filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_8472
"""Customized dataloader for general video classification tasks.""" import os import warnings import numpy as np try: from decord import VideoReader, cpu except ImportError: VideoReader = None cpu = None import torch from torch.utils.data import Dataset from ..transforms.videotransforms import video_transforms, volume_transforms from .multigrid_helper import multiGridHelper, MultiGridBatchSampler __all__ = ['VideoClsDataset', 'build_dataloader', 'build_dataloader_test'] class VideoClsDataset(Dataset): """Load your own video classification dataset.""" def __init__(self, anno_path, data_path, mode='train', clip_len=8, frame_sample_rate=2, crop_size=224, short_side_size=256, new_height=256, new_width=340, keep_aspect_ratio=False, num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3, use_multigrid=False): self.anno_path = anno_path self.data_path = data_path self.mode = mode self.clip_len = clip_len self.frame_sample_rate = frame_sample_rate self.crop_size = crop_size self.short_side_size = short_side_size self.new_height = new_height self.new_width = new_width self.keep_aspect_ratio = keep_aspect_ratio self.num_segment = num_segment self.test_num_segment = test_num_segment self.num_crop = num_crop self.test_num_crop = test_num_crop self.use_multigrid = use_multigrid and (mode == 'train') if VideoReader is None: raise ImportError("Unable to import `decord` which is required to read videos.") import pandas as pd cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ') self.dataset_samples = list(cleaned.values[:, 0]) self.label_array = list(cleaned.values[:, 2]) if (mode == 'train'): if self.use_multigrid: self.mg_helper = multiGridHelper() self.data_transform = [] for alpha in range(self.mg_helper.mod_long): tmp = [] for beta in range(self.mg_helper.mod_short): info = self.mg_helper.get_resize(alpha, beta) scale_s = info[1] tmp.append(video_transforms.Compose([ video_transforms.Resize(int(self.short_side_size / scale_s), interpolation='bilinear'), # TODO: multiscale corner cropping video_transforms.RandomResize(ratio=(1, 1.25), interpolation='bilinear'), video_transforms.RandomCrop(size=(int(self.crop_size / scale_s), int(self.crop_size / scale_s)))])) self.data_transform.append(tmp) else: self.data_transform = video_transforms.Compose([ video_transforms.Resize(int(self.short_side_size), interpolation='bilinear'), video_transforms.RandomResize(ratio=(1, 1.25), interpolation='bilinear'), video_transforms.RandomCrop(size=(int(self.crop_size), int(self.crop_size)))]) self.data_transform_after = video_transforms.Compose([ video_transforms.RandomHorizontalFlip(), volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif (mode == 'validation'): self.data_transform = video_transforms.Compose([ video_transforms.Resize(self.short_side_size, interpolation='bilinear'), video_transforms.CenterCrop(size=(self.crop_size, self.crop_size)), volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif mode == 'test': self.data_resize = video_transforms.Compose([ video_transforms.Resize(size=(short_side_size), interpolation='bilinear') ]) self.data_transform = video_transforms.Compose([ volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_seg = [] self.test_dataset = [] self.test_label_array = [] for ck in range(self.test_num_segment): for cp in range(self.test_num_crop): for idx in range(len(self.label_array)): sample_label = self.label_array[idx] self.test_label_array.append(sample_label) self.test_dataset.append(self.dataset_samples[idx]) self.test_seg.append((ck, cp)) def __getitem__(self, index): if self.mode == 'train': if self.use_multigrid is True: index, alpha, beta = index info = self.mg_helper.get_resize(alpha, beta) scale_t = info[0] data_transform_func = self.data_transform[alpha][beta] else: scale_t = 1 data_transform_func = self.data_transform sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t) if len(buffer) == 0: while len(buffer) == 0: warnings.warn("video {} not correctly loaded during training".format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t) buffer = data_transform_func(buffer) buffer = self.data_transform_after(buffer) return buffer, self.label_array[index], sample.split("/")[-1].split(".")[0] elif self.mode == 'validation': sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) if len(buffer) == 0: while len(buffer) == 0: warnings.warn("video {} not correctly loaded during validation".format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) buffer = self.data_transform(buffer) return buffer, self.label_array[index], sample.split("/")[-1].split(".")[0] elif self.mode == 'test': sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) while len(buffer) == 0: warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\ str(self.test_dataset[index]), chunk_nb, split_nb)) index = np.random.randint(self.__len__()) sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) buffer = self.data_resize(buffer) if isinstance(buffer, list): buffer = np.stack(buffer, 0) spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_step = max(1.0 * (buffer.shape[0] - self.clip_len) \ / (self.test_num_segment - 1), 0) temporal_start = int(chunk_nb * temporal_step) spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ :, spatial_start:spatial_start + self.short_side_size, :] buffer = self.data_transform(buffer) return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \ chunk_nb, split_nb else: raise NameError('mode {} unkown'.format(self.mode)) def loadvideo_decord(self, sample, sample_rate_scale=1): """Load video content using Decord""" # pylint: disable=line-too-long, bare-except, unnecessary-comprehension fname = self.data_path + sample if not (os.path.exists(fname)): return [] # avoid hanging issue if os.path.getsize(fname) < 1 * 1024: print('SKIP: ', fname, " - ", os.path.getsize(fname)) return [] try: if self.keep_aspect_ratio: vr = VideoReader(fname, num_threads=1, ctx=cpu(0)) else: vr = VideoReader(fname, width=self.new_width, height=self.new_height, num_threads=1, ctx=cpu(0)) except: print("video cannot be loaded by decord: ", fname) return [] if self.mode == 'test': all_index = [x for x in range(0, len(vr), self.frame_sample_rate)] while len(all_index) < self.clip_len: all_index.append(all_index[-1]) vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer # handle temporal segments converted_len = int(self.clip_len * self.frame_sample_rate) seg_len = len(vr) // self.num_segment all_index = [] for i in range(self.num_segment): if seg_len <= converted_len: index = np.linspace(0, seg_len, num=seg_len // self.frame_sample_rate) index = np.concatenate((index, np.ones(self.clip_len - seg_len // self.frame_sample_rate) * seg_len)) index = np.clip(index, 0, seg_len - 1).astype(np.int64) else: end_idx = np.random.randint(converted_len, seg_len) str_idx = end_idx - converted_len index = np.linspace(str_idx, end_idx, num=self.clip_len) index = np.clip(index, str_idx, end_idx - 1).astype(np.int64) index = index + i*seg_len all_index.extend(list(index)) all_index = all_index[::int(sample_rate_scale)] vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer def __len__(self): if self.mode != 'test': return len(self.dataset_samples) else: return len(self.test_dataset) def build_dataloader(cfg): """Build dataloader for training/validation""" train_dataset = VideoClsDataset(anno_path=cfg.CONFIG.DATA.TRAIN_ANNO_PATH, data_path=cfg.CONFIG.DATA.TRAIN_DATA_PATH, mode='train', use_multigrid=cfg.CONFIG.TRAIN.MULTIGRID.USE_SHORT_CYCLE \ or cfg.CONFIG.TRAIN.MULTIGRID.USE_LONG_CYCLE, clip_len=cfg.CONFIG.DATA.CLIP_LEN, frame_sample_rate=cfg.CONFIG.DATA.FRAME_RATE, num_segment=cfg.CONFIG.DATA.NUM_SEGMENT, num_crop=cfg.CONFIG.DATA.NUM_CROP, keep_aspect_ratio=cfg.CONFIG.DATA.KEEP_ASPECT_RATIO, crop_size=cfg.CONFIG.DATA.CROP_SIZE, short_side_size=cfg.CONFIG.DATA.SHORT_SIDE_SIZE, new_height=cfg.CONFIG.DATA.NEW_HEIGHT, new_width=cfg.CONFIG.DATA.NEW_WIDTH) val_dataset = VideoClsDataset(anno_path=cfg.CONFIG.DATA.VAL_ANNO_PATH, data_path=cfg.CONFIG.DATA.VAL_DATA_PATH, mode='validation', use_multigrid=False, clip_len=cfg.CONFIG.DATA.CLIP_LEN, frame_sample_rate=cfg.CONFIG.DATA.FRAME_RATE, num_segment=cfg.CONFIG.DATA.NUM_SEGMENT, num_crop=cfg.CONFIG.DATA.NUM_CROP, keep_aspect_ratio=cfg.CONFIG.DATA.KEEP_ASPECT_RATIO, crop_size=cfg.CONFIG.DATA.CROP_SIZE, short_side_size=cfg.CONFIG.DATA.SHORT_SIDE_SIZE, new_height=cfg.CONFIG.DATA.NEW_HEIGHT, new_width=cfg.CONFIG.DATA.NEW_WIDTH) if cfg.DDP_CONFIG.DISTRIBUTED: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset) else: train_sampler = None val_sampler = None mg_sampler = None if cfg.CONFIG.TRAIN.MULTIGRID.USE_LONG_CYCLE or cfg.CONFIG.TRAIN.MULTIGRID.USE_SHORT_CYCLE: mg_sampler = MultiGridBatchSampler(train_sampler, batch_size=cfg.CONFIG.TRAIN.BATCH_SIZE, drop_last=True, use_long=cfg.CONFIG.TRAIN.MULTIGRID.USE_LONG_CYCLE, use_short=cfg.CONFIG.TRAIN.MULTIGRID.USE_SHORT_CYCLE) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=False, num_workers=9, pin_memory=True, batch_sampler=mg_sampler) else: train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=cfg.CONFIG.TRAIN.BATCH_SIZE, shuffle=(train_sampler is None), num_workers=9, sampler=train_sampler, pin_memory=True) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=cfg.CONFIG.VAL.BATCH_SIZE, shuffle=(val_sampler is None), num_workers=9, sampler=val_sampler, pin_memory=True) return train_loader, val_loader, train_sampler, val_sampler, mg_sampler def build_dataloader_test(cfg): """Build dataloader for testing""" test_dataset = VideoClsDataset(anno_path=cfg.CONFIG.DATA.VAL_ANNO_PATH, data_path=cfg.CONFIG.DATA.VAL_DATA_PATH, mode='test', clip_len=cfg.CONFIG.DATA.CLIP_LEN, frame_sample_rate=cfg.CONFIG.DATA.FRAME_RATE, test_num_segment=cfg.CONFIG.DATA.TEST_NUM_SEGMENT, test_num_crop=cfg.CONFIG.DATA.TEST_NUM_CROP, keep_aspect_ratio=cfg.CONFIG.DATA.KEEP_ASPECT_RATIO, crop_size=cfg.CONFIG.DATA.CROP_SIZE, short_side_size=cfg.CONFIG.DATA.SHORT_SIDE_SIZE, new_height=cfg.CONFIG.DATA.NEW_HEIGHT, new_width=cfg.CONFIG.DATA.NEW_WIDTH) if cfg.DDP_CONFIG.DISTRIBUTED: test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset) else: test_sampler = None test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=cfg.CONFIG.VAL.BATCH_SIZE, shuffle=(test_sampler is None), num_workers=9, sampler=test_sampler, pin_memory=True) return test_loader
the-stack_0_8474
# Copyright 2014 The LUCI Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 # that can be found in the LICENSE file. """Grab bag file for transaction.""" import logging from google.appengine.api import datastore_errors from google.appengine.ext import ndb from google.appengine.ext.ndb import tasklets from google.appengine.runtime import apiproxy_errors __all__ = [ 'CommitError', 'transaction', 'transaction_async', 'transactional_async', 'transactional', 'transactional_tasklet', ] class CommitError(Exception): """A transaction probably failed but it may or may not have occurred. The caller may want to run a second transaction to verify if the previous one succeeded. """ @ndb.tasklet def transaction_async(callback, **ctx_options): """Converts all sorts of random exceptions into CommitError. Arguments: callback: function to run in the transaction. See https://cloud.google.com/appengine/docs/python/ndb/functions for more details. Sets retries default value to 1 instead 3 (!) """ ctx_options.setdefault('retries', 1) try: result = yield ndb.transaction_async(callback, **ctx_options) raise ndb.Return(result) except ( datastore_errors.InternalError, datastore_errors.Timeout, datastore_errors.TransactionFailedError) as e: # https://cloud.google.com/appengine/docs/python/datastore/transactions # states the result is ambiguous, it could have succeeded. logging.info('Transaction likely failed: %s', e) raise CommitError(e) except ( apiproxy_errors.CancelledError, datastore_errors.BadRequestError, RuntimeError) as e: logging.info('Transaction failure: %s', e.__class__.__name__) raise CommitError(e) def transaction(callback, **ctx_options): """Synchronous version of transaction_async().""" future = transaction_async(callback, **ctx_options) return future.get_result() @ndb.utils.decorator def transactional_async(func, args, kwds, **ctx_options): """The async version of @txn.transactional.""" if args or kwds: return transaction_async(lambda: func(*args, **kwds), **ctx_options) return transaction_async(func, **ctx_options) @ndb.utils.decorator def transactional(func, args, kwds, **ctx_options): """Decorator that wraps a function with txn.transaction.""" return transactional_async.wrapped_decorator( func, args, kwds, **ctx_options).get_result() @ndb.utils.decorator def transactional_tasklet(func, args, kwds, **options): """The tasklet version of @txn.transactional_async.""" func = tasklets.tasklet(func) return transactional_async.wrapped_decorator(func, args, kwds, **options)
the-stack_0_8476
# -*- coding: utf-8 -*- # vim: ft=python """ tests.unit.test_lfulib """ from __future__ import absolute_import # Import 3rd party libs. import pytest # Import from local project. from lfucache.exceptions import InvalidItemException from lfucache.lfulib import LFUCache # Import test scaffolding. from tests.unit.fixtures.all import ( FREQUENCY, NOT_FOUND, ) # Mark everything here. pytestmark = pytest.mark.unit def test_get(): """ Test - Use get to return the expected values. """ cache = LFUCache(2) assert cache.get(1) == NOT_FOUND cache.put(1, 1) cache.put(2, 2) # Increment the count for 1, moving 2 to least frequently used. assert cache.get(1) == 1 cache.put(3, 3) assert cache.get(2) == NOT_FOUND assert cache.get(3) == 3 cache.put(4, 4) assert cache.get(1) == NOT_FOUND assert cache.get(3) == 3 assert cache.get(4) == 4 def test_put_failed(): """ Test - Use put to check the expected functionality. """ cache = LFUCache(1) with pytest.raises(InvalidItemException): cache.put('invalid key', 1) with pytest.raises(InvalidItemException): cache.put(1, 'invalid value') with pytest.raises(InvalidItemException): cache.put(-1, -1) def test_peek(): """ Test - Check the content without incrementing the counter. """ cache = LFUCache(2) cache.put(1, 1) cache.put(2, 2) _ = cache.get(1) _ = cache.peek(1) assert cache.peek(1) == (1, 2) def test_get_frequency(): """ Test - Check the frequency of . """ cache = LFUCache(3) cache.put(1, 1) cache.put(2, 2) cache.put(3, 3) _ = cache.get(1) assert cache.get_frequency() == FREQUENCY
the-stack_0_8481
# Copyright (c) 2014 EMC Corporation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ FC Drivers for EMC VNX and VMAX arrays based on SMI-S. """ from cinder import context from cinder.openstack.common import log as logging from cinder.volume import driver from cinder.volume.drivers.emc import emc_smis_common LOG = logging.getLogger(__name__) class EMCSMISFCDriver(driver.FibreChannelDriver): """EMC FC Drivers for VMAX and VNX using SMI-S. Version history: 1.0.0 - Initial driver 1.1.0 - Multiple pools and thick/thin provisioning, performance enhancement. """ VERSION = "1.1.0" def __init__(self, *args, **kwargs): super(EMCSMISFCDriver, self).__init__(*args, **kwargs) self.common = emc_smis_common.EMCSMISCommon( 'FC', configuration=self.configuration) def check_for_setup_error(self): pass def create_volume(self, volume): """Creates a EMC(VMAX/VNX) volume.""" volpath = self.common.create_volume(volume) model_update = {} volume['provider_location'] = str(volpath) model_update['provider_location'] = volume['provider_location'] return model_update def create_volume_from_snapshot(self, volume, snapshot): """Creates a volume from a snapshot.""" volpath = self.common.create_volume_from_snapshot(volume, snapshot) model_update = {} volume['provider_location'] = str(volpath) model_update['provider_location'] = volume['provider_location'] return model_update def create_cloned_volume(self, volume, src_vref): """Creates a cloned volume.""" volpath = self.common.create_cloned_volume(volume, src_vref) model_update = {} volume['provider_location'] = str(volpath) model_update['provider_location'] = volume['provider_location'] return model_update def delete_volume(self, volume): """Deletes an EMC volume.""" self.common.delete_volume(volume) def create_snapshot(self, snapshot): """Creates a snapshot.""" ctxt = context.get_admin_context() volumename = snapshot['volume_name'] index = volumename.index('-') volumeid = volumename[index + 1:] volume = self.db.volume_get(ctxt, volumeid) volpath = self.common.create_snapshot(snapshot, volume) model_update = {} snapshot['provider_location'] = str(volpath) model_update['provider_location'] = snapshot['provider_location'] return model_update def delete_snapshot(self, snapshot): """Deletes a snapshot.""" ctxt = context.get_admin_context() volumename = snapshot['volume_name'] index = volumename.index('-') volumeid = volumename[index + 1:] volume = self.db.volume_get(ctxt, volumeid) self.common.delete_snapshot(snapshot, volume) def ensure_export(self, context, volume): """Driver entry point to get the export info for an existing volume.""" pass def create_export(self, context, volume): """Driver entry point to get the export info for a new volume.""" pass def remove_export(self, context, volume): """Driver entry point to remove an export for a volume.""" pass def check_for_export(self, context, volume_id): """Make sure volume is exported.""" pass def initialize_connection(self, volume, connector): """Initializes the connection and returns connection info. Assign any created volume to a compute node/host so that it can be used from that host. The driver returns a driver_volume_type of 'fibre_channel'. The target_wwn can be a single entry or a list of wwns that correspond to the list of remote wwn(s) that will export the volume. Example return values: { 'driver_volume_type': 'fibre_channel' 'data': { 'target_discovered': True, 'target_lun': 1, 'target_wwn': '1234567890123', } } or { 'driver_volume_type': 'fibre_channel' 'data': { 'target_discovered': True, 'target_lun': 1, 'target_wwn': ['1234567890123', '0987654321321'], } } """ device_info = self.common.initialize_connection(volume, connector) device_number = device_info['hostlunid'] storage_system = device_info['storagesystem'] target_wwns, init_targ_map = self._build_initiator_target_map( storage_system, connector) data = {'driver_volume_type': 'fibre_channel', 'data': {'target_lun': device_number, 'target_discovered': True, 'target_wwn': target_wwns, 'initiator_target_map': init_targ_map}} LOG.debug(_('Return FC data: %(data)s.') % {'data': data}) return data def terminate_connection(self, volume, connector, **kwargs): """Disallow connection from connector.""" self.common.terminate_connection(volume, connector) loc = volume['provider_location'] name = eval(loc) storage_system = name['keybindings']['SystemName'] target_wwns, init_targ_map = self._build_initiator_target_map( storage_system, connector) data = {'driver_volume_type': 'fibre_channel', 'data': {'target_wwn': target_wwns, 'initiator_target_map': init_targ_map}} LOG.debug(_('Return FC data: %(data)s.') % {'data': data}) return data def _build_initiator_target_map(self, storage_system, connector): """Build the target_wwns and the initiator target map.""" target_wwns = self.common.get_target_wwns(storage_system, connector) initiator_wwns = connector['wwpns'] init_targ_map = {} for initiator in initiator_wwns: init_targ_map[initiator] = target_wwns return target_wwns, init_targ_map def extend_volume(self, volume, new_size): """Extend an existing volume.""" self.common.extend_volume(volume, new_size) def get_volume_stats(self, refresh=False): """Get volume stats. If 'refresh' is True, run update the stats first. """ if refresh: self.update_volume_stats() return self._stats def update_volume_stats(self): """Retrieve stats info from volume group.""" LOG.debug(_("Updating volume stats")) data = self.common.update_volume_stats() backend_name = self.configuration.safe_get('volume_backend_name') data['volume_backend_name'] = backend_name or 'EMCSMISFCDriver' data['storage_protocol'] = 'FC' data['driver_version'] = self.VERSION self._stats = data
the-stack_0_8484
from database.models import * from database.queries import hasKVPair from IPython import embed import numpy as np from database.imports import printD,ploc,datetime,timedelta,_tdb,FlushError,IntegrityError #_tdb.tdbOff() #FIXME TODO, make all these things use queries instead of generating you nub #and failover to create if absent #creation order #order=(Person,Project,Experiment,SlicePrep,Repository,RepoPath,DOB,Mouse,Sire,Dam,MatingRecord,Litter) #TODO #order=(t_people,t_dob)# you get the idea... maybe make a tree in a dict or something? class TEST: def __init__(self,session,num=None,autocommit=True,Thing=None): self.Thing=Thing self.num=num self.session=session self.records=[] #this is the output self.setup() self.make_all() if autocommit: self.commit() self.test_delete() if autocommit: self.commit() self.tests() def make_date(self): from datetime import date,timedelta num=self.num seed=date.today() days=np.random.randint(365*15,365*100,num) #historical dates not supported in the test deltas=[timedelta(days=int(d)) for d in days] #fortunately timedelta defaults to days so I dont have to read the doccumentation for map return [seed - delta for delta in deltas] def make_datetime(self,num=None,years=5): from datetime import datetime,timedelta if not num: num=self.num seed=datetime.now() days=np.random.randint(0,365*years,num) #historical dates not supported in the test hours=np.random.randint(0,12,num) #historical dates not supported in the test deltas=[timedelta(days=int(d),hours=int(h)) for d,h in zip(days,hours)] #fortunately timedelta defaults to days so I dont have to read the doccumentation for map return [seed - delta for delta in deltas] def make_sex(self): num=self.num #sex_seed=np.random.choice(2,num,.52) #sex_seed=np.ones(num) sex_arr=np.array(list('m'*num)) sex_arr[:int(num/2)]='f' return sex_arr def make_NONE(self,*arrays): #FIXME very broken for strings noneArr=[] num_nones=int(self.num/5)+1 [noneArr.append(None) for i in range(num_nones)] noneArr=np.array(noneArr) for array in arrays: #array=np.array(array) array[:num_nones]=noneArr printD([n for n in array]) np.random.shuffle(array) #methods every class should have def setup(self): #self.Thing query=self.session.query(Mouse) if not query.count(): pass def make_all(self): pass def tests(self): "things to do once the things are made" pass def test_delete(self): pass def commit(self): #XXX now flush, but hey... assert self.records, 'self.records is empty!!!!' self.session.add_all(self.records) self.session.flush() ###-------- ### people ###-------- class t_people(TEST): def make_name(self,names_per=1): num=self.num names=open('names.txt') nlist=[] while 1: name=names.readline() if name: nlist.append(name[:-1]) else: break num=len(nlist) #FIXME lol broekn!!!! though if I test w/ more than 5000 names.. all_names=[np.random.permutation(nlist)[:num] for i in range(names_per)] return all_names def make_role(self): num=self.num roles=['wanker','narf','pi','turd','subject','gradstudent','postdoc'] #for the recored putting subjects in with everyone else is TOTALLY a HIPA violation rollseed=np.random.choice(len(roles),num) out=[roles[i] for i in rollseed] return out def make_all(self): num=self.num pfns, fns, mns, lns = self.make_name(4) #print(pfns[num],fns[num],mns[num],lns[num]) genders=self.make_sex() #print(genders) birthdates=self.make_date() roles=self.make_role() ntids=np.unique(np.int32(np.random.sample(num*2)*50000))[:num] #still broken #ntids=np.random.randint(0,99999,num) #test for non unique #ntids=list(ntids) ntids=[int(n) for n in ntids] #self.make_NONE(pfns,fns,mns,lns,genders,birthdates,roles,ntids) #BROKEN self.records=[] self.records+=[Person(PrefixName=pfns[i], FirstName=fns[i], MiddleName=mns[i], LastName=lns[i], neurotree_id=ntids[i], Birthdate=birthdates[i]) for i in range(8,num)] self.records+=[Person(FirstName=fns[i], MiddleName=mns[i], LastName=lns[i], neurotree_id=ntids[i], Birthdate=birthdates[i]) for i in range(1)] self.records+=[Person(PrefixName=pfns[i], MiddleName=mns[i], LastName=lns[i], neurotree_id=ntids[i], Birthdate=birthdates[i]) for i in range(1,2)] self.records+=[Person(PrefixName=pfns[i], FirstName=fns[i], LastName=lns[i], neurotree_id=ntids[i], Birthdate=birthdates[i]) for i in range(2,3)] self.records+=[Person(PrefixName=pfns[i], FirstName=fns[i], MiddleName=mns[i], neurotree_id=ntids[i], Birthdate=birthdates[i]) for i in range(3,4)] self.records+=[Person(PrefixName=pfns[i], FirstName=fns[i], MiddleName=mns[i], LastName=lns[i], neurotree_id=ntids[i], Birthdate=birthdates[i]) for i in range(4,5)] self.records+=[Person(PrefixName=pfns[i], FirstName=fns[i], MiddleName=mns[i], LastName=lns[i], neurotree_id=ntids[i], Birthdate=birthdates[i]) for i in range(5,6)] self.records+=[Person(PrefixName=pfns[i], FirstName=fns[i], MiddleName=mns[i], LastName=lns[i], Birthdate=birthdates[i]) for i in range(6,7)] self.records+=[Person(PrefixName=pfns[i], FirstName=fns[i], MiddleName=mns[i], LastName=lns[i], neurotree_id=ntids[i]) for i in range(7,8)] def query(self): printD([p for p in self.session.query(Person)]) ###------ ### Mice ###------ ''' class t_dob(TEST): def __init__(self,session,num=None,datetimes=None): self.datetimes=datetimes super().__init__(session,num) def make_all(self): if not self.datetimes: dts=self.make_datetime(years=2) self.records=[DOB(d) for d in dts] else: self.records=[DOB(d) for d in self.datetimes] class t_breeders(TEST): """makes n pairs of breeders""" def make_all(self): mice=t_mice(self.session,4*self.num) sires=self.session.query(Mouse).filter(Mouse.sex_id=='m') dams=self.session.query(Mouse).filter(Mouse.sex_id=='f') self.records=[Sire(sire) for sire in sires[:self.num]]+[Dam(dam) for dam in dams[:self.num]] ''' class t_mating_record(TEST): def setup(self): #self.sires=[s for s in hasKVPair(self.session,Mouse,'sex','m')] #self.dams=[d for d in hasKVPair(self.session,Mouse,'sex','f')] self.sires=self.session.query(Mouse).filter_by(sex_id='m').all() self.dams=self.session.query(Mouse).filter_by(sex_id='f').all() strain=self.session.query(Strain)[0] s=[Mouse(sex_id='m',strain_id=strain) for i in range(self.num-len(self.sires))] d=[Mouse(sex_id='f',strain_id=strain) for i in range(self.num-len(self.dams))] self.session.add_all(s+d) self.session.flush() self.sires.extend(s) self.dams.extend(d) def make_all(self): from datetime import datetime,timedelta sire_arr=np.random.choice(len(self.sires),self.num) dam_arr=np.random.choice(len(self.dams),self.num) mins=np.random.randint(-60,60,self.num) now=datetime.now() type_=self.session.query(ExperimentType).filter_by(name='Mating Record')[0] self.records=[Experiment(project_id=1,person_id=1,type_id=type_,Subjects=[self.sires[sire_arr[i]],self.dams[dam_arr[i]]],startDateTime=now+timedelta(hours=i),endDateTime=now+timedelta(hours=int(i)+12,minutes=int(mins[i]))) for i in range(self.num)] class t_litters(TEST): def make_all(self): #FIXME also need to test making without a MR from datetime import timedelta mrs=t_mating_record(self.session,self.num) def getBD(exp,days=19): durd2=(exp.endDateTime-exp.startDateTime)/2 conception=exp.startDateTime+durd2 return conception+timedelta(days) self.records=[Litter(repro_experiment_id=mr,startDateTime=getBD(mr)) for mr in mrs.records] def add_members(self): mice=[] #FIXME there has to be a better way #litter_sizes=np.random.randint(6,20,self.num) #randomize litter size litter_sizes=np.int32(np.ones(self.num)*20) #compare the two following methods: Second one seems faster, need to verify #ms=[self.records[i].make_members(litter_sizes[i]) for i in range(self.num)] #[mice.extend(m) for m in ms] #self.session.add_all(mice) strain=self.session.query(Strain)[0] #FIXME for lit,i in zip(self.records,range(self.num)): lit.children.extend([Mouse(repro_experiment_id=lit.repro_experiment_id,sex_id='u',strain_id=strain,startDateTime=lit.startDateTime) for i in range(litter_sizes[i])]) #VS #[self.session.add_all(self.records[i].make_members(litter_sizes[i])) for i in range(self.num)] self.session.commit() class t_strain(TEST): def make_all(self): self.records=[Strain() for i in range(self.num)] #TODO itertools starmap printD(self.records) class t_mice(TEST): def make_all(self): #dobs=t_dob(self.session,self.num) tags=np.random.randint(0,1000,self.num) sexes=self.make_sex() strain=self.session.query(Strain)[0] dts=self.make_datetime(years=2) self.records=[Mouse(Properties={'eartag':int(tags[i])},sex_id=sexes[i],strain_id=strain,startDateTime=dts[i]) for i in range(self.num)] ###-------------------- ### subjects continued ###-------------------- class t_slice(TEST): def make_all(self): #preps=self.session.query(Experiment).filter(Experiment.type==self.session.query(ExperimentType).filter_by(name='acute slice prep'))[0] preps=self.session.query(Experiment).join((ExperimentType,Experiment.type)).filter_by(name='acute slice prep').all() self.records=[] [[self.records.append(Slice(parent_id=prep.subjects[0],generating_experiment_id=prep,startDateTime=datetime.now()+timedelta(hours=i))) for i in range(self.num)] for prep in preps] #FIXME amplification of numbers printD(self.records) class t_cell(TEST): def make_all(self): slices=[s for s in self.session.query(Slice) if s.parent_id is not None] assert slices, 'slices should not be empty here' #printD([s.parent_id for s in slices]) #patches=[p for p in self.session.query(Experiment).filter_by(type='acute slice prep')] #patches=[p for p in self.session.query(Experiment).filter(Experiment.type==self.session.query(ExperimentType).filter_by(name='acute slice prep')[0])] #FIXME clearly this expeirment type is wrong and I havent been catching it FIXME FIXME patches=self.session.query(Experiment).join((ExperimentType,Experiment.type)).filter_by(name='in vitro patch').all() assert patches, 'patches should not be empty here' headstages=[h for h in self.session.query(Hardware).filter_by(type_id='headstage')][:2] self.records=[] z=0 for p in patches: for i in range(z,len(slices)): #120 #FIXME pretty sure RI is broken here s=slices[i] for j in range(self.num): self.records.extend([Cell(Hardware=[h],parent_id=s,Experiments=[p],generating_experiment_id=p) for h in headstages]) try: if slices[i+1].parent_id != s.parent_id: #FIXME this should catch automatically when using session.add z=i+1 #FIXME constraint!!!! break except IndexError: pass #printD([c.experiments for c in self.records]) class t_c2c(TEST): def make_all(self): cells=self.session.query(Cell) #circular link self.records=[] self.records.extend([CellPairs(cells[i-2],cells[i]) for i in range(cells.count())]) #this adds tripplets since a single row here is treated as simultaneous, INCIDENTALLY FIXME this is a problem because it means that a=b=c IS NOT TRUE on this set a=b b=c a!=c fuck #HOWEVER: this is less of an integrity concern than having to make two entries for each pair, for higher numbers of recordin I should probably do this as cell1 cell2 cell3 cell4 to prevent stuipd combinatorial nightmares #pairs self.records.extend([CellPairs(cells[i],cells[i+1]) for i in range(0,cells.count()-1,2)]) #self.records.extend([CellPairs(cells[i+1],cells[i]) for i in range(0,cells.count()-1,2)]) ###------------- ### experiments ###------------- class t_project(TEST): def make_all(self): iacuc_protocol_id=None blurb=None self.records=[Project(lab='Scanziani',iacuc_protocol_id=iacuc_protocol_id,blurb=blurb) for n in range(self.num)] count=0 def add_people(self): #has to be called after commit :/ people=t_people(self.session,100) #HRM only queries can leverage the power of .filter pis=[pi for pi in self.session.query(Person)] pi_n=np.random.choice(len(pis),self.num) #people=[p for p in self.session.query(Person)] people_n=[np.random.permutation(people.records)[:np.random.randint(1,20)] for i in range(self.num)] #+pis[pi_n[i]] assocs=[] count=0 for rec,people in zip(self.records,people_n): #assocs.append(person_to_project(rec,pis[pi_n[count]])) assocs+=[person_to_project(rec,person) for person in people] #[rec.people.append(person) for person in people] #FIXME somehow this no workey count+=1 self.session.add_all(assocs) self.session.commit() class t_exptype(TEST): def make_all(self): self.records=[ ExperimentType(name='Mating Record',base_step_id=1), ExperimentType(name='acute slice prep',abbrev='prep',base_step_id=2), ExperimentType(name='in vitro patch',abbrev='patch',base_step_id=3), ] class t_experiment(TEST): def __init__(self,session,num=None,num_projects=None): self.num_projects=num_projects super().__init__(session,num) def make_all(self): #from time import sleep projects=t_project(self.session,self.num_projects) projects.add_people() #projects.commit() #FIXME do I need to readd? or can I just commit directly? lits=t_litters(self.session,1) lits.add_members() #lits.commit() mice=[m for m in self.session.query(Mouse).filter(Mouse.breedingRec==None,Mouse.dod==None)] #FIXME #mice=[m for m in self.session.query(Mouse).filter(Mouse.dod==None)] self.records=[] for p in projects.records: #printD(p) #FIXME apparently p.__dict__ is not populated until AFTER you call the object... #printD([t for t in p.__dict__.items()]) #FIXME what the fuck, sometimes this catches nothing!? ms=[mice[i] for i in np.random.choice(len(mice),self.num)] #FIXME missing mouse #TODO need to test with bad inputs exps=[p.people[i] for i in np.random.choice(len(p.people),self.num)] datetimes=self.make_datetime() exptype=self.sessison.query(ExperimentType).filter_by(name='in vitro patch')[0] self.records+=[Experiment(project_id=p,Person=exps[i],startDateTime=datetimes[i],type_id=exptype) for i in range(self.num)] #FIXME lol this is going to reaveal experiments on mice that aren't even born yet hehe class t_patch(TEST): def make_all(self): #mice=[m for m in self.session.query(Mouse).filter(Mouse.dod==None)] preps=[p for p in self.session.query(Experiment).filter(Experiment.type==self.session.query(ExperimentType).filter_by(name='acute slice prep')[0])] project=self.session.query(Project)[0] person=self.session.query(Person)[0] #acsf=self.session.query(Reagent).filter_by(type_id=2)[0] #FIXME these are terrible useage patterns #internal=self.session.query(Reagent).filter_by(type_id=3)[0] #FIXME these are terrible useage patterns #acsf=None #internal=None #self.session.add_all([acsf,internal]) #self.session.flush() #shit not working FIXME self.session.commit() exptype=self.session.query(ExperimentType).filter_by(abbrev='patch')[0] self.records=[] datetimes=self.make_datetime() [self.records.extend([Experiment(type_id=exptype,project_id=project,person_id=person,Reagents=[],startDateTime=datetimes[i]) for i in range(self.num)]) for p in preps] #FIXME classic mouse not born yet problem class t_sliceprep(TEST): def make_all(self): project=self.session.query(Project)[0] person=self.session.query(Person)[0] #sucrose=self.session.query(Reagent).filter_by(type_id=1)[0] exptype=self.session.query(ExperimentType).filter_by(abbrev='prep')[0] self.records=[Experiment(type_id=exptype,project_id=project,person_id=person,Reagents=[],startDateTime=datetime.now()-timedelta(int(np.random.randint(1)))) for i in range(self.num)] #FIXME need to find a way to propagate mouse w/ RI def add_mice(self): mice=self.session.query(Mouse).filter_by(sex_id='u')[:self.num] #mice=[s for s in hasKVPair(self.session,Mouse,'sex','u')] printD(len(mice)) printD(len(self.records)) np.random.shuffle(mice) for i in range(self.num): #mice[i].experiment_id=self.records[i].id self.records[i].subjects.append(mice[i]) self.session.commit() class t_patch(TEST): def make_all(self): project=self.session.query(Project)[0] person=self.session.query(Person)[0] #sucrose=self.session.query(Reagent).filter_by(type_id=1)[0] exptype=self.session.query(ExperimentType).filter_by(abbrev='patch')[0] self.records=[Experiment(type_id=exptype,project_id=project,person_id=person,Reagents=[],startDateTime=datetime.now()-timedelta(int(np.random.randint(1)))) for i in range(self.num)] #FIXME need to find a way to propagate mouse w/ RI #def add_mice(self): #add slices? #mice=self.session.query(Mouse).filter_by(sex_id='u')[:self.num] ##mice=[s for s in hasKVPair(self.session,Mouse,'sex','u')] #printD(len(mice)) #printD(len(self.records)) #np.random.shuffle(mice) #for i in range(self.num): #mice[i].experiment_id=self.records[i].id #self.records[i].subjects.append(mice[i]) #self.session.commit() ###------ ### data ###------ class t_repo(TEST): def make_all(self): self.records=[] repos=( 'file:///C:/asdf/test1', 'file:///C:/asdf/test2//', 'file:///T:/db/Dropbox//', 'http://www.google.com/', #FIXME broken as expected? 'https://www.google.com/' #FIXME broken as expected? ) for r in repos: try: self.records.append(Repository(url=r)) except: #raise Warning('Local path \'%s\' does not exist!'%r) print('Path \'%s\' does not exist!'%r) #FIXME for some reason adding the fully inited Repository(url='asdf') inside the list didn't work... #figure out why please?! def tests(self): self.commit() repos=self.session.query(Repository).all() for repo in repos: [repo.mirrors_from_here.append(r) for r in repos if r!=repo] print(repo.mirrors) self.commit() [print(r.mirrors) for r in repos] class t_datafilesource(TEST): def make_all(self): self.records=[ DataFileSource(name='test',extension='data',docstring='wooo!'), ] class t_metadatasource(TEST): def make_all(self): hw=self.session.query(Hardware).filter_by(name='the void')[0] self.records=[ MetaDataSource(name='the void',prefix='T',unit='Pa',hardware_id=hw,docstring='yes I am nothing'), ] class t_datafile(TEST): #def __init__(self,session,num=None,num_experiments=None,num_projects=None): #self.num_projects=num_projects #self.num_experiments=num_experiments #super().__init__(session,num) def make_all(self): repo=t_repo(self.session) dfs=self.session.query(DataFileSource).filter_by(name='test')[0] data=[] #cells=self.session.query(Cell) #for c1,c2 in zip(cells[:-1],cells[1:]): subjects=self.session.query(Cell).filter(Cell.experiments.any()).all() cells=self.session.query(Cell).all() #printD(cells) #printD([(subject,subject.experiments) for subject in subjects]) for subject in subjects: #printD(subject.experiments) for url in repo.records: bn='exp%s_subs_%s_'%(subject.experiments[0].id,subject.id) name=bn+'%s.data' try: data+=[DataFile(name%df,url,dfs,subject.experiments[0], Subjects=[subject]) for df in range(self.num)] #FIXME this use pattern is clearly broken except FileNotFoundError: printD('some file was not found') pass #data+=[DataFile(Repo=rp,filename='exp%s_cells_%s_%s_%s.data'%(c1.experiments[0].id,c1.id,c2.id,df),Experiment=c1.experiments[0],DataSource=ds,Subjects=[c1,c2]) for df in range(self.num)] self.records=data class t_dfmetadata(TEST): def make_all(self): ds=self.session.query(MetaDataSource)[0] self.records=[] [self.records.extend([d.MetaData(i,parent_id=d,metadatasource_id=ds) for i in range(self.num)]) for d in self.session.query(DataFile)] ###----------- ### inventory ###----------- class t_hardware(TEST): def setup(self): self.amps=[Hardware(type_id='amplifier',name='lolwut',Properties={'unique_id':'0012312'}),Hardware(type_id='amplifier',name='rudubme',Properties={'unique_id':'bob'})] self.session.add_all(self.amps) self.session.flush() def make_all(self): self.records=[] [[self.records.append(Hardware(type_id='headstage',name='wut%s%s'%(amp.id,i),Properties={'unique_id':'%s%s'%(amp.id,i)}, parent_id=amp)) for i in range(2)] for amp in self.amps] self.records.append(Hardware(type_id='digitizer',name='the void')) #printD(self.records) #FIXME this whole make all is broken class t_hwmetadata(TEST): def make_all(self): ds=self.session.query(MetaDataSource)[0] #TODO make sure this breaks, FIXME it breaks but not where expected... self.records=[] [self.records.extend([h.MetaData(i,h,ds) for i in range(self.num)]) for h in self.session.query(Hardware)] class t_reagenttype(TEST): def make_all(self): self.records=[ ReagentType(name='poop'), ReagentType(name='poop1'), ReagentType(name='poop2') ] class t_reagent(TEST): def make_all(self): rts=self.session.query(ReagentType) self.records=[Reagent(Type=r) for r in rts] ###------- ### steps ###------- class t_steps(TEST): def make_all(self): self.records.extend([Step(name='a%s'%i,dataio_id=1,docstring='') for i in range(self.num)]) class t_edges(TEST): def make_all(self): steps=self.session.query(Step).order_by(Step.id).all() a=steps[0].id b=a+1 c=b+1 def basic_tests(): failed=False #cycle 1->1 try: a1=StepEdge(a,a) self.session.add(a1) self.session.flush() failed=True except: pass self.session.query(StepEdge).all() assert not failed, 'a==a check FAILED' #basic add a2=StepEdge(a,b) #OK self.session.add(a2) self.session.flush() assert a2, 'basic test FAILED' #cycle 1->2->1 try: a3=StepEdge(b,a) self.session.add(a3) #FIXME a3 still in records after delete! self.session.flush() failed=True except: pass #printD(a3.__repr__()) assert not failed, 'circular 1-2-1 check FAILED' #basic add 2 to add one more node to the cycle a4=StepEdge(b,c) #OK self.session.add(a4) self.session.flush() assert a4, 'basic test #2 FAILED' #cycle from 1->2->3->1 try: a5=StepEdge(c,a) self.session.add(a5) self.session.flush() failed=True except: pass assert not failed, 'circular 1-2-3-1 check FAILED' def adv_tests(): se1=set(self.session.query(StepEdge).all()) assert se1 == se1 , 'A SET IS NOT EQUAL TO ITSELF RUNNNNNN!!!' try: [step.dependencies.update([steps[int(i)] for i in np.random.randint(0,100,20)]) for step in steps] printD(self.session.new) #[step.dependencies.update((steps[int(i)] for i in np.random.randint(0,100,20))) for step in steps] except (ValueError, FlushError) as e: if type(e) is FlushError: printD('Rolling back!') self.session.rollback() printD(e) printD(self.session.new) self.session.flush() self.session.expire_all() se2=set(self.session.query(StepEdge).all()) assert se2 != se1, 'set used for update probably contained a duplicate' try: for i in range(20): for step in steps: step.dependencies.add(steps[int(np.random.randint(100))]) printD(self.session.new) except (ValueError, FlushError) as e: if type(e) is FlushError: printD('Rolling back!') self.session.rollback() printD(e) printD(self.session.new) self.session.flush() se3=set(self.session.query(StepEdge).all()) assert se3 != se2 for i in range(100): #FIXME somehow all this stuff really does not work well with the versioning a,b=(steps[int(i)] for i in np.random.randint(0,len(steps),2)) try: self.session.add(StepEdge(a,b)) self.session.flush() except (ValueError, FlushError) as e: printD(e) #self.session.rollback() #FIXME <<< this is what causes all the good edges to get zapped se4=set(self.session.query(StepEdge).all()) assert se4 != se3 printD('Num StepEdges',len(se4)) #FIXME this is patently wrong def custom(): start=a for i in range(0,10): self.session.add(StepEdge(start+i,start+i+1)) self.session.flush() for i in range(2,10): self.session.add(StepEdge(start+i,start+i+12)) self.session.flush() for i in range(4,10): self.session.add(StepEdge(start+i,start+i+25)) self.session.flush() self.session.add(StepEdge(start,14)) self.session.flush() self.session.add(StepEdge(start+7,start+9)) self.session.flush() #basic_tests() custom() #adv_tests() def commit(self): self.session.commit() #todo test a double cycle and a split tree def test_delete(self): printD('running delete tests!') #edges=self.session.query(StepEdge).all() #[self.session.delete(edge) for edge in edges] pass def run_tests(session): #FIXME for some reason running these sequentially causes all sorts of problems... #RESPONSE turns out it is because I'm trying to make EXACTLY the same tables again and an identical mapped instance already exists #so it doesnt happen with people, but a collision *could* happen #FIXME the real test will be to vary the number of projects, experiments and datafiles #compare these two cases with profiler #d=t_datafile(session,5000,2,4) #add 1000 datafiles to 3 projects each with 10 experiments takes about 16 seconds, I'd say we're ok here #d=t_datafile(session,20,500,4) #add 1000 datafiles to 3 projects each with 10 experiments takes about 16 seconds, I'd say we're ok here #d=t_datafile(session,10,50,4) #[print(df.creation_DateTime) for df in session.query(DataFile)] if session.connection().engine.url.database != 'db_test': return None t_strain(session,2) t_steps(session,3) #t_edges(session) expt=t_exptype(session) hw=t_hardware(session) ds=t_datafilesource(session) mds=t_metadatasource(session) #h=t_hardware(session) hwmd=t_hwmetadata(session,5) #t_experiment(session,1,4) #FIXME argh, so many things can become inconsistent... t_people(session,20) t_project(session,1) t_mice(session,20) l=t_litters(session,20) l.add_members() rt=t_reagenttype(session) #i=t_reagent(session) sp=t_sliceprep(session,5) sp.add_mice() p=t_patch(session,1) #FIXME you know it might be good to force a new exp rec when any of the variables changes... like the internal...? think think s=t_slice(session,4) pa=t_patch(session,2) c=t_cell(session,5) #c2c=t_c2c(session) #no longer used d=t_datafile(session,1)#,2,1) #FIXME eating memory dfmd=t_dfmetadata(session,1) #as in 8 gigs of memory... session.commit() #l=t_litters(session,20) #FIXME another wierd error here... saying that I tried to add a mouse as a breeder twice... hrm... #l.add_members() #printD([m for m in session.query(Mouse)]) #FIXME mice arent getting made? def main(): pass if __name__=='__main__': main()
the-stack_0_8485
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import base64 from zoo.serving.client import InputQueue, OutputQueue, http_json_to_ndarray import os resource_path = os.path.join(os.path.split(__file__)[0], "../resources") class TestSerialization: def test_encode(self): input_api = InputQueue() b64 = input_api.data_to_b64(t1=np.array([1, 2]), t2=np.array([3, 4])) byte = base64.b64decode(b64) def test_http_response_to_ndarray(self): with open(os.path.join(resource_path, "serving/http_response")) as f: data = f.read() arr = http_json_to_ndarray(data) assert isinstance(arr, np.ndarray) assert len(arr.shape) == 1 assert arr.shape[0] == 128
the-stack_0_8488
# Copyright (c) 2014-2016, ConfigSpace developers # Matthias Feurer # Katharina Eggensperger # and others (see commit history). # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the <organization> nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from io import StringIO import os import tempfile import unittest from ConfigSpace.configuration_space import ConfigurationSpace import ConfigSpace.read_and_write.pcs as pcs import ConfigSpace.read_and_write.pcs_new as pcs_new from ConfigSpace.hyperparameters import CategoricalHyperparameter, \ UniformIntegerHyperparameter, UniformFloatHyperparameter, OrdinalHyperparameter from ConfigSpace.conditions import EqualsCondition, InCondition, \ AndConjunction, OrConjunction, NotEqualsCondition, \ GreaterThanCondition from ConfigSpace.forbidden import ForbiddenInClause, ForbiddenAndConjunction # More complex search space classifier = CategoricalHyperparameter("classifier", ["svm", "nn"]) kernel = CategoricalHyperparameter("kernel", ["rbf", "poly", "sigmoid"]) kernel_condition = EqualsCondition(kernel, classifier, "svm") C = UniformFloatHyperparameter("C", 0.03125, 32768, log=True) C_condition = EqualsCondition(C, classifier, "svm") gamma = UniformFloatHyperparameter("gamma", 0.000030518, 8, log=True) gamma_condition = EqualsCondition(gamma, kernel, "rbf") degree = UniformIntegerHyperparameter("degree", 1, 5) degree_condition = InCondition(degree, kernel, ["poly", "sigmoid"]) neurons = UniformIntegerHyperparameter("neurons", 16, 1024) neurons_condition = EqualsCondition(neurons, classifier, "nn") lr = UniformFloatHyperparameter("lr", 0.0001, 1.0) lr_condition = EqualsCondition(lr, classifier, "nn") preprocessing = CategoricalHyperparameter("preprocessing", ["None", "pca"]) conditional_space = ConfigurationSpace() conditional_space.add_hyperparameter(preprocessing) conditional_space.add_hyperparameter(classifier) conditional_space.add_hyperparameter(kernel) conditional_space.add_hyperparameter(C) conditional_space.add_hyperparameter(neurons) conditional_space.add_hyperparameter(lr) conditional_space.add_hyperparameter(degree) conditional_space.add_hyperparameter(gamma) conditional_space.add_condition(C_condition) conditional_space.add_condition(kernel_condition) conditional_space.add_condition(lr_condition) conditional_space.add_condition(neurons_condition) conditional_space.add_condition(degree_condition) conditional_space.add_condition(gamma_condition) float_a = UniformFloatHyperparameter("float_a", -1.23, 6.45) e_float_a = UniformFloatHyperparameter("e_float_a", .5E-2, 4.5e+06) int_a = UniformIntegerHyperparameter("int_a", -1, 6) log_a = UniformFloatHyperparameter("log_a", 4e-1, 6.45, log=True) int_log_a = UniformIntegerHyperparameter("int_log_a", 1, 6, log=True) cat_a = CategoricalHyperparameter("cat_a", ["a", "b", "c", "d"]) crazy = CategoricalHyperparameter(r"@.:;/\?!$%&_-<>*+1234567890", ["const"]) easy_space = ConfigurationSpace() easy_space.add_hyperparameter(float_a) easy_space.add_hyperparameter(e_float_a) easy_space.add_hyperparameter(int_a) easy_space.add_hyperparameter(log_a) easy_space.add_hyperparameter(int_log_a) easy_space.add_hyperparameter(cat_a) easy_space.add_hyperparameter(crazy) class TestPCSConverter(unittest.TestCase): def setUp(self): self.maxDiff = None def test_read_configuration_space_basic(self): # TODO: what does this test has to do with the PCS converter? float_a_copy = UniformFloatHyperparameter("float_a", -1.23, 6.45) a_copy = {"a": float_a_copy, "b": int_a} a_real = {"b": int_a, "a": float_a} self.assertDictEqual(a_real, a_copy) ''' Tests for the "older pcs" version ''' def test_read_configuration_space_easy(self): expected = StringIO() expected.write('# This is a \n') expected.write(' # This is a comment with a leading whitespace ### ffds \n') expected.write('\n') expected.write('float_a [-1.23, 6.45] [2.61] # bla\n') expected.write('e_float_a [.5E-2, 4.5e+06] [2250000.0025]\n') expected.write('int_a [-1, 6] [2]i\n') expected.write('log_a [4e-1, 6.45] [1.6062378404]l\n') expected.write('int_log_a [1, 6] [2]il\n') expected.write('cat_a {a,"b",c,d} [a]\n') expected.write(r'@.:;/\?!$%&_-<>*+1234567890 {"const"} ["const"]\n') expected.seek(0) cs = pcs.read(expected) self.assertEqual(cs, easy_space) def test_read_configuration_space_conditional(self): # More complex search space as string array complex_cs = list() complex_cs.append("preprocessing {None, pca} [None]") complex_cs.append("classifier {svm, nn} [svm]") complex_cs.append("kernel {rbf, poly, sigmoid} [rbf]") complex_cs.append("C [0.03125, 32768] [32]l") complex_cs.append("neurons [16, 1024] [520]i # Should be Q16") complex_cs.append("lr [0.0001, 1.0] [0.50005]") complex_cs.append("degree [1, 5] [3]i") complex_cs.append("gamma [0.000030518, 8] [0.0156251079996]l") complex_cs.append("C | classifier in {svm}") complex_cs.append("kernel | classifier in {svm}") complex_cs.append("lr | classifier in {nn}") complex_cs.append("neurons | classifier in {nn}") complex_cs.append("degree | kernel in {poly, sigmoid}") complex_cs.append("gamma | kernel in {rbf}") cs = pcs.read(complex_cs) self.assertEqual(cs, conditional_space) def test_read_configuration_space_conditional_with_two_parents(self): config_space = list() config_space.append("@1:0:restarts {F,L,D,x,+,no}[x]") config_space.append("@1:S:Luby:aryrestarts {1,2}[1]") config_space.append("@1:2:Luby:restarts [1,65535][1000]il") config_space.append("@1:2:Luby:restarts | @1:0:restarts in {L}") config_space.append("@1:2:Luby:restarts | @1:S:Luby:aryrestarts in {2}") cs = pcs.read(config_space) self.assertEqual(len(cs.get_conditions()), 1) self.assertIsInstance(cs.get_conditions()[0], AndConjunction) def test_write_illegal_argument(self): sp = {"a": int_a} self.assertRaisesRegex(TypeError, r"pcs_parser.write expects an " r"instance of " r"<class " r"'ConfigSpace.configuration_" r"space.ConfigurationSpace'>, you provided " r"'<(type|class) 'dict'>'", pcs.write, sp) def test_write_int(self): expected = "int_a [-1, 6] [2]i" cs = ConfigurationSpace() cs.add_hyperparameter(int_a) value = pcs.write(cs) self.assertEqual(expected, value) def test_write_log_int(self): expected = "int_log_a [1, 6] [2]il" cs = ConfigurationSpace() cs.add_hyperparameter(int_log_a) value = pcs.write(cs) self.assertEqual(expected, value) def test_write_q_int(self): expected = "Q16_int_a [16, 1024] [520]i" cs = ConfigurationSpace() cs.add_hyperparameter( UniformIntegerHyperparameter("int_a", 16, 1024, q=16)) value = pcs.write(cs) self.assertEqual(expected, value) def test_write_q_float(self): expected = "Q16_float_a [16.0, 1024.0] [520.0]" cs = ConfigurationSpace() cs.add_hyperparameter( UniformFloatHyperparameter("float_a", 16, 1024, q=16)) value = pcs.write(cs) self.assertEqual(expected, value) def test_write_log10(self): expected = "a [10.0, 1000.0] [100.0]l" cs = ConfigurationSpace() cs.add_hyperparameter( UniformFloatHyperparameter("a", 10, 1000, log=True)) value = pcs.write(cs) self.assertEqual(expected, value) def test_build_forbidden(self): expected = "a {a, b, c} [a]\nb {a, b, c} [c]\n\n" \ "{a=a, b=a}\n{a=a, b=b}\n{a=b, b=a}\n{a=b, b=b}" cs = ConfigurationSpace() a = CategoricalHyperparameter("a", ["a", "b", "c"], "a") b = CategoricalHyperparameter("b", ["a", "b", "c"], "c") cs.add_hyperparameter(a) cs.add_hyperparameter(b) fb = ForbiddenAndConjunction(ForbiddenInClause(a, ["a", "b"]), ForbiddenInClause(b, ["a", "b"])) cs.add_forbidden_clause(fb) value = pcs.write(cs) self.assertIn(expected, value) """ Tests for the "newer pcs" version in order to check if both deliver the same results """ def test_read_new_configuration_space_easy(self): expected = StringIO() expected.write('# This is a \n') expected.write(' # This is a comment with a leading whitespace ### ffds \n') expected.write('\n') expected.write('float_a real [-1.23, 6.45] [2.61] # bla\n') expected.write('e_float_a real [.5E-2, 4.5e+06] [2250000.0025]\n') expected.write('int_a integer [-1, 6] [2]\n') expected.write('log_a real [4e-1, 6.45] [1.6062378404]log\n') expected.write('int_log_a integer [1, 6] [2]log\n') expected.write('cat_a categorical {a,"b",c,d} [a]\n') expected.write(r'@.:;/\?!$%&_-<>*+1234567890 categorical {"const"} ["const"]\n') expected.seek(0) cs = pcs_new.read(expected) self.assertEqual(cs, easy_space) def test_read_new_configuration_space_conditional(self): # More complex search space as string array complex_cs = list() complex_cs.append("preprocessing categorical {None, pca} [None]") complex_cs.append("classifier categorical {svm, nn} [svm]") complex_cs.append("kernel categorical {rbf, poly, sigmoid} [rbf]") complex_cs.append("C real [0.03125, 32768] [32]log") complex_cs.append("neurons integer [16, 1024] [520] # Should be Q16") complex_cs.append("lr real [0.0001, 1.0] [0.50005]") complex_cs.append("degree integer [1, 5] [3]") complex_cs.append("gamma real [0.000030518, 8] [0.0156251079996]log") complex_cs.append("C | classifier in {svm}") complex_cs.append("kernel | classifier in {svm}") complex_cs.append("lr | classifier in {nn}") complex_cs.append("neurons | classifier in {nn}") complex_cs.append("degree | kernel in {poly, sigmoid}") complex_cs.append("gamma | kernel in {rbf}") cs_new = pcs_new.read(complex_cs) self.assertEqual(cs_new, conditional_space) # same in older version complex_cs_old = list() complex_cs_old.append("preprocessing {None, pca} [None]") complex_cs_old.append("classifier {svm, nn} [svm]") complex_cs_old.append("kernel {rbf, poly, sigmoid} [rbf]") complex_cs_old.append("C [0.03125, 32768] [32]l") complex_cs_old.append("neurons [16, 1024] [520]i # Should be Q16") complex_cs_old.append("lr [0.0001, 1.0] [0.50005]") complex_cs_old.append("degree [1, 5] [3]i") complex_cs_old.append("gamma [0.000030518, 8] [0.0156251079996]l") complex_cs_old.append("C | classifier in {svm}") complex_cs_old.append("kernel | classifier in {svm}") complex_cs_old.append("lr | classifier in {nn}") complex_cs_old.append("neurons | classifier in {nn}") complex_cs_old.append("degree | kernel in {poly, sigmoid}") complex_cs_old.append("gamma | kernel in {rbf}") cs_old = pcs.read(complex_cs_old) self.assertEqual(cs_old, cs_new) def test_write_new_illegal_argument(self): sp = {"a": int_a} self.assertRaisesRegex(TypeError, r"pcs_parser.write expects an " r"instance of " r"<class " r"'ConfigSpace.configuration_" r"space.ConfigurationSpace'>, you provided " r"'<(type|class) 'dict'>'", pcs_new.write, sp) def test_write_new_int(self): expected = "int_a integer [-1, 6] [2]" cs = ConfigurationSpace() cs.add_hyperparameter(int_a) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_write_new_log_int(self): expected = "int_log_a integer [1, 6] [2]log" cs = ConfigurationSpace() cs.add_hyperparameter(int_log_a) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_write_new_q_int(self): expected = "Q16_int_a integer [16, 1024] [520]" cs = ConfigurationSpace() cs.add_hyperparameter( UniformIntegerHyperparameter("int_a", 16, 1024, q=16)) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_write_new_q_float(self): expected = "Q16_float_a real [16.0, 1024.0] [520.0]" cs = ConfigurationSpace() cs.add_hyperparameter( UniformFloatHyperparameter("float_a", 16, 1024, q=16)) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_write_new_log10(self): expected = "a real [10.0, 1000.0] [100.0]log" cs = ConfigurationSpace() cs.add_hyperparameter( UniformFloatHyperparameter("a", 10, 1000, log=True)) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_build_new_forbidden(self): expected = "a categorical {a, b, c} [a]\nb categorical {a, b, c} [c]\n\n" \ "{a=a, b=a}\n{a=a, b=b}\n{a=b, b=a}\n{a=b, b=b}\n" cs = ConfigurationSpace() a = CategoricalHyperparameter("a", ["a", "b", "c"], "a") b = CategoricalHyperparameter("b", ["a", "b", "c"], "c") cs.add_hyperparameter(a) cs.add_hyperparameter(b) fb = ForbiddenAndConjunction(ForbiddenInClause(a, ["a", "b"]), ForbiddenInClause(b, ["a", "b"])) cs.add_forbidden_clause(fb) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_build_new_GreaterThanFloatCondition(self): expected = "b integer [0, 10] [5]\n" \ "a real [0.0, 1.0] [0.5]\n\n" \ "a | b > 5" cs = ConfigurationSpace() a = UniformFloatHyperparameter("a", 0, 1, 0.5) b = UniformIntegerHyperparameter("b", 0, 10, 5) cs.add_hyperparameter(a) cs.add_hyperparameter(b) cond = GreaterThanCondition(a, b, 5) cs.add_condition(cond) value = pcs_new.write(cs) self.assertEqual(expected, value) expected = "b real [0.0, 10.0] [5.0]\n" \ "a real [0.0, 1.0] [0.5]\n\n" \ "a | b > 5" cs = ConfigurationSpace() a = UniformFloatHyperparameter("a", 0, 1, 0.5) b = UniformFloatHyperparameter("b", 0, 10, 5) cs.add_hyperparameter(a) cs.add_hyperparameter(b) cond = GreaterThanCondition(a, b, 5) cs.add_condition(cond) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_build_new_GreaterThanIntCondition(self): expected = "a real [0.0, 1.0] [0.5]\n" \ "b integer [0, 10] [5]\n\n" \ "b | a > 0.5" cs = ConfigurationSpace() a = UniformFloatHyperparameter("a", 0, 1, 0.5) b = UniformIntegerHyperparameter("b", 0, 10, 5) cs.add_hyperparameter(a) cs.add_hyperparameter(b) cond = GreaterThanCondition(b, a, 0.5) cs.add_condition(cond) value = pcs_new.write(cs) self.assertEqual(expected, value) expected = "a integer [0, 10] [5]\n" \ "b integer [0, 10] [5]\n\n" \ "b | a > 5" cs = ConfigurationSpace() a = UniformIntegerHyperparameter("a", 0, 10, 5) b = UniformIntegerHyperparameter("b", 0, 10, 5) cs.add_hyperparameter(a) cs.add_hyperparameter(b) cond = GreaterThanCondition(b, a, 5) cs.add_condition(cond) value = pcs_new.write(cs) self.assertEqual(expected, value) def test_read_new_configuration_space_complex_conditionals(self): classi = OrdinalHyperparameter( "classi", ["random_forest", "extra_trees", "k_nearest_neighbors", "something"], ) knn_weights = CategoricalHyperparameter("knn_weights", ["uniform", "distance"]) weather = OrdinalHyperparameter("weather", ["sunny", "rainy", "cloudy", "snowing"]) temperature = CategoricalHyperparameter("temperature", ["high", "low"]) rain = CategoricalHyperparameter("rain", ["yes", "no"]) gloves = OrdinalHyperparameter("gloves", ["none", "yarn", "leather", "gortex"]) heur1 = CategoricalHyperparameter("heur1", ["off", "on"]) heur2 = CategoricalHyperparameter("heur2", ["off", "on"]) heur_order = CategoricalHyperparameter("heur_order", ["heur1then2", "heur2then1"]) gloves_condition = OrConjunction(EqualsCondition(gloves, rain, "yes"), EqualsCondition(gloves, temperature, "low")) heur_condition = AndConjunction(EqualsCondition(heur_order, heur1, "on"), EqualsCondition(heur_order, heur2, "on")) and_conjunction = AndConjunction(NotEqualsCondition(knn_weights, classi, "extra_trees"), EqualsCondition(knn_weights, classi, "random_forest")) Cl_condition = OrConjunction(EqualsCondition(knn_weights, classi, "k_nearest_neighbors"), and_conjunction, EqualsCondition(knn_weights, classi, "something")) and1 = AndConjunction(EqualsCondition(temperature, weather, "rainy"), EqualsCondition(temperature, weather, "cloudy")) and2 = AndConjunction(EqualsCondition(temperature, weather, "sunny"), NotEqualsCondition(temperature, weather, "snowing")) another_condition = OrConjunction(and1, and2) complex_conditional_space = ConfigurationSpace() complex_conditional_space.add_hyperparameter(classi) complex_conditional_space.add_hyperparameter(knn_weights) complex_conditional_space.add_hyperparameter(weather) complex_conditional_space.add_hyperparameter(temperature) complex_conditional_space.add_hyperparameter(rain) complex_conditional_space.add_hyperparameter(gloves) complex_conditional_space.add_hyperparameter(heur1) complex_conditional_space.add_hyperparameter(heur2) complex_conditional_space.add_hyperparameter(heur_order) complex_conditional_space.add_condition(gloves_condition) complex_conditional_space.add_condition(heur_condition) complex_conditional_space.add_condition(Cl_condition) complex_conditional_space.add_condition(another_condition) complex_cs = list() complex_cs.append( "classi ordinal {random_forest,extra_trees,k_nearest_neighbors, something} " "[random_forest]" ) complex_cs.append("knn_weights categorical {uniform, distance} [uniform]") complex_cs.append("weather ordinal {sunny, rainy, cloudy, snowing} [sunny]") complex_cs.append("temperature categorical {high, low} [high]") complex_cs.append("rain categorical { yes, no } [yes]") complex_cs.append("gloves ordinal { none, yarn, leather, gortex } [none]") complex_cs.append("heur1 categorical { off, on } [off]") complex_cs.append("heur2 categorical { off, on } [off]") complex_cs.append("heur_order categorical { heur1then2, heur2then1 } [heur1then2]") complex_cs.append("gloves | rain == yes || temperature == low") complex_cs.append("heur_order | heur1 == on && heur2 == on") complex_cs.append("knn_weights | classi == k_nearest_neighbors || " "classi != extra_trees && classi == random_forest || classi == something") complex_cs.append("temperature | weather == rainy && weather == cloudy || " "weather == sunny && weather != snowing") cs_new = pcs_new.read(complex_cs) self.assertEqual(cs_new, complex_conditional_space) def test_convert_restrictions(self): # This is a smoke test to make sure that the int/float values in the # greater or smaller statements are converted to the right type when # reading them s = """x1 real [0,1] [0] x2 real [0,1] [0] x3 real [0,1] [0] x4 integer [0,2] [0] x5 real [0,1] [0] x6 ordinal {cold, luke-warm, hot} [cold] x1 | x2 > 0.5 x3 | x4 > 1 && x4 == 2 && x4 in {2} x5 | x6 > luke-warm""" pcs_new.read(s.split('\n')) def test_write_restrictions(self): s = "c integer [0, 2] [0]\n" + \ "d ordinal {cold, luke-warm, hot} [cold]\n" + \ "e real [0.0, 1.0] [0.0]\n" + \ "b real [0.0, 1.0] [0.0]\n" + \ "a real [0.0, 1.0] [0.0]\n" + \ "\n" + \ "b | d in {luke-warm, hot} || c > 1\n" + \ "a | b == 0.5 && e > 0.5" a = pcs_new.read(s.split('\n')) out = pcs_new.write(a) self.assertEqual(out, s) def test_read_write(self): # Some smoke tests whether reading, writing, reading alters makes the # configspace incomparable this_file = os.path.abspath(__file__) this_directory = os.path.dirname(this_file) configuration_space_path = os.path.join(this_directory, "..", "test_searchspaces") configuration_space_path = os.path.abspath(configuration_space_path) configuration_space_path = os.path.join(configuration_space_path, "spear-params-mixed.pcs") with open(configuration_space_path) as fh: cs = pcs.read(fh) tf = tempfile.NamedTemporaryFile() name = tf.name tf.close() with open(name, 'w') as fh: pcs_string = pcs.write(cs) fh.write(pcs_string) with open(name, 'r') as fh: pcs_new = pcs.read(fh) self.assertEqual(pcs_new, cs, msg=(pcs_new, cs))
the-stack_0_8490
import os import sys import uuid import fileinput import boto3 region = os.getenv('AWS_REGION') tg = os.getenv('AWS_IOT_THING_NAME') try: mac_address = hex(uuid.getnode()) mac_address = mac_address[2:8] + 'fffe' + mac_address[8:] print('the GatewayEui for the gateway will be', mac_address) input_file = "./station.conf" file_object = open( input_file, 'r+' ) for line in fileinput.input(input_file): file_object.write(line.replace('"routerid": ""', f'"routerid": "{mac_address}"')) file_object.close() print('routerid configured in station.conf file') if os.path.isfile('cups.crt'): print('Found credentials in the folder, gateway provisioning step skipped') exit(0) lora_region = sys.argv[1] print('Lora region for the gateway:', lora_region) print('AWS region:', region) print('ThingName used for the name of the gateway:', tg) iot = boto3.client('iot', region_name= region) iotw = boto3.client('iotwireless', region_name= region) gateway = None try: gateway = iotw.get_wireless_gateway( Identifier= mac_address, IdentifierType= 'GatewayEui' ) except iotw.exceptions.from_code('ResourceNotFoundException'): gateway = iotw.create_wireless_gateway( Name= tg, Description=f'The LoRaWAN Gateway {tg} has been registered using an AWS IoT Greengrass component', LoRaWAN={ 'GatewayEui': mac_address, 'RfRegion': lora_region } ) except Exception as e: print(e) exit(1) # if the gateway is not created, raise an error if gateway.get('Id') == None: raise ValueError('Error when provisioning the gateway') certs = iot.create_keys_and_certificate( setAsActive=True ) cups= iotw.get_service_endpoint(ServiceType = 'CUPS') with open('cups.uri', 'w') as f: f.write(cups['ServiceEndpoint']) with open('cups.trust', 'w') as f: f.write(cups['ServerTrust']) cert_id= certs['certificateId'] with open('cups.crt', 'w') as f: f.write(certs['certificatePem']) with open('cups.key', 'w') as f: f.write(certs['keyPair']['PrivateKey']) associate_gateway = iotw.associate_wireless_gateway_with_certificate( Id= gateway['Id'], IotCertificateId= certs['certificateId'] ) print(f"The certificate {certs.get('certificateId')} has been associated with the gateway {tg}") except Exception as e: print(e) exit(1)
the-stack_0_8491
import csv import math import re import argparse import random def calculate_quota(num_winners, num_votes): return math.floor(num_votes * (1.0 / (1 + num_winners))) class Candidate: """ A model for representing vote counts. Args: name: String key for the candidate. ballots: A 2D array where each element is a string list of candidate names sorted in preferences order. """ def __init__(self, name, ballots): self.__name = name self.__votes = 10_000 * len(ballots) self.__ballots = ballots @property def votes(self): return self.__votes @property def name(self): return self.__name @property def ballots(self): return self.__ballots def surplus_for_candidate(self, starting_votes, surplus, candidate_name): surplus_per_vote = surplus / len(self.ballots) votes_for_candidate = sum( [1 for b in self.__ballots if len(b) > 0 and b[0] == candidate_name]) result = math.ceil(votes_for_candidate * surplus_per_vote) self.__votes -= result return result def exhausted_ballots(self, surplus): surplus_per_vote = surplus / (self.votes) * 10_000 exhausted_votes = sum([1 for b in self.__ballots if len(b) == 0]) result = math.ceil(exhausted_votes * surplus_per_vote) self.__votes -= result return result def add_surplus(self, surplus): self.__votes += math.floor(surplus) def surplus(self, quota): return max(self.__votes - quota, 0.0) def add_ballot(self, new_ballot, votes_per_ballot): self.__ballots.append(new_ballot) self.__votes += math.floor(votes_per_ballot) def drop_candidate(self, candidate): for b in self.__ballots: if(candidate.name in b): b.remove(candidate.name) def __repr__(self): return str(self) def __str__(self): return f"{{name: {self.name}, votes: {self.__votes}}}" def __lt__(self, other): return self.votes < other.votes def __eq__(self, other): return other is Candidate and self.name == other.name def award_first_pref(candidate_names, ballot_data): """ Generates a list of candidates with their approriate 1st round votes and ballot data. Returns: list of Candidates. """ num_choices = len(ballot_data) FIRST = "1" choices = [str(n) for n in range(2, num_choices)] ballots = {c: [] for c in candidate_names} for row in ballot_data: key = candidate_names[row.index(FIRST)] value = ballots[key] ballots[key] = [ *value, [candidate_names[row.index(choice)] for choice in choices if choice in row]] candidates = [Candidate(name=k, ballots=v) for (k, v) in ballots.items()] random.shuffle(candidates) return candidates def find_winners(candidates, quota): """Returns candidates that have met the quota.""" return [c for c in candidates if c.votes >= quota] def distribute_surplus(candidates, exhausted, quota): """ Returns the given list of Candidates with the surplus votes from the Candidate with the most surpluss votes transfered to their next preference. """ max_surplus = max([c.surplus(quota) for c in candidates]) biggest_winners = [c for c in candidates if c.surplus(quota) == max_surplus] winner = biggest_winners[0] candidates.remove(winner) surplus = winner.surplus(quota) starting_votes = winner.votes for c in candidates: c.drop_candidate(winner) c.add_surplus(winner.surplus_for_candidate(starting_votes, surplus, c.name)) exhausted.add_surplus(winner.exhausted_ballots(surplus)) return candidates def redisitribute_loser(candidates, exhausted): """ Returns: A list of Candidates with the lowest vote getting Canidate removed """ fewest_votes = min(candidates).votes biggest_losers = [c for c in candidates if c.votes == fewest_votes] eliminated = biggest_losers[-1] candidates.remove(eliminated) starting_votes = eliminated.votes for b in eliminated.ballots: next_choice = b[0] if len(b) > 0 else None if(next_choice == None): exhausted.add_ballot(b, eliminated.votes) for c in candidates: c.drop_candidate(eliminated) if c.name == next_choice: c.add_ballot(b[1:], starting_votes / len(eliminated.ballots)) return candidates def parse_vote_data(csv_data): """ Retrieves candidate names from the input file, cleans ballots rows such that contain only the numeric ranked preference number. This function also discards invalid ballots. Returns: A String[] of names, and a String[][] where each row is a String[] representating a ballot. Each row item is a stringified integer representing the index of the corresponding candidate in the candidates array, or an empty string if the ballot does not rank all candidates. """ def valid(ballot, num_candidates): prefs = [int(p) for p in ballot if p] if(len(prefs) == 0 or len(prefs) > num_candidates): return False return sorted(prefs) == list(range(1, len(prefs) + 1)) candidate_names = [n.strip() for n in next(csv_data)] parsed_vote_data = [] for row in csv_data: ballot = [re.sub(r"\D", "", c) for c in row] if(valid(ballot, len(candidate_names))): parsed_vote_data.append(ballot) else: print(f"❌ {ballot}") return candidate_names, parsed_vote_data def count_ballots(file_name, num_winners): with open(file_name) as csv_file: csv_data = csv.reader(csv_file, delimiter=',') candidate_names, vote_data = parse_vote_data(csv_data) candidates_to_votes = award_first_pref(candidate_names, vote_data) round_num = 1 exhausted = Candidate("Exhausted", []) winners = [] while True: num_votes = sum([c.votes for c in candidates_to_votes]) quota = calculate_quota(num_winners, num_votes) candidates_to_votes.sort(reverse=True) # Print stats print(f"Round {round_num}:") for w in winners: print(f"🏆: {w}") print(f"Votes: {num_votes + exhausted.votes + sum([w.votes for w in winners])}") print(f"Quota to win: {quota}") for c in candidates_to_votes: print(f" {c.name}: {c.votes}") print(f" Exhausted: {exhausted.votes}") # Update winners round_winners = find_winners(candidates_to_votes, quota) for w in round_winners: winners.append(w) if(len(winners) >= num_winners): return winners[:num_winners], exhausted elif(sum([w.surplus(quota) for w in round_winners]) > 0.0): candidates_to_votes = distribute_surplus( candidates_to_votes, exhausted, quota) else: candidates_to_votes = redisitribute_loser( candidates_to_votes, exhausted) round_num += 1 if __name__ == "__main__": parser = argparse.ArgumentParser(description='Administer election.') parser.add_argument('-f', '--file', action='store', type=str, help='Name of the election results file') parser.add_argument('-n', '--num_winners', action='store', type=int, default=1, help='Number of winners to pick') args = parser.parse_args() winners, exhausted = count_ballots(args.file, num_winners=args.num_winners) print("") for w in winners: print(f"🏆: {w}") print(f"exhausted votes {exhausted.votes}")
the-stack_0_8492
class Student(object): """This is a Superclass It holds holds the total number of students """ counter = 0 def __init__(self): type(self).counter += 1 def __del__(self): type(self).counter -= 1 def student_stream(self): """data encapsulation: color can not be accessed by another class Abstraction: checks the color if it valid """ if self._color == "yelow": stream = "North" elif self._color == "pink": strem = "South" elif self._color == "red": stream = "East" else: stream = "Invalid stream" return stream class Students(Student): """Subclass of Student_counter: it inherits methods from Student_counter It holds student details """ def __init__(self, name, school_id, fees_paid, student_class, color): self.name = name self.school_id = school_id self.fees_paid = fees_paid self.student_class = student_class self._color = color Student.__init__(self) if self.student_class == 4: self.__fees = 5000 elif student_class == 3: self.__fees = 4000 elif student_class == 2: self.__fees = 37122 else: self.__fees = 56000 def fees_arrears(self): balance = self.__fees - self.fees_paid return balance class Studentsubjects(Student): """Subclass of Student_counter: it inherits methods from Student_counter It holds student details """ def __init__(self, name, color): self.name = name self._color = color Student.__init__(self) def student_stream(self): """data encapsulation: color can not be accessed by another class Abstraction: checks the color if it valid Polymophism: using the same method to return different outputs """ if self._color == "yelow": stream = "Geography" elif self._color == "pink": stream = "Music" elif self._color == "red": stream = "Agriculture" else: stream = "Invalid stream" return stream
the-stack_0_8493
from unittest import TestCase from unittest import mock from multiphase.multiphase import Multiphase class MultiphaseTests(TestCase): """ Test Multiphase. """ def setUp(self): self.app = Multiphase() def test_run(self): """ Test the run code. """ args = [] if self.app.TYPE == 'ds': args.append('inputdir') # you may want to change this inputdir mock args.append('outputdir') # you may want to change this outputdir mock # you may want to add more of your custom defined optional arguments to test # your app with # eg. # args.append('--custom-int') # args.append(10) options = self.app.parse_args(args) self.app.run(options) # write your own assertions self.assertEqual(options.outputdir, 'outputdir')
the-stack_0_8494
""" Data structure for 1-dimensional cross-sectional and time series data """ from io import StringIO from shutil import get_terminal_size from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Tuple, Type, Union, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import lib, properties, reshape, tslibs from pandas._libs.lib import no_default from pandas._typing import ( ArrayLike, Axis, DtypeObj, FrameOrSeriesUnion, IndexKeyFunc, Label, ValueKeyFunc, ) from pandas.compat.numpy import function as nv from pandas.errors import InvalidIndexError from pandas.util._decorators import Appender, Substitution, doc from pandas.util._validators import validate_bool_kwarg, validate_percentile from pandas.core.dtypes.cast import ( convert_dtypes, maybe_cast_to_extension_array, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_platform_int, is_bool, is_categorical_dtype, is_dict_like, is_extension_array_dtype, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, ) from pandas.core.dtypes.generic import ABCDataFrame from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, notna, remove_na_arraylike, ) import pandas as pd from pandas.core import algorithms, base, generic, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.arrays.categorical import CategoricalAccessor from pandas.core.arrays.sparse import SparseAccessor import pandas.core.common as com from pandas.core.construction import ( create_series_with_explicit_dtype, extract_array, is_empty_data, sanitize_array, ) from pandas.core.generic import NDFrame from pandas.core.indexers import deprecate_ndim_indexing, unpack_1tuple from pandas.core.indexes.accessors import CombinedDatetimelikeProperties from pandas.core.indexes.api import Float64Index, Index, MultiIndex, ensure_index import pandas.core.indexes.base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexing import check_bool_indexer from pandas.core.internals import SingleBlockManager from pandas.core.sorting import ensure_key_mapped from pandas.core.strings import StringMethods from pandas.core.tools.datetimes import to_datetime import pandas.io.formats.format as fmt import pandas.plotting if TYPE_CHECKING: from pandas.core.frame import DataFrame from pandas.core.groupby.generic import SeriesGroupBy __all__ = ["Series"] _shared_doc_kwargs = dict( axes="index", klass="Series", axes_single_arg="{0 or 'index'}", axis="""axis : {0 or 'index'} Parameter needed for compatibility with DataFrame.""", inplace="""inplace : boolean, default False If True, performs operation inplace and returns None.""", unique="np.ndarray", duplicated="Series", optional_by="", optional_mapper="", optional_labels="", optional_axis="", versionadded_to_excel="\n .. versionadded:: 0.20.0\n", ) def _coerce_method(converter): """ Install the scalar coercion methods. """ def wrapper(self): if len(self) == 1: return converter(self.iloc[0]) raise TypeError(f"cannot convert the series to {converter}") wrapper.__name__ = f"__{converter.__name__}__" return wrapper # ---------------------------------------------------------------------- # Series class class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. .. versionchanged:: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : str, numpy.dtype, or ExtensionDtype, optional Data type for the output Series. If not specified, this will be inferred from `data`. See the :ref:`user guide <basics.dtypes>` for more usages. name : str, optional The name to give to the Series. copy : bool, default False Copy input data. """ _typ = "series" _name: Label _metadata: List[str] = ["name"] _internal_names_set = {"index"} | generic.NDFrame._internal_names_set _accessors = {"dt", "cat", "str", "sparse"} _deprecations = ( base.IndexOpsMixin._deprecations | generic.NDFrame._deprecations | frozenset(["compress", "ptp"]) ) # Override cache_readonly bc Series is mutable hasnans = property( base.IndexOpsMixin.hasnans.func, doc=base.IndexOpsMixin.hasnans.__doc__ ) _mgr: SingleBlockManager div: Callable[["Series", Any], "Series"] rdiv: Callable[["Series", Any], "Series"] # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False ): if ( isinstance(data, SingleBlockManager) and index is None and dtype is None and copy is False ): # GH#33357 called with just the SingleBlockManager NDFrame.__init__(self, data) self.name = name return # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined if not isinstance(data, SingleBlockManager): data = SingleBlockManager.from_array(data, index) if copy: data = data.copy() if index is None: index = data.index else: name = ibase.maybe_extract_name(name, data, type(self)) if is_empty_data(data) and dtype is None: # gh-17261 warnings.warn( "The default dtype for empty Series will be 'object' instead " "of 'float64' in a future version. Specify a dtype explicitly " "to silence this warning.", DeprecationWarning, stacklevel=2, ) # uncomment the line below when removing the DeprecationWarning # dtype = np.dtype(object) if index is not None: index = ensure_index(index) if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, MultiIndex): raise NotImplementedError( "initializing a Series from a MultiIndex is not supported" ) elif isinstance(data, Index): if dtype is not None: # astype copies data = data.astype(dtype) else: # GH#24096 we need to ensure the index remains immutable data = data._values.copy() copy = False elif isinstance(data, np.ndarray): if len(data.dtype): # GH#13296 we are dealing with a compound dtype, which # should be treated as 2D raise ValueError( "Cannot construct a Series from an ndarray with " "compound dtype. Use DataFrame instead." ) elif isinstance(data, Series): if index is None: index = data.index else: data = data.reindex(index, copy=copy) copy = False data = data._mgr elif is_dict_like(data): data, index = self._init_dict(data, index, dtype) dtype = None copy = False elif isinstance(data, SingleBlockManager): if index is None: index = data.index elif not data.index.equals(index) or copy: # GH#19275 SingleBlockManager input should only be called # internally raise AssertionError( "Cannot pass both SingleBlockManager " "`data` argument and a different " "`index` argument. `copy` must be False." ) elif is_extension_array_dtype(data): pass elif isinstance(data, (set, frozenset)): raise TypeError(f"'{type(data).__name__}' type is unordered") else: data = com.maybe_iterable_to_list(data) if index is None: if not is_list_like(data): data = [data] index = ibase.default_index(len(data)) elif is_list_like(data): # a scalar numpy array is list-like but doesn't # have a proper length try: if len(index) != len(data): raise ValueError( f"Length of passed values is {len(data)}, " f"index implies {len(index)}." ) except TypeError: pass # create/copy the manager if isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype=dtype, errors="ignore", copy=copy) elif copy: data = data.copy() else: data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True) data = SingleBlockManager.from_array(data, index) generic.NDFrame.__init__(self, data) self.name = name self._set_axis(0, index, fastpath=True) def _init_dict(self, data, index=None, dtype=None): """ Derive the "_mgr" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series. index : Index or index-like, default None Index for the new Series: if None, use dict keys. dtype : dtype, default None The dtype for the new Series: if None, infer from data. Returns ------- _data : BlockManager for the new Series index : index for the new Series """ # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*data.items()) values = list(values) elif index is not None: # fastpath for Series(data=None). Just use broadcasting a scalar # instead of reindexing. values = na_value_for_dtype(dtype) keys = index else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: # TODO: passing np.float64 to not break anything yet. See GH-17261 s = create_series_with_explicit_dtype( values, index=keys, dtype=dtype, dtype_if_empty=np.float64 ) # Now we just make sure the order is respected, if any if data and index is not None: s = s.reindex(index, copy=False) return s._mgr, s.index # ---------------------------------------------------------------------- @property def _constructor(self) -> Type["Series"]: return Series @property def _constructor_expanddim(self) -> Type["DataFrame"]: from pandas.core.frame import DataFrame return DataFrame # types @property def _can_hold_na(self): return self._mgr._can_hold_na _index = None def _set_axis(self, axis: int, labels, fastpath: bool = False) -> None: """ Override generic, we want to set the _typ here. This is called from the cython code when we set the `index` attribute directly, e.g. `series.index = [1, 2, 3]`. """ if not fastpath: labels = ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here because we changed the index if fastpath: self._mgr.set_axis(axis, labels) except (tslibs.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass object.__setattr__(self, "_index", labels) if not fastpath: # The ensure_index call above ensures we have an Index object self._mgr.set_axis(axis, labels) # ndarray compatibility @property def dtype(self) -> DtypeObj: """ Return the dtype object of the underlying data. """ return self._mgr.dtype @property def dtypes(self) -> DtypeObj: """ Return the dtype object of the underlying data. """ # DataFrame compatibility return self.dtype @property def name(self) -> Label: """ Return the name of the Series. The name of a Series becomes its index or column name if it is used to form a DataFrame. It is also used whenever displaying the Series using the interpreter. Returns ------- label (hashable object) The name of the Series, also the column name if part of a DataFrame. See Also -------- Series.rename : Sets the Series name when given a scalar input. Index.name : Corresponding Index property. Examples -------- The Series name can be set initially when calling the constructor. >>> s = pd.Series([1, 2, 3], dtype=np.int64, name='Numbers') >>> s 0 1 1 2 2 3 Name: Numbers, dtype: int64 >>> s.name = "Integers" >>> s 0 1 1 2 2 3 Name: Integers, dtype: int64 The name of a Series within a DataFrame is its column name. >>> df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], ... columns=["Odd Numbers", "Even Numbers"]) >>> df Odd Numbers Even Numbers 0 1 2 1 3 4 2 5 6 >>> df["Even Numbers"].name 'Even Numbers' """ return self._name @name.setter def name(self, value: Label) -> None: if not is_hashable(value): raise TypeError("Series.name must be a hashable type") object.__setattr__(self, "_name", value) @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype. .. warning:: We recommend using :attr:`Series.array` or :meth:`Series.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- numpy.ndarray or ndarray-like See Also -------- Series.array : Reference to the underlying data. Series.to_numpy : A NumPy array representing the underlying data. Examples -------- >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) >>> pd.Series(list('aabc')).astype('category').values ['a', 'a', 'b', 'c'] Categories (3, object): ['a', 'b', 'c'] Timezone aware datetime data is converted to UTC: >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ return self._mgr.external_values() @property def _values(self): """ Return the internal repr of this data (defined by Block.interval_values). This are the values as stored in the Block (ndarray or ExtensionArray depending on the Block class), with datetime64[ns] and timedelta64[ns] wrapped in ExtensionArrays to match Index._values behavior. Differs from the public ``.values`` for certain data types, because of historical backwards compatibility of the public attribute (e.g. period returns object ndarray and datetimetz a datetime64[ns] ndarray for ``.values`` while it returns an ExtensionArray for ``._values`` in those cases). Differs from ``.array`` in that this still returns the numpy array if the Block is backed by a numpy array (except for datetime64 and timedelta64 dtypes), while ``.array`` ensures to always return an ExtensionArray. Overview: dtype | values | _values | array | ----------- | ------------- | ------------- | ------------- | Numeric | ndarray | ndarray | PandasArray | Category | Categorical | Categorical | Categorical | dt64[ns] | ndarray[M8ns] | DatetimeArray | DatetimeArray | dt64[ns tz] | ndarray[M8ns] | DatetimeArray | DatetimeArray | td64[ns] | ndarray[m8ns] | TimedeltaArray| ndarray[m8ns] | Period | ndarray[obj] | PeriodArray | PeriodArray | Nullable | EA | EA | EA | """ return self._mgr.internal_values() @Appender(base.IndexOpsMixin.array.__doc__) # type: ignore @property def array(self) -> ExtensionArray: return self._mgr._block.array_values() # ops def ravel(self, order="C"): """ Return the flattened underlying data as an ndarray. Returns ------- numpy.ndarray or ndarray-like Flattened data of the Series. See Also -------- numpy.ndarray.ravel : Return a flattened array. """ return self._values.ravel(order=order) def __len__(self) -> int: """ Return the length of the Series. """ return len(self._mgr) def view(self, dtype=None) -> "Series": """ Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8 """ return self._constructor( self._values.view(dtype), index=self.index ).__finalize__(self, method="view") # ---------------------------------------------------------------------- # NDArray Compat _HANDLED_TYPES = (Index, ExtensionArray, np.ndarray) def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ): # TODO: handle DataFrame cls = type(self) # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # Determine if we should defer. no_defer = (np.ndarray.__array_ufunc__, cls.__array_ufunc__) for item in inputs: higher_priority = ( hasattr(item, "__array_priority__") and item.__array_priority__ > self.__array_priority__ ) has_array_ufunc = ( hasattr(item, "__array_ufunc__") and type(item).__array_ufunc__ not in no_defer and not isinstance(item, self._HANDLED_TYPES) ) if higher_priority or has_array_ufunc: return NotImplemented # align all the inputs. names = [getattr(x, "name") for x in inputs if hasattr(x, "name")] types = tuple(type(x) for x in inputs) # TODO: dataframe alignable = [x for x, t in zip(inputs, types) if issubclass(t, Series)] if len(alignable) > 1: # This triggers alignment. # At the moment, there aren't any ufuncs with more than two inputs # so this ends up just being x1.index | x2.index, but we write # it to handle *args. index = alignable[0].index for s in alignable[1:]: index |= s.index inputs = tuple( x.reindex(index) if issubclass(t, Series) else x for x, t in zip(inputs, types) ) else: index = self.index inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs) result = getattr(ufunc, method)(*inputs, **kwargs) name = names[0] if len(set(names)) == 1 else None def construct_return(result): if lib.is_scalar(result): return result elif result.ndim > 1: # e.g. np.subtract.outer if method == "outer": # GH#27198 raise NotImplementedError return result return self._constructor(result, index=index, name=name, copy=False) if type(result) is tuple: # multiple return values return tuple(construct_return(x) for x in result) elif method == "at": # no return value return None else: return construct_return(result) def __array__(self, dtype=None) -> np.ndarray: """ Return the values as a NumPy array. Users should not call this directly. Rather, it is invoked by :func:`numpy.array` and :func:`numpy.asarray`. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data. Returns ------- numpy.ndarray The values in the series converted to a :class:`numpy.ndarray` with the specified `dtype`. See Also -------- array : Create a new array from data. Series.array : Zero-copy view to the array backing the Series. Series.to_numpy : Series method for similar behavior. Examples -------- >>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3]) For timezone-aware data, the timezones may be retained with ``dtype='object'`` >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or the values may be localized to UTC and the tzinfo discarded with ``dtype='datetime64[ns]'`` >>> np.asarray(tzser, dtype="datetime64[ns]") # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]') """ return np.asarray(self.array, dtype) # ---------------------------------------------------------------------- # Unary Methods # coercion __float__ = _coerce_method(float) __long__ = _coerce_method(int) __int__ = _coerce_method(int) # ---------------------------------------------------------------------- # indexers @property def axes(self) -> List[Index]: """ Return a list of the row axis labels. """ return [self.index] # ---------------------------------------------------------------------- # Indexing Methods @Appender(generic.NDFrame.take.__doc__) def take(self, indices, axis=0, is_copy=None, **kwargs) -> "Series": if is_copy is not None: warnings.warn( "is_copy is deprecated and will be removed in a future version. " "'take' always returns a copy, so there is no need to specify this.", FutureWarning, stacklevel=2, ) nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) new_index = self.index.take(indices) new_values = self._values.take(indices) result = self._constructor(new_values, index=new_index, fastpath=True) return result.__finalize__(self, method="take") def _take_with_is_copy(self, indices, axis=0): """ Internal version of the `take` method that sets the `_is_copy` attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning). For Series this does the same as the public take (it never sets `_is_copy`). See the docstring of `take` for full explanation of the parameters. """ return self.take(indices=indices, axis=axis) def _ixs(self, i: int, axis: int = 0): """ Return the i-th value or values in the Series by location. Parameters ---------- i : int Returns ------- scalar (int) or Series (slice, sequence) """ return self._values[i] def _slice(self, slobj: slice, axis: int = 0) -> "Series": # axis kwarg is retained for compat with NDFrame method # _slice is *always* positional return self._get_values(slobj) def __getitem__(self, key): key = com.apply_if_callable(key, self) if key is Ellipsis: return self key_is_scalar = is_scalar(key) if isinstance(key, (list, tuple)): key = unpack_1tuple(key) if is_integer(key) and self.index._should_fallback_to_positional(): return self._values[key] elif key_is_scalar: return self._get_value(key) if is_hashable(key): # Otherwise index.get_value will raise InvalidIndexError try: # For labels that don't resolve as scalars like tuples and frozensets result = self._get_value(key) return result except (KeyError, TypeError): if isinstance(key, tuple) and isinstance(self.index, MultiIndex): # We still have the corner case where a tuple is a key # in the first level of our MultiIndex return self._get_values_tuple(key) if is_iterator(key): key = list(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) key = np.asarray(key, dtype=bool) return self._get_values(key) return self._get_with(key) def _get_with(self, key): # other: fancy integer or otherwise if isinstance(key, slice): # _convert_slice_indexer to determine if this slice is positional # or label based, and if the latter, convert to positional slobj = self.index._convert_slice_indexer(key, kind="getitem") return self._slice(slobj) elif isinstance(key, ABCDataFrame): raise TypeError( "Indexing a Series with DataFrame is not " "supported, use the appropriate DataFrame column" ) elif isinstance(key, tuple): return self._get_values_tuple(key) elif not is_list_like(key): # e.g. scalars that aren't recognized by lib.is_scalar, GH#32684 return self.loc[key] if not isinstance(key, (list, np.ndarray, ExtensionArray, Series, Index)): key = list(key) if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key, skipna=False) # Note: The key_type == "boolean" case should be caught by the # com.is_bool_indexer check in __getitem__ if key_type == "integer": # We need to decide whether to treat this as a positional indexer # (i.e. self.iloc) or label-based (i.e. self.loc) if not self.index._should_fallback_to_positional(): return self.loc[key] else: return self.iloc[key] # handle the dup indexing case GH#4246 return self.loc[key] def _get_values_tuple(self, key): # mpl hackaround if com.any_none(*key): result = self._get_values(key) deprecate_ndim_indexing(result, stacklevel=5) return result if not isinstance(self.index, MultiIndex): raise KeyError("key of type tuple not found and not a MultiIndex") # If key is contained, would have returned by now indexer, new_index = self.index.get_loc_level(key) return self._constructor(self._values[indexer], index=new_index).__finalize__( self, ) def _get_values(self, indexer): try: return self._constructor(self._mgr.get_slice(indexer)).__finalize__(self,) except ValueError: # mpl compat if we look up e.g. ser[:, np.newaxis]; # see tests.series.timeseries.test_mpl_compat_hack # the asarray is needed to avoid returning a 2D DatetimeArray return np.asarray(self._values)[indexer] def _get_value(self, label, takeable: bool = False): """ Quickly retrieve single value at passed index label. Parameters ---------- label : object takeable : interpret the index as indexers, default False Returns ------- scalar value """ if takeable: return self._values[label] # Similar to Index.get_value, but we do not fall back to positional loc = self.index.get_loc(label) return self.index._get_values_for_loc(self, loc, label) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) cacher_needs_updating = self._check_is_chained_assignment_possible() if key is Ellipsis: key = slice(None) try: self._set_with_engine(key, value) except (KeyError, ValueError): values = self._values if is_integer(key) and not self.index.inferred_type == "integer": # positional setter values[key] = value else: # GH#12862 adding an new key to the Series self.loc[key] = value except TypeError as err: if isinstance(key, tuple) and not isinstance(self.index, MultiIndex): raise KeyError( "key of type tuple not found and not a MultiIndex" ) from err if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) key = np.asarray(key, dtype=bool) try: self._where(~key, value, inplace=True) except InvalidIndexError: self.iloc[key] = value return else: self._set_with(key, value) if cacher_needs_updating: self._maybe_update_cacher() def _set_with_engine(self, key, value): # fails with AttributeError for IntervalIndex loc = self.index._engine.get_loc(key) validate_numeric_casting(self.dtype, value) self._values[loc] = value def _set_with(self, key, value): # other: fancy integer or otherwise if isinstance(key, slice): indexer = self.index._convert_slice_indexer(key, kind="getitem") return self._set_values(indexer, value) else: assert not isinstance(key, tuple) if is_scalar(key): key = [key] if isinstance(key, Index): key_type = key.inferred_type key = key._values else: key_type = lib.infer_dtype(key, skipna=False) # Note: key_type == "boolean" should not occur because that # should be caught by the is_bool_indexer check in __setitem__ if key_type == "integer": if not self.index._should_fallback_to_positional(): self._set_labels(key, value) else: self._set_values(key, value) else: self.loc[key] = value def _set_labels(self, key, value): key = com.asarray_tuplesafe(key) indexer: np.ndarray = self.index.get_indexer(key) mask = indexer == -1 if mask.any(): raise KeyError(f"{key[mask]} not in index") self._set_values(indexer, value) def _set_values(self, key, value): if isinstance(key, Series): key = key._values self._mgr = self._mgr.setitem(indexer=key, value=value) self._maybe_update_cacher() def _set_value(self, label, value, takeable: bool = False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index. Parameters ---------- label : object Partial indexing with MultiIndex not allowed. value : object Scalar value. takeable : interpret the index as indexers, default False """ try: if takeable: self._values[label] = value else: loc = self.index.get_loc(label) validate_numeric_casting(self.dtype, value) self._values[loc] = value except KeyError: # set using a non-recursive method self.loc[label] = value # ---------------------------------------------------------------------- # Unsorted @property def _is_mixed_type(self): return False def repeat(self, repeats, axis=None) -> "Series": """ Repeat elements of a Series. Returns a new Series where each element of the current Series is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Series. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- Series Newly created Series with repeated elements. See Also -------- Index.repeat : Equivalent function for Index. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object """ nv.validate_repeat(tuple(), dict(axis=axis)) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__( self, method="repeat" ) def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters ---------- level : int, str, tuple, or list, default optional For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. drop : bool, default False Just reset the index, without inserting it as a column in the new DataFrame. name : object, optional The name to use for the column containing the original Series values. Uses ``self.name`` by default. This argument is ignored when `drop` is True. inplace : bool, default False Modify the Series in place (do not create a new object). Returns ------- Series or DataFrame When `drop` is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. See Also -------- DataFrame.reset_index: Analogous function for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use `name`. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set `drop` to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set `inplace` to True. Note that it also requires ``drop=True``. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The `level` parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use `level`. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If `level` is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3 """ inplace = validate_bool_kwarg(inplace, "inplace") if drop: new_index = ibase.default_index(len(self)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor( self._values.copy(), index=new_index ).__finalize__(self, method="reset_index") elif inplace: raise TypeError( "Cannot reset_index inplace on a Series to create a DataFrame" ) else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop) # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str: """ Return a string representation for a particular Series. """ buf = StringIO("") width, height = get_terminal_size() max_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.max_rows") ) min_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.min_rows") ) show_dimensions = get_option("display.show_dimensions") self.to_string( buf=buf, name=self.name, dtype=self.dtype, min_rows=min_rows, max_rows=max_rows, length=show_dimensions, ) result = buf.getvalue() return result def to_string( self, buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, ): """ Render a string representation of the Series. Parameters ---------- buf : StringIO-like, optional Buffer to write to. na_rep : str, optional String representation of NaN to use, default 'NaN'. float_format : one-parameter function, optional Formatter function to apply to columns' elements if they are floats, default None. header : bool, default True Add the Series header (index name). index : bool, optional Add index (row) labels, default True. length : bool, default False Add the Series length. dtype : bool, default False Add the Series dtype. name : bool, default False Add the Series name if not None. max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. min_rows : int, optional The number of rows to display in a truncated repr (when number of rows is above `max_rows`). Returns ------- str or None String representation of Series if ``buf=None``, otherwise None. """ formatter = fmt.SeriesFormatter( self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, min_rows=min_rows, max_rows=max_rows, ) result = formatter.to_string() # catch contract violations if not isinstance(result, str): raise AssertionError( "result must be of type str, type " f"of result is {repr(type(result).__name__)}" ) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, "w") as f: f.write(result) @doc( klass=_shared_doc_kwargs["klass"], examples=dedent( """ Examples -------- >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | """ ), ) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, index: bool = True, **kwargs, ) -> Optional[str]: """ Print {klass} in Markdown-friendly format. .. versionadded:: 1.0.0 Parameters ---------- buf : str, Path or StringIO-like, optional, default None Buffer to write to. If None, the output is returned as a string. mode : str, optional Mode in which file is opened. index : bool, optional, default True Add index (row) labels. .. versionadded:: 1.1.0 **kwargs These parameters will be passed to `tabulate \ <https://pypi.org/project/tabulate>`_. Returns ------- str {klass} in Markdown-friendly format. Examples -------- >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | Output markdown with a tabulate option. >>> print(s.to_markdown(tablefmt="grid")) +----+----------+ | | animal | +====+==========+ | 0 | elk | +----+----------+ | 1 | pig | +----+----------+ | 2 | dog | +----+----------+ | 3 | quetzal | +----+----------+ """ return self.to_frame().to_markdown(buf, mode, index, **kwargs) # ---------------------------------------------------------------------- def items(self) -> Iterable[Tuple[Label, Any]]: """ Lazily iterate over (index, value) tuples. This method returns an iterable tuple (index, value). This is convenient if you want to create a lazy iterator. Returns ------- iterable Iterable of tuples containing the (index, value) pairs from a Series. See Also -------- DataFrame.items : Iterate over (column name, Series) pairs. DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. Examples -------- >>> s = pd.Series(['A', 'B', 'C']) >>> for index, value in s.items(): ... print(f"Index : {index}, Value : {value}") Index : 0, Value : A Index : 1, Value : B Index : 2, Value : C """ return zip(iter(self.index), iter(self)) @Appender(items.__doc__) def iteritems(self) -> Iterable[Tuple[Label, Any]]: return self.items() # ---------------------------------------------------------------------- # Misc public methods def keys(self) -> Index: """ Return alias for index. Returns ------- Index Index of the Series. """ return self.index def to_dict(self, into=dict): """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- collections.abc.Mapping Key-value representation of Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(<class 'list'>, {0: 1, 1: 2, 2: 3, 3: 4}) """ # GH16122 into_c = com.standardize_mapping(into) return into_c(self.items()) def to_frame(self, name=None) -> "DataFrame": """ Convert Series to DataFrame. Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- DataFrame DataFrame representation of Series. Examples -------- >>> s = pd.Series(["a", "b", "c"], ... name="vals") >>> s.to_frame() vals 0 a 1 b 2 c """ if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df def _set_name(self, name, inplace=False) -> "Series": """ Set the Series name. Parameters ---------- name : str inplace : bool Whether to modify `self` directly or return a copy. """ inplace = validate_bool_kwarg(inplace, "inplace") ser = self if inplace else self.copy() ser.name = name return ser @Appender( """ Examples -------- >>> ser = pd.Series([390., 350., 30., 20.], ... index=['Falcon', 'Falcon', 'Parrot', 'Parrot'], name="Max Speed") >>> ser Falcon 390.0 Falcon 350.0 Parrot 30.0 Parrot 20.0 Name: Max Speed, dtype: float64 >>> ser.groupby(["a", "b", "a", "b"]).mean() a 210.0 b 185.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).mean() Falcon 370.0 Parrot 25.0 Name: Max Speed, dtype: float64 >>> ser.groupby(ser > 100).mean() Max Speed False 25.0 True 370.0 Name: Max Speed, dtype: float64 **Grouping by Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> ser = pd.Series([390., 350., 30., 20.], index=index, name="Max Speed") >>> ser Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).mean() Animal Falcon 370.0 Parrot 25.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level="Type").mean() Type Captive 210.0 Wild 185.0 Name: Max Speed, dtype: float64 We can also choose to include `NA` in group keys or not by defining `dropna` parameter, the default setting is `True`: >>> ser = pd.Series([1, 2, 3, 3], index=["a", 'a', 'b', np.nan]) >>> ser.groupby(level=0).sum() a 3 b 3 dtype: int64 >>> ser.groupby(level=0, dropna=False).sum() a 3 b 3 NaN 3 dtype: int64 >>> arrays = ['Falcon', 'Falcon', 'Parrot', 'Parrot'] >>> ser = pd.Series([390., 350., 30., 20.], index=arrays, name="Max Speed") >>> ser.groupby(["a", "b", "a", np.nan]).mean() a 210.0 b 350.0 Name: Max Speed, dtype: float64 >>> ser.groupby(["a", "b", "a", np.nan], dropna=False).mean() a 210.0 b 350.0 NaN 20.0 Name: Max Speed, dtype: float64 """ ) @Appender(generic._shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = no_default, observed: bool = False, dropna: bool = True, ) -> "SeriesGroupBy": from pandas.core.groupby.generic import SeriesGroupBy if squeeze is not no_default: warnings.warn( ( "The `squeeze` parameter is deprecated and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) else: squeeze = False if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return SeriesGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, dropna=dropna, ) # ---------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self, level=None): """ Return number of non-NA/null observations in the Series. Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series. Returns ------- int or Series (if level specified) Number of non-null values in the Series. See Also -------- DataFrame.count : Count non-NA cells for each column or row. Examples -------- >>> s = pd.Series([0.0, 1.0, np.nan]) >>> s.count() 2 """ if level is None: return notna(self.array).sum() if isinstance(level, str): level = self.index._get_level_number(level) lev = self.index.levels[level] level_codes = np.array(self.index.codes[level], subok=False, copy=True) mask = level_codes == -1 if mask.any(): level_codes[mask] = cnt = len(lev) lev = lev.insert(cnt, lev._na_value) obs = level_codes[notna(self._values)] out = np.bincount(obs, minlength=len(lev) or None) return self._constructor(out, index=lev, dtype="int64").__finalize__( self, method="count" ) def mode(self, dropna=True) -> "Series": """ Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- Series Modes of the Series in sorted order. """ # TODO: Add option for bins like value_counts() return algorithms.mode(self, dropna=dropna) def unique(self): """ Return unique values of Series object. Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort. Returns ------- ndarray or ExtensionArray The unique values returned as a NumPy array. See Notes. See Also -------- unique : Top-level unique method for any 1-d array-like object. Index.unique : Return Index with unique values from an Index object. Notes ----- Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new :class:`~api.extensions.ExtensionArray` of that type with just the unique values is returned. This includes * Categorical * Period * Datetime with Timezone * Interval * Sparse * IntegerNA See Examples section. Examples -------- >>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] An unordered Categorical will return categories in the order of appearance. >>> pd.Series(pd.Categorical(list('baabc'))).unique() ['b', 'a', 'c'] Categories (3, object): ['b', 'a', 'c'] An ordered Categorical preserves the category ordering. >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] """ result = super().unique() return result def drop_duplicates(self, keep="first", inplace=False) -> Optional["Series"]: """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' Method to handle dropping duplicates: - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- Series Series with duplicates dropped. See Also -------- Index.drop_duplicates : Equivalent method on Index. DataFrame.drop_duplicates : Equivalent method on DataFrame. Series.duplicated : Related method on Series, indicating duplicate Series values. Examples -------- Generate a Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. Setting the value of 'inplace' to ``True`` performs the operation inplace and returns ``None``. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") result = super().drop_duplicates(keep=keep) if inplace: self._update_inplace(result) return None else: return result def duplicated(self, keep="first") -> "Series": """ Indicate duplicate Series values. Duplicated values are indicated as ``True`` values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' Method to handle dropping duplicates: - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- Series Series indicating whether each value has occurred in the preceding values. See Also -------- Index.duplicated : Equivalent method on pandas.Index. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Series.drop_duplicates : Remove duplicate values from Series. Examples -------- By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool """ return super().duplicated(keep=keep) def idxmin(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the minimum value. If multiple values equal the minimum, the first row label with that value is returned. Parameters ---------- axis : int, default 0 For compatibility with DataFrame.idxmin. Redundant for application on Series. skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the minimum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmin : Return indices of the minimum values along the given axis. DataFrame.idxmin : Return index of first occurrence of minimum over requested axis. Series.idxmax : Return index *label* of the first occurrence of maximum of values. Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan """ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(self._values, skipna=skipna) if i == -1: return np.nan return self.index[i] def idxmax(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the maximum value. If multiple values equal the maximum, the first row label with that value is returned. Parameters ---------- axis : int, default 0 For compatibility with DataFrame.idxmax. Redundant for application on Series. skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the maximum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmax : Return indices of the maximum values along the given axis. DataFrame.idxmax : Return index of first occurrence of maximum over requested axis. Series.idxmin : Return index *label* of the first occurrence of minimum of values. Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan """ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(self._values, skipna=skipna) if i == -1: return np.nan return self.index[i] def round(self, decimals=0, *args, **kwargs) -> "Series": """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int, default 0 Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Series Rounded values of the Series. See Also -------- numpy.around : Round values of an np.array. DataFrame.round : Round values of a DataFrame. Examples -------- >>> s = pd.Series([0.1, 1.3, 2.7]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64 """ nv.validate_round(args, kwargs) result = self._values.round(decimals) result = self._constructor(result, index=self.index).__finalize__( self, method="round" ) return result def quantile(self, q=0.5, interpolation="linear"): """ Return value at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) The quantile(s) to compute, which can lie in range: 0 <= q <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- float or Series If ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles, otherwise a float will be returned. See Also -------- core.window.Rolling.quantile : Calculate the rolling quantile. numpy.percentile : Returns the q-th percentile(s) of the array elements. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ validate_percentile(q) # We dispatch to DataFrame so that core.internals only has to worry # about 2D cases. df = self.to_frame() result = df.quantile(q=q, interpolation=interpolation, numeric_only=False) if result.ndim == 2: result = result.iloc[:, 0] if is_list_like(q): result.name = self.name return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result.iloc[0] def corr(self, other, method="pearson", min_periods=None) -> float: """ Compute correlation with `other` Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the correlation. method : {'pearson', 'kendall', 'spearman'} or callable Method used to compute correlation: - pearson : Standard correlation coefficient - kendall : Kendall Tau correlation coefficient - spearman : Spearman rank correlation - callable: Callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Correlation with other. See Also -------- DataFrame.corr : Compute pairwise correlation between columns. DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan if method in ["pearson", "spearman", "kendall"] or callable(method): return nanops.nancorr( this.values, other.values, method=method, min_periods=min_periods ) raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) def cov( self, other: "Series", min_periods: Optional[int] = None, ddof: Optional[int] = 1, ) -> float: """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the covariance. min_periods : int, optional Minimum number of observations needed to have a valid result. ddof : int, default 1 Delta degrees of freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. .. versionadded:: 1.1.0 Returns ------- float Covariance between Series and other normalized by N-1 (unbiased estimator). See Also -------- DataFrame.cov : Compute pairwise covariance of columns. Examples -------- >>> s1 = pd.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = pd.Series([0.12528585, 0.26962463, 0.51111198]) >>> s1.cov(s2) -0.01685762652715874 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan return nanops.nancov( this.values, other.values, min_periods=min_periods, ddof=ddof ) @doc( klass="Series", extra_params="", other_klass="DataFrame", examples=dedent( """ Difference with previous row >>> s = pd.Series([1, 1, 2, 3, 5, 8]) >>> s.diff() 0 NaN 1 0.0 2 1.0 3 1.0 4 2.0 5 3.0 dtype: float64 Difference with 3rd previous row >>> s.diff(periods=3) 0 NaN 1 NaN 2 NaN 3 2.0 4 4.0 5 6.0 dtype: float64 Difference with following row >>> s.diff(periods=-1) 0 0.0 1 -1.0 2 -1.0 3 -2.0 4 -3.0 5 NaN dtype: float64 Overflow in input dtype >>> s = pd.Series([1, 0], dtype=np.uint8) >>> s.diff() 0 NaN 1 255.0 dtype: float64""" ), ) def diff(self, periods: int = 1) -> "Series": """ First discrete difference of element. Calculates the difference of a {klass} element compared with another element in the {klass} (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. {extra_params} Returns ------- {klass} First differences of the Series. See Also -------- {klass}.pct_change: Percent change over given number of periods. {klass}.shift: Shift index by desired number of periods with an optional time freq. {other_klass}.diff: First discrete difference of object. Notes ----- For boolean dtypes, this uses :meth:`operator.xor` rather than :meth:`operator.sub`. The result is calculated according to current dtype in {klass}, however dtype of the result is always float64. Examples -------- {examples} """ result = algorithms.diff(self.array, periods) return self._constructor(result, index=self.index).__finalize__( self, method="diff" ) def autocorr(self, lag=1) -> float: """ Compute the lag-N autocorrelation. This method computes the Pearson correlation between the Series and its shifted self. Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- float The Pearson correlation between self and self.shift(lag). See Also -------- Series.corr : Compute the correlation between two Series. Series.shift : Shift index by desired number of periods. DataFrame.corr : Compute pairwise correlation of columns. DataFrame.corrwith : Compute pairwise correlation between rows or columns of two DataFrame objects. Notes ----- If the Pearson correlation is not well defined return 'NaN'. Examples -------- >>> s = pd.Series([0.25, 0.5, 0.2, -0.05]) >>> s.autocorr() # doctest: +ELLIPSIS 0.10355... >>> s.autocorr(lag=2) # doctest: +ELLIPSIS -0.99999... If the Pearson correlation is not well defined, then 'NaN' is returned. >>> s = pd.Series([1, 0, 0, 0]) >>> s.autocorr() nan """ return self.corr(self.shift(lag)) def dot(self, other): """ Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the dot product with its columns. Returns ------- scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See Also -------- DataFrame.dot: Compute the matrix product with the DataFrame. Series.mul: Multiplication of series and other, element-wise. Notes ----- The Series and other has to share the same index if other is a Series or a DataFrame. Examples -------- >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) """ if isinstance(other, (Series, ABCDataFrame)): common = self.index.union(other.index) if len(common) > len(self.index) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, ABCDataFrame): return self._constructor( np.dot(lvals, rvals), index=other.columns ).__finalize__(self, method="dot") elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(np.transpose(other)) @doc(base.IndexOpsMixin.searchsorted, klass="Series") def searchsorted(self, value, side="left", sorter=None): return algorithms.searchsorted(self._values, value, side=side, sorter=sorter) # ------------------------------------------------------------------- # Combination def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] to_concat.extend(to_append) else: to_concat = [self, to_append] if any(isinstance(x, (ABCDataFrame,)) for x in to_concat[1:]): msg = "to_append should be a Series or list/tuple of Series, got DataFrame" raise TypeError(msg) return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity ) def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value. Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value. level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level. Returns ------- Series """ if not isinstance(other, Series): raise AssertionError("Other operand must be Series") this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join="outer", copy=False) this_vals, other_vals = ops.fill_binop(this.values, other.values, fill_value) with np.errstate(all="ignore"): result = func(this_vals, other_vals) name = ops.get_op_result_name(self, other) ret = this._construct_result(result, name) return ret def _construct_result( self, result: Union[ArrayLike, Tuple[ArrayLike, ArrayLike]], name: Label ) -> Union["Series", Tuple["Series", "Series"]]: """ Construct an appropriately-labelled Series from the result of an op. Parameters ---------- result : ndarray or ExtensionArray name : Label Returns ------- Series In the case of __divmod__ or __rdivmod__, a 2-tuple of Series. """ if isinstance(result, tuple): # produced by divmod or rdivmod res1 = self._construct_result(result[0], name=name) res2 = self._construct_result(result[1], name=name) # GH#33427 assertions to keep mypy happy assert isinstance(res1, Series) assert isinstance(res2, Series) return (res1, res2) # We do not pass dtype to ensure that the Series constructor # does inference in the case where `result` has object-dtype. out = self._constructor(result, index=self.index) out = out.__finalize__(self) # Set the result's name after __finalize__ is called because __finalize__ # would set it back to self.name out.name = name return out @Appender( """ Returns ------- Series or DataFrame If axis is 0 or 'index' the result will be a Series. The resulting index will be a MultiIndex with 'self' and 'other' stacked alternately at the inner level. If axis is 1 or 'columns' the result will be a DataFrame. It will have two columns namely 'self' and 'other'. See Also -------- DataFrame.compare : Compare with another DataFrame and show differences. Notes ----- Matching NaNs will not appear as a difference. Examples -------- >>> s1 = pd.Series(["a", "b", "c", "d", "e"]) >>> s2 = pd.Series(["a", "a", "c", "b", "e"]) Align the differences on columns >>> s1.compare(s2) self other 1 b a 3 d b Stack the differences on indices >>> s1.compare(s2, align_axis=0) 1 self b other a 3 self d other b dtype: object Keep all original rows >>> s1.compare(s2, keep_shape=True) self other 0 NaN NaN 1 b a 2 NaN NaN 3 d b 4 NaN NaN Keep all original rows and also all original values >>> s1.compare(s2, keep_shape=True, keep_equal=True) self other 0 a a 1 b a 2 c c 3 d b 4 e e """ ) @Appender(generic._shared_docs["compare"] % _shared_doc_kwargs) def compare( self, other: "Series", align_axis: Axis = 1, keep_shape: bool = False, keep_equal: bool = False, ) -> FrameOrSeriesUnion: return super().compare( other=other, align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, ) def combine(self, other, func, fill_value=None) -> "Series": """ Combine the Series with a Series or scalar according to `func`. Combine the Series and `other` using `func` to perform elementwise selection for combined Series. `fill_value` is assumed when value is missing at some index from one of the two objects being combined. Parameters ---------- other : Series or scalar The value(s) to be combined with the `Series`. func : function Function that takes two scalars as inputs and returns an element. fill_value : scalar, optional The value to assume when an index is missing from one Series or the other. The default specifies to use the appropriate NaN value for the underlying dtype of the Series. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine_first : Combine Series values, choosing the calling Series' values first. Examples -------- Consider 2 Datasets ``s1`` and ``s2`` containing highest clocked speeds of different birds. >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) >>> s1 falcon 330.0 eagle 160.0 dtype: float64 >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) >>> s2 falcon 345.0 eagle 200.0 duck 30.0 dtype: float64 Now, to combine the two datasets and view the highest speeds of the birds across the two datasets >>> s1.combine(s2, max) duck NaN eagle 200.0 falcon 345.0 dtype: float64 In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a float is a NaN. So, in the example, we set ``fill_value=0``, so the maximum value returned will be the value from some dataset. >>> s1.combine(s2, max, fill_value=0) duck 30.0 eagle 200.0 falcon 345.0 dtype: float64 """ if fill_value is None: fill_value = na_value_for_dtype(self.dtype, compat=False) if isinstance(other, Series): # If other is a Series, result is based on union of Series, # so do this element by element new_index = self.index.union(other.index) new_name = ops.get_op_result_name(self, other) new_values = [] for idx in new_index: lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all="ignore"): new_values.append(func(lv, rv)) else: # Assume that other is a scalar, so apply the function for # each element in the Series new_index = self.index with np.errstate(all="ignore"): new_values = [func(lv, other) for lv in self._values] new_name = self.name if is_categorical_dtype(self.dtype): pass elif is_extension_array_dtype(self.dtype): # TODO: can we do this for only SparseDtype? # The function can return something of any type, so check # if the type is compatible with the calling EA. new_values = maybe_cast_to_extension_array(type(self._values), new_values) return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other) -> "Series": """ Combine Series values, choosing the calling Series's values first. Parameters ---------- other : Series The value(s) to be combined with the `Series`. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine : Perform elementwise operation on two Series using a given function. Notes ----- Result index will be the union of the two indexes. Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 """ new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) if this.dtype.kind == "M" and other.dtype.kind != "M": other = to_datetime(other) return this.where(notna(this), other) def update(self, other) -> None: """ Modify Series in place using values from passed Series. Uses non-NA values from passed Series to make updates. Aligns on index. Parameters ---------- other : Series, or object coercible into Series Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 ``other`` can also be a non-Series object type that is coercible into a Series >>> s = pd.Series([1, 2, 3]) >>> s.update([4, np.nan, 6]) >>> s 0 4 1 2 2 6 dtype: int64 >>> s = pd.Series([1, 2, 3]) >>> s.update({1: 9}) >>> s 0 1 1 9 2 3 dtype: int64 """ if not isinstance(other, Series): other = Series(other) other = other.reindex_like(self) mask = notna(other) self._mgr = self._mgr.putmask(mask=mask, new=other) self._maybe_update_cacher() # ---------------------------------------------------------------------- # Reindexing, sorting def sort_values( self, axis=0, ascending=True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool = False, key: ValueKeyFunc = None, ): """ Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters ---------- axis : {0 or 'index'}, default 0 Axis to direct sorting. The value 'index' is accepted for compatibility with DataFrame.sort_values. ascending : bool, default True If True, sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 key : callable, optional If not None, apply the key function to the series values before sorting. This is similar to the `key` argument in the builtin :meth:`sorted` function, with the notable difference that this `key` function should be *vectorized*. It should expect a ``Series`` and return an array-like. .. versionadded:: 1.1.0 Returns ------- Series Series ordered by values. See Also -------- Series.sort_index : Sort by the Series indices. DataFrame.sort_values : Sort DataFrame by the values along either axis. DataFrame.sort_index : Sort DataFrame by indices. Examples -------- >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object Sort using a key function. Your `key` function will be given the ``Series`` of values and should return an array-like. >>> s = pd.Series(['a', 'B', 'c', 'D', 'e']) >>> s.sort_values() 1 B 3 D 0 a 2 c 4 e dtype: object >>> s.sort_values(key=lambda x: x.str.lower()) 0 a 1 B 2 c 3 D 4 e dtype: object NumPy ufuncs work well here. For example, we can sort by the ``sin`` of the value >>> s = pd.Series([-4, -2, 0, 2, 4]) >>> s.sort_values(key=np.sin) 1 -2 4 4 2 0 0 -4 3 2 dtype: int64 More complicated user-defined functions can be used, as long as they expect a Series and return an array-like >>> s.sort_values(key=lambda x: (np.tan(x.cumsum()))) 0 -4 3 2 4 4 1 -2 2 0 dtype: int64 """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError( "This Series is a view of some other array, to " "sort in-place you must create a copy" ) def _try_kind_sort(arr): arr = ensure_key_mapped(arr, key) arr = getattr(arr, "_values", arr) # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind="quicksort") arr = self._values sorted_index = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = ibase.default_index(len(self)) argsorted = _try_kind_sort(self[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError( f"Length of ascending ({len(ascending)}) must be 1 for Series" ) ascending = ascending[0] if not is_bool(ascending): raise ValueError("ascending must be boolean") if not ascending: argsorted = argsorted[::-1] if na_position == "last": n = good.sum() sorted_index[:n] = idx[good][argsorted] sorted_index[n:] = idx[bad] elif na_position == "first": n = bad.sum() sorted_index[n:] = idx[good][argsorted] sorted_index[:n] = idx[bad] else: raise ValueError(f"invalid na_position: {na_position}") result = self._constructor(arr[sorted_index], index=self.index[sorted_index]) if ignore_index: result.index = ibase.default_index(len(sorted_index)) if inplace: self._update_inplace(result) else: return result.__finalize__(self, method="sort_values") def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, key: IndexKeyFunc = None, ): """ Sort Series by index labels. Returns a new Series sorted by label if `inplace` argument is ``False``, otherwise updates the original series and returns None. Parameters ---------- axis : int, default 0 Axis to direct sorting. This can only be 0 for Series. level : int, optional If not None, sort on values in specified index level(s). ascending : bool or list of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 key : callable, optional If not None, apply the key function to the index values before sorting. This is similar to the `key` argument in the builtin :meth:`sorted` function, with the notable difference that this `key` function should be *vectorized*. It should expect an ``Index`` and return an ``Index`` of the same shape. .. versionadded:: 1.1.0 Returns ------- Series The original Series sorted by the labels. See Also -------- DataFrame.sort_index: Sort DataFrame by the index. DataFrame.sort_values: Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object Sort Descending >>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object Sort Inplace >>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object By default NaNs are put at the end, but use `na_position` to place them at the beginning >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object Specify index level to sort >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64 Does not sort by remaining levels when sorting by levels >>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64 Apply a key function before sorting >>> s = pd.Series([1, 2, 3, 4], index=['A', 'b', 'C', 'd']) >>> s.sort_index(key=lambda x : x.str.lower()) A 1 b 2 C 3 d 4 dtype: int64 """ # TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) index = ensure_key_mapped(self.index, key, levels=level) if level is not None: new_index, indexer = index.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and index.is_monotonic_increasing) or ( not ascending and index.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( index, kind=kind, ascending=ascending, na_position=na_position ) indexer = ensure_platform_int(indexer) new_index = self.index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if ignore_index: result.index = ibase.default_index(len(result)) if inplace: self._update_inplace(result) else: return result.__finalize__(self, method="sort_index") def argsort(self, axis=0, kind="quicksort", order=None) -> "Series": """ Return the integer indices that would sort the Series values. Override ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values. Parameters ---------- axis : {0 or "index"} Has no effect but is accepted for compatibility with numpy. kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See np.sort for more information. 'mergesort' is the only stable algorithm. order : None Has no effect but is accepted for compatibility with numpy. Returns ------- Series Positions of values within the sort order with -1 indicating nan values. See Also -------- numpy.ndarray.argsort : Returns the indices that would sort this array. """ values = self._values mask = isna(values) if mask.any(): result = Series(-1, index=self.index, name=self.name, dtype="int64") notmask = ~mask result[notmask] = np.argsort(values[notmask], kind=kind) return self._constructor(result, index=self.index).__finalize__( self, method="argsort" ) else: return self._constructor( np.argsort(values, kind=kind), index=self.index, dtype="int64" ).__finalize__(self, method="argsort") def nlargest(self, n=5, keep="first") -> "Series": """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Montserrat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Montserrat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest() def nsmallest(self, n=5, keep="first") -> "Series": """ Return the smallest `n` elements. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. See Also -------- Series.nlargest: Get the `n` largest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Montserrat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Montserrat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Montserrat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Montserrat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Montserrat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Montserrat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest() def swaplevel(self, i=-2, j=-1, copy=True) -> "Series": """ Swap levels i and j in a :class:`MultiIndex`. Default is to swap the two innermost levels of the index. Parameters ---------- i, j : int, str Level of the indices to be swapped. Can pass level name as string. copy : bool, default True Whether to copy underlying data. Returns ------- Series Series with levels swapped in MultiIndex. """ assert isinstance(self.index, MultiIndex) new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__( self, method="swaplevel" ) def reorder_levels(self, order) -> "Series": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int representing new level order Reference level by number or key. Returns ------- type of caller (new object) """ if not isinstance(self.index, MultiIndex): # pragma: no cover raise Exception("Can only reorder levels on a hierarchical axis.") result = self.copy() assert isinstance(result.index, MultiIndex) result.index = result.index.reorder_levels(order) return result def explode(self, ignore_index: bool = False) -> "Series": """ Transform each element of a list-like to a row. .. versionadded:: 0.25.0 Parameters ---------- ignore_index : bool, default False If True, the resulting index will be labeled 0, 1, …, n - 1. .. versionadded:: 1.1.0 Returns ------- Series Exploded lists to rows; index will be duplicated for these rows. See Also -------- Series.str.split : Split string values on specified separator. Series.unstack : Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. DataFrame.melt : Unpivot a DataFrame from wide format to long format. DataFrame.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> s = pd.Series([[1, 2, 3], 'foo', [], [3, 4]]) >>> s 0 [1, 2, 3] 1 foo 2 [] 3 [3, 4] dtype: object >>> s.explode() 0 1 0 2 0 3 1 foo 2 NaN 3 3 3 4 dtype: object """ if not len(self) or not is_object_dtype(self): return self.copy() values, counts = reshape.explode(np.asarray(self.array)) if ignore_index: index = ibase.default_index(len(values)) else: index = self.index.repeat(counts) result = self._constructor(values, index=index, name=self.name) return result def unstack(self, level=-1, fill_value=None): """ Unstack, also known as pivot, Series with MultiIndex to produce DataFrame. Parameters ---------- level : int, str, or list of these, default last level Level(s) to unstack, can pass level name. fill_value : scalar value, default None Value to use when replacing NaN values. Returns ------- DataFrame Unstacked Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4], ... index=pd.MultiIndex.from_product([['one', 'two'], ... ['a', 'b']])) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # function application def map(self, arg, na_action=None) -> "Series": """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, collections.abc.Mapping subclass or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. See Also -------- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes ----- When ``arg`` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``. Examples -------- >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object """ new_values = super()._map_values(arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__( self, method="map" ) def _gotitem(self, key, ndim, subset=None) -> "Series": """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 Requested ndim of result. subset : object, default None Subset to act on. """ return self _agg_see_also_doc = dedent( """ See Also -------- Series.apply : Invoke function on a Series. Series.transform : Transform function producing a Series with like indexes. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64 """ ) @doc( generic._shared_docs["aggregate"], klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", ) def aggregate(self, func=None, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) # if func is None, will switch to user-provided "named aggregation" kwargs if func is None: func = dict(kwargs.items()) result, how = self._aggregate(func, *args, **kwargs) if result is None: # we can be called from an inner function which # passes this meta-data kwargs.pop("_axis", None) kwargs.pop("_level", None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, because # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.apply(func, *args, **kwargs) except (ValueError, AttributeError, TypeError): result = func(self, *args, **kwargs) return result agg = aggregate @doc( NDFrame.transform, klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], ) def transform(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) return super().transform(func, *args, **kwargs) def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters ---------- func : function Python function or NumPy ufunc to apply. convert_dtype : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. args : tuple Positional arguments passed to func after the series value. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a DataFrame. See Also -------- Series.map: For element-wise operations. Series.agg: Only perform aggregating type operations. Series.transform: Only perform transforming type operations. Examples -------- Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """ if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__( self, method="apply" ) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, str): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func with np.errstate(all="ignore"): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_array_dtype(self.dtype) and hasattr(self._values, "map"): # GH#23179 some EAs do not have `map` mapped = self._values.map(f) else: values = self.astype(object)._values mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): # GH 25959 use pd.array instead of tolist # so extension arrays can be used return self._constructor_expanddim(pd.array(mapped), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__( self, method="apply" ) def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): """ Perform a reduction operation. If we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object. """ delegate = self._values if axis is not None: self._get_axis_number(axis) if isinstance(delegate, ExtensionArray): # dispatch to ExtensionArray interface return delegate._reduce(name, skipna=skipna, **kwds) else: # dispatch to numpy arrays if numeric_only: raise NotImplementedError( f"Series.{name} does not implement numeric_only." ) with np.errstate(all="ignore"): return op(delegate, skipna=skipna, **kwds) def _reindex_indexer(self, new_index, indexer, copy): if indexer is None: if copy: return self.copy() return self new_values = algorithms.take_1d( self._values, indexer, allow_fill=True, fill_value=None ) return self._constructor(new_values, index=new_index) def _needs_reindex_multi(self, axes, method, level): """ Check if we do need a multi reindex; this is for compat with higher dims. """ return False @doc( NDFrame.align, klass=_shared_doc_kwargs["klass"], axes_single_arg=_shared_doc_kwargs["axes_single_arg"], ) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) def rename( self, index=None, *, axis=None, copy=True, inplace=False, level=None, errors="ignore", ): """ Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- axis : {0 or "index"} Unused. Accepted for compatibility with DataFrame method only. index : scalar, hashable sequence, dict-like or function, optional Functions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. **kwargs Additional keyword arguments passed to the function. Only the "inplace" keyword is used. Returns ------- Series Series with index labels or name altered. See Also -------- DataFrame.rename : Corresponding DataFrame method. Series.rename_axis : Set the name of the axis. Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """ if callable(index) or is_dict_like(index): return super().rename( index, copy=copy, inplace=inplace, level=level, errors=errors ) else: return self._set_name(index, inplace=inplace) @Appender( """ Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0) a 1 b 2 c 3 dtype: int64 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub="", axis_description_sub="", see_also_sub="", ) @Appender(generic.NDFrame.set_axis.__doc__) def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): return super().set_axis(labels, axis=axis, inplace=inplace) @doc( NDFrame.reindex, klass=_shared_doc_kwargs["klass"], axes=_shared_doc_kwargs["axes"], optional_labels=_shared_doc_kwargs["optional_labels"], optional_axis=_shared_doc_kwargs["optional_axis"], ) def reindex(self, index=None, **kwargs): return super().reindex(index=index, **kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ) -> "Series": """ Return Series with specified index labels removed. Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index labels to drop. axis : 0, default 0 Redundant for application on Series. index : single label or list-like Redundant for application on Series, but 'index' can be used instead of 'labels'. columns : single label or list-like No change is made to the Series; use 'index' or 'labels' instead. level : int or level name, optional For MultiIndex, level for which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- Series Series with specified index labels removed. Raises ------ KeyError If none of the labels are found in the index. See Also -------- Series.reindex : Return only specified index labels of Series. Series.dropna : Return series without null values. Series.drop_duplicates : Return Series with duplicate values removed. DataFrame.drop : Drop specified labels from rows or columns. Examples -------- >>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64 Drop labels B en C >>> s.drop(labels=['B', 'C']) A 0 dtype: int64 Drop 2nd level label in MultiIndex Series >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 >>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @doc(NDFrame.fillna, **_shared_doc_kwargs) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["Series"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) def pop(self, item: Label) -> Any: """ Return item and drops from series. Raise KeyError if not found. Parameters ---------- item : label Index of the element that needs to be removed. Returns ------- Value that is popped from series. Examples -------- >>> ser = pd.Series([1,2,3]) >>> ser.pop(0) 1 >>> ser 1 2 2 3 dtype: int64 """ return super().pop(item=item) @doc(NDFrame.replace, klass=_shared_doc_kwargs["klass"]) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @doc(NDFrame.shift, klass=_shared_doc_kwargs["klass"]) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "Series": return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def memory_usage(self, index=True, deep=False): """ Return the memory usage of the Series. The memory usage can optionally include the contribution of the index and of elements of `object` dtype. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the Series index. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned value. Returns ------- int Bytes of memory consumed. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. DataFrame.memory_usage : Bytes consumed by a DataFrame. Examples -------- >>> s = pd.Series(range(3)) >>> s.memory_usage() 152 Not including the index gives the size of the rest of the data, which is necessarily smaller: >>> s.memory_usage(index=False) 24 The memory footprint of `object` values is ignored by default: >>> s = pd.Series(["a", "b"]) >>> s.values array(['a', 'b'], dtype=object) >>> s.memory_usage() 144 >>> s.memory_usage(deep=True) 260 """ v = super().memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v def isin(self, values) -> "Series": """ Whether elements in Series are contained in `values`. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- Series Series of booleans indicating if each element is in values. Raises ------ TypeError * If `values` is a string See Also -------- DataFrame.isin : Equivalent method on DataFrame. Examples -------- >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool """ result = algorithms.isin(self, values) return self._constructor(result, index=self.index).__finalize__( self, method="isin" ) def between(self, left, right, inclusive=True) -> "Series": """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar or list-like Left boundary. right : scalar or list-like Right boundary. inclusive : bool, default True Include boundaries. Returns ------- Series Series representing whether each element is between left and right (inclusive). See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``False`` boundary values are excluded: >>> s.between(1, 4, inclusive=False) 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """ if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask # ---------------------------------------------------------------------- # Convert to types that support pd.NA def _convert_dtypes( self, infer_objects: bool = True, convert_string: bool = True, convert_integer: bool = True, convert_boolean: bool = True, ) -> "Series": input_series = self if infer_objects: input_series = input_series.infer_objects() if is_object_dtype(input_series): input_series = input_series.copy() if convert_string or convert_integer or convert_boolean: inferred_dtype = convert_dtypes( input_series._values, convert_string, convert_integer, convert_boolean ) try: result = input_series.astype(inferred_dtype) except TypeError: result = input_series.copy() else: result = input_series.copy() return result @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isna(self) -> "Series": return super().isna() @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isnull(self) -> "Series": return super().isnull() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notna(self) -> "Series": return super().notna() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notnull(self) -> "Series": return super().notnull() def dropna(self, axis=0, inplace=False, how=None): """ Return a new Series with missing values removed. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. how : str, optional Not in use. Kept for compatibility. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy() # ---------------------------------------------------------------------- # Time series-oriented methods def to_timestamp(self, freq=None, how="start", copy=True) -> "Series": """ Cast to DatetimeIndex of Timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. copy : bool, default True Whether or not to return a copy. Returns ------- Series with DatetimeIndex """ new_values = self._values if copy: new_values = new_values.copy() if not isinstance(self.index, PeriodIndex): raise TypeError(f"unsupported Type {type(self.index).__name__}") new_index = self.index.to_timestamp(freq=freq, how=how) # type: ignore return self._constructor(new_values, index=new_index).__finalize__( self, method="to_timestamp" ) def to_period(self, freq=None, copy=True) -> "Series": """ Convert Series from DatetimeIndex to PeriodIndex. Parameters ---------- freq : str, default None Frequency associated with the PeriodIndex. copy : bool, default True Whether or not to return a copy. Returns ------- Series Series with index converted to PeriodIndex. """ new_values = self._values if copy: new_values = new_values.copy() if not isinstance(self.index, DatetimeIndex): raise TypeError(f"unsupported Type {type(self.index).__name__}") new_index = self.index.to_period(freq=freq) return self._constructor(new_values, index=new_index).__finalize__( self, method="to_period" ) # ---------------------------------------------------------------------- # Add index _AXIS_ORDERS = ["index"] _AXIS_REVERSED = False _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number = 0 _info_axis_name = "index" index: "Index" = properties.AxisProperty( axis=0, doc="The index (axis labels) of the Series." ) # ---------------------------------------------------------------------- # Accessor Methods # ---------------------------------------------------------------------- str = CachedAccessor("str", StringMethods) dt = CachedAccessor("dt", CombinedDatetimelikeProperties) cat = CachedAccessor("cat", CategoricalAccessor) plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) sparse = CachedAccessor("sparse", SparseAccessor) # ---------------------------------------------------------------------- # Add plotting methods to Series hist = pandas.plotting.hist_series Series._add_numeric_operations() Series._add_series_or_dataframe_operations() # Add arithmetic! ops.add_flex_arithmetic_methods(Series) ops.add_special_arithmetic_methods(Series)
the-stack_0_8495
""" Support for Wink lights. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/light.wink/ """ import colorsys from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_RGB_COLOR, SUPPORT_BRIGHTNESS, SUPPORT_COLOR_TEMP, SUPPORT_RGB_COLOR, Light) from homeassistant.components.wink import WinkDevice from homeassistant.util import color as color_util from homeassistant.util.color import \ color_temperature_mired_to_kelvin as mired_to_kelvin DEPENDENCIES = ['wink'] SUPPORT_WINK = SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP | SUPPORT_RGB_COLOR def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the Wink lights.""" import pywink add_devices(WinkLight(light, hass) for light in pywink.get_bulbs()) class WinkLight(WinkDevice, Light): """Representation of a Wink light.""" def __init__(self, wink, hass): """Initialize the Wink device.""" WinkDevice.__init__(self, wink, hass) @property def is_on(self): """Return true if light is on.""" return self.wink.state() @property def brightness(self): """Return the brightness of the light.""" if self.wink.brightness() is not None: return int(self.wink.brightness() * 255) else: return None @property def rgb_color(self): """Current bulb color in RGB.""" if not self.wink.supports_hue_saturation(): return None else: hue = self.wink.color_hue() saturation = self.wink.color_saturation() value = int(self.wink.brightness() * 255) if hue is None or saturation is None or value is None: return None rgb = colorsys.hsv_to_rgb(hue, saturation, value) r_value = int(round(rgb[0])) g_value = int(round(rgb[1])) b_value = int(round(rgb[2])) return r_value, g_value, b_value @property def xy_color(self): """Current bulb color in CIE 1931 (XY) color space.""" if not self.wink.supports_xy_color(): return None return self.wink.color_xy() @property def color_temp(self): """Current bulb color in degrees Kelvin.""" if not self.wink.supports_temperature(): return None return color_util.color_temperature_kelvin_to_mired( self.wink.color_temperature_kelvin()) @property def supported_features(self): """Flag supported features.""" return SUPPORT_WINK def turn_on(self, **kwargs): """Turn the switch on.""" brightness = kwargs.get(ATTR_BRIGHTNESS) rgb_color = kwargs.get(ATTR_RGB_COLOR) color_temp_mired = kwargs.get(ATTR_COLOR_TEMP) state_kwargs = { } if rgb_color: if self.wink.supports_xy_color(): xyb = color_util.color_RGB_to_xy(*rgb_color) state_kwargs['color_xy'] = xyb[0], xyb[1] state_kwargs['brightness'] = xyb[2] elif self.wink.supports_hue_saturation(): hsv = colorsys.rgb_to_hsv(rgb_color[0], rgb_color[1], rgb_color[2]) state_kwargs['color_hue_saturation'] = hsv[0], hsv[1] if color_temp_mired: state_kwargs['color_kelvin'] = mired_to_kelvin(color_temp_mired) if brightness: state_kwargs['brightness'] = brightness / 255.0 self.wink.set_state(True, **state_kwargs) def turn_off(self): """Turn the switch off.""" self.wink.set_state(False)
the-stack_0_8496
""" Django settings for healthchecks project. For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings """ import os import warnings BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def envbool(s, default): v = os.getenv(s, default=default) if v not in ("", "True", "False"): msg = "Unexpected value %s=%s, use 'True' or 'False'" % (s, v) raise Exception(msg) return v == "True" def envint(s, default): v = os.getenv(s, default) if v == "None": return None return int(v) SECRET_KEY = os.getenv("SECRET_KEY", "---") METRICS_KEY = os.getenv("METRICS_KEY") DEBUG = envbool("DEBUG", "True") ALLOWED_HOSTS = os.getenv("ALLOWED_HOSTS", "*").split(",") DEFAULT_FROM_EMAIL = os.getenv("DEFAULT_FROM_EMAIL", "[email protected]") SUPPORT_EMAIL = os.getenv("SUPPORT_EMAIL") USE_PAYMENTS = envbool("USE_PAYMENTS", "False") REGISTRATION_OPEN = envbool("REGISTRATION_OPEN", "True") VERSION = "" with open(os.path.join(BASE_DIR, "CHANGELOG.md"), encoding="utf-8") as f: for line in f.readlines(): if line.startswith("## v"): VERSION = line.split()[1] break INSTALLED_APPS = ( "hc.accounts", "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.humanize", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "compressor", "hc.api", "hc.front", "hc.payments", ) MIDDLEWARE = ( "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "django.middleware.locale.LocaleMiddleware", "hc.accounts.middleware.TeamAccessMiddleware", ) AUTHENTICATION_BACKENDS = ( "hc.accounts.backends.EmailBackend", "hc.accounts.backends.ProfileBackend", ) ROOT_URLCONF = "hc.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [os.path.join(BASE_DIR, "templates")], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "hc.front.context_processors.branding", "hc.payments.context_processors.payments", ] }, } ] WSGI_APPLICATION = "hc.wsgi.application" TEST_RUNNER = "hc.api.tests.CustomRunner" # Default database engine is SQLite. So one can just check out code, # install requirements.txt and do manage.py runserver and it works DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": os.getenv("DB_NAME", BASE_DIR + "/hc.sqlite"), } } # You can switch database engine to postgres or mysql using environment # variable 'DB'. Travis CI does this. if os.getenv("DB") == "postgres": DATABASES = { "default": { "ENGINE": "django.db.backends.postgresql", "HOST": os.getenv("DB_HOST", ""), "PORT": os.getenv("DB_PORT", ""), "NAME": os.getenv("DB_NAME", "hc"), "USER": os.getenv("DB_USER", "postgres"), "PASSWORD": os.getenv("DB_PASSWORD", ""), "CONN_MAX_AGE": envint("DB_CONN_MAX_AGE", "0"), "TEST": {"CHARSET": "UTF8"}, "OPTIONS": { "sslmode": os.getenv("DB_SSLMODE", "prefer"), "target_session_attrs": os.getenv( "DB_TARGET_SESSION_ATTRS", "read-write" ), }, } } if os.getenv("DB") == "mysql": DATABASES = { "default": { "ENGINE": "django.db.backends.mysql", "HOST": os.getenv("DB_HOST", ""), "PORT": os.getenv("DB_PORT", ""), "NAME": os.getenv("DB_NAME", "hc"), "USER": os.getenv("DB_USER", "root"), "PASSWORD": os.getenv("DB_PASSWORD", ""), "TEST": {"CHARSET": "UTF8"}, } } USE_TZ = True TIME_ZONE = "UTC" USE_I18N = True USE_L10N = False LOCALE_PATHS = (os.path.join(BASE_DIR, "locale"),) SITE_ROOT = os.getenv("SITE_ROOT", "http://localhost:8000") SITE_NAME = os.getenv("SITE_NAME", "Mychecks") MASTER_BADGE_LABEL = os.getenv("MASTER_BADGE_LABEL", SITE_NAME) PING_ENDPOINT = os.getenv("PING_ENDPOINT", SITE_ROOT + "/ping/") PING_EMAIL_DOMAIN = os.getenv("PING_EMAIL_DOMAIN", "localhost") PING_BODY_LIMIT = envint("PING_BODY_LIMIT", "10000") STATIC_URL = "/static/" STATICFILES_DIRS = [os.path.join(BASE_DIR, "static")] STATIC_ROOT = os.path.join(BASE_DIR, "static-collected") STATICFILES_FINDERS = ( "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", "compressor.finders.CompressorFinder", ) COMPRESS_OFFLINE = True COMPRESS_CSS_HASHING_METHOD = "content" # Discord integration DISCORD_CLIENT_ID = os.getenv("DISCORD_CLIENT_ID") DISCORD_CLIENT_SECRET = os.getenv("DISCORD_CLIENT_SECRET") # Email integration EMAIL_HOST = os.getenv("EMAIL_HOST", "") EMAIL_PORT = envint("EMAIL_PORT", "587") EMAIL_HOST_USER = os.getenv("EMAIL_HOST_USER", "") EMAIL_HOST_PASSWORD = os.getenv("EMAIL_HOST_PASSWORD", "") EMAIL_USE_TLS = envbool("EMAIL_USE_TLS", "True") EMAIL_USE_VERIFICATION = envbool("EMAIL_USE_VERIFICATION", "True") # Slack integration SLACK_CLIENT_ID = os.getenv("SLACK_CLIENT_ID") SLACK_CLIENT_SECRET = os.getenv("SLACK_CLIENT_SECRET") # Pushover integration PUSHOVER_API_TOKEN = os.getenv("PUSHOVER_API_TOKEN") PUSHOVER_SUBSCRIPTION_URL = os.getenv("PUSHOVER_SUBSCRIPTION_URL") PUSHOVER_EMERGENCY_RETRY_DELAY = int(os.getenv("PUSHOVER_EMERGENCY_RETRY_DELAY", "300")) PUSHOVER_EMERGENCY_EXPIRATION = int(os.getenv("PUSHOVER_EMERGENCY_EXPIRATION", "86400")) # Pushbullet integration PUSHBULLET_CLIENT_ID = os.getenv("PUSHBULLET_CLIENT_ID") PUSHBULLET_CLIENT_SECRET = os.getenv("PUSHBULLET_CLIENT_SECRET") # Telegram integration -- override in local_settings.py TELEGRAM_BOT_NAME = os.getenv("TELEGRAM_BOT_NAME", "ExampleBot") TELEGRAM_TOKEN = os.getenv("TELEGRAM_TOKEN") # SMS and WhatsApp (Twilio) integration TWILIO_ACCOUNT = os.getenv("TWILIO_ACCOUNT") TWILIO_AUTH = os.getenv("TWILIO_AUTH") TWILIO_FROM = os.getenv("TWILIO_FROM") TWILIO_USE_WHATSAPP = envbool("TWILIO_USE_WHATSAPP", "False") # PagerDuty PD_VENDOR_KEY = os.getenv("PD_VENDOR_KEY") # Trello TRELLO_APP_KEY = os.getenv("TRELLO_APP_KEY") # Matrix MATRIX_HOMESERVER = os.getenv("MATRIX_HOMESERVER") MATRIX_USER_ID = os.getenv("MATRIX_USER_ID") MATRIX_ACCESS_TOKEN = os.getenv("MATRIX_ACCESS_TOKEN") # Apprise APPRISE_ENABLED = envbool("APPRISE_ENABLED", "False") # Local shell commands SHELL_ENABLED = envbool("SHELL_ENABLED", "False") # LINE Notify LINENOTIFY_CLIENT_ID = os.getenv("LINENOTIFY_CLIENT_ID") LINENOTIFY_CLIENT_SECRET = os.getenv("LINENOTIFY_CLIENT_SECRET") if os.path.exists(os.path.join(BASE_DIR, "hc/local_settings.py")): from .local_settings import * else: warnings.warn("local_settings.py not found, using defaults")
the-stack_0_8497
# Copyright (c) Microsoft Corporation # Licensed under the MIT License. """Defines the dashboard class.""" import json import os import uuid from html.parser import HTMLParser from rai_core_flask import FlaskHelper # , environment_detector from responsibleai.serialization_utilities import serialize_json_safe class InLineScript(HTMLParser): def __init__(self, load_widget_file): HTMLParser.__init__(self) self.content = "" self.load_widget_file = load_widget_file def handle_starttag(self, tag, attrs): if tag == "script": src = None scriptTag = "<script " for att in attrs: if att[0] == "src": src = att[1] continue # skip module type as it causes ipython to render widget # with 8px height if att[0] == "type": continue scriptTag += f' {att[0]}={att[1]}' if src is not None: content = self.load_widget_file(src) self.content += f'{scriptTag}>\r\n{content}\r\n' return self.content += self.get_starttag_text() def handle_endtag(self, tag): self.content += f'</{tag}>' pass def handle_data(self, data): self.content += data pass class Dashboard(object): """The dashboard class, wraps the dashboard component.""" def __init__(self, *, dashboard_type, model_data, public_ip, port, locale, no_inline_dashboard=False): """Initialize the dashboard.""" if model_data is None or type is None: raise ValueError("Required parameters not provided") try: self._service = FlaskHelper(ip=public_ip, port=port) except Exception as e: self._service = None raise e self.id = uuid.uuid4().hex self.config = { 'dashboardType': dashboard_type, 'id': self.id, 'baseUrl': self._service.env.base_url, 'withCredentials': self._service.with_credentials, 'locale': locale } self.model_data = model_data self.add_route() html = self.load_index() print(f'{dashboard_type} started at {self._service.env.base_url}') if no_inline_dashboard: return self._service.env.display(html) def add_route(self): # To enable multiple dashboards to run in the same notebook we need to # prevent them from using the same method names (in addition to using # dedicated ports). Below we rename the function for that purpose and # manually add the URL rule instead of using the route decorator. def visual(): return self.load_index() self.add_url_rule(visual, '/', methods=["GET"]) return @staticmethod def get_widget_path(path): script_path = os.path.dirname(os.path.abspath(__file__)) return os.path.join(script_path, "widget", path) def load_index(self): index = self.load_widget_file("index.html") parser = InLineScript(self.load_widget_file) parser.feed(index) return parser.content def load_widget_file(self, path): js_path = Dashboard.get_widget_path(path) with open(js_path, "r", encoding="utf-8") as f: content = f.read() content = content.replace( "__rai_app_id__", f'rai_widget_{self.id}') content = content.replace( '"__rai_config__"', f'`{json.dumps(self.config)}`') model_data = json.dumps(self.model_data, default=serialize_json_safe) content = content.replace( '"__rai_model_data__"', f'`{model_data}`') return content def add_url_rule(self, func, route, methods): """To enable multiple dashboards to run in the same notebook we need to prevent them from using the same method names (in addition to using dedicated ports). We rename the function for that purpose and manually add the URL rule instead of using the route decorator. """ func.__name__ = func.__name__ + str(id(self)) self._service.app.add_url_rule( route, endpoint=func.__name__, view_func=func, methods=methods)
the-stack_0_8498
import toppra import numpy as np from _mplib import * import toppra as ta import toppra.constraint as constraint import toppra.algorithm as algo from transforms3d.quaternions import quat2mat from typing import Tuple class Planner(object): def __init__( self, urdf="./panda/panda.urdf", srdf="./panda/panda.srdf", # align the order of user links user_link_names=['panda_link0', 'panda_link1', 'panda_link2', 'panda_link3', 'panda_link4', 'panda_link5', 'panda_link6', 'panda_link7', 'panda_link8', 'panda_hand', 'panda_leftfinger', 'panda_rightfinger'], # align the order of user joints user_joint_names=['panda_joint1', 'panda_joint2', 'panda_joint3', 'panda_joint4', 'panda_joint5', 'panda_joint6', 'panda_joint7', 'panda_finger_joint1', 'panda_finger_joint2'], move_group="ee_link", joint_vel_limits=np.ones(7), joint_acc_limits=np.ones(7) ): self.urdf = urdf self.srdf = srdf self.user_link_names = user_link_names self.user_joint_names = user_joint_names self.joint_name_2_idx = {} for i, joint in enumerate(self.user_joint_names): self.joint_name_2_idx[joint] = i self.link_name_2_idx = {} for i, link in enumerate(self.user_link_names): self.link_name_2_idx[link] = i self.robot = articulation.ArticulatedModel(urdf, srdf, [0, 0, -9.81], self.user_joint_names, self.user_link_names, verbose=False, convex=True) self.planning_world = planning_world.PlanningWorld([self.robot], ["robot"], [], []) self.move_group = move_group self.robot.set_move_group(self.move_group) self.move_group_joint_indices = self.robot.get_move_group_joint_indices() self.pinocchio_model = self.robot.get_pinocchio_model() self.joint_types = self.pinocchio_model.get_joint_types() self.joint_limits = np.concatenate(self.pinocchio_model.get_joint_limits()) self.planner = ompl.OMPLPlanner(world=self.planning_world) self.joint_vel_limits = joint_vel_limits self.joint_acc_limits = joint_acc_limits self.move_group_link_id = self.link_name_2_idx[self.move_group] assert(len(self.joint_vel_limits) == len(self.move_group_joint_indices)) assert(len(self.joint_acc_limits) == len(self.move_group_joint_indices)) def distance_6D(self, p1, q1, p2, q2): return np.linalg.norm(p1 - p2) + min(np.linalg.norm(q1 - q2), np.linalg.norm(q1 + q2)) def check_joint_limit(self, q): n = len(q) flag = True for i in range(n): if self.joint_types[i].startswith("JointModelR"): if (np.abs(q[i] - self.joint_limits[i][0]) < 1e-3): continue q[i] -= 2 * np.pi * np.floor((q[i] - self.joint_limits[i][0]) / (2 * np.pi)) if q[i] > self.joint_limits[i][1] + 1e-3: flag = False else: if q[i] < self.joint_limits[i][0] - 1e-3 or q[i] > self.joint_limits[i][1] + 1e-3: flag = False return flag def IK(self, goal_pose, start_qpos, n_init_qpos = 20, threshold = 1e-3): index = self.link_name_2_idx[self.move_group] min_dis = 1e9 result = np.zeros(len(self.user_joint_names)) for i in range(n_init_qpos): ik_results = self.pinocchio_model.compute_IK_CLIK(index, goal_pose, start_qpos) flag = self.check_joint_limit(np.copy(ik_results[0])) if flag: self.pinocchio_model.compute_forward_kinematics(ik_results[0]) new_pose = self.pinocchio_model.get_link_pose(index) tmp_dis = self.distance_6D(goal_pose[:3], goal_pose[3:], new_pose[:3], new_pose[3:]) if tmp_dis < min_dis: min_dis = tmp_dis result = ik_results[0] if min_dis < threshold: return "Success", result start_qpos = self.pinocchio_model.get_random_configuration() if min_dis != 1e9: status = "IK Failed! Distance %lf is greater than threshold %lf." % (min_dis, threshold) else: status = "IK Failed! Cannot find valid solution." return status, result def TOPP(self, path, step = 0.1, verbose = False): N_samples = path.shape[0] dof = path.shape[1] assert(dof == len(self.joint_vel_limits)) assert(dof == len(self.joint_acc_limits)) ss = np.linspace(0, 1, N_samples) path = ta.SplineInterpolator(ss, path) pc_vel = constraint.JointVelocityConstraint(self.joint_vel_limits) pc_acc = constraint.JointAccelerationConstraint(self.joint_acc_limits) instance = algo.TOPPRA([pc_vel, pc_acc], path, parametrizer="ParametrizeConstAccel") jnt_traj = instance.compute_trajectory() ts_sample = np.linspace(0, jnt_traj.duration, int(jnt_traj.duration / step)) qs_sample = jnt_traj(ts_sample) qds_sample = jnt_traj(ts_sample, 1) qdds_sample = jnt_traj(ts_sample, 2) return ts_sample, qs_sample, qds_sample, qdds_sample, jnt_traj.duration def update_point_cloud(self, pc, resolution = 1e-3): self.planning_world.update_point_cloud(pc, resolution) def update_attached_box(self, size, pose, link_id = -1): if link_id == -1: link_id = self.move_group_link_id self.planning_world.update_attached_box(size, link_id, pose) def plan(self, goal_pose, current_qpos, time_step = 0.1, rrt_range = 0.1, planning_time = 1, fix_joint_limits = True, use_point_cloud = False, use_attach = False, verbose = False): self.planning_world.set_use_point_cloud(use_point_cloud) self.planning_world.set_use_attach(use_attach) n = current_qpos.shape[0] if fix_joint_limits: for i in range(n): if current_qpos[i] < self.joint_limits[i][0]: current_qpos[i] = self.joint_limits[i][0] + 1e-3 if current_qpos[i] > self.joint_limits[i][1]: current_qpos[i] = self.joint_limits[i][1] - 1e-3 idx = self.move_group_joint_indices ik_status, goal_qpos = self.IK(goal_pose, current_qpos) if ik_status != "Success": return {"status": ik_status} self.robot.set_qpos(current_qpos, True) status, path = self.planner.plan(current_qpos[idx], goal_qpos[idx], range = rrt_range, verbose = verbose, time = planning_time) if status == "Exact solution": if verbose: ta.setup_logging("INFO") else: ta.setup_logging("WARNING") times, pos, vel, acc, duration = self.TOPP(path, time_step) return {"status": "Success", "time": times, "position": pos, "velocity": vel, "acceleration": acc, "duration": duration} else: return {"status": "RRT Failed. %s" % status} def plan_screw(self, target_pose, qpos, qpos_step = 0.1, time_step = 0.1, use_point_cloud = False, use_attach = False, verbose = False): self.planning_world.set_use_point_cloud(use_point_cloud) self.planning_world.set_use_attach(use_attach) qpos = np.copy(qpos) self.robot.set_qpos(qpos, True) def pose7D2mat(pose): mat = np.eye(4) mat[0:3, 3] = pose[:3] mat[0:3, 0:3] = quat2mat(pose[3:]) return mat def skew(vec): return np.array([[0, -vec[2], vec[1]], [vec[2], 0, -vec[0]], [-vec[1], vec[0], 0]]) def pose2exp_coordinate(pose: np.ndarray) -> Tuple[np.ndarray, float]: def rot2so3(rotation: np.ndarray): assert rotation.shape == (3, 3) if np.isclose(rotation.trace(), 3): return np.zeros(3), 1 if np.isclose(rotation.trace(), -1): return np.zeros(3), -1e6 theta = np.arccos((rotation.trace() - 1) / 2) omega = 1 / 2 / np.sin(theta) * np.array( [rotation[2, 1] - rotation[1, 2], rotation[0, 2] - rotation[2, 0], rotation[1, 0] - rotation[0, 1]]).T return omega, theta omega, theta = rot2so3(pose[:3, :3]) if theta < -1e5: return omega, theta ss = skew(omega) inv_left_jacobian = np.eye(3) / theta - 0.5 * ss + ( 1.0 / theta - 0.5 / np.tan(theta / 2)) * ss @ ss v = inv_left_jacobian @ pose[:3, 3] return np.concatenate([v, omega]), theta self.pinocchio_model.compute_forward_kinematics(qpos) ee_index = self.link_name_2_idx[self.move_group] current_p = pose7D2mat(self.pinocchio_model.get_link_pose(ee_index)) target_p = pose7D2mat(target_pose) relative_transform = target_p @ np.linalg.inv(current_p) omega, theta = pose2exp_coordinate(relative_transform) if theta < -1e4: return {"status": "screw plan failed."} omega = omega.reshape((-1, 1)) * theta index = self.move_group_joint_indices path = [np.copy(qpos[index])] while True: self.pinocchio_model.compute_full_jacobian(qpos) J = self.pinocchio_model.get_link_jacobian(ee_index, local = False) delta_q = np.linalg.pinv(J) @ omega delta_q *= qpos_step / (np.linalg.norm(delta_q)) delta_twist = J @ delta_q flag = False if np.linalg.norm(delta_twist) > np.linalg.norm(omega): ratio = np.linalg.norm(omega) / np.linalg.norm(delta_twist) delta_q = delta_q * ratio delta_twist = delta_twist * ratio flag = True qpos += delta_q.reshape(-1) omega -= delta_twist def check_joint_limit(q): n = len(q) for i in range(n): if q[i] < self.joint_limits[i][0] - 1e-3 or q[i] > self.joint_limits[i][1] + 1e-3: return False return True within_joint_limit = check_joint_limit(qpos) self.planning_world.set_qpos_all(qpos[index]) collide = self.planning_world.collide() if np.linalg.norm(delta_twist) < 1e-4 or collide or within_joint_limit == False: return {"status": "screw plan failed"} path.append(np.copy(qpos[index])) if flag: if verbose: ta.setup_logging("INFO") else: ta.setup_logging("WARNING") times, pos, vel, acc, duration = self.TOPP(np.vstack(path), time_step) return {"status": "Success", "time": times, "position": pos, "velocity": vel, "acceleration": acc, "duration": duration}
the-stack_0_8499
from __future__ import division import argparse import copy import os import os.path as osp import time import mmcv import torch from mmcv import Config from mmcv.runner import init_dist from mmdet import __version__ from mmdet.apis import set_random_seed, train_detector from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.utils import collect_env, get_root_logger def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work_dir', help='the dir to save logs and models') parser.add_argument( '--resume_from', help='the checkpoint file to resume from') parser.add_argument( '--validate', action='store_true', help='whether to evaluate the checkpoint during training') parser.add_argument( '--gpus', type=int, default=1, help='number of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument( '--autoscale-lr', action='store_true', help='automatically scale lr with the number of gpus') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # update configs according to CLI args if args.work_dir is not None: cfg.work_dir = args.work_dir if args.resume_from is not None: cfg.resume_from = args.resume_from cfg.gpus = args.gpus if args.autoscale_lr: # apply the linear scaling rule (https://arxiv.org/abs/1706.02677) cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8 # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, '{}.log'.format(timestamp)) logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([('{}: {}'.format(k, v)) for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info('Distributed training: {}'.format(distributed)) logger.info('Config:\n{}'.format(cfg.text)) # set random seeds if args.seed is not None: logger.info('Set random seed to {}, deterministic: {}'.format( args.seed, args.deterministic)) set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed model = build_detector( cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__, config=cfg.text, CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector( model, datasets, cfg, distributed=distributed, validate=args.validate, timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
the-stack_0_8504
from recipe_scrapers.heb import HEB from tests import ScraperTest class TestHEBScraper(ScraperTest): scraper_class = HEB def test_host(self): self.assertEqual("heb.com", self.harvester_class.host()) def test_canonical_url(self): self.assertEqual( "https://www.heb.com/recipe/recipe-item/truffled-spaghetti-squash/1398755977632", self.harvester_class.canonical_url(), ) def test_title(self): self.assertEqual("Truffled Spaghetti Squash", self.harvester_class.title()) def test_total_time(self): self.assertEqual(60, self.harvester_class.total_time()) def test_yields(self): self.assertEqual("8 servings", self.harvester_class.yields()) def test_ingredients(self): self.assertEqual( [ "1 large spaghetti squash", "1 Tsp Sabatino Truffle salt", "4 Tbsp unsalted butter", "1 Tbsp Rustico Truffle Oil", ], self.harvester_class.ingredients(), ) def test_instructions(self): self.assertEqual( "\n".join( [ "Preheat oven to 400˚F. Cut spaghetti squash in half from top to bottom (lengthwise).", "Place the spaghetti squash halves, cut side down onto a sheet pan. Roast for 30-45 minutes or until a knife can pierce the outside of skin easily, like a baked potato.", "Once Squash is fully cooked and soft remove it from oven and let it cool for 10 minutes before scooping out meat of squash. In a serving bowl scoop or with a fork scrape out squash and add truffle salt, butter and truffle oil.", "Toss all ingredients together until butter is fully melted. Season to taste if needed and serve warm.", ] ), self.harvester_class.instructions(), ) def test_image(self): self.assertEqual( "https://images.heb.com/is/image/HEBGrocery/rcp-thumbnail/spicy-spaghetti-squash-boats-recipe.jpg", self.harvester_class.image(), )
the-stack_0_8505
import cStringIO import logging from datetime import datetime from clarity_ext_scripts.covid.controls import controls_barcode_generator from clarity_ext_scripts.covid.services.knm_service import KNMClientFromExtension from clarity_ext_scripts.covid.create_samples.common import ( BaseRawSampleListFile, ValidatedSampleListFile, BaseValidateRawSampleListExtension, BUTTON_TEXT_ASSIGN_UNREGISTERED_TO_ANONYMOUS ) logger = logging.getLogger(__name__) class RawSampleListColumns(object): COLUMN_REFERENCE = "Sample Id" COLUMN_POSITION = "Position" COLUMN_USER_DEFINED1 = "USERDEFINED1" COLUMN_USER_DEFINED5 = "USERDEFINED5" HEADERS = ["Rack Id", "Cavity Id", COLUMN_POSITION, COLUMN_REFERENCE, "CONCENTRATION", "CONCENTRATIONUNIT", "VOLUME", COLUMN_USER_DEFINED1, "USERDEFINED2", "USERDEFINED3", "USERDEFINED4", COLUMN_USER_DEFINED5, # Contains a control name or the integration test knm status "PlateErrors", "SampleErrors", "SAMPLEINSTANCEID", "SAMPLEID"] # The column from which we can get the fake status in integration tests COLUMN_FAKE_STATUS = COLUMN_USER_DEFINED5 class RawSampleListFile(RawSampleListColumns, BaseRawSampleListFile): """ Describes the CSV file that hangs on the 'Raw sample list' file handle. """ @staticmethod def filter_before_parse(file_like): filtered = cStringIO.StringIO() # Ignore everything at or after the line that contains this text: stop_condition = "Sample Tracking Report Name" for line in file_like: if stop_condition in line: break filtered.write(line + "\n") filtered.seek(0) return filtered class Extension(BaseValidateRawSampleListExtension): """ Validates all samples in a sample creation list. Before execution of this script, a research engineer has uploaded a raw csv on the format: barcode;well to the `Raw sample list` file handle. This script generates a new sample list. It's equivalent to the original sample list, but also adds three new fields: ``` barcode: <barcode from csv> well: <well from csv> *status: <error | success> *service_request_id: <the service request ID from KNM> *comment: <details about the error, if any> ``` This will be the input for creating samples later on. That extension must require that there are no errors in any of the rows. If there is an error, no sample should be created. In the case of an error, the research engineer has these options: * Edit the raw sample list and run validate again. * Edit this script or request changes at KNM. * In an extreme case, e.g. given manual confirmation, the research engineer can upload a new validated file with manually edited information. """ def execute(self): # Validate the 'Raw biobank file' exists and is in concordance with the 'Raw sample list' # if not, abort script execution from clarity_ext_scripts.covid.fetch_biobank_barcodes import FetchBiobankBarcodes validator = FetchBiobankBarcodes(self.context) validator.validate() # 1. Get the ordering organizations URI try: ordering_org = self.context.current_step.udf_ordering_organization except AttributeError: self.usage_error("You must select an ordering organization") # 2. Create an API client # Make sure that there is a config at ~/.config/clarity-ext/clarity-ext.config client = KNMClientFromExtension(self) # 3. Read the raw sample list. raw_sample_list = RawSampleListFile.create_from_context(self.context) validated_sample_list = raw_sample_list.ValidatedSampleListFile() # 4. Create the validated list unregistered = list() for ix, row in validated_sample_list.csv.iterrows(): barcode = row[validated_sample_list.COLUMN_REFERENCE] well = row[validated_sample_list.COLUMN_POSITION] # NOTE: The well is in the format "A01" etc if len(well) != 3: raise AssertionError( "Expected the Position in the raw sample list to be on the format A01. " "Got: {}".format(well)) plate_row = well[0] plate_col = int(well[1:]) well = "{}:{}".format(plate_row, plate_col) # TODO It seems that we always need controls here, which # we need to check if that will always be the case. is_control = controls_barcode_generator.parse(barcode) if not is_control: service_request_id, status, comment, org_uri = self._search_for_id( validated_sample_list, client, ordering_org, row) if status == "unregistered": unregistered.append(barcode) validated_sample_list.csv.loc[ix, validated_sample_list.COLUMN_ORG_URI] = org_uri else: service_request_id = "" status = ValidatedSampleListFile.STATUS_OK comment = "" validated_sample_list.csv.loc[ix, validated_sample_list.COLUMN_SERVICE_REQUEST_ID] = service_request_id validated_sample_list.csv.loc[ix, validated_sample_list.COLUMN_STATUS] = status validated_sample_list.csv.loc[ix, validated_sample_list.COLUMN_COMMENT] = comment.replace( ",", "<SC>") # If we have the separator in the comment validated_sample_list_content = validated_sample_list.csv.to_csv( index=False, sep=",") timestamp = datetime.now().strftime("%y%m%dT%H%M%S") file_name = "validated_sample_list_{}.csv".format(timestamp) self.context.file_service.upload( "Validated sample list", file_name, validated_sample_list_content, self.context.file_service.FILE_PREFIX_NONE) if len(unregistered) > 0: self.usage_warning("The following sample are unregistered '{}'. Press '{}' " "to change the 'Status' to anonymous" "".format(unregistered, BUTTON_TEXT_ASSIGN_UNREGISTERED_TO_ANONYMOUS)) def integration_tests(self): yield self.test("24-47136", commit=False)
the-stack_0_8506
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Deft developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test processing of unrequested blocks. Setup: two nodes, node0+node1, not connected to each other. Node1 will have nMinimumChainWork set to 0x10, so it won't process low-work unrequested blocks. We have one NodeConn connection to node0 called test_node, and one to node1 called min_work_node. The test: 1. Generate one block on each node, to leave IBD. 2. Mine a new block on each tip, and deliver to each node from node's peer. The tip should advance for node0, but node1 should skip processing due to nMinimumChainWork. Node1 is unused in tests 3-7: 3. Mine a block that forks from the genesis block, and deliver to test_node. Node0 should not process this block (just accept the header), because it is unrequested and doesn't have more or equal work to the tip. 4a,b. Send another two blocks that build on the forking block. Node0 should process the second block but be stuck on the shorter chain, because it's missing an intermediate block. 4c.Send 288 more blocks on the longer chain (the number of blocks ahead we currently store). Node0 should process all but the last block (too far ahead in height). 5. Send a duplicate of the block in #3 to Node0. Node0 should not process the block because it is unrequested, and stay on the shorter chain. 6. Send Node0 an inv for the height 3 block produced in #4 above. Node0 should figure out that Node0 has the missing height 2 block and send a getdata. 7. Send Node0 the missing block again. Node0 should process and the tip should advance. 8. Create a fork which is invalid at a height longer than the current chain (ie to which the node will try to reorg) but which has headers built on top of the invalid block. Check that we get disconnected if we send more headers on the chain the node now knows to be invalid. 9. Test Node1 is able to sync when connected to node0 (which should have sufficient work on its chain). """ from test_framework.mininode import * from test_framework.test_framework import DeftTestFramework from test_framework.util import * import time from test_framework.blocktools import create_block, create_coinbase, create_transaction class AcceptBlockTest(DeftTestFramework): def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("LITECOIND", "deftd"), help="deftd binary to test") def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [[], ["-minimumchainwork=0x10"]] def setup_network(self): # Node0 will be used to test behavior of processing unrequested blocks # from peers which are not whitelisted, while Node1 will be used for # the whitelisted case. # Node2 will be used for non-whitelisted peers to test the interaction # with nMinimumChainWork. self.setup_nodes() def run_test(self): # Setup the p2p connections and start up the network thread. test_node = NodeConnCB() # connects to node0 min_work_node = NodeConnCB() # connects to node1 connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node)) connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], min_work_node)) test_node.add_connection(connections[0]) min_work_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here test_node.wait_for_verack() min_work_node.wait_for_verack() # 1. Have nodes mine a block (leave IBD) [ n.generate(1) for n in self.nodes ] tips = [ int("0x" + n.getbestblockhash(), 0) for n in self.nodes ] # 2. Send one block that builds on each tip. # This should be accepted by node0 blocks_h2 = [] # the height 2 blocks on each node's chain block_time = int(time.time()) + 1 for i in range(2): blocks_h2.append(create_block(tips[i], create_coinbase(2), block_time)) blocks_h2[i].solve() block_time += 1 test_node.send_message(msg_block(blocks_h2[0])) min_work_node.send_message(msg_block(blocks_h2[1])) for x in [test_node, min_work_node]: x.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) assert_equal(self.nodes[1].getblockcount(), 1) self.log.info("First height 2 block accepted by node0; correctly rejected by node1") # 3. Send another block that builds on genesis. block_h1f = create_block(int("0x" + self.nodes[0].getblockhash(0), 0), create_coinbase(1), block_time) block_time += 1 block_h1f.solve() test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h1f.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, block_h1f.hash) # 4. Send another two block that build on the fork. block_h2f = create_block(block_h1f.sha256, create_coinbase(2), block_time) block_time += 1 block_h2f.solve() test_node.send_message(msg_block(block_h2f)) test_node.sync_with_ping() # Since the earlier block was not processed by node, the new block # can't be fully validated. tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h2f.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) # But this block should be accepted by node since it has equal work. self.nodes[0].getblock(block_h2f.hash) self.log.info("Second height 2 block accepted, but not reorg'ed to") # 4b. Now send another block that builds on the forking chain. block_h3 = create_block(block_h2f.sha256, create_coinbase(3), block_h2f.nTime+1) block_h3.solve() test_node.send_message(msg_block(block_h3)) test_node.sync_with_ping() # Since the earlier block was not processed by node, the new block # can't be fully validated. tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_h3.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) self.nodes[0].getblock(block_h3.hash) # But this block should be accepted by node since it has more work. self.nodes[0].getblock(block_h3.hash) self.log.info("Unrequested more-work block accepted") # 4c. Now mine 288 more blocks and deliver; all should be processed but # the last (height-too-high) on node (as long as its not missing any headers) tip = block_h3 all_blocks = [] for i in range(288): next_block = create_block(tip.sha256, create_coinbase(i + 4), tip.nTime+1) next_block.solve() all_blocks.append(next_block) tip = next_block # Now send the block at height 5 and check that it wasn't accepted (missing header) test_node.send_message(msg_block(all_blocks[1])) test_node.sync_with_ping() assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, all_blocks[1].hash) assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblockheader, all_blocks[1].hash) # The block at height 5 should be accepted if we provide the missing header, though headers_message = msg_headers() headers_message.headers.append(CBlockHeader(all_blocks[0])) test_node.send_message(headers_message) test_node.send_message(msg_block(all_blocks[1])) test_node.sync_with_ping() self.nodes[0].getblock(all_blocks[1].hash) # Now send the blocks in all_blocks for i in range(288): test_node.send_message(msg_block(all_blocks[i])) test_node.sync_with_ping() # Blocks 1-287 should be accepted, block 288 should be ignored because it's too far ahead for x in all_blocks[:-1]: self.nodes[0].getblock(x.hash) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, all_blocks[-1].hash) # 5. Test handling of unrequested block on the node that didn't process # Should still not be processed (even though it has a child that has more # work). # The node should have requested the blocks at some point, so # disconnect/reconnect first connections[0].disconnect_node() test_node.wait_for_disconnect() test_node = NodeConnCB() # connects to node (not whitelisted) connections[0] = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node) test_node.add_connection(connections[0]) test_node.wait_for_verack() test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) self.log.info("Unrequested block that would complete more-work chain was ignored") # 6. Try to get node to request the missing block. # Poke the node with an inv for block at height 3 and see if that # triggers a getdata on block 2 (it should if block 2 is missing). with mininode_lock: # Clear state so we can check the getdata request test_node.last_message.pop("getdata", None) test_node.send_message(msg_inv([CInv(2, block_h3.sha256)])) test_node.sync_with_ping() with mininode_lock: getdata = test_node.last_message["getdata"] # Check that the getdata includes the right block assert_equal(getdata.inv[0].hash, block_h1f.sha256) self.log.info("Inv at tip triggered getdata for unprocessed block") # 7. Send the missing block for the third time (now it is requested) test_node.send_message(msg_block(block_h1f)) test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 290) self.nodes[0].getblock(all_blocks[286].hash) assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, all_blocks[287].hash) self.log.info("Successfully reorged to longer chain from non-whitelisted peer") # 8. Create a chain which is invalid at a height longer than the # current chain, but which has more blocks on top of that block_289f = create_block(all_blocks[284].sha256, create_coinbase(289), all_blocks[284].nTime+1) block_289f.solve() block_290f = create_block(block_289f.sha256, create_coinbase(290), block_289f.nTime+1) block_290f.solve() block_291 = create_block(block_290f.sha256, create_coinbase(291), block_290f.nTime+1) # block_291 spends a coinbase below maturity! block_291.vtx.append(create_transaction(block_290f.vtx[0], 0, b"42", 1)) block_291.hashMerkleRoot = block_291.calc_merkle_root() block_291.solve() block_292 = create_block(block_291.sha256, create_coinbase(292), block_291.nTime+1) block_292.solve() # Now send all the headers on the chain and enough blocks to trigger reorg headers_message = msg_headers() headers_message.headers.append(CBlockHeader(block_289f)) headers_message.headers.append(CBlockHeader(block_290f)) headers_message.headers.append(CBlockHeader(block_291)) headers_message.headers.append(CBlockHeader(block_292)) test_node.send_message(headers_message) test_node.sync_with_ping() tip_entry_found = False for x in self.nodes[0].getchaintips(): if x['hash'] == block_292.hash: assert_equal(x['status'], "headers-only") tip_entry_found = True assert(tip_entry_found) assert_raises_rpc_error(-1, "Block not found on disk", self.nodes[0].getblock, block_292.hash) test_node.send_message(msg_block(block_289f)) test_node.send_message(msg_block(block_290f)) test_node.sync_with_ping() self.nodes[0].getblock(block_289f.hash) self.nodes[0].getblock(block_290f.hash) test_node.send_message(msg_block(block_291)) # At this point we've sent an obviously-bogus block, wait for full processing # without assuming whether we will be disconnected or not try: # Only wait a short while so the test doesn't take forever if we do get # disconnected test_node.sync_with_ping(timeout=1) except AssertionError: test_node.wait_for_disconnect() test_node = NodeConnCB() # connects to node (not whitelisted) connections[0] = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node) test_node.add_connection(connections[0]) NetworkThread().start() # Start up network handling in another thread test_node.wait_for_verack() # We should have failed reorg and switched back to 290 (but have block 291) assert_equal(self.nodes[0].getblockcount(), 290) assert_equal(self.nodes[0].getbestblockhash(), all_blocks[286].hash) assert_equal(self.nodes[0].getblock(block_291.hash)["confirmations"], -1) # Now send a new header on the invalid chain, indicating we're forked off, and expect to get disconnected block_293 = create_block(block_292.sha256, create_coinbase(293), block_292.nTime+1) block_293.solve() headers_message = msg_headers() headers_message.headers.append(CBlockHeader(block_293)) test_node.send_message(headers_message) test_node.wait_for_disconnect() # 9. Connect node1 to node0 and ensure it is able to sync connect_nodes(self.nodes[0], 1) sync_blocks([self.nodes[0], self.nodes[1]]) self.log.info("Successfully synced nodes 1 and 0") [ c.disconnect_node() for c in connections ] if __name__ == '__main__': AcceptBlockTest().main()
the-stack_0_8512
import ntpath from lead2gold.tools.tool import Tool from lead2gold.util import pwm2consensus from lead2gold.util import sequence2pwm from lead2gold.motif import Motif class EMD(Tool): """Class implementing a EMD search tool motif convertor. """ toolName = "EMD" def __init__(self): """Initialize all class attributes with their default values. """ super(self.__class__, self).__init__(self.toolName) def parse(self, motif_file, type=None): """Loads the searcher parameters specified in the configuration file. Args: motif_file: file containing one or more EMD motifs. Returns: [Motif()] """ basename=ntpath.basename(motif_file.name) def get_section(line, section, order): if len(line) < 2: return "stop", 1 if "Motif " in line[0:8]: return "name", 2 return section, order def get_template(): return { "start": [], "stop": [], "name": [] } motifs = [] section = "start" order = 0 t_motif = get_template() for line in motif_file: clean_line = line.strip() section, order_new = get_section(line, section, order) if order_new < order: motifs.append(self._parse_motif(t_motif)) t_motif = get_template() order = order_new t_motif[section].append(clean_line) motifs.append(self._parse_motif(t_motif)) return list(filter(None, motifs)) def _parse_motif(self, t_motif): name = t_motif["name"].pop(0) sequences = [] for row in t_motif["name"]: row_values = row.split() if len(row_values) == 4: sequences.append(row_values[0]) counters, _ = sequence2pwm(sequences) motif = Motif(identifier=name, counters=counters) consensus = pwm2consensus(motif.get_PPM()) motif.set_number_of_sites(len(sequences)) motif.set_alternate_name(consensus) return motif
the-stack_0_8513
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import (absolute_import, division, print_function, unicode_literals) from paddle.optimizer import lr from paddle.optimizer.lr import LRScheduler from ppcls.utils import logger class Linear(object): """ Linear learning rate decay Args: lr (float): The initial learning rate. It is a python float number. epochs(int): The decay step size. It determines the decay cycle. end_lr(float, optional): The minimum final learning rate. Default: 0.0001. power(float, optional): Power of polynomial. Default: 1.0. warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0. warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, epochs, step_each_epoch, end_lr=0.0, power=1.0, warmup_epoch=0, warmup_start_lr=0.0, last_epoch=-1, **kwargs): super().__init__() if warmup_epoch >= epochs: msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}." logger.warning(msg) warmup_epoch = epochs self.learning_rate = learning_rate self.steps = (epochs - warmup_epoch) * step_each_epoch self.end_lr = end_lr self.power = power self.last_epoch = last_epoch self.warmup_steps = round(warmup_epoch * step_each_epoch) self.warmup_start_lr = warmup_start_lr def __call__(self): learning_rate = lr.PolynomialDecay( learning_rate=self.learning_rate, decay_steps=self.steps, end_lr=self.end_lr, power=self.power, last_epoch=self. last_epoch) if self.steps > 0 else self.learning_rate if self.warmup_steps > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_steps, start_lr=self.warmup_start_lr, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class Constant(LRScheduler): """ Constant learning rate Args: lr (float): The initial learning rate. It is a python float number. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, last_epoch=-1, **kwargs): self.learning_rate = learning_rate self.last_epoch = last_epoch super().__init__() def get_lr(self): return self.learning_rate class Cosine(object): """ Cosine learning rate decay lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1) Args: lr(float): initial learning rate step_each_epoch(int): steps each epoch epochs(int): total training epochs eta_min(float): Minimum learning rate. Default: 0.0. warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0. warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, step_each_epoch, epochs, eta_min=0.0, warmup_epoch=0, warmup_start_lr=0.0, last_epoch=-1, **kwargs): super().__init__() if warmup_epoch >= epochs: msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}." logger.warning(msg) warmup_epoch = epochs self.learning_rate = learning_rate self.T_max = (epochs - warmup_epoch) * step_each_epoch self.eta_min = eta_min self.last_epoch = last_epoch self.warmup_steps = round(warmup_epoch * step_each_epoch) self.warmup_start_lr = warmup_start_lr def __call__(self): learning_rate = lr.CosineAnnealingDecay( learning_rate=self.learning_rate, T_max=self.T_max, eta_min=self.eta_min, last_epoch=self. last_epoch) if self.T_max > 0 else self.learning_rate if self.warmup_steps > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_steps, start_lr=self.warmup_start_lr, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class Step(object): """ Piecewise learning rate decay Args: step_each_epoch(int): steps each epoch learning_rate (float): The initial learning rate. It is a python float number. step_size (int): the interval to update. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0. warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, learning_rate, step_size, step_each_epoch, epochs, gamma, warmup_epoch=0, warmup_start_lr=0.0, last_epoch=-1, **kwargs): super().__init__() if warmup_epoch >= epochs: msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}." logger.warning(msg) warmup_epoch = epochs self.step_size = step_each_epoch * step_size self.learning_rate = learning_rate self.gamma = gamma self.last_epoch = last_epoch self.warmup_steps = round(warmup_epoch * step_each_epoch) self.warmup_start_lr = warmup_start_lr def __call__(self): learning_rate = lr.StepDecay( learning_rate=self.learning_rate, step_size=self.step_size, gamma=self.gamma, last_epoch=self.last_epoch) if self.warmup_steps > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_steps, start_lr=self.warmup_start_lr, end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate class Piecewise(object): """ Piecewise learning rate decay Args: boundaries(list): A list of steps numbers. The type of element in the list is python int. values(list): A list of learning rate values that will be picked during different epoch boundaries. The type of element in the list is python float. warmup_epoch(int): The epoch numbers for LinearWarmup. Default: 0. warmup_start_lr(float): Initial learning rate of warm up. Default: 0.0. by_epoch(bool): Whether lr decay by epoch. Default: False. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. """ def __init__(self, step_each_epoch, decay_epochs, values, epochs, warmup_epoch=0, warmup_start_lr=0.0, by_epoch=False, last_epoch=-1, **kwargs): super().__init__() if warmup_epoch >= epochs: msg = f"When using warm up, the value of \"Global.epochs\" must be greater than value of \"Optimizer.lr.warmup_epoch\". The value of \"Optimizer.lr.warmup_epoch\" has been set to {epochs}." logger.warning(msg) warmup_epoch = epochs self.boundaries_steps = [step_each_epoch * e for e in decay_epochs] self.boundaries_epoch = decay_epochs self.values = values self.last_epoch = last_epoch self.warmup_steps = round(warmup_epoch * step_each_epoch) self.warmup_epoch = warmup_epoch self.warmup_start_lr = warmup_start_lr self.by_epoch = by_epoch def __call__(self): if self.by_epoch: learning_rate = lr.PiecewiseDecay( boundaries=self.boundaries_epoch, values=self.values, last_epoch=self.last_epoch) if self.warmup_epoch > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=self.warmup_start_lr, end_lr=self.values[0], last_epoch=self.last_epoch) else: learning_rate = lr.PiecewiseDecay( boundaries=self.boundaries_steps, values=self.values, last_epoch=self.last_epoch) if self.warmup_steps > 0: learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_steps, start_lr=self.warmup_start_lr, end_lr=self.values[0], last_epoch=self.last_epoch) setattr(learning_rate, "by_epoch", self.by_epoch) return learning_rate class MultiStepDecay(LRScheduler): """ Update the learning rate by ``gamma`` once ``epoch`` reaches one of the milestones. The algorithm can be described as the code below. .. code-block:: text learning_rate = 0.5 milestones = [30, 50] gamma = 0.1 if epoch < 30: learning_rate = 0.5 elif epoch < 50: learning_rate = 0.05 else: learning_rate = 0.005 Args: learning_rate (float): The initial learning rate. It is a python float number. milestones (tuple|list): List or tuple of each boundaries. Must be increasing. gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` . It should be less than 1.0. Default: 0.1. last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate. verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` . Returns: ``MultiStepDecay`` instance to schedule learning rate. Examples: .. code-block:: python import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(5): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5, milestones=[2, 4, 6], gamma=0.8, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(5): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch """ def __init__(self, learning_rate, milestones, epochs, step_each_epoch, gamma=0.1, last_epoch=-1, verbose=False): if not isinstance(milestones, (tuple, list)): raise TypeError( "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s." % type(milestones)) if not all([ milestones[i] < milestones[i + 1] for i in range(len(milestones) - 1) ]): raise ValueError('The elements of milestones must be incremented') if gamma >= 1.0: raise ValueError('gamma should be < 1.0.') self.milestones = [x * step_each_epoch for x in milestones] self.gamma = gamma super().__init__(learning_rate, last_epoch, verbose) def get_lr(self): for i in range(len(self.milestones)): if self.last_epoch < self.milestones[i]: return self.base_lr * (self.gamma**i) return self.base_lr * (self.gamma**len(self.milestones))
the-stack_0_8516
#!/usr/bin/env python import rospy import actionlib from actionlib_msgs.msg import * from geometry_msgs.msg import Pose, Point, Quaternion, Twist from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from tf.transformations import quaternion_from_euler from visualization_msgs.msg import Marker from math import radians, pi class MoveBaseSquare(): def __init__(self): rospy.init_node('box_client', anonymous=False) rospy.on_shutdown(self.shutdown) # Create a list to hold the waypoint poses waypoints = list() # Append each of the four waypoints to the list. Each waypoint # is a pose consisting of a position and orientation in the map frame. waypoints.append(Pose(Point(10.0, 0.62, 0.0), Quaternion(0,0,0,1))) # Initialize the visualization markers for RViz self.init_markers() # Set a visualization marker at each waypoint for waypoint in waypoints: p = Point() p = waypoint.position self.markers.points.append(p) # Subscribe to the move_base action server self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction) rospy.loginfo("Waiting for move_base action server...") # Wait 60 seconds for the action server to become available self.move_base.wait_for_server(rospy.Duration(60)) rospy.loginfo("Connected to move base server") rospy.loginfo("Starting navigation test") # Initialize a counter to track waypoints i = 0 # Cycle through the four waypoints while i < len(waypoints) and not rospy.is_shutdown(): # Update the marker display self.marker_pub.publish(self.markers) # Intialize the waypoint goal goal = MoveBaseGoal() # Use the map frame to define goal poses goal.target_pose.header.frame_id = 'map' # Set the time stamp to "now" goal.target_pose.header.stamp = rospy.Time.now() # Set the goal pose to the i-th waypoint goal.target_pose.pose = waypoints[i] # Start the robot moving toward the goal self.move(goal) i += 1 def move(self, goal): # Send the goal pose to the MoveBaseAction server self.move_base.send_goal(goal) # Allow 1 minute to get there finished_within_time = self.move_base.wait_for_result(rospy.Duration(60)) # If we don't get there in time, abort the goal if not finished_within_time: self.move_base.cancel_goal() rospy.loginfo("Timed out achieving goal") else: # We made it! state = self.move_base.get_state() if state == GoalStatus.SUCCEEDED: rospy.loginfo("Goal succeeded!") def init_markers(self): # Set up our waypoint markers marker_scale = 0.2 marker_lifetime = 0 # 0 is forever marker_ns = 'waypoints' marker_id = 0 marker_color = {'r': 1.0, 'g': 0.7, 'b': 1.0, 'a': 1.0} # Define a marker publisher. self.marker_pub = rospy.Publisher('waypoint_markers', Marker, queue_size=1) # Initialize the marker points list. self.markers = Marker() self.markers.ns = marker_ns self.markers.id = marker_id self.markers.type = Marker.SPHERE_LIST self.markers.action = Marker.ADD self.markers.lifetime = rospy.Duration(marker_lifetime) self.markers.scale.x = marker_scale self.markers.scale.y = marker_scale self.markers.color.r = marker_color['r'] self.markers.color.g = marker_color['g'] self.markers.color.b = marker_color['b'] self.markers.color.a = marker_color['a'] self.markers.header.frame_id = 'map' self.markers.header.stamp = rospy.Time.now() self.markers.points = list() def shutdown(self): rospy.loginfo("Stopping the robot...") # Cancel any active goals self.move_base.cancel_goal() rospy.sleep(2) if __name__ == '__main__': try: MoveBaseSquare() except rospy.ROSInterruptException: rospy.loginfo("Navigation test finished.")
the-stack_0_8517
#!/usr/bin/env python import sys import logging import argparse import json from pds_pipelines.db import db_connect from pds_pipelines.models.pds_models import Files from pds_pipelines.RedisQueue import RedisQueue from pds_pipelines.config import pds_log, pds_info, pds_db class Args: def __init__(self): pass def parse_args(self): parser = argparse.ArgumentParser(description='UPC Queueing') parser.add_argument('--archive', '-a', dest="archive", required=True, help="Enter archive - archive to ingest") parser.add_argument('--volume', '-v', dest="volume", help="Enter volume to Ingest") parser.add_argument('--search', '-s', dest="search", help="Enter string to search for") args = parser.parse_args() self.archive = args.archive self.volume = args.volume self.search = args.search def main(): # pdb.set_trace() args = Args() args.parse_args() logger = logging.getLogger('UPC_Queueing.' + args.archive) logger.setLevel(logging.INFO) # logFileHandle = logging.FileHandler('/usgs/cdev/PDS/logs/Process.log') logFileHandle = logging.FileHandler(pds_log + 'Process.log') formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s, %(message)s') logFileHandle.setFormatter(formatter) logger.addHandler(logFileHandle) logger.info('Starting Process') PDSinfoDICT = json.load(open(pds_info, 'r')) try: archiveID = PDSinfoDICT[args.archive]['archiveid'] except KeyError: print("\nArchive '{}' not found in {}\n".format(args.archive, pds_info)) print("The following archives are available:") for k in PDSinfoDICT.keys(): print("\t{}".format(k)) exit() RQ = RedisQueue('UPC_ReadyQueue') try: session, _ = db_connect(pds_db) print('Database Connection Success') except Exception as e: print(e) print('Database Connection Error') if args.volume: volstr = '%' + args.volume + '%' qOBJ = session.query(Files).filter(Files.archiveid == archiveID, Files.filename.like(volstr), Files.upc_required == 't') else: qOBJ = session.query(Files).filter(Files.archiveid == archiveID, Files.upc_required == 't') if qOBJ: addcount = 0 for element in qOBJ: fname = PDSinfoDICT[args.archive]['path'] + element.filename fid = element.fileid RQ.QueueAdd((fname, fid, args.archive)) addcount = addcount + 1 logger.info('Files Added to UPC Queue: %s', addcount) print("Done") if __name__ == "__main__": sys.exit(main())
the-stack_0_8518
# -*- coding: utf-8 -*- """ requests.utils ~~~~~~~~~~~~~~ This module provides utlity functions that are used within Requests that are also useful for external consumption. """ import cgi import codecs import http.cookiejar import os import random import re import zlib from urllib2 import parse_http_list as _parse_list_header def guess_filename(obj): """Tries to guess the filename of the given object.""" name = getattr(obj, 'name', None) if name and name[0] != '<' and name[-1] != '>': return name # From mitsuhiko/werkzeug (used with permission). def parse_list_header(value): """Parse lists as described by RFC 2068 Section 2. In particular, parse comma-separated lists where the elements of the list may include quoted-strings. A quoted-string could contain a comma. A non-quoted string could have quotes in the middle. Quotes are removed automatically after parsing. It basically works like :func:`parse_set_header` just that items may appear multiple times and case sensitivity is preserved. The return value is a standard :class:`list`: >>> parse_list_header('token, "quoted value"') ['token', 'quoted value'] To create a header from the :class:`list` again, use the :func:`dump_header` function. :param value: a string with a list header. :return: :class:`list` """ result = [] for item in _parse_list_header(value): if item[:1] == item[-1:] == '"': item = unquote_header_value(item[1:-1]) result.append(item) return result # From mitsuhiko/werkzeug (used with permission). def parse_dict_header(value): """Parse lists of key, value pairs as described by RFC 2068 Section 2 and convert them into a python dict: >>> d = parse_dict_header('foo="is a fish", bar="as well"') >>> type(d) is dict True >>> sorted(d.items()) [('bar', 'as well'), ('foo', 'is a fish')] If there is no value for a key it will be `None`: >>> parse_dict_header('key_without_value') {'key_without_value': None} To create a header from the :class:`dict` again, use the :func:`dump_header` function. :param value: a string with a dict header. :return: :class:`dict` """ result = {} for item in _parse_list_header(value): if '=' not in item: result[item] = None continue name, value = item.split('=', 1) if value[:1] == value[-1:] == '"': value = unquote_header_value(value[1:-1]) result[name] = value return result # From mitsuhiko/werkzeug (used with permission). def unquote_header_value(value, is_filename=False): r"""Unquotes a header value. (Reversal of :func:`quote_header_value`). This does not use the real unquoting but what browsers are actually using for quoting. :param value: the header value to unquote. """ if value and value[0] == value[-1] == '"': # this is not the real unquoting, but fixing this so that the # RFC is met will result in bugs with internet explorer and # probably some other browsers as well. IE for example is # uploading files with "C:\foo\bar.txt" as filename value = value[1:-1] # if this is a filename and the starting characters look like # a UNC path, then just return the value without quotes. Using the # replace sequence below on a UNC path has the effect of turning # the leading double slash into a single slash and then # _fix_ie_filename() doesn't work correctly. See #458. if not is_filename or value[:2] != '\\\\': return value.replace('\\\\', '\\').replace('\\"', '"') return value def header_expand(headers): """Returns an HTTP Header value string from a dictionary. Example expansion:: {'text/x-dvi': {'q': '.8', 'mxb': '100000', 'mxt': '5.0'}, 'text/x-c': {}} # Accept: text/x-dvi; q=.8; mxb=100000; mxt=5.0, text/x-c (('text/x-dvi', {'q': '.8', 'mxb': '100000', 'mxt': '5.0'}), ('text/x-c', {})) # Accept: text/x-dvi; q=.8; mxb=100000; mxt=5.0, text/x-c """ collector = [] if isinstance(headers, dict): headers = list(headers.items()) elif isinstance(headers, str): return headers for i, (value, params) in enumerate(headers): _params = [] for (p_k, p_v) in list(params.items()): _params.append('%s=%s' % (p_k, p_v)) collector.append(value) collector.append('; ') if len(params): collector.append('; '.join(_params)) if not len(headers) == i+1: collector.append(', ') # Remove trailing separators. if collector[-1] in (', ', '; '): del collector[-1] return ''.join(collector) def randombytes(n): """Return n random bytes.""" # Use /dev/urandom if it is available. Fall back to random module # if not. It might be worthwhile to extend this function to use # other platform-specific mechanisms for getting random bytes. if os.path.exists("/dev/urandom"): f = open("/dev/urandom") s = f.read(n) f.close() return s else: L = [chr(random.randrange(0, 256)) for i in range(n)] return "".join(L) def dict_from_cookiejar(cj): """Returns a key/value dictionary from a CookieJar. :param cj: CookieJar object to extract cookies from. """ cookie_dict = {} for _, cookies in list(cj._cookies.items()): for _, cookies in list(cookies.items()): for cookie in list(cookies.values()): # print cookie cookie_dict[cookie.name] = cookie.value return cookie_dict def cookiejar_from_dict(cookie_dict): """Returns a CookieJar from a key/value dictionary. :param cookie_dict: Dict of key/values to insert into CookieJar. """ # return cookiejar if one was passed in if isinstance(cookie_dict, http.cookiejar.CookieJar): return cookie_dict # create cookiejar cj = http.cookiejar.CookieJar() cj = add_dict_to_cookiejar(cj, cookie_dict) return cj def add_dict_to_cookiejar(cj, cookie_dict): """Returns a CookieJar from a key/value dictionary. :param cj: CookieJar to insert cookies into. :param cookie_dict: Dict of key/values to insert into CookieJar. """ for k, v in list(cookie_dict.items()): cookie = http.cookiejar.Cookie( version=0, name=k, value=v, port=None, port_specified=False, domain='', domain_specified=False, domain_initial_dot=False, path='/', path_specified=True, secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False ) # add cookie to cookiejar cj.set_cookie(cookie) return cj def get_encodings_from_content(content): """Returns encodings from given content string. :param content: bytestring to extract encodings from. """ charset_re = re.compile(r'<meta.*?charset=["\']*(.+?)["\'>]', flags=re.I) return charset_re.findall(content) def get_encoding_from_headers(headers): """Returns encodings from given HTTP Header Dict. :param headers: dictionary to extract encoding from. """ content_type = headers.get('content-type') if not content_type: return None content_type, params = cgi.parse_header(content_type) if 'charset' in params: return params['charset'].strip("'\"") def unicode_from_html(content): """Attempts to decode an HTML string into unicode. If unsuccessful, the original content is returned. """ encodings = get_encodings_from_content(content) for encoding in encodings: try: return str(content, encoding) except (UnicodeError, TypeError): pass return content def stream_decode_response_unicode(iterator, r): """Stream decodes a iterator.""" encoding = get_encoding_from_headers(r.headers) if encoding is None: for item in iterator: yield item return decoder = codecs.getincrementaldecoder(encoding)(errors='replace') for chunk in iterator: rv = decoder.decode(chunk) if rv: yield rv rv = decoder.decode('', final=True) if rv: yield rv def get_unicode_from_response(r): """Returns the requested content back in unicode. :param r: Response object to get unicode content from. Tried: 1. charset from content-type 2. every encodings from ``<meta ... charset=XXX>`` 3. fall back and replace all unicode characters """ tried_encodings = [] # Try charset from content-type encoding = get_encoding_from_headers(r.headers) if encoding: try: return str(r.content, encoding) except UnicodeError: tried_encodings.append(encoding) # Fall back: try: return str(r.content, encoding, errors='replace') except TypeError: return r.content def decode_gzip(content): """Return gzip-decoded string. :param content: bytestring to gzip-decode. """ return zlib.decompress(content, 16 + zlib.MAX_WBITS) def stream_decode_gzip(iterator): """Stream decodes a gzip-encoded iterator""" try: dec = zlib.decompressobj(16 + zlib.MAX_WBITS) for chunk in iterator: rv = dec.decompress(chunk) if rv: yield rv buf = dec.decompress('') rv = buf + dec.flush() if rv: yield rv except zlib.error: pass
the-stack_0_8520
from enum import Enum import random import pampy class Case(Enum): Nominative = 1 Accusative = 2 Genitive = 3 Dative = 4 class Gender(Enum): Female = 1 Masculine = 2 Neutral = 3 class Declension(Enum): First = 1 Second = 2 Third = 3 class Number(Enum): Single = 1 Dual = 2 Plural = 3 def decline_noun(stem: str, genitiveEnding: str, declension: Declension, gender: Gender, number: Number, case: Case) -> str: input = [declension, gender, number] return pampy.match( input, [Declension.First, Gender.Female, Number.Single], decline_first_decl_female_singular(stem, genitiveEnding, case), [Declension.First, Gender.Female, Number.Dual], decline_first_decl_female_dual(stem, case), [Declension.First, Gender.Female, Number.Plural], decline_first_decl_female_dual(stem, case), [str, str, Declension, Gender, Number, Case], '' ) def decline_first_decl_female_singular(stem: str, genitiveEnding: str, case: Case): return pampy.match( case, Case.Nominative, stem + 'α', Case.Accusative, stem + 'αν', Case.Genitive, stem + 'ᾱς', Case.Dative, stem + 'ᾳ' ) def decline_first_decl_female_plural(stem: str, case: Case): return pampy.match( case, Case.Nominative, stem + 'αι', Case.Accusative, stem + 'ᾱς', Case.Genitive, stem + 'ων', Case.Dative, stem + 'αις' ) def decline_first_decl_female_dual(stem: str, case: Case): return pampy.match( case, Case.Nominative, stem + 'ᾱ', Case.Accusative, stem + 'ᾱ', Case.Genitive, stem + 'αιν', Case.Dative, stem + 'αιν' ) all_cases = list(set(Case)) all_non_nominative_cases = list(set(all_cases) - set([Case.Nominative])) all_genders = list(set(Gender)) all_declensions = list(set(Declension)) all_numbers = list(set(Number)) class Noun: def __init__(self, stem: str, genitiveEnding: str, declension: Declension, gender: Gender): self.stem = stem self.genitiveEnding = genitiveEnding self.declension = declension self.gender = gender def decline(self, number: Number, case: Case) -> str: return decline_noun(self.stem, self.genitiveEnding, self.declension, self.gender, number, case) def create_initial_form(self) -> str: return self.decline(Number.Single, Case.Nominative) def create_random_form(self) -> (str, Number, Case): random_number = random.choice(all_numbers) random_case = random.choice(all_non_nominative_cases) declined_word = self.decline(random_number, random_case) return (declined_word, random_number, random_case) class Answer: def __init__(self, value: str, isValid: bool) -> None: self.value = value self.isValid = isValid class Question: def __init__(self, question: str, answers: list) -> None: self.question = question self.answers = answers def strNum(number: Number) -> str: return pampy.match(number, Number.Plural, 'множественном числе', Number.Dual, 'двойственном числе', Number.Single, 'единственном числе', ) def strCase(c: Case) -> str: return pampy.match(c, Case.Nominative, 'номинативе', Case.Accusative, 'аккузативе', Case.Genitive, 'генитиве', Case.Dative, 'дативе', ) def create_question(word: Noun) -> Question: (correct_form, number, case) = word.create_random_form() forms = [correct_form] while len(forms) < 4: (new_answer, _, _) = word.create_random_form() if new_answer not in forms: forms.append(new_answer) random.shuffle(forms) answers = list(map(lambda x: Answer(x, x == correct_form), forms)) return Question( question = f'{word.create_initial_form().capitalize()} в {strNum(number)} {strCase(case)}?', answers = answers )
the-stack_0_8521
from __future__ import print_function import time class Looper(object): """Represents the state of a loop of events.""" RECORD, PAUSE, PLAY = 'record', 'pause', 'play' def __init__(self, state=PAUSE, events=None, loop_length=0): self.state = state if state == Looper.RECORD: self.state = Looper.PAUSE self.events = events or [] self.loop_length = loop_length self.loop_start = 0 self.loop_index = 0 def event(self, key): if self.state == Looper.RECORD: self.events.append((time.time() - self.loop_start, key)) def clear(self): self.state = Looper.PAUSE self.events = [] def set_state(self, state): if state != self.state: t = time.time() if self.state == Looper.RECORD: self.loop_length = t - self.loop_start self.loop_start = 0 self.loop_index = 0 elif self.state == Looper.PLAY: self.loop_start = t - self.loop_start self.state = state if self.state == Looper.PLAY: self.loop_start = t - self.loop_start if self.state == Looper.RECORD: self.events = [] self.loop_start = t print('Entering state', self.state) def record(self): """Toggle record.""" self.set_state(Looper.PLAY if self.state == Looper.RECORD else Looper.RECORD) def play(self): self.set_state(Looper.PLAY if self.state == Looper.PAUSE else Looper.PAUSE) def step(self, callback): def emit(dt): while self.loop_index < len(self.events): etime, key = self.events[self.loop_index] if etime > dt: break callback(key) self.loop_index += 1 if self.state == Looper.PLAY: t = time.time() dt = t - self.loop_start emit(min(dt, self.loop_length)) if dt >= self.loop_length: self.loop_index = 0 dt -= self.loop_length self.loop_start = t - dt emit(dt)
the-stack_0_8522
from . import BaseAction from ..db.controllers import ServerController class SetAdminRoleAction(BaseAction): action_name = "imdb_tv_shows" admin = True controller = ServerController() async def action(self, msg): toggle_value = self.get_message_data(msg) if not toggle_value: await msg.channel.send( "Must give value of on or off for imdb_tv_shows command" ) return toggle_value = toggle_value.lower() if toggle_value == "on": allow_tv_shows = True elif toggle_value == "off": allow_tv_shows = False else: await msg.channel.send( f"Unknown value given. Value must be on or off, got {toggle_value}." ) return with self.controller.transaction(): server_row = self.controller.get_by_id(msg.guild.id) server_row.allow_tv_shows = allow_tv_shows self.controller.update(server_row) await msg.channel.send(f"Allow IMDB tv show search turned {toggle_value}") @property def help_text(self): return "Toggles whether to allow tv shows in the IMDB search results (on) or not (off)." @property def help_options(self): return ["(on|off)"]
the-stack_0_8523
#!/usr/bin/env python import unittest import socket from framework import VppTestCase, VppTestRunner from vpp_ip_route import VppIpRoute, VppRoutePath, VppMplsRoute, \ VppMplsTable, VppIpMRoute, VppMRoutePath, VppIpTable, \ MRouteEntryFlags, MRouteItfFlags, MPLS_LABEL_INVALID, DpoProto from vpp_bier import * from scapy.packet import Raw from scapy.layers.l2 import Ether from scapy.layers.inet import IP, UDP, ICMP from scapy.layers.inet6 import IPv6 from scapy.contrib.mpls import MPLS from scapy.contrib.bier import * class TestBFIB(VppTestCase): """ BIER FIB Test Case """ def test_bfib(self): """ BFIB Unit Tests """ error = self.vapi.cli("test bier") if error: self.logger.critical(error) self.assertEqual(error.find("Failed"), -1) class TestBier(VppTestCase): """ BIER Test Case """ def setUp(self): super(TestBier, self).setUp() # create 2 pg interfaces self.create_pg_interfaces(range(3)) # create the default MPLS table self.tables = [] tbl = VppMplsTable(self, 0) tbl.add_vpp_config() self.tables.append(tbl) tbl = VppIpTable(self, 10) tbl.add_vpp_config() self.tables.append(tbl) # setup both interfaces for i in self.pg_interfaces: if i == self.pg2: i.set_table_ip4(10) i.admin_up() i.config_ip4() i.resolve_arp() i.enable_mpls() def tearDown(self): for i in self.pg_interfaces: i.disable_mpls() i.unconfig_ip4() i.set_table_ip4(0) i.admin_down() super(TestBier, self).tearDown() def send_and_assert_no_replies(self, intf, pkts, remark): intf.add_stream(pkts) self.pg_enable_capture(self.pg_interfaces) self.pg_start() for i in self.pg_interfaces: i.assert_nothing_captured(remark=remark) def send_and_expect(self, input, pkts, output): self.vapi.cli("trace add bier-mpls-lookup 10") input.add_stream(pkts) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = output.get_capture(len(pkts)) def test_bier_midpoint(self): """BIER midpoint""" # # Add a BIER table for sub-domain 0, set 0, and BSL 256 # bti = VppBierTableID(0, 0, BIERLength.BIER_LEN_256) bt = VppBierTable(self, bti, 77) bt.add_vpp_config() # # A packet with no bits set gets dropped # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / MPLS(label=77, ttl=255) / BIER(length=BIERLength.BIER_LEN_256, BitString=chr(0)*64) / IPv6(src=self.pg0.remote_ip6, dst=self.pg0.remote_ip6) / UDP(sport=1234, dport=1234) / Raw()) pkts = [p] self.send_and_assert_no_replies(self.pg0, pkts, "Empty Bit-String") # # Add a BIER route for each bit-position in the table via a different # next-hop. Testing whether the BIER walk and replicate forwarding # function works for all bit posisitons. # nh_routes = [] bier_routes = [] for i in range(1, 256): nh = "10.0.%d.%d" % (i / 255, i % 255) nh_routes.append(VppIpRoute(self, nh, 32, [VppRoutePath(self.pg1.remote_ip4, self.pg1.sw_if_index, labels=[2000+i])])) nh_routes[-1].add_vpp_config() bier_routes.append(VppBierRoute(self, bti, i, nh, 100+i)) bier_routes[-1].add_vpp_config() # # A packet with all bits set gets spat out to BP:1 # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / MPLS(label=77, ttl=255) / BIER(length=BIERLength.BIER_LEN_256) / IPv6(src=self.pg0.remote_ip6, dst=self.pg0.remote_ip6) / UDP(sport=1234, dport=1234) / Raw()) pkts = [p] self.pg0.add_stream(pkts) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(255) for rxp in rx: # # The packets are not required to be sent in bit-position order # when we setup the routes above we used the bit-position to # construct the out-label. so use that here to determine the BP # olabel = rxp[MPLS] bp = olabel.label - 2000 blabel = olabel[MPLS].payload self.assertEqual(blabel.label, 100+bp) bier_hdr = blabel[MPLS].payload self.assertEqual(bier_hdr.id, 5) self.assertEqual(bier_hdr.version, 0) self.assertEqual(bier_hdr.length, BIERLength.BIER_LEN_256) self.assertEqual(bier_hdr.entropy, 0) self.assertEqual(bier_hdr.OAM, 0) self.assertEqual(bier_hdr.RSV, 0) self.assertEqual(bier_hdr.DSCP, 0) self.assertEqual(bier_hdr.Proto, 5) # The bit-string should consist only of the BP given by i. i = 0 bitstring = "" bpi = bp - 1 while (i < bpi/8): bitstring = chr(0) + bitstring i += 1 bitstring = chr(1 << bpi % 8) + bitstring while len(bitstring) < 32: bitstring = chr(0) + bitstring self.assertEqual(len(bitstring), len(bier_hdr.BitString)) self.assertEqual(bitstring, bier_hdr.BitString) def test_bier_head(self): """BIER head""" # # Add a BIER table for sub-domain 0, set 0, and BSL 256 # bti = VppBierTableID(0, 0, BIERLength.BIER_LEN_256) bt = VppBierTable(self, bti, 77) bt.add_vpp_config() # # 2 bit positions via two next hops # nh1 = "10.0.0.1" nh2 = "10.0.0.2" ip_route_1 = VppIpRoute(self, nh1, 32, [VppRoutePath(self.pg1.remote_ip4, self.pg1.sw_if_index, labels=[2001])]) ip_route_2 = VppIpRoute(self, nh2, 32, [VppRoutePath(self.pg1.remote_ip4, self.pg1.sw_if_index, labels=[2002])]) ip_route_1.add_vpp_config() ip_route_2.add_vpp_config() bier_route_1 = VppBierRoute(self, bti, 1, nh1, 101) bier_route_2 = VppBierRoute(self, bti, 2, nh2, 102) bier_route_1.add_vpp_config() bier_route_2.add_vpp_config() # # An imposition object with both bit-positions set # bi = VppBierImp(self, bti, 333, chr(0x3) * 32) bi.add_vpp_config() # # Add a multicast route that will forward into the BIER doamin # route_ing_232_1_1_1 = VppIpMRoute( self, "0.0.0.0", "232.1.1.1", 32, MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE, paths=[VppMRoutePath(self.pg0.sw_if_index, MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT), VppMRoutePath(0xffffffff, MRouteItfFlags.MFIB_ITF_FLAG_FORWARD, proto=DpoProto.DPO_PROTO_BIER, bier_imp=bi.bi_index)]) route_ing_232_1_1_1.add_vpp_config() # # inject a packet an IP. We expect it to be BIER encapped, # replicated. # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src="1.1.1.1", dst="232.1.1.1") / UDP(sport=1234, dport=1234)) self.pg0.add_stream([p]) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(2) def test_bier_tail(self): """BIER Tail""" # # Add a BIER table for sub-domain 0, set 0, and BSL 256 # bti = VppBierTableID(0, 0, BIERLength.BIER_LEN_256) bt = VppBierTable(self, bti, 77) bt.add_vpp_config() # # disposition table # bdt = VppBierDispTable(self, 8) bdt.add_vpp_config() # # BIER route in table that's for-us # bier_route_1 = VppBierRoute(self, bti, 1, "0.0.0.0", 0, disp_table=8) bier_route_1.add_vpp_config() # # An entry in the disposition table # bier_de_1 = VppBierDispEntry(self, bdt.id, 99, BIER_HDR_PAYLOAD.BIER_HDR_PROTO_IPV4, "0.0.0.0", 0, rpf_id=8192) bier_de_1.add_vpp_config() # # A multicast route to forward post BIER disposition # route_eg_232_1_1_1 = VppIpMRoute( self, "0.0.0.0", "232.1.1.1", 32, MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE, paths=[VppMRoutePath(self.pg1.sw_if_index, MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)]) route_eg_232_1_1_1.add_vpp_config() route_eg_232_1_1_1.update_rpf_id(8192) # # A packet with all bits set gets spat out to BP:1 # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / MPLS(label=77, ttl=255) / BIER(length=BIERLength.BIER_LEN_256, BFRID=99) / IP(src="1.1.1.1", dst="232.1.1.1") / UDP(sport=1234, dport=1234) / Raw()) self.send_and_expect(self.pg0, [p], self.pg1) def test_bier_e2e(self): """ BIER end-to-end """ # # Add a BIER table for sub-domain 0, set 0, and BSL 256 # bti = VppBierTableID(0, 0, BIERLength.BIER_LEN_256) bt = VppBierTable(self, bti, 77) bt.add_vpp_config() # # Impostion Sets bit string 101010101.... # sender 333 # bi = VppBierImp(self, bti, 333, chr(0x5) * 32) bi.add_vpp_config() # # Add a multicast route that will forward into the BIER doamin # route_ing_232_1_1_1 = VppIpMRoute( self, "0.0.0.0", "232.1.1.1", 32, MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE, paths=[VppMRoutePath(self.pg0.sw_if_index, MRouteItfFlags.MFIB_ITF_FLAG_ACCEPT), VppMRoutePath(0xffffffff, MRouteItfFlags.MFIB_ITF_FLAG_FORWARD, proto=DpoProto.DPO_PROTO_BIER, bier_imp=bi.bi_index)]) route_ing_232_1_1_1.add_vpp_config() # # disposition table 8 # bdt = VppBierDispTable(self, 8) bdt.add_vpp_config() # # BIER route in table that's for-us, resolving through # disp table 8. # bier_route_1 = VppBierRoute(self, bti, 1, "0.0.0.0", MPLS_LABEL_INVALID, disp_table=8) bier_route_1.add_vpp_config() # # An entry in the disposition table for sender 333 # lookup in VRF 10 # bier_de_1 = VppBierDispEntry(self, bdt.id, 333, BIER_HDR_PAYLOAD.BIER_HDR_PROTO_IPV4, "0.0.0.0", 10, rpf_id=8192) bier_de_1.add_vpp_config() # # Add a multicast route that will forward the traffic # post-disposition # route_eg_232_1_1_1 = VppIpMRoute( self, "0.0.0.0", "232.1.1.1", 32, MRouteEntryFlags.MFIB_ENTRY_FLAG_NONE, table_id=10, paths=[VppMRoutePath(self.pg1.sw_if_index, MRouteItfFlags.MFIB_ITF_FLAG_FORWARD)]) route_eg_232_1_1_1.add_vpp_config() route_eg_232_1_1_1.update_rpf_id(8192) # # inject a packet in VRF-0. We expect it to be BIER encapped, # replicated, then hit the disposition and be forwarded # out of VRF 10, i.e. on pg1 # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src="1.1.1.1", dst="232.1.1.1") / UDP(sport=1234, dport=1234)) self.send_and_expect(self.pg0, p*65, self.pg1) if __name__ == '__main__': unittest.main(testRunner=VppTestRunner)
the-stack_0_8524
from __future__ import unicode_literals import arrow import json import unittest import sys from httmock import HTTMock from nose.tools import eq_ from misfit import Misfit, MisfitGoal, MisfitSummary from misfit.exceptions import MisfitException from .mocks import MisfitHttMock class TestMisfitAPI(unittest.TestCase): def setUp(self): self.misfit = Misfit('FAKE_ID', 'FAKE_SECRET', 'FAKE_TOKEN') def test_goal(self): """ Test retrieving a goal by date range """ goal_dict = { "id": "51a4189acf12e53f81000001", "date": "2014-10-05", "points": 500, "targetPoints": 1000, "timeZoneOffset": -8 } end_date = '2014-10-07' with HTTMock(MisfitHttMock('goal').json_http): goal_list = self.misfit.goal(start_date=goal_dict['date'], end_date=end_date) eq_(len(goal_list), 3) goal = goal_list[0] eq_(type(goal), MisfitGoal) self.assert_misfit_string(goal, goal_dict) eq_(goal_list[2].date, arrow.get(end_date)) eq_(goal.id, goal_dict['id']) eq_(goal.date, arrow.get(goal_dict['date'])) eq_(goal.points, goal_dict['points']) eq_(goal.targetPoints, goal_dict['targetPoints']) eq_(goal.timeZoneOffset, goal_dict['timeZoneOffset']) self.assertAlmostEqual(goal.percent_complete(), 50) # Check that percent_complete is None if targetPoints is 0 goal.targetPoints = 0 assert goal.percent_complete() is None def test_goal_single(self): """ Test retrieving a goal by object_id """ goal_dict = { "id": "51a4189acf12e53f81000001", "date": "2014-10-05", "points": 500, "targetPoints": 1000, "timeZoneOffset": -8 } with HTTMock(MisfitHttMock('goal_single').json_http): goal = self.misfit.goal(object_id=goal_dict['id']) eq_(type(goal), MisfitGoal) self.assert_misfit_string(goal, goal_dict) eq_(goal.id, goal_dict['id']) eq_(goal.date, arrow.get(goal_dict['date'])) eq_(goal.points, goal_dict['points']) eq_(goal.targetPoints, goal_dict['targetPoints']) eq_(goal.timeZoneOffset, goal_dict['timeZoneOffset']) self.assertAlmostEqual(goal.percent_complete(), 50) # Check that percent_complete is None if targetPoints is 0 goal.targetPoints = 0 assert goal.percent_complete() is None def test_goal_object_date_exception(self): """ Check that an exception is raised when no date range or object id is supplied to goal """ self.assertRaises(MisfitException, self.misfit.goal) def test_summary(self): """ Test retrieving a non-detail summary """ date_range = {'start_date': '2014-12-10', 'end_date': '2014-12-17'} with HTTMock(MisfitHttMock('summary').json_http): summary = self.misfit.summary(start_date='2014-12-10', end_date='2014-12-17') summ_dict = { 'activityCalories': 1449.2, 'calories': 16310.24, 'distance': 13.5227, 'points': 3550, 'steps': 34030 } eq_(type(summary), MisfitSummary) self.assert_misfit_string(summary, summ_dict) eq_(summary.data, summ_dict) eq_(summary.activityCalories, summ_dict['activityCalories']) eq_(summary.calories, summ_dict['calories']) eq_(summary.distance, summ_dict['distance']) eq_(summary.points, summ_dict['points']) eq_(summary.steps, summ_dict['steps']) def test_summary_detail(self): summ_dict = { "date": "2014-10-05", "points": 394.4, "steps": 3650, "calories": 1687.4735, "activityCalories": 412.3124, "distance": 1.18 } end_date = "2014-10-07" with HTTMock(MisfitHttMock('summary_detail').json_http): summary_list = self.misfit.summary( start_date=summ_dict['date'], end_date=end_date, detail=True) eq_(len(summary_list), 3) summary = summary_list[0] eq_(type(summary), MisfitSummary) self.assert_misfit_string(summary, summ_dict) eq_(summary_list[2].date, arrow.get(end_date)) eq_(summary.data, summ_dict) eq_(summary.date, arrow.get(summ_dict['date'])) eq_(summary.points, summ_dict['points']) eq_(summary.steps, summ_dict['steps']) eq_(summary.calories, summ_dict['calories']) eq_(summary.activityCalories, summ_dict['activityCalories']) eq_(summary.distance, summ_dict['distance']) def assert_misfit_string(self, obj, data): """ The string representing the misfit object should be the classname, followed by a ":", followed by the json data """ parts = ('%s' % obj).split(': ', 1) eq_(parts[0], '%s' % type(obj)) eq_(json.loads(parts[1]), data)
the-stack_0_8528
#!/usr/bin/env python # -*- coding: utf-8 -*- # # keplerian documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) import keplerian # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'keplerian' copyright = u"2018, João Faria" author = u"João Faria" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = keplerian.__version__ # The full version, including alpha/beta/rc tags. release = keplerian.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'kepleriandoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ (master_doc, 'keplerian.tex', u'keplerian Documentation', u'João Faria', 'manual'), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'keplerian', u'keplerian Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'keplerian', u'keplerian Documentation', author, 'keplerian', 'One line description of project.', 'Miscellaneous'), ]
the-stack_0_8532
import time, traceback, json import rethinkdb as r TIX = 'tix' # DB VENU = 'venu' # TABLE ID = 'id' # COLUMN TS = 'ts' # COLUMN SMAP = 'smap' # COLUMN UMAP = 'umap' # COLUMN MAX = 'max' # COLUMN CNT = 20 # number of seats def init(conn, event): # try to drop table (may or may not exist) rv = '' try: r.db_drop(TIX).run(conn) rv = 'dropped, then created' except: rv = 'created' r.db_create(TIX).run(conn) r.db(TIX).table_create(VENU).run(conn) r.db(TIX).table(VENU).index_create(TS).run(conn) smap = {} umap = {} for x in range(1, CNT + 1): smap[str(x)] = 'free' umap[str(x)] = '' rv += str(r.db(TIX).table(VENU).insert({ ID: 0, SMAP: smap, UMAP: umap, MAX: CNT, TS: time.time() }).run(conn)) return rv def hold(conn, event): snum = str(event.get('snum')) unum = str(event.get('unum')) smap = {} umap = {} smap = r.db(TIX).table(VENU).get(0).get_field(SMAP).run(conn) umap = r.db(TIX).table(VENU).get(0).get_field(UMAP).run(conn) smap[snum] = 'held' umap[snum] = unum result = r.db(TIX).table(VENU).get(0).update(lambda VENU: r.branch( VENU[SMAP][snum] == 'free', {SMAP: smap, UMAP: umap, TS: time.time()}, {} ) ).run(conn) if result: return result def book(conn, event): unum = str(event.get('unum')) smap = {} umap = {} smap = r.db(TIX).table(VENU).get(0).get_field(SMAP).run(conn) umap = r.db(TIX).table(VENU).get(0).get_field(UMAP).run(conn) for x in range (1, CNT + 1): if smap[str(x)] == 'held' and umap[str(x)] == unum: smap[str(x)] = 'booked' result = r.db(TIX).table(VENU).get(0).update({ SMAP: smap, TS: time.time() }).run(conn) if result: return result def updates(conn, event): ts = event.get('ts', 0) for row in (r.db(TIX).table(VENU).filter(r.row[TS] > ts). changes(include_initial=True).run(conn)): return row['new_val'] def handler(conn, event): fn = {'init': init, 'hold': hold, 'book': book, 'updates': updates}.get(event['op'], None) if fn != None: try: result = fn(conn, event) return {'result': result} except Exception: return {'error': traceback.format_exc()} else: return {'error': 'bad op'}
the-stack_0_8534
# Copyright 2002 Gary Strangman. All rights reserved # Copyright 2002-2016 The SciPy Developers # # The original code from Gary Strangman was heavily adapted for # use in SciPy by Travis Oliphant. The original code came with the # following disclaimer: # # This software is provided "as-is". There are no expressed or implied # warranties of any kind, including, but not limited to, the warranties # of merchantability and fitness for a given application. In no event # shall Gary Strangman be liable for any direct, indirect, incidental, # special, exemplary or consequential damages (including, but not limited # to, loss of use, data or profits, or business interruption) however # caused and on any theory of liability, whether in contract, strict # liability or tort (including negligence or otherwise) arising in any way # out of the use of this software, even if advised of the possibility of # such damage. """ A collection of basic statistical functions for Python. The function names appear below. Some scalar functions defined here are also available in the scipy.special package where they work on arbitrary sized arrays. Disclaimers: The function list is obviously incomplete and, worse, the functions are not optimized. All functions have been tested (some more so than others), but they are far from bulletproof. Thus, as with any free software, no warranty or guarantee is expressed or implied. :-) A few extra functions that don't appear in the list below can be found by interested treasure-hunters. These functions don't necessarily have both list and array versions but were deemed useful. Central Tendency ---------------- .. autosummary:: :toctree: generated/ gmean hmean mode Moments ------- .. autosummary:: :toctree: generated/ moment variation skew kurtosis normaltest Altered Versions ---------------- .. autosummary:: :toctree: generated/ tmean tvar tstd tsem describe Frequency Stats --------------- .. autosummary:: :toctree: generated/ itemfreq scoreatpercentile percentileofscore cumfreq relfreq Variability ----------- .. autosummary:: :toctree: generated/ obrientransform sem zmap zscore gstd iqr median_abs_deviation Trimming Functions ------------------ .. autosummary:: :toctree: generated/ trimboth trim1 Correlation Functions --------------------- .. autosummary:: :toctree: generated/ pearsonr fisher_exact spearmanr pointbiserialr kendalltau weightedtau linregress theilslopes multiscale_graphcorr Inferential Stats ----------------- .. autosummary:: :toctree: generated/ ttest_1samp ttest_ind ttest_ind_from_stats ttest_rel chisquare power_divergence kstest ks_1samp ks_2samp epps_singleton_2samp mannwhitneyu ranksums wilcoxon kruskal friedmanchisquare brunnermunzel combine_pvalues Statistical Distances --------------------- .. autosummary:: :toctree: generated/ wasserstein_distance energy_distance ANOVA Functions --------------- .. autosummary:: :toctree: generated/ f_oneway Support Functions ----------------- .. autosummary:: :toctree: generated/ rankdata rvs_ratio_uniforms References ---------- .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ import warnings import math from math import gcd from collections import namedtuple from itertools import permutations import numpy as np from numpy import array, asarray, ma from scipy.spatial.distance import cdist from scipy.ndimage import measurements from scipy._lib._util import (_lazywhere, check_random_state, MapWrapper, rng_integers, float_factorial) import scipy.special as special from scipy import linalg from . import distributions from . import mstats_basic from ._stats_mstats_common import (_find_repeats, linregress, theilslopes, siegelslopes) from ._stats import (_kendall_dis, _toint64, _weightedrankedtau, _local_correlations) from ._rvs_sampling import rvs_ratio_uniforms from ._hypotests import epps_singleton_2samp, cramervonmises __all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar', 'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation', 'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest', 'normaltest', 'jarque_bera', 'itemfreq', 'scoreatpercentile', 'percentileofscore', 'cumfreq', 'relfreq', 'obrientransform', 'sem', 'zmap', 'zscore', 'iqr', 'gstd', 'median_absolute_deviation', 'median_abs_deviation', 'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway', 'F_onewayConstantInputWarning', 'F_onewayBadInputSizesWarning', 'PearsonRConstantInputWarning', 'PearsonRNearConstantInputWarning', 'pearsonr', 'fisher_exact', 'SpearmanRConstantInputWarning', 'spearmanr', 'pointbiserialr', 'kendalltau', 'weightedtau', 'multiscale_graphcorr', 'linregress', 'siegelslopes', 'theilslopes', 'ttest_1samp', 'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel', 'kstest', 'ks_1samp', 'ks_2samp', 'chisquare', 'power_divergence', 'mannwhitneyu', 'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare', 'rankdata', 'rvs_ratio_uniforms', 'combine_pvalues', 'wasserstein_distance', 'energy_distance', 'brunnermunzel', 'epps_singleton_2samp', 'cramervonmises'] def _contains_nan(a, nan_policy='propagate'): policies = ['propagate', 'raise', 'omit'] if nan_policy not in policies: raise ValueError("nan_policy must be one of {%s}" % ', '.join("'%s'" % s for s in policies)) try: # Calling np.sum to avoid creating a huge array into memory # e.g. np.isnan(a).any() with np.errstate(invalid='ignore'): contains_nan = np.isnan(np.sum(a)) except TypeError: # This can happen when attempting to sum things which are not # numbers (e.g. as in the function `mode`). Try an alternative method: try: contains_nan = np.nan in set(a.ravel()) except TypeError: # Don't know what to do. Fall back to omitting nan values and # issue a warning. contains_nan = False nan_policy = 'omit' warnings.warn("The input array could not be properly checked for nan " "values. nan values will be ignored.", RuntimeWarning) if contains_nan and nan_policy == 'raise': raise ValueError("The input contains nan values") return contains_nan, nan_policy def _chk_asarray(a, axis): if axis is None: a = np.ravel(a) outaxis = 0 else: a = np.asarray(a) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) return a, outaxis def _chk2_asarray(a, b, axis): if axis is None: a = np.ravel(a) b = np.ravel(b) outaxis = 0 else: a = np.asarray(a) b = np.asarray(b) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) if b.ndim == 0: b = np.atleast_1d(b) return a, b, outaxis def _shape_with_dropped_axis(a, axis): """ Given an array `a` and an integer `axis`, return the shape of `a` with the `axis` dimension removed. Examples -------- >>> a = np.zeros((3, 5, 2)) >>> _shape_with_dropped_axis(a, 1) (3, 2) """ shp = list(a.shape) try: del shp[axis] except IndexError: raise np.AxisError(axis, a.ndim) from None return tuple(shp) def _broadcast_shapes(shape1, shape2): """ Given two shapes (i.e. tuples of integers), return the shape that would result from broadcasting two arrays with the given shapes. Examples -------- >>> _broadcast_shapes((2, 1), (4, 1, 3)) (4, 2, 3) """ d = len(shape1) - len(shape2) if d <= 0: shp1 = (1,)*(-d) + shape1 shp2 = shape2 elif d > 0: shp1 = shape1 shp2 = (1,)*d + shape2 shape = [] for n1, n2 in zip(shp1, shp2): if n1 == 1: n = n2 elif n2 == 1 or n1 == n2: n = n1 else: raise ValueError(f'shapes {shape1} and {shape2} could not be ' 'broadcast together') shape.append(n) return tuple(shape) def _broadcast_shapes_with_dropped_axis(a, b, axis): """ Given two arrays `a` and `b` and an integer `axis`, find the shape of the broadcast result after dropping `axis` from the shapes of `a` and `b`. Examples -------- >>> a = np.zeros((5, 2, 1)) >>> b = np.zeros((1, 9, 3)) >>> _broadcast_shapes_with_dropped_axis(a, b, 1) (5, 3) """ shp1 = _shape_with_dropped_axis(a, axis) shp2 = _shape_with_dropped_axis(b, axis) try: shp = _broadcast_shapes(shp1, shp2) except ValueError: raise ValueError(f'non-axis shapes {shp1} and {shp2} could not be ' 'broadcast together') from None return shp def gmean(a, axis=0, dtype=None, weights=None): """ Compute the geometric mean along the specified axis. Return the geometric average of the array elements. That is: n-th root of (x1 * x2 * ... * xn) Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or None, optional Axis along which the geometric mean is computed. Default is 0. If None, compute over the whole array `a`. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. weights : array_like, optional The weights array can either be 1-D (in which case its length must be the size of `a` along the given `axis`) or of the same shape as `a`. Default is None, which gives each value a weight of 1.0. Returns ------- gmean : ndarray See `dtype` parameter above. See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average hmean : Harmonic mean Notes ----- The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values. References ---------- .. [1] "Weighted Geometric Mean", *Wikipedia*, https://en.wikipedia.org/wiki/Weighted_geometric_mean. Examples -------- >>> from scipy.stats import gmean >>> gmean([1, 4]) 2.0 >>> gmean([1, 2, 3, 4, 5, 6, 7]) 3.3800151591412964 """ if not isinstance(a, np.ndarray): # if not an ndarray object attempt to convert it log_a = np.log(np.array(a, dtype=dtype)) elif dtype: # Must change the default dtype allowing array type if isinstance(a, np.ma.MaskedArray): log_a = np.log(np.ma.asarray(a, dtype=dtype)) else: log_a = np.log(np.asarray(a, dtype=dtype)) else: log_a = np.log(a) if weights is not None: weights = np.asanyarray(weights, dtype=dtype) return np.exp(np.average(log_a, axis=axis, weights=weights)) def hmean(a, axis=0, dtype=None): """ Calculate the harmonic mean along the specified axis. That is: n / (1/x1 + 1/x2 + ... + 1/xn) Parameters ---------- a : array_like Input array, masked array or object that can be converted to an array. axis : int or None, optional Axis along which the harmonic mean is computed. Default is 0. If None, compute over the whole array `a`. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer `dtype` with a precision less than that of the default platform integer. In that case, the default platform integer is used. Returns ------- hmean : ndarray See `dtype` parameter above. See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average gmean : Geometric mean Notes ----- The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity. Examples -------- >>> from scipy.stats import hmean >>> hmean([1, 4]) 1.6000000000000001 >>> hmean([1, 2, 3, 4, 5, 6, 7]) 2.6997245179063363 """ if not isinstance(a, np.ndarray): a = np.array(a, dtype=dtype) if np.all(a >= 0): # Harmonic mean only defined if greater than or equal to to zero. if isinstance(a, np.ma.MaskedArray): size = a.count(axis) else: if axis is None: a = a.ravel() size = a.shape[0] else: size = a.shape[axis] with np.errstate(divide='ignore'): return size / np.sum(1.0 / a, axis=axis, dtype=dtype) else: raise ValueError("Harmonic mean only defined if all elements greater " "than or equal to zero") ModeResult = namedtuple('ModeResult', ('mode', 'count')) def mode(a, axis=0, nan_policy='propagate'): """ Return an array of the modal (most common) value in the passed array. If there is more than one such value, only the smallest is returned. The bin-count for the modal bins is also returned. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- mode : ndarray Array of modal values. count : ndarray Array of counts for each mode. Examples -------- >>> a = np.array([[6, 8, 3, 0], ... [3, 2, 1, 7], ... [8, 1, 8, 4], ... [5, 3, 0, 5], ... [4, 7, 5, 9]]) >>> from scipy import stats >>> stats.mode(a) ModeResult(mode=array([[3, 1, 0, 0]]), count=array([[1, 1, 1, 1]])) To get mode of whole array, specify ``axis=None``: >>> stats.mode(a, axis=None) ModeResult(mode=array([3]), count=array([3])) """ a, axis = _chk_asarray(a, axis) if a.size == 0: return ModeResult(np.array([]), np.array([])) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.mode(a, axis) if a.dtype == object and np.nan in set(a.ravel()): # Fall back to a slower method since np.unique does not work with NaN scores = set(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape, dtype=a.dtype) oldcounts = np.zeros(testshape, dtype=int) for score in scores: template = (a == score) counts = np.sum(template, axis, keepdims=True) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return ModeResult(mostfrequent, oldcounts) def _mode1D(a): vals, cnts = np.unique(a, return_counts=True) return vals[cnts.argmax()], cnts.max() # np.apply_along_axis will convert the _mode1D tuples to a numpy array, casting types in the process # This recreates the results without that issue # View of a, rotated so the requested axis is last in_dims = list(range(a.ndim)) a_view = np.transpose(a, in_dims[:axis] + in_dims[axis+1:] + [axis]) inds = np.ndindex(a_view.shape[:-1]) modes = np.empty(a_view.shape[:-1], dtype=a.dtype) counts = np.empty(a_view.shape[:-1], dtype=np.int_) for ind in inds: modes[ind], counts[ind] = _mode1D(a_view[ind]) newshape = list(a.shape) newshape[axis] = 1 return ModeResult(modes.reshape(newshape), counts.reshape(newshape)) def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am def tmean(a, limits=None, inclusive=(True, True), axis=None): """ Compute the trimmed mean. This function finds the arithmetic mean of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to compute test. Default is None. Returns ------- tmean : float Trimmed mean. See Also -------- trim_mean : Returns mean after trimming a proportion from both tails. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmean(x) 9.5 >>> stats.tmean(x, (3,17)) 10.0 """ a = asarray(a) if limits is None: return np.mean(a, None) am = _mask_to_limits(a.ravel(), limits, inclusive) return am.mean(axis=axis) def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed variance. This function computes the sample variance of an array of values, while ignoring values which are outside of given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tvar : float Trimmed variance. Notes ----- `tvar` computes the unbiased sample variance, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tvar(x) 35.0 >>> stats.tvar(x, (3,17)) 20.0 """ a = asarray(a) a = a.astype(float) if limits is None: return a.var(ddof=ddof, axis=axis) am = _mask_to_limits(a, limits, inclusive) amnan = am.filled(fill_value=np.nan) return np.nanvar(amnan, ddof=ddof, axis=axis) def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'): """ Compute the trimmed minimum. This function finds the miminum value of an array `a` along the specified axis, but only considering values greater than a specified lower limit. Parameters ---------- a : array_like Array of values. lowerlimit : None or float, optional Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the lower limit are included. The default value is True. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- tmin : float, int or ndarray Trimmed minimum. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmin(x) 0 >>> stats.tmin(x, 13) 13 >>> stats.tmin(x, 13, inclusive=False) 14 """ a, axis = _chk_asarray(a, axis) am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False)) contains_nan, nan_policy = _contains_nan(am, nan_policy) if contains_nan and nan_policy == 'omit': am = ma.masked_invalid(am) res = ma.minimum.reduce(am, axis).data if res.ndim == 0: return res[()] return res def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'): """ Compute the trimmed maximum. This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit. Parameters ---------- a : array_like Array of values. upperlimit : None or float, optional Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the upper limit are included. The default value is True. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- tmax : float, int or ndarray Trimmed maximum. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmax(x) 19 >>> stats.tmax(x, 13) 13 >>> stats.tmax(x, 13, inclusive=False) 12 """ a, axis = _chk_asarray(a, axis) am = _mask_to_limits(a, (None, upperlimit), (False, inclusive)) contains_nan, nan_policy = _contains_nan(am, nan_policy) if contains_nan and nan_policy == 'omit': am = ma.masked_invalid(am) res = ma.maximum.reduce(am, axis).data if res.ndim == 0: return res[()] return res def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed sample standard deviation. This function finds the sample standard deviation of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tstd : float Trimmed sample standard deviation. Notes ----- `tstd` computes the unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tstd(x) 5.9160797830996161 >>> stats.tstd(x, (3,17)) 4.4721359549995796 """ return np.sqrt(tvar(a, limits, inclusive, axis, ddof)) def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed standard error of the mean. This function finds the standard error of the mean for given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tsem : float Trimmed standard error of the mean. Notes ----- `tsem` uses unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tsem(x) 1.3228756555322954 >>> stats.tsem(x, (3,17)) 1.1547005383792515 """ a = np.asarray(a).ravel() if limits is None: return a.std(ddof=ddof) / np.sqrt(a.size) am = _mask_to_limits(a, limits, inclusive) sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis)) return sd / np.sqrt(am.count()) ##################################### # MOMENTS # ##################################### def moment(a, moment=1, axis=0, nan_policy='propagate'): r""" Calculate the nth moment about the mean for a sample. A moment is a specific quantitative measure of the shape of a set of points. It is often used to calculate coefficients of skewness and kurtosis due to its close relationship with them. Parameters ---------- a : array_like Input array. moment : int or array_like of ints, optional Order of central moment that is returned. Default is 1. axis : int or None, optional Axis along which the central moment is computed. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- n-th central moment : ndarray or float The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done. See Also -------- kurtosis, skew, describe Notes ----- The k-th central moment of a data sample is: .. math:: m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k Where n is the number of samples and x-bar is the mean. This function uses exponentiation by squares [1]_ for efficiency. References ---------- .. [1] https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms Examples -------- >>> from scipy.stats import moment >>> moment([1, 2, 3, 4, 5], moment=1) 0.0 >>> moment([1, 2, 3, 4, 5], moment=2) 2.0 """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.moment(a, moment, axis) if a.size == 0: # empty array, return nan(s) with shape matching `moment` if np.isscalar(moment): return np.nan else: return np.full(np.asarray(moment).shape, np.nan, dtype=np.float64) # for array_like moment input, return a value for each. if not np.isscalar(moment): mmnt = [_moment(a, i, axis) for i in moment] return np.array(mmnt) else: return _moment(a, moment, axis) def _moment(a, moment, axis): if np.abs(moment - np.round(moment)) > 0: raise ValueError("All moment parameters must be integers") if moment == 0: # When moment equals 0, the result is 1, by definition. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.ones(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return 1.0 elif moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: # Exponentiation by squares: form exponent sequence n_list = [moment] current_n = moment while current_n > 2: if current_n % 2: current_n = (current_n - 1) / 2 else: current_n /= 2 n_list.append(current_n) # Starting point for exponentiation by squares a_zero_mean = a - np.mean(a, axis, keepdims=True) if n_list[-1] == 1: s = a_zero_mean.copy() else: s = a_zero_mean**2 # Perform multiplications for n in n_list[-2::-1]: s = s**2 if n % 2: s *= a_zero_mean return np.mean(s, axis) def variation(a, axis=0, nan_policy='propagate', ddof=0): """ Compute the coefficient of variation. The coefficient of variation is the standard deviation divided by the mean. This function is equivalent to:: np.std(x, axis=axis, ddof=ddof) / np.mean(x) The default for ``ddof`` is 0, but many definitions of the coefficient of variation use the square root of the unbiased sample variance for the sample standard deviation, which corresponds to ``ddof=1``. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values ddof : int, optional Delta degrees of freedom. Default is 0. Returns ------- variation : ndarray The calculated variation along the requested axis. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Examples -------- >>> from scipy.stats import variation >>> variation([1, 2, 3, 4, 5]) 0.47140452079103173 """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.variation(a, axis, ddof) return a.std(axis, ddof=ddof) / a.mean(axis) def skew(a, axis=0, bias=True, nan_policy='propagate'): r""" Compute the sample skewness of a data set. For normally distributed data, the skewness should be about zero. For unimodal continuous distributions, a skewness value greater than zero means that there is more weight in the right tail of the distribution. The function `skewtest` can be used to determine if the skewness value is close enough to zero, statistically speaking. Parameters ---------- a : ndarray Input array. axis : int or None, optional Axis along which skewness is calculated. Default is 0. If None, compute over the whole array `a`. bias : bool, optional If False, then the calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- skewness : ndarray The skewness of values along an axis, returning 0 where all values are equal. Notes ----- The sample skewness is computed as the Fisher-Pearson coefficient of skewness, i.e. .. math:: g_1=\frac{m_3}{m_2^{3/2}} where .. math:: m_i=\frac{1}{N}\sum_{n=1}^N(x[n]-\bar{x})^i is the biased sample :math:`i\texttt{th}` central moment, and :math:`\bar{x}` is the sample mean. If ``bias`` is False, the calculations are corrected for bias and the value computed is the adjusted Fisher-Pearson standardized moment coefficient, i.e. .. math:: G_1=\frac{k_3}{k_2^{3/2}}= \frac{\sqrt{N(N-1)}}{N-2}\frac{m_3}{m_2^{3/2}}. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Section 2.2.24.1 Examples -------- >>> from scipy.stats import skew >>> skew([1, 2, 3, 4, 5]) 0.0 >>> skew([2, 8, 0, 4, 1, 9, 9, 0]) 0.2650554122698573 """ a, axis = _chk_asarray(a, axis) n = a.shape[axis] contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.skew(a, axis, bias) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) with np.errstate(all='ignore'): zero = (m2 <= (np.finfo(m2.dtype).resolution * a.mean(axis))**2) vals = np.where(zero, 0, m3 / m2**1.5) if not bias: can_correct = ~zero & (n > 2) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = np.sqrt((n - 1.0) * n) / (n - 2.0) * m3 / m2**1.5 np.place(vals, can_correct, nval) if vals.ndim == 0: return vals.item() return vals def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'): """ Compute the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators Use `kurtosistest` to see if result is close enough to normal. Parameters ---------- a : array Data for which the kurtosis is calculated. axis : int or None, optional Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array `a`. fisher : bool, optional If True, Fisher's definition is used (normal ==> 0.0). If False, Pearson's definition is used (normal ==> 3.0). bias : bool, optional If False, then the calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- kurtosis : array The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Examples -------- In Fisher's definiton, the kurtosis of the normal distribution is zero. In the following example, the kurtosis is close to zero, because it was calculated from the dataset, not from the continuous distribution. >>> from scipy.stats import norm, kurtosis >>> data = norm.rvs(size=1000, random_state=3) >>> kurtosis(data) -0.06928694200380558 The distribution with a higher kurtosis has a heavier tail. The zero valued kurtosis of the normal distribution in Fisher's definition can serve as a reference point. >>> import matplotlib.pyplot as plt >>> import scipy.stats as stats >>> from scipy.stats import kurtosis >>> x = np.linspace(-5, 5, 100) >>> ax = plt.subplot() >>> distnames = ['laplace', 'norm', 'uniform'] >>> for distname in distnames: ... if distname == 'uniform': ... dist = getattr(stats, distname)(loc=-2, scale=4) ... else: ... dist = getattr(stats, distname) ... data = dist.rvs(size=1000) ... kur = kurtosis(data, fisher=True) ... y = dist.pdf(x) ... ax.plot(x, y, label="{}, {}".format(distname, round(kur, 3))) ... ax.legend() The Laplace distribution has a heavier tail than the normal distribution. The uniform distribution (which has negative kurtosis) has the thinnest tail. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.kurtosis(a, axis, fisher, bias) n = a.shape[axis] m2 = moment(a, 2, axis) m4 = moment(a, 4, axis) with np.errstate(all='ignore'): zero = (m2 <= (np.finfo(m2.dtype).resolution * a.mean(axis))**2) vals = np.where(zero, 0, m4 / m2**2.0) if not bias: can_correct = ~zero & (n > 3) if can_correct.any(): m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0) np.place(vals, can_correct, nval + 3.0) if vals.ndim == 0: vals = vals.item() # array scalar return vals - 3 if fisher else vals DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis')) def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'): """ Compute several descriptive statistics of the passed array. Parameters ---------- a : array_like Input data. axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom (only for variance). Default is 1. bias : bool, optional If False, then the skewness and kurtosis calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- nobs : int or ndarray of ints Number of observations (length of data along `axis`). When 'omit' is chosen as nan_policy, the length along each axis slice is counted separately. minmax: tuple of ndarrays or floats Minimum and maximum value of `a` along the given axis. mean : ndarray or float Arithmetic mean of `a` along the given axis. variance : ndarray or float Unbiased variance of `a` along the given axis; denominator is number of observations minus one. skewness : ndarray or float Skewness of `a` along the given axis, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction. kurtosis : ndarray or float Kurtosis (Fisher) of `a` along the given axis. The kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom are used. See Also -------- skew, kurtosis Examples -------- >>> from scipy import stats >>> a = np.arange(10) >>> stats.describe(a) DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.166666666666666, skewness=0.0, kurtosis=-1.2242424242424244) >>> b = [[1, 2], [3, 4]] >>> stats.describe(b) DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])), mean=array([2., 3.]), variance=array([2., 2.]), skewness=array([0., 0.]), kurtosis=array([-2., -2.])) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.describe(a, axis, ddof, bias) if a.size == 0: raise ValueError("The input must not be empty.") n = a.shape[axis] mm = (np.min(a, axis=axis), np.max(a, axis=axis)) m = np.mean(a, axis=axis) v = np.var(a, axis=axis, ddof=ddof) sk = skew(a, axis, bias=bias) kurt = kurtosis(a, axis, bias=bias) return DescribeResult(n, mm, m, v, sk, kurt) ##################################### # NORMALITY TESTS # ##################################### SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue')) def skewtest(a, axis=0, nan_policy='propagate'): """ Test whether the skew is different from the normal distribution. This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution. Parameters ---------- a : array The data to be tested. axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- statistic : float The computed z-score for this test. pvalue : float Two-sided p-value for the hypothesis test. Notes ----- The sample size must be at least 8. References ---------- .. [1] R. B. D'Agostino, A. J. Belanger and R. B. D'Agostino Jr., "A suggestion for using powerful and informative tests of normality", American Statistician 44, pp. 316-321, 1990. Examples -------- >>> from scipy.stats import skewtest >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8]) SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897) >>> skewtest([2, 8, 0, 4, 1, 9, 9, 0]) SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459) >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000]) SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133) >>> skewtest([100, 100, 100, 100, 100, 100, 100, 101]) SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.skewtest(a, axis) if axis is None: a = np.ravel(a) axis = 0 b2 = skew(a, axis) n = a.shape[axis] if n < 8: raise ValueError( "skewtest is not valid with less than 8 samples; %i samples" " were given." % int(n)) y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2))) beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) / ((n-2.0) * (n+5) * (n+7) * (n+9))) W2 = -1 + math.sqrt(2 * (beta2 - 1)) delta = 1 / math.sqrt(0.5 * math.log(W2)) alpha = math.sqrt(2.0 / (W2 - 1)) y = np.where(y == 0, 1, y) Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1)) return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue')) def kurtosistest(a, axis=0, nan_policy='propagate'): """ Test whether a dataset has normal kurtosis. This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``. Parameters ---------- a : array Array of the sample data. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- statistic : float The computed z-score for this test. pvalue : float The two-sided p-value for the hypothesis test. Notes ----- Valid only for n>20. This function uses the method described in [1]_. References ---------- .. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983. Examples -------- >>> from scipy.stats import kurtosistest >>> kurtosistest(list(range(20))) KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.08804338332528348) >>> np.random.seed(28041990) >>> s = np.random.normal(0, 1, 1000) >>> kurtosistest(s) KurtosistestResult(statistic=1.2317590987707365, pvalue=0.21803908613450895) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.kurtosistest(a, axis) n = a.shape[axis] if n < 5: raise ValueError( "kurtosistest requires at least 5 observations; %i observations" " were given." % int(n)) if n < 20: warnings.warn("kurtosistest only valid for n>=20 ... continuing " "anyway, n=%i" % int(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) # [1]_ Eq. 1 x = (b2-E) / np.sqrt(varb2) # [1]_ Eq. 4 # [1]_ Eq. 2: sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) # [1]_ Eq. 3: A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2/(9.0*A) denom = 1 + x*np.sqrt(2/(A-4.0)) term2 = np.sign(denom) * np.where(denom == 0.0, np.nan, np.power((1-2.0/A)/np.abs(denom), 1/3.0)) if np.any(denom == 0): msg = "Test statistic not defined in some cases due to division by " \ "zero. Return nan in that case..." warnings.warn(msg, RuntimeWarning) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) # [1]_ Eq. 5 if Z.ndim == 0: Z = Z[()] # zprob uses upper tail, so Z needs to be positive return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue')) def normaltest(a, axis=0, nan_policy='propagate'): """ Test whether a sample differs from a normal distribution. This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [1]_, [2]_ test that combines skew and kurtosis to produce an omnibus test of normality. Parameters ---------- a : array_like The array containing the sample to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. References ---------- .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for moderate and large sample size", Biometrika, 58, 341-348 .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from normality", Biometrika, 60, 613-622 Examples -------- >>> from scipy import stats >>> pts = 1000 >>> np.random.seed(28041990) >>> a = np.random.normal(0, 1, size=pts) >>> b = np.random.normal(2, 1, size=pts) >>> x = np.concatenate((a, b)) >>> k2, p = stats.normaltest(x) >>> alpha = 1e-3 >>> print("p = {:g}".format(p)) p = 3.27207e-11 >>> if p < alpha: # null hypothesis: x comes from a normal distribution ... print("The null hypothesis can be rejected") ... else: ... print("The null hypothesis cannot be rejected") The null hypothesis can be rejected """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.normaltest(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return NormaltestResult(k2, distributions.chi2.sf(k2, 2)) Jarque_beraResult = namedtuple('Jarque_beraResult', ('statistic', 'pvalue')) def jarque_bera(x): """ Perform the Jarque-Bera goodness of fit test on sample data. The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution. Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom. Parameters ---------- x : array_like Observations of a random variable. Returns ------- jb_value : float The test statistic. p : float The p-value for the hypothesis test. References ---------- .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality, homoscedasticity and serial independence of regression residuals", 6 Econometric Letters 255-259. Examples -------- >>> from scipy import stats >>> np.random.seed(987654321) >>> x = np.random.normal(0, 1, 100000) >>> jarque_bera_test = stats.jarque_bera(x) >>> jarque_bera_test Jarque_beraResult(statistic=4.716570798957913, pvalue=0.0945822550304295) >>> jarque_bera_test.statistic 4.716570798957913 >>> jarque_bera_test.pvalue 0.0945822550304295 """ x = np.asarray(x) n = x.size if n == 0: raise ValueError('At least one observation is required.') mu = x.mean() diffx = x - mu skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.) kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2 jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4) p = 1 - distributions.chi2.cdf(jb_value, 2) return Jarque_beraResult(jb_value, p) ##################################### # FREQUENCY FUNCTIONS # ##################################### # deindent to work around numpy/gh-16202 @np.deprecate( message="`itemfreq` is deprecated and will be removed in a " "future version. Use instead `np.unique(..., return_counts=True)`") def itemfreq(a): """ Return a 2-D array of item frequencies. Parameters ---------- a : (N,) array_like Input array. Returns ------- itemfreq : (K, 2) ndarray A 2-D frequency table. Column 1 contains sorted, unique values from `a`, column 2 contains their respective counts. Examples -------- >>> from scipy import stats >>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4]) >>> stats.itemfreq(a) array([[ 0., 2.], [ 1., 4.], [ 2., 2.], [ 4., 1.], [ 5., 1.]]) >>> np.bincount(a) array([2, 4, 2, 0, 1, 1]) >>> stats.itemfreq(a/10.) array([[ 0. , 2. ], [ 0.1, 4. ], [ 0.2, 2. ], [ 0.4, 1. ], [ 0.5, 1. ]]) """ items, inv = np.unique(a, return_inverse=True) freq = np.bincount(inv) return np.array([items, freq]).T def scoreatpercentile(a, per, limit=(), interpolation_method='fraction', axis=None): """ Calculate the score at a given percentile of the input sequence. For example, the score at `per=50` is the median. If the desired quantile lies between two data points, we interpolate between them, according to the value of `interpolation`. If the parameter `limit` is provided, it should be a tuple (lower, upper) of two values. Parameters ---------- a : array_like A 1-D array of values from which to extract score. per : array_like Percentile(s) at which to extract score. Values should be in range [0,100]. limit : tuple, optional Tuple of two scalars, the lower and upper limits within which to compute the percentile. Values of `a` outside this (closed) interval will be ignored. interpolation_method : {'fraction', 'lower', 'higher'}, optional Specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j` The following options are available (default is 'fraction'): * 'fraction': ``i + (j - i) * fraction`` where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j`` * 'lower': ``i`` * 'higher': ``j`` axis : int, optional Axis along which the percentiles are computed. Default is None. If None, compute over the whole array `a`. Returns ------- score : float or ndarray Score at percentile(s). See Also -------- percentileofscore, numpy.percentile Notes ----- This function will become obsolete in the future. For NumPy 1.9 and higher, `numpy.percentile` provides all the functionality that `scoreatpercentile` provides. And it's significantly faster. Therefore it's recommended to use `numpy.percentile` for users that have numpy >= 1.9. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ # adapted from NumPy's percentile function. When we require numpy >= 1.8, # the implementation of this function can be replaced by np.percentile. a = np.asarray(a) if a.size == 0: # empty array, return nan(s) with shape matching `per` if np.isscalar(per): return np.nan else: return np.full(np.asarray(per).shape, np.nan, dtype=np.float64) if limit: a = a[(limit[0] <= a) & (a <= limit[1])] sorted_ = np.sort(a, axis=axis) if axis is None: axis = 0 return _compute_qth_percentile(sorted_, per, interpolation_method, axis) # handle sequence of per's without calling sort multiple times def _compute_qth_percentile(sorted_, per, interpolation_method, axis): if not np.isscalar(per): score = [_compute_qth_percentile(sorted_, i, interpolation_method, axis) for i in per] return np.array(score) if not (0 <= per <= 100): raise ValueError("percentile must be in the range [0, 100]") indexer = [slice(None)] * sorted_.ndim idx = per / 100. * (sorted_.shape[axis] - 1) if int(idx) != idx: # round fractional indices according to interpolation method if interpolation_method == 'lower': idx = int(np.floor(idx)) elif interpolation_method == 'higher': idx = int(np.ceil(idx)) elif interpolation_method == 'fraction': pass # keep idx as fraction and interpolate else: raise ValueError("interpolation_method can only be 'fraction', " "'lower' or 'higher'") i = int(idx) if i == idx: indexer[axis] = slice(i, i + 1) weights = array(1) sumval = 1.0 else: indexer[axis] = slice(i, i + 2) j = i + 1 weights = array([(j - idx), (idx - i)], float) wshape = [1] * sorted_.ndim wshape[axis] = 2 weights.shape = wshape sumval = weights.sum() # Use np.add.reduce (== np.sum but a little faster) to coerce data type return np.add.reduce(sorted_[tuple(indexer)] * weights, axis=axis) / sumval def percentileofscore(a, score, kind='rank'): """ Compute the percentile rank of a score relative to a list of scores. A `percentileofscore` of, for example, 80% means that 80% of the scores in `a` are below the given score. In the case of gaps or ties, the exact definition depends on the optional keyword, `kind`. Parameters ---------- a : array_like Array of scores to which `score` is compared. score : int or float Score that is compared to the elements in `a`. kind : {'rank', 'weak', 'strict', 'mean'}, optional Specifies the interpretation of the resulting score. The following options are available (default is 'rank'): * 'rank': Average percentage ranking of score. In case of multiple matches, average the percentage rankings of all matching scores. * 'weak': This kind corresponds to the definition of a cumulative distribution function. A percentileofscore of 80% means that 80% of values are less than or equal to the provided score. * 'strict': Similar to "weak", except that only values that are strictly less than the given score are counted. * 'mean': The average of the "weak" and "strict" scores, often used in testing. See https://en.wikipedia.org/wiki/Percentile_rank Returns ------- pcos : float Percentile-position of score (0-100) relative to `a`. See Also -------- numpy.percentile Examples -------- Three-quarters of the given values lie below a given score: >>> from scipy import stats >>> stats.percentileofscore([1, 2, 3, 4], 3) 75.0 With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3) 70.0 Only 2/5 values are strictly less than 3: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict') 40.0 But 4/5 values are less than or equal to 3: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak') 80.0 The average between the weak and the strict scores is: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean') 60.0 """ if np.isnan(score): return np.nan a = np.asarray(a) n = len(a) if n == 0: return 100.0 if kind == 'rank': left = np.count_nonzero(a < score) right = np.count_nonzero(a <= score) pct = (right + left + (1 if right > left else 0)) * 50.0/n return pct elif kind == 'strict': return np.count_nonzero(a < score) / n * 100 elif kind == 'weak': return np.count_nonzero(a <= score) / n * 100 elif kind == 'mean': pct = (np.count_nonzero(a < score) + np.count_nonzero(a <= score)) / n * 50 return pct else: raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'") HistogramResult = namedtuple('HistogramResult', ('count', 'lowerlimit', 'binsize', 'extrapoints')) def _histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False): """ Create a histogram. Separate the range into several bins and return the number of instances in each bin. Parameters ---------- a : array_like Array of scores which will be put into bins. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultlimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 printextras : bool, optional If True, if there are extra points (i.e. the points that fall outside the bin limits) a warning is raised saying how many of those points there are. Default is False. Returns ------- count : ndarray Number of points (or sum of weights) in each bin. lowerlimit : float Lowest value of histogram, the lower limit of the first bin. binsize : float The size of the bins (all bins have the same size). extrapoints : int The number of points outside the range of the histogram. See Also -------- numpy.histogram Notes ----- This histogram is based on numpy's histogram but has a larger range by default if default limits is not set. """ a = np.ravel(a) if defaultlimits is None: if a.size == 0: # handle empty arrays. Undetermined range, so use 0-1. defaultlimits = (0, 1) else: # no range given, so use values in `a` data_min = a.min() data_max = a.max() # Have bins extend past min and max values slightly s = (data_max - data_min) / (2. * (numbins - 1.)) defaultlimits = (data_min - s, data_max + s) # use numpy's histogram method to compute bins hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits, weights=weights) # hist are not always floats, convert to keep with old output hist = np.array(hist, dtype=float) # fixed width for bins is assumed, as numpy's histogram gives # fixed width bins for int values for 'bins' binsize = bin_edges[1] - bin_edges[0] # calculate number of extra points extrapoints = len([v for v in a if defaultlimits[0] > v or v > defaultlimits[1]]) if extrapoints > 0 and printextras: warnings.warn("Points outside given histogram range = %s" % extrapoints) return HistogramResult(hist, defaultlimits[0], binsize, extrapoints) CumfreqResult = namedtuple('CumfreqResult', ('cumcount', 'lowerlimit', 'binsize', 'extrapoints')) def cumfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Return a cumulative frequency histogram, using the histogram function. A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the specified bin. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultreallimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- cumcount : ndarray Binned values of cumulative frequency. lowerlimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> x = [1, 4, 2, 1, 3, 1] >>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) >>> res.cumcount array([ 1., 2., 3., 3.]) >>> res.extrapoints 3 Create a normal distribution with 1000 random values >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) Calculate cumulative frequencies >>> res = stats.cumfreq(samples, numbins=25) Calculate space of values for x >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size, ... res.cumcount.size) Plot histogram and cumulative histogram >>> fig = plt.figure(figsize=(10, 4)) >>> ax1 = fig.add_subplot(1, 2, 1) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax1.hist(samples, bins=25) >>> ax1.set_title('Histogram') >>> ax2.bar(x, res.cumcount, width=res.binsize) >>> ax2.set_title('Cumulative histogram') >>> ax2.set_xlim([x.min(), x.max()]) >>> plt.show() """ h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights) cumhist = np.cumsum(h * 1, axis=0) return CumfreqResult(cumhist, l, b, e) RelfreqResult = namedtuple('RelfreqResult', ('frequency', 'lowerlimit', 'binsize', 'extrapoints')) def relfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Return a relative frequency histogram, using the histogram function. A relative frequency histogram is a mapping of the number of observations in each of the bins relative to the total of observations. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultreallimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- frequency : ndarray Binned values of relative frequency. lowerlimit : float Lower real limit. binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> a = np.array([2, 4, 1, 2, 3, 2]) >>> res = stats.relfreq(a, numbins=4) >>> res.frequency array([ 0.16666667, 0.5 , 0.16666667, 0.16666667]) >>> np.sum(res.frequency) # relative frequencies should add up to 1 1.0 Create a normal distribution with 1000 random values >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) Calculate relative frequencies >>> res = stats.relfreq(samples, numbins=25) Calculate space of values for x >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size, ... res.frequency.size) Plot relative frequency histogram >>> fig = plt.figure(figsize=(5, 4)) >>> ax = fig.add_subplot(1, 1, 1) >>> ax.bar(x, res.frequency, width=res.binsize) >>> ax.set_title('Relative frequency histogram') >>> ax.set_xlim([x.min(), x.max()]) >>> plt.show() """ a = np.asanyarray(a) h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights) h = h / a.shape[0] return RelfreqResult(h, l, b, e) ##################################### # VARIABILITY FUNCTIONS # ##################################### def obrientransform(*args): """ Compute the O'Brien transform on input data (any number of arrays). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If `f_oneway` is run on the transformed data and found significant, the variances are unequal. From Maxwell and Delaney [1]_, p.112. Parameters ---------- args : tuple of array_like Any number of arrays. Returns ------- obrientransform : ndarray Transformed data for use in an ANOVA. The first dimension of the result corresponds to the sequence of transformed arrays. If the arrays given are all 1-D of the same length, the return value is a 2-D array; otherwise it is a 1-D array of type object, with each element being an ndarray. References ---------- .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990. Examples -------- We'll test the following data sets for differences in their variance. >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10] >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15] Apply the O'Brien transform to the data. >>> from scipy.stats import obrientransform >>> tx, ty = obrientransform(x, y) Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the transformed data. >>> from scipy.stats import f_oneway >>> F, p = f_oneway(tx, ty) >>> p 0.1314139477040335 If we require that ``p < 0.05`` for significance, we cannot conclude that the variances are different. """ TINY = np.sqrt(np.finfo(float).eps) # `arrays` will hold the transformed arguments. arrays = [] sLast = None for arg in args: a = np.asarray(arg) n = len(a) mu = np.mean(a) sq = (a - mu)**2 sumsq = sq.sum() # The O'Brien transform. t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2)) # Check that the mean of the transformed data is equal to the # original variance. var = sumsq / (n - 1) if abs(var - np.mean(t)) > TINY: raise ValueError('Lack of convergence in obrientransform.') arrays.append(t) sLast = a.shape if sLast: for arr in arrays[:-1]: if sLast != arr.shape: return np.array(arrays, dtype=object) return np.array(arrays) def sem(a, axis=0, ddof=1, nan_policy='propagate'): """ Compute standard error of the mean. Calculate the standard error of the mean (or standard error of measurement) of the values in the input array. Parameters ---------- a : array_like An array containing the values for which the standard error is returned. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- s : ndarray or float The standard error of the mean in the sample(s), along the input axis. Notes ----- The default value for `ddof` is different to the default (0) used by other ddof containing routines, such as np.std and np.nanstd. Examples -------- Find standard error along the first axis: >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> stats.sem(a) array([ 2.8284, 2.8284, 2.8284, 2.8284]) Find standard error across the whole array, using n degrees of freedom: >>> stats.sem(a, axis=None, ddof=0) 1.2893796958227628 """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.sem(a, axis, ddof) n = a.shape[axis] s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n) return s def _isconst(x): """ Check if all values in x are the same. nans are ignored. x must be a 1d array. The return value is a 1d array with length 1, so it can be used in np.apply_along_axis. """ y = x[~np.isnan(x)] if y.size == 0: return np.array([True]) else: return (y[0] == y).all(keepdims=True) def _quiet_nanmean(x): """ Compute nanmean for the 1d array x, but quietly return nan if x is all nan. The return value is a 1d array with length 1, so it can be used in np.apply_along_axis. """ y = x[~np.isnan(x)] if y.size == 0: return np.array([np.nan]) else: return np.mean(y, keepdims=True) def _quiet_nanstd(x, ddof=0): """ Compute nanstd for the 1d array x, but quietly return nan if x is all nan. The return value is a 1d array with length 1, so it can be used in np.apply_along_axis. """ y = x[~np.isnan(x)] if y.size == 0: return np.array([np.nan]) else: return np.std(y, keepdims=True, ddof=ddof) def zscore(a, axis=0, ddof=0, nan_policy='propagate'): """ Compute the z score. Compute the z score of each value in the sample, relative to the sample mean and standard deviation. Parameters ---------- a : array_like An array like object containing the sample data. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that when the value is 'omit', nans in the input also propagate to the output, but they do not affect the z-scores computed for the non-nan values. Returns ------- zscore : array_like The z-scores, standardized by mean and standard deviation of input array `a`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, ... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508]) >>> from scipy import stats >>> stats.zscore(a) array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786, 0.6748, -1.1488, -1.3324]) Computing along a specified axis, using n-1 degrees of freedom (``ddof=1``) to calculate the standard deviation: >>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608], ... [ 0.7149, 0.0775, 0.6072, 0.9656], ... [ 0.6341, 0.1403, 0.9759, 0.4064], ... [ 0.5918, 0.6948, 0.904 , 0.3721], ... [ 0.0921, 0.2481, 0.1188, 0.1366]]) >>> stats.zscore(b, axis=1, ddof=1) array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358], [ 0.33048416, -1.37380874, 0.04251374, 1.00081084], [ 0.26796377, -1.12598418, 1.23283094, -0.37481053], [-0.22095197, 0.24468594, 1.19042819, -1.21416216], [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]]) An example with `nan_policy='omit'`: >>> x = np.array([[25.11, 30.10, np.nan, 32.02, 43.15], ... [14.95, 16.06, 121.25, 94.35, 29.81]]) >>> stats.zscore(x, axis=1, nan_policy='omit') array([[-1.13490897, -0.37830299, nan, -0.08718406, 1.60039602], [-0.91611681, -0.89090508, 1.4983032 , 0.88731639, -0.5785977 ]]) """ return zmap(a, a, axis=axis, ddof=ddof, nan_policy=nan_policy) def zmap(scores, compare, axis=0, ddof=0, nan_policy='propagate'): """ Calculate the relative z-scores. Return an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array. Parameters ---------- scores : array_like The input for which z-scores are calculated. compare : array_like The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as `scores`. axis : int or None, optional Axis over which mean and variance of `compare` are calculated. Default is 0. If None, compute over the whole array `scores`. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle the occurrence of nans in `compare`. 'propagate' returns nan, 'raise' raises an exception, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Note that when the value is 'omit', nans in `scores` also propagate to the output, but they do not affect the z-scores computed for the non-nan values. Returns ------- zscore : array_like Z-scores, in the same shape as `scores`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> from scipy.stats import zmap >>> a = [0.5, 2.0, 2.5, 3] >>> b = [0, 1, 2, 3, 4] >>> zmap(a, b) array([-1.06066017, 0. , 0.35355339, 0.70710678]) """ a = np.asanyarray(compare) if a.size == 0: return np.empty(a.shape) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': if axis is None: mn = _quiet_nanmean(a.ravel()) std = _quiet_nanstd(a.ravel(), ddof=ddof) isconst = _isconst(a.ravel()) else: mn = np.apply_along_axis(_quiet_nanmean, axis, a) std = np.apply_along_axis(_quiet_nanstd, axis, a, ddof=ddof) isconst = np.apply_along_axis(_isconst, axis, a) else: mn = a.mean(axis=axis, keepdims=True) std = a.std(axis=axis, ddof=ddof, keepdims=True) if axis is None: isconst = (a.item(0) == a).all() else: isconst = (_first(a, axis) == a).all(axis=axis, keepdims=True) # Set std deviations that are 0 to 1 to avoid division by 0. std[isconst] = 1.0 z = (scores - mn) / std # Set the outputs associated with a constant input to nan. z[np.broadcast_to(isconst, z.shape)] = np.nan return z def gstd(a, axis=0, ddof=1): """ Calculate the geometric standard deviation of an array. The geometric standard deviation describes the spread of a set of numbers where the geometric mean is preferred. It is a multiplicative factor, and so a dimensionless quantity. It is defined as the exponent of the standard deviation of ``log(a)``. Mathematically the population geometric standard deviation can be evaluated as:: gstd = exp(std(log(a))) .. versionadded:: 1.3.0 Parameters ---------- a : array_like An array like object containing the sample data. axis : int, tuple or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Degree of freedom correction in the calculation of the geometric standard deviation. Default is 1. Returns ------- ndarray or float An array of the geometric standard deviation. If `axis` is None or `a` is a 1d array a float is returned. Notes ----- As the calculation requires the use of logarithms the geometric standard deviation only supports strictly positive values. Any non-positive or infinite values will raise a `ValueError`. The geometric standard deviation is sometimes confused with the exponent of the standard deviation, ``exp(std(a))``. Instead the geometric standard deviation is ``exp(std(log(a)))``. The default value for `ddof` is different to the default value (0) used by other ddof containing functions, such as ``np.std`` and ``np.nanstd``. Examples -------- Find the geometric standard deviation of a log-normally distributed sample. Note that the standard deviation of the distribution is one, on a log scale this evaluates to approximately ``exp(1)``. >>> from scipy.stats import gstd >>> np.random.seed(123) >>> sample = np.random.lognormal(mean=0, sigma=1, size=1000) >>> gstd(sample) 2.7217860664589946 Compute the geometric standard deviation of a multidimensional array and of a given axis. >>> a = np.arange(1, 25).reshape(2, 3, 4) >>> gstd(a, axis=None) 2.2944076136018947 >>> gstd(a, axis=2) array([[1.82424757, 1.22436866, 1.13183117], [1.09348306, 1.07244798, 1.05914985]]) >>> gstd(a, axis=(1,2)) array([2.12939215, 1.22120169]) The geometric standard deviation further handles masked arrays. >>> a = np.arange(1, 25).reshape(2, 3, 4) >>> ma = np.ma.masked_where(a > 16, a) >>> ma masked_array( data=[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [--, --, --, --], [--, --, --, --]]], mask=[[[False, False, False, False], [False, False, False, False], [False, False, False, False]], [[False, False, False, False], [ True, True, True, True], [ True, True, True, True]]], fill_value=999999) >>> gstd(ma, axis=2) masked_array( data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478], [1.0934830582350938, --, --]], mask=[[False, False, False], [False, True, True]], fill_value=999999) """ a = np.asanyarray(a) log = ma.log if isinstance(a, ma.MaskedArray) else np.log try: with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) return np.exp(np.std(log(a), axis=axis, ddof=ddof)) except RuntimeWarning as w: if np.isinf(a).any(): raise ValueError( 'Infinite value encountered. The geometric standard deviation ' 'is defined for strictly positive values only.' ) from w a_nan = np.isnan(a) a_nan_any = a_nan.any() # exclude NaN's from negativity check, but # avoid expensive masking for arrays with no NaN if ((a_nan_any and np.less_equal(np.nanmin(a), 0)) or (not a_nan_any and np.less_equal(a, 0).any())): raise ValueError( 'Non positive value encountered. The geometric standard ' 'deviation is defined for strictly positive values only.' ) from w elif 'Degrees of freedom <= 0 for slice' == str(w): raise ValueError(w) from w else: # Remaining warnings don't need to be exceptions. return np.exp(np.std(log(a, where=~a_nan), axis=axis, ddof=ddof)) except TypeError as e: raise ValueError( 'Invalid array input. The inputs could not be ' 'safely coerced to any supported types') from e # Private dictionary initialized only once at module level # See https://en.wikipedia.org/wiki/Robust_measures_of_scale _scale_conversions = {'raw': 1.0, 'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)} def iqr(x, axis=None, rng=(25, 75), scale=1.0, nan_policy='propagate', interpolation='linear', keepdims=False): r""" Compute the interquartile range of the data along the specified axis. The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. It is a measure of the dispersion similar to standard deviation or variance, but is much more robust against outliers [2]_. The ``rng`` parameter allows this function to compute other percentile ranges than the actual IQR. For example, setting ``rng=(0, 100)`` is equivalent to `numpy.ptp`. The IQR of an empty array is `np.nan`. .. versionadded:: 0.18.0 Parameters ---------- x : array_like Input array or object that can be converted to an array. axis : int or sequence of int, optional Axis along which the range is computed. The default is to compute the IQR for the entire array. rng : Two-element sequence containing floats in range of [0,100] optional Percentiles over which to compute the range. Each must be between 0 and 100, inclusive. The default is the true IQR: `(25, 75)`. The order of the elements is not important. scale : scalar or str, optional The numerical value of scale will be divided out of the final result. The following string values are recognized: * 'raw' : No scaling, just return the raw IQR. **Deprecated!** Use `scale=1` instead. * 'normal' : Scale by :math:`2 \sqrt{2} erf^{-1}(\frac{1}{2}) \approx 1.349`. The default is 1.0. The use of scale='raw' is deprecated. Array-like scale is also allowed, as long as it broadcasts correctly to the output such that ``out / scale`` is a valid operation. The output dimensions depend on the input array, `x`, the `axis` argument, and the `keepdims` flag. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional Specifies the interpolation method to use when the percentile boundaries lie between two data points `i` and `j`. The following options are available (default is 'linear'): * 'linear': `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * 'lower': `i`. * 'higher': `j`. * 'nearest': `i` or `j` whichever is nearest. * 'midpoint': `(i + j) / 2`. keepdims : bool, optional If this is set to `True`, the reduced axes are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array `x`. Returns ------- iqr : scalar or ndarray If ``axis=None``, a scalar is returned. If the input contains integers or floats of smaller precision than ``np.float64``, then the output data-type is ``np.float64``. Otherwise, the output data-type is the same as that of the input. See Also -------- numpy.std, numpy.var Notes ----- This function is heavily dependent on the version of `numpy` that is installed. Versions greater than 1.11.0b3 are highly recommended, as they include a number of enhancements and fixes to `numpy.percentile` and `numpy.nanpercentile` that affect the operation of this function. The following modifications apply: Below 1.10.0 : `nan_policy` is poorly defined. The default behavior of `numpy.percentile` is used for 'propagate'. This is a hybrid of 'omit' and 'propagate' that mostly yields a skewed version of 'omit' since NaNs are sorted to the end of the data. A warning is raised if there are NaNs in the data. Below 1.9.0: `numpy.nanpercentile` does not exist. This means that `numpy.percentile` is used regardless of `nan_policy` and a warning is issued. See previous item for a description of the behavior. Below 1.9.0: `keepdims` and `interpolation` are not supported. The keywords get ignored with a warning if supplied with non-default values. However, multiple axes are still supported. References ---------- .. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range .. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale .. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile Examples -------- >>> from scipy.stats import iqr >>> x = np.array([[10, 7, 4], [3, 2, 1]]) >>> x array([[10, 7, 4], [ 3, 2, 1]]) >>> iqr(x) 4.0 >>> iqr(x, axis=0) array([ 3.5, 2.5, 1.5]) >>> iqr(x, axis=1) array([ 3., 1.]) >>> iqr(x, axis=1, keepdims=True) array([[ 3.], [ 1.]]) """ x = asarray(x) # This check prevents percentile from raising an error later. Also, it is # consistent with `np.var` and `np.std`. if not x.size: return np.nan # An error may be raised here, so fail-fast, before doing lengthy # computations, even though `scale` is not used until later if isinstance(scale, str): scale_key = scale.lower() if scale_key not in _scale_conversions: raise ValueError("{0} not a valid scale for `iqr`".format(scale)) if scale_key == 'raw': warnings.warn( "use of scale='raw' is deprecated, use scale=1.0 instead", np.VisibleDeprecationWarning ) scale = _scale_conversions[scale_key] # Select the percentile function to use based on nans and policy contains_nan, nan_policy = _contains_nan(x, nan_policy) if contains_nan and nan_policy == 'omit': percentile_func = np.nanpercentile else: percentile_func = np.percentile if len(rng) != 2: raise TypeError("quantile range must be two element sequence") if np.isnan(rng).any(): raise ValueError("range must not contain NaNs") rng = sorted(rng) pct = percentile_func(x, rng, axis=axis, interpolation=interpolation, keepdims=keepdims) out = np.subtract(pct[1], pct[0]) if scale != 1.0: out /= scale return out def _mad_1d(x, center, nan_policy): # Median absolute deviation for 1-d array x. # This is a helper function for `median_abs_deviation`; it assumes its # arguments have been validated already. In particular, x must be a # 1-d numpy array, center must be callable, and if nan_policy is not # 'propagate', it is assumed to be 'omit', because 'raise' is handled # in `median_abs_deviation`. # No warning is generated if x is empty or all nan. isnan = np.isnan(x) if isnan.any(): if nan_policy == 'propagate': return np.nan x = x[~isnan] if x.size == 0: # MAD of an empty array is nan. return np.nan # Edge cases have been handled, so do the basic MAD calculation. med = center(x) mad = np.median(np.abs(x - med)) return mad def median_abs_deviation(x, axis=0, center=np.median, scale=1.0, nan_policy='propagate'): r""" Compute the median absolute deviation of the data along the given axis. The median absolute deviation (MAD, [1]_) computes the median over the absolute deviations from the median. It is a measure of dispersion similar to the standard deviation but more robust to outliers [2]_. The MAD of an empty array is ``np.nan``. .. versionadded:: 1.5.0 Parameters ---------- x : array_like Input array or object that can be converted to an array. axis : int or None, optional Axis along which the range is computed. Default is 0. If None, compute the MAD over the entire array. center : callable, optional A function that will return the central value. The default is to use np.median. Any user defined function used will need to have the function signature ``func(arr, axis)``. scale : scalar or str, optional The numerical value of scale will be divided out of the final result. The default is 1.0. The string "normal" is also accepted, and results in `scale` being the inverse of the standard normal quantile function at 0.75, which is approximately 0.67449. Array-like scale is also allowed, as long as it broadcasts correctly to the output such that ``out / scale`` is a valid operation. The output dimensions depend on the input array, `x`, and the `axis` argument. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- mad : scalar or ndarray If ``axis=None``, a scalar is returned. If the input contains integers or floats of smaller precision than ``np.float64``, then the output data-type is ``np.float64``. Otherwise, the output data-type is the same as that of the input. See Also -------- numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean, scipy.stats.tstd, scipy.stats.tvar Notes ----- The `center` argument only affects the calculation of the central value around which the MAD is calculated. That is, passing in ``center=np.mean`` will calculate the MAD around the mean - it will not calculate the *mean* absolute deviation. The input array may contain `inf`, but if `center` returns `inf`, the corresponding MAD for that data will be `nan`. References ---------- .. [1] "Median absolute deviation", https://en.wikipedia.org/wiki/Median_absolute_deviation .. [2] "Robust measures of scale", https://en.wikipedia.org/wiki/Robust_measures_of_scale Examples -------- When comparing the behavior of `median_abs_deviation` with ``np.std``, the latter is affected when we change a single value of an array to have an outlier value while the MAD hardly changes: >>> from scipy import stats >>> x = stats.norm.rvs(size=100, scale=1, random_state=123456) >>> x.std() 0.9973906394005013 >>> stats.median_abs_deviation(x) 0.82832610097857 >>> x[0] = 345.6 >>> x.std() 34.42304872314415 >>> stats.median_abs_deviation(x) 0.8323442311590675 Axis handling example: >>> x = np.array([[10, 7, 4], [3, 2, 1]]) >>> x array([[10, 7, 4], [ 3, 2, 1]]) >>> stats.median_abs_deviation(x) array([3.5, 2.5, 1.5]) >>> stats.median_abs_deviation(x, axis=None) 2.0 Scale normal example: >>> x = stats.norm.rvs(size=1000000, scale=2, random_state=123456) >>> stats.median_abs_deviation(x) 1.3487398527041636 >>> stats.median_abs_deviation(x, scale='normal') 1.9996446978061115 """ if not callable(center): raise TypeError("The argument 'center' must be callable. The given " f"value {repr(center)} is not callable.") # An error may be raised here, so fail-fast, before doing lengthy # computations, even though `scale` is not used until later if isinstance(scale, str): if scale.lower() == 'normal': scale = 0.6744897501960817 # special.ndtri(0.75) else: raise ValueError(f"{scale} is not a valid scale value.") x = asarray(x) # Consistent with `np.var` and `np.std`. if not x.size: if axis is None: return np.nan nan_shape = tuple(item for i, item in enumerate(x.shape) if i != axis) if nan_shape == (): # Return nan, not array(nan) return np.nan return np.full(nan_shape, np.nan) contains_nan, nan_policy = _contains_nan(x, nan_policy) if contains_nan: if axis is None: mad = _mad_1d(x.ravel(), center, nan_policy) else: mad = np.apply_along_axis(_mad_1d, axis, x, center, nan_policy) else: if axis is None: med = center(x, axis=None) mad = np.median(np.abs(x - med)) else: # Wrap the call to center() in expand_dims() so it acts like # keepdims=True was used. med = np.expand_dims(center(x, axis=axis), axis) mad = np.median(np.abs(x - med), axis=axis) return mad / scale # Keep the top newline so that the message does not show up on the stats page _median_absolute_deviation_deprec_msg = """ To preserve the existing default behavior, use `scipy.stats.median_abs_deviation(..., scale=1/1.4826)`. The value 1.4826 is not numerically precise for scaling with a normal distribution. For a numerically precise value, use `scipy.stats.median_abs_deviation(..., scale='normal')`. """ # Due to numpy/gh-16349 we need to unindent the entire docstring @np.deprecate(old_name='median_absolute_deviation', new_name='median_abs_deviation', message=_median_absolute_deviation_deprec_msg) def median_absolute_deviation(x, axis=0, center=np.median, scale=1.4826, nan_policy='propagate'): r""" Compute the median absolute deviation of the data along the given axis. The median absolute deviation (MAD, [1]_) computes the median over the absolute deviations from the median. It is a measure of dispersion similar to the standard deviation but more robust to outliers [2]_. The MAD of an empty array is ``np.nan``. .. versionadded:: 1.3.0 Parameters ---------- x : array_like Input array or object that can be converted to an array. axis : int or None, optional Axis along which the range is computed. Default is 0. If None, compute the MAD over the entire array. center : callable, optional A function that will return the central value. The default is to use np.median. Any user defined function used will need to have the function signature ``func(arr, axis)``. scale : int, optional The scaling factor applied to the MAD. The default scale (1.4826) ensures consistency with the standard deviation for normally distributed data. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- mad : scalar or ndarray If ``axis=None``, a scalar is returned. If the input contains integers or floats of smaller precision than ``np.float64``, then the output data-type is ``np.float64``. Otherwise, the output data-type is the same as that of the input. See Also -------- numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean, scipy.stats.tstd, scipy.stats.tvar Notes ----- The `center` argument only affects the calculation of the central value around which the MAD is calculated. That is, passing in ``center=np.mean`` will calculate the MAD around the mean - it will not calculate the *mean* absolute deviation. References ---------- .. [1] "Median absolute deviation", https://en.wikipedia.org/wiki/Median_absolute_deviation .. [2] "Robust measures of scale", https://en.wikipedia.org/wiki/Robust_measures_of_scale Examples -------- When comparing the behavior of `median_absolute_deviation` with ``np.std``, the latter is affected when we change a single value of an array to have an outlier value while the MAD hardly changes: >>> from scipy import stats >>> x = stats.norm.rvs(size=100, scale=1, random_state=123456) >>> x.std() 0.9973906394005013 >>> stats.median_absolute_deviation(x) 1.2280762773108278 >>> x[0] = 345.6 >>> x.std() 34.42304872314415 >>> stats.median_absolute_deviation(x) 1.2340335571164334 Axis handling example: >>> x = np.array([[10, 7, 4], [3, 2, 1]]) >>> x array([[10, 7, 4], [ 3, 2, 1]]) >>> stats.median_absolute_deviation(x) array([5.1891, 3.7065, 2.2239]) >>> stats.median_absolute_deviation(x, axis=None) 2.9652 """ if isinstance(scale, str): if scale.lower() == 'raw': warnings.warn( "use of scale='raw' is deprecated, use scale=1.0 instead", np.VisibleDeprecationWarning ) scale = 1.0 if not isinstance(scale, str): scale = 1 / scale return median_abs_deviation(x, axis=axis, center=center, scale=scale, nan_policy=nan_policy) ##################################### # TRIMMING FUNCTIONS # ##################################### SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper')) def sigmaclip(a, low=4., high=4.): """ Perform iterative sigma-clipping of array elements. Starting from the full sample, all elements outside the critical range are removed, i.e. all elements of the input array `c` that satisfy either of the following conditions:: c < mean(c) - std(c)*low c > mean(c) + std(c)*high The iteration continues with the updated sample until no elements are outside the (updated) range. Parameters ---------- a : array_like Data array, will be raveled if not 1-D. low : float, optional Lower bound factor of sigma clipping. Default is 4. high : float, optional Upper bound factor of sigma clipping. Default is 4. Returns ------- clipped : ndarray Input array with clipped elements removed. lower : float Lower threshold value use for clipping. upper : float Upper threshold value use for clipping. Examples -------- >>> from scipy.stats import sigmaclip >>> a = np.concatenate((np.linspace(9.5, 10.5, 31), ... np.linspace(0, 20, 5))) >>> fact = 1.5 >>> c, low, upp = sigmaclip(a, fact, fact) >>> c array([ 9.96666667, 10. , 10.03333333, 10. ]) >>> c.var(), c.std() (0.00055555555555555165, 0.023570226039551501) >>> low, c.mean() - fact*c.std(), c.min() (9.9646446609406727, 9.9646446609406727, 9.9666666666666668) >>> upp, c.mean() + fact*c.std(), c.max() (10.035355339059327, 10.035355339059327, 10.033333333333333) >>> a = np.concatenate((np.linspace(9.5, 10.5, 11), ... np.linspace(-100, -50, 3))) >>> c, low, upp = sigmaclip(a, 1.8, 1.8) >>> (c == np.linspace(9.5, 10.5, 11)).all() True """ c = np.asarray(a).ravel() delta = 1 while delta: c_std = c.std() c_mean = c.mean() size = c.size critlower = c_mean - c_std * low critupper = c_mean + c_std * high c = c[(c >= critlower) & (c <= critupper)] delta = size - c.size return SigmaclipResult(c, critlower, critupper) def trimboth(a, proportiontocut, axis=0): """ Slice off a proportion of items from both ends of an array. Slice off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). The trimmed values are the lowest and highest ones. Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off `proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float Proportion (in range 0-1) of total data set to trim of each end. axis : int or None, optional Axis along which to trim data. Default is 0. If None, compute over the whole array `a`. Returns ------- out : ndarray Trimmed version of array `a`. The order of the trimmed content is undefined. See Also -------- trim_mean Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,) """ a = np.asarray(a) if a.size == 0: return a if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut >= uppercut): raise ValueError("Proportion too big.") atmp = np.partition(a, (lowercut, uppercut - 1), axis) sl = [slice(None)] * atmp.ndim sl[axis] = slice(lowercut, uppercut) return atmp[tuple(sl)] def trim1(a, proportiontocut, tail='right', axis=0): """ Slice off a proportion from ONE end of the passed array distribution. If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost' 10% of scores. The lowest or highest values are trimmed (depending on the tail). Slice off less if proportion results in a non-integer slice index (i.e. conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array. proportiontocut : float Fraction to cut off of 'left' or 'right' of distribution. tail : {'left', 'right'}, optional Defaults to 'right'. axis : int or None, optional Axis along which to trim data. Default is 0. If None, compute over the whole array `a`. Returns ------- trim1 : ndarray Trimmed version of array `a`. The order of the trimmed content is undefined. """ a = np.asarray(a) if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] # avoid possible corner case if proportiontocut >= 1: return [] if tail.lower() == 'right': lowercut = 0 uppercut = nobs - int(proportiontocut * nobs) elif tail.lower() == 'left': lowercut = int(proportiontocut * nobs) uppercut = nobs atmp = np.partition(a, (lowercut, uppercut - 1), axis) return atmp[lowercut:uppercut] def trim_mean(a, proportiontocut, axis=0): """ Return mean of array after trimming distribution from both tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. The input is sorted before slicing. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array. proportiontocut : float Fraction to cut off of both tails of the distribution. axis : int or None, optional Axis along which the trimmed means are computed. Default is 0. If None, compute over the whole array `a`. Returns ------- trim_mean : ndarray Mean of trimmed array. See Also -------- trimboth tmean : Compute the trimmed mean ignoring values outside given `limits`. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.trim_mean(x, 0.1) 9.5 >>> x2 = x.reshape(5, 4) >>> x2 array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]]) >>> stats.trim_mean(x2, 0.25) array([ 8., 9., 10., 11.]) >>> stats.trim_mean(x2, 0.25, axis=1) array([ 1.5, 5.5, 9.5, 13.5, 17.5]) """ a = np.asarray(a) if a.size == 0: return np.nan if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut > uppercut): raise ValueError("Proportion too big.") atmp = np.partition(a, (lowercut, uppercut - 1), axis) sl = [slice(None)] * atmp.ndim sl[axis] = slice(lowercut, uppercut) return np.mean(atmp[tuple(sl)], axis=axis) F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue')) class F_onewayConstantInputWarning(RuntimeWarning): """ Warning generated by `f_oneway` when an input is constant, e.g. each of the samples provided is a constant array. """ def __init__(self, msg=None): if msg is None: msg = ("Each of the input arrays is constant;" "the F statistic is not defined or infinite") self.args = (msg,) class F_onewayBadInputSizesWarning(RuntimeWarning): """ Warning generated by `f_oneway` when an input has length 0, or if all the inputs have length 1. """ pass def _create_f_oneway_nan_result(shape, axis): """ This is a helper function for f_oneway for creating the return values in certain degenerate conditions. It creates return values that are all nan with the appropriate shape for the given `shape` and `axis`. """ axis = np.core.multiarray.normalize_axis_index(axis, len(shape)) shp = shape[:axis] + shape[axis+1:] if shp == (): f = np.nan prob = np.nan else: f = np.full(shp, fill_value=np.nan) prob = f.copy() return F_onewayResult(f, prob) def _first(arr, axis): """ Return arr[..., 0:1, ...] where 0:1 is in the `axis` position. """ return np.take_along_axis(arr, np.array(0, ndmin=arr.ndim), axis) def f_oneway(*args, axis=0): """ Perform one-way ANOVA. The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test is applied to samples from two or more groups, possibly with differing sizes. Parameters ---------- sample1, sample2, ... : array_like The sample measurements for each group. There must be at least two arguments. If the arrays are multidimensional, then all the dimensions of the array must be the same except for `axis`. axis : int, optional Axis of the input arrays along which the test is applied. Default is 0. Returns ------- statistic : float The computed F statistic of the test. pvalue : float The associated p-value from the F distribution. Warns ----- F_onewayConstantInputWarning Raised if each of the input arrays is constant array. In this case the F statistic is either infinite or isn't defined, so ``np.inf`` or ``np.nan`` is returned. F_onewayBadInputSizesWarning Raised if the length of any input array is 0, or if all the input arrays have length 1. ``np.nan`` is returned for the F statistic and the p-value in these cases. Notes ----- The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid. 1. The samples are independent. 2. Each sample is from a normally distributed population. 3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity. If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although with some loss of power. The length of each group must be at least one, and there must be at least one group with length greater than one. If these conditions are not satisfied, a warning is generated and (``np.nan``, ``np.nan``) is returned. If each group contains constant values, and there exist at least two groups with different values, the function generates a warning and returns (``np.inf``, 0). If all values in all groups are the same, function generates a warning and returns (``np.nan``, ``np.nan``). The algorithm is from Heiman [2]_, pp.394-7. References ---------- .. [1] R. Lowry, "Concepts and Applications of Inferential Statistics", Chapter 14, 2014, http://vassarstats.net/textbook/ .. [2] G.W. Heiman, "Understanding research methods and statistics: An integrated introduction for psychology", Houghton, Mifflin and Company, 2001. .. [3] G.H. McDonald, "Handbook of Biological Statistics", One-way ANOVA. http://www.biostathandbook.com/onewayanova.html Examples -------- >>> from scipy.stats import f_oneway Here are some data [3]_ on a shell measurement (the length of the anterior adductor muscle scar, standardized by dividing by length) in the mussel Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon; Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a much larger data set used in McDonald et al. (1991). >>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735, ... 0.0659, 0.0923, 0.0836] >>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835, ... 0.0725] >>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105] >>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764, ... 0.0689] >>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045] >>> f_oneway(tillamook, newport, petersburg, magadan, tvarminne) F_onewayResult(statistic=7.121019471642447, pvalue=0.0002812242314534544) `f_oneway` accepts multidimensional input arrays. When the inputs are multidimensional and `axis` is not given, the test is performed along the first axis of the input arrays. For the following data, the test is performed three times, once for each column. >>> a = np.array([[9.87, 9.03, 6.81], ... [7.18, 8.35, 7.00], ... [8.39, 7.58, 7.68], ... [7.45, 6.33, 9.35], ... [6.41, 7.10, 9.33], ... [8.00, 8.24, 8.44]]) >>> b = np.array([[6.35, 7.30, 7.16], ... [6.65, 6.68, 7.63], ... [5.72, 7.73, 6.72], ... [7.01, 9.19, 7.41], ... [7.75, 7.87, 8.30], ... [6.90, 7.97, 6.97]]) >>> c = np.array([[3.31, 8.77, 1.01], ... [8.25, 3.24, 3.62], ... [6.32, 8.81, 5.19], ... [7.48, 8.83, 8.91], ... [8.59, 6.01, 6.07], ... [3.07, 9.72, 7.48]]) >>> F, p = f_oneway(a, b, c) >>> F array([1.75676344, 0.03701228, 3.76439349]) >>> p array([0.20630784, 0.96375203, 0.04733157]) """ if len(args) < 2: raise TypeError(f'at least two inputs are required; got {len(args)}.') args = [np.asarray(arg, dtype=float) for arg in args] # ANOVA on N groups, each in its own array num_groups = len(args) # We haven't explicitly validated axis, but if it is bad, this call of # np.concatenate will raise np.AxisError. The call will raise ValueError # if the dimensions of all the arrays, except the axis dimension, are not # the same. alldata = np.concatenate(args, axis=axis) bign = alldata.shape[axis] # Check this after forming alldata, so shape errors are detected # and reported before checking for 0 length inputs. if any(arg.shape[axis] == 0 for arg in args): warnings.warn(F_onewayBadInputSizesWarning('at least one input ' 'has length 0')) return _create_f_oneway_nan_result(alldata.shape, axis) # Must have at least one group with length greater than 1. if all(arg.shape[axis] == 1 for arg in args): msg = ('all input arrays have length 1. f_oneway requires that at ' 'least one input has length greater than 1.') warnings.warn(F_onewayBadInputSizesWarning(msg)) return _create_f_oneway_nan_result(alldata.shape, axis) # Check if the values within each group are constant, and if the common # value in at least one group is different from that in another group. # Based on https://github.com/scipy/scipy/issues/11669 # If axis=0, say, and the groups have shape (n0, ...), (n1, ...), ..., # then is_const is a boolean array with shape (num_groups, ...). # It is True if the groups along the axis slice are each consant. # In the typical case where each input array is 1-d, is_const is a # 1-d array with length num_groups. is_const = np.concatenate([(_first(a, axis) == a).all(axis=axis, keepdims=True) for a in args], axis=axis) # all_const is a boolean array with shape (...) (see previous comment). # It is True if the values within each group along the axis slice are # the same (e.g. [[3, 3, 3], [5, 5, 5, 5], [4, 4, 4]]). all_const = is_const.all(axis=axis) if all_const.any(): warnings.warn(F_onewayConstantInputWarning()) # all_same_const is True if all the values in the groups along the axis=0 # slice are the same (e.g. [[3, 3, 3], [3, 3, 3, 3], [3, 3, 3]]). all_same_const = (_first(alldata, axis) == alldata).all(axis=axis) # Determine the mean of the data, and subtract that from all inputs to a # variance (via sum_of_sq / sq_of_sum) calculation. Variance is invariant # to a shift in location, and centering all data around zero vastly # improves numerical stability. offset = alldata.mean(axis=axis, keepdims=True) alldata -= offset normalized_ss = _square_of_sums(alldata, axis=axis) / bign sstot = _sum_of_squares(alldata, axis=axis) - normalized_ss ssbn = 0 for a in args: ssbn += _square_of_sums(a - offset, axis=axis) / a.shape[axis] # Naming: variables ending in bn/b are for "between treatments", wn/w are # for "within treatments" ssbn -= normalized_ss sswn = sstot - ssbn dfbn = num_groups - 1 dfwn = bign - num_groups msb = ssbn / dfbn msw = sswn / dfwn with np.errstate(divide='ignore', invalid='ignore'): f = msb / msw prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf # Fix any f values that should be inf or nan because the corresponding # inputs were constant. if np.isscalar(f): if all_same_const: f = np.nan prob = np.nan elif all_const: f = np.inf prob = 0.0 else: f[all_const] = np.inf prob[all_const] = 0.0 f[all_same_const] = np.nan prob[all_same_const] = np.nan return F_onewayResult(f, prob) class PearsonRConstantInputWarning(RuntimeWarning): """Warning generated by `pearsonr` when an input is constant.""" def __init__(self, msg=None): if msg is None: msg = ("An input array is constant; the correlation coefficent " "is not defined.") self.args = (msg,) class PearsonRNearConstantInputWarning(RuntimeWarning): """Warning generated by `pearsonr` when an input is nearly constant.""" def __init__(self, msg=None): if msg is None: msg = ("An input array is nearly constant; the computed " "correlation coefficent may be inaccurate.") self.args = (msg,) def pearsonr(x, y): r""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient [1]_ measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. (See Kowalski [3]_ for a discussion of the effects of non-normality of the input on the distribution of the correlation coefficient.) Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Parameters ---------- x : (N,) array_like Input array. y : (N,) array_like Input array. Returns ------- r : float Pearson's correlation coefficient. p-value : float Two-tailed p-value. Warns ----- PearsonRConstantInputWarning Raised if an input is a constant array. The correlation coefficient is not defined in this case, so ``np.nan`` is returned. PearsonRNearConstantInputWarning Raised if an input is "nearly" constant. The array ``x`` is considered nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``. Numerical errors in the calculation ``x - mean(x)`` in this case might result in an inaccurate calculation of r. See Also -------- spearmanr : Spearman rank-order correlation coefficient. kendalltau : Kendall's tau, a correlation measure for ordinal data. Notes ----- The correlation coefficient is calculated as follows: .. math:: r = \frac{\sum (x - m_x) (y - m_y)} {\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}} where :math:`m_x` is the mean of the vector :math:`x` and :math:`m_y` is the mean of the vector :math:`y`. Under the assumption that :math:`x` and :math:`m_y` are drawn from independent normal distributions (so the population correlation coefficient is 0), the probability density function of the sample correlation coefficient :math:`r` is ([1]_, [2]_): .. math:: f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)} where n is the number of samples, and B is the beta function. This is sometimes referred to as the exact distribution of r. This is the distribution that is used in `pearsonr` to compute the p-value. The distribution is a beta distribution on the interval [-1, 1], with equal shape parameters a = b = n/2 - 1. In terms of SciPy's implementation of the beta distribution, the distribution of r is:: dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2) The p-value returned by `pearsonr` is a two-sided p-value. For a given sample with correlation coefficient r, the p-value is the probability that abs(r') of a random sample x' and y' drawn from the population with zero correlation would be greater than or equal to abs(r). In terms of the object ``dist`` shown above, the p-value for a given r and length n can be computed as:: p = 2*dist.cdf(-abs(r)) When n is 2, the above continuous distribution is not well-defined. One can interpret the limit of the beta distribution as the shape parameters a and b approach a = b = 0 as a discrete distribution with equal probability masses at r = 1 and r = -1. More directly, one can observe that, given the data x = [x1, x2] and y = [y1, y2], and assuming x1 != x2 and y1 != y2, the only possible values for r are 1 and -1. Because abs(r') for any sample x' and y' with length 2 will be 1, the two-sided p-value for a sample of length 2 is always 1. References ---------- .. [1] "Pearson correlation coefficient", Wikipedia, https://en.wikipedia.org/wiki/Pearson_correlation_coefficient .. [2] Student, "Probable error of a correlation coefficient", Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310. .. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution of the Sample Product-Moment Correlation Coefficient" Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 21, No. 1 (1972), pp. 1-12. Examples -------- >>> from scipy import stats >>> a = np.array([0, 0, 0, 1, 1, 1, 1]) >>> b = np.arange(7) >>> stats.pearsonr(a, b) (0.8660254037844386, 0.011724811003954649) >>> stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4]) (-0.7426106572325057, 0.1505558088534455) """ n = len(x) if n != len(y): raise ValueError('x and y must have the same length.') if n < 2: raise ValueError('x and y must have length at least 2.') x = np.asarray(x) y = np.asarray(y) # If an input is constant, the correlation coefficient is not defined. if (x == x[0]).all() or (y == y[0]).all(): warnings.warn(PearsonRConstantInputWarning()) return np.nan, np.nan # dtype is the data type for the calculations. This expression ensures # that the data type is at least 64 bit floating point. It might have # more precision if the input is, for example, np.longdouble. dtype = type(1.0 + x[0] + y[0]) if n == 2: return dtype(np.sign(x[1] - x[0])*np.sign(y[1] - y[0])), 1.0 xmean = x.mean(dtype=dtype) ymean = y.mean(dtype=dtype) # By using `astype(dtype)`, we ensure that the intermediate calculations # use at least 64 bit floating point. xm = x.astype(dtype) - xmean ym = y.astype(dtype) - ymean # Unlike np.linalg.norm or the expression sqrt((xm*xm).sum()), # scipy.linalg.norm(xm) does not overflow if xm is, for example, # [-5e210, 5e210, 3e200, -3e200] normxm = linalg.norm(xm) normym = linalg.norm(ym) threshold = 1e-13 if normxm < threshold*abs(xmean) or normym < threshold*abs(ymean): # If all the values in x (likewise y) are very close to the mean, # the loss of precision that occurs in the subtraction xm = x - xmean # might result in large errors in r. warnings.warn(PearsonRNearConstantInputWarning()) r = np.dot(xm/normxm, ym/normym) # Presumably, if abs(r) > 1, then it is only some small artifact of # floating point arithmetic. r = max(min(r, 1.0), -1.0) # As explained in the docstring, the p-value can be computed as # p = 2*dist.cdf(-abs(r)) # where dist is the beta distribution on [-1, 1] with shape parameters # a = b = n/2 - 1. `special.btdtr` is the CDF for the beta distribution # on [0, 1]. To use it, we make the transformation x = (r + 1)/2; the # shape parameters do not change. Then -abs(r) used in `cdf(-abs(r))` # becomes x = (-abs(r) + 1)/2 = 0.5*(1 - abs(r)). (r is cast to float64 # to avoid a TypeError raised by btdtr when r is higher precision.) ab = n/2 - 1 prob = 2*special.btdtr(ab, ab, 0.5*(1 - abs(np.float64(r)))) return r, prob def fisher_exact(table, alternative='two-sided'): """ Perform a Fisher exact test on a 2x2 contingency table. Parameters ---------- table : array_like of ints A 2x2 contingency table. Elements should be non-negative integers. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided * 'greater': one-sided Returns ------- oddsratio : float This is prior odds ratio and not a posterior estimate. p_value : float P-value, the probability of obtaining a distribution at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. See Also -------- chi2_contingency : Chi-square test of independence of variables in a contingency table. Notes ----- The calculated odds ratio is different from the one R uses. This scipy implementation returns the (more common) "unconditional Maximum Likelihood Estimate", while R uses the "conditional Maximum Likelihood Estimate". For tables with large numbers, the (inexact) chi-square test implemented in the function `chi2_contingency` can also be used. Examples -------- Say we spend a few days counting whales and sharks in the Atlantic and Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the Indian ocean 2 whales and 5 sharks. Then our contingency table is:: Atlantic Indian whales 8 2 sharks 1 5 We use this table to find the p-value: >>> import scipy.stats as stats >>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]]) >>> pvalue 0.0349... The probability that we would observe this or an even more imbalanced ratio by chance is about 3.5%. A commonly used significance level is 5%--if we adopt that, we can therefore conclude that our observed imbalance is statistically significant; whales prefer the Atlantic while sharks prefer the Indian ocean. """ hypergeom = distributions.hypergeom c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm if not c.shape == (2, 2): raise ValueError("The input `table` must be of shape (2, 2).") if np.any(c < 0): raise ValueError("All values in `table` must be nonnegative.") if 0 in c.sum(axis=0) or 0 in c.sum(axis=1): # If both values in a row or column are zero, the p-value is 1 and # the odds ratio is NaN. return np.nan, 1.0 if c[1, 0] > 0 and c[0, 1] > 0: oddsratio = c[0, 0] * c[1, 1] / (c[1, 0] * c[0, 1]) else: oddsratio = np.inf n1 = c[0, 0] + c[0, 1] n2 = c[1, 0] + c[1, 1] n = c[0, 0] + c[1, 0] def binary_search(n, n1, n2, side): """Binary search for where to begin halves in two-sided test.""" if side == "upper": minval = mode maxval = n else: minval = 0 maxval = mode guess = -1 while maxval - minval > 1: if maxval == minval + 1 and guess == minval: guess = maxval else: guess = (maxval + minval) // 2 pguess = hypergeom.pmf(guess, n1 + n2, n1, n) if side == "upper": ng = guess - 1 else: ng = guess + 1 if pguess <= pexact < hypergeom.pmf(ng, n1 + n2, n1, n): break elif pguess < pexact: maxval = guess else: minval = guess if guess == -1: guess = minval if side == "upper": while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess -= 1 while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess += 1 else: while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess += 1 while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess -= 1 return guess if alternative == 'less': pvalue = hypergeom.cdf(c[0, 0], n1 + n2, n1, n) elif alternative == 'greater': # Same formula as the 'less' case, but with the second column. pvalue = hypergeom.cdf(c[0, 1], n1 + n2, n1, c[0, 1] + c[1, 1]) elif alternative == 'two-sided': mode = int((n + 1) * (n1 + 1) / (n1 + n2 + 2)) pexact = hypergeom.pmf(c[0, 0], n1 + n2, n1, n) pmode = hypergeom.pmf(mode, n1 + n2, n1, n) epsilon = 1 - 1e-4 if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon: return oddsratio, 1. elif c[0, 0] < mode: plower = hypergeom.cdf(c[0, 0], n1 + n2, n1, n) if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, plower guess = binary_search(n, n1, n2, "upper") pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n) else: pupper = hypergeom.sf(c[0, 0] - 1, n1 + n2, n1, n) if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, pupper guess = binary_search(n, n1, n2, "lower") pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n) else: msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}" raise ValueError(msg) pvalue = min(pvalue, 1.0) return oddsratio, pvalue class SpearmanRConstantInputWarning(RuntimeWarning): """Warning generated by `spearmanr` when an input is constant.""" def __init__(self, msg=None): if msg is None: msg = ("An input array is constant; the correlation coefficent " "is not defined.") self.args = (msg,) SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) def spearmanr(a, b=None, axis=0, nan_policy='propagate'): """ Calculate a Spearman correlation coefficient with associated p-value. The Spearman rank-order correlation coefficient is a nonparametric measure of the monotonicity of the relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- a, b : 1D or 2D array_like, b is optional One or two 1-D or 2-D arrays containing multiple variables and observations. When these are 1-D, each represents a vector of observations of a single variable. For the behavior in the 2-D case, see under ``axis``, below. Both arrays need to have the same length in the ``axis`` dimension. axis : int or None, optional If axis=0 (default), then each column represents a variable, with observations in the rows. If axis=1, the relationship is transposed: each row represents a variable, while the columns contain observations. If axis=None, then both arrays will be raveled. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- correlation : float or ndarray (2-D square) Spearman correlation matrix or correlation coefficient (if only 2 variables are given as parameters. Correlation matrix is square with length equal to total number of variables (columns or rows) in ``a`` and ``b`` combined. pvalue : float The two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated, has same dimension as rho. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Section 14.7 Examples -------- >>> from scipy import stats >>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7]) (0.82078268166812329, 0.088587005313543798) >>> np.random.seed(1234321) >>> x2n = np.random.randn(100, 2) >>> y2n = np.random.randn(100, 2) >>> stats.spearmanr(x2n) (0.059969996999699973, 0.55338590803773591) >>> stats.spearmanr(x2n[:,0], x2n[:,1]) (0.059969996999699973, 0.55338590803773591) >>> rho, pval = stats.spearmanr(x2n, y2n) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> pval array([[ 0. , 0.55338591, 0.06435364, 0.53617935], [ 0.55338591, 0. , 0.27592895, 0.80234077], [ 0.06435364, 0.27592895, 0. , 0.73039992], [ 0.53617935, 0.80234077, 0.73039992, 0. ]]) >>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> stats.spearmanr(x2n, y2n, axis=None) (0.10816770419260482, 0.1273562188027364) >>> stats.spearmanr(x2n.ravel(), y2n.ravel()) (0.10816770419260482, 0.1273562188027364) >>> xint = np.random.randint(10, size=(100, 2)) >>> stats.spearmanr(xint) (0.052760927029710199, 0.60213045837062351) """ if axis is not None and axis > 1: raise ValueError("spearmanr only handles 1-D or 2-D arrays, supplied axis argument {}, please use only values 0, 1 or None for axis".format(axis)) a, axisout = _chk_asarray(a, axis) if a.ndim > 2: raise ValueError("spearmanr only handles 1-D or 2-D arrays") if b is None: if a.ndim < 2: raise ValueError("`spearmanr` needs at least 2 variables to compare") else: # Concatenate a and b, so that we now only have to handle the case # of a 2-D `a`. b, _ = _chk_asarray(b, axis) if axisout == 0: a = np.column_stack((a, b)) else: a = np.row_stack((a, b)) n_vars = a.shape[1 - axisout] n_obs = a.shape[axisout] if n_obs <= 1: # Handle empty arrays or single observations. return SpearmanrResult(np.nan, np.nan) if axisout == 0: if (a[:, 0][0] == a[:, 0]).all() or (a[:, 1][0] == a[:, 1]).all(): # If an input is constant, the correlation coefficient is not defined. warnings.warn(SpearmanRConstantInputWarning()) return SpearmanrResult(np.nan, np.nan) else: # case when axisout == 1 b/c a is 2 dim only if (a[0, :][0] == a[0, :]).all() or (a[1, :][0] == a[1, :]).all(): # If an input is constant, the correlation coefficient is not defined. warnings.warn(SpearmanRConstantInputWarning()) return SpearmanrResult(np.nan, np.nan) a_contains_nan, nan_policy = _contains_nan(a, nan_policy) variable_has_nan = np.zeros(n_vars, dtype=bool) if a_contains_nan: if nan_policy == 'omit': return mstats_basic.spearmanr(a, axis=axis, nan_policy=nan_policy) elif nan_policy == 'propagate': if a.ndim == 1 or n_vars <= 2: return SpearmanrResult(np.nan, np.nan) else: # Keep track of variables with NaNs, set the outputs to NaN # only for those variables variable_has_nan = np.isnan(a).any(axis=axisout) a_ranked = np.apply_along_axis(rankdata, axisout, a) rs = np.corrcoef(a_ranked, rowvar=axisout) dof = n_obs - 2 # degrees of freedom # rs can have elements equal to 1, so avoid zero division warnings with np.errstate(divide='ignore'): # clip the small negative values possibly caused by rounding # errors before taking the square root t = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0)) prob = 2 * distributions.t.sf(np.abs(t), dof) # For backwards compatibility, return scalars when comparing 2 columns if rs.shape == (2, 2): return SpearmanrResult(rs[1, 0], prob[1, 0]) else: rs[variable_has_nan, :] = np.nan rs[:, variable_has_nan] = np.nan return SpearmanrResult(rs, prob) PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation', 'pvalue')) def pointbiserialr(x, y): r""" Calculate a point biserial correlation coefficient and its p-value. The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply a determinative relationship. This function uses a shortcut formula but produces the same result as `pearsonr`. Parameters ---------- x : array_like of bools Input array. y : array_like Input array. Returns ------- correlation : float R value. pvalue : float Two-sided p-value. Notes ----- `pointbiserialr` uses a t-test with ``n-1`` degrees of freedom. It is equivalent to `pearsonr`. The value of the point-biserial correlation can be calculated from: .. math:: r_{pb} = \frac{\overline{Y_{1}} - \overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}} Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}` are number of observations coded 0 and 1 respectively; :math:`N` is the total number of observations and :math:`s_{y}` is the standard deviation of all the metric observations. A value of :math:`r_{pb}` that is significantly different from zero is completely equivalent to a significant difference in means between the two groups. Thus, an independent groups t Test with :math:`N-2` degrees of freedom may be used to test whether :math:`r_{pb}` is nonzero. The relation between the t-statistic for comparing two independent groups and :math:`r_{pb}` is given by: .. math:: t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}} References ---------- .. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math. Statist., Vol. 20, no.1, pp. 125-126, 1949. .. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25, np. 3, pp. 603-607, 1954. .. [3] D. Kornbrot "Point Biserial Correlation", In Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan, et al.), 2014. :doi:`10.1002/9781118445112.stat06227` Examples -------- >>> from scipy import stats >>> a = np.array([0, 0, 0, 1, 1, 1, 1]) >>> b = np.arange(7) >>> stats.pointbiserialr(a, b) (0.8660254037844386, 0.011724811003954652) >>> stats.pearsonr(a, b) (0.86602540378443871, 0.011724811003954626) >>> np.corrcoef(a, b) array([[ 1. , 0.8660254], [ 0.8660254, 1. ]]) """ rpb, prob = pearsonr(x, y) return PointbiserialrResult(rpb, prob) KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue')) def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate', method='auto', variant='b'): """ Calculate Kendall's tau, a correlation measure for ordinal data. Kendall's tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement, and values close to -1 indicate strong disagreement. This implements two variants of Kendall's tau: tau-b (the default) and tau-c (also known as Stuart's tau-c). These differ only in how they are normalized to lie within the range -1 to 1; the hypothesis tests (their p-values) are identical. Kendall's original tau-a is not implemented separately because both tau-b and tau-c reduce to tau-a in the absence of ties. Parameters ---------- x, y : array_like Arrays of rankings, of the same shape. If arrays are not 1-D, they will be flattened to 1-D. initial_lexsort : bool, optional Unused (deprecated). nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values method : {'auto', 'asymptotic', 'exact'}, optional Defines which method is used to calculate the p-value [5]_. The following options are available (default is 'auto'): * 'auto': selects the appropriate method based on a trade-off between speed and accuracy * 'asymptotic': uses a normal approximation valid for large samples * 'exact': computes the exact p-value, but can only be used if no ties are present. As the sample size increases, the 'exact' computation time may grow and the result may lose some precision. variant: {'b', 'c'}, optional Defines which variant of Kendall's tau is returned. Default is 'b'. Returns ------- correlation : float The tau statistic. pvalue : float The two-sided p-value for a hypothesis test whose null hypothesis is an absence of association, tau = 0. See Also -------- spearmanr : Calculates a Spearman rank-order correlation coefficient. theilslopes : Computes the Theil-Sen estimator for a set of points (x, y). weightedtau : Computes a weighted version of Kendall's tau. Notes ----- The definition of Kendall's tau that is used is [2]_:: tau_b = (P - Q) / sqrt((P + Q + T) * (P + Q + U)) tau_c = 2 (P - Q) / (n**2 * (m - 1) / m) where P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties only in `x`, and U the number of ties only in `y`. If a tie occurs for the same pair in both `x` and `y`, it is not added to either T or U. n is the total number of samples, and m is the number of unique values in either `x` or `y`, whichever is smaller. References ---------- .. [1] Maurice G. Kendall, "A New Measure of Rank Correlation", Biometrika Vol. 30, No. 1/2, pp. 81-93, 1938. .. [2] Maurice G. Kendall, "The treatment of ties in ranking problems", Biometrika Vol. 33, No. 3, pp. 239-251. 1945. .. [3] Gottfried E. Noether, "Elements of Nonparametric Statistics", John Wiley & Sons, 1967. .. [4] Peter M. Fenwick, "A new data structure for cumulative frequency tables", Software: Practice and Experience, Vol. 24, No. 3, pp. 327-336, 1994. .. [5] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition), Charles Griffin & Co., 1970. Examples -------- >>> from scipy import stats >>> x1 = [12, 2, 1, 12, 2] >>> x2 = [1, 4, 7, 1, 0] >>> tau, p_value = stats.kendalltau(x1, x2) >>> tau -0.47140452079103173 >>> p_value 0.2827454599327748 """ x = np.asarray(x).ravel() y = np.asarray(y).ravel() if x.size != y.size: raise ValueError("All inputs to `kendalltau` must be of the same " f"size, found x-size {x.size} and y-size {y.size}") elif not x.size or not y.size: # Return NaN if arrays are empty return KendalltauResult(np.nan, np.nan) # check both x and y cnx, npx = _contains_nan(x, nan_policy) cny, npy = _contains_nan(y, nan_policy) contains_nan = cnx or cny if npx == 'omit' or npy == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'propagate': return KendalltauResult(np.nan, np.nan) elif contains_nan and nan_policy == 'omit': x = ma.masked_invalid(x) y = ma.masked_invalid(y) if variant == 'b': return mstats_basic.kendalltau(x, y, method=method, use_ties=True) else: raise ValueError("Only variant 'b' is supported for masked arrays") if initial_lexsort is not None: # deprecate to drop! warnings.warn('"initial_lexsort" is gone!') def count_rank_tie(ranks): cnt = np.bincount(ranks).astype('int64', copy=False) cnt = cnt[cnt > 1] return ((cnt * (cnt - 1) // 2).sum(), (cnt * (cnt - 1.) * (cnt - 2)).sum(), (cnt * (cnt - 1.) * (2*cnt + 5)).sum()) size = x.size perm = np.argsort(y) # sort on y and convert y to dense ranks x, y = x[perm], y[perm] y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp) # stable sort on x and convert x to dense ranks perm = np.argsort(x, kind='mergesort') x, y = x[perm], y[perm] x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp) dis = _kendall_dis(x, y) # discordant pairs obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True] cnt = np.diff(np.nonzero(obs)[0]).astype('int64', copy=False) ntie = (cnt * (cnt - 1) // 2).sum() # joint ties xtie, x0, x1 = count_rank_tie(x) # ties in x, stats ytie, y0, y1 = count_rank_tie(y) # ties in y, stats tot = (size * (size - 1)) // 2 if xtie == tot or ytie == tot: return KendalltauResult(np.nan, np.nan) # Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie # = con + dis + xtie + ytie - ntie con_minus_dis = tot - xtie - ytie + ntie - 2 * dis if variant == 'b': tau = con_minus_dis / np.sqrt(tot - xtie) / np.sqrt(tot - ytie) elif variant == 'c': minclasses = min(len(set(x)), len(set(y))) tau = 2*con_minus_dis / (size**2 * (minclasses-1)/minclasses) else: raise ValueError(f"Unknown variant of the method chosen: {variant}. " "variant must be 'b' or 'c'.") # Limit range to fix computational errors tau = min(1., max(-1., tau)) # The p-value calculation is the same for all variants since the p-value # depends only on con_minus_dis. if method == 'exact' and (xtie != 0 or ytie != 0): raise ValueError("Ties found, exact method cannot be used.") if method == 'auto': if (xtie == 0 and ytie == 0) and (size <= 33 or min(dis, tot-dis) <= 1): method = 'exact' else: method = 'asymptotic' if xtie == 0 and ytie == 0 and method == 'exact': pvalue = mstats_basic._kendall_p_exact(size, min(dis, tot-dis)) elif method == 'asymptotic': # con_minus_dis is approx normally distributed with this variance [3]_ m = size * (size - 1.) var = ((m * (2*size + 5) - x1 - y1) / 18 + (2 * xtie * ytie) / m + x0 * y0 / (9 * m * (size - 2))) pvalue = (special.erfc(np.abs(con_minus_dis) / np.sqrt(var) / np.sqrt(2))) else: raise ValueError(f"Unknown method {method} specified. Use 'auto', " "'exact' or 'asymptotic'.") return KendalltauResult(tau, pvalue) WeightedTauResult = namedtuple('WeightedTauResult', ('correlation', 'pvalue')) def weightedtau(x, y, rank=True, weigher=None, additive=True): r""" Compute a weighted version of Kendall's :math:`\tau`. The weighted :math:`\tau` is a weighted version of Kendall's :math:`\tau` in which exchanges of high weight are more influential than exchanges of low weight. The default parameters compute the additive hyperbolic version of the index, :math:`\tau_\mathrm h`, which has been shown to provide the best balance between important and unimportant elements [1]_. The weighting is defined by means of a rank array, which assigns a nonnegative rank to each element (higher importance ranks being associated with smaller values, e.g., 0 is the highest possible rank), and a weigher function, which assigns a weight based on the rank to each element. The weight of an exchange is then the sum or the product of the weights of the ranks of the exchanged elements. The default parameters compute :math:`\tau_\mathrm h`: an exchange between elements with rank :math:`r` and :math:`s` (starting from zero) has weight :math:`1/(r+1) + 1/(s+1)`. Specifying a rank array is meaningful only if you have in mind an external criterion of importance. If, as it usually happens, you do not have in mind a specific rank, the weighted :math:`\tau` is defined by averaging the values obtained using the decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`). This is the behavior with default parameters. Note that the convention used here for ranking (lower values imply higher importance) is opposite to that used by other SciPy statistical functions. Parameters ---------- x, y : array_like Arrays of scores, of the same shape. If arrays are not 1-D, they will be flattened to 1-D. rank : array_like of ints or bool, optional A nonnegative rank assigned to each element. If it is None, the decreasing lexicographical rank by (`x`, `y`) will be used: elements of higher rank will be those with larger `x`-values, using `y`-values to break ties (in particular, swapping `x` and `y` will give a different result). If it is False, the element indices will be used directly as ranks. The default is True, in which case this function returns the average of the values obtained using the decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`). weigher : callable, optional The weigher function. Must map nonnegative integers (zero representing the most important element) to a nonnegative weight. The default, None, provides hyperbolic weighing, that is, rank :math:`r` is mapped to weight :math:`1/(r+1)`. additive : bool, optional If True, the weight of an exchange is computed by adding the weights of the ranks of the exchanged elements; otherwise, the weights are multiplied. The default is True. Returns ------- correlation : float The weighted :math:`\tau` correlation index. pvalue : float Presently ``np.nan``, as the null statistics is unknown (even in the additive hyperbolic case). See Also -------- kendalltau : Calculates Kendall's tau. spearmanr : Calculates a Spearman rank-order correlation coefficient. theilslopes : Computes the Theil-Sen estimator for a set of points (x, y). Notes ----- This function uses an :math:`O(n \log n)`, mergesort-based algorithm [1]_ that is a weighted extension of Knight's algorithm for Kendall's :math:`\tau` [2]_. It can compute Shieh's weighted :math:`\tau` [3]_ between rankings without ties (i.e., permutations) by setting `additive` and `rank` to False, as the definition given in [1]_ is a generalization of Shieh's. NaNs are considered the smallest possible score. .. versionadded:: 0.19.0 References ---------- .. [1] Sebastiano Vigna, "A weighted correlation index for rankings with ties", Proceedings of the 24th international conference on World Wide Web, pp. 1166-1176, ACM, 2015. .. [2] W.R. Knight, "A Computer Method for Calculating Kendall's Tau with Ungrouped Data", Journal of the American Statistical Association, Vol. 61, No. 314, Part 1, pp. 436-439, 1966. .. [3] Grace S. Shieh. "A weighted Kendall's tau statistic", Statistics & Probability Letters, Vol. 39, No. 1, pp. 17-24, 1998. Examples -------- >>> from scipy import stats >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, 0] >>> tau, p_value = stats.weightedtau(x, y) >>> tau -0.56694968153682723 >>> p_value nan >>> tau, p_value = stats.weightedtau(x, y, additive=False) >>> tau -0.62205716951801038 NaNs are considered the smallest possible score: >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, np.nan] >>> tau, _ = stats.weightedtau(x, y) >>> tau -0.56694968153682723 This is exactly Kendall's tau: >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, 0] >>> tau, _ = stats.weightedtau(x, y, weigher=lambda x: 1) >>> tau -0.47140452079103173 >>> x = [12, 2, 1, 12, 2] >>> y = [1, 4, 7, 1, 0] >>> stats.weightedtau(x, y, rank=None) WeightedTauResult(correlation=-0.4157652301037516, pvalue=nan) >>> stats.weightedtau(y, x, rank=None) WeightedTauResult(correlation=-0.7181341329699028, pvalue=nan) """ x = np.asarray(x).ravel() y = np.asarray(y).ravel() if x.size != y.size: raise ValueError("All inputs to `weightedtau` must be of the same size, " "found x-size %s and y-size %s" % (x.size, y.size)) if not x.size: return WeightedTauResult(np.nan, np.nan) # Return NaN if arrays are empty # If there are NaNs we apply _toint64() if np.isnan(np.sum(x)): x = _toint64(x) if np.isnan(np.sum(y)): y = _toint64(y) # Reduce to ranks unsupported types if x.dtype != y.dtype: if x.dtype != np.int64: x = _toint64(x) if y.dtype != np.int64: y = _toint64(y) else: if x.dtype not in (np.int32, np.int64, np.float32, np.float64): x = _toint64(x) y = _toint64(y) if rank is True: return WeightedTauResult(( _weightedrankedtau(x, y, None, weigher, additive) + _weightedrankedtau(y, x, None, weigher, additive) ) / 2, np.nan) if rank is False: rank = np.arange(x.size, dtype=np.intp) elif rank is not None: rank = np.asarray(rank).ravel() if rank.size != x.size: raise ValueError("All inputs to `weightedtau` must be of the same size, " "found x-size %s and rank-size %s" % (x.size, rank.size)) return WeightedTauResult(_weightedrankedtau(x, y, rank, weigher, additive), np.nan) # FROM MGCPY: https://github.com/neurodata/mgcpy class _ParallelP(object): """ Helper function to calculate parallel p-value. """ def __init__(self, x, y, random_states): self.x = x self.y = y self.random_states = random_states def __call__(self, index): order = self.random_states[index].permutation(self.y.shape[0]) permy = self.y[order][:, order] # calculate permuted stats, store in null distribution perm_stat = _mgc_stat(self.x, permy)[0] return perm_stat def _perm_test(x, y, stat, reps=1000, workers=-1, random_state=None): r""" Helper function that calculates the p-value. See below for uses. Parameters ---------- x, y : ndarray `x` and `y` have shapes `(n, p)` and `(n, q)`. stat : float The sample test statistic. reps : int, optional The number of replications used to estimate the null when using the permutation test. The default is 1000 replications. workers : int or map-like callable, optional If `workers` is an int the population is subdivided into `workers` sections and evaluated in parallel (uses `multiprocessing.Pool <multiprocessing>`). Supply `-1` to use all cores available to the Process. Alternatively supply a map-like callable, such as `multiprocessing.Pool.map` for evaluating the population in parallel. This evaluation is carried out as `workers(func, iterable)`. Requires that `func` be pickleable. random_state : int or np.random.RandomState instance, optional If already a RandomState instance, use it. If seed is an int, return a new RandomState instance seeded with seed. If None, use np.random.RandomState. Default is None. Returns ------- pvalue : float The sample test p-value. null_dist : list The approximated null distribution. """ # generate seeds for each rep (change to new parallel random number # capabilities in numpy >= 1.17+) random_state = check_random_state(random_state) random_states = [np.random.RandomState(rng_integers(random_state, 1 << 32, size=4, dtype=np.uint32)) for _ in range(reps)] # parallelizes with specified workers over number of reps and set seeds parallelp = _ParallelP(x=x, y=y, random_states=random_states) with MapWrapper(workers) as mapwrapper: null_dist = np.array(list(mapwrapper(parallelp, range(reps)))) # calculate p-value and significant permutation map through list pvalue = (null_dist >= stat).sum() / reps # correct for a p-value of 0. This is because, with bootstrapping # permutations, a p-value of 0 is incorrect if pvalue == 0: pvalue = 1 / reps return pvalue, null_dist def _euclidean_dist(x): return cdist(x, x) MGCResult = namedtuple('MGCResult', ('stat', 'pvalue', 'mgc_dict')) def multiscale_graphcorr(x, y, compute_distance=_euclidean_dist, reps=1000, workers=1, is_twosamp=False, random_state=None): r""" Computes the Multiscale Graph Correlation (MGC) test statistic. Specifically, for each point, MGC finds the :math:`k`-nearest neighbors for one property (e.g. cloud density), and the :math:`l`-nearest neighbors for the other property (e.g. grass wetness) [1]_. This pair :math:`(k, l)` is called the "scale". A priori, however, it is not know which scales will be most informative. So, MGC computes all distance pairs, and then efficiently computes the distance correlations for all scales. The local correlations illustrate which scales are relatively informative about the relationship. The key, therefore, to successfully discover and decipher relationships between disparate data modalities is to adaptively determine which scales are the most informative, and the geometric implication for the most informative scales. Doing so not only provides an estimate of whether the modalities are related, but also provides insight into how the determination was made. This is especially important in high-dimensional data, where simple visualizations do not reveal relationships to the unaided human eye. Characterizations of this implementation in particular have been derived from and benchmarked within in [2]_. Parameters ---------- x, y : ndarray If ``x`` and ``y`` have shapes ``(n, p)`` and ``(n, q)`` where `n` is the number of samples and `p` and `q` are the number of dimensions, then the MGC independence test will be run. Alternatively, ``x`` and ``y`` can have shapes ``(n, n)`` if they are distance or similarity matrices, and ``compute_distance`` must be sent to ``None``. If ``x`` and ``y`` have shapes ``(n, p)`` and ``(m, p)``, an unpaired two-sample MGC test will be run. compute_distance : callable, optional A function that computes the distance or similarity among the samples within each data matrix. Set to ``None`` if ``x`` and ``y`` are already distance matrices. The default uses the euclidean norm metric. If you are calling a custom function, either create the distance matrix before-hand or create a function of the form ``compute_distance(x)`` where `x` is the data matrix for which pairwise distances are calculated. reps : int, optional The number of replications used to estimate the null when using the permutation test. The default is ``1000``. workers : int or map-like callable, optional If ``workers`` is an int the population is subdivided into ``workers`` sections and evaluated in parallel (uses ``multiprocessing.Pool <multiprocessing>``). Supply ``-1`` to use all cores available to the Process. Alternatively supply a map-like callable, such as ``multiprocessing.Pool.map`` for evaluating the p-value in parallel. This evaluation is carried out as ``workers(func, iterable)``. Requires that `func` be pickleable. The default is ``1``. is_twosamp : bool, optional If `True`, a two sample test will be run. If ``x`` and ``y`` have shapes ``(n, p)`` and ``(m, p)``, this optional will be overriden and set to ``True``. Set to ``True`` if ``x`` and ``y`` both have shapes ``(n, p)`` and a two sample test is desired. The default is ``False``. Note that this will not run if inputs are distance matrices. random_state : int or np.random.RandomState instance, optional If already a RandomState instance, use it. If seed is an int, return a new RandomState instance seeded with seed. If None, use np.random.RandomState. Default is None. Returns ------- stat : float The sample MGC test statistic within `[-1, 1]`. pvalue : float The p-value obtained via permutation. mgc_dict : dict Contains additional useful additional returns containing the following keys: - mgc_map : ndarray A 2D representation of the latent geometry of the relationship. of the relationship. - opt_scale : (int, int) The estimated optimal scale as a `(x, y)` pair. - null_dist : list The null distribution derived from the permuted matrices See Also -------- pearsonr : Pearson correlation coefficient and p-value for testing non-correlation. kendalltau : Calculates Kendall's tau. spearmanr : Calculates a Spearman rank-order correlation coefficient. Notes ----- A description of the process of MGC and applications on neuroscience data can be found in [1]_. It is performed using the following steps: #. Two distance matrices :math:`D^X` and :math:`D^Y` are computed and modified to be mean zero columnwise. This results in two :math:`n \times n` distance matrices :math:`A` and :math:`B` (the centering and unbiased modification) [3]_. #. For all values :math:`k` and :math:`l` from :math:`1, ..., n`, * The :math:`k`-nearest neighbor and :math:`l`-nearest neighbor graphs are calculated for each property. Here, :math:`G_k (i, j)` indicates the :math:`k`-smallest values of the :math:`i`-th row of :math:`A` and :math:`H_l (i, j)` indicates the :math:`l` smallested values of the :math:`i`-th row of :math:`B` * Let :math:`\circ` denotes the entry-wise matrix product, then local correlations are summed and normalized using the following statistic: .. math:: c^{kl} = \frac{\sum_{ij} A G_k B H_l} {\sqrt{\sum_{ij} A^2 G_k \times \sum_{ij} B^2 H_l}} #. The MGC test statistic is the smoothed optimal local correlation of :math:`\{ c^{kl} \}`. Denote the smoothing operation as :math:`R(\cdot)` (which essentially set all isolated large correlations) as 0 and connected large correlations the same as before, see [3]_.) MGC is, .. math:: MGC_n (x, y) = \max_{(k, l)} R \left(c^{kl} \left( x_n, y_n \right) \right) The test statistic returns a value between :math:`(-1, 1)` since it is normalized. The p-value returned is calculated using a permutation test. This process is completed by first randomly permuting :math:`y` to estimate the null distribution and then calculating the probability of observing a test statistic, under the null, at least as extreme as the observed test statistic. MGC requires at least 5 samples to run with reliable results. It can also handle high-dimensional data sets. In addition, by manipulating the input data matrices, the two-sample testing problem can be reduced to the independence testing problem [4]_. Given sample data :math:`U` and :math:`V` of sizes :math:`p \times n` :math:`p \times m`, data matrix :math:`X` and :math:`Y` can be created as follows: .. math:: X = [U | V] \in \mathcal{R}^{p \times (n + m)} Y = [0_{1 \times n} | 1_{1 \times m}] \in \mathcal{R}^{(n + m)} Then, the MGC statistic can be calculated as normal. This methodology can be extended to similar tests such as distance correlation [4]_. .. versionadded:: 1.4.0 References ---------- .. [1] Vogelstein, J. T., Bridgeford, E. W., Wang, Q., Priebe, C. E., Maggioni, M., & Shen, C. (2019). Discovering and deciphering relationships across disparate data modalities. ELife. .. [2] Panda, S., Palaniappan, S., Xiong, J., Swaminathan, A., Ramachandran, S., Bridgeford, E. W., ... Vogelstein, J. T. (2019). mgcpy: A Comprehensive High Dimensional Independence Testing Python Package. :arXiv:`1907.02088` .. [3] Shen, C., Priebe, C.E., & Vogelstein, J. T. (2019). From distance correlation to multiscale graph correlation. Journal of the American Statistical Association. .. [4] Shen, C. & Vogelstein, J. T. (2018). The Exact Equivalence of Distance and Kernel Methods for Hypothesis Testing. :arXiv:`1806.05514` Examples -------- >>> from scipy.stats import multiscale_graphcorr >>> x = np.arange(100) >>> y = x >>> stat, pvalue, _ = multiscale_graphcorr(x, y, workers=-1) >>> '%.1f, %.3f' % (stat, pvalue) '1.0, 0.001' Alternatively, >>> x = np.arange(100) >>> y = x >>> mgc = multiscale_graphcorr(x, y) >>> '%.1f, %.3f' % (mgc.stat, mgc.pvalue) '1.0, 0.001' To run an unpaired two-sample test, >>> x = np.arange(100) >>> y = np.arange(79) >>> mgc = multiscale_graphcorr(x, y, random_state=1) >>> '%.3f, %.2f' % (mgc.stat, mgc.pvalue) '0.033, 0.02' or, if shape of the inputs are the same, >>> x = np.arange(100) >>> y = x >>> mgc = multiscale_graphcorr(x, y, is_twosamp=True) >>> '%.3f, %.1f' % (mgc.stat, mgc.pvalue) '-0.008, 1.0' """ if not isinstance(x, np.ndarray) or not isinstance(y, np.ndarray): raise ValueError("x and y must be ndarrays") # convert arrays of type (n,) to (n, 1) if x.ndim == 1: x = x[:, np.newaxis] elif x.ndim != 2: raise ValueError("Expected a 2-D array `x`, found shape " "{}".format(x.shape)) if y.ndim == 1: y = y[:, np.newaxis] elif y.ndim != 2: raise ValueError("Expected a 2-D array `y`, found shape " "{}".format(y.shape)) nx, px = x.shape ny, py = y.shape # check for NaNs _contains_nan(x, nan_policy='raise') _contains_nan(y, nan_policy='raise') # check for positive or negative infinity and raise error if np.sum(np.isinf(x)) > 0 or np.sum(np.isinf(y)) > 0: raise ValueError("Inputs contain infinities") if nx != ny: if px == py: # reshape x and y for two sample testing is_twosamp = True else: raise ValueError("Shape mismatch, x and y must have shape [n, p] " "and [n, q] or have shape [n, p] and [m, p].") if nx < 5 or ny < 5: raise ValueError("MGC requires at least 5 samples to give reasonable " "results.") # convert x and y to float x = x.astype(np.float64) y = y.astype(np.float64) # check if compute_distance_matrix if a callable() if not callable(compute_distance) and compute_distance is not None: raise ValueError("Compute_distance must be a function.") # check if number of reps exists, integer, or > 0 (if under 1000 raises # warning) if not isinstance(reps, int) or reps < 0: raise ValueError("Number of reps must be an integer greater than 0.") elif reps < 1000: msg = ("The number of replications is low (under 1000), and p-value " "calculations may be unreliable. Use the p-value result, with " "caution!") warnings.warn(msg, RuntimeWarning) if is_twosamp: if compute_distance is None: raise ValueError("Cannot run if inputs are distance matrices") x, y = _two_sample_transform(x, y) if compute_distance is not None: # compute distance matrices for x and y x = compute_distance(x) y = compute_distance(y) # calculate MGC stat stat, stat_dict = _mgc_stat(x, y) stat_mgc_map = stat_dict["stat_mgc_map"] opt_scale = stat_dict["opt_scale"] # calculate permutation MGC p-value pvalue, null_dist = _perm_test(x, y, stat, reps=reps, workers=workers, random_state=random_state) # save all stats (other than stat/p-value) in dictionary mgc_dict = {"mgc_map": stat_mgc_map, "opt_scale": opt_scale, "null_dist": null_dist} return MGCResult(stat, pvalue, mgc_dict) def _mgc_stat(distx, disty): r""" Helper function that calculates the MGC stat. See above for use. Parameters ---------- x, y : ndarray `x` and `y` have shapes `(n, p)` and `(n, q)` or `(n, n)` and `(n, n)` if distance matrices. Returns ------- stat : float The sample MGC test statistic within `[-1, 1]`. stat_dict : dict Contains additional useful additional returns containing the following keys: - stat_mgc_map : ndarray MGC-map of the statistics. - opt_scale : (float, float) The estimated optimal scale as a `(x, y)` pair. """ # calculate MGC map and optimal scale stat_mgc_map = _local_correlations(distx, disty, global_corr='mgc') n, m = stat_mgc_map.shape if m == 1 or n == 1: # the global scale at is the statistic calculated at maximial nearest # neighbors. There is not enough local scale to search over, so # default to global scale stat = stat_mgc_map[m - 1][n - 1] opt_scale = m * n else: samp_size = len(distx) - 1 # threshold to find connected region of significant local correlations sig_connect = _threshold_mgc_map(stat_mgc_map, samp_size) # maximum within the significant region stat, opt_scale = _smooth_mgc_map(sig_connect, stat_mgc_map) stat_dict = {"stat_mgc_map": stat_mgc_map, "opt_scale": opt_scale} return stat, stat_dict def _threshold_mgc_map(stat_mgc_map, samp_size): r""" Finds a connected region of significance in the MGC-map by thresholding. Parameters ---------- stat_mgc_map : ndarray All local correlations within `[-1,1]`. samp_size : int The sample size of original data. Returns ------- sig_connect : ndarray A binary matrix with 1's indicating the significant region. """ m, n = stat_mgc_map.shape # 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05 # with varying levels of performance. Threshold is based on a beta # approximation. per_sig = 1 - (0.02 / samp_size) # Percentile to consider as significant threshold = samp_size * (samp_size - 3)/4 - 1/2 # Beta approximation threshold = distributions.beta.ppf(per_sig, threshold, threshold) * 2 - 1 # the global scale at is the statistic calculated at maximial nearest # neighbors. Threshold is the maximium on the global and local scales threshold = max(threshold, stat_mgc_map[m - 1][n - 1]) # find the largest connected component of significant correlations sig_connect = stat_mgc_map > threshold if np.sum(sig_connect) > 0: sig_connect, _ = measurements.label(sig_connect) _, label_counts = np.unique(sig_connect, return_counts=True) # skip the first element in label_counts, as it is count(zeros) max_label = np.argmax(label_counts[1:]) + 1 sig_connect = sig_connect == max_label else: sig_connect = np.array([[False]]) return sig_connect def _smooth_mgc_map(sig_connect, stat_mgc_map): """ Finds the smoothed maximal within the significant region R. If area of R is too small it returns the last local correlation. Otherwise, returns the maximum within significant_connected_region. Parameters ---------- sig_connect: ndarray A binary matrix with 1's indicating the significant region. stat_mgc_map: ndarray All local correlations within `[-1, 1]`. Returns ------- stat : float The sample MGC statistic within `[-1, 1]`. opt_scale: (float, float) The estimated optimal scale as an `(x, y)` pair. """ m, n = stat_mgc_map.shape # the global scale at is the statistic calculated at maximial nearest # neighbors. By default, statistic and optimal scale are global. stat = stat_mgc_map[m - 1][n - 1] opt_scale = [m, n] if np.linalg.norm(sig_connect) != 0: # proceed only when the connected region's area is sufficiently large # 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05 # with varying levels of performance if np.sum(sig_connect) >= np.ceil(0.02 * max(m, n)) * min(m, n): max_corr = max(stat_mgc_map[sig_connect]) # find all scales within significant_connected_region that maximize # the local correlation max_corr_index = np.where((stat_mgc_map >= max_corr) & sig_connect) if max_corr >= stat: stat = max_corr k, l = max_corr_index one_d_indices = k * n + l # 2D to 1D indexing k = np.max(one_d_indices) // n l = np.max(one_d_indices) % n opt_scale = [k+1, l+1] # adding 1s to match R indexing return stat, opt_scale def _two_sample_transform(u, v): """ Helper function that concatenates x and y for two sample MGC stat. See above for use. Parameters ---------- u, v : ndarray `u` and `v` have shapes `(n, p)` and `(m, p)`. Returns ------- x : ndarray Concatenate `u` and `v` along the `axis = 0`. `x` thus has shape `(2n, p)`. y : ndarray Label matrix for `x` where 0 refers to samples that comes from `u` and 1 refers to samples that come from `v`. `y` thus has shape `(2n, 1)`. """ nx = u.shape[0] ny = v.shape[0] x = np.concatenate([u, v], axis=0) y = np.concatenate([np.zeros(nx), np.ones(ny)], axis=0).reshape(-1, 1) return x, y ##################################### # INFERENTIAL STATISTICS # ##################################### Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue')) def ttest_1samp(a, popmean, axis=0, nan_policy='propagate', alternative="two-sided"): """ Calculate the T-test for the mean of ONE group of scores. This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations `a` is equal to the given population mean, `popmean`. Parameters ---------- a : array_like Sample observation. popmean : float or array_like Expected value in null hypothesis. If array_like, then it must have the same shape as `a` excluding the axis dimension. axis : int or None, optional Axis along which to compute test; default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided * 'greater': one-sided .. versionadded:: 1.6.0 Returns ------- statistic : float or array t-statistic. pvalue : float or array Two-sided p-value. Examples -------- >>> from scipy import stats >>> np.random.seed(7654567) # fix seed to get the same result >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2)) Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don't reject it in the first case. >>> stats.ttest_1samp(rvs,5.0) (array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674])) >>> stats.ttest_1samp(rvs,0.0) (array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999])) Examples using axis and non-scalar dimension for population mean. >>> result = stats.ttest_1samp(rvs, [5.0, 0.0]) >>> result.statistic array([-0.68014479, 4.11038784]), >>> result.pvalue array([4.99613833e-01, 1.49986458e-04]) >>> result = stats.ttest_1samp(rvs.T, [5.0, 0.0], axis=1) >>> result.statistic array([-0.68014479, 4.11038784]) >>> result.pvalue array([4.99613833e-01, 1.49986458e-04]) >>> result = stats.ttest_1samp(rvs, [[5.0], [0.0]]) >>> result.statistic array([[-0.68014479, -0.04323899], [ 2.77025808, 4.11038784]]) >>> result.pvalue array([[4.99613833e-01, 9.65686743e-01], [7.89094663e-03, 1.49986458e-04]]) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': if alternative != 'two-sided': raise ValueError("nan-containing/masked inputs with " "nan_policy='omit' are currently not " "supported by one-sided alternatives.") a = ma.masked_invalid(a) return mstats_basic.ttest_1samp(a, popmean, axis) n = a.shape[axis] df = n - 1 d = np.mean(a, axis) - popmean v = np.var(a, axis, ddof=1) denom = np.sqrt(v / n) with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(d, denom) t, prob = _ttest_finish(df, t, alternative) return Ttest_1sampResult(t, prob) def _ttest_finish(df, t, alternative): """Common code between all 3 t-test functions.""" if alternative == 'less': prob = distributions.t.cdf(t, df) elif alternative == 'greater': prob = distributions.t.sf(t, df) elif alternative == 'two-sided': prob = 2 * distributions.t.sf(np.abs(t), df) else: raise ValueError("alternative must be " "'less', 'greater' or 'two-sided'") if t.ndim == 0: t = t[()] return t, prob def _ttest_ind_from_stats(mean1, mean2, denom, df, alternative): d = mean1 - mean2 with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(d, denom) t, prob = _ttest_finish(df, t, alternative) return (t, prob) def _unequal_var_ttest_denom(v1, n1, v2, n2): vn1 = v1 / n1 vn2 = v2 / n2 with np.errstate(divide='ignore', invalid='ignore'): df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)) # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0). # Hence it doesn't matter what df is as long as it's not NaN. df = np.where(np.isnan(df), 1, df) denom = np.sqrt(vn1 + vn2) return df, denom def _equal_var_ttest_denom(v1, n1, v2, n2): df = n1 + n2 - 2.0 svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2)) return df, denom Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue')) def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True, alternative="two-sided"): r""" T-test for means of two independent samples from descriptive statistics. This is a two-sided test for the null hypothesis that two independent samples have identical average (expected) values. Parameters ---------- mean1 : array_like The mean(s) of sample 1. std1 : array_like The standard deviation(s) of sample 1. nobs1 : array_like The number(s) of observations of sample 1. mean2 : array_like The mean(s) of sample 2. std2 : array_like The standard deviations(s) of sample 2. nobs2 : array_like The number(s) of observations of sample 2. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided * 'greater': one-sided .. versionadded:: 1.6.0 Returns ------- statistic : float or array The calculated t-statistics. pvalue : float or array The two-tailed p-value. See Also -------- scipy.stats.ttest_ind Notes ----- .. versionadded:: 0.16.0 References ---------- .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test Examples -------- Suppose we have the summary data for two samples, as follows:: Sample Sample Size Mean Variance Sample 1 13 15.0 87.5 Sample 2 11 12.0 39.0 Apply the t-test to this data (with the assumption that the population variances are equal): >>> from scipy.stats import ttest_ind_from_stats >>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13, ... mean2=12.0, std2=np.sqrt(39.0), nobs2=11) Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487) For comparison, here is the data from which those summary statistics were taken. With this data, we can compute the same result using `scipy.stats.ttest_ind`: >>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26]) >>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21]) >>> from scipy.stats import ttest_ind >>> ttest_ind(a, b) Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486) Suppose we instead have binary data and would like to apply a t-test to compare the proportion of 1s in two independent groups:: Number of Sample Sample Size ones Mean Variance Sample 1 150 30 0.2 0.16 Sample 2 200 45 0.225 0.174375 The sample mean :math:`\hat{p}` is the proportion of ones in the sample and the variance for a binary observation is estimated by :math:`\hat{p}(1-\hat{p})`. >>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.16), nobs1=150, ... mean2=0.225, std2=np.sqrt(0.17437), nobs2=200) Ttest_indResult(statistic=-0.564327545549774, pvalue=0.5728947691244874) For comparison, we could compute the t statistic and p-value using arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above. >>> group1 = np.array([1]*30 + [0]*(150-30)) >>> group2 = np.array([1]*45 + [0]*(200-45)) >>> ttest_ind(group1, group2) Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258) """ mean1 = np.asarray(mean1) std1 = np.asarray(std1) mean2 = np.asarray(mean2) std2 = np.asarray(std2) if equal_var: df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) else: df, denom = _unequal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) res = _ttest_ind_from_stats(mean1, mean2, denom, df, alternative) return Ttest_indResult(*res) def _ttest_nans(a, b, axis, namedtuple_type): """ Generate an array of `nan`, with shape determined by `a`, `b` and `axis`. This function is used by ttest_ind and ttest_rel to create the return value when one of the inputs has size 0. The shapes of the arrays are determined by dropping `axis` from the shapes of `a` and `b` and broadcasting what is left. The return value is a named tuple of the type given in `namedtuple_type`. Examples -------- >>> a = np.zeros((9, 2)) >>> b = np.zeros((5, 1)) >>> _ttest_nans(a, b, 0, Ttest_indResult) Ttest_indResult(statistic=array([nan, nan]), pvalue=array([nan, nan])) >>> a = np.zeros((3, 0, 9)) >>> b = np.zeros((1, 10)) >>> stat, p = _ttest_nans(a, b, -1, Ttest_indResult) >>> stat array([], shape=(3, 0), dtype=float64) >>> p array([], shape=(3, 0), dtype=float64) >>> a = np.zeros(10) >>> b = np.zeros(7) >>> _ttest_nans(a, b, 0, Ttest_indResult) Ttest_indResult(statistic=nan, pvalue=nan) """ shp = _broadcast_shapes_with_dropped_axis(a, b, axis) if len(shp) == 0: t = np.nan p = np.nan else: t = np.full(shp, fill_value=np.nan) p = t.copy() return namedtuple_type(t, p) def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate', permutations=None, random_state=None, alternative="two-sided"): """ Calculate the T-test for the means of *two independent* samples of scores. This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. This test assumes that the populations have identical variances by default. Parameters ---------- a, b : array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. .. versionadded:: 0.11.0 nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values The 'omit' option is not currently available for permutation tests or one-sided asympyotic tests. permutations : int or None (default), optional The number of random permutations that will be used to estimate p-values using a permutation test. If `permutations` equals or exceeds the number of distinct permutations, an exact test is performed instead (i.e. each distinct permutation is used exactly once). If None (default), use the t-distribution to calculate p-values. .. versionadded:: 1.7.0 random_state : int, RandomState, or Generator, optional Pseudorandom number generator state used to generate permutations (used only when `permutations` is not None). .. versionadded:: 1.7.0 alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided * 'greater': one-sided .. versionadded:: 1.6.0 Returns ------- statistic : float or array The calculated t-statistic. pvalue : float or array The two-tailed p-value. Notes ----- Suppose we observe two independent samples, e.g. flower petal lengths, and we are considering whether the two samples were drawn from the same population (e.g. the same species of flower or two species with similar petal characteristics) or two different populations. The t-test quantifies the difference between the arithmetic means of the two samples. The p-value quantifies the probability of observing as or more extreme values assuming the null hypothesis, that the samples are drawn from populations with the same population means, is true. A p-value larger than a chosen threshold (e.g. 5% or 1%) indicates that our observation is not so unlikely to have occurred by chance. Therefore, we do not reject the null hypothesis of equal population means. If the p-value is smaller than our threshold, then we have evidence against the null hypothesis of equal population means. By default, the p-value is determined by comparing the t-statistic of the observed data against a theoretical t-distribution, which assumes that the populations are normally distributed. When ``1 < permutations < factorial(n)``, where ``n`` is the total number of data, the data are randomly assigned to either group `a` or `b`, and the t-statistic is calculated. This process is performed repeatedly (`permutation` times), generating a distribution of the t-statistic under the null hypothesis, and the t-statistic of the observed data is compared to this distribution to determine the p-value. When ``permutations >= factorial(n)``, an exact test is performed: the data are permuted within and between the groups in each distinct way exactly once. The permutation test can be computationally expensive and not necessarily more accurate than the analytical test, but it does not make strong assumptions about the shape of the underlying distribution. References ---------- .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test .. [3] http://en.wikipedia.org/wiki/Resampling_%28statistics%29 Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) Test with sample with identical means: >>> rvs1 = stats.norm.rvs(loc=5, scale=10, size=500) >>> rvs2 = stats.norm.rvs(loc=5, scale=10, size=500) >>> stats.ttest_ind(rvs1, rvs2) (0.26833823296239279, 0.78849443369564776) >>> stats.ttest_ind(rvs1, rvs2, equal_var=False) (0.26833823296239279, 0.78849452749500748) `ttest_ind` underestimates p for unequal variances: >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500) >>> stats.ttest_ind(rvs1, rvs3) (-0.46580283298287162, 0.64145827413436174) >>> stats.ttest_ind(rvs1, rvs3, equal_var=False) (-0.46580283298287162, 0.64149646246569292) When ``n1 != n2``, the equal variance t-statistic is no longer equal to the unequal variance t-statistic: >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs4) (-0.99882539442782481, 0.3182832709103896) >>> stats.ttest_ind(rvs1, rvs4, equal_var=False) (-0.69712570584654099, 0.48716927725402048) T-test with different means, variance, and n: >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs5) (-1.4679669854490653, 0.14263895620529152) >>> stats.ttest_ind(rvs1, rvs5, equal_var=False) (-0.94365973617132992, 0.34744170334794122) When performing a permutation test, more permutations typically yields more accurate results. Use a ``np.random.Generator`` to ensure reproducibility: >>> stats.ttest_ind(rvs1, rvs5, permutations=10000, ... random_state=np.random.default_rng(12345)) (-1.467966985449, 0.14) """ a, b, axis = _chk2_asarray(a, b, axis) # check both a and b cna, npa = _contains_nan(a, nan_policy) cnb, npb = _contains_nan(b, nan_policy) contains_nan = cna or cnb if npa == 'omit' or npb == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'omit': if permutations or alternative != 'two-sided': raise ValueError("nan-containing/masked inputs with " "nan_policy='omit' are currently not " "supported by permutation tests or one-sided" "asymptotic tests.") a = ma.masked_invalid(a) b = ma.masked_invalid(b) return mstats_basic.ttest_ind(a, b, axis, equal_var) if a.size == 0 or b.size == 0: return _ttest_nans(a, b, axis, Ttest_indResult) if permutations: if int(permutations) != permutations or permutations < 0: raise ValueError("Permutations must be a positive integer.") res = _permutation_ttest(a, b, permutations=permutations, axis=axis, equal_var=equal_var, nan_policy=nan_policy, random_state=random_state, alternative=alternative) else: v1 = np.var(a, axis, ddof=1) v2 = np.var(b, axis, ddof=1) n1 = a.shape[axis] n2 = b.shape[axis] if equal_var: df, denom = _equal_var_ttest_denom(v1, n1, v2, n2) else: df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2) res = _ttest_ind_from_stats(np.mean(a, axis), np.mean(b, axis), denom, df, alternative) return Ttest_indResult(*res) def _broadcast_concatenate(xs, axis): """Concatenate arrays along an axis with broadcasting""" # move the axis we're concatenating along to the end xs = [np.swapaxes(x, axis, -1) for x in xs] # determine final shape of all but the last axis shape = np.broadcast(*[x[..., 0] for x in xs]).shape # broadcast along all but the last axis xs = [np.broadcast_to(x, shape + (x.shape[-1],)) for x in xs] # concatenate along last axis res = np.concatenate(xs, axis = -1) # move the last axis back to where it was res = np.swapaxes(res, axis, -1) return res def _data_permutations(data, n, axis=-1, random_state=None): """Vectorized permutation of data, assumes `random_state` is already checked""" random_state = check_random_state(random_state) if axis < 0: # we'll be adding a new dimension at the end axis = data.ndim + axis # prepare permutation indices m = data.shape[axis] n_max = float_factorial(m) # number of distinct permutations if n < n_max: indices = np.array([random_state.permutation(m) for i in range(n)]).T else: n = n_max indices = np.array(list(permutations(range(m)))).T data = data.swapaxes(axis, -1) # so we can index along a new dimension data = data[..., indices] # generate permutations data = data.swapaxes(-2, axis) # restore original axis order data = np.moveaxis(data, -1, 0) # permutations indexed along axis 0 return data, n def _calc_t_stat(a, b, equal_var, axis=-1): """Calculate the t statistic along the given dimension""" na = a.shape[axis] nb = b.shape[axis] avg_a = np.mean(a, axis=axis) avg_b = np.mean(b, axis=axis) var_a = np.var(a, axis=axis, ddof=1) var_b = np.var(b, axis=axis, ddof=1) if not equal_var: denom = _unequal_var_ttest_denom(var_a, na, var_b, nb)[1] else: denom = _equal_var_ttest_denom(var_a, na, var_b, nb)[1] return (avg_a-avg_b)/denom def _permutation_ttest(a, b, permutations, axis=0, equal_var=True, nan_policy='propagate', random_state=None, alternative="two-sided"): """ Calculates the T-test for the means of TWO INDEPENDENT samples of scores using permutation methods This test is similar to `stats.ttest_ind`, except it doesn't rely on an approximate normality assumption since it uses a permutation test. This function is only called from ttest_ind when permutations is not None. Parameters ---------- a, b : array_like The arrays must be broadcastable, except along the dimension corresponding to `axis` (the zeroth, by default). axis : int, optional The axis over which to operate on a and b. permutations: int, optional Number of permutations used to calculate p-value. If greater than or equal to the number of distinct permutations, perform an exact test. equal_var: bool, optional If False, an equal variance (Welch's) t-test is conducted. Otherwise, an ordinary t-test is conducted. random_state : int, RandomState, or Generator, optional Pseudorandom number generator state used for generating random permutations. Returns ------- statistic : float or array The calculated t-statistic. pvalue : float or array The two-tailed p-value. """ random_state = check_random_state(random_state) t_stat_observed = _calc_t_stat(a, b, equal_var, axis=axis) na = a.shape[axis] mat = _broadcast_concatenate((a, b), axis=axis) mat = np.moveaxis(mat, axis, -1) mat_perm, permutations = _data_permutations(mat, n=permutations, random_state=random_state) a = mat_perm[..., :na] b = mat_perm[..., na:] t_stat = _calc_t_stat(a, b, equal_var) compare = {"less": np.less_equal, "greater": np.greater_equal, "two-sided": lambda x, y: (x <= -np.abs(y)) | (x >= np.abs(y))} # Calculate the p-values cmps = compare[alternative](t_stat, t_stat_observed) pvalues = cmps.sum(axis=0) / permutations # nans propagate naturally in statistic calculation, but need to be # propagated manually into pvalues if nan_policy == 'propagate' and np.isnan(t_stat_observed).any(): if np.ndim(pvalues) == 0: pvalues = np.float64(np.nan) else: pvalues[np.isnan(t_stat_observed)] = np.nan return (t_stat_observed, pvalues) def _get_len(a, axis, msg): try: n = a.shape[axis] except IndexError: raise np.AxisError(axis, a.ndim, msg) from None return n Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue')) def ttest_rel(a, b, axis=0, nan_policy='propagate', alternative="two-sided"): """ Calculate the t-test on TWO RELATED samples of scores, a and b. This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values. Parameters ---------- a, b : array_like The arrays must have the same shape. axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided * 'greater': one-sided .. versionadded:: 1.6.0 Returns ------- statistic : float or array t-statistic. pvalue : float or array Two-sided p-value. Notes ----- Examples for use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics. References ---------- https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) # fix random seed to get same numbers >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs2) (0.24101764965300962, 0.80964043445811562) >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs3) (-3.9995108708727933, 7.3082402191726459e-005) """ a, b, axis = _chk2_asarray(a, b, axis) cna, npa = _contains_nan(a, nan_policy) cnb, npb = _contains_nan(b, nan_policy) contains_nan = cna or cnb if npa == 'omit' or npb == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'omit': if alternative != 'two-sided': raise ValueError("nan-containing/masked inputs with " "nan_policy='omit' are currently not " "supported by one-sided alternatives.") a = ma.masked_invalid(a) b = ma.masked_invalid(b) m = ma.mask_or(ma.getmask(a), ma.getmask(b)) aa = ma.array(a, mask=m, copy=True) bb = ma.array(b, mask=m, copy=True) return mstats_basic.ttest_rel(aa, bb, axis) na = _get_len(a, axis, "first argument") nb = _get_len(b, axis, "second argument") if na != nb: raise ValueError('unequal length arrays') if na == 0: return _ttest_nans(a, b, axis, Ttest_relResult) n = a.shape[axis] df = n - 1 d = (a - b).astype(np.float64) v = np.var(d, axis, ddof=1) dm = np.mean(d, axis) denom = np.sqrt(v / n) with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(dm, denom) t, prob = _ttest_finish(df, t, alternative) return Ttest_relResult(t, prob) # Map from names to lambda_ values used in power_divergence(). _power_div_lambda_names = { "pearson": 1, "log-likelihood": 0, "freeman-tukey": -0.5, "mod-log-likelihood": -1, "neyman": -2, "cressie-read": 2/3, } def _count(a, axis=None): """ Count the number of non-masked elements of an array. This function behaves like np.ma.count(), but is much faster for ndarrays. """ if hasattr(a, 'count'): num = a.count(axis=axis) if isinstance(num, np.ndarray) and num.ndim == 0: # In some cases, the `count` method returns a scalar array (e.g. # np.array(3)), but we want a plain integer. num = int(num) else: if axis is None: num = a.size else: num = a.shape[axis] return num def _m_broadcast_to(a, shape): if np.ma.isMaskedArray(a): return np.ma.masked_array(np.broadcast_to(a, shape), mask=np.broadcast_to(a.mask, shape)) return np.broadcast_to(a, shape, subok=True) Power_divergenceResult = namedtuple('Power_divergenceResult', ('statistic', 'pvalue')) def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None): """ Cressie-Read power divergence statistic and goodness of fit test. This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read power divergence statistic. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. lambda_ : float or str, optional The power in the Cressie-Read power divergence statistic. The default is 1. For convenience, `lambda_` may be assigned one of the following strings, in which case the corresponding numerical value is used:: String Value Description "pearson" 1 Pearson's chi-squared statistic. In this case, the function is equivalent to `stats.chisquare`. "log-likelihood" 0 Log-likelihood ratio. Also known as the G-test [3]_. "freeman-tukey" -1/2 Freeman-Tukey statistic. "mod-log-likelihood" -1 Modified log-likelihood ratio. "neyman" -2 Neyman's statistic. "cressie-read" 2/3 The power recommended in [5]_. Returns ------- statistic : float or ndarray The Cressie-Read power divergence test statistic. The value is a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D. pvalue : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `stat` are scalars. See Also -------- chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. Also, the sum of the observed and expected frequencies must be the same for the test to be valid; `power_divergence` raises an error if the sums do not agree within a relative tolerance of ``1e-8``. When `lambda_` is less than zero, the formula for the statistic involves dividing by `f_obs`, so a warning or error may be generated if any value in `f_obs` is 0. Similarly, a warning or error may be generated if any value in `f_exp` is zero when `lambda_` >= 0. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. This function handles masked arrays. If an element of `f_obs` or `f_exp` is masked, then data at that position is ignored, and does not count towards the size of the data set. .. versionadded:: 0.13.0 References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test .. [3] "G-test", https://en.wikipedia.org/wiki/G-test .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and practice of statistics in biological research", New York: Freeman (1981) .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984), pp. 440-464. Examples -------- (See `chisquare` for more examples.) When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic): >>> from scipy.stats import power_divergence >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood') (2.006573162632538, 0.84823476779463769) The expected frequencies can be given with the `f_exp` argument: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[16, 16, 16, 16, 16, 8], ... lambda_='log-likelihood') (3.3281031458963746, 0.6495419288047497) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> power_divergence(obs, lambda_="log-likelihood") (array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> power_divergence(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> power_divergence(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the test statistic with `ddof`. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we must use ``axis=1``: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], ... [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ # Convert the input argument `lambda_` to a numerical value. if isinstance(lambda_, str): if lambda_ not in _power_div_lambda_names: names = repr(list(_power_div_lambda_names.keys()))[1:-1] raise ValueError("invalid string for lambda_: {0!r}. Valid strings " "are {1}".format(lambda_, names)) lambda_ = _power_div_lambda_names[lambda_] elif lambda_ is None: lambda_ = 1 f_obs = np.asanyarray(f_obs) f_obs_float = f_obs.astype(np.float64) if f_exp is not None: f_exp = np.asanyarray(f_exp) bshape = _broadcast_shapes(f_obs_float.shape, f_exp.shape) f_obs_float = _m_broadcast_to(f_obs_float, bshape) f_exp = _m_broadcast_to(f_exp, bshape) rtol = 1e-8 # to pass existing tests with np.errstate(invalid='ignore'): f_obs_sum = f_obs_float.sum(axis=axis) f_exp_sum = f_exp.sum(axis=axis) relative_diff = (np.abs(f_obs_sum - f_exp_sum) / np.minimum(f_obs_sum, f_exp_sum)) diff_gt_tol = (relative_diff > rtol).any() if diff_gt_tol: msg = (f"For each axis slice, the sum of the observed " f"frequencies must agree with the sum of the " f"expected frequencies to a relative tolerance " f"of {rtol}, but the percent differences are:\n" f"{relative_diff}") raise ValueError(msg) else: # Ignore 'invalid' errors so the edge case of a data set with length 0 # is handled without spurious warnings. with np.errstate(invalid='ignore'): f_exp = f_obs.mean(axis=axis, keepdims=True) # `terms` is the array of terms that are summed along `axis` to create # the test statistic. We use some specialized code for a few special # cases of lambda_. if lambda_ == 1: # Pearson's chi-squared statistic terms = (f_obs_float - f_exp)**2 / f_exp elif lambda_ == 0: # Log-likelihood ratio (i.e. G-test) terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp) elif lambda_ == -1: # Modified log-likelihood ratio terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs) else: # General Cressie-Read power divergence. terms = f_obs * ((f_obs / f_exp)**lambda_ - 1) terms /= 0.5 * lambda_ * (lambda_ + 1) stat = terms.sum(axis=axis) num_obs = _count(terms, axis=axis) ddof = asarray(ddof) p = distributions.chi2.sf(stat, num_obs - 1 - ddof) return Power_divergenceResult(stat, p) def chisquare(f_obs, f_exp=None, ddof=0, axis=0): """ Calculate a one-way chi-square test. The chi-square test tests the null hypothesis that the categorical data has the given frequencies. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. Returns ------- chisq : float or ndarray The chi-squared test statistic. The value is a float if `axis` is None or `f_obs` and `f_exp` are 1-D. p : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `chisq` are scalars. See Also -------- scipy.stats.power_divergence Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. Also, the sum of the observed and expected frequencies must be the same for the test to be valid; `chisquare` raises an error if the sums do not agree within a relative tolerance of ``1e-8``. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not chi-square, in which case this test is not appropriate. References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test Examples -------- When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. >>> from scipy.stats import chisquare >>> chisquare([16, 18, 16, 14, 12, 12]) (2.0, 0.84914503608460956) With `f_exp` the expected frequencies can be given. >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8]) (3.5, 0.62338762774958223) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> chisquare(obs) (array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> chisquare(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> chisquare(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the chi-squared statistic with `ddof`. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we use ``axis=1``: >>> chisquare([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis, lambda_="pearson") KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue')) def _compute_dplus(cdfvals): """Computes D+ as used in the Kolmogorov-Smirnov test. Parameters ---------- cdfvals: array_like Sorted array of CDF values between 0 and 1 Returns ------- Maximum distance of the CDF values below Uniform(0, 1) """ n = len(cdfvals) return (np.arange(1.0, n + 1) / n - cdfvals).max() def _compute_dminus(cdfvals): """Computes D- as used in the Kolmogorov-Smirnov test. Parameters ---------- cdfvals: array_like Sorted array of CDF values between 0 and 1 Returns ------- Maximum distance of the CDF values above Uniform(0, 1) """ n = len(cdfvals) return (cdfvals - np.arange(0.0, n)/n).max() def ks_1samp(x, cdf, args=(), alternative='two-sided', mode='auto'): """ Performs the Kolmogorov-Smirnov test for goodness of fit. This performs a test of the distribution F(x) of an observed random variable against a given distribution G(x). Under the null hypothesis, the two distributions are identical, F(x)=G(x). The alternative hypothesis can be either 'two-sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions. Parameters ---------- x : array_like a 1-D array of observations of iid random variables. cdf : callable callable used to calculate the cdf. args : tuple, sequence, optional Distribution parameters, used with `cdf`. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided, see explanation in Notes * 'greater': one-sided, see explanation in Notes mode : {'auto', 'exact', 'approx', 'asymp'}, optional Defines the distribution used for calculating the p-value. The following options are available (default is 'auto'): * 'auto' : selects one of the other options. * 'exact' : uses the exact distribution of test statistic. * 'approx' : approximates the two-sided probability with twice the one-sided probability * 'asymp': uses asymptotic distribution of test statistic Returns ------- statistic : float KS test statistic, either D, D+ or D- (depending on the value of 'alternative') pvalue : float One-tailed or two-tailed p-value. See Also -------- ks_2samp, kstest Notes ----- In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function G(x) of the hypothesis, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``. Examples -------- >>> from scipy import stats >>> x = np.linspace(-15, 15, 9) >>> stats.ks_1samp(x, stats.norm.cdf) (0.44435602715924361, 0.038850142705171065) >>> np.random.seed(987654321) # set random seed to get the same result >>> stats.ks_1samp(stats.norm.rvs(size=100), stats.norm.cdf) (0.058352892479417884, 0.8653960860778898) *Test against one-sided alternative hypothesis* Shift distribution to larger values, so that `` CDF(x) < norm.cdf(x)``: >>> np.random.seed(987654321) >>> x = stats.norm.rvs(loc=0.2, size=100) >>> stats.ks_1samp(x, stats.norm.cdf, alternative='less') (0.12464329735846891, 0.040989164077641749) Reject equal distribution against alternative hypothesis: less >>> stats.ks_1samp(x, stats.norm.cdf, alternative='greater') (0.0072115233216311081, 0.98531158590396395) Don't reject equal distribution against alternative hypothesis: greater >>> stats.ks_1samp(x, stats.norm.cdf) (0.12464329735846891, 0.08197335233541582) Don't reject equal distribution against alternative hypothesis: two-sided *Testing t distributed random variables against normal distribution* With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not reject the hypothesis that the sample came from the normal distribution: >>> np.random.seed(987654321) >>> stats.ks_1samp(stats.t.rvs(100,size=100), stats.norm.cdf) (0.072018929165471257, 0.6505883498379312) With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at the 10% level: >>> np.random.seed(987654321) >>> stats.ks_1samp(stats.t.rvs(3,size=100), stats.norm.cdf) (0.131016895759829, 0.058826222555312224) """ alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get( alternative.lower()[0], alternative) if alternative not in ['two-sided', 'greater', 'less']: raise ValueError("Unexpected alternative %s" % alternative) if np.ma.is_masked(x): x = x.compressed() N = len(x) x = np.sort(x) cdfvals = cdf(x, *args) if alternative == 'greater': Dplus = _compute_dplus(cdfvals) return KstestResult(Dplus, distributions.ksone.sf(Dplus, N)) if alternative == 'less': Dminus = _compute_dminus(cdfvals) return KstestResult(Dminus, distributions.ksone.sf(Dminus, N)) # alternative == 'two-sided': Dplus = _compute_dplus(cdfvals) Dminus = _compute_dminus(cdfvals) D = np.max([Dplus, Dminus]) if mode == 'auto': # Always select exact mode = 'exact' if mode == 'exact': prob = distributions.kstwo.sf(D, N) elif mode == 'asymp': prob = distributions.kstwobign.sf(D * np.sqrt(N)) else: # mode == 'approx' prob = 2 * distributions.ksone.sf(D, N) prob = np.clip(prob, 0, 1) return KstestResult(D, prob) Ks_2sampResult = KstestResult def _compute_prob_inside_method(m, n, g, h): """ Count the proportion of paths that stay strictly inside two diagonal lines. Parameters ---------- m : integer m > 0 n : integer n > 0 g : integer g is greatest common divisor of m and n h : integer 0 <= h <= lcm(m,n) Returns ------- p : float The proportion of paths that stay inside the two lines. Count the integer lattice paths from (0, 0) to (m, n) which satisfy |x/m - y/n| < h / lcm(m, n). The paths make steps of size +1 in either positive x or positive y directions. We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk. Hodges, J.L. Jr., "The Significance Probability of the Smirnov Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86. """ # Probability is symmetrical in m, n. Computation below uses m >= n. if m < n: m, n = n, m mg = m // g ng = n // g # Count the integer lattice paths from (0, 0) to (m, n) which satisfy # |nx/g - my/g| < h. # Compute matrix A such that: # A(x, 0) = A(0, y) = 1 # A(x, y) = A(x, y-1) + A(x-1, y), for x,y>=1, except that # A(x, y) = 0 if |x/m - y/n|>= h # Probability is A(m, n)/binom(m+n, n) # Optimizations exist for m==n, m==n*p. # Only need to preserve a single column of A, and only a sliding window of it. # minj keeps track of the slide. minj, maxj = 0, min(int(np.ceil(h / mg)), n + 1) curlen = maxj - minj # Make a vector long enough to hold maximum window needed. lenA = min(2 * maxj + 2, n + 1) # This is an integer calculation, but the entries are essentially # binomial coefficients, hence grow quickly. # Scaling after each column is computed avoids dividing by a # large binomial coefficent at the end, but is not sufficient to avoid # the large dyanamic range which appears during the calculation. # Instead we rescale based on the magnitude of the right most term in # the column and keep track of an exponent separately and apply # it at the end of the calculation. Similarly when multiplying by # the binomial coefficint dtype = np.float64 A = np.zeros(lenA, dtype=dtype) # Initialize the first column A[minj:maxj] = 1 expnt = 0 for i in range(1, m + 1): # Generate the next column. # First calculate the sliding window lastminj, lastlen = minj, curlen minj = max(int(np.floor((ng * i - h) / mg)) + 1, 0) minj = min(minj, n) maxj = min(int(np.ceil((ng * i + h) / mg)), n + 1) if maxj <= minj: return 0 # Now fill in the values A[0:maxj - minj] = np.cumsum(A[minj - lastminj:maxj - lastminj]) curlen = maxj - minj if lastlen > curlen: # Set some carried-over elements to 0 A[maxj - minj:maxj - minj + (lastlen - curlen)] = 0 # Rescale if the right most value is over 2**900 val = A[maxj - minj - 1] _, valexpt = math.frexp(val) if valexpt > 900: # Scaling to bring down to about 2**800 appears # sufficient for sizes under 10000. valexpt -= 800 A = np.ldexp(A, -valexpt) expnt += valexpt val = A[maxj - minj - 1] # Now divide by the binomial (m+n)!/m!/n! for i in range(1, n + 1): val = (val * i) / (m + i) _, valexpt = math.frexp(val) if valexpt < -128: val = np.ldexp(val, -valexpt) expnt += valexpt # Finally scale if needed. return np.ldexp(val, expnt) def _compute_prob_outside_square(n, h): """ Compute the proportion of paths that pass outside the two diagonal lines. Parameters ---------- n : integer n > 0 h : integer 0 <= h <= n Returns ------- p : float The proportion of paths that pass outside the lines x-y = +/-h. """ # Compute Pr(D_{n,n} >= h/n) # Prob = 2 * ( binom(2n, n-h) - binom(2n, n-2a) + binom(2n, n-3a) - ... ) / binom(2n, n) # This formulation exhibits subtractive cancellation. # Instead divide each term by binom(2n, n), then factor common terms # and use a Horner-like algorithm # P = 2 * A0 * (1 - A1*(1 - A2*(1 - A3*(1 - A4*(...))))) P = 0.0 k = int(np.floor(n / h)) while k >= 0: p1 = 1.0 # Each of the Ai terms has numerator and denominator with h simple terms. for j in range(h): p1 = (n - k * h - j) * p1 / (n + k * h + j + 1) P = p1 * (1.0 - P) k -= 1 return 2 * P def _count_paths_outside_method(m, n, g, h): """ Count the number of paths that pass outside the specified diagonal. Parameters ---------- m : integer m > 0 n : integer n > 0 g : integer g is greatest common divisor of m and n h : integer 0 <= h <= lcm(m,n) Returns ------- p : float The number of paths that go low. The calculation may overflow - check for a finite answer. Raises ------ FloatingPointError: Raised if the intermediate computation goes outside the range of a float. Notes ----- Count the integer lattice paths from (0, 0) to (m, n), which at some point (x, y) along the path, satisfy: m*y <= n*x - h*g The paths make steps of size +1 in either positive x or positive y directions. We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk. Hodges, J.L. Jr., "The Significance Probability of the Smirnov Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86. """ # Compute #paths which stay lower than x/m-y/n = h/lcm(m,n) # B(x, y) = #{paths from (0,0) to (x,y) without previously crossing the boundary} # = binom(x, y) - #{paths which already reached the boundary} # Multiply by the number of path extensions going from (x, y) to (m, n) # Sum. # Probability is symmetrical in m, n. Computation below assumes m >= n. if m < n: m, n = n, m mg = m // g ng = n // g # Not every x needs to be considered. # xj holds the list of x values to be checked. # Wherever n*x/m + ng*h crosses an integer lxj = n + (mg-h)//mg xj = [(h + mg * j + ng-1)//ng for j in range(lxj)] # B is an array just holding a few values of B(x,y), the ones needed. # B[j] == B(x_j, j) if lxj == 0: return np.round(special.binom(m + n, n)) B = np.zeros(lxj) B[0] = 1 # Compute the B(x, y) terms # The binomial coefficient is an integer, but special.binom() may return a float. # Round it to the nearest integer. for j in range(1, lxj): Bj = np.round(special.binom(xj[j] + j, j)) if not np.isfinite(Bj): raise FloatingPointError() for i in range(j): bin = np.round(special.binom(xj[j] - xj[i] + j - i, j-i)) Bj -= bin * B[i] B[j] = Bj if not np.isfinite(Bj): raise FloatingPointError() # Compute the number of path extensions... num_paths = 0 for j in range(lxj): bin = np.round(special.binom((m-xj[j]) + (n - j), n-j)) term = B[j] * bin if not np.isfinite(term): raise FloatingPointError() num_paths += term return np.round(num_paths) def _attempt_exact_2kssamp(n1, n2, g, d, alternative): """Attempts to compute the exact 2sample probability. n1, n2 are the sample sizes g is the gcd(n1, n2) d is the computed max difference in ECDFs Returns (success, d, probability) """ lcm = (n1 // g) * n2 h = int(np.round(d * lcm)) d = h * 1.0 / lcm if h == 0: return True, d, 1.0 saw_fp_error, prob = False, np.nan try: if alternative == 'two-sided': if n1 == n2: prob = _compute_prob_outside_square(n1, h) else: prob = 1 - _compute_prob_inside_method(n1, n2, g, h) else: if n1 == n2: # prob = binom(2n, n-h) / binom(2n, n) # Evaluating in that form incurs roundoff errors # from special.binom. Instead calculate directly jrange = np.arange(h) prob = np.prod((n1 - jrange) / (n1 + jrange + 1.0)) else: num_paths = _count_paths_outside_method(n1, n2, g, h) bin = special.binom(n1 + n2, n1) if not np.isfinite(bin) or not np.isfinite(num_paths) or num_paths > bin: saw_fp_error = True else: prob = num_paths / bin except FloatingPointError: saw_fp_error = True if saw_fp_error: return False, d, np.nan if not (0 <= prob <= 1): return False, d, prob return True, d, prob def ks_2samp(data1, data2, alternative='two-sided', mode='auto'): """ Compute the Kolmogorov-Smirnov statistic on 2 samples. This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous distribution. The alternative hypothesis can be either 'two-sided' (default), 'less' or 'greater'. Parameters ---------- data1, data2 : array_like, 1-Dimensional Two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided, see explanation in Notes * 'greater': one-sided, see explanation in Notes mode : {'auto', 'exact', 'asymp'}, optional Defines the method used for calculating the p-value. The following options are available (default is 'auto'): * 'auto' : use 'exact' for small size arrays, 'asymp' for large * 'exact' : use exact distribution of test statistic * 'asymp' : use asymptotic distribution of test statistic Returns ------- statistic : float KS statistic. pvalue : float Two-tailed p-value. See Also -------- kstest, ks_1samp, epps_singleton_2samp, anderson_ksamp Notes ----- This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample KS test, the distribution is assumed to be continuous. In the one-sided test, the alternative is that the empirical cumulative distribution function F(x) of the data1 variable is "less" or "greater" than the empirical cumulative distribution function G(x) of the data2 variable, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``. If the KS statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the two samples are the same. If the mode is 'auto', the computation is exact if the sample sizes are less than 10000. For larger sizes, the computation uses the Kolmogorov-Smirnov distributions to compute an approximate value. The 'two-sided' 'exact' computation computes the complementary probability and then subtracts from 1. As such, the minimum probability it can return is about 1e-16. While the algorithm itself is exact, numerical errors may accumulate for large sample sizes. It is most suited to situations in which one of the sample sizes is only a few thousand. We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk [1]_. References ---------- .. [1] Hodges, J.L. Jr., "The Significance Probability of the Smirnov Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86. Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) #fix random seed to get the same result >>> n1 = 200 # size of first sample >>> n2 = 300 # size of second sample For a different distribution, we can reject the null hypothesis since the pvalue is below 1%: >>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1) >>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5) >>> stats.ks_2samp(rvs1, rvs2) (0.20833333333333334, 5.129279597781977e-05) For a slightly different distribution, we cannot reject the null hypothesis at a 10% or lower alpha since the p-value at 0.144 is higher than 10% >>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0) >>> stats.ks_2samp(rvs1, rvs3) (0.10333333333333333, 0.14691437867433876) For an identical distribution, we cannot reject the null hypothesis since the p-value is high, 41%: >>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0) >>> stats.ks_2samp(rvs1, rvs4) (0.07999999999999996, 0.41126949729859719) """ if mode not in ['auto', 'exact', 'asymp']: raise ValueError(f'Invalid value for mode: {mode}') alternative = {'t': 'two-sided', 'g': 'greater', 'l': 'less'}.get( alternative.lower()[0], alternative) if alternative not in ['two-sided', 'less', 'greater']: raise ValueError(f'Invalid value for alternative: {alternative}') MAX_AUTO_N = 10000 # 'auto' will attempt to be exact if n1,n2 <= MAX_AUTO_N if np.ma.is_masked(data1): data1 = data1.compressed() if np.ma.is_masked(data2): data2 = data2.compressed() data1 = np.sort(data1) data2 = np.sort(data2) n1 = data1.shape[0] n2 = data2.shape[0] if min(n1, n2) == 0: raise ValueError('Data passed to ks_2samp must not be empty') data_all = np.concatenate([data1, data2]) # using searchsorted solves equal data problem cdf1 = np.searchsorted(data1, data_all, side='right') / n1 cdf2 = np.searchsorted(data2, data_all, side='right') / n2 cddiffs = cdf1 - cdf2 minS = np.clip(-np.min(cddiffs), 0, 1) # Ensure sign of minS is not negative. maxS = np.max(cddiffs) alt2Dvalue = {'less': minS, 'greater': maxS, 'two-sided': max(minS, maxS)} d = alt2Dvalue[alternative] g = gcd(n1, n2) n1g = n1 // g n2g = n2 // g prob = -np.inf original_mode = mode if mode == 'auto': mode = 'exact' if max(n1, n2) <= MAX_AUTO_N else 'asymp' elif mode == 'exact': # If lcm(n1, n2) is too big, switch from exact to asymp if n1g >= np.iinfo(np.int_).max / n2g: mode = 'asymp' warnings.warn( f"Exact ks_2samp calculation not possible with samples sizes " f"{n1} and {n2}. Switching to 'asymp'.", RuntimeWarning) if mode == 'exact': success, d, prob = _attempt_exact_2kssamp(n1, n2, g, d, alternative) if not success: mode = 'asymp' if original_mode == 'exact': warnings.warn(f"ks_2samp: Exact calculation unsuccessful. " f"Switching to mode={mode}.", RuntimeWarning) if mode == 'asymp': # The product n1*n2 is large. Use Smirnov's asymptoptic formula. # Ensure float to avoid overflow in multiplication # sorted because the one-sided formula is not symmetric in n1, n2 m, n = sorted([float(n1), float(n2)], reverse=True) en = m * n / (m + n) if alternative == 'two-sided': prob = distributions.kstwo.sf(d, np.round(en)) else: z = np.sqrt(en) * d # Use Hodges' suggested approximation Eqn 5.3 # Requires m to be the larger of (n1, n2) expt = -2 * z**2 - 2 * z * (m + 2*n)/np.sqrt(m*n*(m+n))/3.0 prob = np.exp(expt) prob = np.clip(prob, 0, 1) return KstestResult(d, prob) def _parse_kstest_args(data1, data2, args, N): # kstest allows many different variations of arguments. # Pull out the parsing into a separate function # (xvals, yvals, ) # 2sample # (xvals, cdf function,..) # (xvals, name of distribution, ...) # (name of distribution, name of distribution, ...) # Returns xvals, yvals, cdf # where cdf is a cdf function, or None # and yvals is either an array_like of values, or None # and xvals is array_like. rvsfunc, cdf = None, None if isinstance(data1, str): rvsfunc = getattr(distributions, data1).rvs elif callable(data1): rvsfunc = data1 if isinstance(data2, str): cdf = getattr(distributions, data2).cdf data2 = None elif callable(data2): cdf = data2 data2 = None data1 = np.sort(rvsfunc(*args, size=N) if rvsfunc else data1) return data1, data2, cdf def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='auto'): """ Performs the (one sample or two samples) Kolmogorov-Smirnov test for goodness of fit. The one-sample test performs a test of the distribution F(x) of an observed random variable against a given distribution G(x). Under the null hypothesis, the two distributions are identical, F(x)=G(x). The alternative hypothesis can be either 'two-sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions. The two-sample test tests whether the two independent samples are drawn from the same continuous distribution. Parameters ---------- rvs : str, array_like, or callable If an array, it should be a 1-D array of observations of random variables. If a callable, it should be a function to generate random variables; it is required to have a keyword argument `size`. If a string, it should be the name of a distribution in `scipy.stats`, which will be used to generate random variables. cdf : str, array_like or callable If array_like, it should be a 1-D array of observations of random variables, and the two-sample test is performed (and rvs must be array_like) If a callable, that callable is used to calculate the cdf. If a string, it should be the name of a distribution in `scipy.stats`, which will be used as the cdf function. args : tuple, sequence, optional Distribution parameters, used if `rvs` or `cdf` are strings or callables. N : int, optional Sample size if `rvs` is string or callable. Default is 20. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided, see explanation in Notes * 'greater': one-sided, see explanation in Notes mode : {'auto', 'exact', 'approx', 'asymp'}, optional Defines the distribution used for calculating the p-value. The following options are available (default is 'auto'): * 'auto' : selects one of the other options. * 'exact' : uses the exact distribution of test statistic. * 'approx' : approximates the two-sided probability with twice the one-sided probability * 'asymp': uses asymptotic distribution of test statistic Returns ------- statistic : float KS test statistic, either D, D+ or D-. pvalue : float One-tailed or two-tailed p-value. See Also -------- ks_2samp Notes ----- In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function G(x) of the hypothesis, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``. Examples -------- >>> from scipy import stats >>> x = np.linspace(-15, 15, 9) >>> stats.kstest(x, 'norm') (0.44435602715924361, 0.038850142705171065) >>> np.random.seed(987654321) # set random seed to get the same result >>> stats.kstest(stats.norm.rvs(size=100), stats.norm.cdf) (0.058352892479417884, 0.8653960860778898) The above lines are equivalent to: >>> np.random.seed(987654321) >>> stats.kstest(stats.norm.rvs, 'norm', N=100) (0.058352892479417884, 0.8653960860778898) *Test against one-sided alternative hypothesis* Shift distribution to larger values, so that ``CDF(x) < norm.cdf(x)``: >>> np.random.seed(987654321) >>> x = stats.norm.rvs(loc=0.2, size=100) >>> stats.kstest(x, 'norm', alternative='less') (0.12464329735846891, 0.040989164077641749) Reject equal distribution against alternative hypothesis: less >>> stats.kstest(x, 'norm', alternative='greater') (0.0072115233216311081, 0.98531158590396395) Don't reject equal distribution against alternative hypothesis: greater >>> stats.kstest(x, 'norm') (0.12464329735846891, 0.08197335233541582) *Testing t distributed random variables against normal distribution* With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not reject the hypothesis that the sample came from the normal distribution: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(100, size=100), 'norm') (0.072018929165471257, 0.6505883498379312) With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at the 10% level: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(3, size=100), 'norm') (0.131016895759829, 0.058826222555312224) """ # to not break compatibility with existing code if alternative == 'two_sided': alternative = 'two-sided' if alternative not in ['two-sided', 'greater', 'less']: raise ValueError("Unexpected alternative %s" % alternative) xvals, yvals, cdf = _parse_kstest_args(rvs, cdf, args, N) if cdf: return ks_1samp(xvals, cdf, args=args, alternative=alternative, mode=mode) return ks_2samp(xvals, yvals, alternative=alternative, mode=mode) def tiecorrect(rankvals): """ Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests. Parameters ---------- rankvals : array_like A 1-D sequence of ranks. Typically this will be the array returned by `~scipy.stats.rankdata`. Returns ------- factor : float Correction factor for U or H. See Also -------- rankdata : Assign ranks to the data mannwhitneyu : Mann-Whitney rank test kruskal : Kruskal-Wallis H test References ---------- .. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. Examples -------- >>> from scipy.stats import tiecorrect, rankdata >>> tiecorrect([1, 2.5, 2.5, 4]) 0.9 >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4]) >>> ranks array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5]) >>> tiecorrect(ranks) 0.9833333333333333 """ arr = np.sort(rankvals) idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0] cnt = np.diff(idx).astype(np.float64) size = np.float64(arr.size) return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size) MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue')) def mannwhitneyu(x, y, use_continuity=True, alternative=None): """ Compute the Mann-Whitney rank test on samples x and y. Parameters ---------- x, y : array_like Array of samples, should be one-dimensional. use_continuity : bool, optional Whether a continuity correction (1/2.) should be taken into account. Default is True. alternative : {None, 'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is None): * None: computes p-value half the size of the 'two-sided' p-value and a different U statistic. The default behavior is not the same as using 'less' or 'greater'; it only exists for backward compatibility and is deprecated. * 'two-sided' * 'less': one-sided * 'greater': one-sided Use of the None option is deprecated. Returns ------- statistic : float The Mann-Whitney U statistic, equal to min(U for x, U for y) if `alternative` is equal to None (deprecated; exists for backward compatibility), and U for y otherwise. pvalue : float p-value assuming an asymptotic normal distribution. One-sided or two-sided, depending on the choice of `alternative`. Notes ----- Use only when the number of observation in each sample is > 20 and you have 2 independent samples of ranks. Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U. This test corrects for ties and by default uses a continuity correction. References ---------- .. [1] https://en.wikipedia.org/wiki/Mann-Whitney_U_test .. [2] H.B. Mann and D.R. Whitney, "On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other," The Annals of Mathematical Statistics, vol. 18, no. 1, pp. 50-60, 1947. """ if alternative is None: warnings.warn("Calling `mannwhitneyu` without specifying " "`alternative` is deprecated.", DeprecationWarning) x = np.asarray(x) y = np.asarray(y) n1 = len(x) n2 = len(y) ranked = rankdata(np.concatenate((x, y))) rankx = ranked[0:n1] # get the x-ranks u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0) # calc U for x u2 = n1*n2 - u1 # remainder is U for y T = tiecorrect(ranked) if T == 0: raise ValueError('All numbers are identical in mannwhitneyu') sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0) meanrank = n1*n2/2.0 + 0.5 * use_continuity if alternative is None or alternative == 'two-sided': bigu = max(u1, u2) elif alternative == 'less': bigu = u1 elif alternative == 'greater': bigu = u2 else: raise ValueError("alternative should be None, 'less', 'greater' " "or 'two-sided'") z = (bigu - meanrank) / sd if alternative is None: # This behavior, equal to half the size of the two-sided # p-value, is deprecated. p = distributions.norm.sf(abs(z)) elif alternative == 'two-sided': p = 2 * distributions.norm.sf(abs(z)) else: p = distributions.norm.sf(z) u = u2 # This behavior is deprecated. if alternative is None: u = min(u1, u2) return MannwhitneyuResult(u, p) RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue')) def ranksums(x, y): """ Compute the Wilcoxon rank-sum statistic for two samples. The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values in the other sample. This test should be used to compare two samples from continuous distributions. It does not handle ties between measurements in x and y. For tie-handling and an optional continuity correction see `scipy.stats.mannwhitneyu`. Parameters ---------- x,y : array_like The data from the two samples. Returns ------- statistic : float The test statistic under the large-sample approximation that the rank sum statistic is normally distributed. pvalue : float The two-sided p-value of the test. References ---------- .. [1] https://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test Examples -------- We can test the hypothesis that two independent unequal-sized samples are drawn from the same distribution with computing the Wilcoxon rank-sum statistic. >>> from scipy.stats import ranksums >>> sample1 = np.random.uniform(-1, 1, 200) >>> sample2 = np.random.uniform(-0.5, 1.5, 300) # a shifted distribution >>> ranksums(sample1, sample2) RanksumsResult(statistic=-7.887059, pvalue=3.09390448e-15) # may vary The p-value of less than ``0.05`` indicates that this test rejects the hypothesis at the 5% significance level. """ x, y = map(np.asarray, (x, y)) n1 = len(x) n2 = len(y) alldata = np.concatenate((x, y)) ranked = rankdata(alldata) x = ranked[:n1] s = np.sum(x, axis=0) expected = n1 * (n1+n2+1) / 2.0 z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0) prob = 2 * distributions.norm.sf(abs(z)) return RanksumsResult(z, prob) KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue')) def kruskal(*args, nan_policy='propagate'): """ Compute the Kruskal-Wallis H-test for independent samples. The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post hoc comparisons between groups are required to determine which groups are different. Parameters ---------- sample1, sample2, ... : array_like Two or more arrays with the sample measurements can be given as arguments. Samples must be one-dimensional. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- statistic : float The Kruskal-Wallis H statistic, corrected for ties. pvalue : float The p-value for the test using the assumption that H has a chi square distribution. The p-value returned is the survival function of the chi square distribution evaluated at H. See Also -------- f_oneway : 1-way ANOVA. mannwhitneyu : Mann-Whitney rank test on two samples. friedmanchisquare : Friedman test for repeated measurements. Notes ----- Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements. References ---------- .. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in One-Criterion Variance Analysis", Journal of the American Statistical Association, Vol. 47, Issue 260, pp. 583-621, 1952. .. [2] https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance Examples -------- >>> from scipy import stats >>> x = [1, 3, 5, 7, 9] >>> y = [2, 4, 6, 8, 10] >>> stats.kruskal(x, y) KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895) >>> x = [1, 1, 1] >>> y = [2, 2, 2] >>> z = [2, 2] >>> stats.kruskal(x, y, z) KruskalResult(statistic=7.0, pvalue=0.0301973834223185) """ args = list(map(np.asarray, args)) num_groups = len(args) if num_groups < 2: raise ValueError("Need at least two groups in stats.kruskal()") for arg in args: if arg.size == 0: return KruskalResult(np.nan, np.nan) elif arg.ndim != 1: raise ValueError("Samples must be one-dimensional.") n = np.asarray(list(map(len, args))) if nan_policy not in ('propagate', 'raise', 'omit'): raise ValueError("nan_policy must be 'propagate', 'raise' or 'omit'") contains_nan = False for arg in args: cn = _contains_nan(arg, nan_policy) if cn[0]: contains_nan = True break if contains_nan and nan_policy == 'omit': for a in args: a = ma.masked_invalid(a) return mstats_basic.kruskal(*args) if contains_nan and nan_policy == 'propagate': return KruskalResult(np.nan, np.nan) alldata = np.concatenate(args) ranked = rankdata(alldata) ties = tiecorrect(ranked) if ties == 0: raise ValueError('All numbers are identical in kruskal') # Compute sum^2/n for each group and sum j = np.insert(np.cumsum(n), 0, 0) ssbn = 0 for i in range(num_groups): ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / n[i] totaln = np.sum(n, dtype=float) h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1) df = num_groups - 1 h /= ties return KruskalResult(h, distributions.chi2.sf(h, df)) FriedmanchisquareResult = namedtuple('FriedmanchisquareResult', ('statistic', 'pvalue')) def friedmanchisquare(*args): """ Compute the Friedman test for repeated measurements. The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same distribution. It is often used to test for consistency among measurements obtained in different ways. For example, if two measurement techniques are used on the same set of individuals, the Friedman test can be used to determine if the two measurement techniques are consistent. Parameters ---------- measurements1, measurements2, measurements3... : array_like Arrays of measurements. All of the arrays must have the same number of elements. At least 3 sets of measurements must be given. Returns ------- statistic : float The test statistic, correcting for ties. pvalue : float The associated p-value assuming that the test statistic has a chi squared distribution. Notes ----- Due to the assumption that the test statistic has a chi squared distribution, the p-value is only reliable for n > 10 and more than 6 repeated measurements. References ---------- .. [1] https://en.wikipedia.org/wiki/Friedman_test """ k = len(args) if k < 3: raise ValueError('At least 3 sets of measurements must be given for Friedman test, got {}.'.format(k)) n = len(args[0]) for i in range(1, k): if len(args[i]) != n: raise ValueError('Unequal N in friedmanchisquare. Aborting.') # Rank data data = np.vstack(args).T data = data.astype(float) for i in range(len(data)): data[i] = rankdata(data[i]) # Handle ties ties = 0 for i in range(len(data)): replist, repnum = find_repeats(array(data[i])) for t in repnum: ties += t * (t*t - 1) c = 1 - ties / (k*(k*k - 1)*n) ssbn = np.sum(data.sum(axis=0)**2) chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1)) BrunnerMunzelResult = namedtuple('BrunnerMunzelResult', ('statistic', 'pvalue')) def brunnermunzel(x, y, alternative="two-sided", distribution="t", nan_policy='propagate'): """ Compute the Brunner-Munzel test on samples x and y. The Brunner-Munzel test is a nonparametric test of the null hypothesis that when values are taken one by one from each group, the probabilities of getting large values in both groups are equal. Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the assumption of equivariance of two groups. Note that this does not assume the distributions are same. This test works on two independent samples, which may have different sizes. Parameters ---------- x, y : array_like Array of samples, should be one-dimensional. alternative : {'two-sided', 'less', 'greater'}, optional Defines the alternative hypothesis. The following options are available (default is 'two-sided'): * 'two-sided' * 'less': one-sided * 'greater': one-sided distribution : {'t', 'normal'}, optional Defines how to get the p-value. The following options are available (default is 't'): * 't': get the p-value by t-distribution * 'normal': get the p-value by standard normal distribution. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. The following options are available (default is 'propagate'): * 'propagate': returns nan * 'raise': throws an error * 'omit': performs the calculations ignoring nan values Returns ------- statistic : float The Brunner-Munzer W statistic. pvalue : float p-value assuming an t distribution. One-sided or two-sided, depending on the choice of `alternative` and `distribution`. See Also -------- mannwhitneyu : Mann-Whitney rank test on two samples. Notes ----- Brunner and Munzel recommended to estimate the p-value by t-distribution when the size of data is 50 or less. If the size is lower than 10, it would be better to use permuted Brunner Munzel test (see [2]_). References ---------- .. [1] Brunner, E. and Munzel, U. "The nonparametric Benhrens-Fisher problem: Asymptotic theory and a small-sample approximation". Biometrical Journal. Vol. 42(2000): 17-25. .. [2] Neubert, K. and Brunner, E. "A studentized permutation test for the non-parametric Behrens-Fisher problem". Computational Statistics and Data Analysis. Vol. 51(2007): 5192-5204. Examples -------- >>> from scipy import stats >>> x1 = [1,2,1,1,1,1,1,1,1,1,2,4,1,1] >>> x2 = [3,3,4,3,1,2,3,1,1,5,4] >>> w, p_value = stats.brunnermunzel(x1, x2) >>> w 3.1374674823029505 >>> p_value 0.0057862086661515377 """ x = np.asarray(x) y = np.asarray(y) # check both x and y cnx, npx = _contains_nan(x, nan_policy) cny, npy = _contains_nan(y, nan_policy) contains_nan = cnx or cny if npx == "omit" or npy == "omit": nan_policy = "omit" if contains_nan and nan_policy == "propagate": return BrunnerMunzelResult(np.nan, np.nan) elif contains_nan and nan_policy == "omit": x = ma.masked_invalid(x) y = ma.masked_invalid(y) return mstats_basic.brunnermunzel(x, y, alternative, distribution) nx = len(x) ny = len(y) if nx == 0 or ny == 0: return BrunnerMunzelResult(np.nan, np.nan) rankc = rankdata(np.concatenate((x, y))) rankcx = rankc[0:nx] rankcy = rankc[nx:nx+ny] rankcx_mean = np.mean(rankcx) rankcy_mean = np.mean(rankcy) rankx = rankdata(x) ranky = rankdata(y) rankx_mean = np.mean(rankx) ranky_mean = np.mean(ranky) Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0)) Sx /= nx - 1 Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0)) Sy /= ny - 1 wbfn = nx * ny * (rankcy_mean - rankcx_mean) wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy) if distribution == "t": df_numer = np.power(nx * Sx + ny * Sy, 2.0) df_denom = np.power(nx * Sx, 2.0) / (nx - 1) df_denom += np.power(ny * Sy, 2.0) / (ny - 1) df = df_numer / df_denom p = distributions.t.cdf(wbfn, df) elif distribution == "normal": p = distributions.norm.cdf(wbfn) else: raise ValueError( "distribution should be 't' or 'normal'") if alternative == "greater": pass elif alternative == "less": p = 1 - p elif alternative == "two-sided": p = 2 * np.min([p, 1-p]) else: raise ValueError( "alternative should be 'less', 'greater' or 'two-sided'") return BrunnerMunzelResult(wbfn, p) def combine_pvalues(pvalues, method='fisher', weights=None): """ Combine p-values from independent tests bearing upon the same hypothesis. Parameters ---------- pvalues : array_like, 1-D Array of p-values assumed to come from independent tests. method : {'fisher', 'pearson', 'tippett', 'stouffer', 'mudholkar_george'}, optional Name of method to use to combine p-values. The following methods are available (default is 'fisher'): * 'fisher': Fisher's method (Fisher's combined probability test), the sum of the logarithm of the p-values * 'pearson': Pearson's method (similar to Fisher's but uses sum of the complement of the p-values inside the logarithms) * 'tippett': Tippett's method (minimum of p-values) * 'stouffer': Stouffer's Z-score method * 'mudholkar_george': the difference of Fisher's and Pearson's methods divided by 2 weights : array_like, 1-D, optional Optional array of weights used only for Stouffer's Z-score method. Returns ------- statistic: float The statistic calculated by the specified method. pval: float The combined p-value. Notes ----- Fisher's method (also known as Fisher's combined probability test) [1]_ uses a chi-squared statistic to compute a combined p-value. The closely related Stouffer's Z-score method [2]_ uses Z-scores rather than p-values. The advantage of Stouffer's method is that it is straightforward to introduce weights, which can make Stouffer's method more powerful than Fisher's method when the p-values are from studies of different size [6]_ [7]_. The Pearson's method uses :math:`log(1-p_i)` inside the sum whereas Fisher's method uses :math:`log(p_i)` [4]_. For Fisher's and Pearson's method, the sum of the logarithms is multiplied by -2 in the implementation. This quantity has a chi-square distribution that determines the p-value. The `mudholkar_george` method is the difference of the Fisher's and Pearson's test statistics, each of which include the -2 factor [4]_. However, the `mudholkar_george` method does not include these -2 factors. The test statistic of `mudholkar_george` is the sum of logisitic random variables and equation 3.6 in [3]_ is used to approximate the p-value based on Student's t-distribution. Fisher's method may be extended to combine p-values from dependent tests [5]_. Extensions such as Brown's method and Kost's method are not currently implemented. .. versionadded:: 0.15.0 References ---------- .. [1] https://en.wikipedia.org/wiki/Fisher%27s_method .. [2] https://en.wikipedia.org/wiki/Fisher%27s_method#Relation_to_Stouffer.27s_Z-score_method .. [3] George, E. O., and G. S. Mudholkar. "On the convolution of logistic random variables." Metrika 30.1 (1983): 1-13. .. [4] Heard, N. and Rubin-Delanchey, P. "Choosing between methods of combining p-values." Biometrika 105.1 (2018): 239-246. .. [5] Whitlock, M. C. "Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach." Journal of Evolutionary Biology 18, no. 5 (2005): 1368-1373. .. [6] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis." Journal of Evolutionary Biology 24, no. 8 (2011): 1836-1841. .. [7] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method """ pvalues = np.asarray(pvalues) if pvalues.ndim != 1: raise ValueError("pvalues is not 1-D") if method == 'fisher': statistic = -2 * np.sum(np.log(pvalues)) pval = distributions.chi2.sf(statistic, 2 * len(pvalues)) elif method == 'pearson': statistic = -2 * np.sum(np.log1p(-pvalues)) pval = distributions.chi2.sf(statistic, 2 * len(pvalues)) elif method == 'mudholkar_george': normalizing_factor = np.sqrt(3/len(pvalues))/np.pi statistic = -np.sum(np.log(pvalues)) + np.sum(np.log1p(-pvalues)) nu = 5 * len(pvalues) + 4 approx_factor = np.sqrt(nu / (nu - 2)) pval = distributions.t.sf(statistic * normalizing_factor * approx_factor, nu) elif method == 'tippett': statistic = np.min(pvalues) pval = distributions.beta.sf(statistic, 1, len(pvalues)) elif method == 'stouffer': if weights is None: weights = np.ones_like(pvalues) elif len(weights) != len(pvalues): raise ValueError("pvalues and weights must be of the same size.") weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("weights is not 1-D") Zi = distributions.norm.isf(pvalues) statistic = np.dot(weights, Zi) / np.linalg.norm(weights) pval = distributions.norm.sf(statistic) else: raise ValueError( "Invalid method '%s'. Options are 'fisher', 'pearson', \ 'mudholkar_george', 'tippett', 'or 'stouffer'", method) return (statistic, pval) ##################################### # STATISTICAL DISTANCES # ##################################### def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None): r""" Compute the first Wasserstein distance between two 1D distributions. This distance is also known as the earth mover's distance, since it can be seen as the minimum amount of "work" required to transform :math:`u` into :math:`v`, where "work" is measured as the amount of distribution weight that must be moved, multiplied by the distance it has to be moved. .. versionadded:: 1.0.0 Parameters ---------- u_values, v_values : array_like Values observed in the (empirical) distribution. u_weights, v_weights : array_like, optional Weight for each value. If unspecified, each value is assigned the same weight. `u_weights` (resp. `v_weights`) must have the same length as `u_values` (resp. `v_values`). If the weight sum differs from 1, it must still be positive and finite so that the weights can be normalized to sum to 1. Returns ------- distance : float The computed distance between the distributions. Notes ----- The first Wasserstein distance between the distributions :math:`u` and :math:`v` is: .. math:: l_1 (u, v) = \inf_{\pi \in \Gamma (u, v)} \int_{\mathbb{R} \times \mathbb{R}} |x-y| \mathrm{d} \pi (x, y) where :math:`\Gamma (u, v)` is the set of (probability) distributions on :math:`\mathbb{R} \times \mathbb{R}` whose marginals are :math:`u` and :math:`v` on the first and second factors respectively. If :math:`U` and :math:`V` are the respective CDFs of :math:`u` and :math:`v`, this distance also equals to: .. math:: l_1(u, v) = \int_{-\infty}^{+\infty} |U-V| See [2]_ for a proof of the equivalence of both definitions. The input distributions can be empirical, therefore coming from samples whose values are effectively inputs of the function, or they can be seen as generalized functions, in which case they are weighted sums of Dirac delta functions located at the specified values. References ---------- .. [1] "Wasserstein metric", https://en.wikipedia.org/wiki/Wasserstein_metric .. [2] Ramdas, Garcia, Cuturi "On Wasserstein Two Sample Testing and Related Families of Nonparametric Tests" (2015). :arXiv:`1509.02237`. Examples -------- >>> from scipy.stats import wasserstein_distance >>> wasserstein_distance([0, 1, 3], [5, 6, 8]) 5.0 >>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2]) 0.25 >>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4], ... [1.4, 0.9, 3.1, 7.2], [3.2, 3.5]) 4.0781331438047861 """ return _cdf_distance(1, u_values, v_values, u_weights, v_weights) def energy_distance(u_values, v_values, u_weights=None, v_weights=None): r""" Compute the energy distance between two 1D distributions. .. versionadded:: 1.0.0 Parameters ---------- u_values, v_values : array_like Values observed in the (empirical) distribution. u_weights, v_weights : array_like, optional Weight for each value. If unspecified, each value is assigned the same weight. `u_weights` (resp. `v_weights`) must have the same length as `u_values` (resp. `v_values`). If the weight sum differs from 1, it must still be positive and finite so that the weights can be normalized to sum to 1. Returns ------- distance : float The computed distance between the distributions. Notes ----- The energy distance between two distributions :math:`u` and :math:`v`, whose respective CDFs are :math:`U` and :math:`V`, equals to: .. math:: D(u, v) = \left( 2\mathbb E|X - Y| - \mathbb E|X - X'| - \mathbb E|Y - Y'| \right)^{1/2} where :math:`X` and :math:`X'` (resp. :math:`Y` and :math:`Y'`) are independent random variables whose probability distribution is :math:`u` (resp. :math:`v`). As shown in [2]_, for one-dimensional real-valued variables, the energy distance is linked to the non-distribution-free version of the Cramér-von Mises distance: .. math:: D(u, v) = \sqrt{2} l_2(u, v) = \left( 2 \int_{-\infty}^{+\infty} (U-V)^2 \right)^{1/2} Note that the common Cramér-von Mises criterion uses the distribution-free version of the distance. See [2]_ (section 2), for more details about both versions of the distance. The input distributions can be empirical, therefore coming from samples whose values are effectively inputs of the function, or they can be seen as generalized functions, in which case they are weighted sums of Dirac delta functions located at the specified values. References ---------- .. [1] "Energy distance", https://en.wikipedia.org/wiki/Energy_distance .. [2] Szekely "E-statistics: The energy of statistical samples." Bowling Green State University, Department of Mathematics and Statistics, Technical Report 02-16 (2002). .. [3] Rizzo, Szekely "Energy distance." Wiley Interdisciplinary Reviews: Computational Statistics, 8(1):27-38 (2015). .. [4] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer, Munos "The Cramer Distance as a Solution to Biased Wasserstein Gradients" (2017). :arXiv:`1705.10743`. Examples -------- >>> from scipy.stats import energy_distance >>> energy_distance([0], [2]) 2.0000000000000004 >>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2]) 1.0000000000000002 >>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8. ], ... [2.1, 4.2, 7.4, 8. ], [7.6, 8.8]) 0.88003340976158217 """ return np.sqrt(2) * _cdf_distance(2, u_values, v_values, u_weights, v_weights) def _cdf_distance(p, u_values, v_values, u_weights=None, v_weights=None): r""" Compute, between two one-dimensional distributions :math:`u` and :math:`v`, whose respective CDFs are :math:`U` and :math:`V`, the statistical distance that is defined as: .. math:: l_p(u, v) = \left( \int_{-\infty}^{+\infty} |U-V|^p \right)^{1/p} p is a positive parameter; p = 1 gives the Wasserstein distance, p = 2 gives the energy distance. Parameters ---------- u_values, v_values : array_like Values observed in the (empirical) distribution. u_weights, v_weights : array_like, optional Weight for each value. If unspecified, each value is assigned the same weight. `u_weights` (resp. `v_weights`) must have the same length as `u_values` (resp. `v_values`). If the weight sum differs from 1, it must still be positive and finite so that the weights can be normalized to sum to 1. Returns ------- distance : float The computed distance between the distributions. Notes ----- The input distributions can be empirical, therefore coming from samples whose values are effectively inputs of the function, or they can be seen as generalized functions, in which case they are weighted sums of Dirac delta functions located at the specified values. References ---------- .. [1] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer, Munos "The Cramer Distance as a Solution to Biased Wasserstein Gradients" (2017). :arXiv:`1705.10743`. """ u_values, u_weights = _validate_distribution(u_values, u_weights) v_values, v_weights = _validate_distribution(v_values, v_weights) u_sorter = np.argsort(u_values) v_sorter = np.argsort(v_values) all_values = np.concatenate((u_values, v_values)) all_values.sort(kind='mergesort') # Compute the differences between pairs of successive values of u and v. deltas = np.diff(all_values) # Get the respective positions of the values of u and v among the values of # both distributions. u_cdf_indices = u_values[u_sorter].searchsorted(all_values[:-1], 'right') v_cdf_indices = v_values[v_sorter].searchsorted(all_values[:-1], 'right') # Calculate the CDFs of u and v using their weights, if specified. if u_weights is None: u_cdf = u_cdf_indices / u_values.size else: u_sorted_cumweights = np.concatenate(([0], np.cumsum(u_weights[u_sorter]))) u_cdf = u_sorted_cumweights[u_cdf_indices] / u_sorted_cumweights[-1] if v_weights is None: v_cdf = v_cdf_indices / v_values.size else: v_sorted_cumweights = np.concatenate(([0], np.cumsum(v_weights[v_sorter]))) v_cdf = v_sorted_cumweights[v_cdf_indices] / v_sorted_cumweights[-1] # Compute the value of the integral based on the CDFs. # If p = 1 or p = 2, we avoid using np.power, which introduces an overhead # of about 15%. if p == 1: return np.sum(np.multiply(np.abs(u_cdf - v_cdf), deltas)) if p == 2: return np.sqrt(np.sum(np.multiply(np.square(u_cdf - v_cdf), deltas))) return np.power(np.sum(np.multiply(np.power(np.abs(u_cdf - v_cdf), p), deltas)), 1/p) def _validate_distribution(values, weights): """ Validate the values and weights from a distribution input of `cdf_distance` and return them as ndarray objects. Parameters ---------- values : array_like Values observed in the (empirical) distribution. weights : array_like Weight for each value. Returns ------- values : ndarray Values as ndarray. weights : ndarray Weights as ndarray. """ # Validate the value array. values = np.asarray(values, dtype=float) if len(values) == 0: raise ValueError("Distribution can't be empty.") # Validate the weight array, if specified. if weights is not None: weights = np.asarray(weights, dtype=float) if len(weights) != len(values): raise ValueError('Value and weight array-likes for the same ' 'empirical distribution must be of the same size.') if np.any(weights < 0): raise ValueError('All weights must be non-negative.') if not 0 < np.sum(weights) < np.inf: raise ValueError('Weight array-like sum must be positive and ' 'finite. Set as None for an equal distribution of ' 'weight.') return values, weights return values, None ##################################### # SUPPORT FUNCTIONS # ##################################### RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts')) def find_repeats(arr): """ Find repeats and repeat counts. Parameters ---------- arr : array_like Input array. This is cast to float64. Returns ------- values : ndarray The unique values from the (flattened) input that are repeated. counts : ndarray Number of times the corresponding 'value' is repeated. Notes ----- In numpy >= 1.9 `numpy.unique` provides similar functionality. The main difference is that `find_repeats` only returns repeated values. Examples -------- >>> from scipy import stats >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5]) RepeatedResults(values=array([2.]), counts=array([4])) >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]]) RepeatedResults(values=array([4., 5.]), counts=array([2, 2])) """ # Note: always copies. return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64))) def _sum_of_squares(a, axis=0): """ Square each element of the input array, and return the sum(s) of that. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate. Default is 0. If None, compute over the whole array `a`. Returns ------- sum_of_squares : ndarray The sum along the given axis for (a**2). See Also -------- _square_of_sums : The square(s) of the sum(s) (the opposite of `_sum_of_squares`). """ a, axis = _chk_asarray(a, axis) return np.sum(a*a, axis) def _square_of_sums(a, axis=0): """ Sum elements of the input array, and return the square(s) of that sum. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate. Default is 0. If None, compute over the whole array `a`. Returns ------- square_of_sums : float or ndarray The square of the sum over `axis`. See Also -------- _sum_of_squares : The sum of squares (the opposite of `square_of_sums`). """ a, axis = _chk_asarray(a, axis) s = np.sum(a, axis) if not np.isscalar(s): return s.astype(float) * s else: return float(s) * s def rankdata(a, method='average', *, axis=None): """ Assign ranks to data, dealing with ties appropriately. By default (``axis=None``), the data array is first flattened, and a flat array of ranks is returned. Separately reshape the rank array to the shape of the data array if desired (see Examples). Ranks begin at 1. The `method` argument controls how ranks are assigned to equal values. See [1]_ for further discussion of ranking methods. Parameters ---------- a : array_like The array of values to be ranked. method : {'average', 'min', 'max', 'dense', 'ordinal'}, optional The method used to assign ranks to tied elements. The following methods are available (default is 'average'): * 'average': The average of the ranks that would have been assigned to all the tied values is assigned to each value. * 'min': The minimum of the ranks that would have been assigned to all the tied values is assigned to each value. (This is also referred to as "competition" ranking.) * 'max': The maximum of the ranks that would have been assigned to all the tied values is assigned to each value. * 'dense': Like 'min', but the rank of the next highest element is assigned the rank immediately after those assigned to the tied elements. * 'ordinal': All values are given a distinct rank, corresponding to the order that the values occur in `a`. axis : {None, int}, optional Axis along which to perform the ranking. If ``None``, the data array is first flattened. Returns ------- ranks : ndarray An array of size equal to the size of `a`, containing rank scores. References ---------- .. [1] "Ranking", https://en.wikipedia.org/wiki/Ranking Examples -------- >>> from scipy.stats import rankdata >>> rankdata([0, 2, 3, 2]) array([ 1. , 2.5, 4. , 2.5]) >>> rankdata([0, 2, 3, 2], method='min') array([ 1, 2, 4, 2]) >>> rankdata([0, 2, 3, 2], method='max') array([ 1, 3, 4, 3]) >>> rankdata([0, 2, 3, 2], method='dense') array([ 1, 2, 3, 2]) >>> rankdata([0, 2, 3, 2], method='ordinal') array([ 1, 2, 4, 3]) >>> rankdata([[0, 2], [3, 2]]).reshape(2,2) array([[1. , 2.5], [4. , 2.5]]) >>> rankdata([[0, 2, 2], [3, 2, 5]], axis=1) array([[1. , 2.5, 2.5], [2. , 1. , 3. ]]) """ if method not in ('average', 'min', 'max', 'dense', 'ordinal'): raise ValueError('unknown method "{0}"'.format(method)) if axis is not None: a = np.asarray(a) if a.size == 0: # The return values of `normalize_axis_index` are ignored. The # call validates `axis`, even though we won't use it. # use scipy._lib._util._normalize_axis_index when available np.core.multiarray.normalize_axis_index(axis, a.ndim) dt = np.float64 if method == 'average' else np.int_ return np.empty(a.shape, dtype=dt) return np.apply_along_axis(rankdata, axis, a, method) arr = np.ravel(np.asarray(a)) algo = 'mergesort' if method == 'ordinal' else 'quicksort' sorter = np.argsort(arr, kind=algo) inv = np.empty(sorter.size, dtype=np.intp) inv[sorter] = np.arange(sorter.size, dtype=np.intp) if method == 'ordinal': return inv + 1 arr = arr[sorter] obs = np.r_[True, arr[1:] != arr[:-1]] dense = obs.cumsum()[inv] if method == 'dense': return dense # cumulative counts of each unique value count = np.r_[np.nonzero(obs)[0], len(obs)] if method == 'max': return count[dense] if method == 'min': return count[dense - 1] + 1 # average method return .5 * (count[dense] + count[dense - 1] + 1)
the-stack_0_8535
#****************************************************# # This file is part of OPTALG. # # # # Copyright (c) 2019, Tomas Tinoco De Rubira. # # # # OPTALG is released under the BSD 2-clause license. # #****************************************************# from __future__ import print_function import numpy as np from functools import reduce from .opt_solver_error import * from .problem import cast_problem, OptProblem from .opt_solver import OptSolver from optalg.lin_solver import new_linsolver from scipy.sparse import bmat,eye,coo_matrix,tril class OptSolverAugL(OptSolver): parameters = {'beta_large' : 0.9, # for decreasing sigma when progress 'beta_med' : 0.5, # for decreasing sigma when forcing 'beta_small' : 0.1, # for decreasing sigma 'feastol' : 1e-4, # feasibility tolerance 'optol' : 1e-4, # optimality tolerance 'gamma' : 0.1, # for determining required decrease in ||f|| 'tau' : 0.1, # for reductions in ||GradF|| 'kappa' : 1e-2, # for initializing sigma 'maxiter' : 1000, # maximum iterations 'sigma_min' : 1e-12, # minimum sigma 'sigma_init_min' : 1e-3, # minimum initial sigma 'sigma_init_max' : 1e8, # maximum initial sigma 'theta_min' : 1e-6, # minimum barrier parameter 'theta_max' : 1e0 , # maximum initial barrier parameter 'lam_reg' : 1e-4, # regularization of first order dual update 'subprob_force' : 10, # for periodic sigma decrease 'subprob_maxiter' : 150, # maximum subproblem iterations 'linsolver' : 'default', # linear solver 'quiet' : False} # flag for omitting output def __init__(self): """ Augmented Lagrangian algorithm. """ OptSolver.__init__(self) self.parameters = OptSolverAugL.parameters.copy() self.linsolver1 = None self.linsolver2 = None self.barrier = None def supports_properties(self, properties): for p in properties: if p not in [OptProblem.PROP_CURV_LINEAR, OptProblem.PROP_CURV_QUADRATIC, OptProblem.PROP_CURV_NONLINEAR, OptProblem.PROP_VAR_CONTINUOUS, OptProblem.PROP_TYPE_FEASIBILITY, OptProblem.PROP_TYPE_OPTIMIZATION]: return False return True def solve(self, problem): # Local vars norm2 = self.norm2 norminf = self.norminf params = self.parameters # Parameters tau = params['tau'] gamma = params['gamma'] kappa = params['kappa'] optol = params['optol'] feastol = params['feastol'] beta_small = params['beta_small'] beta_large = params['beta_large'] sigma_init_min = params['sigma_init_min'] sigma_init_max = params['sigma_init_max'] theta_max = params['theta_max'] theta_min = params['theta_min'] # Problem problem = cast_problem(problem) self.problem = problem # Linear solver self.linsolver1 = new_linsolver(params['linsolver'],'symmetric') self.linsolver2 = new_linsolver(params['linsolver'],'symmetric') # Reset self.reset() # Barrier self.barrier = AugLBarrier(problem.get_num_primal_variables(), problem.l, problem.u, eps=feastol/10.) # Init primal if problem.x is not None: self.x = self.barrier.to_interior(problem.x.copy(), eps=feastol/10.) else: self.x = (self.barrier.umax+self.barrier.umin)/2. assert(np.all(self.x > self.barrier.umin)) assert(np.all(self.x < self.barrier.umax)) # Init dual if problem.lam is not None: self.lam = problem.lam.copy() else: self.lam = np.zeros(problem.b.size) if problem.nu is not None: self.nu = problem.nu.copy() else: self.nu = np.zeros(problem.f.size) try: if problem.pi is not None: self.pi = problem.pi.copy() else: self.pi = np.zeros(self.x.size) except AttributeError: self.pi = np.zeros(self.x.size) try: if problem.mu is not None: self.mu = problem.mu.copy() else: self.mu = np.zeros(self.x.size) except AttributeError: self.mu = np.zeros(self.x.size) # Constants self.sigma = 0. self.theta = 0. self.code = '' self.nx = self.x.size self.na = problem.b.size self.nf = problem.f.size self.ox = np.zeros(self.nx) self.oa = np.zeros(self.na) self.of = np.zeros(self.nf) self.Ixx = eye(self.nx,format='coo') self.Iff = eye(self.nf,format='coo') self.Iaa = eye(self.na,format='coo') # Objective scaling fdata = self.func(self.x) self.obj_sca = np.maximum(np.abs(fdata.phi)/100.,1.) fdata = self.func(self.x) # Init penalty and barrier parameters self.sigma = kappa*norm2(fdata.GradF)/np.maximum(norm2(fdata.gphi),1.) self.sigma = np.minimum(np.maximum(self.sigma,sigma_init_min),sigma_init_max) self.theta = kappa*norm2(fdata.GradF)/(self.sigma*np.maximum(norm2(fdata.gphiB),1.)) self.theta = np.minimum(np.maximum(self.theta,theta_min),theta_max) fdata = self.func(self.x) # Init residuals pres_prev = norminf(fdata.pres) gLmax_prev = norminf(fdata.GradF) # Init dual update if pres_prev <= feastol: self.update_multiplier_estimates() fdata = self.func(self.x) # Outer iterations self.k = 0 self.useH = False self.code = list('----') while True: # Solve subproblem self.solve_subproblem(tau*gLmax_prev) # Check done if self.is_status_solved(): return # Measure progress pres = norminf(fdata.pres) dres = norminf(fdata.dres) gLmax = norminf(fdata.GradF) # Penaly update if pres <= np.maximum(gamma*pres_prev,feastol): self.sigma *= beta_large self.code[1] = 'p' else: self.sigma *= beta_small self.code[1] = 'n' # Dual update self.update_multiplier_estimates() # Barrier update self.theta = np.maximum(self.theta*beta_small,theta_min) # Update refs pres_prev = pres gLmax_prev = gLmax # Update iters self.k += 1 def solve_subproblem(self,delta): # Local vars norm2 = self.norm2 norminf = self.norminf params = self.parameters problem = self.problem barrier = self.barrier # Params quiet = params['quiet'] maxiter = params['maxiter'] feastol = params['feastol'] optol = params['optol'] maxiter = params['maxiter'] theta_min = params['theta_min'] sigma_min = params['sigma_min'] beta_large = params['beta_large'] beta_med = params['beta_med'] beta_small = params['beta_small'] subprob_force = params['subprob_force'] subprob_maxiter = params['subprob_maxiter'] # Print header self.print_header() # Init eval fdata = self.func(self.x) # Inner iterations i = 0 j = 0 alpha = 0. while True: # Compute info pres = norminf(fdata.pres) dres = norminf(fdata.dres) dmax = max(map(norminf,[self.lam,self.nu,self.mu,self.pi])) gLmax = norminf(fdata.GradF) # Show info if not quiet: print('{0:^4d}'.format(self.k),end=' ') print('{0:^9.2e}'.format(problem.phi),end=' ') print('{0:^9.2e}'.format(pres),end=' ') print('{0:^9.2e}'.format(dres),end=' ') print('{0:^9.2e}'.format(gLmax),end=' ') print('{0:^8.1e}'.format(dmax),end=' ') print('{0:^8.1e}'.format(alpha),end=' ') print('{0:^7.1e}'.format(self.sigma),end=' ') print('{0:^7.1e}'.format(self.theta),end=' ') print('{0:^7s}'.format(reduce(lambda x,y: x+y,self.code)),end=' ') if self.info_printer: self.info_printer(self,False) else: print('') # Clear code self.code = list('----') # Check solved if pres <= feastol and dres <= optol and self.theta <= theta_min: self.set_status(self.STATUS_SOLVED) self.set_error_msg('') return # Check only theta missing if pres <= feastol and dres <= optol: return # Check subproblem solved if gLmax <= delta: return # Check total maxiters if self.k >= maxiter: raise OptSolverError_MaxIters(self) # Check penalty if self.sigma < sigma_min: raise OptSolverError_SmallPenalty(self) # Check custom terminations for t in self.terminations: t(self) # Search direction p = self.compute_search_direction(self.useH) # Max steplength ppos = p > 1e-15 pneg = p < -1e-15 a1 = np.min(((barrier.umax-self.x)[ppos])/(p[ppos])) if ppos.sum() else np.inf a2 = np.min(((barrier.umin-self.x)[pneg])/(p[pneg])) if pneg.sum() else np.inf alpha_max = 0.98*min([a1,a2]) if not alpha_max: raise OptSolverError_NumProblems(self) try: # Line search alpha,fdata = self.line_search(self.x,p,fdata.F,fdata.GradF,self.func,alpha_max) # Update x self.x += alpha*p except OptSolverError_LineSearch: # Update self.sigma *= beta_large fdata = self.func(self.x) self.code[3] = 'b' if self.useH: self.useH = False i = 0 alpha = 0. # Update iter count self.k += 1 i += 1 j += 1 # Periodic force if i >= subprob_force: self.sigma *= beta_large fdata = self.func(self.x) self.code[2] = 'f' self.useH = True i = 0 # Periodic maxiter if j >= subprob_maxiter: self.sigma *= beta_med self.update_multiplier_estimates() fdata = self.func(self.x) self.code[2] = 'm' j = 0 def compute_search_direction(self,useH): fdata = self.fdata problem = self.problem barrier = self.barrier sigma = self.sigma theta = self.theta problem.combine_H(-sigma*self.nu+problem.f,not useH) self.code[0] = 'h' if useH else 'g' Hfsigma = problem.H_combined/sigma Hphi = fdata.Hphi HphiB = fdata.HphiB G = coo_matrix((np.concatenate((Hphi.data,theta*HphiB.data,Hfsigma.data)), (np.concatenate((Hphi.row,HphiB.row,Hfsigma.row)), np.concatenate((Hphi.col,HphiB.col,Hfsigma.col))))) if problem.A.size: W = bmat([[G,None,None], [problem.J,-sigma*self.Iff,None], [problem.A,None,-sigma*self.Iaa]]) else: W = bmat([[G,None], [problem.J,-sigma*self.Iff]]) b = np.hstack((-fdata.GradF/sigma, self.of, self.oa)) if not self.linsolver1.is_analyzed(): self.linsolver1.analyze(W) try: return self.linsolver1.factorize_and_solve(W,b)[:self.x.size] except Exception: return np.zeros(self.x.size) def func(self,x): # Norm norm = self.norminf # Multipliers lam = self.lam nu = self.nu # Penalty sigma = self.sigma theta = self.theta # Objects p = self.problem fdata = self.fdata barrier = self.barrier # Eval p.eval(x) barrier.eval(x) # Problem data phi = p.phi/self.obj_sca gphi = p.gphi/self.obj_sca Hphi = p.Hphi/self.obj_sca f = p.f J = p.J A = p.A r = A*x-p.b # Barrier data phiB = barrier.phi gphiB = barrier.gphi HphiB = barrier.Hphi # Intermediate nuTf = np.dot(nu,f) y = (sigma*nu-f) JT = J.T JTnu = JT*nu JTy = JT*y # Intermediate lamTr = np.dot(lam,r) z = (sigma*lam-r) AT = A.T ATlam = AT*lam ATz = AT*z pres = np.hstack((r,f)) dres = gphi+theta*gphiB-ATlam-JTnu dres_den = 1.+norm(gphi)+theta*norm(gphiB)+norm(A.data)*norm(lam)+norm(J.data)*norm(nu) fdata.ATlam = ATlam fdata.JTnu = JTnu fdata.r = r fdata.f = f fdata.F = sigma*phi + sigma*theta*phiB - sigma*(nuTf+lamTr) + 0.5*np.dot(pres,pres) fdata.GradF = sigma*gphi + sigma*theta*gphiB - JTy - ATz fdata.pres = pres fdata.dres = dres/dres_den fdata.phi = phi fdata.gphi = gphi fdata.Hphi = Hphi fdata.phiB = phiB fdata.gphiB = gphiB fdata.HphiB = HphiB return fdata def print_header(self): # Local vars params = self.parameters quiet = params['quiet'] if not quiet: if self.k == 0: print('\nSolver: augL') print('------------') print('{0:^4}'.format('k'), end=' ') print('{0:^9}'.format('phi'), end=' ') print('{0:^9}'.format('pres'), end=' ') print('{0:^9}'.format('dres'), end=' ') print('{0:^9}'.format('gLmax'), end=' ') print('{0:^8}'.format('dmax'), end=' ') print('{0:^8}'.format('alpha'), end=' ') print('{0:^7}'.format('sigma'), end=' ') print('{0:^7}'.format('theta'), end=' ') print('{0:^7}'.format('code'), end=' ') if self.info_printer: self.info_printer(self,True) else: print('') else: print('') def update_multiplier_estimates(self): # Local variables params = self.parameters problem = self.problem barrier = self.barrier fdata = self.fdata # Parameters lam_reg = params['lam_reg'] sigma = self.sigma theta = self.theta eta = lam_reg # Eval fdata = self.func(self.x) A = problem.A J = problem.J AT = A.T JT = J.T t = fdata.gphi+theta*fdata.gphiB-fdata.ATlam-fdata.JTnu if problem.A.size: W = bmat([[eta*self.Iaa,None,None], [None,eta*self.Iff,None], [AT,JT,-self.Ixx]],format='coo') else: W = bmat([[eta*self.Iff,None], [JT,-self.Ixx]],format='coo') b = np.hstack((A*t, J*t, self.ox)) if W.size: if not self.linsolver2.is_analyzed(): self.linsolver2.analyze(W) sol = self.linsolver2.factorize_and_solve(W,b) self.lam += sol[:self.na] self.nu += sol[self.na:self.na+self.nf] self.mu = theta/(barrier.umax-self.x) self.pi = theta/(self.x-barrier.umin) class AugLBarrier: """ Class for handling bounds using barrier. """ def __init__(self, n, umin=None, umax=None, eps=1e-5, inf=1e8): assert(n >= 0) assert(inf > 0) if umin is None or not umin.size: umin = -inf*np.ones(n) if umax is None or not umax.size: umax = inf*np.ones(n) assert(np.all(umin <= umax)) if n > 0: umax = umax+eps umin = umin-eps assert(umin.size == n) assert(umin.size == umax.size) assert(np.all(umin < umax)) self.n = n self.inf = inf self.umin = umin self.umax = umax self.phi = 0 self.gphi = np.zeros(n) self.Hphi_row = np.array(range(n)) self.Hphi_col = np.array(range(n)) self.Hphi_data = np.zeros(n) self.Hphi = coo_matrix((self.Hphi_data,(self.Hphi_row,self.Hphi_col)),shape=(n,n)) def eval(self,u): assert(u.size == self.n) dumax = np.maximum(self.umax-u,1e-12) dumin = np.maximum(u-self.umin,1e-12) self.phi = -np.sum(np.log(dumax)+np.log(dumin)) self.gphi[:] = -1./dumin+1./dumax self.Hphi_data[:] = 1./np.square(dumin)+1./np.square(dumax) def to_interior(self,x, eps=1e-5): return np.maximum(np.minimum(x, self.umax-eps), self.umin+eps)
the-stack_0_8537
# 2020 CCC PROBLEM J1'S SOLUTION: # declaring variables for the treat sizes. SMALL_TREATS = int(input()) MEDIUM_TREATS = int(input()) LARGE_TREATS = int(input()) # arithmetic calculation for the determinant. determinant = (1 * SMALL_TREATS) + (2 * MEDIUM_TREATS) + (3 * LARGE_TREATS) # determining whether the dog is happy based on the determinant. if determinant >= 10: print("happy") else: print("sad")
the-stack_0_8538
import logging from django.core.management.base import BaseCommand from django.db import connection, connections from django.conf import settings from usaspending.common.helpers import timer logger = logging.getLogger('console') # Website columns need for update from financial_accounts_by_program_activity_object_class financial_accounts_oc = [ ('broker_submission_id', 'sub'), ('allocation_transfer_agency_id', 'tas'), ('agency_id', 'tas'), ('beginning_period_of_availability', 'tas'), ('ending_period_of_availability', 'tas'), ('availability_type_code', 'tas'), ('main_account_code', 'tas'), ('sub_account_code', 'tas'), ('object_class', 'oc'), ('program_activity_code', 'pa'), ('direct_reimbursable', 'oc'), ('ussgl498100_upward_adjust_pri_deliv_orders_oblig_unpaid_cpe', 'ds_file_table'), ('ussgl488100_upward_adjust_pri_undeliv_order_oblig_unpaid_cpe', 'ds_file_table') ] # Website columns need for update from financial_accounts_by_awards (Adds fain, uri, and piid columns) financial_accounts_awards = [ ('fain', ' ds_file_table'), ('uri', ' ds_file_table'), ('piid', ' ds_file_table') ] + financial_accounts_oc[:] # website -> broker mappings with specific mappings different from settings.py mappings broker_website_cols_mapping = { 'broker_submission_id': 'db_file_table.submission_id', "allocation_transfer_agency_id": "COALESCE(allocation_transfer_agency, '''')", 'agency_id': 'agency_identifier', 'object_class': 'object_class', 'program_activity_code': 'program_activity_code', 'beginning_period_of_availability': "COALESCE(beginning_period_of_availa, '''')", 'ending_period_of_availability': "COALESCE(ending_period_of_availabil, '''')", 'availability_type_code': "COALESCE(availability_type_code, '''')", 'direct_reimbursable': "CASE WHEN by_direct_reimbursable_fun = ''D'' then 1" + "WHEN by_direct_reimbursable_fun = ''R'' then 2 ELSE NULL END" } class Command(BaseCommand): help = "Fix File B and File C mappings due to invalid database column mappings" @staticmethod def get_list_of_submissions(): # Gets a list from broker of the submissions that are certified (type 2) and not updated broker_connection = connections['data_broker'].cursor() broker_connection.execute('SELECT submission_id from submission sub ' + 'WHERE sub.publish_status_id = 2 ORDER BY submission_id;') return broker_connection.fetchall() @staticmethod def get_list_of_broker_cols(website_cols): # Returns sql string statement to pull columns from broker # First looks at broker_website_cols_translation that have a specific website to broker mapping # Then looks at settings.py for the overall website website->broker mapping return ",".join([ broker_website_cols_mapping.get(column, settings.LONG_TO_TERSE_LABELS.get(column)) for column, table in website_cols]) @staticmethod def get_list_of_broker_cols_types(website_cols): # Returns sql string statement to create table to compare to website type # Needs to add a type (text or numeric) in order to match it to the website return ",".join([ "{column} {type}".format(column=column, type='text' if column not in [ 'ussgl498100_upward_adjust_pri_deliv_orders_oblig_unpaid_cpe', 'ussgl488100_upward_adjust_pri_undeliv_order_oblig_unpaid_cpe', 'broker_submission_id'] else "numeric") for column, table in website_cols ]) @staticmethod def get_website_row_formatted(website_cols): # Return sql string with website columns formatted for select statement return ",".join(['{0}.{1}'.format(table, column) for column, table in website_cols]) @staticmethod def get_cols_to_update(website_cols): # Returning sql string of columns that will be updated in SET statement # Ensures only columns that are not used as identifiers in the database are included return ",".join(['{0} = broker.{0} * -1'.format(column) for column, table in website_cols if table == 'ds_file_table' and column not in ['fain', 'uri', 'piid']]) @staticmethod def get_file_table_joins(website_cols): # Returns table joins according to identifier columns based on the file type return " AND ".join(['broker.{0} = {1}.{0}'.format(column, table) for column, table in website_cols if table != 'ds_file_table' or column in ['fain', 'uri', 'piid']]) @staticmethod def get_rows_to_update(file_type, submission_id, broker_cols, broker_cols_type, website_cols): # Creates table with rows necessary to update query_arguments = {'submission_id': submission_id, 'broker_cols': broker_cols, 'dblink_cols_type': broker_cols_type, 'website_cols': website_cols } if file_type == 'C': query_arguments['broker_table'] = 'award_financial' query_arguments['website_table'] = 'financial_accounts_by_awards' query_arguments['broker_tmp_table'] = 'file_c_rows_to_update' else: query_arguments['broker_table'] = 'object_class_program_activity' query_arguments['website_table'] = 'financial_accounts_by_program_activity_object_class' query_arguments['broker_tmp_table'] = 'file_b_rows_to_update' sql_statement = """ CREATE TEMPORARY TABLE {broker_tmp_table} AS SELECT * from dblink( 'broker_server', 'SELECT {broker_cols} FROM {broker_table} db_file_table INNER JOIN submission sub ON db_file_table.submission_id = sub.submission_id WHERE sub.publish_status_id = 2 AND db_file_table.submission_id = {submission_id};' ) AS ( {dblink_cols_type} ) EXCEPT SELECT {website_cols} from {website_table} ds_file_table LEFT OUTER JOIN object_class oc ON ds_file_table.object_class_id = oc.id LEFT OUTER JOIN ref_program_activity pa ON ds_file_table.program_activity_id = pa.id LEFT OUTER JOIN treasury_appropriation_account tas ON ds_file_table.treasury_account_id = tas.treasury_account_identifier INNER JOIN submission_attributes sub ON ds_file_table.submission_id = sub.submission_id where sub.broker_submission_id = {submission_id}; """.format(**query_arguments) return sql_statement @staticmethod def update_website_rows(ds_file_table, broker_tmp_table, set_statement, table_joins): sql_statement = """ UPDATE {ds_file_table} ds_file_table SET {set_statement} FROM {broker_tmp_table} broker, object_class oc, ref_program_activity pa, treasury_appropriation_account tas, submission_attributes sub where ds_file_table.object_class_id = oc.id AND ds_file_table.program_activity_id = pa.id AND ds_file_table.treasury_account_id = tas.treasury_account_identifier AND ds_file_table.submission_id = sub.submission_id AND {table_joins} ; """.format(ds_file_table=ds_file_table, broker_tmp_table=broker_tmp_table, table_mappings=table_joins, set_statement=set_statement, table_joins=table_joins) return sql_statement def handle(self, *args, **options): """ Updates the column ussgl498100_upward_adjust_pri_deliv_orders_oblig_unpaid_cpe due to the incorrect mapping in settings.py """ ds_cursor = connection.cursor() logger.info('Begin updating file B and C') broker_cols_b = self.get_list_of_broker_cols(financial_accounts_oc) broker_cols_type_b = self.get_list_of_broker_cols_types(financial_accounts_oc) website_cols_b = self.get_website_row_formatted(financial_accounts_oc) website_update_text_b = self.get_cols_to_update(financial_accounts_oc) website_cols_joins_b = self.get_file_table_joins(financial_accounts_oc) broker_cols_c = self.get_list_of_broker_cols(financial_accounts_awards) broker_cols_type_c = self.get_list_of_broker_cols_types(financial_accounts_awards) website_cols_c = self.get_website_row_formatted(financial_accounts_awards) website_update_text_c = self.get_cols_to_update(financial_accounts_awards) website_cols_joins_c = self.get_file_table_joins(financial_accounts_awards) with timer('getting submission ids to update', logger.info): submissions_to_update = self.get_list_of_submissions() for submission in submissions_to_update: submission_id = submission[0] # File B Updates logger.info('loading rows data to update File B submission {}'.format(submission_id)) with timer('retrieving rows to update for File B submission {}'.format(submission_id), logger.info): get_rows_to_update_query = self.get_rows_to_update('B', submission_id, broker_cols_b, broker_cols_type_b, website_cols_b) ds_cursor.execute(get_rows_to_update_query) with timer('updating rows for File B submission {}'.format(submission_id), logger.info): update_rows = self.update_website_rows( 'financial_accounts_by_program_activity_object_class', 'file_b_rows_to_update', website_update_text_b, website_cols_joins_b ) ds_cursor.execute(update_rows) # File C updates with timer('retrieving rows to update for File C submission {}'.format(submission_id), logger.info): get_rows_to_update_query = self.get_rows_to_update( 'C', submission_id, broker_cols_c, broker_cols_type_c, website_cols_c) ds_cursor.execute(get_rows_to_update_query) with timer('updating rows for File C submission {}'.format(submission_id), logger.info): update_rows = self.update_website_rows( 'financial_accounts_by_awards', 'file_c_rows_to_update', website_update_text_c, website_cols_joins_c ) ds_cursor.execute(update_rows) ds_cursor.execute("DROP TABLE file_b_rows_to_update") ds_cursor.execute("DROP TABLE file_c_rows_to_update") logger.info('Done updating file B and C mappings')
the-stack_0_8539
"""Base actions for the players to take.""" from csrv.model.actions import action from csrv.model import appropriations from csrv.model import cost from csrv.model import errors from csrv.model import events from csrv.model import game_object from csrv.model import parameters from csrv.model.cards import card_info class InstallProgram(action.Action): DESCRIPTION = '[click]: Install a program' COST_CLASS = cost.InstallProgramCost REQUEST_CLASS = parameters.InstallProgramRequest def __init__(self, game, player, card=None, cost=None): action.Action.__init__(self, game, player, card=card, cost=cost) self.cost.appropriations.append(appropriations.INSTALL_PROGRAMS) if card_info.VIRUS in card.KEYWORDS: self.cost.appropriations.append(appropriations.INSTALL_VIRUSES) def resolve(self, response=None, ignore_clicks=False, ignore_all_costs=False): if (not ignore_all_costs and not self.cost.can_pay(response, ignore_clicks)): raise errors.CostNotSatisfied( 'Not enough credits to install in that location.') if response and response.programs_to_trash: for program in response.programs_to_trash: if program.location != self.game.runner.rig: raise errors.InvalidResponse("You can't trash that") program.trash() if response and response.host: if not response.host in self.card.install_host_targets(): raise errors.InvalidResponse( 'Cannot host this type of card') if not response.host.meets_memory_limits(self.card): raise errors.InvalidResponse( 'Host does not have enough memory free') response.host.host_card(self.card) action.Action.resolve(self, response, ignore_clicks=ignore_clicks, ignore_all_costs=ignore_all_costs) self.player.rig.add(self.card) @property def description(self): return 'Install %s' % self.card.NAME
the-stack_0_8542
import json import os from typing import Optional from eth_abi import encode_abi from web3 import Web3, HTTPProvider from web3.contract import Contract try: from web3.utils.abi import get_constructor_abi, merge_args_and_kwargs from web3.utils.events import get_event_data from web3.utils.filters import construct_event_filter_params from web3.utils.contracts import encode_abi from web3.middleware import geth_poa_middleware except ImportError: from web3._utils.abi import get_constructor_abi, merge_args_and_kwargs from web3._utils.events import get_event_data from web3._utils.filters import construct_event_filter_params from web3._utils.contracts import encode_abi from web3.middleware import geth_poa_middleware from eth_utils import ( keccak, is_hex_address, is_checksum_address, to_hex ) class NoNodeConfigured(Exception): pass class NeedPrivateKey(Exception): pass def check_good_node_url(node_url: str): if not node_url: raise NoNodeConfigured("You need to give --ethereum-node-url command line option or set it up in a config file") def get_abi(): abi_file = os.path.join(os.path.dirname(__file__), "erc20.abi.json") with open(abi_file, "rt") as inp: return json.load(inp) def create_web3(url: str) -> Web3: """Web3 initializer.""" if isinstance(url, Web3): # Shortcut for testing url.middleware_onion.inject(geth_poa_middleware, layer=0) return url else: w3 = Web3(HTTPProvider(url)) w3.middleware_onion.inject(geth_poa_middleware, layer=0) return w3 def integer_hash(number: int): return int(keccak(number).hex(), 16) def validate_ethereum_address(address: str): """Clever Ethereum address validator. Assume all lowercase addresses are not checksummed. """ if len(address) < 42: raise ValueError("Not an Ethereum address: {}".format(address)) try: if not is_hex_address(address): raise ValueError("Not an Ethereum address: {}".format(address)) except UnicodeEncodeError: raise ValueError("Could not decode: {}".format(address)) # Check if checksummed address if any of the letters is upper case if any([c.isupper() for c in address]): if not is_checksum_address(address): raise ValueError("Not a checksummed Ethereum address: {}".format(address)) def get_constructor_arguments(contract: Contract, args: Optional[list] = None, kwargs: Optional[dict] = None): """Get constructor arguments for Etherscan verify. https://etherscanio.freshdesk.com/support/solutions/articles/16000053599-contract-verification-constructor-arguments """ # return contract._encode_constructor_data(args=args, kwargs=kwargs) constructor_abi = get_constructor_abi(contract.abi) # constructor_abi can be none in case of libraries if constructor_abi is None: return to_hex(contract.bytecode) if args is not None: return contract.encodeABI(constructor_abi['name'], args)[2:] # No 0x else: constructor_abi = get_constructor_abi(contract.abi) kwargs = kwargs or {} arguments = merge_args_and_kwargs(constructor_abi, [], kwargs) # deploy_data = add_0x_prefix( # contract._encode_abi(constructor_abi, arguments) # ) # TODO: Looks like recent Web3.py ABI change deploy_data = encode_abi(contract.web3, constructor_abi, arguments) return deploy_data def getLogs(self, argument_filters=None, fromBlock=None, toBlock="latest", address=None, topics=None): """Get events using eth_getLogs API. This is a stateless method, as opposite to createFilter. It can be safely called against nodes which do not provide eth_newFilter API, like Infura. :param argument_filters: :param fromBlock: :param toBlock: :param address: :param topics: :return: """ if fromBlock is None: raise TypeError("Missing mandatory keyword argument to getLogs: fromBlock") abi = self._get_event_abi() argument_filters = dict() _filters = dict(**argument_filters) # Construct JSON-RPC raw filter presentation based on human readable Python descriptions # Namely, convert event names to their keccak signatures data_filter_set, event_filter_params = construct_event_filter_params( abi, abi_codec=self.web3.codec, contract_address=self.address, argument_filters=_filters, fromBlock=fromBlock, toBlock=toBlock, address=address, topics=topics, ) # Call JSON-RPC API logs = self.web3.eth.getLogs(event_filter_params) # Convert raw binary data to Python proxy objects as described by ABI for entry in logs: yield get_event_data(self.web3.codec, abi, entry)
the-stack_0_8543
#!/usr/bin/env python3 """ Example: Write the contents of a Buffer to disk. """ from supercollider import Server, Synth, Buffer, HEADER_FORMAT_WAV import math OUTPUT_FILE = "/tmp/440.wav" #------------------------------------------------------------------------------- # Create connection to default server on localhost:57110 #------------------------------------------------------------------------------- server = Server() #------------------------------------------------------------------------------- # Create a Buffer, generate a 440Hz sine, and write to a .wav. #------------------------------------------------------------------------------- length = 1024 server_status = server.get_status() sample_rate = server_status["sample_rate_nominal"] buf = Buffer.alloc(server, length) buf.set([ math.sin(n * math.pi * 2.0 * 440.0 / sample_rate) for n in range(int(length)) ]) buf.write(OUTPUT_FILE, HEADER_FORMAT_WAV) print("Written buffer to %s" % OUTPUT_FILE)
the-stack_0_8545
from random import randint """ Найти наименьшее натуральное число, записываемое в десятичной системе счисления только с помощью цифр 0 и 1, которое делится без остатка на заданное число К (2 ≤ К ≤ 100). """ def first_exercise(numbers, divider): array = [number for number in numbers if number % divider == 0] if len(array) != 0: return min(array) else: return "Список пустой!" numbers = [int("".join([str(randint(0, 1)) for _ in range(0, 10)])) for _ in range(100)] divider = int(input("Введите делитель: ")) print(first_exercise(numbers, divider))
the-stack_0_8546
import os import posixpath import string from pathlib import PurePath from shutil import copyfileobj, rmtree import boto3 from flask import current_app, redirect, send_file from flask.helpers import safe_join from werkzeug.utils import secure_filename from CTFd.utils import get_app_config from CTFd.utils.encoding import hexencode class BaseUploader(object): def __init__(self): raise NotImplementedError def store(self, fileobj, filename): raise NotImplementedError def upload(self, file_obj, filename): raise NotImplementedError def download(self, filename): raise NotImplementedError def delete(self, filename): raise NotImplementedError def sync(self): raise NotImplementedError class FilesystemUploader(BaseUploader): def __init__(self, base_path=None): super(BaseUploader, self).__init__() self.base_path = base_path or current_app.config.get("UPLOAD_FOLDER") def store(self, fileobj, filename): location = os.path.join(self.base_path, filename) directory = os.path.dirname(location) if not os.path.exists(directory): os.makedirs(directory) with open(location, "wb") as dst: copyfileobj(fileobj, dst, 16384) return filename def upload(self, file_obj, filename): if len(filename) == 0: raise Exception("Empty filenames cannot be used") filename = secure_filename(filename) md5hash = hexencode(os.urandom(16)) file_path = posixpath.join(md5hash, filename) return self.store(file_obj, file_path) def download(self, filename): return send_file(safe_join(self.base_path, filename), as_attachment=True) def delete(self, filename): if os.path.exists(os.path.join(self.base_path, filename)): file_path = PurePath(filename).parts[0] rmtree(os.path.join(self.base_path, file_path)) return True return False def sync(self): pass class S3Uploader(BaseUploader): def __init__(self): super(BaseUploader, self).__init__() self.s3 = self._get_s3_connection() self.bucket = get_app_config("AWS_S3_BUCKET") def _get_s3_connection(self): access_key = get_app_config("AWS_ACCESS_KEY_ID") secret_key = get_app_config("AWS_SECRET_ACCESS_KEY") endpoint = get_app_config("AWS_S3_ENDPOINT_URL") client = boto3.client( "s3", aws_access_key_id=access_key, aws_secret_access_key=secret_key, endpoint_url=endpoint, ) return client def _clean_filename(self, c): if c in string.ascii_letters + string.digits + "-" + "_" + ".": return True def store(self, fileobj, filename): self.s3.upload_fileobj(fileobj, self.bucket, filename) return filename def upload(self, file_obj, filename): filename = filter( self._clean_filename, secure_filename(filename).replace(" ", "_") ) filename = "".join(filename) if len(filename) <= 0: return False md5hash = hexencode(os.urandom(16)) dst = md5hash + "/" + filename self.s3.upload_fileobj(file_obj, self.bucket, dst) return dst def download(self, filename): key = filename filename = filename.split("/").pop() url = self.s3.generate_presigned_url( "get_object", Params={ "Bucket": self.bucket, "Key": key, "ResponseContentDisposition": "attachment; filename={}".format( filename ), }, ) return redirect(url) def delete(self, filename): self.s3.delete_object(Bucket=self.bucket, Key=filename) return True def sync(self): local_folder = current_app.config.get("UPLOAD_FOLDER") # If the bucket is empty then Contents will not be in the response bucket_list = self.s3.list_objects(Bucket=self.bucket).get("Contents", []) for s3_key in bucket_list: s3_object = s3_key["Key"] # We don't want to download any directories if s3_object.endswith("/") is False: local_path = os.path.join(local_folder, s3_object) directory = os.path.dirname(local_path) if not os.path.exists(directory): os.makedirs(directory) self.s3.download_file(self.bucket, s3_object, local_path)
the-stack_0_8548
# -*- coding:utf-8 -*- # pylint: disable=C0103, C0413 """ Initializing telegram bot """ from os import environ from telebot import TeleBot, types from config import DEFAULT_LANGUAGE, EN TOKEN = environ.get("TELEGRAM_BOT_TOKEN") APP_SITE = environ.get("APP_SITE") DEFAULT_PARSE_MODE = "HTML" MESSAGE_NOT_FOUND = "Sorry, but nothing was found for <b>%s</b>." MESSAGE_SPECIFY_LOGLAN_WORD = ( "You need to specify the Loglan word you would like to find." ) MESSAGE_SPECIFY_ENGLISH_WORD = ( "You need to specify the English word you would like to find." ) MIN_NUMBER_OF_BUTTONS = 50 bot = TeleBot(TOKEN) ADMIN = int(environ.get("TELEGRAM_ADMIN_ID")) cbq = types.CallbackQuery msg = types.Message from bot import processor
the-stack_0_8550
import os import glob import pandas as pd game_files = glob.glob(os.path.join(os.getcwd(), 'games', '*.EVE')) game_files.sort() game_frames = [] for game_file in game_files: game_frame = pd.read_csv(game_file, names=['type', 'multi2', 'multi3', 'multi4', 'multi5', 'multi6', 'event']) game_frames.append(game_frame) games = pd.concat(game_frames) games.loc[games['multi5'] == '??', 'multi5'] = '' identifiers = games['multi2'].str.extract(r'(.LS(\d{4})\d{5})') identifiers = identifiers.fillna(method='ffill') identifiers.columns = ['game_id', 'year'] games = pd.concat([games, identifiers], axis=1, sort=False) games = games.fillna(' ') games.loc[:, 'type'] = pd.Categorical(games.loc[:, 'type']) print(games.head())
the-stack_0_8554
import sys import pygame from bullet import Bullet def check_keydown_events(event, ai_settings, screen, ship, bullets): """Respond to keypresses.""" if event.key == pygame.K_RIGHT: ship.moving_right = True elif event.key == pygame.K_LEFT: ship.moving_left = True elif event.key == pygame.K_SPACE: fire_bullet(ai_settings, screen, ship, bullets) def check_keyup_events(event, ship): """Respond to key releases.""" if event.key == pygame.K_RIGHT: ship.moving_right = False elif event.key == pygame.K_LEFT: ship.moving_left = False def check_events(ai_settings, screen, ship, bullets): """Respond to keypresses and mouse events.""" for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() elif event.type == pygame.KEYDOWN: check_keydown_events(event, ai_settings, screen, ship, bullets) elif event.type == pygame.KEYUP: check_keyup_events(event, ship) def fire_bullet(ai_settings, screen, ship, bullets): """Fire a bullet, if limit not reached yet.""" # Create a new bullet, add to bullets group. if len(bullets) < ai_settings.bullets_allowed: new_bullet = Bullet(ai_settings, screen, ship) bullets.add(new_bullet) def update_screen(ai_settings, screen, ship, bullets): """Update images on the screen, and flip to the new screen.""" # Redraw the screen, each pass through the loop. screen.fill(ai_settings.bg_color) # Redraw all bullets, behind ship and aliens. for bullet in bullets.sprites(): bullet.draw_bullet() ship.blitme() # Make the most recently drawn screen visible. pygame.display.flip() def update_bullets(bullets): """Update position of bullets, and get rid of old bullets.""" # Update bullet positions. bullets.update() # Get rid of bullets that have disappeared. for bullet in bullets.copy(): if bullet.rect.bottom <= 0: bullets.remove(bullet)
the-stack_0_8557
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import argparse import llnl.util.tty as tty import spack.cmd import spack.environment as ev import spack.repo import spack.store import spack.spec import spack.binary_distribution as bindist description = "create, download and install binary packages" section = "packaging" level = "long" def setup_parser(subparser): setup_parser.parser = subparser subparsers = subparser.add_subparsers(help='buildcache sub-commands') create = subparsers.add_parser('create', help=createtarball.__doc__) create.add_argument('-r', '--rel', action='store_true', help="make all rpaths relative" + " before creating tarballs.") create.add_argument('-f', '--force', action='store_true', help="overwrite tarball if it exists.") create.add_argument('-u', '--unsigned', action='store_true', help="create unsigned buildcache" + " tarballs for testing") create.add_argument('-a', '--allow-root', action='store_true', help="allow install root string in binary files " + "after RPATH substitution") create.add_argument('-k', '--key', metavar='key', type=str, default=None, help="Key for signing.") create.add_argument('-d', '--directory', metavar='directory', type=str, default='.', help="directory in which to save the tarballs.") create.add_argument( 'packages', nargs=argparse.REMAINDER, help="specs of packages to create buildcache for") create.set_defaults(func=createtarball) install = subparsers.add_parser('install', help=installtarball.__doc__) install.add_argument('-f', '--force', action='store_true', help="overwrite install directory if it exists.") install.add_argument('-m', '--multiple', action='store_true', help="allow all matching packages ") install.add_argument('-a', '--allow-root', action='store_true', help="allow install root string in binary files " + "after RPATH substitution") install.add_argument('-u', '--unsigned', action='store_true', help="install unsigned buildcache" + " tarballs for testing") install.add_argument( 'packages', nargs=argparse.REMAINDER, help="specs of packages to install buildcache for") install.set_defaults(func=installtarball) listcache = subparsers.add_parser('list', help=listspecs.__doc__) listcache.add_argument('-f', '--force', action='store_true', help="force new download of specs") listcache.add_argument( 'packages', nargs=argparse.REMAINDER, help="specs of packages to search for") listcache.set_defaults(func=listspecs) dlkeys = subparsers.add_parser('keys', help=getkeys.__doc__) dlkeys.add_argument( '-i', '--install', action='store_true', help="install Keys pulled from mirror") dlkeys.add_argument( '-t', '--trust', action='store_true', help="trust all downloaded keys") dlkeys.add_argument('-f', '--force', action='store_true', help="force new download of keys") dlkeys.set_defaults(func=getkeys) def find_matching_specs( pkgs, allow_multiple_matches=False, force=False, env=None): """Returns a list of specs matching the not necessarily concretized specs given from cli Args: specs: list of specs to be matched against installed packages allow_multiple_matches : if True multiple matches are admitted Return: list of specs """ hashes = env.all_hashes() if env else None # List of specs that match expressions given via command line specs_from_cli = [] has_errors = False specs = spack.cmd.parse_specs(pkgs) for spec in specs: matching = spack.store.db.query(spec, hashes=hashes) # For each spec provided, make sure it refers to only one package. # Fail and ask user to be unambiguous if it doesn't if not allow_multiple_matches and len(matching) > 1: tty.error('%s matches multiple installed packages:' % spec) for match in matching: tty.msg('"%s"' % match.format()) has_errors = True # No installed package matches the query if len(matching) == 0 and spec is not any: tty.error('{0} does not match any installed packages.'.format( spec)) has_errors = True specs_from_cli.extend(matching) if has_errors: tty.die('use one of the matching specs above') return specs_from_cli def match_downloaded_specs(pkgs, allow_multiple_matches=False, force=False): """Returns a list of specs matching the not necessarily concretized specs given from cli Args: specs: list of specs to be matched against buildcaches on mirror allow_multiple_matches : if True multiple matches are admitted Return: list of specs """ # List of specs that match expressions given via command line specs_from_cli = [] has_errors = False specs = bindist.get_specs(force) for pkg in pkgs: matches = [] tty.msg("buildcache spec(s) matching %s \n" % pkg) for spec in sorted(specs): if pkg.startswith('/'): pkghash = pkg.replace('/', '') if spec.dag_hash().startswith(pkghash): matches.append(spec) else: if spec.satisfies(pkg): matches.append(spec) # For each pkg provided, make sure it refers to only one package. # Fail and ask user to be unambiguous if it doesn't if not allow_multiple_matches and len(matches) > 1: tty.error('%s matches multiple downloaded packages:' % pkg) for match in matches: tty.msg('"%s"' % match.format()) has_errors = True # No downloaded package matches the query if len(matches) == 0: tty.error('%s does not match any downloaded packages.' % pkg) has_errors = True specs_from_cli.extend(matches) if has_errors: tty.die('use one of the matching specs above') return specs_from_cli def createtarball(args): """create a binary package from an existing install""" if not args.packages: tty.die("build cache file creation requires at least one" + " installed package argument") pkgs = set(args.packages) specs = set() outdir = '.' if args.directory: outdir = args.directory signkey = None if args.key: signkey = args.key # restrict matching to current environment if one is active env = ev.get_env(args, 'buildcache create') matches = find_matching_specs(pkgs, False, False, env=env) for match in matches: if match.external or match.virtual: tty.msg('skipping external or virtual spec %s' % match.format()) else: tty.msg('adding matching spec %s' % match.format()) specs.add(match) tty.msg('recursing dependencies') for d, node in match.traverse(order='post', depth=True, deptype=('link', 'run')): if node.external or node.virtual: tty.msg('skipping external or virtual dependency %s' % node.format()) else: tty.msg('adding dependency %s' % node.format()) specs.add(node) tty.msg('writing tarballs to %s/build_cache' % outdir) for spec in specs: tty.msg('creating binary cache file for package %s ' % spec.format()) bindist.build_tarball(spec, outdir, args.force, args.rel, args.unsigned, args.allow_root, signkey) def installtarball(args): """install from a binary package""" if not args.packages: tty.die("build cache file installation requires" + " at least one package spec argument") pkgs = set(args.packages) matches = match_downloaded_specs(pkgs, args.multiple, args.force) for match in matches: install_tarball(match, args) def install_tarball(spec, args): s = spack.spec.Spec(spec) if s.external or s.virtual: tty.warn("Skipping external or virtual package %s" % spec.format()) return for d in s.dependencies(deptype=('link', 'run')): tty.msg("Installing buildcache for dependency spec %s" % d) install_tarball(d, args) package = spack.repo.get(spec) if s.concrete and package.installed and not args.force: tty.warn("Package for spec %s already installed." % spec.format()) else: tarball = bindist.download_tarball(spec) if tarball: tty.msg('Installing buildcache for spec %s' % spec.format()) bindist.extract_tarball(spec, tarball, args.allow_root, args.unsigned, args.force) spack.hooks.post_install(spec) spack.store.store.reindex() else: tty.die('Download of binary cache file for spec %s failed.' % spec.format()) def listspecs(args): """list binary packages available from mirrors""" specs = bindist.get_specs(args.force) if args.packages: pkgs = set(args.packages) for pkg in pkgs: tty.msg("buildcache spec(s) matching " + "%s and commands to install them" % pkgs) for spec in sorted(specs): if spec.satisfies(pkg): tty.msg('Enter\nspack buildcache install /%s\n' % spec.dag_hash(7) + ' to install "%s"' % spec.format()) else: tty.msg("buildcache specs and commands to install them") for spec in sorted(specs): tty.msg('Enter\nspack buildcache install /%s\n' % spec.dag_hash(7) + ' to install "%s"' % spec.format()) def getkeys(args): """get public keys available on mirrors""" bindist.get_keys(args.install, args.trust, args.force) def buildcache(parser, args): if args.func: args.func(args)
the-stack_0_8558
# -*- coding: utf-8 -*- """QGIS Unit tests for QgsLogger. .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ __author__ = 'Tim Sutton' __date__ = '20/08/2012' __copyright__ = 'Copyright 2012, The QGIS Project' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '176c06ceefb5f555205e72b20c962740cc0ec183' import qgis # NOQA import tempfile import os (myFileHandle, myFilename) = tempfile.mkstemp() os.environ['QGIS_DEBUG'] = '2' os.environ['QGIS_LOG_FILE'] = myFilename from qgis.core import QgsLogger from qgis.testing import unittest # Convenience instances in case you may need them # not used in this test # from qgis.testing import start_app # start_app() class TestQgsLogger(unittest.TestCase): def testLogger(self): try: myFile = os.fdopen(myFileHandle, "w") myFile.write("QGIS Logger Unit Test\n") myFile.close() myLogger = QgsLogger() myLogger.debug('This is a debug') myLogger.warning('This is a warning') myLogger.critical('This is critical') # myLogger.fatal('Aaaargh...fatal'); #kills QGIS not testable myFile = open(myFilename, 'rt') myText = myFile.readlines() myFile.close() myExpectedText = ['QGIS Logger Unit Test\n', 'This is a debug\n', 'This is a warning\n', 'This is critical\n'] myMessage = ('Expected:\n---\n%s\n---\nGot:\n---\n%s\n---\n' % (myExpectedText, myText)) self.assertEqual(myText, myExpectedText, myMessage) finally: pass os.remove(myFilename) if __name__ == '__main__': unittest.main()
the-stack_0_8561
# -*- coding: utf-8 -*- """ Created on Fri Sep 13 17:22:08 2019 @author: Chenghai Li """ import math import time import torch import torch.nn as nn import numpy as np from torchdiffeq import odeint_adjoint as odeint import matplotlib.pyplot as plt from scipy import interpolate device = torch.device('cuda:0') file = open('3.txt','r') x3 = [] y3 = [] for row in file.readlines(): row = row.split() row[0] = float(row[0]) row[1] = float(row[1]) x3.append(row[0]) y3.append(row[1]) file.close() E = interpolate.interp1d(x3, y3, kind="cubic") file = open('pr.txt','r') p = [] r = [] for row in file.readlines(): row = row.split() row[0] = float(row[0]) row[1] = float(row[1]) p.append(row[0]) r.append(row[1]) file.close() pr_pre = interpolate.interp1d(p, r, kind="cubic") def pr(p): if p>0.1001: return pr_pre(p) else: return [0.8043390] file = open('2_1.txt','r') x2_1 = [] y2_1 = [] for row in file.readlines(): row = row.split() row[0] = float(row[0]) row[1] = float(row[1]) x2_1.append(row[0]) y2_1.append(row[1]) file.close() l2_1 = interpolate.interp1d(x2_1, y2_1, kind="cubic") file = open('2_2.txt','r') x2_2 = [] y2_2 = [] for row in file.readlines(): row = row.split() row[0] = float(row[0]) row[1] = float(row[1]) x2_2.append(row[0]) y2_2.append(row[1]) file.close() l2_2 = interpolate.interp1d(x2_2, y2_2, kind="cubic") def l(x): x = (x -12.5) % 100 if x < 0.45: return torch.tensor(l2_1(x), dtype = torch.double) if 0.45 <= x <= 2: return torch.tensor([2], dtype = torch.double) if 2 < x < 2.45: return torch.tensor(l2_2(x), dtype = torch.double) if 2.45 <= x <= 100: return torch.tensor([0], dtype = torch.double) A = 0.7*0.7*math.pi v = 500*5*5*math.pi omiga = math.pi/111 def v0(t): return torch.tensor([-(-2.413 * math.sin( omiga * t + math.pi/2 ) + 4.826) * math.pi * 2.5 * 2.5 + 162.1374326208532], dtype = torch.double) def v0t(t): return torch.tensor([omiga * 2.413 * math.cos ( omiga * t + math.pi/2 ) * math.pi * 2.5 * 2.5], dtype = torch.double) class func(nn.Module): def forward(self, t, w): p0, p1= w tr = t % 100 if p0 >= p1 and v0t(t) < 0: Q0 = 0.85 * A * math.sqrt(2 * ( p0 - p1 ) / torch.tensor(pr(p0), dtype = torch.double) ) else: Q0 = torch.tensor([0], dtype = torch.double) if p0 < 0.5 and v0t(t) > 0: r0t = torch.tensor([0], dtype = torch.double) p0t = torch.tensor([0], dtype = torch.double) else: r0t = (-Q0 * torch.tensor(pr(p0), dtype = torch.double) * v0(t) - v0(t) * torch.tensor(pr(p0), dtype = torch.double) * v0t(t)) / (v0(t) ** 2) p0t = torch.tensor(E(p0), dtype = torch.double) / torch.tensor(pr(p0), dtype = torch.double) * r0t A1 = math.pi * l(tr) * math.sin( math.pi / 20 ) * (4 * 1.25 + l(tr) * math.sin( math.pi / 20 ) * math.cos( math.pi / 20 ) ) A2 = math.pi * 0.7 * 0.7 Q1 = 0.85 * min(A1, A2) * math.sqrt(2 * p1 / torch.tensor(pr(p1), dtype = torch.double)) r1t = (Q0 * torch.tensor(pr(p0), dtype = torch.double) - Q1 * torch.tensor(pr(p1), dtype = torch.double)) / v p1t = torch.tensor(E(p1), dtype = torch.double) / torch.tensor(pr(p1), dtype = torch.double) * r1t return torch.tensor([p0t, p1t],dtype=torch.double) time_range = 20 step_length = 0.01 time_start=time.time() t = torch.tensor( np.arange(0, time_range, step_length), dtype=torch.double) y0 = torch.tensor([0.5, 100], dtype=torch.double) track1 = odeint(func(), y0, t, method='rk4') time_end=time.time() print('totally cost',time_end-time_start) ''' show = [] for i in range(len(track1)): show.append(track1[i][0]) plt.plot(show) '''
the-stack_0_8562
from django.urls import path from .views import post_comment_create_and_list_view, like_unlike_post, PostDeleteView, PostUpdateView app_name = 'posts' urlpatterns = [ path('', post_comment_create_and_list_view, name='main-post-view'), path('liked/', like_unlike_post, name='like-post-view'), path('<pk>/delete/', PostDeleteView.as_view(), name='post-delete'), path('<pk>/update/', PostUpdateView.as_view(), name='post-update'), ]
the-stack_0_8565
#!/bin/env python #=============================================================================== # NAME: SerialHVisitor.py # # DESCRIPTION: A visitor responsible for the generation of header file # for each serializable class. # # AUTHOR: reder # EMAIL: [email protected] # DATE CREATED : June 4, 2007 # # Copyright 2013, California Institute of Technology. # ALL RIGHTS RESERVED. U.S. Government Sponsorship acknowledged. #=============================================================================== # # Python standard modules # import logging import os import sys import time import datetime from optparse import OptionParser # # Python extention modules and custom interfaces # #from Cheetah import Template #from fprime_ac.utils import version from fprime_ac.utils import ConfigManager #from fprime_ac.utils import DiffAndRename from fprime_ac.generators.visitors import AbstractVisitor from fprime_ac.generators import formatters # # Import precompiled templates here # from fprime_ac.generators.templates.serialize import startSerialH from fprime_ac.generators.templates.serialize import includes1SerialH from fprime_ac.generators.templates.serialize import includes2SerialH from fprime_ac.generators.templates.serialize import namespaceSerialH from fprime_ac.generators.templates.serialize import publicSerialH from fprime_ac.generators.templates.serialize import protectedSerialH from fprime_ac.generators.templates.serialize import privateSerialH from fprime_ac.generators.templates.serialize import finishSerialH # # Universal globals used within module go here. # (DO NOT USE MANY!) # # Global logger init. below. PRINT = logging.getLogger('output') DEBUG = logging.getLogger('debug') typelist = ['U8','I8','U16','I16','U32','I32','U64','I64','F32','F64',"bool"] # # Module class or classes go here. class SerialHVisitor(AbstractVisitor.AbstractVisitor): """ A visitor class responsible for generation of component header classes in C++. """ __instance = None __config = None __fp = None __form = None __form_comment = None def __init__(self): """ Constructor. """ self.__config = ConfigManager.ConfigManager.getInstance() self.__form = formatters.Formatters() self.__form_comment = formatters.CommentFormatters() DEBUG.info("SerialHVisitor: Instanced.") self.bodytext = "" self.prototypetext = "" def _get_args_string(self, obj): """ Return a string of (type, name) args, comma seperated for use in templates that generate prototypes. """ arg_str = "" for (name,mtype,size,format,comment) in obj.get_members(): typename = mtype if type(mtype) == type(tuple()): typename = mtype[0][1] arg_str += "%s %s, "%(mtype[0][1],name) elif mtype == "string": arg_str += "const %s::%sString& %s, " % (obj.get_name(),name, name) elif mtype not in typelist and size is None: arg_str += "const %s& %s, " %(mtype,name) elif size != None: arg_str += "const %s* %s, " % (mtype, name) arg_str += "NATIVE_INT_TYPE %sSize, " % (name) else: arg_str += "%s %s" % (mtype, name) arg_str += ", " arg_str = arg_str.strip(', ') return arg_str def _get_conv_mem_list(self, obj): """ Return a list of port argument tuples """ arg_list = list() for (name,mtype,size,format,comment) in obj.get_members(): typeinfo = None if type(mtype) == type(tuple()): mtype = mtype[0][1] typeinfo = "enum" elif mtype == "string": mtype = "%s::%sString" %(obj.get_name(),name) typeinfo = "string" elif mtype not in typelist: typeinfo = "extern" arg_list.append((name,mtype,size,format,comment,typeinfo)) return arg_list def _get_enum_string_list(self, enum_list): """ """ enum_tuple = enum_list[0] enum_list = enum_list[1] enum_str_list = [] for e in enum_list: # No value, No comment if (e[1] == None) and (e[2] == None): s = "%s," % (e[0]) # No value, With comment elif (e[1] == None) and (e[2] != None): s = "%s, // %s" % (e[0],e[2]) # With value, No comment elif (e[1] != None) and (e[2] == None): s = "%s = %s," % (e[0],e[1]) # With value and comment elif (e[1] != None) and (e[2] != None): s = "%s = %s, // %s" % (e) else: pass enum_str_list.append(s) return (enum_tuple, enum_str_list) def _writeTmpl(self, c, visit_str): """ Wrapper to write tmpl to files desc. """ DEBUG.debug('SerialHVisitor:%s' % visit_str) DEBUG.debug('===================================') DEBUG.debug(c) self.__fp.writelines(c.__str__()) DEBUG.debug('===================================') def initFilesVisit(self, obj): """ Defined to generate files for generated code products. @parms obj: the instance of the concrete element to operation on. """ # Build filename here... if self.__config.get("serialize","XMLDefaultFileName") == "True": namespace = "".join(obj.get_namespace().split('::')) filename = namespace + obj.get_name() + self.__config.get("serialize","SerializableH") PRINT.info("Generating code filename: %s, using XML namespace and name attributes..." % filename) else: xml_file = obj.get_xml_filename() x = xml_file.split(".") s = self.__config.get("serialize","SerializableXML").split(".") l = len(s[0]) # if (x[0][-l:] == s[0]) & (x[1] == s[1]): filename = x[0].split(s[0])[0] + self.__config.get("serialize","SerializableH") PRINT.info("Generating code filename: %s, using default XML filename prefix..." % filename) else: msg = "XML file naming format not allowed (must be XXXSerializableAi.xml), Filename: %s" % xml_file PRINT.info(msg) sys.exit(-1) # Open file for writting here... DEBUG.info('Open file: %s' % filename) self.__fp = open(filename,'w') if self.__fp == None: raise Exception("Could not open %s file.") % filename DEBUG.info('Completed') def startSourceFilesVisit(self, obj): """ Defined to generate starting static code within files. """ c = startSerialH.startSerialH() c.name = obj.get_name() if obj.get_namespace() == None: c.namespace_list = None else: c.namespace_list = obj.get_namespace().split('::') d = datetime.datetime.now() c.date = d.strftime("%A, %d %B %Y") c.user = os.environ['USER'] self._writeTmpl(c, "startSourceFilesVisit") def includes1Visit(self, obj): """ Defined to generate includes within a file. Usually used for the base classes but also for Serial types @parms args: the instance of the concrete element to operation on. """ c = includes1SerialH.includes1SerialH() self._writeTmpl(c, "includes1Visit") def includes2Visit(self, obj): """ Defined to generate internal includes within a file. Usually used for data type includes and system includes. @parms args: the instance of the concrete element to operation on. """ c = includes2SerialH.includes2SerialH() c.xml_includes_list = obj.get_xml_includes() if False in [x[-6:] == 'Ai.xml' for x in c.xml_includes_list]: PRINT.info("ERROR: Only Ai.xml files can be given within <import_serializable_type> tag!!!") sys.exit(-1) c.xml_includes_list = [x.replace('Ai.xml','Ac.hpp') for x in c.xml_includes_list] c.c_includes_list = obj.get_c_includes() if False in [x[-3:] == 'hpp' or x[-1:] == 'h' for x in c.c_includes_list]: PRINT.info("ERROR: Only .hpp or .h files can be given within <include_header> tag!!!") sys.exit(-1) # self._writeTmpl(c, "includes2Visit") def namespaceVisit(self, obj): """ Defined to generate namespace code within a file. Also any pre-condition code is generated. @parms args: the instance of the concrete element to operation on. """ c = namespaceSerialH.namespaceSerialH() if obj.get_namespace() == None: c.namespace_list = None else: c.namespace_list = obj.get_namespace().split('::') c.enum_type_list = [] t = [x[1] for x in obj.get_members()] enum_list = [x for x in t if type(x) == type(tuple())] for e in enum_list: c.enum_type_list.append(self._get_enum_string_list(e)) c.mem_list = obj.get_members() c.name = obj.get_name() self._writeTmpl(c, "namespaceVisit") def publicVisit(self, obj): """ Defined to generate public stuff within a class. @parms args: the instance of the concrete element to operation on. """ c = publicSerialH.publicSerialH() c.name = obj.get_name() c.args_proto = self._get_args_string(obj) c.members = self._get_conv_mem_list(obj) self._writeTmpl(c, "publicVisit") def protectedVisit(self, obj): """ Defined to generate protected stuff within a class. @parms args: the instance of the concrete element to operation on. """ c = protectedSerialH.protectedSerialH() c.uuid = obj.get_typeid() c.name = obj.get_name() c.members = self._get_conv_mem_list(obj) self._writeTmpl(c, "protectedVisit") def privateVisit(self, obj): """ Defined to generate private stuff within a class. @parms args: the instance of the concrete element to operation on. """ c = privateSerialH.privateSerialH() self._writeTmpl(c, "privateVisit") def finishSourceFilesVisit(self, obj): """ Defined to generate ending static code within files. """ c = finishSerialH.finishSerialH() c.name = obj.get_name() if obj.get_namespace() == None: c.namespace_list = None else: c.namespace_list = obj.get_namespace().split('::') self._writeTmpl(c, "finishSourceFilesVisit") self.__fp.close() if __name__ == '__main__': pass
the-stack_0_8567
import PyPDF2 # This code will add the watermark file on each of the files from super_pdf template = PyPDF2.PdfFileReader(open('super_pdf', 'rb')) watermark = PyPDF2.PdfFileReader(open('wtr.pdf', 'rb')) output = PyPDF2.PdfFileWriter() for i in range(template.getNumPages()): page = template.getPage(i) page.mergePage(watermark.getPage(0)) output.addPage(page) with open('watermarked_output.pdf', 'wb') as file: output.write(file)
the-stack_0_8569
import os import subprocess from platform import system from time import sleep try: from psutil import NoSuchProcess, Process except ImportError: """ Don't make psutil a strict requirement, but use if available. """ Process = None def kill_pid(pid, use_psutil=True): if use_psutil and Process: _psutil_kill_pid(pid) else: _stock_kill_pid(pid) def _psutil_kill_pid(pid): """ http://stackoverflow.com/questions/1230669/subprocess-deleting-child-processes-in-windows """ try: parent = Process(pid) for child in parent.get_children(recursive=True): child.kill() parent.kill() except NoSuchProcess: return def _stock_kill_pid(pid): is_windows = system() == 'Windows' if is_windows: __kill_windows(pid) else: __kill_posix(pid) def __kill_windows(pid): try: subprocess.check_call(['taskkill', '/F', '/T', '/PID', pid]) except subprocess.CalledProcessError: pass def __kill_posix(pid): def __check_pid(): try: os.kill(pid, 0) return True except OSError: return False if __check_pid(): for sig in [15, 9]: try: os.killpg(pid, sig) except OSError: return sleep(1) if not __check_pid(): return
the-stack_0_8572
# Demonstrates the IPTC Media Topics document classification capability of the (Cloud based) expert.ai Natural Language API from expertai.nlapi.cloud.client import ExpertAiClient client = ExpertAiClient() text = "Michael Jordan was one of the best basketball players of all time. Scoring was Jordan's stand-out skill, but he still holds a defensive NBA record, with eight steals in a half." taxonomy = 'behavioral-traits' language= 'en' output = client.classification(body={"document": {"text": text}}, params={'taxonomy': taxonomy, 'language': language}) print("Tab separated list of categories:") for category in output.categories: print(category.id_, category.hierarchy, sep="\t")
the-stack_0_8573
import logging import sys # Make sure a NullHandler is available # This was added in Python 2.7/3.2 try: from logging import NullHandler except ImportError: class NullHandler(logging.Handler): def emit(self, record): pass # Make sure that dictConfig is available # This was added in Python 2.7/3.2 try: from logging.config import dictConfig except ImportError: from snaptastic.utils.dictconfig import dictConfig if sys.version_info < (2, 5): class LoggerCompat(object): def __init__(self, logger): self._logger = logger def __getattr__(self, name): val = getattr(self._logger, name) if callable(val): def _wrapper(*args, **kwargs): # Python 2.4 logging module doesn't support 'extra' parameter to # methods of Logger kwargs.pop('extra', None) return val(*args, **kwargs) return _wrapper else: return val def getLogger(name=None): return LoggerCompat(logging.getLogger(name=name)) else: getLogger = logging.getLogger # Ensure the creation of the Django logger # with a null handler. This ensures we don't get any # 'No handlers could be found for logger "django"' messages logger = getLogger('django') if not logger.handlers: logger.addHandler(NullHandler())
the-stack_0_8575
# -*- coding: utf-8 -*- # # records.py # csvdiff # import six import csv from . import error class InvalidKeyError(Exception): pass def load(file_or_stream, sep=','): istream = (open(file_or_stream) if not hasattr(file_or_stream, 'read') else file_or_stream) # unicode delimiters are not ok in Python 2 if six.PY2 and isinstance(sep, six.text_type): sep = sep.encode('utf8') return SafeDictReader(istream, sep=sep) class SafeDictReader: """ A CSV reader that streams records but gives nice errors if lines fail to parse. """ def __init__(self, istream, sep=None): self.reader = csv.DictReader(istream, delimiter=sep) def __iter__(self): for lineno, r in enumerate(self.reader, 2): if any(k is None for k in r): error.abort('CSV parse error on line {}'.format(lineno)) yield r @property def fieldnames(self): return self.reader._fieldnames def index(record_seq, index_columns): try: obj = { tuple(r[i] for i in index_columns): r for r in record_seq } return obj except KeyError as k: raise InvalidKeyError('invalid column name {k} as key'.format(k=k)) def filter_ignored(sequence, ignore_columns): for key in sequence: for i in ignore_columns: sequence[key].pop(i) return sequence def save(record_seq, fieldnames, ostream): writer = csv.DictWriter(ostream, fieldnames) writer.writeheader() for r in record_seq: writer.writerow(r) def sort(recs): return sorted(recs, key=_record_key) def _record_key(r): return sorted(r.items())
the-stack_0_8576
#!/usr/bin/env python from __future__ import print_function import gripql import argparse import pandas import math def load_matrix(args): conn = gripql.Connection(args.server) O = conn.graph(args.db) matrix = pandas.read_csv(args.input, sep="\t", index_col=0) for name, row in matrix.iterrows(): data = {} for k, v in row.iteritems(): if not isinstance(v, float) or not math.isnan(v): data[k] = v O.addVertex(name, "Sample", data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("input") parser.add_argument("--server", default="http://localhost:8201") parser.add_argument("--db", required=True) args = parser.parse_args() load_matrix(args)
the-stack_0_8577
# This is a dict where each entry contains an label for a morphological feature, # or the label for the UPOS tag if the key is 'upos' pos_properties = {'ADJ': ['Degree', 'Number', 'Gender', 'Case'], 'ADP': ['Number', 'Gender', 'Case'], 'ADV': ['Degree', 'Abbr'], 'AUX': ['Mood', 'Aspect', 'Tense', 'Number', 'Person', 'VerbForm', 'Voice'], 'CCONJ': [], 'DET': ['Number', 'Gender', 'PronType', 'Definite', 'Case'], 'NOUN': ['Number', 'Gender', 'Abbr', 'Case'], 'NUM': ['NumType', 'Number', 'Gender', 'Case'], 'PART': [], 'PRON': ['Number', 'Gender', 'Person', 'Poss', 'PronType', 'Case'], 'PROPN': ['Number', 'Gender', 'Case'], 'PUNCT': [], 'SCONJ': [], 'SYM': [], 'VERB': ['Mood', 'Aspect', 'Tense', 'Number', 'Gender', 'Person', 'VerbForm', 'Voice', 'Case'], 'X': ['Foreign'], '_': []} # The labels for the named entity output of the ner model. # A string label can be obtained by an output index pos_labels = {'Abbr': ['_', 'Yes'], 'Aspect': ['Perf', '_', 'Imp'], 'Case': ['Dat', '_', 'Acc', 'Gen', 'Nom', 'Voc'], 'Definite': ['Ind', 'Def', '_'], 'Degree': ['Cmp', 'Sup', '_'], 'Foreign': ['_', 'Yes'], 'Gender': ['Fem', 'Masc', '_', 'Neut'], 'Mood': ['Ind', '_', 'Imp'], 'NumType': ['Mult', 'Card', '_', 'Ord', 'Sets'], 'Number': ['Plur', '_', 'Sing'], 'Person': ['3', '1', '_', '2'], 'Poss': ['_', 'Yes'], 'PronType': ['Ind', 'Art', '_', 'Rel', 'Dem', 'Prs', 'Ind,Rel', 'Int'], 'Tense': ['Pres', 'Past', '_'], 'VerbForm': ['Part', 'Conv', '_', 'Inf', 'Fin'], 'Voice': ['Pass', 'Act', '_'], 'upos': ['X', 'PROPN', 'PRON', 'ADJ', 'AUX', 'PART', 'ADV', '_', 'DET', 'SYM', 'NUM', 'CCONJ', 'PUNCT', 'NOUN', 'SCONJ', 'ADP', 'VERB']}
the-stack_0_8580
"""AI.""" from mgz import Version from mgz.util import Find from construct import (Array, Byte, If, Int16ul, Int32sl, Int32ul, Padding, PascalString, Struct, this, IfThenElse) # pylint: disable=invalid-name script = "script"/Struct( Padding(4), "seq"/Int32sl, "max_rules"/Int16ul, "num_rules"/Int16ul, Padding(4), Array(this.num_rules, "rules"/Struct( Padding(12), "num_facts"/Byte, "num_facts_actions"/Byte, Padding(2), Array(16, "data"/Struct( "type"/Int32ul, "id"/Int16ul, Padding(2), Array(4, "params"/Int32ul) )) )) ) ai = "ai"/Struct( "has_ai"/Int32ul, # if true, parse AI "yep"/If( this.has_ai == 1, IfThenElse( lambda ctx: ctx._.version == Version.DE, Find(b'\00' * 4096, None), # The ai structure in DE seems to have changed, for now we simply skip it "ais"/Struct( "max_strings"/Int16ul, "num_strings"/Int16ul, Padding(4), Array(this.num_strings, "strings"/PascalString(lengthfield="name_length"/Int32ul, encoding='latin1')), Padding(6), Array(8, script), Padding(104), Array(80, "timers"/Int32sl), Array(256, "shared_goals"/Int32sl), Padding(4096), ) ) ) )
the-stack_0_8581
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. from contextlib import contextmanager import copy import fcntl import hashlib import os from typing import Dict, Any import torch # Do not import any poptorch.* here: it will break the poptorch module from ._logging import logger from . import poptorch_core # A flag to tell the user if the current target is IPU. This is to allow # divergent IPU/CPU codepaths within one model. _is_ipu_context = False def createPoptorchError(msg): type = "poptorch_py_error" error = poptorch_core.Error(f"'{type}': {msg}") error.type = type error.message = msg error.location = "" return error def isRunningOnIpu() -> bool: """ This function returns `True` when executing on IPU and `False` when executing the model outside IPU scope. This allows for separate codepaths to be marked in the model simply by using: >>> if poptorch.isRunningOnIpu(): >>> # IPU path >>> else: >>> # CPU path Note this will only apply to code during execution. During model creation it will always return `False`. :returns: True if running on IPU, otherwise False. """ global _is_ipu_context return _is_ipu_context def setIpuContext(val: bool): global _is_ipu_context _is_ipu_context = val def internal_cast(tensor, dtype): if dtype in [torch.float, torch.float32]: return torch.ops.poptorch.internal_cast(tensor, "FLOAT") if dtype in [torch.half, torch.float16]: return torch.ops.poptorch.internal_cast(tensor, "FLOAT16") raise ValueError( 'Invalid poptorch.cast target type. Expecting torch.float or torch.half' ) def applyOptimizer(optimizer): num_groups = len(optimizer.param_groups) for index in range(0, num_groups): torch.ops.poptorch.optimizer_group( index, optimizer.param_groups[index]["params"]) # To understand which variable groups the user wants to apply the # optimizer to we need to mark them via a wrapper. We do this because # when we reference the variables in the context of the operation we # get the corresponding IR value for "free" as part of the trace. # Otherwise we would need a system to map the variable in the optimizer # to the variable in the model to the variable in the IR. class OptimizerWrapper(torch.nn.Module): def __init__(self, model, optimizer): super().__init__() self.model = model self.optimizer = optimizer def forward(self, *args, **kwargs): out = self.model(*args, **kwargs) applyOptimizer(self.optimizer) return out @contextmanager def distributedCacheLock(model, opts): """In a distributed environment we only want the model to be compiled once. If there is only one process or if the cache is not enabled: no need for a lock, early return. Otherwise: The first process to reach the lock takes it and compiles the model. The model will be added to the PopART cache. After the first process releases the lock the other ones will grab it one at the time and compile the model too (Except that they will now all hit the cache). The last process to grab / release the lock will delete the file. (Each process append a character to the file, so the position in the file when acquiring the lock indicates how many processes have already successfully compiled the model). """ filename = None if opts.Distributed.numProcesses > 1: cache = opts._popart.options.get("cachePath", "") # pylint: disable=protected-access if not cache: logger.warning( "Use poptorch.Options.enableExecutableCaching() to avoid " "compiling the model once per process") else: os.makedirs(cache, exist_ok=True) assert os.access(cache, os.W_OK), (f"Cache folder {cache}" " is not writable") filename = os.path.join( cache, "%s.lock" % hashlib.md5(repr(model).encode("utf-8")).hexdigest()) # Not distributed mode or the cache is not enabled: do nothing. if not filename: yield False return delete_file = False try: with open(filename, "a+") as f: try: fcntl.flock(f, fcntl.LOCK_EX) # Add a character to the file f.write("0") logger.debug( "Executable cache file locked by process %s (pos %d/%d)", opts.Distributed.processId, f.tell(), opts.Distributed.numProcesses) delete_file = f.tell() == opts.Distributed.numProcesses # Only the first process should compile yield f.tell() == 1 finally: logger.debug("Process %s released the cache lock", opts.Distributed.processId) fcntl.flock(f, fcntl.LOCK_UN) finally: if delete_file: os.remove(filename) # The pickle handlers are called in two cases: when an object is copied # (i.e copy.copy(obj)) or when an object is pickled / serialised. # In both cases the object is first dumped using pickleUnwrapModel and then # in the copy case _pickleRestoreWrapperIfPossible() is called immediately after # to create the new object. # # The _wrapper_registry keeps track of the mapping between user model, parameter, # buffer types and their corresponding wrapper. # When an object is copied we want to preserve the Wrapper type: the PopTorch # wrapper doesn't contain any attribute so it's just a question of updating # the __class__attribute. # # When an object is loaded from file: the wrapper type doesn't exist anymore # therefore we keep the object unwrapped. (It will be wrapped again when passed # to poptorch.trainingModel anyway) _wrapper_registry: Dict[int, Any] = {} def _pickleRestoreWrapperIfPossible(obj): wrapperType = _wrapper_registry.get(id(obj)) if wrapperType: obj.__class__ = wrapperType return obj def pickleUnwrapObject(obj): global _wrapper_registry wrapperType = obj.__class__ obj.__class__ = obj.__class__.__bases__[0] other = copy.copy(obj) _wrapper_registry[id(other)] = wrapperType obj.__class__ = wrapperType return _pickleRestoreWrapperIfPossible, (other, )
the-stack_0_8582
#excersise when we create 2 inherited classes from main Turtle. Each has defined function to turn in predefined direction. #after we create 20 turtles and list them #we check the turtles in list and assign pen colors #let all turtles draw square, each with assigned color and turning in predefined direction from turtle import Turtle from random import randrange as rr class Turtle1(Turtle): #creating inherited class from Turtle and defining function to turn it in predefined direction. def otoc(self, uhol): self.lt(uhol) class Turtle2(Turtle): #creating inherited class from Turtle and defining function to turn it in predefined direction def otoc(self, uhol): self.rt(uhol) zoz = [] #list of created turtles for i in range(20): #creating 20 turtles, if o=0 Turtle1 is created, if o=1 Turtle2 is created o = rr(0, 2) if o == 0: t1 = Turtle1() t1.seth(0) t1.pu() t1.setpos(-200 + i * 20, 0) t1.pd() zoz.append(t1) #adding turtle into list else: t2 = Turtle2() t2.seth(0) t2.pu() t2.setpos(-200 + i * 20, 0) t2.pd() zoz.append(t2) #adding turtle into list for t in zoz: #checking the list of turtles one by one. Changing pen color based on turtle instance if isinstance(t, Turtle1): t.pencolor('red') elif isinstance(t, Turtle2): t.pencolor('blue') for i in range(4): #moving turtles one after another to draw square for t in zoz: t.fd(20) t.otoc(90)
the-stack_0_8583
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Circuit class specification for the general Gaussian Boson Sampling class of circuits.""" from strawberryfields.program_utils import CircuitError, Command, group_operations import strawberryfields.ops as ops from .gaussian import GaussianSpecs class GBSSpecs(GaussianSpecs): """Circuit specifications for the general GBS class of circuits.""" short_name = 'gbs' primitives = { # meta operations "All", "_New_modes", "_Delete", # state preparations "Vacuum", "Coherent", "Squeezed", "DisplacedSqueezed", "Thermal", "Gaussian", # measurements "MeasureHomodyne", "MeasureHeterodyne", "MeasureFock", "MeasureThreshold", # channels "LossChannel", "ThermalLossChannel", # single mode gates "Dgate", "Xgate", "Zgate", "Sgate", "Rgate", "Fouriergate", "BSgate" } def compile(self, seq, registers): """Try to arrange a quantum circuit into a form suitable for Gaussian boson sampling. This method checks whether the circuit can be implemented as a Gaussian boson sampling problem, i.e., if it is equivalent to a circuit A+B, where the sequence A only contains Gaussian operations, and B only contains Fock measurements. If the answer is yes, the circuit is arranged into the A+B order, and all the Fock measurements are combined into a single :class:`MeasureFock` operation. Args: seq (Sequence[Command]): quantum circuit to modify registers (Sequence[RegRefs]): quantum registers Returns: List[Command]: modified circuit Raises: CircuitError: the circuit does not correspond to GBS """ A, B, C = group_operations(seq, lambda x: isinstance(x, ops.MeasureFock)) # C should be empty if C: raise CircuitError('Operations following the Fock measurements.') # A should only contain Gaussian operations # (but this is already guaranteed by group_operations() and our primitive set) # without Fock measurements GBS is pointless if not B: raise CircuitError('GBS circuits must contain Fock measurements.') # there should be only Fock measurements in B measured = set() for cmd in B: if not isinstance(cmd.op, ops.MeasureFock): raise CircuitError('The Fock measurements are not consecutive.') # combine the Fock measurements temp = set(cmd.reg) if measured & temp: raise CircuitError('Measuring the same mode more than once.') measured |= temp # replace B with a single Fock measurement B = [Command(ops.MeasureFock(), sorted(list(measured), key=lambda x: x.ind))] return super().compile(A + B, registers)
the-stack_0_8584
#In 1 from __future__ import print_function from __future__ import division import pandas as pd import numpy as np # from matplotlib import pyplot as plt # import seaborn as sns # from sklearn.model_selection import train_test_split import statsmodels.api as sm # just for the sake of this blog post! from warnings import filterwarnings filterwarnings('ignore') #In 2 # load the provided data train_features = pd.read_csv('data/dengue_features_train.csv', index_col=[0,1,2]) train_labels = pd.read_csv('data/dengue_labels_train.csv', index_col=[0,1,2]) # Separate data for Iquitos iq_train_features = train_features.loc['iq'] iq_train_labels = train_labels.loc['iq'] iq_train_features.drop('week_start_date', axis=1, inplace=True) #In 7 # Null check iq_train_features.fillna(method='ffill', inplace=True) #In 13 iq_train_features['total_cases'] = iq_train_labels.total_cases #In 14 # compute the correlations iq_correlations = iq_train_features.corr() #In 19 def preprocess_data(data_path, labels_path=None): # load data and set index to city, year, weekofyear df = pd.read_csv(data_path, index_col=[0, 1, 2]) # select features we want features = ['reanalysis_specific_humidity_g_per_kg', 'reanalysis_dew_point_temp_k', 'reanalysis_min_air_temp_k'] df = df[features] # fill missing values df.fillna(method='ffill', inplace=True) # add labels to dataframe if labels_path: labels = pd.read_csv(labels_path, index_col=[0, 1, 2]) df = df.join(labels) # separate san juan and iquitos iq = df.loc['iq'] return iq #In 20 iq_train = preprocess_data('data/dengue_features_train.csv', labels_path="data/dengue_labels_train.csv") iq_train_subtrain = iq_train #iq_train_subtrain = iq_train.head(400) iq_train_subtest = iq_train.tail(iq_train.shape[0] - 400) #In 24 from statsmodels.tools import eval_measures import statsmodels.formula.api as smf def get_best_model(train, test): # Step 1: specify the form of the model model_formula = "total_cases ~ 1 + " \ "reanalysis_specific_humidity_g_per_kg + " \ "reanalysis_dew_point_temp_k + " \ "reanalysis_min_air_temp_k" grid = 10 ** np.arange(-8, -3, dtype=np.float64) best_alpha = [] best_score = 1000 # Step 2: Find the best hyper parameter, alpha for alpha in grid: model = smf.glm(formula=model_formula, data=train, family=sm.families.NegativeBinomial(alpha=alpha)) results = model.fit() predictions = results.predict(test).astype(int) score = eval_measures.meanabs(predictions, test.total_cases) if score < best_score: best_alpha = alpha best_score = score # Step 3: refit on entire dataset full_dataset = pd.concat([train, test]) model = smf.glm(formula=model_formula, data=full_dataset, family=sm.families.NegativeBinomial(alpha=best_alpha)) fitted_model = model.fit() return fitted_model iq_best_model = get_best_model(iq_train_subtrain, iq_train_subtest) iq_test = preprocess_data('data/dengue_features_test.csv') iq_predictions = iq_best_model.predict(iq_test).astype(int) submission = pd.read_csv("data/submission_format.csv", index_col=[0, 1, 2]) submission.total_cases = np.concatenate([iq_predictions]) submission.to_csv("data/benchmark.csv")
the-stack_0_8585
"""Xbox Media Source Implementation.""" from __future__ import annotations from dataclasses import dataclass from pydantic.error_wrappers import ValidationError # pylint: disable=no-name-in-module from xbox.webapi.api.client import XboxLiveClient from xbox.webapi.api.provider.catalog.models import FieldsTemplate, Image from xbox.webapi.api.provider.gameclips.models import GameclipsResponse from xbox.webapi.api.provider.screenshots.models import ScreenshotResponse from xbox.webapi.api.provider.smartglass.models import InstalledPackage from homeassistant.components.media_player.const import ( MEDIA_CLASS_DIRECTORY, MEDIA_CLASS_GAME, MEDIA_CLASS_IMAGE, MEDIA_CLASS_VIDEO, ) from homeassistant.components.media_source.const import MEDIA_MIME_TYPES from homeassistant.components.media_source.models import ( BrowseMediaSource, MediaSource, MediaSourceItem, PlayMedia, ) from homeassistant.core import callback from homeassistant.helpers.typing import HomeAssistantType from homeassistant.util import dt as dt_util from .browse_media import _find_media_image from .const import DOMAIN MIME_TYPE_MAP = { "gameclips": "video/mp4", "screenshots": "image/png", } MEDIA_CLASS_MAP = { "gameclips": MEDIA_CLASS_VIDEO, "screenshots": MEDIA_CLASS_IMAGE, } async def async_get_media_source(hass: HomeAssistantType): """Set up Xbox media source.""" entry = hass.config_entries.async_entries(DOMAIN)[0] client = hass.data[DOMAIN][entry.entry_id]["client"] return XboxSource(hass, client) @callback def async_parse_identifier( item: MediaSourceItem, ) -> tuple[str, str, str]: """Parse identifier.""" identifier = item.identifier or "" start = ["", "", ""] items = identifier.lstrip("/").split("~~", 2) return tuple(items + start[len(items) :]) @dataclass class XboxMediaItem: """Represents gameclip/screenshot media.""" caption: str thumbnail: str uri: str media_class: str class XboxSource(MediaSource): """Provide Xbox screenshots and gameclips as media sources.""" name: str = "Xbox Game Media" def __init__(self, hass: HomeAssistantType, client: XboxLiveClient): """Initialize Xbox source.""" super().__init__(DOMAIN) self.hass: HomeAssistantType = hass self.client: XboxLiveClient = client async def async_resolve_media(self, item: MediaSourceItem) -> PlayMedia: """Resolve media to a url.""" _, category, url = async_parse_identifier(item) kind = category.split("#", 1)[1] return PlayMedia(url, MIME_TYPE_MAP[kind]) async def async_browse_media( self, item: MediaSourceItem, media_types: tuple[str] = MEDIA_MIME_TYPES ) -> BrowseMediaSource: """Return media.""" title, category, _ = async_parse_identifier(item) if not title: return await self._build_game_library() if not category: return _build_categories(title) return await self._build_media_items(title, category) async def _build_game_library(self): """Display installed games across all consoles.""" apps = await self.client.smartglass.get_installed_apps() games = { game.one_store_product_id: game for game in apps.result if game.is_game and game.title_id } app_details = await self.client.catalog.get_products( games.keys(), FieldsTemplate.BROWSE, ) images = { prod.product_id: prod.localized_properties[0].images for prod in app_details.products } return BrowseMediaSource( domain=DOMAIN, identifier="", media_class=MEDIA_CLASS_DIRECTORY, media_content_type="", title="Xbox Game Media", can_play=False, can_expand=True, children=[_build_game_item(game, images) for game in games.values()], children_media_class=MEDIA_CLASS_GAME, ) async def _build_media_items(self, title, category): """Fetch requested gameclip/screenshot media.""" title_id, _, thumbnail = title.split("#", 2) owner, kind = category.split("#", 1) items: list[XboxMediaItem] = [] try: if kind == "gameclips": if owner == "my": response: GameclipsResponse = ( await self.client.gameclips.get_recent_clips_by_xuid( self.client.xuid, title_id ) ) elif owner == "community": response: GameclipsResponse = await self.client.gameclips.get_recent_community_clips_by_title_id( title_id ) else: return None items = [ XboxMediaItem( item.user_caption or dt_util.as_local( dt_util.parse_datetime(item.date_recorded) ).strftime("%b. %d, %Y %I:%M %p"), item.thumbnails[0].uri, item.game_clip_uris[0].uri, MEDIA_CLASS_VIDEO, ) for item in response.game_clips ] elif kind == "screenshots": if owner == "my": response: ScreenshotResponse = ( await self.client.screenshots.get_recent_screenshots_by_xuid( self.client.xuid, title_id ) ) elif owner == "community": response: ScreenshotResponse = await self.client.screenshots.get_recent_community_screenshots_by_title_id( title_id ) else: return None items = [ XboxMediaItem( item.user_caption or dt_util.as_local(item.date_taken).strftime( "%b. %d, %Y %I:%M%p" ), item.thumbnails[0].uri, item.screenshot_uris[0].uri, MEDIA_CLASS_IMAGE, ) for item in response.screenshots ] except ValidationError: # Unexpected API response pass return BrowseMediaSource( domain=DOMAIN, identifier=f"{title}~~{category}", media_class=MEDIA_CLASS_DIRECTORY, media_content_type="", title=f"{owner.title()} {kind.title()}", can_play=False, can_expand=True, children=[_build_media_item(title, category, item) for item in items], children_media_class=MEDIA_CLASS_MAP[kind], thumbnail=thumbnail, ) def _build_game_item(item: InstalledPackage, images: list[Image]): """Build individual game.""" thumbnail = "" image = _find_media_image(images.get(item.one_store_product_id, [])) if image is not None: thumbnail = image.uri if thumbnail[0] == "/": thumbnail = f"https:{thumbnail}" return BrowseMediaSource( domain=DOMAIN, identifier=f"{item.title_id}#{item.name}#{thumbnail}", media_class=MEDIA_CLASS_GAME, media_content_type="", title=item.name, can_play=False, can_expand=True, children_media_class=MEDIA_CLASS_DIRECTORY, thumbnail=thumbnail, ) def _build_categories(title): """Build base categories for Xbox media.""" _, name, thumbnail = title.split("#", 2) base = BrowseMediaSource( domain=DOMAIN, identifier=f"{title}", media_class=MEDIA_CLASS_GAME, media_content_type="", title=name, can_play=False, can_expand=True, children=[], children_media_class=MEDIA_CLASS_DIRECTORY, thumbnail=thumbnail, ) owners = ["my", "community"] kinds = ["gameclips", "screenshots"] for owner in owners: for kind in kinds: base.children.append( BrowseMediaSource( domain=DOMAIN, identifier=f"{title}~~{owner}#{kind}", media_class=MEDIA_CLASS_DIRECTORY, media_content_type="", title=f"{owner.title()} {kind.title()}", can_play=False, can_expand=True, children_media_class=MEDIA_CLASS_MAP[kind], ) ) return base def _build_media_item(title: str, category: str, item: XboxMediaItem): """Build individual media item.""" kind = category.split("#", 1)[1] return BrowseMediaSource( domain=DOMAIN, identifier=f"{title}~~{category}~~{item.uri}", media_class=item.media_class, media_content_type=MIME_TYPE_MAP[kind], title=item.caption, can_play=True, can_expand=False, thumbnail=item.thumbnail, )
the-stack_0_8587
#Reads files #input = open('words.txt','r') input = open('http://woz.cs.missouriwestern.edu/data/docs/moby.txt') for line in input: line = line.strip() print("The line is",line) input.close() print("Done")
the-stack_0_8588
from commands import tankdrive import ctre from wpilib import SmartDashboard as Dash from wpilib.command import Subsystem from constants import Constants from utils import singleton, units, lazytalonsrx import math class Drive(Subsystem, metaclass=singleton.Singleton): """The Drive subsystem controls the drive motors and encoders.""" def __init__(self): super().__init__() def init(self): """Initialize the drive motors. This is not in the constructor to make the calling explicit in the robotInit to the robot simulator.""" self.bl_motor = lazytalonsrx.LazyTalonSRX(Constants.BL_MOTOR_ID) self.br_motor = lazytalonsrx.LazyTalonSRX(Constants.BR_MOTOR_ID) self.fl_motor = lazytalonsrx.LazyTalonSRX(Constants.FL_MOTOR_ID) self.fr_motor = lazytalonsrx.LazyTalonSRX(Constants.FR_MOTOR_ID) self.motors = [self.bl_motor, self.br_motor, self.fl_motor, self.fr_motor] self.bl_motor.initialize( inverted=False, encoder=True, phase=True, name="Drive Back Left") self.br_motor.initialize( inverted=True, encoder=True, phase=True, name="Drive Back Right") self.fl_motor.initialize( inverted=False, encoder=True, phase=True, name="Drive Front Left") self.fr_motor.initialize( inverted=True, encoder=True, phase=True, name="Drive Front Right") self.initPIDF() def initPIDF(self): """Initialize the drive motor pidf gains.""" self.bl_motor.setPIDF(0, Constants.BL_VELOCITY_KP, Constants.BL_VELOCITY_KI, Constants.BL_VELOCITY_KD, Constants.BL_VELOCITY_KF) self.br_motor.setPIDF(0, Constants.BR_VELOCITY_KP, Constants.BR_VELOCITY_KI, Constants.BR_VELOCITY_KD, Constants.BR_VELOCITY_KF) self.fl_motor.setPIDF(0, Constants.FL_VELOCITY_KP, Constants.FL_VELOCITY_KI, Constants.FL_VELOCITY_KD, Constants.FL_VELOCITY_KF) self.fr_motor.setPIDF(0, Constants.FR_VELOCITY_KP, Constants.FR_VELOCITY_KI, Constants.FR_VELOCITY_KD, Constants.FR_VELOCITY_KF) def zeroSensors(self): """Set the encoder positions to 0.""" for motor in self.motors: motor.zero() def outputToDashboard(self): self.bl_motor.outputToDashboard() self.br_motor.outputToDashboard() self.fl_motor.outputToDashboard() self.fr_motor.outputToDashboard() def setPercentOutput(self, bl_signal, br_signal, fl_signal, fr_signal): """Set the percent output of the 4 motors.""" bl_signal = math.copysign(abs(bl_signal)**Constants.BL_EXP, bl_signal) br_signal = math.copysign(abs(br_signal)**Constants.BR_EXP, br_signal) fl_signal = math.copysign(abs(fl_signal)**Constants.FL_EXP, fl_signal) fr_signal = math.copysign(abs(fr_signal)**Constants.FR_EXP, fr_signal) self.bl_motor.setPercentOutput( bl_signal, max_signal=Constants.MAX_DRIVE_OUTPUT) self.br_motor.setPercentOutput( br_signal, max_signal=Constants.MAX_DRIVE_OUTPUT) self.fl_motor.setPercentOutput( fl_signal, max_signal=Constants.MAX_DRIVE_OUTPUT) self.fr_motor.setPercentOutput( fr_signal, max_signal=Constants.MAX_DRIVE_OUTPUT) def setDirectionOutput(self, x_signal, y_signal, rotation): """Set percent output of the 4 motors given an x, y, and rotation inputs.""" if Constants.MAX_TURN_SPEED < abs(rotation): rotation = math.copysign(Constants.MAX_TURN_SPEED, rotation) bl_signal = x_signal - y_signal + rotation br_signal = x_signal + y_signal - rotation fl_signal = x_signal + y_signal + rotation fr_signal = x_signal - y_signal - rotation self.setPercentOutput(bl_signal, br_signal, fl_signal, fr_signal) def setDirectionVelocity(self, x_signal, y_signal, rotation): """Set percent output of the 4 motors given an x, y, and rotation inputs.""" bl_signal = x_signal - y_signal + rotation br_signal = x_signal + y_signal - rotation fl_signal = x_signal + y_signal + rotation fr_signal = x_signal - y_signal - rotation self.setVelocityOutput(bl_signal, br_signal, fl_signal, fr_signal) def setVelocityOutput(self, bl_velocity, br_velocity, fl_velocity, fr_velocity): self.bl_motor.setVelocitySetpoint(bl_velocity) self.br_motor.setVelocitySetpoint(br_velocity) self.fl_motor.setVelocitySetpoint(fl_velocity) self.fr_motor.setVelocitySetpoint(fr_velocity) def initDefaultCommand(self): return self.setDefaultCommand(tankdrive.TankDrive()) def periodic(self): self.outputToDashboard() def reset(self): self.zeroSensors() self.initPIDF()
the-stack_0_8591
import numpy as np import scipy.signal from typing import Dict, Optional from ray.rllib.evaluation.episode import MultiAgentEpisode from ray.rllib.policy.policy import Policy from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.annotations import DeveloperAPI from ray.rllib.utils.typing import AgentID class Postprocessing: """Constant definitions for postprocessing.""" ADVANTAGES = "advantages" VALUE_TARGETS = "value_targets" def adjust_nstep(n_step: int, gamma: float, batch: SampleBatch) -> None: """Rewrites `batch` to encode n-step rewards, dones, and next-obs. Observations and actions remain unaffected. At the end of the trajectory, n is truncated to fit in the traj length. Args: n_step (int): The number of steps to look ahead and adjust. gamma (float): The discount factor. batch (SampleBatch): The SampleBatch to adjust (in place). Examples: n-step=3 Trajectory=o0 r0 d0, o1 r1 d1, o2 r2 d2, o3 r3 d3, o4 r4 d4=True o5 gamma=0.9 Returned trajectory: 0: o0 [r0 + 0.9*r1 + 0.9^2*r2 + 0.9^3*r3] d3 o0'=o3 1: o1 [r1 + 0.9*r2 + 0.9^2*r3 + 0.9^3*r4] d4 o1'=o4 2: o2 [r2 + 0.9*r3 + 0.9^2*r4] d4 o1'=o5 3: o3 [r3 + 0.9*r4] d4 o3'=o5 4: o4 r4 d4 o4'=o5 """ assert not any(batch[SampleBatch.DONES][:-1]), \ "Unexpected done in middle of trajectory!" len_ = len(batch) # Shift NEXT_OBS and DONES. batch[SampleBatch.NEXT_OBS] = np.concatenate( [ batch[SampleBatch.OBS][n_step:], np.stack([batch[SampleBatch.NEXT_OBS][-1]] * min(n_step, len_)) ], axis=0) batch[SampleBatch.DONES] = np.concatenate( [ batch[SampleBatch.DONES][n_step - 1:], np.tile(batch[SampleBatch.DONES][-1], min(n_step - 1, len_)) ], axis=0) # Change rewards in place. for i in range(len_): for j in range(1, n_step): if i + j < len_: batch[SampleBatch.REWARDS][i] += \ gamma**j * batch[SampleBatch.REWARDS][i + j] @DeveloperAPI def compute_advantages(rollout: SampleBatch, last_r: float, gamma: float = 0.9, lambda_: float = 1.0, use_gae: bool = True, use_critic: bool = True): """ Given a rollout, compute its value targets and the advantages. Args: rollout (SampleBatch): SampleBatch of a single trajectory. last_r (float): Value estimation for last observation. gamma (float): Discount factor. lambda_ (float): Parameter for GAE. use_gae (bool): Using Generalized Advantage Estimation. use_critic (bool): Whether to use critic (value estimates). Setting this to False will use 0 as baseline. Returns: SampleBatch (SampleBatch): Object with experience from rollout and processed rewards. """ assert SampleBatch.VF_PREDS in rollout or not use_critic, \ "use_critic=True but values not found" assert use_critic or not use_gae, \ "Can't use gae without using a value function" if use_gae: vpred_t = np.concatenate( [rollout[SampleBatch.VF_PREDS], np.array([last_r])]) delta_t = ( rollout[SampleBatch.REWARDS] + gamma * vpred_t[1:] - vpred_t[:-1]) # This formula for the advantage comes from: # "Generalized Advantage Estimation": https://arxiv.org/abs/1506.02438 rollout[Postprocessing.ADVANTAGES] = discount_cumsum( delta_t, gamma * lambda_) rollout[Postprocessing.VALUE_TARGETS] = ( rollout[Postprocessing.ADVANTAGES] + rollout[SampleBatch.VF_PREDS]).astype(np.float32) else: rewards_plus_v = np.concatenate( [rollout[SampleBatch.REWARDS], np.array([last_r])]) discounted_returns = discount_cumsum(rewards_plus_v, gamma)[:-1].astype(np.float32) if use_critic: rollout[Postprocessing. ADVANTAGES] = discounted_returns - rollout[SampleBatch. VF_PREDS] rollout[Postprocessing.VALUE_TARGETS] = discounted_returns else: rollout[Postprocessing.ADVANTAGES] = discounted_returns rollout[Postprocessing.VALUE_TARGETS] = np.zeros_like( rollout[Postprocessing.ADVANTAGES]) rollout[Postprocessing.ADVANTAGES] = rollout[ Postprocessing.ADVANTAGES].astype(np.float32) return rollout def compute_gae_for_sample_batch( policy: Policy, sample_batch: SampleBatch, other_agent_batches: Optional[Dict[AgentID, SampleBatch]] = None, episode: Optional[MultiAgentEpisode] = None) -> SampleBatch: """Adds GAE (generalized advantage estimations) to a trajectory. The trajectory contains only data from one episode and from one agent. - If `config.batch_mode=truncate_episodes` (default), sample_batch may contain a truncated (at-the-end) episode, in case the `config.rollout_fragment_length` was reached by the sampler. - If `config.batch_mode=complete_episodes`, sample_batch will contain exactly one episode (no matter how long). New columns can be added to sample_batch and existing ones may be altered. Args: policy (Policy): The Policy used to generate the trajectory (`sample_batch`) sample_batch (SampleBatch): The SampleBatch to postprocess. other_agent_batches (Optional[Dict[PolicyID, SampleBatch]]): Optional dict of AgentIDs mapping to other agents' trajectory data (from the same episode). NOTE: The other agents use the same policy. episode (Optional[MultiAgentEpisode]): Optional multi-agent episode object in which the agents operated. Returns: SampleBatch: The postprocessed, modified SampleBatch (or a new one). """ # Trajectory is actually complete -> last r=0.0. if sample_batch[SampleBatch.DONES][-1]: last_r = 0.0 # Trajectory has been truncated -> last r=VF estimate of last obs. else: # Input dict is provided to us automatically via the Model's # requirements. It's a single-timestep (last one in trajectory) # input_dict. # Create an input dict according to the Model's requirements. input_dict = sample_batch.get_single_step_input_dict( policy.model.view_requirements, index="last") last_r = policy._value(**input_dict) # Adds the policy logits, VF preds, and advantages to the batch, # using GAE ("generalized advantage estimation") or not. batch = compute_advantages( sample_batch, last_r, policy.config["gamma"], policy.config["lambda"], use_gae=policy.config["use_gae"], use_critic=policy.config.get("use_critic", True)) return batch def discount_cumsum(x: np.ndarray, gamma: float) -> np.ndarray: """Calculates the discounted cumulative sum over a reward sequence `x`. y[t] - discount*y[t+1] = x[t] reversed(y)[t] - discount*reversed(y)[t-1] = reversed(x)[t] Args: gamma (float): The discount factor gamma. Returns: np.ndarray: The sequence containing the discounted cumulative sums for each individual reward in `x` till the end of the trajectory. Examples: >>> x = np.array([0.0, 1.0, 2.0, 3.0]) >>> gamma = 0.9 >>> discount_cumsum(x, gamma) ... array([0.0 + 0.9*1.0 + 0.9^2*2.0 + 0.9^3*3.0, ... 1.0 + 0.9*2.0 + 0.9^2*3.0, ... 2.0 + 0.9*3.0, ... 3.0]) """ return scipy.signal.lfilter([1], [1, float(-gamma)], x[::-1], axis=0)[::-1]
the-stack_0_8594
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource_py3 import Resource class VirtualWAN(Resource): """VirtualWAN Resource. Variables are only populated by the server, and will be ignored when sending a request. :param id: Resource ID. :type id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :param location: Resource location. :type location: str :param tags: Resource tags. :type tags: dict[str, str] :param disable_vpn_encryption: Vpn encryption to be disabled or not. :type disable_vpn_encryption: bool :ivar virtual_hubs: List of VirtualHubs in the VirtualWAN. :vartype virtual_hubs: list[~azure.mgmt.network.v2019_02_01.models.SubResource] :ivar vpn_sites: List of VpnSites in the VirtualWAN. :vartype vpn_sites: list[~azure.mgmt.network.v2019_02_01.models.SubResource] :param security_provider_name: The Security Provider name. :type security_provider_name: str :param allow_branch_to_branch_traffic: True if branch to branch traffic is allowed. :type allow_branch_to_branch_traffic: bool :param allow_vnet_to_vnet_traffic: True if Vnet to Vnet traffic is allowed. :type allow_vnet_to_vnet_traffic: bool :param office365_local_breakout_category: The office local breakout category. Possible values include: 'Optimize', 'OptimizeAndAllow', 'All', 'None' :type office365_local_breakout_category: str or ~azure.mgmt.network.v2019_02_01.models.OfficeTrafficCategory :param p2_svpn_server_configurations: List of all P2SVpnServerConfigurations associated with the virtual wan. :type p2_svpn_server_configurations: list[~azure.mgmt.network.v2019_02_01.models.P2SVpnServerConfiguration] :param provisioning_state: The provisioning state of the resource. Possible values include: 'Succeeded', 'Updating', 'Deleting', 'Failed' :type provisioning_state: str or ~azure.mgmt.network.v2019_02_01.models.ProvisioningState :ivar etag: Gets a unique read-only string that changes whenever the resource is updated. :vartype etag: str """ _validation = { 'name': {'readonly': True}, 'type': {'readonly': True}, 'virtual_hubs': {'readonly': True}, 'vpn_sites': {'readonly': True}, 'etag': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'disable_vpn_encryption': {'key': 'properties.disableVpnEncryption', 'type': 'bool'}, 'virtual_hubs': {'key': 'properties.virtualHubs', 'type': '[SubResource]'}, 'vpn_sites': {'key': 'properties.vpnSites', 'type': '[SubResource]'}, 'security_provider_name': {'key': 'properties.securityProviderName', 'type': 'str'}, 'allow_branch_to_branch_traffic': {'key': 'properties.allowBranchToBranchTraffic', 'type': 'bool'}, 'allow_vnet_to_vnet_traffic': {'key': 'properties.allowVnetToVnetTraffic', 'type': 'bool'}, 'office365_local_breakout_category': {'key': 'properties.office365LocalBreakoutCategory', 'type': 'str'}, 'p2_svpn_server_configurations': {'key': 'properties.p2SVpnServerConfigurations', 'type': '[P2SVpnServerConfiguration]'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'etag': {'key': 'etag', 'type': 'str'}, } def __init__(self, *, id: str=None, location: str=None, tags=None, disable_vpn_encryption: bool=None, security_provider_name: str=None, allow_branch_to_branch_traffic: bool=None, allow_vnet_to_vnet_traffic: bool=None, office365_local_breakout_category=None, p2_svpn_server_configurations=None, provisioning_state=None, **kwargs) -> None: super(VirtualWAN, self).__init__(id=id, location=location, tags=tags, **kwargs) self.disable_vpn_encryption = disable_vpn_encryption self.virtual_hubs = None self.vpn_sites = None self.security_provider_name = security_provider_name self.allow_branch_to_branch_traffic = allow_branch_to_branch_traffic self.allow_vnet_to_vnet_traffic = allow_vnet_to_vnet_traffic self.office365_local_breakout_category = office365_local_breakout_category self.p2_svpn_server_configurations = p2_svpn_server_configurations self.provisioning_state = provisioning_state self.etag = None
the-stack_0_8595
from flask import Flask, request, jsonify from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow import os from flask_cors import CORS # Init app app = Flask(__name__) #config headers CORS(app) basedir = os.path.abspath(os.path.dirname(__file__)) # Database app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.join(basedir, 'db.sqlite') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False # Init db db = SQLAlchemy(app) # Init ma ma = Marshmallow(app) # Post Class/Model class Post(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100)) post = db.Column(db.String(300)) def __init__(self, name, post): self.name = name self.post = post # Post Schema class PostSchema(ma.Schema): class Meta: fields = ('id', 'name', 'post') # Init schema post_schema = PostSchema() posts_schema = PostSchema(many=True) # Create a Post @app.route('/post', methods=['POST']) def add_post(): name = request.json['name'] post = request.json['post'] new_post = Post(name, post) db.session.add(new_post) db.session.commit() return post_schema.jsonify(new_post) # Get All Posts @app.route('/post', methods=['GET']) def get_posts(): all_posts = Post.query.all() result = posts_schema.dump(all_posts) return jsonify(result) # Get Single Post @app.route('/post/<id>', methods=['GET']) def get_post(id): post = Post.query.get(id) return post_schema.jsonify(post) # Update a Post @app.route('/post/<id>', methods=['PUT']) def update_post(id): my_post = Post.query.get(id) name = request.json['name'] post = request.json['post'] my_post.name = name my_post.post = post db.session.commit() return post_schema.jsonify(my_post) # Delete Post @app.route('/post/<id>', methods=['DELETE']) def delete_post(id): post = Post.query.get(id) db.session.delete(post) db.session.commit() return post_schema.jsonify(post) # Run Server if __name__ == '__main__': app.run(debug=True)
the-stack_0_8597
import sys import pygame from pygame.locals import * from constants import * from event import HandleEvent from utils.vector import Vector3 from utils.camera import Camera from utils.light import Light from utils.mesh.base import Mesh from utils.mesh.meshes import * from utils.mesh.spheres import * from utils.mesh.point import * from utils.matrix import * from utils.tools import * from utils.world import Scene from random import randint pygame.init() flags = DOUBLEBUF screen = pygame.display.set_mode(Size, flags, 16) clock = pygame.time.Clock() fps = 240 #mouse setup pygame.mouse.get_rel() pygame.mouse.set_visible(True) a = pygame.event.set_grab(False) # create scene and the world res = 3 scene = Scene() for x in range(res): for y in range(res): for z in range(res): cube = Mesh() s = 5 r = randint(10, 255) g = randint(10, 255) b = randint(10, 255) cube.triangles = CubeTriangles((r, g, b),Vector3(x * s, y * s, z * s), s) cube.position = Vector3(x * s, y * s, z * s) cube.transform = Matrix.scaling(0.1) scene.world.append(cube) #camera setup camera = Camera(Vector3(0, 0, 0), 0.1, 1000.0, 75.0) camera.speed = 0.5 camera.rotationSpeed = 0.8 #light setup light = Light(Vector3(0.9, 0.9, -1)) hue = 0 angle = 0 moveLight = True run = True while run: screen.fill(BackgroundColor) clock.tick(fps) dt = clock.tick(fps)/100 frameRate = clock.get_fps() pygame.display.set_caption(str(frameRate) + " fps") run = HandleEvent(camera, dt) hue = 0 camera.HandleInput(dt) if moveLight == True and light != None: mx, my = pygame.mouse.get_pos() _x = translateValue( mx, 0, Width, -1, 1) _y = translateValue( my, 0, Height, -1, 1) light = Light(Vector3(-_x, -_y, -1)) scene.update( dt = dt, camera=camera, light=light, screen=screen, showAxis=True, fill=True, wireframe=True, vertices=True, depth=True, clippingDebug=False, showNormals=False, radius=2, verticeColor=False, wireframeColor=(255, 255, 255), ChangingColor=hue) pygame.display.flip() angle += 0.01 pygame.quit() sys.exit()
the-stack_0_8598
from torchvision.datasets import CIFAR10 from torchvision.datasets import CIFAR100 from torch.utils.data import DataLoader from torchvision.transforms import Compose, Pad, RandomCrop, RandomHorizontalFlip from torchvision.transforms import ToTensor, Normalize CIFAR10_CLASS = [ "airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck" ] class WrappedCIFAR10(CIFAR10): def __init__(self, root, train=True, download=False, *args, **kwargs): self.categories = CIFAR10_CLASS if train: transforms = Compose([ Pad(padding=4), RandomCrop(size=32), RandomHorizontalFlip(p=0.5), ToTensor(), Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) else: transforms = Compose([ RandomHorizontalFlip(p=0.5), ToTensor(), Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) super(WrappedCIFAR10, self).__init__( root=root, train=train, transform=transforms, download=download, *args, **kwargs) class WrappedCIFAR100(CIFAR100): def __init__(self, root, train=True, download=False, *args, **kwargs): if train: transforms = Compose([ Pad(padding=4), RandomCrop(size=32), RandomHorizontalFlip(p=0.5), ToTensor(), Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) else: transforms = Compose([ RandomHorizontalFlip(p=0.5), ToTensor(), Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) super(WrappedCIFAR100, self).__init__( root=root, train=train, transform=transforms, download=download, *args, **kwargs) if __name__ == '__main__': # You need to change the argument according to your own settings. ROOT = "path/to/data" def download_CIFAR10(): print("Downloading CIFAR10......") CIFAR = WrappedCIFAR10(root=ROOT, download=True) def test_CIFAR10(): CIFAR = WrappedCIFAR10(root=ROOT, train=True) CIFAR_dataloader = DataLoader(CIFAR, batch_size=4, shuffle=True, num_workers=4) for i in CIFAR_dataloader: print(i[0].shape, i[1]) def test_CIFAR10_using_network(): from torch.utils import data from models.resnet import ResNetMini from loss import fetch_loss from optimizer import fetch_optimizer batch_size = 4 epoch = 1 train_data = WrappedCIFAR10(root=ROOT, train=True) train_loader = data.DataLoader( train_data, batch_size=batch_size, shuffle=True, num_workers=4) network = ResNetMini().cuda() loss_func = fetch_loss() optim = fetch_optimizer()(network.parameters(), lr=0.001, momentum=0.9) for e in range(epoch): for iter, data in enumerate(train_loader): I, Y = data I, Y = I.cuda(), Y.cuda() Y_pre = network(I) loss = loss_func(Y_pre, Y) optim.zero_grad() loss.backward() optim.step() if iter % 100 == 0: print("iter: ", iter, " , loss: ", loss.item()) # download_CIFAR10() # test_CIFAR10() # test_CIFAR10_using_network()
the-stack_0_8600
import sys from typing import List def reverse_args(av: List[str]) -> None: if len(av) == 1: return without_program_name = av[1:len(av)] joined = ' '.join(without_program_name) reversed = joined[::-1] swap_Aa_aA = reversed.swapcase() print(swap_Aa_aA) return if __name__ == "__main__": reverse_args(sys.argv)
the-stack_0_8601
""" example showing how to plot data from a DEM file and an ESRI shape file using gdal (http://pypi.python.org/pypi/GDAL). """ from osgeo import gdal, ogr from mpl_toolkits.basemap import Basemap, cm import numpy as np import matplotlib.pyplot as plt from numpy import ma # read 2.5 minute U.S. DEM file using gdal. # (http://www.prism.oregonstate.edu/docs/meta/dem_25m.htm) gd = gdal.Open('us_25m.dem') array = gd.ReadAsArray() # get lat/lon coordinates from DEM file. coords = gd.GetGeoTransform() nlons = array.shape[1]; nlats = array.shape[0] delon = coords[1] delat = coords[5] lons = coords[0] + delon*np.arange(nlons) lats = coords[3] + delat*np.arange(nlats)[::-1] # reverse lats # setup figure. fig = plt.figure(figsize=(11,6)) # setup basemap instance. m = Basemap(llcrnrlon=-119,llcrnrlat=22,urcrnrlon=-64,urcrnrlat=49, projection='lcc',lat_1=33,lat_2=45,lon_0=-95) # create masked array, reversing data in latitude direction # (so that data is oriented in increasing latitude, as transform_scalar requires). topoin = ma.masked_values(array[::-1,:],-999.) # transform DEM data to a 4 km native projection grid nx = int((m.xmax-m.xmin)/4000.)+1; ny = int((m.ymax-m.ymin)/4000.)+1 topodat = m.transform_scalar(topoin,lons,lats,nx,ny,masked=True) # plot DEM image on map. im = m.imshow(topodat,cmap=cm.GMT_haxby_r) # draw meridians and parallels. m.drawparallels(np.arange(20,71,10),labels=[1,0,0,0]) m.drawmeridians(np.arange(-120,-40,10),labels=[0,0,0,1]) # plot state boundaries from shapefile using ogr. g = ogr.Open ("st99_d00.shp") L = g.GetLayer(0) # data is in 1st layer. for feat in L: # iterate over features in layer geo = feat.GetGeometryRef() # iterate over geometries. for count in range(geo.GetGeometryCount()): geom = geo.GetGeometryRef(count) if not geom.GetGeometryCount(): # just one geometry. # get lon,lat points lons = [geom.GetX(i) for i in range(geom.GetPointCount())] lats = [geom.GetY(i) for i in range(geom.GetPointCount())] # convert to map projection coords. x, y = m(lons,lats) # plot on map. m.plot(x,y,'k') else: # iterate over nested geometries. for cnt in range( geom.GetGeometryCount()): g = geom.GetGeometryRef( cnt ) lons = [g.GetX(i) for i in range(g.GetPointCount())] lats = [g.GetY(i) for i in range(g.GetPointCount())] x, y = m(lons,lats) m.plot(x,y,'k') # draw colorbar. m.colorbar(im) plt.title(gd.GetDescription()+' with state boundaries from '+g.GetName(),y=1.05) plt.show()
the-stack_0_8607
# Copyright 2015 VMware, Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from neutron.tests import base from vmware_nsx.plugins.nsx_v.vshield import vcns_driver from vmware_nsx.services.lbaas.nsx_v import lbaas_common as lb_common EDGE_ID = 'edge-x' POOL_ID = 'b3dfb476-6fdf-4ddd-b6bd-e86ae78dc30b' def firewall_section_maker(if_ip_list, vip_ip_list): return ( '<section id="1132" name="LBaaS FW Rules"><rule><name>' + POOL_ID + '</name><action>allow</action><sources excluded="false"><source>' '<type>Ipv4Address</type><value>' + ','.join(if_ip_list) + '</value></source></sources><destinations excluded="false">' '<destination><type>Ipv4Address</type><value>' + ','.join(vip_ip_list) + '</value></destination></destinations></rule>' '</section>') def if_maker(ip_list): intf = { 'index': 1, 'name': 'internal1', 'addressGroups': { 'addressGroups': [ {'subnetPrefixLength': '24', 'secondaryAddresses': { 'ipAddress': ip_list, 'type': 'secondary_addresses'}, 'primaryAddress': '10.0.0.1', 'subnetMask': '255.255.255.0'}]}, 'portgroupName': 'pg1234', 'label': 'vNic_1', 'type': 'internal', 'portgroupId': 'virtualwire-31'} return intf def if_list_maker(ip_list): if_list = { 'vnics': [ {'index': 0, 'name': 'external', 'addressGroups': { 'addressGroups': [ {'subnetMask': '255.255.255.0', 'primaryAddress': '172.24.4.2', 'subnetPrefixLength': '24'}]}, 'portgroupName': 'VM Network', 'label': 'vNic_0', 'type': 'uplink', 'portgroupId': 'network-13'}, {'index': 1, 'name': 'internal1', 'addressGroups': { 'addressGroups': [ {'subnetPrefixLength': '24', 'secondaryAddresses': { 'ipAddress': ip_list, 'type': 'secondary_addresses'}, 'primaryAddress': '10.0.0.1', 'subnetMask': '255.255.255.0'}]}, 'portgroupName': 'pg1234', 'label': 'vNic_1', 'type': 'internal', 'portgroupId': 'virtualwire-31'}, {'index': 2, 'name': 'vnic2', 'addressGroups': {'addressGroups': []}, 'label': 'vNic_2', 'type': 'internal'}, {'index': 3, 'name': 'vnic3', 'addressGroups': {'addressGroups': []}, 'label': 'vNic_3', 'type': 'internal'}]} return if_list class TestLbaasCommon(base.BaseTestCase): def setUp(self): super(TestLbaasCommon, self).setUp() callbacks = mock.Mock() callbacks.plugin = mock.Mock() self.edge_driver = vcns_driver.VcnsDriver(callbacks) self.edge_driver._lb_driver_prop = mock.Mock() def _mock_edge_driver_vcns(self, attr): return mock.patch.object(self.edge_driver.vcns, attr) def test_add_vip_as_secondary_ip(self): update_if = if_maker(['10.0.0.6', '10.0.0.8']) with self._mock_edge_driver_vcns('get_interfaces') as mock_get_if,\ self._mock_edge_driver_vcns( 'update_interface') as mock_update_if: mock_get_if.return_value = (None, if_list_maker(['10.0.0.6'])) lb_common.add_vip_as_secondary_ip( self.edge_driver.vcns, EDGE_ID, '10.0.0.8') mock_update_if.assert_called_with(EDGE_ID, update_if) def test_del_vip_as_secondary_ip(self): update_if = if_maker(['10.0.0.6']) with self._mock_edge_driver_vcns('get_interfaces') as mock_get_if,\ self._mock_edge_driver_vcns( 'update_interface') as mock_update_if: mock_get_if.return_value = (None, if_list_maker(['10.0.0.6', '10.0.0.8'])) lb_common.del_vip_as_secondary_ip( self.edge_driver.vcns, EDGE_ID, '10.0.0.8') mock_update_if.assert_called_with(EDGE_ID, update_if) def test_get_edge_ip_addresses(self): get_if_list = if_list_maker(['10.0.0.6']) with mock.patch.object(self.edge_driver.vcns, 'get_interfaces', return_value=(None, get_if_list)): ip_list = lb_common.get_edge_ip_addresses(self.edge_driver.vcns, EDGE_ID) self.assertEqual(['172.24.4.2', '10.0.0.1'], ip_list)
the-stack_0_8608
#!/usr/bin/env python3 # Copyright 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import sys import time import random import hashlib import avalon_enclave_manager.sgx_work_order_request as work_order_request import avalon_enclave_manager.avalon_enclave_helper as enclave_helper import avalon_crypto_utils.signature as signature import avalon_crypto_utils.crypto_utility as crypto_utils from database import connector from error_code.error_status import ReceiptCreateStatus, WorkOrderStatus from avalon_sdk.worker.worker_details import WorkerStatus, WorkerType from avalon_sdk.work_order_receipt.work_order_receipt \ import WorkOrderReceiptRequest logger = logging.getLogger(__name__) # representation of the enclave data enclave_data = None # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX class EnclaveManager: """ Wrapper for managing Worker data """ def __init__(self, config, signup_data, measurements): self.config = config self.enclave_data = signup_data self.sealed_data = signup_data.sealed_data self.verifying_key = signup_data.verifying_key self.encryption_key = signup_data.encryption_key # TODO: EncryptionKeyNonce and EncryptionKeySignature are hardcoded # to dummy values. # Need to come up with a scheme to generate both for every unique # encryption key. self.encryption_key_nonce = "" self.encryption_key_signature = "" self.enclave_id = signup_data.enclave_id self.extended_measurements = measurements # ProofDataType is one of TEE prefixed type # TODO: Read ProofDataType from config file self.proof_data_type = config.get("WorkerConfig")["ProofDataType"] self.proof_data = signup_data.proof_data # Key pair for work order receipt signing # This is temporary approach self.private_key = crypto_utils.generate_signing_keys() self.public_key = self.private_key.GetPublicKey().Serialize() def manager_on_boot(self, kv_helper): """ Executes Boot flow of enclave manager """ logger.info("Executing boot time procedure") # Cleanup "workers" table workers_list = kv_helper.lookup("workers") if len(workers_list) == 0: logger.info("No worker entries available in workers table; " + "skipping cleanup") else: logger.info("Clearing entries in workers table") for worker in workers_list: kv_helper.remove("workers", worker) worker_info = create_json_worker(self, self.config) logger.info("Adding enclave workers to workers table") worker_id = crypto_utils.strip_begin_end_public_key(self.enclave_id) \ .encode("UTF-8") # Calculate sha256 of worker id to get 32 bytes. The TC spec proxy # model contracts expect byte32. Then take a hexdigest for hex str. worker_id = hashlib.sha256(worker_id).hexdigest() kv_helper.set("workers", worker_id, worker_info) # Cleanup wo-processing" table processing_list = kv_helper.lookup("wo-processing") if len(processing_list) == 0: logger.info("No workorder entries found in " + "wo-processing table, skipping Cleanup") return for wo in processing_list: logger.info("Validating workorders in wo-processing table") wo_json_resp = kv_helper.get("wo-responses", wo) wo_processed = kv_helper.get("wo-processed", wo) if wo_json_resp is not None: try: wo_resp = json.loads(wo_json_resp) except ValueError as e: logger.error( "Invalid JSON format found for the response for " + "workorder %s - %s", wo, e) if wo_processed is None: kv_helper.set("wo-processed", wo, WorkOrderStatus.FAILED.name) kv_helper.remove("wo-processing", wo) continue if "Response" in wo_resp and \ wo_resp["Response"]["Status"] == \ WorkOrderStatus.FAILED: if wo_processed is None: kv_helper.set("wo-processed", wo, WorkOrderStatus.FAILED.name) logger.error("Work order processing failed; " + "removing it from wo-processing table") kv_helper.remove("wo-processing", wo) continue wo_receipt = kv_helper.get("wo-receipts", wo) if wo_receipt: # update receipt logger.info("Updating receipt in boot flow") self.__update_receipt(kv_helper, wo, wo_json_resp) logger.info("Receipt updated for workorder %s during boot", wo) if wo_processed is None: kv_helper.set("wo-processed", wo, WorkOrderStatus.SUCCESS.name) else: logger.info("No response found for the workorder %s; " + "hence placing the workorder request " + "back in wo-scheduled", wo) kv_helper.set("wo-scheduled", wo, WorkOrderStatus.SCHEDULED.name) logger.info( "Finally deleting workorder %s from wo-processing table", wo) kv_helper.remove("wo-processing", wo) # End of for-loop # ----------------------------------------------------------------- def process_work_orders(self, kv_helper): """ Executes Run time flow of enclave manager """ logger.info("Processing work orders") try: # Get all workorders requests from KV storage lookup and process list_of_workorders = kv_helper.lookup("wo-scheduled") if not list_of_workorders: logger.info("Received empty list of work orders from " + "wo-scheduled table") return except Exception as e: logger.error("Problem while getting keys from wo-scheduled table") return for wo_id in list_of_workorders: try: kv_helper.set("wo-processing", wo_id, WorkOrderStatus.PROCESSING.name) # Get JSON workorder request corresponding to wo_id wo_json_req = kv_helper.get("wo-requests", wo_id) if wo_json_req is None: logger.error("Received empty work order corresponding " + "to id %s from wo-requests table", wo_id) kv_helper.remove("wo-processing", wo_id) return except Exception as e: logger.error("Problem while reading the work order %s" "from wo-requests table", wo_id) kv_helper.remove("wo-processing", wo_id) return logger.info("Create workorder entry %s in wo-processing table", wo_id) kv_helper.set("wo-processing", wo_id, WorkOrderStatus.PROCESSING.name) logger.info("Delete workorder entry %s from wo-scheduled table", wo_id) kv_helper.remove("wo-scheduled", wo_id) logger.info("Validating JSON workorder request %s", wo_id) validation_status = validate_request(wo_json_req) if not validation_status: logger.error( "JSON validation for Workorder %s failed; " + "handling Failure scenarios", wo_id) wo_response["Response"]["Status"] = WorkOrderStatus.FAILED wo_response["Response"]["Message"] = \ "Workorder JSON request is invalid" kv_helper.set("wo-responses", wo_id, json.dumps(wo_response)) kv_helper.set("wo-processed", wo_id, WorkOrderStatus.FAILED.name) kv_helper.remove("wo-processing", wo_id) return # Execute work order request logger.info("Execute workorder with id %s", wo_id) wo_json_resp = execute_work_order(self.enclave_data, wo_json_req) wo_resp = json.loads(wo_json_resp) logger.info("Update workorder receipt for workorder %s", wo_id) receipt = self.__update_receipt(kv_helper, wo_id, wo_resp) if "Response" in wo_resp and \ wo_resp["Response"]["Status"] == WorkOrderStatus.FAILED: logger.error("error in Response") kv_helper.set("wo-processed", wo_id, WorkOrderStatus.FAILED.name) kv_helper.set("wo-responses", wo_id, wo_json_resp) kv_helper.remove("wo-processing", wo_id) return logger.info("Mark workorder status for workorder id %s " + "as Completed in wo-processed", wo_id) kv_helper.set("wo-processed", wo_id, WorkOrderStatus.SUCCESS.name) logger.info("Create entry in wo-responses table for workorder %s", wo_id) kv_helper.set("wo-responses", wo_id, wo_json_resp) logger.info("Delete workorder entry %s from wo-processing table", wo_id) kv_helper.remove("wo-processing", wo_id) # end of for loop # ----------------------------------------------------------------- def __update_receipt(self, kv_helper, wo_id, wo_json_resp): """ Update the existing work order receipt with the status as in wo_json_ Parameters: - kv_helper is lmdb instance to access database - wo_id is work order id of request for which receipt is to be created. - wo_json_resp is json rpc response of the work order execution. status of the work order receipt and updater signature update in the receipt. """ receipt_entry = kv_helper.get("wo-receipts", wo_id) if receipt_entry: update_type = None if "error" in wo_json_resp and \ wo_json_resp["error"]["code"] != \ WorkOrderStatus.PENDING.value: update_type = ReceiptCreateStatus.FAILED.value else: update_type = ReceiptCreateStatus.PROCESSED.value receipt_obj = WorkOrderReceiptRequest() wo_receipt = receipt_obj.update_receipt( wo_id, update_type, wo_json_resp, self.private_key ) updated_receipt = None # load previous updates to receipt updates_to_receipt = kv_helper.get("wo-receipt-updates", wo_id) # If it is first update to receipt if updates_to_receipt is None: updated_receipt = [] else: updated_receipt = json.loads(updates_to_receipt) # Get the last update to receipt last_receipt = updated_receipt[len(updated_receipt) - 1] # If receipt updateType is completed, # then no further update allowed if last_receipt["updateType"] == \ ReceiptCreateStatus.COMPLETED.value: logger.info( "Receipt for the workorder id %s is completed " + "and no further updates are allowed", wo_id) return updated_receipt.append(wo_receipt) # Since receipts_json is jrpc request updating only params object. kv_helper.set("wo-receipt-updates", wo_id, json.dumps( updated_receipt)) logger.info("Receipt for the workorder id %s is updated to %s", wo_id, wo_receipt) else: logger.info("Work order receipt is not created, " + "so skipping the update") # ----------------------------------------------------------------- def create_enclave_signup_data(): """ Create enclave signup data """ try: enclave_signup_data = \ enclave_helper.EnclaveHelper.create_enclave_signup_data() except Exception as e: logger.error("failed to create enclave signup data; %s", str(e)) sys.exit(-1) return enclave_signup_data # ----------------------------------------------------------------- def execute_work_order(enclave_data, input_json_str, indent=4): """ Submits workorder request to Worker enclave and retrieves the response """ try: wo_request = work_order_request.SgxWorkOrderRequest( enclave_data, input_json_str) wo_response = wo_request.execute() try: json_response = json.dumps(wo_response, indent=indent) except Exception as err: logger.error("ERROR: Failed to serialize JSON; %s", str(err)) wo_response["Response"]["Status"] = WorkOrderStatus.FAILED wo_response["Response"]["Message"] = "Failed to serialize JSON" json_response = json.dumps(wo_response) except Exception as e: logger.error("failed to execute work order; %s", str(e)) wo_response["Response"]["Status"] = WorkOrderStatus.FAILED wo_response["Response"]["Message"] = str(e) json_response = json.dumps(wo_response) return json_response # ----------------------------------------------------------------- def validate_request(wo_request): """ Validate JSON workorder request """ try: json.loads(wo_request) except ValueError as e: logger.error("Invalid JSON format found for workorder - %s", e) return False return True # ----------------------------------------------------------------- def create_json_worker(enclave_data, config): """ Create JSON worker object which gets saved in KvStorage """ worker_type_data = dict() worker_type_data["verificationKey"] = enclave_data.verifying_key worker_type_data["extendedMeasurements"] = \ enclave_data.extended_measurements worker_type_data["proofDataType"] = enclave_data.proof_data_type worker_type_data["proofData"] = enclave_data.proof_data worker_type_data["encryptionKey"] = enclave_data.encryption_key worker_type_data["encryptionKeySignature"] = \ enclave_data.encryption_key_signature worker_info = dict() worker_info["workerType"] = WorkerType.TEE_SGX.value worker_info["organizationId"] = \ config.get("WorkerConfig")["OrganizationId"] worker_info["applicationTypeId"] = \ config.get("WorkerConfig")["ApplicationTypeId"] details_info = dict() details_info["workOrderSyncUri"] = \ config.get("WorkerConfig")["WorkOrderSyncUri"] details_info["workOrderAsyncUri"] = \ config.get("WorkerConfig")["WorkOrderAsyncUri"] details_info["workOrderPullUri"] = \ config.get("WorkerConfig")["WorkOrderPullUri"] details_info["workOrderNotifyUri"] = \ config.get("WorkerConfig")["WorkOrderNotifyUri"] details_info["receiptInvocationUri"] = \ config.get("WorkerConfig")["ReceiptInvocationUri"] details_info["workOrderInvocationAddress"] = config.get( "WorkerConfig")["WorkOrderInvocationAddress"] details_info["receiptInvocationAddress"] = config.get( "WorkerConfig")["ReceiptInvocationAddress"] details_info["fromAddress"] = config.get("WorkerConfig")["FromAddress"] details_info["hashingAlgorithm"] = \ config.get("WorkerConfig")["HashingAlgorithm"] details_info["signingAlgorithm"] = \ config.get("WorkerConfig")["SigningAlgorithm"] details_info["keyEncryptionAlgorithm"] = \ config.get("WorkerConfig")["KeyEncryptionAlgorithm"] details_info["dataEncryptionAlgorithm"] = \ config.get("WorkerConfig")["DataEncryptionAlgorithm"] details_info["workOrderPayloadFormats"] = \ config.get("WorkerConfig")["workOrderPayloadFormats"] details_info["workerTypeData"] = worker_type_data worker_info["details"] = details_info worker_info["status"] = WorkerStatus.ACTIVE.value # JSON serialize worker_info json_worker_info = json.dumps(worker_info) logger.info("JSON serialized worker info is %s", json_worker_info) return json_worker_info # ----------------------------------------------------------------- def start_enclave_manager(config): """ Instantiate KvStorage, Execute boot flow and run time flow """ global enclave_data if config.get("KvStorage") is None: logger.error("Kv Storage path is missing") sys.exit(-1) try: logger.debug("initialize the enclave") # Extended measurements is a list of enclave basename and # enclave measurement extended_measurements = \ enclave_helper.initialize_enclave(config.get("EnclaveModule")) except Exception as e: logger.exception("failed to initialize enclave; %s", str(e)) sys.exit(-1) logger.info("creating a new enclave") enclave_signup_data = create_enclave_signup_data() logger.info("initialize enclave_manager") enclave_manager = EnclaveManager( config, enclave_signup_data, extended_measurements) logger.info("Enclave manager started") try: kv_helper = connector.open(config['KvStorage']['remote_url']) except Exception as err: logger.error("Failed to open KV storage interface; " + "exiting SGX Enclave manager: {err}") sys.exit(-1) try: logger.info("--------------- Starting Boot time flow ----------------") enclave_manager.manager_on_boot(kv_helper) logger.info("--------------- Boot time flow Complete ----------------") except Exception as err: logger.error("Failed to execute boot time flow; " + "exiting SGX Enclave manager: {err}") exit(1) try: sleep_interval = int(config["EnclaveManager"]["sleep_interval"]) except Exception as err: logger.error("Failed to get sleep interval from config file. " + "Setting sleep interval to 10 seconds: %s", str(err)) sleep_interval = 10 try: while True: # Poll KV storage for new work-order requests and process enclave_manager.process_work_orders(kv_helper) logger.info("Enclave manager sleeping for %d secs", sleep_interval) time.sleep(sleep_interval) except Exception as inst: logger.error("Error while processing work-order; " + "shutting down enclave manager") logger.error("Exception: {} args {} details {}".format(type(inst), inst.args, inst)) exit(1) TCFHOME = os.environ.get("TCF_HOME", "../../../../") # ----------------------------------------------------------------- # ----------------------------------------------------------------- def parse_command_line(config, args): """ Parse command line arguments """ # global consensus_file_name parser = argparse.ArgumentParser() parser.add_argument( "--logfile", help="Name of the log file, __screen__ for standard output", type=str) parser.add_argument("--loglevel", help="Logging leve", type=str) parser.add_argument( "--lmdb_url", help="DB url to connect to lmdb", type=str) options = parser.parse_args(args) if config.get("Logging") is None: config["Logging"] = { "LogFile": "__screen__", "LogLevel": "INFO" } if options.logfile: config["Logging"]["LogFile"] = options.logfile if options.loglevel: config["Logging"]["LogLevel"] = options.loglevel.upper() if options.lmdb_url: config["KvStorage"]["remote_url"] = options.lmdb_url # ----------------------------------------------------------------- def main(args=None): import config.config as pconfig import utility.logger as plogger # parse out the configuration file first conffiles = ["tcs_config.toml"] confpaths = [".", TCFHOME + "/" + "config"] parser = argparse.ArgumentParser() parser.add_argument("--config", help="configuration file", nargs="+") parser.add_argument("--config-dir", help="configuration folder", nargs="+") (options, remainder) = parser.parse_known_args(args) if options.config: conffiles = options.config if options.config_dir: confpaths = options.config_dir try: config = pconfig.parse_configuration_files(conffiles, confpaths) json.dumps(config, indent=4) except pconfig.ConfigurationException as e: logger.error(str(e)) sys.exit(-1) plogger.setup_loggers(config.get("Logging", {})) sys.stdout = plogger.stream_to_logger( logging.getLogger("STDOUT"), logging.DEBUG) sys.stderr = plogger.stream_to_logger( logging.getLogger("STDERR"), logging.WARN) parse_command_line(config, remainder) logger.info("Starting Enclave manager") start_enclave_manager(config) main()
the-stack_0_8611
from functools import reduce from sys import * import numpy as np import random as r import socket import struct import subprocess as sp import threading from threading import Thread import ast import time import datetime as dt import os import psutil from netifaces import interfaces, ifaddresses, AF_INET import paho.mqtt.client as mqtt import smtplib import config import paramiko import argparse import pickle import logging current_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(current_path) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(name)s:%(message)s') _tasks = {'t1': {'wcet': 3, 'period': 20, 'deadline': 15}, 't2': {'wcet': 1, 'period': 5, 'deadline': 4}, 't3': {'wcet': 2, 'period': 10, 'deadline': 8}, 't4': {'wcet': 1, 'period': 10, 'deadline': 9}, 't5': {'wcet': 3, 'period': 15, 'deadline': 12} } # mat = {'p0': ['cpu', 'mem', 'storage']} _need = { 't1': [7, 4, 3], 't2': [1, 2, 2], 't3': [6, 0, 0], 't4': [0, 1, 1], 't5': [4, 3, 1] } allocation = { 't1': [0, 1, 0], 't2': [2, 0, 0], 't3': [3, 0, 2], 't4': [2, 1, 1], 't5': [0, 0, 2] } _cpu = [] # cpu plot list prev_t = 0 # variable for cpu util _off_mec = 0 # used to keep a count of tasks offloaded from local mec to another mec _off_cloud = 0 # used to keep a count of tasks offloaded to cloud _loc = 0 # used to keep a count of tasks executed locally _inward_mec = 0 # used to keep a count of tasks offloaded from another mec to local mec deadlock = [1] # keeps count of how many deadlock is resolved memory = [] mec_waiting_time = {} # {ip : [moving (waiting time + rtt)]} mec_rtt = {} # {ip: [RTT]} offload_register = {} # {task: host_ip} to keep track of tasks sent to mec for offload reoffload_list = [[], {}] # [[task_list],{wait_time}] => records that’s re-offloaded to mec to execute. discovering = 0 # if discovering == 0 update host test = [] _time = [] _pos = 0 received_task_queue = [] # [[(task_list,wait_time), host_ip], ....] thread_record = [] _port_ = 64000 cloud_register = {} # ={client_id:client_ip} keeps address of task offloaded to cloud cloud_port = 63000 received_time = [] task_record = {} # keeps record of task reoffloaded task_id = 0 # id for each task reoffloaded shared_resource_lock = threading.Lock() t_track = 1 def ping(host): cmd = [f'ping -c 1 {host}'] output = str(sp.check_output(cmd, shell=True), 'utf-8').split('\n') try: value = float(output[-2].split('=')[-1].split('/')[0]) except ValueError: value = None return value def discovering_group(): global sock1 multicast_group = '224.3.29.71' server_address = ('', 10000) # Create the socket sock1 = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Bind to the server address sock1.bind(server_address) # Tell the operating system to add the socket to the multicast group # on all interfaces. group = socket.inet_aton(multicast_group) mreq = struct.pack('4sL', group, socket.INADDR_ANY) sock1.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) def offloading_group(): global sock2 multicast_group = '224.5.5.55' server_address = ('', 20000) # Create the socket sock2 = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # Bind to the server address sock2.bind(server_address) # Tell the operating system to add the socket to the multicast group # on all interfaces. group = socket.inet_aton(multicast_group) mreq = struct.pack('4sL', group, socket.INADDR_ANY) sock2.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) def ip_address(): try: # cmd = ['ifconfig eth1 | grep inet | cut -d ":" -f 2 | cut -d " " -f 1'] cmd = ['ifconfig ens4 | grep inet | head -n 1 | cut -d "t" -f 2 | cut -d " " -f 2'] address = str(sp.check_output(cmd, shell=True), 'utf-8')[0:-1] if len(address.strip().split('.')) == 4: return address.strip() else: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) return s.getsockname()[0] except Exception as e: s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.connect(("8.8.8.8", 80)) return s.getsockname()[0] def _memory(): global memory memory.append(round(my_algo.memory_percent(), 4)) def m_cpu(): global prev_t # get cpu next_t = psutil.cpu_percent(percpu=False) delta = abs(prev_t - next_t) prev_t = next_t _cpu.append(round(delta, 4)) def get_mec_rtts(): for i in mec_rtt: mec_rtt[i].append(get_rtt(i)) def generate_results(): _memory() m_cpu() get_mec_rtts() def host_ip_set(): global ip_set ip_set = set() for ifaceName in interfaces(): addresses = [i['addr'] for i in ifaddresses(ifaceName).setdefault(AF_INET, [{'addr': 'No IP addr'}])] ip_set.add(', '.join(addresses)) def get_time(): _time_ = [] d = str(dt.datetime.utcnow()).split() _time_ += d[0].split('-') g = d[1].split('.') _time_ += g[0].split(':') _time_.append(g[1]) return _time_ def get_rtt(host): rtt = ping(host) if rtt: return round(rtt, 4) else: return get_rtt(host) def gcd(a, b): if b == 0: return a return gcd(b, a % b) def _lcm(a, b): return int(a * b / gcd(a, b)) def lcm(_list): return reduce(_lcm, _list) def gosh_dist(_range): return ((23 ** r.randrange(1, 1331)) % r.randrange(1, 1777)) % _range def on_connect(connect_client, userdata, flags, rc): # logger.info("Connected with Code :" +str(rc)) # Subscribe Topic from here connect_client.subscribe(node_id) # Callback Function on Receiving the Subscribed Topic/Message def on_message(message_client, userdata, msg): global run data = str(msg.payload, 'utf-8') if data[0] == 'c': # receive from cloud received_task = data[2:] # send_client({received_task: get_time()}, cloud_register[received_task.split('.')[2]]) if received_task in task_record: del task_record[received_task] received_task = '.'.join(received_task.split('.')[:-1]) _client.publish(topic=received_task.split('.')[2], payload=str({received_task: get_time() + ['cloud']}), ) cooperate['cloud'] += 1 count_task_sent(received_task) elif data[0] == 't': # receive from client received_task = ast.literal_eval(data[2:]) received_task_queue.append(received_task) received_time.append(time.time()) elif data.strip() == 'stop': # stop {hostname: ip} logger.info('sending stop alert') run = 0 def connect_to_broker(stop): global _client username = 'mec' password = 'password' broker_port_no = 1883 _client = mqtt.Client() _client.on_connect = on_connect _client.on_message = on_message _client.username_pw_set(username, password) _client.connect(broker_ip, broker_port_no, 60) _client.loop_start() while True: if stop(): _client.loop_stop() _client.disconnect() logger.info('broker loop terminated') break def task_time_map(seq, process): exe_seq = [] capacity_sum = 0 for job in process: capacity_sum += process[job]['wcet'] while capacity_sum > 0: for job in seq: if process[job]['wcet'] > 0: exe_seq.append(job) process[job]['wcet'] -= 1 capacity_sum -= 1 return exe_seq def load_tasks(): period_list = [tasks[i]['period'] for i in tasks] lcm_period = lcm(period_list) # insert idle task s_task = {**tasks, 'idle': {'wcet': lcm_period, 'period': lcm_period + 1}} return lcm_period, s_task total_received_task = 0 def scheduler(_lcm_, s_tasks): # RMS algorithm global total_received_task queue = list(s_tasks.keys()) # initialize task queue schedule = [] rms = [] curr = '' # current task prev = '' # previous task tmp = {} for task in s_tasks.keys(): tmp[task] = {} # temporary data for each task tmp[task]['deadline'] = s_tasks[task]['period'] tmp[task]['executed'] = 0 # start scheduling... # proceed by one timestamp to handle preemption for _time_ in range(_lcm_): # insert new tasks into the queue for t in tmp.keys(): if _time_ == tmp[t]['deadline']: if s_tasks[t]['wcet'] > tmp[t]['executed']: # logger.info('Scheduling Failed at %d' % time) exit(1) else: tmp[t]['deadline'] += s_tasks[t]['period'] tmp[t]['executed'] = 0 queue.append(t) # select next task to be scheduled _min_ = _lcm_ * 2 for task in queue: if tmp[task]['deadline'] < _min_: _min_ = tmp[task]['deadline'] curr = task tmp[curr]['executed'] += 1 # logger.info(time, queue, curr) # dequeue the execution-completed task if tmp[curr]['executed'] == s_tasks[curr]['wcet']: for i in range(len(queue)): if curr == queue[i]: del queue[i] break # record to the schedule trace if prev != curr: if prev in queue and prev != 'idle': # previous task is preempted.. s = schedule.pop() schedule.append([s[0], s[1], '*']) rms.append(s[1]) schedule.append([_time_, curr]) if curr != 'idle': rms.append(curr) prev = curr process = {task: {'wcet': tasks[task]['wcet']} for task in tasks} rms = task_time_map(seq=rms, process=process) total_received_task += len(rms) return rms # generate execution sequence with wait_die def wait_die(processes, avail, n_need, allocat): global deadlock offload = [] # To store execution sequence exec_seq = [] # Make a copy of available resources work = [0] * len(processes) # While all processes are not finished # or system is not in safe state. while 'w' or 0 in work: if 0 in work: ind = work.index(0) i = processes[ind] elif 'w' in work: # logger.info('wk: ', work) ind = work.index('w') i = processes[ind] else: break # logger.info('comparing| process: ', i, n_need[i], 'work: ', avail) if not (False in list(np.greater_equal(avail, n_need[i]))): exec_seq.append(i) avail = np.add(avail, allocat[i]) work[ind] = 1 # logger.info('added: ', exec_seq) else: a = list(set(processes) - set(exec_seq) - set(offload)) n = {} for j in a: n[j] = sum(allocat[j]) _max = max(n, key=n.get) # logger.info('work: ', work, 'need: ', n_need[_max]) if processes.index(_max) > processes.index(i): # if true, i is older # if process is already waiting then offload process if work[ind] == 'w': offload.append(i) avail = np.array(avail) + np.array(allocat[i]) work[processes.index(i)] = 1 # logger.info('offload reentry: ', i, offload) else: # wait put process to waiting work[processes.index(i)] = 'w' # logger.info('waiting: ', i) else: # abort i offload.append(i) avail = np.array(avail) + np.array(allocat[i]) work[processes.index(i)] = 1 # logger.info('offload: ', i) if len(offload) > 0: logger.info(f'offloading tasks: {offload}') cooperative_mec(offload) deadlock[0] += 1 logger.info(f'Execution seq: {exec_seq}') return exec_seq def get_exec_seq(pro): # Number of processes p = len(pro) processes = ['{}_{}'.format(pro[i], i) for i in range(p)] # Available instances of resources avail = [6, 5, 5] n_need = {i: _need[i[:2]] for i in processes} # logger.info('need', n_need) # Resources allocated to processes allot = {i: allocation[i[:2]] for i in processes} # return execution sequence return wait_die(processes, avail, n_need, allot) def calc_wait_time(list_seq): pre = 0 time_dic = {} for i in list_seq: j = i.split('_')[0] time_dic[i] = round(t_time[j][0] + pre, 3) pre += t_time[j][0] # waiting time = total waiting time ÷ 2 average waiting time might be too tight w_send = round(time_dic[list(time_dic.keys())[-1]] / 2, 3) send_message('wt {} {}'.format(ip_address(), str(w_send))) # Broadcasting waiting time to cooperative MECs return time_dic def compare_local_mec(list_seq): time_compare_dict = {i: t_time[i.split('_')[0]][1] > list_seq[i] for i in list_seq} logger.info(f'local vs MEC comparison: {time_compare_dict}') execute_mec = [] execute_locally = [] for i in time_compare_dict: if time_compare_dict[i]: execute_locally.append(i) else: execute_mec.append(i) return execute_mec, execute_locally def calculate_mov_avg(ma1, a1): if ma1 in mec_waiting_time: _count = len(mec_waiting_time[ma1]) avg1 = mec_waiting_time[ma1][-1] else: _count = 0 avg1 = 0 _count += 1 avg1 = ((_count - 1) * avg1 + a1) / _count # ma1.append(avg1) #cumulative average formula # μ_n=((n-1) μ_(n-1) + x_n)/n return round(avg1, 4) def send_message(mg): _multicast_group = ('224.3.29.71', 10000) try: # Send data to the multicast group if mg == 'hello': smg = mg + ' ' + str([get_hostname(), ip_address()]) sock1.sendto(str.encode(smg), _multicast_group) logger.info('\nHello message sent') else: sock1.sendto(str.encode(mg), _multicast_group) except Exception as e: logger.info(str(e)) def get_hostname(): cmd = ['cat /etc/hostname'] hostname = str(sp.check_output(cmd, shell=True), 'utf-8')[0:-1] return hostname def receive_message(stop): # used for multi-cast message exchange among MEC global hosts while True: if stop(): logger.info('Stopped: receive_message()') break else: data, address = sock1.recvfrom(1024) _d = data.decode() if _d[:5] == 'hello': _data = ast.literal_eval(_d[6:]) hosts[_data[0]] = _data[1] if _data[1] != host_ip: mec_rtt[_data[1]] = [] elif (_d[:6] == 'update') and (discovering == 0): hosts = ast.literal_eval(_d[7:]) # logger.info('received: ', hosts) for i in hosts: if i != host_ip: mec_rtt[i] = [] elif _d[:2] == 'wt': split_data = _d.split() if split_data[1] != host_ip: w_time = calculate_mov_avg(split_data[1], float(split_data[2]) + get_rtt( address[0])) # calcuate moving average of mec wait time => w_time = wait time + rtt if split_data[1] in mec_waiting_time: mec_waiting_time[split_data[1]].append(w_time) else: mec_waiting_time[split_data[1]] = [w_time] def mec_comparison(): # returns min average waiting for all mecs if len(mec_waiting_time) == 0: return 0 min_mec = {i: mec_waiting_time[i][-1] for i in mec_waiting_time} min_wt = min(min_mec, key=min_mec.get) return min_wt def cooperative_mec(mec_list): global _off_cloud global _off_mec global task_id, task_record for i in mec_list: _host = mec_comparison() if _host == 0: # send_cloud([i.split('_')[0], t_time[i.split('_')[0]][0]]) # [task_id,exec_time] _send_task = f"{i.split('_')[0]}.{task_id}" _client.publish(cloud_ip, str([_send_task, t_time[i.split('_')[0]][0]]), ) task_record[_send_task] = 'cloud' task_id += 1 _off_cloud += 1 # cloud_register[i.split('_')[0].split('.')[2]] = send_back_host logger.info('\n=========SENDING {} TO CLOUD==========='.format(i)) else: j = i.split('_')[0] _max = np.array([6, 5, 5]) send = 'false' if not (False in list(np.greater_equal(_max, _need[j[:2]]))): send = 'true' # CHECK IF THE MINIMUM MEC WAIT TIME IS LESS THAN LATENCY if mec_waiting_time[_host][-1] < t_time[j][1] and send == 'true': _send_task = f"{j}.{task_id}" send_offloaded_task_mec('{} {} {}'.format('ex', mec_id(_host), [_send_task, t_time[j][0]])) task_record[_send_task] = 'mec' task_id += 1 _off_mec += 1 # SENDS TASK TO MEC FOR EXECUTION w_send = mec_waiting_time[_host][-1] + 0.001 mec_waiting_time[_host].append(w_send) # adds a new average waiting time logger.info('\n======SENDING {} TO MEC {}========='.format(i, _host)) elif send == 'true' and (get_rtt(_host) < get_rtt(cloud_ip)): _send_task = f"{j}.{task_id}" send_offloaded_task_mec('{} {} {}'.format('ex', mec_id(_host), [_send_task, t_time[j][0]])) task_record[_send_task] = 'mec' task_id += 1 _off_mec += 1 # SENDS TASK TO MEC FOR EXECUTION w_send = mec_waiting_time[_host][-1] + 0.001 mec_waiting_time[_host].append(w_send) # adds a new average waiting time logger.info('\n======SENDING {} TO MEC {}========='.format(i, _host)) else: _send_task = f"{j}.{task_id}" _client.publish(cloud_ip, str([_send_task, t_time[j][0]]), ) task_record[_send_task] = 'cloud' task_id += 1 _off_cloud += 1 # send_cloud([j, t_time[j][0]]) # # [task_id,exec_time] # cloud_register[j.split('.')[2]] = send_back_host logger.info('\n=========SENDING {} TO CLOUD==========='.format(i)) outward_mec = 0 offload_check = [0, 0] def execute_re_offloaded_task(offloaded_task): global outward_mec, offload_check exec_list = get_exec_seq(offloaded_task[0]) outward_mec += len(exec_list) for i in offloaded_task[0]: # i = 't1.1.2.3*1_3' j = i.split('_')[0] time.sleep(offloaded_task[1][j] / 2) # logger.info('j task: ', j) send_offloaded_task_mec('{} {}'.format(j.split('.')[1], i.split('*')[0])) clients_record = {} def count_task_sent(task): global clients_record c_id = task.split('.')[2] if c_id in clients_record: clients_record[c_id] += 1 else: clients_record[c_id] = 1 def execute(local): logger.info(f'\nExecuting :{local}') for i in local: j = i.split('_')[0] _t = t_time[j][0] / 2 time.sleep(_t) logger.info('#{}'.format(local.index(i) + 1) + f' Executed: {i}') _client.publish(j.split('.')[2], str({j: get_time() + ['local']}), ) count_task_sent(j) logger.info('============== EXECUTION DONE ===============') cooperate = {'mec': 0, 'cloud': 0} def receive_offloaded_task_mec(stop): # run as a thread global _inward_mec global t_track while True: if stop(): logger.info('Stopped: receive_offloaded_task_mec()') break else: data, address = sock2.recvfrom(1024) if len(data.decode()) > 0: da = data.decode().split(' ') if (address[0] not in ip_set) and (da[0] == node_id): # send back to client # send_client({da[1]: get_time()}, offload_register[da[1]]) # send back to client if da[1] in task_record: del task_record[da[1]] task_new = '.'.join(da[1].split('.')[:-1]) _client.publish(da[1].split('.')[2], str({task_new: get_time() + ['mec']}), ) count_task_sent(da[1]) cooperate['mec'] += 1 else: logger.info('*' * 30 + f'\n{da[1]} Not in Task Record\n' + '*' * 30) elif (address[0] not in ip_set) and (da[0] == 'ex') and (da[1] == node_id): _received = ast.literal_eval(da[2] + da[3]) shared_resource_lock.acquire() task = _received[0] + '*{}'.format(t_track) reoffload_list[0].append(task) reoffload_list[1][task] = _received[1] shared_resource_lock.release() t_track += 1 _inward_mec += 1 def call_execute_re_offload(stop): global reoffload_list, outward_mec global offload_check while True: if stop(): logger.info('Stopped: call_execute_re_offload()') break else: if len(reoffload_list[0]) == 1: t = reoffload_list[0][-1] time.sleep(reoffload_list[1][t] / 2) shared_resource_lock.acquire() reoffload_list[0].remove(t) del reoffload_list[1][t] shared_resource_lock.release() send_offloaded_task_mec('{} {}'.format(t.split('.')[1], t.split('*')[0])) outward_mec += 1 offload_check[0] += 1 elif len(reoffload_list[0]) > 1: o = reoffload_list.copy() offload_check[1] += len(o) execute_re_offloaded_task(o) for i in o[0]: shared_resource_lock.acquire() reoffload_list[0].remove(i) del reoffload_list[1][i] shared_resource_lock.release() def send_email(msg, send_path): try: server = smtplib.SMTP_SSL('smtp.gmail.com') server.ehlo() server.login(config.email_address, config.password) subject = 'Deadlock results rms+wait-die {} {}'.format(get_hostname(), send_path) # msg = 'Attendance done for {}'.format(_timer) _message = 'Subject: {}\n\n{}\n\n SENT BY RIHANNA \n\n'.format(subject, msg) server.sendmail(config.email_address, config.send_email, _message) server.quit() logger.info("Email sent!") except Exception as e: logger.info(str(e)) def send_offloaded_task_mec(msg): _multicast_group = ('224.5.5.55', 20000) try: sock2.sendto(str.encode(msg), _multicast_group) except Exception as e: logger.info(str(e)) def mec_id(client_ip): _id = client_ip.split('.')[-1] if len(_id) == 1: return '00' + _id elif len(_id) == 2: return '0' + _id else: return _id def send_result(host_, data): try: c = paramiko.SSHClient() un = 'mec' pw = 'password' port = 22 c.set_missing_host_key_policy(paramiko.AutoAddPolicy()) c.connect(host_, port, un, pw) for i in data: cmd = ('echo "{}" >> /home/mec/result/data.py'.format(i)) # task share : host ip task stdin, stdout, stderr = c.exec_command(cmd) except Exception as e: logger.info(str(e)) def save_and_send(send_path): _id_ = get_hostname()[-1] result = f"\nwt{_id_}_10_{mec_no} = {mec_waiting_time} " \ f"\nrtt{_id_}_10_{mec_no} = {mec_rtt} \ncpu{_id_}_10_{mec_no} = {_cpu} " \ f"\noff_mec{_id_}_10_{mec_no} = {_off_mec} " \ f"\noff_cloud{_id_}_10_{mec_no} = {_off_cloud} " \ f"\ninward_mec{_id_}_10_{mec_no} = {_inward_mec}" \ f"\nloc{_id_}_10_{mec_no} = {_loc} " \ f"\ndeadlock{_id_}_10_{mec_no} = {deadlock} \nmemory{_id_}_10_{mec_no} = {memory}" \ f"\ntask_received{_id_}_10_{mec_no} = {total_received_task} \nsent_t{_id_}_10_{mec_no} = {clients_record}" \ f"\ncooperate{_id_}_10_{mec_no} = {cooperate} \ntask_record{_id_}_10_{mec_no} = {task_record}" \ f"\noutward_mec{_id_}_10_{mec_no} = {outward_mec}" \ f"\noffload_check{_id_}_10_{mec_no} = {offload_check}" list_result = [ f"\nwt{_id_}_10_{mec_no} = {mec_waiting_time} ", f"\nrtt{_id_}_10_{mec_no} = {mec_rtt} \ncpu{_id_}_10_{mec_no} = {_cpu} ", f"\noff_mec{_id_}_10_{mec_no} = {_off_mec} \noff_cloud{_id_}_10_{mec_no} = {_off_cloud} ", f"\ninward_mec{_id_}_10_{mec_no} = {_inward_mec}", f"\nloc{_id_}_10_{mec_no} = {_loc} ", f"\ndeadlock{_id_}_10_{mec_no} = {deadlock} \nmemory{_id_}_10_{mec_no} = {memory}", f"\ntask_received{_id_}_10_{mec_no} = {total_received_task} \nsent_t{_id_}_10_{mec_no} = {clients_record}", f"\ncooperate{_id_}_10_{mec_no} = {cooperate} \ntask_record{_id_}_10_{mec_no} = {task_record} " f"\noutward_mec{_id_}_10_{mec_no} = {outward_mec}", f"\noffload_check{_id_}_10_{mec_no} = {offload_check}" ] file_ = open(f'{_id_}_10_{mec_no}datap.py', 'w') for i in list_result: file_.write(i) file_.close() cmd = f'mv {_id_}_10_{mec_no}datap.py {send_path}' os.system(cmd) send_email(result, send_path) if len(task_record) > 0: for _task_ in task_record: task_new = '.'.join(_task_.split('.')[:-1]) _client.publish(task_new.split('.')[2], str({task_new: get_time() + [task_record[_task_]]}), ) run = 1 # tell agents child when to stop def start_loop(): global _loc global tasks global t_time global node_id global run logger.info('\n============* WELCOME TO THE DEADLOCK EMULATION PROGRAM *=============\n') node_id = mec_id(ip_address()) # logger.info('node id: ', node_id) func_to_thread = [receive_message, receive_offloaded_task_mec, call_execute_re_offload, connect_to_broker] threads_ = [] stop = False for i in func_to_thread: threads_.append(Thread(target=i, args=(lambda: stop,))) threads_[-1].daemon = True threads_[-1].start() logger.info('algorithm is starting....') logger.info('========= Waiting for tasks ==========') while run == 1: try: if len(received_task_queue) > 0: info = received_task_queue.pop(0) tasks, t_time = info logger.info(f'EDF List of Processes: {tasks}\n') logger.info('\n========= Running Deadlock Algorithm ===========') lcm_result, task_load = load_tasks() list_seq = get_exec_seq(scheduler(lcm_result, task_load)) if len(list_seq) > 0: # do only when there is a task in safe sequence wait_list = calc_wait_time(list_seq) logger.info(f'\nWaiting Time List: {wait_list}') compare_result = compare_local_mec(wait_list) logger.info(f'\nExecute Locally: {compare_result[1]}') _loc += len(compare_result[1]) # total number of tasks to be executed locally logger.info(f'\nExecute in MEC: {compare_result[0]}') logger.info('\nSending to cooperative platform') if len(compare_result[0]) > 0: cooperative_mec(compare_result[0]) execute(compare_result[1]) generate_results() _time_ = dt.datetime.now() else: send_message(str('wt {} 0.0'.format(ip_address()))) time.sleep(.5) except KeyboardInterrupt: logger.info('\nProgramme Terminated') stop = False cmd = 'kill -9 {}'.format(os.getpid()) os.system(cmd) break logger.info('algo stopped!') def run_me(hosts_, mec_no_, cloud_ip_, send_path, broker_ip_): # call this from agent global discovering global hosts global mec_no global host_ip global cloud_ip global my_algo global broker_ip logger.info(f'mec ip: {ip_address()}') my_algo = psutil.Process() discovering_group() offloading_group() host_ip_set() hosts = hosts_ mec_no = mec_no_ cloud_ip = cloud_ip_ broker_ip = broker_ip_ host_ip = ip_address() logger.info(f'MEC Details: {hosts}') discovering = 1 time.sleep(2) for host in hosts: if hosts[host] != host_ip: mec_rtt[hosts[host]] = [] start_loop() logger.info('saving data') save_and_send(send_path) logger.info('send alert to control') time.sleep(r.uniform(1, 10)) _client.publish('control/control', pickle.dumps(['stop', ip_address()])) logger.info('Terminating process') cmd = 'kill -9 {}'.format(os.getpid()) os.system(cmd) def main(): # (hosts_, mec_no_, cloud_ip_, send_path, broker_ip_) , (--hosts, --mec_no_, --cloud_ip, --s_path, --b_ip) parser = argparse.ArgumentParser() parser.add_argument('--hosts', type=str, help="{hostname: 'ip address', ...} of all mec") parser.add_argument('--mec_no', type=int, default=1.0, help='Number of MEC nodes') parser.add_argument('--cloud_ip', type=str, help="cloud ip address") parser.add_argument('--s_path', type=str, default='/home/mec/result/python', help='Path to send result to') parser.add_argument('--b_ip', type=str, help='Broker ip address') args = parser.parse_args() # h_hosts = ast.literal_eval(args.hosts) l_host, l_len = args.hosts.split('_'), len(args.hosts.split('_')) h_hosts = dict(zip(l_host[:l_len//2], l_host[l_len//2:])) f_name = os.path.basename(__file__).split('/')[-1].split('.')[0] tim = dt.datetime.now().strftime("%a_%H%M") name = f'logs/{f_name}_{tim}_{args.mec_no}' file_handler = logging.FileHandler(name) file_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.info('Process Started') run_me(hosts_=h_hosts, mec_no_=args.mec_no, cloud_ip_=args.cloud_ip, send_path=args.s_path, broker_ip_=args.b_ip) if __name__ == '__main__': main()
the-stack_0_8613
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath(os.pardir)) import graphviz # -- Project information ----------------------------------------------------- project = 'graphviz' copyright = '2013-2020, Sebastian Bank' author = 'Sebastian Bank' # The short X.Y version version = '0.14.2.dev0' # The full version, including alpha/beta/rc tags release = version # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'graphvizdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'graphviz.tex', 'graphviz Documentation', 'Sebastian Bank', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'graphviz', 'graphviz Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'graphviz', 'graphviz Documentation', author, 'graphviz', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'py': ('https://docs.python.org/2', None), 'py3': ('https://docs.python.org/3', None), } # monkey patch, see https://github.com/sphinx-doc/sphinx/issues/2044 from sphinx.ext.autodoc import ClassLevelDocumenter, InstanceAttributeDocumenter def add_directive_header(self, sig): ClassLevelDocumenter.add_directive_header(self, sig) InstanceAttributeDocumenter.add_directive_header = add_directive_header
the-stack_0_8614
# ********************************************************************************* # REopt, Copyright (c) 2019-2020, Alliance for Sustainable Energy, LLC. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this list # of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # Neither the name of the copyright holder nor the names of its contributors may be # used to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. # ********************************************************************************* # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('reo', '0039_loadprofilemodel_gen_energy_at_start_of_outage_kwh'), ] operations = [ migrations.RenameField( model_name='loadprofilemodel', old_name='gen_energy_at_start_of_outage_kwh', new_name='fuel_avail_before_outage_pct', ), ]
the-stack_0_8615
# Copyright (C) 2021, Mindee. # This program is licensed under the Apache License version 2. # See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details. import json import os from typing import Any, Callable, List, Optional, Tuple import numpy as np from doctr.utils.geometry import fit_rbbox from .datasets import AbstractDataset __all__ = ["DetectionDataset"] class DetectionDataset(AbstractDataset): """Implements a text detection dataset Example:: >>> from doctr.datasets import DetectionDataset >>> train_set = DetectionDataset(img_folder="/path/to/images", label_path="/path/to/labels.json") >>> img, target = train_set[0] Args: img_folder: folder with all the images of the dataset label_path: path to the annotations of each image sample_transforms: composable transformations that will be applied to each image rotated_bbox: whether polygons should be considered as rotated bounding box (instead of straight ones) """ def __init__( self, img_folder: str, label_path: str, sample_transforms: Optional[Callable[[Any], Any]] = None, rotated_bbox: bool = False, ) -> None: super().__init__(img_folder) self.sample_transforms = sample_transforms # File existence check if not os.path.exists(label_path): raise FileNotFoundError(f"unable to locate {label_path}") with open(label_path, 'rb') as f: labels = json.load(f) self.data: List[Tuple[str, np.ndarray]] = [] for img_name, label in labels.items(): # File existence check if not os.path.exists(os.path.join(self.root, img_name)): raise FileNotFoundError(f"unable to locate {os.path.join(self.root, img_name)}") polygons = np.asarray(label['polygons']) if rotated_bbox: # Switch to rotated rects boxes = np.asarray([list(fit_rbbox(poly)) for poly in polygons]) else: # Switch to xmin, ymin, xmax, ymax boxes = np.concatenate((polygons.min(axis=1), polygons.max(axis=1)), axis=1) self.data.append((img_name, np.asarray(boxes, dtype=np.float32))) def __getitem__( self, index: int ) -> Tuple[Any, np.ndarray]: img, boxes = self._read_sample(index) h, w = self._get_img_shape(img) if self.sample_transforms is not None: img = self.sample_transforms(img) # Boxes boxes = boxes.copy() boxes[..., [0, 2]] /= w boxes[..., [1, 3]] /= h boxes = boxes.clip(0, 1) return img, boxes
the-stack_0_8616
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Dummy router supporting IGD.""" # Instructions: # - Change `SOURCE``. When using IPv6, be sure to set the scope_id, the last value in the tuple. # - Run this module. # - Run upnp-client (change IP to your own IP): # upnp-client call-action 'http://0.0.0.0:8000/device.xml' \ # WANCIC/GetTotalPacketsReceived import asyncio import logging import time import xml.etree.ElementTree as ET from typing import Dict, Mapping, Sequence, Type from async_upnp_client.client import UpnpRequester, UpnpStateVariable from async_upnp_client.const import ( STATE_VARIABLE_TYPE_MAPPING, DeviceInfo, ServiceInfo, StateVariableTypeInfo, ) from .server import UpnpServerDevice, UpnpServerService, callable_action, run_server logging.basicConfig(level=logging.DEBUG) LOGGER = logging.getLogger("dummy_router") LOGGER_SSDP_TRAFFIC = logging.getLogger("async_upnp_client.traffic") LOGGER_SSDP_TRAFFIC.setLevel(logging.WARNING) SOURCE = ("172.24.83.184", 0) # Your IP here! # SOURCE = ("fe80::215:5dff:fe3e:6d23", 0, 0, 6) # Your IP here! HTTP_PORT = 8000 class WANIPConnectionService(UpnpServerService): """WANIPConnection service.""" SERVICE_DEFINITION = ServiceInfo( service_id="urn:upnp-org:serviceId:WANIPConnection1", service_type="urn:schemas-upnp-org:service:WANIPConnection:1", control_url="/upnp/control/WANIPConnection1", event_sub_url="/upnp/event/WANIPConnection1", scpd_url="/WANIPConnection_1.xml", xml=ET.Element("server_service"), ) STATE_VARIABLE_DEFINITIONS = { "ExternalIPAddress": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="1.2.3.4", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "ConnectionStatus": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="Unconfigured", allowed_value_range={}, allowed_values=[ "Unconfigured", "Authenticating", "Connecting", "Connected", "PendingDisconnect", "Disconnecting", "Disconnected", ], xml=ET.Element("server_stateVariable"), ), "LastConnectionError": StateVariableTypeInfo( data_type="string", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["string"], default_value="ERROR_NONE", allowed_value_range={}, allowed_values=[ "ERROR_NONE", ], xml=ET.Element("server_stateVariable"), ), "Uptime": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value="0", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), } @callable_action( name="GetStatusInfo", in_args={}, out_args={ "NewConnectionStatus": "ConnectionStatus", "NewLastConnectionError": "LastConnectionError", "NewUptime": "Uptime", }, ) async def get_status_info(self) -> Dict[str, UpnpStateVariable]: """Get status info.""" # from async_upnp_client.exceptions import UpnpActionError, UpnpActionErrorCode # raise UpnpActionError( # error_code=UpnpActionErrorCode.INVALID_ACTION, error_desc="Invalid action" # ) return { "NewConnectionStatus": self.state_variable("ConnectionStatus"), "NewLastConnectionError": self.state_variable("LastConnectionError"), "NewUptime": self.state_variable("Uptime"), } @callable_action( name="GetExternalIPAddress", in_args={}, out_args={ "NewExternalIPAddress": "ExternalIPAddress", }, ) async def get_external_ip_address(self) -> Dict[str, UpnpStateVariable]: """Get external IP address.""" # from async_upnp_client.exceptions import UpnpActionError, UpnpActionErrorCode # raise UpnpActionError( # error_code=UpnpActionErrorCode.INVALID_ACTION, error_desc="Invalid action" # ) return { "NewExternalIPAddress": self.state_variable("ExternalIPAddress"), } class WanConnectionDevice(UpnpServerDevice): """WAN Connection device.""" DEVICE_DEFINITION = DeviceInfo( device_type="urn:schemas-upnp-org:device:WANConnectionDevice:1", friendly_name="Dummy Router WAN Connection Device", manufacturer="Steven", model_name="DummyRouter v1", udn="uuid:51e00c19-c8f3-4b28-9ef1-7f562f204c82", model_description="Dummy Router IGD", model_number="v0.0.1", serial_number="0000001", url="/device.xml", icons=[], xml=ET.Element("server_device"), ) EMBEDDED_DEVICES: Sequence[Type[UpnpServerDevice]] = [] SERVICES = [WANIPConnectionService] def __init__(self, requester: UpnpRequester, base_uri: str) -> None: """Initialize.""" super().__init__( requester=requester, base_uri=base_uri, ) class WANCommonInterfaceConfigService(UpnpServerService): """WANCommonInterfaceConfig service.""" SERVICE_DEFINITION = ServiceInfo( service_id="urn:upnp-org:serviceId:WANCommonInterfaceConfig1", service_type="urn:schemas-upnp-org:service:WANCommonInterfaceConfig:1", control_url="/upnp/control/WANCommonInterfaceConfig1", event_sub_url="/upnp/event/WANCommonInterfaceConfig1", scpd_url="/WANCommonInterfaceConfig_1.xml", xml=ET.Element("server_service"), ) STATE_VARIABLE_DEFINITIONS = { "TotalBytesReceived": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value="0", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "TotalBytesSent": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value="0", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "TotalPacketsReceived": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value="0", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), "TotalPacketsSent": StateVariableTypeInfo( data_type="ui4", data_type_mapping=STATE_VARIABLE_TYPE_MAPPING["ui4"], default_value="0", allowed_value_range={}, allowed_values=None, xml=ET.Element("server_stateVariable"), ), } MAX_COUNTER = 2**32 def _update_bytes(self, state_var_name: str) -> None: """Update bytes state variable.""" new_bytes = int(time.time() * 1000) % self.MAX_COUNTER self.state_variable(state_var_name).value = new_bytes def _update_packets(self, state_var_name: str) -> None: """Update state variable values.""" new_packets = int(time.time()) % self.MAX_COUNTER self.state_variable(state_var_name).value = new_packets self.state_variable(state_var_name).value = new_packets @callable_action( name="GetTotalBytesReceived", in_args={}, out_args={ "NewTotalBytesReceived": "TotalBytesReceived", }, ) async def get_total_bytes_received(self) -> Dict[str, UpnpStateVariable]: """Get total bytes received.""" self._update_bytes("TotalBytesReceived") return { "NewTotalBytesReceived": self.state_variable("TotalBytesReceived"), } @callable_action( name="GetTotalBytesSent", in_args={}, out_args={ "NewTotalBytesSent": "TotalBytesSent", }, ) async def get_total_bytes_sent(self) -> Dict[str, UpnpStateVariable]: """Get total bytes sent.""" self._update_bytes("TotalBytesSent") return { "NewTotalBytesSent": self.state_variable("TotalBytesSent"), } @callable_action( name="GetTotalPacketsReceived", in_args={}, out_args={ "NewTotalPacketsReceived": "TotalPacketsReceived", }, ) async def get_total_packets_received(self) -> Dict[str, UpnpStateVariable]: """Get total packets received.""" self._update_packets("TotalPacketsReceived") return { "NewTotalPacketsReceived": self.state_variable("TotalPacketsReceived"), } @callable_action( name="GetTotalPacketsSent", in_args={}, out_args={ "NewTotalPacketsSent": "TotalPacketsSent", }, ) async def get_total_packets_sent(self) -> Dict[str, UpnpStateVariable]: """Get total packets sent.""" self._update_packets("TotalPacketsSent") return { "NewTotalPacketsSent": self.state_variable("TotalPacketsSent"), } class WanDevice(UpnpServerDevice): """WAN device.""" DEVICE_DEFINITION = DeviceInfo( device_type="urn:schemas-upnp-org:device:WANDevice:1", friendly_name="Dummy Router WAN Device", manufacturer="Steven", model_name="DummyRouter v1", udn="uuid:51e00c19-c8f3-4b28-9ef1-7f562f204c81", model_description="Dummy Router IGD", model_number="v0.0.1", serial_number="0000001", url="/device.xml", icons=[], xml=ET.Element("server_device"), ) EMBEDDED_DEVICES = [WanConnectionDevice] SERVICES = [WANCommonInterfaceConfigService] def __init__(self, requester: UpnpRequester, base_uri: str) -> None: """Initialize.""" super().__init__( requester=requester, base_uri=base_uri, ) class Layer3ForwardingService(UpnpServerService): """Layer3Forwarding service.""" SERVICE_DEFINITION = ServiceInfo( service_id="urn:upnp-org:serviceId:Layer3Forwarding1", service_type="urn:schemas-upnp-org:service:Layer3Forwarding:1", control_url="/upnp/control/Layer3Forwarding1", event_sub_url="/upnp/event/Layer3Forwarding1", scpd_url="/Layer3Forwarding_1.xml", xml=ET.Element("server_service"), ) STATE_VARIABLE_DEFINITIONS: Mapping[str, StateVariableTypeInfo] = {} class IgdDevice(UpnpServerDevice): """IGD device.""" DEVICE_DEFINITION = DeviceInfo( device_type="urn:schemas-upnp-org:device:InternetGatewayDevice:1", friendly_name="Dummy Router", manufacturer="Steven", model_name="DummyRouter v1", udn="uuid:51e00c19-c8f3-4b28-9ef1-7f562f204c80", model_description="Dummy Router IGD", model_number="v0.0.1", serial_number="0000001", url="/device.xml", icons=[], xml=ET.Element("server_device"), ) EMBEDDED_DEVICES = [WanDevice] SERVICES = [Layer3ForwardingService] def __init__(self, requester: UpnpRequester, base_uri: str) -> None: """Initialize.""" super().__init__( requester=requester, base_uri=base_uri, ) async def async_main() -> None: """Main.""" await run_server(SOURCE, HTTP_PORT, IgdDevice) if __name__ == "__main__": asyncio.run(async_main())
the-stack_0_8620
from dagster_graphql.client.util import parse_raw_log_lines from dagster_k8s.utils import ( get_pod_names_in_job, retrieve_pod_logs, wait_for_job, wait_for_job_success, ) from dagster import check def wait_for_job_ready(job_name, namespace): '''Wait for a dagster-k8s job to be ready ''' check.str_param(job_name, 'job_name') check.str_param(namespace, 'namespace') wait_for_job(job_name=job_name, namespace=namespace) def wait_for_job_and_get_logs(job_name, namespace): '''Wait for a dagster-k8s job to complete, ensure it launched only one pod, and then grab the logs from the pod it launched. ''' check.str_param(job_name, 'job_name') check.str_param(namespace, 'namespace') wait_for_job_success(job_name, namespace=namespace) pod_names = get_pod_names_in_job(job_name, namespace) assert len(pod_names) == 1 pod_name = pod_names[0] raw_logs = retrieve_pod_logs(pod_name, namespace=namespace) return parse_raw_log_lines(raw_logs.split('\n'))
the-stack_0_8622
# -*- coding: utf-8 -*- # # michael a.g. aïvázis # orthologue # (c) 1998-2022 all rights reserved # from .SI import meter from .SI import kilo, centi, milli, micro, nano # # definitions of common length units # data taken from Appendix F of Halliday, Resnick, Walker, "Fundamentals of Physics", # fourth edition, John Willey and Sons, 1993 nanometer = nano * meter micrometer = micro * meter millimeter = milli * meter centimeter = centi * meter kilometer = kilo * meter # aliases m = meter nm = nanometer um = micrometer micron = micrometer mm = millimeter cm = centimeter km = kilometer # British units inch = 2.540 * centimeter foot = 12 * inch yard = 3 * foot mile = 5280 * foot mil = 1e-3 * inch fathom = 6 * foot nautical_mile = 1852 * meter # others angstrom = 1e-10 * meter fermi = 1e-15 * meter astronomical_unit = 1.49598e11 * meter light_year = 9.460e12 * kilometer parsec = 3.084e13 * kilometer # end of file
the-stack_0_8623
#!/usr/bin/env python3 # Modules import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.svm import SVC import time import torch import torch.nn as nn import torch.optim as optim from xgboost import XGBClassifier class NaiveBayes: """Naive Bayes classifier""" def __init__(self): self.categorical = 'object' self.numerical = 'number' def cat_num_split(self, feature): # Split features into categorical and numberical types feature_cat = feature.select_dtypes(include=self.categorical) feature_num = feature.select_dtypes(include=self.numerical) return feature_cat, feature_num def train(self, train_cat, train_num, train_labels): # Instantiate the classifiers mnb = MultinomialNB() gnb = GaussianNB() # Train classifier if train_cat.shape[1]: mnb.fit(train_cat, train_labels) if train_num.shape[1]: gnb.fit(train_num, train_labels) return mnb, gnb def predict(self, feature_cat, feature_num, mnb, gnb): # Predict labels cat_pred = mnb.predict_proba(feature_cat) if feature_cat.shape[1] else 0 cat_pred *= feature_cat.shape[1] num_pred = gnb.predict_proba(feature_num) if feature_num.shape[1] else 0 num_pred *= feature_num.shape[1] return (cat_pred + num_pred).argmax(axis=1) def __call__(self, train, test): # Record start time print('==============NAIVE BAYES==============') start = time.time() # Split train and test into categorical and numerical features train_cat, train_num = self.cat_num_split(train.iloc[:, :-1]) test_cat, test_num = self.cat_num_split(test.iloc[:, :-1]) # Assign labels train_labels = train.iloc[:, -1] test_labels = test.iloc[:, -1] # Train Gaussian and Multinomial classifiers mnb, gnb = self.train(train_cat, train_num, train_labels) # Predict train and test labels train_pred = self.predict(train_cat, train_num, mnb, gnb) test_pred = self.predict(test_cat, test_num, mnb, gnb) # Print results train_hit = (train_labels == train_pred).sum() test_hit = (test_labels == test_pred).sum() print('Train accuracy: %.2f%%' % (100 * train_hit / len(train))) print('Test accuracy: %.2f%%' % (100 * test_hit / len(test))) print('Time: %.1f seconds' % (time.time() - start)) print('') class Logistic: """Logistic regression classifier""" def __init__(self): pass def train(self, train): # Instantiate the classifiers mlr = LogisticRegression(solver='sag', max_iter=10000, n_jobs=-1, multi_class='multinomial') ovr = LogisticRegression(solver='sag', max_iter=10000, n_jobs=-1, multi_class='ovr') # Train classifier mlr.fit(train.iloc[:, :-1], train.iloc[:, -1]) ovr.fit(train.iloc[:, :-1], train.iloc[:, -1]) return mlr, ovr def predict(self, feature, mlr, ovr): return mlr.predict(feature), ovr.predict(feature) def __call__(self, train, test): # Record start time print('==========LOGISTIC REGRESSION==========') start = time.time() # Train Logistic regression classifiers mlr, ovr = self.train(train) # Predict train and test labels train_pred_mlr, train_pred_ovr = self.predict(train.iloc[:, :-1], mlr, ovr) test_pred_mlr, test_pred_ovr = self.predict(test.iloc[:, :-1], mlr, ovr) # Print results train_hit_mlr = (train.iloc[:, -1] == train_pred_mlr).sum() train_hit_ovr = (train.iloc[:, -1] == train_pred_ovr).sum() test_hit_mlr = (test.iloc[:, -1] == test_pred_mlr).sum() test_hit_ovr = (test.iloc[:, -1] == test_pred_ovr).sum() print('Train accuracy: %5.2f%% (Multinomial), %6.2f%% (One-vs-Rest)' % (100 * train_hit_mlr / len(train), 100 * train_hit_ovr / len(train))) print('Test accuracy: %5.2f%% (Multinomial), %6.2f%% (One-vs-Rest)' % (100 * test_hit_mlr / len(test), 100 * test_hit_ovr / len(test))) print('Time: %.1f seconds' % (time.time() - start)) print('') class SVM: """Support Vector Machine classifier""" def __init__(self): pass def train(self, train): svc = SVC() svc.fit(train.iloc[:, :-1], train.iloc[:, -1]) return svc def predict(self, feature, svc): return svc.predict(feature) def __call__(self, train, test): # Record start time print('========SUPPORT VECTOR MACHINE=========') start = time.time() # Train support vector machine svc = self.train(train) # Predict train and test labels train_pred = self.predict(train.iloc[:, :-1], svc) test_pred = self.predict(test.iloc[:, :-1], svc) # Print results train_hit = (train.iloc[:, -1] == train_pred).sum() test_hit = (test.iloc[:, -1] == test_pred).sum() print('Train accuracy: %5.2f%% (Radial Basis Function)' % (100 * train_hit / len(train))) print('Test accuracy: %5.2f%% (Radial Basis Function)' % (100 * test_hit / len(test))) print('Time: %.1f seconds' % (time.time() - start)) print('') class RandomForest: """Random Forest classifier""" def __init__(self): pass def train(self, train, trees): # Instantiate the classifiers if trees == 1: rfc = RandomForestClassifier(n_estimators=trees, n_jobs=-1, bootstrap=False) else: rfc = RandomForestClassifier(n_estimators=trees, n_jobs=-1, bootstrap=True) # Train classifier rfc.fit(train.iloc[:, :-1], train.iloc[:, -1]) return rfc def predict(self, feature, rfc): return rfc.predict(feature) def __call__(self, train, test): # Record start time print('=============RANDOM FOREST=============') start = time.time() # Train Random Forest classifiers rfc1 = self.train(train, 1) rfc10 = self.train(train, 10) rfc100 = self.train(train, 100) # Predict train and test labels train_pred_1 = self.predict(train.iloc[:, :-1], rfc1) train_pred_10 = self.predict(train.iloc[:, :-1], rfc10) train_pred_100 = self.predict(train.iloc[:, :-1], rfc100) test_pred_1 = self.predict(test.iloc[:, :-1], rfc1) test_pred_10 = self.predict(test.iloc[:, :-1], rfc10) test_pred_100 = self.predict(test.iloc[:, :-1], rfc100) # Print results train_hit_1 = (train.iloc[:, -1] == train_pred_1).sum() train_hit_10 = (train.iloc[:, -1] == train_pred_10).sum() train_hit_100 = (train.iloc[:, -1] == train_pred_100).sum() test_hit_1 = (test.iloc[:, -1] == test_pred_1).sum() test_hit_10 = (test.iloc[:, -1] == test_pred_10).sum() test_hit_100 = (test.iloc[:, -1] == test_pred_100).sum() print('Train accuracy: %5.2f%% (1 Trees), %6.2f%% (10 Trees), %6.2f%% (100 Trees)' % (100 * train_hit_1 / len(train), 100 * train_hit_10 / len(train), 100 * train_hit_100 / len(train))) print('Test accuracy: %5.2f%% (1 Trees), %6.2f%% (10 Trees), %6.2f%% (100 Trees)' % (100 * test_hit_1 / len(test), 100 * test_hit_10 / len(test), 100 * test_hit_100 / len(test))) print('Time: %.1f seconds' % (time.time() - start)) print('') class XGBoost: """XGBoost""" def __init__(self): pass def train(self, train): xgb = XGBClassifier(max_depth=3, n_estimators=100) xgb.fit(train.iloc[:, :-1], train.iloc[:, -1]) return xgb def predict(self, feature, xgb): return xgb.predict(feature) def __call__(self, train, test): # Record start time print('================XGBOOST================') start = time.time() # Train support vector machine xgb = self.train(train) # Predict train and test labels train_pred = self.predict(train.iloc[:, :-1], xgb) test_pred = self.predict(test.iloc[:, :-1], xgb) # Print results train_hit = (train.iloc[:, -1] == train_pred).sum() test_hit = (test.iloc[:, -1] == test_pred).sum() print('Train accuracy: %5.2f%% (Max Depth of 3, 100 Trees)' % (100 * train_hit / len(train))) print('Test accuracy: %5.2f%% (Max Depth of 3, 100 Trees)' % (100 * test_hit / len(test))) print('Time: %.1f seconds' % (time.time() - start)) print('') class NeuralNet: """Neural network with a single hidden layer""" def __init__(self): self.hidden = 100 self.batch = 50 def train(self, train): # Convert train dataset to tensor feature = torch.from_numpy(train.iloc[:, :-1].values).float() label = torch.from_numpy(train.iloc[:, -1].values).long() # Initialize the neural network net = nn.Sequential(nn.Linear(feature.shape[1], self.hidden), nn.ReLU(), nn.Linear(self.hidden, len(set(train.iloc[:, -1])))) # Optimizer optimizer = optim.Adam(net.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() # Train classifier for i in range(10000): permutation = np.random.choice(feature.shape[0], self.batch) optimizer.zero_grad() output = net(feature[permutation]) loss = criterion(output, label[permutation]) loss.backward() optimizer.step() return net def predict(self, feature, net): feature = torch.from_numpy(feature.values).float() return net(feature) def __call__(self, train, test): # Record start time print('============NEURAL NETWORK=============') start = time.time() # Train support vector machine net = self.train(train) # Predict train and test labels train_pred = self.predict(train.iloc[:, :-1], net) train_pred = train_pred.detach().numpy().argmax(axis=1) test_pred = self.predict(test.iloc[:, :-1], net) test_pred = test_pred.detach().numpy().argmax(axis=1) # Print results train_hit = (train.iloc[:, -1].values == train_pred).sum() test_hit = (test.iloc[:, -1].values == test_pred).sum() print('Train accuracy: %5.2f%% (Single Hidden Layer)' % (100 * train_hit / len(train))) print('Test accuracy: %5.2f%% (Single Hidden Layer)' % (100 * test_hit / len(test))) print('Time: %.1f seconds' % (time.time() - start)) print('')
the-stack_0_8625
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for utils.py.""" from __future__ import annotations import base64 import copy import datetime import os import urllib from core import feconf from core import python_utils from core import utils from core.constants import constants from core.tests import test_utils from typing import Any, Dict, List class UtilsTests(test_utils.GenericTestBase): """Test the core utility methods.""" def test_get_comma_sep_string_from_list(self) -> None: """Test get_comma_sep_string_from_list method.""" alist = ['a', 'b', 'c', 'd'] results = ['', 'a', 'a and b', 'a, b and c', 'a, b, c and d'] for i in range(len(alist) + 1): comma_sep_string = utils.get_comma_sep_string_from_list(alist[:i]) self.assertEqual(comma_sep_string, results[i]) def test_to_ascii(self) -> None: """Test to_ascii method.""" parsed_str = utils.to_ascii('abc') self.assertEqual(parsed_str, 'abc') parsed_str = utils.to_ascii('¡Hola!') self.assertEqual(parsed_str, 'Hola!') parsed_str = utils.to_ascii( u'Klüft skräms inför på fédéral électoral große') self.assertEqual( parsed_str, 'Kluft skrams infor pa federal electoral groe') parsed_str = utils.to_ascii('') self.assertEqual(parsed_str, '') def test_yaml_dict_conversion(self) -> None: """Test yaml_from_dict and dict_from_yaml methods.""" test_dicts = [{}, {'a': 'b'}, {'a': 2}, {'a': ['b', 2, {'c': 3.5}]}] for adict in test_dicts: yaml_str = python_utils.yaml_from_dict(adict) # type: ignore[no-untyped-call] yaml_dict = utils.dict_from_yaml(yaml_str) self.assertEqual(adict, yaml_dict) with self.assertRaisesRegex( # type: ignore[no-untyped-call] utils.InvalidInputException, 'while parsing a flow node\n' 'expected the node content, but found \'<stream end>\'\n'): yaml_str = utils.dict_from_yaml('{') def test_recursively_remove_key_for_empty_dict(self) -> None: """Test recursively_remove_key method for an empty dict.""" d: Dict[str, Any] = {} utils.recursively_remove_key(d, 'a') self.assertEqual(d, {}) def test_recursively_remove_key_for_single_key_dict(self) -> None: """Test recursively_remove_key method for single key dict.""" d = {'a': 'b'} utils.recursively_remove_key(d, 'a') self.assertEqual(d, {}) def test_recursively_remove_key_for_multi_key_dict(self) -> None: """Test recursively_remove_key method for multi key dict.""" d = {'a': 'b', 'c': 'd'} utils.recursively_remove_key(d, 'a') self.assertEqual(d, {'c': 'd'}) def test_recursively_remove_key_for_dict_with_value_dict(self) -> None: """Test recursively_remove_key method for dict with a value dict.""" d = {'a': 'b', 'c': {'a': 'b'}} utils.recursively_remove_key(d, 'a') self.assertEqual(d, {'c': {}}) def test_recursively_remove_key_for_list(self) -> None: """Test recursively_remove_key method for list.""" l = ['a', 'b', {'c': 'd'}] utils.recursively_remove_key(l, 'c') self.assertEqual(l, ['a', 'b', {}]) def test_camelcase_to_hyphenated(self) -> None: """Test camelcase_to_hyphenated method.""" test_cases = [ ('AbcDef', 'abc-def'), ('Abc', 'abc'), ('abc_def', 'abc_def'), ('Abc012Def345', 'abc012-def345'), ('abcDef', 'abc-def'), ] for test_case in test_cases: self.assertEqual( utils.camelcase_to_hyphenated(test_case[0]), test_case[1]) def test_camelcase_to_snakecase(self) -> None: """Test camelcase_to_hyphenated method.""" test_cases = [ ('AbcDef', 'abc_def'), ('Abc', 'abc'), ('abc_def', 'abc_def'), ('Abc012Def345', 'abc012_def345'), ('abcDef', 'abc_def'), ('abc-def', 'abc-def'), ] for test_case in test_cases: self.assertEqual( utils.camelcase_to_snakecase(test_case[0]), test_case[1]) def test_set_url_query_parameter(self) -> None: """Test set_url_query_parameter method.""" self.assertEqual( utils.set_url_query_parameter('http://www.test.com', 'a', 'b'), 'http://www.test.com?a=b' ) self.assertEqual( utils.set_url_query_parameter('http://www.test.com?a=b', 'c', 'd'), 'http://www.test.com?a=b&c=d' ) self.assertEqual( utils.set_url_query_parameter( 'http://test.com?a=b', 'redirectUrl', 'http://redirect.com'), 'http://test.com?a=b&redirectUrl=http%3A%2F%2Fredirect.com' ) with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'URL query parameter name must be a string' ): utils.set_url_query_parameter('http://test.com?a=b', None, 'value') # type: ignore[arg-type] def test_convert_to_hash(self) -> None: """Test convert_to_hash() method.""" orig_string = 'name_to_convert' full_hash = utils.convert_to_hash(orig_string, 28) abbreviated_hash = utils.convert_to_hash(orig_string, 5) self.assertEqual(len(full_hash), 28) self.assertEqual(len(abbreviated_hash), 5) self.assertEqual(full_hash[:5], abbreviated_hash) self.assertTrue(full_hash.isalnum()) def test_vfs_construct_path(self) -> None: """Test vfs_construct_path method.""" p = utils.vfs_construct_path('a', 'b', 'c') self.assertEqual(p, 'a/b/c') p = utils.vfs_construct_path('a/', '/b', 'c') self.assertEqual(p, '/b/c') p = utils.vfs_construct_path('a/', 'b', 'c') self.assertEqual(p, 'a/b/c') p = utils.vfs_construct_path('a', '/b', 'c') self.assertEqual(p, '/b/c') p = utils.vfs_construct_path('/a', 'b/') self.assertEqual(p, '/a/b/') def test_vfs_normpath(self) -> None: p = utils.vfs_normpath('/foo/../bar') self.assertEqual(p, '/bar') p = utils.vfs_normpath('foo//bar') self.assertEqual(p, 'foo/bar') p = utils.vfs_normpath('foo/bar/..') self.assertEqual(p, 'foo') p = utils.vfs_normpath('/foo//bar//baz//') self.assertEqual(p, '/foo/bar/baz') p = utils.vfs_normpath('') self.assertEqual(p, '.') p = utils.vfs_normpath('//foo//bar//baz//') self.assertEqual(p, '//foo/bar/baz') def test_capitalize_string(self) -> None: test_data: List[List[str]] = [ ['', ''], ['a', 'A'], ['A', 'A'], ['1', '1'], ['lowercase', 'Lowercase'], ['UPPERCASE', 'UPPERCASE'], ['Partially', 'Partially'], ['miDdle', 'MiDdle'], ['2be', '2be'], ] for datum in test_data: self.assertEqual(utils.capitalize_string(datum[0]), datum[1]) def test_generate_random_string(self) -> None: # Generate a random string of length 12. random_string = utils.generate_random_string(12) self.assertIsInstance(random_string, str) self.assertEqual(len(random_string), 12) def test_convert_png_data_url_to_binary_with_incorrect_prefix(self) -> None: with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'The given string does not represent a PNG data URL' ): utils.convert_png_data_url_to_binary('data:image/jpg;base64,') def test_get_thumbnail_icon_url_for_category(self) -> None: self.assertEqual( utils.get_thumbnail_icon_url_for_category('Architecture'), '/subjects/Architecture.svg') self.assertEqual( utils.get_thumbnail_icon_url_for_category('Graph Theory'), '/subjects/GraphTheory.svg') self.assertEqual( utils.get_thumbnail_icon_url_for_category('Nonexistent'), '/subjects/Lightbulb.svg') def test_are_datetimes_close(self) -> None: initial_time = datetime.datetime(2016, 12, 1, 0, 0, 0) with self.swap(feconf, 'PROXIMAL_TIMEDELTA_SECS', 2): self.assertTrue(utils.are_datetimes_close( datetime.datetime(2016, 12, 1, 0, 0, 1), initial_time)) self.assertFalse(utils.are_datetimes_close( datetime.datetime(2016, 12, 1, 0, 0, 3), initial_time)) def test_conversion_between_string_and_naive_datetime_object(self) -> None: """Tests to make sure converting a naive datetime object to a string and back doesn't alter the naive datetime object data. """ now = datetime.datetime.utcnow() self.assertEqual( utils.convert_string_to_naive_datetime_object( utils.convert_naive_datetime_to_string(now)), now) def test_datetime_conversion_to_string_returns_correct_format(self) -> None: initial_time = datetime.datetime(2016, 12, 1, 1, 2, 3) self.assertEqual( utils.convert_naive_datetime_to_string(initial_time), '12/01/2016, 01:02:03:000000') def test_string_to_datetime_conversion_returns_correct_datetime( self ) -> None: time_string = '12/01/2016, 01:02:03:000000' initial_time = datetime.datetime(2016, 12, 1, 1, 2, 3) self.assertEqual( utils.convert_string_to_naive_datetime_object(time_string), initial_time) def test_create_string_from_largest_unit_in_timedelta_raises_for_zero_diff( self ) -> None: timedelta_object = datetime.timedelta(days=0) with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'Expected a positive timedelta, received: %s.' % ( timedelta_object.total_seconds())): utils.create_string_from_largest_unit_in_timedelta(timedelta_object) def test_create_string_from_largest_unit_in_timedelta_raises_for_neg_diff( self ) -> None: timedelta_object = datetime.timedelta(days=-40) with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'Expected a positive timedelta, received: %s.' % ( timedelta_object.total_seconds())): utils.create_string_from_largest_unit_in_timedelta(timedelta_object) def test_create_string_from_largest_unit_in_timedelta_returns_days( self ) -> None: timedelta_object = datetime.timedelta( days=4, hours=1, minutes=1, seconds=1) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '4 days') def test_create_string_from_largest_unit_in_timedelta_returns_a_day( self ) -> None: timedelta_object = datetime.timedelta( days=1, hours=1, minutes=1, seconds=1) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '1 day') def test_create_string_from_largest_unit_in_timedelta_returns_hours( self ) -> None: timedelta_object = datetime.timedelta( days=0, hours=2, minutes=1, seconds=1) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '2 hours') def test_create_string_from_largest_unit_in_timedelta_returns_an_hour( self ) -> None: timedelta_object = datetime.timedelta( days=0, hours=1, minutes=1, seconds=1) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '1 hour') def test_create_string_from_largest_unit_in_timedelta_returns_minutes( self ) -> None: timedelta_object = datetime.timedelta( days=0, hours=0, minutes=4, seconds=1) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '4 minutes') def test_create_string_from_largest_unit_in_timedelta_returns_a_minute( self ) -> None: timedelta_object = datetime.timedelta( days=0, hours=0, minutes=1, seconds=12) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '1 minute') def test_create_string_from_largest_unit_in_timedelta_returns_a_min_for_min( self ) -> None: timedelta_object = datetime.timedelta( days=0, hours=0, minutes=1, seconds=0) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '1 minute') def test_create_string_from_largest_unit_in_timedelta_returns_minute_if_sec( self ) -> None: timedelta_object = datetime.timedelta( days=0, hours=0, minutes=0, seconds=1) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '1 minute') def test_create_string_from_largest_unit_in_timedelta_returns_a_min_if_msec( self ) -> None: timedelta_object = datetime.timedelta( days=0, hours=0, minutes=0, seconds=0, milliseconds=1) time_string = ( utils.create_string_from_largest_unit_in_timedelta(timedelta_object) ) self.assertEqual(time_string, '1 minute') def test_get_hashable_value(self) -> None: json1 = ['foo', 'bar', {'baz': 3}] json2 = ['fee', {'fie': ['foe', 'fum']}] json1_deepcopy = copy.deepcopy(json1) json2_deepcopy = copy.deepcopy(json2) test_set = {utils.get_hashable_value(json1)} self.assertIn(utils.get_hashable_value(json1_deepcopy), test_set) test_set.add(utils.get_hashable_value(json2)) self.assertEqual( test_set, { utils.get_hashable_value(json1_deepcopy), utils.get_hashable_value(json2_deepcopy), }) def test_is_supported_audio_language_code(self) -> None: self.assertTrue(utils.is_supported_audio_language_code('hi-en')) self.assertFalse(utils.is_supported_audio_language_code('unknown')) def test_is_valid_language_code(self) -> None: self.assertTrue(utils.is_valid_language_code('en')) self.assertFalse(utils.is_valid_language_code('unknown')) def test_require_valid_name(self) -> None: name = 'name' utils.require_valid_name(name, 'name_type') invalid_name = 0 with self.assertRaisesRegex(Exception, '0 must be a string.'): # type: ignore[no-untyped-call] # Type ignore is used below because we are providing integer # argument instead of string for invalid_name for testing purposes. utils.require_valid_name(invalid_name, 'name_type') # type: ignore[arg-type] def test_require_valid_meta_tag_content(self) -> None: meta_tag_content = 'name' utils.require_valid_meta_tag_content(meta_tag_content) non_string_meta_tag_content = 0 invalid_type_error = ( 'Expected meta tag content to be a string, received 0') with self.assertRaisesRegex(Exception, invalid_type_error): # type: ignore[no-untyped-call] utils.require_valid_meta_tag_content(non_string_meta_tag_content) # type: ignore[arg-type] lengthy_meta_tag_content = 'a' * 200 max_length_error = ( 'Meta tag content should not be longer than %s characters.' % constants.MAX_CHARS_IN_META_TAG_CONTENT) with self.assertRaisesRegex(Exception, max_length_error): # type: ignore[no-untyped-call] utils.require_valid_meta_tag_content(lengthy_meta_tag_content) def test_require_valid_page_title_fragment_for_web(self) -> None: page_title_fragment_for_web = 'name' utils.require_valid_page_title_fragment_for_web( page_title_fragment_for_web) non_string_page_title_fragment_for_web = 0 invalid_type_error = ( 'Expected page title fragment to be a string, received 0') with self.assertRaisesRegex(Exception, invalid_type_error): # type: ignore[no-untyped-call] utils.require_valid_page_title_fragment_for_web( non_string_page_title_fragment_for_web) # type: ignore[arg-type] lengthy_page_title_fragment_for_web = 'a' * 60 max_length_error = ( 'Page title fragment should not be longer than %s characters.' % constants.MAX_CHARS_IN_PAGE_TITLE_FRAGMENT_FOR_WEB) with self.assertRaisesRegex(Exception, max_length_error): # type: ignore[no-untyped-call] utils.require_valid_page_title_fragment_for_web( lengthy_page_title_fragment_for_web) def test_require_valid_url_fragment(self) -> None: name = 'name' utils.require_valid_url_fragment(name, 'name-type', 20) name_with_spaces = 'name with spaces' name_with_spaces_expected_error = ( 'name-type field contains invalid characters. Only ' 'lowercase words separated by hyphens are allowed. ' 'Received name with spaces.') with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, name_with_spaces_expected_error): utils.require_valid_url_fragment( name_with_spaces, 'name-type', 20) name_in_caps = 'NAME' name_in_caps_expected_error = ( 'name-type field contains invalid characters. Only ' 'lowercase words separated by hyphens are allowed. Received NAME.') with self.assertRaisesRegex(Exception, name_in_caps_expected_error): # type: ignore[no-untyped-call] utils.require_valid_url_fragment( name_in_caps, 'name-type', 20) name_with_numbers = 'nam3' name_with_numbers_expected_error = ( 'name-type field contains invalid characters. Only ' 'lowercase words separated by hyphens are allowed. Received nam3.') with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, name_with_numbers_expected_error): utils.require_valid_url_fragment( name_with_numbers, 'name-type', 20) long_name = 'a-really-really-really-lengthy-name' long_name_expected_error = ( 'name-type field should not exceed 10 characters, ' 'received %s' % long_name) with self.assertRaisesRegex(Exception, long_name_expected_error): # type: ignore[no-untyped-call] utils.require_valid_url_fragment( long_name, 'name-type', 10) empty_name = '' empty_name_expected_error = 'name-type field should not be empty.' with self.assertRaisesRegex(Exception, empty_name_expected_error): # type: ignore[no-untyped-call] utils.require_valid_url_fragment(empty_name, 'name-type', 20) non_string_name = 0 non_string_name_expected_error = ( 'name-type field must be a string. Received 0.') with self.assertRaisesRegex(Exception, non_string_name_expected_error): # type: ignore[no-untyped-call] utils.require_valid_url_fragment(non_string_name, 'name-type', 20) # type: ignore[arg-type] def test_validate_convert_to_hash(self) -> None: with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'Expected string, received 1 of type %s' % type(1)): utils.convert_to_hash(1, 10) # type: ignore[arg-type] def test_convert_png_to_data_url_with_non_png_image_raises_error( self ) -> None: favicon_filepath = os.path.join( self.get_static_asset_filepath(), 'assets', 'favicon.ico') # type: ignore[no-untyped-call] with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'The given string does not represent a PNG image.'): utils.convert_png_to_data_url(favicon_filepath) def test_get_exploration_components_from_dir_with_invalid_path_raises_error( self ) -> None: with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'Found invalid non-asset file .+' 'There should only be a single non-asset file, and it should have ' 'a .yaml suffix.' ): utils.get_exploration_components_from_dir('core/tests/load_tests') with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'The only directory in . should be assets/'): utils.get_exploration_components_from_dir('.') def test_get_exploration_components_from_dir_with_multiple_yaml_files( self ) -> None: with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'More than one non-asset file specified for ' 'core/tests/data/dummy_assets/assets'): utils.get_exploration_components_from_dir( 'core/tests/data/dummy_assets/assets/') def test_get_exploration_components_from_dir_with_no_yaml_file( self ) -> None: with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'No yaml file specifed for core/tests/data/dummy_assets'): utils.get_exploration_components_from_dir( 'core/tests/data/dummy_assets/') def test_get_asset_dir_prefix_with_prod_mode(self) -> None: with self.swap(constants, 'DEV_MODE', False): self.assertEqual(utils.get_asset_dir_prefix(), '/build') def test_base64_from_int(self) -> None: base64_number = utils.base64_from_int(108) self.assertEqual(base64.b64decode(base64_number), b'[108]') def test_get_supported_audio_language_description_with_invalid_code( self ) -> None: valid_language_code = 'en' expected_language_description = 'English' self.assertEqual( utils.get_supported_audio_language_description(valid_language_code), expected_language_description) invalid_language_code = 'invalid_code' with self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'Unsupported audio language code: invalid_code'): utils.get_supported_audio_language_description( invalid_language_code) def test_is_user_id_valid(self) -> None: self.assertTrue( utils.is_user_id_valid( feconf.SYSTEM_COMMITTER_ID, allow_system_user_id=True)) self.assertTrue( utils.is_user_id_valid( feconf.MIGRATION_BOT_USER_ID, allow_system_user_id=True)) self.assertTrue( utils.is_user_id_valid( feconf.SUGGESTION_BOT_USER_ID, allow_system_user_id=True)) self.assertTrue( utils.is_user_id_valid( 'pid_%s' % ('a' * 32), allow_pseudonymous_id=True)) self.assertTrue( utils.is_user_id_valid('uid_%s' % ('a' * 32))) self.assertFalse( utils.is_user_id_valid('pid_%s' % ('a' * 32))) self.assertFalse( utils.is_user_id_valid('uid_%s%s' % ('a' * 31, 'A'))) self.assertFalse( utils.is_user_id_valid('uid_%s' % ('a' * 31))) self.assertFalse(utils.is_user_id_valid('a' * 36)) def test_is_pseudonymous_id(self) -> None: self.assertTrue(utils.is_pseudonymous_id('pid_' + 'a' * 32)) self.assertFalse(utils.is_pseudonymous_id('uid_' + 'a' * 32)) self.assertFalse(utils.is_pseudonymous_id('uid_' + 'a' * 31 + 'A')) self.assertFalse(utils.is_pseudonymous_id('uid_' + 'a' * 31)) self.assertFalse(utils.is_pseudonymous_id('a' * 36)) def test_snake_case_to_camel_case(self) -> None: camel_case_str1 = utils.snake_case_to_camel_case('user_id_number') camel_case_str2 = utils.snake_case_to_camel_case('hello_world') camel_case_str3 = utils.snake_case_to_camel_case('test1') self.assertEqual(camel_case_str1, 'userIdNumber') self.assertEqual(camel_case_str2, 'helloWorld') self.assertEqual(camel_case_str3, 'test1') def _assert_valid_thumbnail_filename( self, expected_error_substring: str, thumbnail_filename: str ) -> None: """Helper method for test_require_valid_thumbnail_filename.""" with self.assertRaisesRegex( # type: ignore[no-untyped-call] utils.ValidationError, expected_error_substring): utils.require_valid_thumbnail_filename( thumbnail_filename) def test_require_valid_thumbnail_filename(self) -> None: """Test thumbnail filename validation.""" self._assert_valid_thumbnail_filename( 'Expected thumbnail filename to be a string, received 10', 10) # type: ignore[arg-type] self._assert_valid_thumbnail_filename( 'Thumbnail filename should not start with a dot.', '.name') self._assert_valid_thumbnail_filename( 'Thumbnail filename should not include slashes or ' 'consecutive dot characters.', 'file/name') self._assert_valid_thumbnail_filename( 'Thumbnail filename should not include slashes or ' 'consecutive dot characters.', 'file..name') self._assert_valid_thumbnail_filename( 'Thumbnail filename should include an extension.', 'name') self._assert_valid_thumbnail_filename( 'Expected a filename ending in svg, received name.jpg', 'name.jpg') filename = 'filename.svg' utils.require_valid_thumbnail_filename(filename) def _assert_valid_image_filename( self, expected_error_substring: str, image_filename: str ) -> None: """Helper method for test_require_valid_image_filename.""" with self.assertRaisesRegex( # type: ignore[no-untyped-call] utils.ValidationError, expected_error_substring): utils.require_valid_image_filename(image_filename) def test_require_valid_image_filename(self) -> None: """Test image filename validation.""" self._assert_valid_image_filename( 'Expected image filename to be a string, received 10', 10) # type: ignore[arg-type] self._assert_valid_image_filename( 'Image filename should not start with a dot.', '.name') self._assert_valid_image_filename( 'Image filename should not include slashes or ' 'consecutive dot characters.', 'file/name') self._assert_valid_image_filename( 'Image filename should not include slashes or ' 'consecutive dot characters.', 'file..name') self._assert_valid_image_filename( 'Image filename should include an extension.', 'name') filename = 'filename.svg' utils.require_valid_image_filename(filename) def test_get_time_in_millisecs(self) -> None: dt = datetime.datetime(2020, 6, 15) msecs = utils.get_time_in_millisecs(dt) self.assertEqual( dt, datetime.datetime.fromtimestamp( python_utils.divide(msecs, 1000.0))) # type: ignore[no-untyped-call] def test_get_time_in_millisecs_with_complicated_time(self) -> None: dt = datetime.datetime(2020, 6, 15, 5, 18, 23, microsecond=123456) msecs = utils.get_time_in_millisecs(dt) self.assertEqual( dt, datetime.datetime.fromtimestamp( python_utils.divide(msecs, 1000.0))) # type: ignore[no-untyped-call] def test_grouper(self) -> None: self.assertEqual( [list(g) for g in utils.grouper(range(7), 3)], [[0, 1, 2], [3, 4, 5], [6, None, None]]) # Returns an iterable of iterables, so we need to combine them into # strings for easier comparison. self.assertEqual( [''.join(g) for g in utils.grouper('ABCDEFG', 3, fillvalue='x')], ['ABC', 'DEF', 'Gxx']) def test_partition(self) -> None: is_even = lambda n: (n % 2) == 0 evens, odds = ( utils.partition([10, 8, 1, 5, 6, 4, 3, 7], predicate=is_even)) self.assertEqual(list(evens), [10, 8, 6, 4]) self.assertEqual(list(odds), [1, 5, 3, 7]) def test_enumerated_partition(self) -> None: logs = ['ERROR: foo', 'INFO: bar', 'INFO: fee', 'ERROR: fie'] is_error = lambda msg: msg.startswith('ERROR: ') errors, others = ( utils.partition(logs, predicate=is_error, enumerated=True)) self.assertEqual(list(errors), [(0, 'ERROR: foo'), (3, 'ERROR: fie')]) self.assertEqual(list(others), [(1, 'INFO: bar'), (2, 'INFO: fee')]) def test_convert_png_data_url_to_binary(self) -> None: image_data_url = '%s%s' % ( utils.PNG_DATA_URL_PREFIX, urllib.parse.quote(base64.b64encode(b'test123')) ) self.assertEqual( utils.convert_png_data_url_to_binary(image_data_url), b'test123') def test_convert_png_data_url_to_binary_raises_if_prefix_is_missing( self ) -> None: image_data_url = urllib.parse.quote(base64.b64encode(b'test123')) self.assertRaisesRegex( # type: ignore[no-untyped-call] Exception, 'The given string does not represent a PNG data URL.', lambda: utils.convert_png_data_url_to_binary(image_data_url)) def test_quoted_string(self) -> None: self.assertEqual(utils.quoted('a"b\'c'), '"a\\"b\'c"') def test_is_base64_encoded(self) -> None: image = '<svg><path d="%s" /></svg>' % ( 'M150 0 L75 200 L225 200 Z ' * 1000) self.assertFalse(utils.is_base64_encoded(image)) self.assertFalse(utils.is_base64_encoded('hello')) self.assertTrue(utils.is_base64_encoded( base64.b64encode(b'hello').decode('utf-8')) ) def test_url_open(self) -> None: response = utils.url_open('http://www.google.com') self.assertEqual(response.getcode(), 200) # type: ignore[attr-defined] self.assertEqual( response.url, 'http://www.google.com') # type: ignore[attr-defined]
the-stack_0_8626
import tensorflow as tf _CSV_COLUMNS = [ 'age', 'workclass', 'fnlwgt', 'education', 'education_num', 'marital_status', 'occupation', 'relationship', 'race', 'gender', 'capital_gain', 'capital_loss', 'hours_per_week', 'native_country', 'income_bracket' ] _CSV_COLUMN_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''], [0], [0], [0], [''], ['']] _NUM_EXAMPLES = { 'train': 32561, 'validation': 16281, } # 1. Read the Census Data # 2. Converting Data into Tensors def input_fn(data_file, num_epochs, shuffle, batch_size): """为Estimator创建一个input function""" assert tf.gfile.Exists(data_file), "{0} not found.".format(data_file) def parse_csv(line): print("Parsing", data_file) # tf.decode_csv会把csv文件转换成很a list of Tensor,一列一个。record_defaults用于指明每一列的缺失值用什么填充 columns = tf.decode_csv(line, record_defaults=_CSV_COLUMN_DEFAULTS) features = dict(zip(_CSV_COLUMNS, columns)) labels = features.pop('income_bracket') return features, tf.equal(labels, '>50K') # tf.equal(x, y) 返回一个bool类型Tensor, 表示x == y, element-wise dataset = tf.data.TextLineDataset(data_file) \ .map(parse_csv, num_parallel_calls=5) if shuffle: dataset = dataset.shuffle(buffer_size=_NUM_EXAMPLES['train'] + _NUM_EXAMPLES['validation']) dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() return batch_features, batch_labels # 3. Select and Engineer Features for Model ## 3.1 Base Categorical Feature Columns # 如果我们知道所有的取值,并且取值不是很多 relationship = tf.feature_column.categorical_column_with_vocabulary_list( 'relationship', [ 'Husband', 'Not-in-family', 'Wife', 'Own-child', 'Unmarried', 'Other-relative' ] ) # 如果不知道有多少取值 occupation = tf.feature_column.categorical_column_with_hash_bucket( 'occupation', hash_bucket_size=1000 ) education = tf.feature_column.categorical_column_with_vocabulary_list( 'education', [ 'Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college', 'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school', '5th-6th', '10th', '1st-4th', 'Preschool', '12th' ] ) marital_status = tf.feature_column.categorical_column_with_vocabulary_list( 'marital_status', [ 'Married-civ-spouse', 'Divorced', 'Married-spouse-absent', 'Never-married', 'Separated', 'Married-AF-spouse', 'Widowed'] ) workclass = tf.feature_column.categorical_column_with_vocabulary_list( 'workclass', [ 'Self-emp-not-inc', 'Private', 'State-gov', 'Federal-gov', 'Local-gov', '?', 'Self-emp-inc', 'Without-pay', 'Never-worked']) # 3.2 Base Continuous Feature Columns age = tf.feature_column.numeric_column('age') education_num = tf.feature_column.numeric_column('education_num') capital_gain = tf.feature_column.numeric_column('capital_gain') capital_loss = tf.feature_column.numeric_column('capital_loss') hours_per_week = tf.feature_column.numeric_column('hours_per_week') #Sometimes the relationship between a continuous feature and the label is not linear. As a hypothetical example, a person's income may grow with age in the early stage of one's career, then the growth may slow at some point, and finally the income decreases after retirement. In this scenario, using the raw age as a real-valued feature column might not be a good choice because the model can only learn one of the three cases: # 3.2.1 连续特征离散化 # 之所以这么做是因为:有些时候连续特征和label之间不是线性的关系。可能刚开始是正的线性关系,后面又变成了负的线性关系,这样一个折线的关系整体来看就不再是线性关系。 # bucketization 装桶 # 10个边界,11个桶 age_buckets = tf.feature_column.bucketized_column( age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) # 3.3 组合特征/交叉特征 education_x_occupation = tf.feature_column.crossed_column( ['education', 'occupation'], hash_bucket_size=1000) age_buckets_x_education_x_occupation = tf.feature_column.crossed_column( [age_buckets, 'education', 'occupation'], hash_bucket_size=1000 ) # 4. 模型 """ 之前的特征: 1. CategoricalColumn 2. NumericalColumn 3. BucketizedColumn 4. CrossedColumn 这些特征都是FeatureColumn的子类,可以放到一起 """ base_columns = [ education, marital_status, relationship, workclass, occupation, age_buckets, ] crossed_column = [ tf.feature_column.crossed_column( ['education', 'occupation'], hash_bucket_size=1000 ), tf.feature_column.crossed_column( [age_buckets, 'education', 'occupation'], hash_bucket_size=1000 ) ] model_dir = "./model/wide_component" model = tf.estimator.LinearClassifier( model_dir=model_dir, feature_columns=base_columns + crossed_column ) train_file = './data/adult.data' val_file = './data/adult.data' test_file = './data/adult.test' # 5. Train & Evaluate & Predict model.train(input_fn=lambda: input_fn(data_file=train_file, num_epochs=1, shuffle=True, batch_size=512)) results = model.evaluate(input_fn=lambda: input_fn(val_file, 1, False, 512)) for key in sorted(results): print("{0:20}: {1:.4f}".format(key, results[key])) pred_iter = model.predict(input_fn=lambda: input_fn(test_file, 1, False, 1)) for pred in pred_iter: print(pred) break #太多了,只打印一条 test_results = model.evaluate(input_fn=lambda: input_fn(test_file, 1, False, 512)) for key in sorted(test_results): print("{0:20}: {1:.4f}".format(key, test_results[key])) # 6. 正则化 model = tf.estimator.LinearClassifier( feature_columns=base_columns + crossed_column, model_dir=model_dir, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=1.0, l2_regularization_strength=1.0 ) ) # if __name__ == '__main__': # print(tf.VERSION) # data_file = './data/adult.data' # next_batch = input_fn(data_file, num_epochs=1, shuffle=True, batch_size=5) # with tf.Session() as sess: # first_batch = sess.run(next_batch) # print(first_batch[0]) # print(first_batch[1])
the-stack_0_8628
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum, auto from model_navigator.core import Container from model_navigator.framework import Framework, PyTorch, TensorFlow1, TensorFlow2 class TRITON_LOAD_MODE(Enum): POLL_ONCE = auto() POLL_PERIODICALLY = auto() EXPLICIT = auto() NONE = auto() class TritonServer(Container): image = "nvcr.io/nvidia/tritonserver" tag = "py3" @staticmethod def library_path(framework: Framework): paths = { PyTorch.name: "/opt/tritonserver/lib/pytorch", TensorFlow1.name: "/opt/tritonserver/lib/tensorflow", TensorFlow2.name: "/opt/tritonserver/lib/tensorflow", } return paths[framework.name] @staticmethod def command( framework: Framework, repository_path: str, verbose: bool = False, strict_mode: bool = False, load_mode: TRITON_LOAD_MODE = TRITON_LOAD_MODE.EXPLICIT, metrics: bool = False, ): triton_command = f"tritonserver --model-store={repository_path}" if load_mode in [TRITON_LOAD_MODE.POLL_ONCE, TRITON_LOAD_MODE.POLL_PERIODICALLY]: triton_command += " --model-control-mode=poll" if load_mode == TRITON_LOAD_MODE.POLL_PERIODICALLY: triton_command += " --repository- poll-secs=5" if load_mode == TRITON_LOAD_MODE.EXPLICIT: triton_command += " --model-control-mode=explicit" if verbose: triton_command += " --log-verbose=1" if not strict_mode: triton_command += " --strict-model-config=false" if not metrics: triton_command += " --allow-metrics=false --allow-gpu-metrics=false" if isinstance(framework, (TensorFlow1, TensorFlow2)): version = 1 if framework == TensorFlow1 else 2 triton_command += f" --backend-config=tensorflow,version={version}" return triton_command @staticmethod def api_method(key): methods = { "livenessProbe": "/v2/health/live", "readinessProbe": "/v2/health/ready", } return methods[key]
the-stack_0_8629
from tree_common import TreeNode, insert, inOrderTraversal from typing import List from ...fundamentals.linked_lists.single_list import Node as LinkedNode """ Use Created linked lists from a tree """ def tree_to_linked_lists(root:TreeNode) -> List[LinkedNode]: result = [LinkedNode] level_to_linked_list(root, result, 0) return result def level_to_linked_list(root:TreeNode, result:List[LinkedNode], level:int): if not root: return if len(result) == level: result.append([LinkedNode(root)]) else: singly_node = result[level] while singly_node.n: singly_node = singly_node.n singly_node.next = LinkedNode(root) level_to_linked_list(root.left, result, level + 1) level_to_linked_list(root.right, result, level + 1) def bst(root): if not root: return [] result = [LinkedNode] singly_node = LinkedNode(root) while singly_node: result.append(singly_node) parents = singly_node prehead = LinkedNode(-1) singly_node = prehead while parents: if parents.data.left: singly_node.next = LinkedNode(parents.data.left) singly_node = singly_node.next if parents.data.right: singly_node.next = LinkedNode(parents.data.right) singly_node = singly_node.next singly_node = prehead.next return result ### not tested if __name__ == "__main__": root = insert(None, 4) n2 = insert(root, 2) n1 = insert(root, 1) n3 = insert(root, 3) n8 = insert(root, 8) n11 = insert(root, 11) n7= insert(root, 7) tree_to_linked_lists(root)
the-stack_0_8630
# -*- coding: utf-8 -*- ''' Manage RabbitMQ Plugins ======================= .. versionadded:: 2014.1.0 Example: .. code-block:: yaml some_plugin: rabbitmq_plugin.enabled: [] ''' # Import Python Libs from __future__ import absolute_import, unicode_literals, print_function import logging # Import Salt Libs from salt.exceptions import CommandExecutionError log = logging.getLogger(__name__) def __virtual__(): ''' Only load if RabbitMQ is installed. ''' if __salt__['cmd.has_exec']('rabbitmqctl'): return True return False def enabled(name, runas=None): ''' Ensure the RabbitMQ plugin is enabled. name The name of the plugin runas The user to run the rabbitmq-plugin command as ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} try: plugin_enabled = __salt__['rabbitmq.plugin_is_enabled'](name, runas=runas) except CommandExecutionError as err: ret['result'] = False ret['comment'] = 'Error: {0}'.format(err) return ret if plugin_enabled: ret['comment'] = 'Plugin \'{0}\' is already enabled.'.format(name) return ret if not __opts__['test']: try: __salt__['rabbitmq.enable_plugin'](name, runas=runas) except CommandExecutionError as err: ret['result'] = False ret['comment'] = 'Error: {0}'.format(err) return ret ret['changes'].update({'old': '', 'new': name}) if __opts__['test'] and ret['changes']: ret['result'] = None ret['comment'] = 'Plugin \'{0}\' is set to be enabled.'.format(name) return ret ret['comment'] = 'Plugin \'{0}\' was enabled.'.format(name) return ret def disabled(name, runas=None): ''' Ensure the RabbitMQ plugin is disabled. name The name of the plugin runas The user to run the rabbitmq-plugin command as ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} try: plugin_enabled = __salt__['rabbitmq.plugin_is_enabled'](name, runas=runas) except CommandExecutionError as err: ret['result'] = False ret['comment'] = 'Error: {0}'.format(err) return ret if not plugin_enabled: ret['comment'] = 'Plugin \'{0}\' is already disabled.'.format(name) return ret if not __opts__['test']: try: __salt__['rabbitmq.disable_plugin'](name, runas=runas) except CommandExecutionError as err: ret['result'] = False ret['comment'] = 'Error: {0}'.format(err) return ret ret['changes'].update({'old': name, 'new': ''}) if __opts__['test'] and ret['changes']: ret['result'] = None ret['comment'] = 'Plugin \'{0}\' is set to be disabled.'.format(name) return ret ret['comment'] = 'Plugin \'{0}\' was disabled.'.format(name) return ret
the-stack_0_8631
# -*- coding: utf-8 -*- # Scrapy settings for weibo_m project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'weibo_m' SPIDER_MODULES = ['weibo_m.spiders'] NEWSPIDER_MODULE = 'weibo_m.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'weibo_m (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: DEFAULT_REQUEST_HEADERS = { 'Accept': 'application/json, text/plain, */*', 'Accept-Encoding': 'gzip, deflate, sdch', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6,ja;q=0.4,zh-TW;q=0.2,mt;q=0.2', 'Connection': 'keep-alive', 'Host': 'm.weibo.cn', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest', } # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'weibo_m.middlewares.WeiboMSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # DOWNLOADER_MIDDLEWARES = { # 'weibo_m.middlewares.ProxyMiddleware': 543, # 'weibo_m.middlewares.CookiesMiddleware': 544, # } # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'weibo_m.pipelines.TimePipeline': 300, 'weibo_m.pipelines.WeiboPipeline': 301, 'weibo_m.pipelines.MongoPipeline': 302, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' MONGO_URI = '10.255.1.175' MONGO_DB = 'weibo_1300419694' REDIS_URL = 'redis://:[email protected]:6379/3' START_USER = ['1300419694']
the-stack_0_8636
from collections import OrderedDict, deque, namedtuple import numpy as np from sklearn.model_selection import train_test_split from torchlib.dataset.utils import create_data_loader from torchlib.deep_rl import BaseAgent class Dataset(object): def __init__(self): self._states = [] self._actions = [] self._next_states = [] self._rewards = [] self._dones = [] @property def is_empty(self): return len(self) == 0 def __len__(self): return len(self._states) ################## ### Statistics ### ################## @property def state_mean(self): return np.mean(self._states, axis=0).astype(np.float32) @property def state_std(self): return np.std(self._states, axis=0).astype(np.float32) @property def action_mean(self): return np.mean(self._actions, axis=0).astype(np.float32) @property def action_std(self): return np.std(self._actions, axis=0).astype(np.float32) @property def delta_state_mean(self): return np.mean(np.array(self._next_states) - np.array(self._states), axis=0).astype(np.float32) @property def delta_state_std(self): return np.std(np.array(self._next_states) - np.array(self._states), axis=0).astype(np.float32) ################### ### Adding data ### ################### def add(self, state, action, next_state, reward, done): """ Add (s, a, r, s') to this dataset """ if not self.is_empty: # ensure the state, action, next_state are of the same dimension assert len(self._states[-1]) == len(np.ravel(state)) assert len(self._actions[-1]) == len(np.ravel(action)) assert len(self._next_states[-1]) == len(np.ravel(next_state)) self._states.append(np.ravel(state)) self._actions.append(np.ravel(action)) self._next_states.append(np.ravel(next_state)) self._rewards.append(reward) self._dones.append(done) def append(self, other_dataset): """ Append other_dataset to this dataset """ if not self.is_empty and not other_dataset.is_empty: # ensure the state, action, next_state are of the same dimension assert len(self._states[-1]) == len(other_dataset._states[-1]) assert len(self._actions[-1]) == len(other_dataset._actions[-1]) assert len(self._next_states[-1]) == len(other_dataset._next_states[-1]) self._states += other_dataset._states self._actions += other_dataset._actions self._next_states += other_dataset._next_states self._rewards += other_dataset._rewards self._dones += other_dataset._dones ############################ ### Iterate through data ### ############################ def rollout_iterator(self): """ Iterate through all the rollouts in the dataset sequentially """ end_indices = np.nonzero(self._dones)[0] + 1 states = np.asarray(self._states) actions = np.asarray(self._actions) next_states = np.asarray(self._next_states) rewards = np.asarray(self._rewards) dones = np.asarray(self._dones) start_idx = 0 for end_idx in end_indices: indices = np.arange(start_idx, end_idx) yield states[indices], actions[indices], next_states[indices], rewards[indices], dones[indices] start_idx = end_idx def random_iterator(self, batch_size): """ Iterate once through all (s, a, r, s') in batches in a random order """ all_indices = np.nonzero(np.logical_not(self._dones))[0] np.random.shuffle(all_indices) states = np.asarray(self._states) actions = np.asarray(self._actions) next_states = np.asarray(self._next_states) rewards = np.asarray(self._rewards) dones = np.asarray(self._dones) i = 0 while i < len(all_indices): indices = all_indices[i:i + batch_size] yield states[indices], actions[indices], next_states[indices], rewards[indices], dones[indices] i += batch_size def log(self): end_idxs = np.nonzero(self._dones)[0] + 1 returns = [] start_idx = 0 for end_idx in end_idxs: rewards = self._rewards[start_idx:end_idx] returns.append(np.sum(rewards)) start_idx = end_idx stats = OrderedDict({ 'ReturnAvg': np.mean(returns), 'ReturnStd': np.std(returns), 'ReturnMin': np.min(returns), 'ReturnMax': np.max(returns) }) return stats Transition = namedtuple('Transition', ('state', 'action', 'reward')) ImitationTransition = namedtuple('ImitationTransition', ('state', 'action', 'reward', 'best_action')) class EpisodicDataset(object): def __init__(self, maxlen=10000): self.memory = deque() # current state self._states = [] self._actions = [] self._rewards = [] self.size = 0 # initial state self.initial_state = deque(maxlen=maxlen) self.maxlen = maxlen def __len__(self): return self.size @property def num_trajectories(self): return len(self.memory) @property def is_empty(self): return len(self) == 0 @property def state_mean(self): states = [] for trajectory in self.memory: states.append(trajectory.state) return np.mean(np.concatenate(states, axis=0), axis=0) @property def state_std(self): states = [] for trajectory in self.memory: states.append(trajectory.state) return np.std(np.concatenate(states, axis=0), axis=0) @property def action_mean(self): actions = [] for trajectory in self.memory: actions.append(trajectory.action) return np.mean(np.concatenate(actions, axis=0), axis=0).astype(np.float32) @property def action_std(self): actions = [] for trajectory in self.memory: actions.append(trajectory.action) return np.std(np.concatenate(actions, axis=0), axis=0).astype(np.float32) @property def delta_state_mean(self): delta_states = [] for trajectory in self.memory: states = trajectory.state delta_states.append(states[1:] - states[:-1]) return np.mean(np.concatenate(delta_states, axis=0), axis=0) @property def delta_state_std(self): delta_states = [] for trajectory in self.memory: states = trajectory.state delta_states.append(states[1:] - states[:-1]) return np.std(np.concatenate(delta_states, axis=0), axis=0) @property def reward_mean(self): rewards = [] for trajectory in self.memory: rewards.append(trajectory.reward) return np.mean(np.concatenate(rewards, axis=0), axis=0).astype(np.float32) @property def reward_std(self): rewards = [] for trajectory in self.memory: rewards.append(trajectory.reward) return np.std(np.concatenate(rewards, axis=0), axis=0).astype(np.float32) def add(self, state, action, next_state, reward, done): self._states.append(np.ravel(state)) if isinstance(action, np.ndarray) and len(action.shape) != 0: self._actions.append(np.ravel(action)) else: self._actions.append(action) self._rewards.append(np.ravel(reward)) self.size += 1 if done: self._states.append(next_state) self.memory.append(Transition(state=np.array(self._states), action=np.array(self._actions), reward=np.array(self._rewards))) self._states = [] self._actions = [] self._rewards = [] def append(self, other_dataset): self.memory.extend(other_dataset.memory) self.size += other_dataset.size while self.size > self.maxlen: trajectory = self.memory.popleft() self.size -= len(trajectory.action) def get_initial_states(self): init_states = [] for trajectory in self.memory: init_states.append(trajectory.state[0].copy()) return init_states def rollout_iterator(self): for trajectory in self.memory: states = trajectory.state[:-1] next_states = trajectory.state[1:] actions = trajectory.action rewards = trajectory.reward dones = [False] * actions.shape[0] dones[-1] = True yield states, actions, next_states, rewards, dones def random_iterator(self, batch_size, train_val_split_ratio=0.2): states = [] actions = [] rewards = [] next_states = [] dones = [] for trajectory in self.memory: states.append(trajectory.state[:-1]) actions.append(trajectory.action) next_states.append(trajectory.state[1:]) rewards.append(trajectory.reward) done = [False] * trajectory.action.shape[0] done[-1] = True dones.append(np.array(done)) states = np.concatenate(states, axis=0) actions = np.concatenate(actions, axis=0) next_states = np.concatenate(next_states, axis=0) rewards = np.concatenate(rewards, axis=0) dones = np.concatenate(dones, axis=0) input_tuple = (states, actions, next_states, rewards, dones) output_tuple = train_test_split(*input_tuple, test_size=train_val_split_ratio) train_tuple = output_tuple[0::2] val_tuple = output_tuple[1::2] # in training, we drop last batch to avoid batch size 1 that may crash batch_norm layer. train_data_loader = create_data_loader(train_tuple, batch_size=batch_size, shuffle=True, drop_last=True) val_data_loader = create_data_loader(val_tuple, batch_size=batch_size, shuffle=False, drop_last=False) return train_data_loader, val_data_loader def log(self): returns = [] for trajectory in self.memory: returns.append(np.sum(trajectory.reward)) stats = OrderedDict({ 'ReturnAvg': np.mean(returns), 'ReturnStd': np.std(returns), 'ReturnMin': np.min(returns), 'ReturnMax': np.max(returns) }) return stats class StateActionPairDataset(object): def __init__(self, max_size): self.states = deque(maxlen=max_size) self.actions = deque(maxlen=max_size) def __len__(self): return len(self.states) @property def maxlen(self): return self.states.maxlen @property def is_empty(self): return len(self) == 0 def add(self, state, action): self.states.append(state) self.actions.append(action) @property def state_stats(self): states = np.array(self.states) return np.mean(states, axis=0), np.std(states, axis=0) @property def action_stats(self): actions = np.array(self.actions) return np.mean(actions, axis=0), np.std(actions, axis=0) def random_iterator(self, batch_size, train_val_split_ratio=0.2): states = np.array(self.states) actions = np.array(self.actions) input_tuple = (states, actions) output_tuple = train_test_split(*input_tuple, test_size=train_val_split_ratio) train_tuple = output_tuple[0::2] val_tuple = output_tuple[1::2] # in training, we drop last batch to avoid batch size 1 that may crash batch_norm layer. train_data_loader = create_data_loader(train_tuple, batch_size=batch_size, shuffle=True, drop_last=True) val_data_loader = create_data_loader(val_tuple, batch_size=batch_size, shuffle=False, drop_last=False) return train_data_loader, val_data_loader def gather_rollouts(env, policy: BaseAgent, num_rollouts, max_rollout_length) -> EpisodicDataset: dataset = EpisodicDataset() for _ in range(num_rollouts): state = env.reset() done = False t = 0 while not done: t += 1 if state.dtype == np.float: state = state.astype(np.float32) action = policy.predict(state) if isinstance(action, np.ndarray) and action.dtype == np.float: action = action.astype(np.float32) next_state, reward, done, _ = env.step(action) if next_state.dtype == np.float: next_state = next_state.astype(np.float32) done = done or (t >= max_rollout_length) dataset.add(state, action, next_state, reward, done) state = next_state return dataset
the-stack_0_8637
#!/usr/bin/env python3 # Copyright (c) 2016 The Magmelldollar Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.mininode import * from test_framework.test_framework import MagmelldollarTestFramework from test_framework.util import * from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment from test_framework.siphash import siphash256 from test_framework.script import CScript, OP_TRUE VB_TOP_BITS = 0x20000000 ''' CompactBlocksTest -- test compact blocks (BIP 152) Version 1 compact blocks are pre-segwit (txids) Version 2 compact blocks are post-segwit (wtxids) ''' # TestNode: A peer we use to send messages to magmelldollard, and store responses. class TestNode(SingleNodeConnCB): def __init__(self): SingleNodeConnCB.__init__(self) self.last_sendcmpct = [] self.last_headers = None self.last_inv = None self.last_cmpctblock = None self.block_announced = False self.last_getdata = None self.last_getblocktxn = None self.last_block = None self.last_blocktxn = None # Store the hashes of blocks we've seen announced. # This is for synchronizing the p2p message traffic, # so we can eg wait until a particular block is announced. self.set_announced_blockhashes = set() def on_sendcmpct(self, conn, message): self.last_sendcmpct.append(message) def on_block(self, conn, message): self.last_block = message def on_cmpctblock(self, conn, message): self.last_cmpctblock = message self.block_announced = True self.last_cmpctblock.header_and_shortids.header.calc_sha256() self.set_announced_blockhashes.add(self.last_cmpctblock.header_and_shortids.header.sha256) def on_headers(self, conn, message): self.last_headers = message self.block_announced = True for x in self.last_headers.headers: x.calc_sha256() self.set_announced_blockhashes.add(x.sha256) def on_inv(self, conn, message): self.last_inv = message for x in self.last_inv.inv: if x.type == 2: self.block_announced = True self.set_announced_blockhashes.add(x.hash) def on_getdata(self, conn, message): self.last_getdata = message def on_getblocktxn(self, conn, message): self.last_getblocktxn = message def on_blocktxn(self, conn, message): self.last_blocktxn = message # Requires caller to hold mininode_lock def received_block_announcement(self): return self.block_announced def clear_block_announcement(self): with mininode_lock: self.block_announced = False self.last_inv = None self.last_headers = None self.last_cmpctblock = None def get_headers(self, locator, hashstop): msg = msg_getheaders() msg.locator.vHave = locator msg.hashstop = hashstop self.connection.send_message(msg) def send_header_for_blocks(self, new_blocks): headers_message = msg_headers() headers_message.headers = [CBlockHeader(b) for b in new_blocks] self.send_message(headers_message) def request_headers_and_sync(self, locator, hashstop=0): self.clear_block_announcement() self.get_headers(locator, hashstop) assert(wait_until(self.received_block_announcement, timeout=30)) assert(self.received_block_announcement()) self.clear_block_announcement() # Block until a block announcement for a particular block hash is # received. def wait_for_block_announcement(self, block_hash, timeout=30): def received_hash(): return (block_hash in self.set_announced_blockhashes) return wait_until(received_hash, timeout=timeout) class CompactBlocksTest(MagmelldollarTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True # Node0 = pre-segwit, node1 = segwit-aware self.num_nodes = 2 self.utxos = [] def setup_network(self): self.nodes = [] # Start up node0 to be a version 1, pre-segwit node. self.nodes = start_nodes(self.num_nodes, self.options.tmpdir, [["-debug", "-logtimemicros=1", "-bip9params=segwit:0:0"], ["-debug", "-logtimemicros", "-txindex"]]) connect_nodes(self.nodes[0], 1) def build_block_on_tip(self, node, segwit=False): height = node.getblockcount() tip = node.getbestblockhash() mtp = node.getblockheader(tip)['mediantime'] block = create_block(int(tip, 16), create_coinbase(height + 1), mtp + 1) block.nVersion = VB_TOP_BITS if segwit: add_witness_commitment(block) block.solve() return block # Create 10 more anyone-can-spend utxo's for testing. def make_utxos(self): # Doesn't matter which node we use, just use node0. block = self.build_block_on_tip(self.nodes[0]) self.test_node.send_and_ping(msg_block(block)) assert(int(self.nodes[0].getbestblockhash(), 16) == block.sha256) self.nodes[0].generate(100) total_value = block.vtx[0].vout[0].nValue out_value = total_value // 10 tx = CTransaction() tx.vin.append(CTxIn(COutPoint(block.vtx[0].sha256, 0), b'')) for i in range(10): tx.vout.append(CTxOut(out_value, CScript([OP_TRUE]))) tx.rehash() block2 = self.build_block_on_tip(self.nodes[0]) block2.vtx.append(tx) block2.hashMerkleRoot = block2.calc_merkle_root() block2.solve() self.test_node.send_and_ping(msg_block(block2)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block2.sha256) self.utxos.extend([[tx.sha256, i, out_value] for i in range(10)]) return # Test "sendcmpct" (between peers preferring the same version): # - No compact block announcements unless sendcmpct is sent. # - If sendcmpct is sent with version > preferred_version, the message is ignored. # - If sendcmpct is sent with boolean 0, then block announcements are not # made with compact blocks. # - If sendcmpct is then sent with boolean 1, then new block announcements # are made with compact blocks. # If old_node is passed in, request compact blocks with version=preferred-1 # and verify that it receives block announcements via compact block. def test_sendcmpct(self, node, test_node, preferred_version, old_node=None): # Make sure we get a SENDCMPCT message from our peer def received_sendcmpct(): return (len(test_node.last_sendcmpct) > 0) got_message = wait_until(received_sendcmpct, timeout=30) assert(received_sendcmpct()) assert(got_message) with mininode_lock: # Check that the first version received is the preferred one assert_equal(test_node.last_sendcmpct[0].version, preferred_version) # And that we receive versions down to 1. assert_equal(test_node.last_sendcmpct[-1].version, 1) test_node.last_sendcmpct = [] tip = int(node.getbestblockhash(), 16) def check_announcement_of_new_block(node, peer, predicate): peer.clear_block_announcement() block_hash = int(node.generate(1)[0], 16) peer.wait_for_block_announcement(block_hash, timeout=30) assert(peer.block_announced) assert(got_message) with mininode_lock: assert predicate(peer), ( "block_hash={!r}, cmpctblock={!r}, inv={!r}".format( block_hash, peer.last_cmpctblock, peer.last_inv)) # We shouldn't get any block announcements via cmpctblock yet. check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is None) # Try one more time, this time after requesting headers. test_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is None and p.last_inv is not None) # Test a few ways of using sendcmpct that should NOT # result in compact block announcements. # Before each test, sync the headers chain. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with too-high version sendcmpct = msg_sendcmpct() sendcmpct.version = preferred_version+1 sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is None) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Now try a SENDCMPCT message with valid version, but announce=False sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is None) # Headers sync before next test. test_node.request_headers_and_sync(locator=[tip]) # Finally, try a SENDCMPCT message with announce=True sendcmpct.version = preferred_version sendcmpct.announce = True test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is not None) # Try one more time (no headers sync should be needed!) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is not None) # Try one more time, after turning on sendheaders test_node.send_and_ping(msg_sendheaders()) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is not None) # Try one more time, after sending a version-1, announce=false message. sendcmpct.version = preferred_version-1 sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is not None) # Now turn off announcements sendcmpct.version = preferred_version sendcmpct.announce = False test_node.send_and_ping(sendcmpct) check_announcement_of_new_block(node, test_node, lambda p: p.last_cmpctblock is None and p.last_headers is not None) if old_node is not None: # Verify that a peer using an older protocol version can receive # announcements from this node. sendcmpct.version = preferred_version-1 sendcmpct.announce = True old_node.send_and_ping(sendcmpct) # Header sync old_node.request_headers_and_sync(locator=[tip]) check_announcement_of_new_block(node, old_node, lambda p: p.last_cmpctblock is not None) # This test actually causes magmelldollard to (reasonably!) disconnect us, so do this last. def test_invalid_cmpctblock_message(self): self.nodes[0].generate(101) block = self.build_block_on_tip(self.nodes[0]) cmpct_block = P2PHeaderAndShortIDs() cmpct_block.header = CBlockHeader(block) cmpct_block.prefilled_txn_length = 1 # This index will be too high prefilled_txn = PrefilledTransaction(1, block.vtx[0]) cmpct_block.prefilled_txn = [prefilled_txn] self.test_node.send_and_ping(msg_cmpctblock(cmpct_block)) assert(int(self.nodes[0].getbestblockhash(), 16) == block.hashPrevBlock) # Compare the generated shortids to what we expect based on BIP 152, given # magmelldollard's choice of nonce. def test_compactblock_construction(self, node, test_node, version, use_witness_address): # Generate a bunch of transactions. node.generate(101) num_transactions = 25 address = node.getnewaddress() if use_witness_address: # Want at least one segwit spend, so move all funds to # a witness address. address = node.addwitnessaddress(address) value_to_send = node.getbalance() node.sendtoaddress(address, satoshi_round(value_to_send-Decimal(0.1))) node.generate(1) segwit_tx_generated = False for i in range(num_transactions): txid = node.sendtoaddress(address, 0.1) hex_tx = node.gettransaction(txid)["hex"] tx = FromHex(CTransaction(), hex_tx) if not tx.wit.is_null(): segwit_tx_generated = True if use_witness_address: assert(segwit_tx_generated) # check that our test is not broken # Wait until we've seen the block announcement for the resulting tip tip = int(node.getbestblockhash(), 16) assert(test_node.wait_for_block_announcement(tip)) # Now mine a block, and look at the resulting compact block. test_node.clear_block_announcement() block_hash = int(node.generate(1)[0], 16) # Store the raw block in our internal format. block = FromHex(CBlock(), node.getblock("%02x" % block_hash, False)) [tx.calc_sha256() for tx in block.vtx] block.rehash() # Don't care which type of announcement came back for this test; just # request the compact block if we didn't get one yet. wait_until(test_node.received_block_announcement, timeout=30) assert(test_node.received_block_announcement()) with mininode_lock: if test_node.last_cmpctblock is None: test_node.clear_block_announcement() inv = CInv(4, block_hash) # 4 == "CompactBlock" test_node.send_message(msg_getdata([inv])) wait_until(test_node.received_block_announcement, timeout=30) assert(test_node.received_block_announcement()) # Now we should have the compactblock header_and_shortids = None with mininode_lock: assert(test_node.last_cmpctblock is not None) # Convert the on-the-wire representation to absolute indexes header_and_shortids = HeaderAndShortIDs(test_node.last_cmpctblock.header_and_shortids) # Check that we got the right block! header_and_shortids.header.calc_sha256() assert_equal(header_and_shortids.header.sha256, block_hash) # Make sure the prefilled_txn appears to have included the coinbase assert(len(header_and_shortids.prefilled_txn) >= 1) assert_equal(header_and_shortids.prefilled_txn[0].index, 0) # Check that all prefilled_txn entries match what's in the block. for entry in header_and_shortids.prefilled_txn: entry.tx.calc_sha256() # This checks the non-witness parts of the tx agree assert_equal(entry.tx.sha256, block.vtx[entry.index].sha256) # And this checks the witness wtxid = entry.tx.calc_sha256(True) if version == 2: assert_equal(wtxid, block.vtx[entry.index].calc_sha256(True)) else: # Shouldn't have received a witness assert(entry.tx.wit.is_null()) # Check that the cmpctblock message announced all the transactions. assert_equal(len(header_and_shortids.prefilled_txn) + len(header_and_shortids.shortids), len(block.vtx)) # And now check that all the shortids are as expected as well. # Determine the siphash keys to use. [k0, k1] = header_and_shortids.get_siphash_keys() index = 0 while index < len(block.vtx): if (len(header_and_shortids.prefilled_txn) > 0 and header_and_shortids.prefilled_txn[0].index == index): # Already checked prefilled transactions above header_and_shortids.prefilled_txn.pop(0) else: tx_hash = block.vtx[index].sha256 if version == 2: tx_hash = block.vtx[index].calc_sha256(True) shortid = calculate_shortid(k0, k1, tx_hash) assert_equal(shortid, header_and_shortids.shortids[0]) header_and_shortids.shortids.pop(0) index += 1 # Test that magmelldollard requests compact blocks when we announce new blocks # via header or inv, and that responding to getblocktxn causes the block # to be successfully reconstructed. # Post-segwit: upgraded nodes would only make this request of cb-version-2, # NODE_WITNESS peers. Unupgraded nodes would still make this request of # any cb-version-1-supporting peer. def test_compactblock_requests(self, node, test_node, version, segwit): # Try announcing a block with an inv or header, expect a compactblock # request for announce in ["inv", "header"]: block = self.build_block_on_tip(node, segwit=segwit) with mininode_lock: test_node.last_getdata = None if announce == "inv": test_node.send_message(msg_inv([CInv(2, block.sha256)])) else: test_node.send_header_for_blocks([block]) success = wait_until(lambda: test_node.last_getdata is not None, timeout=30) assert(success) assert_equal(len(test_node.last_getdata.inv), 1) assert_equal(test_node.last_getdata.inv[0].type, 4) assert_equal(test_node.last_getdata.inv[0].hash, block.sha256) # Send back a compactblock message that omits the coinbase comp_block = HeaderAndShortIDs() comp_block.header = CBlockHeader(block) comp_block.nonce = 0 [k0, k1] = comp_block.get_siphash_keys() coinbase_hash = block.vtx[0].sha256 if version == 2: coinbase_hash = block.vtx[0].calc_sha256(True) comp_block.shortids = [ calculate_shortid(k0, k1, coinbase_hash) ] test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # Expect a getblocktxn message. with mininode_lock: assert(test_node.last_getblocktxn is not None) absolute_indexes = test_node.last_getblocktxn.block_txn_request.to_absolute() assert_equal(absolute_indexes, [0]) # should be a coinbase request # Send the coinbase, and verify that the tip advances. if version == 2: msg = msg_witness_blocktxn() else: msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = [block.vtx[0]] test_node.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) # Create a chain of transactions from given utxo, and add to a new block. def build_block_with_transactions(self, node, utxo, num_transactions): block = self.build_block_on_tip(node) for i in range(num_transactions): tx = CTransaction() tx.vin.append(CTxIn(COutPoint(utxo[0], utxo[1]), b'')) tx.vout.append(CTxOut(utxo[2] - 100000, CScript([OP_TRUE]))) tx.rehash() utxo = [tx.sha256, 0, tx.vout[0].nValue] block.vtx.append(tx) block.hashMerkleRoot = block.calc_merkle_root() block.solve() return block # Test that we only receive getblocktxn requests for transactions that the # node needs, and that responding to them causes the block to be # reconstructed. def test_getblocktxn_requests(self, node, test_node, version): with_witness = (version==2) def test_getblocktxn_response(compact_block, peer, expected_result): msg = msg_cmpctblock(compact_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert(peer.last_getblocktxn is not None) absolute_indexes = peer.last_getblocktxn.block_txn_request.to_absolute() assert_equal(absolute_indexes, expected_result) def test_tip_after_message(node, peer, msg, tip): peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), tip) # First try announcing compactblocks that won't reconstruct, and verify # that we receive getblocktxn messages back. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5]) msg_bt = msg_blocktxn() if with_witness: msg_bt = msg_witness_blocktxn() # serialize with witnesses msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:]) test_tip_after_message(node, test_node, msg_bt, block.sha256) utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now try interspersing the prefilled transactions comp_block.initialize_from_block(block, prefill_list=[0, 1, 5], use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [2, 3, 4]) msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now try giving one transaction ahead of time. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) test_node.send_and_ping(msg_tx(block.vtx[1])) assert(block.vtx[1].hash in node.getrawmempool()) # Prefill 4 out of the 6 transactions, and verify that only the one # that was not in the mempool is requested. comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4], use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [5]) msg_bt.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now provide all transactions to the node before the block is # announced and verify reconstruction happens immediately. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert(tx.hash in mempool) # Clear out last request. with mininode_lock: test_node.last_getblocktxn = None # Send compact block comp_block.initialize_from_block(block, prefill_list=[0], use_witness=with_witness) test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with mininode_lock: # Shouldn't have gotten a request for any transaction assert(test_node.last_getblocktxn is None) # Incorrectly responding to a getblocktxn shouldn't cause the block to be # permanently failed. def test_incorrect_blocktxn_response(self, node, test_node, version): if (len(self.utxos) == 0): self.make_utxos() utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Relay the first 5 transactions from the block in advance for tx in block.vtx[1:6]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:6]: assert(tx.hash in mempool) # Send compact block comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0], use_witness=(version == 2)) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) absolute_indexes = [] with mininode_lock: assert(test_node.last_getblocktxn is not None) absolute_indexes = test_node.last_getblocktxn.block_txn_request.to_absolute() assert_equal(absolute_indexes, [6, 7, 8, 9, 10]) # Now give an incorrect response. # Note that it's possible for magmelldollard to be smart enough to know we're # lying, since it could check to see if the shortid matches what we're # sending, and eg disconnect us for misbehavior. If that behavior # change were made, we could just modify this test by having a # different peer provide the block further down, so that we're still # verifying that the block isn't marked bad permanently. This is good # enough for now. msg = msg_blocktxn() if version==2: msg = msg_witness_blocktxn() msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:]) test_node.send_and_ping(msg) # Tip should not have updated assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # We should receive a getdata request success = wait_until(lambda: test_node.last_getdata is not None, timeout=10) assert(success) assert_equal(len(test_node.last_getdata.inv), 1) assert(test_node.last_getdata.inv[0].type == 2 or test_node.last_getdata.inv[0].type == 2|MSG_WITNESS_FLAG) assert_equal(test_node.last_getdata.inv[0].hash, block.sha256) # Deliver the block if version==2: test_node.send_and_ping(msg_witness_block(block)) else: test_node.send_and_ping(msg_block(block)) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def test_getblocktxn_handler(self, node, test_node, version): # magmelldollard will not send blocktxn responses for blocks whose height is # more than 10 blocks deep. MAX_GETBLOCKTXN_DEPTH = 10 chain_height = node.getblockcount() current_height = chain_height while (current_height >= chain_height - MAX_GETBLOCKTXN_DEPTH): block_hash = node.getblockhash(current_height) block = FromHex(CBlock(), node.getblock(block_hash, False)) msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), []) num_to_request = random.randint(1, len(block.vtx)) msg.block_txn_request.from_absolute(sorted(random.sample(range(len(block.vtx)), num_to_request))) test_node.send_message(msg) success = wait_until(lambda: test_node.last_blocktxn is not None, timeout=10) assert(success) [tx.calc_sha256() for tx in block.vtx] with mininode_lock: assert_equal(test_node.last_blocktxn.block_transactions.blockhash, int(block_hash, 16)) all_indices = msg.block_txn_request.to_absolute() for index in all_indices: tx = test_node.last_blocktxn.block_transactions.transactions.pop(0) tx.calc_sha256() assert_equal(tx.sha256, block.vtx[index].sha256) if version == 1: # Witnesses should have been stripped assert(tx.wit.is_null()) else: # Check that the witness matches assert_equal(tx.calc_sha256(True), block.vtx[index].calc_sha256(True)) test_node.last_blocktxn = None current_height -= 1 # Next request should send a full block response, as we're past the # allowed depth for a blocktxn response. block_hash = node.getblockhash(current_height) msg.block_txn_request = BlockTransactionsRequest(int(block_hash, 16), [0]) with mininode_lock: test_node.last_block = None test_node.last_blocktxn = None test_node.send_and_ping(msg) with mininode_lock: test_node.last_block.block.calc_sha256() assert_equal(test_node.last_block.block.sha256, int(block_hash, 16)) assert_equal(test_node.last_blocktxn, None) def test_compactblocks_not_at_tip(self, node, test_node): # Test that requesting old compactblocks doesn't work. MAX_CMPCTBLOCK_DEPTH = 5 new_blocks = [] for i in range(MAX_CMPCTBLOCK_DEPTH + 1): test_node.clear_block_announcement() new_blocks.append(node.generate(1)[0]) wait_until(test_node.received_block_announcement, timeout=30) test_node.clear_block_announcement() test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) success = wait_until(lambda: test_node.last_cmpctblock is not None, timeout=30) assert(success) test_node.clear_block_announcement() node.generate(1) wait_until(test_node.received_block_announcement, timeout=30) test_node.clear_block_announcement() with mininode_lock: test_node.last_block = None test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) success = wait_until(lambda: test_node.last_block is not None, timeout=30) assert(success) with mininode_lock: test_node.last_block.block.calc_sha256() assert_equal(test_node.last_block.block.sha256, int(new_blocks[0], 16)) # Generate an old compactblock, and verify that it's not accepted. cur_height = node.getblockcount() hashPrevBlock = int(node.getblockhash(cur_height-5), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: assert_equal(x["status"], "headers-only") found = True break assert(found) # Requesting this block via getblocktxn should silently fail # (to avoid fingerprinting attacks). msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0]) with mininode_lock: test_node.last_blocktxn = None test_node.send_and_ping(msg) with mininode_lock: assert(test_node.last_blocktxn is None) def activate_segwit(self, node): node.generate(144*3) assert_equal(get_bip9_status(node, "segwit")["status"], 'active') def test_end_to_end_block_relay(self, node, listeners): utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) [l.clear_block_announcement() for l in listeners] # ToHex() won't serialize with witness, but this block has no witnesses # anyway. TODO: repeat this test with witness tx's to a segwit node. node.submitblock(ToHex(block)) for l in listeners: wait_until(lambda: l.received_block_announcement(), timeout=30) with mininode_lock: for l in listeners: assert(l.last_cmpctblock is not None) l.last_cmpctblock.header_and_shortids.header.calc_sha256() assert_equal(l.last_cmpctblock.header_and_shortids.header.sha256, block.sha256) # Test that we don't get disconnected if we relay a compact block with valid header, # but invalid transactions. def test_invalid_tx_in_compactblock(self, node, test_node, use_segwit): assert(len(self.utxos)) utxo = self.utxos[0] block = self.build_block_with_transactions(node, utxo, 5) del block.vtx[3] block.hashMerkleRoot = block.calc_merkle_root() if use_segwit: # If we're testing with segwit, also drop the coinbase witness, # but include the witness commitment. add_witness_commitment(block) block.vtx[0].wit.vtxinwit = [] block.solve() # Now send the compact block with all transactions prefilled, and # verify that we don't get disconnected. comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0, 1, 2, 3, 4], use_witness=use_segwit) msg = msg_cmpctblock(comp_block.to_p2p()) test_node.send_and_ping(msg) # Check that the tip didn't advance assert(int(node.getbestblockhash(), 16) is not block.sha256) test_node.sync_with_ping() # Helper for enabling cb announcements # Send the sendcmpct request and sync headers def request_cb_announcements(self, peer, node, version): tip = node.getbestblockhash() peer.get_headers(locator=[int(tip, 16)], hashstop=0) msg = msg_sendcmpct() msg.version = version msg.announce = True peer.send_and_ping(msg) def test_compactblock_reconstruction_multiple_peers(self, node, stalling_peer, delivery_peer): assert(len(self.utxos)) def announce_cmpct_block(node, peer): utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) cmpct_block = HeaderAndShortIDs() cmpct_block.initialize_from_block(block) msg = msg_cmpctblock(cmpct_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert(peer.last_getblocktxn is not None) return block, cmpct_block block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() mempool = node.getrawmempool() for tx in block.vtx[1:]: assert(tx.hash in mempool) delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.sha256) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now test that delivering an invalid compact block won't break relay block, cmpct_block = announce_cmpct_block(node, stalling_peer) for tx in block.vtx[1:]: delivery_peer.send_message(msg_tx(tx)) delivery_peer.sync_with_ping() cmpct_block.prefilled_txn[0].tx.wit.vtxinwit = [ CTxInWitness() ] cmpct_block.prefilled_txn[0].tx.wit.vtxinwit[0].scriptWitness.stack = [ser_uint256(0)] cmpct_block.use_witness = True delivery_peer.send_and_ping(msg_cmpctblock(cmpct_block.to_p2p())) assert(int(node.getbestblockhash(), 16) != block.sha256) msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = block.vtx[1:] stalling_peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256) def run_test(self): # Setup the p2p connections and start up the network thread. self.test_node = TestNode() self.segwit_node = TestNode() self.old_node = TestNode() # version 1 peer <--> segwit node connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], self.test_node)) connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], self.segwit_node, services=NODE_NETWORK|NODE_WITNESS)) connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], self.old_node, services=NODE_NETWORK)) self.test_node.add_connection(connections[0]) self.segwit_node.add_connection(connections[1]) self.old_node.add_connection(connections[2]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here self.test_node.wait_for_verack() # We will need UTXOs to construct transactions in later tests. self.make_utxos() print("Running tests, pre-segwit activation:") print("\tTesting SENDCMPCT p2p message... ") self.test_sendcmpct(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_sendcmpct(self.nodes[1], self.segwit_node, 2, old_node=self.old_node) sync_blocks(self.nodes) print("\tTesting compactblock construction...") self.test_compactblock_construction(self.nodes[0], self.test_node, 1, False) sync_blocks(self.nodes) self.test_compactblock_construction(self.nodes[1], self.segwit_node, 2, False) sync_blocks(self.nodes) print("\tTesting compactblock requests... ") self.test_compactblock_requests(self.nodes[0], self.test_node, 1, False) sync_blocks(self.nodes) self.test_compactblock_requests(self.nodes[1], self.segwit_node, 2, False) sync_blocks(self.nodes) print("\tTesting getblocktxn requests...") self.test_getblocktxn_requests(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_getblocktxn_requests(self.nodes[1], self.segwit_node, 2) sync_blocks(self.nodes) print("\tTesting getblocktxn handler...") self.test_getblocktxn_handler(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_getblocktxn_handler(self.nodes[1], self.segwit_node, 2) self.test_getblocktxn_handler(self.nodes[1], self.old_node, 1) sync_blocks(self.nodes) print("\tTesting compactblock requests/announcements not at chain tip...") self.test_compactblocks_not_at_tip(self.nodes[0], self.test_node) sync_blocks(self.nodes) self.test_compactblocks_not_at_tip(self.nodes[1], self.segwit_node) self.test_compactblocks_not_at_tip(self.nodes[1], self.old_node) sync_blocks(self.nodes) print("\tTesting handling of incorrect blocktxn responses...") self.test_incorrect_blocktxn_response(self.nodes[0], self.test_node, 1) sync_blocks(self.nodes) self.test_incorrect_blocktxn_response(self.nodes[1], self.segwit_node, 2) sync_blocks(self.nodes) # End-to-end block relay tests print("\tTesting end-to-end block relay...") self.request_cb_announcements(self.test_node, self.nodes[0], 1) self.request_cb_announcements(self.old_node, self.nodes[1], 1) self.request_cb_announcements(self.segwit_node, self.nodes[1], 2) self.test_end_to_end_block_relay(self.nodes[0], [self.segwit_node, self.test_node, self.old_node]) self.test_end_to_end_block_relay(self.nodes[1], [self.segwit_node, self.test_node, self.old_node]) print("\tTesting handling of invalid compact blocks...") self.test_invalid_tx_in_compactblock(self.nodes[0], self.test_node, False) self.test_invalid_tx_in_compactblock(self.nodes[1], self.segwit_node, False) self.test_invalid_tx_in_compactblock(self.nodes[1], self.old_node, False) print("\tTesting reconstructing compact blocks from all peers...") self.test_compactblock_reconstruction_multiple_peers(self.nodes[1], self.segwit_node, self.old_node) sync_blocks(self.nodes) # Advance to segwit activation print ("\nAdvancing to segwit activation\n") self.activate_segwit(self.nodes[1]) print ("Running tests, post-segwit activation...") print("\tTesting compactblock construction...") self.test_compactblock_construction(self.nodes[1], self.old_node, 1, True) self.test_compactblock_construction(self.nodes[1], self.segwit_node, 2, True) sync_blocks(self.nodes) print("\tTesting compactblock requests (unupgraded node)... ") self.test_compactblock_requests(self.nodes[0], self.test_node, 1, True) print("\tTesting getblocktxn requests (unupgraded node)...") self.test_getblocktxn_requests(self.nodes[0], self.test_node, 1) # Need to manually sync node0 and node1, because post-segwit activation, # node1 will not download blocks from node0. print("\tSyncing nodes...") assert(self.nodes[0].getbestblockhash() != self.nodes[1].getbestblockhash()) while (self.nodes[0].getblockcount() > self.nodes[1].getblockcount()): block_hash = self.nodes[0].getblockhash(self.nodes[1].getblockcount()+1) self.nodes[1].submitblock(self.nodes[0].getblock(block_hash, False)) assert_equal(self.nodes[0].getbestblockhash(), self.nodes[1].getbestblockhash()) print("\tTesting compactblock requests (segwit node)... ") self.test_compactblock_requests(self.nodes[1], self.segwit_node, 2, True) print("\tTesting getblocktxn requests (segwit node)...") self.test_getblocktxn_requests(self.nodes[1], self.segwit_node, 2) sync_blocks(self.nodes) print("\tTesting getblocktxn handler (segwit node should return witnesses)...") self.test_getblocktxn_handler(self.nodes[1], self.segwit_node, 2) self.test_getblocktxn_handler(self.nodes[1], self.old_node, 1) # Test that if we submitblock to node1, we'll get a compact block # announcement to all peers. # (Post-segwit activation, blocks won't propagate from node0 to node1 # automatically, so don't bother testing a block announced to node0.) print("\tTesting end-to-end block relay...") self.request_cb_announcements(self.test_node, self.nodes[0], 1) self.request_cb_announcements(self.old_node, self.nodes[1], 1) self.request_cb_announcements(self.segwit_node, self.nodes[1], 2) self.test_end_to_end_block_relay(self.nodes[1], [self.segwit_node, self.test_node, self.old_node]) print("\tTesting handling of invalid compact blocks...") self.test_invalid_tx_in_compactblock(self.nodes[0], self.test_node, False) self.test_invalid_tx_in_compactblock(self.nodes[1], self.segwit_node, True) self.test_invalid_tx_in_compactblock(self.nodes[1], self.old_node, True) print("\tTesting invalid index in cmpctblock message...") self.test_invalid_cmpctblock_message() if __name__ == '__main__': CompactBlocksTest().main()
the-stack_0_8639
import numpy as np from yt.testing import \ fake_random_ds, \ fake_particle_ds, \ assert_equal, \ assert_rel_equal, \ assert_almost_equal from yt import particle_filter def setup(): from yt.config import ytcfg ytcfg["yt","__withintesting"] = "True" def test_extrema(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density", "velocity_x", "velocity_y", "velocity_z")) for sp in [ds.sphere("c", (0.25, 'unitary')), ds.r[0.5,:,:]]: mi, ma = sp.quantities["Extrema"]("density") assert_equal(mi, np.nanmin(sp["density"])) assert_equal(ma, np.nanmax(sp["density"])) dd = ds.all_data() mi, ma = dd.quantities["Extrema"]("density") assert_equal(mi, np.nanmin(dd["density"])) assert_equal(ma, np.nanmax(dd["density"])) sp = ds.sphere("max", (0.25, 'unitary')) assert_equal(np.any(np.isnan(sp["radial_velocity"])), False) mi, ma = dd.quantities["Extrema"]("radial_velocity") assert_equal(mi, np.nanmin(dd["radial_velocity"])) assert_equal(ma, np.nanmax(dd["radial_velocity"])) def test_average(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density",)) for ad in [ds.all_data(), ds.r[0.5, :, :]]: my_mean = ad.quantities["WeightedAverageQuantity"]("density", "ones") assert_rel_equal(my_mean, ad["density"].mean(), 12) my_mean = ad.quantities["WeightedAverageQuantity"]("density", "cell_mass") a_mean = (ad["density"] * ad["cell_mass"]).sum() / ad["cell_mass"].sum() assert_rel_equal(my_mean, a_mean, 12) def test_variance(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density", )) for ad in [ds.all_data(), ds.r[0.5, :, :]]: my_std, my_mean = ad.quantities["WeightedVariance"]("density", "ones") assert_rel_equal(my_mean, ad["density"].mean(), 12) assert_rel_equal(my_std, ad["density"].std(), 12) my_std, my_mean = ad.quantities["WeightedVariance"]("density", "cell_mass") a_mean = (ad["density"] * ad["cell_mass"]).sum() / ad["cell_mass"].sum() assert_rel_equal(my_mean, a_mean, 12) a_std = np.sqrt((ad["cell_mass"] * (ad["density"] - a_mean)**2).sum() / ad["cell_mass"].sum()) assert_rel_equal(my_std, a_std, 12) def test_max_location(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density", )) for ad in [ds.all_data(), ds.r[0.5, :, :]]: mv, x, y, z = ad.quantities.max_location(("gas", "density")) assert_equal(mv, ad["density"].max()) mi = np.argmax(ad["density"]) assert_equal(ad["x"][mi], x) assert_equal(ad["y"][mi], y) assert_equal(ad["z"][mi], z) def test_min_location(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density", )) for ad in [ds.all_data(), ds.r[0.5, :, :]]: mv, x, y, z = ad.quantities.min_location(("gas", "density")) assert_equal(mv, ad["density"].min()) mi = np.argmin(ad["density"]) assert_equal(ad["x"][mi], x) assert_equal(ad["y"][mi], y) assert_equal(ad["z"][mi], z) def test_sample_at_min_field_values(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density", "temperature", "velocity_x")) for ad in [ds.all_data(), ds.r[0.5, :, :]]: mv, temp, vm = ad.quantities.sample_at_min_field_values( "density", ["temperature", "velocity_x"]) assert_equal(mv, ad["density"].min()) mi = np.argmin(ad["density"]) assert_equal(ad["temperature"][mi], temp) assert_equal(ad["velocity_x"][mi], vm) def test_sample_at_max_field_values(): for nprocs in [1, 2, 4, 8]: ds = fake_random_ds(16, nprocs = nprocs, fields = ("density", "temperature", "velocity_x")) for ad in [ds.all_data(), ds.r[0.5, :, :]]: mv, temp, vm = ad.quantities.sample_at_max_field_values( "density", ["temperature", "velocity_x"]) assert_equal(mv, ad["density"].max()) mi = np.argmax(ad["density"]) assert_equal(ad["temperature"][mi], temp) assert_equal(ad["velocity_x"][mi], vm) def test_derived_quantities_with_particle_types(): ds = fake_particle_ds() @particle_filter(requires=["particle_position_x"], filtered_type='all') def low_x(pfilter,data): return data['particle_position_x'].in_units('code_length')<0.5 ds.add_particle_filter('low_x') ad=ds.all_data() for ptype in ['all','low_x']: #Check bulk velocity bulk_vx=(ad[(ptype,'particle_mass')]*ad[(ptype,'particle_velocity_x')]/ad[(ptype,'particle_mass')].sum()).sum() assert_almost_equal(ad.quantities.bulk_velocity(use_gas=False,use_particles=True,particle_type=ptype)[0],bulk_vx,5) #Check center of mass com_x=(ad[(ptype,'particle_mass')]*ad[(ptype,'particle_position_x')]/ad[(ptype,'particle_mass')].sum()).sum() assert_almost_equal(ad.quantities.center_of_mass(use_gas=False,use_particles=True,particle_type=ptype)[0],com_x,5) #Check angular momentum vector l_x=(ad[(ptype,'particle_specific_angular_momentum_x')]*ad[(ptype,'particle_mass')]/ad[(ptype,'particle_mass')].sum()).sum() assert_almost_equal(ad.quantities.angular_momentum_vector(use_gas=False,use_particles=True,particle_type=ptype)[0],l_x,5) #Check spin parameter values assert_almost_equal(ad.quantities.spin_parameter(use_gas=False,use_particles=True),655.7311454765503) assert_almost_equal(ad.quantities.spin_parameter(use_gas=False,use_particles=True,particle_type='low_x'),1309.164886405665)
the-stack_0_8640
from tensorflow.keras import Input from tensorflow.keras.layers import Dropout, Dense from tensorflow.keras.optimizers import Adam from tensorflow.keras import regularizers from tensorflow.keras.losses import SparseCategoricalCrossentropy from graphgallery import floatx from graphgallery.nn.models import TFKeras class MLP(TFKeras): def __init__(self, in_features, out_features, hids=[16], acts=['relu'], dropout=0.5, weight_decay=5e-4, lr=0.01, bias=False): if len(hids) != len(acts): raise RuntimeError(f"Arguments 'hids' and 'acts' should have the same length." " Or you can set both of them to `[]`.") x = Input(batch_shape=[None, in_features], dtype=floatx(), name='node_attr') h = x for hid, act in zip(hids, acts): h = Dropout(rate=dropout)(h) h = Dense(hid, use_bias=bias, activation=act, kernel_regularizer=regularizers.l2(weight_decay))(h) h = Dropout(rate=dropout)(h) h = Dense(out_features, use_bias=bias, kernel_regularizer=regularizers.l2(weight_decay))(h) super().__init__(inputs=x, outputs=h) self.compile(loss=SparseCategoricalCrossentropy(from_logits=True), optimizer=Adam(lr=lr), metrics=['accuracy'])
the-stack_0_8641
import graphistry, os, pandas as pd, streamlit as st from time import sleep from components import GraphistrySt, URLParam from css import all_css from util import getChild ############################################ # # DASHBOARD SETTINGS # ############################################ # Controls how entrypoint.py picks it up app_id = 'app_01' logger = getChild(app_id) urlParams = URLParam(app_id) def info(): return { 'id': app_id, 'name': 'INTRO: fancy graph', 'enabled': True, 'tags': ['demo', 'demo_intro'] } def run(): run_all() ############################################ # # CUSTOM CSS # ############################################ # Have fun! def custom_css(): all_css() # our favorites ############################################ # # SIDEBAR RENDER AERA # ############################################ # Given URL params, render left sidebar form and return combined filter settings ##https://docs.streamlit.io/en/stable/api.html#display-interactive-widgets def sidebar_area(): st.sidebar.title('Pick graph') n_init = urlParams.get_field('N', 100) n = st.sidebar.number_input('Number of nodes', min_value=10, max_value=100000, value=n_init, step=20) urlParams.set_field('N', n) base_url = os.environ['BASE_URL'] edges_df = pd.concat([ pd.DataFrame({ 's': [x for x in range(n)], 'd': [(x + 1) % n for x in range(n)], 'link': [ '<a href="' + base_url + '/?view_index=app1&app1_N=' + str(x % n) + '">' + str(x % n) + " nodes</a>" for x in range(n) ] }), pd.DataFrame({ 's': [x for x in range(n)], 'd': [(x + 6) % n for x in range(n)], 'link': [ '<a href="' + base_url + '/?view_index=app1&app1_N=' + str(x % n) + '">' + str(x % n) + " nodes</a>" for x in range(n) ] }) ], sort=False, ignore_index=True) st.sidebar.title("Filter") option_to_label = { 'all': 'All', 'odd': 'Odds', 'even': 'Evens' } filter_by_node_type_init = urlParams.get_field('filter_by_type', default='all') filter_by_node_type = st.sidebar.selectbox('Filter nodes by:', ('all', 'odd', 'even'), index=('all', 'odd', 'even').index(filter_by_node_type_init), format_func=(lambda option: option_to_label[option])) urlParams.set_field('filter_by_type', filter_by_node_type) filter_by_node_range_init = ( urlParams.get_field('filter_by_node_range_min', default=0), urlParams.get_field('filter_by_node_range_max', default=n)) logger.info('filter_by_node_range_init: %s :: %s', filter_by_node_range_init, type(filter_by_node_range_init)) filter_by_node_range = st.sidebar.slider('Filter for nodes in range:', min_value=0, max_value=n, value=filter_by_node_range_init, step=1) urlParams.set_field('filter_by_node_range_min', filter_by_node_range[0]) urlParams.set_field('filter_by_node_range_max', filter_by_node_range[1]) return { 'n': n, 'edges_df': edges_df, 'node_type': filter_by_node_type, 'node_range': filter_by_node_range } ############################################ # # FILTER PIPELINE # ############################################ # Given filter settings, generate/cache/return dataframes & viz @st.cache(suppress_st_warning=True, allow_output_mutation=True) def run_filters(node_type, node_range, edges_df, n): filtered_edges_df = edges_df if node_type == 'all': pass elif node_type == 'odd': filtered_edges_df = filtered_edges_df[ filtered_edges_df['s'] % 2 == 1 ] filtered_edges_df = filtered_edges_df[ filtered_edges_df['d'] % 2 == 1 ] elif node_type == 'even': filtered_edges_df = filtered_edges_df[ filtered_edges_df['s'] % 2 == 0 ] filtered_edges_df = filtered_edges_df[ filtered_edges_df['d'] % 2 == 0 ] else: raise Exception('Unknown filter1 option result: %s' % node_type) if node_range[0] > 0: filtered_edges_df = filtered_edges_df[ filtered_edges_df['s'] >= node_range[0] ] filtered_edges_df = filtered_edges_df[ filtered_edges_df['d'] >= node_range[0] ] if node_range[1] <= n: filtered_edges_df = filtered_edges_df[ filtered_edges_df['s'] <= node_range[1] ] filtered_edges_df = filtered_edges_df[ filtered_edges_df['d'] <= node_range[1] ] #include viz generation as part of cache url = plot_url(filtered_edges_df, n) return { 'edges_df': filtered_edges_df, 'url': url } ############################################ # # VIZ # ############################################ def plot_url(edges_df, n): nodes_df = pd.DataFrame({ 'n': pd.concat([edges_df['s'], edges_df['d']]).unique() }) nodes_df['nc'] = nodes_df['n'].apply(lambda v: 0x01000000 * round(255 * v / n)) logger.info('Starting graphistry plot') if not GraphistrySt().test_login(): return '' url = graphistry\ .bind(source="s", destination="d")\ .edges(edges_df)\ .nodes(nodes_df)\ .bind(node='n', point_color='nc')\ .settings(url_params={ 'pointSize': 0.3, 'splashAfter': 'false', 'bg': '%23' + 'f0f2f6' })\ .plot(render=False) logger.info('Generated viz, got back urL: %s', url) return url ############################################ # # MAIN RENDER AERA # ############################################ # Given configured filters and computed results (cached), render def main_area(edges_df, url): logger.debug('rendering main area, with url: %s', url) GraphistrySt().render_url(url) ############################################ # # Putting it all together # ############################################ def run_all(): custom_css() try: # Render sidebar and get current settings sidebar_filters = sidebar_area() logger.debug('sidebar_filters: %s', sidebar_filters) # Compute filter pipeline (with auto-caching based on filter setting inputs) # Selective mark these as URL params as well filter_pipeline_result = run_filters(**sidebar_filters) # Render main viz area based on computed filter pipeline results and sidebar settings main_area(**filter_pipeline_result) except Exception as exn: st.write('Error loading dashboard') st.write(exn)
the-stack_0_8644
import gc import os from os.path import join as pjoin import sys from argparse import ArgumentTypeError from pprint import pprint import yaml from datetime import datetime import logging import numpy as np import numpy.random import tensorflow as tf from PIL import Image import matplotlib as mpl from matplotlib import colors import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.python.client import device_lib logger = logging.getLogger("MCDose."+__name__) def limited_float(low, high): """argparse string to float with requirement on allowable range of values""" def convert(x): try: x = float(x) except ValueError: raise argparse.ArgumentTypeError("{} is not a floating point literal".format(x)) if x < low or x > high: raise argparse.ArgumentTypeError("{} not in allowable range [{}, {}]".format(x, low, high)) return x return convert def randbool(p_true=0.5): p_true = max(0.0, min(1.0, p_true)) return bool(np.random.rand()<p_true) def augment_data(samples, labels): for mode in range(8): if randbool(0.2): samples = data_augmentation(samples, mode) labels = data_augmentation(labels, mode) return samples, labels def data_augmentation(image, mode): if mode == 0: # original return image elif mode == 1: # flip up and down return np.flipud(image) elif mode == 2: # rotate counterwise 90 degree return np.rot90(image) elif mode == 3: # rotate 90 degree and flip up and down image = np.rot90(image) return np.flipud(image) elif mode == 4: # rotate 180 degree return np.rot90(image, k=2) elif mode == 5: # rotate 180 degree and flip image = np.rot90(image, k=2) return np.flipud(image) elif mode == 6: # rotate 270 degree return np.rot90(image, k=3) elif mode == 7: # rotate 270 degree and flip image = np.rot90(image, k=3) return np.flipud(image) def load_images(filelist): # pixel value range 0-255 if not isinstance(filelist, list): im = Image.open(filelist).convert('L') return np.array(im).reshape(1, im.size[1], im.size[0], 1) data = [] for file in filelist: im = Image.open(file).convert('L') data.append(np.array(im).reshape(1, im.size[1], im.size[0], 1)) return data def load_bin(fname, size, add_channel_axis=False, norm=False): """loads binary double-precision data in ZYX order and returns an array in XZY order note: only works with 3d array""" with open(fname, 'rb') as fd: excepts = [] for t in [np.float64, np.float32]: try: arr = np.frombuffer(fd.read(), dtype=t) arr = np.reshape(arr, size[::-1]) break except Exception as e: excepts.append(e) if not (isinstance(arr, np.ndarray) and arr.size): raise RuntimeError(str('\n\n'.join([str(e) for e in excepts]))) arr = arr.transpose(2,0,1).copy("C") if norm: arr /= np.max(arr) if add_channel_axis: arr = np.expand_dims(arr, axis=arr.ndim) return arr def save_bin(fname, arr): """takes array in XZY order and saves to binary file as double-precision in ZYX order note: only works with 3d array""" arr = arr.transpose(1,2,0).copy("C") with open(fname, 'wb') as fd: fd.write(arr) def save_as_image(filepath, arr, cmap=None, scale=1): _min = np.min(np.min(arr, axis=0), axis=0) _max = np.max(np.max(arr, axis=0), axis=0) outimg = (arr-_min)/(_max-_min) if cmap is not None: outimg = cmap(outimg) im = Image.fromarray(np.uint8(outimg*255)) im = im.resize((scale*im.size[0], scale*im.size[1])) # make the image larger im.save(filepath) def save_bin_slices(filepath, low_var, high_var, out_low_var, array_spacing=0): scale = 6 with open(filepath+'.bin', 'wb') as f: output = np.zeros((low_var.shape[0], low_var.shape[1], 2)) spacer = np.max(output)*np.ones((low_var.shape[0], low_var.shape[1], array_spacing)) output = np.concatenate((output,high_var), axis=2) output = np.concatenate((output,spacer), axis=2) output = np.concatenate((output,low_var), axis=2) output = np.concatenate((output,spacer), axis=2) output = np.concatenate((output,out_low_var), axis=2) output = output.transpose(1,2,0) output = output.copy(order='C') f.write(output) # save to bin save_as_image(filepath+'.png', output, cmap=mpl.cm.get_cmap('viridis'), scale=scale) def tf_split_var(mode,images, percent, size, rank=4): k = tf.cast(tf.floor(tf.scalar_mul(percent, tf.cast(tf.size(input=images), tf.float32))), tf.int32) if mode =='low': values, idx = tf.nn.top_k(-images,k) elif mode == 'high': values, idx = tf.nn.top_k(images,k) mask = tf.compat.v1.sparse_to_dense(idx, tf.shape(input=images), sparse_values=0, default_value=1) images = tf.multiply(images,tf.cast(mask, tf.float32)) if rank == 3: # The input is a single image with shape [height, width, channels]. # Calculate the difference of neighboring pixel-values. # The images are shifted one pixel along the height and width by slicing. pixel_dif1 = images[1:, :, :] - images[:-1, :, :] pixel_dif2 = images[:, 1:, :] - images[:, :-1, :] # Sum for all axis. (None is an alias for all axis.) sum_axis = None elif rank == 4: # The input is a batch of images with shape: # [batch, height, width, channels]. # Calculate the difference of neighboring pixel-values. # The images are shifted one pixel along the height and width by slicing. pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :] pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :] # Only sum for the last 3 axis. # This results in a 1-D tensor with the total variation for each image. sum_axis = [1, 2, 3] else: raise ValueError('\'images\' must be either 3 or 4-dimensional.') # Calculate the total variation by taking the absolute value of the # pixel-differences and summing over the appropriate axis. tot_var = ( tf.reduce_sum(input_tensor=tf.abs(pixel_dif1), axis=sum_axis) + tf.reduce_sum(input_tensor=tf.abs(pixel_dif2), axis=sum_axis)) return tot_var class BatchConstructor(): """Construct batches in sequence from a set of example (input, label) paired tensors """ def __init__(self, inputs, labels): """ note: currently only handles 2D inputs. 3D extension should be simple Args: inputs (np.ndarray[N,H,W,C]) labels (np.ndarray[N,H,W,C]) """ self.inputs = inputs self.labels = labels self.mark = 0 def reset(self): """re-init the array of available example indices""" self.mark=0 def iter_batches(self, batch_size): """construct batch in NHWC format where the first axis (N) is constucted of examples drawn from list of unused examples""" remain = len(self.labels) - self.mark mark = 0 while remain > 0: _batch_size = min(remain, batch_size) yield (self.inputs[mark:mark+_batch_size,], self.labels[mark:mark+_batch_size,]) remain -= _batch_size mark += _batch_size class RandomBatchConstructor(): """Construct batches randomly from a set of example (input, label) paired tensors """ def __init__(self, inputs, labels): """ note: currently only handles 2D inputs. 3D extension should be simple Args: inputs (np.ndarray[N,H,W,C]) labels (np.ndarray[N,H,W,C]) """ self.inputs = inputs self.labels = labels self.randorder = np.arange(self.inputs.shape[0]) self.mark = 0 self.initialized = False # lazy loading of index def reset(self): """re-init the array of available example indices""" self.initialized = True np.random.shuffle(self.randorder) self.mark = 0 def make_batch(self, batch_size): """construct batch in NHWC format where the first axis (N) is constucted of random examples drawn from list of unused examples""" if not self.initialized: self.reset() remaining = len(self.randorder) - self.mark _batch_size = min(remaining, batch_size) if remaining < _batch_size: raise RuntimeError('There are not enough examples ({:d}) to fill the requested batch ({:d})'.format(remaining, _batch_size)) selection = self.randorder[self.mark:self.mark+_batch_size] self.mark += _batch_size return (self.inputs[selection,], self.labels[selection,]) class RandomBatchConstructor_MultiTensor(): """Construct batches randomly from a set of example (input, label) paired tensors. This class differs from RandomBatchConstructor in that it handles datasets consisting of more than one tensor of different dims""" def __init__(self, inputs, labels): """ note: currently only handles 2D inputs. 3D extension should be simple Args: inputs ([np.ndarray[N,H,W,C], ...]) labels ([np.ndarray[N,H,W,C], ...]) """ self.inputs = inputs self.labels = labels self.index = [[]]*len(inputs) self.initialized = False # lazy loading of index def reset(self): """re-init the array of available example indices""" self.initialized = True self.index = [] for input in self.inputs: self.index.append( list(range(input.shape[0])) ) def make_batch(self, batch_size, reuse=False): """construct batch in NHWC format where the first axis (N) is constructed of random examples drawn from list of unused examples""" if not self.initialized: self.reset() # randomly select a dataset tensor unseen = list(range(len(self.inputs))) while True: if not len(unseen): raise RuntimeError('There are no remaining examples from which to fill the requested batch') tidx = np.random.choice(unseen) if len(self.index[tidx]): break unseen.remove(tidx) _batch_size = min(len(self.index[tidx]), batch_size) if len(self.index[tidx]) < _batch_size: raise RuntimeError('There are not enough examples ({:d}) to fill the requested batch ({:d})'.format(len(self.index[tidx]), _batch_size)) select = np.random.choice(range(len(self.index[tidx])), _batch_size, replace=False) if not reuse: for idx in sorted(select, reverse=True): del self.index[tidx][idx] return (self.inputs[tidx][select,], self.labels[tidx][select,]) def get_available_gpus(): with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(gpu_options=tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.01, allow_growth=True))) as sess: tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.WARN) local_device_protos = device_lib.list_local_devices() devs = [x.name for x in local_device_protos if x.device_type=='GPU'] return devs def get_unique_run_name(base, timestamp=False): """get unique directory name with lowest integer prefix""" runs = [int(x.split('-')[0]) for x in os.listdir(base) if os.path.isdir(pjoin(base, x))] runid = max(runs)+1 if len(runs) else 1 runname = '{:04d}'.format(runid) if timestamp: timestamp = datetime.strftime('%Y%m%d-%H%M%S') runname += '-' + timestamp return runname def save_config(dest, config): assert os.path.isdir(dest) dest = pjoin(dest, 'config.yml') with open(dest, 'w') as fd: yaml.safe_dump(config, fd) def load_config(src): if os.path.isdir(src): src = pjoin(src, 'config.yml') with open(src, 'r') as fd: config = yaml.safe_load(fd) logger.info('Config loaded from "{}"'.format(src)) return config def combine_config(c1, c2): d = c1.copy() for k, v in c2.items(): if k not in d or d[k] is None: d[k] = v return d
the-stack_0_8646
from unittest import TestCase from shutil import copyfile import os from pysumma.Simulation import Simulation class TestSimulation(TestCase): # Create a new fileManager.txt file with the correct file paths for the system it's run on my_path = os.path.abspath(os.path.dirname(__file__)) filename = 'fileManager.txt' filepath = os.path.join(my_path, filename) filename2 = 'tmp_{}'.format(filename) filepath2 = os.path.join(my_path, filename2) copyfile(filepath, filepath2) with open(filepath2, 'r') as infile: text = infile.readlines() out_text = [] # Replaces the fileManager.txt placeholders with the paths/values for this system for line in text: if '{file version}' in line: line = line.replace('{file version}', "'SUMMA FILE_MANAGER_V1.0'") if '{settings path}' in line: line = line.replace('{settings path}', "'" + my_path + "/'") if '{input path}' in line: line = line.replace('{input path}', "'" + my_path + "/'") if '{output path}' in line: line = line.replace('{output path}', "'" + my_path + "/'") out_text.append(line) with open(filepath2, 'w') as outfile: outfile.writelines(out_text) Simulation_obj = Simulation(filepath2) def read_value_from_file(self, setting_name): with open(self.filepath2) as fileManager_file: for line in fileManager_file: if setting_name in line: return line.split("!")[0].strip().strip("'") def get_filepath_from_value(self, setting_name): value = self.read_value_from_file(setting_name) if not value.endswith('/'): return "/".join(value.split('/')[:-1]) + "/" else: return value def get_filename_from_value(self, setting_name): value = self.read_value_from_file(setting_name) return value.split('/')[-1] def read_text_from_file(self, setting_name): with open(self.read_value_from_file(setting_name)) as file: return ''.join(file.readlines()) # Test the setting_path, input_path, and output_path FM objects (they represent paths, not files) def test_path_FM_objects(self): # Are the names, values, filepaths, and filenames correct upon FileManagerOption object instantiation? fileManagerObject = self.Simulation_obj.setting_path setting_name = 'setting_path' self.assertEqual(fileManagerObject.name, setting_name) self.assertEqual(fileManagerObject.value, self.read_value_from_file(setting_name)) self.assertEqual(fileManagerObject.filepath, self.get_filepath_from_value(setting_name)) self.assertEqual(fileManagerObject.filename, self.get_filename_from_value(setting_name)) fileManagerObject = self.Simulation_obj.input_path setting_name = 'input_path' self.assertEqual(fileManagerObject.name, setting_name) self.assertEqual(fileManagerObject.value, self.read_value_from_file(setting_name)) self.assertEqual(fileManagerObject.filepath, self.get_filepath_from_value(setting_name)) self.assertEqual(fileManagerObject.filename, self.get_filename_from_value(setting_name)) fileManagerObject = self.Simulation_obj.output_path setting_name = 'output_path' self.assertEqual(fileManagerObject.name, setting_name) self.assertEqual(fileManagerObject.value, self.read_value_from_file(setting_name)) self.assertEqual(fileManagerObject.filepath, self.get_filepath_from_value(setting_name)) self.assertEqual(fileManagerObject.filename, self.get_filename_from_value(setting_name)) # Save the old path values old_setting_path_value = self.Simulation_obj.setting_path.value old_input_path_value = self.Simulation_obj.input_path.value old_output_path_value = self.Simulation_obj.output_path.value # Set new values for the path variables new_setting_path_value = self.Simulation_obj.setting_path.value + "settingsample/" new_input_path_value = self.Simulation_obj.input_path.value + "inputsample/" new_output_path_value = self.Simulation_obj.output_path.value + "outputsample/" self.Simulation_obj.setting_path.value = new_setting_path_value self.Simulation_obj.input_path.value = new_input_path_value self.Simulation_obj.output_path.value = new_output_path_value # Did ModelOutput change them in the file? self.assertEqual(self.read_value_from_file('setting_path'), new_setting_path_value) self.assertEqual(self.read_value_from_file('input_path'), new_input_path_value) self.assertEqual(self.read_value_from_file('output_path'), new_output_path_value) # Change the values back self.Simulation_obj.setting_path.value = old_setting_path_value self.Simulation_obj.input_path.value = old_input_path_value self.Simulation_obj.output_path.value = old_output_path_value # Are the values updated correctly? self.assertEqual(self.read_value_from_file('setting_path'), old_setting_path_value) self.assertEqual(self.read_value_from_file('input_path'), old_input_path_value) self.assertEqual(self.read_value_from_file('output_path'), old_output_path_value) def test_FM_ModelOutput_obj(self): # Make sure that the ModelOutput object can read from the master file self.assertNotEqual([], self.Simulation_obj.modeloutput_obj.read_master_file()) # Add a variable that's already in the file with self.assertRaises(ValueError): self.Simulation_obj.modeloutput_obj.add_variable('pptrate') # Add a valid variable and make sure it's in the file self.Simulation_obj.modeloutput_obj.add_variable('aquiferScaleFactor') self.assertIn('aquiferScaleFactor', self.Simulation_obj.modeloutput_obj.read_variables_from_file()) # Remove that variable, make sure it isn't in the file self.Simulation_obj.modeloutput_obj.remove_variable('aquiferScaleFactor') self.assertNotIn('aquiferScaleFactor', self.Simulation_obj.modeloutput_obj.read_variables_from_file())
the-stack_0_8647
ALPHABET = "abcdefghijklmnopqrstuvwxyz" def increment(pwd): incremented = "" pos_not_z = len(pwd) - 1 while pwd[pos_not_z] == "z": incremented = "a" + incremented pos_not_z -= 1 incremented = pwd[:pos_not_z] + ALPHABET[ALPHABET.index(pwd[pos_not_z]) + 1] + incremented return incremented def valid(pwd): if any([forbidden in pwd for forbidden in ["i", "l", "o"]]): return False # check for a sequence of 3 consecutive letters contains_seq = False for i in range(0, 6): if pwd[i:i+3] in ALPHABET: contains_seq = True break if not contains_seq: return False # check for 2 pairs pairs = 0 pos = 0 while pos <= 6: if pwd[pos] == pwd[pos + 1]: pairs += 1 pos += 2 else: pos += 1 return pairs >= 2 def get_next_valid(pwd): pwd = increment(pwd) while not valid(pwd): pwd = increment(pwd) return pwd def solve(current_pwd): return get_next_valid(current_pwd) def parse(file_name): with open(file_name, "r") as f: return f.readline().strip() if __name__ == '__main__': print(solve(parse("sample.txt")))
the-stack_0_8648
""" (C) Copyright 2021 IBM Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created on June 30, 2021 """ import logging import os import torch.nn.functional as F import torch.optim as optim from torch.utils.data.dataloader import DataLoader import pathlib from fuse.data.dataset.dataset_base import FuseDatasetBase from fuse.metrics.classification.metric_roc_curve import FuseMetricROCCurve from fuse.metrics.classification.metric_auc import FuseMetricAUC from fuse.analyzer.analyzer_default import FuseAnalyzerDefault from fuse.data.sampler.sampler_balanced_batch import FuseSamplerBalancedBatch from fuse.losses.loss_default import FuseLossDefault from fuse.managers.callbacks.callback_metric_statistics import FuseMetricStatisticsCallback from fuse.managers.callbacks.callback_tensorboard import FuseTensorboardCallback from fuse.managers.callbacks.callback_time_statistics import FuseTimeStatisticsCallback from fuse.managers.manager_default import FuseManagerDefault from fuse.utils.utils_gpu import FuseUtilsGPU from fuse.utils.utils_logger import fuse_logger_start from fuse.models.heads.head_1d_classifier import FuseHead1dClassifier from fuse_examples.classification.prostate_x.backbone_3d_multichannel import Fuse_model_3d_multichannel,ResNet from fuse_examples.classification.prostate_x.patient_data_source import FuseProstateXDataSourcePatient from fuse_examples.classification.duke_breast_cancer.dataset import duke_breast_cancer_dataset from fuse_examples.classification.duke_breast_cancer.tasks import FuseTask ########################################## # Output Paths # ########################################## # # TODO: path to save model root_path = '.' # TODO: path for duke data # Download instructions can be found in README root_data = './Data/Duke-Breast-Cancer-MRI/manifest-1607053360376/' PATHS = {'force_reset_model_dir': False, # If True will reset model dir automatically - otherwise will prompt 'are you sure' message. 'model_dir': root_path + '/my_model/', 'cache_dir': root_path + '/my_cache/', 'inference_dir': root_path + '/my_model/inference/', 'analyze_dir': root_path + '/my_model/analyze/', 'data_dir':root_path, 'data_path' : root_data + 'Duke-Breast-Cancer-MRI', 'metadata_path': root_data + 'metadata.csv', 'ktrans_path': '', } ################################# # Train Template ################################# ########################################## # Train Common Params ########################################## # ============ # Data # ============ TRAIN_COMMON_PARAMS = {} TRAIN_COMMON_PARAMS['db_name'] = 'DUKE' TRAIN_COMMON_PARAMS['partition_version'] = '11102021TumorSize' TRAIN_COMMON_PARAMS['fold_no'] = 0 TRAIN_COMMON_PARAMS['data.batch_size'] = 50 TRAIN_COMMON_PARAMS['data.train_num_workers'] = 8 TRAIN_COMMON_PARAMS['data.validation_num_workers'] = 8 # =============== # Manager - Train # =============== TRAIN_COMMON_PARAMS['manager.train_params'] = { 'num_gpus': 1, 'num_epochs': 150, 'virtual_batch_size': 1, # number of batches in one virtual batch 'start_saving_epochs': 120, # first epoch to start saving checkpoints from 'gap_between_saving_epochs': 1, # number of epochs between saved checkpoint } TRAIN_COMMON_PARAMS['manager.best_epoch_source'] = [ { 'source': 'metrics.auc.macro_avg', # can be any key from losses or metrics dictionaries 'optimization': 'max', # can be either min/max 'on_equal_values': 'better', # can be either better/worse - whether to consider best epoch when values are equal }, ] TRAIN_COMMON_PARAMS['manager.learning_rate'] = 1e-5 TRAIN_COMMON_PARAMS['manager.weight_decay'] = 1e-3 TRAIN_COMMON_PARAMS['manager.dropout'] = 0.5 TRAIN_COMMON_PARAMS['manager.momentum'] = 0.9 TRAIN_COMMON_PARAMS['manager.resume_checkpoint_filename'] = None TRAIN_COMMON_PARAMS['num_backbone_features_imaging'] = 512 # in order to add relevant tabular feature uncomment: # num_backbone_features_clinical, post_concat_inputs,post_concat_model TRAIN_COMMON_PARAMS['num_backbone_features_clinical'] = None#256 TRAIN_COMMON_PARAMS['post_concat_inputs'] = None#[('data.clinical_features',9),] TRAIN_COMMON_PARAMS['post_concat_model'] = None#(256,256) if TRAIN_COMMON_PARAMS['num_backbone_features_clinical'] is None: TRAIN_COMMON_PARAMS['num_backbone_features'] = TRAIN_COMMON_PARAMS['num_backbone_features_imaging'] else: TRAIN_COMMON_PARAMS['num_backbone_features'] = \ TRAIN_COMMON_PARAMS['num_backbone_features_imaging']+TRAIN_COMMON_PARAMS['num_backbone_features_clinical'] # classification_task: # supported tasks are: 'Staging Tumor Size','Histology Type','is High Tumor Grade Total','PCR' TRAIN_COMMON_PARAMS['classification_task'] = 'Staging Tumor Size' TRAIN_COMMON_PARAMS['task'] = FuseTask(TRAIN_COMMON_PARAMS['classification_task'], 0) TRAIN_COMMON_PARAMS['class_num'] = TRAIN_COMMON_PARAMS['task'].num_classes() # backbone parameters TRAIN_COMMON_PARAMS['backbone_model_dict'] = \ {'input_channels_num': 1, } def train_template(paths: dict, train_common_params: dict): # ============================================================================== # Logger # ============================================================================== fuse_logger_start(output_path=paths['model_dir'], console_verbose_level=logging.INFO, list_of_source_files=[]) lgr = logging.getLogger('Fuse') lgr.info('Fuse Train', {'attrs': ['bold', 'underline']}) lgr.info(f'model_dir={paths["model_dir"]}', {'color': 'magenta'}) lgr.info(f'cache_dir={paths["cache_dir"]}', {'color': 'magenta'}) #Data train_dataset,validation_dataset = duke_breast_cancer_dataset(paths, train_common_params, lgr) ## Create dataloader lgr.info(f'- Create sampler:') sampler = FuseSamplerBalancedBatch(dataset=train_dataset, balanced_class_name='data.ground_truth', num_balanced_classes=train_common_params['class_num'], batch_size=train_common_params['data.batch_size'], balanced_class_weights= [int(train_common_params['data.batch_size']/train_common_params['class_num'])] * train_common_params['class_num'], use_dataset_cache=True) lgr.info(f'- Create sampler: Done') # ## Create dataloader train_dataloader = DataLoader(dataset=train_dataset, batch_sampler=sampler, collate_fn=train_dataset.collate_fn, num_workers=train_common_params['data.train_num_workers']) lgr.info(f'Train Data: Done', {'attrs': 'bold'}) validation_dataloader = DataLoader(dataset=validation_dataset, shuffle=False, drop_last=False, batch_size=train_common_params['data.batch_size'], num_workers=train_common_params['data.validation_num_workers'], collate_fn=validation_dataset.collate_fn) lgr.info(f'Validation Data: Done', {'attrs': 'bold'}) # ============================================================================== # Model # ============================================================================== lgr.info('Model:', {'attrs': 'bold'}) model = Fuse_model_3d_multichannel( conv_inputs=(('data.input', 1),), backbone= ResNet(ch_num=TRAIN_COMMON_PARAMS['backbone_model_dict']['input_channels_num']), # since backbone resnet contains pooling and fc, the feature output is 1D, # hence we use FuseHead1dClassifier as classification head heads=[ FuseHead1dClassifier(head_name='isLargeTumorSize', conv_inputs=[('model.backbone_features', train_common_params['num_backbone_features'])], post_concat_inputs = train_common_params['post_concat_inputs'], post_concat_model = train_common_params['post_concat_model'], dropout_rate=0.25, shared_classifier_head=None, layers_description=None, num_classes=2), ] ) lgr.info('Model: Done', {'attrs': 'bold'}) # ==================================================================================== # Loss # ==================================================================================== lgr.info('Losses: CrossEntropy', {'attrs': 'bold'}) losses = { 'cls_loss': FuseLossDefault(pred_name='model.logits.isLargeTumorSize', target_name='data.ground_truth', callable=F.cross_entropy, weight=1.0), } # ==================================================================================== # Metrics # ==================================================================================== lgr.info('Metrics:', {'attrs': 'bold'}) metrics = { 'auc': FuseMetricAUC(pred_name='model.output.isLargeTumorSize', target_name='data.ground_truth', class_names=train_common_params['task'].class_names()), } ()# ===================================================================================== # Callbacks # ===================================================================================== callbacks = [ FuseTensorboardCallback(model_dir=paths['model_dir']), # save statistics for tensorboard FuseMetricStatisticsCallback(output_path=paths['model_dir'] + "/metrics.csv"), # save statistics for tensorboard in a csv file FuseTimeStatisticsCallback(num_epochs=train_common_params['manager.train_params']['num_epochs'], load_expected_part=0.1) # time profiler ] # ===================================================================================== # Manager - Train # ===================================================================================== lgr.info('Train:', {'attrs': 'bold'}) # create optimizer optimizer = optim.Adam(model.parameters(), lr=train_common_params['manager.learning_rate'], weight_decay=train_common_params['manager.weight_decay']) # # create scheduler scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True) # train from scratch manager = FuseManagerDefault(output_model_dir=paths['model_dir'], force_reset=paths['force_reset_model_dir']) # Providing the objects required for the training process. manager.set_objects(net=model, optimizer=optimizer, losses=losses, metrics=metrics, best_epoch_source=train_common_params['manager.best_epoch_source'], lr_scheduler=scheduler, callbacks=callbacks, train_params=train_common_params['manager.train_params']) ## Continue training if train_common_params['manager.resume_checkpoint_filename'] is not None: # Loading the checkpoint including model weights, learning rate, and epoch_index. manager.load_checkpoint(checkpoint=train_common_params['manager.resume_checkpoint_filename'], mode='train') # Start training manager.train(train_dataloader=train_dataloader, validation_dataloader=validation_dataloader) lgr.info('Train: Done', {'attrs': 'bold'}) ###################################### # Inference Common Params ###################################### INFER_COMMON_PARAMS = {} INFER_COMMON_PARAMS['partition_version'] = '11102021TumorSize' INFER_COMMON_PARAMS['db_name'] = 'DUKE' INFER_COMMON_PARAMS['fold_no'] = 0 INFER_COMMON_PARAMS['infer_filename'] = os.path.join(PATHS['inference_dir'], 'validation_set_infer.pickle.gz') INFER_COMMON_PARAMS['checkpoint'] = 'best' # Fuse TIP: possible values are 'best', 'last' or epoch_index. ###################################### # Inference Template ###################################### def infer_template(paths: dict, infer_common_params: dict): #### Logger # fuse_logger_start(output_path=paths['inference_dir'], console_verbose_level=logging.INFO) lgr = logging.getLogger('Fuse') lgr.info('Fuse Inference', {'attrs': ['bold', 'underline']}) lgr.info(f'infer_filename={infer_common_params["infer_filename"]}', {'color': 'magenta'}) #### create infer datasource ## Create data source: infer_data_source = FuseProstateXDataSourcePatient(paths['data_dir'],'validation', db_ver=infer_common_params['partition_version'], db_name = infer_common_params['db_name'], fold_no=infer_common_params['fold_no']) lgr.info(f'db_name={infer_common_params["db_name"]}', {'color': 'magenta'}) ### load dataset data_set_filename = os.path.join(paths["model_dir"], "inference_dataset.pth") dataset = FuseDatasetBase.load(filename=data_set_filename, override_datasource=infer_data_source, override_cache_dest=paths["cache_dir"], num_workers=0) dataloader = DataLoader(dataset=dataset, shuffle=False, drop_last=False, batch_size=50, num_workers=5, collate_fn=dataset.collate_fn) #### Manager for inference manager = FuseManagerDefault() # extract just the global classification per sample and save to a file output_columns = ['model.output.isLargeTumorSize','data.ground_truth'] manager.infer(data_loader=dataloader, input_model_dir=paths['model_dir'], checkpoint=infer_common_params['checkpoint'], output_columns=output_columns, output_file_name = infer_common_params['infer_filename']) ###################################### # Analyze Common Params ###################################### ANALYZE_COMMON_PARAMS = {} ANALYZE_COMMON_PARAMS['infer_filename'] = INFER_COMMON_PARAMS['infer_filename'] ANALYZE_COMMON_PARAMS['output_filename'] = os.path.join(PATHS['analyze_dir'], 'all_metrics_DCE_T0_fold0') ###################################### # Analyze Template ###################################### def analyze_template(paths: dict, analyze_common_params: dict): fuse_logger_start(output_path=None, console_verbose_level=logging.INFO) lgr = logging.getLogger('Fuse') lgr.info('Fuse Analyze', {'attrs': ['bold', 'underline']}) fuse_logger_start(output_path=None, console_verbose_level=logging.INFO) lgr = logging.getLogger('Fuse') lgr.info('Fuse Analyze', {'attrs': ['bold', 'underline']}) # metrics metrics = { 'roc': FuseMetricROCCurve(pred_name='model.output.isLargeTumorSize', target_name='data.ground_truth', output_filename=os.path.join(paths['inference_dir'], 'roc_curve.png')), 'auc': FuseMetricAUC(pred_name='model.output.isLargeTumorSize', target_name='data.ground_truth') } # create analyzer analyzer = FuseAnalyzerDefault() # run results = analyzer.analyze(gt_processors={}, data_pickle_filename=analyze_common_params["infer_filename"], metrics=metrics, output_filename=analyze_common_params['output_filename']) return results ###################################### # Run ###################################### if __name__ == "__main__": # allocate gpus NUM_GPUS = 1 if NUM_GPUS == 0: TRAIN_COMMON_PARAMS['manager.train_params']['device'] = 'cpu' # uncomment if you want to use specific gpus instead of automatically looking for free ones force_gpus = None # [0] FuseUtilsGPU.choose_and_enable_multiple_gpus(NUM_GPUS, force_gpus=force_gpus) RUNNING_MODES = ['train','infer', 'analyze'] # Options: 'train', 'infer', 'analyze' if 'train' in RUNNING_MODES: train_template(paths=PATHS, train_common_params=TRAIN_COMMON_PARAMS) if 'infer' in RUNNING_MODES: infer_template(paths=PATHS, infer_common_params=INFER_COMMON_PARAMS) if 'analyze' in RUNNING_MODES: analyze_template(paths=PATHS,analyze_common_params=ANALYZE_COMMON_PARAMS)
the-stack_0_8649
""" This file offers the methods to automatically retrieve the graph Thermoplasmatales archaeon E-plasma. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def ThermoplasmatalesArchaeonEPlasma( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Thermoplasmatales archaeon E-plasma graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Thermoplasmatales archaeon E-plasma graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="ThermoplasmatalesArchaeonEPlasma", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
the-stack_0_8650
# pyright:reportUnknownMemberType=false # pyright:reportUnknownArgumentType=false # pyright:reportUnknownLambdaType=false import re from itertools import accumulate from typing import Any, List import ja_core_news_sm from py_pdf_term._common.consts import JAPANESE_REGEX, NOSPACE_REGEX, SYMBOL_REGEX from ..data import Token from .base import BaseLanguageTokenizer SPACES = re.compile(r"\s+") DELIM_SPACE = re.compile(rf"(?<={NOSPACE_REGEX}) (?={NOSPACE_REGEX})") class JapaneseTokenizer(BaseLanguageTokenizer): def __init__(self) -> None: enable_pipes = [] self._model = ja_core_news_sm.load() self._model.select_pipes(enable=enable_pipes) self._ja_regex = re.compile(JAPANESE_REGEX) self._symbol_regex = re.compile(rf"({SYMBOL_REGEX})") def inscope(self, text: str) -> bool: return self._ja_regex.search(text) is not None def tokenize(self, text: str) -> List[Token]: text = SPACES.sub(" ", text).strip() orginal_space_pos = { match.start() - offset for offset, match in enumerate(re.finditer(r" ", text)) if DELIM_SPACE.match(text, match.start()) is not None } text = DELIM_SPACE.sub("", text) text = self._symbol_regex.sub(r" \1 ", text) tokens = list(map(self._create_token, self._model(text))) if not orginal_space_pos: return tokens tokenized_space_pos = set( accumulate(map(lambda token: len(str(token)), tokens)) ) if not orginal_space_pos.issubset(tokenized_space_pos): return tokens pos, i = 0, 0 num_token = len(tokens) + len(orginal_space_pos) while i < num_token: if pos in orginal_space_pos: pos += len(str(tokens[i])) space = Token( "ja", " ", "空白", "*", "*", "*", "SPACE", " ", " ", False, ) tokens.insert(i, space) i += 2 else: pos += len(str(tokens[i])) i += 1 return tokens def _create_token(self, token: Any) -> Token: if self._symbol_regex.fullmatch(token.text): return Token( "ja", token.text, "補助記号", "一般", "*", "*", "SYM", token.text, token.text, False, ) pos_with_categories = token.tag_.split("-") num_categories = len(pos_with_categories) - 1 pos = pos_with_categories[0] category = pos_with_categories[1] if num_categories >= 1 else "*" subcategory = pos_with_categories[2] if num_categories >= 2 else "*" subsubcategory = pos_with_categories[3] if num_categories >= 3 else "*" return Token( "ja", token.text, pos, category, subcategory, subsubcategory, token.pos_, token.lemma_.lower(), token.shape_, token.is_stop, ) class JapaneseTokenClassifier: def is_modifying_particle(self, token: Token) -> bool: return token.surface_form == "の" and token.pos == "助詞" def is_symbol(self, token: Token) -> bool: return token.pos in {"補助記号"} def is_connector_symbol(self, token: Token) -> bool: return token.surface_form in {"・", "-"} and token.pos == "補助記号" def is_meaningless(self, token: Token) -> bool: return self.is_symbol(token) or self.is_modifying_particle(token)
the-stack_0_8651
import theano.tensor as T def cca_loss(outdim_size, use_all_singular_values): """ The main loss function (inner_cca_objective) is wrapped in this function due to the constraints imposed by Keras on objective functions """ def inner_cca_objective(y_true, y_pred): """ It is the loss function of CCA as introduced in the original paper. There can be other formulations. It is implemented by Theano tensor operations, and does not work on Tensorflow backend y_true is just ignored """ r1 = 1e-4 r2 = 1e-4 eps = 1e-12 o1 = o2 = y_pred.shape[1]//2 # unpack (separate) the output of networks for view 1 and view 2 H1 = y_pred[:, 0:o1].T H2 = y_pred[:, o1:o1+o2].T m = H1.shape[1] H1bar = H1 - (1.0 / m) * T.dot(H1, T.ones([m, m])) H2bar = H2 - (1.0 / m) * T.dot(H2, T.ones([m, m])) SigmaHat12 = (1.0 / (m - 1)) * T.dot(H1bar, H2bar.T) SigmaHat11 = (1.0 / (m - 1)) * T.dot(H1bar, H1bar.T) + r1 * T.eye(o1) SigmaHat22 = (1.0 / (m - 1)) * T.dot(H2bar, H2bar.T) + r2 * T.eye(o2) # Calculating the root inverse of covariance matrices by using eigen decomposition [D1, V1] = T.nlinalg.eigh(SigmaHat11) [D2, V2] = T.nlinalg.eigh(SigmaHat22) # Added to increase stability posInd1 = T.gt(D1, eps).nonzero()[0] D1 = D1[posInd1] V1 = V1[:, posInd1] posInd2 = T.gt(D2, eps).nonzero()[0] D2 = D2[posInd2] V2 = V2[:, posInd2] SigmaHat11RootInv = T.dot(T.dot(V1, T.nlinalg.diag(D1 ** -0.5)), V1.T) SigmaHat22RootInv = T.dot(T.dot(V2, T.nlinalg.diag(D2 ** -0.5)), V2.T) Tval = T.dot(T.dot(SigmaHat11RootInv, SigmaHat12), SigmaHat22RootInv) if use_all_singular_values: # all singular values are used to calculate the correlation corr = T.sqrt(T.nlinalg.trace(T.dot(Tval.T, Tval))) else: # just the top outdim_size singular values are used [U, V] = T.nlinalg.eigh(T.dot(Tval.T, Tval)) U = U[T.gt(U, eps).nonzero()[0]] U = U.sort() corr = T.sum(T.sqrt(U[0:outdim_size])) return -corr return inner_cca_objective
the-stack_0_8652
_base_ = [ '../_base_/models/mask_rcnn_swin_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, ape=False, drop_path_rate=0.1, patch_norm=True, use_checkpoint=False ), neck=dict(in_channels=[96, 192, 384, 768]), roi_head=dict( bbox_head=dict(num_classes=1), mask_head=dict( num_classes=1, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=0.1)) ), test_cfg=dict( rcnn=dict( score_thr=0.01, nms=dict(type='nms', iou_threshold=0.5), max_per_img=300 ) ) ) img_norm_cfg = dict( mean=[134.756, 134.756, 134.756], std=[61.680, 61.680, 61.680], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN _input_size = 1280 _widths = list(range(int(_input_size / 2), int(_input_size * 1.5), 64)) _ratios = list([v / 10 for v in range(7, 13 + 1, 1)]) _img_scale = [] for _w in _widths: _img_scale += [(_w, int(_w * r)) for r in _ratios] _img_fill_val = 134.756 _autoaug_transforms = [ 'Shear', 'Translate', 'Rotate', 'BrightnessTransform', 'ContrastTransform', 'EqualizeTransform' ] _n_subpolicies = 100 _prob_cands = list([v / 10 for v in range(0, 10 + 1, 1)]) _level_cands = list(range(0, 10 + 1, 1)) _direction_cands = ['horizontal', 'vertical'] import random _autoaug_policies = [] for _ in range(_n_subpolicies): _subpolicy = [] for _ in range(2): _transform = dict( type=random.choice(_autoaug_transforms), prob=random.choice(_prob_cands) ) if _transform['type'] not in ['EqualizeTransform']: _transform['level'] = random.choice(_level_cands) if _transform['type'] in ['Shear', 'Translate', 'Rotate']: _transform['img_fill_val'] = _img_fill_val if _transform['type'] in ['Shear', 'Translate']: _transform['direction'] = random.choice(_direction_cands) _subpolicy.append(_transform) _autoaug_policies.append(_subpolicy) del random train_pipeline = [ dict(type='LoadImageFromFile', color_type='color'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Resize', img_scale=_img_scale, multiscale_mode='value', keep_ratio=False), dict(type='AutoAugment', policies=_autoaug_policies), dict(type='RandomCrop', crop_type='absolute', crop_size=(_input_size, _input_size), allow_negative_crop=True), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile', color_type='color'), dict( type='MultiScaleFlipAug', img_scale=[(int(_input_size), int(_input_size)), (int(_input_size * 1.25), int(_input_size * 1.25)), ], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] # Modify dataset related settings img_dir = '/kaggle/working/data/siim/2048x2048' anno_dir = '/kaggle/working/data/siim/mmdet_annos' fold = 0 classes = ('opacity',) data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( img_prefix=img_dir, classes=classes, ann_file=f'{anno_dir}/train.json', pipeline=train_pipeline), val=dict( img_prefix=img_dir, classes=classes, ann_file=f'{anno_dir}/test.json', pipeline=test_pipeline), test=dict( img_prefix=img_dir, classes=classes, ann_file=f'{anno_dir}/test.json', pipeline=test_pipeline), ) # scheduler optimizer = dict(_delete_=True, type='AdamW', lr=0.00001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.)})) lr_config = dict(step=[24, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False, ) # We can use the pre-trained Mask RCNN model to obtain higher performance load_from = 'checkpoints/mask_rcnn_swin_tiny_patch4_window7.pth'