env['_F77INCFLAGS'] = '$( ${_concat(INCPREFIX, F77PATH, INCSUFFIX, __env__, RDirs, TARGET, SOURCE)} $)' class TestEnvironmentFixture(object): def TestEnvironment(self, *args, **kw): if not kw or 'tools' not in kw: kw['tools'] = [test_tool] default_keys = { 'CC' : 'cc', 'CCFLAGS' : '-DNDEBUG', 'ENV' : { 'TMP' : '/tmp' } } for key, value in default_keys.items(): if key not in kw: kw[key] = value if 'BUILDERS' not in kw: static_obj = SCons.Builder.Builder(action = {}, emitter = {}, suffix = '.o', single_source = 1) kw['BUILDERS'] = {'Object' : static_obj} static_obj.add_action('.cpp', 'fake action') env = Environment(*args, **kw) return env class SubstitutionTestCase(unittest.TestCase): def test___init__(self): """Test initializing a SubstitutionEnvironment """ env = SubstitutionEnvironment() assert '__env__' not in env def test___cmp__(self): """Test comparing SubstitutionEnvironments """ env1 = SubstitutionEnvironment(XXX = 'x') env2 = SubstitutionEnvironment(XXX = 'x') env3 = SubstitutionEnvironment(XXX = 'xxx') env4 = SubstitutionEnvironment(XXX = 'x', YYY = 'x') assert env1 == env2 assert env1 != env3 assert env1 != env4 def test___delitem__(self): """Test deleting a variable from a SubstitutionEnvironment """ env1 = SubstitutionEnvironment(XXX = 'x', YYY = 'y') env2 = SubstitutionEnvironment(XXX = 'x') del env1['YYY'] assert env1 == env2 def test___getitem__(self): """Test fetching a variable from a SubstitutionEnvironment """ env = SubstitutionEnvironment(XXX = 'x') assert env['XXX'] == 'x', env['XXX'] def test___setitem__(self): """Test setting a variable in a SubstitutionEnvironment """ env1 = SubstitutionEnvironment(XXX = 'x') env2 = SubstitutionEnvironment(XXX = 'x', YYY = 'y') env1['YYY'] = 'y' assert env1 == env2 def test_get(self): """Test the SubstitutionEnvironment get() method """ env = SubstitutionEnvironment(XXX = 'x') assert env.get('XXX') == 'x', env.get('XXX') assert env.get('YYY') is None, env.get('YYY') def test_has_key(self): """Test the SubstitutionEnvironment has_key() method """ env = SubstitutionEnvironment(XXX = 'x') assert 'XXX' in env assert 'YYY' not in env def test_contains(self): """Test the SubstitutionEnvironment __contains__() method """ env = SubstitutionEnvironment(XXX = 'x') assert 'XXX' in env assert not 'YYY' in env def test_items(self): """Test the SubstitutionEnvironment items() method """ env = SubstitutionEnvironment(XXX = 'x', YYY = 'y') items = list(env.items()) assert len(items) == 2 and ('XXX','x') in items and ('YYY','y') in items, items # Was. This fails under py3 as order changes # assert items == [('XXX','x'), ('YYY','y')], items def test_arg2nodes(self): """Test the arg2nodes method """ env = SubstitutionEnvironment() dict = {} class X(SCons.Node.Node): pass def Factory(name, directory = None, create = 1, dict=dict, X=X): if name not in dict: dict[name] = X() dict[name].name = name return dict[name] nodes = env.arg2nodes("Util.py UtilTests.py", Factory) assert len(nodes) == 1, nodes assert isinstance(nodes[0], X) assert nodes[0].name == "Util.py UtilTests.py", nodes[0].name nodes = env.arg2nodes(u"Util.py UtilTests.py", Factory) assert len(nodes) == 1, nodes assert isinstance(nodes[0], X) assert nodes[0].name == u"Util.py UtilTests.py", nodes[0].name nodes = env.arg2nodes(["Util.py", "UtilTests.py"], Factory) assert len(nodes) == 2, nodes assert isinstance(nodes[0], X) assert isinstance(nodes[1], X) assert nodes[0].name == "Util.py", nodes[0].name assert nodes[1].name == "UtilTests.py", nodes[1].name n1 = Factory("Util.py") nodes = env.arg2nodes([n1, "UtilTests.py"], Factory) assert len(nodes) == 2, nodes assert isinstance(nodes[0], X) assert isinstance(nodes[1], X) assert nodes[0].name == "Util.py", nodes[0].name assert nodes[1].name == "UtilTests.py", nodes[1].name class SConsNode(SCons.Node.Node): pass nodes = env.arg2nodes(SConsNode()) assert len(nodes) == 1, nodes assert isinstance(nodes[0], SConsNode), nodes[0] class OtherNode(object): pass nodes = env.arg2nodes(OtherNode()) assert len(nodes) == 1, nodes assert isinstance(nodes[0], OtherNode), nodes[0] def lookup_a(str, F=Factory): if str[0] == 'a': n = F(str) n.a = 1 return n else: return None def lookup_b(str, F=Factory): if str[0] == 'b': n = F(str) n.b = 1 return n else: return None env_ll = SubstitutionEnvironment() env_ll.lookup_list = [lookup_a, lookup_b] nodes = env_ll.arg2nodes(['aaa', 'bbb', 'ccc'], Factory) assert len(nodes) == 3, nodes assert nodes[0].name == 'aaa', nodes[0] assert nodes[0].a == 1, nodes[0] assert not hasattr(nodes[0], 'b'), nodes[0] assert nodes[1].name == 'bbb' assert not hasattr(nodes[1], 'a'), nodes[1] assert nodes[1].b == 1, nodes[1] assert nodes[2].name == 'ccc' assert not hasattr(nodes[2], 'a'), nodes[1] assert not hasattr(nodes[2], 'b'), nodes[1] def lookup_bbbb(str, F=Factory): if str == 'bbbb': n = F(str) n.bbbb = 1 return n else: return None def lookup_c(str, F=Factory): if str[0] == 'c': n = F(str) n.c = 1 return n else: return None nodes = env.arg2nodes(['bbbb', 'ccc'], Factory, [lookup_c, lookup_bbbb, lookup_b]) assert len(nodes) == 2, nodes assert nodes[0].name == 'bbbb' assert not hasattr(nodes[0], 'a'), nodes[1] assert not hasattr(nodes[0], 'b'), nodes[1] assert nodes[0].bbbb == 1, nodes[1] assert not hasattr(nodes[0], 'c'), nodes[0] assert nodes[1].name == 'ccc' assert not hasattr(nodes[1], 'a'), nodes[1] assert not hasattr(nodes[1], 'b'), nodes[1] assert not hasattr(nodes[1], 'bbbb'), nodes[0] assert nodes[1].c == 1, nodes[1] def test_arg2nodes_target_source(self): """Test the arg2nodes method with target= and source= keywords """ targets = [DummyNode('t1'), DummyNode('t2')] sources = [DummyNode('s1'), DummyNode('s2')] env = SubstitutionEnvironment() nodes = env.arg2nodes(['${TARGET}-a', '${SOURCE}-b', '${TARGETS[1]}-c', '${SOURCES[1]}-d'], DummyNode, target=targets, source=sources) names = [n.name for n in nodes] assert names == ['t1-a', 's1-b', 't2-c', 's2-d'], names def test_gvars(self): """Test the base class gvars() method""" env = SubstitutionEnvironment() gvars = env.gvars() assert gvars == {}, gvars def test_lvars(self): """Test the base class lvars() method""" env = SubstitutionEnvironment() lvars = env.lvars() assert lvars == {}, lvars def test_subst(self): """Test substituting construction variables within strings Check various combinations, including recursive expansion of variables into other variables. """ env = SubstitutionEnvironment(AAA = 'a', BBB = 'b') mystr = env.subst("$AAA ${AAA}A $BBBB $BBB") assert mystr == "a aA b", mystr # Changed the tests below to reflect a bug fix in # subst() env = SubstitutionEnvironment(AAA = '$BBB', BBB = 'b', BBBA = 'foo') mystr = env.subst("$AAA ${AAA}A ${AAA}B $BBB") assert mystr == "b bA bB b", mystr env = SubstitutionEnvironment(AAA = '$BBB', BBB = '$CCC', CCC = 'c') mystr = env.subst("$AAA ${AAA}A ${AAA}B $BBB") assert mystr == "c cA cB c", mystr # Lists: env = SubstitutionEnvironment(AAA = ['a', 'aa', 'aaa']) mystr = env.subst("$AAA") assert mystr == "a aa aaa", mystr # Tuples: env = SubstitutionEnvironment(AAA = ('a', 'aa', 'aaa')) mystr = env.subst("$AAA") assert mystr == "a aa aaa", mystr t1 = DummyNode('t1') t2 = DummyNode('t2') s1 = DummyNode('s1') s2 = DummyNode('s2') env = SubstitutionEnvironment(AAA = 'aaa') s = env.subst('$AAA $TARGET $SOURCES', target=[t1, t2], source=[s1, s2]) assert s == "aaa t1 s1 s2", s s = env.subst('$AAA $TARGETS $SOURCE', target=[t1, t2], source=[s1, s2]) assert s == "aaa t1 t2 s1", s # Test callables in the SubstitutionEnvironment def foo(target, source, env, for_signature): assert str(target) == 't', target assert str(source) == 's', source return env["FOO"] env = SubstitutionEnvironment(BAR=foo, FOO='baz') t = DummyNode('t') s = DummyNode('s') subst = env.subst('test $BAR', target=t, source=s) assert subst == 'test baz', subst # Test not calling callables in the SubstitutionEnvironment if 0: # This will take some serious surgery to subst() and # subst_list(), so just leave these tests out until we can # do that. def bar(arg): pass env = SubstitutionEnvironment(BAR=bar, FOO='$BAR') subst = env.subst('$BAR', call=None) assert subst is bar, subst subst = env.subst('$FOO', call=None) assert subst is bar, subst def test_subst_kw(self): """Test substituting construction variables within dictionaries""" env = SubstitutionEnvironment(AAA = 'a', BBB = 'b') kw = env.subst_kw({'$AAA' : 'aaa', 'bbb' : '$BBB'}) assert len(kw) == 2, kw assert kw['a'] == 'aaa', kw['a'] assert kw['bbb'] == 'b', kw['bbb'] def test_subst_list(self): """Test substituting construction variables in command lists """ env = SubstitutionEnvironment(AAA = 'a', BBB = 'b') l = env.subst_list("$AAA ${AAA}A $BBBB $BBB") assert l == [["a", "aA", "b"]], l # Changed the tests below to reflect a bug fix in # subst() env = SubstitutionEnvironment(AAA = '$BBB', BBB = 'b', BBBA = 'foo') l = env.subst_list("$AAA ${AAA}A ${AAA}B $BBB") assert l == [["b", "bA", "bB", "b"]], l env = SubstitutionEnvironment(AAA = '$BBB', BBB = '$CCC', CCC = 'c') l = env.subst_list("$AAA ${AAA}A ${AAA}B $BBB") assert l == [["c", "cA", "cB", "c"]], l env = SubstitutionEnvironment(AAA = '$BBB', BBB = '$CCC', CCC = [ 'a', 'b\nc' ]) lst = env.subst_list([ "$AAA", "B $CCC" ]) assert lst == [[ "a", "b"], ["c", "B a", "b"], ["c"]], lst t1 = DummyNode('t1') t2 = DummyNode('t2') s1 = DummyNode('s1') s2 = DummyNode('s2') env = SubstitutionEnvironment(AAA = 'aaa') s = env.subst_list('$AAA $TARGET $SOURCES', target=[t1, t2], source=[s1, s2]) assert s == [["aaa", "t1", "s1", "s2"]], s s = env.subst_list('$AAA $TARGETS $SOURCE', target=[t1, t2], source=[s1, s2]) assert s == [["aaa", "t1", "t2", "s1"]], s # Test callables in the SubstitutionEnvironment def foo(target, source, env, for_signature): assert str(target) == 't', target assert str(source) == 's', source return env["FOO"] env = SubstitutionEnvironment(BAR=foo, FOO='baz') t = DummyNode('t') s = DummyNode('s') lst = env.subst_list('test $BAR', target=t, source=s) assert lst == [['test', 'baz']], lst # Test not calling callables in the SubstitutionEnvironment if 0: # This will take some serious surgery to subst() and # subst_list(), so just leave these tests out until we can # do that. def bar(arg): pass env = SubstitutionEnvironment(BAR=bar, FOO='$BAR') subst = env.subst_list('$BAR', call=None) assert subst is bar, subst subst = env.subst_list('$FOO', call=None) assert subst is bar, subst def test_subst_path(self): """Test substituting a path list """ class MyProxy(object): def __init__(self, val): self.val = val def get(self): return self.val + '-proxy' class MyNode(object): def __init__(self, val): self.val = val def get_subst_proxy(self): return self def __str__(self): return self.val class MyObj(object): def get(self): return self env = SubstitutionEnvironment(FOO='foo', BAR='bar', LIST=['one', 'two'], PROXY=MyProxy('my1')) r = env.subst_path('$FOO') assert r == ['foo'], r r = env.subst_path(['$FOO', 'xxx', '$BAR']) assert r == ['foo', 'xxx', 'bar'], r r = env.subst_path(['$FOO', '$LIST', '$BAR']) assert list(map(str, r)) == ['foo', 'one two', 'bar'], r r = env.subst_path(['$FOO', '$TARGET', '$SOURCE', '$BAR']) assert r == ['foo', '', '', 'bar'], r r = env.subst_path(['$FOO', '$TARGET', '$BAR'], target=MyNode('ttt')) assert list(map(str, r)) == ['foo', 'ttt', 'bar'], r r = env.subst_path(['$FOO', '$SOURCE', '$BAR'], source=MyNode('sss')) assert list(map(str, r)) == ['foo', 'sss', 'bar'], r n = MyObj() r = env.subst_path(['$PROXY', MyProxy('my2'), n]) assert r == ['my1-proxy', 'my2-proxy', n], r class StringableObj(object): def __init__(self, s): self.s = s def __str__(self): return self.s env = SubstitutionEnvironment(FOO=StringableObj("foo"), BAR=StringableObj("bar")) r = env.subst_path([ "${FOO}/bar", "${BAR}/baz" ]) assert r == [ "foo/bar", "bar/baz" ], r r = env.subst_path([ "bar/${FOO}", "baz/${BAR}" ]) assert r == [ "bar/foo", "baz/bar" ], r r = env.subst_path([ "bar/${FOO}/bar", "baz/${BAR}/baz" ]) assert r == [ "bar/foo/bar", "baz/bar/baz" ], r def test_subst_target_source(self): """Test the base environment subst_target_source() method""" env = SubstitutionEnvironment(AAA = 'a', BBB = 'b') mystr = env.subst_target_source("$AAA ${AAA}A $BBBB $BBB") assert mystr == "a aA b", mystr def test_backtick(self): """Test the backtick() method for capturing command output""" env = SubstitutionEnvironment() test = TestCmd.TestCmd(workdir = '') test.write('stdout.py', """\ import sys sys.stdout.write('this came from stdout.py\\n') sys.exit(0) """) test.write('stderr.py', """\ import sys sys.stderr.write('this came from stderr.py\\n') sys.exit(0) """) test.write('fail.py', """\ import sys sys.exit(1) """) test.write('echo.py', """\ import os, sys sys.stdout.write(os.environ['ECHO'] + '\\n') sys.exit(0) """) save_stderr = sys.stderr python = '"' + sys.executable + '"' try: sys.stderr = io.StringIO() cmd = '%s %s' % (python, test.workpath('stdout.py')) output = env.backtick(cmd) errout = sys.stderr.getvalue() assert output == 'this came from stdout.py\n', output assert errout == '', errout sys.stderr = io.StringIO() cmd = '%s %s' % (python, test.workpath('stderr.py')) output = env.backtick(cmd) errout = sys.stderr.getvalue() assert output == '', output assert errout == 'this came from stderr.py\n', errout sys.stderr = io.StringIO() cmd = '%s %s' % (python, test.workpath('fail.py')) try: env.backtick(cmd) except OSError as e: assert str(e) == "'%s' exited 1" % cmd, str(e) else: self.fail("did not catch expected OSError") sys.stderr = io.StringIO() cmd = '%s %s' % (python, test.workpath('echo.py')) env['ENV'] = os.environ.copy() env['ENV']['ECHO'] = 'this came from ECHO' output = env.backtick(cmd) errout = sys.stderr.getvalue() assert output == 'this came from ECHO\n', output assert errout == '', errout finally: sys.stderr = save_stderr def test_AddMethod(self): """Test the AddMethod() method""" env = SubstitutionEnvironment(FOO = 'foo') def func(self): return 'func-' + self['FOO'] assert not hasattr(env, 'func') env.AddMethod(func) r = env.func() assert r == 'func-foo', r assert not hasattr(env, 'bar') env.AddMethod(func, 'bar') r = env.bar() assert r == 'func-foo', r def func2(self, arg=''): return 'func2-' + self['FOO'] + arg env.AddMethod(func2) r = env.func2() assert r == 'func2-foo', r r = env.func2('-xxx') assert r == 'func2-foo-xxx', r env.AddMethod(func2, 'func') r = env.func() assert r == 'func2-foo', r r = env.func('-yyy') assert r == 'func2-foo-yyy', r # Test that clones of clones correctly re-bind added methods. env1 = Environment(FOO = '1') env1.AddMethod(func2) env2 = env1.Clone(FOO = '2') env3 = env2.Clone(FOO = '3') env4 = env3.Clone(FOO = '4') r = env1.func2() assert r == 'func2-1', r r = env2.func2() assert r == 'func2-2', r r = env3.func2() assert r == 'func2-3', r r = env4.func2() assert r == 'func2-4', r # Test that clones don't re-bind an attribute that the user env1 = Environment(FOO = '1') env1.AddMethod(func2) def replace_func2(): return 'replace_func2' env1.func2 = replace_func2 env2 = env1.Clone(FOO = '2') r = env2.func2() assert r == 'replace_func2', r def test_Override(self): "Test overriding construction variables" env = SubstitutionEnvironment(ONE=1, TWO=2, THREE=3, FOUR=4) assert env['ONE'] == 1, env['ONE'] assert env['TWO'] == 2, env['TWO'] assert env['THREE'] == 3, env['THREE'] assert env['FOUR'] == 4, env['FOUR'] env2 = env.Override({'TWO' : '10', 'THREE' :'x $THREE y', 'FOUR' : ['x', '$FOUR', 'y']}) assert env2['ONE'] == 1, env2['ONE'] assert env2['TWO'] == '10', env2['TWO'] assert env2['THREE'] == 'x 3 y', env2['THREE'] assert env2['FOUR'] == ['x', 4, 'y'], env2['FOUR'] assert env['ONE'] == 1, env['ONE'] assert env['TWO'] == 2, env['TWO'] assert env['THREE'] == 3, env['THREE'] assert env['FOUR'] == 4, env['FOUR'] env2.Replace(ONE = "won") assert env2['ONE'] == "won", env2['ONE'] assert env['ONE'] == 1, env['ONE'] def test_ParseFlags(self): """Test the ParseFlags() method """ env = SubstitutionEnvironment() empty = { 'ASFLAGS' : [], 'CFLAGS' : [], 'CCFLAGS' : [], 'CXXFLAGS' : [], 'CPPDEFINES' : [], 'CPPFLAGS' : [], 'CPPPATH' : [], 'FRAMEWORKPATH' : [], 'FRAMEWORKS' : [], 'LIBPATH' : [], 'LIBS' : [], 'LINKFLAGS' : [], 'RPATH' : [], } d = env.ParseFlags(None) assert d == empty, d d = env.ParseFlags('') assert d == empty, d d = env.ParseFlags([]) assert d == empty, d s = "-I/usr/include/fum -I bar -X\n" + \ '-I"C:\\Program Files\\ASCEND\\include" ' + \ "-L/usr/fax -L foo -lxxx -l yyy " + \ '-L"C:\\Program Files\\ASCEND" -lascend ' + \ "-Wa,-as -Wl,-link " + \ "-Wl,-rpath=rpath1 " + \ "-Wl,-R,rpath2 " + \ "-Wl,-Rrpath3 " + \ "-Wp,-cpp " + \ "-std=c99 " + \ "-std=c++0x " + \ "-framework Carbon " + \ "-frameworkdir=fwd1 " + \ "-Ffwd2 " + \ "-F fwd3 " + \ "-dylib_file foo-dylib " + \ "-pthread " + \ "-fopenmp " + \ "-mno-cygwin -mwindows " + \ "-arch i386 -isysroot /tmp " + \ "-iquote /usr/include/foo1 " + \ "-isystem /usr/include/foo2 " + \ "-idirafter /usr/include/foo3 " + \ "+DD64 " + \ "-DFOO -DBAR=value -D BAZ " d = env.ParseFlags(s) assert d['ASFLAGS'] == ['-as'], d['ASFLAGS'] assert d['CFLAGS'] == ['-std=c99'] assert d['CCFLAGS'] == ['-X', '-Wa,-as', '-pthread', '-fopenmp', '-mno-cygwin', ('-arch', 'i386'), ('-isysroot', '/tmp'), ('-iquote', '/usr/include/foo1'), ('-isystem', '/usr/include/foo2'), ('-idirafter', '/usr/include/foo3'), '+DD64'], repr(d['CCFLAGS']) assert d['CXXFLAGS'] == ['-std=c++0x'], repr(d['CXXFLAGS']) assert d['CPPDEFINES'] == ['FOO', ['BAR', 'value'], 'BAZ'], d['CPPDEFINES'] assert d['CPPFLAGS'] == ['-Wp,-cpp'], d['CPPFLAGS'] assert d['CPPPATH'] == ['/usr/include/fum', 'bar', 'C:\\Program Files\\ASCEND\\include'], d['CPPPATH'] assert d['FRAMEWORKPATH'] == ['fwd1', 'fwd2', 'fwd3'], d['FRAMEWORKPATH'] assert d['FRAMEWORKS'] == ['Carbon'], d['FRAMEWORKS'] assert d['LIBPATH'] == ['/usr/fax', 'foo', 'C:\\Program Files\\ASCEND'], d['LIBPATH'] LIBS = list(map(str, d['LIBS'])) assert LIBS == ['xxx', 'yyy', 'ascend'], (d['LIBS'], LIBS) assert d['LINKFLAGS'] == ['-Wl,-link', '-dylib_file', 'foo-dylib', '-pthread', '-fopenmp', '-mno-cygwin', '-mwindows', ('-arch', 'i386'), ('-isysroot', '/tmp'), '+DD64'], repr(d['LINKFLAGS']) assert d['RPATH'] == ['rpath1', 'rpath2', 'rpath3'], d['RPATH'] def test_MergeFlags(self): """Test the MergeFlags() method """ env = SubstitutionEnvironment() env.MergeFlags('') assert 'CCFLAGS' not in env, env['CCFLAGS'] env.MergeFlags('-X') assert env['CCFLAGS'] == ['-X'], env['CCFLAGS'] env.MergeFlags('-X') assert env['CCFLAGS'] == ['-X'], env['CCFLAGS'] env = SubstitutionEnvironment(CCFLAGS=None) env.MergeFlags('-Y') assert env['CCFLAGS'] == ['-Y'], env['CCFLAGS'] env = SubstitutionEnvironment() env.MergeFlags({'A':['aaa'], 'B':['bbb']}) assert env['A'] == ['aaa'], env['A'] assert env['B'] == ['bbb'], env['B'] class BaseTestCase(unittest.TestCase,TestEnvironmentFixture): reserved_variables = [ 'CHANGED_SOURCES', 'CHANGED_TARGETS', 'SOURCE', 'SOURCES', 'TARGET', 'TARGETS', 'UNCHANGED_SOURCES', 'UNCHANGED_TARGETS', ] def test___init__(self): """Test construction Environment creation Create two with identical arguments and check that they compare the same. """ env1 = self.TestEnvironment(XXX = 'x', YYY = 'y') env2 = self.TestEnvironment(XXX = 'x', YYY = 'y') assert env1 == env2, diff_env(env1, env2) assert '__env__' not in env1 assert '__env__' not in env2 def test_variables(self): """Test that variables only get applied once.""" class FakeOptions(object): def __init__(self, key, val): self.calls = 0 self.key = key self.val = val def keys(self): return [self.key] def Update(self, env): env[self.key] = self.val self.calls = self.calls + 1 o = FakeOptions('AAA', 'fake_opt') env = Environment(variables=o, AAA='keyword_arg') assert o.calls == 1, o.calls assert env['AAA'] == 'fake_opt', env['AAA'] def test_get(self): """Test the get() method.""" env = self.TestEnvironment(aaa = 'AAA') x = env.get('aaa') assert x == 'AAA', x x = env.get('aaa', 'XXX') assert x == 'AAA', x x = env.get('bbb') assert x is None, x x = env.get('bbb', 'XXX') assert x == 'XXX', x def test_Builder_calls(self): """Test Builder calls through different environments """ global called_it b1 = Builder() b2 = Builder() env = Environment() env.Replace(BUILDERS = { 'builder1' : b1, 'builder2' : b2 }) called_it = {} env.builder1('in1') assert called_it['target'] is None, called_it assert called_it['source'] == ['in1'], called_it called_it = {} env.builder2(source = 'in2', xyzzy = 1) assert called_it['target'] is None, called_it assert called_it['source'] == ['in2'], called_it assert called_it['xyzzy'] == 1, called_it called_it = {} env.builder1(foo = 'bar') assert called_it['foo'] == 'bar', called_it assert called_it['target'] is None, called_it assert called_it['source'] is None, called_it def test_BuilderWrapper_attributes(self): """Test getting and setting of BuilderWrapper attributes """ b1 = Builder() b2 = Builder() e1 = Environment() e2 = Environment() e1.Replace(BUILDERS = {'b' : b1}) bw = e1.b assert bw.env is e1 bw.env = e2 assert bw.env is e2 assert bw.builder is b1 bw.builder = b2 assert bw.builder is b2 self.assertRaises(AttributeError, getattr, bw, 'foobar') bw.foobar = 42 assert bw.foobar == 42 # This unit test is currently disabled because we don't think the # underlying method it tests (Environment.BuilderWrapper.execute()) # is necessary, but we're leaving the code here for now in case # that's mistaken. def _DO_NOT_test_Builder_execs(self): """Test Builder execution through different environments One environment is initialized with a single Builder object, one with a list of a single Builder object, and one with a list of two Builder objects. """ global built_it b1 = Builder() b2 = Builder() built_it = {} env3 = Environment() env3.Replace(BUILDERS = { 'builder1' : b1, 'builder2' : b2 }) env3.builder1.execute(target = 'out1') env3.builder2.execute(target = 'out2') env3.builder1.execute(target = 'out3') assert built_it['out1'] assert built_it['out2'] assert built_it['out3'] env4 = env3.Clone() assert env4.builder1.env is env4, "builder1.env (%s) == env3 (%s)?" % ( env4.builder1.env, env3) assert env4.builder2.env is env4, "builder2.env (%s) == env3 (%s)?" % ( env4.builder1.env, env3) # Now test BUILDERS as a dictionary. built_it = {} env5 = self.TestEnvironment(BUILDERS={ 'foo' : b1 }) env5['BUILDERS']['bar'] = b2 env5.foo.execute(target='out1') env5.bar.execute(target='out2') assert built_it['out1'] assert built_it['out2'] built_it = {} env6 = Environment() env6['BUILDERS'] = { 'foo' : b1, 'bar' : b2 } env6.foo.execute(target='out1') env6.bar.execute(target='out2') assert built_it['out1'] assert built_it['out2'] def test_Scanners(self): """Test setting SCANNERS in various ways One environment is initialized with a single Scanner object, one with a list of a single Scanner object, and one with a list of two Scanner objects. """ global scanned_it s1 = Scanner(name = 'scanner1', skeys = [".c", ".cc"]) s2 = Scanner(name = 'scanner2', skeys = [".m4"]) s3 = Scanner(name = 'scanner3', skeys = [".m4", ".m5"]) s4 = Scanner(name = 'scanner4', skeys = [None]) # XXX Tests for scanner execution through different environments, # XXX if we ever want to do that some day # scanned_it = {} # env1 = self.TestEnvironment(SCANNERS = s1) # env1.scanner1(filename = 'out1') # assert scanned_it['out1'] # # scanned_it = {} # env2 = self.TestEnvironment(SCANNERS = [s1]) # env1.scanner1(filename = 'out1') # assert scanned_it['out1'] # # scanned_it = {} # env3 = Environment() # env3.Replace(SCANNERS = [s1]) # env3.scanner1(filename = 'out1') # env3.scanner2(filename = 'out2') # env3.scanner1(filename = 'out3') # assert scanned_it['out1'] # assert scanned_it['out2'] # assert scanned_it['out3'] suffixes = [".c", ".cc", ".cxx", ".m4", ".m5"] env = Environment() try: del env['SCANNERS'] except KeyError: pass s = list(map(env.get_scanner, suffixes)) assert s == [None, None, None, None, None], s env = self.TestEnvironment(SCANNERS = []) s = list(map(env.get_scanner, suffixes)) assert s == [None, None, None, None, None], s env.Replace(SCANNERS = [s1]) s = list(map(env.get_scanner, suffixes)) assert s == [s1, s1, None, None, None], s env.Append(SCANNERS = [s2]) s = list(map(env.get_scanner, suffixes)) assert s == [s1, s1, None, s2, None], s env.AppendUnique(SCANNERS = [s3]) s = list(map(env.get_scanner, suffixes)) assert s == [s1, s1, None, s2, s3], s env = env.Clone(SCANNERS = [s2]) s = list(map(env.get_scanner, suffixes)) assert s == [None, None, None, s2, None], s env['SCANNERS'] = [s1] s = list(map(env.get_scanner, suffixes)) assert s == [s1, s1, None, None, None], s env.PrependUnique(SCANNERS = [s2, s1]) s = list(map(env.get_scanner, suffixes)) assert s == [s1, s1, None, s2, None], s env.Prepend(SCANNERS = [s3]) s = list(map(env.get_scanner, suffixes)) assert s == [s1, s1, None, s3, s3], s # Verify behavior of case-insensitive suffix matches on Windows. uc_suffixes = [_.upper() for _ in suffixes] env = Environment(SCANNERS = [s1, s2, s3], PLATFORM = 'linux') s = list(map(env.get_scanner, suffixes)) assert s == [s1, s1, None, s2, s3], s s = list(map(env.get_scanner, uc_suffixes)) assert s == [None, None, None, None, None], s env['PLATFORM'] = 'win32' s = list(map(env.get_scanner, uc_suffixes)) assert s == [s1, s1, None, s2, s3], s # Verify behavior for a scanner returning None (on Windows # where we might try to perform case manipulation on None). env.Replace(SCANNERS = [s4]) s = list(map(env.get_scanner, suffixes)) assert s == [None, None, None, None, None], s def test_ENV(self): """Test setting the external ENV in Environments """ env = Environment() assert 'ENV' in env.Dictionary() env = self.TestEnvironment(ENV = { 'PATH' : '/foo:/bar' }) assert env.Dictionary('ENV')['PATH'] == '/foo:/bar' def test_ReservedVariables(self): """Test warning generation when reserved variable names are set""" reserved_variables = [ 'CHANGED_SOURCES', 'CHANGED_TARGETS', 'SOURCE', 'SOURCES', 'TARGET', 'TARGETS', 'UNCHANGED_SOURCES', 'UNCHANGED_TARGETS', ] warning = SCons.Warnings.ReservedVariableWarning SCons.Warnings.enableWarningClass(warning) old = SCons.Warnings.warningAsException(1) try: env4 = Environment() for kw in self.reserved_variables: exc_caught = None try: env4[kw] = 'xyzzy' except warning: exc_caught = 1 assert exc_caught, "Did not catch ReservedVariableWarning for `%s'" % kw assert kw not in env4, "`%s' variable was incorrectly set" % kw finally: SCons.Warnings.warningAsException(old) def test_FutureReservedVariables(self): """Test warning generation when future reserved variable names are set""" future_reserved_variables = [] warning = SCons.Warnings.FutureReservedVariableWarning SCons.Warnings.enableWarningClass(warning) old = SCons.Warnings.warningAsException(1) try: env4 = Environment() for kw in future_reserved_variables: exc_caught = None try: env4[kw] = 'xyzzy' except warning: exc_caught = 1 assert exc_caught, "Did not catch FutureReservedVariableWarning for `%s'" % kw assert kw in env4, "`%s' variable was not set" % kw finally: SCons.Warnings.warningAsException(old) def test_IllegalVariables(self): """Test that use of illegal variables raises an exception""" env = Environment() def test_it(var, env=env): exc_caught = None try: env[var] = 1 except SCons.Errors.UserError: exc_caught = 1 assert exc_caught, "did not catch UserError for '%s'" % var env['aaa'] = 1 assert env['aaa'] == 1, env['aaa'] test_it('foo/bar') test_it('foo.bar') test_it('foo-bar') def test_autogenerate(self): """Test autogenerating variables in a dictionary.""" drive, p = os.path.splitdrive(os.getcwd()) def normalize_path(path, drive=drive): if path[0] in '\\/': path = drive + path path = os.path.normpath(path) drive, path = os.path.splitdrive(path) return drive.lower() + path env = self.TestEnvironment(LIBS = [ 'foo', 'bar', 'baz' ], LIBLINKPREFIX = 'foo', LIBLINKSUFFIX = 'bar') def RDirs(pathlist, fs=env.fs): return fs.Dir('xx').Rfindalldirs(pathlist) env['RDirs'] = RDirs flags = env.subst_list('$_LIBFLAGS', 1)[0] assert flags == ['foobar', 'foobar', 'foobazbar'], flags blat = env.fs.Dir('blat') env.Replace(CPPPATH = [ 'foo', '$FOO/bar', blat ], INCPREFIX = 'foo ', INCSUFFIX = 'bar', FOO = 'baz') flags = env.subst_list('$_CPPINCFLAGS', 1)[0] expect = [ '$(', normalize_path('foo'), normalize_path('xx/foobar'), normalize_path('foo'), normalize_path('xx/baz/bar'), normalize_path('foo'), normalize_path('blatbar'), '$)', ] assert flags == expect, flags env.Replace(F77PATH = [ 'foo', '$FOO/bar', blat ], INCPREFIX = 'foo ', INCSUFFIX = 'bar', FOO = 'baz') flags = env.subst_list('$_F77INCFLAGS', 1)[0] expect = [ '$(', normalize_path('foo'), normalize_path('xx/foobar'), normalize_path('foo'), normalize_path('xx/baz/bar'), normalize_path('foo'), normalize_path('blatbar'), '$)', ] assert flags == expect, flags env.Replace(CPPPATH = '', F77PATH = '', LIBPATH = '') l = env.subst_list('$_CPPINCFLAGS') assert l == [[]], l l = env.subst_list('$_F77INCFLAGS') assert l == [[]], l l = env.subst_list('$_LIBDIRFLAGS') assert l == [[]], l env.fs.Repository('/rep1') env.fs.Repository('/rep2') env.Replace(CPPPATH = [ 'foo', '/__a__/b', '$FOO/bar', blat], INCPREFIX = '-I ', INCSUFFIX = 'XXX', FOO = 'baz') flags = env.subst_list('$_CPPINCFLAGS', 1)[0] expect = [ '$(', '-I', normalize_path('xx/fooXXX'), '-I', normalize_path('/rep1/xx/fooXXX'), '-I', normalize_path('/rep2/xx/fooXXX'), '-I', normalize_path('/__a__/bXXX'), '-I', normalize_path('xx/baz/barXXX'), '-I', normalize_path('/rep1/xx/baz/barXXX'), '-I', normalize_path('/rep2/xx/baz/barXXX'), '-I', normalize_path('blatXXX'), '$)' ] def normalize_if_path(arg, np=normalize_path): if arg not in ('$(','$)','-I'): return np(str(arg)) return arg flags = list(map(normalize_if_path, flags)) assert flags == expect, flags def test_platform(self): """Test specifying a platform callable when instantiating.""" class platform(object): def __str__(self): return "TestPlatform" def __call__(self, env): env['XYZZY'] = 777 def tool(env): env['SET_TOOL'] = 'initialized' assert env['PLATFORM'] == "TestPlatform" env = self.TestEnvironment(platform = platform(), tools = [tool]) assert env['XYZZY'] == 777, env assert env['PLATFORM'] == "TestPlatform" assert env['SET_TOOL'] == "initialized" def test_Default_PLATFORM(self): """Test overriding the default PLATFORM variable""" class platform(object): def __str__(self): return "DefaultTestPlatform" def __call__(self, env): env['XYZZY'] = 888 def tool(env): env['SET_TOOL'] = 'abcde' assert env['PLATFORM'] == "DefaultTestPlatform" import SCons.Defaults save = SCons.Defaults.ConstructionEnvironment.copy() try: import SCons.Defaults SCons.Defaults.ConstructionEnvironment.update({ 'PLATFORM' : platform(), }) env = self.TestEnvironment(tools = [tool]) assert env['XYZZY'] == 888, env assert env['PLATFORM'] == "DefaultTestPlatform" assert env['SET_TOOL'] == "abcde" finally: SCons.Defaults.ConstructionEnvironment = save def test_tools(self): """Test specifying a tool callable when instantiating.""" def t1(env): env['TOOL1'] = 111 def t2(env): env['TOOL2'] = 222 def t3(env): env['AAA'] = env['XYZ'] def t4(env): env['TOOL4'] = 444 env = self.TestEnvironment(tools = [t1, t2, t3], XYZ = 'aaa') assert env['TOOL1'] == 111, env['TOOL1'] assert env['TOOL2'] == 222, env assert env['AAA'] == 'aaa', env t4(env) assert env['TOOL4'] == 444, env test = TestCmd.TestCmd(workdir = '') test.write('faketool.py', """\ def generate(env, **kw): for k, v in kw.items(): env[k] = v def exists(env): return 1 """) env = self.TestEnvironment(tools = [('faketool', {'a':1, 'b':2, 'c':3})], toolpath = [test.workpath('')]) assert env['a'] == 1, env['a'] assert env['b'] == 2, env['b'] assert env['c'] == 3, env['c'] def test_Default_TOOLS(self): """Test overriding the default TOOLS variable""" def t5(env): env['TOOL5'] = 555 def t6(env): env['TOOL6'] = 666 def t7(env): env['BBB'] = env['XYZ'] def t8(env): env['TOOL8'] = 888 import SCons.Defaults save = SCons.Defaults.ConstructionEnvironment.copy() try: SCons.Defaults.ConstructionEnvironment.update({ 'TOOLS' : [t5, t6, t7], }) env = Environment(XYZ = 'bbb') assert env['TOOL5'] == 555, env['TOOL5'] assert env['TOOL6'] == 666, env assert env['BBB'] == 'bbb', env t8(env) assert env['TOOL8'] == 888, env finally: SCons.Defaults.ConstructionEnvironment = save def test_null_tools(self): """Test specifying a tool of None is OK.""" def t1(env): env['TOOL1'] = 111 def t2(env): env['TOOL2'] = 222 env = self.TestEnvironment(tools = [t1, None, t2], XYZ = 'aaa') assert env['TOOL1'] == 111, env['TOOL1'] assert env['TOOL2'] == 222, env assert env['XYZ'] == 'aaa', env env = self.TestEnvironment(tools = [None], XYZ = 'xyz') assert env['XYZ'] == 'xyz', env env = self.TestEnvironment(tools = [t1, '', t2], XYZ = 'ddd') assert env['TOOL1'] == 111, env['TOOL1'] assert env['TOOL2'] == 222, env assert env['XYZ'] == 'ddd', env def test_concat(self): "Test _concat()" e1 = self.TestEnvironment(PRE='pre', SUF='suf', STR='a b', LIST=['a', 'b']) s = e1.subst x = s("${_concat('', '', '', __env__)}") assert x == '', x x = s("${_concat('', [], '', __env__)}") assert x == '', x x = s("${_concat(PRE, '', SUF, __env__)}") assert x == '', x x = s("${_concat(PRE, STR, SUF, __env__)}") assert x == 'prea bsuf', x x = s("${_concat(PRE, LIST, SUF, __env__)}") assert x == 'preasuf prebsuf', x def test_concat_nested(self): "Test _concat() on a nested substitution strings." e = self.TestEnvironment(PRE='pre', SUF='suf', L1=['a', 'b'], L2=['c', 'd'], L3=['$L2']) x = e.subst('$( ${_concat(PRE, L1, SUF, __env__)} $)') assert x == 'preasuf prebsuf', x e.AppendUnique(L1 = ['$L2']) x = e.subst('$( ${_concat(PRE, L1, SUF, __env__)} $)') assert x == 'preasuf prebsuf precsuf predsuf', x e.AppendUnique(L1 = ['$L3']) x = e.subst('$( ${_concat(PRE, L1, SUF, __env__)} $)') assert x == 'preasuf prebsuf precsuf predsuf precsuf predsuf', x def test_gvars(self): """Test the Environment gvars() method""" env = self.TestEnvironment(XXX = 'x', YYY = 'y', ZZZ = 'z') gvars = env.gvars() assert gvars['XXX'] == 'x', gvars['XXX'] assert gvars['YYY'] == 'y', gvars['YYY'] assert gvars['ZZZ'] == 'z', gvars['ZZZ'] def test__update(self): """Test the _update() method""" env = self.TestEnvironment(X = 'x', Y = 'y', Z = 'z') assert env['X'] == 'x', env['X'] assert env['Y'] == 'y', env['Y'] assert env['Z'] == 'z', env['Z'] env._update({'X' : 'xxx', 'TARGET' : 't', 'TARGETS' : 'ttt', 'SOURCE' : 's', 'SOURCES' : 'sss', 'Z' : 'zzz'}) assert env['X'] == 'xxx', env['X'] assert env['Y'] == 'y', env['Y'] assert env['Z'] == 'zzz', env['Z'] assert env['TARGET'] == 't', env['TARGET'] assert env['TARGETS'] == 'ttt', env['TARGETS'] assert env['SOURCE'] == 's', env['SOURCE'] assert env['SOURCES'] == 'sss', env['SOURCES'] def test_Append(self): """Test appending to construction variables in an Environment """ b1 = Environment()['BUILDERS'] b2 = Environment()['BUILDERS'] assert b1 == b2, diff_dict(b1, b2) cases = [ 'a1', 'A1', 'a1A1', 'a2', ['A2'], ['a2', 'A2'], 'a3', UL(['A3']), UL(['a', '3', 'A3']), 'a4', '', 'a4', 'a5', [], ['a5'], 'a6', UL([]), UL(['a', '6']), 'a7', [''], ['a7', ''], 'a8', UL(['']), UL(['a', '8', '']), ['e1'], 'E1', ['e1', 'E1'], ['e2'], ['E2'], ['e2', 'E2'], ['e3'], UL(['E3']), UL(['e3', 'E3']), ['e4'], '', ['e4'], ['e5'], [], ['e5'], ['e6'], UL([]), UL(['e6']), ['e7'], [''], ['e7', ''], ['e8'], UL(['']), UL(['e8', '']), UL(['i1']), 'I1', UL(['i1', 'I', '1']), UL(['i2']), ['I2'], UL(['i2', 'I2']), UL(['i3']), UL(['I3']), UL(['i3', 'I3']), UL(['i4']), '', UL(['i4']), UL(['i5']), [], UL(['i5']), UL(['i6']), UL([]), UL(['i6']), UL(['i7']), [''], UL(['i7', '']), UL(['i8']), UL(['']), UL(['i8', '']), {'d1':1}, 'D1', {'d1':1, 'D1':None}, {'d2':1}, ['D2'], {'d2':1, 'D2':None}, {'d3':1}, UL(['D3']), {'d3':1, 'D3':None}, {'d4':1}, {'D4':1}, {'d4':1, 'D4':1}, {'d5':1}, UD({'D5':1}), UD({'d5':1, 'D5':1}), UD({'u1':1}), 'U1', UD({'u1':1, 'U1':None}), UD({'u2':1}), ['U2'], UD({'u2':1, 'U2':None}), UD({'u3':1}), UL(['U3']), UD({'u3':1, 'U3':None}), UD({'u4':1}), {'U4':1}, UD({'u4':1, 'U4':1}), UD({'u5':1}), UD({'U5':1}), UD({'u5':1, 'U5':1}), '', 'M1', 'M1', '', ['M2'], ['M2'], '', UL(['M3']), UL(['M3']), '', '', '', '', [], [], '', UL([]), UL([]), '', [''], [''], '', UL(['']), UL(['']), [], 'N1', ['N1'], [], ['N2'], ['N2'], [], UL(['N3']), UL(['N3']), [], '', [], [], [], [], [], UL([]), UL([]), [], [''], [''], [], UL(['']), UL(['']), UL([]), 'O1', ['O', '1'], UL([]), ['O2'], ['O2'], UL([]), UL(['O3']), UL(['O3']), UL([]), '', UL([]), UL([]), [], UL([]), UL([]), UL([]), UL([]), UL([]), [''], UL(['']), UL([]), UL(['']), UL(['']), [''], 'P1', ['', 'P1'], [''], ['P2'], ['', 'P2'], [''], UL(['P3']), UL(['', 'P3']), [''], '', [''], [''], [], [''], [''], UL([]), UL(['']), [''], [''], ['', ''], [''], UL(['']), UL(['', '']), UL(['']), 'Q1', ['', 'Q', '1'], UL(['']), ['Q2'], ['', 'Q2'], UL(['']), UL(['Q3']), UL(['', 'Q3']), UL(['']), '', UL(['']), UL(['']), [], UL(['']), UL(['']), UL([]), UL(['']), UL(['']), [''], UL(['', '']), UL(['']), UL(['']), UL(['', '']), ] env = Environment() failed = 0 while cases: input, append, expect = cases[:3] env['XXX'] = copy.copy(input) try: env.Append(XXX = append) except Exception as e: if failed == 0: print() print(" %s Append %s exception: %s" % \ (repr(input), repr(append), e)) failed = failed + 1 else: result = env['XXX'] if result != expect: if failed == 0: print() print(" %s Append %s => %s did not match %s" % \ (repr(input), repr(append), repr(result), repr(expect))) failed = failed + 1 del cases[:3] assert failed == 0, "%d Append() cases failed" % failed env['UL'] = UL(['foo']) env.Append(UL = 'bar') result = env['UL'] assert isinstance(result, UL), repr(result) assert result == ['foo', 'b', 'a', 'r'], result env['CLVar'] = CLVar(['foo']) env.Append(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['foo', 'bar'], result class C(object): def __init__(self, name): self.name = name def __str__(self): return self.name def __eq__(self, other): raise Exception("should not compare") ccc = C('ccc') env2 = self.TestEnvironment(CCC1 = ['c1'], CCC2 = ccc) env2.Append(CCC1 = ccc, CCC2 = ['c2']) assert env2['CCC1'][0] == 'c1', env2['CCC1'] assert env2['CCC1'][1] is ccc, env2['CCC1'] assert env2['CCC2'][0] is ccc, env2['CCC2'] assert env2['CCC2'][1] == 'c2', env2['CCC2'] env3 = self.TestEnvironment(X = {'x1' : 7}) env3.Append(X = {'x1' : 8, 'x2' : 9}, Y = {'y1' : 10}) assert env3['X'] == {'x1': 8, 'x2': 9}, env3['X'] assert env3['Y'] == {'y1': 10}, env3['Y'] z1 = Builder() z2 = Builder() env4 = self.TestEnvironment(BUILDERS = {'z1' : z1}) env4.Append(BUILDERS = {'z2' : z2}) assert env4['BUILDERS'] == {'z1' : z1, 'z2' : z2}, env4['BUILDERS'] assert hasattr(env4, 'z1') assert hasattr(env4, 'z2') def test_AppendENVPath(self): """Test appending to an ENV path.""" env1 = self.TestEnvironment(ENV = {'PATH': r'C:\dir\num\one;C:\dir\num\two'}, MYENV = {'MYPATH': r'C:\mydir\num\one;C:\mydir\num\two'}) # have to include the pathsep here so that the test will work on UNIX too. env1.AppendENVPath('PATH',r'C:\dir\num\two', sep = ';') env1.AppendENVPath('PATH',r'C:\dir\num\three', sep = ';') env1.AppendENVPath('MYPATH',r'C:\mydir\num\three','MYENV', sep = ';') env1.AppendENVPath('MYPATH',r'C:\mydir\num\one','MYENV', sep = ';', delete_existing=1) # this should do nothing since delete_existing is 0 env1.AppendENVPath('MYPATH',r'C:\mydir\num\three','MYENV', sep = ';') assert(env1['ENV']['PATH'] == r'C:\dir\num\one;C:\dir\num\two;C:\dir\num\three') assert(env1['MYENV']['MYPATH'] == r'C:\mydir\num\two;C:\mydir\num\three;C:\mydir\num\one') test = TestCmd.TestCmd(workdir = '') test.subdir('sub1', 'sub2') p=env1['ENV']['PATH'] env1.AppendENVPath('PATH','#sub1', sep = ';') env1.AppendENVPath('PATH',env1.fs.Dir('sub2'), sep = ';') assert env1['ENV']['PATH'] == p + ';sub1;sub2', env1['ENV']['PATH'] def test_AppendUnique(self): """Test appending to unique values to construction variables This strips values that are already present when lists are involved.""" env = self.TestEnvironment(AAA1 = 'a1', AAA2 = 'a2', AAA3 = 'a3', AAA4 = 'a4', AAA5 = 'a5', BBB1 = ['b1'], BBB2 = ['b2'], BBB3 = ['b3'], BBB4 = ['b4'], BBB5 = ['b5'], CCC1 = '', CCC2 = '', DDD1 = ['a', 'b', 'c']) env['LL1'] = [env.Literal('a literal'), env.Literal('b literal')] env['LL2'] = [env.Literal('c literal'), env.Literal('b literal')] env.AppendUnique(AAA1 = 'a1', AAA2 = ['a2'], AAA3 = ['a3', 'b', 'c', 'c', 'b', 'a3'], # ignore dups AAA4 = 'a4.new', AAA5 = ['a5.new'], BBB1 = 'b1', BBB2 = ['b2'], BBB3 = ['b3', 'c', 'd', 'c', 'b3'], BBB4 = 'b4.new', BBB5 = ['b5.new'], CCC1 = 'c1', CCC2 = ['c2'], DDD1 = 'b', LL1 = env.Literal('a literal'), LL2 = env.Literal('a literal')) assert env['AAA1'] == 'a1a1', env['AAA1'] assert env['AAA2'] == ['a2'], env['AAA2'] assert env['AAA3'] == ['a3', 'b', 'c'], env['AAA3'] assert env['AAA4'] == 'a4a4.new', env['AAA4'] assert env['AAA5'] == ['a5', 'a5.new'], env['AAA5'] assert env['BBB1'] == ['b1'], env['BBB1'] assert env['BBB2'] == ['b2'], env['BBB2'] assert env['BBB3'] == ['b3', 'c', 'd'], env['BBB3'] assert env['BBB4'] == ['b4', 'b4.new'], env['BBB4'] assert env['BBB5'] == ['b5', 'b5.new'], env['BBB5'] assert env['CCC1'] == 'c1', env['CCC1'] assert env['CCC2'] == ['c2'], env['CCC2'] assert env['DDD1'] == ['a', 'b', 'c'], env['DDD1'] assert env['LL1'] == [env.Literal('a literal'), env.Literal('b literal')], env['LL1'] assert env['LL2'] == [env.Literal('c literal'), env.Literal('b literal'), env.Literal('a literal')], [str(x) for x in env['LL2']] env.AppendUnique(DDD1 = 'b', delete_existing=1) assert env['DDD1'] == ['a', 'c', 'b'], env['DDD1'] # b moves to end env.AppendUnique(DDD1 = ['a','b'], delete_existing=1) assert env['DDD1'] == ['c', 'a', 'b'], env['DDD1'] # a & b move to end env.AppendUnique(DDD1 = ['e','f', 'e'], delete_existing=1) assert env['DDD1'] == ['c', 'a', 'b', 'f', 'e'], env['DDD1'] # add last env['CLVar'] = CLVar([]) env.AppendUnique(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['bar'], result env['CLVar'] = CLVar(['abc']) env.AppendUnique(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['abc', 'bar'], result env['CLVar'] = CLVar(['bar']) env.AppendUnique(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['bar'], result def test_Clone(self): """Test construction environment copying Update the copy independently afterwards and check that the original remains intact (that is, no dangling references point to objects in the copied environment). Clone the original with some construction variable updates and check that the original remains intact and the copy has the updated values. """ env1 = self.TestEnvironment(XXX = 'x', YYY = 'y') env2 = env1.Clone() env1copy = env1.Clone() assert env1copy == env1copy assert env2 == env2 env2.Replace(YYY = 'yyy') assert env2 == env2 assert env1 != env2 assert env1 == env1copy env3 = env1.Clone(XXX = 'x3', ZZZ = 'z3') assert env3 == env3 assert env3.Dictionary('XXX') == 'x3' assert env3.Dictionary('YYY') == 'y' assert env3.Dictionary('ZZZ') == 'z3' assert env1 == env1copy # Ensure that lists and dictionaries are # deep copied, but not instances. class TestA(object): pass env1 = self.TestEnvironment(XXX=TestA(), YYY = [ 1, 2, 3 ], ZZZ = { 1:2, 3:4 }) env2=env1.Clone() env2.Dictionary('YYY').append(4) env2.Dictionary('ZZZ')[5] = 6 assert env1.Dictionary('XXX') is env2.Dictionary('XXX') assert 4 in env2.Dictionary('YYY') assert not 4 in env1.Dictionary('YYY') assert 5 in env2.Dictionary('ZZZ') assert 5 not in env1.Dictionary('ZZZ') # env1 = self.TestEnvironment(BUILDERS = {'b1' : Builder()}) assert hasattr(env1, 'b1'), "env1.b1 was not set" assert env1.b1.object == env1, "b1.object doesn't point to env1" env2 = env1.Clone(BUILDERS = {'b2' : Builder()}) assert env2 is env2 assert env2 == env2 assert hasattr(env1, 'b1'), "b1 was mistakenly cleared from env1" assert env1.b1.object == env1, "b1.object was changed" assert not hasattr(env2, 'b1'), "b1 was not cleared from env2" assert hasattr(env2, 'b2'), "env2.b2 was not set" assert env2.b2.object == env2, "b2.object doesn't point to env2" # Ensure that specifying new tools in a copied environment # works. def foo(env): env['FOO'] = 1 def bar(env): env['BAR'] = 2 def baz(env): env['BAZ'] = 3 env1 = self.TestEnvironment(tools=[foo]) env2 = env1.Clone() env3 = env1.Clone(tools=[bar, baz]) assert env1.get('FOO') == 1 assert env1.get('BAR') is None assert env1.get('BAZ') is None assert env2.get('FOO') == 1 assert env2.get('BAR') is None assert env2.get('BAZ') is None assert env3.get('FOO') == 1 assert env3.get('BAR') == 2 assert env3.get('BAZ') == 3 # Ensure that recursive variable substitution when copying # environments works properly. env1 = self.TestEnvironment(CCFLAGS = '-DFOO', XYZ = '-DXYZ') env2 = env1.Clone(CCFLAGS = '$CCFLAGS -DBAR', XYZ = ['-DABC', 'x $XYZ y', '-DDEF']) x = env2.get('CCFLAGS') assert x == '-DFOO -DBAR', x x = env2.get('XYZ') assert x == ['-DABC', 'x -DXYZ y', '-DDEF'], x # Ensure that special properties of a class don't get # lost on copying. env1 = self.TestEnvironment(FLAGS = CLVar('flag1 flag2')) x = env1.get('FLAGS') assert x == ['flag1', 'flag2'], x env2 = env1.Clone() env2.Append(FLAGS = 'flag3 flag4') x = env2.get('FLAGS') assert x == ['flag1', 'flag2', 'flag3', 'flag4'], x x = env1.get('FLAGS') assert x == ['flag1', 'flag2'], x # Ensure that appending directly to a copied CLVar # doesn't modify the original. env1 = self.TestEnvironment(FLAGS = CLVar('flag1 flag2')) x = env1.get('FLAGS') assert x == ['flag1', 'flag2'], x env2 = env1.Clone() env2['FLAGS'] += ['flag3', 'flag4'] x = env2.get('FLAGS') assert x == ['flag1', 'flag2', 'flag3', 'flag4'], x x = env1.get('FLAGS') assert x == ['flag1', 'flag2'], x # Test that the environment stores the toolpath and # re-uses it for copies. test = TestCmd.TestCmd(workdir = '') test.write('xxx.py', """\ def exists(env): 1 def generate(env): env['XXX'] = 'one' """) test.write('yyy.py', """\ def exists(env): 1 def generate(env): env['YYY'] = 'two' """) env = self.TestEnvironment(tools=['xxx'], toolpath=[test.workpath('')]) assert env['XXX'] == 'one', env['XXX'] env = env.Clone(tools=['yyy']) assert env['YYY'] == 'two', env['YYY'] # Test that real_value = [4] def my_tool(env, rv=real_value): assert env['KEY_THAT_I_WANT'] == rv[0] env['KEY_THAT_I_WANT'] = rv[0] + 1 env = self.TestEnvironment() real_value[0] = 5 env = env.Clone(KEY_THAT_I_WANT=5, tools=[my_tool]) assert env['KEY_THAT_I_WANT'] == real_value[0], env['KEY_THAT_I_WANT'] real_value[0] = 6 env = env.Clone(KEY_THAT_I_WANT=6, tools=[my_tool]) assert env['KEY_THAT_I_WANT'] == real_value[0], env['KEY_THAT_I_WANT'] # test for pull request #150 env = self.TestEnvironment() env._dict.pop('BUILDERS') assert ('BUILDERS' in env) is False env2 = env.Clone() def test_Copy(self): """Test copying using the old env.Copy() method""" env1 = self.TestEnvironment(XXX = 'x', YYY = 'y') env2 = env1.Copy() env1copy = env1.Copy() assert env1copy == env1copy assert env2 == env2 env2.Replace(YYY = 'yyy') assert env2 == env2 assert env1 != env2 assert env1 == env1copy def test_Detect(self): """Test Detect()ing tools""" test = TestCmd.TestCmd(workdir = '') test.subdir('sub1', 'sub2') sub1 = test.workpath('sub1') sub2 = test.workpath('sub2') if sys.platform == 'win32': test.write(['sub1', 'xxx'], "sub1/xxx\n") test.write(['sub2', 'xxx'], "sub2/xxx\n") env = self.TestEnvironment(ENV = { 'PATH' : [sub1, sub2] }) x = env.Detect('xxx.exe') assert x is None, x test.write(['sub2', 'xxx.exe'], "sub2/xxx.exe\n") env = self.TestEnvironment(ENV = { 'PATH' : [sub1, sub2] }) x = env.Detect('xxx.exe') assert x == 'xxx.exe', x test.write(['sub1', 'xxx.exe'], "sub1/xxx.exe\n") x = env.Detect('xxx.exe') assert x == 'xxx.exe', x else: test.write(['sub1', 'xxx.exe'], "sub1/xxx.exe\n") test.write(['sub2', 'xxx.exe'], "sub2/xxx.exe\n") env = self.TestEnvironment(ENV = { 'PATH' : [sub1, sub2] }) x = env.Detect('xxx.exe') assert x is None, x sub2_xxx_exe = test.workpath('sub2', 'xxx.exe') os.chmod(sub2_xxx_exe, 0o755) env = self.TestEnvironment(ENV = { 'PATH' : [sub1, sub2] }) x = env.Detect('xxx.exe') assert x == 'xxx.exe', x sub1_xxx_exe = test.workpath('sub1', 'xxx.exe') os.chmod(sub1_xxx_exe, 0o755) x = env.Detect('xxx.exe') assert x == 'xxx.exe', x env = self.TestEnvironment(ENV = { 'PATH' : [] }) x = env.Detect('xxx.exe') assert x is None, x def test_Dictionary(self): """Test retrieval of known construction variables Fetch them from the Dictionary and check for well-known defaults that get inserted. """ env = self.TestEnvironment(XXX = 'x', YYY = 'y', ZZZ = 'z') assert env.Dictionary('XXX') == 'x' assert env.Dictionary('YYY') == 'y' assert env.Dictionary('XXX', 'ZZZ') == ['x', 'z'] xxx, zzz = env.Dictionary('XXX', 'ZZZ') assert xxx == 'x' assert zzz == 'z' assert 'BUILDERS' in env.Dictionary() assert 'CC' in env.Dictionary() assert 'CCFLAGS' in env.Dictionary() assert 'ENV' in env.Dictionary() assert env['XXX'] == 'x' env['XXX'] = 'foo' assert env.Dictionary('XXX') == 'foo' del env['XXX'] assert 'XXX' not in env.Dictionary() def test_FindIxes(self): "Test FindIxes()" env = self.TestEnvironment(LIBPREFIX='lib', LIBSUFFIX='.a', SHLIBPREFIX='lib', SHLIBSUFFIX='.so', PREFIX='pre', SUFFIX='post') paths = [os.path.join('dir', 'libfoo.a'), os.path.join('dir', 'libfoo.so')] assert paths[0] == env.FindIxes(paths, 'LIBPREFIX', 'LIBSUFFIX') assert paths[1] == env.FindIxes(paths, 'SHLIBPREFIX', 'SHLIBSUFFIX') assert None is env.FindIxes(paths, 'PREFIX', 'POST') paths = ['libfoo.a', 'prefoopost'] assert paths[0] == env.FindIxes(paths, 'LIBPREFIX', 'LIBSUFFIX') assert None is env.FindIxes(paths, 'SHLIBPREFIX', 'SHLIBSUFFIX') assert paths[1] == env.FindIxes(paths, 'PREFIX', 'SUFFIX') def test_ParseConfig(self): """Test the ParseConfig() method""" env = self.TestEnvironment(COMMAND='command', ASFLAGS='assembler', CCFLAGS=[''], CPPDEFINES=[], CPPFLAGS=[''], CPPPATH='string', FRAMEWORKPATH=[], FRAMEWORKS=[], LIBPATH=['list'], LIBS='', LINKFLAGS=[''], RPATH=[]) orig_backtick = env.backtick class my_backtick(object): def __init__(self, save_command, output): self.save_command = save_command self.output = output def __call__(self, command): self.save_command.append(command) return self.output try: save_command = [] env.backtick = my_backtick(save_command, "-I/usr/include/fum -I bar -X\n" + \ "-L/usr/fax -L foo -lxxx -l yyy " + \ "-Wa,-as -Wl,-link " + \ "-Wl,-rpath=rpath1 " + \ "-Wl,-R,rpath2 " + \ "-Wl,-Rrpath3 " + \ "-Wp,-cpp abc " + \ "-framework Carbon " + \ "-frameworkdir=fwd1 " + \ "-Ffwd2 " + \ "-F fwd3 " + \ "-pthread " + \ "-mno-cygwin -mwindows " + \ "-arch i386 -isysroot /tmp " + \ "-iquote /usr/include/foo1 " + \ "-isystem /usr/include/foo2 " + \ "-idirafter /usr/include/foo3 " + \ "+DD64 " + \ "-DFOO -DBAR=value") env.ParseConfig("fake $COMMAND") assert save_command == ['fake command'], save_command assert env['ASFLAGS'] == ['assembler', '-as'], env['ASFLAGS'] assert env['CCFLAGS'] == ['', '-X', '-Wa,-as', '-pthread', '-mno-cygwin', ('-arch', 'i386'), ('-isysroot', '/tmp'), ('-iquote', '/usr/include/foo1'), ('-isystem', '/usr/include/foo2'), ('-idirafter', '/usr/include/foo3'), '+DD64'], env['CCFLAGS'] assert env['CPPDEFINES'] == ['FOO', ['BAR', 'value']], env['CPPDEFINES'] assert env['CPPFLAGS'] == ['', '-Wp,-cpp'], env['CPPFLAGS'] assert env['CPPPATH'] == ['string', '/usr/include/fum', 'bar'], env['CPPPATH'] assert env['FRAMEWORKPATH'] == ['fwd1', 'fwd2', 'fwd3'], env['FRAMEWORKPATH'] assert env['FRAMEWORKS'] == ['Carbon'], env['FRAMEWORKS'] assert env['LIBPATH'] == ['list', '/usr/fax', 'foo'], env['LIBPATH'] assert env['LIBS'] == ['xxx', 'yyy', env.File('abc')], env['LIBS'] assert env['LINKFLAGS'] == ['', '-Wl,-link', '-pthread', '-mno-cygwin', '-mwindows', ('-arch', 'i386'), ('-isysroot', '/tmp'), '+DD64'], env['LINKFLAGS'] assert env['RPATH'] == ['rpath1', 'rpath2', 'rpath3'], env['RPATH'] env.backtick = my_backtick([], "-Ibar") env.ParseConfig("fake2") assert env['CPPPATH'] == ['string', '/usr/include/fum', 'bar'], env['CPPPATH'] env.ParseConfig("fake2", unique=0) assert env['CPPPATH'] == ['string', '/usr/include/fum', 'bar', 'bar'], env['CPPPATH'] finally: env.backtick = orig_backtick def test_ParseDepends(self): """Test the ParseDepends() method""" test = TestCmd.TestCmd(workdir = '') test.write('single', """ #file: dependency f0: \ d1 \ d2 \ d3 \ """) test.write('multiple', """ f1: foo f2 f3: bar f4: abc def #file: dependency f5: \ ghi \ jkl \ mno \ """) env = self.TestEnvironment(SINGLE = test.workpath('single')) tlist = [] dlist = [] def my_depends(target, dependency, tlist=tlist, dlist=dlist): tlist.extend(target) dlist.extend(dependency) env.Depends = my_depends env.ParseDepends(test.workpath('does_not_exist')) exc_caught = None try: env.ParseDepends(test.workpath('does_not_exist'), must_exist=1) except IOError: exc_caught = 1 assert exc_caught, "did not catch expected IOError" del tlist[:] del dlist[:] env.ParseDepends('$SINGLE', only_one=1) t = list(map(str, tlist)) d = list(map(str, dlist)) assert t == ['f0'], t assert d == ['d1', 'd2', 'd3'], d del tlist[:] del dlist[:] env.ParseDepends(test.workpath('multiple')) t = list(map(str, tlist)) d = list(map(str, dlist)) assert t == ['f1', 'f2', 'f3', 'f4', 'f5'], t assert d == ['foo', 'bar', 'abc', 'def', 'ghi', 'jkl', 'mno'], d exc_caught = None try: env.ParseDepends(test.workpath('multiple'), only_one=1) except SCons.Errors.UserError: exc_caught = 1 assert exc_caught, "did not catch expected UserError" def test_Platform(self): """Test the Platform() method""" env = self.TestEnvironment(WIN32='win32', NONE='no-such-platform') exc_caught = None try: env.Platform('does_not_exist') except SCons.Errors.UserError: exc_caught = 1 assert exc_caught, "did not catch expected UserError" exc_caught = None try: env.Platform('$NONE') except SCons.Errors.UserError: exc_caught = 1 assert exc_caught, "did not catch expected UserError" env.Platform('posix') assert env['OBJSUFFIX'] == '.o', env['OBJSUFFIX'] env.Platform('$WIN32') assert env['OBJSUFFIX'] == '.obj', env['OBJSUFFIX'] def test_Prepend(self): """Test prepending to construction variables in an Environment """ cases = [ 'a1', 'A1', 'A1a1', 'a2', ['A2'], ['A2', 'a2'], 'a3', UL(['A3']), UL(['A3', 'a', '3']), 'a4', '', 'a4', 'a5', [], ['a5'], 'a6', UL([]), UL(['a', '6']), 'a7', [''], ['', 'a7'], 'a8', UL(['']), UL(['', 'a', '8']), ['e1'], 'E1', ['E1', 'e1'], ['e2'], ['E2'], ['E2', 'e2'], ['e3'], UL(['E3']), UL(['E3', 'e3']), ['e4'], '', ['e4'], ['e5'], [], ['e5'], ['e6'], UL([]), UL(['e6']), ['e7'], [''], ['', 'e7'], ['e8'], UL(['']), UL(['', 'e8']), UL(['i1']), 'I1', UL(['I', '1', 'i1']), UL(['i2']), ['I2'], UL(['I2', 'i2']), UL(['i3']), UL(['I3']), UL(['I3', 'i3']), UL(['i4']), '', UL(['i4']), UL(['i5']), [], UL(['i5']), UL(['i6']), UL([]), UL(['i6']), UL(['i7']), [''], UL(['', 'i7']), UL(['i8']), UL(['']), UL(['', 'i8']), {'d1':1}, 'D1', {'d1':1, 'D1':None}, {'d2':1}, ['D2'], {'d2':1, 'D2':None}, {'d3':1}, UL(['D3']), {'d3':1, 'D3':None}, {'d4':1}, {'D4':1}, {'d4':1, 'D4':1}, {'d5':1}, UD({'D5':1}), UD({'d5':1, 'D5':1}), UD({'u1':1}), 'U1', UD({'u1':1, 'U1':None}), UD({'u2':1}), ['U2'], UD({'u2':1, 'U2':None}), UD({'u3':1}), UL(['U3']), UD({'u3':1, 'U3':None}), UD({'u4':1}), {'U4':1}, UD({'u4':1, 'U4':1}), UD({'u5':1}), UD({'U5':1}), UD({'u5':1, 'U5':1}), '', 'M1', 'M1', '', ['M2'], ['M2'], '', UL(['M3']), UL(['M3']), '', '', '', '', [], [], '', UL([]), UL([]), '', [''], [''], '', UL(['']), UL(['']), [], 'N1', ['N1'], [], ['N2'], ['N2'], [], UL(['N3']), UL(['N3']), [], '', [], [], [], [], [], UL([]), UL([]), [], [''], [''], [], UL(['']), UL(['']), UL([]), 'O1', UL(['O', '1']), UL([]), ['O2'], UL(['O2']), UL([]), UL(['O3']), UL(['O3']), UL([]), '', UL([]), UL([]), [], UL([]), UL([]), UL([]), UL([]), UL([]), [''], UL(['']), UL([]), UL(['']), UL(['']), [''], 'P1', ['P1', ''], [''], ['P2'], ['P2', ''], [''], UL(['P3']), UL(['P3', '']), [''], '', [''], [''], [], [''], [''], UL([]), UL(['']), [''], [''], ['', ''], [''], UL(['']), UL(['', '']), UL(['']), 'Q1', UL(['Q', '1', '']), UL(['']), ['Q2'], UL(['Q2', '']), UL(['']), UL(['Q3']), UL(['Q3', '']), UL(['']), '', UL(['']), UL(['']), [], UL(['']), UL(['']), UL([]), UL(['']), UL(['']), [''], UL(['', '']), UL(['']), UL(['']), UL(['', '']), ] env = Environment() failed = 0 while cases: input, prepend, expect = cases[:3] env['XXX'] = copy.copy(input) try: env.Prepend(XXX = prepend) except Exception as e: if failed == 0: print() print(" %s Prepend %s exception: %s" % \ (repr(input), repr(prepend), e)) failed = failed + 1 else: result = env['XXX'] if result != expect: if failed == 0: print() print(" %s Prepend %s => %s did not match %s" % \ (repr(input), repr(prepend), repr(result), repr(expect))) failed = failed + 1 del cases[:3] assert failed == 0, "%d Prepend() cases failed" % failed env['UL'] = UL(['foo']) env.Prepend(UL = 'bar') result = env['UL'] assert isinstance(result, UL), repr(result) assert result == ['b', 'a', 'r', 'foo'], result env['CLVar'] = CLVar(['foo']) env.Prepend(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['bar', 'foo'], result env3 = self.TestEnvironment(X = {'x1' : 7}) env3.Prepend(X = {'x1' : 8, 'x2' : 9}, Y = {'y1' : 10}) assert env3['X'] == {'x1': 8, 'x2' : 9}, env3['X'] assert env3['Y'] == {'y1': 10}, env3['Y'] z1 = Builder() z2 = Builder() env4 = self.TestEnvironment(BUILDERS = {'z1' : z1}) env4.Prepend(BUILDERS = {'z2' : z2}) assert env4['BUILDERS'] == {'z1' : z1, 'z2' : z2}, env4['BUILDERS'] assert hasattr(env4, 'z1') assert hasattr(env4, 'z2') def test_PrependENVPath(self): """Test prepending to an ENV path.""" env1 = self.TestEnvironment(ENV = {'PATH': r'C:\dir\num\one;C:\dir\num\two'}, MYENV = {'MYPATH': r'C:\mydir\num\one;C:\mydir\num\two'}) # have to include the pathsep here so that the test will work on UNIX too. env1.PrependENVPath('PATH',r'C:\dir\num\two',sep = ';') env1.PrependENVPath('PATH',r'C:\dir\num\three',sep = ';') env1.PrependENVPath('MYPATH',r'C:\mydir\num\three','MYENV',sep = ';') env1.PrependENVPath('MYPATH',r'C:\mydir\num\one','MYENV',sep = ';') # this should do nothing since delete_existing is 0 env1.PrependENVPath('MYPATH',r'C:\mydir\num\three','MYENV', sep = ';', delete_existing=0) assert(env1['ENV']['PATH'] == r'C:\dir\num\three;C:\dir\num\two;C:\dir\num\one') assert(env1['MYENV']['MYPATH'] == r'C:\mydir\num\one;C:\mydir\num\three;C:\mydir\num\two') test = TestCmd.TestCmd(workdir = '') test.subdir('sub1', 'sub2') p=env1['ENV']['PATH'] env1.PrependENVPath('PATH','#sub1', sep = ';') env1.PrependENVPath('PATH',env1.fs.Dir('sub2'), sep = ';') assert env1['ENV']['PATH'] == 'sub2;sub1;' + p, env1['ENV']['PATH'] def test_PrependUnique(self): """Test prepending unique values to construction variables This strips values that are already present when lists are involved.""" env = self.TestEnvironment(AAA1 = 'a1', AAA2 = 'a2', AAA3 = 'a3', AAA4 = 'a4', AAA5 = 'a5', BBB1 = ['b1'], BBB2 = ['b2'], BBB3 = ['b3'], BBB4 = ['b4'], BBB5 = ['b5'], CCC1 = '', CCC2 = '', DDD1 = ['a', 'b', 'c']) env.PrependUnique(AAA1 = 'a1', AAA2 = ['a2'], AAA3 = ['a3', 'b', 'c', 'b', 'a3'], # ignore dups AAA4 = 'a4.new', AAA5 = ['a5.new'], BBB1 = 'b1', BBB2 = ['b2'], BBB3 = ['b3', 'b', 'c', 'b3'], BBB4 = 'b4.new', BBB5 = ['b5.new'], CCC1 = 'c1', CCC2 = ['c2'], DDD1 = 'b') assert env['AAA1'] == 'a1a1', env['AAA1'] assert env['AAA2'] == ['a2'], env['AAA2'] assert env['AAA3'] == ['c', 'b', 'a3'], env['AAA3'] assert env['AAA4'] == 'a4.newa4', env['AAA4'] assert env['AAA5'] == ['a5.new', 'a5'], env['AAA5'] assert env['BBB1'] == ['b1'], env['BBB1'] assert env['BBB2'] == ['b2'], env['BBB2'] assert env['BBB3'] == ['b', 'c', 'b3'], env['BBB3'] assert env['BBB4'] == ['b4.new', 'b4'], env['BBB4'] assert env['BBB5'] == ['b5.new', 'b5'], env['BBB5'] assert env['CCC1'] == 'c1', env['CCC1'] assert env['CCC2'] == ['c2'], env['CCC2'] assert env['DDD1'] == ['a', 'b', 'c'], env['DDD1'] env.PrependUnique(DDD1 = 'b', delete_existing=1) assert env['DDD1'] == ['b', 'a', 'c'], env['DDD1'] # b moves to front env.PrependUnique(DDD1 = ['a','c'], delete_existing=1) assert env['DDD1'] == ['a', 'c', 'b'], env['DDD1'] # a & c move to front env.PrependUnique(DDD1 = ['d','e','d'], delete_existing=1) assert env['DDD1'] == ['d', 'e', 'a', 'c', 'b'], env['DDD1'] env['CLVar'] = CLVar([]) env.PrependUnique(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['bar'], result env['CLVar'] = CLVar(['abc']) env.PrependUnique(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['bar', 'abc'], result env['CLVar'] = CLVar(['bar']) env.PrependUnique(CLVar = 'bar') result = env['CLVar'] assert isinstance(result, CLVar), repr(result) assert result == ['bar'], result def test_Replace(self): """Test replacing construction variables in an Environment After creation of the Environment, of course. """ env1 = self.TestEnvironment(AAA = 'a', BBB = 'b') env1.Replace(BBB = 'bbb', CCC = 'ccc') env2 = self.TestEnvironment(AAA = 'a', BBB = 'bbb', CCC = 'ccc') assert env1 == env2, diff_env(env1, env2) b1 = Builder() b2 = Builder() env3 = self.TestEnvironment(BUILDERS = {'b1' : b1}) assert hasattr(env3, 'b1'), "b1 was not set" env3.Replace(BUILDERS = {'b2' : b2}) assert not hasattr(env3, 'b1'), "b1 was not cleared" assert hasattr(env3, 'b2'), "b2 was not set" def test_ReplaceIxes(self): "Test ReplaceIxes()" env = self.TestEnvironment(LIBPREFIX='lib', LIBSUFFIX='.a', SHLIBPREFIX='lib', SHLIBSUFFIX='.so', PREFIX='pre', SUFFIX='post') assert 'libfoo.a' == env.ReplaceIxes('libfoo.so', 'SHLIBPREFIX', 'SHLIBSUFFIX', 'LIBPREFIX', 'LIBSUFFIX') assert os.path.join('dir', 'libfoo.a') == env.ReplaceIxes(os.path.join('dir', 'libfoo.so'), 'SHLIBPREFIX', 'SHLIBSUFFIX', 'LIBPREFIX', 'LIBSUFFIX') assert 'libfoo.a' == env.ReplaceIxes('prefoopost', 'PREFIX', 'SUFFIX', 'LIBPREFIX', 'LIBSUFFIX') def test_SetDefault(self): """Test the SetDefault method""" env = self.TestEnvironment(tools = []) env.SetDefault(V1 = 1) env.SetDefault(V1 = 2) assert env['V1'] == 1 env['V2'] = 2 env.SetDefault(V2 = 1) assert env['V2'] == 2 def test_Tool(self): """Test the Tool() method""" env = self.TestEnvironment(LINK='link', NONE='no-such-tool') exc_caught = None try: env.Tool('does_not_exist') except SCons.Errors.SConsEnvironmentError: exc_caught = 1 assert exc_caught, "did not catch expected SConsEnvironmentError" exc_caught = None try: env.Tool('$NONE') except SCons.Errors.SConsEnvironmentError: exc_caught = 1 assert exc_caught, "did not catch expected SConsEnvironmentError" # Use a non-existent toolpath directory just to make sure we # can call Tool() with the keyword argument. env.Tool('cc', toolpath=['/no/such/directory']) assert env['CC'] == 'cc', env['CC'] env.Tool('$LINK') assert env['LINK'] == '$SMARTLINK', env['LINK'] # Test that the environment stores the toolpath and # re-uses it for later calls. test = TestCmd.TestCmd(workdir = '') test.write('xxx.py', """\ def exists(env): 1 def generate(env): env['XXX'] = 'one' """) test.write('yyy.py', """\ def exists(env): 1 def generate(env): env['YYY'] = 'two' """) env = self.TestEnvironment(tools=['xxx'], toolpath=[test.workpath('')]) assert env['XXX'] == 'one', env['XXX'] env.Tool('yyy') assert env['YYY'] == 'two', env['YYY'] def test_WhereIs(self): """Test the WhereIs() method""" test = TestCmd.TestCmd(workdir = '') sub1_xxx_exe = test.workpath('sub1', 'xxx.exe') sub2_xxx_exe = test.workpath('sub2', 'xxx.exe') sub3_xxx_exe = test.workpath('sub3', 'xxx.exe') sub4_xxx_exe = test.workpath('sub4', 'xxx.exe') test.subdir('subdir', 'sub1', 'sub2', 'sub3', 'sub4') if sys.platform != 'win32': test.write(sub1_xxx_exe, "\n") os.mkdir(sub2_xxx_exe) test.write(sub3_xxx_exe, "\n") os.chmod(sub3_xxx_exe, 0o777) test.write(sub4_xxx_exe, "\n") os.chmod(sub4_xxx_exe, 0o777) env_path = os.environ['PATH'] pathdirs_1234 = [ test.workpath('sub1'), test.workpath('sub2'), test.workpath('sub3'), test.workpath('sub4'), ] + env_path.split(os.pathsep) pathdirs_1243 = [ test.workpath('sub1'), test.workpath('sub2'), test.workpath('sub4'), test.workpath('sub3'), ] + env_path.split(os.pathsep) path = os.pathsep.join(pathdirs_1234) env = self.TestEnvironment(ENV = {'PATH' : path}) wi = env.WhereIs('xxx.exe') assert wi == test.workpath(sub3_xxx_exe), wi wi = env.WhereIs('xxx.exe', pathdirs_1243) assert wi == test.workpath(sub4_xxx_exe), wi wi = env.WhereIs('xxx.exe', os.pathsep.join(pathdirs_1243)) assert wi == test.workpath(sub4_xxx_exe), wi wi = env.WhereIs('xxx.exe', reject = sub3_xxx_exe) assert wi == test.workpath(sub4_xxx_exe), wi wi = env.WhereIs('xxx.exe', pathdirs_1243, reject = sub3_xxx_exe) assert wi == test.workpath(sub4_xxx_exe), wi path = os.pathsep.join(pathdirs_1243) env = self.TestEnvironment(ENV = {'PATH' : path}) wi = env.WhereIs('xxx.exe') assert wi == test.workpath(sub4_xxx_exe), wi wi = env.WhereIs('xxx.exe', pathdirs_1234) assert wi == test.workpath(sub3_xxx_exe), wi wi = env.WhereIs('xxx.exe', os.pathsep.join(pathdirs_1234)) assert wi == test.workpath(sub3_xxx_exe), wi if sys.platform == 'win32': wi = env.WhereIs('xxx', pathext = '') assert wi is None, wi wi = env.WhereIs('xxx', pathext = '.exe') assert wi == test.workpath(sub4_xxx_exe), wi wi = env.WhereIs('xxx', path = pathdirs_1234, pathext = '.BAT;.EXE') assert wi.lower() == test.workpath(sub3_xxx_exe).lower(), wi # Test that we return a normalized path even when # the path contains forward slashes. forward_slash = test.workpath('') + '/sub3' wi = env.WhereIs('xxx', path = forward_slash, pathext = '.EXE') assert wi.lower() == test.workpath(sub3_xxx_exe).lower(), wi def test_Action(self): """Test the Action() method""" import SCons.Action env = self.TestEnvironment(FOO = 'xyzzy') a = env.Action('foo') assert a, a assert a.__class__ is SCons.Action.CommandAction, a.__class__ a = env.Action('$FOO') assert a, a assert a.__class__ is SCons.Action.CommandAction, a.__class__ a = env.Action('$$FOO') assert a, a assert a.__class__ is SCons.Action.LazyAction, a.__class__ a = env.Action(['$FOO', 'foo']) assert a, a assert a.__class__ is SCons.Action.ListAction, a.__class__ def func(arg): pass a = env.Action(func) assert a, a assert a.__class__ is SCons.Action.FunctionAction, a.__class__ def test_AddPostAction(self): """Test the AddPostAction() method""" env = self.TestEnvironment(FOO='fff', BAR='bbb') n = env.AddPostAction('$FOO', lambda x: x) assert str(n[0]) == 'fff', n[0] n = env.AddPostAction(['ggg', '$BAR'], lambda x: x) assert str(n[0]) == 'ggg', n[0] assert str(n[1]) == 'bbb', n[1] def test_AddPreAction(self): """Test the AddPreAction() method""" env = self.TestEnvironment(FOO='fff', BAR='bbb') n = env.AddPreAction('$FOO', lambda x: x) assert str(n[0]) == 'fff', n[0] n = env.AddPreAction(['ggg', '$BAR'], lambda x: x) assert str(n[0]) == 'ggg', n[0] assert str(n[1]) == 'bbb', n[1] def test_Alias(self): """Test the Alias() method""" env = self.TestEnvironment(FOO='kkk', BAR='lll', EA='export_alias') tgt = env.Alias('new_alias')[0] assert str(tgt) == 'new_alias', tgt assert tgt.sources == [], tgt.sources assert not hasattr(tgt, 'builder'), tgt.builder tgt = env.Alias('None_alias', None)[0] assert str(tgt) == 'None_alias', tgt assert tgt.sources == [], tgt.sources tgt = env.Alias('empty_list', [])[0] assert str(tgt) == 'empty_list', tgt assert tgt.sources == [], tgt.sources tgt = env.Alias('export_alias', [ 'asrc1', '$FOO' ])[0] assert str(tgt) == 'export_alias', tgt assert len(tgt.sources) == 2, list(map(str, tgt.sources)) assert str(tgt.sources[0]) == 'asrc1', list(map(str, tgt.sources)) assert str(tgt.sources[1]) == 'kkk', list(map(str, tgt.sources)) n = env.Alias(tgt, source = ['$BAR', 'asrc4'])[0] assert n is tgt, n assert len(tgt.sources) == 4, list(map(str, tgt.sources)) assert str(tgt.sources[2]) == 'lll', list(map(str, tgt.sources)) assert str(tgt.sources[3]) == 'asrc4', list(map(str, tgt.sources)) n = env.Alias('$EA', 'asrc5')[0] assert n is tgt, n assert len(tgt.sources) == 5, list(map(str, tgt.sources)) assert str(tgt.sources[4]) == 'asrc5', list(map(str, tgt.sources)) t1, t2 = env.Alias(['t1', 't2'], ['asrc6', 'asrc7']) assert str(t1) == 't1', t1 assert str(t2) == 't2', t2 assert len(t1.sources) == 2, list(map(str, t1.sources)) assert str(t1.sources[0]) == 'asrc6', list(map(str, t1.sources)) assert str(t1.sources[1]) == 'asrc7', list(map(str, t1.sources)) assert len(t2.sources) == 2, list(map(str, t2.sources)) assert str(t2.sources[0]) == 'asrc6', list(map(str, t2.sources)) assert str(t2.sources[1]) == 'asrc7', list(map(str, t2.sources)) tgt = env.Alias('add', 's1') tgt = env.Alias('add', 's2')[0] s = list(map(str, tgt.sources)) assert s == ['s1', 's2'], s tgt = env.Alias(tgt, 's3')[0] s = list(map(str, tgt.sources)) assert s == ['s1', 's2', 's3'], s tgt = env.Alias('act', None, "action1")[0] s = str(tgt.builder.action) assert s == "action1", s tgt = env.Alias('act', None, "action2")[0] s = str(tgt.builder.action) assert s == "action1\naction2", s tgt = env.Alias(tgt, None, "action3")[0] s = str(tgt.builder.action) assert s == "action1\naction2\naction3", s def test_AlwaysBuild(self): """Test the AlwaysBuild() method""" env = self.TestEnvironment(FOO='fff', BAR='bbb') t = env.AlwaysBuild('a', 'b$FOO', ['c', 'd'], '$BAR', env.fs.Dir('dir'), env.fs.File('file')) assert t[0].__class__.__name__ == 'Entry' assert t[0].get_internal_path() == 'a' assert t[0].always_build assert t[1].__class__.__name__ == 'Entry' assert t[1].get_internal_path() == 'bfff' assert t[1].always_build assert t[2].__class__.__name__ == 'Entry' assert t[2].get_internal_path() == 'c' assert t[2].always_build assert t[3].__class__.__name__ == 'Entry' assert t[3].get_internal_path() == 'd' assert t[3].always_build assert t[4].__class__.__name__ == 'Entry' assert t[4].get_internal_path() == 'bbb' assert t[4].always_build assert t[5].__class__.__name__ == 'Dir' assert t[5].get_internal_path() == 'dir' assert t[5].always_build assert t[6].__class__.__name__ == 'File' assert t[6].get_internal_path() == 'file' assert t[6].always_build def test_VariantDir(self): """Test the VariantDir() method""" class MyFS(object): def Dir(self, name): return name def VariantDir(self, variant_dir, src_dir, duplicate): self.variant_dir = variant_dir self.src_dir = src_dir self.duplicate = duplicate env = self.TestEnvironment(FOO = 'fff', BAR = 'bbb') env.fs = MyFS() env.VariantDir('build', 'src') assert env.fs.variant_dir == 'build', env.fs.variant_dir assert env.fs.src_dir == 'src', env.fs.src_dir assert env.fs.duplicate == 1, env.fs.duplicate env.VariantDir('build${FOO}', '${BAR}src', 0) assert env.fs.variant_dir == 'buildfff', env.fs.variant_dir assert env.fs.src_dir == 'bbbsrc', env.fs.src_dir assert env.fs.duplicate == 0, env.fs.duplicate def test_Builder(self): """Test the Builder() method""" env = self.TestEnvironment(FOO = 'xyzzy') b = env.Builder(action = 'foo') assert b is not None, b b = env.Builder(action = '$FOO') assert b is not None, b b = env.Builder(action = ['$FOO', 'foo']) assert b is not None, b def func(arg): pass b = env.Builder(action = func) assert b is not None, b b = env.Builder(generator = func) assert b is not None, b def test_CacheDir(self): """Test the CacheDir() method""" env = self.TestEnvironment(CD = 'CacheDir') env.CacheDir('foo') assert env._CacheDir_path == 'foo', env._CacheDir_path env.CacheDir('$CD') assert env._CacheDir_path == 'CacheDir', env._CacheDir_path def test_Clean(self): """Test the Clean() method""" env = self.TestEnvironment(FOO = 'fff', BAR = 'bbb') CT = SCons.Environment.CleanTargets foo = env.arg2nodes('foo')[0] fff = env.arg2nodes('fff')[0] t = env.Clean('foo', 'aaa') l = list(map(str, CT[foo])) assert l == ['aaa'], l t = env.Clean(foo, ['$BAR', 'ccc']) l = list(map(str, CT[foo])) assert l == ['aaa', 'bbb', 'ccc'], l eee = env.arg2nodes('eee')[0] t = env.Clean('$FOO', 'ddd') l = list(map(str, CT[fff])) assert l == ['ddd'], l t = env.Clean(fff, [eee, 'fff']) l = list(map(str, CT[fff])) assert l == ['ddd', 'eee', 'fff'], l def test_Command(self): """Test the Command() method.""" env = Environment() t = env.Command(target='foo.out', source=['foo1.in', 'foo2.in'], action='buildfoo $target $source')[0] assert t.builder is not None assert t.builder.action.__class__.__name__ == 'CommandAction' assert t.builder.action.cmd_list == 'buildfoo $target $source' assert 'foo1.in' in [x.get_internal_path() for x in t.sources] assert 'foo2.in' in [x.get_internal_path() for x in t.sources] sub = env.fs.Dir('sub') t = env.Command(target='bar.out', source='sub', action='buildbar $target $source')[0] assert 'sub' in [x.get_internal_path() for x in t.sources] def testFunc(env, target, source): assert str(target[0]) == 'foo.out' assert 'foo1.in' in list(map(str, source)) and 'foo2.in' in list(map(str, source)), list(map(str, source)) return 0 t = env.Command(target='foo.out', source=['foo1.in','foo2.in'], action=testFunc)[0] assert t.builder is not None assert t.builder.action.__class__.__name__ == 'FunctionAction' t.build() assert 'foo1.in' in [x.get_internal_path() for x in t.sources] assert 'foo2.in' in [x.get_internal_path() for x in t.sources] x = [] def test2(baz, x=x): x.append(baz) env = self.TestEnvironment(TEST2 = test2) t = env.Command(target='baz.out', source='baz.in', action='${TEST2(XYZ)}', XYZ='magic word')[0] assert t.builder is not None t.build() assert x[0] == 'magic word', x t = env.Command(target='${X}.out', source='${X}.in', action = 'foo', X = 'xxx')[0] assert str(t) == 'xxx.out', str(t) assert 'xxx.in' in [x.get_internal_path() for x in t.sources] env = self.TestEnvironment(source_scanner = 'should_not_find_this') t = env.Command(target='file.out', source='file.in', action = 'foo', source_scanner = 'fake')[0] assert t.builder.source_scanner == 'fake', t.builder.source_scanner def test_Configure(self): """Test the Configure() method""" # Configure() will write to a local temporary file. test = TestCmd.TestCmd(workdir = '') save = os.getcwd() try: os.chdir(test.workpath()) env = self.TestEnvironment(FOO = 'xyzzy') def func(arg): pass c = env.Configure() assert c is not None, c c.Finish() c = env.Configure(custom_tests = {'foo' : func, '$FOO' : func}) assert c is not None, c assert hasattr(c, 'foo') assert hasattr(c, 'xyzzy') c.Finish() finally: os.chdir(save) def test_Depends(self): """Test the explicit Depends method.""" env = self.TestEnvironment(FOO = 'xxx', BAR='yyy') env.Dir('dir1') env.Dir('dir2') env.File('xxx.py') env.File('yyy.py') t = env.Depends(target='EnvironmentTest.py', dependency='Environment.py')[0] assert t.__class__.__name__ == 'Entry', t.__class__.__name__ assert t.get_internal_path() == 'EnvironmentTest.py' assert len(t.depends) == 1 d = t.depends[0] assert d.__class__.__name__ == 'Entry', d.__class__.__name__ assert d.get_internal_path() == 'Environment.py' t = env.Depends(target='${FOO}.py', dependency='${BAR}.py')[0] assert t.__class__.__name__ == 'File', t.__class__.__name__ assert t.get_internal_path() == 'xxx.py' assert len(t.depends) == 1 d = t.depends[0] assert d.__class__.__name__ == 'File', d.__class__.__name__ assert d.get_internal_path() == 'yyy.py' t = env.Depends(target='dir1', dependency='dir2')[0] assert t.__class__.__name__ == 'Dir', t.__class__.__name__ assert t.get_internal_path() == 'dir1' assert len(t.depends) == 1 d = t.depends[0] assert d.__class__.__name__ == 'Dir', d.__class__.__name__ assert d.get_internal_path() == 'dir2' def test_Dir(self): """Test the Dir() method""" class MyFS(object): def Dir(self, name): return 'Dir(%s)' % name env = self.TestEnvironment(FOO = 'foodir', BAR = 'bardir') env.fs = MyFS() d = env.Dir('d') assert d == 'Dir(d)', d d = env.Dir('$FOO') assert d == 'Dir(foodir)', d d = env.Dir('${BAR}_$BAR') assert d == 'Dir(bardir_bardir)', d d = env.Dir(['dir1']) assert d == ['Dir(dir1)'], d d = env.Dir(['dir1', 'dir2']) assert d == ['Dir(dir1)', 'Dir(dir2)'], d def test_NoClean(self): """Test the NoClean() method""" env = self.TestEnvironment(FOO='ggg', BAR='hhh') env.Dir('p_hhhb') env.File('p_d') t = env.NoClean('p_a', 'p_${BAR}b', ['p_c', 'p_d'], 'p_$FOO') assert t[0].__class__.__name__ == 'Entry', t[0].__class__.__name__ assert t[0].get_internal_path() == 'p_a' assert t[0].noclean assert t[1].__class__.__name__ == 'Dir', t[1].__class__.__name__ assert t[1].get_internal_path() == 'p_hhhb' assert t[1].noclean assert t[2].__class__.__name__ == 'Entry', t[2].__class__.__name__ assert t[2].get_internal_path() == 'p_c' assert t[2].noclean assert t[3].__class__.__name__ == 'File', t[3].__class__.__name__ assert t[3].get_internal_path() == 'p_d' assert t[3].noclean assert t[4].__class__.__name__ == 'Entry', t[4].__class__.__name__ assert t[4].get_internal_path() == 'p_ggg' assert t[4].noclean def test_Dump(self): """Test the Dump() method""" env = self.TestEnvironment(FOO = 'foo') assert env.Dump('FOO') == "'foo'", env.Dump('FOO') assert len(env.Dump()) > 200, env.Dump() # no args version def test_Environment(self): """Test the Environment() method""" env = self.TestEnvironment(FOO = 'xxx', BAR = 'yyy') e2 = env.Environment(X = '$FOO', Y = '$BAR') assert e2['X'] == 'xxx', e2['X'] assert e2['Y'] == 'yyy', e2['Y'] def test_Execute(self): """Test the Execute() method""" class MyAction(object): def __init__(self, *args, **kw): self.args = args def __call__(self, target, source, env): return "%s executed" % self.args env = Environment() env.Action = MyAction result = env.Execute("foo") assert result == "foo executed", result def test_Entry(self): """Test the Entry() method""" class MyFS(object): def Entry(self, name): return 'Entry(%s)' % name env = self.TestEnvironment(FOO = 'fooentry', BAR = 'barentry') env.fs = MyFS() e = env.Entry('e') assert e == 'Entry(e)', e e = env.Entry('$FOO') assert e == 'Entry(fooentry)', e e = env.Entry('${BAR}_$BAR') assert e == 'Entry(barentry_barentry)', e e = env.Entry(['entry1']) assert e == ['Entry(entry1)'], e e = env.Entry(['entry1', 'entry2']) assert e == ['Entry(entry1)', 'Entry(entry2)'], e def test_File(self): """Test the File() method""" class MyFS(object): def File(self, name): return 'File(%s)' % name env = self.TestEnvironment(FOO = 'foofile', BAR = 'barfile') env.fs = MyFS() f = env.File('f') assert f == 'File(f)', f f = env.File('$FOO') assert f == 'File(foofile)', f f = env.File('${BAR}_$BAR') assert f == 'File(barfile_barfile)', f f = env.File(['file1']) assert f == ['File(file1)'], f f = env.File(['file1', 'file2']) assert f == ['File(file1)', 'File(file2)'], f def test_FindFile(self): """Test the FindFile() method""" env = self.TestEnvironment(FOO = 'fff', BAR = 'bbb') r = env.FindFile('foo', ['no_such_directory']) assert r is None, r # XXX def test_Flatten(self): """Test the Flatten() method""" env = Environment() l = env.Flatten([1]) assert l == [1] l = env.Flatten([1, [2, [3, [4]]]]) assert l == [1, 2, 3, 4], l def test_GetBuildPath(self): """Test the GetBuildPath() method.""" env = self.TestEnvironment(MAGIC = 'xyzzy') p = env.GetBuildPath('foo') assert p == 'foo', p p = env.GetBuildPath('$MAGIC') assert p == 'xyzzy', p def test_Ignore(self): """Test the explicit Ignore method.""" env = self.TestEnvironment(FOO='yyy', BAR='zzz') env.Dir('dir1') env.Dir('dir2') env.File('yyyzzz') env.File('zzzyyy') t = env.Ignore(target='targ.py', dependency='dep.py')[0] assert t.__class__.__name__ == 'Entry', t.__class__.__name__ assert t.get_internal_path() == 'targ.py' assert len(t.ignore) == 1 i = t.ignore[0] assert i.__class__.__name__ == 'Entry', i.__class__.__name__ assert i.get_internal_path() == 'dep.py' t = env.Ignore(target='$FOO$BAR', dependency='$BAR$FOO')[0] assert t.__class__.__name__ == 'File', t.__class__.__name__ assert t.get_internal_path() == 'yyyzzz' assert len(t.ignore) == 1 i = t.ignore[0] assert i.__class__.__name__ == 'File', i.__class__.__name__ assert i.get_internal_path() == 'zzzyyy' t = env.Ignore(target='dir1', dependency='dir2')[0] assert t.__class__.__name__ == 'Dir', t.__class__.__name__ assert t.get_internal_path() == 'dir1' assert len(t.ignore) == 1 i = t.ignore[0] assert i.__class__.__name__ == 'Dir', i.__class__.__name__ assert i.get_internal_path() == 'dir2' def test_Literal(self): """Test the Literal() method""" env = self.TestEnvironment(FOO='fff', BAR='bbb') list = env.subst_list([env.Literal('$FOO'), '$BAR'])[0] assert list == ['$FOO', 'bbb'], list list = env.subst_list(['$FOO', env.Literal('$BAR')])[0] assert list == ['fff', '$BAR'], list def test_Local(self): """Test the Local() method.""" env = self.TestEnvironment(FOO='lll') l = env.Local(env.fs.File('fff')) assert str(l[0]) == 'fff', l[0] l = env.Local('ggg', '$FOO') assert str(l[0]) == 'ggg', l[0] assert str(l[1]) == 'lll', l[1] def test_Precious(self): """Test the Precious() method""" env = self.TestEnvironment(FOO='ggg', BAR='hhh') env.Dir('p_hhhb') env.File('p_d') t = env.Precious('p_a', 'p_${BAR}b', ['p_c', 'p_d'], 'p_$FOO') assert t[0].__class__.__name__ == 'Entry', t[0].__class__.__name__ assert t[0].get_internal_path() == 'p_a' assert t[0].precious assert t[1].__class__.__name__ == 'Dir', t[1].__class__.__name__ assert t[1].get_internal_path() == 'p_hhhb' assert t[1].precious assert t[2].__class__.__name__ == 'Entry', t[2].__class__.__name__ assert t[2].get_internal_path() == 'p_c' assert t[2].precious assert t[3].__class__.__name__ == 'File', t[3].__class__.__name__ assert t[3].get_internal_path() == 'p_d' assert t[3].precious assert t[4].__class__.__name__ == 'Entry', t[4].__class__.__name__ assert t[4].get_internal_path() == 'p_ggg' assert t[4].precious def test_Pseudo(self): """Test the Pseudo() method""" env = self.TestEnvironment(FOO='ggg', BAR='hhh') env.Dir('p_hhhb') env.File('p_d') t = env.Pseudo('p_a', 'p_${BAR}b', ['p_c', 'p_d'], 'p_$FOO') assert t[0].__class__.__name__ == 'Entry', t[0].__class__.__name__ assert t[0].get_internal_path() == 'p_a' assert t[0].pseudo assert t[1].__class__.__name__ == 'Dir', t[1].__class__.__name__ assert t[1].get_internal_path() == 'p_hhhb' assert t[1].pseudo assert t[2].__class__.__name__ == 'Entry', t[2].__class__.__name__ assert t[2].get_internal_path() == 'p_c' assert t[2].pseudo assert t[3].__class__.__name__ == 'File', t[3].__class__.__name__ assert t[3].get_internal_path() == 'p_d' assert t[3].pseudo assert t[4].__class__.__name__ == 'Entry', t[4].__class__.__name__ assert t[4].get_internal_path() == 'p_ggg' assert t[4].pseudo def test_Repository(self): """Test the Repository() method.""" class MyFS(object): def __init__(self): self.list = [] def Repository(self, *dirs): self.list.extend(list(dirs)) def Dir(self, name): return name env = self.TestEnvironment(FOO='rrr', BAR='sss') env.fs = MyFS() env.Repository('/tmp/foo') env.Repository('/tmp/$FOO', '/tmp/$BAR/foo') expect = ['/tmp/foo', '/tmp/rrr', '/tmp/sss/foo'] assert env.fs.list == expect, env.fs.list def test_Scanner(self): """Test the Scanner() method""" def scan(node, env, target, arg): pass env = self.TestEnvironment(FOO = scan) s = env.Scanner('foo') assert s is not None, s s = env.Scanner(function = 'foo') assert s is not None, s if 0: s = env.Scanner('$FOO') assert s is not None, s s = env.Scanner(function = '$FOO') assert s is not None, s def test_SConsignFile(self): """Test the SConsignFile() method""" import SCons.SConsign class MyFS(object): SConstruct_dir = os.sep + 'dir' env = self.TestEnvironment(FOO = 'SConsign', BAR = os.path.join(os.sep, 'File')) env.fs = MyFS() env.Execute = lambda action: None try: fnames = [] dbms = [] def capture(name, dbm_module, fnames=fnames, dbms=dbms): fnames.append(name) dbms.append(dbm_module) save_SConsign_File = SCons.SConsign.File SCons.SConsign.File = capture env.SConsignFile('foo') assert fnames[-1] == os.path.join(os.sep, 'dir', 'foo'), fnames assert dbms[-1] is None, dbms env.SConsignFile('$FOO') assert fnames[-1] == os.path.join(os.sep, 'dir', 'SConsign'), fnames assert dbms[-1] is None, dbms env.SConsignFile('/$FOO') assert fnames[-1] == os.sep + 'SConsign', fnames assert dbms[-1] is None, dbms env.SConsignFile(os.sep + '$FOO') assert fnames[-1] == os.sep + 'SConsign', fnames assert dbms[-1] is None, dbms env.SConsignFile('$BAR', 'x') assert fnames[-1] == os.path.join(os.sep, 'File'), fnames assert dbms[-1] == 'x', dbms env.SConsignFile('__$BAR', 7) assert fnames[-1] == os.path.join(os.sep, 'dir', '__', 'File'), fnames assert dbms[-1] == 7, dbms env.SConsignFile() assert fnames[-1] == os.path.join(os.sep, 'dir', '.sconsign'), fnames assert dbms[-1] is None, dbms env.SConsignFile(None) assert fnames[-1] is None, fnames assert dbms[-1] is None, dbms finally: SCons.SConsign.File = save_SConsign_File def test_SideEffect(self): """Test the SideEffect() method""" env = self.TestEnvironment(LIB='lll', FOO='fff', BAR='bbb') env.File('mylll.pdb') env.Dir('mymmm.pdb') foo = env.Object('foo.obj', 'foo.cpp')[0] bar = env.Object('bar.obj', 'bar.cpp')[0] s = env.SideEffect('mylib.pdb', ['foo.obj', 'bar.obj'])[0] assert s.__class__.__name__ == 'Entry', s.__class__.__name__ assert s.get_internal_path() == 'mylib.pdb' assert s.side_effect assert foo.side_effects == [s] assert bar.side_effects == [s] fff = env.Object('fff.obj', 'fff.cpp')[0] bbb = env.Object('bbb.obj', 'bbb.cpp')[0] s = env.SideEffect('my${LIB}.pdb', ['${FOO}.obj', '${BAR}.obj'])[0] assert s.__class__.__name__ == 'File', s.__class__.__name__ assert s.get_internal_path() == 'mylll.pdb' assert s.side_effect assert fff.side_effects == [s], fff.side_effects assert bbb.side_effects == [s], bbb.side_effects ggg = env.Object('ggg.obj', 'ggg.cpp')[0] ccc = env.Object('ccc.obj', 'ccc.cpp')[0] s = env.SideEffect('mymmm.pdb', ['ggg.obj', 'ccc.obj'])[0] assert s.__class__.__name__ == 'Dir', s.__class__.__name__ assert s.get_internal_path() == 'mymmm.pdb' assert s.side_effect assert ggg.side_effects == [s], ggg.side_effects assert ccc.side_effects == [s], ccc.side_effects def test_SourceCode(self): """Test the SourceCode() method.""" env = self.TestEnvironment(FOO='mmm', BAR='nnn') e = env.SourceCode('foo', None)[0] assert e.get_internal_path() == 'foo' s = e.src_builder() assert s is None, s b = Builder() e = env.SourceCode(e, b)[0] assert e.get_internal_path() == 'foo' s = e.src_builder() assert s is b, s e = env.SourceCode('$BAR$FOO', None)[0] assert e.get_internal_path() == 'nnnmmm' s = e.src_builder() assert s is None, s def test_SourceSignatures(self): """Test the SourceSignatures() method""" import SCons.Errors env = self.TestEnvironment(M = 'MD5', T = 'timestamp') exc_caught = None try: env.SourceSignatures('invalid_type') except SCons.Errors.UserError: exc_caught = 1 assert exc_caught, "did not catch expected UserError" env.SourceSignatures('MD5') assert env.src_sig_type == 'MD5', env.src_sig_type env.SourceSignatures('$M') assert env.src_sig_type == 'MD5', env.src_sig_type env.SourceSignatures('timestamp') assert env.src_sig_type == 'timestamp', env.src_sig_type env.SourceSignatures('$T') assert env.src_sig_type == 'timestamp', env.src_sig_type try: import SCons.Util save_md5 = SCons.Util.md5 SCons.Util.md5 = None try: env.SourceSignatures('MD5') except SCons.Errors.UserError: pass else: self.fail('Did not catch expected UserError') finally: SCons.Util.md5 = save_md5 def test_Split(self): """Test the Split() method""" env = self.TestEnvironment(FOO = 'fff', BAR = 'bbb') s = env.Split("foo bar") assert s == ["foo", "bar"], s s = env.Split("$FOO bar") assert s == ["fff", "bar"], s s = env.Split(["foo", "bar"]) assert s == ["foo", "bar"], s s = env.Split(["foo", "${BAR}-bbb"]) assert s == ["foo", "bbb-bbb"], s s = env.Split("foo") assert s == ["foo"], s s = env.Split("$FOO$BAR") assert s == ["fffbbb"], s def test_TargetSignatures(self): """Test the TargetSignatures() method""" import SCons.Errors env = self.TestEnvironment(B='build', C='content') exc_caught = None try: env.TargetSignatures('invalid_type') except SCons.Errors.UserError: exc_caught = 1 assert exc_caught, "did not catch expected UserError" assert not hasattr(env, '_build_signature') env.TargetSignatures('build') assert env.tgt_sig_type == 'build', env.tgt_sig_type env.TargetSignatures('$B') assert env.tgt_sig_type == 'build', env.tgt_sig_type env.TargetSignatures('content') assert env.tgt_sig_type == 'content', env.tgt_sig_type env.TargetSignatures('$C') assert env.tgt_sig_type == 'content', env.tgt_sig_type env.TargetSignatures('MD5') assert env.tgt_sig_type == 'MD5', env.tgt_sig_type env.TargetSignatures('timestamp') assert env.tgt_sig_type == 'timestamp', env.tgt_sig_type try: import SCons.Util save_md5 = SCons.Util.md5 SCons.Util.md5 = None try: env.TargetSignatures('MD5') except SCons.Errors.UserError: pass else: self.fail('Did not catch expected UserError') try: env.TargetSignatures('content') except SCons.Errors.UserError: pass else: self.fail('Did not catch expected UserError') finally: SCons.Util.md5 = save_md5 def test_Value(self): """Test creating a Value() object """ env = Environment() v1 = env.Value('a') assert v1.value == 'a', v1.value value2 = 'a' v2 = env.Value(value2) assert v2.value == value2, v2.value assert v2.value is value2, v2.value assert not v1 is v2 assert v1.value == v2.value v3 = env.Value('c', 'build-c') assert v3.value == 'c', v3.value def test_Environment_global_variable(self): """Test setting Environment variable to an Environment.Base subclass""" class MyEnv(SCons.Environment.Base): def xxx(self, string): return self.subst(string) SCons.Environment.Environment = MyEnv env = SCons.Environment.Environment(FOO = 'foo') f = env.subst('$FOO') assert f == 'foo', f f = env.xxx('$FOO') assert f == 'foo', f def test_bad_keywords(self): """Test trying to use reserved keywords in an Environment""" added = [] env = self.TestEnvironment(TARGETS = 'targets', SOURCES = 'sources', SOURCE = 'source', TARGET = 'target', CHANGED_SOURCES = 'changed_sources', CHANGED_TARGETS = 'changed_targets', UNCHANGED_SOURCES = 'unchanged_sources', UNCHANGED_TARGETS = 'unchanged_targets', INIT = 'init') bad_msg = '%s is not reserved, but got omitted; see Environment.construction_var_name_ok' added.append('INIT') for x in self.reserved_variables: assert x not in env, env[x] for x in added: assert x in env, bad_msg % x env.Append(TARGETS = 'targets', SOURCES = 'sources', SOURCE = 'source', TARGET = 'target', CHANGED_SOURCES = 'changed_sources', CHANGED_TARGETS = 'changed_targets', UNCHANGED_SOURCES = 'unchanged_sources', UNCHANGED_TARGETS = 'unchanged_targets', APPEND = 'append') added.append('APPEND') for x in self.reserved_variables: assert x not in env, env[x] for x in added: assert x in env, bad_msg % x env.AppendUnique(TARGETS = 'targets', SOURCES = 'sources', SOURCE = 'source', TARGET = 'target', CHANGED_SOURCES = 'changed_sources', CHANGED_TARGETS = 'changed_targets', UNCHANGED_SOURCES = 'unchanged_sources', UNCHANGED_TARGETS = 'unchanged_targets', APPENDUNIQUE = 'appendunique') added.append('APPENDUNIQUE') for x in self.reserved_variables: assert x not in env, env[x] for x in added: assert x in env, bad_msg % x env.Prepend(TARGETS = 'targets', SOURCES = 'sources', SOURCE = 'source', TARGET = 'target', CHANGED_SOURCES = 'changed_sources', CHANGED_TARGETS = 'changed_targets', UNCHANGED_SOURCES = 'unchanged_sources', UNCHANGED_TARGETS = 'unchanged_targets', PREPEND = 'prepend') added.append('PREPEND') for x in self.reserved_variables: assert x not in env, env[x] for x in added: assert x in env, bad_msg % x env.Prepend(TARGETS = 'targets', SOURCES = 'sources', SOURCE = 'source', TARGET = 'target', CHANGED_SOURCES = 'changed_sources', CHANGED_TARGETS = 'changed_targets', UNCHANGED_SOURCES = 'unchanged_sources', UNCHANGED_TARGETS = 'unchanged_targets', PREPENDUNIQUE = 'prependunique') added.append('PREPENDUNIQUE') for x in self.reserved_variables: assert x not in env, env[x] for x in added: assert x in env, bad_msg % x env.Replace(TARGETS = 'targets', SOURCES = 'sources', SOURCE = 'source', TARGET = 'target', CHANGED_SOURCES = 'changed_sources', CHANGED_TARGETS = 'changed_targets', UNCHANGED_SOURCES = 'unchanged_sources', UNCHANGED_TARGETS = 'unchanged_targets', REPLACE = 'replace') added.append('REPLACE') for x in self.reserved_variables: assert x not in env, env[x] for x in added: assert x in env, bad_msg % x copy = env.Clone(TARGETS = 'targets', SOURCES = 'sources', SOURCE = 'source', TARGET = 'target', CHANGED_SOURCES = 'changed_sources', CHANGED_TARGETS = 'changed_targets', UNCHANGED_SOURCES = 'unchanged_sources', UNCHANGED_TARGETS = 'unchanged_targets', COPY = 'copy') for x in self.reserved_variables: assert x not in copy, env[x] for x in added + ['COPY']: assert x in copy, bad_msg % x over = env.Override({'TARGETS' : 'targets', 'SOURCES' : 'sources', 'SOURCE' : 'source', 'TARGET' : 'target', 'CHANGED_SOURCES' : 'changed_sources', 'CHANGED_TARGETS' : 'changed_targets', 'UNCHANGED_SOURCES' : 'unchanged_sources', 'UNCHANGED_TARGETS' : 'unchanged_targets', 'OVERRIDE' : 'override'}) for x in self.reserved_variables: assert x not in over, over[x] for x in added + ['OVERRIDE']: assert x in over, bad_msg % x def test_parse_flags(self): '''Test the Base class parse_flags argument''' # all we have to show is that it gets to MergeFlags internally env = Environment(tools=[], parse_flags = '-X') assert env['CCFLAGS'] == ['-X'], env['CCFLAGS'] env = Environment(tools=[], CCFLAGS=None, parse_flags = '-Y') assert env['CCFLAGS'] == ['-Y'], env['CCFLAGS'] env = Environment(tools=[], CPPDEFINES = 'FOO', parse_flags = '-std=c99 -X -DBAR') assert env['CFLAGS'] == ['-std=c99'], env['CFLAGS'] assert env['CCFLAGS'] == ['-X'], env['CCFLAGS'] assert env['CPPDEFINES'] == ['FOO', 'BAR'], env['CPPDEFINES'] def test_clone_parse_flags(self): '''Test the env.Clone() parse_flags argument''' # all we have to show is that it gets to MergeFlags internally env = Environment(tools = []) env2 = env.Clone(parse_flags = '-X') assert 'CCFLAGS' not in env assert env2['CCFLAGS'] == ['-X'], env2['CCFLAGS'] env = Environment(tools = [], CCFLAGS=None) env2 = env.Clone(parse_flags = '-Y') assert env['CCFLAGS'] is None, env['CCFLAGS'] assert env2['CCFLAGS'] == ['-Y'], env2['CCFLAGS'] env = Environment(tools = [], CPPDEFINES = 'FOO') env2 = env.Clone(parse_flags = '-std=c99 -X -DBAR') assert 'CFLAGS' not in env assert env2['CFLAGS'] == ['-std=c99'], env2['CFLAGS'] assert 'CCFLAGS' not in env assert env2['CCFLAGS'] == ['-X'], env2['CCFLAGS'] assert env['CPPDEFINES'] == 'FOO', env['CPPDEFINES'] assert env2['CPPDEFINES'] == ['FOO','BAR'], env2['CPPDEFINES'] class OverrideEnvironmentTestCase(unittest.TestCase,TestEnvironmentFixture): def setUp(self): env = Environment() env._dict = {'XXX' : 'x', 'YYY' : 'y'} env2 = OverrideEnvironment(env, {'XXX' : 'x2'}) env3 = OverrideEnvironment(env2, {'XXX' : 'x3', 'YYY' : 'y3', 'ZZZ' : 'z3'}) self.envs = [ env, env2, env3 ] def checkpath(self, node, expect): return str(node) == os.path.normpath(expect) def test___init__(self): """Test OverrideEnvironment initialization""" env, env2, env3 = self.envs assert env['XXX'] == 'x', env['XXX'] assert env2['XXX'] == 'x2', env2['XXX'] assert env3['XXX'] == 'x3', env3['XXX'] assert env['YYY'] == 'y', env['YYY'] assert env2['YYY'] == 'y', env2['YYY'] assert env3['YYY'] == 'y3', env3['YYY'] def test___delitem__(self): """Test deleting variables from an OverrideEnvironment""" env, env2, env3 = self.envs del env3['XXX'] assert 'XXX' not in env, "env has XXX?" assert 'XXX' not in env2, "env2 has XXX?" assert 'XXX' not in env3, "env3 has XXX?" del env3['YYY'] assert 'YYY' not in env, "env has YYY?" assert 'YYY' not in env2, "env2 has YYY?" assert 'YYY' not in env3, "env3 has YYY?" del env3['ZZZ'] assert 'ZZZ' not in env, "env has ZZZ?" assert 'ZZZ' not in env2, "env2 has ZZZ?" assert 'ZZZ' not in env3, "env3 has ZZZ?" def test_get(self): """Test the OverrideEnvironment get() method""" env, env2, env3 = self.envs assert env.get('XXX') == 'x', env.get('XXX') assert env2.get('XXX') == 'x2', env2.get('XXX') assert env3.get('XXX') == 'x3', env3.get('XXX') assert env.get('YYY') == 'y', env.get('YYY') assert env2.get('YYY') == 'y', env2.get('YYY') assert env3.get('YYY') == 'y3', env3.get('YYY') assert env.get('ZZZ') is None, env.get('ZZZ') assert env2.get('ZZZ') is None, env2.get('ZZZ') assert env3.get('ZZZ') == 'z3', env3.get('ZZZ') def test_has_key(self): """Test the OverrideEnvironment has_key() method""" env, env2, env3 = self.envs assert 'XXX' in env, 'XXX' in env assert 'XXX' in env2, 'XXX' in env2 assert 'XXX' in env3, 'XXX' in env3 assert 'YYY' in env, 'YYY' in env assert 'YYY' in env2, 'YYY' in env2 assert 'YYY' in env3, 'YYY' in env3 assert 'ZZZ' not in env, 'ZZZ' in env assert 'ZZZ' not in env2, 'ZZZ' in env2 assert 'ZZZ' in env3, 'ZZZ' in env3 def test_contains(self): """Test the OverrideEnvironment __contains__() method""" env, env2, env3 = self.envs assert 'XXX' in env assert 'XXX' in env2 assert 'XXX' in env3 assert 'YYY' in env assert 'YYY' in env2 assert 'YYY' in env3 assert not 'ZZZ' in env assert not 'ZZZ' in env2 assert 'ZZZ' in env3 def test_items(self): """Test the OverrideEnvironment Dictionary() method""" env, env2, env3 = self.envs items = env.Dictionary() assert items == {'XXX' : 'x', 'YYY' : 'y'}, items items = env2.Dictionary() assert items == {'XXX' : 'x2', 'YYY' : 'y'}, items items = env3.Dictionary() assert items == {'XXX' : 'x3', 'YYY' : 'y3', 'ZZZ' : 'z3'}, items def test_items(self): """Test the OverrideEnvironment items() method""" env, env2, env3 = self.envs items = sorted(env.items()) assert items == [('XXX', 'x'), ('YYY', 'y')], items items = sorted(env2.items()) assert items == [('XXX', 'x2'), ('YYY', 'y')], items items = sorted(env3.items()) assert items == [('XXX', 'x3'), ('YYY', 'y3'), ('ZZZ', 'z3')], items def test_gvars(self): """Test the OverrideEnvironment gvars() method""" env, env2, env3 = self.envs gvars = env.gvars() assert gvars == {'XXX' : 'x', 'YYY' : 'y'}, gvars gvars = env2.gvars() assert gvars == {'XXX' : 'x', 'YYY' : 'y'}, gvars gvars = env3.gvars() assert gvars == {'XXX' : 'x', 'YYY' : 'y'}, gvars def test_lvars(self): """Test the OverrideEnvironment lvars() method""" env, env2, env3 = self.envs lvars = env.lvars() assert lvars == {}, lvars lvars = env2.lvars() assert lvars == {'XXX' : 'x2'}, lvars lvars = env3.lvars() assert lvars == {'XXX' : 'x3', 'YYY' : 'y3', 'ZZZ' : 'z3'}, lvars def test_Replace(self): """Test the OverrideEnvironment Replace() method""" env, env2, env3 = self.envs assert env['XXX'] == 'x', env['XXX'] assert env2['XXX'] == 'x2', env2['XXX'] assert env3['XXX'] == 'x3', env3['XXX'] assert env['YYY'] == 'y', env['YYY'] assert env2['YYY'] == 'y', env2['YYY'] assert env3['YYY'] == 'y3', env3['YYY'] env.Replace(YYY = 'y4') assert env['XXX'] == 'x', env['XXX'] assert env2['XXX'] == 'x2', env2['XXX'] assert env3['XXX'] == 'x3', env3['XXX'] assert env['YYY'] == 'y4', env['YYY'] assert env2['YYY'] == 'y4', env2['YYY'] assert env3['YYY'] == 'y3', env3['YYY'] # Tests a number of Base methods through an OverrideEnvironment to # make sure they handle overridden constructionv variables properly. # # The following Base methods also call self.subst(), and so could # theoretically be subject to problems with evaluating overridden # variables, but they're never really called that way in the rest # of our code, so we won't worry about them (at least for now): # # ParseConfig() # ParseDepends() # Platform() # Tool() # # Action() # Alias() # Builder() # CacheDir() # Configure() # Environment() # FindFile() # Scanner() # SourceSignatures() # TargetSignatures() # It's unlikely Clone() will ever be called this way, so let the # other methods test that handling overridden values works. #def test_Clone(self): # """Test the OverrideEnvironment Clone() method""" # pass def test_FindIxes(self): """Test the OverrideEnvironment FindIxes() method""" env, env2, env3 = self.envs x = env.FindIxes(['xaaay'], 'XXX', 'YYY') assert x == 'xaaay', x x = env2.FindIxes(['x2aaay'], 'XXX', 'YYY') assert x == 'x2aaay', x x = env3.FindIxes(['x3aaay3'], 'XXX', 'YYY') assert x == 'x3aaay3', x def test_ReplaceIxes(self): """Test the OverrideEnvironment ReplaceIxes() method""" env, env2, env3 = self.envs x = env.ReplaceIxes('xaaay', 'XXX', 'YYY', 'YYY', 'XXX') assert x == 'yaaax', x x = env2.ReplaceIxes('x2aaay', 'XXX', 'YYY', 'YYY', 'XXX') assert x == 'yaaax2', x x = env3.ReplaceIxes('x3aaay3', 'XXX', 'YYY', 'YYY', 'XXX') assert x == 'y3aaax3', x # It's unlikely WhereIs() will ever be called this way, so let the # other methods test that handling overridden values works. #def test_WhereIs(self): # """Test the OverrideEnvironment WhereIs() method""" # pass def test_Dir(self): """Test the OverrideEnvironment Dir() method""" env, env2, env3 = self.envs x = env.Dir('ddir/$XXX') assert self.checkpath(x, 'ddir/x'), str(x) x = env2.Dir('ddir/$XXX') assert self.checkpath(x, 'ddir/x2'), str(x) x = env3.Dir('ddir/$XXX') assert self.checkpath(x, 'ddir/x3'), str(x) def test_Entry(self): """Test the OverrideEnvironment Entry() method""" env, env2, env3 = self.envs x = env.Entry('edir/$XXX') assert self.checkpath(x, 'edir/x'), str(x) x = env2.Entry('edir/$XXX') assert self.checkpath(x, 'edir/x2'), str(x) x = env3.Entry('edir/$XXX') assert self.checkpath(x, 'edir/x3'), str(x) def test_File(self): """Test the OverrideEnvironment File() method""" env, env2, env3 = self.envs x = env.File('fdir/$XXX') assert self.checkpath(x, 'fdir/x'), str(x) x = env2.File('fdir/$XXX') assert self.checkpath(x, 'fdir/x2'), str(x) x = env3.File('fdir/$XXX') assert self.checkpath(x, 'fdir/x3'), str(x) def test_Split(self): """Test the OverrideEnvironment Split() method""" env, env2, env3 = self.envs env['AAA'] = '$XXX $YYY $ZZZ' x = env.Split('$AAA') assert x == ['x', 'y'], x x = env2.Split('$AAA') assert x == ['x2', 'y'], x x = env3.Split('$AAA') assert x == ['x3', 'y3', 'z3'], x def test_parse_flags(self): '''Test the OverrideEnvironment parse_flags argument''' # all we have to show is that it gets to MergeFlags internally env = SubstitutionEnvironment() env2 = env.Override({'parse_flags' : '-X'}) assert 'CCFLAGS' not in env assert env2['CCFLAGS'] == ['-X'], env2['CCFLAGS'] env = SubstitutionEnvironment(CCFLAGS=None) env2 = env.Override({'parse_flags' : '-Y'}) assert env['CCFLAGS'] is None, env['CCFLAGS'] assert env2['CCFLAGS'] == ['-Y'], env2['CCFLAGS'] env = SubstitutionEnvironment(CPPDEFINES = 'FOO') env2 = env.Override({'parse_flags' : '-std=c99 -X -DBAR'}) assert 'CFLAGS' not in env assert env2['CFLAGS'] == ['-std=c99'], env2['CFLAGS'] assert 'CCFLAGS' not in env assert env2['CCFLAGS'] == ['-X'], env2['CCFLAGS'] assert env['CPPDEFINES'] == 'FOO', env['CPPDEFINES'] assert env2['CPPDEFINES'] == ['FOO','BAR'], env2['CPPDEFINES'] class NoSubstitutionProxyTestCase(unittest.TestCase,TestEnvironmentFixture): def test___init__(self): """Test NoSubstitutionProxy initialization""" env = self.TestEnvironment(XXX = 'x', YYY = 'y') assert env['XXX'] == 'x', env['XXX'] assert env['YYY'] == 'y', env['YYY'] proxy = NoSubstitutionProxy(env) assert proxy['XXX'] == 'x', proxy['XXX'] assert proxy['YYY'] == 'y', proxy['YYY'] def test_attributes(self): """Test getting and setting NoSubstitutionProxy attributes""" env = Environment() setattr(env, 'env_attr', 'value1') proxy = NoSubstitutionProxy(env) setattr(proxy, 'proxy_attr', 'value2') x = getattr(env, 'env_attr') assert x == 'value1', x x = getattr(proxy, 'env_attr') assert x == 'value1', x x = getattr(env, 'proxy_attr') assert x == 'value2', x x = getattr(proxy, 'proxy_attr') assert x == 'value2', x def test_subst(self): """Test the NoSubstitutionProxy.subst() method""" env = self.TestEnvironment(XXX = 'x', YYY = 'y') assert env['XXX'] == 'x', env['XXX'] assert env['YYY'] == 'y', env['YYY'] proxy = NoSubstitutionProxy(env) assert proxy['XXX'] == 'x', proxy['XXX'] assert proxy['YYY'] == 'y', proxy['YYY'] x = env.subst('$XXX') assert x == 'x', x x = proxy.subst('$XXX') assert x == '$XXX', x x = proxy.subst('$YYY', raw=7, target=None, source=None, conv=None, extra_meaningless_keyword_argument=None) assert x == '$YYY', x def test_subst_kw(self): """Test the NoSubstitutionProxy.subst_kw() method""" env = self.TestEnvironment(XXX = 'x', YYY = 'y') assert env['XXX'] == 'x', env['XXX'] assert env['YYY'] == 'y', env['YYY'] proxy = NoSubstitutionProxy(env) assert proxy['XXX'] == 'x', proxy['XXX'] assert proxy['YYY'] == 'y', proxy['YYY'] x = env.subst_kw({'$XXX':'$YYY'}) assert x == {'x':'y'}, x x = proxy.subst_kw({'$XXX':'$YYY'}) assert x == {'$XXX':'$YYY'}, x def test_subst_list(self): """Test the NoSubstitutionProxy.subst_list() method""" env = self.TestEnvironment(XXX = 'x', YYY = 'y') assert env['XXX'] == 'x', env['XXX'] assert env['YYY'] == 'y', env['YYY'] proxy = NoSubstitutionProxy(env) assert proxy['XXX'] == 'x', proxy['XXX'] assert proxy['YYY'] == 'y', proxy['YYY'] x = env.subst_list('$XXX') assert x == [['x']], x x = proxy.subst_list('$XXX') assert x == [[]], x x = proxy.subst_list('$YYY', raw=0, target=None, source=None, conv=None) assert x == [[]], x def test_subst_target_source(self): """Test the NoSubstitutionProxy.subst_target_source() method""" env = self.TestEnvironment(XXX = 'x', YYY = 'y') assert env['XXX'] == 'x', env['XXX'] assert env['YYY'] == 'y', env['YYY'] proxy = NoSubstitutionProxy(env) assert proxy['XXX'] == 'x', proxy['XXX'] assert proxy['YYY'] == 'y', proxy['YYY'] args = ('$XXX $TARGET $SOURCE $YYY',) kw = {'target' : DummyNode('ttt'), 'source' : DummyNode('sss')} x = env.subst_target_source(*args, **kw) assert x == 'x ttt sss y', x x = proxy.subst_target_source(*args, **kw) assert x == ' ttt sss ', x class EnvironmentVariableTestCase(unittest.TestCase): def test_is_valid_construction_var(self): """Testing is_valid_construction_var()""" r = is_valid_construction_var("_a") assert r is not None, r r = is_valid_construction_var("z_") assert r is not None, r r = is_valid_construction_var("X_") assert r is not None, r r = is_valid_construction_var("2a") assert r is None, r r = is_valid_construction_var("a2_") assert r is not None, r r = is_valid_construction_var("/") assert r is None, r r = is_valid_construction_var("_/") assert r is None, r r = is_valid_construction_var("a/") assert r is None, r r = is_valid_construction_var(".b") assert r is None, r r = is_valid_construction_var("_.b") assert r is None, r r = is_valid_construction_var("b1._") assert r is None, r r = is_valid_construction_var("-b") assert r is None, r r = is_valid_construction_var("_-b") assert r is None, r r = is_valid_construction_var("b1-_") assert r is None, r if __name__ == "__main__": suite = unittest.TestSuite() tclasses = [ SubstitutionTestCase, BaseTestCase, OverrideEnvironmentTestCase, NoSubstitutionProxyTestCase, EnvironmentVariableTestCase ] for tclass in tclasses: names = unittest.getTestCaseNames(tclass, 'test_') suite.addTests(list(map(tclass, names))) TestUnit.run(suite) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
the-stack_0_26221
import factory from factory.fuzzy import FuzzyChoice from coordinator.api.models.release import Release from coordinator.api.factories.study import StudyFactory class ReleaseFactory(factory.django.DjangoModelFactory): class Meta: model = Release name = factory.Faker("bs") author = factory.Faker("name") description = factory.Faker("bs") tasks = factory.RelatedFactory( "coordinator.api.factories.task.TaskFactory", "release" ) state = FuzzyChoice( ["waiting", "failed", "canceled", "staged", "rejected", "published"] ) @factory.post_generation def studies(self, create, extracted, **kwargs): if not create: self.studies.add(StudyFactory()) return if extracted: for study in extracted: self.studies.add(study) else: study = FuzzyChoice( [ StudyFactory(kf_id="SD_ME0WME0W"), StudyFactory(kf_id="SD_W2PQV9FJ"), StudyFactory(kf_id="SD_QQXC6C3V"), StudyFactory(kf_id="SD_ODWXI1TE"), ] ).fuzz() self.studies.add(study)
the-stack_0_26227
"""Module for creating Cloudnet liquid water content file using scaled-adiabatic method.""" from typing import Optional, Tuple import numpy as np from numpy import ma from cloudnetpy import output, utils from cloudnetpy.categorize import atmos from cloudnetpy.datasource import DataSource from cloudnetpy.metadata import MetaData from cloudnetpy.products import product_tools as p_tools from cloudnetpy.products.product_tools import CategorizeBits, get_is_rain G_TO_KG = 0.001 def generate_lwc(categorize_file: str, output_file: str, uuid: Optional[str] = None) -> str: """Generates Cloudnet liquid water content product. This function calculates cloud liquid water content using the so-called adiabatic-scaled method. In this method, liquid water content measured by microwave radiometer is used to constrain the theoretical liquid water content of observed liquid clouds. The results are written in a netCDF file. Args: categorize_file: Categorize file name. output_file: Output file name. uuid: Set specific UUID for the file. Returns: str: UUID of the generated file. Examples: >>> from cloudnetpy.products import generate_lwc >>> generate_lwc('categorize.nc', 'lwc.nc') References: Illingworth, A.J., R.J. Hogan, E. O'Connor, D. Bouniol, M.E. Brooks, J. Delanoé, D.P. Donovan, J.D. Eastment, N. Gaussiat, J.W. Goddard, M. Haeffelin, H.K. Baltink, O.A. Krasnov, J. Pelon, J. Piriou, A. Protat, H.W. Russchenberg, A. Seifert, A.M. Tompkins, G. van Zadelhoff, F. Vinit, U. Willén, D.R. Wilson, and C.L. Wrench, 2007: Cloudnet. Bull. Amer. Meteor. Soc., 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883 """ with LwcSource(categorize_file) as lwc_source: lwc = Lwc(lwc_source) clouds = CloudAdjustor(lwc_source, lwc) lwc_error = LwcError(lwc_source, lwc) lwc_source.append_results(lwc.lwc, clouds.status, lwc_error.error) date = lwc_source.get_date() attributes = output.add_time_attribute(LWC_ATTRIBUTES, date) output.update_attributes(lwc_source.data, attributes) uuid = output.save_product_file( "lwc", lwc_source, output_file, uuid, copy_from_cat=( "lwp", "lwp_error", ), ) return uuid class LwcSource(DataSource): """Data container for liquid water content calculations. Child of DataSource. This class reads input data from a categorize file and provides data structures and methods for holding the results. Args: categorize_file: Categorize file name. Attributes: lwp (ndarray): 1D liquid water path. lwp_error (ndarray): 1D error of liquid water path. is_rain (ndarray): 1D array denoting presence of rain. dheight (float): Median difference in height vector. atmosphere (dict): Dictionary containing interpolated fields `temperature` and `pressure`. categorize_bits (CategorizeBits): The :class:`CategorizeBits` instance. """ def __init__(self, categorize_file: str): super().__init__(categorize_file) self.lwp = self.getvar("lwp") self.lwp[self.lwp < 0] = 0 self.lwp_error = self.getvar("lwp_error") self.is_rain = get_is_rain(categorize_file) self.dheight = utils.mdiff(self.getvar("height")) self.atmosphere = self._get_atmosphere(categorize_file) self.categorize_bits = CategorizeBits(categorize_file) def append_results(self, lwc: np.ndarray, status: np.ndarray, error: np.ndarray) -> None: self.append_data(lwc * G_TO_KG, "lwc", units="kg m-3") self.append_data(status, "lwc_retrieval_status") self.append_data(error, "lwc_error", units="dB") @staticmethod def _get_atmosphere(categorize_file: str) -> Tuple[np.ndarray, np.ndarray]: fields = ["temperature", "pressure"] atmosphere = p_tools.interpolate_model(categorize_file, fields) return atmosphere["temperature"], atmosphere["pressure"] class Lwc: """Class handling the actual LWC calculations. Args: lwc_source: The :class:`LwcSource` instance. Attributes: lwc_source (LwcSource): The :class:`LwcSource` instance. dheight (float): Median difference in height vector. is_liquid (ndarray): 2D array denoting liquid. lwc_adiabatic (ndarray): 2D array storing adiabatic lwc. lwc (ndarray): 2D array of liquid water content (scaled with lwp). """ def __init__(self, lwc_source: LwcSource): self.lwc_source = lwc_source self.dheight = self.lwc_source.dheight self.is_liquid = self._get_liquid() self.lwc_adiabatic = self._init_lwc_adiabatic() self.lwc = self._adiabatic_lwc_to_lwc() self._mask_rain() def _get_liquid(self) -> np.ndarray: category_bits = self.lwc_source.categorize_bits.category_bits return category_bits["droplet"] def _init_lwc_adiabatic(self) -> np.ndarray: """Returns theoretical adiabatic lwc in liquid clouds (g/m3).""" lwc_dz = atmos.fill_clouds_with_lwc_dz(self.lwc_source.atmosphere, self.is_liquid) return atmos.calc_adiabatic_lwc(lwc_dz, self.dheight) def _adiabatic_lwc_to_lwc(self) -> np.ndarray: """Initialises liquid water content (g/m3). Calculates LWC for ALL profiles (rain, lwp > theoretical, etc.), """ lwc_scaled = atmos.distribute_lwp_to_liquid_clouds(self.lwc_adiabatic, self.lwc_source.lwp) return lwc_scaled / self.dheight def _mask_rain(self) -> None: is_rain = self.lwc_source.is_rain.astype(bool) self.lwc[is_rain, :] = ma.masked class CloudAdjustor: """Adjusts clouds (where possible) so that theoretical and measured LWP agree. Args: lwc_source: The :class:`LwcSource` instance. lwc: The :class:`Lwc` instance. Attributes: lwc_source (LwcSource): The :class:`LwcSource` instance. lwc (ndarray): Liquid water content data. is_liquid (ndarray): 2D array denoting liquid. lwc_adiabatic (ndarray): 2D array storing adiabatic lwc. echo (dict): Dictionary storing radar and lidar echos status (ndarray): 2D array storing lwc status classification """ def __init__(self, lwc_source: LwcSource, lwc: Lwc): self.lwc_source = lwc_source self.lwc = lwc.lwc self.is_liquid = lwc.is_liquid self.lwc_adiabatic = lwc.lwc_adiabatic self.echo = self._get_echo() self.status = self._init_status() self._adjust_cloud_tops(self._find_adjustable_clouds()) self._mask_rain() self._mask_missing() def _get_echo(self) -> dict: quality_bits = self.lwc_source.categorize_bits.quality_bits return {key: quality_bits[key] for key in ("radar", "lidar")} def _init_status(self) -> ma.MaskedArray: status = ma.zeros(self.is_liquid.shape, dtype=int) status[self.is_liquid] = 1 return status def _adjust_cloud_tops(self, adjustable_clouds: np.ndarray) -> None: """Adjusts cloud top index so that measured lwc corresponds to theoretical value.""" for time_index in np.unique(np.where(adjustable_clouds)[0]): base_index = np.where(adjustable_clouds[time_index, :])[0][0] self._update_status(time_index) self._adjust_lwc(time_index, base_index) def _update_status(self, time_ind: int) -> None: alt_indices = np.where(self.is_liquid[time_ind, :])[0] self.status[time_ind, alt_indices] = 2 def _adjust_lwc(self, time_ind: int, base_ind: int) -> None: lwc_base = self.lwc_adiabatic[time_ind, base_ind] distance_from_base = 1 while True: top_ind = base_ind + distance_from_base lwc_top = lwc_base * (distance_from_base + 1) self.lwc_adiabatic[time_ind, top_ind] = lwc_top if not self.status[time_ind, top_ind]: self.status[time_ind, top_ind] = 3 if self._has_converged(time_ind) or self._out_of_bound(top_ind): break distance_from_base += 1 def _has_converged(self, ind: int) -> bool: lwc_sum = ma.sum(self.lwc_adiabatic[ind, :]) if lwc_sum * self.lwc_source.dheight > self.lwc_source.lwp[ind]: return True return False def _out_of_bound(self, ind: int) -> bool: return ind >= self.lwc.shape[1] - 1 def _find_adjustable_clouds(self) -> np.ndarray: top_clouds = self._find_topmost_clouds() detection_type = self._find_echo_combinations_in_liquid() detection_type[~top_clouds] = 0 lidar_only_clouds = self._find_lidar_only_clouds(detection_type) top_clouds[~lidar_only_clouds, :] = 0 top_clouds = self._remove_good_profiles(top_clouds) return top_clouds def _find_topmost_clouds(self) -> np.ndarray: top_clouds = np.copy(self.is_liquid) cloud_edges = top_clouds[:, :-1][:, ::-1] < top_clouds[:, 1:][:, ::-1] topmost_bases = self.is_liquid.shape[1] - 1 - np.argmax(cloud_edges, axis=1) for n, base in enumerate(topmost_bases): top_clouds[n, :base] = 0 return top_clouds def _find_echo_combinations_in_liquid(self) -> np.ndarray: """Classifies liquid clouds by detection type: 1=lidar, 2=radar, 3=both.""" lidar_detected = (self.is_liquid & self.echo["lidar"]).astype(int) radar_detected = (self.is_liquid & self.echo["radar"]).astype(int) * 2 return lidar_detected + radar_detected @staticmethod def _find_lidar_only_clouds(detection: np.ndarray) -> np.ndarray: """Finds top clouds that contain only lidar-detected pixels. Args: detection: Array of integers where 1=lidar, 2=radar, 3=both. Returns: Boolean array containing top-clouds that are detected only by lidar. """ sum_of_cloud_pixels = ma.sum(detection > 0, axis=1) sum_of_detection_type = ma.sum(detection, axis=1) return sum_of_cloud_pixels / sum_of_detection_type == 1 def _remove_good_profiles(self, top_clouds: np.ndarray) -> np.ndarray: no_rain = ~self.lwc_source.is_rain.astype(bool) lwp_difference = self._find_lwp_difference() dubious_profiles = (lwp_difference < 0) & no_rain top_clouds[~dubious_profiles, :] = 0 return top_clouds def _find_lwp_difference(self) -> np.ndarray: """Returns difference of theoretical LWP and measured LWP (g/m2). In theory, this difference should be always positive. Negative values indicate missing (or too narrow) liquid clouds. """ lwc_sum = ma.sum(self.lwc_adiabatic, axis=1) * self.lwc_source.dheight return lwc_sum - self.lwc_source.lwp def _mask_rain(self) -> None: is_rain = self.lwc_source.is_rain.astype(bool) self.status[is_rain, :] = 4 def _mask_missing(self) -> None: is_missing = np.where(self.lwc_source.lwp == ma.masked) self.status[is_missing, :] = 4 class LwcError: """Calculates liquid water content error. Args: lwc_source: The :class:`LwcSource` instance. lwc: The :class:`Lwc` instance. Attributes: lwc_source (LwcSource): The :class:`LwcSource` instance. lwc (ndarray): Liquid water content data. error (ndarray): 2D array storing lwc_error. """ def __init__(self, lwc_source: LwcSource, lwc: Lwc): self.lwc = lwc.lwc self.lwc_source = lwc_source self.error = self._calculate_lwc_error() self._mask_rain() def _calculate_lwc_error(self) -> np.ndarray: lwc_relative_error = self._calc_lwc_relative_error() lwp_relative_error = self._calc_lwp_relative_error() combined_error = self._calc_combined_error(lwc_relative_error, lwp_relative_error) return self._fill_error_array(combined_error) def _calc_lwc_relative_error(self) -> np.ndarray: lwc_gradient = self._calc_lwc_gradient() error = lwc_gradient / self.lwc / 2 return self._limit_error(error, 5) def _calc_lwc_gradient(self) -> np.ndarray: assert isinstance(self.lwc, ma.MaskedArray) gradient_elements = np.gradient(self.lwc.filled(0)) return utils.l2norm(*gradient_elements) def _calc_lwp_relative_error(self) -> np.ndarray: err = self.lwc_source.lwp_error value = self.lwc_source.lwp error = np.divide(err, value, out=np.zeros_like(err), where=value != 0) return self._limit_error(error, 10) @staticmethod def _limit_error(error: np.ndarray, max_value: float) -> np.ndarray: error[error > max_value] = max_value return error @staticmethod def _calc_combined_error(error_2d: np.ndarray, error_1d: np.ndarray) -> np.ndarray: error_1d_transposed = utils.transpose(error_1d) return utils.l2norm(error_2d, error_1d_transposed) def _fill_error_array(self, error_in: np.ndarray) -> np.ndarray: lwc_error = ma.masked_all(self.lwc.shape) ind = ma.where(self.lwc) lwc_error[ind] = error_in[ind] return lwc_error def _mask_rain(self) -> None: is_rain = self.lwc_source.is_rain.astype(bool) self.error[is_rain, :] = ma.masked COMMENTS = { "lwc": ( "This variable was calculated for the profiles where the categorization data has\n" "diagnosed that liquid water is present and liquid water path is available from\n" "a coincident microwave radiometer. The model temperature and pressure were used\n" "to estimate the theoretical adiabatic liquid water content gradient for each\n" "cloud base and the adiabatic liquid water content is then scaled that its\n" "integral matches the radiometer measurement so that the liquid water content\n" "now follows a quasi-adiabatic profile. If the liquid layer is detected by the\n" "lidar only, there is the potential for cloud top height to be underestimated\n" "and so if the adiabatic integrated liquid water content is less than that\n" "measured by the microwave radiometer, the cloud top is extended until the\n" "adiabatic integrated liquid water content agrees with the value measured by the\n" "microwave radiometer. Missing values indicate that either\n" "1) a liquid water layer was diagnosed but no microwave radiometer data was\n" " available,\n" "2) a liquid water layer was diagnosed but the microwave radiometer data was\n" " unreliable; this may be because a melting layer was present in the profile,\n" " or because the retrieved lwp was unphysical (values of zero are not uncommon\n" " for thin supercooled liquid layers)\n" "3) that rain is present in the profile and therefore, the vertical extent of\n" " liquid layers is difficult to ascertain." ), "lwc_error": ( "This variable is an estimate of the random error in liquid water content\n" "due to the uncertainty in the microwave radiometer liquid water path\n" "retrieval and the uncertainty in cloud base and/or cloud top height." ), "lwc_retrieval_status": ( "This variable describes whether a retrieval was performed for each pixel, and\n" "its associated quality, in the form of 6 different classes. The classes are\n" "defined in the definition attribute. The most reliable retrieval is that when\n" "both radar and lidar detect the liquid layer, and microwave radiometer data is\n" "present, indicated by the value 1. The next most reliable is when microwave\n" "radiometer data is used to adjust the cloud depth when the radar does not\n" "detect the liquid layer, indicated by the value 2, with a value of 3 indicating\n" "the cloud pixels that have been added at cloud top to avoid the profile\n" "becoming superadiabatic. A value of 4 indicates that microwave radiometer data\n" "were not available or not reliable (melting level present or unphysical values)\n" "but the liquid layers were well defined. If cloud top was not well defined\n" "then this is indicated by a value of 5. The full retrieval of liquid water\n" "content, which requires reliable liquid water path from the microwave\n" "radiometer, was only performed for classes 1-3. No attempt is made to retrieve\n" "liquid water content when rain is present; this is indicated by the value 6." ), } DEFINITIONS = { "lwc_retrieval_status": ( "\n" "Value 0: No liquid water detected.\n" "Value 1: Reliable retrieval.\n" "Value 2: Adiabatic retrieval where cloud top has been adjusted to match liquid\n" " water path from microwave radiometer because layer is not detected by radar.\n" "Value 3: Adiabatic retrieval: new cloud pixels where cloud top has been\n" " adjusted to match liquid water path from microwave radiometer because\n" " layer is not detected by radar.\n" "Value 4: No retrieval: either no liquid water path is available or liquid water\n" " path is uncertain.\n" "Value 5: No retrieval: liquid water layer detected only by the lidar and liquid\n" " water path is unavailable or uncertain: cloud top may be higher than\n" " diagnosed cloud top since lidar signal has been attenuated.\n" "Value 6: Rain present: cloud extent is difficult to ascertain and liquid water\n" " path also uncertain." ) } LWC_ATTRIBUTES = { "lwc": MetaData( long_name="Liquid water content", comment=COMMENTS["lwc"], ancillary_variables="lwc_error" ), "lwc_error": MetaData( long_name="Random error in liquid water content, one standard deviation", comment=COMMENTS["lwc_error"], units="dB", ), "lwc_retrieval_status": MetaData( long_name="Liquid water content retrieval status", comment=COMMENTS["lwc_retrieval_status"], definition=DEFINITIONS["lwc_retrieval_status"], units="1", ), }
the-stack_0_26228
from .config import Config from .logger import PosLogger from .web import Web class App(object): APP_INITIAL_MSG = "POS web" def __init__(self, version, params): self.version = version print("{} {}".format(self.APP_INITIAL_MSG, self.version)) self.config = Config(params = params) self.logger = PosLogger(self.config, version) self.logger.info(self.APP_INITIAL_MSG + " started") def run(self, application): self.application = application self.application.run(self.config, self.logger) def finished(self): self.logger.info(self.APP_INITIAL_MSG + " finished")
the-stack_0_26231
#!/usr/bin/python3 # Mostly copied from https://picamera.readthedocs.io/en/release-1.13/recipes2.html # Run this script, then point a web browser at http:<this-ip-address>:8000 # Note: needs simplejpeg to be installed (pip3 install simplejpeg). from picamera2.picamera2 import * from picamera2.encoders.jpeg_encoder import * import io import logging import socketserver from threading import Condition, Thread from http import server PAGE = """\ <html> <head> <title>picamera2 MJPEG streaming demo</title> </head> <body> <h1>Picamera2 MJPEG Streaming Demo</h1> <img src="stream.mjpg" width="640" height="480" /> </body> </html> """ class StreamingOutput(io.BufferedIOBase): def __init__(self): self.frame = None self.condition = Condition() def write(self, buf): with self.condition: self.frame = buf self.condition.notify_all() class StreamingHandler(server.BaseHTTPRequestHandler): def do_GET(self): if self.path == '/': self.send_response(301) self.send_header('Location', '/index.html') self.end_headers() elif self.path == '/index.html': content = PAGE.encode('utf-8') self.send_response(200) self.send_header('Content-Type', 'text/html') self.send_header('Content-Length', len(content)) self.end_headers() self.wfile.write(content) elif self.path == '/stream.mjpg': self.send_response(200) self.send_header('Age', 0) self.send_header('Cache-Control', 'no-cache, private') self.send_header('Pragma', 'no-cache') self.send_header('Content-Type', 'multipart/x-mixed-replace; boundary=FRAME') self.end_headers() try: while True: with output.condition: output.condition.wait() frame = output.frame self.wfile.write(b'--FRAME\r\n') self.send_header('Content-Type', 'image/jpeg') self.send_header('Content-Length', len(frame)) self.end_headers() self.wfile.write(frame) self.wfile.write(b'\r\n') except Exception as e: logging.warning( 'Removed streaming client %s: %s', self.client_address, str(e)) else: self.send_error(404) self.end_headers() class StreamingServer(socketserver.ThreadingMixIn, server.HTTPServer): allow_reuse_address = True daemon_threads = True picam2 = Picamera2() picam2.start_preview() picam2.configure(picam2.video_configuration(main={"size": (640, 480)})) output = StreamingOutput() picam2.start_recording(JpegEncoder(), output) try: address = ('', 8000) server = StreamingServer(address, StreamingHandler) server.serve_forever() finally: picam2.stop_recording()
the-stack_0_26232
import asyncio from gear import Database async def async_main(): db = Database() await db.async_init() await db.just_execute(f"INSERT INTO hello2 (greeting) VALUES ('hello, hello!');") loop = asyncio.get_event_loop() loop.run_until_complete(async_main())
the-stack_0_26234
# coding: utf8 from __future__ import unicode_literals _exc = { # Slang 'прив': 'привет', 'дарова': 'привет', 'дак': 'так', 'дык': 'так', 'здарова': 'привет', 'пакедава': 'пока', 'пакедаво': 'пока', 'ща': 'сейчас', 'спс': 'спасибо', 'пжлст': 'пожалуйста', 'плиз': 'пожалуйста', 'ладненько': 'ладно', 'лады': 'ладно', 'лан': 'ладно', 'ясн': 'ясно', 'всм': 'всмысле', 'хош': 'хочешь', 'хаюшки': 'привет', 'оч': 'очень', 'че': 'что', 'чо': 'что', 'шо': 'что' } NORM_EXCEPTIONS = {} for string, norm in _exc.items(): NORM_EXCEPTIONS[string] = norm NORM_EXCEPTIONS[string.title()] = norm
the-stack_0_26236
import numpy as np import os import tensorflow as tf import pathlib import glob import fnmatch # this is important to ensure that your script is using the local "utils" folder os.chdir(os.getcwd()) from PIL import Image # export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim # Don't forget to run this on the research folder!!! from utils import ops as utils_ops from utils import label_map_util from utils import visualization_utils as vis_util # patch tf1 into `utils.ops` utils_ops.tf = tf.compat.v1 # Patch the location of gfile tf.gfile = tf.io.gfile # If you don't want to use colab, change the path here! PATH_TO_LABELS = '/content/tf-models/research/object_detection/label_map/label_map.pbtxt' category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) PATH_TO_UNLABELED_IMAGES_DIR = pathlib.Path('/content/tf-models/research/object_detection/unlabeled_data') UNLABELED_IMAGE_PATHS = sorted(list(PATH_TO_UNLABELED_IMAGES_DIR.glob("*.jpg"))) def load_model(mode_dir): model_dir = pathlib.Path(mode_dir) model = tf.compat.v2.saved_model.load(str(model_dir), None) model = model.signatures['serving_default'] return model def run_inference_for_single_image(model, image): image = np.asarray(image) # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. input_tensor = tf.convert_to_tensor(image) # The model expects a batch of images, so add an axis with `tf.newaxis`. input_tensor = input_tensor[tf.newaxis,...] # Run inference output_dict = model(input_tensor) # All outputs are batches tensors. # Convert to numpy arrays, and take index [0] to remove the batch dimension. # We're only interested in the first num_detections. num_detections = int(output_dict.pop('num_detections')) output_dict = {key:value[0, :num_detections].numpy() for key,value in output_dict.items()} output_dict['num_detections'] = num_detections # detection_classes should be ints. output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64) # Handle models with masks: if 'detection_masks' in output_dict: # Reframe the the bbox mask to the image size. detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( output_dict['detection_masks'], output_dict['detection_boxes'], image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5, tf.uint8) output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy() return output_dict detection_model = load_model('/content/tf-models/research/fine_tuned_model/saved_model') def show_inference(model, image_path): # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. file_name = image_path.stem image_np = np.array(Image.open(image_path)) # Actual detection. output_dict = run_inference_for_single_image(model, image_np) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, xml_file_name=file_name, instance_masks=output_dict.get('detection_masks_reframed', None), use_normalized_coordinates=True, line_thickness=8) # image = Image.fromarray(image_np) # image.show() for image_path in UNLABELED_IMAGE_PATHS: show_inference(detection_model, image_path) def partition_data(test_ratio): # counts all JPG files in each folder new_labeled_files_count = fnmatch.filter(os.listdir('/content/tf-models/research/object_detection/labeled_data/'), '*.jpg') train_images_count = len(fnmatch.filter(os.listdir('/content/tf-models/research/object_detection/train_images'), '*.jpg')) test_images_count = len(fnmatch.filter(os.listdir('/content/tf-models/research/object_detection/test_images'), '*.jpg')) if len(new_labeled_files_count) > 0: # calculate the number of images in test folder (all the rest will go to the train) test_quantity = int((test_ratio*( len(new_labeled_files_count) + train_images_count + test_images_count)) / 100) for image in new_labeled_files_count: if test_quantity > 0: new_img_path = '/content/tf-models/research/object_detection/test_images/' + image # set path to test folder new_xml_path = '/content/tf-models/research/object_detection/test_images/' + image.replace('jpg','xml') else: new_img_path = '/content/tf-models/research/object_detection/train_images/' + image # set path to train folder new_xml_path = '/content/tf-models/research/object_detection/train_images/' + image.replace('jpg','xml') old_img_path = '/content/tf-models/research/object_detection/labeled_data/' + image old_xml_path = '/content/tf-models/research/object_detection/labeled_data/' + image.replace('jpg','xml') os.rename(old_img_path, new_img_path) # move JPG os.rename(old_xml_path, new_xml_path) # move XML test_quantity -= 1 # decreases test, when 0 all the files goes to train print('IMAGES TRANSPORTED') partition_data(20) # pass a int between 0 and 100
the-stack_0_26237
import types from flask import Blueprint from flask.ext.restful import Api, reqparse def api_route(self, *args, **kwargs): def wrapper(cls): self.add_resource(cls, *args, **kwargs) return cls return wrapper default_per_page = 5 parser = reqparse.RequestParser() parser.add_argument('per_page', type=int, location='args') parser.add_argument('page', type=int, location='args') api_bp = Blueprint('api', __name__, url_prefix='/api') api = Api(api_bp) api.route = types.MethodType(api_route, api) import user, book, comment, log, tag
the-stack_0_26238
#!/usr/bin/env python """" Simple implementation of http://arxiv.org/pdf/1502.04623v2.pdf in TensorFlow Example Usage: python draw.py --data_dir=/tmp/draw --read_attn=True --write_attn=True Author: Eric Jang """ import tensorflow as tf from tensorflow.examples.tutorials import mnist import numpy as np import os import time import sys import load_trace tf.flags.DEFINE_string("data_dir", "", "") tf.flags.DEFINE_boolean("read_attn", True, "enable attention for reader") tf.flags.DEFINE_boolean("write_attn",True, "enable attention for writer") FLAGS = tf.flags.FLAGS ## MODEL PARAMETERS ## A,B = 100,100 # image width,height img_size = B*A # the canvas size enc_size = 256 # number of hidden units / output size in LSTM dec_size = 256 read_n = 10#12 # read glimpse grid width/height write_n = 5#12 # write glimpse grid width/height read_size = 2*read_n*read_n if FLAGS.read_attn else 2*img_size write_size = write_n*write_n if FLAGS.write_attn else img_size z_size = 9#10#2 # QSampler output size T = 5#100 # MNIST generation sequence length batch_size = 1#00 # training minibatch size train_iters = 500000 learning_rate = 1e-3 # learning rate for optimizer eps = 1e-8 # epsilon for numerical stability ## BUILD MODEL ## DO_SHARE=None # workaround for variable_scope(reuse=True) x = tf.placeholder(tf.float32,shape=(batch_size,img_size)) # input (batch_size * img_size) onehot_labels = tf.placeholder(tf.float32, shape=(batch_size, z_size)) lstm_enc = tf.contrib.rnn.LSTMCell(enc_size, state_is_tuple=True) # encoder Op lstm_dec = tf.contrib.rnn.LSTMCell(dec_size, state_is_tuple=True) # decoder Op def linear(x,output_dim): """ affine transformation Wx+b assumes x.shape = (batch_size, num_features) """ w=tf.get_variable("w", [x.get_shape()[1], output_dim]) b=tf.get_variable("b", [output_dim], initializer=tf.constant_initializer(0.0)) return tf.matmul(x,w)+b def filterbank(gx, gy, sigma2,delta, N): grid_i = tf.reshape(tf.cast(tf.range(N), tf.float32), [1, -1]) mu_x = gx + (grid_i - N / 2 - 0.5) * delta # eq 19 mu_y = gy + (grid_i - N / 2 - 0.5) * delta # eq 20 a = tf.reshape(tf.cast(tf.range(A), tf.float32), [1, 1, -1]) b = tf.reshape(tf.cast(tf.range(B), tf.float32), [1, 1, -1]) mu_x = tf.reshape(mu_x, [-1, N, 1]) mu_y = tf.reshape(mu_y, [-1, N, 1]) sigma2 = tf.reshape(sigma2, [-1, 1, 1]) Fx = tf.exp(-tf.square((a - mu_x) / (2*sigma2))) # 2*sigma2? Fy = tf.exp(-tf.square((b - mu_y) / (2*sigma2))) # batch x N x B # normalize, sum over A and B dims Fx=Fx/tf.maximum(tf.reduce_sum(Fx,2,keep_dims=True),eps) Fy=Fy/tf.maximum(tf.reduce_sum(Fy,2,keep_dims=True),eps) return Fx,Fy def attn_window(scope,h_dec,N): with tf.variable_scope(scope,reuse=DO_SHARE): params=linear(h_dec,5) gx_,gy_,log_sigma2,log_delta,log_gamma=tf.split(params,5,1) gx1=(A+1)/2*(gx_+1) gy1=(B+1)/2*(gy_+1) gx = gx1 gy = gy1 # gx = tf.where(tf.less(gx1, tf.zeros_like(gx1) + A), gx1, tf.zeros_like(gx1) + A) # gx = tf.where(tf.greater(gx1, tf.zeros_like(gx1)), gx1, tf.zeros_like(gx1)) # gy = tf.where(tf.less(gy1, tf.zeros_like(gy1) + B), gy1, tf.zeros_like(gy1) + B) # gy = tf.where(tf.greater(gy1, tf.zeros_like(gy1)), gy1, tf.zeros_like(gy1)) sigma2=tf.exp(log_sigma2) d = (max(A,B)-1)/(N-1)*tf.exp(log_delta) # batch x N delta = d # delta = tf.where(tf.less(d, tf.zeros_like(d) + A / read_n), d, tf.zeros_like(d) + A / read_n) Fx, Fy = filterbank(gx,gy,sigma2,delta,N) gamma = tf.exp(log_gamma) return Fx, Fy, gamma, gx, gy, delta ## READ ## def read(x,h_dec_prev): Fx,Fy,gamma, gx, gy, delta=attn_window("read",h_dec_prev,read_n) stats = Fx, Fy, gamma new_stats = gx, gy, delta def filter_img(img,Fx,Fy,gamma,N): Fxt=tf.transpose(Fx,perm=[0,2,1]) img=tf.reshape(img,[-1,B,A]) glimpse=tf.matmul(Fy,tf.matmul(img,Fxt)) glimpse=tf.reshape(glimpse,[-1,N*N]) return glimpse*tf.reshape(gamma,[-1,1]) x=filter_img(x,Fx,Fy,gamma,read_n) # batch x (read_n*read_n) return x, new_stats ## ENCODE ## def encode(input, state): """ run LSTM state = previous encoder state input = cat(read,h_dec_prev) returns: (output, new_state) """ with tf.variable_scope("encoder/LSTMCell",reuse=DO_SHARE): return lstm_enc(input,state) ## DECODER ## def decode(input, state): with tf.variable_scope("decoder/LSTMCell",reuse=DO_SHARE): return lstm_dec(input, state) ## STATE VARIABLES ## # initial states h_dec_prev=tf.zeros((batch_size,dec_size)) enc_state=lstm_enc.zero_state(batch_size, tf.float32) dec_state=lstm_dec.zero_state(batch_size, tf.float32) ## DRAW MODEL ## viz_data = list() pqs = list() # construct the unrolled computational graph for t in range(T): r, stats = read(x, h_dec_prev) h_enc, enc_state = encode(tf.concat([r, h_dec_prev], 1), enc_state) with tf.variable_scope("z",reuse=DO_SHARE): z = linear(h_enc, z_size) h_dec, dec_state = decode(z, dec_state) h_dec_prev = h_dec with tf.variable_scope("hidden1",reuse=DO_SHARE): hidden = tf.nn.relu(linear(h_dec_prev, 256)) with tf.variable_scope("output",reuse=DO_SHARE): classification = tf.nn.softmax(linear(hidden, z_size)) viz_data.append({ "classification": classification, "r": r, "h_dec": h_dec, "stats": stats, }) DO_SHARE=True # from now on, share variables pq = tf.log(classification + 1e-5) * onehot_labels pq = tf.reduce_mean(pq, 0) pqs.append(pq) predquality = tf.reduce_mean(pqs) correct = tf.arg_max(onehot_labels, 1) prediction = tf.arg_max(classification, 1) R = tf.cast(tf.equal(correct, prediction), tf.float32) reward = tf.reduce_mean(R) ## LOSS FUNCTION ## def binary_crossentropy(t,o): return -(t*tf.log(o+eps) + (1.0-t)*tf.log(1.0-o+eps)) def evaluate(): data = load_trace.TraceData() data.get_test(1) batches_in_epoch = len(data.images) // batch_size accuracy = 0 for i in range(batches_in_epoch): nextX, nextY = data.next_batch(batch_size) feed_dict = {x: nextX, onehot_labels:nextY} r = sess.run(reward, feed_dict=feed_dict) accuracy += r accuracy /= batches_in_epoch print("ACCURACY: " + str(accuracy)) return accuracy predcost = -predquality ## OPTIMIZER ## optimizer=tf.train.AdamOptimizer(learning_rate, epsilon=1) grads=optimizer.compute_gradients(predcost) for i,(g,v) in enumerate(grads): if g is not None: grads[i]=(tf.clip_by_norm(g,5),v) # clip gradients train_op=optimizer.apply_gradients(grads) ## RUN TRAINING ## #data_directory = os.path.join(FLAGS.data_dir, "mnist") #if not os.path.exists(data_directory): # os.makedirs(data_directory) #train_data = mnist.input_data.read_data_sets(data_directory, one_hot=True).train # binarized (0-1) mnist data train_data = load_trace.TraceData() train_data.get_train() fetches=[] fetches.extend([reward, train_op]) if __name__ == '__main__': sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True sess=tf.InteractiveSession() saver = tf.train.Saver() # saves variables learned during training tf.global_variables_initializer().run() ## CHANGE THE MODEL SETTINGS HERE ######################### model_directory = "model_runs/blob_classification_5_5_0_9" if not os.path.exists(model_directory): os.makedirs(model_directory) start_ckpt = 0 #saver.restore(sess, model_directory + "/drawmodel.ckpt") # to restore from model, uncomment this line #saver.restore(sess, model_directory + "/drawmodel_" + str(start_ckpt) + ".ckpt") # to restore from model, uncomment this line, may need to change filename!!! start_time = time.clock() extra_time = 0 for i in range(start_ckpt, train_iters): xtrain, ytrain = train_data.next_batch(batch_size) # xtrain is (batch_size x img_size) feed_dict={x:xtrain, onehot_labels: ytrain} results=sess.run(fetches,feed_dict) reward_fetched, _ = results if i%100 == 0: print("iter=%d : Reward: %f" % (i, reward_fetched)) sys.stdout.flush() if i%1000==0: train_data = load_trace.TraceData() train_data.get_train() if i %10000==0: ## SAVE TRAINING CHECKPOINT ## start_evaluate = time.clock() test_accuracy = evaluate() saver = tf.train.Saver(tf.global_variables()) extra_time = extra_time + time.clock() - start_evaluate print("--- %s CPU seconds ---" % (time.clock() - start_time - extra_time)) ckpt_file=os.path.join(FLAGS.data_dir, model_directory + "/drawmodel_" + str(i) + ".ckpt") print("Model saved in file: %s" % saver.save(sess,ckpt_file)) sess.close()
the-stack_0_26240
import torch import torch.nn as nn from graph_model.dynamic_gnn_with_mtgat_prune import DynamicMTGATPruneModel from consts import GlobalConsts as gc class NetMTGATAverageUnalignedConcatMHA(nn.Module): def __init__(self, num_gat_layers, use_transformer=False, use_prune=False, use_pe=False): super(NetMTGATAverageUnalignedConcatMHA, self).__init__() if use_transformer: raise NotImplementedError # if not use_prune: # self.dgnn = DynamicGNNModelWithTransformerPadding(gc.config, concat=True, num_gat_layers=num_gat_layers) # else: # self.dgnn = DynamicGNNModelWithTransformerPaddingPrune(gc.config, concat=True, # num_gat_layers=num_gat_layers) else: if not use_prune: raise NotImplementedError('Only pruned version is implemented now.') else: self.dgnn = DynamicMTGATPruneModel(gc.config, concat=True, num_gat_layers=num_gat_layers, use_pe=use_pe) label_dim = 1 if gc.dataset == "mosei": label_dim = 7 elif gc.dataset in ['iemocap', 'iemocap_unaligned']: label_dim = 8 # 2 x 4category self.finalW = nn.Sequential( nn.Linear(gc.config['graph_conv_out_dim'], gc.config['graph_conv_out_dim'] // 4), nn.ReLU(), # nn.Linear(gc.config['graph_conv_out_dim'] // 4, label_dim), nn.Linear(gc.config['graph_conv_out_dim'] // 4, gc.config['graph_conv_out_dim'] // 4), nn.ReLU(), nn.Linear(gc.config['graph_conv_out_dim'] // 4, label_dim), ) def forward(self, **kwargs): state = self.dgnn(**kwargs) state = torch.stack([torch.mean(state_i, dim=0) for state_i in state], 0) return self.finalW(state).squeeze() def inference_return_layer_outputs(self, **kwargs): state, batch, nodes_rec, edge_indices_rec, edge_weights_rec, edge_types_rec = self.dgnn(**kwargs) state = torch.stack([torch.mean(state_i, dim=0) for state_i in state], 0) return self.finalW(state).squeeze(), batch, nodes_rec, edge_indices_rec, edge_weights_rec, edge_types_rec
the-stack_0_26241
"""Tests for httplib2 when the socket module is missing. This helps ensure compatibility with environments such as AppEngine. """ import os import sys import unittest import httplib2 class MissingSocketTest(unittest.TestCase): def setUp(self): self._oldsocks = httplib2.socks httplib2.socks = None def tearDown(self): httplib2.socks = self._oldsocks def testProxyDisabled(self): proxy_info = httplib2.ProxyInfo('blah', 'localhost', 0) client = httplib2.Http(proxy_info=proxy_info) self.assertRaises(httplib2.ProxiesUnavailableError, client.request, 'http://localhost:-1/')
the-stack_0_26242
import asyncio class EchoServerClientProtocol(asyncio.Protocol): def connection_made(self, transport): peername = transport.get_extra_info('peername') print('Connection from {}'.format(peername)) self.transport = transport def data_received(self, data): message = data.decode() print('Data received: {!r}'.format(message)) reply = input() print('Send: {!r}'.format(reply)) self.transport.write(reply.encode()) #print('Close the client socket') #self.transport.close() loop = asyncio.get_event_loop() # Each client connection will create a new protocol instance coro = loop.create_server(EchoServerClientProtocol, '127.0.0.1', 8888) server = loop.run_until_complete(coro) # Serve requests until CTRL+c is pressed print('Serving on {}'.format(server.sockets[0].getsockname())) try: loop.run_forever() except KeyboardInterrupt: pass # Close the server server.close() loop.run_until_complete(server.wait_closed()) loop.close()
the-stack_0_26244
# -*- coding: utf-8 -*- # @Author: YangZhou # @Date: 2017-06-16 14:39:58 # @Last Modified by: YangZhou # @Last Modified time: 2018-01-11 15:21:38 import aces.tools as tl from aces.graph import fig, setLegend, pl import numpy as np from aces.f import binmeanx from aces.io.shengbte import get_w_final, get_qpoints, get_omega, get_tau, get_v text_style = dict( horizontalalignment='left', verticalalignment='center', fontsize=12, fontdict={'family': 'serif'}) vs = '2l1,2lh,3l1,4l1,5l1,6l1'.split(',') with fig('gv.eps'): fi, axes = pl.subplots(2, 3, sharex=True, sharey=True, figsize=(8, 5)) for i, v in enumerate(vs): print(v) ax = axes[i // 3, i % 3] if v == "2lh": v = "2lhex" if v == "2lr": v = "2lrt3" dir = "%s/0/SHENG" % v # file = v + "/0/secondorder/groupv/mesh.yaml" # data = tl.parseyaml(file) # freqs = [] # gvs = [] # for phonon in data['phonon']: # qp = phonon['q-position'] # for band in phonon['band']: # frequency = band['frequency'] # gv = np.array(band['group_velocity']) # freqs.append(frequency) # gvs.append(gv) omega = get_omega(dir) cv = get_v(dir) freqs = omega.flatten() gvs = np.c_[cv[:, :, 0].flatten(), cv[:, :, 1].flatten()] freqs = np.array(freqs) gvs = np.array(gvs) gvs = np.abs(gvs) N = 40 df = 20.0 / N v1 = v if v1 == '2lhex': v1 = '2l3' x, y = binmeanx(np.c_[freqs, gvs[:, 0]], [0, 20], df) ax.plot(x, y, color="k", lw=3, label=v1 + "z") x, y = binmeanx(np.c_[freqs, gvs[:, 1]], [0, 20], df) ax.plot( x, y, color="r", ls="--", lw=3, label=( v1 + "a").replace( 'l', 'L')) # ax.text(.02,.8,"("+v+")",transform=ax.transAxes,**text_style) setLegend(ax, ncol=1, fontsize=12) # ax.set_yticks([]) ax.set_xlim([0.05, 19.9]) ax.set_ylim([0.05, None]) fi.text(0.5, 0.00, 'Phonon Frequency (THz)', ha='center') fi.text( 0.07, 0.5, 'Phonon Group Velocity (A/ps)', va='center', rotation='vertical') fi.subplots_adjust( left=None, bottom=None, right=None, top=None, wspace=0, hspace=0)
the-stack_0_26245
#/usr/bin/python import sys def mixupstep(conffile,savepath): conf=open(conffile); for line in conf.readlines(): save=open('%s/mixupstep%d.hed'%(savepath,int(line)),'w'); # if int(line)==1: # save.write('MU %d {w.state[2].mix}\n'%(int(line)*2)); # else : # save.write('MU %d {*.state[2].mix}\n'%(int(line))); # save.write('MU %d {w.state[2].mix}\n'%(int(line)*2)); save.write('MU %d {*.state[2].mix}\n'%(int(line)*2)); save.close(); conf.close(); if __name__=='__main__': mixupstep(sys.argv[1],sys.argv[2]);
the-stack_0_26247
# -*- coding:utf-8 -*- import numpy as np import collections import math import os import random import tensorflow as tf import zipfile os.environ["CUDA_VISIBLE_DEVICES"] = "4" config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 session = tf.Session(config = config) def read_data(filename): with zipfile.ZipFile(filename) as f: fread = f.namelist()[0] content = f.read(fread) data = tf.compat.as_str(content).split() return data filename = "text8.zip" words = read_data(filename) print("Data Size: %d" % len(words)) vocabulary_size = 30000 def build_dataset(words): count = [["UNK", -1]] wordscounts = collections.Counter(words) words_common = wordscounts.most_common(vocabulary_size - 1) count.extend(words_common) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 unk_count += 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words) print("Most common words (including UNK):", count[:10]) print("Sample data:", data[:10]) del words data_index = 0 def generate_batch(batch_size, skip_window): global data_index span = 2 * skip_window + 1 batch = np.ndarray(shape = (batch_size, span - 1), dtype = np.int32) labels = np.ndarray(shape = (batch_size, 1), dtype = np.int32) buffer = collections.deque(maxlen = span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size): target = skip_window targets_to_avoid = [skip_window] col_idx = 0 for j in range(span): if j == span // 2: continue batch[i, col_idx] = buffer[j] col_idx += 1 labels[i, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) assert batch.shape[0] == batch_size and batch.shape[1] == span - 1 return batch, labels num_steps = 100001 if __name__ == '__main__': batch_size = 128 embedding_size = 128 skip_window = 1 valid_size = 16 valid_window = 100 valid_examples = np.array(random.sample(range(valid_window), valid_size // 2)) valid_examples = np.append(valid_examples, random.sample(range(1000, 1000 + valid_window), valid_size // 2)) num_sampled = 64 graph = tf.Graph() with graph.as_default(): train_dataset = tf.placeholder(tf.int32, shape = [batch_size, 2 * skip_window]) train_labels = tf.placeholder(tf.int32, shape = [batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype = tf.int32) embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) softmax_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev = 1.0 / math.sqrt(embedding_size))) softmax_biases = tf.Variable(tf.zeros([vocabulary_size])) embeds = None for i in range(2 * skip_window): embedding_i = tf.nn.embedding_lookup(embeddings, train_dataset[:, i]) print("embedding %d shape: %s" % (i, embedding_i.get_shape().as_list())) emb_x, emb_y = embedding_i.get_shape().as_list() if embeds is None: embeds = tf.reshape(embedding_i, [emb_x, emb_y, 1]) else: embeds = tf.concat([embeds, tf.reshape(embedding_i, [emb_x, emb_y, 1])], axis = 2) # assert embeds.get_shape().as_list()[2] == 2 * skip_window print("Concat embedding size: %s" % embeds.get_shape().as_list()) avg_embed = tf.reduce_mean(embeds, 2, keep_dims = False) print("Average embedding size: %s" % avg_embed.get_shape().as_list()) loss = tf.reduce_mean(tf.nn.sampled_softmax_loss( weights = softmax_weights, biases = softmax_biases, inputs = avg_embed, labels = train_labels, num_sampled = num_sampled, num_classes = vocabulary_size)) optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss) norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims = True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings)) with tf.Session(graph = graph) as session: tf.global_variables_initializer().run() print("Initialized!") average_loss = 0 for step in range(num_steps): batch_data, batch_labels = generate_batch( batch_size = batch_size, skip_window = skip_window) feed_dict = {train_dataset: batch_data, train_labels: batch_labels} _, lo = session.run([optimizer, loss], feed_dict = feed_dict) average_loss += lo if step % 2000 == 0: if step > 0: average_loss = average_loss / 2000 print("Average loss at step %d: %f " % (step, average_loss)) average_loss = 0 if step % 10000 == 0: sim = similarity.eval() for i in range(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 nearest = (-sim[i, :]).argsort()[1: top_k + 1] log = "Nearest to %s: " % valid_word for k in range(top_k): close_word = reverse_dictionary[nearest[k]] log = log + " " + close_word + "," print(log) final_embeddings = normalized_embeddings.eval()
the-stack_0_26248
import os import dj_database_url from .base import * DEBUG = False USE_X_FORWARDED_HOST = True ALLOWED_HOSTS = ['*'] # proxied #FORCE_SCRIPT_NAME = '/tock' STATIC_ROOT = '/app/tock/tock/static/' STATIC_URL = '/tock/static/' DATABASES = {} DATABASES['default'] = dj_database_url.config() LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'console': { 'class': 'logging.StreamHandler', }, }, 'loggers': { 'django': { 'handlers': ['console'], 'level': os.getenv('DJANGO_LOG_LEVEL', 'DEBUG'), }, }, } try: from .local_settings import * except ImportError: pass
the-stack_0_26249
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from Commands.PythonCommandBase import PythonCommand, ImageProcPythonCommand from Commands.Keys import KeyPress, Button, Direction, Stick class InfinityFeather(PythonCommand): NAME = '無限羽回収' def __init__(self): super().__init__() def do(self): # 時間等確認用。使用する際は "import time" すること # start = time.time() # i = 0 # カウンタ print('Start collecting feathers') while True: self.wait(0.75) # i += 1 # print('Map') self.press(Button.X, wait=1.5) # open up a map self.press(Button.A, wait=3.0) self.press(Direction(Stick.LEFT, 45), duration=0.05) # Select a Pokémon Day Care self.press(Button.A, wait=1) self.press(Button.A, wait=4.0) # print('pick feather') self.press(Direction.DOWN_RIGHT, duration=0.15) self.press(Direction.RIGHT, duration=3) self.press(Button.A, wait=0.3) self.press(Button.A, wait=0.3) self.press(Button.A, wait=0.3) self.press(Button.A, wait=0.3) # print('Time leap') self.timeLeap() # tm = round(time.time() - start, 2) # print('Loop : {} in {} sec. Average: {} sec/loop'.format(i, tm, round(tm / i, 2)))
the-stack_0_26250
import tensorflow as tf import numpy as np tf.set_random_seed(5) n_inputs = 28 n_neurons = 150 n_layers = 3 n_steps = 28 n_outputs = 10 learning_rate = 0.001 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/") X_test = mnist.test.images.reshape((-1, n_steps, n_inputs)) y_test = mnist.test.labels X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) y = tf.placeholder(tf.int32, [None]) multi_cell = tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons) for _ in range(3)]) outputs, states = tf.nn.dynamic_rnn(multi_cell, X, dtype=tf.float32) top_layer_h_state = states[-1][1] logits = tf.layers.dense(top_layer_h_state, n_outputs, name='softmax') x_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits) loss = tf.reduce_mean(x_entropy, name='loss') optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) training_op = optimizer.minimize(loss) correct = tf.nn.in_top_k(logits, y, 1) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) init = tf.global_variables_initializer() states top_layer_h_state n_epochs = 25 batch_size = 150 with tf.Session() as sess: init.run() for epoch in range(n_epochs): for k in range(mnist.train.num_examples // batch_size): X_batch, y_batch = mnist.train.next_batch(batch_size) X_batch = X_batch.reshape((batch_size, n_steps, n_inputs)) sess.run(training_op, feed_dict={X: X_batch, y: y_batch}) acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch}) acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test}) print("Epoch", epoch, 'Train acc: ', acc_train, "Test acc: ", acc_test)
the-stack_0_26251
from typing import List, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torchvision.ops import misc as misc_nn_ops from allennlp.nn import Activation class StdConv(nn.Module): def __init__(self, nin: int, nout: int, kernel_size: int = 3, activation: Activation = nn.ReLU(), stride: int = 1, padding: int = 1, dilation: int = 1, dropout: float = 0.1): super(StdConv, self).__init__() self.conv = misc_nn_ops.Conv2d(nin, nout, kernel_size, stride=stride, padding=padding, dilation=dilation) self.bn = misc_nn_ops.BatchNorm2d(nout) self.drop = nn.Dropout(dropout) self.activation = activation def forward(self, x): return self.drop(self.bn(self.activation(self.conv(x)))) class Upsample(nn.Module): def __init__(self, in_channels: int, out_channels: int, num_stages: int, scale_factor: int = 2): super(Upsample, self).__init__() self.scale_factor = scale_factor self.convs = [StdConv(in_channels, out_channels, padding=1)] + \ [StdConv(out_channels, out_channels, padding=1) for _ in range(num_stages - 1)] self.convs = nn.ModuleList(self.convs) self.num_stages = num_stages def forward(self, inputs: torch.Tensor): out = inputs for conv in self.convs: out = conv.forward(out) if self.num_stages != 0: out = F.interpolate(out, scale_factor=self.scale_factor) return out class RPNHead(nn.Module): def __init__(self, in_channels, num_anchors): super(RPNHead, self).__init__() self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) self.bbox_pred = nn.Conv2d( in_channels, num_anchors * 4, kernel_size=1, stride=1 ) def forward(self, features: List[torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: objectness: List[torch.Tensor] = [] rpn_box_regression: List[torch.Tensor] = [] for feature in features: t = F.relu(self.conv(feature)) objectness.append(self.cls_logits(t)) rpn_box_regression.append(self.bbox_pred(t)) return objectness, rpn_box_regression
the-stack_0_26254
# # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the 'License'). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # $Revision: #1 $ def empty(): return {} def ok_deployment_stack_empty(*args): return { 'StackStatus': 'CREATE_COMPLETE', 'StackResources': { 'EmptyDeployment': { 'ResourceType': 'Custom::EmptyDeployment' } } } def ok_project_stack(permissions = {}): result = { 'StackStatus': 'UPDATE_COMPLETE', 'StackResources': { 'AccessControl': { 'ResourceType': 'Custom::AccessControl' }, 'CloudGemPortal': { 'ResourceType': 'AWS::S3::Bucket' }, 'CloudGemPortalAdministratorRole': { 'ResourceType': 'AWS::IAM::Role' }, 'CloudGemPortalBucketPolicy': { 'ResourceType': 'AWS::S3::BucketPolicy' }, 'CloudGemPortalUserAccess': { 'ResourceType': 'AWS::IAM::ManagedPolicy' }, 'CloudGemPortalUserRole': { 'ResourceType': 'AWS::IAM::Role' }, 'Configuration': { 'ResourceType': 'AWS::S3::Bucket' }, 'ConfigurationBucketPolicy': { 'ResourceType': 'AWS::S3::BucketPolicy' }, 'CoreResourceTypes': { 'ResourceType': 'Custom::ResourceTypes' }, 'Logs': { 'ResourceType': 'AWS::S3::Bucket' }, 'Helper': { 'ResourceType': 'Custom::Helper' }, 'PlayerAccessTokenExchange': { 'ResourceType': 'AWS::Lambda::Function' }, 'PlayerAccessTokenExchangeExecution': { 'ResourceType': 'AWS::IAM::Role' }, 'ProjectAccess': { 'ResourceType': 'AWS::IAM::ManagedPolicy' }, 'ProjectAdmin': { 'ResourceType': 'AWS::IAM::Role' }, 'ProjectAdminRestrictions': { 'ResourceType': 'AWS::IAM::ManagedPolicy' }, 'ProjectOwner': { 'ResourceType': 'AWS::IAM::Role' }, 'ProjectOwnerAccess': { 'ResourceType': 'AWS::IAM::ManagedPolicy' }, 'ProjectIdentityPool': { 'ResourceType': 'Custom::CognitoIdentityPool' }, 'ProjectIdentityPoolAuthenticatedRole': { 'ResourceType': 'AWS::IAM::Role' }, 'ProjectIdentityPoolUnauthenticatedRole': { 'ResourceType': 'AWS::IAM::Role' }, 'ProjectResourceHandler': { 'ResourceType': 'AWS::Lambda::Function' }, 'ProjectResourceHandlerExecution': { 'ResourceType': 'AWS::IAM::Role' }, 'ProjectUserPool': { 'ResourceType': 'Custom::CognitoUserPool' }, 'ServiceApi': { 'ResourceType': 'Custom::ServiceApi' }, 'ServiceLambda': { 'ResourceType': 'AWS::Lambda::Function' }, 'ServiceLambdaConfiguration': { 'ResourceType': 'Custom::LambdaConfiguration' }, 'ServiceLambdaExecution': { 'ResourceType': 'AWS::IAM::ManagedPolicy' } } } for k,v in permissions.iteritems(): result[k]['Permissions'] = v return result def ok_deployment_access_stack(permissions = {}): result = { 'StackStatus': 'CREATE_COMPLETE', 'StackResources': { 'Player': { 'ResourceType': 'AWS::IAM::Role' }, 'Server': { 'ResourceType': 'AWS::IAM::Role' }, 'AccessControl': { 'ResourceType': 'Custom::AccessControl' }, 'PlayerAccessIdentityPool': { 'ResourceType': 'Custom::CognitoIdentityPool' }, 'PlayerLoginIdentityPool': { 'ResourceType': 'Custom::CognitoIdentityPool' }, 'PlayerLoginRole': { 'ResourceType': 'AWS::IAM::Role' }, 'DeploymentAdmin': { 'ResourceType': 'AWS::IAM::Role' }, 'DeploymentOwner': { 'ResourceType': 'AWS::IAM::Role' }, 'DeploymentAccess': { 'ResourceType': 'AWS::IAM::ManagedPolicy' }, 'DeploymentOwnerAccess': { 'ResourceType': 'AWS::IAM::ManagedPolicy' }, 'DeploymentAdminRestrictions': { 'ResourceType': 'AWS::IAM::ManagedPolicy' }, 'Helper': { 'ResourceType': 'Custom::Helper' } } } for k,v in permissions.iteritems(): result[k]['Permissions'] = v return result
the-stack_0_26255
from django.test import TestCase from gw_cwfollowup.jwt_tools import jwt_get_user_by_payload class TestJWTTools(TestCase): def test_jwt_get_user_by_payload(self): """ Check that jwt_get_user_by_payload works as expected """ # Create a test payload payload = { 'username': 'billy', 'userId': 43 } # Get the user from the payload and verify that the returned GWCloudUser object is valid user = jwt_get_user_by_payload(payload) # Assert that the fields of the gwcloud user are accurate self.assertEqual(user.username, payload['username']) self.assertEqual(user.user_id, payload['userId']) # The user object should indicate that the user is active self.assertEqual(user.is_active, True) # The user should also be authenticated by default self.assertEqual(user.is_authenticated, True) # The user should not be anonymous self.assertEqual(user.is_anonymous, False)
the-stack_0_26256
#!/usr/bin/env python3.6 import sys import os import unittest from pathlib import Path sys.path.append(os.path.realpath(os.path.join(__file__, os.pardir, os.pardir, os.pardir))) sys.path.append(os.path.realpath(os.path.join(__file__, os.pardir, os.pardir))) sys.path.append(os.path.realpath(os.path.join(__file__, os.pardir))) import utils # do not remove, prevents cyclic import problems import aYaml from configVar import config_vars from configVar import ConfigVarYamlReader def normalize_yaml_lines(yaml_file): retVal = list() with open(yaml_file, "r") as rfd: for line in rfd.readlines(): striped_line = line.strip() if striped_line: retVal.append(striped_line) return retVal class TestConfigVar(unittest.TestCase): def setUp(self): config_vars.clear() def tearDown(self): pass def test_list_issues(self): name_1 = ["Lili", "Marlen"] name_2 = ["Lili", "Allen"] config_vars["ALL_NAMES"] = "$(NAME_ONE)", "$(NAME_TWO)", "$(NAME_THREE)" config_vars["NAME_ONE"] = name_1 config_vars["NAME_TWO"] = "shraga" config_vars["NAME_THREE"] = name_2 # list() on the to configVar should return the lists of resolved values if a value is # and only is a configVar reference $(...) all_names = list(config_vars["ALL_NAMES"]) self.assertListEqual(name_1+["shraga"]+name_2, all_names) def test_format(self): config_vars["Number"] = "434" config_vars["Ricki"] = ["Joe", "Merlin", "1938"] str1 = f"""{config_vars["Ricki"]}{config_vars["Number"].int()}{config_vars["Ricki"].list()}""" self.assertEqual("JoeMerlin1938434['Joe', 'Merlin', '1938']", str1) def test_defaults(self): empty_list = config_vars.get("MAMBO_JUMBO", []).list() self.assertEqual([], empty_list) full_list = config_vars.get("MAMBO_JUMBO", ["mambo", "jumbo"]).list() self.assertEqual(["mambo", "jumbo"], full_list) empty_str = config_vars.get("MAMBO_JUMBO", "").str() self.assertEqual("", empty_str) full_str = config_vars.get("MAMBO_JUMBO", "mambo jumbo").str() self.assertEqual("mambo jumbo", full_str) def test_bool(self): # non exiting ConfigVar should resolve to False self.assertFalse(config_vars.get("BEN_SHAPIRO")) def test_var_in_var_simple(self): config_vars["A"] = "$(B)" config_vars["B"] = "$(C)" config_vars["C"] = "ali baba" self.assertEqual("ali baba", config_vars["A"].str()) self.assertEqual("ali baba", config_vars.resolve_str("$(A)")) def test_array(self): config_vars["PUSHKIN"] ="1", "2", "3" self.assertEqual("123", config_vars["PUSHKIN"].str()) self.assertEqual("123", config_vars.resolve_str("$(PUSHKIN)")) self.assertEqual("1", config_vars.resolve_str("$(PUSHKIN[0])")) self.assertEqual("2", config_vars.resolve_str("$(PUSHKIN[1])")) self.assertEqual("3", config_vars.resolve_str("$(PUSHKIN[2])")) self.assertEqual("321", config_vars.resolve_str("$(PUSHKIN[2])$(PUSHKIN[1])$(PUSHKIN[0])")) def test_readFile(self): input_file_path = Path(__file__).parent.joinpath("test_input.yaml") out_file_path = Path(__file__).parent.joinpath("test_out.yaml") expected_file_path = Path(__file__).parent.joinpath("expected_output.yaml") reader = ConfigVarYamlReader() reader.read_yaml_file(input_file_path) variables_as_yaml = config_vars.repr_for_yaml() yaml_doc = aYaml.YamlDumpDocWrap(variables_as_yaml, '!define', "", explicit_start=True, sort_mappings=True) with open(out_file_path, "w") as wfd: aYaml.writeAsYaml(yaml_doc, wfd) out_lines = normalize_yaml_lines(out_file_path) expected_lines = normalize_yaml_lines(expected_file_path) self.assertEqual(out_lines, expected_lines) def test_resolve_time(self): config_vars["PRINT_STATISTICS"] = "True" config_vars["MANDOLIN"] = "a$(A)b$(B)c$(C)d", "a$(A)b$(B)c$(C)d", "a$(A)b$(B)c$(C)d" config_vars["A"] = "$(B)$(B<>)$(C)" config_vars["B"] = "$(C)$(C<>)$(H)" config_vars["C"] = "bub" for i in range(10000): a = config_vars["MANDOLIN"].str() config_vars.print_statistics() print(str(config_vars["MANDOLIN"])) def test_Plist_for_native_instruments(self): config_vars["Plist_for_native_instruments"] = r'''ShellCommand('"$(LOCAL_REPO_SYNC_DIR)/Mac/Utilities/plist/plist_creator.sh" $(__Plist_for_native_instruments_1__) $(__Plist_for_native_instruments_2__)', ignore_all_errors=True)''' o = config_vars.resolve_str('$(Plist_for_native_instruments<"Aphex Vintage Exciter", "/Applications/Waves/Data/NKS FX/">)') print(o)
the-stack_0_26259
import csv import datetime import h5py import mir_eval import numpy as np import os import pandas as pd import peakutils import sklearn.metrics import sys import time import localmodule # Read command-line arguments. args = sys.argv[1:] aug_kind_str = args[0] test_unit_str = args[1] predict_unit_str = args[2] trial_id = int(args[3]) # Define constants. data_dir = localmodule.get_data_dir() dataset_name = localmodule.get_dataset_name() folds = localmodule.fold_units() models_dir = localmodule.get_models_dir() units = localmodule.get_units() model_name = "icassp-add-convnet" if not aug_kind_str == "none": model_name = "_".join([model_name, "aug-" + aug_kind_str]) model_dir = os.path.join(models_dir, model_name) tolerance = 0.5 # in seconds min_dist = 3 # 150 ms # Define thresholds. icassp_thresholds = 1.0 - np.concatenate(( np.logspace(-9, -2, 141), np.delete(np.logspace(-2, 0, 81), 0) )) n_thresholds = len(icassp_thresholds) # Print header. start_time = int(time.time()) print(str(datetime.datetime.now()) + " Start.") print("Thresholding adaptive threshold convnet for detection in " + dataset_name + " full audio. ") print("Augmentation kind: " + aug_kind_str) print("Test unit: " + test_unit_str) print("Trial ID: {}".format(trial_id)) print("Prediction unit: " + predict_unit_str) print("") print('h5py version: {:s}'.format(h5py.__version__)) print('numpy version: {:s}'.format(np.__version__)) print('pandas version: {:s}'.format(pd.__version__)) print('scikit-learn version: {:s}'.format(sklearn.__version__)) print("") # Define directory for test unit. unit_dir = os.path.join(model_dir, test_unit_str) # Define directory for trial. trial_str = "trial-" + str(trial_id) trial_dir = os.path.join(unit_dir, trial_str) # Load ODF. prediction_name = "_".join([ dataset_name, model_name, "test-" + test_unit_str, trial_str, "predict-" + predict_unit_str, "full-predictions.csv"]) prediction_path = os.path.join(trial_dir, prediction_name) prediction_df = pd.read_csv(prediction_path) odf = np.array(prediction_df["Predicted probability"]) timestamps = np.array(prediction_df["Timestamp"]) # Load annotation. annotations_name = "_".join([dataset_name, "annotations"]) annotations_dir = os.path.join(data_dir, annotations_name) annotation_path = os.path.join(annotations_dir, predict_unit_str + ".txt") annotation = pd.read_csv(annotation_path, "\t") begin_times = np.array(annotation["Begin Time (s)"]) end_times = np.array(annotation["End Time (s)"]) relevant = 0.5 * (begin_times + end_times) relevant = np.sort(relevant) n_relevant = len(relevant) # Create CSV file for metrics. metrics_name = "_".join([ dataset_name, model_name, "test-" + test_unit_str, trial_str, "predict-" + predict_unit_str, "full-audio-metrics", ]) metrics_path = os.path.join(trial_dir, metrics_name + ".csv") # Write CSV header. csv_header = [ "Dataset", "Augmentation kind", "Test unit", "Trial", "Prediction unit", "Tolerance", "Threshold", "Relevant", "Selected", "True positives", "False positives", "False negatives", "Precision (%)", "Recall (%)", "F1 Score (%)"] # Write row. csv_file = open(metrics_path, 'w') csv_writer = csv.writer(csv_file, delimiter=',') csv_writer.writerow(csv_header) csv_file.close() # Loop over thresholds. for threshold_id in range(n_thresholds): threshold = icassp_thresholds[threshold_id] # Pick peaks. peak_locations = peakutils.indexes( odf, thres=threshold, min_dist=min_dist) peak_times = timestamps[peak_locations] peak_values = odf[peak_locations] selected = peak_times[peak_values > threshold] # Match events. selected_relevant = mir_eval.util.match_events( relevant, selected, tolerance) # Count TP, FP, and FN. true_positives = len(selected_relevant) n_selected = len(selected) false_positives = n_selected - true_positives false_negatives = n_relevant - true_positives # Compute precision, recall, and F1 score. if n_selected == 0 or true_positives == 0: precision = 0.0 recall = 0.0 f1_score = 0.0 else: precision = 100 * true_positives / n_selected recall = 100 * true_positives / n_relevant f1_score = 2*precision*recall / (precision+recall) # Write row. row = [ dataset_name, aug_kind_str, test_unit_str, str(trial_id), predict_unit_str, str(int(np.round(1000*tolerance))).rjust(4), format(threshold, ".10f"), str(n_relevant).rjust(5), str(n_selected).rjust(6), str(true_positives).rjust(5), str(false_positives).rjust(6), str(false_negatives).rjust(5), format(precision, ".6f").rjust(10), format(recall, ".6f").rjust(10), format(f1_score, ".6f").rjust(10) ] # Write row. csv_file = open(metrics_path, 'a') csv_writer = csv.writer(csv_file, delimiter=',') csv_writer.writerow(row) csv_file.close() # Print elapsed time. print(str(datetime.datetime.now()) + " Finish.") elapsed_time = time.time() - int(start_time) elapsed_hours = int(elapsed_time / (60 * 60)) elapsed_minutes = int((elapsed_time % (60 * 60)) / 60) elapsed_seconds = elapsed_time % 60. elapsed_str = "{:>02}:{:>02}:{:>05.2f}".format(elapsed_hours, elapsed_minutes, elapsed_seconds) print("Total elapsed time: " + elapsed_str + ".")
the-stack_0_26263
#!/usr/bin/env python import os import glob import shutil from conf import bib_dir, template_dir, html_dir, static_dir, pdf_dir from options import get_config, mkdir_p from build_template import bib_from_tmpl, html_from_tmpl, from_template config = get_config() mkdir_p(bib_dir) for file in glob.glob(os.path.join(static_dir,'*.css')): shutil.copy(file, html_dir) html_pdfs = os.path.join(html_dir, 'pdfs') mkdir_p(html_pdfs) for file in glob.glob(os.path.join(pdf_dir,'*.pdf')): shutil.copy(file, html_pdfs) citation_key = config['proceedings']['citation_key'] # e.g. proc-scipy-2010 bib_from_tmpl('proceedings', config, citation_key) proc_dict = dict(config.items() + {'pdf': 'pdfs/proceedings.pdf'}.items() + {'bibtex': 'bib/' + citation_key}.items()) for dest_fn in ['index', 'organization']: html_from_tmpl(dest_fn+'.html', proc_dict, dest_fn) for article in config['toc']: art_dict = dict(config.items() + {'article': article}.items() + {'pdf': 'pdfs/'+article['paper_id']+'.pdf'}.items() + {'bibtex': 'bib/'+article['paper_id']+'.bib'}.items()) bib_from_tmpl('article', art_dict, article['paper_id']) html_from_tmpl('article.html',art_dict, article['paper_id'])
the-stack_0_26265
""" This file contains code based on https://github.com/automl/nasbench301/ Authors: Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, Frank Hutter """ import glob import itertools import json import os import re from math import isclose import ConfigSpace as CS import ConfigSpace.hyperparameters as CSH import numpy as np import seaborn as sns from ConfigSpace.read_and_write import json as config_space_json_r_w from scipy.stats import norm, spearmanr, kendalltau from sklearn.metrics import mean_squared_error, r2_score from tqdm import tqdm from pathlib import Path from nas_bench_x11.models.lgboost import LGBModel, LGBModelTime from nas_bench_x11.models.xgboost import XGBModel, XGBModelTime from nas_bench_x11.models.svd_lgb import SVDLGBModel from nas_bench_x11.models.svd_xgb import SVDXGBModel from nas_bench_x11.models.svd_nn import SVDNNModel from nas_bench_x11.models.vae_nn import VAENNModel from nas_bench_x11.models.vae_lgb import VAELGBModel from nas_bench_x11.models.vae_xgb import VAEXGBModel sns.set_style('whitegrid') model_dict = { # NOTE: RUNTIME MODELS SHOULD END WITH "_time" 'xgb': XGBModel, 'svd_lgb': SVDLGBModel, 'svd_xgb': SVDXGBModel, 'svd_nn': SVDNNModel, 'vae_lgb': VAELGBModel, 'vae_xgb': VAEXGBModel, 'vae_nn': VAENNModel, 'xgb_time': XGBModelTime, 'lgb': LGBModel, 'lgb_time': LGBModelTime, } def get_project_root() -> Path: """ Returns the root path of the project. """ return Path(__file__).parent.parent def evaluate_learning_curve_metrics(y_true, y_pred, prediction_is_first_arg, reduction='mean'): """ Create a dict with all evaluation metrics """ y_pred = np.array(y_pred) y_true = np.array(y_true) reduce_fn = {'mean': np.mean}[reduction] if prediction_is_first_arg: y_true, y_pred = y_pred, y_true def kendall_tau_lc(y_true, y_pred, decimals=None): corrs, p_vals = [], [] for yt, yp in zip(y_true.T, y_pred.T): if decimals is None: corr, p_val = kendalltau(yt, yp) else: corr, p_val = kendalltau(yt, np.round(np.array(yp), decimals=decimals)) corrs.append(corr) p_vals.append(p_val) return corrs metrics_dict = dict() metrics_dict["mse"] = reduce_fn(mean_squared_error(y_true, y_pred, multioutput='raw_values')) metrics_dict["rmse"] = reduce_fn(mean_squared_error(y_true, y_pred, multioutput='raw_values', squared=False)) metrics_dict["r2"] = reduce_fn(r2_score(y_true, y_pred, multioutput='raw_values')) metrics_dict["kendall_tau"] = reduce_fn(kendall_tau_lc(y_true, y_pred)) metrics_dict["kendall_tau_2_dec"] = reduce_fn(kendall_tau_lc(y_true, y_pred, decimals=2)) metrics_dict["kendall_tau_1_dec"] = reduce_fn(kendall_tau_lc(y_true, y_pred, decimals=1)) metrics_dict["spearmanr"] = reduce_fn([spearmanr(yt, yp).correlation for yt, yp in zip(y_true.T, y_pred.T)]) # Last epoch metrics metrics_dict["last_epoch_mse"] = mean_squared_error(y_true[:, -1], y_pred[:, -1]) metrics_dict["last_epoch_rmse"] = np.sqrt(metrics_dict["last_epoch_mse"]) metrics_dict["last_epoch_r2"] = r2_score(y_true[:, -1], y_pred[:, -1]) metrics_dict["last_epoch_kendall_tau"], p_val = kendalltau(y_true[:, -1], y_pred[:, -1]) metrics_dict["last_epoch_kendall_tau_2_dec"], p_val = kendalltau(y_true[:, -1], np.round(np.array(y_pred[:, -1]), decimals=2)) metrics_dict["last_epoch_kendall_tau_1_dec"], p_val = kendalltau(y_true[:, -1], np.round(np.array(y_pred[:, -1]), decimals=1)) metrics_dict["last_epoch_spearmanr"] = spearmanr(y_true[:, -1], y_pred[:, -1]).correlation return metrics_dict def evaluate_metrics(y_true, y_pred, prediction_is_first_arg): """ Create a dict with all evaluation metrics """ if prediction_is_first_arg: y_true, y_pred = y_pred, y_true metrics_dict = dict() metrics_dict["mse"] = mean_squared_error(y_true, y_pred) metrics_dict["rmse"] = np.sqrt(metrics_dict["mse"]) metrics_dict["r2"] = r2_score(y_true, y_pred) metrics_dict["kendall_tau"], p_val = kendalltau(y_true, y_pred) metrics_dict["kendall_tau_2_dec"], p_val = kendalltau(y_true, np.round(np.array(y_pred), decimals=2)) metrics_dict["kendall_tau_1_dec"], p_val = kendalltau(y_true, np.round(np.array(y_pred), decimals=1)) metrics_dict["spearmanr"] = spearmanr(y_true, y_pred).correlation return metrics_dict def get_model_configspace(model): """ Retrieve the model_config :param model: Name of the model for which you want the default config :return: """ # Find matching config for the model name model_config_regex = re.compile(".*{}_configspace.json".format(model)) root = get_project_root() matched_model_config_paths = list( filter(model_config_regex.match, glob.glob(str(root) + '/configs/model_configs/*'))) print(matched_model_config_paths) # Make sure we only matched exactly one config assert len(matched_model_config_paths) == 1, 'Multiple or no configs matched with the requested model.' model_config_path = matched_model_config_paths[0] # Load the configspace object model_configspace = config_space_json_r_w.read(open(model_config_path, 'r').read()) return model_configspace def convert_array_to_list(a): """Converts a numpy array to list""" if isinstance(a, np.ndarray): return a.tolist() else: return a class ConfigLoader: def __init__(self, config_space_path): self.config_space = self.load_config_space(config_space_path) # The exponent to scale the fidelity with. # Used to move architectures across the fidelity budgets # Default at None, hence the fidelity values are not changed self.fidelity_exponent = None # The number of skip connections to have in the cell # If this set to None (default) No skip connections will be added to the cell # Maximum is the maximum number of operations. self.parameter_free_op_increase_type = None self.ratio_parameter_free_op_in_cell = None # Manually adjust a certain set of hyperparameters self.parameter_change_dict = None # Save predefined fidelity multiplier self.fidelity_multiplier = { 'SimpleLearningrateSchedulerSelector:cosine_annealing:T_max': 1.762734383267615, 'NetworkSelectorDatasetInfo:darts:init_channels': 1.3572088082974532, 'NetworkSelectorDatasetInfo:darts:layers': 1.2599210498948732 } self.fidelity_starts = { 'SimpleLearningrateSchedulerSelector:cosine_annealing:T_max': 50, 'NetworkSelectorDatasetInfo:darts:init_channels': 8, 'NetworkSelectorDatasetInfo:darts:layers': 5 } def __getitem__(self, path, return_full_lc=True): """ Load the results from results.json :param path: Path to results.json :return: """ json_file = json.load(open(path, 'r')) config_dict = json_file['optimized_hyperparamater_config'] config_space_instance = self.query_config_dict(config_dict) val_accuracy = json_file['info'][0]['val_accuracy'] test_accuracy = json_file['test_accuracy'] if return_full_lc: full_lc = json_file['learning_curves']['Train/val_accuracy'] return config_space_instance, val_accuracy, test_accuracy, json_file, full_lc else: # this is the original nasbench301 return return config_space_instance, val_accuracy, test_accuracy, json_file def get_runtime(self, path): """ Load the runtime from results.json :param path: Path to results.json return: """ json_file = json.load(open(path, 'r')) config_dict = json_file['optimized_hyperparamater_config'] config_space_instance = self.query_config_dict(config_dict) runtime = json_file['runtime'] return config_space_instance, runtime def query_config_dict(self, config_dict): # Evaluation methods # Scale the hyperparameters if needed if self.fidelity_exponent is not None: config_dict = self.scale_fidelity(config_dict) # Add selected parameter free op if self.ratio_parameter_free_op_in_cell is not None: config_dict = self.add_selected_parameter_free_op(config_dict) # Change a selection of parameters if self.parameter_change_dict is not None: config_dict = self.change_parameter(config_dict) # Create the config space instance based on the config space config_space_instance = \ self.convert_config_dict_to_configspace_instance(self.config_space, config_dict=config_dict) return config_space_instance def add_selected_parameter_free_op(self, config_dict): """ Add selected parameter free operation to the config dict :param config_dict: :return: """ assert self.parameter_free_op_increase_type in ['max_pool_3x3', 'avg_pool_3x3', 'skip_connect'], 'Unknown parameter-free op was selected.' # Dictionary containing operations cell_op_dict_sel_param_free = {'normal': {}, 'reduce': {}} cell_op_dict_non_sel_param_free = {'normal': {}, 'reduce': {}} for cell_type in ['normal']: for edge in range(0, 14): key = 'NetworkSelectorDatasetInfo:darts:edge_{}_{}'.format(cell_type, edge) op = config_dict.get(key, None) if op is not None: if op == self.parameter_free_op_increase_type: cell_op_dict_sel_param_free[cell_type][key] = op else: cell_op_dict_non_sel_param_free[cell_type][key] = op # Select random subset of operations which to turn to selected parameter-free op for cell_type in ['normal', 'reduce']: num_sel_param_free_ops = len(cell_op_dict_sel_param_free[cell_type].values()) num_non_sel_param_free_ops = len(cell_op_dict_non_sel_param_free[cell_type].values()) num_ops = num_sel_param_free_ops + num_non_sel_param_free_ops desired_num_sel_param_free_ops = np.round(num_ops * self.ratio_parameter_free_op_in_cell).astype(np.int) remaining_num_sel_param_free_op = desired_num_sel_param_free_ops - num_sel_param_free_ops if remaining_num_sel_param_free_op > 0: # There are still more selected parameter free operations to add to satisfy the ratio of # sel param free op. Therefore override some of the other operations to be parameter free op. sel_param_free_idx = np.random.choice(num_non_sel_param_free_ops, remaining_num_sel_param_free_op, replace=False) for idx, (key, value) in enumerate(cell_op_dict_non_sel_param_free[cell_type].items()): if idx in sel_param_free_idx: config_dict[key] = self.parameter_free_op_increase_type return config_dict def scale_fidelity(self, config_dict): """ Scale the fidelity of the current sample :param config_dict: :return: """ for name, value in self.fidelity_multiplier.items(): config_dict[name] = int(config_dict[name] * value ** self.fidelity_exponent) return config_dict def change_parameter(self, config_dict): for name, value in self.parameter_change_dict.items(): config_dict[name] = value return config_dict def convert_config_dict_to_configspace_instance(self, config_space, config_dict): """ Convert a config dictionary to configspace instace :param config_space: :param config_dict: :return: """ def _replace_str_bool_with_python_bool(input_dict): for key, value in input_dict.items(): if value == 'True': input_dict[key] = True elif value == 'False': input_dict[key] = False else: pass return input_dict # Replace the str true with python boolean type config_dict = _replace_str_bool_with_python_bool(config_dict) config_instance = CS.Configuration(config_space, values=config_dict) return config_instance @staticmethod def load_config_space(path): """ Load ConfigSpace object As certain hyperparameters are not denoted as optimizable but overriden later, they are manually overriden here too. :param path: :return: """ with open(os.path.join(path), 'r') as fh: json_string = fh.read() config_space = config_space_json_r_w.read(json_string) # Override the constant hyperparameters for num_layers, init_channels and config_space._hyperparameters.pop('NetworkSelectorDatasetInfo:darts:layers', None) num_layers = CSH.UniformIntegerHyperparameter(name='NetworkSelectorDatasetInfo:darts:layers', lower=1, upper=10000) config_space._hyperparameters.pop('SimpleLearningrateSchedulerSelector:cosine_annealing:T_max', None) t_max = CSH.UniformIntegerHyperparameter(name='SimpleLearningrateSchedulerSelector:cosine_annealing:T_max', lower=1, upper=10000) config_space._hyperparameters.pop('NetworkSelectorDatasetInfo:darts:init_channels', None) init_channels = CSH.UniformIntegerHyperparameter(name='NetworkSelectorDatasetInfo:darts:init_channels', lower=1, upper=10000) config_space._hyperparameters.pop('SimpleLearningrateSchedulerSelector:cosine_annealing:eta_min', None) eta_min_cosine = CSH.UniformFloatHyperparameter( name='SimpleLearningrateSchedulerSelector:cosine_annealing:eta_min', lower=0, upper=10000) config_space.add_hyperparameters([num_layers, t_max, init_channels, eta_min_cosine]) return config_space def get_config_without_architecture(self, config_instance): """ Remove the architecture parameters from the config. Currently this function retrieves the 5 parameters which are actually changed throughout the results: num_epochs, num_layers, num_init_channels (3 fidelities) + learning_rate, weight_decay :param config_instance: :return: """ non_arch_hyperparameters_list = [ config_instance._values['SimpleLearningrateSchedulerSelector:cosine_annealing:T_max'], config_instance._values['NetworkSelectorDatasetInfo:darts:init_channels'], config_instance._values['NetworkSelectorDatasetInfo:darts:layers'], config_instance._values['OptimizerSelector:sgd:learning_rate'], config_instance._values['OptimizerSelector:sgd:weight_decay']] return non_arch_hyperparameters_list class ResultLoader: def __init__(self, root, filepath_regex, train_val_test_split, seed): self.root = root self.filepath_regex = filepath_regex self.train_val_test_split = train_val_test_split np.random.seed(seed) def return_train_val_test(self): """ Get the result train/val/test split. :return: """ if self.train_val_test_split['type'] == 'all_result_paths': paths_split = self.all_result_paths() elif self.train_val_test_split['type'] == 'filtered_result_paths': paths_split = self.filtered_result_paths() elif self.train_val_test_split['type'] == 'per_budget_equal_result_paths': paths_split = self.per_budget_equal_result_paths() elif self.train_val_test_split['type'] == 'per_subfolder_equal_ratio': paths_split = self.per_subfolder_equal_ratio() elif self.train_val_test_split['type'] == 'no_data': paths_split = [], [], [] else: raise ValueError('Unknown train/val/test split.') train_paths, val_paths, test_paths = paths_split return train_paths, val_paths, test_paths def filter_duplicate_dirs(self, paths_to_json): """ Checks to configurations in the results.json files and returns paths such that none contains duplicate configurations. :param paths_to_json: List of dir/results.json :return: unique list of dir/results.json w.r.t. configuration """ config_hashes = [] for path_to_json in paths_to_json: with open(path_to_json, "r") as f: results = json.load(f) config_hash = hash(results["optimized_hyperparamater_config"].__repr__()) config_hashes.append(config_hash) _, unique_indices = np.unique(config_hashes, return_index=True) return list(np.array(paths_to_json)[unique_indices]) def get_splits(self, paths, ratios=None): """ Divide the paths into train/val/test splits. :param paths: :param ratios: :return: """ if ratios is None: train_ratio, val_ratio, test_ratio = self.train_val_test_split['train'], self.train_val_test_split['val'], \ self.train_val_test_split['test'] else: train_ratio, val_ratio, test_ratio = ratios assert isclose(train_ratio + val_ratio + test_ratio, 1.0, abs_tol=1e-8), 'The train/val/test split should add up to 1.' # Randomly shuffle the list rng = np.random.RandomState(6) rng.shuffle(paths) # Extract the train/val/test splits train_upper_idx = int(train_ratio * len(paths)) val_upper_idx = int((train_ratio + val_ratio) * len(paths)) train_paths = paths[:train_upper_idx] val_paths = paths[train_upper_idx:val_upper_idx] test_paths = paths[val_upper_idx:-1] return train_paths, val_paths, test_paths def all_result_paths(self, verbose=False): """ Return the paths of all results :return: result paths """ all_results_paths = glob.glob(os.path.join(self.root, self.filepath_regex)) if verbose: print("==> Found %i results paths. Filtering duplicates..." % len(all_results_paths)) all_results_paths.sort() all_results_paths_filtered = self.filter_duplicate_dirs(all_results_paths) if verbose: print("==> Finished filtering. Found %i unique architectures, %i duplicates" % (len(all_results_paths_filtered), len(all_results_paths) - len( all_results_paths_filtered))) train_paths, val_paths, test_paths = self.get_splits(all_results_paths_filtered) return train_paths, val_paths, test_paths def per_subfolder_equal_ratio(self): """ :return: """ train_paths, val_paths, test_paths = [], [], [] for subdir in os.listdir(os.path.join(self.root, self.filepath_regex)): subdir_path = os.path.join(self.root, self.filepath_regex, subdir) # For each subdir split according to the train_val_test_ratios files_in_subdir = glob.glob(os.path.join(subdir_path, '*')) files_in_subdir.sort() train, val, test = self.get_splits(files_in_subdir) # Add the train paths train_paths.extend(train) val_paths.extend(val) test_paths.extend(test) return train_paths, val_paths, test_paths def filtered_result_paths(self): """ Return only the paths of the results that match the filter :return: result paths """ # Check result filters have been specified assert self.train_val_test_split.get('filters', None) is not None, 'Can\'t filter without a result filter.' # Train/val and test split should not be the same filter assert self.train_val_test_split['filters']['train_val_filter'] != self.train_val_test_split['filters'][ 'test_filter'], 'Train/Val filter should not be the same as the test filter.' all_results_paths = glob.glob(os.path.join(self.root, 'run_*/results_fidelity_*/results_*.json')) all_results_paths.sort() results_per_filter = {result_filter: [] for result_filter in self.train_val_test_split.get('filters').keys()} for result_path in tqdm(all_results_paths, desc='Filtering results'): result_json = json.load(open(result_path, 'r')) # Go through all elements to be filtered for result_filter_name, result_filter_path in self.train_val_test_split.get('filters').items(): result_filter = json.load(open(result_filter_path, 'r')) results = [] for filter_key, filter_details in result_filter.items(): # Retrieve the element to be checked filtered_value = list(find_key_value(filter_key, result_json)) if len(filtered_value): if filter_details['type'] == "interval": # Check if the configuration matches the filter interval lower_filter_val, high_filter_val = filter_details['data'] if lower_filter_val <= filtered_value[0] <= high_filter_val: results.append(result_path) else: continue elif filter_details['type'] == "list": # Check whether the value is in a list of pre-specified values if filtered_value[0] in filter_details['data']: results.append(result_path) else: continue else: pass if len(results) == len(result_filter.keys()): results_per_filter[result_filter_name].append(results[0]) # Split the train/val split new_train_ratio = self.train_val_test_split['train'] / ( self.train_val_test_split['train'] + self.train_val_test_split['val']) new_val_ratio = self.train_val_test_split['val'] / ( self.train_val_test_split['train'] + self.train_val_test_split['val']) train_paths, val_paths, _ = self.get_splits(results_per_filter['train_val_filter'], (new_train_ratio, new_val_ratio, 0.0)) test_paths = results_per_filter['test_filter'] assert len(set(results_per_filter['train_val_filter']).intersection( set(test_paths))) == 0, 'Train/val and test set are not disjoint.' return train_paths, val_paths, test_paths def per_budget_equal_result_paths(self): """ Here train/val/test split is performed such that *per fidelity* the ratio of train/val/test is consistent. :return: result_paths """ train_paths_dict, val_paths_dict, test_paths_dict = self.per_budget_data() def flat_list_from_list_of_lists(list_of_list): return list(itertools.chain.from_iterable(list_of_list)) train_paths, val_paths, test_paths = [flat_list_from_list_of_lists(dict.values()) for dict in [train_paths_dict, val_paths_dict, test_paths_dict]] rng = np.random.RandomState(6) rng.shuffle(train_paths) rng.shuffle(val_paths) val_paths(test_paths) return train_paths, val_paths, test_paths def per_budget_data(self): """ Extract the train/val/test split for each budget :return: Dictionaries containing the data for each fidelity """ train_paths_dict, val_paths_dict, test_paths_dict = {}, {}, {} for fidelity_num in range(7): results_in_fidelity = glob.glob( os.path.join(self.root, 'run_*/results_fidelity_{}/results_*.json').format(fidelity_num)) results_in_fidelity.sort() # Split the fidelity based on the train/val/test portions train_paths_in_fidelity, val_paths_in_fidelity, test_paths_in_fidelity = self.get_splits( results_in_fidelity) train_paths_dict[fidelity_num] = train_paths_in_fidelity val_paths_dict[fidelity_num] = val_paths_in_fidelity test_paths_dict[fidelity_num] = test_paths_in_fidelity return train_paths_dict, val_paths_dict, test_paths_dict def find_key_value(key, dictionary): """ Check if key is contained in dictionary in a nested way Source: https://gist.github.com/douglasmiranda/5127251#file-gistfile1-py-L2 :param key: :param dictionary: :return: """ for k, v in dictionary.items(): if k == key: yield v elif isinstance(v, dict): for result in find_key_value(key, v): yield result elif isinstance(v, list): for d in v: for result in find_key_value(key, d): yield result class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt
the-stack_0_26267
import os def parse_mount(volume_spec): # Docker volumes may be "/src:dest:ro" or simply "/src" components = volume_spec.split(':') perm = 'w' # assume write perm if not specified src_path = components[0] # check if ro specified if components[-1] == 'ro': perm = 'r' return (src_path, perm)
the-stack_0_26269
from flask import Flask, redirect, url_for, render_template, request, make_response, session, jsonify, abort from flask_dance.contrib.twitter import make_twitter_blueprint, twitter from bson.objectid import ObjectId from urllib.parse import quote import ssl import pymongo import datetime import time import copy import os app = Flask(__name__) app.secret_key = "supersekrit" f = open('tw_request/.env', 'r') keyDict = dict() for s in f.readlines(): k, v = s.split('=', 1) k = k.strip() v = v.strip() keyDict[k] = v api_key = keyDict['TWITTER_API_KEY'] api_secret = keyDict['TWITTER_API_SECRET'] blueprint = make_twitter_blueprint(api_key=api_key, api_secret=api_secret) app.register_blueprint(blueprint, url_prefix="/login") client = pymongo.MongoClient(keyDict['MONGODB_URL'], connect=False, ssl_cert_reqs=ssl.CERT_NONE) db = client.main cache = client.cache f.close() def authorization_required(fun): def decorated(*args): if not twitter.authorized: abort(401) return fun(*args) return decorated def getinfo_id(id) -> dict: ret = cache['twd'].find_one({"id_str": str(id)}) isCreated = bool(ret) if isCreated: _id = ret['_id'] if not isCreated or time.time() - ret['_timestamp'] > 86400: ret = twitter.get( f"users/show.json?user_id={id}").json() ret['profile_image_url_https'] = ret['profile_image_url_https'].replace( '_normal', '') ret['_timestamp'] = time.time() if isCreated: if '_id' in ret: ret.pop('_id') cache['twd'].update({'_id': _id}, {'$set': ret}) else: cache['twd'].insert_one(ret) return ret def getinfo_name(name) -> dict: ret = cache['twd'].find_one({"screen_name": name}) isCreated = bool(ret) if isCreated: _id = ret['_id'] if not isCreated or time.time() - ret['_timestamp'] > 86400: ret = twitter.get( f"users/show.json?screen_name={name}").json() ret['profile_image_url_https'] = ret['profile_image_url_https'].replace( '_normal', '') ret['_timestamp'] = time.time() if isCreated: if '_id' in ret: ret.pop('_id') cache['twd'].update({'_id': _id}, {'$set': ret}) else: cache['twd'].insert_one(ret) return ret @authorization_required def getinfo() -> dict: try: userinfo = dict() if 'userid' in session: userid = session['userid'] userinfo = getinfo_id(userid) else: account = twitter.get("account/verify_credentials.json") assert account.ok session['userid'] = account.json()['id'] userinfo = getinfo_id(account.json()['id']) assert userinfo return userinfo except AssertionError: abort(500) @app.route("/") def intro(): if twitter.authorized: userinfo = getinfo() return redirect(f"/user/{userinfo['screen_name']}") else: return render_template('index.html') @app.route("/login") def login(): return redirect(url_for("twitter.login")) @authorization_required @app.route("/logout") def logout(): invaildate_url = f"https://api.twitter.com/oauth/invalidate_token?access_token={api_key}&access_token_secret={api_secret}" twitter.post(invaildate_url) del app.blueprints["twitter"].token session.clear() return redirect(url_for("intro")) @authorization_required @app.route("/user/<username>") def reveal_user(username): try: viewUser = getinfo() showUser = getinfo_name(username) if viewUser['id'] == showUser['id']: return redirect("/me") return render_template("user.html", show_scname=showUser['screen_name'], show_name=showUser['name'], description=showUser['description'], photoURL=showUser['profile_image_url_https'], view_scname=viewUser['screen_name'], view_name=viewUser['name']) except: # If user not exists abort(404) @authorization_required @app.route("/user_ajax/<username>", methods=["GET"]) def user_ajax(username): showUser = getinfo_name(username) pendingRequests = list(db[showUser['id_str']].find({"status": "Pending"})) pendingRequests.sort(key=lambda x: x["timestamp"], reverse=True) for req in pendingRequests: authorUser = getinfo_id(req['author_id']) req['author_scname'] = authorUser['screen_name'] req['author_name'] = authorUser['name'] completeRequests = list( db[showUser['id_str']].find({"status": "Complete"})) completeRequests.sort(key=lambda x: x["timestamp"], reverse=True) for req in completeRequests: authorUser = getinfo_id(req['author_id']) req['author_scname'] = authorUser['screen_name'] req['author_name'] = authorUser['name'] return jsonify({"html": render_template("user_ajax.html", pendingRequests=pendingRequests, completeRequests=completeRequests)}) @authorization_required @app.route("/user_ajax/<username>", methods=["POST"]) def user_ajax_post(username): viewUser = getinfo() showUser = getinfo_name(username) message = str(request.form.get('message')) isSecret = bool(request.form.get('isSecret')) isAnonymous = bool(request.form.get('isAnonymous')) db[showUser['id_str']].insert_one({"author_id": viewUser["id_str"], "message": message, "isSecret": isSecret, "isAnonymous": isAnonymous, "timestamp": str(datetime.datetime.now()), "status": "Pending"}) return user_ajax(username) @authorization_required @app.route("/me") def me(): viewUser = getinfo() return render_template("me.html", scname=viewUser['screen_name'], name=viewUser['name'], photoURL=viewUser['profile_image_url_https'], description=viewUser['description']) @authorization_required @app.route("/me_ajax", methods=["GET"]) def me_ajax(): viewUser = getinfo() pendingRequests = list(db[viewUser['id_str']].find({"status": "Pending"})) pendingRequests.sort(key=lambda x: x["timestamp"], reverse=True) for req in pendingRequests: authorUser = getinfo_id(req['author_id']) req['author_scname'] = authorUser['screen_name'] req['author_name'] = authorUser['name'] pendingRequests_disp = [] for req in pendingRequests: rq = copy.deepcopy(req) if len(req["message"]) > 30: rq["message"] = rq["message"][:27]+'...' pendingRequests_disp.append(rq) completeRequests = list( db[viewUser['id_str']].find({"status": "Complete"})) completeRequests.sort(key=lambda x: x["timestamp"], reverse=True) for req in completeRequests: authorUser = getinfo_id(req['author_id']) req['author_scname'] = authorUser['screen_name'] req['author_name'] = authorUser['name'] return jsonify({"html": render_template("me_ajax.html", pendingRequests=pendingRequests, pendingRequests_disp=pendingRequests_disp, completeRequests=completeRequests)}) @authorization_required @app.route("/me_ajax", methods=["POST"]) def me_ajax_post(): viewUser = getinfo() targetId = str(request.form.get('requests')) if targetId == 'None': return me_ajax() else: # If target exists target_req = db[viewUser['id_str']].find_one( {"_id": ObjectId(targetId)}) # isSecret = target_req["isSecret"] isAnonymous = target_req["isAnonymous"] author_id = target_req["author_id"] timestamp = target_req["timestamp"] action = str(request.form.get('request_action')) isntSharing = bool(request.form.get('isSharing')) if action == "accept": db[viewUser['id_str']].update( {"_id": ObjectId(targetId)}, {"$set": { 'status': 'Complete' } } ) else: # action == "discard" db[viewUser['id_str']].update( {"_id": ObjectId(targetId)}, {"$unset": target_req} ) post_text = timestamp.split('.')[0] + "에 신청된 " + \ ("누군가" if isAnonymous else (f"@{getinfo_id(author_id)['screen_name']} ")) + \ "의 리퀘스트가 "+("완료되었어요!!" if action == "accept" else "삭제되었어요...") if not isntSharing: # If user wants to share twitter.post( "statuses/update.json?status={text}".format(text=quote(post_text, safe=''))) return me_ajax() @app.route("/elements") def elements(): return render_template('elements.html') @app.errorhandler(404) def error404(e): return render_template("404.html"), 404
the-stack_0_26271
# Definition for an interval. # class Interval(object): # def __init__(self, s=0, e=0): # self.start = s # self.end = e import heapq; class SummaryRanges(object): def __init__(self): """ Initialize your data structure here. """ self._data=[] def addNum(self, val): """ :type val: int :rtype: void """ if not self._data: self._data.append(Interval(val,val)) return self._data.sort(cmp=lambda x,y:x.start-y.start) # search lower bound nlen=len(self._data) left,right=0,nlen while left<right: mid=(left+right)/2 if self._data[mid].start>=val: right=mid else: left=mid+1 # if lower is 0 or nlen, sidx==eidx # otherwise pointer two consective pos sidx=0 if left==0 else left-1 eidx=nlen-1 if left==nlen else left st=self._data[sidx] et=self._data[eidx] # 1.val already in data if st.start<=val and st.end>=val: return if et.start<=val and et.end>=val: return # 2.merge the interval,(1,1)(3,3), val==2 if st.end+1==val and et.start-1==val: st.end=et.end self._data.pop(eidx) return # 3. extend to start if st.end+1==val: st.end=val return # 4. extend to b if et.start-1==val: et.start=val return # 5.insert to the pos self._data.insert(left,Interval(val,val)) def getIntervals(self): """ :rtype: List[Interval] """ return self._data # Your SummaryRanges object will be instantiated and called as such: # obj = SummaryRanges() # obj.addNum(val) # param_2 = obj.getIntervals()
the-stack_0_26272
# -*- coding: utf-8 -*- ''' Execute a command and read the output as JSON. The JSON data is then directly overlaid onto the minion's Pillar data. ''' from __future__ import absolute_import # Don't "fix" the above docstring to put it on two lines, as the sphinx # autosummary pulls only the first line for its description. # Import python libs import logging import json # Set up logging log = logging.getLogger(__name__) def ext_pillar(minion_id, # pylint: disable=W0613 pillar, # pylint: disable=W0613 command): ''' Execute a command and read the output as JSON ''' try: command = command.replace('%s', minion_id) return json.loads(__salt__['cmd.run'](command)) except Exception: log.critical( 'JSON data from {0} failed to parse'.format(command) ) return {}
the-stack_0_26274
# Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. from datadog_api_client.v1.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, ) class SyntheticsTestMonitorStatus(ModelSimple): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ("value",): { "UNTRIGGERED": 0, "TRIGGERED": 1, "NO_DATA": 2, }, } validations = {} additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "value": (int,), } discriminator = None attribute_map = {} _composed_schemas = None @convert_js_args_to_python_args def __init__(self, *args, **kwargs): """SyntheticsTestMonitorStatus - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] (int): The status of your Synthetic monitor. * `O` for not triggered * `1` for triggered * `2` for no data., must be one of [0, 1, 2, ] # noqa: E501 Keyword Args: value (int): The status of your Synthetic monitor. * `O` for not triggered * `1` for triggered * `2` for no data., must be one of [0, 1, 2, ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ super().__init__(kwargs) if "value" in kwargs: value = kwargs.pop("value") elif args: args = list(args) value = args.pop(0) else: raise ApiTypeError( "value is required, but not passed in args or kwargs and doesn't have default", path_to_item=self._path_to_item, valid_classes=(self.__class__,), ) self._check_pos_args(args) self.value = value self._check_kw_args(kwargs) @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): """Helper creating a new instance from a response.""" return cls(*args, **kwargs)
the-stack_0_26276
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from typing import List, Optional import numpy as np from gluonts.core.component import DType, validated from gluonts.dataset.field_names import FieldName from gluonts.mx.model.estimator import GluonEstimator from gluonts.model.forecast import Quantile from gluonts.model.forecast_generator import QuantileForecastGenerator from gluonts.model.predictor import Predictor from gluonts.mx.block.decoder import Seq2SeqDecoder from gluonts.mx.block.enc2dec import FutureFeatIntegratorEnc2Dec from gluonts.mx.block.encoder import Seq2SeqEncoder from gluonts.mx.block.quantile_output import QuantileOutput from gluonts.mx.distribution import DistributionOutput from gluonts.mx.model.forecast_generator import DistributionForecastGenerator from gluonts.mx.model.predictor import RepresentableBlockPredictor from gluonts.mx.trainer import Trainer from gluonts.mx.util import copy_parameters from gluonts.time_feature import time_features_from_frequency_str from gluonts.transform import ( AddAgeFeature, AddConstFeature, AddObservedValuesIndicator, AddTimeFeatures, Chain, RemoveFields, RenameFields, SetField, TestSplitSampler, Transformation, VstackFeatures, ) from ._forking_network import ( ForkingSeq2SeqDistributionPredictionNetwork, ForkingSeq2SeqNetworkBase, ForkingSeq2SeqPredictionNetwork, ForkingSeq2SeqTrainingNetwork, ) from ._transform import ForkingSequenceSplitter class ForkingSeq2SeqEstimator(GluonEstimator): r""" Sequence-to-Sequence (seq2seq) structure with the so-called "Forking Sequence" proposed in [WTN+17]_. The basic idea is that, given a sequence :math:`x_1, x_2, \cdots, x_T`, with a decoding length :math:`\tau`, we learn a NN that solves the following series of seq2seq problems: .. math:: :nowrap: \begin{eqnarray} x_1 & \mapsto & x_{2:2+\tau}\\ x_1, x_2 & \mapsto & x_{3:3+\tau}\\ x_1, x_2, x_3 & \mapsto & x_{4:4+\tau}\\ & \ldots & \\ x_1, \ldots, x_{T-\tau} & \mapsto & x_{T-\tau+1:T} \end{eqnarray} Essentially, this means instead of having one cut in the standard seq2seq, one has multiple cuts that progress linearly. Parameters ---------- encoder seq2seq encoder decoder seq2seq decoder quantile_output quantile output distr_output distribution output freq frequency of the time series. prediction_length length of the decoding sequence. context_length length of the encoding sequence. (default: 4 * prediction_length) use_past_feat_dynamic_real Whether to use the ``past_feat_dynamic_real`` field from the data. (default: False) use_feat_dynamic_real Whether to use the ``feat_dynamic_real`` field from the data. (default: False) use_feat_static_cat: Whether to use the ``feat_static_cat`` field from the data. (default: False) cardinality: List[int] = None, Number of values of each categorical feature. This must be set if ``use_feat_static_cat == True``. (default: None) embedding_dimension: List[int] = None, Dimension of the embeddings for categorical features. (default: [min(50, (cat+1)//2) for cat in cardinality]) add_time_feature Adds a set of time features. (default: True) add_age_feature Adds an age feature. (default: False) The age feature starts with a small value at the start of the time series and grows over time. enable_encoder_dynamic_feature Whether the encoder should also be provided with the dynamic features (``age``, ``time`` and ``feat_dynamic_real`` if enabled respectively). (default: True) enable_decoder_dynamic_feature Whether the decoder should also be provided with the dynamic features (``age``, ``time`` and ``feat_dynamic_real`` if enabled respectively). (default: True) It makes sense to disable this, if you don't have ``feat_dynamic_real`` for the prediction range. trainer trainer (default: Trainer()) scaling Whether to automatically scale the target values. (default: False if quantile_output is used, True otherwise) scaling_decoder_dynamic_feature Whether to automatically scale the dynamic features for the decoder. (default: False) dtype (default: np.float32) num_forking Decides how much forking to do in the decoder. 1 reduces to seq2seq and enc_len reduces to MQ-C(R)NN. max_ts_len Returns the length of the longest time series in the dataset to be used in bounding context_length. """ @validated() def __init__( self, encoder: Seq2SeqEncoder, decoder: Seq2SeqDecoder, freq: str, prediction_length: int, quantile_output: Optional[QuantileOutput] = None, distr_output: Optional[DistributionOutput] = None, context_length: Optional[int] = None, use_past_feat_dynamic_real: bool = False, use_feat_dynamic_real: bool = False, use_feat_static_cat: bool = False, cardinality: List[int] = None, embedding_dimension: List[int] = None, add_time_feature: bool = True, add_age_feature: bool = False, enable_encoder_dynamic_feature: bool = True, enable_decoder_dynamic_feature: bool = True, trainer: Trainer = Trainer(), scaling: Optional[bool] = None, scaling_decoder_dynamic_feature: bool = False, dtype: DType = np.float32, num_forking: Optional[int] = None, max_ts_len: Optional[int] = None, ) -> None: super().__init__(trainer=trainer) assert (distr_output is None) != (quantile_output is None) assert ( context_length is None or context_length > 0 ), "The value of `context_length` should be > 0" assert ( prediction_length > 0 ), "The value of `prediction_length` should be > 0" assert ( use_feat_static_cat or not cardinality ), "You should set `cardinality` if and only if `use_feat_static_cat=True`" assert cardinality is None or all( c > 0 for c in cardinality ), "Elements of `cardinality` should be > 0" assert embedding_dimension is None or all( e > 0 for e in embedding_dimension ), "Elements of `embedding_dimension` should be > 0" self.encoder = encoder self.decoder = decoder self.freq = freq self.prediction_length = prediction_length self.quantile_output = quantile_output self.distr_output = distr_output self.context_length = ( context_length if context_length is not None else 4 * self.prediction_length ) if max_ts_len is not None: max_pad_len = max(max_ts_len - self.prediction_length, 0) # Don't allow context_length to be longer than the max pad length self.context_length = ( min(max_pad_len, self.context_length) if max_pad_len > 0 else self.context_length ) self.num_forking = ( min(num_forking, self.context_length) if num_forking is not None else self.context_length ) self.use_past_feat_dynamic_real = use_past_feat_dynamic_real self.use_feat_dynamic_real = use_feat_dynamic_real self.use_feat_static_cat = use_feat_static_cat self.cardinality = ( cardinality if cardinality and use_feat_static_cat else [1] ) self.embedding_dimension = ( embedding_dimension if embedding_dimension is not None else [min(50, (cat + 1) // 2) for cat in self.cardinality] ) self.add_time_feature = add_time_feature self.add_age_feature = add_age_feature self.use_dynamic_feat = ( use_feat_dynamic_real or add_age_feature or add_time_feature ) self.enable_encoder_dynamic_feature = enable_encoder_dynamic_feature self.enable_decoder_dynamic_feature = enable_decoder_dynamic_feature self.scaling = ( scaling if scaling is not None else (quantile_output is None) ) self.scaling_decoder_dynamic_feature = scaling_decoder_dynamic_feature self.dtype = dtype def create_transformation(self) -> Transformation: chain = [] dynamic_feat_fields = [] remove_field_names = [ FieldName.FEAT_DYNAMIC_CAT, FieldName.FEAT_STATIC_REAL, ] # --- GENERAL TRANSFORMATION CHAIN --- # determine unused input if not self.use_past_feat_dynamic_real: remove_field_names.append(FieldName.PAST_FEAT_DYNAMIC_REAL) if not self.use_feat_dynamic_real: remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL) if not self.use_feat_static_cat: remove_field_names.append(FieldName.FEAT_STATIC_CAT) chain.extend( [ RemoveFields(field_names=remove_field_names), AddObservedValuesIndicator( target_field=FieldName.TARGET, output_field=FieldName.OBSERVED_VALUES, dtype=self.dtype, ), ] ) # --- TRANSFORMATION CHAIN FOR DYNAMIC FEATURES --- if self.add_time_feature: chain.append( AddTimeFeatures( start_field=FieldName.START, target_field=FieldName.TARGET, output_field=FieldName.FEAT_TIME, time_features=time_features_from_frequency_str(self.freq), pred_length=self.prediction_length, dtype=self.dtype, ) ) dynamic_feat_fields.append(FieldName.FEAT_TIME) if self.add_age_feature: chain.append( AddAgeFeature( target_field=FieldName.TARGET, output_field=FieldName.FEAT_AGE, pred_length=self.prediction_length, dtype=self.dtype, ) ) dynamic_feat_fields.append(FieldName.FEAT_AGE) if self.use_feat_dynamic_real: # Backwards compatibility: chain.append( RenameFields({"dynamic_feat": FieldName.FEAT_DYNAMIC_REAL}) ) dynamic_feat_fields.append(FieldName.FEAT_DYNAMIC_REAL) # we need to make sure that there is always some dynamic input # we will however disregard it in the hybrid forward. # the time feature is empty for yearly freq so also adding a dummy feature # in the case that the time feature is the only one on if len(dynamic_feat_fields) == 0 or ( not self.add_age_feature and not self.use_feat_dynamic_real and self.freq == "Y" ): chain.append( AddConstFeature( target_field=FieldName.TARGET, output_field=FieldName.FEAT_CONST, pred_length=self.prediction_length, const=0.0, # For consistency in case with no dynamic features dtype=self.dtype, ) ) dynamic_feat_fields.append(FieldName.FEAT_CONST) # now we map all the dynamic input of length context_length + prediction_length onto FieldName.FEAT_DYNAMIC # we exclude past_feat_dynamic_real since its length is only context_length if len(dynamic_feat_fields) > 1: chain.append( VstackFeatures( output_field=FieldName.FEAT_DYNAMIC, input_fields=dynamic_feat_fields, ) ) elif len(dynamic_feat_fields) == 1: chain.append( RenameFields({dynamic_feat_fields[0]: FieldName.FEAT_DYNAMIC}) ) # --- TRANSFORMATION CHAIN FOR STATIC FEATURES --- if not self.use_feat_static_cat: chain.append( SetField( output_field=FieldName.FEAT_STATIC_CAT, value=np.array([0], dtype=np.int32), ) ) # --- SAMPLE AND CUT THE TIME-SERIES --- chain.append( # because of how the forking decoder works, every time step # in context is used for splitting, which is why we use the TestSplitSampler ForkingSequenceSplitter( train_sampler=TestSplitSampler(), enc_len=self.context_length, dec_len=self.prediction_length, num_forking=self.num_forking, encoder_series_fields=[ FieldName.OBSERVED_VALUES, # RTS with past and future values which is never empty because added dummy constant variable FieldName.FEAT_DYNAMIC, ] + ( # RTS with only past values are only used by the encoder [FieldName.PAST_FEAT_DYNAMIC_REAL] if self.use_past_feat_dynamic_real else [] ), encoder_disabled_fields=( [FieldName.FEAT_DYNAMIC] if not self.enable_encoder_dynamic_feature else [] ) + ( [FieldName.PAST_FEAT_DYNAMIC_REAL] if not self.enable_encoder_dynamic_feature and self.use_past_feat_dynamic_real else [] ), decoder_series_fields=[ FieldName.OBSERVED_VALUES, # Decoder will use all fields under FEAT_DYNAMIC which are the RTS with past and future values FieldName.FEAT_DYNAMIC, ], decoder_disabled_fields=( [FieldName.FEAT_DYNAMIC] if not self.enable_decoder_dynamic_feature else [] ), prediction_time_decoder_exclude=[FieldName.OBSERVED_VALUES], ) ) # past_feat_dynamic features generated above in ForkingSequenceSplitter from those under feat_dynamic - we need # to stack with the other short related time series from the system labeled as past_past_feat_dynamic_real. # The system labels them as past_feat_dynamic_real and the additional past_ is added to the string # in the ForkingSequenceSplitter if self.use_past_feat_dynamic_real: # Stack features from ForkingSequenceSplitter horizontally since they were transposed # so shape is now (enc_len, num_past_feature_dynamic) chain.append( VstackFeatures( output_field=FieldName.PAST_FEAT_DYNAMIC, input_fields=[ "past_" + FieldName.PAST_FEAT_DYNAMIC_REAL, FieldName.PAST_FEAT_DYNAMIC, ], h_stack=True, ) ) return Chain(chain) def create_training_network(self) -> ForkingSeq2SeqNetworkBase: return ForkingSeq2SeqTrainingNetwork( encoder=self.encoder, enc2dec=FutureFeatIntegratorEnc2Dec(), decoder=self.decoder, quantile_output=self.quantile_output, distr_output=self.distr_output, context_length=self.context_length, num_forking=self.num_forking, cardinality=self.cardinality, embedding_dimension=self.embedding_dimension, scaling=self.scaling, scaling_decoder_dynamic_feature=self.scaling_decoder_dynamic_feature, dtype=self.dtype, ) def create_predictor( self, transformation: Transformation, trained_network: ForkingSeq2SeqNetworkBase, ) -> Predictor: quantile_strs = ( [ Quantile.from_float(quantile).name for quantile in self.quantile_output.quantiles ] if self.quantile_output is not None else None ) prediction_network_class = ( ForkingSeq2SeqPredictionNetwork if self.quantile_output is not None else ForkingSeq2SeqDistributionPredictionNetwork ) prediction_network = prediction_network_class( encoder=trained_network.encoder, enc2dec=trained_network.enc2dec, decoder=trained_network.decoder, quantile_output=trained_network.quantile_output, distr_output=trained_network.distr_output, context_length=self.context_length, num_forking=self.num_forking, cardinality=self.cardinality, embedding_dimension=self.embedding_dimension, scaling=self.scaling, scaling_decoder_dynamic_feature=self.scaling_decoder_dynamic_feature, dtype=self.dtype, ) copy_parameters(trained_network, prediction_network) return RepresentableBlockPredictor( input_transform=transformation, prediction_net=prediction_network, batch_size=self.trainer.batch_size, freq=self.freq, prediction_length=self.prediction_length, ctx=self.trainer.ctx, forecast_generator=( QuantileForecastGenerator(quantile_strs) if quantile_strs is not None else DistributionForecastGenerator(self.distr_output) ), )
the-stack_0_26278
import game_defs import glvars import katagames_sdk.katagames_engine as kengi pygame = kengi.pygame EventReceiver = kengi.event.EventReceiver EngineEvTypes = kengi.event.EngineEvTypes # Nota Bene. # there will be no model for the collection, as the avatar already contains it! # (in glvars.the_avatar.artifacts) BASE_Y = 55 TAQUET_X = 50 class ShowCollectionView(EventReceiver): """ dummy view, displays a gray square(=slot) no matter what, +displays a steelblue circle inside this slot if the artifact is owned """ def __init__(self): super().__init__() self.reagent_names_lbl = list() ft = pygame.font.Font(None, 25) for ac in game_defs.ArtifactCodes.all_codes: self.reagent_names_lbl.append( ft.render(game_defs.ArtifactNames[ac][0], True, (87, 11, 128)) ) self.rituals_title_lbl = ft.render('Rituals: ', True, (87, 11, 128)) self.ritual_spr = pygame.sprite.Sprite() self.ritual_spr.image = pygame.image.load('assets/ritual.png') self.ritual_spr.rect = self.ritual_spr.image.get_rect() self.ritual_spr.rect.center = (180, 434) self.chalice_spr = pygame.sprite.Sprite() self.chalice_spr.image = pygame.transform.scale(pygame.image.load('assets/chalice.png'), (150, 150)) self.chalice_spr.image.set_colorkey((255, 0, 255)) self.chalice_spr.rect = self.chalice_spr.image.get_rect() self.chalice_spr.rect.center = (385, 434) def proc_event(self, ev, source): if ev.type == EngineEvTypes.PAINT: self._do_paint(ev.screen) def _do_paint(self, scr): scr.fill(game_defs.BG_COLOR) ft = pygame.font.Font(None, 27) av = glvars.the_avatar # - draw labels given_y = BASE_Y for lbl in self.reagent_names_lbl: scr.blit(lbl, (TAQUET_X, given_y-32)) given_y += 88 # - draw slots given_y = BASE_Y circle_offset = [40, 25] rad = 21 for art_code in game_defs.ArtifactCodes.all_codes: tmp = max(game_defs.ArtifactNames[art_code].keys()) for num_piece in range(1, tmp+1): # draw smth for each artifact element tmpx = 50+(num_piece-1)*125 pygame.draw.rect(scr, 'darkgray', (tmpx, given_y, 80, 50)) if av.has_artifact(art_code, num_piece): tpos = (tmpx+circle_offset[0], given_y+circle_offset[1]) pygame.draw.circle(scr, 'steelblue', tpos, rad) # also display the quantity... tmp = ft.render(str(av.artifact_quant(art_code, num_piece)), False, 'orange') scr.blit(tmp, (tpos[0], tpos[1]+16)) given_y += 88 # titre partie 2 +illustrations scr.blit(self.rituals_title_lbl, (TAQUET_X, 33 + scr.get_size()[1]//2)) scr.blit(self.ritual_spr.image, self.ritual_spr.rect.topleft) scr.blit(self.chalice_spr.image, self.chalice_spr.rect.topleft) class ShowCollectionCtrl(EventReceiver): def proc_event(self, ev, source): if ev.type == pygame.KEYDOWN and ev.key == pygame.K_ESCAPE: self.pev(EngineEvTypes.POPSTATE) class MageryState(kengi.BaseGameState): def __init__(self, gs_id, name): super().__init__(gs_id, name) self.m = self.v = self.c = None def enter(self): self.v = ShowCollectionView() self.v.turn_on() self.c = ShowCollectionCtrl() self.c.turn_on() def release(self): self.c.turn_off() self.v.turn_off() self.c = self.v = None
the-stack_0_26279
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Jorge Niedbalski R. <[email protected]>' import os from setuptools import setup, find_packages dependencies = ["jujuclient", "PyYaml"] def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="juju-suspend", version="0.1.0", author="Jorge Niedbalski R.", include_package_data=True, author_email="[email protected]", description="", install_requires=dependencies, packages=find_packages(), test_suite='nose.collector', long_description=read('README.md'), classifiers=[ "Development Status :: 3 - Alpha", ], entry_points=""" [console_scripts] juju-suspend = juju_suspend.cli:main """ )
the-stack_0_26282
""" Codemonk link: https://www.hackerearth.com/problem/algorithm/monk-and-nice-strings-3-e5800d05/ Monk's best friend Micro's birthday is coming up. Micro likes Nice Strings very much, so Monk decided to gift him one. Monk is having N nice strings, so he'll choose one from those. But before he selects one, he need to know the Niceness value of all of those. Strings are arranged in an array A, and the Niceness value of string at position i is defined as the number of strings having position less than i which are lexicographicaly smaller than A[i]. Since nowadays, Monk is very busy with the Codemonk series, he asked for your help. Array's index starts from 1. Input - Output: First line consists of a single integer denoting N. N lines follow each containing a string made of lower case English alphabets. Print N lines, each containing an integer, where the integer in ith line denotes Niceness value of string A[i]. Sample input: 4 a c d b Sample Output: 0 1 2 1 """ """ The problem is straightforward. For each new character check all the previous ones to find how many are smaller. Final complexity: O(N^2) """ inp_len = int(input()) first_char = input() characters = [first_char] print("0") for i in range(1, inp_len): new_char = input() count = 0 for j in range(len(characters)-1, -1, -1): if new_char > characters[j]: count += 1 print(count) characters.append(new_char)
the-stack_0_26285
import cv2 import mediapipe as mp mp_face_detection = mp.solutions.face_detection mp_drawing = mp.solutions.drawing_utils # For webcam input: cap = cv2.VideoCapture(0) with mp_face_detection.FaceDetection( min_detection_confidence=0.5) as face_detection: while cap.isOpened(): success, image = cap.read() if not success: print("Ignoring empty camera frame.") # If loading a video, use 'break' instead of 'continue'. continue # Flip the image horizontally for a later selfie-view display, and convert # the BGR image to RGB. image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB) # To improve performance, optionally mark the image as not writeable to # pass by reference. image.flags.writeable = False results = face_detection.process(image) # Draw the face detection annotations on the image. image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) if results.detections: for detection in results.detections: mp_drawing.draw_detection(image, detection) cv2.imshow('MediaPipe Face Detection', image) # ctrl and c to close a window if cv2.waitKey(5) & 0xFF == 27: break cap.release()
the-stack_0_26286
import logging import fifo_parser.messageexecutor # create logger logger = logging.getLogger() logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) # create formatter formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) me = fifo_parser.messageexecutor.MessageExecutor() me.run()
the-stack_0_26289
# -*- coding: utf-8 -*- """Includes functions for copying the PyNX template files.""" import datetime import os from distutils.dir_util import copy_tree from nxstart.utils.files import get_full_path, replace_in_file def create_pynx_project(folder_path, name, author): """ Copies the files from templates/base to folder_path and modifies Makefile and source/main.cpp to include the project name, author name and current date. :param folder_path: Path to copy the files to :param name: Name of the project :param author: Name of the author """ template_folder = get_full_path(os.path.join("templates", "pynx")) copy_tree(template_folder, folder_path) main_cpp_file = os.path.join(folder_path, "main.py") main_cpp_replacements = { "APP_AUTHOR_PLACEHOLDER": author, "APP_NAME_PLACEHOLDER": name, "DATE_PLACEHOLDER": datetime.datetime.now().strftime("%Y-%m-%d"), } replace_in_file(main_cpp_file, main_cpp_replacements)
the-stack_0_26290
import argparse from utilities import utils import config def get_argument_parser(model_name): ''' Argument parser which returns the options which the user inputted. Args: None Returns: argparse.ArgumentParser().parse_args() ''' weights_path = config.PRETRAINED_WEIGHT_PATH image_path = f'./images/{model_name}.png' plot_path = f'./images/{model_name}_plot.png' parser = argparse.ArgumentParser() parser.add_argument('--epochs', help = 'How many epochs you need to run (default: 10)', type = int, default = config.EPOCH) parser.add_argument('--batch_size', help = 'The number of images in a batch (default: 64)', type = int, default = config.BATCH_SIZE) parser.add_argument('--path_for_weights', help = f'The path from where the weights will be saved or loaded \ (default: {weights_path})', type = str, default = weights_path) parser.add_argument('--path_for_image', help = f'The path from where the model image will be saved \ (default: {image_path})', type = str, default = image_path) parser.add_argument('--path_for_plot', help = f'The path from where the training progress will be plotted \ (default: {plot_path})', type = str, default = plot_path) parser.add_argument('--data_augmentation', help = '0: No, 1: Yes (default: 1)', type = int, default = 0) parser.add_argument('--load_weights', help = '0: No, 1: Yes (default: 0)', type = int, default = 0) parser.add_argument('--plot_training_progress', help = '0: No, 1: Yes (default: 1)', type = int, default = 1) parser.add_argument('--save_model_to_image', help = '0: No, 1: Yes (default: 1)', type = int, default = 1) args = parser.parse_args() return args def train(model, model_name): # load all arguments args = get_argument_parser(model_name) training_data, validation_data, test_data = utils.load_mnist() print(f'[data loaded]') # build and compile the model model.compile() print('[model built]') # save the model architecture to an image file #if args.save_model_to_image: #model.save_model_as_image(args.path_for_image) #print(f'[model image saved as {args.path_for_image}]') # load pretrained weights if config.FINE_TUNE: model.load_weights(args.path_for_weights) print(f'[weights loaded from {args.path_for_weights}]') # train the model hist = None if config.DATA_AUGMENTATION: hist = model.fit_generator(training_data, validation_data, epochs = args.epochs, batch_size = args.batch_size) print('[trained with augmented images]') else: hist = model.fit(training_data, validation_data, epochs = args.epochs, batch_size = args.batch_size) print('[trained without augmented images]') # save the training progress to an image file #if args.plot_training_progress: #utils.plot(history = hist, path = args.path_for_plot, title = model_name) #print(f'[training progress saved as {args.path_for_plot}]') # save the model and trained weights in the configured path if config.SAVE_MODEL: model.save(config.SAVE_MODEL_PATH) print(f'[Model and trained weights saved in {config.SAVE_MODEL_PATH}]') # evaluate the model with the test dataset loss_and_metrics = model.evaluate(test_data, batch_size = args.batch_size) print('[Evaluation on the test dataset]\n', loss_and_metrics, '\n')
the-stack_0_26291
# MIT License # # Copyright (c) 2021 ESCAPE # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from pyspark.sql import SparkSession import sys import json def main(): spark = SparkSession.Builder().getOrCreate() # Set spark log level to WARN spark.sparkContext.setLogLevel("WARN") msg = """ \nSpark configuration\n------------------- """ print(msg) print(spark.version) print(spark.sparkContext.getConf().getAll()) print('Reading some data...') df = spark.read.format('parquet').load('data/clusters.parquet') df.count() print('Configuration OK!') msg = """ \nPython configuration\n-------------------- """ print(msg) print(sys.version) msg = """ \nJupyter RISE add-ons\n-------------------- """ print(msg) with open('../.jupyter/nbconfig/rise.json') as f: rise_info = json.load(f) print(rise_info) if __name__ == '__main__': main()
the-stack_0_26292
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # MDAnalysis --- https://www.mdanalysis.org # Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # doi: 10.25080/majora-629e541a-00e # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # """TXYZ topology parser ==================== Tinker_ topology parser: reads information from .txyz and .arc files. Atom types are read from column 6, while bond connectivity is read from column 7 onwards. .. _Tinker: https://dasher.wustl.edu/tinker/ See Also -------- MDAnalysis.coordinates.TXYZ : further documentation on the Tinker format Classes ------- .. autoclass:: TXYZParser :members: :inherited-members: """ from __future__ import absolute_import import itertools import numpy as np from six.moves import zip from . import guessers from ..lib.util import openany from .base import TopologyReaderBase from ..core.topology import Topology from ..core.topologyattrs import ( Atomnames, Atomids, Atomtypes, Bonds, Masses, Resids, Resnums, Segids, ) class TXYZParser(TopologyReaderBase): """Parse a list of atoms from a Tinker XYZ file. Creates the following attributes: - Atomnames - Atomtypes .. versionadded:: 0.17.0 """ format = ['TXYZ', 'ARC'] def parse(self, **kwargs): """Read the file and return the structure. Returns ------- MDAnalysis Topology object """ with openany(self.filename) as inf: #header natoms = int(inf.readline().split()[0]) atomids = np.zeros(natoms, dtype=np.int) names = np.zeros(natoms, dtype=object) types = np.zeros(natoms, dtype=object) bonds = [] # Find first atom line, maybe there's box information fline = inf.readline() try: # If a box second value will be a float # If an atom, second value will be a string float(fline.split()[1]) except ValueError: # If float conversion failed, we have first atom line pass else: # If previous try succeeded it was a box # so read another line to find the first atom line fline = inf.readline() # Can't infinitely read as XYZ files can be multiframe for i, line in zip(range(natoms), itertools.chain([fline], inf)): line = line.split() atomids[i]= line[0] names[i] = line[1] types[i] = line[5] bonded_atoms = line[6:] for other_atom in bonded_atoms: other_atom = int(other_atom) - 1 if i < other_atom: bonds.append((i, other_atom)) # Guessing time masses = guessers.guess_masses(names) attrs = [Atomnames(names), Atomids(atomids), Atomtypes(types), Bonds(tuple(bonds)), Masses(masses, guessed=True), Resids(np.array([1])), Resnums(np.array([1])), Segids(np.array(['SYSTEM'], dtype=object)), ] top = Topology(natoms, 1, 1, attrs=attrs) return top
the-stack_0_26293
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.cloud.aiplatform.v1", manifest={ "GcsSource", "GcsDestination", "BigQuerySource", "BigQueryDestination", "ContainerRegistryDestination", }, ) class GcsSource(proto.Message): r"""The Google Cloud Storage location for the input content. Attributes: uris (Sequence[str]): Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/gsutil/addlhelp/WildcardNames. """ uris = proto.RepeatedField(proto.STRING, number=1) class GcsDestination(proto.Message): r"""The Google Cloud Storage location where the output is to be written to. Attributes: output_uri_prefix (str): Required. Google Cloud Storage URI to output directory. If the uri doesn't end with '/', a '/' will be automatically appended. The directory is created if it doesn't exist. """ output_uri_prefix = proto.Field(proto.STRING, number=1) class BigQuerySource(proto.Message): r"""The BigQuery location for the input content. Attributes: input_uri (str): Required. BigQuery URI to a table, up to 2000 characters long. Accepted forms: - BigQuery path. For example: ``bq://projectId.bqDatasetId.bqTableId``. """ input_uri = proto.Field(proto.STRING, number=1) class BigQueryDestination(proto.Message): r"""The BigQuery location for the output content. Attributes: output_uri (str): Required. BigQuery URI to a project or table, up to 2000 characters long. When only the project is specified, the Dataset and Table are created. When the full table reference is specified, the Dataset must exist and table must not exist. Accepted forms: - BigQuery path. For example: ``bq://projectId`` or ``bq://projectId.bqDatasetId.bqTableId``. """ output_uri = proto.Field(proto.STRING, number=1) class ContainerRegistryDestination(proto.Message): r"""The Container Registry location for the container image. Attributes: output_uri (str): Required. Container Registry URI of a container image. Only Google Container Registry and Artifact Registry are supported now. Accepted forms: - Google Container Registry path. For example: ``gcr.io/projectId/imageName:tag``. - Artifact Registry path. For example: ``us-central1-docker.pkg.dev/projectId/repoName/imageName:tag``. If a tag is not specified, "latest" will be used as the default tag. """ output_uri = proto.Field(proto.STRING, number=1) __all__ = tuple(sorted(__protobuf__.manifest))
the-stack_0_26294
from knowledge_model import Base, Knowledge from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine('sqlite:///knowledge.db') Base.metadata.create_all(engine) DBSession = sessionmaker(bind=engine) session = DBSession() def add_article(topic , link, rating): article_object = Knowledge( topic = topic, link = link, rating = rating) session.add(article_object) session.commit() add_article("music","https://docs.google.com/presentation/d/1oQnW76Wd-bEMCi_r1EAzgTVlL2IwgorDrYjiQeyu35E/edit#slide=id.g3df5820309_0_239 ", 7 ) add_article("https://docs.google.com/presentation/d/1oQnW76Wd-bEMCi_r1EAzgTVlL2IwgorDrYjiQeyu35E/edit#slide=id.g3df5820309_0_239 ", 7 , "music") add_article(7,"https://docs.google.com/presentation/d/1oQnW76Wd-bEMCi_r1EAzgTVlL2IwgorDrYjiQeyu35E/edit#slide=id.g3df5820309_0_239 ", "music" ) def query_all_articles(): article= session.query( Knowledge).all() return article def query_article_by_topic(topic): by_topic = session.query( Knowledge).filter_by( topic=topic).first() return by_topic # print(query_article_by_topic("music")) def delete_article_by_topic(topic): session.query(Knowledge).filter_by( topic= topic).delete() session.commit() # delete_article_by_topic("music") def delete_all_articles(): session.query(Knowledge).delete() session.commit() def edit_article_rating(update_rating, article_title): article_object = session.query( Knowledge).filter_by( topic = article_title).first() print(article_object) article_object_rating = update_rating session.commit() edit_article_rating(9, "music") #print(query_article_by_topic("music")) # print(query_all_articles()) # g = Knowledge(topic = "music", link = "https://github.com/mor19-meet/y2s18-databases/tree/master/exercises" , rating = 4) # session.add(g) # session.commit() # articls = query_all_articles() # for i in articls: # print(i.topic)
the-stack_0_26295
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re from typing import Dict, Sequence import requests import snappy from opentelemetry.exporter.prometheus_remote_write.gen.remote_pb2 import ( WriteRequest, ) from opentelemetry.exporter.prometheus_remote_write.gen.types_pb2 import ( Label, Sample, TimeSeries, ) from opentelemetry.sdk.metrics.export import ( ExportRecord, MetricsExporter, MetricsExportResult, ) from opentelemetry.sdk.metrics.export.aggregate import ( HistogramAggregator, LastValueAggregator, MinMaxSumCountAggregator, SumAggregator, ValueObserverAggregator, ) logger = logging.getLogger(__name__) class PrometheusRemoteWriteMetricsExporter(MetricsExporter): """ Prometheus remote write metric exporter for OpenTelemetry. Args: endpoint: url where data will be sent (Required) basic_auth: username and password for authentication (Optional) headers: additional headers for remote write request (Optional) timeout: timeout for remote write requests in seconds, defaults to 30 (Optional) proxies: dict mapping request proxy protocols to proxy urls (Optional) tls_config: configuration for remote write TLS settings (Optional) """ def __init__( self, endpoint: str, basic_auth: Dict = None, headers: Dict = None, timeout: int = 30, tls_config: Dict = None, proxies: Dict = None, ): self.endpoint = endpoint self.basic_auth = basic_auth self.headers = headers self.timeout = timeout self.tls_config = tls_config self.proxies = proxies self.converter_map = { MinMaxSumCountAggregator: self._convert_from_min_max_sum_count, SumAggregator: self._convert_from_sum, HistogramAggregator: self._convert_from_histogram, LastValueAggregator: self._convert_from_last_value, ValueObserverAggregator: self._convert_from_value_observer, } @property def endpoint(self): return self._endpoint @endpoint.setter def endpoint(self, endpoint: str): if endpoint == "": raise ValueError("endpoint required") self._endpoint = endpoint @property def basic_auth(self): return self._basic_auth @basic_auth.setter def basic_auth(self, basic_auth: Dict): if basic_auth: if "username" not in basic_auth: raise ValueError("username required in basic_auth") if "password_file" in basic_auth: if "password" in basic_auth: raise ValueError( "basic_auth cannot contain password and password_file" ) with open(basic_auth["password_file"]) as file: basic_auth["password"] = file.readline().strip() elif "password" not in basic_auth: raise ValueError("password required in basic_auth") self._basic_auth = basic_auth @property def timeout(self): return self._timeout @timeout.setter def timeout(self, timeout: int): if timeout <= 0: raise ValueError("timeout must be greater than 0") self._timeout = timeout @property def tls_config(self): return self._tls_config @tls_config.setter def tls_config(self, tls_config: Dict): if tls_config: new_config = {} if "ca_file" in tls_config: new_config["ca_file"] = tls_config["ca_file"] if "cert_file" in tls_config and "key_file" in tls_config: new_config["cert_file"] = tls_config["cert_file"] new_config["key_file"] = tls_config["key_file"] elif "cert_file" in tls_config or "key_file" in tls_config: raise ValueError( "tls_config requires both cert_file and key_file" ) if "insecure_skip_verify" in tls_config: new_config["insecure_skip_verify"] = tls_config[ "insecure_skip_verify" ] self._tls_config = tls_config @property def proxies(self): return self._proxies @proxies.setter def proxies(self, proxies: Dict): self._proxies = proxies @property def headers(self): return self._headers @headers.setter def headers(self, headers: Dict): self._headers = headers def export( self, export_records: Sequence[ExportRecord] ) -> MetricsExportResult: if not export_records: return MetricsExportResult.SUCCESS timeseries = self._convert_to_timeseries(export_records) if not timeseries: logger.error( "All records contain unsupported aggregators, export aborted" ) return MetricsExportResult.FAILURE message = self._build_message(timeseries) headers = self._build_headers() return self._send_message(message, headers) def shutdown(self) -> None: pass def _convert_to_timeseries( self, export_records: Sequence[ExportRecord] ) -> Sequence[TimeSeries]: timeseries = [] for export_record in export_records: aggregator_type = type(export_record.aggregator) converter = self.converter_map.get(aggregator_type) if converter: timeseries.extend(converter(export_record)) else: logger.warning( "%s aggregator is not supported, record dropped", aggregator_type, ) return timeseries def _convert_from_sum( self, sum_record: ExportRecord ) -> Sequence[TimeSeries]: return [ self._create_timeseries( sum_record, sum_record.instrument.name + "_sum", sum_record.aggregator.checkpoint, ) ] def _convert_from_min_max_sum_count( self, min_max_sum_count_record: ExportRecord ) -> Sequence[TimeSeries]: timeseries = [] for agg_type in ["min", "max", "sum", "count"]: name = min_max_sum_count_record.instrument.name + "_" + agg_type value = getattr( min_max_sum_count_record.aggregator.checkpoint, agg_type ) timeseries.append( self._create_timeseries(min_max_sum_count_record, name, value) ) return timeseries def _convert_from_histogram( self, histogram_record: ExportRecord ) -> Sequence[TimeSeries]: timeseries = [] for bound in histogram_record.aggregator.checkpoint.keys(): bound_str = "+Inf" if bound == float("inf") else str(bound) value = histogram_record.aggregator.checkpoint[bound] timeseries.append( self._create_timeseries( histogram_record, histogram_record.instrument.name + "_histogram", value, extra_label=("le", bound_str), ) ) return timeseries def _convert_from_last_value( self, last_value_record: ExportRecord ) -> Sequence[TimeSeries]: return [ self._create_timeseries( last_value_record, last_value_record.instrument.name + "_last", last_value_record.aggregator.checkpoint, ) ] def _convert_from_value_observer( self, value_observer_record: ExportRecord ) -> Sequence[TimeSeries]: timeseries = [] for agg_type in ["min", "max", "sum", "count", "last"]: timeseries.append( self._create_timeseries( value_observer_record, value_observer_record.instrument.name + "_" + agg_type, getattr( value_observer_record.aggregator.checkpoint, agg_type ), ) ) return timeseries # TODO: Implement convert from quantile once supported by SDK for Prometheus Summaries def _convert_from_quantile( self, summary_record: ExportRecord ) -> Sequence[TimeSeries]: raise NotImplementedError() # pylint: disable=no-member,no-self-use def _create_timeseries( self, export_record: ExportRecord, name: str, value: float, extra_label: (str, str) = None, ) -> TimeSeries: timeseries = TimeSeries() seen = set() def add_label(label_name: str, label_value: str): # Label name must contain only alphanumeric characters and underscores label_name = re.sub("[^\\w_]", "_", label_name) if label_name not in seen: label = Label() label.name = label_name label.value = label_value timeseries.labels.append(label) seen.add(label_name) else: logger.warning( "Duplicate label with name %s and value %s", label_name, label_value, ) # The __name__ label is required by PromQL as its value appears as the metric_name add_label("__name__", name) if extra_label: add_label(extra_label[0], extra_label[1]) if export_record.resource.attributes: for ( label_name, label_value, ) in export_record.resource.attributes.items(): add_label(label_name, str(label_value)) if export_record.labels: for [label_name, label_value] in export_record.labels: add_label(label_name, label_value) sample = Sample() sample.timestamp = int( export_record.aggregator.last_update_timestamp / 1000000 ) sample.value = value timeseries.samples.append(sample) return timeseries # pylint: disable=no-member,no-self-use def _build_message(self, timeseries: Sequence[TimeSeries]) -> bytes: write_request = WriteRequest() write_request.timeseries.extend(timeseries) serialized_message = write_request.SerializeToString() return snappy.compress(serialized_message) def _build_headers(self) -> Dict: headers = { "Content-Encoding": "snappy", "Content-Type": "application/x-protobuf", "X-Prometheus-Remote-Write-Version": "0.1.0", } if self.headers: for header_name, header_value in self.headers.items(): headers[header_name] = header_value return headers def _send_message( self, message: bytes, headers: Dict ) -> MetricsExportResult: auth = None if self.basic_auth: auth = (self.basic_auth["username"], self.basic_auth["password"]) cert = None verify = True if self.tls_config: if "ca_file" in self.tls_config: verify = self.tls_config["ca_file"] elif "insecure_skip_verify" in self.tls_config: verify = self.tls_config["insecure_skip_verify"] if ( "cert_file" in self.tls_config and "key_file" in self.tls_config ): cert = ( self.tls_config["cert_file"], self.tls_config["key_file"], ) try: response = requests.post( self.endpoint, data=message, headers=headers, auth=auth, timeout=self.timeout, proxies=self.proxies, cert=cert, verify=verify, ) if not response.ok: response.raise_for_status() except requests.exceptions.RequestException as err: logger.error("Export POST request failed with reason: %s", err) return MetricsExportResult.FAILURE return MetricsExportResult.SUCCESS
the-stack_0_26296
from __future__ import absolute_import, division, unicode_literals import base64 import json import numpy as np from panel.pane import DataFrame, JSON, HTML, Markdown, PaneBase, Pane, Str from panel.tests.util import pd_available, streamz_available def test_get_markdown_pane_type(): assert PaneBase.get_pane_type("**Markdown**") is Markdown @pd_available def test_get_dataframe_pane_type(): import pandas as pd df = pd.util.testing.makeDataFrame() assert PaneBase.get_pane_type(df) is DataFrame @pd_available def test_get_series_pane_type(): import pandas as pd df = pd.util.testing.makeDataFrame() assert PaneBase.get_pane_type(df.iloc[:, 0]) is DataFrame @streamz_available def test_get_streamz_dataframe_pane_type(): from streamz.dataframe import Random sdf = Random(interval='200ms', freq='50ms') assert PaneBase.get_pane_type(sdf) is DataFrame @streamz_available def test_get_streamz_dataframes_pane_type(): from streamz.dataframe import Random sdf = Random(interval='200ms', freq='50ms').groupby('y').sum() assert PaneBase.get_pane_type(sdf) is DataFrame @streamz_available def test_get_streamz_series_pane_type(): from streamz.dataframe import Random sdf = Random(interval='200ms', freq='50ms') assert PaneBase.get_pane_type(sdf.x) is DataFrame @streamz_available def test_get_streamz_seriess_pane_type(): from streamz.dataframe import Random sdf = Random(interval='200ms', freq='50ms').groupby('y').sum() assert PaneBase.get_pane_type(sdf.x) is DataFrame def test_markdown_pane(document, comm): pane = Pane("**Markdown**") # Create pane model = pane.get_root(document, comm=comm) assert pane._models[model.ref['id']][0] is model assert model.text.endswith("&lt;p&gt;&lt;strong&gt;Markdown&lt;/strong&gt;&lt;/p&gt;") # Replace Pane.object pane.object = "*Markdown*" assert pane._models[model.ref['id']][0] is model assert model.text.endswith("&lt;p&gt;&lt;em&gt;Markdown&lt;/em&gt;&lt;/p&gt;") # Cleanup pane._cleanup(model) assert pane._models == {} def test_markdown_pane_dedent(document, comm): pane = Pane(" ABC") # Create pane model = pane.get_root(document, comm=comm) assert pane._models[model.ref['id']][0] is model assert model.text.endswith("&lt;p&gt;ABC&lt;/p&gt;") pane.dedent = False assert model.text.startswith('&lt;div class=&quot;codehilite') def test_markdown_pane_extensions(document, comm): pane = Pane(""" ```python None ``` """) # Create pane model = pane.get_root(document, comm=comm) assert pane._models[model.ref['id']][0] is model assert model.text.startswith('&lt;div class=&quot;codehilite') pane.extensions = ["extra", "smarty"] assert model.text.startswith('&lt;pre&gt;&lt;code class=&quot;python') def test_html_pane(document, comm): pane = HTML("<h1>Test</h1>") # Create pane model = pane.get_root(document, comm=comm) assert pane._models[model.ref['id']][0] is model assert model.text == "&lt;h1&gt;Test&lt;/h1&gt;" # Replace Pane.object pane.object = "<h2>Test</h2>" assert pane._models[model.ref['id']][0] is model assert model.text == "&lt;h2&gt;Test&lt;/h2&gt;" # Cleanup pane._cleanup(model) assert pane._models == {} @pd_available def test_dataframe_pane_pandas(document, comm): import pandas as pd pane = DataFrame(pd.util.testing.makeDataFrame()) # Create pane model = pane.get_root(document, comm=comm) assert pane._models[model.ref['id']][0] is model assert model.text.startswith('&lt;table') orig_text = model.text # Replace Pane.object pane.object = pd.util.testing.makeMixedDataFrame() assert pane._models[model.ref['id']][0] is model assert model.text.startswith('&lt;table') assert model.text != orig_text # Cleanup pane._cleanup(model) assert pane._models == {} @streamz_available def test_dataframe_pane_streamz(document, comm): from streamz.dataframe import Random sdf = Random(interval='200ms', freq='50ms') pane = DataFrame(sdf) assert pane._stream is None # Create pane model = pane.get_root(document, comm=comm) assert pane._stream is not None assert pane._models[model.ref['id']][0] is model assert model.text == '' # Replace Pane.object pane.object = sdf.x assert pane._models[model.ref['id']][0] is model assert model.text == '' # Cleanup pane._cleanup(model) assert pane._stream is None assert pane._models == {} def test_string_pane(document, comm): pane = Str("<h1>Test</h1>") # Create pane model = pane.get_root(document, comm=comm) assert pane._models[model.ref['id']][0] is model assert model.text == "&lt;pre&gt;&lt;h1&gt;Test&lt;/h1&gt;&lt;/pre&gt;" # Replace Pane.object pane.object = "<h2>Test</h2>" assert pane._models[model.ref['id']][0] is model assert model.text == "&lt;pre&gt;&lt;h2&gt;Test&lt;/h2&gt;&lt;/pre&gt;" # Cleanup pane._cleanup(model) assert pane._models == {} class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): data_b64 = base64.b64encode(obj.data).decode('utf-8') return dict(__ndarray__=data_b64, dtype=str(obj.dtype), shape=obj.shape) return json.JSONEncoder.default(self, obj) def test_json_applies(): assert JSON.applies({1: 2}) assert JSON.applies([1, 2, 3]) assert JSON.applies('{"a": 1}') == 0 assert not JSON.applies({'array': np.array([1, 2, 3])}) assert JSON.applies({'array': np.array([1, 2, 3])}, encoder=NumpyEncoder) def test_json_pane(document, comm): pane = JSON({'a': 2}) model = pane.get_root(document, comm=comm) assert model.text == '{"a": 2}' assert pane._models[model.ref['id']][0] is model pane.object = '{"b": 3}' assert model.text == '{"b": 3}' assert pane._models[model.ref['id']][0] is model # Cleanup pane._cleanup(model) assert pane._models == {}
the-stack_0_26297
import argparse import pathlib from .interface import write_blocks_hash, execute_blocks from .tools import install, uninstall, make, clean def main(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(required=True, dest='command') # Install script install_parser = subparsers.add_parser("install") install_parser.add_argument("-d", "--directory", default=pathlib.Path.cwd(), type=pathlib.Path) install_parser.set_defaults(handler=install) # Uninstall script uninstall_parser = subparsers.add_parser("uninstall") uninstall_parser.add_argument("-d", "--directory", default=pathlib.Path.cwd(), type=pathlib.Path) uninstall_parser.set_defaults(handler=uninstall) # Cleaner script clean_parser = subparsers.add_parser("clean") clean_parser.add_argument("-f", "--full", action="store_true") clean_parser.set_defaults(handler=clean, requires_sys_args=True) # Make script make_parser = subparsers.add_parser("make") make_parser.set_defaults(handler=make, requires_sys_args=True) # Hash script hash_parser = subparsers.add_parser("hash") hash_parser.add_argument("-d", "--directory", default=pathlib.Path.cwd(), type=pathlib.Path) hash_parser.set_defaults(handler=write_blocks_hash) # Execute script execute_parser = subparsers.add_parser("execute") execute_parser.add_argument("hash_file_path", type=pathlib.Path) execute_parser.set_defaults(handler=execute_blocks) args, unknown_args = parser.parse_known_args() kwargs = vars(args) command = kwargs.pop("command") requires_sys_args = kwargs.pop("requires_sys_args", False) # Some args might require any uncaptured arguments if requires_sys_args: kwargs['sys_args'] = unknown_args elif unknown_args: parser.error("unrecognized arguments: {}".format(' '.join(unknown_args))) handler = kwargs.pop("handler") handler(**kwargs) if __name__ == "__main__": main()
the-stack_0_26299
import typing import discord from discord.ext import commands # Defines a custom Select containing colour options # That the user can choose. The callback function # Of this class is called when the user changes their choice class Dropdown(discord.ui.Select): def __init__(self, bot): self.bot = ( bot # For example, you can use self.bot to retrieve a user or perform other functions in the callback. ) # Alternatively you can use Interaction.client, so you don't need to pass the bot instance. # Set the options that will be presented inside the dropdown options = [ discord.SelectOption(label="Red", description="Your favourite colour is red", emoji="🟥"), discord.SelectOption(label="Green", description="Your favourite colour is green", emoji="🟩"), discord.SelectOption(label="Blue", description="Your favourite colour is blue", emoji="🟦"), ] # The placeholder is what will be shown when no option is chosen # The min and max values indicate we can only pick one of the three options # The options parameter defines the dropdown options. We defined this above super().__init__( placeholder="Choose your favourite colour...", min_values=1, max_values=1, options=options, ) async def callback(self, interaction: discord.Interaction): # Use the interaction object to send a response message containing # The user's favourite colour or choice. The self object refers to the # Select object, and the values attribute gets a list of the user's # selected options. We only want the first one. await interaction.response.send_message(f"Your favourite colour is {self.values[0]}") class DropdownView(discord.ui.View): def __init__(self, bot): self.bot = bot super().__init__() # Adds the dropdown to our view object. self.add_item(Dropdown(self.bot)) class Bot(commands.Bot): def __init__(self): super().__init__(command_prefix=commands.when_mentioned_or("$")) async def on_ready(self): print(f"Logged in as {self.user} (ID: {self.user.id})") print("------") bot = Bot() @bot.command() async def colour(ctx): """Sends a message with our dropdown containing colours""" # Create the view containing our dropdown view = DropdownView(bot) # Sending a message containing our view await ctx.send("Pick your favourite colour:", view=view) bot.run("token")
the-stack_0_26303
class Activity(object): actor = None object = None target = None verb = None time = None generator = None icon_url = None service_provider = None links = None def __init__(self, actor=None, object=None, target=None, verb=None, time=None, generator=None, icon_url=None, service_provider=None, links=None): self.actor = actor self.object = object self.target = target self.verb = verb self.time = time self.service_provider = service_provider self.generator = generator self.icon_url = icon_url if links is not None: self.links = links else: self.links = [] class Object(object): id = None name = None url = None object_type = None summary = None image = None in_reply_to_object = None attached_objects = None reply_objects = None reaction_activities = None action_links = None upstream_duplicate_ids = None downstream_duplicate_ids = None links = None def __init__(self, id=None, name=None, url=None, object_type=None, summary=None, image=None, in_reply_to_object=None, attached_objects=None, reply_objects=None, reaction_activities=None, action_links=None, upstream_duplicate_ids=None, downstream_duplicate_ids=None, links=None): self.id = id self.name = name self.url = url self.object_type = object_type self.summary = summary self.image = image self.in_reply_to_object = in_reply_to_object if attached_objects is not None: self.attached_objects = attached_objects else: self.attached_objects = [] if reply_objects is not None: self.reply_objects = reply_objects else: self.reply_objects = [] if reaction_activities is not None: self.reaction_activities = reaction_activities else: self.reaction_activities = [] if action_links is not None: self.action_links = action_links else: self.action_links = [] if upstream_duplicate_ids is not None: self.upstream_duplicate_ids = upstream_duplicate_ids else: self.upstream_duplicate_ids = [] if downstream_duplicate_ids is not None: self.downstream_duplicate_ids = downstream_duplicate_ids else: self.downstream_duplicate_ids = [] if links is not None: self.links = links else: self.links = [] class MediaLink(object): url = None media_type = None width = None height = None duration = None def __init__(self, url=None, media_type=None, width=None, height=None, duration=None): self.url = url self.media_type = media_type self.width = width self.height = height self.duration = duration class ActionLink(object): url = None caption = None def __init__(self, url=None, caption=None): self.url = url self.caption = caption class Link(object): url = None media_type = None rel = None def __init__(self, url=None, media_type=None, rel=None): self.url = url self.media_type = media_type self.rel = rel
the-stack_0_26305
"""Provide the WGT info to other services.""" import logging from datetime import timedelta from enum import Enum, EnumMeta from typing import Any, Dict, List, Union from aiohttp import web from aiohttp.web_request import Request from aiohttp.web_response import Response from wgt import WGT, __version__ from wgt.types import Unit routes = web.RouteTableDef() STATUS_URL = "/status/" INFO_URL = "/info/" def put_endpoints() -> Dict[str, Any]: """Return setter endpoints.""" endpoints = {} for endpoint in WGT.properties_set(): type_ = WGT.property_type(endpoint) endpoints[endpoint] = type_ return endpoints def get_endpoints() -> Dict[str, Any]: """Return getter endpoints.""" endpoints = {} for endpoint in WGT.properties_get(): type_ = WGT.property_type(endpoint) endpoints[endpoint] = type_ return endpoints def validate_endpoint_get(request: Request) -> str: """Ensure that the given endpoint is valid. If not raise a 404.""" endpoint = str(request.match_info["endpoint"]).lower() if endpoint not in request.app["get_endpoints"]: logging.info("Failed to get %s", endpoint) raise web.HTTPNotFound return endpoint def validate_endpoint_put(request: Request) -> str: """Ensure that the given endpoint is valid. If not raise a 405.""" endpoint = validate_endpoint_get(request) if endpoint not in request.app["put_endpoints"]: logging.info("Failed to put %s", endpoint) raise web.HTTPMethodNotAllowed(method="put", allowed_methods="get") return endpoint def value_to_enum(value: str, enum_class: EnumMeta) -> Any: """Translate a value to an enum. Returns Enum on success, otherwise a HTTPUnprocessableEntity error is raised. """ try: value_int = int(value) except ValueError as int_conversion_error: raise web.HTTPUnprocessableEntity( reason="Couldnt transform value to int as required for enum." ) from int_conversion_error try: value_typed = enum_class(value_int) except ValueError as enum_conversion_error: raise web.HTTPUnprocessableEntity( reason=f"Invalid value for {enum_class}." ) from enum_conversion_error return value_typed @routes.get("/") async def meta(request: Request) -> Response: """Return version of the WGT module.""" # Provide types for all endpoints data: Dict[str, Union[List, str]] = {} data["version"] = __version__ data["status_url"] = STATUS_URL data["info_url"] = INFO_URL data["get_endpoints"] = list(request.app["get_endpoints"].keys()) data["put_endpoints"] = list(request.app["put_endpoints"].keys()) return web.json_response(data) @routes.get(INFO_URL + "{endpoint}") async def info(request: Request) -> Response: """Add type information for all endpoints.""" endpoint = validate_endpoint_get(request) # Prepare return value data: Dict[str, Any] = {} # Get data type_ = request.app["get_endpoints"][endpoint] type_str = str(type_) if issubclass(type_, Enum): enum_values = [] for val in type_: enum_values.append((val.name, val.value)) data[type_str] = enum_values elif issubclass(type_, Unit): data[type_str] = "float" elif issubclass(type_, timedelta): data[type_str] = "Minutes or Days" else: raise web.HTTPNotImplemented(reason=type_str) return web.json_response(data) @routes.put(STATUS_URL + "{endpoint}") async def put_status(request: Request) -> Response: """Set a status of the wgt.""" # Validate that this is an actual endpoint endpoint = validate_endpoint_put(request=request) # Ensure that the data was put as json/application type if not request.content_type == "application/json": raise web.HTTPUnsupportedMediaType(reason="Only application/json ") # Try to get the data and translate it to a json data = {} try: data = await request.json() except ValueError as data_conversion_error: raise web.HTTPUnsupportedMediaType( reason="Couldn't convert data to json." ) from data_conversion_error logging.debug("Received %s", data) # Ensure that we he have the expected keywords value = data.get("value", None) if value is None: raise web.HTTPUnprocessableEntity(reason="Need 'value' in request.") # Convert received input to expected format type_ = request.app["set_endpoints"][endpoint] value_typed = None if issubclass(type_, Enum): value_typed = value_to_enum(value, type_) elif issubclass(type_, Unit): value_typed = type_(float(value)) else: raise web.HTTPNotImplemented # Check if we have a sound value if value_typed is None: raise web.HTTPInternalServerError # Set the typed value with WGT(ip=request.app["wgt_ip"], version=request.app["wgt_version"]) as wgt: try: setattr(wgt, endpoint, value_typed) except ValueError as err: raise web.HTTPUnprocessableEntity(reason=str(err)) raise web.HTTPOk @routes.get(STATUS_URL + "{endpoint}") async def get_status(request: Request) -> Response: """Return status.""" # Check if the attribute is a valid endpoint endpoint = validate_endpoint_get(request) data: Dict[str, Any] = {} # Connect to wgt and read attribute with WGT(ip=request.app["wgt_ip"], version=request.app["wgt_version"]) as wgt: status = getattr(wgt, endpoint) # Convert status to a dict if isinstance(status, (Enum, Unit)): data[endpoint] = {"name": status.name, "value": status.value} elif isinstance(status, timedelta): if status.days > 0: data[endpoint] = {"name": f"{status.days} Tage", "value": status.days} else: minutes = status.seconds / 60 data[endpoint] = {"name": f"{minutes} Minuten", "value": minutes} elif status is None: data["error"] = f"Endpoint '{endpoint}' is not available in your WGT version.'" else: logging.error("Couldn't parse status of %s", endpoint) raise web.HTTPInternalServerError return web.json_response(data) def main(port: int = 8080) -> None: """Start the server.""" app = web.Application() app["wgt_ip"] = "10.1.1.29" app["wgt_version"] = "1.06" app["get_endpoints"] = get_endpoints() app["put_endpoints"] = put_endpoints() app.add_routes(routes) web.run_app(app, port=port) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()
the-stack_0_26306
import os from os import path from typing import Callable from PyQt5.QtWidgets import QMainWindow, QFileDialog, QDialog, QMessageBox, QLineEdit, QProgressDialog from PyQt5.QtGui import QIcon from importer.alipay import get_transactions_from_alipay_csv from importer.wechat import get_transactions_from_wechat_csv from config import app_config from data_model.transaction import Transaction from data_model.transaction_item_model import TransactionItemModel from gui.ui_main_window import Ui_MainWindow from gui.transaction_view_delegate import TransactionViewDelegate from beancount_account import get_operating_currencies, generate_account_hierarchy from fmt import format_transaction from data_model.tree import Node from trainer.payee_to_account_trainer import PayeeToAccountTrainer from .select_account_dialog import SelectAccountDialog from .account_map_dialog import AccountMapDialog class MainWindow(QMainWindow): def __init__(self, parent=None): super().__init__(parent) self.ui = Ui_MainWindow() self.alipay_csv = '' self.transaction_item_model = TransactionItemModel([]) self.transaction_view_delegate = TransactionViewDelegate(self) self._account_map_dialog = AccountMapDialog(self) def setupUi(self): self.ui.setupUi(self) # setup file menu action trigger self.ui.openBeancountAccountAction.triggered.connect(self.select_beancount_file) self.ui.openAlipayCsvAction.triggered.connect(self.open_alipay_csv) self.ui.openWechatCsvAction.triggered.connect(self.open_wechat_csv) # setup account map menu action self.ui.payeeToAccountAction.triggered.connect(self.edit_payee_to_account) self.ui.billAccountToFromAccountAction.triggered.connect(self.edit_bill_account_to_from_account) self.ui.trainPayeeToAccountMapAction.triggered.connect(self.train_payee_to_account) # setup default value button and line edit self.ui.selectPaymentAccountBtn.clicked.connect(self.select_default_payment_account) self.ui.selectExpensesAccountBtn.clicked.connect(self.select_default_expenses_account) self.ui.defaultCurrencyComboBox.currentTextChanged.connect(self.set_default_currency) self.ui.defaultPaymentAccountLE.textChanged.connect(self.set_default_payment_account) self.ui.defaultExpensesAccountLE.textChanged.connect(self.set_default_expenses_account) # setup default value self.ui.defaultPaymentAccountLE.setText(app_config.default_payment_account) self.ui.defaultExpensesAccountLE.setText(app_config.default_expenses_account) self.ui.defaultCurrencyComboBox.setCurrentText(app_config.default_currency) # setup transaction table view self.ui.transactionTableView.setModel(self.transaction_item_model) self.ui.transactionTableView.setItemDelegate(self.transaction_view_delegate) # setup import component open_file_icon = QIcon('./resources/icon/folder-open-line.svg') self.ui.importToPathLE.setText(app_config.import_to_file) importToPathLE_action = self.ui.importToPathLE.addAction(open_file_icon, QLineEdit.ActionPosition.TrailingPosition) importToPathLE_action.triggered.connect(self.select_import_file) self.ui.importBtn.clicked.connect(self.import_transaction) def setup_beancount_option(self, beancount_file: str): try: accounts = generate_account_hierarchy(beancount_file) app_config.beancount_currency = get_operating_currencies(beancount_file) except Exception as e: accounts = Node('root') app_config.beancount_currency = [] QMessageBox.critical(self, self.tr('Error'), self.tr('Failed to load beancount file: {0}').format(e)) self.select_account_dialog = SelectAccountDialog(accounts, parent=self) self.select_account_dialog.setupUi() self.transaction_view_delegate.select_account_dialog = self.select_account_dialog self.ui.defaultCurrencyComboBox.clear() for currency in app_config.beancount_currency: self.ui.defaultCurrencyComboBox.addItem(currency) def select_beancount_file(self): recent_beancount_path = path.dirname(app_config.recent_beancount_file) app_config.recent_beancount_file = QFileDialog.getOpenFileName(self, self.tr('Open beancount file'), recent_beancount_path, 'beancount (*.beancount *.bc *.txt)')[0] if not os.path.isfile(app_config.recent_beancount_file): return self.setup_beancount_option(app_config.recent_beancount_file) def set_default_payment_account(self, account): self.ui.defaultPaymentAccountLE.setText(account) app_config.default_payment_account = account self.transaction_item_model.update_transactions_data( self._gen_func_set_transaction_account_with_default_value()) def select_default_payment_account(self): if self.select_account_dialog.exec() == QDialog.Accepted: account = self.select_account_dialog.get_selected_account() self.set_default_payment_account(account) def set_default_expenses_account(self, account): self.ui.defaultExpensesAccountLE.setText(account) app_config.default_expenses_account = account self.transaction_item_model.update_transactions_data( self._gen_func_set_transaction_account_with_default_value()) def select_default_expenses_account(self): if self.select_account_dialog.exec() == QDialog.Accepted: account = self.select_account_dialog.get_selected_account() self.set_default_expenses_account(account) def set_default_currency(self, currency): app_config.default_currency = currency self.transaction_item_model.update_transactions_data( self._gen_func_set_transaction_currency_with_default_value()) def open_alipay_csv(self): recent_alipay_path = path.dirname(app_config.recent_alipay_file) self.alipay_csv = QFileDialog.getOpenFileName( self, self.tr('Open Alipay CSV file'), recent_alipay_path, 'CSV (*.csv *.txt)')[0] if not os.path.isfile(self.alipay_csv): return app_config.recent_alipay_file = self.alipay_csv try: transactions = get_transactions_from_alipay_csv(self.alipay_csv) self.transaction_item_model.set_transactions_data(transactions) self.transaction_item_model.update_transactions_data( self._gen_func_set_transaction_account_with_default_value()) self.transaction_item_model.update_transactions_data( self._gen_func_set_transaction_currency_with_default_value()) except Exception as e: QMessageBox.critical(self, self.tr('Failed to open Alipay csv'), self.tr('Failed to open Alipay csv: ') + str(e)) def open_wechat_csv(self): recent_wechat_path = path.dirname(app_config.recent_wechat_file) self.wechat_csv = QFileDialog.getOpenFileName( self, self.tr('Open Wechat CSV file'), recent_wechat_path, 'CSV (*.csv *.txt)')[0] if not os.path.isfile(self.wechat_csv): return app_config.recent_wechat_file = self.wechat_csv try: transactions = get_transactions_from_wechat_csv(self.wechat_csv) self.transaction_item_model.set_transactions_data(transactions) self.transaction_item_model.update_transactions_data( self._gen_func_set_transaction_account_with_default_value()) self.transaction_item_model.update_transactions_data( self._gen_func_set_transaction_currency_with_default_value()) except Exception as e: QMessageBox.critical(self, self.tr('Failed to open Wechat csv'), self.tr('Failed to open Wechat csv: ') + str(e)) def select_import_file(self): import_file = QFileDialog.getSaveFileName(self, self.tr('Import to'), '/', 'beancount (*.beancount *.txt)') if import_file[0]: self.ui.importToPathLE.setText(import_file[0]) app_config.import_to_file = import_file[0] def _gen_func_set_transaction_account_with_default_value(self) -> Callable[[Transaction], None]: default_payment_account = self.ui.defaultPaymentAccountLE.text() default_expenses_account = self.ui.defaultExpensesAccountLE.text() def set_account(transaction): transaction.from_account = app_config.bill_account_to_from_account.get(transaction.bill_payment_account, default_payment_account) transaction.to_account = app_config.payee_account_map.get(transaction.payee, default_expenses_account) return set_account def _gen_func_set_transaction_currency_with_default_value(self) -> Callable[[Transaction], None]: default_currency = self.ui.defaultCurrencyComboBox.currentText() def set_currency(transaction): transaction.currency = default_currency return set_currency def import_transaction(self): import_file = self.ui.importToPathLE.text() if not import_file: QMessageBox.warning(self, self.tr('Import path is not set!'), self.tr('Import path is not set! Please set an import path first.')) return transaction_text_lines = [format_transaction(tx) for tx in self.transaction_item_model.transactions if tx.will_import] transactions_text = '\n'.join(transaction_text_lines) try: with open(import_file, 'a', encoding='utf-8') as import_file_fs: import_file_fs.write(transactions_text) QMessageBox.information(self, self.tr('Imported'), self.tr('Imported {0} transactions').format(len(transaction_text_lines))) except IOError as e: QMessageBox.critical(self, self.tr('Cannot import transactions'), self.tr('Cannot import transactions: ') + str(e)) def set_payee_to_account(self, value): app_config.payee_account_map = value def set_bill_account_to_from_account(self, value): app_config.bill_account_to_from_account = value def edit_payee_to_account(self): self._account_map_dialog.set_account_map(app_config.payee_account_map, self.tr('Payee to account'), [self.tr('Payee'), self.tr('Account')]) try: self._account_map_dialog.finishEdit.disconnect() except: pass self._account_map_dialog.finishEdit.connect(self.set_payee_to_account) self._account_map_dialog.open() def edit_bill_account_to_from_account(self): self._account_map_dialog.set_account_map(app_config.bill_account_to_from_account, self.tr('Bill account to From account'), [self.tr('Bill account'), self.tr('From account')]) try: self._account_map_dialog.finishEdit.disconnect() except: pass self._account_map_dialog.finishEdit.connect(self.set_bill_account_to_from_account) self._account_map_dialog.open() def train_payee_to_account(self): if not os.path.isfile(app_config.recent_beancount_file): QMessageBox.critical(self, self.tr('Error'), self.tr('No beancount file is open for traning.')) return dialog = QProgressDialog(self.tr('Training...'), self.tr('Abort training'), 0, 100, self) trainer = PayeeToAccountTrainer(self) trainer.trainProgress.connect(dialog.setValue) dialog.canceled.connect(trainer.cancel) dialog.open() try: result = trainer.train(app_config.recent_beancount_file) for (payee, account) in result.items(): if payee in app_config.payee_account_map and app_config.payee_account_map[payee] != account: overwrite = QMessageBox.question(self, self.tr('Overwrite?'), self.tr('{0} already exists on payee to account map with value {1}. Do you want to overwite it with {2}?').format(payee, app_config.payee_account_map[payee], account)) if overwrite == QMessageBox.Yes: app_config.payee_account_map[payee] = account else: app_config.payee_account_map[payee] = account except Exception as e: QMessageBox.critical(self, self.tr('Error'), self.tr('An error occurred while training: {0}.').format(e)) dialog.close()
the-stack_0_26308
#!/usr/bin/python3 import sys import json import textfsm # Read the tfsm file from args with open(sys.argv[1], 'r') as f: raw_input = f.read() # Suck out the comment lines, all at the start and supply as input lines = raw_input.splitlines() data = [] test_input = '\n' for line in lines: if line.startswith('#'): data.append(line[1:]) if data: test_input = '\n'.join(data) with open(sys.argv[1], 'r') as f: re_table = textfsm.TextFSM(f) parsed_out = re_table.ParseText(test_input) records = [] for entry in parsed_out: rentry = dict(zip(re_table.header, entry)) records.append(rentry) print(json.dumps(records))
the-stack_0_26310
# Copyright 2020, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Baseline experiment on centralized Stack Overflow LR data.""" from typing import Any, Mapping, Optional import tensorflow as tf from utils import centralized_training_loop from utils.datasets import stackoverflow_tag_prediction from utils.models import stackoverflow_lr_models def run_centralized(optimizer: tf.keras.optimizers.Optimizer, experiment_name: str, root_output_dir: str, num_epochs: int, batch_size: int, decay_epochs: Optional[int] = None, lr_decay: Optional[float] = None, hparams_dict: Optional[Mapping[str, Any]] = None, vocab_tokens_size: Optional[int] = 10000, vocab_tags_size: Optional[int] = 500, num_validation_examples: Optional[int] = 10000, max_batches: Optional[int] = None): """Trains an RNN on the Stack Overflow next word prediction task. Args: optimizer: A `tf.keras.optimizers.Optimizer` used to perform training. experiment_name: The name of the experiment. Part of the output directory. root_output_dir: The top-level output directory for experiment runs. The `experiment_name` argument will be appended, and the directory will contain tensorboard logs, metrics written as CSVs, and a CSV of hyperparameter choices (if `hparams_dict` is used). num_epochs: The number of training epochs. batch_size: The batch size, used for train, validation, and test. decay_epochs: The number of epochs of training before decaying the learning rate. If None, no decay occurs. lr_decay: The amount to decay the learning rate by after `decay_epochs` training epochs have occurred. hparams_dict: A mapping with string keys representing the hyperparameters and their values. If not None, this is written to CSV. vocab_tokens_size: Integer dictating the number of most frequent words to use in the vocabulary. vocab_tags_size: Integer dictating the number of most frequent tags to use in the label creation. num_validation_examples: The number of test examples to use for validation. max_batches: If set to a positive integer, datasets are capped to at most that many batches. If set to None or a nonpositive integer, the full datasets are used. """ train_dataset, validation_dataset, test_dataset = stackoverflow_tag_prediction.get_centralized_datasets( train_batch_size=batch_size, word_vocab_size=vocab_tokens_size, tag_vocab_size=vocab_tags_size, num_validation_examples=num_validation_examples) if max_batches and max_batches >= 1: train_dataset = train_dataset.take(max_batches) validation_dataset = validation_dataset.take(max_batches) test_dataset = test_dataset.take(max_batches) model = stackoverflow_lr_models.create_logistic_model( vocab_tokens_size=vocab_tokens_size, vocab_tags_size=vocab_tags_size) model.compile( loss=tf.keras.losses.BinaryCrossentropy( from_logits=False, reduction=tf.keras.losses.Reduction.SUM), optimizer=optimizer, metrics=[tf.keras.metrics.Precision(), tf.keras.metrics.Recall(top_k=5)]) centralized_training_loop.run( keras_model=model, train_dataset=train_dataset, validation_dataset=validation_dataset, test_dataset=test_dataset, experiment_name=experiment_name, root_output_dir=root_output_dir, num_epochs=num_epochs, hparams_dict=hparams_dict, decay_epochs=decay_epochs, lr_decay=lr_decay)
the-stack_0_26313
import os from flask import Blueprint, Flask, Response, jsonify, request import db import queries import service # nice way to handle URL prefixes and allow for composition brand = Blueprint("brand", __name__, url_prefix="/brand") user = Blueprint("user", __name__, url_prefix="/user") # TODO move to its own module messages = { "brand_not_found": (404, "Brand not found"), "code_not_available": (403, "The code is not available for this brand"), "code_already_received": (403, "User has already received a code"), } @brand.route("/<int:brand_id>/policy", methods=["POST"]) def generate_codes(brand_id): payload = request.get_json() # some data is best validated in the controller before passing it to service layer # TODO refactor out into a validation layer if 1 > (amount := payload["amount"]) or amount > 100: return ( jsonify( { "result": "error", "msg_id": "amount_invalid_range", "msg": "Amount must be in range 1-100", } ), 400, ) if (count := payload["count"]) < 1: return ( jsonify( { "result": "error", "msg_id": "count_invalid_range", "msg": "Count must be a positive integer", } ), 400, ) success, result = service.generate_codes(brand_id, amount, count) # TODO refactor out common parts to make the code prettier and easier to read if success: return jsonify({"result": "success"}), 201 elif result in messages: return ( jsonify({"result": "error", "msg_id": result, "msg": messages[result][1]}), messages[result][0], ) return jsonify({"result": "error", "msg_id": result, "msg": "Internal error"}), 500 @user.route("/codes", methods=["POST"]) def fetch_code(): payload = request.get_json() # user_id must come from JWT of the user # for the purpose of this PoC it's hardcoded by default # but can be provided as an undocumented "userId" parameter user_id = payload.get("userId") or 1 brand_id = payload["brandId"] # we avoid using exceptions here because they are quite slow # however that's not the only way of handling this # there's a nice pattern in Rust language with special Result class # which can help in such situations, especially when we consider # newly added patter matching capabilities success, result = service.get_code(user_id, brand_id) if success: return jsonify({"result": "success", "code": result}), 201 elif result in messages: return ( jsonify({"result": "error", "msg_id": result, "msg": messages[result][1]}), messages[result][0], ) return jsonify({"result": "error", "msg_id": result, "msg": "Internal error"}), 500 def create_app(config_mapping=None): """App factory provides simple capabilites for testing""" app = Flask(__name__) default_config_mapping = { "SECRET_KEY": "dev", "DATABASE": os.path.join(app.instance_path, "discount_service.sqlite"), } if config_mapping is not None: default_config_mapping.update(config_mapping) app.config.from_mapping(**default_config_mapping) app.register_blueprint(brand) app.register_blueprint(user) db.init_app(app) return app
the-stack_0_26314
import torch from model import MultiStageModel from train import Trainer from predict import * from batch_gen import BatchGenerator import os import argparse import random import time device = torch.device("cuda" if torch.cuda.is_available() else "cpu") seed = 1538574472 random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True parser = argparse.ArgumentParser() # architecture parser.add_argument('--num_stages', default=4, type=int, help='stage number') parser.add_argument('--num_layers', default=10, type=int, help='layer number in each stage') parser.add_argument('--num_f_maps', default=64, type=int, help='embedded feat. dim.') parser.add_argument('--features_dim', default=2048, type=int, help='input feat. dim.') parser.add_argument('--DA_adv', default='none', type=str, help='adversarial loss (none | rev_grad)') parser.add_argument('--DA_adv_video', default='none', type=str, help='video-level adversarial loss (none | rev_grad | rev_grad_ssl | rev_grad_ssl_2)') parser.add_argument('--pair_ssl', default='all', type=str, help='pair-feature methods for SSL-DA (all | adjacent)') parser.add_argument('--num_seg', default=10, type=int, help='segment number for each video') parser.add_argument('--place_adv', default=['N', 'Y', 'Y', 'N'], type=str, nargs="+", metavar='N', help='len(place_adv) == num_stages') parser.add_argument('--multi_adv', default=['N', 'N'], type=str, nargs="+", metavar='N', help='separate weights for domain discriminators') parser.add_argument('--weighted_domain_loss', default='Y', type=str, help='weighted domain loss for class-wise domain discriminators') parser.add_argument('--ps_lb', default='soft', type=str, help='pseudo-label type (soft | hard)') parser.add_argument('--source_lb_weight', default='pseudo', type=str, help='label type for source data weighting (real | pseudo)') parser.add_argument('--method_centroid', default='none', type=str, help='method to get centroids (none | prob_hard)') parser.add_argument('--DA_sem', default='mse', type=str, help='metric for semantic loss (none | mse)') parser.add_argument('--place_sem', default=['N', 'Y', 'Y', 'N'], type=str, nargs="+", metavar='N', help='len(place_sem) == num_stages') parser.add_argument('--ratio_ma', default=0.7, type=float, help='ratio for moving average centroid method') parser.add_argument('--DA_ent', default='none', type=str, help='entropy-related loss (none | target | attn)') parser.add_argument('--place_ent', default=['N', 'Y', 'Y', 'N'], type=str, nargs="+", metavar='N', help='len(place_ent) == num_stages') parser.add_argument('--use_attn', type=str, default='none', choices=['none', 'domain_attn'], help='attention mechanism') parser.add_argument('--DA_dis', type=str, default='none', choices=['none', 'JAN'], help='discrepancy method for DA') parser.add_argument('--place_dis', default=['N', 'Y', 'Y', 'N'], type=str, nargs="+", metavar='N', help='len(place_dis) == num_stages') parser.add_argument('--DA_ens', type=str, default='none', choices=['none', 'MCD', 'SWD'], help='ensemble method for DA') parser.add_argument('--place_ens', default=['N', 'Y', 'Y', 'N'], type=str, nargs="+", metavar='N', help='len(place_ens) == num_stages') parser.add_argument('--SS_video', type=str, default='none', choices=['none', 'VCOP'], help='video-based self-supervised learning method') parser.add_argument('--place_ss', default=['N', 'Y', 'Y', 'N'], type=str, nargs="+", metavar='N', help='len(place_ss) == num_stages') # config & setting parser.add_argument('--path_data', default='data/') parser.add_argument('--path_model', default='models/') parser.add_argument('--path_result', default='results/') parser.add_argument('--action', default='train') parser.add_argument('--use_target', default='none', choices=['none', 'uSv']) parser.add_argument('--split_target', default='0', help='split for target data (0: no additional split for target)') parser.add_argument('--ratio_source', default=1, type=float, help='percentage of total length to use for source data') parser.add_argument('--ratio_label_source', default=1, type=float, help='percentage of labels to use for source data (after previous processing)') parser.add_argument('--dataset', default="gtea") parser.add_argument('--split', default='1') # hyper-parameters parser.add_argument('--lr', default=0.0005, type=float, help='learning rate') parser.add_argument('--bS', default=1, type=int, help='batch size') parser.add_argument('--alpha', default=0.15, type=float, help='weighting for smoothing loss') parser.add_argument('--tau', default=4, type=float, help='threshold to truncate smoothing loss') parser.add_argument('--beta', default=[-2, -2], type=float, nargs="+", metavar='M', help='weighting for adversarial loss & ensemble loss ([frame-beta, video-beta])') parser.add_argument('--iter_max_beta', default=[1000, 1000], type=float, nargs="+", metavar='M', help='for adaptive beta ([frame-beta, video-beta])') parser.add_argument('--gamma', default=-2, type=float, help='weighting for semantic loss') parser.add_argument('--iter_max_gamma', default=1000, type=float, help='for adaptive gamma') parser.add_argument('--mu', default=1, type=float, help='weighting for entropy loss') parser.add_argument('--nu', default=-2, type=float, help='weighting for the discrepancy loss') parser.add_argument('--eta', default=1, type=float, help='weighting for the self-supervised loss') parser.add_argument('--iter_max_nu', default=1000, type=float, metavar='M', help='for adaptive nu') parser.add_argument('--dim_proj', default=128, type=int, help='projection dimension for SWD') # runtime parser.add_argument('--num_epochs', default=50, type=int) parser.add_argument('--verbose', default=False, action="store_true") parser.add_argument('--use_best_model', type=str, default='none', choices=['none', 'source', 'target'], help='save best model') parser.add_argument('--multi_gpu', default=False, action="store_true") parser.add_argument('--resume_epoch', default=0, type=int) # tensorboard parser.add_argument('--use_tensorboard', default=False, action='store_true') parser.add_argument('--epoch_embedding', default=50, type=int, help='select epoch # to save embedding (-1: all epochs)') parser.add_argument('--stage_embedding', default=-1, type=int, help='select stage # to save embedding (-1: last stage)') parser.add_argument('--num_frame_video_embedding', default=50, type=int, help='number of sample frames per video to store embedding') args = parser.parse_args() # check whether place_adv & place_sem are valid if len(args.place_adv) != args.num_stages: raise ValueError('len(place_dis) should be equal to num_stages') if len(args.place_sem) != args.num_stages: raise ValueError('len(place_sem) should be equal to num_stages') if len(args.place_ent) != args.num_stages: raise ValueError('len(place_ent) should be equal to num_stages') if len(args.place_dis) != args.num_stages: raise ValueError('len(place_dis) should be equal to num_stages') if len(args.place_ens) != args.num_stages: raise ValueError('len(place_ens) should be equal to num_stages') if len(args.place_ss) != args.num_stages: raise ValueError('len(place_ss) should be equal to num_stages') if args.use_target == 'none': args.DA_adv = 'none' args.DA_sem = 'none' args.DA_ent = 'none' args.DA_dis = 'none' args.DA_ens = 'none' args.SS_video = 'none' # focus on cross-domain setting # use the full temporal resolution @ 15fps sample_rate = 1 # sample input features @ 15fps instead of 30 fps # for 50salads, and up-sample the output to 30 fps if args.dataset == "50salads": sample_rate = 2 # ====== Load files ====== # vid_list_file = args.path_data+args.dataset+"/splits/train.split"+args.split+".bundle" vid_list_file_target = args.path_data+args.dataset+"/splits/test.split"+args.split+".bundle" vid_list_file_test = vid_list_file_target if args.split_target != '0': vid_list_file_target = args.path_data + args.dataset + "/splits/test_train_" + args.split_target + ".split" + args.split + ".bundle" vid_list_file_test = args.path_data + args.dataset + "/splits/test_test_" + args.split_target + ".split" + args.split + ".bundle" features_path = args.path_data+args.dataset+"/features/" gt_path = args.path_data+args.dataset+"/groundTruth/" mapping_file = args.path_data+args.dataset+"/mapping.txt" # mapping between classes & indices model_dir = args.path_model+args.dataset+"/split_"+args.split results_dir = args.path_result+args.dataset+"/split_"+args.split if not os.path.exists(model_dir): os.makedirs(model_dir) if not os.path.exists(results_dir): os.makedirs(results_dir) file_ptr = open(mapping_file, 'r') actions = file_ptr.read().split('\n')[:-1] # list of classes file_ptr.close() actions_dict = dict() for a in actions: actions_dict[a.split()[1]] = int(a.split()[0]) num_classes = len(actions_dict) # initialize model & trainer model = MultiStageModel(args, num_classes) trainer = Trainer(num_classes) # ====== Main Program ====== # start_time = time.time() if args.action == "train": batch_gen_source = BatchGenerator(num_classes, actions_dict, gt_path, features_path, sample_rate) batch_gen_target = BatchGenerator(num_classes, actions_dict, gt_path, features_path, sample_rate) batch_gen_source.read_data(vid_list_file) # read & shuffle the source training list batch_gen_target.read_data(vid_list_file_target) # read & shuffle the target training list trainer.train(model, model_dir, results_dir, batch_gen_source, batch_gen_target, device, args) if args.action == "predict": predict(model, model_dir, results_dir, features_path, vid_list_file_test, args.num_epochs, actions_dict, device, sample_rate, args) end_time = time.time() if args.verbose: print('') print('total running time:', end_time - start_time)
the-stack_0_26316
import json import logging import os from dateutil.parser import parse from flask import Flask, request APP = Flask(__name__) logger = logging.getLogger(__name__) DUMPS_DIR = "dumps" os.makedirs(DUMPS_DIR, exist_ok=True) @APP.route("/api/v1/lineage", methods=["POST"]) def dump(): """Endpoint to dump lineage event to a local file system directory.""" event_name = "default" try: js = json.loads(request.data) content = json.dumps(js, sort_keys=True, indent=4) date = parse(js["eventTime"]).date() job_name = js["job"]["name"] event_name = f"{date}-{job_name}" except Exception: content = str(request.data, "UTF-8") file_path = f"{DUMPS_DIR}/{event_name}.json" logger.info("Written event %s to file %s", event_name, file_path) with open(file_path, "a") as f: f.write(content) return "", 200
the-stack_0_26317
from msrest.serialization import Model class Pools(Model): _attribute_map = { 'count': {'key': 'count', 'type': 'int'}, 'value': {'key': 'value', 'type': '[PoolDetails]'}, } def __init__(self, count=None, value=None): self.count = count self.value = value
the-stack_0_26319
#!/usr/bin/env python # -*- coding: utf-8 -*- """ proxy.py ~~~~~~~~ ⚡⚡⚡Fast, Lightweight, Programmable, TLS interception capable proxy server for Application debugging, testing and development. :copyright: (c) 2013-present by Abhinav Singh and contributors. :license: BSD, see LICENSE for more details. """ import argparse import asyncio import sys import time from typing import List, Tuple from proxy.common.constants import __homepage__, DEFAULT_BUFFER_SIZE from proxy.common.utils import build_http_request from proxy.http.methods import httpMethods from proxy.http.parser import httpParserStates, httpParserTypes, HttpParser DEFAULT_N = 1 def init_parser() -> argparse.ArgumentParser: """Initializes and returns argument parser.""" parser = argparse.ArgumentParser( description='Benchmark opens N concurrent connections ' 'to proxy.py web server. Currently, HTTP/1.1 ' 'keep-alive connections are opened. Over each opened ' 'connection multiple pipelined request / response ' 'packets are exchanged with proxy.py web server.', epilog='Proxy.py not working? Report at: %s/issues/new' % __homepage__ ) parser.add_argument( '--n', '-n', type=int, default=DEFAULT_N, help='Default: ' + str(DEFAULT_N) + '. See description above for meaning of N.' ) return parser class Benchmark: def __init__(self, n: int = DEFAULT_N) -> None: self.n = n self.clients: List[Tuple[asyncio.StreamReader, asyncio.StreamWriter]] = [] async def open_connections(self) -> None: for _ in range(self.n): self.clients.append(await asyncio.open_connection('::', 8899)) print('Opened ' + str(self.n) + ' connections') @staticmethod async def send(writer: asyncio.StreamWriter) -> None: try: while True: writer.write(build_http_request( httpMethods.GET, b'/' )) await asyncio.sleep(0.01) except KeyboardInterrupt: pass @staticmethod def parse_pipeline_response(response: HttpParser, raw: bytes, counter: int = 0) -> \ Tuple[HttpParser, int]: response.parse(raw) if response.state != httpParserStates.COMPLETE: # Need more data return response, counter if response.buffer == b'': # No more buffer left to parse return response, counter + 1 # For pipelined requests we may have pending buffer, try parse them as # responses pipelined_response = HttpParser(httpParserTypes.RESPONSE_PARSER) return Benchmark.parse_pipeline_response( pipelined_response, response.buffer, counter + 1) @staticmethod async def recv(idd: int, reader: asyncio.StreamReader) -> None: print_every = 1000 last_print = time.time() num_completed_requests: int = 0 response = HttpParser(httpParserTypes.RESPONSE_PARSER) try: while True: raw = await reader.read(DEFAULT_BUFFER_SIZE) response, total_parsed = Benchmark.parse_pipeline_response( response, raw) if response.state == httpParserStates.COMPLETE: response = HttpParser(httpParserTypes.RESPONSE_PARSER) if total_parsed > 0: num_completed_requests += total_parsed # print('total parsed %d' % total_parsed) if num_completed_requests % print_every == 0: now = time.time() print('[%d] Completed last %d requests in %.2f secs' % (idd, print_every, now - last_print)) last_print = now except KeyboardInterrupt: pass async def close_connections(self) -> None: for reader, writer in self.clients: writer.close() await writer.wait_closed() print('Closed ' + str(self.n) + ' connections') async def run(self) -> None: try: await self.open_connections() print('Exchanging request / response packets') readers = [] writers = [] idd = 0 for reader, writer in self.clients: readers.append( asyncio.create_task( self.recv(idd, reader) ) ) writers.append( asyncio.create_task( self.send(writer) ) ) idd += 1 await asyncio.gather(*(readers + writers)) finally: try: await self.close_connections() except RuntimeError: pass def main(input_args: List[str]) -> None: args = init_parser().parse_args(input_args) benchmark = Benchmark(n=args.n) try: asyncio.run(benchmark.run()) except KeyboardInterrupt: pass if __name__ == '__main__': main(sys.argv[1:]) # pragma: no cover
the-stack_0_26320
# Copyright 2021 EMQ Technologies Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import traceback from . import reg from .connection import SourceChannel from .symbol import parse_context, SymbolRuntime from ..source import Source class SourceRuntime(SymbolRuntime): def __init__(self, ctrl: dict, s: Source): ctx = parse_context(ctrl) ds = "" config = {} if 'datasource' in ctrl: ds = ctrl['datasource'] if 'config' in ctrl: config = ctrl['config'] s.configure(ds, config) ch = SourceChannel(ctrl['meta']) ctx.set_emitter(ch) key = f"{ctrl['meta']['ruleId']}_{ctrl['meta']['opId']}" \ f"_{ctrl['meta']['instanceId']}_{ctrl['symbolName']}" self.s = s self.ctx = ctx self.ch = ch self.running = False self.key = key def run(self): logging.info('start running source') self.running = True reg.setr(self.key, self) # noinspection PyBroadException try: self.s.open(self.ctx) except Exception: """two occasions: normal stop will close socket to raise an error OR\ stopped by unexpected error""" if self.running: logging.error(traceback.format_exc()) finally: self.stop() def stop(self): self.running = False # noinspection PyBroadException try: self.s.close(self.ctx) self.ch.close() reg.delete(self.key) except Exception: logging.error(traceback.format_exc()) def is_running(self) -> bool: return self.running
the-stack_0_26322
try: from urllib.parse import unquote except ImportError: from urllib import unquote def create_dust_qs(serviceKey, station_name): qs = dict() qs['serviceKey'] = unquote(serviceKey) qs['stationName'] = station_name qs['dataTerm'] = 'DAILY' qs['ver']='1.3' return qs
the-stack_0_26323
#!/usr/bin/env python import rospy import numpy as np import potential_fields as pf from unball.msg import MeasurementSystemMessage from communication.msg import target_positions_msg from subprocess import call # This script is made to test the tangential potential around the ball. # If you need to change the behavior of this potential field you can change this constant: # * TANGENCIAL_BALL_MAGNITUDE - Indicates the magnitude of field # # You can see the potential_fields.py to more informations TANGENCIAL_BALL_MAGNITUDE = 0.3 number_of_robots = 3 def callback(data): msg = target_positions_msg() #PCreating an tangential field tangencial_ball = pf.TangencialPotentialField( np.array([data.ball_x, data.ball_y]), TANGENCIAL_BALL_MAGNITUDE) for robot in range(number_of_robots): resultant_vector = tangencial_ball.calculate_force( np.array([data.x[robot], data.y[robot]])) msg.x[robot] = resultant_vector[0] msg.y[robot] = resultant_vector[1] pub.publish(msg) def start(): global pub pub = rospy.Publisher('target_positions_topic', target_positions_msg, queue_size=10) rospy.init_node('strategy') rospy.Subscriber('measurement_system_topic', MeasurementSystemMessage, callback) rospy.spin() if __name__ == '__main__': start()
the-stack_0_26324
""" dj-stripe Card Model Tests. """ from copy import deepcopy from unittest.mock import ANY, patch from django.contrib.auth import get_user_model from django.test import TestCase from stripe.error import InvalidRequestError from djstripe.exceptions import StripeObjectManipulationException from djstripe.models import Card from . import ( FAKE_CARD, FAKE_CARD_III, FAKE_CARD_V, FAKE_CUSTOMER, AssertStripeFksMixin, default_account, ) class CardTest(AssertStripeFksMixin, TestCase): def setUp(self): self.account = default_account() self.user = get_user_model().objects.create_user( username="testuser", email="[email protected]" ) fake_empty_customer = deepcopy(FAKE_CUSTOMER) fake_empty_customer["default_source"] = None fake_empty_customer["sources"] = [] self.customer = fake_empty_customer.create_for_user(self.user) def test_attach_objects_hook_without_customer(self): card = Card.sync_from_stripe_data(deepcopy(FAKE_CARD_III)) self.assertEqual(card.customer, None) def test_create_card_finds_customer(self): card = Card.sync_from_stripe_data(deepcopy(FAKE_CARD)) self.assertEqual(self.customer, card.customer) self.assertEqual( card.get_stripe_dashboard_url(), self.customer.get_stripe_dashboard_url() ) self.assert_fks( card, expected_blank_fks={ "djstripe.BankAccount.account", "djstripe.Customer.coupon", "djstripe.Customer.default_source", }, ) def test_str(self): fake_card = deepcopy(FAKE_CARD) card = Card.sync_from_stripe_data(fake_card) self.assertEqual( "<brand={brand}, last4={last4}, exp_month={exp_month}, " "exp_year={exp_year}, id={id}>".format( brand=fake_card["brand"], last4=fake_card["last4"], exp_month=fake_card["exp_month"], exp_year=fake_card["exp_year"], id=fake_card["id"], ), str(card), ) self.assert_fks( card, expected_blank_fks={ "djstripe.Customer.coupon", "djstripe.Customer.default_source", }, ) @patch("stripe.Token.create", autospec=True) def test_card_create_token(self, token_create_mock): card = {"number": "4242", "exp_month": 5, "exp_year": 2012, "cvc": 445} Card.create_token(**card) token_create_mock.assert_called_with(api_key=ANY, card=card) def test_api_call_no_customer(self): exception_message = ( "Cards must be manipulated through a Customer. " "Pass a Customer object into this call." ) with self.assertRaisesMessage( StripeObjectManipulationException, exception_message ): Card._api_create() with self.assertRaisesMessage( StripeObjectManipulationException, exception_message ): Card.api_list() def test_api_call_bad_customer(self): exception_message = ( "Cards must be manipulated through a Customer. " "Pass a Customer object into this call." ) with self.assertRaisesMessage( StripeObjectManipulationException, exception_message ): Card._api_create(customer="fish") with self.assertRaisesMessage( StripeObjectManipulationException, exception_message ): Card.api_list(customer="fish") @patch( "stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER), autospec=True ) def test_api_create(self, customer_retrieve_mock): stripe_card = Card._api_create(customer=self.customer, source=FAKE_CARD["id"]) self.assertEqual(FAKE_CARD, stripe_card) @patch("tests.CardDict.delete", autospec=True) @patch("stripe.Card.retrieve", return_value=deepcopy(FAKE_CARD), autospec=True) @patch( "stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER), autospec=True ) def test_remove(self, customer_retrieve_mock, card_retrieve_mock, card_delete_mock): stripe_card = Card._api_create(customer=self.customer, source=FAKE_CARD["id"]) Card.sync_from_stripe_data(stripe_card) self.assertEqual(1, self.customer.legacy_cards.count()) card = self.customer.legacy_cards.all()[0] card.remove() self.assertEqual(0, self.customer.legacy_cards.count()) self.assertTrue(card_delete_mock.called) @patch( "stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER), autospec=True ) def test_remove_already_deleted_card(self, customer_retrieve_mock): stripe_card = Card._api_create(customer=self.customer, source=FAKE_CARD["id"]) Card.sync_from_stripe_data(stripe_card) self.assertEqual(self.customer.legacy_cards.count(), 1) card_object = self.customer.legacy_cards.first() Card.objects.filter(id=stripe_card["id"]).delete() self.assertEqual(self.customer.legacy_cards.count(), 0) card_object.remove() self.assertEqual(self.customer.legacy_cards.count(), 0) @patch("djstripe.models.Card._api_delete", autospec=True) @patch( "stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER), autospec=True ) def test_remove_no_such_source(self, customer_retrieve_mock, card_delete_mock): stripe_card = Card._api_create(customer=self.customer, source=FAKE_CARD["id"]) Card.sync_from_stripe_data(stripe_card) card_delete_mock.side_effect = InvalidRequestError("No such source:", "blah") self.assertEqual(1, self.customer.legacy_cards.count()) card = self.customer.legacy_cards.all()[0] card.remove() self.assertEqual(0, self.customer.legacy_cards.count()) self.assertTrue(card_delete_mock.called) @patch("djstripe.models.Card._api_delete", autospec=True) @patch( "stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER), autospec=True ) def test_remove_no_such_customer(self, customer_retrieve_mock, card_delete_mock): stripe_card = Card._api_create(customer=self.customer, source=FAKE_CARD["id"]) Card.sync_from_stripe_data(stripe_card) card_delete_mock.side_effect = InvalidRequestError("No such customer:", "blah") self.assertEqual(1, self.customer.legacy_cards.count()) card = self.customer.legacy_cards.all()[0] card.remove() self.assertEqual(0, self.customer.legacy_cards.count()) self.assertTrue(card_delete_mock.called) @patch("djstripe.models.Card._api_delete", autospec=True) @patch( "stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER), autospec=True ) def test_remove_unexpected_exception( self, customer_retrieve_mock, card_delete_mock ): stripe_card = Card._api_create(customer=self.customer, source=FAKE_CARD["id"]) Card.sync_from_stripe_data(stripe_card) card_delete_mock.side_effect = InvalidRequestError( "Unexpected Exception", "blah" ) self.assertEqual(1, self.customer.legacy_cards.count()) card = self.customer.legacy_cards.all()[0] with self.assertRaisesMessage(InvalidRequestError, "Unexpected Exception"): card.remove() @patch( "stripe.Customer.retrieve", return_value=deepcopy(FAKE_CUSTOMER), autospec=True ) def test_api_list(self, customer_retrieve_mock): card_list = Card.api_list(customer=self.customer) self.assertEqual([FAKE_CARD, FAKE_CARD_V], card_list)
the-stack_0_26326
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Utilities for doing coverage analysis on the RPC interface. Provides a way to track which RPC commands are exercised during testing. """ import os REFERENCE_FILENAME = 'rpc_interface.txt' class AuthServiceProxyWrapper(): """ An object that wraps AuthServiceProxy to record specific RPC calls. """ def __init__(self, auth_service_proxy_instance, coverage_logfile=None): """ Kwargs: auth_service_proxy_instance (AuthServiceProxy): the instance being wrapped. coverage_logfile (str): if specified, write each service_name out to a file when called. """ self.auth_service_proxy_instance = auth_service_proxy_instance self.coverage_logfile = coverage_logfile def __getattr__(self, name): return_val = getattr(self.auth_service_proxy_instance, name) if not isinstance(return_val, type(self.auth_service_proxy_instance)): # If proxy getattr returned an unwrapped value, do the same here. return return_val return AuthServiceProxyWrapper(return_val, self.coverage_logfile) def __call__(self, *args, **kwargs): """ Delegates to AuthServiceProxy, then writes the particular RPC method called to a file. """ return_val = self.auth_service_proxy_instance.__call__(*args, **kwargs) self._log_call() return return_val def _log_call(self): rpc_method = self.auth_service_proxy_instance._service_name if self.coverage_logfile: with open(self.coverage_logfile, 'a+', encoding='utf8') as f: f.write("%s\n" % rpc_method) def __truediv__(self, relative_uri): return AuthServiceProxyWrapper(self.auth_service_proxy_instance / relative_uri, self.coverage_logfile) def get_request(self, *args, **kwargs): self._log_call() return self.auth_service_proxy_instance.get_request(*args, **kwargs) def get_filename(dirname, n_node): """ Get a filename unique to the test process ID and node. This file will contain a list of RPC commands covered. """ pid = str(os.getpid()) return os.path.join( dirname, "coverage.pid%s.node%s.txt" % (pid, str(n_node))) def write_all_rpc_commands(dirname, node): """ Write out a list of all RPC functions available in `adelphia-cli` for coverage comparison. This will only happen once per coverage directory. Args: dirname (str): temporary test dir node (AuthServiceProxy): client Returns: bool. if the RPC interface file was written. """ filename = os.path.join(dirname, REFERENCE_FILENAME) if os.path.isfile(filename): return False help_output = node.help().split('\n') commands = set() for line in help_output: line = line.strip() # Ignore blanks and headers if line and not line.startswith('='): commands.add("%s\n" % line.split()[0]) with open(filename, 'w', encoding='utf8') as f: f.writelines(list(commands)) return True
the-stack_0_26327
""" Given an array of integers, find the sum of its elements. """ def simpleArraySum(ar): size = len(ar) result = 0 for idx in range(size): result = result + ar[idx] return result if __name__ == "__main__": res = simpleArraySum([1,2,3,4,10,11]) print(res)
the-stack_0_26328
from .helper import timestamp_to_datetime import six class ApiModel(object): @classmethod def object_from_dictionary(cls, entry): # make dict keys all strings if entry is None: return "" entry_str_dict = dict([(str(key), value) for key, value in entry.items()]) return cls(**entry_str_dict) def __repr__(self): return str(self) # if six.PY2: # return six.text_type(self).encode('utf8') # else: # return self.encode('utf8') def __str__(self): if six.PY3: return self.__unicode__() else: return unicode(self).encode('utf-8') class Image(ApiModel): def __init__(self, url, width, height): self.url = url self.height = height self.width = width def __unicode__(self): return "Image: %s" % self.url class Video(Image): def __unicode__(self): return "Video: %s" % self.url class Media(ApiModel): def __init__(self, id=None, **kwargs): self.id = id for key, value in six.iteritems(kwargs): setattr(self, key, value) def get_standard_resolution_url(self): if self.type == 'image': return self.images['standard_resolution'].url else: return self.videos['standard_resolution'].url def get_low_resolution_url(self): if self.type == 'image': return self.images['low_resolution'].url else: return self.videos['low_resolution'].url def get_thumbnail_url(self): return self.images['thumbnail'].url def __unicode__(self): return "Media: %s" % self.id @classmethod def object_from_dictionary(cls, entry): new_media = Media(id=entry['id']) new_media.type = entry['type'] new_media.user = User.object_from_dictionary(entry['user']) new_media.images = {} for version, version_info in six.iteritems(entry['images']): new_media.images[version] = Image.object_from_dictionary(version_info) if new_media.type == 'video': new_media.videos = {} for version, version_info in six.iteritems(entry['videos']): new_media.videos[version] = Video.object_from_dictionary(version_info) if 'user_has_liked' in entry: new_media.user_has_liked = entry['user_has_liked'] new_media.like_count = entry['likes']['count'] new_media.likes = [] if 'data' in entry['likes']: for like in entry['likes']['data']: new_media.likes.append(User.object_from_dictionary(like)) new_media.comment_count = entry['comments']['count'] new_media.comments = [] for comment in entry['comments']['data']: new_media.comments.append(Comment.object_from_dictionary(comment)) new_media.users_in_photo = [] if entry.get('users_in_photo'): for user_in_photo in entry['users_in_photo']: new_media.users_in_photo.append(UserInPhoto.object_from_dictionary(user_in_photo)) new_media.created_time = timestamp_to_datetime(entry['created_time']) if entry['location'] and 'id' in entry: new_media.location = Location.object_from_dictionary(entry['location']) new_media.caption = None if entry['caption']: new_media.caption = Comment.object_from_dictionary(entry['caption']) new_media.tags = [] if entry['tags']: for tag in entry['tags']: new_media.tags.append(Tag.object_from_dictionary({'name': tag})) new_media.link = entry['link'] new_media.filter = entry.get('filter') return new_media class MediaShortcode(Media): def __init__(self, shortcode=None, **kwargs): self.shortcode = shortcode for key, value in six.iteritems(kwargs): setattr(self, key, value) class Tag(ApiModel): def __init__(self, name, **kwargs): self.name = name for key, value in six.iteritems(kwargs): setattr(self, key, value) def __unicode__(self): return "Tag: %s" % self.name class Comment(ApiModel): def __init__(self, *args, **kwargs): for key, value in six.iteritems(kwargs): setattr(self, key, value) @classmethod def object_from_dictionary(cls, entry): user = User.object_from_dictionary(entry['from']) text = entry['text'] created_at = timestamp_to_datetime(entry['created_time']) id = entry['id'] return Comment(id=id, user=user, text=text, created_at=created_at) def __unicode__(self): return "Comment: %s said \"%s\"" % (self.user.username, self.text) class Point(ApiModel): def __init__(self, latitude, longitude): self.latitude = latitude self.longitude = longitude def __unicode__(self): return "Point: (%s, %s)" % (self.latitude, self.longitude) class Location(ApiModel): def __init__(self, id, *args, **kwargs): self.id = str(id) for key, value in six.iteritems(kwargs): setattr(self, key, value) @classmethod def object_from_dictionary(cls, entry): point = None if 'latitude' in entry: point = Point(entry.get('latitude'), entry.get('longitude')) location = Location(entry.get('id', 0), point=point, name=entry.get('name', '')) return location def __unicode__(self): return "Location: %s (%s)" % (self.id, self.point) class User(ApiModel): def __init__(self, id, *args, **kwargs): self.id = id for key, value in six.iteritems(kwargs): setattr(self, key, value) def __unicode__(self): return "User: %s" % self.username def getName(self): return self.username; class Relationship(ApiModel): def __init__(self, incoming_status="none", outgoing_status="none", target_user_is_private=False): self.incoming_status = incoming_status self.outgoing_status = outgoing_status self.target_user_is_private = target_user_is_private def __unicode__(self): follows = False if self.outgoing_status == 'none' else True followed = False if self.incoming_status == 'none' else True return "Relationship: (Follows: %s, Followed by: %s)" % (follows, followed) class Position(ApiModel): def __init__(self, x, y): self.x = x self.y = y def __unicode__(self): return "Position: (%s, %s)" % (self.x, self.y) @classmethod def object_from_dictionary(cls, entry): if 'x' in entry: return Position(entry['x'], entry['y']) class UserInPhoto(ApiModel): def __init__(self, user, position): self.position = position self.user = user def __unicode__(self): return "UserInPhoto: (%s, %s)" % (self.user, self.position) @classmethod def object_from_dictionary(cls, entry): user = None if 'user' in entry: user = User.object_from_dictionary(entry['user']) if 'position' in entry: position = Position(entry['position']['x'], entry['position']['y']) return UserInPhoto(user, position)
the-stack_0_26330
# # Licensed under the Apache License, Version 2.0 (the “License”); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an “AS IS” BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ contains all serializers related to Shop APIs """ from rest_framework import serializers from crapi.shop.models import Order, Product, Coupon from user.serializers import UserSerializer class ProductSerializer(serializers.ModelSerializer): """ Serializer for Product model """ class Meta: """ Meta class for ProductSerializer """ model = Product fields = ('id', 'name', 'price', 'image_url') class OrderSerializer(serializers.ModelSerializer): """ Serializer for Order model """ user = UserSerializer() product = ProductSerializer() class Meta: """ Meta class for OrderSerializer """ model = Order fields = ('id', 'user', 'product', 'quantity', 'status', 'created_on') class CouponSerializer(serializers.Serializer): """ Serializer for Coupon model """ coupon_code = serializers.CharField() amount = serializers.IntegerField() class Meta: """ Meta class for CouponSerializer """ model = Coupon class ProductQuantitySerializer(serializers.Serializer): """ Serializer for Product order API """ product_id = serializers.IntegerField() quantity = serializers.IntegerField()
the-stack_0_26331
import logging from copy import deepcopy from hyperopt import fmin, tpe, STATUS_OK, Trials from naslib.optimizers.discrete import Searcher as BaseSearcher from naslib.utils.utils import AttrDict class Searcher(BaseSearcher): def __init__(self, graph, parser, arch_optimizer, *args, **kwargs): super(Searcher, self).__init__(graph, parser, arch_optimizer, *args, **kwargs) self.trials = Trials() def run(self, n_evaluations, *args, **kwargs): best = fmin(self.objective, space=self.arch_optimizer.space, algo=tpe.suggest, max_evals=n_evaluations, trials=self.trials) def objective(self, x): config = deepcopy(x) print('CONFIG: ', config) self.arch_optimizer.set_to_zero() for arch_key, arch_weight in self.arch_optimizer.architectural_weights.items(): idx = config[arch_key] arch_weight.data[idx] = 1 arch_info = self.query() y = -arch_info['cifar10-valid']['valid_accuracy'] c = arch_info['cifar10-valid']['latency (ms)'] return { 'config': config, 'loss': y, 'cost': c, 'status': STATUS_OK} #NOTE: this works only for nasbench201 for now def query(self): if hasattr(self.graph, 'query_architecture'): # Record anytime performance arch_info = self.graph.query_architecture(self.arch_optimizer.architectural_weights) logging.info('arch {}'.format(arch_info)) if 'arch_eval' not in self.errors_dict: self.errors_dict['arch_eval'] = [] self.errors_dict['arch_eval'].append(arch_info) self.log_to_json(self.parser.config.save) return arch_info
the-stack_0_26333
#!/usr/bin/env python """ Unit tests for Generalized One-Pass Sweep-line Algorithm - test_regionsweep_simple - test_regionsweep_random """ from typing import List from unittest import TestCase from sources.algorithms import \ RegionSweep, RegionSweepDebug, RegionSweepOverlaps from sources.core import \ Region, RegionPair, RegionSet class TestRegionSweep(TestCase): def _evaluate_regionsweep(self, regions: RegionSet, i: int) -> List[RegionPair]: subscribers = [] #[RegionSweepDebug()] return RegionSweepOverlaps.prepare(regions, *subscribers)(i) def test_regionsweep_simple(self): regionset = RegionSet(dimension=2) regionset.add(Region([0, 0], [3, 5])) regionset.add(Region([3, 1], [5, 5])) regionset.add(Region([2, 4], [6, 6])) for i in range(regionset.dimension): expect = regionset.overlaps(i) actual = self._evaluate_regionsweep(regionset, i) #for pair in expect: print(f'Expect {i}:\t{pair[0]}\n\t{pair[1]}') #for pair in actual: print(f'Actual {i}:\t{pair[0]}\n\t{pair[1]}') for pair in expect: #passed = "Passed" if pair in actual else "Failed" #print(f'{passed} {i}: {pair[0]} {pair[1]}') self.assertTrue(pair in actual) self.assertEqual(len(expect), len(actual)) def test_regionsweep_random(self): regionset = RegionSet.from_random(30, Region([0]*3, [100]*3), sizepc=Region([0]*3, [0.5]*3), precision=0) actuals = [] #for region in regionset: print(f'{region}') for i in range(regionset.dimension): #print(f'Dimension: {i}') expect = regionset.overlaps(i) actual = self._evaluate_regionsweep(regionset, i) #for pair in expect: print(f'Expect {i}: {pair[0].id} {pair[1].id}') #for pair in actual: print(f'Actual {i}: {pair[0].id} {pair[1].id}') for pair in expect: #passed = "Passed" if pair in actual else "Failed" #print(f'{passed} {i}: {pair[0].id} {pair[1].id}') self.assertTrue(pair in actual) self.assertEqual(len(expect), len(actual)) actuals.append(actual) self.assertTrue(all([len(actual) for actual in actuals])) for pair in actuals[0]: for d in range(1, regionset.dimension): self.assertTrue(pair in actuals[d] or (pair[1], pair[0]) in actuals[d])
the-stack_0_26334
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class FrHit(Package): """An efficient algorithm for fragment recruitment for next generation sequences against microbial reference genomes.""" homepage = "http://weizhong-lab.ucsd.edu/frhit" url = "http://weizhong-lab.ucsd.edu/frhit/fr-hit-v0.7.1-2013-02-20.tar.gz" version('0.7.1-2013-02-20', sha256='44dcfeb73106529fcefb02c017ec7b95b04b6523a2a57683b2bc905c142e62eb') depends_on('perl') depends_on('[email protected]:') # The patch adds the python interpreter to the beginning of the script # allowing it to be run directly without passing the entire path to the # script to python. patch('binning.patch') def install(self, spec, prefix): make() filter_file( r'#!/bin/env perl', '#!/usr/bin/env perl', 'frhit2pairend.pl' ) filter_file( r'#!/bin/env perl', '#!/usr/bin/env perl', 'psl2sam.pl' ) mkdirp(prefix.bin) install('fr-hit', prefix.bin) install('frhit2pairend.pl', prefix.bin) install('psl2sam.pl', prefix.bin) install('binning-1.1.1/bacteria_gitax.pkl', prefix.bin) install('binning-1.1.1/binning.py', prefix.bin) install('binning-1.1.1/tax.pkl', prefix.bin)
the-stack_0_26335
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import argparse import cv2 from atss_core.config import cfg from predictor import COCODemo import time def main(): parser = argparse.ArgumentParser(description="PyTorch Object Detection Webcam Demo") parser.add_argument( "--config-file", default="../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--confidence-threshold", type=float, default=0.7, help="Minimum score for the prediction to be shown", ) parser.add_argument( "--min-image-size", type=int, default=224, help="Smallest size of the image to feed to the model. " "Model was trained with 800, which gives best results", ) parser.add_argument( "--show-mask-heatmaps", dest="show_mask_heatmaps", help="Show a heatmap probability for the top masks-per-dim masks", action="store_true", ) parser.add_argument( "--masks-per-dim", type=int, default=2, help="Number of heatmaps per dimension to show", ) parser.add_argument( "opts", help="Modify model config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() # load config from file and command-line arguments cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() # prepare object that handles inference plus adds predictions on top of image coco_demo = COCODemo( cfg, confidence_threshold=args.confidence_threshold, show_mask_heatmaps=args.show_mask_heatmaps, masks_per_dim=args.masks_per_dim, min_image_size=args.min_image_size, ) cam = cv2.VideoCapture(0) while True: start_time = time.time() ret_val, img = cam.read() composite = coco_demo.run_on_opencv_image(img) print("Time: {:.2f} s / img".format(time.time() - start_time)) cv2.imshow("COCO detections", composite) if cv2.waitKey(1) == 27: break # esc to quit cv2.destroyAllWindows() if __name__ == "__main__": main()
the-stack_0_26336
# Databricks notebook source # MAGIC %md-sandbox # MAGIC # MAGIC <div style="text-align: center; line-height: 0; padding-top: 9px;"> # MAGIC <img src="https://databricks.com/wp-content/uploads/2018/03/db-academy-rgb-1200px.png" alt="Databricks Learning" style="width: 600px"> # MAGIC </div> # COMMAND ---------- # MAGIC %md # MAGIC # Revenue by Traffic Lab # MAGIC Get the 3 traffic sources generating the highest total revenue. # MAGIC 1. Aggregate revenue by traffic source # MAGIC 2. Get top 3 traffic sources by total revenue # MAGIC 3. Clean revenue columns to have two decimal places # MAGIC # MAGIC ##### Methods # MAGIC - <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.DataFrame.html" target="_blank">DataFrame</a>: **`groupBy`**, **`sort`**, **`limit`** # MAGIC - <a href="https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.Column.html?highlight=column#pyspark.sql.Column" target="_blank">Column</a>: **`alias`**, **`desc`**, **`cast`**, **`operators`** # MAGIC - <a href="https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql.html?#functions" target="_blank">Built-in Functions</a>: **`avg`**, **`sum`** # COMMAND ---------- # MAGIC %run ../../Includes/Classroom-Setup # COMMAND ---------- # MAGIC %md # MAGIC ### Setup # MAGIC Run the cell below to create the starting DataFrame **`df`**. # COMMAND ---------- from pyspark.sql.functions import col # Purchase events logged on the BedBricks website df = (spark.read.format("delta").load(events_path) .withColumn("revenue", col("ecommerce.purchase_revenue_in_usd")) .filter(col("revenue").isNotNull()) .drop("event_name") ) display(df) # COMMAND ---------- # MAGIC %md ### 1. Aggregate revenue by traffic source # MAGIC - Group by **`traffic_source`** # MAGIC - Get sum of **`revenue`** as **`total_rev`** # MAGIC - Get average of **`revenue`** as **`avg_rev`** # MAGIC # MAGIC Remember to import any necessary built-in functions. # COMMAND ---------- # ANSWER from pyspark.sql.functions import avg, col, sum traffic_df = (df .groupBy("traffic_source") .agg(sum(col("revenue")).alias("total_rev"), avg(col("revenue")).alias("avg_rev")) ) display(traffic_df) # COMMAND ---------- # MAGIC %md **1.1: CHECK YOUR WORK** # COMMAND ---------- from pyspark.sql.functions import round expected1 = [(12704560.0, 1083.175), (78800000.3, 983.2915), (24797837.0, 1076.6221), (47218429.0, 1086.8303), (16177893.0, 1083.4378), (8044326.0, 1087.218)] test_df = traffic_df.sort("traffic_source").select(round("total_rev", 4).alias("total_rev"), round("avg_rev", 4).alias("avg_rev")) result1 = [(row.total_rev, row.avg_rev) for row in test_df.collect()] assert(expected1 == result1) # COMMAND ---------- # MAGIC %md ### 2. Get top three traffic sources by total revenue # MAGIC - Sort by **`total_rev`** in descending order # MAGIC - Limit to first three rows # COMMAND ---------- # ANSWER top_traffic_df = traffic_df.sort(col("total_rev").desc()).limit(3) display(top_traffic_df) # COMMAND ---------- # MAGIC %md **2.1: CHECK YOUR WORK** # COMMAND ---------- expected2 = [(78800000.3, 983.2915), (47218429.0, 1086.8303), (24797837.0, 1076.6221)] test_df = top_traffic_df.select(round("total_rev", 4).alias("total_rev"), round("avg_rev", 4).alias("avg_rev")) result2 = [(row.total_rev, row.avg_rev) for row in test_df.collect()] assert(expected2 == result2) # COMMAND ---------- # MAGIC %md ### 3. Limit revenue columns to two decimal places # MAGIC - Modify columns **`avg_rev`** and **`total_rev`** to contain numbers with two decimal places # MAGIC - Use **`withColumn()`** with the same names to replace these columns # MAGIC - To limit to two decimal places, multiply each column by 100, cast to long, and then divide by 100 # COMMAND ---------- # ANSWER final_df = (top_traffic_df .withColumn("avg_rev", (col("avg_rev") * 100).cast("long") / 100) .withColumn("total_rev", (col("total_rev") * 100).cast("long") / 100) ) display(final_df) # COMMAND ---------- # MAGIC %md **3.1: CHECK YOUR WORK** # COMMAND ---------- expected3 = [(78800000.29, 983.29), (47218429.0, 1086.83), (24797837.0, 1076.62)] result3 = [(row.total_rev, row.avg_rev) for row in final_df.collect()] assert(expected3 == result3) # COMMAND ---------- # MAGIC %md # MAGIC ### 4. Bonus: Rewrite using a built-in math function # MAGIC Find a built-in math function that rounds to a specified number of decimal places # COMMAND ---------- # ANSWER from pyspark.sql.functions import round bonus_df = (top_traffic_df .withColumn("avg_rev", round("avg_rev", 2)) .withColumn("total_rev", round("total_rev", 2)) ) display(bonus_df) # COMMAND ---------- # MAGIC %md **4.1: CHECK YOUR WORK** # COMMAND ---------- expected4 = [(78800000.3, 983.29), (47218429.0, 1086.83), (24797837.0, 1076.62)] result4 = [(row.total_rev, row.avg_rev) for row in bonus_df.collect()] assert(expected4 == result4) # COMMAND ---------- # MAGIC %md ### 5. Chain all the steps above # COMMAND ---------- # ANSWER chain_df = (df .groupBy("traffic_source") .agg(sum(col("revenue")).alias("total_rev"), avg(col("revenue")).alias("avg_rev")) .sort(col("total_rev").desc()) .limit(3) .withColumn("avg_rev", round("avg_rev", 2)) .withColumn("total_rev", round("total_rev", 2)) ) display(chain_df) # COMMAND ---------- # MAGIC %md **5.1: CHECK YOUR WORK** # COMMAND ---------- expected5 = [(78800000.3, 983.29), (47218429.0, 1086.83), (24797837.0, 1076.62)] result5 = [(row.total_rev, row.avg_rev) for row in chain_df.collect()] assert(expected5 == result5) # COMMAND ---------- # MAGIC %md ### Clean up classroom # COMMAND ---------- classroom_cleanup() # COMMAND ---------- # MAGIC %md-sandbox # MAGIC &copy; 2022 Databricks, Inc. All rights reserved.<br/> # MAGIC Apache, Apache Spark, Spark and the Spark logo are trademarks of the <a href="https://www.apache.org/">Apache Software Foundation</a>.<br/> # MAGIC <br/> # MAGIC <a href="https://databricks.com/privacy-policy">Privacy Policy</a> | <a href="https://databricks.com/terms-of-use">Terms of Use</a> | <a href="https://help.databricks.com/">Support</a>
the-stack_0_26337
#!/usr/bin/env python3 # Copyright (c) 2019-2020 The PIVX developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # -*- coding: utf-8 -*- from io import BytesIO from time import sleep from test_framework.messages import CTransaction, CTxIn, CTxOut, COIN, COutPoint from test_framework.mininode import network_thread_start from test_framework.islamic_digital_coin_node import islamic_digital_coinTestNode from test_framework.script import CScript, OP_CHECKSIG from test_framework.test_framework import islamic_digital_coinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, p2p_port, bytes_to_hex_str, set_node_times, ) from decimal import Decimal # filter utxos based on first 5 bytes of scriptPubKey def getDelegatedUtxos(utxos): return [x for x in utxos if x["scriptPubKey"][:10] == '76a97b63d1'] class ISLAMIC_DIGITAL_COIN_ColdStakingTest(islamic_digital_coinTestFramework): def set_test_params(self): self.num_nodes = 3 self.extra_args = [['-nuparams=v5_shield:201']] * self.num_nodes self.extra_args[0].append('-sporkkey=932HEevBSujW2ud7RfB1YF91AFygbBRQj3de3LyaCRqNzKKgWXi') def setup_chain(self): # Start with PoW cache: 200 blocks self.log.info("Initializing test directory " + self.options.tmpdir) self._initialize_chain() self.enable_mocktime() def init_test(self): title = "*** Starting %s ***" % self.__class__.__name__ underline = "-" * len(title) self.log.info("\n\n%s\n%s\n%s\n", title, underline, self.description) self.DEFAULT_FEE = 0.05 # Setup the p2p connections and start up the network thread. self.test_nodes = [] for i in range(self.num_nodes): self.test_nodes.append(islamic_digital_coinTestNode()) self.test_nodes[i].peer_connect('127.0.0.1', p2p_port(i)) network_thread_start() # Start up network handling in another thread # Let the test nodes get in sync for i in range(self.num_nodes): self.test_nodes[i].wait_for_verack() def setColdStakingEnforcement(self, fEnable=True): sporkName = "SPORK_19_COLDSTAKING_MAINTENANCE" # update spork 19 with node[0] if fEnable: self.log.info("Enabling cold staking with SPORK 19...") res = self.deactivate_spork(0, sporkName) else: self.log.info("Disabling cold staking with SPORK 19...") res = self.activate_spork(0, sporkName) assert_equal(res, "success") sleep(1) # check that node[1] receives it assert_equal(fEnable, not self.is_spork_active(1, sporkName)) self.log.info("done") def isColdStakingEnforced(self): # verify from node[1] return not self.is_spork_active(1, "SPORK_19_COLDSTAKING_MAINTENANCE") def run_test(self): self.description = "Performs tests on the Cold Staking P2CS implementation" self.init_test() NUM_OF_INPUTS = 20 INPUT_VALUE = 249 # nodes[0] - coin-owner # nodes[1] - cold-staker # First put cold-staking in maintenance mode self.setColdStakingEnforcement(False) # double check assert (not self.isColdStakingEnforced()) # 1) nodes[0] and nodes[2] mine 25 blocks each # -------------------------------------------- print("*** 1 ***") self.log.info("Mining 50 Blocks...") for peer in [0, 2]: for j in range(25): self.mocktime = self.generate_pow(peer, self.mocktime) self.sync_blocks() # 2) node[1] sends his entire balance (50 mature rewards) to node[2] # - node[2] stakes a block - node[1] locks the change # - node[0] shields 250 coins (to be delegated later) print("*** 2 ***") self.log.info("Emptying node1 balance") assert_equal(self.nodes[1].getbalance(), 50 * 250) txid = self.nodes[1].sendtoaddress(self.nodes[2].getnewaddress(), (50 * 250 - 0.01)) assert (txid is not None) self.sync_mempools() self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() # lock the change output (so it's not used as stake input in generate_pos) for x in self.nodes[1].listunspent(): assert (self.nodes[1].lockunspent(False, [{"txid": x['txid'], "vout": x['vout']}])) # check that it cannot stake sleep(1) assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], 0) # create shielded balance for node 0 self.log.info("Shielding some coins for node0...") self.nodes[0].shieldsendmany("from_transparent", [{"address": self.nodes[0].getnewshieldaddress(), "amount": Decimal('250.00')}], 1) self.sync_all() for i in range(6): self.mocktime = self.generate_pow(0, self.mocktime) self.sync_blocks() assert_equal(self.nodes[0].getshieldbalance(), 250) # 3) nodes[0] generates a owner address # nodes[1] generates a cold-staking address. # --------------------------------------------- print("*** 3 ***") owner_address = self.nodes[0].getnewaddress() self.log.info("Owner Address: %s" % owner_address) staker_address = self.nodes[1].getnewstakingaddress() staker_privkey = self.nodes[1].dumpprivkey(staker_address) self.log.info("Staking Address: %s" % staker_address) # 4) Check enforcement. # --------------------- print("*** 4 ***") # Check that SPORK 17 is disabled assert (not self.isColdStakingEnforced()) self.log.info("Creating a stake-delegation tx before cold staking enforcement...") assert_raises_rpc_error(-4, "Failed to accept tx in the memory pool (reason: cold-stake-inactive (code 16))\nTransaction canceled.", self.nodes[0].delegatestake, staker_address, INPUT_VALUE, owner_address, False, False, False, True) self.log.info("Good. Cold Staking NOT ACTIVE yet.") # Enable via SPORK self.setColdStakingEnforcement() # double check assert (self.isColdStakingEnforced()) # 5) nodes[0] delegates a number of inputs for nodes[1] to stake em. # ------------------------------------------------------------------ print("*** 5 ***") self.log.info("First check warning when using external addresses...") assert_raises_rpc_error(-5, "Only the owner of the key to owneraddress will be allowed to spend these coins", self.nodes[0].delegatestake, staker_address, INPUT_VALUE, "yCgCXC8N5VThhfiaVuKaNLkNnrWduzVnoT") self.log.info("Good. Warning triggered.") self.log.info("Now force the use of external address creating (but not sending) the delegation...") res = self.nodes[0].rawdelegatestake(staker_address, INPUT_VALUE, "yCgCXC8N5VThhfiaVuKaNLkNnrWduzVnoT", True) assert(res is not None and res != "") self.log.info("Good. Warning NOT triggered.") self.log.info("Now delegate with internal owner address..") self.log.info("Try first with a value (0.99) below the threshold") assert_raises_rpc_error(-8, "Invalid amount", self.nodes[0].delegatestake, staker_address, 0.99, owner_address) self.log.info("Nice. it was not possible.") self.log.info("Then try (creating but not sending) with the threshold value (1.00)") res = self.nodes[0].rawdelegatestake(staker_address, 1.00, owner_address) assert(res is not None and res != "") self.log.info("Good. Warning NOT triggered.") self.log.info("Now creating %d real stake-delegation txes..." % NUM_OF_INPUTS) for i in range(NUM_OF_INPUTS-1): res = self.nodes[0].delegatestake(staker_address, INPUT_VALUE, owner_address) assert(res != None and res["txid"] != None and res["txid"] != "") assert_equal(res["owner_address"], owner_address) assert_equal(res["staker_address"], staker_address) # delegate the shielded balance res = self.nodes[0].delegatestake(staker_address, INPUT_VALUE, owner_address, False, False, True) assert (res != None and res["txid"] != None and res["txid"] != "") assert_equal(res["owner_address"], owner_address) assert_equal(res["staker_address"], staker_address) fee = self.nodes[0].viewshieldtransaction(res["txid"])['fee'] # sync and mine 2 blocks self.sync_mempools() self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() self.log.info("%d Txes created." % NUM_OF_INPUTS) # check balances: self.expected_balance = NUM_OF_INPUTS * INPUT_VALUE self.expected_immature_balance = 0 self.checkBalances() # also shielded balance of node 0 (250 - 249 - fee) assert_equal(self.nodes[0].getshieldbalance(), round(Decimal(1)-Decimal(fee), 8)) # 6) check that the owner (nodes[0]) can spend the coins. # ------------------------------------------------------- print("*** 6 ***") self.log.info("Spending back one of the delegated UTXOs...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) assert_equal(NUM_OF_INPUTS, len(delegated_utxos)) assert_equal(len(delegated_utxos), len(self.nodes[0].listcoldutxos())) u = delegated_utxos[0] txhash = self.spendUTXOwithNode(u, 0) assert(txhash != None) self.log.info("Good. Owner was able to spend - tx: %s" % str(txhash)) self.sync_mempools() self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() # check tx self.check_tx_in_chain(0, txhash) self.check_tx_in_chain(1, txhash) # check balances after spend. self.expected_balance -= float(u["amount"]) self.checkBalances() self.log.info("Balances check out after spend") assert_equal(NUM_OF_INPUTS-1, len(self.nodes[0].listcoldutxos())) # 7) check that the staker CANNOT use the coins to stake yet. # He needs to whitelist the owner first. # ----------------------------------------------------------- print("*** 7 ***") self.log.info("Trying to generate a cold-stake block before whitelisting the owner...") assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], 0) self.log.info("Nice. Cold staker was NOT able to create the block yet.") self.log.info("Whitelisting the owner...") ret = self.nodes[1].delegatoradd(owner_address) assert(ret) self.log.info("Delegator address %s whitelisted" % owner_address) # 8) check that the staker CANNOT spend the coins. # ------------------------------------------------ print("*** 8 ***") self.log.info("Trying to spend one of the delegated UTXOs with the cold-staking key...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) assert_greater_than(len(delegated_utxos), 0) u = delegated_utxos[0] assert_raises_rpc_error(-26, "mandatory-script-verify-flag-failed (Script failed an OP_CHECKCOLDSTAKEVERIFY operation", self.spendUTXOwithNode, u, 1) self.log.info("Good. Cold staker was NOT able to spend (failed OP_CHECKCOLDSTAKEVERIFY)") self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() # 9) check that the staker can use the coins to stake a block with internal miner. # -------------------------------------------------------------------------------- print("*** 9 ***") assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], NUM_OF_INPUTS-1) self.log.info("Generating one valid cold-stake block...") self.mocktime = self.generate_pos(1, self.mocktime) self.log.info("New block created by cold-staking. Trying to submit...") newblockhash = self.nodes[1].getbestblockhash() self.log.info("Block %s submitted" % newblockhash) # Verify that nodes[0] accepts it self.sync_blocks() assert_equal(self.nodes[0].getblockcount(), self.nodes[1].getblockcount()) assert_equal(newblockhash, self.nodes[0].getbestblockhash()) self.log.info("Great. Cold-staked block was accepted!") # check balances after staked block. self.expected_balance -= INPUT_VALUE self.expected_immature_balance += (INPUT_VALUE + 250) self.checkBalances() self.log.info("Balances check out after staked block") # 10) check that the staker can use the coins to stake a block with a rawtransaction. # ---------------------------------------------------------------------------------- print("*** 10 ***") self.log.info("Generating another valid cold-stake block...") stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) stakeInputs = self.get_prevouts(1, stakeable_coins) assert_greater_than(len(stakeInputs), 0) # Create the block new_block = self.stake_next_block(1, stakeInputs, self.mocktime, staker_privkey) self.log.info("New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str(new_block.serialize())) assert (ret is None) self.log.info("Block %s submitted." % new_block.hash) assert_equal(new_block.hash, self.nodes[1].getbestblockhash()) # Verify that nodes[0] accepts it self.sync_blocks() assert_equal(self.nodes[0].getblockcount(), self.nodes[1].getblockcount()) assert_equal(new_block.hash, self.nodes[0].getbestblockhash()) self.log.info("Great. Cold-staked block was accepted!") self.mocktime += 60 set_node_times(self.nodes, self.mocktime) # check balances after staked block. self.expected_balance -= INPUT_VALUE self.expected_immature_balance += (INPUT_VALUE + 250) self.checkBalances() self.log.info("Balances check out after staked block") # 11) check that the staker cannot stake a block changing the coinstake scriptPubkey. # ---------------------------------------------------------------------------------- print("*** 11 ***") self.log.info("Generating one invalid cold-stake block (changing first coinstake output)...") stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) stakeInputs = self.get_prevouts(1, stakeable_coins) assert_greater_than(len(stakeInputs), 0) # Create the block (with dummy key) new_block = self.stake_next_block(1, stakeInputs, self.mocktime, "") self.log.info("New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str(new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert("rejected" in ret) # Verify that nodes[0] rejects it self.sync_blocks() assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, new_block.hash) self.log.info("Great. Malicious cold-staked block was NOT accepted!") self.checkBalances() self.log.info("Balances check out after (non) staked block") # 12) neither adding different outputs to the coinstake. # ------------------------------------------------------ print("*** 12 ***") self.log.info("Generating another invalid cold-stake block (adding coinstake output)...") stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) stakeInputs = self.get_prevouts(1, stakeable_coins) assert_greater_than(len(stakeInputs), 0) # Create the block new_block = self.stake_next_block(1, stakeInputs, self.mocktime, staker_privkey) # Add output (dummy key address) to coinstake (taking 100 IDC from the pot) self.add_output_to_coinstake(new_block, 100) self.log.info("New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str(new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert_equal(ret, "bad-p2cs-outs") # Verify that nodes[0] rejects it self.sync_blocks() assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, new_block.hash) self.log.info("Great. Malicious cold-staked block was NOT accepted!") self.checkBalances() self.log.info("Balances check out after (non) staked block") # 13) Now node[0] gets mad and spends all the delegated coins, voiding the P2CS contracts. # ---------------------------------------------------------------------------------------- self.log.info("Let's void the contracts.") self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() print("*** 13 ***") self.log.info("Cancel the stake delegation spending the delegated utxos...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) # remove one utxo to spend later final_spend = delegated_utxos.pop() txhash = self.spendUTXOsWithNode(delegated_utxos, 0) assert(txhash != None) self.log.info("Good. Owner was able to void the stake delegations - tx: %s" % str(txhash)) self.sync_blocks() self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() # deactivate SPORK 17 and check that the owner can still spend the last utxo self.setColdStakingEnforcement(False) assert (not self.isColdStakingEnforced()) txhash = self.spendUTXOsWithNode([final_spend], 0) assert(txhash != None) self.log.info("Good. Owner was able to void a stake delegation (with SPORK 17 disabled) - tx: %s" % str(txhash)) self.sync_mempools() self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() # check tx self.check_tx_in_chain(0, txhash) self.check_tx_in_chain(1, txhash) # check balances after big spend. self.expected_balance = 0 self.checkBalances() self.log.info("Balances check out after the delegations have been voided.") # re-activate SPORK17 self.setColdStakingEnforcement() assert (self.isColdStakingEnforced()) # 14) check that coinstaker is empty and can no longer stake. # ----------------------------------------------------------- print("*** 14 ***") self.log.info("Trying to generate one cold-stake block again...") assert_equal(self.nodes[1].getstakingstatus()["stakeablecoins"], 0) self.log.info("Cigar. Cold staker was NOT able to create any more blocks.") # 15) check balances when mature. # ----------------------------------------------------------- print("*** 15 ***") self.log.info("Staking 100 blocks to mature the cold stakes...") for i in range(2): for peer in [0, 2]: for j in range(25): self.mocktime = self.generate_pos(peer, self.mocktime) self.sync_blocks() self.expected_balance = self.expected_immature_balance self.expected_immature_balance = 0 self.checkBalances() delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) txhash = self.spendUTXOsWithNode(delegated_utxos, 0) assert (txhash != None) self.log.info("Good. Owner was able to spend the cold staked coins - tx: %s" % str(txhash)) self.sync_mempools() self.mocktime = self.generate_pos(2, self.mocktime) self.sync_blocks() # check tx self.check_tx_in_chain(0, txhash) self.check_tx_in_chain(1, txhash) self.expected_balance = 0 self.checkBalances() def checkBalances(self): w_info = self.nodes[0].getwalletinfo() assert_equal(self.nodes[0].getblockcount(), w_info['last_processed_block']) self.log.info("OWNER - Delegated %f / Cold %f [%f / %f]" % ( float(w_info["delegated_balance"]), w_info["cold_staking_balance"], float(w_info["immature_delegated_balance"]), w_info["immature_cold_staking_balance"])) assert_equal(float(w_info["delegated_balance"]), self.expected_balance) assert_equal(float(w_info["immature_delegated_balance"]), self.expected_immature_balance) assert_equal(float(w_info["cold_staking_balance"]), 0) w_info = self.nodes[1].getwalletinfo() assert_equal(self.nodes[1].getblockcount(), w_info['last_processed_block']) self.log.info("STAKER - Delegated %f / Cold %f [%f / %f]" % ( float(w_info["delegated_balance"]), w_info["cold_staking_balance"], float(w_info["immature_delegated_balance"]), w_info["immature_cold_staking_balance"])) assert_equal(float(w_info["delegated_balance"]), 0) assert_equal(float(w_info["cold_staking_balance"]), self.expected_balance) assert_equal(float(w_info["immature_cold_staking_balance"]), self.expected_immature_balance) def spendUTXOwithNode(self, utxo, node_n): new_addy = self.nodes[node_n].getnewaddress() inputs = [{"txid": utxo["txid"], "vout": utxo["vout"]}] out_amount = (float(utxo["amount"]) - self.DEFAULT_FEE) outputs = {} outputs[new_addy] = out_amount spendingTx = self.nodes[node_n].createrawtransaction(inputs, outputs) spendingTx_signed = self.nodes[node_n].signrawtransaction(spendingTx) return self.nodes[node_n].sendrawtransaction(spendingTx_signed["hex"]) def spendUTXOsWithNode(self, utxos, node_n): new_addy = self.nodes[node_n].getnewaddress() inputs = [] outputs = {} outputs[new_addy] = 0 for utxo in utxos: inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]}) outputs[new_addy] += float(utxo["amount"]) outputs[new_addy] -= self.DEFAULT_FEE spendingTx = self.nodes[node_n].createrawtransaction(inputs, outputs) spendingTx_signed = self.nodes[node_n].signrawtransaction(spendingTx) return self.nodes[node_n].sendrawtransaction(spendingTx_signed["hex"]) def add_output_to_coinstake(self, block, value, peer=1): coinstake = block.vtx[1] if not hasattr(self, 'DUMMY_KEY'): self.init_dummy_key() coinstake.vout.append( CTxOut(value * COIN, CScript([self.DUMMY_KEY.get_pubkey(), OP_CHECKSIG]))) coinstake.vout[1].nValue -= value * COIN # re-sign coinstake prevout = COutPoint() prevout.deserialize_uniqueness(BytesIO(block.prevoutStake)) coinstake.vin[0] = CTxIn(prevout) stake_tx_signed_raw_hex = self.nodes[peer].signrawtransaction( bytes_to_hex_str(coinstake.serialize()))['hex'] block.vtx[1] = CTransaction() block.vtx[1].from_hex(stake_tx_signed_raw_hex) # re-sign block block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.re_sign_block() if __name__ == '__main__': ISLAMIC_DIGITAL_COIN_ColdStakingTest().main()
the-stack_0_26338
import argparse import os import SimpleITK as sitk image = sitk.ReadImage('Data_folder/images/train/image0.nii') image_spacing = image.GetSpacing() class Options(): """This class defines options used during both training and test time.""" def __init__(self): """Reset the class; indicates the class hasn't been initailized""" self.initialized = False def initialize(self, parser): # basic parameters parser.add_argument('--images_folder', type=str, default='./Data_folder/images') parser.add_argument('--labels_folder', type=str, default='./Data_folder/labels') parser.add_argument('--increase_factor_data', default=4, help='Increase data number per epoch') parser.add_argument('--preload', type=str, default=None) parser.add_argument('--gpu_ids', type=str, default='2,3', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') parser.add_argument('--workers', default=8, type=int, help='number of data loading workers') # dataset parameters parser.add_argument('--patch_size', default=(128, 128, 64), help='Size of the patches extracted from the image') parser.add_argument('--spacing', default=image_spacing, help='Original Resolution') parser.add_argument('--resolution', default=None, help='New Resolution, if you want to resample the data') parser.add_argument('--batch_size', type=int, default=6, help='batch size') parser.add_argument('--in_channels', default=1, type=int, help='Channels of the input') parser.add_argument('--out_channels', default=1, type=int, help='Channels of the output') # training parameters parser.add_argument('--epochs', default=200, help='Number of epochs') parser.add_argument('--lr', default=0.001, help='Learning rate') # Inference # This is just a trick to make the predict script working parser.add_argument('--result', default=None, help='Keep this empty and go to predict_single_image script') parser.add_argument('--weights', default=None, help='Keep this empty and go to predict_single_image script') self.initialized = True return parser def parse(self): if not self.initialized: parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = self.initialize(parser) opt = parser.parse_args() # set gpu ids if opt.gpu_ids != '-1': os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids return opt
the-stack_0_26339
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to export object detection inference graph.""" import logging import os import tempfile import tensorflow as tf from google.protobuf import text_format from tensorflow.core.protobuf import saver_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.client import session from tensorflow.python.framework import graph_util from tensorflow.python.platform import gfile from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import saver as saver_lib from object_detection.builders import model_builder from object_detection.core import standard_fields as fields from object_detection.data_decoders import tf_example_decoder slim = tf.contrib.slim # TODO: Replace with freeze_graph.freeze_graph_with_def_protos when # newer version of Tensorflow becomes more common. def freeze_graph_with_def_protos( input_graph_def, input_saver_def, input_checkpoint, output_node_names, restore_op_name, filename_tensor_name, clear_devices, initializer_nodes, variable_names_blacklist=''): """Converts all variables in a graph and checkpoint into constants.""" del restore_op_name, filename_tensor_name # Unused by updated loading code. # 'input_checkpoint' may be a prefix if we're using Saver V2 format if not saver_lib.checkpoint_exists(input_checkpoint): raise ValueError( 'Input checkpoint "' + input_checkpoint + '" does not exist!') if not output_node_names: raise ValueError( 'You must supply the name of a node to --output_node_names.') # Remove all the explicit device specifications for this node. This helps to # make the graph more portable. if clear_devices: for node in input_graph_def.node: node.device = '' with tf.Graph().as_default(): tf.import_graph_def(input_graph_def, name='') config = tf.ConfigProto(graph_options=tf.GraphOptions()) with session.Session(config=config) as sess: if input_saver_def: saver = saver_lib.Saver(saver_def=input_saver_def) saver.restore(sess, input_checkpoint) else: var_list = {} reader = pywrap_tensorflow.NewCheckpointReader( input_checkpoint) var_to_shape_map = reader.get_variable_to_shape_map() for key in var_to_shape_map: try: tensor = sess.graph.get_tensor_by_name(key + ':0') except KeyError: # This tensor doesn't exist in the graph (for example it's # 'global_step' or a similar housekeeping element) so skip it. continue var_list[key] = tensor saver = saver_lib.Saver(var_list=var_list) saver.restore(sess, input_checkpoint) if initializer_nodes: sess.run(initializer_nodes) variable_names_blacklist = (variable_names_blacklist.split(',') if variable_names_blacklist else None) output_graph_def = graph_util.convert_variables_to_constants( sess, input_graph_def, output_node_names.split(','), variable_names_blacklist=variable_names_blacklist) return output_graph_def def replace_variable_values_with_moving_averages(graph, current_checkpoint_file, new_checkpoint_file): """Replaces variable values in the checkpoint with their moving averages. If the current checkpoint has shadow variables maintaining moving averages of the variables defined in the graph, this function generates a new checkpoint where the variables contain the values of their moving averages. Args: graph: a tf.Graph object. current_checkpoint_file: a checkpoint containing both original variables and their moving averages. new_checkpoint_file: file path to write a new checkpoint. """ with graph.as_default(): variable_averages = tf.train.ExponentialMovingAverage(0.0) ema_variables_to_restore = variable_averages.variables_to_restore() with tf.Session() as sess: read_saver = tf.train.Saver(ema_variables_to_restore) read_saver.restore(sess, current_checkpoint_file) write_saver = tf.train.Saver() write_saver.save(sess, new_checkpoint_file) def _image_tensor_input_placeholder(input_shape=None): """Returns input placeholder and a 4-D uint8 image tensor.""" if input_shape is None: input_shape = (None, None, None, 3) input_tensor = tf.placeholder( dtype=tf.uint8, shape=input_shape, name='image_tensor') return input_tensor, input_tensor def _tf_example_input_placeholder(): """Returns input that accepts a batch of strings with tf examples. Returns: a tuple of input placeholder and the output decoded images. """ batch_tf_example_placeholder = tf.placeholder( tf.string, shape=[None], name='tf_example') def decode(tf_example_string_tensor): tensor_dict = tf_example_decoder.TfExampleDecoder().decode( tf_example_string_tensor) image_tensor = tensor_dict[fields.InputDataFields.image] return image_tensor return (batch_tf_example_placeholder, tf.map_fn(decode, elems=batch_tf_example_placeholder, dtype=tf.uint8, parallel_iterations=32, back_prop=False)) def _encoded_image_string_tensor_input_placeholder(): """Returns input that accepts a batch of PNG or JPEG strings. Returns: a tuple of input placeholder and the output decoded images. """ batch_image_str_placeholder = tf.placeholder( dtype=tf.string, shape=[None], name='encoded_image_string_tensor') def decode(encoded_image_string_tensor): image_tensor = tf.image.decode_image(encoded_image_string_tensor, channels=3) image_tensor.set_shape((None, None, 3)) return image_tensor return (batch_image_str_placeholder, tf.map_fn( decode, elems=batch_image_str_placeholder, dtype=tf.uint8, parallel_iterations=32, back_prop=False)) input_placeholder_fn_map = { 'image_tensor': _image_tensor_input_placeholder, 'encoded_image_string_tensor': _encoded_image_string_tensor_input_placeholder, 'tf_example': _tf_example_input_placeholder, } def _add_output_tensor_nodes(postprocessed_tensors, output_collection_name='inference_op'): """Adds output nodes for detection boxes and scores. Adds the following nodes for output tensors - * num_detections: float32 tensor of shape [batch_size]. * detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4] containing detected boxes. * detection_scores: float32 tensor of shape [batch_size, num_boxes] containing scores for the detected boxes. * detection_classes: float32 tensor of shape [batch_size, num_boxes] containing class predictions for the detected boxes. * detection_masks: (Optional) float32 tensor of shape [batch_size, num_boxes, mask_height, mask_width] containing masks for each detection box. Args: postprocessed_tensors: a dictionary containing the following fields 'detection_boxes': [batch, max_detections, 4] 'detection_scores': [batch, max_detections] 'detection_classes': [batch, max_detections] 'detection_masks': [batch, max_detections, mask_height, mask_width] (optional). 'num_detections': [batch] output_collection_name: Name of collection to add output tensors to. Returns: A tensor dict containing the added output tensor nodes. """ detection_fields = fields.DetectionResultFields label_id_offset = 1 boxes = postprocessed_tensors.get(detection_fields.detection_boxes) scores = postprocessed_tensors.get(detection_fields.detection_scores) classes = postprocessed_tensors.get( detection_fields.detection_classes) + label_id_offset masks = postprocessed_tensors.get(detection_fields.detection_masks) num_detections = postprocessed_tensors.get(detection_fields.num_detections) outputs = {} outputs[detection_fields.detection_boxes] = tf.identity( boxes, name=detection_fields.detection_boxes) outputs[detection_fields.detection_scores] = tf.identity( scores, name=detection_fields.detection_scores) outputs[detection_fields.detection_classes] = tf.identity( classes, name=detection_fields.detection_classes) outputs[detection_fields.num_detections] = tf.identity( num_detections, name=detection_fields.num_detections) if masks is not None: outputs[detection_fields.detection_masks] = tf.identity( masks, name=detection_fields.detection_masks) for output_key in outputs: tf.add_to_collection(output_collection_name, outputs[output_key]) if masks is not None: tf.add_to_collection(output_collection_name, outputs[detection_fields.detection_masks]) return outputs def _write_frozen_graph(frozen_graph_path, frozen_graph_def): """Writes frozen graph to disk. Args: frozen_graph_path: Path to write inference graph. frozen_graph_def: tf.GraphDef holding frozen graph. """ with gfile.GFile(frozen_graph_path, 'wb') as f: f.write(frozen_graph_def.SerializeToString()) logging.info('%d ops in the final graph.', len(frozen_graph_def.node)) def _write_saved_model(saved_model_path, frozen_graph_def, inputs, outputs): """Writes SavedModel to disk. If checkpoint_path is not None bakes the weights into the graph thereby eliminating the need of checkpoint files during inference. If the model was trained with moving averages, setting use_moving_averages to true restores the moving averages, otherwise the original set of variables is restored. Args: saved_model_path: Path to write SavedModel. frozen_graph_def: tf.GraphDef holding frozen graph. inputs: The input image tensor to use for detection. outputs: A tensor dictionary containing the outputs of a DetectionModel. """ with tf.Graph().as_default(): with session.Session() as sess: tf.import_graph_def(frozen_graph_def, name='') builder = tf.saved_model.builder.SavedModelBuilder( saved_model_path) tensor_info_inputs = { 'inputs': tf.saved_model.utils.build_tensor_info(inputs)} tensor_info_outputs = {} for k, v in outputs.items(): tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info( v) detection_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs=tensor_info_inputs, outputs=tensor_info_outputs, method_name=signature_constants.PREDICT_METHOD_NAME)) builder.add_meta_graph_and_variables( sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: detection_signature, }, ) builder.save() def _write_graph_and_checkpoint(inference_graph_def, model_path, input_saver_def, trained_checkpoint_prefix): for node in inference_graph_def.node: node.device = '' with tf.Graph().as_default(): tf.import_graph_def(inference_graph_def, name='') with session.Session() as sess: saver = saver_lib.Saver(saver_def=input_saver_def, save_relative_paths=True) saver.restore(sess, trained_checkpoint_prefix) saver.save(sess, model_path) def _export_inference_graph(input_type, detection_model, use_moving_averages, trained_checkpoint_prefix, output_directory, additional_output_tensor_names=None, input_shape=None, output_collection_name='inference_op', graph_hook_fn=None): """Export helper.""" tf.gfile.MakeDirs(output_directory) frozen_graph_path = os.path.join(output_directory, 'frozen_inference_graph.pb') saved_model_path = os.path.join(output_directory, 'saved_model') model_path = os.path.join(output_directory, 'model.ckpt') if input_type not in input_placeholder_fn_map: raise ValueError('Unknown input type: {}'.format(input_type)) placeholder_args = {} if input_shape is not None: if input_type != 'image_tensor': raise ValueError('Can only specify input shape for `image_tensor` ' 'inputs.') placeholder_args['input_shape'] = input_shape placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type]( **placeholder_args) inputs = tf.to_float(input_tensors) preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs) output_tensors = detection_model.predict( preprocessed_inputs, true_image_shapes) postprocessed_tensors = detection_model.postprocess( output_tensors, true_image_shapes) outputs = _add_output_tensor_nodes(postprocessed_tensors, output_collection_name) # Add global step to the graph. slim.get_or_create_global_step() if graph_hook_fn: graph_hook_fn() saver_kwargs = {} if use_moving_averages: # This check is to be compatible with both version of SaverDef. if os.path.isfile(trained_checkpoint_prefix): saver_kwargs['write_version'] = saver_pb2.SaverDef.V1 temp_checkpoint_prefix = tempfile.NamedTemporaryFile().name else: temp_checkpoint_prefix = tempfile.mkdtemp() replace_variable_values_with_moving_averages( tf.get_default_graph(), trained_checkpoint_prefix, temp_checkpoint_prefix) checkpoint_to_use = temp_checkpoint_prefix else: checkpoint_to_use = trained_checkpoint_prefix saver = tf.train.Saver(**saver_kwargs) input_saver_def = saver.as_saver_def() _write_graph_and_checkpoint( inference_graph_def=tf.get_default_graph().as_graph_def(), model_path=model_path, input_saver_def=input_saver_def, trained_checkpoint_prefix=checkpoint_to_use) if additional_output_tensor_names is not None: output_node_names = ','.join( outputs.keys() + additional_output_tensor_names) else: output_node_names = ','.join(outputs.keys()) frozen_graph_def = freeze_graph_with_def_protos( input_graph_def=tf.get_default_graph().as_graph_def(), input_saver_def=input_saver_def, input_checkpoint=checkpoint_to_use, output_node_names=output_node_names, restore_op_name='save/restore_all', filename_tensor_name='save/Const:0', clear_devices=True, initializer_nodes='') _write_frozen_graph(frozen_graph_path, frozen_graph_def) _write_saved_model(saved_model_path, frozen_graph_def, placeholder_tensor, outputs) def export_inference_graph(input_type, pipeline_config, trained_checkpoint_prefix, output_directory, input_shape=None, output_collection_name='inference_op', additional_output_tensor_names=None): """Exports inference graph for the model specified in the pipeline config. Args: input_type: Type of input for the graph. Can be one of [`image_tensor`, `tf_example`]. pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto. trained_checkpoint_prefix: Path to the trained checkpoint file. output_directory: Path to write outputs. input_shape: Sets a fixed shape for an `image_tensor` input. If not specified, will default to [None, None, None, 3]. output_collection_name: Name of collection to add output tensors to. If None, does not add output tensors to a collection. additional_output_tensor_names: list of additional output tensors to include in the frozen graph. """ detection_model = model_builder.build(pipeline_config.model, is_training=False) _export_inference_graph(input_type, detection_model, pipeline_config.eval_config.use_moving_averages, trained_checkpoint_prefix, output_directory, additional_output_tensor_names, input_shape, output_collection_name, graph_hook_fn=None) pipeline_config.eval_config.use_moving_averages = False config_text = text_format.MessageToString(pipeline_config) with tf.gfile.Open( os.path.join(output_directory, 'pipeline.config'), 'wb') as f: f.write(config_text)
the-stack_0_26340
import numpy as np import scipy.optimize as opt from melp.taft.utils.cosmic import get_cosmic_data_from_file def correct_z_two_event(detector, cosmic_station, **kwargs) -> np.array: print("*Two event correction") a, b = get_cosmic_data_from_file(kwargs.get("cosmic_file"), detector, cosmic_station, **kwargs) print("\n -> Cosmic Muons: ", len(a)) args = np.zeros(kwargs["cosmic_n_modes"]*2) + 0.0001 popt, cov = opt.curve_fit(fit_func, b, a, p0=args, method="lm") station_offset = 200000 if cosmic_station == 2: station_offset += 100000 for row in range(len(detector.TileDetector.column_ids(0, station_offset))): for column in range(len(detector.TileDetector.row_ids(0, station_offset))): current_tile_id = detector.TileDetector.id_from_row_col(row=row, column=column, station_offset=station_offset) timing_correction = calibration_correction_z((column, row), *popt) timing_correction -= calibration_correction_z((0, 0), *popt) detector.TileDetector.tile[current_tile_id].update_calibration(timing_correction) return popt # def fourier_func(x: float or list, c: list, s: list, n: int) -> float or list: def fourier_func(x: float or list, *args) -> float or np.array: result = np.zeros(x.shape) n = int(len(args) / 2) c = args[0:n + 1] s = args[n:2 * n] for i in range(1, n + 1): # result += c[i - 1] * np.cos(x * i) + s[i - 1] * np.sin(x * i) result = np.add(result, c[i - 1] * np.cos(x * i) + s[i - 1] * np.sin(x * i)) return result # def calibration_correction(x: tuple, c_phi: list, s_phi: list, c_z: list, s_z: list, n: int) -> float or list: def calibration_correction_both(x: tuple, *args) -> float or np.array: # v_fourier_func = np.vectorize(fourier_func, excluded=['c', 's', 'n']) z, phi = x # print(phi, z) n = int(len(args) / 2) result_tmp1 = fourier_func(2 * np.pi * (np.array(phi) / 56), *args[0:n + 1]) result_tmp2 = fourier_func(np.pi * (np.array(z) / 52), *args[n:2 * n]) result = np.multiply(result_tmp1, result_tmp2) # return result return result def calibration_correction_z(x: tuple, *args) -> float or np.array: # v_fourier_func = np.vectorize(fourier_func, excluded=['c', 's', 'n']) z, phi = x # print(phi, z) result = fourier_func(np.pi * (np.array(z) / 52), *args) #result += args[0]*z return result def fit_func(x: tuple, *args) -> float or np.array: #if len(args) % 4 != 0: # raise ValueError # z1, phi1, z2, phi2 = x z2, phi2, z1, phi1 = x return calibration_correction_z((z1, phi1), *args) - calibration_correction_z((z2, phi2), *args)
the-stack_0_26341
import os import signal import sys import tempfile import time from contextlib import contextmanager import pendulum import yaml from dagster import Shape, check, composite_solid, pipeline, solid from dagster.core.host_representation import ExternalPipeline from dagster.core.host_representation.origin import ExternalPipelineOrigin from dagster.core.instance import DagsterInstance from dagster.core.launcher import RunLauncher from dagster.core.launcher.default_run_launcher import DefaultRunLauncher from dagster.core.run_coordinator import RunCoordinator from dagster.core.storage.pipeline_run import PipelineRun, PipelineRunStatus from dagster.core.telemetry import cleanup_telemetry_logger from dagster.serdes import ConfigurableClass from dagster.utils.error import serializable_error_info_from_exc_info def step_output_event_filter(pipe_iterator): for step_event in pipe_iterator: if step_event.is_successful_output: yield step_event def nesting_composite_pipeline(depth, num_children, *args, **kwargs): """Creates a pipeline of nested composite solids up to "depth" layers, with a fan-out of num_children at each layer. Total number of solids will be num_children ^ depth """ @solid def leaf_node(_): return 1 def create_wrap(inner, name): @composite_solid(name=name) def wrap(): for i in range(num_children): solid_alias = "%s_node_%d" % (name, i) inner.alias(solid_alias)() return wrap @pipeline(*args, **kwargs) def nested_pipeline(): comp_solid = create_wrap(leaf_node, "layer_%d" % depth) for i in range(depth): comp_solid = create_wrap(comp_solid, "layer_%d" % (depth - (i + 1))) comp_solid.alias("outer")() return nested_pipeline @contextmanager def environ(env): """Temporarily set environment variables inside the context manager and fully restore previous environment afterwards """ previous_values = {key: os.getenv(key) for key in env} for key, value in env.items(): if value is None: if key in os.environ: del os.environ[key] else: os.environ[key] = value try: yield finally: for key, value in previous_values.items(): if value is None: if key in os.environ: del os.environ[key] else: os.environ[key] = value @contextmanager def instance_for_test(overrides=None): with tempfile.TemporaryDirectory() as temp_dir: with instance_for_test_tempdir(temp_dir, overrides) as instance: yield instance @contextmanager def instance_for_test_tempdir(temp_dir, overrides=None): # Write any overrides to disk and set DAGSTER_HOME so that they will still apply when # DagsterInstance.get() is called from a different process with environ({"DAGSTER_HOME": temp_dir}): with open(os.path.join(temp_dir, "dagster.yaml"), "w") as fd: yaml.dump(overrides, fd, default_flow_style=False) with DagsterInstance.get() as instance: try: yield instance except: sys.stderr.write( "Test raised an exception, attempting to clean up instance:" + serializable_error_info_from_exc_info(sys.exc_info()).to_string() + "\n" ) raise finally: cleanup_test_instance(instance) def cleanup_test_instance(instance): check.inst_param(instance, "instance", DagsterInstance) # To avoid filesystem contention when we close the temporary directory, wait for # all runs to reach a terminal state, and close any subprocesses or threads # that might be accessing the run history DB. instance.run_launcher.join() if isinstance(instance.run_launcher, DefaultRunLauncher): instance.run_launcher.cleanup_managed_grpc_servers() cleanup_telemetry_logger() def create_run_for_test( instance, pipeline_name=None, run_id=None, run_config=None, mode=None, solids_to_execute=None, step_keys_to_execute=None, status=None, tags=None, root_run_id=None, parent_run_id=None, pipeline_snapshot=None, execution_plan_snapshot=None, parent_pipeline_snapshot=None, external_pipeline_origin=None, ): return instance.create_run( pipeline_name, run_id, run_config, mode, solids_to_execute, step_keys_to_execute, status, tags, root_run_id, parent_run_id, pipeline_snapshot, execution_plan_snapshot, parent_pipeline_snapshot, external_pipeline_origin=external_pipeline_origin, ) def register_managed_run_for_test( instance, pipeline_name=None, run_id=None, run_config=None, mode=None, solids_to_execute=None, step_keys_to_execute=None, tags=None, root_run_id=None, parent_run_id=None, pipeline_snapshot=None, execution_plan_snapshot=None, parent_pipeline_snapshot=None, ): return instance.register_managed_run( pipeline_name, run_id, run_config, mode, solids_to_execute, step_keys_to_execute, tags, root_run_id, parent_run_id, pipeline_snapshot, execution_plan_snapshot, parent_pipeline_snapshot, ) def poll_for_finished_run(instance, run_id, timeout=20): total_time = 0 interval = 0.01 while True: run = instance.get_run_by_id(run_id) if run.is_finished: return run else: time.sleep(interval) total_time += interval if total_time > timeout: raise Exception("Timed out") def poll_for_step_start(instance, run_id, timeout=30): poll_for_event(instance, run_id, event_type="STEP_START", message=None, timeout=timeout) def poll_for_event(instance, run_id, event_type, message, timeout=30): total_time = 0 backoff = 0.01 while True: time.sleep(backoff) logs = instance.all_logs(run_id) matching_events = [ log_record.dagster_event for log_record in logs if log_record.dagster_event.event_type_value == event_type ] if matching_events: if message is None: return for matching_message in (event.message for event in matching_events): if message in matching_message: return total_time += backoff backoff = backoff * 2 if total_time > timeout: raise Exception("Timed out") @contextmanager def new_cwd(path): old = os.getcwd() try: os.chdir(path) yield finally: os.chdir(old) def today_at_midnight(timezone_name=None): now = pendulum.now(timezone_name) return pendulum.create(now.year, now.month, now.day, tz=now.timezone.name) class ExplodingRunLauncher(RunLauncher, ConfigurableClass): def __init__(self, inst_data=None): self._inst_data = inst_data @property def inst_data(self): return self._inst_data @classmethod def config_type(cls): return {} @staticmethod def from_config_value(inst_data, config_value): return ExplodingRunLauncher(inst_data=inst_data) def launch_run(self, instance, run, external_pipeline): raise NotImplementedError("The entire purpose of this is to throw on launch") def join(self, timeout=30): """Nothing to join on since all executions are synchronous.""" def can_terminate(self, run_id): return False def terminate(self, run_id): check.not_implemented("Termination not supported") class MockedRunLauncher(RunLauncher, ConfigurableClass): def __init__(self, inst_data=None): self._inst_data = inst_data self._queue = [] def launch_run(self, instance, run, external_pipeline): check.inst_param(instance, "instance", DagsterInstance) check.inst_param(run, "run", PipelineRun) check.inst_param(external_pipeline, "external_pipeline", ExternalPipeline) check.invariant(run.status == PipelineRunStatus.STARTING) self._queue.append(run) return run def queue(self): return self._queue @classmethod def config_type(cls): return Shape({}) @classmethod def from_config_value(cls, inst_data, config_value): return cls(inst_data=inst_data,) @property def inst_data(self): return self._inst_data def can_terminate(self, run_id): return False def terminate(self, run_id): check.not_implemented("Termintation not supported") class MockedRunCoordinator(RunCoordinator, ConfigurableClass): def __init__(self, inst_data=None): self._inst_data = inst_data self._queue = [] def submit_run(self, pipeline_run, external_pipeline): check.inst_param(pipeline_run, "run", PipelineRun) check.opt_inst_param(external_pipeline, "external_pipeline", ExternalPipeline) check.inst(pipeline_run.external_pipeline_origin, ExternalPipelineOrigin) self._queue.append(pipeline_run) return pipeline_run def queue(self): return self._queue @classmethod def config_type(cls): return Shape({}) @classmethod def from_config_value(cls, inst_data, config_value): return cls(inst_data=inst_data,) @property def inst_data(self): return self._inst_data def can_cancel_run(self, run_id): check.not_implemented("Cancellation not supported") def cancel_run(self, run_id): check.not_implemented("Cancellation not supported") def get_terminate_signal(): if sys.platform == "win32": return signal.SIGTERM return signal.SIGKILL def get_crash_signals(): if sys.platform == "win32": return [ get_terminate_signal() ] # Windows keeps resources open after termination in a way that messes up tests else: return [get_terminate_signal(), signal.SIGINT] _mocked_system_timezone = {"timezone": None} @contextmanager def mock_system_timezone(override_timezone): with pendulum.tz.LocalTimezone.test(pendulum.Timezone.load(override_timezone)): try: _mocked_system_timezone["timezone"] = override_timezone yield finally: _mocked_system_timezone["timezone"] = None def get_mocked_system_timezone(): return _mocked_system_timezone["timezone"]
the-stack_0_26344
"""Tests that envs clean up after themselves on agent exit.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from gym.spaces import Discrete import atexit import gym import os import subprocess import tempfile import time import ray from ray.tune import run_experiments from ray.tune.registry import register_env # Dummy command to run as a subprocess with a unique name UNIQUE_CMD = "sleep {}".format(str(time.time())) _, UNIQUE_FILE_0 = tempfile.mkstemp("test_env_with_subprocess") _, UNIQUE_FILE_1 = tempfile.mkstemp("test_env_with_subprocess") _, UNIQUE_FILE_2 = tempfile.mkstemp("test_env_with_subprocess") _, UNIQUE_FILE_3 = tempfile.mkstemp("test_env_with_subprocess") class EnvWithSubprocess(gym.Env): """Our env that spawns a subprocess.""" def __init__(self, config): self.action_space = Discrete(2) self.observation_space = Discrete(2) # Subprocess that should be cleaned up self.subproc = subprocess.Popen(UNIQUE_CMD.split(" "), shell=False) self.config = config # Exit handler should be called if config.worker_index == 0: atexit.register(lambda: os.unlink(UNIQUE_FILE_0)) else: atexit.register(lambda: os.unlink(UNIQUE_FILE_1)) atexit.register(lambda: self.subproc.kill()) def close(self): if self.config.worker_index == 0: os.unlink(UNIQUE_FILE_2) else: os.unlink(UNIQUE_FILE_3) def reset(self): return 0 def step(self, action): return 0, 0, True, {} def leaked_processes(): """Returns whether any subprocesses were leaked.""" result = subprocess.check_output( "ps aux | grep '{}' | grep -v grep || true".format(UNIQUE_CMD), shell=True) return result if __name__ == "__main__": register_env("subproc", lambda config: EnvWithSubprocess(config)) ray.init() assert os.path.exists(UNIQUE_FILE_0) assert os.path.exists(UNIQUE_FILE_1) assert not leaked_processes() run_experiments({ "demo": { "run": "PG", "env": "subproc", "num_samples": 1, "config": { "num_workers": 1, }, "stop": { "training_iteration": 1 }, }, }) time.sleep(5.0) leaked = leaked_processes() assert not leaked, "LEAKED PROCESSES: {}".format(leaked) assert not os.path.exists(UNIQUE_FILE_0), "atexit handler not called" assert not os.path.exists(UNIQUE_FILE_1), "atexit handler not called" assert not os.path.exists(UNIQUE_FILE_2), "close not called" assert not os.path.exists(UNIQUE_FILE_3), "close not called" print("OK")
the-stack_0_26345
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('api', '0127_auto_20160419_1649'), ] operations = [ migrations.AlterField( model_name='activity', name='message_type', field=models.PositiveIntegerField(db_index=True, choices=[(0, b'Added a card'), (1, b'Idolized a card'), (2, b'Rank Up'), (3, b'Ranked in event'), (4, b'Verified'), (5, b'Trivia'), (6, b'Custom')]), preserve_default=True, ), ]