filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_9336
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# from pandas import DataFrame from collections import OrderedDict from pyomo.environ import value from pyomo.network import Arc, Port import idaes.logger as idaeslog from idaes.core.util.units_of_measurement import report_quantity _log = idaeslog.getLogger(__name__) __author__ = "John Eslick, Andrew Lee" def arcs_to_stream_dict( blk, additional=None, descend_into=True, sort=False, prepend=None, s=None ): """ Creates a stream dictionary from the Arcs in a model, using the Arc names as keys. This can be used to automate the creation of the streams dictionary needed for the ``create_stream_table_dataframe()`` and ``stream_states_dict()`` functions. Args: blk (pyomo.environ._BlockData): Pyomo model to search for Arcs additional (dict): Additional states to add to the stream dictionary, which aren't represented by arcs in blk, for example feed or product streams without Arcs attached or states internal to a unit model. descend_into (bool): If True, search subblocks for Arcs as well. The default is True. sort (bool): If True sort keys and return an OrderedDict prepend (str): Prepend a string to the arc name joined with a '.'. This can be useful to prevent conflicting names when sub blocks contain Arcs that have the same names when used in combination with descend_into=False. s (dict): Add streams to an existing stream dict. Returns: Dictionary with Arc names as keys and the Arcs as values. """ if s is None: s = {} for c in blk.component_objects(Arc, descend_into=descend_into): key = c.getname() if prepend is not None: key = ".".join([prepend, key]) s[key] = c if additional is not None: s.update(additional) if sort: s = OrderedDict(sorted(s.items())) return s def stream_states_dict(streams, time_point=0): """ Method to create a dictionary of state block representing stream states. This takes a dict with stream name keys and stream values. Args: streams : dict with name keys and stream values. Names will be used as display names for stream table, and streams may be Arcs, Ports or StateBlocks. time_point : point in the time domain at which to generate stream table (default = 0) Returns: A pandas DataFrame containing the stream table data. """ stream_dict = OrderedDict() def _stream_dict_add(sb, n, i=None): """add a line to the stream table""" if i is None: key = n else: key = "{}[{}]".format(n, i) stream_dict[key] = sb for n in streams.keys(): if isinstance(streams[n], Arc): for i, a in streams[n].items(): try: # if getting the StateBlock from the destination port # fails for any reason try the source port. This could # happen if a port does not have an associated # StateBlock. For example a surrogate model may not # use state blocks, unit models may handle physical # properties without state blocks, or the port could # be used to serve the purpose of a translator block. sb = _get_state_from_port(a.ports[1], time_point) except: sb = _get_state_from_port(a.ports[0], time_point) _stream_dict_add(sb, n, i) elif isinstance(streams[n], Port): sb = _get_state_from_port(streams[n], time_point) _stream_dict_add(sb, n) else: # _IndexedStateBlock is a private class, so cannot directly test # whether streams[n] is one or not. try: sb = streams[n][time_point] except KeyError as err: raise TypeError( f"Either component type of stream argument {streams[n]} " f"is unindexed or {time_point} is not a member of its " f"indexing set." ) from err _stream_dict_add(sb, n) return stream_dict def tag_state_quantities(blocks, attributes, labels, exception=False): """Take a stream states dictionary, and return a tag dictionary for stream quantities. This takes a dictionary (blk) that has state block labels as keys and state blocks as values. The attributes are a list of attributes to tag. If an element of the attribute list is list-like, the fist element is the attribute and the remaining elements are indexes. Lables provides a list of attribute lables to be used to create the tag. Tags are blk_key + label for the attribute. Args: blocks (dict): Dictionary of state blocks. The key is the block label to be used in the tag, and the value is a state block. attributes (list-like): A list of attriutes to tag. It is okay if a particular attribute does not exist in a state bock. This allows you to mix state blocks with differnt sets of attributes. If an attribute is indexed, the attribute can be specified as a list or tuple where the first element is the attribute and the remaining elements are indexes. labels (list-like): These are attribute lables. The order corresponds to the attribute list. They are used to create the tags. Tags are in the form blk.key + label. exception (bool): If True, raise exceptions releated to invalid or missing indexes. If false missing or bad indexes are ignored and None is used for the table value. Setting this to False allows tables where some state blocks have the same attributes with differnt indexing. (default is True) Return: (dict): Dictionary where the keys are tags and the values are model attributes, usually Pyomo component data objects. """ tags = {} if labels is None: lables = attributes for a in attributes: if isinstance(a, (tuple, list)): if len(a) == 2: # in case there are multiple indexes and user gives tuple label = f"{a[0]}[{a[1]}]" if len(a) > 2: label = f"{a[0]}[{a[1:]}]" else: label = a[0] for key, s in blocks.items(): for i, a in enumerate(attributes): j = None if isinstance(a, (list, tuple)): # if a is list or tuple, the first element should be the # attribute and the remaining elements should be indexes. if len(a) == 2: j = a[1] # catch user supplying list-like of indexes if len(a) > 2: j = a[1:] # if len(a) == 1, we'll say that's fine here. Don't know why you # would put the attribute in a list-like if not indexed, but I'll # allow it. a = a[0] v = getattr(s, a, None) if j is not None and v is not None: try: v = v[j] except KeyError: if not exception: v = None else: _log.error(f"{j} is not a valid index of {a}") raise KeyError(f"{j} is not a valid index of {a}") try: value(v, exception=False) except TypeError: if not exception: v = None else: _log.error(f"Cannot calculate value of {a} (may be subscriptable)") raise TypeError( f"Cannot calculate value of {a} (may be subscriptable)" ) except ZeroDivisionError: pass # this one is okay if v is not None: tags[f"{key}{labels[i]}"] = v return tags def create_stream_table_dataframe( streams, true_state=False, time_point=0, orient="columns" ): """ Method to create a stream table in the form of a pandas dataframe. Method takes a dict with name keys and stream values. Use an OrderedDict to list the streams in a specific order, otherwise the dataframe can be sorted later. Args: streams : dict with name keys and stream values. Names will be used as display names for stream table, and streams may be Arcs, Ports or StateBlocks. true_state : indicated whether the stream table should contain the display variables define in the StateBlock (False, default) or the state variables (True). time_point : point in the time domain at which to generate stream table (default = 0) orient : orientation of stream table. Accepted values are 'columns' (default) where streams are displayed as columns, or 'index' where stream are displayed as rows. Returns: A pandas DataFrame containing the stream table data. """ stream_attributes = OrderedDict() stream_states = stream_states_dict(streams=streams, time_point=time_point) full_keys = [] # List of all rows in dataframe to fill in missing data stream_attributes["Units"] = {} for key, sb in stream_states.items(): stream_attributes[key] = {} if true_state: disp_dict = sb.define_state_vars() else: disp_dict = sb.define_display_vars() for k in disp_dict: for i in disp_dict[k]: stream_key = k if i is None else f"{k} {i}" quant = report_quantity(disp_dict[k][i]) stream_attributes[key][stream_key] = quant.m # TODO: Only need to do this once, as otherwise we are just # repeatedly overwriting this stream_attributes["Units"][stream_key] = quant.u if stream_key not in full_keys: full_keys.append(stream_key) # Check for missing rows in any stream, and fill with "-" if needed for k, v in stream_attributes.items(): for r in full_keys: if r not in v.keys(): # Missing row, fill with placeholder v[r] = "-" return DataFrame.from_dict(stream_attributes, orient=orient) def stream_table_dataframe_to_string(stream_table, **kwargs): """ Method to print a stream table from a dataframe. Method takes any argument understood by DataFrame.to_string """ # Set some default values for keyword arguments na_rep = kwargs.pop("na_rep", "-") justify = kwargs.pop("justify", "center") float_format = kwargs.pop("float_format", lambda x: "{:#.5g}".format(x)) # Print stream table return stream_table.to_string( na_rep=na_rep, justify=justify, float_format=float_format, **kwargs ) def _get_state_from_port(port, time_point): """ Attempt to find a StateBlock-like object connected to a Port. If the object is indexed both in space and time, assume that the time index comes first. If no components are assigned to the Port, raise a ValueError. If the first component's parent block has no index, raise an AttributeError. If different variables on the port appear to be connected to different state blocks, raise a RuntimeError. Args: port (pyomo.network.Port): a port with variables derived from some single StateBlock time_point : point in the time domain at which to index StateBlock (default = 0) Returns: (StateBlock-like) : an object containing all the components contained in the port. """ vlist = list(port.iter_vars()) states = [v.parent_block().parent_component() for v in vlist] if len(vlist) == 0: raise ValueError( f"No block could be retrieved from Port {port.name} " f"because it contains no components." ) # Check the number of indices of the parent property block. If its indexed # both in space and time, keep the second, spatial index and throw out the # first, temporal index. If that ordering is changed, this method will # need to be changed as well. try: idx = vlist[0].parent_block().index() except AttributeError as err: raise AttributeError( f"No block could be retrieved from Port {port.name} " f"because block {vlist[0].parent_block().name} has no index." ) from err # Assuming the time index is always first and the spatial indices are all # the same if isinstance(idx, tuple): idx = (time_point, vlist[0].parent_block().index()[1:]) else: idx = (time_point,) # This method also assumes that ports with different spatial indices won't # end up at the same port. Otherwise this check is insufficient. if all(states[0] is s for s in states): return states[0][idx] raise RuntimeError( f"No block could be retrieved from Port {port.name} " f"because components are derived from multiple blocks." ) def generate_table(blocks, attributes, heading=None, exception=True): """ Create a Pandas DataFrame that contains a list of user-defined attributes from a set of Blocks. Args: blocks (dict): A dictionary with name keys and BlockData objects for values. Any name can be associated with a block. Use an OrderedDict to show the blocks in a specific order, otherwise the dataframe can be sorted later. attributes (list or tuple of strings): Attributes to report from a Block, can be a Var, Param, or Expression. If an attribute doesn't exist or doesn't have a valid value, it will be treated as missing data. heading (list or tuple of srings): A list of strings that will be used as column headings. If None the attribute names will be used. exception (bool): If True, raise exceptions releated to invalid or missing indexes. If false missing or bad indexes are ignored and None is used for the table value. Setting this to False allows tables where some state blocks have the same attributes with differnt indexing. (default is True) Returns: (DataFrame): A Pandas dataframe containing a data table """ if heading is None: heading = attributes st = DataFrame(columns=heading) row = [None] * len(attributes) # not a big deal but save time on realloc for key, s in blocks.items(): for i, a in enumerate(attributes): j = None if isinstance(a, (list, tuple)): # if a is list or tuple, assume index supplied try: assert len(a) > 1 except AssertionError: _log.error(f"An index must be supplided for attribute {a[0]}") raise AssertionError( f"An index must be supplided for attribute {a[0]}" ) j = a[1:] a = a[0] v = getattr(s, a, None) if j is not None and v is not None: try: v = v[j] except KeyError: if not exception: v = None else: _log.error(f"{j} is not a valid index of {a}") raise KeyError(f"{j} is not a valid index of {a}") try: v = value(v, exception=False) except TypeError: if not exception: v = None else: _log.error(f"Cannot calculate value of {a} (may be subscriptable)") raise TypeError( f"Cannot calculate value of {a} (may be subscriptable)" ) except ZeroDivisionError: v = None row[i] = v st.loc[key] = row return st
the-stack_0_9340
#!/usr/bin/env python """Execute a Rekall plugin on the client memory. This module implements the Rekall enabled client actions. """ import json import os import pdb import sys # Initialize the Rekall plugins, so pylint: disable=unused-import from rekall import addrspace from rekall import constants from rekall import io_manager from rekall import obj from rekall import plugins from rekall import session from rekall.plugins.addrspaces import standard from rekall.plugins.renderers import data_export # pylint: enable=unused-import import logging from grr.client import actions from grr.client import vfs from grr.client.client_actions import tempfiles from grr.lib import config_lib from grr.lib import flags from grr.lib import rdfvalue from grr.lib import utils class Error(Exception): pass class ProfileNotFoundError(ValueError): pass class GRRObjectRenderer(data_export.NativeDataExportObjectRenderer): """A default object renderer for the GRRRekallRenderer. GRR Renders all Rekall objects using the Rekall DataExportRenderer. By default we just delegate everything to DataExportRenderer. """ renders_type = "object" renderers = ["GRRRekallRenderer"] def _GetDelegateObjectRenderer(self, item): return self.FromEncoded(item, "DataExportRenderer")( renderer=self.renderer) def EncodeToJsonSafe(self, item, **options): return self._GetDelegateObjectRenderer(item).EncodeToJsonSafe( item, **options) def DecodeFromJsonSafe(self, value, options): return self._GetDelegateObjectRenderer(value).DecodeFromJsonSafe( value, options) def RawHTML(self, item, **options): return self._GetDelegateObjectRenderer(item).Summary(item, **options) def Summary(self, item, **options): return self._GetDelegateObjectRenderer(item).Summary(item, **options) class GRRRekallRenderer(data_export.DataExportRenderer): """This renderer sends all messages to the server encoded as JSON. Note that this renderer is used to encode and deliver Rekall objects to the server. Additionally Rekall ObjectRenderer implementations specific to GRR will be attached to this renderer. """ name = None # Maximum number of statements to queue before sending a reply. RESPONSE_CHUNK_SIZE = 1000 def __init__(self, rekall_session=None, action=None): """Collect Rekall rendering commands and send to the server. Args: rekall_session: The Rekall session object. action: The GRR Client Action which owns this renderer. We will use it to actually send messages back to the server. """ try: sys.stdout.isatty() except AttributeError: sys.stdout.isatty = lambda: False super(GRRRekallRenderer, self).__init__(session=rekall_session) # A handle to the client action we can use for sending responses. self.action = action # The current plugin we are running. self.plugin = None self.context_messages = {} self.new_context_messages = {} def start(self, plugin_name=None, kwargs=None): self.plugin = plugin_name return super(GRRRekallRenderer, self).start(plugin_name=plugin_name, kwargs=kwargs) def write_data_stream(self): """Prepares a RekallResponse and send to the server.""" if self.data: response_msg = rdfvalue.RekallResponse( json_messages=json.dumps(self.data, separators=(",", ":")), json_context_messages=json.dumps(self.context_messages.items(), separators=(",", ":")), plugin=self.plugin) self.context_messages = self.new_context_messages self.new_context_messages = {} # Queue the response to the server. self.action.SendReply(response_msg) def SendMessage(self, statement): super(GRRRekallRenderer, self).SendMessage(statement) if statement[0] in ["s", "t"]: self.new_context_messages[statement[0]] = statement[1] if len(self.data) > self.RESPONSE_CHUNK_SIZE: self.flush() def open(self, directory=None, filename=None, mode="rb"): result = tempfiles.CreateGRRTempFile(filename=filename, mode=mode) # The tempfile library created an os path, we pass it through vfs to # normalize it. with vfs.VFSOpen(rdfvalue.PathSpec( path=result.name, pathtype=rdfvalue.PathSpec.PathType.OS)) as vfs_fd: dict_pathspec = vfs_fd.pathspec.ToPrimitiveDict() self.SendMessage(["file", dict_pathspec]) return result def report_error(self, message): super(GRRRekallRenderer, self).report_error(message) if flags.FLAGS.debug: pdb.post_mortem() class GrrRekallSession(session.Session): """A GRR Specific Rekall session.""" def __init__(self, fhandle=None, action=None, **session_args): super(GrrRekallSession, self).__init__(**session_args) self.action = action # Ensure the action's Progress() method is called when Rekall reports # progress. self.progress.Register(id(self), lambda *_, **__: self.action.Progress()) def LoadProfile(self, filename): """Wraps the Rekall profile's LoadProfile to fetch profiles from GRR.""" # If the user specified a special profile path we use their choice. profile = super(GrrRekallSession, self).LoadProfile(filename) if profile: return profile # Cant load the profile, we need to ask the server for it. logging.debug("Asking server for profile %s" % filename) self.action.SendReply( rdfvalue.RekallResponse( missing_profile="%s/%s" % ( constants.PROFILE_REPOSITORY_VERSION, filename))) # Wait for the server to wake us up. When we wake up the server should # have sent the profile over by calling the WriteRekallProfile. self.action.Suspend() # Now the server should have sent the data already. We try to load the # profile one more time. return super(GrrRekallSession, self).LoadProfile( filename, use_cache=False) def GetRenderer(self): # We will use this renderer to push results to the server. return GRRRekallRenderer(rekall_session=self, action=self.action) class WriteRekallProfile(actions.ActionPlugin): """A client action to write a Rekall profile to the local cache.""" in_rdfvalue = rdfvalue.RekallProfile def Run(self, args): output_filename = utils.JoinPath( config_lib.CONFIG["Client.rekall_profile_cache_path"], args.name) try: os.makedirs(os.path.dirname(output_filename)) except OSError: pass with open(output_filename, "wb") as fd: fd.write(args.data) class RekallAction(actions.SuspendableAction): """Runs a Rekall command on live memory.""" in_rdfvalue = rdfvalue.RekallRequest out_rdfvalue = rdfvalue.RekallResponse def Iterate(self): """Run a Rekall plugin and return the result.""" # Open the device pathspec as requested by the server. with vfs.VFSOpen(self.request.device, progress_callback=self.Progress) as fhandle: # Create a session and run all the plugins with it. session_args = self.request.session.ToDict() # If the user has not specified a special profile path, we use the local # cache directory. if "profile_path" not in session_args: session_args["profile_path"] = [config_lib.CONFIG[ "Client.rekall_profile_cache_path"]] session_args.update(fhandle.GetMetadata()) rekal_session = GrrRekallSession(action=self, **session_args) # Wrap GRR's VFS handler for the device in a Rekall FDAddressSpace so we # can pass it directly to the Rekall session as the physical address # space. This avoids the AS voting mechanism for Rekall's image format # detection. with rekal_session: rekal_session.physical_address_space = standard.FDAddressSpace( session=rekal_session, fhandle=fhandle) # Autodetect the profile. Valid plugins for this profile will become # available now. rekal_session.GetParameter("profile") for plugin_request in self.request.plugins: # Get the keyword args to this plugin. plugin_args = plugin_request.args.ToDict() try: rekal_session.RunPlugin(plugin_request.plugin, **plugin_args) except Exception: # pylint: disable=broad-except # Just ignore errors, and run the next plugin. Errors will be reported # through the renderer. pass
the-stack_0_9341
import argparse import cv2 import numpy import PIL.Image import torch import torchvision.transforms as transforms from PIL import Image from torch.autograd import Variable from models import * from tools.canny import processing from tools.picture2texture import estimate def sample_images(generator,Tensor,imgs): """ save the processed pictures Args: generator: trained model Tensor: tensor format imgs: real picture Author: Zhongqi Wang """ real_A = Variable(imgs.type(Tensor)) real_A = real_A.unsqueeze(0) fake_B = generator(real_A) cv2.imwrite("generate.png" ,255*fake_B[0].squeeze(0).cpu().swapaxes(0,2).swapaxes(0,1).numpy()) def process(opt,file_path): """ get the HED edge-painting Args: opt: opt file file_path: the file path U want to process Author: Zhongqi Wang """ arguments_strOut = "HED.jpg" src = cv2.imread(file_path, 0) src = cv2.resize(src, (opt.img_width,opt.img_height)) src_RGB = cv2.cvtColor(src, cv2.COLOR_GRAY2RGB) a = PIL.Image.fromarray(src_RGB) b = numpy.array(a)[:, :] tenInput = torch.FloatTensor(numpy.ascontiguousarray(b.transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) tenOutput = estimate(tenInput) PIL.Image.fromarray((tenOutput.clip(0.0, 1.0).numpy().transpose(1, 2, 0)[:, :, 0] * 255.0).astype(numpy.uint8)).save(arguments_strOut) def main(path): parser = argparse.ArgumentParser() parser.add_argument("--img_height", type=int, default=512, help="size of image height") parser.add_argument("--img_width", type=int, default=512, help="size of image width") opt = parser.parse_args() transform=transforms.Compose([ transforms.ToTensor(), ]) cuda = True if torch.cuda.is_available() else False generator = GeneratorUNet() if cuda: generator = generator.cuda() #使用gpu generator.load_state_dict(torch.load("generator_45_canny.pth")) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor process(opt,path) #处理为HED边缘图像 img = processing(path) #处理为canny边缘图像 cv2.imwrite("canny.jpg",img) pic1 = cv2.imread("HED.jpg") pic1 = cv2.resize(pic1, (opt.img_width,opt.img_height)) pic2 = cv2.imread("canny.jpg") pic2 = cv2.resize(pic2, (opt.img_width,opt.img_height)) train_data = pic1+pic2 cv2.imwrite("canny&HED.jpg",train_data) #得到二者叠加 frame = cv2.resize(train_data,(opt.img_width,opt.img_height)) frame = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)) frame = transform(frame) sample_images(generator,Tensor,frame) #输入pix2pix模型求解 if __name__ == "__main__": path = "test_pic/6.jpg" # 要处理的图片 main(path)
the-stack_0_9344
import os import functools from flask import Flask from flask import request import redis import hn_feeds import logger_config app = Flask(__name__) logger = logger_config.get_logger() @functools.lru_cache(None) def _get_feed_generator(): redis_server = os.environ.get("REDIS_SERVER", None) if redis_server: host, port = redis_server.split(":") redis_db = os.environ.get("REDIS_DB", 0) redis_client = redis.Redis(host=host, port=int(port), db=redis_db) redis_client.ping() # test connection logger.info(f"Connected to Redis at {host}:{port}") else: redis_client = None logger.warning("Not using Redis") return hn_feeds.HNFeedsGenerator( timeout_secs=int(os.environ.get("TIMEOUT_SECS", 5)), max_workers=int(os.environ.get("MAX_WORKERS", 5)), redis_client=redis_client, redis_expire_secs=int(os.environ.get("REDIS_EXPIRE_SECS", 172800)), fulltext_rss_url=os.environ.get("FULLTEXT_RSS_URL", None)) # global feed generator _feed_generator = _get_feed_generator() @app.route('/') def base(): return f'<p>Must pass an url with a feed to parse!</p>' @app.route('/favicon.ico') def no_favicon(): """Returns 404 if we pass a favicon request.""" return '', 404 @app.route('/<path:url>') def main_entry(url): del url # Unused since we need full path anyway. full_path = request.full_path[1:] # Strip leading /. base_rss = f'http://{full_path}' logger.info(f'Got request for "{base_rss}". Creating feed.') fg = _feed_generator.create_feed(base_rss=base_rss) if not fg: return '', 404 xml = fg.atom_str(pretty=True) return xml, 200, {'Content-Type': 'text/xml; charset=utf-8'}
the-stack_0_9345
#!/usr/bin/env python import optparse import os import sys chplenv_dir = os.path.dirname(__file__) sys.path.insert(0, os.path.abspath(chplenv_dir)) import chpl_comm, chpl_compiler, chpl_platform, overrides from compiler_utils import CompVersion, get_compiler_version from utils import error, memoize @memoize def get(flag='target'): if flag == 'network': atomics_val = overrides.get('CHPL_NETWORK_ATOMICS') if not atomics_val: if chpl_comm.get() == 'ugni' and get('target') != 'locks': atomics_val = 'ugni' else: atomics_val = 'none' elif flag == 'target': atomics_val = overrides.get('CHPL_ATOMICS') if not atomics_val: compiler_val = chpl_compiler.get('target') platform_val = chpl_platform.get('target') # we currently support intrinsics for gcc, intel, cray and clang. # gcc added initial support in 4.1, and added support for 64 bit # atomics on 32 bit platforms with 4.8. clang and intel also # support 64 bit atomics on 32 bit platforms and the cray compiler # will never run on a 32 bit machine. For pgi or 32 bit platforms # with an older gcc, we fall back to locks if compiler_val in ['gnu', 'cray-prgenv-gnu', 'mpi-gnu']: version = get_compiler_version('gnu') if version >= CompVersion('4.8'): atomics_val = 'intrinsics' elif version >= CompVersion('4.1') and not platform_val.endswith('32'): atomics_val = 'intrinsics' elif compiler_val == 'aarch64-gnu': atomics_val = 'cstdlib' elif compiler_val == 'intel' or compiler_val == 'cray-prgenv-intel': atomics_val = 'intrinsics' elif compiler_val == 'cray-prgenv-cray': atomics_val = 'intrinsics' elif compiler_val == 'clang': atomics_val = 'intrinsics' elif compiler_val == 'clang-included': atomics_val = 'intrinsics' # we can't use intrinsics, fall back to locks if not atomics_val: atomics_val = 'locks' else: error("Invalid flag: '{0}'".format(flag), ValueError) return atomics_val def _main(): parser = optparse.OptionParser(usage='usage: %prog [--network|target])') parser.add_option('--target', dest='flag', action='store_const', const='target', default='target') parser.add_option('--network', dest='flag', action='store_const', const='network') (options, args) = parser.parse_args() atomics_val = get(options.flag) sys.stdout.write("{0}\n".format(atomics_val)) if __name__ == '__main__': _main()
the-stack_0_9346
class Solution: """ @param digits: a number represented as an array of digits @return: the result """ def plusOne(self, digits): if len(digits) == 0: return digits digits[-1] += 1 for i in range(len(digits) - 1, 0, -1): if digits[i] == 10: digits[i] = 0 digits[i - 1] += 1 if digits[0] == 10: digits[0] = 0 digits.insert(0, 1) return digits
the-stack_0_9349
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.test_utils.""" import numpy as np import tensorflow as tf from object_detection.utils import test_utils class TestUtilsTest(tf.test.TestCase): def test_diagonal_gradient_image(self): """Tests if a good pyramid image is created.""" pyramid_image = test_utils.create_diagonal_gradient_image(3, 4, 2) # Test which is easy to understand. expected_first_channel = np.array([[3, 2, 1, 0], [4, 3, 2, 1], [5, 4, 3, 2]], dtype=np.float32) self.assertAllEqual(np.squeeze(pyramid_image[:, :, 0]), expected_first_channel) # Actual test. expected_image = np.array([[[3, 30], [2, 20], [1, 10], [0, 0]], [[4, 40], [3, 30], [2, 20], [1, 10]], [[5, 50], [4, 40], [3, 30], [2, 20]]], dtype=np.float32) self.assertAllEqual(pyramid_image, expected_image) def test_random_boxes(self): """Tests if valid random boxes are created.""" num_boxes = 1000 max_height = 3 max_width = 5 boxes = test_utils.create_random_boxes(num_boxes, max_height, max_width) true_column = np.ones(shape=(num_boxes)) == 1 self.assertAllEqual(boxes[:, 0] < boxes[:, 2], true_column) self.assertAllEqual(boxes[:, 1] < boxes[:, 3], true_column) self.assertTrue(boxes[:, 0].min() >= 0) self.assertTrue(boxes[:, 1].min() >= 0) self.assertTrue(boxes[:, 2].max() <= max_height) self.assertTrue(boxes[:, 3].max() <= max_width) if __name__ == '__main__': tf.test.main()
the-stack_0_9350
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Merge source maps to build composite sources """ from __future__ import absolute_import, division, print_function import os import sys import yaml from astropy.io import fits from fermipy.skymap import HpxMap from fermipy.utils import load_yaml from fermipy.jobs.scatter_gather import ScatterGather from fermipy.jobs.slac_impl import make_nfs_path from fermipy.jobs.link import Link from fermipy.jobs.chain import Chain from fermipy.diffuse.binning import Component from fermipy.diffuse.name_policy import NameFactory from fermipy.diffuse import defaults as diffuse_defaults from fermipy.diffuse.model_manager import make_library NAME_FACTORY = NameFactory() class InitModel(Link): """Small class to preprate files fermipy analysis. Specifically this create the srcmap_manifest and fermipy_config_yaml files """ appname = 'fermipy-init-model' linkname_default = 'init-model' usage = '%s [options]' % (appname) description = "Initialize model fitting directory" default_options = dict(comp=diffuse_defaults.diffuse['comp'], data=diffuse_defaults.diffuse['data'], library=diffuse_defaults.diffuse['library'], models=diffuse_defaults.diffuse['models'], hpx_order=diffuse_defaults.diffuse['hpx_order_fitting']) def run_analysis(self, argv): """ Build the manifest for all the models """ args = self._parser.parse_args(argv) components = Component.build_from_yamlfile(args.comp) NAME_FACTORY.update_base_dict(args.data) model_dict = make_library(**args.__dict__) model_manager = model_dict['ModelManager'] models = load_yaml(args.models) data = args.data hpx_order = args.hpx_order for modelkey in models: model_manager.make_srcmap_manifest(modelkey, components, data) model_manager.make_fermipy_config_yaml(modelkey, components, data, hpx_order=hpx_order, irf_ver=NAME_FACTORY.irf_ver()) class AssembleModel(Link): """Small class to assemple source map files for fermipy analysis. This is useful for re-merging after parallelizing source map creation. """ appname = 'fermipy-assemble-model' linkname_default = 'assemble-model' usage = '%s [options]' % (appname) description = "Assemble sourcemaps for model fitting" default_options = dict(input=(None, 'Input yaml file', str), compname=(None, 'Component name.', str), hpx_order=diffuse_defaults.diffuse['hpx_order_fitting']) @staticmethod def copy_ccube(ccube, outsrcmap, hpx_order): """Copy a counts cube into outsrcmap file reducing the HEALPix order to hpx_order if needed. """ sys.stdout.write(" Copying counts cube from %s to %s\n" % (ccube, outsrcmap)) try: hdulist_in = fits.open(ccube) except IOError: hdulist_in = fits.open("%s.gz" % ccube) hpx_order_in = hdulist_in[1].header['ORDER'] if hpx_order_in > hpx_order: hpxmap = HpxMap.create_from_hdulist(hdulist_in) hpxmap_out = hpxmap.ud_grade(hpx_order, preserve_counts=True) hpxlist_out = hdulist_in #hpxlist_out['SKYMAP'] = hpxmap_out.create_image_hdu() hpxlist_out[1] = hpxmap_out.create_image_hdu() hpxlist_out[1].name = 'SKYMAP' hpxlist_out.writeto(outsrcmap) return hpx_order else: os.system('cp %s %s' % (ccube, outsrcmap)) #os.system('cp %s.gz %s.gz' % (ccube, outsrcmap)) #os.system('gunzip -f %s.gz' % (outsrcmap)) return None @staticmethod def open_outsrcmap(outsrcmap): """Open and return the outsrcmap file in append mode """ outhdulist = fits.open(outsrcmap, 'append') return outhdulist @staticmethod def append_hdus(hdulist, srcmap_file, source_names, hpx_order): """Append HEALPix maps to a list Parameters ---------- hdulist : list The list being appended to srcmap_file : str Path to the file containing the HDUs source_names : list of str Names of the sources to extract from srcmap_file hpx_order : int Maximum order for maps """ sys.stdout.write(" Extracting %i sources from %s" % (len(source_names), srcmap_file)) try: hdulist_in = fits.open(srcmap_file) except IOError: try: hdulist_in = fits.open('%s.gz' % srcmap_file) except IOError: sys.stdout.write(" Missing file %s\n" % srcmap_file) return for source_name in source_names: sys.stdout.write('.') sys.stdout.flush() if hpx_order is None: hdulist.append(hdulist_in[source_name]) else: try: hpxmap = HpxMap.create_from_hdulist(hdulist_in, hdu=source_name) except IndexError: print(" Index error on source %s in file %s" % (source_name, srcmap_file)) continue except KeyError: print(" Key error on source %s in file %s" % (source_name, srcmap_file)) continue hpxmap_out = hpxmap.ud_grade(hpx_order, preserve_counts=True) hdulist.append(hpxmap_out.create_image_hdu(name=source_name)) sys.stdout.write("\n") hdulist.flush() hdulist_in.close() @staticmethod def assemble_component(compname, compinfo, hpx_order): """Assemble the source map file for one binning component Parameters ---------- compname : str The key for this component (e.g., E0_PSF3) compinfo : dict Information about this component hpx_order : int Maximum order for maps """ sys.stdout.write("Working on component %s\n" % compname) ccube = compinfo['ccube'] outsrcmap = compinfo['outsrcmap'] source_dict = compinfo['source_dict'] hpx_order = AssembleModel.copy_ccube(ccube, outsrcmap, hpx_order) hdulist = AssembleModel.open_outsrcmap(outsrcmap) for comp_name in sorted(source_dict.keys()): source_info = source_dict[comp_name] source_names = source_info['source_names'] srcmap_file = source_info['srcmap_file'] AssembleModel.append_hdus(hdulist, srcmap_file, source_names, hpx_order) sys.stdout.write("Done!\n") def run_analysis(self, argv): """Assemble the source map file for one binning component FIXME """ args = self._parser.parse_args(argv) manifest = yaml.safe_load(open(args.input)) compname = args.compname value = manifest[compname] self.assemble_component(compname, value, args.hpx_order) class AssembleModel_SG(ScatterGather): """Small class to generate configurations for this script Parameters ---------- --compname : binning component definition yaml file --data : datset definition yaml file --models : model definitino yaml file args : Names of models to assemble source maps for """ appname = 'fermipy-assemble-model-sg' usage = "%s [options]" % (appname) description = "Copy source maps from the library to a analysis directory" clientclass = AssembleModel job_time = 300 default_options = dict(comp=diffuse_defaults.diffuse['comp'], data=diffuse_defaults.diffuse['data'], hpx_order=diffuse_defaults.diffuse['hpx_order_fitting'], models=diffuse_defaults.diffuse['models']) def build_job_configs(self, args): """Hook to build job configurations """ job_configs = {} components = Component.build_from_yamlfile(args['comp']) NAME_FACTORY.update_base_dict(args['data']) models = load_yaml(args['models']) for modelkey in models: manifest = os.path.join('analysis', 'model_%s' % modelkey, 'srcmap_manifest_%s.yaml' % modelkey) for comp in components: key = comp.make_key('{ebin_name}_{evtype_name}') fullkey = "%s_%s" % (modelkey, key) outfile = NAME_FACTORY.merged_srcmaps(modelkey=modelkey, component=key, coordsys=comp.coordsys, mktime='none', irf_ver=NAME_FACTORY.irf_ver()) logfile = make_nfs_path(outfile.replace('.fits', '.log')) job_configs[fullkey] = dict(input=manifest, compname=key, hpx_order=args['hpx_order'], logfile=logfile) return job_configs class AssembleModelChain(Chain): """Small class to split, apply mktime and bin data according to some user-provided specification """ appname = 'fermipy-assemble-model-chain' linkname_default = 'assemble-model-chain' usage = '%s [options]' % (appname) description = 'Run init-model and assemble-model' default_options = dict(data=diffuse_defaults.diffuse['data'], comp=diffuse_defaults.diffuse['comp'], library=diffuse_defaults.diffuse['library'], models=diffuse_defaults.diffuse['models'], hpx_order=diffuse_defaults.diffuse['hpx_order_fitting'], dry_run=diffuse_defaults.diffuse['dry_run']) def __init__(self, **kwargs): """C'tor """ super(AssembleModelChain, self).__init__(**kwargs) self.comp_dict = None def _register_link_classes(self): InitModel.register_class() AssembleModel_SG.register_class() def _map_arguments(self, input_dict): """Map from the top-level arguments to the arguments provided to the indiviudal links """ data = input_dict.get('data') comp = input_dict.get('comp') library = input_dict.get('library') models = input_dict.get('models') hpx_order = input_dict.get('hpx_order') dry_run = input_dict.get('dry_run', False) self._set_link('init-model', InitModel, comp=comp, data=data, library=library, models=models, hpx_order=hpx_order, dry_run=dry_run) self._set_link('assemble-model', AssembleModel_SG, comp=comp, data=data, hpx_order=hpx_order, models=models) def register_classes(): """Register these classes with the `LinkFactory` """ InitModel.register_class() AssembleModel.register_class() AssembleModel_SG.register_class() AssembleModelChain.register_class()
the-stack_0_9352
# -*- coding: utf-8 -*- """ database.py ~~~~~~~~~~~~~~~~~~~~~~~~~~~ BatteryDataBase data structures. """ from chemdataextractor_batteries.chemdataextractor import Document import json import copy class BatteryDataBase(): def __init__(self, paper_root, save_root, filename): self.dic = None self.filename = filename self.paper_root = paper_root self.count = 0 self.save_root = save_root def write_into_file(self): with open('{}/{}.json'.format(self.save_root, self.filename), 'a', encoding='utf-8') as json_file: json.dump(self.dic, json_file, ensure_ascii=False) json_file.write('\n') return def extract(self, file): """ :param file: The parsing files (HTML/XML...) :return: Write the record into the documents """ # try: f = open(file, 'rb') d = Document.from_file(f) print('parsing ' + file) rough = d.records.serialize() print(rough) data = [] for dic in rough: if 'Compound' in dic: continue try: dic['metadata'] = d.metadata[0].serialize() if dic['metadata']['doi'] == "None": pass except BaseException: pass self.count += 1 if self.is_valid(dic): dic_list = self.distribute(dic) data += dic_list if len(data) <= 3: for i in data: i['warning'] = 1 for new_dic in data: self.dic = new_dic self.write_into_file() print(str(self.count) + ' relations in total') print(file + ' is done') f.close() # except BaseException: # pass def is_valid(self, dic): """ Check if the data record is valid or not :param dic: :return: """ if "BatteryVolumeCapacity" in dic: return False else: try: if 'names' in next(iter(dic.values()))['compound']['Compound']: return True except BaseException: return False def distribute(self, dic): """ :param dic: A dictionary returned by CDE :return: A list of dictionaries with valid records """ """ Extract chemical names if a length of a list > 1 Create a new key: 'names' (list) """ # Create a key 'names' (list) name_length = next(iter(dic.values()))['compound']['Compound']['names'] next(iter(dic.values()))['names'] = [name_length[0]] if len(name_length) > 1: for j in name_length[1:]: if j.lower() not in [x.lower() for x in next(iter(dic.values()))['names']]: next(iter(dic.values()))['names'].append(j) # Update the key 'value' as a list of float next(iter(dic.values()))['value'] = json.loads( next(iter(dic.values()))['value']) # Distribute dic_lists = self.distribute_value_and_names(dic) return dic_lists def distribute_value_and_names(self, dic): """ :param dic: A single dictionary, with keys 'names' and 'value' as 2 lists :return: A list of dictionaries with single name and value """ dic_list = [] len_names = len(next(iter(dic.values()))['names']) len_values = len(next(iter(dic.values()))['value']) copydic = copy.deepcopy(dic) if len_names == 1 and len_values == 1: next(iter(copydic.values()))['value'] = next( iter(dic.values()))['value'][0] next(iter(copydic.values()))['names'] = next( iter(dic.values()))['names'][0] dic_list.append(copydic) elif len_names == 1 and len_values > 1: for j in range(len_values): next(iter(copydic.values()))['value'] = float( next(iter(dic.values()))['value'][j]) next(iter(copydic.values()))['names'] = next( iter(dic.values()))['names'][0] dic_list.append(copydic) elif len_names > 1 and len_values == 1: for j in range(len_names): next(iter(copydic.values()))['value'] = float( next(iter(dic.values()))['value'][0]) next(iter(copydic.values()))['names'] = next( iter(dic.values()))['names'][j] dic_list.append(copydic) elif len_names == len_values and len_names > 1: for j in range(len_names): next(iter(copydic.values()))['value'] = float( next(iter(dic.values()))['value'][j]) next(iter(copydic.values()))['names'] = next( iter(dic.values()))['names'][j] dic_list.append(copydic) else: for j in range(len_names): for k in range(len_values): next(iter(copydic.values()))['value'] = float( next(iter(dic.values()))['value'][k]) next( iter( copydic.values()))['names'] = next( iter( dic.values()))['names'][j] dic_list.append(copydic) return dic_list
the-stack_0_9356
##Elias Howell | 10/24/2019 | Homework #3 #Compares two lists and returns a list of items shared by the two def similar_items(list1, list2): listOfItems = [] for item in list1: if item in list2: listOfItems.append(item) return listOfItems #Compares two lists and returns a list of items not shared by the two def unique_items(list1, list2): listOfItems = [] for item in list1: if item not in list2: listOfItems.append(item) return listOfItems #Takes the sum of all items in a list def sum_items(myList): summationOfItems = 0 for item in myList: summationOfItems += item return summationOfItems #Takes the product of all items in a list def multiply_items(myList): productOfItems = 1 for item in myList: productOfItems *= item return productOfItems #Finds and returns the smallest value in a list def minimum_item(myList): minValue = myList[0] for item in myList: if item < minValue: minValue = item return minValue #Finds and returns the largest value in a list def maximum_item(myList): maxValue = myList[0] for item in myList: if item > maxValue: maxValue = item return maxValue
the-stack_0_9357
from datetime import datetime from datetime import date from typing import Optional from sqlalchemy.orm.attributes import InstrumentedAttribute from sqlalchemy.orm import dynamic from flask_atomic.orm.database import db from flask_atomic.orm.mixins.core import CoreMixin def extract(model, fields=None, exclude: Optional[set] = None) -> dict: resp = dict() if exclude is None: exclude = set() if fields is None: fields = model.keys() restricted_fields = getattr(model, 'RESTRICTED_FIELDS', set()) if restricted_fields: fields.discard(restricted_fields) exclude = exclude.union(restricted_fields or set()) for column in set(fields).difference(set(exclude)): if isinstance(getattr(model, column), datetime) or isinstance(getattr(model, column), date): resp[column] = str(getattr(model, column)) else: resp[column] = getattr(model, column) return resp class DeclarativeBase(db.Model, CoreMixin): """ Base model to be extended for use with Flask projects. Core concept of the model is common functions to help wrap up database interaction into a single interface. Testing can be rolled up easier this way also. Inheriting from this class automatically sets id field and db soft deletion field managed by active using the DYNA pattern (D, Y, N, A). Basic usage:: from flask_atomic.sqlalchemy.declarative import DeclarativeBase class MyNewModel(DeclarativeBase): field_a = db.Column(db.String(256), nullable=True) """ __abstract__ = True # active = db.Column(db.String(5), default='Y') def __str__(self): return self.whatami() @classmethod def identify_primary_key(cls): return list(cls.__table__.primary_key).pop().name @classmethod def checkfilters(cls, filters): resp = {} for k, v in filters.items(): resp[cls.normalise(k)] = v return resp @classmethod def getquery(cls): return db.session.query @classmethod def makequery(cls, fields=None): try: # return db.session.query(cls, fields) if not fields: return cls.query return db.session.query(cls, *fields) except Exception as e: logger.error(str(e)) db.session.rollback() return db.session.query(cls, *fields) @classmethod def relations(cls, flag): if flag == True: return set(cls.__mapper__.relationships.keys()) elif isinstance(flag, list): return set(flag) return set() @classmethod def relationattrs(cls): return set(cls.__mapper__.relationships.keys()) @classmethod def objectcolumns(cls, include_relationships=False): bound_columns = set(cls.__mapper__.columns) if include_relationships: rels = cls.__mapper__.relationships return bound_columns.union(set([i.class_attribute for i in cls.__mapper__.relationships])) return bound_columns @classmethod def keys(cls): return set(cls.__table__.columns.keys()) @classmethod def schema(cls, rel=True, exclude=None): if exclude is None: exclude = [] schema = [] for item in [key for key in cls.keys() if key not in exclude]: schema.append(dict(name=item.replace('_', ' '), key=item)) return schema @classmethod def getkey(cls, field): if isinstance(field, InstrumentedAttribute): return getattr(cls, field.key) return getattr(cls, field) def relationships(self, root=''): return list(filter(lambda r: r != root, self.__mapper__.relationships.keys())) def columns(self, exc: Optional[list] = None) -> list: """ Gets a list of columns to work with, minus the excluded sublist (exc). :param exc: :return: """ if exc is None: exc = list() return [key for key in list(self.__table__.columns.keys()) if key not in exc] def whatami(self) -> str: """ Self-describe the model. :return: Descriptive name based on the tablename used at declaration. """ # I am not a number :) return self.__tablename__ def process_relationships(self, root: str, exclude: set = None, rels=None): resp = dict() if rels is None or isinstance(rels, bool): rels = self.relationships(root) for idx, item in enumerate(rels): # First check if it is a sub lookup _lookup = None if hasattr(self, '__i__' + item): resp[item] = getattr(self, '__i__' + item) continue sublookup = False if '.' in item: sublookup = True lookup = item.split('.') _lookup = lookup.copy() relationship_instance = getattr(getattr(self, lookup.pop(0), None), lookup.pop()) else: relationship_instance = getattr(self, item, None) if isinstance(relationship_instance, dynamic.AppenderMixin): # TO handle dynamic relationships (lazy=dynamic) fields = set(map(lambda x: x.key, relationship_instance._entity_zero().column_attrs)).difference(exclude) resp[item] = [] if hasattr(self, '__i__' + item): resp[item] = getattr(self, '__i__' + item) else: for index, entry in enumerate(relationship_instance.all()): resp[item].append(extract(entry, fields)) elif isinstance(relationship_instance, list): # if relationship_instance.uselist: if sublookup: parent = _lookup.pop(0) attr = _lookup.pop() else: resp[item] = [] for index, entry in enumerate(relationship_instance): fields = set(entry.keys()).difference(exclude) if sublookup: if not resp.get(parent, None): resp[parent] = dict() resp[parent].setdefault(attr, []).append(entry.extract(fields)) else: resp[item].append(entry.extract(set(entry.keys()).difference(exclude))) elif relationship_instance: fields = set(relationship_instance.keys()).difference(exclude) if _lookup: resp[_lookup.pop(0)][_lookup.pop()] = relationship_instance.extract(fields) else: resp[item] = relationship_instance.extract(fields) return resp def extract(self, fields=None, exclude: Optional[set] = None, **kwargs) -> dict: resp = dict() if exclude is None: exclude = set() if fields is None: fields = self.keys() restricted_fields = getattr(self, 'RESTRICTED_FIELDS', set()) if restricted_fields and not kwargs.get('private', None): fields.discard(restricted_fields) exclude = exclude.union(restricted_fields or set()) for column in set(fields).difference(set(exclude)): if isinstance(getattr(self, column), datetime) or isinstance(getattr(self, column), date): resp[column] = str(getattr(self, column)) else: resp[column] = getattr(self, column) return resp def serialize(self, fields=None, exc: Optional[set] = None, rels=False, root=None, exclude=None, functions=None, **kwargs): """ This utility function dynamically converts Alchemy model classes into a dict using introspective lookups. This saves on manually mapping each model and all the fields. However, exclusions should be noted. Such as passwords and protected properties. :param functions: :param fields: More of a whitelist of fields to include (preferred way) :param rels: Whether or not to introspect to relationships :param exc: Fields to exclude from query result set :param root: Root model for processing relationships. This acts as a recursive sentinel to prevent infinite recursion due to selecting oneself as a related model, and then infinitely trying to traverse the roots own relationships, from itself over and over. :param exclude: Exclusion in set form. Currently in favour of exc param. Only remedy to this is also to use one way relationships. Avoiding any back referencing of models. :return: json data structure of model :rtype: dict """ if functions is None: functions = {} if exclude is None: exclude = set() else: exclude = set(exclude) if not fields: fields = set(self.fields()) if root is None: root = self.whatami() if exc is None: exc = {'password'} set(exclude).union(exc) # Define our model properties here. Columns and Schema relationships resp = self.extract(fields, exc, **kwargs) if functions: for key, value in functions.items(): resp[f'_{key}'] = value(getattr(self, key)) restricted_fields = set(fields).discard(getattr(self, 'RESTRICTED_FIELDS', set())) if restricted_fields: fields.discard(restricted_fields) exclude = exclude.union(restricted_fields or set()) rels = rels or set(self.relationships()).intersection(fields) if not rels or len(set(self.relationships())) < 1: return resp # for rel in rels: # if rel in [i.split('__i__').pop() for i in self.__dict__ if '__i__' in i]: # rels.remove(rel) resp.update(self.process_relationships(root, rels=rels, exclude=exclude)) return resp def __eq__(self, comparison): if type(self) != type(comparison): raise ValueError('Objects are not the same. Cannot compare') base = self.columns() base_dictionary = self.__dict__ comp_dictionary = self.__dict__ flag = True for column_name in base: if base_dictionary[column_name] != comp_dictionary[column_name]: flag = False break return flag
the-stack_0_9360
"""models.cipher This module contains the ciphers that are stored in the database """ import json from app import db from models import funcs from sqlalchemy import sql class Cipher(db.Model): """ The Cipher class stores the cipher string for an individual site's info. This also contains an enumeration of the different types of cipher Attributes: id (int): The id of this cipher user_id (Foreign Key): The user associated with this cipher folder_id (Foreign Key): The folder that contains this cipher organization_id (str): ID of the organization this is associated with cipher_type (int): The type of cipher favorite (bool): If this cipher is a favorite or not data (str): JSON serialized data contained in this cipher fields (str): JSON serialized fields contained in this cipher name (str): JSON serialized name of cipher notes (str): JSON serialized note on cipher login (str): JSON serialized login secure_note (str): JSON serialized secure note card (str): JSON serialized card identity (str): JSON serialized identity attachments (str): JSON serialized attachments create_date (DateTime): The creation time of this cipher update_date (DateTime): The time of the last update to this cipher """ # Type enumeration TYPE_LOGIN = 1 TYPE_NOTE = 2 TYPE_CARD = 3 TYPE_IDENTITY = 4 # Member variables id = db.Column( db.String(64), name='id', primary_key=True, default=funcs.generateSecureUUID ) user_id = db.Column( db.String(64), db.ForeignKey('user.id', ondelete='CASCADE') ) folder_id = db.Column( db.String(64), db.ForeignKey('folder.id', ondelete='CASCADE'), nullable=True ) organization_id = db.Column(db.String(64), nullable=True) cipher_type = db.Column(db.Integer, nullable=False) favorite = db.Column(db.Boolean(), default=False, nullable=False) data = db.Column(db.JSON(), nullable=True) name = db.Column(db.JSON(), nullable=True) notes = db.Column(db.JSON(), nullable=True) fields = db.Column(db.JSON(), nullable=True) login = db.Column(db.JSON(), nullable=True) secure_note = db.Column(db.JSON(), nullable=True) card = db.Column(db.JSON(), nullable=True) identity = db.Column(db.JSON(), nullable=True) attachments = db.Column(db.JSON(), nullable=True) create_date = db.Column(db.DateTime(), server_default=sql.func.now()) update_date = db.Column( db.DateTime(), server_default=sql.func.now(), onupdate=sql.func.now() ) # Functions def type_str(in_type): """ Returns a string representation of the inputted type Args: :param in_type: The inputed type Returns: str: The string representation """ if(in_type is Cipher.TYPE_LOGIN): return 'login' elif(in_type is Cipher.TYPE_NOTE): return 'note' elif(in_type is Cipher.TYPE_CARD): return 'card' elif(in_type is Cipher.TYPE_IDENTITY): return 'identity' else: return str(in_type) def updateFromParams(self, params): """ This function will update a cipher based on the passed in parameters Args: :param self: This object :param params: A dictionary of params """ self.folder_id = params['folderid'] self.organization_id = params['organizationid'] self.favorite = bool(params['favorite']) self.type = int(params['type']) self.name = params['name'] self.notes = params['notes'] self.fields = funcs.uppercaseFirstHash(params['fields']) # Parse additional data based on cipher type if(self.cipher_type is Cipher.TYPE_LOGIN): login_data = funcs.uppercaseFirstHash(params['login']) if(login_data['Uris'] and isinstance(login_data['Uris'], dict)): login_data['Uris'] = funcs.uppercaseFirstHash( login_data['Uris'] ) self.login = login_data elif(self.cipher_type is Cipher.TYPE_NOTE): self.secure_note = funcs.uppercaseFirstHash(params['securenote']) elif(self.cipher_type is Cipher.TYPE_CARD): self.card = funcs.uppercaseFirstHash(params['card']) else: # TODO: Implement more types if(self.cipher_type is Cipher.TYPE_IDENTITY): self.identity = funcs.uppercaseFirstHash(params['identity']) def toHash(self): """ Returns the cipher as a hash. Args: :param self: The object Returns: dict: The hash representation of the object """ return { 'Id': self.id, 'Type': self.cipher_type, 'RevisionDate': self.update_date.strftime( '%Y-%m-%dT%H:%M:%S.000000Z' ), 'FolderId': self.folder_id, 'Favorite': self.favorite, 'OrganizationId': self.organization_id, 'Attachments': self.attachments, 'OrganizationUserTotp': False, 'Object': 'cipher', 'Name': self.name, 'Notes': self.notes, 'Fields': self.fields, 'Login': self.login, 'Card': self.card, 'Identity': self.identity, 'SecureNote': self.secure_note } def migrateData(self): """ This function will migrate data from being an all in one and split it into separate fields. If there is no data, we will just return false. If the data is not able to be turned into a JSON, we will raise a ValueError. If the data is not a dict or a string, we will raise a TypeError. Args: :param self: The object Raises: TypeError: If this object's data is not a dict or string ValueError: If this object can not become a JSON NotImplementedError: If we try to migrate from a nonsupported type """ if(self.data is None): return False if(isinstance(self.data, str)): try: data = json.loads(self.data) except(Exception): raise ValueError elif(isinstance(self.data, dict)): data = self.data else: raise TypeError self.name = data['Name'] del data['Name'] self.notes = data['Notes'] del data['Notes'] self.fields = data['Fields'] del data['Fields'] if(self.cipher_type is self.TYPE_LOGIN): data['Uris'] = { 'Uri': data['Uri'], 'Match': None } del data['Uri'] self.login = data elif(self.cipher_type is self.TYPE_NOTE): self.secure_note = data elif(self.cipher_type is self.TYPE_CARD): self.card = data elif(self.cipher_type is self.TYPE_IDENTITY): self.identity = data else: raise NotImplementedError
the-stack_0_9362
""" 보간 탐색 (Interpolation Search) 이진 탐색의 비효율성을 개선시킨 알고리즘이다. 이진 탐색의 경우 찾는 대상이 어디에 위치하건 일관되게 반씩 줄여가며 탐색을 진행한다. 반면 보간 탐색은 타겟이 상대적으로 앞에 위치한다고 판단을 하면 앞쪽에서 탐색을 진행한다. 따라서, 찾는 데이터와 가깝기 때문에 이진 탐색보다 속도가 뛰어나다. """ from __future__ import print_function try: raw_input # Python 2 except NameError: raw_input = input # Python 3 #보간탐색 def interpolation_search(sorted_collection, item): """ input값은 반드시 정렬 된 채로 주어져야 합니다. 그러지 않으면 원하지 않는 결과값이 나올 수 있습니다. :param sorted_collection: 탐색을 진행할 정렬된 배열 :param item : 탐색을 진행할 키(key) 값 ;return : 키 값이 있는 위치(index), 없을 경우 None """ left = 0 right = len(sorted_collection) - 1 while left <= right: point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) #out of range check if point<0 or point>=len(sorted_collection): return None current_item = sorted_collection[point] if current_item == item: return point else: if item < current_item: right = point - 1 else: left = point + 1 return None #재귀를 이용한 보간탐색 def interpolation_search_by_recursion(sorted_collection, item, left, right): """ 가장 처음 재귀는 left = 0, right=(len(sorted_collection)-1)을 초기값으로 줘야합니다. :param left : 탐색 범위의 시작 :param right : 탐색 범위의 끝 """ point = left + ((item - sorted_collection[left]) * (right - left)) // (sorted_collection[right] - sorted_collection[left]) #out of range check if point<0 or point>=len(sorted_collection): return None if sorted_collection[point] == item: return point elif sorted_collection[point] > item: return interpolation_search_by_recursion(sorted_collection, item, left, point-1) else: return interpolation_search_by_recursion(sorted_collection, item, point+1, right) #입력값이 정렬이 됬는지 확인 해주는 함수 def __assert_sorted(collection): if collection != sorted(collection): print('error: Collection must be sorted') raise ValueError('Collection must be sorted') return True if __name__ == '__main__': import sys user_input = raw_input('Enter numbers separated by comma:\n').strip() collection = [int(item) for item in user_input.split(',')] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be sorted to apply interpolation search') target_input = raw_input('Enter a single number to be found in the list:\n') target = int(target_input) #interpolation_search 함수 사용 result = interpolation_search(collection, target) if result is not None: print('{} interpolation search found at positions: {}'.format(target, result)) else: print('Not found') #interpolation_search_by_recursion 함수 사용 result = interpolation_search_by_recursion(collection, target, 0, len(collection)-1) if result is not None: print('{} interpolation search by recursion found at positions: {}'.format(target, result)) else: print('Not found')
the-stack_0_9366
import _thread import contextlib import socketserver import time from http.server import BaseHTTPRequestHandler from onlinepayments.sdk.communicator import Communicator from onlinepayments.sdk.defaultimpl.default_authenticator import DefaultAuthenticator from onlinepayments.sdk.defaultimpl.default_connection import DefaultConnection from onlinepayments.sdk.endpoint_configuration import EndpointConfiguration from onlinepayments.sdk.factory import Factory from onlinepayments.sdk.meta_data_provider import MetaDataProvider def create_handler(call_able): """Creates a handler that serves requests by calling the callable object with this handler as argument """ class RequestHandler(BaseHTTPRequestHandler): def do_GET(self): call_able(self) time.sleep(0.1) # sleep to avoid dropping the client before it can read the response def do_POST(self): call_able(self) time.sleep(0.1) # sleep to avoid dropping the client before it can read the response def do_HEAD(self): pass def do_DELETE(self): call_able(self) time.sleep(0.1) # sleep to avoid dropping the client before it can read the response return RequestHandler @contextlib.contextmanager def create_server_listening(call_able): """Context manager that creates a thread with a server at localhost which listens for requests and responds by calling the *call_able* function. :param call_able: a callable function to handle incoming requests, when a request comes in the function will be called with a SimpleHTTPRequestHandler to handle the request :return the url where the server is listening (http://localhost:port) """ server = socketserver.TCPServer(('localhost', 0), create_handler(call_able), bind_and_activate=True) try: # frequent polling server for a faster server shutdown and faster tests _thread.start_new(server.serve_forever, (0.1,)) yield 'http://localhost:' + str(server.server_address[1]) finally: server.shutdown() server.server_close() def create_client(http_host, connect_timeout=0.500, socket_timeout=0.500, max_connections=EndpointConfiguration.DEFAULT_MAX_CONNECTIONS): connection = DefaultConnection(connect_timeout, socket_timeout, max_connections) authenticator = DefaultAuthenticator("apiKey", "secret") meta_data_provider = MetaDataProvider("OnlinePayments") communicator = Communicator( api_endpoint=http_host, authenticator=authenticator, meta_data_provider=meta_data_provider, connection=connection) return Factory.create_client_from_communicator(communicator)
the-stack_0_9369
""" Maximum likelihood covariance estimator. """ # Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause # avoid division truncation import warnings import numpy as np from scipy import linalg from ..base import BaseEstimator from ..utils import check_array from ..utils.extmath import fast_logdet from ..metrics.pairwise import pairwise_distances from ..utils.validation import _deprecate_positional_args def log_likelihood(emp_cov, precision): """Computes the sample mean of the log_likelihood under a covariance model computes the empirical expected log-likelihood (accounting for the normalization terms and scaling), allowing for universal comparison (beyond this software package) Parameters ---------- emp_cov : ndarray of shape (n_features, n_features) Maximum Likelihood Estimator of covariance. precision : ndarray of shape (n_features, n_features) The precision matrix of the covariance model to be tested. Returns ------- log_likelihood_ : float Sample mean of the log-likelihood. """ p = precision.shape[0] log_likelihood_ = - np.sum(emp_cov * precision) + fast_logdet(precision) log_likelihood_ -= p * np.log(2 * np.pi) log_likelihood_ /= 2. return log_likelihood_ @_deprecate_positional_args def empirical_covariance(X, *, assume_centered=False): """Computes the Maximum likelihood covariance estimator Parameters ---------- X : ndarray of shape (n_samples, n_features) Data from which to compute the covariance estimate assume_centered : bool, default=False If True, data will not be centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data will be centered before computation. Returns ------- covariance : ndarray of shape (n_features, n_features) Empirical covariance (Maximum Likelihood Estimator). Examples -------- >>> from sklearn.covariance import empirical_covariance >>> X = [[1,1,1],[1,1,1],[1,1,1], ... [0,0,0],[0,0,0],[0,0,0]] >>> empirical_covariance(X) array([[0.25, 0.25, 0.25], [0.25, 0.25, 0.25], [0.25, 0.25, 0.25]]) """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) if X.shape[0] == 1: warnings.warn("Only one sample available. " "You may want to reshape your data array") if assume_centered: covariance = np.dot(X.T, X) / X.shape[0] else: covariance = np.cov(X.T, bias=1) if covariance.ndim == 0: covariance = np.array([[covariance]]) return covariance class EmpiricalCovariance(BaseEstimator): """Maximum likelihood covariance estimator Read more in the :ref:`User Guide <covariance>`. Parameters ---------- store_precision : bool, default=True Specifies if the estimated precision is stored. assume_centered : bool, default=False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False (default), data are centered before computation. Attributes ---------- location_ : ndarray of shape (n_features,) Estimated location, i.e. the estimated mean. covariance_ : ndarray of shape (n_features, n_features) Estimated covariance matrix precision_ : ndarray of shape (n_features, n_features) Estimated pseudo-inverse matrix. (stored only if store_precision is True) Examples -------- >>> import numpy as np >>> from sklearn.covariance import EmpiricalCovariance >>> from sklearn.datasets import make_gaussian_quantiles >>> real_cov = np.array([[.8, .3], ... [.3, .4]]) >>> rng = np.random.RandomState(0) >>> X = rng.multivariate_normal(mean=[0, 0], ... cov=real_cov, ... size=500) >>> cov = EmpiricalCovariance().fit(X) >>> cov.covariance_ array([[0.7569..., 0.2818...], [0.2818..., 0.3928...]]) >>> cov.location_ array([0.0622..., 0.0193...]) """ @_deprecate_positional_args def __init__(self, *, store_precision=True, assume_centered=False): self.store_precision = store_precision self.assume_centered = assume_centered def _set_covariance(self, covariance): """Saves the covariance and precision estimates Storage is done accordingly to `self.store_precision`. Precision stored only if invertible. Parameters ---------- covariance : array-like of shape (n_features, n_features) Estimated covariance matrix to be stored, and from which precision is computed. """ covariance = check_array(covariance) # set covariance self.covariance_ = covariance # set precision if self.store_precision: self.precision_ = linalg.pinvh(covariance) else: self.precision_ = None def get_precision(self): """Getter for the precision matrix. Returns ------- precision_ : array-like of shape (n_features, n_features) The precision matrix associated to the current covariance object. """ if self.store_precision: precision = self.precision_ else: precision = linalg.pinvh(self.covariance_) return precision def fit(self, X, y=None): """Fits the Maximum Likelihood Estimator covariance model according to the given training data and parameters. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : Ignored Not used, present for API consistence purpose. Returns ------- self : object """ X = self._validate_data(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) covariance = empirical_covariance( X, assume_centered=self.assume_centered) self._set_covariance(covariance) return self def score(self, X_test, y=None): """Computes the log-likelihood of a Gaussian data set with `self.covariance_` as an estimator of its covariance matrix. Parameters ---------- X_test : array-like of shape (n_samples, n_features) Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering). y : Ignored Not used, present for API consistence purpose. Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix. """ # compute empirical covariance of the test set test_cov = empirical_covariance( X_test - self.location_, assume_centered=True) # compute log likelihood res = log_likelihood(test_cov, self.get_precision()) return res def error_norm(self, comp_cov, norm='frobenius', scaling=True, squared=True): """Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm). Parameters ---------- comp_cov : array-like of shape (n_features, n_features) The covariance to compare with. norm : {"frobenius", "spectral"}, default="frobenius" The type of norm used to compute the error. Available error types: - 'frobenius' (default): sqrt(tr(A^t.A)) - 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``. scaling : bool, default=True If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. squared : bool, default=True Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. Returns ------- result : float The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators. """ # compute the error error = comp_cov - self.covariance_ # compute the error norm if norm == "frobenius": squared_norm = np.sum(error ** 2) elif norm == "spectral": squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error))) else: raise NotImplementedError( "Only spectral and frobenius norms are implemented") # optionally scale the error norm if scaling: squared_norm = squared_norm / error.shape[0] # finally get either the squared norm or the norm if squared: result = squared_norm else: result = np.sqrt(squared_norm) return result def mahalanobis(self, X): """Computes the squared Mahalanobis distances of given observations. Parameters ---------- X : array-like of shape (n_samples, n_features) The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. Returns ------- dist : ndarray of shape (n_samples,) Squared Mahalanobis distances of the observations. """ precision = self.get_precision() # compute mahalanobis distances dist = pairwise_distances(X, self.location_[np.newaxis, :], metric='mahalanobis', VI=precision) return np.reshape(dist, (len(X),)) ** 2
the-stack_0_9370
# encoding: utf-8 # author: BrikerMan # contact: [email protected] # blog: https://eliyar.biz # file: abs_task_model.py # time: 1:43 下午 import json import os import pathlib from abc import ABC, abstractmethod from typing import Dict, Any, TYPE_CHECKING, Union import tensorflow as tf import kashgari from kashgari.embeddings import ABCEmbedding from kashgari.logger import logger from kashgari.processors.abc_processor import ABCProcessor from kashgari.utils import load_data_object from kashgari.layers import KConditionalRandomField if TYPE_CHECKING: from kashgari.tasks.labeling import ABCLabelingModel from kashgari.tasks.classification import ABCClassificationModel class ABCTaskModel(ABC): def __init__(self) -> None: self.tf_model: tf.keras.Model = None self.embedding: ABCEmbedding = None self.hyper_parameters: Dict[str, Any] self.sequence_length: int self.text_processor: ABCProcessor self.label_processor: ABCProcessor def to_dict(self) -> Dict[str, Any]: model_json_str = self.tf_model.to_json() return { 'tf_version': tf.__version__, # type: ignore 'kashgari_version': kashgari.__version__, '__class_name__': self.__class__.__name__, '__module__': self.__class__.__module__, 'config': { 'hyper_parameters': self.hyper_parameters, # type: ignore 'sequence_length': self.sequence_length # type: ignore }, 'embedding': self.embedding.to_dict(), # type: ignore 'text_processor': self.text_processor.to_dict(), 'label_processor': self.label_processor.to_dict(), 'tf_model': json.loads(model_json_str) } @classmethod def default_hyper_parameters(cls) -> Dict[str, Dict[str, Any]]: """ The default hyper parameters of the model dict, **all models must implement this function.** You could easily change model's hyper-parameters. For example, change the LSTM unit in BiLSTM_Model from 128 to 32. >>> from kashgari.tasks.classification import BiLSTM_Model >>> hyper = BiLSTM_Model.default_hyper_parameters() >>> print(hyper) {'layer_bi_lstm': {'units': 128, 'return_sequences': False}, 'layer_output': {}} >>> hyper['layer_bi_lstm']['units'] = 32 >>> model = BiLSTM_Model(hyper_parameters=hyper) Returns: hyper params dict """ raise NotImplementedError def save(self, model_path: str, encoding='utf-8') -> str: pathlib.Path(model_path).mkdir(exist_ok=True, parents=True) model_path = os.path.abspath(model_path) with open(os.path.join(model_path, 'model_config.json'), 'w', encoding=encoding) as f: f.write(json.dumps(self.to_dict(), indent=2, ensure_ascii=False)) f.close() self.embedding.embed_model.save_weights(os.path.join(model_path, 'embed_model_weights.h5')) self.tf_model.save_weights(os.path.join(model_path, 'model_weights.h5')) # type: ignore logger.info('model saved to {}'.format(os.path.abspath(model_path))) return model_path @classmethod def load_model(cls, model_path: str, encoding='utf-8') -> Union["ABCLabelingModel", "ABCClassificationModel"]: model_config_path = os.path.join(model_path, 'model_config.json') model_config = json.loads(open(model_config_path, 'r', encoding=encoding).read()) model = load_data_object(model_config) model.embedding = load_data_object(model_config['embedding']) model.text_processor = load_data_object(model_config['text_processor']) model.label_processor = load_data_object(model_config['label_processor']) tf_model_str = json.dumps(model_config['tf_model']) model.tf_model = tf.keras.models.model_from_json(tf_model_str, custom_objects=kashgari.custom_objects) if isinstance(model.tf_model.layers[-1], KConditionalRandomField): model.crf_layer = model.tf_model.layers[-1] model.tf_model.load_weights(os.path.join(model_path, 'model_weights.h5')) model.embedding.embed_model.load_weights(os.path.join(model_path, 'embed_model_weights.h5')) return model @abstractmethod def build_model(self, x_data: Any, y_data: Any) -> None: raise NotImplementedError
the-stack_0_9372
# coding: utf-8 import pprint import re import six class DeleteEdgeCloudRequest: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'edgecloud_id': 'str' } attribute_map = { 'edgecloud_id': 'edgecloud_id' } def __init__(self, edgecloud_id=None): """DeleteEdgeCloudRequest - a model defined in huaweicloud sdk""" self._edgecloud_id = None self.discriminator = None self.edgecloud_id = edgecloud_id @property def edgecloud_id(self): """Gets the edgecloud_id of this DeleteEdgeCloudRequest. :return: The edgecloud_id of this DeleteEdgeCloudRequest. :rtype: str """ return self._edgecloud_id @edgecloud_id.setter def edgecloud_id(self, edgecloud_id): """Sets the edgecloud_id of this DeleteEdgeCloudRequest. :param edgecloud_id: The edgecloud_id of this DeleteEdgeCloudRequest. :type: str """ self._edgecloud_id = edgecloud_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DeleteEdgeCloudRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_0_9373
#!/usr/bin/env python3 # # Copyright (c) 2022 Project CHIP Authors # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Commissioning test. import os import sys from optparse import OptionParser from base import TestFail, TestTimeout, BaseTestHelper, FailIfNot, logger from cluster_objects import NODE_ID, ClusterObjectTests from network_commissioning import NetworkCommissioningTests import asyncio # The thread network dataset tlv for testing, splited into T-L-V. TEST_THREAD_NETWORK_DATASET_TLV = "0e080000000000010000" + \ "000300000c" + \ "35060004001fffe0" + \ "0208fedcba9876543210" + \ "0708fd00000000001234" + \ "0510ffeeddccbbaa99887766554433221100" + \ "030e54657374696e674e6574776f726b" + \ "0102d252" + \ "041081cb3b2efa781cc778397497ff520fa50c0302a0ff" # Network id, for the thread network, current a const value, will be changed to XPANID of the thread network. TEST_THREAD_NETWORK_ID = "fedcba9876543210" TEST_DISCRIMINATOR = 3840 ENDPOINT_ID = 0 LIGHTING_ENDPOINT_ID = 1 GROUP_ID = 0 def main(): optParser = OptionParser() optParser.add_option( "-t", "--timeout", action="store", dest="testTimeout", default=75, type='int', help="The program will return with timeout after specified seconds.", metavar="<timeout-second>", ) optParser.add_option( "-a", "--address", action="store", dest="deviceAddress1", default='', type='str', help="Address of the first device", ) optParser.add_option( '--paa-trust-store-path', dest="paaPath", default='', type='str', help="Path that contains valid and trusted PAA Root Certificates." ) optParser.add_option( '--fail-on-report', action="store_true", dest="report", default=False, help='Use this flag to simulate a failure handling the report. Without this flag, failure is simulated on the stage' ) (options, remainingArgs) = optParser.parse_args(sys.argv[1:]) timeoutTicker = TestTimeout(options.testTimeout) timeoutTicker.start() test = BaseTestHelper(nodeid=112233, testCommissioner=True, paaTrustStorePath=options.paaPath) FailIfNot(test.SetNetworkCommissioningParameters(dataset=TEST_THREAD_NETWORK_DATASET_TLV), "Failed to set network commissioning parameters") logger.info("Testing PASE connection to device") # TODO: Start at stage 2 once handling for arming failsafe on pase is done. if options.report: for testFailureStage in range(3, 17): FailIfNot(test.TestPaseOnly(ip=options.deviceAddress1, setuppin=20202021, nodeid=1), "Failed to establish PASE connection with device") FailIfNot(test.TestCommissionFailureOnReport(1, testFailureStage), "Commissioning failure tests failed for simulated report failure on stage {}".format(testFailureStage)) else: for testFailureStage in range(3, 17): FailIfNot(test.TestPaseOnly(ip=options.deviceAddress1, setuppin=20202021, nodeid=1), "Failed to establish PASE connection with device") FailIfNot(test.TestCommissionFailure(1, testFailureStage), "Commissioning failure tests failed for simulated stage failure on stage {}".format(testFailureStage)) # Ensure we can still commission for real FailIfNot(test.TestPaseOnly(ip=options.deviceAddress1, setuppin=20202021, nodeid=1), "Failed to establish PASE connection with device") FailIfNot(test.TestCommissionFailure(1, 0), "Failed to commission device") logger.info("Testing on off cluster") FailIfNot(test.TestOnOffCluster(nodeid=1, endpoint=LIGHTING_ENDPOINT_ID, group=GROUP_ID), "Failed to test on off cluster") timeoutTicker.stop() logger.info("Test finished") # TODO: Python device controller cannot be shutdown clean sometimes and will block on AsyncDNSResolverSockets shutdown. # Call os._exit(0) to force close it. os._exit(0) if __name__ == "__main__": try: main() except Exception as ex: logger.exception(ex) TestFail("Exception occurred when running tests.")
the-stack_0_9374
from model.contact import Contact testdata = [ Contact(firstname="firstname1", middlename="middlename1", lastname="lastname1", nickname="nickname1", email="email1", email2="email21", email3="email3", homephone="homephone", workphone="workphone"), Contact(firstname="firstname2", middlename="middlename2", lastname="lastname2", nickname="nickname2", email="email12", email2="email22", email3="email32", homephone="homephone2", workphone="workphone2") ]
the-stack_0_9375
import base64 import datetime import json import urllib import flask import requests import src.config redirectdownloadBP = flask.Blueprint( "redirectdownload", __name__, url_prefix="/api/v1/redirectdownload" ) @redirectdownloadBP.route("/<name>") async def redirectdownloadFunction(name): id = flask.request.args.get("id") itag = flask.request.args.get("itag") config = src.config.readConfig() if config.get("kill_switch") == True: return if ( datetime.datetime.strptime( config.get("token_expiry", datetime.datetime.utcnow()), "%Y-%m-%d %H:%M:%S.%f", ) <= datetime.datetime.utcnow() ): config, drive = src.credentials.refreshCredentials(config) with open("config.json", "w+") as w: json.dump(obj=config, fp=w, sort_keys=True, indent=4) tmp_metadata = src.metadata.jsonExtract( src.metadata.readMetadata(config), "id", id, False ) if tmp_metadata: name = tmp_metadata.get("name", name) args = "?" for arg in flask.request.args: args += "%s=%s&" % ( arg, urllib.parse.quote(flask.request.args.get(arg, "").encode("utf-8")), ) session = {"access_token": config.get("access_token")} session["url"] = "https://www.googleapis.com/drive/v3/files/%s?alt=media" % (id) if itag and itag != "" and config.get("transcoded") == True: req = requests.get( "https://drive.google.com/get_video_info?docid=%s" % (id), headers={"Authorization": "Bearer %s" % (config.get("access_token"))}, ) parsed = urllib.parse.parse_qs(urllib.parse.unquote(req.text)) if parsed.get("status") == ["ok"]: for stream in parsed["url"]: if ("itag=%s" % (itag)) in stream: url = stream break cookie_string = "; ".join( [str(x) + "=" + str(y) for x, y in req.cookies.items()] ) session["cookie"] = cookie_string session["transcoded"] = config.get("transcoded") session["url"] = url sessionB64 = base64.b64encode(json.dumps(session).encode("ascii")).decode("ascii") print( "/api/v1/download/%s%ssession=%s&" % (urllib.parse.quote(name.encode("utf-8")), args, sessionB64) ) if config.get("cloudflare") and config.get("cloudflare") != "": return flask.redirect( config.get("cloudflare") + "/api/v1/download/%s%ssession=%s&" % (name, args, sessionB64), code=302, ) else: return flask.redirect( "/api/v1/download/%s%ssession=%s&" % (urllib.parse.quote(name.encode("utf-8")), args, sessionB64), code=302, )
the-stack_0_9376
""" This creates and poulates directories for ROMS runs on gaggle. It is designed to work with the "BLANK" version of the .in file, replacing things like $whatever$ with meaningful values. """ import os import sys fpth = os.path.abspath('../../') if fpth not in sys.path: sys.path.append(fpth) import forcing_functions as ffun Ldir, Lfun = ffun.intro() #import netCDF4 as nc #import numpy as np from datetime import datetime, timedelta fdt = datetime.strptime(Ldir['date_string'], '%Y.%m.%d') fdt_yesterday = fdt - timedelta(1) print('- dot_in.py creating files for LiveOcean for ' + Ldir['date_string']) gtag = Ldir['gtag'] gtagex = gtag + '_' + Ldir['ex_name'] EX_NAME = Ldir['ex_name'].upper() #### USER DEFINED VALUES #### # which ROMS code to use roms_name = 'LO_ROMS' # account for differences when using biology do_bio = False multi_core = True # use more than one core if Ldir['run_type'] == 'backfill': days_to_run = 1.0 elif Ldir['run_type'] == 'forecast': days_to_run = float(Ldir['forecast_days']) # time step in seconds (should fit evenly into 3600 sec) if Ldir['blow_ups'] == 0: dtsec = 60 elif Ldir['blow_ups'] == 1: dtsec = 50 elif Ldir['blow_ups'] == 2: dtsec = 40 elif Ldir['blow_ups'] == 3: dtsec = 30 elif Ldir['blow_ups'] == 4: dtsec = 20 elif Ldir['blow_ups'] == 5: dtsec = 10 elif Ldir['blow_ups'] == 6: dtsec = 8 elif Ldir['blow_ups'] == 7: dtsec = 5 else: print('Unsupported number of blow ups: %d' % (Ldir['blow_ups'])) ndtfast = 20 restart_nrrec = '-1' # '-1' for a non-crash restart file, otherwise '1' or '2' his_interval = 3600 # seconds to define and write to history files rst_interval = 10 # days between writing to the restart file (e.g. 5) # which forcings to look for atm_dir = 'BLANK/' # which atm forcing files to use ocn_dir = 'ocnA/' # which ocn forcing files to use riv_dir = 'rivE/' # which riv forcing files to use tide_dir = 'tideA/' # which tide forcing files to use #### END USER DEFINED VALUES #### # DERIVED VALUES if multi_core: if Ldir['np_num'] == 64: # for new mox nodes 2*32=64 2019_02 ntilei = '8' # number of tiles in I-direction ntilej = '8' # number of tiles in J-direction elif Ldir['np_num'] == 72: ntilei = '6' # number of tiles in I-direction ntilej = '12' # number of tiles in J-direction elif Ldir['np_num'] == 144: ntilei = '8' # number of tiles in I-direction ntilej = '18' # number of tiles in J-direction elif Ldir['np_num'] == 196: ntilei = '14' # number of tiles in I-direction ntilej = '14' # number of tiles in J-direction elif Ldir['np_num'] == 392: ntilei = '14' # number of tiles in I-direction ntilej = '28' # number of tiles in J-direction elif Ldir['np_num'] == 588: ntilei = '21' # number of tiles in I-direction ntilej = '28' # number of tiles in J-direction else: print('Unsupported number of processors: %d' % (Ldir['np_num'])) else: ntilei = '1' ntilej = '1' # if np.mod(3600,dtsec) != 0: # print('** WARNING: dtsec does not fit evenly into 1 hour **') if dtsec == int(dtsec): dt = str(dtsec) + '.0d0' # a string version of dtsec, for the .in file else: dt = str(dtsec) + 'd0' # a string version of dtsec, for the .in file ninfo = int(his_interval/dtsec) # how often to write info to the log file (# of time steps) nhis = int(his_interval/dtsec) # how often to write to the history files ndefhis = int(nhis) # how often to create new history files nrst = int(rst_interval*86400/dtsec) ntimes = int(days_to_run*86400/dtsec) # file location stuff date_string = Ldir['date_string'] date_string_yesterday = fdt_yesterday.strftime('%Y.%m.%d') dstart = str(int(Lfun.datetime_to_modtime(fdt) / 86400.)) f_string = 'f' + date_string f_string_yesterday = 'f'+ date_string_yesterday # where forcing files live (fjord, as seen from gaggle) # NOTE: eventually this should not be hard-wired. lo_dir = Ldir['parent'] + 'LiveOcean/' loo_dir = Ldir['parent'] + 'LiveOcean_output/' grid_dir = Ldir['parent'] + 'LiveOcean_data/grids/' + Ldir['gridname'] + '/' force_dir = loo_dir + gtag + '/' + f_string + '/' roms_dir = Ldir['parent'] + 'LiveOcean_roms/' # determine grid size # gfn = grid_dir + 'grid.nc' # ds = nc.Dataset(gfn) # h = ds['h'][:] # nrows0, ncols0 = h.shape # nrows = nrows0 - 2 # ncols = ncols0 - 2 #ds.close() # hardwired because we don't have netCDF4 nrows = 385 - 2 ncols = 142 - 2 # determine number of layers s_dict = Lfun.csv_to_dict(grid_dir + 'S_COORDINATE_INFO.csv') nlayers = str(s_dict['N']) if do_bio: bio_tag = '' else: bio_tag = '' # the .in file dot_in_name = 'liveocean.in' # name of the .in file dot_in_dir00 = Ldir['roms'] + 'output/' Lfun.make_dir(dot_in_dir00) # make sure it exists dot_in_dir0 = Ldir['roms'] + 'output/' + gtagex + '/' Lfun.make_dir(dot_in_dir0) # make sure it exists dot_in_dir = dot_in_dir0 + f_string +'/' Lfun.make_dir(dot_in_dir, clean=True) # make sure it exists and is empty # where to put the output files according to the .in file out_dir0 = roms_dir + 'output/' + gtagex + '/' out_dir = out_dir0 + f_string + '/' if Ldir['start_type'] == 'continuation': nrrec = '0' # '-1' for a hot restart #ininame = 'ocean_rst.nc' # for a hot perfect restart ininame = 'ocean_his_0025.nc' # for a hot restart ini_fullname = out_dir0 + f_string_yesterday + '/' + ininame elif Ldir['start_type'] == 'new': nrrec = '0' # '0' for a history or ini file ininame = 'ocean_ini' + bio_tag + '.nc' # could be an ini or history file ini_fullname = force_dir + ocn_dir + ininame # END DERIVED VALUES ## create .in ########################## f = open('BLANK.in','r') f2 = open(dot_in_dir + dot_in_name,'w') in_varlist = ['base_dir','ntilei','ntilej','ntimes','dt','nrrec','ninfo', 'nhis','dstart','ndefhis','nrst','force_dir','grid_dir','roms_dir', 'atm_dir','ocn_dir','riv_dir','tide_dir','dot_in_dir', 'ini_fullname','out_dir','EX_NAME','roms_name','bio_tag', 'nrows','ncols', 'nlayers', 'ndtfast'] for line in f: for var in in_varlist: if '$'+var+'$' in line: line2 = line.replace('$'+var+'$', str(eval(var))) line = line2 else: line2 = line f2.write(line2) f.close() f2.close() ## npzd2o_Banas.in ########### f = open('npzd2o_Banas_BLANK.in','r') bio_dot_in_name = 'npzd2o_Banas.in' f3 = open(dot_in_dir + bio_dot_in_name,'w') in_varlist = ['force_dir','riv_dir','bio_tag'] for line in f: for var in in_varlist: if '$'+var+'$' in line: line2 = line.replace('$'+var+'$', str(eval(var))) line = line2 else: line2 = line f3.write(line2) f.close() f3.close()
the-stack_0_9377
import numpy import sympy from sympy.diffgeom import Manifold, Patch from pystein import geodesic, metric, coords from pystein.utilities import tensor_pow as tpow class TestGeodesic: def test_numerical(self): M = Manifold('M', dim=2) P = Patch('origin', M) rho, phi, a = sympy.symbols('rho phi a', nonnegative=True) cs = coords.CoordSystem('schw', P, [rho, phi]) drho, dphi = cs.base_oneforms() ds2 = a ** 2 * ((1 / (1 - rho ** 2)) * tpow(drho, 2) + rho ** 2 * tpow(dphi, 2)) g = metric.Metric(twoform=ds2) init = (0.01, 0.01, 0.000001, 0.1) ts = numpy.arange(0, 1000, 0.1) df = geodesic.numerical_geodesic(g, init, ts) print('yay') def test_parallel(self): M = Manifold('M', dim=2) P = Patch('origin', M) theta, phi, a = sympy.symbols('theta phi a', nonnegative=True) cs = coords.CoordSystem('spherical', P, [theta, phi]) dtheta, dphi = cs.base_oneforms() ds2 = a ** 2 * (tpow(dtheta, 2) + sympy.sin(theta) ** 2 * tpow(dphi, 2)) g2 = metric.Metric(twoform=ds2) param = sympy.symbols('lambda') curve = [ 2 * sympy.pi * param, sympy.pi / 4, ] lhs_0 = geodesic.parallel_transport_equation(0, curve, param, g2) print(lhs_0)
the-stack_0_9379
r""" `\ZZ`-Filtered Vector Spaces This module implements filtered vector spaces, that is, a descending sequence of vector spaces .. math:: \cdots \supset F_d \supset F_{d+1} \supset F_{d+2} \supset \cdots with degrees `d\in \ZZ`. It is not required that `F_d` is the entire ambient space for `d\ll 0` (see :meth:`~FilteredVectorSpace_class.is_exhaustive`) nor that `F_d=0` for `d\gg 0` (see :meth:`~FilteredVectorSpace_class.is_separating`). To construct a filtered vector space, use the :func:`FilteredVectorSpace` command. It supports easy creation of simple filtrations, for example the trivial one:: sage: FilteredVectorSpace(2, base_ring=RDF) RDF^2 The next-simplest filtration has a single non-trivial inclusion between `V_d` and `V_{d+1}`:: sage: d = 1 sage: V = FilteredVectorSpace(2, d); V QQ^2 >= 0 sage: [V.get_degree(i).dimension() for i in range(0,4)] [2, 2, 0, 0] To construct general filtrations, you need tell Sage about generating vectors for the nested subspaces. For example, a dictionary whose keys are the degrees and values are a list of generators:: sage: r1 = (1, 0, 5) sage: r2 = (0, 1, 2) sage: r3 = (1, 2, 1) sage: V = FilteredVectorSpace({0:[r1, r2, r3], 1:[r1, r2], 3:[r1]}); V QQ^3 >= QQ^2 >= QQ^1 >= QQ^1 >= 0 For degrees `d` that are not specified, the associated vector subspace is the same as the next-lower degree, that is, `V_d \simeq V_{d-1}`. In the above example, this means that * `V_d \simeq \QQ^3` for `d<0` * `V_0 = \mathop{span}(r_1, r_2) \simeq \QQ^2` * `V_1 = V_2 = \mathop{span}(r_3) \simeq \QQ` * `V_d = 0` for `d \geq 3` That is:: sage: V.get_degree(0) == V True sage: V.get_degree(1) == V.span([r1, r2]) True sage: V.get_degree(2) == V.get_degree(3) == V.span([r1]) True sage: V.get_degree(4) == V.get_degree(5) == V.span([]) True If you have many generators you can just pass the generators once and then refer to them by index:: sage: FilteredVectorSpace([r1, r2, r3], {0:[0,1,2], 1:[1,2], 3:[1]}) QQ^3 >= QQ^2 >= QQ^1 >= QQ^1 >= 0 Note that generators for the degree-`d` subspace of the filtration are automatically generators for all lower degrees. For example, here we do not have to specify the ray `r_2` separately in degree 1:: sage: FilteredVectorSpace([r1, r2, r3], {0:[0 ], 1:[1]}) QQ^2 >= QQ^1 >= 0 in QQ^3 sage: FilteredVectorSpace([r1, r2, r3], {0:[0, 1], 1:[1]}) QQ^2 >= QQ^1 >= 0 in QQ^3 The degree can be infinite (plus infinity), this allows construction of filtered vector spaces that are not eventually zero in high degree:: sage: FilteredVectorSpace([r1, r2, r3], {0:[0,1], oo:[1]}) QQ^2 >= QQ^1 in QQ^3 Any field can be used as the vector space base. For example a finite field:: sage: F.<a> = GF(5^3) sage: r1 = (a, 0, F(5)); r1 (a, 0, 0) sage: FilteredVectorSpace([r1, r2, r3], {0:[0,1], oo:[1]}, base_ring=F) GF(125)^2 >= GF(125)^1 in GF(125)^3 Or the algebraic field:: sage: r1 = (1, 0, 1+QQbar(I)); r1 (1, 0, I + 1) sage: FilteredVectorSpace([r1, r2, r3], {0:[0,1], oo:[1]}, base_ring=QQbar) Vector space of dimension 2 over Algebraic Field >= Vector space of dimension 1 over Algebraic Field in Vector space of dimension 3 over Algebraic Field """ #***************************************************************************** # Copyright (C) 2013 Volker Braun <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from sage.rings.all import QQ, ZZ, RDF, RR, Integer from sage.rings.infinity import InfinityRing, infinity, minus_infinity from sage.categories.fields import Fields from sage.modules.free_module import FreeModule_ambient_field, VectorSpace from sage.matrix.constructor import vector, matrix from sage.misc.all import uniq, cached_method def is_FilteredVectorSpace(X): """ Test whether ``X`` is a filtered vector space. This function is for library use only. INPUT: - ``X`` -- anything. OUTPUT: Boolean. EXAMPLES:: sage: from sage.modules.filtered_vector_space import is_FilteredVectorSpace sage: V = FilteredVectorSpace(2, 1) sage: is_FilteredVectorSpace(V) True sage: is_FilteredVectorSpace('ceci n\'est pas une pipe') False """ return isinstance(X, FilteredVectorSpace_class) def FilteredVectorSpace(arg1, arg2=None, base_ring=QQ, check=True): """ Construct a filtered vector space. INPUT: This function accepts various input that determines the vector space and filtration. - Just the dimensionFilteredVectorSpace(dimension): Return the trivial filtration (where all vector spaces are isomorphic). - Dimension and maximal degree, see :func:`constructor_from_dim_degree` for arguments. Construct a filtration with only one non-trivial step `V\supset 0` at the given cutoff degree. - A dictionary containing the degrees as keys and a list of vector space generators as values, see :func:`FilteredVectorSpace_from_generators` - Generators and a dictionary containing the degrees as keys and the indices of vector space generators as values, see :func:`FilteredVectorSpace_from_generators_indices` In addition, the following keyword arguments are supported: - ``base_ring`` -- a field (optional, default `\QQ`). The base field of the vector space. Must be a field. EXAMPLES: Just the dimension for the trivial filtration:: sage: FilteredVectorSpace(2) QQ^2 Dimension and degree:: sage: FilteredVectorSpace(2, 1) QQ^2 >= 0 Dictionary of generators:: sage: FilteredVectorSpace({1:[(1,0), (0,1)], 3:[(1,0)]}) QQ^2 >= QQ^1 >= QQ^1 >= 0 Generators and a dictionary referring to them by index:: sage: FilteredVectorSpace([(1,0), (0,1)], {1:[0,1], 3:[0]}) QQ^2 >= QQ^1 >= QQ^1 >= 0 """ if base_ring not in Fields(): raise ValueError('the base_ring argument must be a field') if arg1 in ZZ: return construct_from_dim_degree(arg1, arg2, base_ring, check) elif arg2 is None: return construct_from_generators(arg1, base_ring, check) else: return construct_from_generators_indices(arg1, arg2, base_ring, check) def normalize_degree(deg): """ Normalized the degree - ``deg`` -- something that defines the degree (either integer or infinity). OUTPUT: Plus/minus infinity or a Sage integer. EXAMPLES:: sage: from sage.modules.filtered_vector_space import normalize_degree sage: type(normalize_degree(int(1))) <type 'sage.rings.integer.Integer'> sage: normalize_degree(oo) +Infinity """ try: return ZZ(deg) except TypeError: pass deg = InfinityRing(deg) if deg == infinity: return infinity if deg == minus_infinity: return minus_infinity raise ValueError('not integer or infinity') def construct_from_dim_degree(dim, max_degree, base_ring, check): """ Construct a filtered vector space. INPUT: - ``dim`` -- integer. The dimension. - ``max_degree`` -- integer or infinity. The maximal degree where the vector subspace of the filtration is still the entire space. EXAMPLES:: sage: V = FilteredVectorSpace(2, 5); V QQ^2 >= 0 sage: V.get_degree(5) Vector space of degree 2 and dimension 2 over Rational Field Basis matrix: [1 0] [0 1] sage: V.get_degree(6) Vector space of degree 2 and dimension 0 over Rational Field Basis matrix: [] sage: FilteredVectorSpace(2, oo) QQ^2 sage: FilteredVectorSpace(2, -oo) 0 in QQ^2 TESTS:: sage: from sage.modules.filtered_vector_space import construct_from_dim_degree sage: V = construct_from_dim_degree(2, 5, QQ, True); V QQ^2 >= 0 """ if dim not in ZZ: raise ValueError('dimension must be an integer') dim = ZZ(dim) from sage.matrix.constructor import identity_matrix generators = identity_matrix(base_ring, dim).columns() filtration = dict() if max_degree is None: max_degree = infinity filtration[normalize_degree(max_degree)] = range(dim) return construct_from_generators_indices(generators, filtration, base_ring, check) def construct_from_generators(filtration, base_ring, check): """ Construct a filtered vector space. INPUT: - ``filtration`` -- a dictionary of filtration steps. Each filtration step is a pair consisting of an integer degree and a list/tuple/iterable of vector space generators. The integer ``degree`` stipulates that all filtration steps of degree higher or equal than ``degree`` (up to the next filtration step) are said subspace. EXAMPLES:: sage: from sage.modules.filtered_vector_space import construct_from_generators sage: r = [1, 2] sage: construct_from_generators({1:[r]}, QQ, True) QQ^1 >= 0 in QQ^2 """ def normalize_gen(v): return tuple(map(base_ring, v)) # convert generator notation to generator+indices if len(filtration) == 0: raise ValueError('you need to specify at least one ray to deduce the dimension') generators = [] for gens in filtration.values(): generators += map(normalize_gen, gens) generators = tuple(uniq(generators)) # normalize filtration data normalized = dict() for deg, gens_deg in filtration.iteritems(): indices = [generators.index(normalize_gen(v)) for v in gens_deg] normalized[deg] = tuple(indices) return construct_from_generators_indices(generators, normalized, base_ring, check) def construct_from_generators_indices(generators, filtration, base_ring, check): """ Construct a filtered vector space. INPUT: - ``generators`` -- a list/tuple/iterable of vectors, or something convertible to them. The generators spanning various subspaces. - ``filtration`` -- a list or iterable of filtration steps. Each filtration step is a pair ``(degree, ray_indices)``. The ``ray_indices`` are a list or iterable of ray indices, which span a subspace of the vector space. The integer ``degree`` stipulates that all filtration steps of degree higher or equal than ``degree`` (up to the next filtration step) are said subspace. EXAMPLES:: sage: from sage.modules.filtered_vector_space import construct_from_generators_indices sage: gens = [(1,0), (0,1), (-1,-1)] sage: V = construct_from_generators_indices(gens, {1:[0,1], 3:[1]}, QQ, True); V QQ^2 >= QQ^1 >= QQ^1 >= 0 TESTS:: sage: gens = [(int(1),int(0)), (0,1), (-1,-1)] sage: construct_from_generators_indices(iter(gens), {int(0):[0, int(1)], 2:[2]}, QQ, True) QQ^2 >= QQ^1 >= QQ^1 >= 0 """ # normalize generators generators = map(list, generators) # deduce dimension if len(generators) == 0: dim = ZZ(0) else: dim = ZZ(len(generators[0])) ambient = VectorSpace(base_ring, dim) # complete generators to a generating set if matrix(base_ring, generators).rank() < dim: complement = ambient.span(generators).complement() generators = generators + list(complement.gens()) # normalize generators II generators = tuple(ambient(v) for v in generators) for v in generators: v.set_immutable() # normalize filtration data normalized = dict() for deg, gens in filtration.iteritems(): deg = normalize_degree(deg) gens = map(ZZ, gens) if any(i < 0 or i >= len(generators) for i in gens): raise ValueError('generator index out of bounds') normalized[deg] = tuple(sorted(gens)) try: del normalized[minus_infinity] except KeyError: pass filtration = normalized return FilteredVectorSpace_class(base_ring, dim, generators, filtration, check=check) class FilteredVectorSpace_class(FreeModule_ambient_field): def __init__(self, base_ring, dim, generators, filtration, check=True): r""" A descending filtration of a vector space INPUT: - ``base_ring`` -- a field. The base field of the ambient vector space. - ``dim`` -- integer. The dimension of the ambient vector space. - ``generators`` -- tuple of generators for the ambient vector space. These will be used to span the subspaces of the filtration. - ``filtration`` -- a dictionary of filtration steps in ray index notation. See :func:`construct_from_generators_indices` for details. - ``check`` -- boolean (optional; default: ``True``). Whether to perform consistency checks. TESTS:: sage: from sage.modules.filtered_vector_space import FilteredVectorSpace_class sage: gens = [(1,0,0), (1,1,0), (1,2,0), (-1,-1, 0), (0,0,1)] sage: FilteredVectorSpace_class(QQ, 3, gens, {2:(0,1), oo:(4,)}) QQ^3 >= QQ^1 sage: FilteredVectorSpace_class(QQ, 3, gens, {2:(0,1), 3:(4,)}) QQ^3 >= QQ^1 >= 0 The trivial filtration:: sage: FilteredVectorSpace_class(QQ, 3, gens, {}, QQ) 0 in QQ^3 The empty vector space:: sage: FilteredVectorSpace_class(QQ, 0, [], {}) 0 Higher-degree generators are automatically generators in lower degrees:: sage: FilteredVectorSpace_class(QQ, 3, gens, {2:(4,), 3:(1,)}) QQ^2 >= QQ^1 >= 0 in QQ^3 """ if check: assert isinstance(dim, Integer) assert base_ring in Fields() super(FilteredVectorSpace_class, self).__init__(base_ring, dim) if check: assert matrix(generators).rank() == self.dimension() assert isinstance(filtration, dict) for degree, indices in filtration.iteritems(): assert isinstance(degree, Integer) or degree == infinity assert isinstance(indices, tuple) assert all(isinstance(r, Integer) for r in indices) # Construct subspaces from the generators and store in self._filt def make_subspace(indices): return self.span([generators[i] for i in indices]) indices = set(filtration.pop(infinity, [])) V = make_subspace(indices) filtered_subspaces = [(infinity, V)] for deg in reversed(sorted(filtration.keys())): next_V = V indices.update(filtration[deg]) V = make_subspace(indices) if V == next_V: # skip trivial filtrations continue filtered_subspaces.append((deg, V)) filtered_subspaces.append((minus_infinity, V)) filtered_subspaces.reverse() self._filt = tuple(filtered_subspaces) assert self._filt[0][0] is minus_infinity def change_ring(self, base_ring): """ Return the same filtration over a different base ring. INPUT: - ``base_ring`` -- a ring. The new base ring. OUTPUT: This method returns a new filtered vector space whose subspaces are defined by the same generators but over a different base ring. EXAMPLES:: sage: V = FilteredVectorSpace(1, 0); V QQ^1 >= 0 sage: V.change_ring(RDF) RDF^1 >= 0 """ generators, filtration = self.presentation() return FilteredVectorSpace(generators, filtration, base_ring=base_ring) def ambient_vector_space(self): """ Return the ambient (unfiltered) vector space. OUTPUT: A vector space. EXAMPLES:: sage: V = FilteredVectorSpace(1, 0) sage: V.ambient_vector_space() Vector space of dimension 1 over Rational Field """ return VectorSpace(self.base_ring(), self.dimension()) @cached_method def is_constant(self): """ Return whether the filtration is constant. OUTPUT: Boolean. Whether the filtered vector spaces are identical in all degrees. EXAMPLES:: sage: V = FilteredVectorSpace(2); V QQ^2 sage: V.is_constant() True sage: V = FilteredVectorSpace(1, 0); V QQ^1 >= 0 sage: V.is_constant() False sage: V = FilteredVectorSpace({0:[(1,)]}); V QQ^1 >= 0 sage: V.is_constant() False """ f = self._filt return (len(f) == 1) or (len(f) == 2 and f[1][0] == infinity) def is_exhaustive(self): """ Return whether the filtration is exhaustive. A filtration $\{F_d\}$ in an ambient vector space $V$ is exhaustive if $\cup F_d = V$. See also :meth:`is_separating`. OUTPUT: Boolean. EXAMPLES:: sage: F = FilteredVectorSpace({0:[(1,1)]}); F QQ^1 >= 0 in QQ^2 sage: F.is_exhaustive() False sage: G = FilteredVectorSpace(2, 0); G QQ^2 >= 0 sage: G.is_exhaustive() True """ return self.get_degree(minus_infinity).dimension() == \ self.ambient_vector_space().dimension() def is_separating(self): """ Return whether the filtration is separating. A filtration $\{F_d\}$ in an ambient vector space $V$ is exhaustive if $\cap F_d = 0$. See also :meth:`is_exhaustive`. OUTPUT: Boolean. EXAMPLES:: sage: F = FilteredVectorSpace({0:[(1,1)]}); F QQ^1 >= 0 in QQ^2 sage: F.is_separating() True sage: G = FilteredVectorSpace({0:[(1,1,0)], oo:[(0,0,1)]}); G QQ^2 >= QQ^1 in QQ^3 sage: G.is_separating() False """ return self.get_degree(infinity).dimension() == 0 @cached_method def support(self): """ Return the degrees in which there are non-trivial generators. OUTPUT: A tuple of integers (and plus infinity) in ascending order. The last entry is plus infinity if and only if the filtration is not separating (see :meth:`is_separating`). EXAMPLES:: sage: G = FilteredVectorSpace({0:[(1,1,0)], 3:[(0,1,0)]}); G QQ^2 >= QQ^1 >= QQ^1 >= QQ^1 >= 0 in QQ^3 sage: G.support() (0, 3) sage: G = FilteredVectorSpace({0:[(1,1,0)], 3:[(0,1,0)], oo:[(0,0,1)]}); G QQ^3 >= QQ^2 >= QQ^2 >= QQ^2 >= QQ^1 sage: G.support() (0, 3, +Infinity) """ if self.is_separating(): filt = self._filt[1:-1] else: filt = self._filt[1:] return tuple(f[0] for f in filt) @cached_method def min_degree(self): r""" Return the lowest degree of the filtration. OUTPUT: Integer or plus infinity. The largest degree `d` of the (descending) filtration such that the filtered vector space `F_d` is still equal to `F_{-\infty}`. EXAMPLES:: sage: FilteredVectorSpace(1, 3).min_degree() 3 sage: FilteredVectorSpace(2).min_degree() +Infinity """ if self.is_constant(): return infinity return self._filt[1][0] @cached_method def max_degree(self): r""" Return the highest degree of the filtration. OUTPUT: Integer or minus infinity. The smallest degree of the filtration such that the filtration is constant to the right. EXAMPLES:: sage: FilteredVectorSpace(1, 3).max_degree() 4 sage: FilteredVectorSpace({0:[[1]]}).max_degree() 1 sage: FilteredVectorSpace(3).max_degree() -Infinity """ f = self._filt if len(f) == 1: return minus_infinity d = f[-1][0] if d == infinity: if len(f) == 1: return minus_infinity else: return f[-2][0] + 1 else: return d + 1 def get_degree(self, d): r""" Return the degree-``d`` entry of the filtration. INPUT: - ``d`` -- Integer. The desired degree of the filtration. OUTPUT: The degree-``d`` vector space in the filtration as subspace of the ambient space. EXAMPLES:: sage: rays = [(1,0), (1,1), (1,2), (-1,-1)] sage: F = FilteredVectorSpace(rays, {3:[1], 1:[1,2]}) sage: F.get_degree(2) Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 1] sage: F.get_degree(oo) Vector space of degree 2 and dimension 0 over Rational Field Basis matrix: [] sage: F.get_degree(-oo) Vector space of degree 2 and dimension 2 over Rational Field Basis matrix: [1 0] [0 1] """ d = normalize_degree(d) for deg, Vdeg in self._filt: if d <= deg: return Vdeg assert False # unreachable def graded(self, d): r""" Return the associated graded vectorspace. INPUT: - ``d`` -- integer. The degree. OUTPUT: The quotient `G_d = F_d / F_{d+1}`. EXAMPLES:: sage: rays = [(1,0), (1,1), (1,2)] sage: F = FilteredVectorSpace(rays, {3:[1], 1:[1,2]}) sage: F.graded(1) Vector space quotient V/W of dimension 1 over Rational Field where V: Vector space of degree 2 and dimension 2 over Rational Field Basis matrix: [1 0] [0 1] W: Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 1] """ return self.get_degree(d).quotient(self.get_degree(d+1)) def presentation(self): """ Return a presentation in term of generators of various degrees. OUTPUT: A pair consisting of generators and a filtration suitable as input to :func:`~construct_from_generators_indices`. EXAMPLES:: sage: rays = [(1,0), (1,1), (1,2), (-1,-1)] sage: F = FilteredVectorSpace(rays, {0:[1, 2], 2:[3]}); F QQ^2 >= QQ^1 >= QQ^1 >= 0 sage: F.presentation() (((0, 1), (1, 0), (1, 1)), {0: (1, 0), 2: (2,), +Infinity: ()}) """ # this could be done more efficiently with (potentially) less generators generators = set() filt = self._filt[1:] for d, V in filt: generators.update(V.echelonized_basis()) generators = tuple(generators) filtration = dict() for d, V in filt: indices = [ZZ(generators.index(v)) for v in V.echelonized_basis()] filtration[d] = tuple(indices) return generators, filtration def _repr_field_name(self): """ Return an abbreviated field name as string RAISES: ``NotImplementedError``: The field does not have an abbreviated name defined. EXAMPLES:: sage: FilteredVectorSpace(2, base_ring=QQ)._repr_field_name() 'QQ' sage: F.<a> = GF(9) sage: FilteredVectorSpace(2, base_ring=F)._repr_field_name() 'GF(9)' sage: FilteredVectorSpace(2, base_ring=AA)._repr_field_name() Traceback (most recent call last): ... NotImplementedError """ if self.base_ring() == QQ: return 'QQ' elif self.base_ring() == RDF: return 'RDF' elif self.base_ring() == RR: return 'RR' from sage.categories.finite_fields import FiniteFields if self.base_ring() in FiniteFields(): return 'GF({0})'.format(len(self.base_ring())) else: raise NotImplementedError() def _repr_vector_space(self, dim): """ Return a string representation of the vector space of given dimension INPUT: - ``dim`` -- integer. OUTPUT: String representation of the vector space of dimension ``dim``. EXAMPLES:: sage: F = FilteredVectorSpace(3, base_ring=RDF) sage: F._repr_vector_space(1234) 'RDF^1234' sage: F3 = FilteredVectorSpace(3, base_ring=GF(3)) sage: F3._repr_vector_space(1234) 'GF(3)^1234' sage: F3 = FilteredVectorSpace(3, base_ring=AA) sage: F3._repr_vector_space(1234) 'Vector space of dimension 1234 over Algebraic Real Field' """ if dim == 0: return '0' try: return self._repr_field_name() + '^' + str(dim) except NotImplementedError: return repr(VectorSpace(self.base_ring(), dim)) def _repr_degrees(self, min_deg, max_deg): """ Return a string representation This method is like :meth:`_repr_` except that the user can select the range of degrees to be shown in the output. INPUT: - ``min_deg``, ``max_deg`` -- two integers. EXAMPLES:: sage: rays = [(1,0), (1,1), (1,2), (-1,-1)] sage: F = FilteredVectorSpace(rays, {0:[1, 2], 2:[3]}) sage: F._repr_degrees(-2, 4) ['QQ^2', 'QQ^2', 'QQ^2', 'QQ^1', 'QQ^1', '0', '0', '0'] """ degrees = range(min_deg, max_deg+1) dims = [] for i in degrees + [infinity]: d = self.get_degree(i).dimension() dims.append(self._repr_vector_space(d)) return dims def _repr_(self): r""" Return as string representation of ``self``. OUTPUT: A string. EXAMPLES:: sage: rays = [(1,0), (1,1), (1,2), (-1,-1)] sage: FilteredVectorSpace(rays, {0:[1, 2], 2:[3]})._repr_() 'QQ^2 >= QQ^1 >= QQ^1 >= 0' sage: FilteredVectorSpace(rays, {0:[1, 2], oo:[3]}) QQ^2 >= QQ^1 sage: FilteredVectorSpace(rays, {oo:[3]}) QQ^1 in QQ^2 sage: FilteredVectorSpace(rays, {0:[3]}) QQ^1 >= 0 in QQ^2 sage: FilteredVectorSpace({1:[(1,0), (-1,1)], 3:[(1,0)]}, base_ring=GF(3)) GF(3)^2 >= GF(3)^1 >= GF(3)^1 >= 0 sage: FilteredVectorSpace({1:[(1,0), (-1,1)], 3:[(1,0)]}, base_ring=AA) Vector space of dimension 2 over Algebraic Real Field >= Vector space of dimension 1 over Algebraic Real Field >= Vector space of dimension 1 over Algebraic Real Field >= 0 """ finite_support = [d for d in self.support() if d != infinity] if len(finite_support) == 0: dims = self._repr_degrees(0, -1) else: min_deg = finite_support[0] max_deg = finite_support[-1] dims = self._repr_degrees(min_deg, max_deg) s = ' >= '.join(dims) if not self.is_exhaustive(): s += ' in ' + self._repr_vector_space(self.degree()) return s def __cmp__(self, other): """ Compare two filtered vector spaces. EXAMPLES:: sage: V = FilteredVectorSpace(2, 0) sage: W = FilteredVectorSpace([(1,0),(0,1)], {0:[0, 1]}) sage: V == W True sage: V is W False sage: W = FilteredVectorSpace([(1,0),(1,1)], {0:[1]}) sage: V == W False TESTS:: sage: P = toric_varieties.P2() sage: T_P = P.sheaves.tangent_bundle() sage: O_P = P.sheaves.trivial_bundle(1) sage: S1 = T_P + O_P sage: S2 = O_P + T_P sage: S1._filt[0].is_isomorphic(S2._filt[0]) # known bug True sage: FilteredVectorSpace(2, base_ring=QQ) == FilteredVectorSpace(2, base_ring=GF(5)) False """ c = cmp(type(self), type(other)) if c!=0: return c c = cmp(self.base_ring(), other.base_ring()) if c!=0: return c c = cmp(self.dimension(), other.dimension()) if c!=0: return c c = cmp(len(self._filt), len(other._filt)) if c!=0: return c for self_filt, other_filt in zip(self._filt, other._filt): c = cmp(self_filt[0], other_filt[0]) # compare degree if c!=0: return c c = cmp(self_filt[1].echelonized_basis_matrix(), # compare vector subspace other_filt[1].echelonized_basis_matrix()) if c!=0: return c return 0 def direct_sum(self, other): """ Return the direct sum. INPUT: - ``other`` -- a filtered vector space. OUTPUT: The direct sum as a filtered vector space. EXAMPLES:: sage: V = FilteredVectorSpace(2, 0) sage: W = FilteredVectorSpace({0:[(1,-1),(2,1)], 1:[(1,1)]}) sage: V.direct_sum(W) QQ^4 >= QQ^1 >= 0 sage: V + W # syntactic sugar QQ^4 >= QQ^1 >= 0 sage: V + V == FilteredVectorSpace(4, 0) True sage: W = FilteredVectorSpace([(1,-1),(2,1)], {1:[0,1], 2:[1]}) sage: V + W QQ^4 >= QQ^2 >= QQ^1 >= 0 A suitable base ring is chosen if they do not match:: sage: v = [(1,0), (0,1)] sage: F1 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=QQ) sage: F2 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=RDF) sage: F1 + F2 RDF^4 >= RDF^2 >= 0 """ from sage.structure.element import get_coercion_model base_ring = get_coercion_model().common_parent(self.base_ring(), other.base_ring()) # construct the generators self_gens, self_filt = self.presentation() other_gens, other_filt = other.presentation() generators = \ [ list(v) + [base_ring.zero()]*other.dimension() for v in self_gens ] + \ [ [base_ring.zero()]*self.dimension() + list(v) for v in other_gens ] # construct the filtration dictionary def join_indices(self_indices, other_indices): self_indices = tuple(self_indices) other_indices = tuple(i + len(self_gens) for i in other_indices) return self_indices + other_indices filtration = dict() self_indices = set() other_indices = set() for deg in reversed(uniq(self_filt.keys() + other_filt.keys())): self_indices.update(self_filt.get(deg, [])) other_indices.update(other_filt.get(deg, [])) gens = join_indices(self_indices, other_indices) filtration[deg] = gens return FilteredVectorSpace(generators, filtration, base_ring=base_ring) __add__ = direct_sum def tensor_product(self, other): r""" Return the graded tensor product. INPUT: - ``other`` -- a filtered vector space. OUTPUT: The graded tensor product, that is, the tensor product of a generator of degree `d_1` with a generator in degree `d_2` has degree `d_1 + d_2`. EXAMPLES:: sage: F1 = FilteredVectorSpace(1, 1) sage: F2 = FilteredVectorSpace(1, 2) sage: F1.tensor_product(F2) QQ^1 >= 0 sage: F1 * F2 QQ^1 >= 0 sage: F1.min_degree() 1 sage: F2.min_degree() 2 sage: (F1*F2).min_degree() 3 A suitable base ring is chosen if they do not match:: sage: v = [(1,0), (0,1)] sage: F1 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=QQ) sage: F2 = FilteredVectorSpace(v, {0:[0], 1:[1]}, base_ring=RDF) sage: F1 * F2 RDF^4 >= RDF^3 >= RDF^1 >= 0 """ V = self W = other from sage.structure.element import get_coercion_model base_ring = get_coercion_model().common_parent(V.base_ring(), W.base_ring()) from sage.modules.tensor_operations import VectorCollection, TensorOperation V_generators, V_indices = V.presentation() W_generators, W_indices = W.presentation() V_coll = VectorCollection(V_generators, base_ring, V.dimension()) W_coll = VectorCollection(W_generators, base_ring, W.dimension()) T = TensorOperation([V_coll, W_coll], 'product') filtration = dict() for V_deg in V.support(): for W_deg in W.support(): deg = V_deg + W_deg indices = filtration.get(deg, set()) for i in V_indices[V_deg]: for j in W_indices[W_deg]: i_tensor_j = T.index_map(i, j) indices.add(i_tensor_j) filtration[deg] = indices return FilteredVectorSpace(T.vectors(), filtration, base_ring=base_ring) __mul__ = tensor_product def _power_operation(self, n, operation): """ Return tensor power operation. INPUT: - ``n`` -- integer. the number of factors of ``self``. - ``operation`` -- string. See :class:`~sage.modules.tensor_operations.TensorOperation` for details. EXAMPLES:: sage: F = FilteredVectorSpace(1, 1) + FilteredVectorSpace(1, 2); F QQ^2 >= QQ^1 >= 0 sage: F._power_operation(2, 'symmetric') QQ^3 >= QQ^2 >= QQ^1 >= 0 sage: F._power_operation(2, 'antisymmetric') QQ^1 >= 0 """ from sage.modules.tensor_operations import VectorCollection, TensorOperation generators, indices = self.presentation() V = VectorCollection(generators, self.base_ring(), self.dimension()) T = TensorOperation([V] * n, operation) iters = [self.support()] * n filtration = dict() from sage.categories.cartesian_product import cartesian_product for degrees in cartesian_product(iters): deg = sum(degrees) filt_deg = filtration.get(deg, set()) for i in cartesian_product([indices.get(d) for d in degrees]): pow_i = T.index_map(*i) if pow_i is not None: filt_deg.add(pow_i) filtration[deg] = filt_deg return FilteredVectorSpace(T.vectors(), filtration, base_ring=self.base_ring()) def exterior_power(self, n): """ Return the `n`-th graded exterior power. INPUT: - ``n`` -- integer. Exterior product of how many copies of ``self``. OUTPUT: The graded exterior product, that is, the wedge product of a generator of degree `d_1` with a generator in degree `d_2` has degree `d_1 + d_2`. EXAMPLES:: sage: F = FilteredVectorSpace(1, 1) + FilteredVectorSpace(1, 2); F QQ^2 >= QQ^1 >= 0 sage: F.exterior_power(1) QQ^2 >= QQ^1 >= 0 sage: F.exterior_power(2) QQ^1 >= 0 sage: F.exterior_power(3) 0 sage: F.wedge(2) QQ^1 >= 0 """ return self._power_operation(n, 'antisymmetric') wedge = exterior_power def symmetric_power(self, n): """ Return the `n`-th graded symmetric power. INPUT: - ``n`` -- integer. Symmetric product of how many copies of ``self``. OUTPUT: The graded symmetric product, that is, the symmetrization of a generator of degree `d_1` with a generator in degree `d_2` has degree `d_1 + d_2`. EXAMPLES:: sage: F = FilteredVectorSpace(1, 1) + FilteredVectorSpace(1, 2); F QQ^2 >= QQ^1 >= 0 sage: F.symmetric_power(2) QQ^3 >= QQ^2 >= QQ^1 >= 0 """ return self._power_operation(n, 'symmetric') def dual(self): """ Return the dual filtered vector space. OUTPUT: The graded dual, that is, the dual of a degree-`d` subspace is a set of linear constraints in degree `-d+1`. That is, the dual generators live in degree `-d`. EXAMPLES:: sage: gens = identity_matrix(3).rows() sage: F = FilteredVectorSpace(gens, {0:[0,1,2], 2:[0]}); F QQ^3 >= QQ^1 >= QQ^1 >= 0 sage: F.support() (0, 2) sage: F.dual() QQ^3 >= QQ^2 >= QQ^2 >= 0 sage: F.dual().support() (-2, 0) """ filtration = dict() prev_deg = minus_infinity for deg, V in self._filt[1:]: filtration[-prev_deg] = V.complement().echelonized_basis() prev_deg = deg return FilteredVectorSpace(filtration, base_ring=self.base_ring()) def shift(self, deg): """ Return a filtered vector space with degrees shifted by a constant. EXAMPLES:: sage: gens = identity_matrix(3).rows() sage: F = FilteredVectorSpace(gens, {0:[0,1,2], 2:[0]}); F QQ^3 >= QQ^1 >= QQ^1 >= 0 sage: F.support() (0, 2) sage: F.shift(-5).support() (-5, -3) """ generators, filtration = self.presentation() shifted = dict() for d, indices in filtration.iteritems(): shifted[d + deg] = indices return FilteredVectorSpace(generators, shifted, base_ring=self.base_ring()) def random_deformation(self, epsilon=None): """ Return a random deformation INPUT: - ``epsilon`` -- a number in the base ring. OUTPUT: A new filtered vector space where the generators of the subspaces are moved by ``epsilon`` times a random vector. EXAMPLES:: sage: gens = identity_matrix(3).rows() sage: F = FilteredVectorSpace(gens, {0:[0,1,2], 2:[0]}); F QQ^3 >= QQ^1 >= QQ^1 >= 0 sage: F.get_degree(2) Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [1 0 0] sage: G = F.random_deformation(1/50); G QQ^3 >= QQ^1 >= QQ^1 >= 0 sage: G.get_degree(2) Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [ 1 -15/304 0] """ from sage.modules.free_module_element import random_vector R = self.base_ring() if epsilon is None: epsilon = R.one() filtration = dict() for deg, filt in self._filt[1:]: generators = [v + epsilon * random_vector(R, self.rank()) for v in filt.echelonized_basis()] filtration[deg] = generators return FilteredVectorSpace(filtration, base_ring=R, check=True)
the-stack_0_9383
""" test to_datetime """ import calendar from collections import deque from datetime import ( datetime, timedelta, ) from decimal import Decimal import locale from dateutil.parser import parse from dateutil.tz.tz import tzoffset import numpy as np import pytest import pytz from pandas._libs import tslib from pandas._libs.tslibs import ( iNaT, parsing, ) from pandas.errors import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, ) import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_datetime64_ns_dtype import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, NaT, Series, Timestamp, date_range, isna, to_datetime, ) import pandas._testing as tm from pandas.core.arrays import DatetimeArray from pandas.core.tools import datetimes as tools class TestTimeConversionFormats: @pytest.mark.parametrize("readonly", [True, False]) def test_to_datetime_readonly(self, readonly): # GH#34857 arr = np.array([], dtype=object) if readonly: arr.setflags(write=False) result = to_datetime(arr) expected = to_datetime([]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format(self, cache): values = ["1/1/2000", "1/2/2000", "1/3/2000"] results1 = [Timestamp("20000101"), Timestamp("20000201"), Timestamp("20000301")] results2 = [Timestamp("20000101"), Timestamp("20000102"), Timestamp("20000103")] for vals, expecteds in [ (values, (Index(results1), Index(results2))), (Series(values), (Series(results1), Series(results2))), (values[0], (results1[0], results2[0])), (values[1], (results1[1], results2[1])), (values[2], (results1[2], results2[2])), ]: for i, fmt in enumerate(["%d/%m/%Y", "%m/%d/%Y"]): result = to_datetime(vals, format=fmt, cache=cache) expected = expecteds[i] if isinstance(expected, Series): tm.assert_series_equal(result, Series(expected)) elif isinstance(expected, Timestamp): assert result == expected else: tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_YYYYMMDD(self, cache): s = Series([19801222, 19801222] + [19810105] * 5) expected = Series([Timestamp(x) for x in s.apply(str)]) result = to_datetime(s, format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) result = to_datetime(s.apply(str), format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) # with NaT expected = Series( [Timestamp("19801222"), Timestamp("19801222")] + [Timestamp("19810105")] * 5 ) expected[2] = np.nan s[2] = np.nan result = to_datetime(s, format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) # string with NaT s = s.apply(str) s[2] = "nat" result = to_datetime(s, format="%Y%m%d", cache=cache) tm.assert_series_equal(result, expected) # coercion # GH 7930 s = Series([20121231, 20141231, 99991231]) result = pd.to_datetime(s, format="%Y%m%d", errors="ignore", cache=cache) expected = Series( [datetime(2012, 12, 31), datetime(2014, 12, 31), datetime(9999, 12, 31)], dtype=object, ) tm.assert_series_equal(result, expected) result = pd.to_datetime(s, format="%Y%m%d", errors="coerce", cache=cache) expected = Series(["20121231", "20141231", "NaT"], dtype="M8[ns]") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "input_s", [ # Null values with Strings ["19801222", "20010112", None], ["19801222", "20010112", np.nan], ["19801222", "20010112", pd.NaT], ["19801222", "20010112", "NaT"], # Null values with Integers [19801222, 20010112, None], [19801222, 20010112, np.nan], [19801222, 20010112, pd.NaT], [19801222, 20010112, "NaT"], ], ) def test_to_datetime_format_YYYYMMDD_with_none(self, input_s): # GH 30011 # format='%Y%m%d' # with None expected = Series([Timestamp("19801222"), Timestamp("20010112"), pd.NaT]) result = Series(pd.to_datetime(input_s, format="%Y%m%d")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "input_s, expected", [ # NaN before strings with invalid date values [ Series(["19801222", np.nan, "20010012", "10019999"]), Series([Timestamp("19801222"), np.nan, np.nan, np.nan]), ], # NaN after strings with invalid date values [ Series(["19801222", "20010012", "10019999", np.nan]), Series([Timestamp("19801222"), np.nan, np.nan, np.nan]), ], # NaN before integers with invalid date values [ Series([20190813, np.nan, 20010012, 20019999]), Series([Timestamp("20190813"), np.nan, np.nan, np.nan]), ], # NaN after integers with invalid date values [ Series([20190813, 20010012, np.nan, 20019999]), Series([Timestamp("20190813"), np.nan, np.nan, np.nan]), ], ], ) def test_to_datetime_format_YYYYMMDD_overflow(self, input_s, expected): # GH 25512 # format='%Y%m%d', errors='coerce' result = pd.to_datetime(input_s, format="%Y%m%d", errors="coerce") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_integer(self, cache): # GH 10178 s = Series([2000, 2001, 2002]) expected = Series([Timestamp(x) for x in s.apply(str)]) result = to_datetime(s, format="%Y", cache=cache) tm.assert_series_equal(result, expected) s = Series([200001, 200105, 200206]) expected = Series([Timestamp(x[:4] + "-" + x[4:]) for x in s.apply(str)]) result = to_datetime(s, format="%Y%m", cache=cache) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "int_date, expected", [ # valid date, length == 8 [20121030, datetime(2012, 10, 30)], # short valid date, length == 6 [199934, datetime(1999, 3, 4)], # long integer date partially parsed to datetime(2012,1,1), length > 8 [2012010101, 2012010101], # invalid date partially parsed to datetime(2012,9,9), length == 8 [20129930, 20129930], # short integer date partially parsed to datetime(2012,9,9), length < 8 [2012993, 2012993], # short invalid date, length == 4 [2121, 2121], ], ) def test_int_to_datetime_format_YYYYMMDD_typeerror(self, int_date, expected): # GH 26583 result = to_datetime(int_date, format="%Y%m%d", errors="ignore") assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_microsecond(self, cache): # these are locale dependent lang, _ = locale.getlocale() month_abbr = calendar.month_abbr[4] val = f"01-{month_abbr}-2011 00:00:01.978" format = "%d-%b-%Y %H:%M:%S.%f" result = to_datetime(val, format=format, cache=cache) exp = datetime.strptime(val, format) assert result == exp @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_time(self, cache): data = [ ["01/10/2010 15:20", "%m/%d/%Y %H:%M", Timestamp("2010-01-10 15:20")], ["01/10/2010 05:43", "%m/%d/%Y %I:%M", Timestamp("2010-01-10 05:43")], [ "01/10/2010 13:56:01", "%m/%d/%Y %H:%M:%S", Timestamp("2010-01-10 13:56:01"), ] # , # ['01/10/2010 08:14 PM', '%m/%d/%Y %I:%M %p', # Timestamp('2010-01-10 20:14')], # ['01/10/2010 07:40 AM', '%m/%d/%Y %I:%M %p', # Timestamp('2010-01-10 07:40')], # ['01/10/2010 09:12:56 AM', '%m/%d/%Y %I:%M:%S %p', # Timestamp('2010-01-10 09:12:56')] ] for s, format, dt in data: assert to_datetime(s, format=format, cache=cache) == dt @td.skip_if_has_locale @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_with_non_exact(self, cache): # GH 10834 # 8904 # exact kw s = Series( ["19MAY11", "foobar19MAY11", "19MAY11:00:00:00", "19MAY11 00:00:00Z"] ) result = to_datetime(s, format="%d%b%y", exact=False, cache=cache) expected = to_datetime( s.str.extract(r"(\d+\w+\d+)", expand=False), format="%d%b%y", cache=cache ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_parse_nanoseconds_with_formula(self, cache): # GH8989 # truncating the nanoseconds when a format was provided for v in [ "2012-01-01 09:00:00.000000001", "2012-01-01 09:00:00.000001", "2012-01-01 09:00:00.001", "2012-01-01 09:00:00.001000", "2012-01-01 09:00:00.001000000", ]: expected = pd.to_datetime(v, cache=cache) result = pd.to_datetime(v, format="%Y-%m-%d %H:%M:%S.%f", cache=cache) assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_format_weeks(self, cache): data = [ ["2009324", "%Y%W%w", Timestamp("2009-08-13")], ["2013020", "%Y%U%w", Timestamp("2013-01-13")], ] for s, format, dt in data: assert to_datetime(s, format=format, cache=cache) == dt @pytest.mark.parametrize( "fmt,dates,expected_dates", [ [ "%Y-%m-%d %H:%M:%S %Z", ["2010-01-01 12:00:00 UTC"] * 2, [Timestamp("2010-01-01 12:00:00", tz="UTC")] * 2, ], [ "%Y-%m-%d %H:%M:%S %Z", [ "2010-01-01 12:00:00 UTC", "2010-01-01 12:00:00 GMT", "2010-01-01 12:00:00 US/Pacific", ], [ Timestamp("2010-01-01 12:00:00", tz="UTC"), Timestamp("2010-01-01 12:00:00", tz="GMT"), Timestamp("2010-01-01 12:00:00", tz="US/Pacific"), ], ], [ "%Y-%m-%d %H:%M:%S%z", ["2010-01-01 12:00:00+0100"] * 2, [Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(60))] * 2, ], [ "%Y-%m-%d %H:%M:%S %z", ["2010-01-01 12:00:00 +0100"] * 2, [Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(60))] * 2, ], [ "%Y-%m-%d %H:%M:%S %z", ["2010-01-01 12:00:00 +0100", "2010-01-01 12:00:00 -0100"], [ Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(60)), Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(-60)), ], ], [ "%Y-%m-%d %H:%M:%S %z", ["2010-01-01 12:00:00 Z", "2010-01-01 12:00:00 Z"], [ Timestamp( "2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(0) ), # pytz coerces to UTC Timestamp("2010-01-01 12:00:00", tzinfo=pytz.FixedOffset(0)), ], ], ], ) def test_to_datetime_parse_tzname_or_tzoffset(self, fmt, dates, expected_dates): # GH 13486 result = pd.to_datetime(dates, format=fmt) expected = Index(expected_dates) tm.assert_equal(result, expected) def test_to_datetime_parse_tzname_or_tzoffset_different_tz_to_utc(self): # GH 32792 dates = [ "2010-01-01 12:00:00 +0100", "2010-01-01 12:00:00 -0100", "2010-01-01 12:00:00 +0300", "2010-01-01 12:00:00 +0400", ] expected_dates = [ "2010-01-01 11:00:00+00:00", "2010-01-01 13:00:00+00:00", "2010-01-01 09:00:00+00:00", "2010-01-01 08:00:00+00:00", ] fmt = "%Y-%m-%d %H:%M:%S %z" result = pd.to_datetime(dates, format=fmt, utc=True) expected = DatetimeIndex(expected_dates) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "offset", ["+0", "-1foo", "UTCbar", ":10", "+01:000:01", ""] ) def test_to_datetime_parse_timezone_malformed(self, offset): fmt = "%Y-%m-%d %H:%M:%S %z" date = "2010-01-01 12:00:00 " + offset msg = "does not match format|unconverted data remains" with pytest.raises(ValueError, match=msg): pd.to_datetime([date], format=fmt) def test_to_datetime_parse_timezone_keeps_name(self): # GH 21697 fmt = "%Y-%m-%d %H:%M:%S %z" arg = Index(["2010-01-01 12:00:00 Z"], name="foo") result = pd.to_datetime(arg, format=fmt) expected = DatetimeIndex(["2010-01-01 12:00:00"], tz="UTC", name="foo") tm.assert_index_equal(result, expected) class TestToDatetime: @pytest.mark.parametrize( "s, _format, dt", [ ["2015-1-1", "%G-%V-%u", datetime(2014, 12, 29, 0, 0)], ["2015-1-4", "%G-%V-%u", datetime(2015, 1, 1, 0, 0)], ["2015-1-7", "%G-%V-%u", datetime(2015, 1, 4, 0, 0)], ], ) def test_to_datetime_iso_week_year_format(self, s, _format, dt): # See GH#16607 assert to_datetime(s, format=_format) == dt @pytest.mark.parametrize( "msg, s, _format", [ [ "ISO week directive '%V' must be used with the ISO year directive " "'%G' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 50", "%Y %V", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 51", "%G %V", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 Monday", "%G %A", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 Mon", "%G %a", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 6", "%G %w", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "1999 6", "%G %u", ], [ "ISO year directive '%G' must be used with the ISO week directive " "'%V' and a weekday directive '%A', '%a', '%w', or '%u'.", "2051", "%G", ], [ "Day of the year directive '%j' is not compatible with ISO year " "directive '%G'. Use '%Y' instead.", "1999 51 6 256", "%G %V %u %j", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 Sunday", "%Y %V %A", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 Sun", "%Y %V %a", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 1", "%Y %V %w", ], [ "ISO week directive '%V' is incompatible with the year directive " "'%Y'. Use the ISO year '%G' instead.", "1999 51 1", "%Y %V %u", ], [ "ISO week directive '%V' must be used with the ISO year directive " "'%G' and a weekday directive '%A', '%a', '%w', or '%u'.", "20", "%V", ], ], ) def test_error_iso_week_year(self, msg, s, _format): # See GH#16607 # This test checks for errors thrown when giving the wrong format # However, as discussed on PR#25541, overriding the locale # causes a different error to be thrown due to the format being # locale specific, but the test data is in english. # Therefore, the tests only run when locale is not overwritten, # as a sort of solution to this problem. if locale.getlocale() != ("zh_CN", "UTF-8") and locale.getlocale() != ( "it_IT", "UTF-8", ): with pytest.raises(ValueError, match=msg): to_datetime(s, format=_format) @pytest.mark.parametrize("tz", [None, "US/Central"]) def test_to_datetime_dtarr(self, tz): # DatetimeArray dti = date_range("1965-04-03", periods=19, freq="2W", tz=tz) arr = DatetimeArray(dti) result = to_datetime(arr) assert result is arr result = to_datetime(arr) assert result is arr def test_to_datetime_pydatetime(self): actual = pd.to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) def test_to_datetime_YYYYMMDD(self): actual = pd.to_datetime("20080115") assert actual == datetime(2008, 1, 15) def test_to_datetime_unparseable_ignore(self): # unparseable s = "Month 1, 1999" assert pd.to_datetime(s, errors="ignore") == s @td.skip_if_windows # `tm.set_timezone` does not work in windows def test_to_datetime_now(self): # See GH#18666 with tm.set_timezone("US/Eastern"): npnow = np.datetime64("now").astype("datetime64[ns]") pdnow = pd.to_datetime("now") pdnow2 = pd.to_datetime(["now"])[0] # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdnow.value - npnow.astype(np.int64)) < 1e10 assert abs(pdnow2.value - npnow.astype(np.int64)) < 1e10 assert pdnow.tzinfo is None assert pdnow2.tzinfo is None @td.skip_if_windows # `tm.set_timezone` does not work in windows def test_to_datetime_today(self): # See GH#18666 # Test with one timezone far ahead of UTC and another far behind, so # one of these will _almost_ always be in a different day from UTC. # Unfortunately this test between 12 and 1 AM Samoa time # this both of these timezones _and_ UTC will all be in the same day, # so this test will not detect the regression introduced in #18666. with tm.set_timezone("Pacific/Auckland"): # 12-13 hours ahead of UTC nptoday = np.datetime64("today").astype("datetime64[ns]").astype(np.int64) pdtoday = pd.to_datetime("today") pdtoday2 = pd.to_datetime(["today"])[0] tstoday = Timestamp("today") tstoday2 = Timestamp.today() # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdtoday.normalize().value - nptoday) < 1e10 assert abs(pdtoday2.normalize().value - nptoday) < 1e10 assert abs(pdtoday.value - tstoday.value) < 1e10 assert abs(pdtoday.value - tstoday2.value) < 1e10 assert pdtoday.tzinfo is None assert pdtoday2.tzinfo is None with tm.set_timezone("US/Samoa"): # 11 hours behind UTC nptoday = np.datetime64("today").astype("datetime64[ns]").astype(np.int64) pdtoday = pd.to_datetime("today") pdtoday2 = pd.to_datetime(["today"])[0] # These should all be equal with infinite perf; this gives # a generous margin of 10 seconds assert abs(pdtoday.normalize().value - nptoday) < 1e10 assert abs(pdtoday2.normalize().value - nptoday) < 1e10 assert pdtoday.tzinfo is None assert pdtoday2.tzinfo is None def test_to_datetime_today_now_unicode_bytes(self): to_datetime(["now"]) to_datetime(["today"]) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_dt64s(self, cache): in_bound_dts = [np.datetime64("2000-01-01"), np.datetime64("2000-01-02")] for dt in in_bound_dts: assert pd.to_datetime(dt, cache=cache) == Timestamp(dt) @pytest.mark.parametrize( "dt", [np.datetime64("1000-01-01"), np.datetime64("5000-01-02")] ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_dt64s_out_of_bounds(self, cache, dt): msg = f"Out of bounds nanosecond timestamp: {dt}" with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime(dt, errors="raise") with pytest.raises(OutOfBoundsDatetime, match=msg): Timestamp(dt) assert pd.to_datetime(dt, errors="coerce", cache=cache) is NaT @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize("unit", ["s", "D"]) def test_to_datetime_array_of_dt64s(self, cache, unit): # https://github.com/pandas-dev/pandas/issues/31491 # Need at least 50 to ensure cache is used. dts = [ np.datetime64("2000-01-01", unit), np.datetime64("2000-01-02", unit), ] * 30 # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing tm.assert_index_equal( pd.to_datetime(dts, cache=cache), DatetimeIndex([Timestamp(x).asm8 for x in dts]), ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64("9999-01-01")] msg = "Out of bounds nanosecond timestamp: 9999-01-01 00:00:00" with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime(dts_with_oob, errors="raise") tm.assert_index_equal( pd.to_datetime(dts_with_oob, errors="coerce", cache=cache), DatetimeIndex( [Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8] * 30 + [pd.NaT], ), ) # With errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date tm.assert_index_equal( pd.to_datetime(dts_with_oob, errors="ignore", cache=cache), Index([dt.item() for dt in dts_with_oob]), ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_tz(self, cache): # xref 8260 # uniform returns a DatetimeIndex arr = [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ] result = pd.to_datetime(arr, cache=cache) expected = DatetimeIndex( ["2013-01-01 13:00:00", "2013-01-02 14:00:00"], tz="US/Pacific" ) tm.assert_index_equal(result, expected) # mixed tzs will raise arr = [ Timestamp("2013-01-01 13:00:00", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00", tz="US/Eastern"), ] msg = ( "Tz-aware datetime.datetime cannot be " "converted to datetime64 unless utc=True" ) with pytest.raises(ValueError, match=msg): pd.to_datetime(arr, cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_different_offsets(self, cache): # inspired by asv timeseries.ToDatetimeNONISO8601 benchmark # see GH-26097 for more ts_string_1 = "March 1, 2018 12:00:00+0400" ts_string_2 = "March 1, 2018 12:00:00+0500" arr = [ts_string_1] * 5 + [ts_string_2] * 5 expected = Index([parse(x) for x in arr]) result = pd.to_datetime(arr, cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_tz_pytz(self, cache): # see gh-8260 us_eastern = pytz.timezone("US/Eastern") arr = np.array( [ us_eastern.localize( datetime(year=2000, month=1, day=1, hour=3, minute=0) ), us_eastern.localize( datetime(year=2000, month=6, day=1, hour=3, minute=0) ), ], dtype=object, ) result = pd.to_datetime(arr, utc=True, cache=cache) expected = DatetimeIndex( ["2000-01-01 08:00:00+00:00", "2000-06-01 07:00:00+00:00"], dtype="datetime64[ns, UTC]", freq=None, ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize( "init_constructor, end_constructor, test_method", [ (Index, DatetimeIndex, tm.assert_index_equal), (list, DatetimeIndex, tm.assert_index_equal), (np.array, DatetimeIndex, tm.assert_index_equal), (Series, Series, tm.assert_series_equal), ], ) def test_to_datetime_utc_true( self, cache, init_constructor, end_constructor, test_method ): # See gh-11934 & gh-6415 data = ["20100102 121314", "20100102 121315"] expected_data = [ Timestamp("2010-01-02 12:13:14", tz="utc"), Timestamp("2010-01-02 12:13:15", tz="utc"), ] result = pd.to_datetime( init_constructor(data), format="%Y%m%d %H%M%S", utc=True, cache=cache ) expected = end_constructor(expected_data) test_method(result, expected) # Test scalar case as well for scalar, expected in zip(data, expected_data): result = pd.to_datetime( scalar, format="%Y%m%d %H%M%S", utc=True, cache=cache ) assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_utc_true_with_series_single_value(self, cache): # GH 15760 UTC=True with Series ts = 1.5e18 result = pd.to_datetime(Series([ts]), utc=True, cache=cache) expected = Series([Timestamp(ts, tz="utc")]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_utc_true_with_series_tzaware_string(self, cache): ts = "2013-01-01 00:00:00-01:00" expected_ts = "2013-01-01 01:00:00" data = Series([ts] * 3) result = pd.to_datetime(data, utc=True, cache=cache) expected = Series([Timestamp(expected_ts, tz="utc")] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize( "date, dtype", [ ("2013-01-01 01:00:00", "datetime64[ns]"), ("2013-01-01 01:00:00", "datetime64[ns, UTC]"), ], ) def test_to_datetime_utc_true_with_series_datetime_ns(self, cache, date, dtype): expected = Series([Timestamp("2013-01-01 01:00:00", tz="UTC")]) result = pd.to_datetime(Series([date], dtype=dtype), utc=True, cache=cache) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) @td.skip_if_no("psycopg2") def test_to_datetime_tz_psycopg2(self, cache): # xref 8260 import psycopg2 # misc cases tz1 = psycopg2.tz.FixedOffsetTimezone(offset=-300, name=None) tz2 = psycopg2.tz.FixedOffsetTimezone(offset=-240, name=None) arr = np.array( [ datetime(2000, 1, 1, 3, 0, tzinfo=tz1), datetime(2000, 6, 1, 3, 0, tzinfo=tz2), ], dtype=object, ) result = pd.to_datetime(arr, errors="coerce", utc=True, cache=cache) expected = DatetimeIndex( ["2000-01-01 08:00:00+00:00", "2000-06-01 07:00:00+00:00"], dtype="datetime64[ns, UTC]", freq=None, ) tm.assert_index_equal(result, expected) # dtype coercion i = DatetimeIndex( ["2000-01-01 08:00:00"], tz=psycopg2.tz.FixedOffsetTimezone(offset=-300, name=None), ) assert is_datetime64_ns_dtype(i) # tz coercion result = pd.to_datetime(i, errors="coerce", cache=cache) tm.assert_index_equal(result, i) result = pd.to_datetime(i, errors="coerce", utc=True, cache=cache) expected = DatetimeIndex(["2000-01-01 13:00:00"], dtype="datetime64[ns, UTC]") tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_datetime_bool(self, cache): # GH13176 msg = r"dtype bool cannot be converted to datetime64\[ns\]" with pytest.raises(TypeError, match=msg): to_datetime(False) assert to_datetime(False, errors="coerce", cache=cache) is NaT assert to_datetime(False, errors="ignore", cache=cache) is False with pytest.raises(TypeError, match=msg): to_datetime(True) assert to_datetime(True, errors="coerce", cache=cache) is NaT assert to_datetime(True, errors="ignore", cache=cache) is True msg = f"{type(cache)} is not convertible to datetime" with pytest.raises(TypeError, match=msg): to_datetime([False, datetime.today()], cache=cache) with pytest.raises(TypeError, match=msg): to_datetime(["20130101", True], cache=cache) tm.assert_index_equal( to_datetime([0, False, NaT, 0.0], errors="coerce", cache=cache), DatetimeIndex( [to_datetime(0, cache=cache), NaT, NaT, to_datetime(0, cache=cache)] ), ) def test_datetime_invalid_datatype(self): # GH13176 msg = "is not convertible to datetime" with pytest.raises(TypeError, match=msg): pd.to_datetime(bool) with pytest.raises(TypeError, match=msg): pd.to_datetime(pd.to_datetime) @pytest.mark.parametrize("value", ["a", "00:01:99"]) @pytest.mark.parametrize("infer", [True, False]) @pytest.mark.parametrize("format", [None, "H%:M%:S%"]) def test_datetime_invalid_scalar(self, value, format, infer): # GH24763 res = pd.to_datetime( value, errors="ignore", format=format, infer_datetime_format=infer ) assert res == value res = pd.to_datetime( value, errors="coerce", format=format, infer_datetime_format=infer ) assert res is pd.NaT msg = ( "is a bad directive in format|" "second must be in 0..59|" "Given date string not likely a datetime" ) with pytest.raises(ValueError, match=msg): pd.to_datetime( value, errors="raise", format=format, infer_datetime_format=infer ) @pytest.mark.parametrize("value", ["3000/12/11 00:00:00"]) @pytest.mark.parametrize("infer", [True, False]) @pytest.mark.parametrize("format", [None, "H%:M%:S%"]) def test_datetime_outofbounds_scalar(self, value, format, infer): # GH24763 res = pd.to_datetime( value, errors="ignore", format=format, infer_datetime_format=infer ) assert res == value res = pd.to_datetime( value, errors="coerce", format=format, infer_datetime_format=infer ) assert res is pd.NaT if format is not None: msg = "is a bad directive in format|Out of bounds nanosecond timestamp" with pytest.raises(ValueError, match=msg): pd.to_datetime( value, errors="raise", format=format, infer_datetime_format=infer ) else: msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime( value, errors="raise", format=format, infer_datetime_format=infer ) @pytest.mark.parametrize("values", [["a"], ["00:01:99"], ["a", "b", "99:00:00"]]) @pytest.mark.parametrize("infer", [True, False]) @pytest.mark.parametrize("format", [None, "H%:M%:S%"]) def test_datetime_invalid_index(self, values, format, infer): # GH24763 res = pd.to_datetime( values, errors="ignore", format=format, infer_datetime_format=infer ) tm.assert_index_equal(res, Index(values)) res = pd.to_datetime( values, errors="coerce", format=format, infer_datetime_format=infer ) tm.assert_index_equal(res, DatetimeIndex([pd.NaT] * len(values))) msg = ( "is a bad directive in format|" "Given date string not likely a datetime|" "second must be in 0..59" ) with pytest.raises(ValueError, match=msg): pd.to_datetime( values, errors="raise", format=format, infer_datetime_format=infer ) @pytest.mark.parametrize("utc", [True, None]) @pytest.mark.parametrize("format", ["%Y%m%d %H:%M:%S", None]) @pytest.mark.parametrize("constructor", [list, tuple, np.array, Index, deque]) def test_to_datetime_cache(self, utc, format, constructor): date = "20130101 00:00:00" test_dates = [date] * 10 ** 5 data = constructor(test_dates) result = pd.to_datetime(data, utc=utc, format=format, cache=True) expected = pd.to_datetime(data, utc=utc, format=format, cache=False) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "listlike", [ (deque([Timestamp("2010-06-02 09:30:00")] * 51)), ([Timestamp("2010-06-02 09:30:00")] * 51), (tuple([Timestamp("2010-06-02 09:30:00")] * 51)), ], ) def test_no_slicing_errors_in_should_cache(self, listlike): # GH 29403 assert tools.should_cache(listlike) is True def test_to_datetime_from_deque(self): # GH 29403 result = pd.to_datetime(deque([Timestamp("2010-06-02 09:30:00")] * 51)) expected = pd.to_datetime([Timestamp("2010-06-02 09:30:00")] * 51) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("utc", [True, None]) @pytest.mark.parametrize("format", ["%Y%m%d %H:%M:%S", None]) def test_to_datetime_cache_series(self, utc, format): date = "20130101 00:00:00" test_dates = [date] * 10 ** 5 data = Series(test_dates) result = pd.to_datetime(data, utc=utc, format=format, cache=True) expected = pd.to_datetime(data, utc=utc, format=format, cache=False) tm.assert_series_equal(result, expected) def test_to_datetime_cache_scalar(self): date = "20130101 00:00:00" result = pd.to_datetime(date, cache=True) expected = Timestamp("20130101 00:00:00") assert result == expected @pytest.mark.parametrize( "date, format", [ ("2017-20", "%Y-%W"), ("20 Sunday", "%W %A"), ("20 Sun", "%W %a"), ("2017-21", "%Y-%U"), ("20 Sunday", "%U %A"), ("20 Sun", "%U %a"), ], ) def test_week_without_day_and_calendar_year(self, date, format): # GH16774 msg = "Cannot use '%W' or '%U' without day and year" with pytest.raises(ValueError, match=msg): pd.to_datetime(date, format=format) def test_to_datetime_coerce(self): # GH 26122 ts_strings = [ "March 1, 2018 12:00:00+0400", "March 1, 2018 12:00:00+0500", "20100240", ] result = to_datetime(ts_strings, errors="coerce") expected = Index( [ datetime(2018, 3, 1, 12, 0, tzinfo=tzoffset(None, 14400)), datetime(2018, 3, 1, 12, 0, tzinfo=tzoffset(None, 18000)), NaT, ] ) tm.assert_index_equal(result, expected) def test_to_datetime_coerce_malformed(self): # GH 28299 ts_strings = ["200622-12-31", "111111-24-11"] result = to_datetime(ts_strings, errors="coerce") expected = Index([NaT, NaT]) tm.assert_index_equal(result, expected) def test_iso_8601_strings_with_same_offset(self): # GH 17697, 11736 ts_str = "2015-11-18 15:30:00+05:30" result = to_datetime(ts_str) expected = Timestamp(ts_str) assert result == expected expected = DatetimeIndex([Timestamp(ts_str)] * 2) result = to_datetime([ts_str] * 2) tm.assert_index_equal(result, expected) result = DatetimeIndex([ts_str] * 2) tm.assert_index_equal(result, expected) def test_iso_8601_strings_with_different_offsets(self): # GH 17697, 11736 ts_strings = ["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30", NaT] result = to_datetime(ts_strings) expected = np.array( [ datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 19800)), datetime(2015, 11, 18, 16, 30, tzinfo=tzoffset(None, 23400)), NaT, ], dtype=object, ) # GH 21864 expected = Index(expected) tm.assert_index_equal(result, expected) result = to_datetime(ts_strings, utc=True) expected = DatetimeIndex( [Timestamp(2015, 11, 18, 10), Timestamp(2015, 11, 18, 10), NaT], tz="UTC" ) tm.assert_index_equal(result, expected) def test_iso8601_strings_mixed_offsets_with_naive(self): # GH 24992 result = pd.to_datetime( [ "2018-11-28T00:00:00", "2018-11-28T00:00:00+12:00", "2018-11-28T00:00:00", "2018-11-28T00:00:00+06:00", "2018-11-28T00:00:00", ], utc=True, ) expected = pd.to_datetime( [ "2018-11-28T00:00:00", "2018-11-27T12:00:00", "2018-11-28T00:00:00", "2018-11-27T18:00:00", "2018-11-28T00:00:00", ], utc=True, ) tm.assert_index_equal(result, expected) items = ["2018-11-28T00:00:00+12:00", "2018-11-28T00:00:00"] result = pd.to_datetime(items, utc=True) expected = pd.to_datetime(list(reversed(items)), utc=True)[::-1] tm.assert_index_equal(result, expected) def test_mixed_offsets_with_native_datetime_raises(self): # GH 25978 s = Series( [ "nan", Timestamp("1990-01-01"), "2015-03-14T16:15:14.123-08:00", "2019-03-04T21:56:32.620-07:00", None, ] ) with pytest.raises(ValueError, match="Tz-aware datetime.datetime"): pd.to_datetime(s) def test_non_iso_strings_with_tz_offset(self): result = to_datetime(["March 1, 2018 12:00:00+0400"] * 2) expected = DatetimeIndex( [datetime(2018, 3, 1, 12, tzinfo=pytz.FixedOffset(240))] * 2 ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "ts, expected", [ (Timestamp("2018-01-01"), Timestamp("2018-01-01", tz="UTC")), ( Timestamp("2018-01-01", tz="US/Pacific"), Timestamp("2018-01-01 08:00", tz="UTC"), ), ], ) def test_timestamp_utc_true(self, ts, expected): # GH 24415 result = to_datetime(ts, utc=True) assert result == expected @pytest.mark.parametrize("dt_str", ["00010101", "13000101", "30000101", "99990101"]) def test_to_datetime_with_format_out_of_bounds(self, dt_str): # GH 9107 msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): pd.to_datetime(dt_str, format="%Y%m%d") def test_to_datetime_utc(self): arr = np.array([parse("2012-06-13T01:39:00Z")], dtype=object) result = to_datetime(arr, utc=True) assert result.tz is pytz.utc def test_to_datetime_fixed_offset(self): from pandas.tests.indexes.datetimes.test_timezones import fixed_off dates = [ datetime(2000, 1, 1, tzinfo=fixed_off), datetime(2000, 1, 2, tzinfo=fixed_off), datetime(2000, 1, 3, tzinfo=fixed_off), ] result = to_datetime(dates) assert result.tz == fixed_off class TestToDatetimeUnit: @pytest.mark.parametrize("cache", [True, False]) def test_unit(self, cache): # GH 11758 # test proper behavior with errors msg = "cannot specify both format and unit" with pytest.raises(ValueError, match=msg): to_datetime([1], unit="D", format="%Y%m%d", cache=cache) values = [11111111, 1, 1.0, iNaT, NaT, np.nan, "NaT", ""] result = to_datetime(values, unit="D", errors="ignore", cache=cache) expected = Index( [ 11111111, Timestamp("1970-01-02"), Timestamp("1970-01-02"), NaT, NaT, NaT, NaT, NaT, ], dtype=object, ) tm.assert_index_equal(result, expected) result = to_datetime(values, unit="D", errors="coerce", cache=cache) expected = DatetimeIndex( ["NaT", "1970-01-02", "1970-01-02", "NaT", "NaT", "NaT", "NaT", "NaT"] ) tm.assert_index_equal(result, expected) msg = "cannot convert input 11111111 with the unit 'D'" with pytest.raises(tslib.OutOfBoundsDatetime, match=msg): to_datetime(values, unit="D", errors="raise", cache=cache) values = [1420043460000, iNaT, NaT, np.nan, "NaT"] result = to_datetime(values, errors="ignore", unit="s", cache=cache) expected = Index([1420043460000, NaT, NaT, NaT, NaT], dtype=object) tm.assert_index_equal(result, expected) result = to_datetime(values, errors="coerce", unit="s", cache=cache) expected = DatetimeIndex(["NaT", "NaT", "NaT", "NaT", "NaT"]) tm.assert_index_equal(result, expected) msg = "cannot convert input 1420043460000 with the unit 's'" with pytest.raises(tslib.OutOfBoundsDatetime, match=msg): to_datetime(values, errors="raise", unit="s", cache=cache) # if we have a string, then we raise a ValueError # and NOT an OutOfBoundsDatetime for val in ["foo", Timestamp("20130101")]: try: to_datetime(val, errors="raise", unit="s", cache=cache) except tslib.OutOfBoundsDatetime as err: raise AssertionError("incorrect exception raised") from err except ValueError: pass @pytest.mark.parametrize("cache", [True, False]) def test_unit_consistency(self, cache): # consistency of conversions expected = Timestamp("1970-05-09 14:25:11") result = pd.to_datetime(11111111, unit="s", errors="raise", cache=cache) assert result == expected assert isinstance(result, Timestamp) result = pd.to_datetime(11111111, unit="s", errors="coerce", cache=cache) assert result == expected assert isinstance(result, Timestamp) result = pd.to_datetime(11111111, unit="s", errors="ignore", cache=cache) assert result == expected assert isinstance(result, Timestamp) @pytest.mark.parametrize("cache", [True, False]) def test_unit_with_numeric(self, cache): # GH 13180 # coercions from floats/ints are ok expected = DatetimeIndex(["2015-06-19 05:33:20", "2015-05-27 22:33:20"]) arr1 = [1.434692e18, 1.432766e18] arr2 = np.array(arr1).astype("int64") for errors in ["ignore", "raise", "coerce"]: result = pd.to_datetime(arr1, errors=errors, cache=cache) tm.assert_index_equal(result, expected) result = pd.to_datetime(arr2, errors=errors, cache=cache) tm.assert_index_equal(result, expected) # but we want to make sure that we are coercing # if we have ints/strings expected = DatetimeIndex(["NaT", "2015-06-19 05:33:20", "2015-05-27 22:33:20"]) arr = ["foo", 1.434692e18, 1.432766e18] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) expected = DatetimeIndex( ["2015-06-19 05:33:20", "2015-05-27 22:33:20", "NaT", "NaT"] ) arr = [1.434692e18, 1.432766e18, "foo", "NaT"] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_unit_mixed(self, cache): # mixed integers/datetimes expected = DatetimeIndex(["2013-01-01", "NaT", "NaT"]) arr = [Timestamp("20130101"), 1.434692e18, 1.432766e18] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) msg = "mixed datetimes and integers in passed array" with pytest.raises(ValueError, match=msg): pd.to_datetime(arr, errors="raise", cache=cache) expected = DatetimeIndex(["NaT", "NaT", "2013-01-01"]) arr = [1.434692e18, 1.432766e18, Timestamp("20130101")] result = pd.to_datetime(arr, errors="coerce", cache=cache) tm.assert_index_equal(result, expected) with pytest.raises(ValueError, match=msg): pd.to_datetime(arr, errors="raise", cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_unit_rounding(self, cache): # GH 14156 & GH 20445: argument will incur floating point errors # but no premature rounding result = pd.to_datetime(1434743731.8770001, unit="s", cache=cache) expected = Timestamp("2015-06-19 19:55:31.877000192") assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_unit_ignore_keeps_name(self, cache): # GH 21697 expected = Index([15e9] * 2, name="name") result = pd.to_datetime(expected, errors="ignore", unit="s", cache=cache) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_dataframe(self, cache): df = DataFrame( { "year": [2015, 2016], "month": [2, 3], "day": [4, 5], "hour": [6, 7], "minute": [58, 59], "second": [10, 11], "ms": [1, 1], "us": [2, 2], "ns": [3, 3], } ) result = to_datetime( {"year": df["year"], "month": df["month"], "day": df["day"]}, cache=cache ) expected = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160305 00:0:00")] ) tm.assert_series_equal(result, expected) # dict-like result = to_datetime(df[["year", "month", "day"]].to_dict(), cache=cache) tm.assert_series_equal(result, expected) # dict but with constructable df2 = df[["year", "month", "day"]].to_dict() df2["month"] = 2 result = to_datetime(df2, cache=cache) expected2 = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160205 00:0:00")] ) tm.assert_series_equal(result, expected2) # unit mappings units = [ { "year": "years", "month": "months", "day": "days", "hour": "hours", "minute": "minutes", "second": "seconds", }, { "year": "year", "month": "month", "day": "day", "hour": "hour", "minute": "minute", "second": "second", }, ] for d in units: result = to_datetime(df[list(d.keys())].rename(columns=d), cache=cache) expected = Series( [Timestamp("20150204 06:58:10"), Timestamp("20160305 07:59:11")] ) tm.assert_series_equal(result, expected) d = { "year": "year", "month": "month", "day": "day", "hour": "hour", "minute": "minute", "second": "second", "ms": "ms", "us": "us", "ns": "ns", } result = to_datetime(df.rename(columns=d), cache=cache) expected = Series( [ Timestamp("20150204 06:58:10.001002003"), Timestamp("20160305 07:59:11.001002003"), ] ) tm.assert_series_equal(result, expected) # coerce back to int result = to_datetime(df.astype(str), cache=cache) tm.assert_series_equal(result, expected) # passing coerce df2 = DataFrame({"year": [2015, 2016], "month": [2, 20], "day": [4, 5]}) msg = ( "cannot assemble the datetimes: time data .+ does not " r"match format '%Y%m%d' \(match\)" ) with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) result = to_datetime(df2, errors="coerce", cache=cache) expected = Series([Timestamp("20150204 00:00:00"), NaT]) tm.assert_series_equal(result, expected) # extra columns msg = r"extra keys have been passed to the datetime assemblage: \[foo\]" with pytest.raises(ValueError, match=msg): df2 = df.copy() df2["foo"] = 1 to_datetime(df2, cache=cache) # not enough msg = ( r"to assemble mappings requires at least that \[year, month, " r"day\] be specified: \[.+\] is missing" ) for c in [ ["year"], ["year", "month"], ["year", "month", "second"], ["month", "day"], ["year", "day", "second"], ]: with pytest.raises(ValueError, match=msg): to_datetime(df[c], cache=cache) # duplicates msg = "cannot assemble with duplicate keys" df2 = DataFrame({"year": [2015, 2016], "month": [2, 20], "day": [4, 5]}) df2.columns = ["year", "year", "day"] with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) df2 = DataFrame( {"year": [2015, 2016], "month": [2, 20], "day": [4, 5], "hour": [4, 5]} ) df2.columns = ["year", "month", "day", "day"] with pytest.raises(ValueError, match=msg): to_datetime(df2, cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_dataframe_dtypes(self, cache): # #13451 df = DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) # int16 result = to_datetime(df.astype("int16"), cache=cache) expected = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160305 00:00:00")] ) tm.assert_series_equal(result, expected) # mixed dtypes df["month"] = df["month"].astype("int8") df["day"] = df["day"].astype("int8") result = to_datetime(df, cache=cache) expected = Series( [Timestamp("20150204 00:00:00"), Timestamp("20160305 00:00:00")] ) tm.assert_series_equal(result, expected) # float df = DataFrame({"year": [2000, 2001], "month": [1.5, 1], "day": [1, 1]}) msg = "cannot assemble the datetimes: unconverted data remains: 1" with pytest.raises(ValueError, match=msg): to_datetime(df, cache=cache) def test_dataframe_utc_true(self): # GH 23760 df = DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) result = pd.to_datetime(df, utc=True) expected = Series( np.array(["2015-02-04", "2016-03-05"], dtype="datetime64[ns]") ).dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_to_datetime_errors_ignore_utc_true(self): # GH 23758 result = pd.to_datetime([1], unit="s", utc=True, errors="ignore") expected = DatetimeIndex(["1970-01-01 00:00:01"], tz="UTC") tm.assert_index_equal(result, expected) # TODO: this is moved from tests.series.test_timeseries, may be redundant def test_to_datetime_unit(self): epoch = 1370745748 s = Series([epoch + t for t in range(20)]) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] ) tm.assert_series_equal(result, expected) s = Series([epoch + t for t in range(20)]).astype(float) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] ) tm.assert_series_equal(result, expected) s = Series([epoch + t for t in range(20)] + [iNaT]) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] + [NaT] ) tm.assert_series_equal(result, expected) s = Series([epoch + t for t in range(20)] + [iNaT]).astype(float) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] + [NaT] ) tm.assert_series_equal(result, expected) # GH13834 s = Series([epoch + t for t in np.arange(0, 2, 0.25)] + [iNaT]).astype(float) result = to_datetime(s, unit="s") expected = Series( [ Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in np.arange(0, 2, 0.25) ] + [NaT] ) # GH20455 argument will incur floating point errors but no premature rounding result = result.round("ms") tm.assert_series_equal(result, expected) s = pd.concat( [Series([epoch + t for t in range(20)]).astype(float), Series([np.nan])], ignore_index=True, ) result = to_datetime(s, unit="s") expected = Series( [Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20)] + [NaT] ) tm.assert_series_equal(result, expected) result = to_datetime([1, 2, "NaT", pd.NaT, np.nan], unit="D") expected = DatetimeIndex( [Timestamp("1970-01-02"), Timestamp("1970-01-03")] + ["NaT"] * 3 ) tm.assert_index_equal(result, expected) msg = "non convertible value foo with the unit 'D'" with pytest.raises(ValueError, match=msg): to_datetime([1, 2, "foo"], unit="D") msg = "cannot convert input 111111111 with the unit 'D'" with pytest.raises(OutOfBoundsDatetime, match=msg): to_datetime([1, 2, 111111111], unit="D") # coerce we can process expected = DatetimeIndex( [Timestamp("1970-01-02"), Timestamp("1970-01-03")] + ["NaT"] * 1 ) result = to_datetime([1, 2, "foo"], unit="D", errors="coerce") tm.assert_index_equal(result, expected) result = to_datetime([1, 2, 111111111], unit="D", errors="coerce") tm.assert_index_equal(result, expected) class TestToDatetimeMisc: def test_to_datetime_barely_out_of_bounds(self): # GH#19529 # GH#19382 close enough to bounds that dropping nanos would result # in an in-bounds datetime arr = np.array(["2262-04-11 23:47:16.854775808"], dtype=object) msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): to_datetime(arr) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_iso8601(self, cache): result = to_datetime(["2012-01-01 00:00:00"], cache=cache) exp = Timestamp("2012-01-01 00:00:00") assert result[0] == exp result = to_datetime(["20121001"], cache=cache) # bad iso 8601 exp = Timestamp("2012-10-01") assert result[0] == exp @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_default(self, cache): rs = to_datetime("2001", cache=cache) xp = datetime(2001, 1, 1) assert rs == xp # dayfirst is essentially broken # to_datetime('01-13-2012', dayfirst=True) # pytest.raises(ValueError, to_datetime('01-13-2012', # dayfirst=True)) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_on_datetime64_series(self, cache): # #2699 s = Series(date_range("1/1/2000", periods=10)) result = to_datetime(s, cache=cache) assert result[0] == s[0] @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_with_space_in_series(self, cache): # GH 6428 s = Series(["10/18/2006", "10/18/2008", " "]) msg = r"(\(')?String does not contain a date(:', ' '\))?" with pytest.raises(ValueError, match=msg): to_datetime(s, errors="raise", cache=cache) result_coerce = to_datetime(s, errors="coerce", cache=cache) expected_coerce = Series([datetime(2006, 10, 18), datetime(2008, 10, 18), NaT]) tm.assert_series_equal(result_coerce, expected_coerce) result_ignore = to_datetime(s, errors="ignore", cache=cache) tm.assert_series_equal(result_ignore, s) @td.skip_if_has_locale @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_with_apply(self, cache): # this is only locale tested with US/None locales # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(["May 04", "Jun 02", "Dec 11"], index=[1, 2, 3]) expected = pd.to_datetime(td, format="%b %y", cache=cache) result = td.apply(pd.to_datetime, format="%b %y", cache=cache) tm.assert_series_equal(result, expected) td = Series(["May 04", "Jun 02", ""], index=[1, 2, 3]) msg = r"time data '' does not match format '%b %y' \(match\)" with pytest.raises(ValueError, match=msg): pd.to_datetime(td, format="%b %y", errors="raise", cache=cache) with pytest.raises(ValueError, match=msg): td.apply(pd.to_datetime, format="%b %y", errors="raise", cache=cache) expected = pd.to_datetime(td, format="%b %y", errors="coerce", cache=cache) result = td.apply( lambda x: pd.to_datetime(x, format="%b %y", errors="coerce", cache=cache) ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_types(self, cache): # empty string result = to_datetime("", cache=cache) assert result is NaT result = to_datetime(["", ""], cache=cache) assert isna(result).all() # ints result = Timestamp(0) expected = to_datetime(0, cache=cache) assert result == expected # GH 3888 (strings) expected = to_datetime(["2012"], cache=cache)[0] result = to_datetime("2012", cache=cache) assert result == expected # array = ['2012','20120101','20120101 12:01:01'] array = ["20120101", "20120101 12:01:01"] expected = list(to_datetime(array, cache=cache)) result = [Timestamp(date_str) for date_str in array] tm.assert_almost_equal(result, expected) # currently fails ### # result = Timestamp('2012') # expected = to_datetime('2012') # assert result == expected @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_unprocessable_input(self, cache): # GH 4928 # GH 21864 result = to_datetime([1, "1"], errors="ignore", cache=cache) expected = Index(np.array([1, "1"], dtype="O")) tm.assert_equal(result, expected) msg = "invalid string coercion to datetime" with pytest.raises(TypeError, match=msg): to_datetime([1, "1"], errors="raise", cache=cache) def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view("M8[us]") as_obj = scalar.astype("O") index = DatetimeIndex([scalar]) assert index[0] == scalar.astype("O") value = Timestamp(scalar) assert value == as_obj def test_to_datetime_list_of_integers(self): rng = date_range("1/1/2000", periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) tm.assert_index_equal(rng, result) def test_to_datetime_overflow(self): # gh-17637 # we are overflowing Timedelta range here msg = "|".join( [ "Python int too large to convert to C long", "long too big to convert", "int too big to convert", ] ) with pytest.raises(OutOfBoundsTimedelta, match=msg): date_range(start="1/1/1700", freq="B", periods=100000) @pytest.mark.parametrize("cache", [True, False]) def test_string_na_nat_conversion(self, cache): # GH #999, #858 strings = np.array( ["1/1/2000", "1/2/2000", np.nan, "1/4/2000, 12:34:56"], dtype=object ) expected = np.empty(4, dtype="M8[ns]") for i, val in enumerate(strings): if isna(val): expected[i] = iNaT else: expected[i] = parse(val) result = tslib.array_to_datetime(strings)[0] tm.assert_almost_equal(result, expected) result2 = to_datetime(strings, cache=cache) assert isinstance(result2, DatetimeIndex) tm.assert_numpy_array_equal(result, result2.values) malformed = np.array(["1/100/2000", np.nan], dtype=object) # GH 10636, default is now 'raise' msg = r"Unknown string format:|day is out of range for month" with pytest.raises(ValueError, match=msg): to_datetime(malformed, errors="raise", cache=cache) result = to_datetime(malformed, errors="ignore", cache=cache) # GH 21864 expected = Index(malformed) tm.assert_index_equal(result, expected) with pytest.raises(ValueError, match=msg): to_datetime(malformed, errors="raise", cache=cache) idx = ["a", "b", "c", "d", "e"] series = Series( ["1/1/2000", np.nan, "1/3/2000", np.nan, "1/5/2000"], index=idx, name="foo" ) dseries = Series( [ to_datetime("1/1/2000", cache=cache), np.nan, to_datetime("1/3/2000", cache=cache), np.nan, to_datetime("1/5/2000", cache=cache), ], index=idx, name="foo", ) result = to_datetime(series, cache=cache) dresult = to_datetime(dseries, cache=cache) expected = Series(np.empty(5, dtype="M8[ns]"), index=idx) for i in range(5): x = series[i] if isna(x): expected[i] = pd.NaT else: expected[i] = to_datetime(x, cache=cache) tm.assert_series_equal(result, expected, check_names=False) assert result.name == "foo" tm.assert_series_equal(dresult, expected, check_names=False) assert dresult.name == "foo" @pytest.mark.parametrize( "dtype", [ "datetime64[h]", "datetime64[m]", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) @pytest.mark.parametrize("cache", [True, False]) def test_dti_constructor_numpy_timeunits(self, cache, dtype): # GH 9114 base = pd.to_datetime( ["2000-01-01T00:00", "2000-01-02T00:00", "NaT"], cache=cache ) values = base.values.astype(dtype) tm.assert_index_equal(DatetimeIndex(values), base) tm.assert_index_equal(to_datetime(values, cache=cache), base) @pytest.mark.parametrize("cache", [True, False]) def test_dayfirst(self, cache): # GH 5917 arr = ["10/02/2014", "11/02/2014", "12/02/2014"] expected = DatetimeIndex( [datetime(2014, 2, 10), datetime(2014, 2, 11), datetime(2014, 2, 12)] ) idx1 = DatetimeIndex(arr, dayfirst=True) idx2 = DatetimeIndex(np.array(arr), dayfirst=True) idx3 = to_datetime(arr, dayfirst=True, cache=cache) idx4 = to_datetime(np.array(arr), dayfirst=True, cache=cache) idx5 = DatetimeIndex(Index(arr), dayfirst=True) idx6 = DatetimeIndex(Series(arr), dayfirst=True) tm.assert_index_equal(expected, idx1) tm.assert_index_equal(expected, idx2) tm.assert_index_equal(expected, idx3) tm.assert_index_equal(expected, idx4) tm.assert_index_equal(expected, idx5) tm.assert_index_equal(expected, idx6) @pytest.mark.parametrize("klass", [DatetimeIndex, DatetimeArray]) def test_to_datetime_dta_tz(self, klass): # GH#27733 dti = date_range("2015-04-05", periods=3).rename("foo") expected = dti.tz_localize("UTC") obj = klass(dti) expected = klass(expected) result = to_datetime(obj, utc=True) tm.assert_equal(result, expected) class TestGuessDatetimeFormat: @td.skip_if_not_us_locale def test_guess_datetime_format_for_array(self): expected_format = "%Y-%m-%d %H:%M:%S.%f" dt_string = datetime(2011, 12, 30, 0, 0, 0).strftime(expected_format) test_arrays = [ np.array([dt_string, dt_string, dt_string], dtype="O"), np.array([np.nan, np.nan, dt_string], dtype="O"), np.array([dt_string, "random_string"], dtype="O"), ] for test_array in test_arrays: assert tools._guess_datetime_format_for_array(test_array) == expected_format format_for_string_of_nans = tools._guess_datetime_format_for_array( np.array([np.nan, np.nan, np.nan], dtype="O") ) assert format_for_string_of_nans is None class TestToDatetimeInferFormat: @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_consistent_format(self, cache): s = Series(pd.date_range("20000101", periods=50, freq="H")) test_formats = ["%m-%d-%Y", "%m/%d/%Y %H:%M:%S.%f", "%Y-%m-%dT%H:%M:%S.%f"] for test_format in test_formats: s_as_dt_strings = s.apply(lambda x: x.strftime(test_format)) with_format = pd.to_datetime( s_as_dt_strings, format=test_format, cache=cache ) no_infer = pd.to_datetime( s_as_dt_strings, infer_datetime_format=False, cache=cache ) yes_infer = pd.to_datetime( s_as_dt_strings, infer_datetime_format=True, cache=cache ) # Whether the format is explicitly passed, it is inferred, or # it is not inferred, the results should all be the same tm.assert_series_equal(with_format, no_infer) tm.assert_series_equal(no_infer, yes_infer) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_inconsistent_format(self, cache): s = Series( np.array( ["01/01/2011 00:00:00", "01-02-2011 00:00:00", "2011-01-03T00:00:00"] ) ) # When the format is inconsistent, infer_datetime_format should just # fallback to the default parsing tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) s = Series(np.array(["Jan/01/2011", "Feb/01/2011", "Mar/01/2011"])) tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_series_with_nans(self, cache): s = Series( np.array(["01/01/2011 00:00:00", np.nan, "01/03/2011 00:00:00", np.nan]) ) tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_infer_datetime_format_series_start_with_nans(self, cache): s = Series( np.array( [ np.nan, np.nan, "01/01/2011 00:00:00", "01/02/2011 00:00:00", "01/03/2011 00:00:00", ] ) ) tm.assert_series_equal( pd.to_datetime(s, infer_datetime_format=False, cache=cache), pd.to_datetime(s, infer_datetime_format=True, cache=cache), ) @pytest.mark.parametrize( "tz_name, offset", [("UTC", 0), ("UTC-3", 180), ("UTC+3", -180)] ) def test_infer_datetime_format_tz_name(self, tz_name, offset): # GH 33133 s = Series([f"2019-02-02 08:07:13 {tz_name}"]) result = to_datetime(s, infer_datetime_format=True) expected = Series( [Timestamp("2019-02-02 08:07:13").tz_localize(pytz.FixedOffset(offset))] ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("cache", [True, False]) def test_to_datetime_iso8601_noleading_0s(self, cache): # GH 11871 s = Series(["2014-1-1", "2014-2-2", "2015-3-3"]) expected = Series( [ Timestamp("2014-01-01"), Timestamp("2014-02-02"), Timestamp("2015-03-03"), ] ) tm.assert_series_equal(pd.to_datetime(s, cache=cache), expected) tm.assert_series_equal( pd.to_datetime(s, format="%Y-%m-%d", cache=cache), expected ) class TestDaysInMonth: # tests for issue #10154 @pytest.mark.parametrize("cache", [True, False]) def test_day_not_in_month_coerce(self, cache): assert isna(to_datetime("2015-02-29", errors="coerce", cache=cache)) assert isna( to_datetime("2015-02-29", format="%Y-%m-%d", errors="coerce", cache=cache) ) assert isna( to_datetime("2015-02-32", format="%Y-%m-%d", errors="coerce", cache=cache) ) assert isna( to_datetime("2015-04-31", format="%Y-%m-%d", errors="coerce", cache=cache) ) @pytest.mark.parametrize("cache", [True, False]) def test_day_not_in_month_raise(self, cache): msg = "day is out of range for month" with pytest.raises(ValueError, match=msg): to_datetime("2015-02-29", errors="raise", cache=cache) msg = "time data 2015-02-29 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime("2015-02-29", errors="raise", format="%Y-%m-%d", cache=cache) msg = "time data 2015-02-32 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime("2015-02-32", errors="raise", format="%Y-%m-%d", cache=cache) msg = "time data 2015-04-31 doesn't match format specified" with pytest.raises(ValueError, match=msg): to_datetime("2015-04-31", errors="raise", format="%Y-%m-%d", cache=cache) @pytest.mark.parametrize("cache", [True, False]) def test_day_not_in_month_ignore(self, cache): assert to_datetime("2015-02-29", errors="ignore", cache=cache) == "2015-02-29" assert ( to_datetime("2015-02-29", errors="ignore", format="%Y-%m-%d", cache=cache) == "2015-02-29" ) assert ( to_datetime("2015-02-32", errors="ignore", format="%Y-%m-%d", cache=cache) == "2015-02-32" ) assert ( to_datetime("2015-04-31", errors="ignore", format="%Y-%m-%d", cache=cache) == "2015-04-31" ) class TestDatetimeParsingWrappers: @pytest.mark.parametrize( "date_str,expected", list( { "2011-01-01": datetime(2011, 1, 1), "2Q2005": datetime(2005, 4, 1), "2Q05": datetime(2005, 4, 1), "2005Q1": datetime(2005, 1, 1), "05Q1": datetime(2005, 1, 1), "2011Q3": datetime(2011, 7, 1), "11Q3": datetime(2011, 7, 1), "3Q2011": datetime(2011, 7, 1), "3Q11": datetime(2011, 7, 1), # quarterly without space "2000Q4": datetime(2000, 10, 1), "00Q4": datetime(2000, 10, 1), "4Q2000": datetime(2000, 10, 1), "4Q00": datetime(2000, 10, 1), "2000q4": datetime(2000, 10, 1), "2000-Q4": datetime(2000, 10, 1), "00-Q4": datetime(2000, 10, 1), "4Q-2000": datetime(2000, 10, 1), "4Q-00": datetime(2000, 10, 1), "00q4": datetime(2000, 10, 1), "2005": datetime(2005, 1, 1), "2005-11": datetime(2005, 11, 1), "2005 11": datetime(2005, 11, 1), "11-2005": datetime(2005, 11, 1), "11 2005": datetime(2005, 11, 1), "200511": datetime(2020, 5, 11), "20051109": datetime(2005, 11, 9), "20051109 10:15": datetime(2005, 11, 9, 10, 15), "20051109 08H": datetime(2005, 11, 9, 8, 0), "2005-11-09 10:15": datetime(2005, 11, 9, 10, 15), "2005-11-09 08H": datetime(2005, 11, 9, 8, 0), "2005/11/09 10:15": datetime(2005, 11, 9, 10, 15), "2005/11/09 08H": datetime(2005, 11, 9, 8, 0), "Thu Sep 25 10:36:28 2003": datetime(2003, 9, 25, 10, 36, 28), "Thu Sep 25 2003": datetime(2003, 9, 25), "Sep 25 2003": datetime(2003, 9, 25), "January 1 2014": datetime(2014, 1, 1), # GHE10537 "2014-06": datetime(2014, 6, 1), "06-2014": datetime(2014, 6, 1), "2014-6": datetime(2014, 6, 1), "6-2014": datetime(2014, 6, 1), "20010101 12": datetime(2001, 1, 1, 12), "20010101 1234": datetime(2001, 1, 1, 12, 34), "20010101 123456": datetime(2001, 1, 1, 12, 34, 56), }.items() ), ) @pytest.mark.parametrize("cache", [True, False]) def test_parsers(self, date_str, expected, cache): # dateutil >= 2.5.0 defaults to yearfirst=True # https://github.com/dateutil/dateutil/issues/217 yearfirst = True result1, _ = parsing.parse_time_string(date_str, yearfirst=yearfirst) result2 = to_datetime(date_str, yearfirst=yearfirst) result3 = to_datetime([date_str], yearfirst=yearfirst) # result5 is used below result4 = to_datetime( np.array([date_str], dtype=object), yearfirst=yearfirst, cache=cache ) result6 = DatetimeIndex([date_str], yearfirst=yearfirst) # result7 is used below result8 = DatetimeIndex(Index([date_str]), yearfirst=yearfirst) result9 = DatetimeIndex(Series([date_str]), yearfirst=yearfirst) for res in [result1, result2]: assert res == expected for res in [result3, result4, result6, result8, result9]: exp = DatetimeIndex([Timestamp(expected)]) tm.assert_index_equal(res, exp) # these really need to have yearfirst, but we don't support if not yearfirst: result5 = Timestamp(date_str) assert result5 == expected result7 = date_range(date_str, freq="S", periods=1, yearfirst=yearfirst) assert result7 == expected @pytest.mark.parametrize("cache", [True, False]) def test_na_values_with_cache( self, cache, unique_nulls_fixture, unique_nulls_fixture2 ): # GH22305 expected = Index([NaT, NaT], dtype="datetime64[ns]") result = to_datetime([unique_nulls_fixture, unique_nulls_fixture2], cache=cache) tm.assert_index_equal(result, expected) def test_parsers_nat(self): # Test that each of several string-accepting methods return pd.NaT result1, _ = parsing.parse_time_string("NaT") result2 = to_datetime("NaT") result3 = Timestamp("NaT") result4 = DatetimeIndex(["NaT"])[0] assert result1 is NaT assert result2 is NaT assert result3 is NaT assert result4 is NaT @pytest.mark.parametrize("cache", [True, False]) def test_parsers_dayfirst_yearfirst(self, cache): # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2012-10-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=0] -> 2012-10-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.3 10-11-12 [dayfirst=0, yearfirst=1] -> 2010-11-12 00:00:00 # bug fix in 2.5.2 # 2.5.1 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-11-12 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=1] -> 2010-12-11 00:00:00 # OK # 2.5.1 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.2 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # 2.5.3 10-11-12 [dayfirst=1, yearfirst=0] -> 2012-11-10 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=0] -> 2021-12-20 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.3 20/12/21 [dayfirst=0, yearfirst=1] -> 2020-12-21 00:00:00 # revert of bug in 2.5.2 # 2.5.1 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=1] -> month must be in 1..12 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=1] -> 2020-12-21 00:00:00 # OK # 2.5.1 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.2 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # 2.5.3 20/12/21 [dayfirst=1, yearfirst=0] -> 2021-12-20 00:00:00 # str : dayfirst, yearfirst, expected cases = { "10-11-12": [ (False, False, datetime(2012, 10, 11)), (True, False, datetime(2012, 11, 10)), (False, True, datetime(2010, 11, 12)), (True, True, datetime(2010, 12, 11)), ], "20/12/21": [ (False, False, datetime(2021, 12, 20)), (True, False, datetime(2021, 12, 20)), (False, True, datetime(2020, 12, 21)), (True, True, datetime(2020, 12, 21)), ], } for date_str, values in cases.items(): for dayfirst, yearfirst, expected in values: # compare with dateutil result dateutil_result = parse( date_str, dayfirst=dayfirst, yearfirst=yearfirst ) assert dateutil_result == expected result1, _ = parsing.parse_time_string( date_str, dayfirst=dayfirst, yearfirst=yearfirst ) # we don't support dayfirst/yearfirst here: if not dayfirst and not yearfirst: result2 = Timestamp(date_str) assert result2 == expected result3 = to_datetime( date_str, dayfirst=dayfirst, yearfirst=yearfirst, cache=cache ) result4 = DatetimeIndex( [date_str], dayfirst=dayfirst, yearfirst=yearfirst )[0] assert result1 == expected assert result3 == expected assert result4 == expected @pytest.mark.parametrize("cache", [True, False]) def test_parsers_timestring(self, cache): # must be the same as dateutil result cases = { "10:15": (parse("10:15"), datetime(1, 1, 1, 10, 15)), "9:05": (parse("9:05"), datetime(1, 1, 1, 9, 5)), } for date_str, (exp_now, exp_def) in cases.items(): result1, _ = parsing.parse_time_string(date_str) result2 = to_datetime(date_str) result3 = to_datetime([date_str]) result4 = Timestamp(date_str) result5 = DatetimeIndex([date_str])[0] # parse time string return time string based on default date # others are not, and can't be changed because it is used in # time series plot assert result1 == exp_def assert result2 == exp_now assert result3 == exp_now assert result4 == exp_now assert result5 == exp_now @pytest.mark.parametrize("cache", [True, False]) @pytest.mark.parametrize( "dt_string, tz, dt_string_repr", [ ( "2013-01-01 05:45+0545", pytz.FixedOffset(345), "Timestamp('2013-01-01 05:45:00+0545', tz='pytz.FixedOffset(345)')", ), ( "2013-01-01 05:30+0530", pytz.FixedOffset(330), "Timestamp('2013-01-01 05:30:00+0530', tz='pytz.FixedOffset(330)')", ), ], ) def test_parsers_timezone_minute_offsets_roundtrip( self, cache, dt_string, tz, dt_string_repr ): # GH11708 base = to_datetime("2013-01-01 00:00:00", cache=cache) base = base.tz_localize("UTC").tz_convert(tz) dt_time = to_datetime(dt_string, cache=cache) assert base == dt_time assert dt_string_repr == repr(dt_time) @pytest.fixture(params=["D", "s", "ms", "us", "ns"]) def units(request): """Day and some time units. * D * s * ms * us * ns """ return request.param @pytest.fixture def epoch_1960(): """Timestamp at 1960-01-01.""" return Timestamp("1960-01-01") @pytest.fixture def units_from_epochs(): return list(range(5)) @pytest.fixture(params=["timestamp", "pydatetime", "datetime64", "str_1960"]) def epochs(epoch_1960, request): """Timestamp at 1960-01-01 in various forms. * Timestamp * datetime.datetime * numpy.datetime64 * str """ assert request.param in {"timestamp", "pydatetime", "datetime64", "str_1960"} if request.param == "timestamp": return epoch_1960 elif request.param == "pydatetime": return epoch_1960.to_pydatetime() elif request.param == "datetime64": return epoch_1960.to_datetime64() else: return str(epoch_1960) @pytest.fixture def julian_dates(): return pd.date_range("2014-1-1", periods=10).to_julian_date().values class TestOrigin: def test_to_basic(self, julian_dates): # gh-11276, gh-11745 # for origin as julian result = Series(pd.to_datetime(julian_dates, unit="D", origin="julian")) expected = Series( pd.to_datetime(julian_dates - Timestamp(0).to_julian_date(), unit="D") ) tm.assert_series_equal(result, expected) result = Series(pd.to_datetime([0, 1, 2], unit="D", origin="unix")) expected = Series( [Timestamp("1970-01-01"), Timestamp("1970-01-02"), Timestamp("1970-01-03")] ) tm.assert_series_equal(result, expected) # default result = Series(pd.to_datetime([0, 1, 2], unit="D")) expected = Series( [Timestamp("1970-01-01"), Timestamp("1970-01-02"), Timestamp("1970-01-03")] ) tm.assert_series_equal(result, expected) def test_julian_round_trip(self): result = pd.to_datetime(2456658, origin="julian", unit="D") assert result.to_julian_date() == 2456658 # out-of-bounds msg = "1 is Out of Bounds for origin='julian'" with pytest.raises(ValueError, match=msg): pd.to_datetime(1, origin="julian", unit="D") def test_invalid_unit(self, units, julian_dates): # checking for invalid combination of origin='julian' and unit != D if units != "D": msg = "unit must be 'D' for origin='julian'" with pytest.raises(ValueError, match=msg): pd.to_datetime(julian_dates, unit=units, origin="julian") def test_invalid_origin(self): # need to have a numeric specified msg = "it must be numeric with a unit specified" with pytest.raises(ValueError, match=msg): pd.to_datetime("2005-01-01", origin="1960-01-01") with pytest.raises(ValueError, match=msg): pd.to_datetime("2005-01-01", origin="1960-01-01", unit="D") def test_epoch(self, units, epochs, epoch_1960, units_from_epochs): expected = Series( [pd.Timedelta(x, unit=units) + epoch_1960 for x in units_from_epochs] ) result = Series(pd.to_datetime(units_from_epochs, unit=units, origin=epochs)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "origin, exc", [ ("random_string", ValueError), ("epoch", ValueError), ("13-24-1990", ValueError), (datetime(1, 1, 1), tslib.OutOfBoundsDatetime), ], ) def test_invalid_origins(self, origin, exc, units, units_from_epochs): msg = f"origin {origin} (is Out of Bounds|cannot be converted to a Timestamp)" with pytest.raises(exc, match=msg): pd.to_datetime(units_from_epochs, unit=units, origin=origin) def test_invalid_origins_tzinfo(self): # GH16842 with pytest.raises(ValueError, match="must be tz-naive"): pd.to_datetime(1, unit="D", origin=datetime(2000, 1, 1, tzinfo=pytz.utc)) @pytest.mark.parametrize("format", [None, "%Y-%m-%d %H:%M:%S"]) def test_to_datetime_out_of_bounds_with_format_arg(self, format): # see gh-23830 msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): to_datetime("2417-10-27 00:00:00", format=format) def test_processing_order(self): # make sure we handle out-of-bounds *before* # constructing the dates result = pd.to_datetime(200 * 365, unit="D") expected = Timestamp("2169-11-13 00:00:00") assert result == expected result = pd.to_datetime(200 * 365, unit="D", origin="1870-01-01") expected = Timestamp("2069-11-13 00:00:00") assert result == expected result = pd.to_datetime(300 * 365, unit="D", origin="1870-01-01") expected = Timestamp("2169-10-20 00:00:00") assert result == expected @pytest.mark.parametrize( "offset,utc,exp", [ ["Z", True, "2019-01-01T00:00:00.000Z"], ["Z", None, "2019-01-01T00:00:00.000Z"], ["-01:00", True, "2019-01-01T01:00:00.000Z"], ["-01:00", None, "2019-01-01T00:00:00.000-01:00"], ], ) def test_arg_tz_ns_unit(self, offset, utc, exp): # GH 25546 arg = "2019-01-01T00:00:00.000" + offset result = to_datetime([arg], unit="ns", utc=utc) expected = to_datetime([exp]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "listlike,do_caching", [([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], False), ([1, 1, 1, 1, 4, 5, 6, 7, 8, 9], True)], ) def test_should_cache(listlike, do_caching): assert ( tools.should_cache(listlike, check_count=len(listlike), unique_share=0.7) == do_caching ) @pytest.mark.parametrize( "unique_share,check_count, err_message", [ (0.5, 11, r"check_count must be in next bounds: \[0; len\(arg\)\]"), (10, 2, r"unique_share must be in next bounds: \(0; 1\)"), ], ) def test_should_cache_errors(unique_share, check_count, err_message): arg = [5] * 10 with pytest.raises(AssertionError, match=err_message): tools.should_cache(arg, unique_share, check_count) def test_nullable_integer_to_datetime(): # Test for #30050 ser = Series([1, 2, None, 2 ** 61, None]) ser = ser.astype("Int64") ser_copy = ser.copy() res = pd.to_datetime(ser, unit="ns") expected = Series( [ np.datetime64("1970-01-01 00:00:00.000000001"), np.datetime64("1970-01-01 00:00:00.000000002"), np.datetime64("NaT"), np.datetime64("2043-01-25 23:56:49.213693952"), np.datetime64("NaT"), ] ) tm.assert_series_equal(res, expected) # Check that ser isn't mutated tm.assert_series_equal(ser, ser_copy) @pytest.mark.parametrize("klass", [np.array, list]) def test_na_to_datetime(nulls_fixture, klass): if isinstance(nulls_fixture, Decimal): with pytest.raises(TypeError, match="not convertible to datetime"): pd.to_datetime(klass([nulls_fixture])) else: result = pd.to_datetime(klass([nulls_fixture])) assert result[0] is pd.NaT def test_empty_string_datetime_coerce__format(): # GH13044 td = Series(["03/24/2016", "03/25/2016", ""]) format = "%m/%d/%Y" # coerce empty string to pd.NaT result = pd.to_datetime(td, format=format, errors="coerce") expected = Series(["2016-03-24", "2016-03-25", pd.NaT], dtype="datetime64[ns]") tm.assert_series_equal(expected, result) # raise an exception in case a format is given with pytest.raises(ValueError, match="does not match format"): result = pd.to_datetime(td, format=format, errors="raise") # don't raise an expection in case no format is given result = pd.to_datetime(td, errors="raise") tm.assert_series_equal(result, expected) def test_empty_string_datetime_coerce__unit(): # GH13044 # coerce empty string to pd.NaT result = pd.to_datetime([1, ""], unit="s", errors="coerce") expected = DatetimeIndex(["1970-01-01 00:00:01", "NaT"], dtype="datetime64[ns]") tm.assert_index_equal(expected, result) # verify that no exception is raised even when errors='raise' is set result = pd.to_datetime([1, ""], unit="s", errors="raise") tm.assert_index_equal(expected, result)
the-stack_0_9384
from typing import FrozenSet from collections import Iterable from math import log, ceil from mathsat import msat_term, msat_env from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_integer_type, msat_get_rational_type, msat_get_bool_type from mathsat import msat_make_and, msat_make_not, msat_make_or, msat_make_iff from mathsat import msat_make_leq, msat_make_equal, msat_make_true from mathsat import msat_make_number, msat_make_plus, msat_make_times from pysmt.environment import Environment as PysmtEnv import pysmt.typing as types from ltl.ltl import TermMap, LTLEncoder from utils import name_next, symb_to_next from hint import Hint, Location delta_name = "delta" def decl_consts(menv: msat_env, name: str, c_type) -> tuple: assert not name.startswith("_"), name s = msat_declare_function(menv, name, c_type) s = msat_make_constant(menv, s) x_s = msat_declare_function(menv, name_next(name), c_type) x_s = msat_make_constant(menv, x_s) return s, x_s def make_enum(menv, v_name: str, enum_size: int): bool_type = msat_get_bool_type(menv) num_bits = ceil(log(enum_size, 2)) b_vars = [] for idx in range(num_bits): c_name = "{}{}".format(v_name, idx) b_vars.append(tuple(decl_consts(menv, c_name, bool_type))) vals = [] x_vals = [] for enum_val in range(enum_size): bit_val = format(enum_val, '0{}b'.format(num_bits)) assert len(bit_val) == num_bits assert all(c in {'0', '1'} for c in bit_val) assign = [b_vars[idx] if c == '1' else (msat_make_not(menv, b_vars[idx][0]), msat_make_not(menv, b_vars[idx][1])) for idx, c in enumerate(reversed(bit_val))] pred = assign[0][0] x_pred = assign[0][1] for it in assign[1:]: pred = msat_make_and(menv, pred, it[0]) x_pred = msat_make_and(menv, x_pred, it[1]) vals.append(pred) x_vals.append(x_pred) assert len(vals) == enum_size assert len(x_vals) == enum_size return b_vars, vals, x_vals def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): m_one = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, m_one) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def diverging_symbs(menv: msat_env) -> frozenset: real_type = msat_get_rational_type(menv) delta = msat_declare_function(menv, delta_name, real_type) delta = msat_make_constant(menv, delta) return frozenset([delta]) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) r2s, x_r2s = decl_consts(menv, "r2s", int_type) s2r, x_s2r = decl_consts(menv, "s2r", int_type) delta, x_delta = decl_consts(menv, delta_name, real_type) sender = Sender("s", menv, enc, r2s, x_r2s, s2r, x_s2r, delta) receiver = Receiver("r", menv, enc, s2r, x_s2r, r2s, x_r2s, delta) curr2next = {r2s: x_r2s, s2r: x_s2r, delta: x_delta} for comp in [sender, receiver]: for s, x_s in comp.symb2next.items(): curr2next[s] = x_s zero = msat_make_number(menv, "0") init = msat_make_and(menv, receiver.init, sender.init) trans = msat_make_and(menv, receiver.trans, sender.trans) # invar delta >= 0 init = msat_make_and(menv, init, msat_make_geq(menv, delta, zero)) trans = msat_make_and(menv, trans, msat_make_geq(menv, x_delta, zero)) # delta > 0 -> (r2s' = r2s & s2r' = s2r) lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_equal(menv, x_r2s, r2s), msat_make_equal(menv, x_s2r, s2r)) trans = msat_make_and(menv, trans, msat_make_impl(menv, lhs, rhs)) # (G F !s.stutter) -> G (s.wait_ack -> F s.send) lhs = enc.make_G(enc.make_F(msat_make_not(menv, sender.stutter))) rhs = enc.make_G(msat_make_impl(menv, sender.wait_ack, enc.make_F(sender.send))) ltl = msat_make_impl(menv, lhs, rhs) return TermMap(curr2next), init, trans, ltl class Module: def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, *args, **kwargs): self.name = name self.menv = menv self.enc = enc self.symb2next = {} true = msat_make_true(menv) self.init = true self.trans = true def _symb(self, v_name, v_type): v_name = "{}_{}".format(self.name, v_name) return decl_consts(self.menv, v_name, v_type) def _enum(self, v_name: str, enum_size: int): c_name = "{}_{}".format(self.name, v_name) return make_enum(self.menv, c_name, enum_size) class Sender(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) loc, x_loc = self._symb("l", bool_type) evt, x_evt = self._symb("evt", bool_type) msg_id, x_msg_id = self._symb("msg_id", int_type) timeout, x_timeout = self._symb("timeout", real_type) c, x_c = self._symb("c", real_type) self.move = evt self.stutter = msat_make_not(menv, evt) self.x_move = x_evt self.x_stutter = msat_make_not(menv, x_evt) self.send = loc self.wait_ack = msat_make_not(menv, loc) self.x_send = x_loc self.x_wait_ack = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc, evt: x_evt, msg_id: x_msg_id, timeout: x_timeout, c: x_c} zero = msat_make_number(menv, "0") one = msat_make_number(menv, "1") base_timeout = one # send & c = 0 & msg_id = 0 self.init = msat_make_and(menv, msat_make_and(menv, self.send, msat_make_equal(menv, c, zero)), msat_make_equal(menv, msg_id, zero)) # invar: wait_ack -> c <= timeout self.init = msat_make_and( menv, self.init, msat_make_impl(menv, self.wait_ack, msat_make_leq(menv, c, timeout))) self.trans = msat_make_impl(menv, self.x_wait_ack, msat_make_leq(menv, x_c, x_timeout)) # delta > 0 | stutter -> l' = l & msg_id' = msg_id & timeout' = timeout & # c' = c + delta & out_c' = out_c lhs = msat_make_or(menv, msat_make_gt(menv, delta, zero), self.stutter) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_msg_id, msg_id)), msat_make_and(menv, msat_make_equal(menv, x_timeout, timeout), msat_make_equal(menv, x_c, msat_make_plus(menv, c, delta)))) rhs = msat_make_and(menv, rhs, msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) disc_t = msat_make_and(menv, self.move, msat_make_equal(menv, delta, zero)) # (send & send') -> # (msg_id' = msg_id & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_send)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msg_id), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (send & wait_ack') -> # (msg_id' = msg_id + 1 & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_wait_ack)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msat_make_plus(menv, msg_id, one)), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (c' = 0 & out_c' = out_c & # (wait_ack' <-> (in_c != msg_id & c > timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs_iff = msat_make_and(menv, msat_make_not(menv, msat_make_equal(menv, in_c, msg_id)), msat_make_geq(menv, c, timeout)) rhs_iff = msat_make_iff(menv, self.x_wait_ack, rhs_iff) rhs = msat_make_and(menv, msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c)), rhs_iff) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & wait_ack') -> (timeout' > timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_wait_ack)) rhs = msat_make_gt(menv, x_timeout, timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (send' <-> (in_c = msg_id & c < timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs = msat_make_iff(menv, self.x_send, msat_make_and(menv, msat_make_equal(menv, in_c, msg_id), msat_make_lt(menv, c, timeout))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & send') -> (timeout' = base_timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_send)) rhs = msat_make_equal(menv, x_timeout, base_timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) class Receiver(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) loc, x_loc = self._symb("l", bool_type) self.wait = loc self.work = msat_make_not(menv, loc) self.x_wait = x_loc self.x_work = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc} zero = msat_make_number(menv, "0") # wait self.init = self.wait # delta > 0 -> loc' = loc & out_c' = out_c lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_impl(menv, lhs, rhs) disc_t = msat_make_equal(menv, delta, zero) # wait -> (wait' <-> in_c = out_c) lhs = msat_make_and(menv, disc_t, self.wait) rhs = msat_make_iff(menv, self.x_wait, msat_make_equal(menv, in_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & wait') -> (out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_wait)) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & work') -> out_c' = in_c lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_work)) rhs = msat_make_equal(menv, x_out_c, in_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # work -> out_c' = out_c lhs = msat_make_and(menv, disc_t, self.work) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager delta = mgr.Symbol(delta_name, types.REAL) r2s = mgr.Symbol("r2s", types.INT) s2r = mgr.Symbol("r2s", types.INT) s_l = mgr.Symbol("s_l", types.BOOL) s_evt = mgr.Symbol("s_evt", types.BOOL) s_msg_id = mgr.Symbol("s_msg_id", types.INT) s_timeout = mgr.Symbol("s_timeout", types.REAL) s_c = mgr.Symbol("s_c", types.REAL) r_l = mgr.Symbol("r_l", types.BOOL) symbs = frozenset([delta, r2s, s2r, s_l, s_evt, s_msg_id, s_timeout, s_c, r_l]) x_delta = symb_to_next(mgr, delta) x_r2s = symb_to_next(mgr, r2s) x_s2r = symb_to_next(mgr, s2r) x_s_l = symb_to_next(mgr, s_l) x_s_evt = symb_to_next(mgr, s_evt) x_s_msg_id = symb_to_next(mgr, s_msg_id) x_s_timeout = symb_to_next(mgr, s_timeout) x_s_c = symb_to_next(mgr, s_c) x_r_l = symb_to_next(mgr, r_l) res = [] r0 = mgr.Real(0) r1 = mgr.Real(1) i0 = mgr.Int(0) i1 = mgr.Int(1) loc0 = Location(env, mgr.GE(s2r, i0)) loc0.set_progress(0, mgr.Equals(x_s2r, i1)) hint = Hint("h_s2r1", env, frozenset([s2r]), symbs) hint.set_locs([loc0]) res.append(hint) return frozenset(res)
the-stack_0_9389
from celery import shared_task from django.conf import settings from django.core.mail import send_mail from django.urls import reverse @shared_task() def send_email_task(subject, message, email_from, recipient_list): send_mail(subject, message, email_from, recipient_list, fail_silently=False) # @shared_task() # def send_activation_code_async(email_to, code): # path = reverse('account:activate', args=(code,)) # # send_mail( # 'Your activation code', # f'http://127.0.0.1:8000{path}', # '[email protected]', # [email_to], # fail_silently=False, # ) @shared_task() def send_activation_code_sms(email_to, code): send_mail( 'Your activation code', code, from_email=[settings.EMAIL_HOST_USER, ], recipient_list=email_to, fail_silently=False, )
the-stack_0_9390
__all__ = [ "build_train_batch", "build_valid_batch", "build_infer_batch", "train_dl", "valid_dl", "infer_dl", ] from mmdet.core import BitmapMasks from icevision.core import * from icevision.imports import * from icevision.models.utils import * from icevision.models.mmdet.common.bbox.dataloaders import ( _img_tensor, _img_meta, _labels, _bboxes, ) def train_dl(dataset, batch_tfms=None, **dataloader_kwargs) -> DataLoader: return transform_dl( dataset=dataset, build_batch=build_train_batch, batch_tfms=batch_tfms, **dataloader_kwargs ) def valid_dl(dataset, batch_tfms=None, **dataloader_kwargs) -> DataLoader: return transform_dl( dataset=dataset, build_batch=build_valid_batch, batch_tfms=batch_tfms, **dataloader_kwargs ) def infer_dl(dataset, batch_tfms=None, **dataloader_kwargs) -> DataLoader: """A `DataLoader` with a custom `collate_fn` that batches items as required for inferring the model. # Arguments dataset: Possibly a `Dataset` object, but more generally, any `Sequence` that returns records. batch_tfms: Transforms to be applied at the batch level. **dataloader_kwargs: Keyword arguments that will be internally passed to a Pytorch `DataLoader`. The parameter `collate_fn` is already defined internally and cannot be passed here. # Returns A Pytorch `DataLoader`. """ return transform_dl( dataset=dataset, build_batch=build_infer_batch, batch_tfms=batch_tfms, **dataloader_kwargs ) def build_valid_batch( records: Sequence[RecordType], batch_tfms=None ) -> Tuple[dict, List[Dict[str, torch.Tensor]]]: return build_train_batch(records=records, batch_tfms=batch_tfms) def build_train_batch( records: Sequence[RecordType], batch_tfms=None ) -> Tuple[dict, List[Dict[str, torch.Tensor]]]: records = common_build_batch(records=records, batch_tfms=batch_tfms) images, labels, bboxes, masks, img_metas = [], [], [], [], [] for record in records: images.append(_img_tensor(record)) img_metas.append(_img_meta_mask(record)) labels.append(_labels(record)) bboxes.append(_bboxes(record)) masks.append(_masks(record)) data = { "img": torch.stack(images), "img_metas": img_metas, "gt_labels": labels, "gt_bboxes": bboxes, "gt_masks": masks, } return data, records def build_infer_batch(records, batch_tfms=None): records = common_build_batch(records, batch_tfms=batch_tfms) imgs, img_metas = [], [] for record in records: imgs.append(_img_tensor(record)) img_metas.append(_img_meta_mask(record)) data = { "img": [torch.stack(imgs)], "img_metas": [img_metas], } return data, records def _img_meta_mask(record): img_meta = _img_meta(record) img_meta["ori_shape"] = img_meta["pad_shape"] return img_meta def _masks(record): if len(record["masks"]) == 0: raise RuntimeError("Negative samples still needs to be implemented") else: mask = record["masks"].data _, h, w = mask.shape return BitmapMasks(mask, height=h, width=w)
the-stack_0_9393
__all__ = ['Serializer', 'SerializerError'] from .error import YAMLError from .events import * from .nodes import * class SerializerError(YAMLError): pass class Serializer: ANCHOR_TEMPLATE = 'id%03d' def __init__(self, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None): self.use_encoding = encoding self.use_explicit_start = explicit_start self.use_explicit_end = explicit_end self.use_version = version self.use_tags = tags self.serialized_nodes = {} self.anchors = {} self.last_anchor_id = 0 self.closed = None def open(self): if self.closed is None: self.emit(StreamStartEvent(encoding=self.use_encoding)) self.closed = False elif self.closed: raise SerializerError("serializer is closed") else: raise SerializerError("serializer is already opened") def close(self): if self.closed is None: raise SerializerError("serializer is not opened") elif not self.closed: self.emit(StreamEndEvent()) self.closed = True #def __del__(self): # self.close() def serialize(self, node): if self.closed is None: raise SerializerError("serializer is not opened") elif self.closed: raise SerializerError("serializer is closed") self.emit(DocumentStartEvent(explicit=self.use_explicit_start, version=self.use_version, tags=self.use_tags)) self.anchor_node(node) self.serialize_node(node, None, None) self.emit(DocumentEndEvent(explicit=self.use_explicit_end)) self.serialized_nodes = {} self.anchors = {} self.last_anchor_id = 0 def anchor_node(self, node): if node in self.anchors: if self.anchors[node] is None: self.anchors[node] = self.generate_anchor(node) else: self.anchors[node] = None if isinstance(node, SequenceNode): for item in node.value: self.anchor_node(item) elif isinstance(node, MappingNode): for key, value in node.value: self.anchor_node(key) self.anchor_node(value) def generate_anchor(self, node): self.last_anchor_id += 1 return self.ANCHOR_TEMPLATE % self.last_anchor_id def serialize_node(self, node, parent, index): alias = self.anchors[node] if node in self.serialized_nodes: self.emit(AliasEvent(alias)) else: self.serialized_nodes[node] = True self.descend_resolver(parent, index) if isinstance(node, ScalarNode): detected_tag = self.resolve(ScalarNode, node.value, (True, False)) default_tag = self.resolve(ScalarNode, node.value, (False, True)) implicit = (node.tag == detected_tag), (node.tag == default_tag) self.emit(ScalarEvent(alias, node.tag, implicit, node.value, style=node.style)) elif isinstance(node, SequenceNode): implicit = (node.tag == self.resolve(SequenceNode, node.value, True)) self.emit(SequenceStartEvent(alias, node.tag, implicit, flow_style=node.flow_style)) index = 0 for item in node.value: self.serialize_node(item, node, index) index += 1 self.emit(SequenceEndEvent()) elif isinstance(node, MappingNode): implicit = (node.tag == self.resolve(MappingNode, node.value, True)) self.emit(MappingStartEvent(alias, node.tag, implicit, flow_style=node.flow_style)) for key, value in node.value: self.serialize_node(key, node, None) self.serialize_node(value, node, key) self.emit(MappingEndEvent()) self.ascend_resolver()
the-stack_0_9395
import os import unittest from recipe_scrapers.geniuskitchen import GeniusKitchen class TestAllRecipesScraper(unittest.TestCase): def setUp(self): # tests are run from tests.py with open(os.path.join( os.getcwd(), 'recipe_scrapers', 'tests', 'test_data', 'geniuskitchen.testhtml' )) as file_opened: self.harvester_class = GeniusKitchen(file_opened, test=True) def test_host(self): self.assertEqual( 'geniuskitchen.com', self.harvester_class.host() ) def test_title(self): self.assertEqual( self.harvester_class.title(), 'Quiche Lorraine Cups' ) def test_total_time(self): self.assertEqual( 40, self.harvester_class.total_time() ) def test_ingredients(self): self.assertCountEqual( [ '12 cooked crepes (, see All Purpose Dinner Crepes Batter)', '4 slices bacon, cooked crisp &,crumbled', '1 cup swiss cheese, grated', '2 tablespoons flour', '1⁄4 teaspoon salt', '2 eggs', '1 cup milk' ], self.harvester_class.ingredients() ) def test_instructions(self): return self.assertEqual( 'Lightly grease a 12 muffin pan or 12 custard cups.\nLine each with a crepe, fluting them.\nSprinkle bacon into the crepes.\nDivide the cheese between the crepes.\nMix together the flour, salt.\nMix the beaten eggs and milk, add to the flour.\nBlend well and pour into the crepes on top of the cheese.\nBake in 350F oven for 15-20 minutes or until firm.\nCool 5 minutes before removing from pan.', self.harvester_class.instructions() ) def test_ratings(self): self.assertEqual( 5.0, self.harvester_class.ratings() )
the-stack_0_9396
# Copyright 2018 The Lucid Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import, division, print_function import tensorflow as tf from lucid.modelzoo.vision_base import Model, _layers_from_list_of_dicts def _populate_inception_bottlenecks(scope): """Add Inception bottlenecks and their pre-Relu versions to the graph.""" graph = tf.get_default_graph() for op in graph.get_operations(): if op.name.startswith(scope+'/') and 'Concat' in op.type: name = op.name.split('/')[1] pre_relus = [] for tower in op.inputs[1:]: if tower.op.type == 'Relu': tower = tower.op.inputs[0] pre_relus.append(tower) concat_name = scope + '/' + name + '_pre_relu' _ = tf.concat(pre_relus, -1, name=concat_name) class InceptionV1(Model): """InceptionV1 (or 'GoogLeNet') This is a (re?)implementation of InceptionV1 https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf The weights were trained at Google and released in an early TensorFlow tutorial. It is possible the parameters are the original weights (trained in TensorFlow's predecessor), but we haven't been able to confirm this. As far as we can tell, it is exactly the same as the model described in the original paper, where as the slim and caffe implementations have minor implementation differences (such as eliding the heads). """ model_path = 'gs://modelzoo/vision/other_models/InceptionV1.pb' labels_path = 'gs://modelzoo/labels/ImageNet_alternate.txt' synsets_path = 'gs://modelzoo/labels/ImageNet_alternate_synsets.txt' dataset = 'ImageNet' image_shape = [224, 224, 3] image_value_range = (-117, 255-117) input_name = 'input' def post_import(self, scope): _populate_inception_bottlenecks(scope) InceptionV1.layers = _layers_from_list_of_dicts(InceptionV1(), [ {'tags': ['conv'], 'name': 'conv2d0', 'depth': 64}, {'tags': ['conv'], 'name': 'conv2d1', 'depth': 64}, {'tags': ['conv'], 'name': 'conv2d2', 'depth': 192}, {'tags': ['conv'], 'name': 'mixed3a', 'depth': 256}, {'tags': ['conv'], 'name': 'mixed3b', 'depth': 480}, {'tags': ['conv'], 'name': 'mixed4a', 'depth': 508}, {'tags': ['conv'], 'name': 'mixed4b', 'depth': 512}, {'tags': ['conv'], 'name': 'mixed4c', 'depth': 512}, {'tags': ['conv'], 'name': 'mixed4d', 'depth': 528}, {'tags': ['conv'], 'name': 'mixed4e', 'depth': 832}, {'tags': ['conv'], 'name': 'mixed5a', 'depth': 832}, {'tags': ['conv'], 'name': 'mixed5b', 'depth': 1024}, {'tags': ['conv'], 'name': 'head0_bottleneck', 'depth': 128}, {'tags': ['dense'], 'name': 'nn0', 'depth': 1024}, {'tags': ['dense'], 'name': 'softmax0', 'depth': 1008}, {'tags': ['conv'], 'name': 'head1_bottleneck', 'depth': 128}, {'tags': ['dense'], 'name': 'nn1', 'depth': 1024}, {'tags': ['dense'], 'name': 'softmax1', 'depth': 1008}, {'tags': ['dense'], 'name': 'softmax2', 'depth': 1008}, ]) class InceptionV1_adv_finetuned(InceptionV1): """adversarially fine-tuned InceptionV1 This model is based on InceptionV1 and has been fine-tuned with PGD-generated adversarial examples (https://arxiv.org/pdf/1706.06083.pdf). The PGD-attack was L2-bounded with an epsilon of 255 (1.0 for normalized images). After fine-tuning, this model achieves a robust top-5 accuracy of ~67% for eps. 255 L2-bounded adversarial examples compared to ~4% before fine-tuning. """ model_path = 'gs://modelzoo/vision/other_models/InceptionV1_adv_finetuned.pb'
the-stack_0_9398
from django.contrib.auth.models import User, Group from django.conf import settings from django.db import models from django.db import connection from django.db.models.signals import post_save from pbs.prescription.models import Region, District from smart_selects.db_fields import ChainedForeignKey import logging logger = logging.getLogger("log." + __name__) class Profile(models.Model): DEFAULT_GROUP = "Users" user = models.OneToOneField(User) region = models.ForeignKey(Region, blank=True, null=True, on_delete=models.PROTECT) district = ChainedForeignKey(District, chained_field="region", chained_model_field="region", show_all=False, auto_choose=True, blank=True, null=True, on_delete=models.PROTECT) def is_fpc_user(self): return self.user.email.lower().endswith(settings.FPC_EMAIL_EXT) def user_post_save(sender, instance, created, **kwargs): """Create a user profile when a new user account is created""" if (created and Profile._meta.db_table in connection.introspection.table_names()): p = Profile() p.user = instance p.save() # add the default user group (fail_silently=True) try: group = Group.objects.get(name__iexact=p.DEFAULT_GROUP) except Group.DoesNotExist: logger.warning("Failed to assign group `%s' to user `%s', " "group `%s' does not exist.", p.DEFAULT_GROUP, p.user.username, p.DEFAULT_GROUP) else: p.user.groups.add(group) post_save.connect(user_post_save, sender=User) def prescription_modified(sender, instance, created, **kwargs): if hasattr(instance, 'prescription'): prescription = instance.prescription if prescription is not None: prescription.save() # update the modified and modifier fields post_save.connect(prescription_modified)
the-stack_0_9401
# coding: utf-8 def write_info(amr): #import fortranformat as ff #nout = amr.nout aexp = amr.aexp h0 = amr.h0 * 1e-2 rhoc = 1.88e-29 boxlen = 1.0 f = open("info_" + str(nout).zfill(5) + ".txt", 'w') for name, val in zip(["ncpu", "ndim", "levelmin", "levelmax", "ngridmax", "nstep_coarse"], [amr.ncpu, amr.ndim, levelmin, amr.nlevelmax, amr.ngridmax, amr.nstep_coarse]): f.write("{:<12s}={:11d} \n".format(name, val)) f.write("\n") #lineformat = ff.FortranRecordWriter('(1E23.15)') scale_d = amr.Om * rhoc * h0**2 / aexp**3 scale_t = aexp**2 / (h0*1e5/3.08e24) scale_l = aexp* amr.boxlen * 3.08e24/(h0) for name, val in zip(["boxlen", "time", "aexp", "H0", "omega_m", "omega_l", "omega_k", "omega_b", "unit_l", "unit_d", "unit_t"], [boxlen, amr.t, aexp, h0, amr.Om, amr.Ol, amr.Ok, amr.Ob, scale_l, scale_d, scale_t]): f.write("{:<12s}={:.15E} \n".format(name,val)) f.write("\n") f.write("ordering type=" + ah.ordering[0].decode("UTF-8")) f.write("\n DOMAIN ind_min ind_max \n") for i in range(amr.ncpu): f.write("{:8d} {:.15E} {:.15E}\n".format(i+1, amr.bound_key[i],amr.bound_key[i+1])) f.close() """ This can generate 'header' of info. But it is not trivial to read 128-bit floating point (QUADHILBERT) numbers from binary bits in Python. Instead, I used a fortran program to read amr.00001 and output hilbert keys in the info format. """ wdir = "./" from pyram import load nouts = range(113, 120) for nout in nouts: ah = load.sim.AmrHeader() snout = str(nout).zfill(5) ah._read_amr_header(open(wdir + "output_"+snout+"/amr_"+snout+".out00001", 'rb'), skip_header=False) levelmin = 8 # From other info file write_info(ah)
the-stack_0_9403
from scipy.stats import genpareto, norm import numpy as np import gym from gym import spaces from gym.utils import seeding def flip(edge, np_random): return 1 if np_random.uniform() < edge else -1 class KellyCoinflipEnv(gym.Env): """The Kelly coinflip game is a simple gambling introduced by Haghani & Dewey 2016's 'Rational Decision-Making Under Uncertainty: Observed Betting Patterns on a Biased Coin' (https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2856963), to test human decision-making in a setting like that of the stock market: positive expected value but highly stochastic; they found many subjects performed badly, often going broke, even though optimal play would reach the maximum with ~95% probability. In the coinflip game, the player starts with $25.00 to gamble over 300 rounds; each round, they can bet anywhere up to their net worth (in penny increments), and then a coin is flipped; with P=0.6, the player wins twice what they bet, otherwise, they lose it. $250 is the maximum players are allowed to have. At the end of the 300 rounds, they keep whatever they have. The human subjects earned an average of $91; a simple use of the Kelly criterion (https://en.wikipedia.org/wiki/Kelly_criterion), giving a strategy of betting 20% until the cap is hit, would earn $240; a decision tree analysis shows that optimal play earns $246 (https://www.gwern.net/Coin-flip). The game short-circuits when either wealth = $0 (since one can never recover) or wealth = cap (trivial optimal play: one simply bets nothing thereafter). In this implementation, we default to the paper settings of $25, 60% odds, wealth cap of $250, and 300 rounds. To specify the action space in advance, we multiply the wealth cap (in dollars) by 100 (to allow for all penny bets); should one attempt to bet more money than one has, it is rounded down to one's net worth. (Alternately, a mistaken bet could end the episode immediately; it's not clear to me which version would be better.) For a harder version which randomizes the 3 key parameters, see the Generalized Kelly coinflip game.""" metadata = {"render.modes": ["human"]} def __init__(self, initial_wealth=25.0, edge=0.6, max_wealth=250.0, max_rounds=300): self.action_space = spaces.Discrete(int(max_wealth * 100)) # betting in penny # increments self.observation_space = spaces.Tuple( ( spaces.Box(0, max_wealth, [1], dtype=np.float32), # (w,b) spaces.Discrete(max_rounds + 1), ) ) self.reward_range = (0, max_wealth) self.edge = edge self.wealth = initial_wealth self.initial_wealth = initial_wealth self.max_rounds = max_rounds self.max_wealth = max_wealth self.np_random = None self.rounds = None self.seed() self.reset() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): bet_in_dollars = min( action / 100.0, self.wealth ) # action = desired bet in pennies self.rounds -= 1 coinflip = flip(self.edge, self.np_random) self.wealth = min(self.max_wealth, self.wealth + coinflip * bet_in_dollars) done = self.wealth < 0.01 or self.wealth == self.max_wealth or not self.rounds reward = self.wealth if done else 0.0 return self._get_obs(), reward, done, {} def _get_obs(self): return np.array([self.wealth]), self.rounds def reset(self): self.rounds = self.max_rounds self.wealth = self.initial_wealth return self._get_obs() def render(self, mode="human"): print("Current wealth: ", self.wealth, "; Rounds left: ", self.rounds) class KellyCoinflipGeneralizedEnv(gym.Env): """The Generalized Kelly coinflip game is an extension by ArthurB & Gwern Branwen which expands the Kelly coinflip game MDP into a POMDP, where the 3 key parameters (edge, maximum wealth, and number of rounds) are unknown random variables drawn from 3 distributions: a Beta(7,3) for the coinflip edge 0-1, a N(300,25) the total number of rounds, and a Pareto(5,200) for the wealth cap. These distributions are chosen to be conjugate & easily updatable, to allow for inference (other choices like the geometric for number of rounds wouldn't make observations informative), and to loosely reflect what a human might expect in the original Kelly coinflip game given that the number of rounds wasn't strictly fixed and they weren't told the wealth cap until they neared it. With these particular distributions, the entire history of the game can be summarized into a few sufficient statistics of rounds-elapsed/wins/losses/max-wealth-ever-reached, from which the Bayes-optimal decision can (in theory) be made; to avoid all agents having to tediously track those sufficient statistics manually in the same way, the observation space is augmented from wealth/rounds-left (rounds-left is deleted because it is a hidden variable) to current-wealth/rounds-elapsed/wins/losses/maximum-observed-wealth. The simple Kelly coinflip game can easily be solved by calculating decision trees, but the Generalized Kelly coinflip game may be intractable (although the analysis for the edge case alone suggests that the Bayes-optimal value may be very close to what one would calculate using a decision tree for any specific case), and represents a good challenge for RL agents.""" metadata = {"render.modes": ["human"]} def __init__( self, initial_wealth=25.0, edge_prior_alpha=7, edge_prior_beta=3, max_wealth_alpha=5.0, max_wealth_m=200.0, max_rounds_mean=300.0, max_rounds_sd=25.0, reseed=True, clip_distributions=False, ): # clip_distributions=True asserts that state and action space are not modified at reset() # store the hyper-parameters for passing back into __init__() during resets so # the same hyper-parameters govern the next game's parameters, as the user # expects: # TODO: this is boilerplate, is there any more elegant way to do this? self.initial_wealth = float(initial_wealth) self.edge_prior_alpha = edge_prior_alpha self.edge_prior_beta = edge_prior_beta self.max_wealth_alpha = max_wealth_alpha self.max_wealth_m = max_wealth_m self.max_rounds_mean = max_rounds_mean self.max_rounds_sd = max_rounds_sd self.clip_distributions = clip_distributions if reseed or not hasattr(self, "np_random"): self.seed() # draw this game's set of parameters: edge = self.np_random.beta(edge_prior_alpha, edge_prior_beta) if self.clip_distributions: # (clip/resample some parameters to be able to fix obs/action space sizes/bounds) max_wealth_bound = round( genpareto.ppf(0.85, max_wealth_alpha, max_wealth_m) ) max_wealth = max_wealth_bound + 1.0 while max_wealth > max_wealth_bound: max_wealth = round( genpareto.rvs( max_wealth_alpha, max_wealth_m, random_state=self.np_random ) ) max_rounds_bound = int( round(norm.ppf(0.99, max_rounds_mean, max_rounds_sd)) ) max_rounds = max_rounds_bound + 1 while max_rounds > max_rounds_bound: max_rounds = int( round(self.np_random.normal(max_rounds_mean, max_rounds_sd)) ) else: max_wealth = round( genpareto.rvs( max_wealth_alpha, max_wealth_m, random_state=self.np_random ) ) max_wealth_bound = max_wealth max_rounds = int( round(self.np_random.normal(max_rounds_mean, max_rounds_sd)) ) max_rounds_bound = max_rounds # add an additional global variable which is the sufficient statistic for the # Pareto distribution on wealth cap; alpha doesn't update, but x_m does, and # simply is the highest wealth count we've seen to date: self.max_ever_wealth = float(self.initial_wealth) # for the coinflip edge, it is total wins/losses: self.wins = 0 self.losses = 0 # for the number of rounds, we need to remember how many rounds we've played: self.rounds_elapsed = 0 # the rest proceeds as before: self.action_space = spaces.Discrete(int(max_wealth_bound * 100)) self.observation_space = spaces.Tuple( ( spaces.Box( 0, max_wealth_bound, shape=[1], dtype=np.float32 ), # current wealth spaces.Discrete(max_rounds_bound + 1), # rounds elapsed spaces.Discrete(max_rounds_bound + 1), # wins spaces.Discrete(max_rounds_bound + 1), # losses spaces.Box(0, max_wealth_bound, [1], dtype=np.float32), ) ) # maximum observed wealth self.reward_range = (0, max_wealth) self.edge = edge self.wealth = self.initial_wealth self.max_rounds = max_rounds self.rounds = self.max_rounds self.max_wealth = max_wealth def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): bet_in_dollars = min(action / 100.0, self.wealth) self.rounds -= 1 coinflip = flip(self.edge, self.np_random) self.wealth = min(self.max_wealth, self.wealth + coinflip * bet_in_dollars) self.rounds_elapsed += 1 if coinflip: self.max_ever_wealth = max(self.wealth, self.max_ever_wealth) self.wins += 1 else: self.losses += 1 done = self.wealth < 0.01 or self.wealth == self.max_wealth or not self.rounds reward = self.wealth if done else 0.0 return self._get_obs(), reward, done, {} def _get_obs(self): return ( np.array([float(self.wealth)]), self.rounds_elapsed, self.wins, self.losses, np.array([float(self.max_ever_wealth)]), ) def reset(self): # re-init everything to draw new parameters etc, but preserve the RNG for # reproducibility and pass in the same hyper-parameters as originally specified: self.__init__( initial_wealth=self.initial_wealth, edge_prior_alpha=self.edge_prior_alpha, edge_prior_beta=self.edge_prior_beta, max_wealth_alpha=self.max_wealth_alpha, max_wealth_m=self.max_wealth_m, max_rounds_mean=self.max_rounds_mean, max_rounds_sd=self.max_rounds_sd, reseed=False, clip_distributions=self.clip_distributions, ) return self._get_obs() def render(self, mode="human"): print( "Current wealth: ", self.wealth, "; Rounds left: ", self.rounds, "; True edge: ", self.edge, "; True max wealth: ", self.max_wealth, "; True stopping time: ", self.max_rounds, "; Rounds left: ", self.max_rounds - self.rounds_elapsed, )
the-stack_0_9406
#!/usr/bin/env python import cv2 import datautils.structures.mp import montage from .... import log from .. import utils logger = log.get_logger(__name__) #logger.addHandler(logging.StreamHandler()) #logger.setLevel(logging.DEBUG) class NormSerf(datautils.structures.mp.TimedSerf): def setup(self, config, grab_buffers, norm_buffers, bg_buffer): logger.debug( "NormSerf[%s] setup: %s, %s, %s, %s", self, config, grab_buffers, norm_buffers, bg_buffer) self.config = config self.image_size = config['crop'][:2] self.grab_buffers = grab_buffers self.norm_buffers = norm_buffers self.bg_buffer = bg_buffer self.setup_buffers() if 'log_serfs' in config: utils.log_serf_to_directory(self, config['log_serfs']) def set_config(self, config): logger.debug("NormSerf[%s] set_config: %s", self, config) self.config = config def setup_buffers(self): logger.debug("NormSerf[%s] setup_buffers", self) h, w, s = self.config['crop'] self.grabs = [ montage.io.Image(utils.buffer_as_array(b, 'u2', (h, w, s))) for b in self.grab_buffers] self.norms = [ utils.buffer_as_array(b, 'f4', (h, w)) for b in self.norm_buffers] self.bg = montage.io.Image( utils.buffer_as_array(self.bg_buffer, 'f4', (h, w))) def normalize_grab(self, buffer_index): logger.debug("NormSerf[%s] normalize_grab: %s", self, buffer_index) # tests on camera node show cv2 is faster (7 ms vs 12 ms) cv2.multiply( self.grabs[buffer_index], self.bg, self.norms[buffer_index], dtype=cv2.CV_32F) #self.norms[buffer_index][:, :] = self.grabs[buffer_index] * self.bg self.send('norm', buffer_index) class NormLord(datautils.structures.mp.Lord): def __init__(self, config, buffers): logger.debug( "NormLord[%s] __init__: %s, %s", self, config, buffers) datautils.structures.mp.Lord.__init__(self) self.config = config self.buffers = buffers def start(self, wait=True): logger.debug("NormLord[%s] start", self) datautils.structures.mp.Lord.start( self, NormSerf, ( self.config, self.buffers.grab_buffers, self.buffers.norm_buffers, self.buffers.bg_buffer), wait=wait) def set_config(self, config): logger.debug("NormLord[%s] set_config: %s", self, config) self.send('set_config', config) def normalize_grab(self, index): logger.debug("NormLord[%s] normalize_grab: %s", self, index) self.buffers.lock_grab(index) self.send('normalize_grab', index) def norm(self, index): logger.debug("NormLord[%s] norm: %s", self, index) self.buffers.unlock_grab(index)
the-stack_0_9407
#!/usr/bin/env python from operator import itemgetter import sys current_year = 0 max_temp = 0 temp = 0 # input comes from STDIN for line in sys.stdin: # remove leading and trailing whitespace line = line.strip() # parse the input we got from mapper.py year, temp = line.split('\t', 1) # convert count (currently a string) to int try: year = int(year) temp = int(temp) except ValueError: # count was not a number, so silently # ignore/discard this line continue # this IF-switch only works because Hadoop sorts map output # by key (here: word) before it is passed to the reducer if current_year == year: max_temp = max(max_temp, temp) else: if current_year != 0: # write result to STDOUT print('%d\t%d' % (current_year, max_temp)) max_temp = temp current_year = year # do not forget to output the last word if needed! if current_year == year: print('%d\t%d' % (current_year, max_temp))
the-stack_0_9408
# GNU MediaGoblin -- federated, autonomous media hosting # Copyright (C) 2011, 2012 MediaGoblin contributors. See AUTHORS. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ This module contains some Mixin classes for the db objects. A bunch of functions on the db objects are really more like "utility functions": They could live outside the classes and be called "by hand" passing the appropiate reference. They usually only use the public API of the object and rarely use database related stuff. These functions now live here and get "mixed in" into the real objects. """ import uuid import re from datetime import datetime from pytz import UTC from werkzeug.utils import cached_property from mediagoblin.media_types import FileTypeNotSupported from mediagoblin.tools import common, licenses from mediagoblin.tools.pluginapi import hook_handle from mediagoblin.tools.text import cleaned_markdown_conversion from mediagoblin.tools.url import slugify from mediagoblin.tools.translate import pass_to_ugettext as _ class CommentingMixin: """ Mixin that gives classes methods to get and add the comments on/to it This assumes the model has a "comments" class which is a ForeignKey to the Collection model. This will hold a Collection of comments which are associated to this model. It also assumes the model has an "actor" ForeignKey which points to the creator/publisher/etc. of the model. NB: This is NOT the mixin for the Comment Model, this is for other models which support commenting. """ def get_comment_link(self): # Import here to avoid cyclic imports from mediagoblin.db.models import Comment, GenericModelReference gmr = GenericModelReference.query.filter_by( obj_pk=self.id, model_type=self.__tablename__ ).first() if gmr is None: return None link = Comment.query.filter_by(comment_id=gmr.id).first() return link def get_reply_to(self): link = self.get_comment_link() if link is None or link.target_id is None: return None return link.target() def soft_delete(self, *args, **kwargs): link = self.get_comment_link() if link is not None: link.delete() super().soft_delete(*args, **kwargs) class GeneratePublicIDMixin: """ Mixin that ensures that a the public_id field is populated. The public_id is the ID that is used in the API, this must be globally unique and dereferencable. This will be the URL for the API view of the object. It's used in several places, not only is it used to give out via the API but it's also vital information stored when a soft_deletion occurs on the `Graveyard.public_id` field, this is needed to follow the spec which says we have to be able to provide a shell of an object and return a 410 (rather than a 404) when a deleted object has been deleted. This requires a the urlgen off the request object (`request.urlgen`) to be provided as it's the ID is a URL. """ def get_public_id(self, urlgen): # Verify that the class this is on actually has a public_id field... if "public_id" not in self.__table__.columns.keys(): raise Exception("Model has no public_id field") # Great! the model has a public id, if it's None, let's create one! if self.public_id is None: # We need the internal ID for this so ensure we've been saved. self.save(commit=False) # Create the URL self.public_id = urlgen( "mediagoblin.api.object", object_type=self.object_type, id=str(uuid.uuid4()), qualified=True ) self.save() return self.public_id class UserMixin: object_type = "person" @property def bio_html(self): return cleaned_markdown_conversion(self.bio) def url_for_self(self, urlgen, **kwargs): """Generate a URL for this User's home page.""" return urlgen('mediagoblin.user_pages.user_home', user=self.username, **kwargs) class GenerateSlugMixin: """ Mixin to add a generate_slug method to objects. Depends on: - self.slug - self.title - self.check_slug_used(new_slug) """ def generate_slug(self): """ Generate a unique slug for this object. This one does not *force* slugs, but usually it will probably result in a niceish one. The end *result* of the algorithm will result in these resolutions for these situations: - If we have a slug, make sure it's clean and sanitized, and if it's unique, we'll use that. - If we have a title, slugify it, and if it's unique, we'll use that. - If we can't get any sort of thing that looks like it'll be a useful slug out of a title or an existing slug, bail, and don't set the slug at all. Don't try to create something just because. Make sure we have a reasonable basis for a slug first. - If we have a reasonable basis for a slug (either based on existing slug or slugified title) but it's not unique, first try appending the entry's id, if that exists - If that doesn't result in something unique, tack on some randomly generated bits until it's unique. That'll be a little bit of junk, but at least it has the basis of a nice slug. """ #Is already a slug assigned? Check if it is valid if self.slug: slug = slugify(self.slug) # otherwise, try to use the title. elif self.title: # assign slug based on title slug = slugify(self.title) else: # We don't have any information to set a slug return # We don't want any empty string slugs if slug == "": return # Otherwise, let's see if this is unique. if self.check_slug_used(slug): # It looks like it's being used... lame. # Can we just append the object's id to the end? if self.id: slug_with_id = "{}-{}".format(slug, self.id) if not self.check_slug_used(slug_with_id): self.slug = slug_with_id return # success! # okay, still no success; # let's whack junk on there till it's unique. slug += '-' + uuid.uuid4().hex[:4] # keep going if necessary! while self.check_slug_used(slug): slug += uuid.uuid4().hex[:4] # self.check_slug_used(slug) must be False now so we have a slug that # we can use now. self.slug = slug class MediaEntryMixin(GenerateSlugMixin, GeneratePublicIDMixin): def check_slug_used(self, slug): # import this here due to a cyclic import issue # (db.models -> db.mixin -> db.util -> db.models) from mediagoblin.db.util import check_media_slug_used return check_media_slug_used(self.actor, slug, self.id) @property def object_type(self): """ Converts media_type to pump-like type - don't use internally """ return self.media_type.split(".")[-1] @property def description_html(self): """ Rendered version of the description, run through Markdown and cleaned with our cleaning tool. """ return cleaned_markdown_conversion(self.description) def get_display_media(self): """Find the best media for display. We try checking self.media_manager.fetching_order if it exists to pull down the order. Returns: (media_size, media_path) or, if not found, None. """ fetch_order = self.media_manager.media_fetch_order # No fetching order found? well, give up! if not fetch_order: return None media_sizes = self.media_files.keys() for media_size in fetch_order: if media_size in media_sizes: return media_size, self.media_files[media_size] def get_all_media(self): """ Returns all available qualties of a media (except original) """ fetch_order = self.media_manager.media_fetch_order # No fetching order found? well, give up! if not fetch_order: return None media_sizes = self.media_files.keys() all_media_path = [] for media_size in fetch_order: if media_size in media_sizes and media_size != 'original': file_metadata = self.get_file_metadata(media_size) size = file_metadata['medium_size'] if media_size != 'webm_video': all_media_path.append((media_size[5:], size, self.media_files[media_size])) else: all_media_path.append(('default', size, self.media_files[media_size])) return all_media_path def main_mediafile(self): pass @property def slug_or_id(self): if self.slug: return self.slug else: return 'id:%s' % self.id def url_for_self(self, urlgen, **extra_args): """ Generate an appropriate url for ourselves Use a slug if we have one, else use our 'id'. """ uploader = self.get_actor return urlgen( 'mediagoblin.user_pages.media_home', user=uploader.username, media=self.slug_or_id, **extra_args) @property def thumb_url(self): """Return the thumbnail URL (for usage in templates) Will return either the real thumbnail or a default fallback icon.""" # TODO: implement generic fallback in case MEDIA_MANAGER does # not specify one? if 'thumb' in self.media_files: thumb_url = self._app.public_store.file_url( self.media_files['thumb']) else: # No thumbnail in media available. Get the media's # MEDIA_MANAGER for the fallback icon and return static URL # Raises FileTypeNotSupported in case no such manager is enabled manager = self.media_manager thumb_url = self._app.staticdirector(manager['default_thumb']) return thumb_url @property def original_url(self): """ Returns the URL for the original image will return self.thumb_url if original url doesn't exist""" if "original" not in self.media_files: return self.thumb_url return self._app.public_store.file_url( self.media_files["original"] ) @property def icon_url(self): '''Return the icon URL (for usage in templates) if it exists''' try: return self._app.staticdirector( self.media_manager['type_icon']) except AttributeError: return None @cached_property def media_manager(self): """Returns the MEDIA_MANAGER of the media's media_type Raises FileTypeNotSupported in case no such manager is enabled """ manager = hook_handle(('media_manager', self.media_type)) if manager: return manager(self) # Not found? Then raise an error raise FileTypeNotSupported( "MediaManager not in enabled types. Check media_type plugins are" " enabled in config?") def get_fail_exception(self): """ Get the exception that's appropriate for this error """ if self.fail_error: try: return common.import_component(self.fail_error) except ImportError: # TODO(breton): fail_error should give some hint about why it # failed. fail_error is used as a path to import(). # Unfortunately, I didn't know about that and put general error # message there. Maybe it's for the best, because for admin, # we could show even some raw python things. Anyway, this # should be properly resolved. Now we are in a freeze, that's # why I simply catch ImportError. return None def get_license_data(self): """Return license dict for requested license""" return licenses.get_license_by_url(self.license or "") def exif_display_iter(self): if not self.media_data: return exif_all = self.media_data.get("exif_all") for key in exif_all: label = re.sub('(.)([A-Z][a-z]+)', r'\1 \2', key) yield label.replace('EXIF', '').replace('Image', ''), exif_all[key] def exif_display_data_short(self): """Display a very short practical version of exif info""" if not self.media_data: return exif_all = self.media_data.get("exif_all") exif_short = {} if 'Image DateTimeOriginal' in exif_all: # format date taken takendate = datetime.strptime( exif_all['Image DateTimeOriginal']['printable'], '%Y:%m:%d %H:%M:%S').date() taken = takendate.strftime('%B %d %Y') exif_short.update({'Date Taken': taken}) aperture = None if 'EXIF FNumber' in exif_all: fnum = str(exif_all['EXIF FNumber']['printable']).split('/') # calculate aperture if len(fnum) == 2: aperture = "f/%.1f" % (float(fnum[0])/float(fnum[1])) elif fnum[0] != 'None': aperture = "f/%s" % (fnum[0]) if aperture: exif_short.update({'Aperture': aperture}) short_keys = [ ('Camera', 'Image Model', None), ('Exposure', 'EXIF ExposureTime', lambda x: '%s sec' % x), ('ISO Speed', 'EXIF ISOSpeedRatings', None), ('Focal Length', 'EXIF FocalLength', lambda x: '%s mm' % x)] for label, key, fmt_func in short_keys: try: val = fmt_func(exif_all[key]['printable']) if fmt_func \ else exif_all[key]['printable'] exif_short.update({label: val}) except KeyError: pass return exif_short class TextCommentMixin(GeneratePublicIDMixin): object_type = "comment" @property def content_html(self): """ the actual html-rendered version of the comment displayed. Run through Markdown and the HTML cleaner. """ return cleaned_markdown_conversion(self.content) def __unicode__(self): return '<{klass} #{id} {actor} "{comment}">'.format( klass=self.__class__.__name__, id=self.id, actor=self.get_actor, comment=self.content) def __repr__(self): return '<{klass} #{id} {actor} "{comment}">'.format( klass=self.__class__.__name__, id=self.id, actor=self.get_actor, comment=self.content) class CollectionMixin(GenerateSlugMixin, GeneratePublicIDMixin): object_type = "collection" def check_slug_used(self, slug): # import this here due to a cyclic import issue # (db.models -> db.mixin -> db.util -> db.models) from mediagoblin.db.util import check_collection_slug_used return check_collection_slug_used(self.actor, slug, self.id) @property def description_html(self): """ Rendered version of the description, run through Markdown and cleaned with our cleaning tool. """ return cleaned_markdown_conversion(self.description) @property def slug_or_id(self): return (self.slug or self.id) def url_for_self(self, urlgen, **extra_args): """ Generate an appropriate url for ourselves Use a slug if we have one, else use our 'id'. """ creator = self.get_actor return urlgen( 'mediagoblin.user_pages.user_collection', user=creator.username, collection=self.slug_or_id, **extra_args) def add_to_collection(self, obj, content=None, commit=True): """ Adds an object to the collection """ # It's here to prevent cyclic imports from mediagoblin.db.models import CollectionItem # Need the ID of this collection for this so check we've got one. self.save(commit=False) # Create the CollectionItem item = CollectionItem() item.collection = self.id item.get_object = obj if content is not None: item.note = content self.num_items = self.num_items + 1 # Save both! self.save(commit=commit) item.save(commit=commit) return item class CollectionItemMixin: @property def note_html(self): """ the actual html-rendered version of the note displayed. Run through Markdown and the HTML cleaner. """ return cleaned_markdown_conversion(self.note) class ActivityMixin(GeneratePublicIDMixin): object_type = "activity" VALID_VERBS = ["add", "author", "create", "delete", "dislike", "favorite", "follow", "like", "post", "share", "unfavorite", "unfollow", "unlike", "unshare", "update", "tag"] def get_url(self, request): return request.urlgen( "mediagoblin.user_pages.activity_view", username=self.get_actor.username, id=self.id, qualified=True ) def generate_content(self): """ Produces a HTML content for object """ # some of these have simple and targetted. If self.target it set # it will pick the targetted. If they DON'T have a targetted version # the information in targetted won't be added to the content. verb_to_content = { "add": { "simple" : _("{username} added {object}"), "targetted": _("{username} added {object} to {target}"), }, "author": {"simple": _("{username} authored {object}")}, "create": {"simple": _("{username} created {object}")}, "delete": {"simple": _("{username} deleted {object}")}, "dislike": {"simple": _("{username} disliked {object}")}, "favorite": {"simple": _("{username} favorited {object}")}, "follow": {"simple": _("{username} followed {object}")}, "like": {"simple": _("{username} liked {object}")}, "post": { "simple": _("{username} posted {object}"), "targetted": _("{username} posted {object} to {target}"), }, "share": {"simple": _("{username} shared {object}")}, "unfavorite": {"simple": _("{username} unfavorited {object}")}, "unfollow": {"simple": _("{username} stopped following {object}")}, "unlike": {"simple": _("{username} unliked {object}")}, "unshare": {"simple": _("{username} unshared {object}")}, "update": {"simple": _("{username} updated {object}")}, "tag": {"simple": _("{username} tagged {object}")}, } object_map = { "image": _("an image"), "comment": _("a comment"), "collection": _("a collection"), "video": _("a video"), "audio": _("audio"), "person": _("a person"), } obj = self.object() target = None if self.target_id is None else self.target() actor = self.get_actor content = verb_to_content.get(self.verb, None) if content is None or self.object is None: return # Decide what to fill the object with if hasattr(obj, "title") and obj.title.strip(" "): object_value = obj.title elif obj.object_type in object_map: object_value = object_map[obj.object_type] else: object_value = _("an object") # Do we want to add a target (indirect object) to content? if target is not None and "targetted" in content: if hasattr(target, "title") and target.title.strip(" "): target_value = target.title elif target.object_type in object_map: target_value = object_map[target.object_type] else: target_value = _("an object") self.content = content["targetted"].format( username=actor.username, object=object_value, target=target_value ) else: self.content = content["simple"].format( username=actor.username, object=object_value ) return self.content def serialize(self, request): href = request.urlgen( "mediagoblin.api.object", object_type=self.object_type, id=self.id, qualified=True ) published = UTC.localize(self.published) updated = UTC.localize(self.updated) obj = { "id": href, "actor": self.get_actor.serialize(request), "verb": self.verb, "published": published.isoformat(), "updated": updated.isoformat(), "content": self.content, "url": self.get_url(request), "object": self.object().serialize(request), "objectType": self.object_type, "links": { "self": { "href": href, }, }, } if self.generator: obj["generator"] = self.get_generator.serialize(request) if self.title: obj["title"] = self.title if self.target_id is not None: obj["target"] = self.target().serialize(request) return obj def unseralize(self, data): """ Takes data given and set it on this activity. Several pieces of data are not written on because of security reasons. For example changing the author or id of an activity. """ if "verb" in data: self.verb = data["verb"] if "title" in data: self.title = data["title"] if "content" in data: self.content = data["content"]
the-stack_0_9409
import requests import re import pytesseract from PIL import Image def getPage(baseUrl): r = requests.get(baseUrl) if r.status_code != 200: print("Page does not seem to be online. Could you double check it?") return r.text def searchHackWords(content): comp = re.compile('h[a4]ck[e3]d', re.IGNORECASE) res = comp.findall(content) if bool(res): return res return None def checkTextDefacement(baseUrl): content = getPage(baseUrl) res = searchHackWords(content) return res def checkImgDefacement(baseUrl): im = Image.open("/home/valle/Downloads/4.jpg") text = pytesseract.image_to_string(im) res = searchHackWords(text) return res def checkDefacement(baseUrl): resTxt = checkTextDefacement(baseUrl) resImg = checkImgDefacement(baseUrl) if resTxt or resImg: print("### Possibly hacked ###") print("Matched terms:") if resTxt: for t in resTxt: print("\t"+t) if resImg: for t in resImg: print("\t"+t) else: print("This page seems to be clean")
the-stack_0_9410
# -*- coding: utf-8 -*- """ Created on Thu Mar 15 14:00:36 2018 @author: Eric """ import glob import random import pandas as pd import numpy as np def more_work(n, user): all_txt = glob.glob("*.txt") all_pmc_files = set() # Gets all of the files that we have done into a set for txt in all_txt: file_data = np.genfromtxt(txt, dtype = int) for pmc_file in file_data: all_pmc_files.add(pmc_file) # Gets all of the PMC files pmcs = glob.glob("..\\..\\annotation_test\\*.html") # Determines which PMC files we haven't done, and creates a list of N of them to_do = [] for file in pmcs: loc = '..\\..\\annotation_test\\PMC' file_num = int(file.replace(loc, "").replace(".html", "")) # trim the file to have just the number if not(file_num in all_pmc_files): to_do.append(file_num) 5 random.shuffle(to_do) to_do = to_do[:n] for i in range(len(to_do)): print(to_do[i]) loc = ".//ordering_list_" + user + ".txt" done = np.loadtxt(loc, dtype = int) new_list = np.append(done, to_do) np.savetxt(loc, new_list)
the-stack_0_9411
from collections import OrderedDict class ParseError(ValueError): pass class WpaSupplicantConf: """This class parses a wpa_supplicant configuration file, allows manipulation of the configured networks and then writing out of the updated file. WARNING: Although care has been taken to preserve ordering, comments will be lost for any wpa_supplicant.conf which is round-tripped through this class. """ def __init__(self, lines): self._fields = OrderedDict() self._networks = OrderedDict() network = None for line in lines: line = line.strip() if not line or line.startswith('#'): continue if line == "}": if network is None: raise ParseError("unxpected '}'") ssid = network.pop('ssid', None) if ssid is None: raise ParseError('missing "ssid" for network') self._networks[dequote(ssid)] = network network = None continue parts = [x.strip() for x in line.split('=', 1)] if len(parts) != 2: raise ParseError("invalid line: %{!r}".format(line)) left, right = parts if right == '{': if left != 'network': raise ParseError('unsupported section: "{}"'.format(left)) if network is not None: raise ParseError("can't nest networks") network = OrderedDict() else: if network is None: self._fields[left] = right else: network[left] = right def fields(self): return self._fields def networks(self): return self._networks def add_network(self, ssid, **attrs): self._networks[ssid] = attrs def remove_network(self, ssid): self._networks.pop(ssid, None) def write(self, f): for name, value in self._fields.items(): f.write("{}={}\n".format(name, value)) for ssid, info in self._networks.items(): f.write("\nnetwork={\n") f.write(' ssid="{}"\n'.format(ssid)) for name, value in info.items(): f.write(" {}={}\n".format(name, value)) f.write("}\n") def dequote(v): if len(v) < 2: return v if v.startswith('"') and v.endswith('"'): return v[1:-1] return v
the-stack_0_9412
import logging import socket log = logging.getLogger(__name__) POLICY = ( '<cross-domain-policy><allow-access-from domain="*" ' 'to-ports="*" /></cross-domain-policy>\0' ) POLICYREQUEST = "<policy-file-request/>" def client_handle(sock, address): log.info("%s:%s: Connection accepted." % address) sock.settimeout(3) try: input_data = sock.recv(128) if input_data.startswith(POLICYREQUEST): sock.sendall(POLICY) log.info("%s:%s: Policy sent. Closing connection." % address) else: log.info("%s:%s: Wrong payload. Closing connection." % address) except socket.timeout: log.info("%s:%s: Timeout" % address) sock.close()
the-stack_0_9413
import os import subprocess import logging log = logging.getLogger('grocer-utils') log.setLevel(logging.INFO) ch = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) log.addHandler(ch) def foodcritic(fc_bin, path, fc_strict=False): """ Execute foodcritic :rtype : tuple :param fc_bin: path to food critic binary :param path: dir path to exectue FC on :param fc_strict: bool. true if foodcritic should fail if any of the checks do not pass :return: tpl. output, errors, returncode """ if fc_strict: cmd = '{0} -f any {1}'.format(fc_bin, path) else: cmd = '{0} {1}'.format(fc_bin, path) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=True) output, errors = p.communicate() return output, errors, p.returncode def rubocop(rubocop_bin, path): """ Execute rubocop :rtype : tuple :param rubocop_bin: path to food critic binary :param path: dir path to exectue rubocop on :return: tpl. output, errors, returncode """ cmd = '{0} {1}'.format(rubocop_bin, path) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=True) output, errors = p.communicate() return output, errors, p.returncode def berks(berks_bin, path, action='update'): """ Execute various berks commands :rtype : tuple :param berks_bin: path to berks bin :param path: path to change directory to before running berks commands (berks is a dir context aware tool) :param action: berks action to run, e.g. berks install :return: tpl. output, errors, returncode """ cmd = 'cd {0} && {1} {2}'.format(path, berks_bin, action) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=True) output, errors = p.communicate() return output, errors, p.returncode def ruby_syntax(ruby_bin, path): """ Check ruby syntax using ruby interpreter -c flag :rtype : tuple :param ruby_bin: path to ruby bin :param path: file path to ruby code to check :return: tpl. output, errors, returncode """ cmd = '{0} -c {1}'.format(ruby_bin, path) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=True) output, errors = p.communicate() return output, errors, p.returncode def chefspec(chefspec_bin, path): raise NotImplementedError def get_file_types(dir_path): """ Get the files in a directory based on type :rtype : tuple :param dir_path: str. path to directory to search :return: 4-part tuple. ruby_files, json_files, md_files, other_type """ ruby_files = [] json_files = [] md_files = [] other_type = [] for root, dirs, files in os.walk(dir_path): if "git" in root: pass else: for _file in files: if _file[-3:] == '.rb': ruby_files.append(os.path.join(root,_file)) elif _file[-5:] == '.json': json_files.append(os.path.join(root,_file)) elif _file[-3:] == '.md': md_files.append(os.path.join(root,_file)) else: other_type.append(_file) return ruby_files, json_files, md_files, other_type def rspec_test(rspec_bin, path): """ excute rspec tests :param rspec_bin: path to rspec bin :param path: dir path to recipe dir root :return: tpl. output, errors, returncode """ path = os.path.join(path,'test/integration/default') if not os.path.isdir(path): return "No rspec tests found in {0}".format(path), None, 0 cmd = '{0} -c {1}/*'.format(rspec_bin, path) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=True) output, errors = p.communicate() return output, errors, p.returncode
the-stack_0_9416
# -*- coding: utf-8 -*- """ pygments.lexers.r ~~~~~~~~~~~~~~~~~ Lexers for the R/S languages. :copyright: Copyright 2006-2015 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import Lexer, RegexLexer, include, words, do_insertions from pygments.token import Text, Comment, Operator, Keyword, Name, String, \ Number, Punctuation, Generic __all__ = ['RConsoleLexer', 'SLexer', 'RdLexer'] line_re = re.compile('.*?\n') class RConsoleLexer(Lexer): """ For R console transcripts or R CMD BATCH output files. """ name = 'RConsole' aliases = ['rconsole', 'rout'] filenames = ['*.Rout'] def get_tokens_unprocessed(self, text): slexer = SLexer(**self.options) current_code_block = '' insertions = [] for match in line_re.finditer(text): line = match.group() if line.startswith('>') or line.startswith('+'): # Colorize the prompt as such, # then put rest of line into current_code_block insertions.append((len(current_code_block), [(0, Generic.Prompt, line[:2])])) current_code_block += line[2:] else: # We have reached a non-prompt line! # If we have stored prompt lines, need to process them first. if current_code_block: # Weave together the prompts and highlight code. for item in do_insertions( insertions, slexer.get_tokens_unprocessed(current_code_block)): yield item # Reset vars for next code block. current_code_block = '' insertions = [] # Now process the actual line itself, this is output from R. yield match.start(), Generic.Output, line # If we happen to end on a code block with nothing after it, need to # process the last code block. This is neither elegant nor DRY so # should be changed. if current_code_block: for item in do_insertions( insertions, slexer.get_tokens_unprocessed(current_code_block)): yield item class SLexer(RegexLexer): """ For S, S-plus, and R source code. .. versionadded:: 0.10 """ name = 'S' aliases = ['splus', 's', 'r'] filenames = ['*.S', '*.R', '.Rhistory', '.Rprofile', '.Renviron'] mimetypes = ['text/S-plus', 'text/S', 'text/x-r-source', 'text/x-r', 'text/x-R', 'text/x-r-history', 'text/x-r-profile'] builtins_base = ( 'Arg', 'Conj', 'Cstack_info', 'Encoding', 'FALSE', 'Filter', 'Find', 'I', 'ISOdate', 'ISOdatetime', 'Im', 'Inf', 'La.svd', 'Map', 'Math.Date', 'Math.POSIXt', 'Math.data.frame', 'Math.difftime', 'Math.factor', 'Mod', 'NA_character_', 'NA_complex_', 'NA_real_', 'NCOL', 'NROW', 'NULLNA_integer_', 'NaN', 'Negate', 'NextMethod', 'Ops.Date', 'Ops.POSIXt', 'Ops.data.frame', 'Ops.difftime', 'Ops.factor', 'Ops.numeric_version', 'Ops.ordered', 'Position', 'R.Version', 'R.home', 'R.version', 'R.version.string', 'RNGkind', 'RNGversion', 'R_system_version', 'Re', 'Recall', 'Reduce', 'Summary.Date', 'Summary.POSIXct', 'Summary.POSIXlt', 'Summary.data.frame', 'Summary.difftime', 'Summary.factor', 'Summary.numeric_version', 'Summary.ordered', 'Sys.Date', 'Sys.chmod', 'Sys.getenv', 'Sys.getlocale', 'Sys.getpid', 'Sys.glob', 'Sys.info', 'Sys.localeconv', 'Sys.readlink', 'Sys.setFileTime', 'Sys.setenv', 'Sys.setlocale', 'Sys.sleep', 'Sys.time', 'Sys.timezone', 'Sys.umask', 'Sys.unsetenv', 'Sys.which', 'TRUE', 'UseMethod', 'Vectorize', 'abbreviate', 'abs', 'acos', 'acosh', 'addNA', 'addTaskCallback', 'agrep', 'alist', 'all', 'all.equal', 'all.equal.POSIXct', 'all.equal.character', 'all.equal.default', 'all.equal.factor', 'all.equal.formula', 'all.equal.language', 'all.equal.list', 'all.equal.numeric', 'all.equal.raw', 'all.names', 'all.vars', 'any', 'anyDuplicated', 'anyDuplicated.array', 'anyDuplicated.data.frame', 'anyDuplicated.default', 'anyDuplicated.matrix', 'aperm', 'aperm.default', 'aperm.table', 'append', 'apply', 'args', 'arrayInd', 'as.Date', 'as.Date.POSIXct', 'as.Date.POSIXlt', 'as.Date.character', 'as.Date.date', 'as.Date.dates', 'as.Date.default', 'as.Date.factor', 'as.Date.numeric', 'as.POSIXct', 'as.POSIXct.Date', 'as.POSIXct.POSIXlt', 'as.POSIXct.date', 'as.POSIXct.dates', 'as.POSIXct.default', 'as.POSIXct.numeric', 'as.POSIXlt', 'as.POSIXlt.Date', 'as.POSIXlt.POSIXct', 'as.POSIXlt.character', 'as.POSIXlt.date', 'as.POSIXlt.dates', 'as.POSIXlt.default', 'as.POSIXlt.factor', 'as.POSIXlt.numeric', 'as.array', 'as.array.default', 'as.call', 'as.character', 'as.character.Date', 'as.character.POSIXt', 'as.character.condition', 'as.character.default', 'as.character.error', 'as.character.factor', 'as.character.hexmode', 'as.character.numeric_version', 'as.character.octmode', 'as.character.srcref', 'as.complex', 'as.data.frame', 'as.data.frame.AsIs', 'as.data.frame.Date', 'as.data.frame.POSIXct', 'as.data.frame.POSIXlt', 'as.data.frame.array', 'as.data.frame.character', 'as.data.frame.complex', 'as.data.frame.data.frame', 'as.data.frame.default', 'as.data.frame.difftime', 'as.data.frame.factor', 'as.data.frame.integer', 'as.data.frame.list', 'as.data.frame.logical', 'as.data.frame.matrix', 'as.data.frame.model.matrix', 'as.data.frame.numeric', 'as.data.frame.numeric_version', 'as.data.frame.ordered', 'as.data.frame.raw', 'as.data.frame.table', 'as.data.frame.ts', 'as.data.frame.vector', 'as.difftime', 'as.double', 'as.double.POSIXlt', 'as.double.difftime', 'as.environment', 'as.expression', 'as.expression.default', 'as.factor', 'as.function', 'as.function.default', 'as.hexmode', 'as.integer', 'as.list', 'as.list.Date', 'as.list.POSIXct', 'as.list.data.frame', 'as.list.default', 'as.list.environment', 'as.list.factor', 'as.list.function', 'as.list.numeric_version', 'as.logical', 'as.logical.factor', 'as.matrix', 'as.matrix.POSIXlt', 'as.matrix.data.frame', 'as.matrix.default', 'as.matrix.noquote', 'as.name', 'as.null', 'as.null.default', 'as.numeric', 'as.numeric_version', 'as.octmode', 'as.ordered', 'as.package_version', 'as.pairlist', 'as.qr', 'as.raw', 'as.single', 'as.single.default', 'as.symbol', 'as.table', 'as.table.default', 'as.vector', 'as.vector.factor', 'asNamespace', 'asS3', 'asS4', 'asin', 'asinh', 'assign', 'atan', 'atan2', 'atanh', 'attachNamespace', 'attr', 'attr.all.equal', 'attributes', 'autoload', 'autoloader', 'backsolve', 'baseenv', 'basename', 'besselI', 'besselJ', 'besselK', 'besselY', 'beta', 'bindingIsActive', 'bindingIsLocked', 'bindtextdomain', 'bitwAnd', 'bitwNot', 'bitwOr', 'bitwShiftL', 'bitwShiftR', 'bitwXor', 'body', 'bquote', 'browser', 'browserCondition', 'browserSetDebug', 'browserText', 'builtins', 'by', 'by.data.frame', 'by.default', 'bzfile', 'c.Date', 'c.POSIXct', 'c.POSIXlt', 'c.noquote', 'c.numeric_version', 'call', 'callCC', 'capabilities', 'casefold', 'cat', 'category', 'cbind', 'cbind.data.frame', 'ceiling', 'char.expand', 'charToRaw', 'charmatch', 'chartr', 'check_tzones', 'chol', 'chol.default', 'chol2inv', 'choose', 'class', 'clearPushBack', 'close', 'close.connection', 'close.srcfile', 'close.srcfilealias', 'closeAllConnections', 'col', 'colMeans', 'colSums', 'colnames', 'commandArgs', 'comment', 'computeRestarts', 'conditionCall', 'conditionCall.condition', 'conditionMessage', 'conditionMessage.condition', 'conflicts', 'contributors', 'cos', 'cosh', 'crossprod', 'cummax', 'cummin', 'cumprod', 'cumsum', 'cut', 'cut.Date', 'cut.POSIXt', 'cut.default', 'dQuote', 'data.class', 'data.matrix', 'date', 'debug', 'debugonce', 'default.stringsAsFactors', 'delayedAssign', 'deparse', 'det', 'determinant', 'determinant.matrix', 'dget', 'diag', 'diff', 'diff.Date', 'diff.POSIXt', 'diff.default', 'difftime', 'digamma', 'dim', 'dim.data.frame', 'dimnames', 'dimnames.data.frame', 'dir', 'dir.create', 'dirname', 'do.call', 'dput', 'drop', 'droplevels', 'droplevels.data.frame', 'droplevels.factor', 'dump', 'duplicated', 'duplicated.POSIXlt', 'duplicated.array', 'duplicated.data.frame', 'duplicated.default', 'duplicated.matrix', 'duplicated.numeric_version', 'dyn.load', 'dyn.unload', 'eapply', 'eigen', 'else', 'emptyenv', 'enc2native', 'enc2utf8', 'encodeString', 'enquote', 'env.profile', 'environment', 'environmentIsLocked', 'environmentName', 'eval', 'eval.parent', 'evalq', 'exists', 'exp', 'expand.grid', 'expm1', 'expression', 'factor', 'factorial', 'fifo', 'file', 'file.access', 'file.append', 'file.choose', 'file.copy', 'file.create', 'file.exists', 'file.info', 'file.link', 'file.path', 'file.remove', 'file.rename', 'file.show', 'file.symlink', 'find.package', 'findInterval', 'findPackageEnv', 'findRestart', 'floor', 'flush', 'flush.connection', 'force', 'formals', 'format', 'format.AsIs', 'format.Date', 'format.POSIXct', 'format.POSIXlt', 'format.data.frame', 'format.default', 'format.difftime', 'format.factor', 'format.hexmode', 'format.info', 'format.libraryIQR', 'format.numeric_version', 'format.octmode', 'format.packageInfo', 'format.pval', 'format.summaryDefault', 'formatC', 'formatDL', 'forwardsolve', 'gamma', 'gc', 'gc.time', 'gcinfo', 'gctorture', 'gctorture2', 'get', 'getAllConnections', 'getCallingDLL', 'getCallingDLLe', 'getConnection', 'getDLLRegisteredRoutines', 'getDLLRegisteredRoutines.DLLInfo', 'getDLLRegisteredRoutines.character', 'getElement', 'getExportedValue', 'getHook', 'getLoadedDLLs', 'getNamespace', 'getNamespaceExports', 'getNamespaceImports', 'getNamespaceInfo', 'getNamespaceName', 'getNamespaceUsers', 'getNamespaceVersion', 'getNativeSymbolInfo', 'getOption', 'getRversion', 'getSrcLines', 'getTaskCallbackNames', 'geterrmessage', 'gettext', 'gettextf', 'getwd', 'gl', 'globalenv', 'gregexpr', 'grep', 'grepRaw', 'grepl', 'gsub', 'gzcon', 'gzfile', 'head', 'iconv', 'iconvlist', 'icuSetCollate', 'identical', 'identity', 'ifelse', 'importIntoEnv', 'in', 'inherits', 'intToBits', 'intToUtf8', 'interaction', 'interactive', 'intersect', 'inverse.rle', 'invisible', 'invokeRestart', 'invokeRestartInteractively', 'is.R', 'is.array', 'is.atomic', 'is.call', 'is.character', 'is.complex', 'is.data.frame', 'is.double', 'is.element', 'is.environment', 'is.expression', 'is.factor', 'is.finite', 'is.function', 'is.infinite', 'is.integer', 'is.language', 'is.list', 'is.loaded', 'is.logical', 'is.matrix', 'is.na', 'is.na.POSIXlt', 'is.na.data.frame', 'is.na.numeric_version', 'is.name', 'is.nan', 'is.null', 'is.numeric', 'is.numeric.Date', 'is.numeric.POSIXt', 'is.numeric.difftime', 'is.numeric_version', 'is.object', 'is.ordered', 'is.package_version', 'is.pairlist', 'is.primitive', 'is.qr', 'is.raw', 'is.recursive', 'is.single', 'is.symbol', 'is.table', 'is.unsorted', 'is.vector', 'isBaseNamespace', 'isIncomplete', 'isNamespace', 'isOpen', 'isRestart', 'isS4', 'isSeekable', 'isSymmetric', 'isSymmetric.matrix', 'isTRUE', 'isatty', 'isdebugged', 'jitter', 'julian', 'julian.Date', 'julian.POSIXt', 'kappa', 'kappa.default', 'kappa.lm', 'kappa.qr', 'kronecker', 'l10n_info', 'labels', 'labels.default', 'lapply', 'lazyLoad', 'lazyLoadDBexec', 'lazyLoadDBfetch', 'lbeta', 'lchoose', 'length', 'length.POSIXlt', 'letters', 'levels', 'levels.default', 'lfactorial', 'lgamma', 'library.dynam', 'library.dynam.unload', 'licence', 'license', 'list.dirs', 'list.files', 'list2env', 'load', 'loadNamespace', 'loadedNamespaces', 'loadingNamespaceInfo', 'local', 'lockBinding', 'lockEnvironment', 'log', 'log10', 'log1p', 'log2', 'logb', 'lower.tri', 'ls', 'make.names', 'make.unique', 'makeActiveBinding', 'mapply', 'margin.table', 'mat.or.vec', 'match', 'match.arg', 'match.call', 'match.fun', 'max', 'max.col', 'mean', 'mean.Date', 'mean.POSIXct', 'mean.POSIXlt', 'mean.default', 'mean.difftime', 'mem.limits', 'memCompress', 'memDecompress', 'memory.profile', 'merge', 'merge.data.frame', 'merge.default', 'message', 'mget', 'min', 'missing', 'mode', 'month.abb', 'month.name', 'months', 'months.Date', 'months.POSIXt', 'months.abb', 'months.nameletters', 'names', 'names.POSIXlt', 'namespaceExport', 'namespaceImport', 'namespaceImportClasses', 'namespaceImportFrom', 'namespaceImportMethods', 'nargs', 'nchar', 'ncol', 'new.env', 'ngettext', 'nlevels', 'noquote', 'norm', 'normalizePath', 'nrow', 'numeric_version', 'nzchar', 'objects', 'oldClass', 'on.exit', 'open', 'open.connection', 'open.srcfile', 'open.srcfilealias', 'open.srcfilecopy', 'options', 'order', 'ordered', 'outer', 'packBits', 'packageEvent', 'packageHasNamespace', 'packageStartupMessage', 'package_version', 'pairlist', 'parent.env', 'parent.frame', 'parse', 'parseNamespaceFile', 'paste', 'paste0', 'path.expand', 'path.package', 'pipe', 'pmatch', 'pmax', 'pmax.int', 'pmin', 'pmin.int', 'polyroot', 'pos.to.env', 'pretty', 'pretty.default', 'prettyNum', 'print', 'print.AsIs', 'print.DLLInfo', 'print.DLLInfoList', 'print.DLLRegisteredRoutines', 'print.Date', 'print.NativeRoutineList', 'print.POSIXct', 'print.POSIXlt', 'print.by', 'print.condition', 'print.connection', 'print.data.frame', 'print.default', 'print.difftime', 'print.factor', 'print.function', 'print.hexmode', 'print.libraryIQR', 'print.listof', 'print.noquote', 'print.numeric_version', 'print.octmode', 'print.packageInfo', 'print.proc_time', 'print.restart', 'print.rle', 'print.simple.list', 'print.srcfile', 'print.srcref', 'print.summary.table', 'print.summaryDefault', 'print.table', 'print.warnings', 'prmatrix', 'proc.time', 'prod', 'prop.table', 'provideDimnames', 'psigamma', 'pushBack', 'pushBackLength', 'q', 'qr', 'qr.Q', 'qr.R', 'qr.X', 'qr.coef', 'qr.default', 'qr.fitted', 'qr.qty', 'qr.qy', 'qr.resid', 'qr.solve', 'quarters', 'quarters.Date', 'quarters.POSIXt', 'quit', 'quote', 'range', 'range.default', 'rank', 'rapply', 'raw', 'rawConnection', 'rawConnectionValue', 'rawShift', 'rawToBits', 'rawToChar', 'rbind', 'rbind.data.frame', 'rcond', 'read.dcf', 'readBin', 'readChar', 'readLines', 'readRDS', 'readRenviron', 'readline', 'reg.finalizer', 'regexec', 'regexpr', 'registerS3method', 'registerS3methods', 'regmatches', 'remove', 'removeTaskCallback', 'rep', 'rep.Date', 'rep.POSIXct', 'rep.POSIXlt', 'rep.factor', 'rep.int', 'rep.numeric_version', 'rep_len', 'replace', 'replicate', 'requireNamespace', 'restartDescription', 'restartFormals', 'retracemem', 'rev', 'rev.default', 'rle', 'rm', 'round', 'round.Date', 'round.POSIXt', 'row', 'row.names', 'row.names.data.frame', 'row.names.default', 'rowMeans', 'rowSums', 'rownames', 'rowsum', 'rowsum.data.frame', 'rowsum.default', 'sQuote', 'sample', 'sample.int', 'sapply', 'save', 'save.image', 'saveRDS', 'scale', 'scale.default', 'scan', 'search', 'searchpaths', 'seek', 'seek.connection', 'seq', 'seq.Date', 'seq.POSIXt', 'seq.default', 'seq.int', 'seq_along', 'seq_len', 'sequence', 'serialize', 'set.seed', 'setHook', 'setNamespaceInfo', 'setSessionTimeLimit', 'setTimeLimit', 'setdiff', 'setequal', 'setwd', 'shQuote', 'showConnections', 'sign', 'signalCondition', 'signif', 'simpleCondition', 'simpleError', 'simpleMessage', 'simpleWarning', 'simplify2array', 'sin', 'single', 'sinh', 'sink', 'sink.number', 'slice.index', 'socketConnection', 'socketSelect', 'solve', 'solve.default', 'solve.qr', 'sort', 'sort.POSIXlt', 'sort.default', 'sort.int', 'sort.list', 'split', 'split.Date', 'split.POSIXct', 'split.data.frame', 'split.default', 'sprintf', 'sqrt', 'srcfile', 'srcfilealias', 'srcfilecopy', 'srcref', 'standardGeneric', 'stderr', 'stdin', 'stdout', 'stop', 'stopifnot', 'storage.mode', 'strftime', 'strptime', 'strsplit', 'strtoi', 'strtrim', 'structure', 'strwrap', 'sub', 'subset', 'subset.data.frame', 'subset.default', 'subset.matrix', 'substitute', 'substr', 'substring', 'sum', 'summary', 'summary.Date', 'summary.POSIXct', 'summary.POSIXlt', 'summary.connection', 'summary.data.frame', 'summary.default', 'summary.factor', 'summary.matrix', 'summary.proc_time', 'summary.srcfile', 'summary.srcref', 'summary.table', 'suppressMessages', 'suppressPackageStartupMessages', 'suppressWarnings', 'svd', 'sweep', 'sys.call', 'sys.calls', 'sys.frame', 'sys.frames', 'sys.function', 'sys.load.image', 'sys.nframe', 'sys.on.exit', 'sys.parent', 'sys.parents', 'sys.save.image', 'sys.source', 'sys.status', 'system', 'system.file', 'system.time', 'system2', 't', 't.data.frame', 't.default', 'table', 'tabulate', 'tail', 'tan', 'tanh', 'tapply', 'taskCallbackManager', 'tcrossprod', 'tempdir', 'tempfile', 'testPlatformEquivalence', 'textConnection', 'textConnectionValue', 'toString', 'toString.default', 'tolower', 'topenv', 'toupper', 'trace', 'traceback', 'tracemem', 'tracingState', 'transform', 'transform.data.frame', 'transform.default', 'trigamma', 'trunc', 'trunc.Date', 'trunc.POSIXt', 'truncate', 'truncate.connection', 'try', 'tryCatch', 'typeof', 'unclass', 'undebug', 'union', 'unique', 'unique.POSIXlt', 'unique.array', 'unique.data.frame', 'unique.default', 'unique.matrix', 'unique.numeric_version', 'units', 'units.difftime', 'unix.time', 'unlink', 'unlist', 'unloadNamespace', 'unlockBinding', 'unname', 'unserialize', 'unsplit', 'untrace', 'untracemem', 'unz', 'upper.tri', 'url', 'utf8ToInt', 'vapply', 'version', 'warning', 'warnings', 'weekdays', 'weekdays.Date', 'weekdays.POSIXt', 'which', 'which.max', 'which.min', 'with', 'with.default', 'withCallingHandlers', 'withRestarts', 'withVisible', 'within', 'within.data.frame', 'within.list', 'write', 'write.dcf', 'writeBin', 'writeChar', 'writeLines', 'xor', 'xor.hexmode', 'xor.octmode', 'xpdrows.data.frame', 'xtfrm', 'xtfrm.AsIs', 'xtfrm.Date', 'xtfrm.POSIXct', 'xtfrm.POSIXlt', 'xtfrm.Surv', 'xtfrm.default', 'xtfrm.difftime', 'xtfrm.factor', 'xtfrm.numeric_version', 'xzfile', 'zapsmall' ) tokens = { 'comments': [ (r'#.*$', Comment.Single), ], 'valid_name': [ (r'[a-zA-Z][\w.]*', Text), # can begin with ., but not if that is followed by a digit (r'\.[a-zA-Z_][\w.]*', Text), ], 'punctuation': [ (r'\[{1,2}|\]{1,2}|\(|\)|;|,', Punctuation), ], 'keywords': [ (words(builtins_base, suffix=r'(?![\w. =])'), Keyword.Pseudo), (r'(if|else|for|while|repeat|in|next|break|return|switch|function)' r'(?![\w.])', Keyword.Reserved), (r'(array|category|character|complex|double|function|integer|list|' r'logical|matrix|numeric|vector|data.frame|c)' r'(?![\w.])', Keyword.Type), (r'(library|require|attach|detach|source)' r'(?![\w.])', Keyword.Namespace) ], 'operators': [ (r'<<?-|->>?|-|==|<=|>=|<|>|&&?|!=|\|\|?|\?', Operator), (r'\*|\+|\^|/|!|%[^%]*%|=|~|\$|@|:{1,3}', Operator) ], 'builtin_symbols': [ (r'(NULL|NA(_(integer|real|complex|character)_)?|' r'letters|LETTERS|Inf|TRUE|FALSE|NaN|pi|\.\.(\.|[0-9]+))' r'(?![\w.])', Keyword.Constant), (r'(T|F)\b', Name.Builtin.Pseudo), ], 'numbers': [ # hex number (r'0[xX][a-fA-F0-9]+([pP][0-9]+)?[Li]?', Number.Hex), # decimal number (r'[+-]?([0-9]+(\.[0-9]+)?|\.[0-9]+|\.)([eE][+-]?[0-9]+)?[Li]?', Number), ], 'statements': [ include('comments'), # whitespaces (r'\s+', Text), (r'`.*?`', String.Backtick), (r'\'', String, 'string_squote'), (r'\"', String, 'string_dquote'), include('builtin_symbols'), include('numbers'), include('keywords'), include('punctuation'), include('operators'), include('valid_name'), ], 'root': [ include('statements'), # blocks: (r'\{|\}', Punctuation), # (r'\{', Punctuation, 'block'), (r'.', Text), ], # 'block': [ # include('statements'), # ('\{', Punctuation, '#push'), # ('\}', Punctuation, '#pop') # ], 'string_squote': [ (r'([^\'\\]|\\.)*\'', String, '#pop'), ], 'string_dquote': [ (r'([^"\\]|\\.)*"', String, '#pop'), ], } def analyse_text(text): if re.search(r'[a-z0-9_\])\s]<-(?!-)', text): return 0.11 class RdLexer(RegexLexer): """ Pygments Lexer for R documentation (Rd) files This is a very minimal implementation, highlighting little more than the macros. A description of Rd syntax is found in `Writing R Extensions <http://cran.r-project.org/doc/manuals/R-exts.html>`_ and `Parsing Rd files <developer.r-project.org/parseRd.pdf>`_. .. versionadded:: 1.6 """ name = 'Rd' aliases = ['rd'] filenames = ['*.Rd'] mimetypes = ['text/x-r-doc'] # To account for verbatim / LaTeX-like / and R-like areas # would require parsing. tokens = { 'root': [ # catch escaped brackets and percent sign (r'\\[\\{}%]', String.Escape), # comments (r'%.*$', Comment), # special macros with no arguments (r'\\(?:cr|l?dots|R|tab)\b', Keyword.Constant), # macros (r'\\[a-zA-Z]+\b', Keyword), # special preprocessor macros (r'^\s*#(?:ifn?def|endif).*\b', Comment.Preproc), # non-escaped brackets (r'[{}]', Name.Builtin), # everything else (r'[^\\%\n{}]+', Text), (r'.', Text), ] }
the-stack_0_9417
import numpy as np from sklearn import datasets from scipy.stats import f EPSILON = 10e-10 # only to prevent division by zero def mean_vector_similarity(X, Y): x_mean = np.mean(X, axis=0) y_mean = np.mean(Y, axis=0) sim = float((x_mean.dot(y_mean)) / (np.linalg.norm(x_mean) * np.linalg.norm(y_mean) + EPSILON)) return sim
the-stack_0_9418
""" Utilities for ESPEI Classes and functions defined here should have some reuse potential. """ import itertools import re import os from collections import namedtuple import bibtexparser import numpy as np import sympy import dask from bibtexparser.bparser import BibTexParser from bibtexparser.customization import convert_to_unicode from distributed import Client from pycalphad import variables as v from six import string_types from sympy import Symbol from tinydb import TinyDB, where from tinydb.storages import MemoryStorage def unpack_piecewise(x): if isinstance(x, sympy.Piecewise): return float(x.args[0].expr) else: return float(x) class PickleableTinyDB(TinyDB): """A pickleable version of TinyDB that uses MemoryStorage as a default.""" def __getstate__(self): # first remove the query cache. The cache speed is not important to us. for table_name in self.tables(): self.table(table_name)._query_cache = {} pickle_dict = {} for key, value in self.__dict__.items(): if key == '_table': pickle_dict[key] = value.all() else: pickle_dict[key] = value return pickle_dict def __setstate__(self, state): self.__init__(storage=MemoryStorage) self.insert_multiple(state['_table']) class ImmediateClient(Client): """ A subclass of distributed.Client that automatically unwraps the Futures returned by map. """ def map(self, f, *iterators, **kwargs): _client = super(ImmediateClient, self) result = _client.gather(_client.map(f, *[list(it) for it in iterators], **kwargs)) return result def sigfigs(x, n): """Round x to n significant digits""" if x != 0: return np.around(x, -(np.floor(np.log10(np.abs(x)))).astype(np.int) + (n - 1)) else: return x def optimal_parameters(trace_array, lnprob_array, kth=0): """ Return the optimal parameters in the trace based on the highest likelihood. If kth is specified, return the kth set of *unique* optimal parameters. Parameters ---------- trace_array : ndarray Array of shape (iterations, number of chains, number of parameters) lnprob_array : ndarray Array of shape (number of chains, iterations) kth : int Zero-indexed optimum. 0 (the default) is the most optimal solution. 1 is the second most optimal, etc.. Only *unique* solutions will be returned. Returns ------- Array of optimal parameters Notes ----- It is ok if the calculation did not finish and the arrays are padded with zeros. The number of chains and iterations in the trace and lnprob arrays must match. """ # Swap first two indices of trace_array for compatability with new version of emcee. trace_array = np.swapaxes(trace_array, 0, 1) # indicies of chains + iterations that have non-zero parameters (that step has run) nz = np.nonzero(np.all(trace_array != 0, axis=-1)) # chain + iteration index with the highest likelihood unique_params = np.zeros(trace_array.shape[-1]) unique_params_found = -1 # loop through all possible nonzero iterations for i in range(nz[-1][-1]): # find the next set of parameters parameters candidate_index = np.argpartition(-lnprob_array[nz], i)[i] candidate_params = trace_array[nz][candidate_index] # if the parameters are unique, make them the new unique parameters if np.any(candidate_params != unique_params): unique_params = candidate_params unique_params_found += 1 # if we have found the kth set of unique parameters, stop if unique_params_found == kth: return unique_params return np.zeros(trace_array.shape[-1]) def database_symbols_to_fit(dbf, symbol_regex="^V[V]?([0-9]+)$"): """ Return names of the symbols to fit that match the regular expression Parameters ---------- dbf : Database pycalphad Database symbol_regex : str Regular expression of the fitting symbols. Defaults to V or VV followed by one or more numbers. Returns ------- dict Context dictionary for different methods of calculation the error. """ pattern = re.compile(symbol_regex) return sorted([x for x in sorted(dbf.symbols.keys()) if pattern.match(x)]) def flexible_open_string(obj): """ Return the string of a an object that is either file-like, a file path, or the raw string. Parameters ---------- obj : string-like or file-like Either a multiline string, a path, or a file-like object Returns ------- str """ if isinstance(obj, string_types): # the obj is a string if '\n' in obj: # if the string has linebreaks, then we assume it's a raw string. Return it. return obj else: # assume it is a path with open(obj) as fp: read_string = fp.read() return read_string elif hasattr(obj, 'read'): # assume it is file-like read_string = obj.read() return read_string else: raise ValueError('Unable to determine how to extract the string of the passed object ({}) of type {}. Expected a raw string, file-like, or path-like.'.format(obj, type(obj))) bibliography_database = PickleableTinyDB(storage=MemoryStorage) def add_bibtex_to_bib_database(bibtex, bib_db=None): """ Add entries from a BibTeX file to the bibliography database Parameters ---------- bibtex : str Either a multiline string, a path, or a file-like object of a BibTeX file bib_db: PickleableTinyDB Database to put the BibTeX entries. Defaults to a module-level default database Returns ------- The modified bibliographic database """ if not bib_db: bib_db = bibliography_database bibtex_string = flexible_open_string(bibtex) parser = BibTexParser() parser.customization = convert_to_unicode parsed_bibtex = bibtexparser.loads(bibtex_string, parser=parser) bib_db.insert_multiple(parsed_bibtex.entries) return bib_db def bib_marker_map(bib_keys, markers=None): """ Return a dict with reference keys and marker dicts Parameters ---------- bib_keys : markers : list List of 2-tuples of ('fillstyle', 'marker') e.g. [('top', 'o'), ('full', 's')]. Defaults to cycling through the filled markers, the different fill styles. Returns ------- dict Dictionary with bib_keys as keys, dict values of formatted strings and marker dicts Examples -------- >>> mm = bib_marker_map(['otis2016', 'bocklund2018']) >>> mm == {'bocklund2018': {'formatted': 'bocklund2018', 'markers': {'fillstyle': 'none', 'marker': 'o'}}, 'otis2016': {'formatted': 'otis2016', 'markers': {'fillstyle': 'none', 'marker': 'v'}}} True """ # TODO: support custom formatting from looking up keys in a bib_db if not markers: filled_markers = ['o', 'v', 's', 'd', 'P', 'X', '^', '<', '>'] fill_styles = ['none', 'full', 'top', 'right', 'bottom', 'left'] markers = itertools.product(fill_styles, filled_markers) b_m_map = dict() for ref, marker_tuple in zip(sorted(bib_keys), markers): fill, mark = marker_tuple b_m_map[ref] = { 'formatted': ref, # just use the key for formatting 'markers': { 'fillstyle': fill, 'marker': mark } } return b_m_map def parameter_term(expression, symbol): """ Determine the term, e.g. T*log(T) that belongs to the symbol in expression Parameters ---------- expression : symbol : Returns ------- """ if expression == symbol: # the parameter is the symbol, so the multiplicative term is 1. term = 1 else: if isinstance(expression, sympy.Piecewise): expression = expression.args[0][0] if isinstance(expression, sympy.Symbol): # this is not mathematically correct, but we just need to be able to split it into args expression = sympy.Add(expression, 1) if not isinstance(expression, sympy.Add): raise ValueError('Parameter {} is a {} not a sympy.Add or a Piecewise Add'.format(expression, type(expression))) expression_terms = expression.args term = None for term_coeff in expression_terms: coeff, root = term_coeff.as_coeff_mul(symbol) if root == (symbol,): term = coeff break if term is None: raise ValueError('No multiplicative terms found for Symbol {} in parameter {}'.format(symbol, expression)) return term def formatted_constituent_array(constituent_array): """ Given a constituent array of Species, return the classic CALPHAD-style interaction. Parameters ---------- constituent_array : list List of sublattices, which are lists of Species in that sublattice Returns ------- str String of the constituent array formatted in the classic CALPHAD style Examples -------- >>> from pycalphad import variables as v >>> const_array = [[v.Species('CU'), v.Species('MG')], [v.Species('MG')]] >>> formatted_constituent_array(const_array) 'CU,MG:MG' """ return ':'.join([','.join([sp.name for sp in subl]) for subl in constituent_array]) def formatted_parameter(dbf, symbol, unique=True): """ Get the deconstructed pretty parts of the parameter/term a symbol belongs to in a Database. Parameters ---------- dbf : pycalphad.Database symbol : string or sympy.Symbol Symbol in the Database to get the parameter for. unique : bool If True, will raise if more than one parameter containing the symbol is found. Returns ------- FormattedParameter A named tuple with the following attributes: ``phase_name``, ``interaction``, ``symbol``, ``term``, ``parameter_type`` or ``term_symbol`` (which is just the Symbol * temperature term) """ FormattedParameter = namedtuple('FormattedParameter', ['phase_name', 'interaction', 'symbol', 'term', 'parameter_type', 'term_symbol']) if not isinstance(symbol, Symbol): symbol = Symbol(symbol) search_res = dbf._parameters.search( where('parameter').test(lambda x: symbol in x.free_symbols)) if len(search_res) == 0: raise ValueError('Symbol {} not found in any parameters.'.format(symbol)) elif (len(search_res) > 1) and unique: raise ValueError('Parameters found containing Symbol {} are not unique. Found {}.'.format(symbol, search_res)) formatted_parameters = [] for result in search_res: const_array = formatted_constituent_array(result['constituent_array']) # format the paramter type to G or L0, L1, ... parameter_type = '{}{}'.format(result['parameter_type'], result['parameter_order']) # override non-interacting to G if there's no interaction has_interaction = ',' in const_array if not has_interaction: if (result['parameter_type'] == 'G') or (result['parameter_type'] == 'L'): parameter_type = 'G' term = parameter_term(result['parameter'], symbol) formatted_param = FormattedParameter(result['phase_name'], const_array, symbol, term, parameter_type, term*symbol ) formatted_parameters.append(formatted_param) if unique: return formatted_parameters[0] else: return formatted_parameters def build_sitefractions(phase_name, sublattice_configurations, sublattice_occupancies): """Convert nested lists of sublattice configurations and occupancies to a list of dictionaries. The dictionaries map SiteFraction symbols to occupancy values. Note that zero occupancy site fractions will need to be added separately since the total degrees of freedom aren't known in this function. Parameters ---------- phase_name : str Name of the phase sublattice_configurations : [[str]] sublattice configuration sublattice_occupancies : [[float]] occupancy of each sublattice Returns ------- [[float]] a list of site fractions over sublattices """ result = [] for config, occ in zip(sublattice_configurations, sublattice_occupancies): sitefracs = {} config = [[c] if not isinstance(c, (list, tuple)) else c for c in config] occ = [[o] if not isinstance(o, (list, tuple)) else o for o in occ] if len(config) != len(occ): raise ValueError('Sublattice configuration length differs from occupancies') for sublattice_idx in range(len(config)): if isinstance(config[sublattice_idx], (list, tuple)) != isinstance(occ[sublattice_idx], (list, tuple)): raise ValueError('Sublattice configuration type differs from occupancies') if not isinstance(config[sublattice_idx], (list, tuple)): # This sublattice is fully occupied by one component sitefracs[v.SiteFraction(phase_name, sublattice_idx, config[sublattice_idx])] = occ[sublattice_idx] else: # This sublattice is occupied by multiple elements if len(config[sublattice_idx]) != len(occ[sublattice_idx]): raise ValueError('Length mismatch in sublattice configuration') for comp, val in zip(config[sublattice_idx], occ[sublattice_idx]): sitefracs[v.SiteFraction(phase_name, sublattice_idx, comp)] = val result.append(sitefracs) return result def popget(d, key, default=None): """ Get the key from the dict, returning the default if not found. Parameters ---------- d : dict Dictionary to get key from. key : object Key to get from the dictionary. default : object Default to return if key is not found in dictionary. Returns ------- object Examples --------- >>> d = {'ABC': 5.0} >>> popget(d, 'ZPF', 1.0) == 1.0 True >>> popget(d, 'ABC', 1.0) == 5.0 True """ try: return d.pop(key) except KeyError: return default def get_dask_config_paths(): """ Return a list of configuration file paths for dask. The last path in the list has the highest precedence. Returns ------- list Examples -------- >>> config_files = get_dask_config_paths() >>> len(config_files) > 1 True """ candidates = dask.config.paths file_paths = [] for path in candidates: if os.path.exists(path): if os.path.isdir(path): file_paths.extend(sorted([ os.path.join(path, p) for p in os.listdir(path) if os.path.splitext(p)[1].lower() in ('.json', '.yaml', '.yml') ])) else: file_paths.append(path) return file_paths
the-stack_0_9419
#!/usr/bin/env python3 """Common library for reading from and writing to files. This module provides functions for reading in formatted data from system files and writing it back out. Examples include reading a string list or integer matrix from a file. """ import csv from typing import Iterable, Iterator, List, Optional def ints_from_file(file_name: str, sep: str = ' ') -> Iterator[List[int]]: """Reads a list of integer rows from a file. Args: file_name: A relative path to the file to read from. sep: A separator token that appears between integers within a row. Yields: Each integer row, in sequence, from ``file_name``, where each row is on a separate line and integers within a row are separated by ``sep``. """ with open(file_name) as input_file: for line in input_file: yield [int(token) for token in line.rstrip().split(sep)] def strings_from_file( file_name: str, sep: str = ',', quote: Optional[str] = '"', ) -> Iterable[str]: """Reads a sequence of formatted strings from a file. Args: file_name: A relative path to the file to read from. sep: A separator token that appears between input strings in the file. quote: If present, designates a custom quotation mark character to be stripped from the start and end of each input string. If ``None``, each input string will be interpreted verbatim. Yields: Each input string, in sequence, from ``file_name``, where strings are separated by ``sep`` and quoted with ``quote`` characters. """ with open(file_name, newline='') as input_file: if quote is None or quote == '': quote_style = csv.QUOTE_NONE else: quote_style = csv.QUOTE_ALL reader = csv.reader( input_file, delimiter=sep, quotechar=quote, quoting=quote_style) for row in reader: for token in row: yield token
the-stack_0_9421
import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) import time import json import numpy as np import cv2 import random import torch from torch.utils.data import DataLoader from tqdm import tqdm from lib.options import BaseOptions from lib.mesh_util import * from lib.sample_util import * from lib.train_util import * from lib.data import * from lib.model import * from lib.geometry import index # get options opt = BaseOptions().parse() def train(opt): # set cuda cuda = torch.device('cuda:%d' % opt.gpu_id) # train_dataset = TrainDataset(opt, phase='train') # test_dataset = TrainDataset(opt, phase='test') train_dataset = MRIDataset(opt, phase='train') test_dataset = MRIDataset(opt, phase='test') projection_mode = train_dataset.projection_mode # create data loader train_data_loader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=not opt.serial_batches, num_workers=opt.num_threads, pin_memory=opt.pin_memory) print('train data size: ', len(train_data_loader)) # NOTE: batch size should be 1 and use all the points for evaluation test_data_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=opt.num_threads, pin_memory=opt.pin_memory) print('test data size: ', len(test_data_loader)) # create net netG = HGPIFuNet(opt, projection_mode).to(device=cuda) optimizerG = torch.optim.RMSprop(netG.parameters(), lr=opt.learning_rate, momentum=0, weight_decay=0) lr = opt.learning_rate print('Using Network: ', netG.name) def set_train(): netG.train() def set_eval(): netG.eval() # load checkpoints if opt.load_netG_checkpoint_path is not None: print('loading for net G ...', opt.load_netG_checkpoint_path) netG.load_state_dict(torch.load(opt.load_netG_checkpoint_path, map_location=cuda)) if opt.continue_train: if opt.resume_epoch < 0: model_path = '%s/%s/netG_latest' % (opt.checkpoints_path, opt.name) else: model_path = '%s/%s/netG_epoch_%d' % (opt.checkpoints_path, opt.name, opt.resume_epoch) print('Resuming from ', model_path) netG.load_state_dict(torch.load(model_path, map_location=cuda)) os.makedirs(opt.checkpoints_path, exist_ok=True) os.makedirs(opt.results_path, exist_ok=True) os.makedirs('%s/%s' % (opt.checkpoints_path, opt.name), exist_ok=True) os.makedirs('%s/%s' % (opt.results_path, opt.name), exist_ok=True) opt_log = os.path.join(opt.results_path, opt.name, 'opt.txt') with open(opt_log, 'w') as outfile: outfile.write(json.dumps(vars(opt), indent=2)) # training start_epoch = 0 if not opt.continue_train else max(opt.resume_epoch,0) for epoch in range(start_epoch, opt.num_epoch): epoch_start_time = time.time() if not opt.eval_only: set_train() iter_data_time = time.time() for train_idx, train_data in enumerate(train_data_loader): iter_start_time = time.time() # retrieve the data image_tensor = train_data['img'].to(device=cuda) calib_tensor = train_data['calib'].to(device=cuda) sample_tensor = train_data['samples'].to(device=cuda) image_tensor, calib_tensor = reshape_multiview_tensors(image_tensor, calib_tensor) if opt.num_views > 1: sample_tensor = reshape_sample_tensor(sample_tensor, opt.num_views) label_tensor = train_data['labels'].to(device=cuda) # network input and output res, error = netG.forward(image_tensor, sample_tensor, calib_tensor, labels=label_tensor) optimizerG.zero_grad() error.backward() optimizerG.step() iter_net_time = time.time() eta = ((iter_net_time - epoch_start_time) / (train_idx + 1)) * len(train_data_loader) - ( iter_net_time - epoch_start_time) if train_idx % opt.freq_plot == 0: print( 'Name: {0} | Epoch: {1} | {2}/{3} | Err: {4:.06f} | LR: {5:.06f} | Sigma: {6:.02f} | dataT: {7:.05f} | netT: {8:.05f} | ETA: {9:02d}:{10:02d}'.format( opt.name, epoch, train_idx, len(train_data_loader), error.item(), lr, opt.sigma, iter_start_time - iter_data_time, iter_net_time - iter_start_time, int(eta // 60), int(eta - 60 * (eta // 60)))) if train_idx % opt.freq_save == 0 and train_idx != 0: torch.save(netG.state_dict(), '%s/%s/netG_latest' % (opt.checkpoints_path, opt.name)) torch.save(netG.state_dict(), '%s/%s/netG_epoch_%d' % (opt.checkpoints_path, opt.name, epoch)) if train_idx % opt.freq_save_ply == 0: save_path = '%s/%s/pred.ply' % (opt.results_path, opt.name) r = res[0].cpu() points = sample_tensor[0].transpose(0, 1).cpu() save_samples_truncted_prob(save_path, points.detach().numpy(), r.detach().numpy()) iter_data_time = time.time() # update learning rate lr = adjust_learning_rate(optimizerG, epoch, lr, opt.schedule, opt.gamma) #### test with torch.no_grad(): set_eval() if not opt.no_num_eval: test_losses = {} print('calc error (test) ...') test_errors = calc_error(opt, netG, cuda, test_dataset, 100) print('eval test MSE: {0:06f} IOU: {1:06f} prec: {2:06f} recall: {3:06f}'.format(*test_errors)) MSE, IOU, prec, recall = test_errors test_losses['MSE(test)'] = MSE test_losses['IOU(test)'] = IOU test_losses['prec(test)'] = prec test_losses['recall(test)'] = recall print('calc error (train) ...') train_dataset.is_train = False train_errors = calc_error(opt, netG, cuda, train_dataset, 100) train_dataset.is_train = True print('eval train MSE: {0:06f} IOU: {1:06f} prec: {2:06f} recall: {3:06f}'.format(*train_errors)) MSE, IOU, prec, recall = train_errors test_losses['MSE(train)'] = MSE test_losses['IOU(train)'] = IOU test_losses['prec(train)'] = prec test_losses['recall(train)'] = recall # if not opt.no_gen_mesh: # print('generate mesh (test) ...') # for gen_idx in tqdm(range(opt.num_gen_mesh_test)): # test_data = random.choice(test_dataset) # save_path = '%s/%s/test_eval_epoch%d_%s.obj' % ( # opt.results_path, opt.name, epoch, test_data['name']) # gen_mesh(opt, netG, cuda, test_data, save_path) # # print('generate mesh (train) ...') # train_dataset.is_train = False # for gen_idx in tqdm(range(opt.num_gen_mesh_test)): # train_data = random.choice(train_dataset) # save_path = '%s/%s/train_eval_epoch%d_%s.obj' % ( # opt.results_path, opt.name, epoch, train_data['name']) # gen_mesh(opt, netG, cuda, train_data, save_path) # train_dataset.is_train = True if not opt.no_gen_mri: print('generate mri (test) ...') for gen_idx in tqdm(range(opt.num_gen_mesh_test)): test_data = random.choice(test_dataset) save_path = '%s/%s/test_eval_epoch%d_%s.obj' % ( opt.results_path, opt.name, epoch, test_data['name']) gen_mri(opt, netG, cuda, test_data, save_path) print('generate mri (train) ...') train_dataset.is_train = False for gen_idx in tqdm(range(opt.num_gen_mesh_test)): train_data = random.choice(train_dataset) save_path = '%s/%s/train_eval_epoch%d_%s.obj' % ( opt.results_path, opt.name, epoch, train_data['name']) gen_mri(opt, netG, cuda, train_data, save_path) train_dataset.is_train = True if opt.eval_only: break if __name__ == '__main__': train(opt)
the-stack_0_9423
import rolls class Atributes: def __init__(self): self.values = { "strength": 10, "dexterity": 10, "constitution": 10, "intelligence": 10, "wisdom": 10, "charisma": 10 } self.modifiers = { "strength": 0, "dexterity": 0, "constitution": 0, "intelligence": 0, "wisdom": 0, "charisma": 0 } self.maxValue = { "strength": 20, "dexterity": 20, "constitution": 20, "intelligence": 20, "wisdom": 20, "charisma": 20 } def rollAtributes(self,min_val=1,max_val=6, maxAtributeValue=20, numberOfDice=4): self.values = { "strength": min(rolls.rollAtribute(min_val,max_val,numberOfDice),maxAtributeValue), "dexterity": min(rolls.rollAtribute(min_val,max_val,numberOfDice),maxAtributeValue), "constitution": min(rolls.rollAtribute(min_val,max_val,numberOfDice),maxAtributeValue), "intelligence": min(rolls.rollAtribute(min_val,max_val,numberOfDice),maxAtributeValue), "wisdom": min(rolls.rollAtribute(min_val,max_val,numberOfDice),maxAtributeValue), "charisma": min(rolls.rollAtribute(min_val,max_val,numberOfDice),maxAtributeValue) } self.setModifiers() def setAtribute(self,atribute,value): try: self.values[atribute] = value self.setModifiers() except: print("bad selection") def setAtributes(self,atributes): if isinstance(atributes,dict): # If you pass in atributes as a dictionary for key in self.values.keys(): self.values[key] = atributes[key] else: # If you pass in atributes as a list for k,key in enumerate(self.values.keys()): self.values[key] = atributes[k] self.setModifiers() def setModifiers(self): keys = self.modifiers.keys() for key in keys: self.modifiers[key] = (self.values[key] - 10)//2 def addClassMods(self, classMods): for key in self.values.keys(): self.maxValue[key] = 20+classMods[key] self.values[key] = min(self.maxValue[key], self.values[key]+classMods[key])
the-stack_0_9426
# -*- coding: utf-8 -*- #/usr/bin/python2 ''' By kyubyong park. [email protected]. https://www.github.com/kyubyong/kss ''' from __future__ import print_function, division import numpy as np import librosa import os, copy import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt from scipy import signal from hyperparams import Hyperparams as hp import tensorflow as tf def get_spectrograms(fpath): '''Parse the wave file in `fpath` and Returns normalized melspectrogram and linear spectrogram. Args: fpath: A string. The full path of a sound file. Returns: mel: A 2d array of shape (T, n_mels) and dtype of float32. mag: A 2d array of shape (T, 1+n_fft/2) and dtype of float32. ''' # Loading sound file y, sr = librosa.load(fpath, sr=hp.sr) # Trimming y, _ = librosa.effects.trim(y, top_db=40) # Preemphasis y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1]) # stft linear = librosa.stft(y=y, n_fft=hp.n_fft, hop_length=hp.hop_length, win_length=hp.win_length) # magnitude spectrogram mag = np.abs(linear) # (1+n_fft//2, T) # mel spectrogram mel_basis = librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels) # (n_mels, 1+n_fft//2) mel = np.dot(mel_basis, mag) # (n_mels, t) # to decibel mel = 20 * np.log10(np.maximum(1e-5, mel)) mag = 20 * np.log10(np.maximum(1e-5, mag)) # normalize mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) # Transpose mel = mel.T.astype(np.float32) # (T, n_mels) mag = mag.T.astype(np.float32) # (T, 1+n_fft//2) return mel, mag def spectrogram2wav(mag): '''# Generate wave file from linear magnitude spectrogram Args: mag: A numpy array of (T, 1+n_fft//2) Returns: wav: A 1-D numpy array. ''' # transpose mag = mag.T # de-noramlize mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db # to amplitude mag = np.power(10.0, mag * 0.05) # wav reconstruction wav = griffin_lim(mag**hp.power) # de-preemphasis wav = signal.lfilter([1], [1, -hp.preemphasis], wav) # trim wav = trim(wav) return wav.astype(np.float32) def griffin_lim(spectrogram): '''Applies Griffin-Lim's raw.''' X_best = copy.deepcopy(spectrogram) for i in range(hp.n_iter): X_t = invert_spectrogram(X_best) est = librosa.stft(X_t, hp.n_fft, hp.hop_length, win_length=hp.win_length) phase = est / np.maximum(1e-8, np.abs(est)) X_best = spectrogram * phase X_t = invert_spectrogram(X_best) y = np.real(X_t) return y def invert_spectrogram(spectrogram): '''Applies inverse fft. Args: spectrogram: [1+n_fft//2, t] ''' return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann") def plot_alignment(alignment, gs, dir=hp.logdir): """Plots the alignment. Args: alignment: A numpy array with shape of (encoder_steps, decoder_steps) gs: (int) global step. dir: Output path. """ if not os.path.exists(dir): os.mkdir(dir) fig, ax = plt.subplots() im = ax.imshow(alignment) fig.colorbar(im) plt.title('{} Steps'.format(gs)) plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png') def guided_attention(g=0.2): '''Guided attention. Refer to page 3 on the paper.''' W = np.zeros((hp.max_N, hp.max_T), dtype=np.float32) for n_pos in range(W.shape[0]): for t_pos in range(W.shape[1]): W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(hp.max_T) - n_pos / float(hp.max_N)) ** 2 / (2 * g * g)) return W def learning_rate_decay(init_lr, global_step, warmup_steps = 4000.0): '''Noam scheme from tensor2tensor''' step = tf.to_float(global_step + 1) return init_lr * warmup_steps**0.5 * tf.minimum(step * warmup_steps**-1.5, step**-0.5) def load_spectrograms(fpath): '''Read the wave file in `fpath` and extracts spectrograms''' fname = os.path.basename(fpath) mel, mag = get_spectrograms(fpath) t = mel.shape[0] # Marginal padding for reduction shape sync. num_paddings = hp.r - (t % hp.r) if t % hp.r != 0 else 0 mel = np.pad(mel, [[0, num_paddings], [0, 0]], mode="constant") mag = np.pad(mag, [[0, num_paddings], [0, 0]], mode="constant") # Reduction mel = mel[::hp.r, :] return fname, mel, mag #This is adapted by # https://github.com/keithito/tacotron/blob/master/util/audio.py#L55-62 def trim(wav, top_db=40, min_silence_sec=0.8): frame_length = int(hp.sr * min_silence_sec) hop_length = int(frame_length / 4) endpoint = librosa.effects.split(wav, frame_length=frame_length, hop_length=hop_length, top_db=top_db)[0, 1] return wav[:endpoint] def load_j2hcj(): ''' Arg: jamo: A Hangul Jamo character(0x01100-0x011FF) Returns: A dictionary that converts jamo into Hangul Compatibility Jamo(0x03130 - 0x0318F) Character ''' jamo = u'''␀␃ !,.?ᄀᄁᄂᄃᄄᄅᄆᄇᄈᄉᄊᄋᄌᄍᄎᄏᄐᄑ하ᅢᅣᅤᅥᅦᅧᅨᅩᅪᅫᅬᅭᅮᅯᅰᅱᅲᅳᅴᅵᆨᆩᆪᆫᆬᆭᆮᆯᆰᆱᆲᆴᆶᆷᆸᆹᆺᆻᆼᆽᆾᆿᇀᇁᇂ''' hcj = u'''␀␃ !,.?ㄱㄲㄴㄷㄸㄹㅁㅂㅃㅅㅆㅇㅈㅉㅊㅋㅌㅍㅎㅏㅐㅑㅒㅓㅔㅕㅖㅗㅘㅙㅚㅛㅜㅝㅞㅟㅠㅡㅢㅣㄱㄲㄳㄴㄵㄶㄷㄹㄺㄻㄼㄾㅀㅁㅂㅄㅅㅆㅇㅈㅊㅋㅌㅍㅎ''' assert len(jamo) == len(hcj) j2hcj = {j: h for j, h in zip(jamo, hcj)} return j2hcj def load_j2sj(): ''' Arg: jamo: A Hangul Jamo character(0x01100-0x011FF) Returns: A dictionary that decomposes double consonants into two single consonants. ''' jamo = u'''␀␃ !,.?ᄀᄁᄂᄃᄄᄅᄆᄇᄈᄉᄊᄋᄌᄍᄎᄏᄐᄑ하ᅢᅣᅤᅥᅦᅧᅨᅩᅪᅫᅬᅭᅮᅯᅰᅱᅲᅳᅴᅵᆨᆩᆪᆫᆬᆭᆮᆯᆰᆱᆲᆴᆶᆷᆸᆹᆺᆻᆼᆽᆾᆿᇀᇁᇂ''' sj = u'''␀|␃| |!|,|.|?|ᄀ|ᄀᄀ|ᄂ|ᄃ|ᄃᄃ|ᄅ|ᄆ|ᄇ|ᄇᄇ|ᄉ|ᄉᄉ|ᄋ|ᄌ|ᄌᄌ|ᄎ|ᄏ|ᄐ|ᄑ|ᄒ|ᅡ|ᅢ|ᅣ|ᅤ|ᅥ|ᅦ|ᅧ|ᅨ|ᅩ|ᅪ|ᅫ|ᅬ|ᅭ|ᅮ|ᅯ|ᅰ|ᅱ|ᅲ|ᅳ|ᅴ|ᅵ|ᆨ|ᆨᆨ|ᆨᆺ|ᆫ|ᆫᆽ|ᆫᇂ|ᆮ|ᆯ|ᆯᆨ|ᆯᆷ|ᆯᆸ|ᆯᇀ|ᆯᇂ|ᆷ|ᆸ|ᆸᆺ|ᆺ|ᆺᆺ|ᆼ|ᆽ|ᆾ|ᆿ|ᇀ|ᇁ|ᇂ''' assert len(jamo)==len(sj.split("|")) j2sj = {j: s for j, s in zip(jamo, sj.split("|"))} return j2sj def load_j2shcj(): ''' Arg: jamo: A Hangul Jamo character(0x01100-0x011FF) Returns: A dictionary that converts jamo into Hangul Compatibility Jamo(0x03130 - 0x0318F) Character. Double consonants are further decomposed into single consonants. ''' jamo = u'''␀␃ !,.?ᄀᄁᄂᄃᄄᄅᄆᄇᄈᄉᄊᄋᄌᄍᄎᄏᄐᄑ하ᅢᅣᅤᅥᅦᅧᅨᅩᅪᅫᅬᅭᅮᅯᅰᅱᅲᅳᅴᅵᆨᆩᆪᆫᆬᆭᆮᆯᆰᆱᆲᆴᆶᆷᆸᆹᆺᆻᆼᆽᆾᆿᇀᇁᇂ''' shcj = u'''␀|␃| |!|,|.|?|ㄱ|ㄱㄱ|ㄴ|ㄷ|ㄷㄷ|ㄹ|ㅁ|ㅂ|ㅂㅂ|ㅅ|ㅅㅅ|ㅇ|ㅈ|ㅈㅈ|ㅊ|ㅋ|ㅌ|ㅍ|ㅎ|ㅏ|ㅐ|ㅑ|ㅒ|ㅓ|ㅔ|ㅕ|ㅖ|ㅗ|ㅘ|ㅙ|ㅚ|ㅛ|ㅜ|ㅝ|ㅞ|ㅟ|ㅠ|ㅡ|ㅢ|ㅣ|ㄱ|ㄱㄱ|ㄱㅅ|ㄴ|ㄴㅈ|ㄴㅎ|ㄷ|ㄹ|ㄹㄱ|ㄹㅁ|ㄹㅂ|ㄹㅌ|ㄹㅎ|ㅁ|ㅂ|ㅂㅅ|ㅅ|ㅅㅅ|ㅇ|ㅈ|ㅊ|ㅋ|ㅌ|ㅍ|ㅎ''' assert len(jamo)==len(shcj.split("|")) j2shcj = {j: s for j, s in zip(jamo, shcj.split("|"))} return j2shcj
the-stack_0_9427
# # Copyright (c) 2018 TECHNICAL UNIVERSITY OF MUNICH, DEPARTMENT OF MECHANICAL ENGINEERING, CHAIR OF APPLIED MECHANICS, # BOLTZMANNSTRASSE 15, 85748 GARCHING/MUNICH, GERMANY, [email protected]. # # Distributed under 3-Clause BSD license. See LICENSE file for more information. # """ Tools for assembly module. """ __all__ = [ 'get_index_of_csr_data', 'fill_csr_matrix' ] # try to import the fortran routines use_fortran = False try: import amfe.f90_assembly use_fortran = True except ImportError: print('Python was not able to load the fast fortran assembly routines.') def get_index_of_csr_data(i, j, indptr, indices): """ Get the value index of the i,j-element of a matrix in CSR format. Parameters ---------- i : int row index which is asked to get the CSR-index for j : int column index which is asked to get the CSR-index for indptr : ndarray index-ptr-Array of the CSR-Matrix. indices : ndarray indices array of CSR-matrix (represents the nonzero column indices) Returns ------- k : int index of the value array of the CSR-matrix, in which value [i,j] is stored. Notes ----- This routine works only, if the tuple i,j is acutally a real entry of the matrix. Otherwise the value k=0 will be returned and an Error Message will be provided. """ # indices for row i are stored in indices[indptr[k]:indptr[k+1]]; thus the indptr marks the start and end of the # part of the indices and val vector where all entries of a row are stored # set k to the start of data of row k k = indptr[i] # search for appearance of j in the nonzero column indices which are stored in indices[k] till # indices[k+indptr[i+1]] while j != indices[k]: # while column j not found search for j in next entry k += 1 # Check if next search would be in next (wrong) row if k > indptr[i + 1]: print('ERROR! The index in the csr matrix is not preallocated!') k = 0 break return k def fill_csr_matrix(indptr, indices, vals, K, k_indices): """ Fill the values of K into the vals-array of a sparse CSR Matrix given the k_indices array. The values of K are added to the current values (typically for assembly processes) Parameters ---------- indptr : ndarray indptr-array of a preallocated CSR-Matrix indices : ndarray indices-array of a preallocated CSR-Matrix vals : ndarray vals-array of a preallocated CSR-Marix K : ndarray 'small' square array whose values will be distributed into the CSR-Matrix, Shape is (n,n) k_indices : ndarray mapping array of the global indices for the 'small' K array. The (i,j) entry of K has the global indices (k_indices[i], k_indices[j]) Shape is (n,) Returns ------- None """ ndof_l = K.shape[0] for i in range(ndof_l): for j in range(ndof_l): l = get_index_of_csr_data(k_indices[i], k_indices[j], indptr, indices) vals[l] += K[i, j] return if use_fortran: ########################################################################### # Fortran routine that will override the functions above for massive speedup. ########################################################################### get_index_of_csr_data = amfe.f90_assembly.get_index_of_csr_data fill_csr_matrix = amfe.f90_assembly.fill_csr_matrix
the-stack_0_9429
# Copyright (c) 2014 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest_lib import exceptions from highlanderclient.tests.functional.cli.v1 import base_v1 class StandardItemsAvailabilityCLITests(base_v1.HighlanderClientTestBase): def test_std_workflows_availability(self): wfs = self.highlander_admin("workflow-list") self.assertTableStruct( wfs, ["Name", "Tags", "Input", "Created at", "Updated at"] ) self.assertIn("std.create_instance", [workflow["Name"] for workflow in wfs]) wfs = self.highlander_alt_user("workflow-list") self.assertTableStruct( wfs, ["Name", "Tags", "Input", "Created at", "Updated at"] ) self.assertIn("std.create_instance", [workflow["Name"] for workflow in wfs]) def test_std_actions_availability(self): acts = self.highlander_admin("action-list") self.assertTableStruct( acts, ["Name", "Is system", "Input", "Description", "Tags", "Created at", "Updated at"] ) self.assertIn("glance.images_list", [action["Name"] for action in acts]) acts = self.highlander_alt_user("action-list") self.assertTableStruct( acts, ["Name", "Is system", "Input", "Description", "Tags", "Created at", "Updated at"] ) self.assertIn("glance.images_list", [action["Name"] for action in acts]) class WorkbookIsolationCLITests(base_v1.HighlanderClientTestBase): def test_workbook_name_uniqueness(self): self.workbook_create(self.wb_def) self.assertRaises( exceptions.CommandFailed, self.highlander_admin, "workbook-create", params="{0}".format(self.wb_def) ) self.workbook_create(self.wb_def, admin=False) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "workbook-create", params="{0}".format(self.wb_def) ) def test_wb_isolation(self): wb = self.workbook_create(self.wb_def) wb_name = self.get_value_of_field(wb, "Name") wbs = self.highlander_admin("workbook-list") self.assertIn(wb_name, [w["Name"] for w in wbs]) alt_wbs = self.highlander_alt_user("workbook-list") self.assertNotIn(wb_name, [w["Name"] for w in alt_wbs]) def test_get_wb_from_another_tenant(self): wb = self.workbook_create(self.wb_def) name = self.get_value_of_field(wb, "Name") self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "workbook-get", params=name ) def test_delete_wb_from_another_tenant(self): wb = self.workbook_create(self.wb_def) name = self.get_value_of_field(wb, "Name") self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "workbook-delete", params=name ) class WorkflowIsolationCLITests(base_v1.HighlanderClientTestBase): def test_workflow_name_uniqueness(self): self.workflow_create(self.wf_def) self.assertRaises( exceptions.CommandFailed, self.highlander_admin, "workflow-create", params="{0}".format(self.wf_def) ) self.workflow_create(self.wf_def, admin=False) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "workflow-create", params="{0}".format(self.wf_def) ) def test_wf_isolation(self): wf = self.workflow_create(self.wf_def) wfs = self.highlander_admin("workflow-list") self.assertIn(wf[0]["Name"], [w["Name"] for w in wfs]) alt_wfs = self.highlander_alt_user("workflow-list") self.assertNotIn(wf[0]["Name"], [w["Name"] for w in alt_wfs]) def test_get_wf_from_another_tenant(self): wf = self.workflow_create(self.wf_def) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "workflow-get", params=wf[0]["Name"] ) def test_delete_wf_from_another_tenant(self): wf = self.workflow_create(self.wf_def) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "workflow-delete", params=wf[0]["Name"] ) class ActionIsolationCLITests(base_v1.HighlanderClientTestBase): def test_actions_name_uniqueness(self): self.action_create(self.act_def) self.assertRaises( exceptions.CommandFailed, self.highlander_admin, "action-create", params="{0}".format(self.act_def) ) self.action_create(self.act_def, admin=False) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "action-create", params="{0}".format(self.act_def) ) def test_action_isolation(self): act = self.action_create(self.act_def) acts = self.highlander_admin("action-list") self.assertIn(act[0]["Name"], [a["Name"] for a in acts]) alt_acts = self.highlander_alt_user("action-list") self.assertNotIn(act[0]["Name"], [a["Name"] for a in alt_acts]) def test_get_action_from_another_tenant(self): act = self.action_create(self.act_def) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "action-get", params=act[0]["Name"] ) def test_delete_action_from_another_tenant(self): act = self.action_create(self.act_def) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "action-delete", params=act[0]["Name"] ) class CronTriggerIsolationCLITests(base_v1.HighlanderClientTestBase): def test_cron_trigger_name_uniqueness(self): wf = self.workflow_create(self.wf_def) self.cron_trigger_create( "trigger", wf[0]["Name"], "{}", "5 * * * *") self.assertRaises( exceptions.CommandFailed, self.cron_trigger_create, "trigger", "5 * * * *", wf[0]["Name"], "{}" ) wf = self.workflow_create(self.wf_def, admin=False) self.cron_trigger_create("trigger", wf[0]["Name"], "{}", "5 * * * *", None, None, admin=False) self.assertRaises( exceptions.CommandFailed, self.cron_trigger_create, "trigger", wf[0]["Name"], "{}", "5 * * * *", None, None, admin=False ) def test_cron_trigger_isolation(self): wf = self.workflow_create(self.wf_def) self.cron_trigger_create( "trigger", wf[0]["Name"], "{}", "5 * * * *") alt_trs = self.highlander_alt_user("cron-trigger-list") self.assertNotIn("trigger", [t["Name"] for t in alt_trs]) class ExecutionIsolationCLITests(base_v1.HighlanderClientTestBase): def test_execution_isolation(self): wf = self.workflow_create(self.wf_def) ex = self.execution_create(wf[0]["Name"]) exec_id = self.get_value_of_field(ex, "ID") execs = self.highlander_admin("execution-list") self.assertIn(exec_id, [e["ID"] for e in execs]) alt_execs = self.highlander_alt_user("execution-list") self.assertNotIn(exec_id, [e["ID"] for e in alt_execs]) def test_get_execution_from_another_tenant(self): wf = self.workflow_create(self.wf_def) ex = self.execution_create(wf[0]["Name"]) exec_id = self.get_value_of_field(ex, "ID") self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "execution-get", params=exec_id ) class EnvironmentIsolationCLITests(base_v1.HighlanderClientTestBase): def setUp(self): super(EnvironmentIsolationCLITests, self).setUp() self.env_file = "env.yaml" self.create_file("{0}".format(self.env_file), "name: env\n" "description: Test env\n" "variables:\n" " var: value") def test_environment_name_uniqueness(self): self.environment_create(self.env_file) self.assertRaises( exceptions.CommandFailed, self.highlander_admin, "environment-create", params=self.env_file ) self.environment_create(self.env_file, admin=False) self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "environment-create", params=self.env_file ) def test_environment_isolation(self): env = self.environment_create(self.env_file) env_name = self.get_value_of_field(env, "Name") envs = self.highlander_admin("environment-list") self.assertIn(env_name, [en["Name"] for en in envs]) alt_envs = self.highlander_alt_user("environment-list") self.assertNotIn(env_name, [en["Name"] for en in alt_envs]) def test_get_env_from_another_tenant(self): env = self.environment_create(self.env_file) env_name = self.get_value_of_field(env, "Name") self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "environment-get", params=env_name ) def test_delete_env_from_another_tenant(self): env = self.environment_create(self.env_file) env_name = self.get_value_of_field(env, "Name") self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "environment-delete", params=env_name ) class ActionExecutionIsolationCLITests(base_v1.HighlanderClientTestBase): def test_action_execution_isolation(self): wf = self.workflow_create(self.wf_def) wf_exec = self.execution_create(wf[0]["Name"]) direct_ex_id = self.get_value_of_field(wf_exec, 'ID') self.wait_execution_success(direct_ex_id) act_execs = self.highlander_admin("action-execution-list") self.assertIn(wf[0]["Name"], [act["Workflow name"] for act in act_execs]) alt_act_execs = self.highlander_alt_user("action-execution-list") self.assertNotIn(wf[0]["Name"], [act["Workflow name"] for act in alt_act_execs]) def test_get_action_execution_from_another_tenant(self): wf = self.workflow_create(self.wf_def) ex = self.execution_create(wf[0]["Name"]) exec_id = self.get_value_of_field(ex, "ID") self.assertRaises( exceptions.CommandFailed, self.highlander_alt_user, "action-execution-get", params=exec_id )
the-stack_0_9430
import sys import ASAPPpy.feature_extraction as fe import ASAPPpy.chatbot as cht from importlib import reload word2vec_model = None fasttext_model = None ptlkb64_model = None glove300_model = None numberbatch_model = None if __name__ == "__main__": models_loaded = 0 while True: if models_loaded == 0: word2vec_model, fasttext_model, ptlkb64_model, glove300_model, numberbatch_model = fe.load_embeddings_models() models_loaded = 1 cht.chatbot(word2vec_model=word2vec_model, fasttext_model=fasttext_model, ptlkb64_model=ptlkb64_model, glove300_model=glove300_model, numberbatch_model=numberbatch_model) print("Press enter to re-run the script, CTRL-C to exit") sys.stdin.readline() reload(cht)
the-stack_0_9433
""" Module to run the example files and report their success/failure results Add a function to the ExampleTest class corresponding to an example script to be tested. This is done till better strategy for parallel testing is implemented """ from pytest import mark from .example_test_case import ExampleTestCase, get_example_script from pysph.base.nnps import get_number_of_threads @mark.skipif(get_number_of_threads() == 1, reason= "N_threads=1; OpenMP does not seem available.") class TestOpenMPExamples(ExampleTestCase): @mark.slow def test_3Ddam_break_example(self): dt = 2e-5; tf = 13*dt serial_kwargs = dict( timestep=dt, tf=tf, pfreq=100, test=None ) extra_parallel_kwargs = dict(openmp=None) # Note that we set nprocs=1 here since we do not want # to run this with mpirun. self.run_example( get_example_script('sphysics/dambreak_sphysics.py'), nprocs=1, atol=1e-14, serial_kwargs=serial_kwargs, extra_parallel_kwargs=extra_parallel_kwargs ) @mark.slow def test_elliptical_drop_example(self): tf = 0.0076*0.25 serial_kwargs = dict(kernel='CubicSpline', tf=tf) extra_parallel_kwargs = dict(openmp=None) # Note that we set nprocs=1 here since we do not want # to run this with mpirun. self.run_example( 'elliptical_drop.py', nprocs=1, atol=1e-14, serial_kwargs=serial_kwargs, extra_parallel_kwargs=extra_parallel_kwargs ) def test_ldcavity_example(self): dt=1e-4; tf=200*dt serial_kwargs = dict(timestep=dt, tf=tf, pfreq=500) extra_parallel_kwargs = dict(openmp=None) # Note that we set nprocs=1 here since we do not want # to run this with mpirun. self.run_example( 'cavity.py', nprocs=1, atol=1e-14, serial_kwargs=serial_kwargs, extra_parallel_kwargs=extra_parallel_kwargs )
the-stack_0_9434
# coding: utf-8 from __future__ import unicode_literals from ..utils import month_by_name from .common import InfoExtractor class FranceInterIE(InfoExtractor): _VALID_URL = r"https?://(?:www\.)?franceinter\.fr/emissions/(?P<id>[^?#]+)" _TEST = { "url": "https://www.franceinter.fr/emissions/affaires-sensibles/affaires-sensibles-07-septembre-2016", "md5": "9e54d7bdb6fdc02a841007f8a975c094", "info_dict": { "id": "affaires-sensibles/affaires-sensibles-07-septembre-2016", "ext": "mp3", "title": "Affaire Cahuzac : le contentieux du compte en Suisse", "description": "md5:401969c5d318c061f86bda1fa359292b", "thumbnail": r"re:^https?://.*\.jpg", "upload_date": "20160907", }, } def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) video_url = self._search_regex( r'(?s)<div[^>]+class=["\']page-diffusion["\'][^>]*>.*?<button[^>]+data-url=(["\'])(?P<url>(?:(?!\1).)+)\1', webpage, "video url", group="url", ) title = self._og_search_title(webpage) description = self._og_search_description(webpage) thumbnail = self._html_search_meta(["og:image", "twitter:image"], webpage) upload_date_str = self._search_regex( r'class=["\']\s*cover-emission-period\s*["\'][^>]*>[^<]+\s+(\d{1,2}\s+[^\s]+\s+\d{4})<', webpage, "upload date", fatal=False, ) if upload_date_str: upload_date_list = upload_date_str.split() upload_date_list.reverse() upload_date_list[1] = "%02d" % ( month_by_name(upload_date_list[1], lang="fr") or 0 ) upload_date_list[2] = "%02d" % int(upload_date_list[2]) upload_date = "".join(upload_date_list) else: upload_date = None return { "id": video_id, "title": title, "description": description, "thumbnail": thumbnail, "upload_date": upload_date, "formats": [ { "url": video_url, "vcodec": "none", } ], }
the-stack_0_9435
""" Tensorflow implementation of the face detection / alignment algorithm found at https://github.com/kpzhang93/MTCNN_face_detection_alignment """ # MIT License # # Copyright (c) 2016 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function from six import string_types, iteritems import numpy as np import tensorflow as tf #from math import floor import cv2 import os def layer(op): '''Decorator for composable network layers.''' def layer_decorated(self, *args, **kwargs): # Automatically set a name if not provided. name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) # Figure out the layer inputs. if len(self.terminals) == 0: raise RuntimeError('No input variables found for layer %s.' % name) elif len(self.terminals) == 1: layer_input = self.terminals[0] else: layer_input = list(self.terminals) # Perform the operation and get the output. layer_output = op(self, layer_input, *args, **kwargs) # Add to layer LUT. self.layers[name] = layer_output # This output is now the input for the next layer. self.feed(layer_output) # Return self for chained calls. return self return layer_decorated class Network(object): def __init__(self, inputs, trainable=True): # The input nodes for this network self.inputs = inputs # The current list of terminal nodes self.terminals = [] # Mapping from layer names to layers self.layers = dict(inputs) # If true, the resulting variables are set as trainable self.trainable = trainable self.setup() def setup(self): '''Construct the network. ''' raise NotImplementedError('Must be implemented by the subclass.') def load(self, data_path, session, ignore_missing=False): '''Load network weights. data_path: The path to the numpy-serialized network weights session: The current TensorFlow session ignore_missing: If true, serialized weights for missing layers are ignored. ''' data_dict = np.load(data_path, encoding='latin1').item() #pylint: disable=no-member for op_name in data_dict: with tf.variable_scope(op_name, reuse=True): for param_name, data in iteritems(data_dict[op_name]): try: var = tf.get_variable(param_name) session.run(var.assign(data)) except ValueError: if not ignore_missing: raise def feed(self, *args): '''Set the input(s) for the next operation by replacing the terminal nodes. The arguments can be either layer names or the actual layers. ''' assert len(args) != 0 self.terminals = [] for fed_layer in args: if isinstance(fed_layer, string_types): try: fed_layer = self.layers[fed_layer] except KeyError: raise KeyError('Unknown layer name fed: %s' % fed_layer) self.terminals.append(fed_layer) return self def get_output(self): '''Returns the current network output.''' return self.terminals[-1] def get_unique_name(self, prefix): '''Returns an index-suffixed unique name for the given prefix. This is used for auto-generating layer names based on the type-prefix. ''' ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1 return '%s_%d' % (prefix, ident) def make_var(self, name, shape): '''Creates a new TensorFlow variable.''' return tf.get_variable(name, shape, trainable=self.trainable) def validate_padding(self, padding): '''Verifies that the padding is one of the supported ones.''' assert padding in ('SAME', 'VALID') @layer def conv(self, inp, k_h, k_w, c_o, s_h, s_w, name, relu=True, padding='SAME', group=1, biased=True): # Verify that the padding is acceptable self.validate_padding(padding) # Get the number of channels in the input c_i = int(inp.get_shape()[-1]) # Verify that the grouping parameter is valid assert c_i % group == 0 assert c_o % group == 0 # Convolution for a given input and kernel convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding) with tf.variable_scope(name) as scope: kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o]) # This is the common-case. Convolve the input without any further complications. output = convolve(inp, kernel) # Add the biases if biased: biases = self.make_var('biases', [c_o]) output = tf.nn.bias_add(output, biases) if relu: # ReLU non-linearity output = tf.nn.relu(output, name=scope.name) return output @layer def prelu(self, inp, name): with tf.variable_scope(name): i = int(inp.get_shape()[-1]) alpha = self.make_var('alpha', shape=(i,)) output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp)) return output @layer def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'): self.validate_padding(padding) return tf.nn.max_pool(inp, ksize=[1, k_h, k_w, 1], strides=[1, s_h, s_w, 1], padding=padding, name=name) @layer def fc(self, inp, num_out, name, relu=True): with tf.variable_scope(name): input_shape = inp.get_shape() if input_shape.ndims == 4: # The input is spatial. Vectorize it first. dim = 1 for d in input_shape[1:].as_list(): dim *= int(d) feed_in = tf.reshape(inp, [-1, dim]) else: feed_in, dim = (inp, input_shape[-1].value) weights = self.make_var('weights', shape=[dim, num_out]) biases = self.make_var('biases', [num_out]) op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b fc = op(feed_in, weights, biases, name=name) return fc """ Multi dimensional softmax, refer to https://github.com/tensorflow/tensorflow/issues/210 compute softmax along the dimension of target the native softmax only supports batch_size x dimension """ @layer def softmax(self, target, axis, name=None): max_axis = tf.reduce_max(target, axis, keep_dims=True) target_exp = tf.exp(target-max_axis) normalize = tf.reduce_sum(target_exp, axis, keep_dims=True) softmax = tf.div(target_exp, normalize, name) return softmax class PNet(Network): def setup(self): (self.feed('data') #pylint: disable=no-value-for-parameter, no-member .conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1') .prelu(name='PReLU1') .max_pool(2, 2, 2, 2, name='pool1') .conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2') .prelu(name='PReLU2') .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3') .prelu(name='PReLU3') .conv(1, 1, 2, 1, 1, relu=False, name='conv4-1') .softmax(3,name='prob1')) (self.feed('PReLU3') #pylint: disable=no-value-for-parameter .conv(1, 1, 4, 1, 1, relu=False, name='conv4-2')) class RNet(Network): def setup(self): (self.feed('data') #pylint: disable=no-value-for-parameter, no-member .conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1') .prelu(name='prelu1') .max_pool(3, 3, 2, 2, name='pool1') .conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2') .prelu(name='prelu2') .max_pool(3, 3, 2, 2, padding='VALID', name='pool2') .conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3') .prelu(name='prelu3') .fc(128, relu=False, name='conv4') .prelu(name='prelu4') .fc(2, relu=False, name='conv5-1') .softmax(1,name='prob1')) (self.feed('prelu4') #pylint: disable=no-value-for-parameter .fc(4, relu=False, name='conv5-2')) class ONet(Network): def setup(self): (self.feed('data') #pylint: disable=no-value-for-parameter, no-member .conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1') .prelu(name='prelu1') .max_pool(3, 3, 2, 2, name='pool1') .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2') .prelu(name='prelu2') .max_pool(3, 3, 2, 2, padding='VALID', name='pool2') .conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3') .prelu(name='prelu3') .max_pool(2, 2, 2, 2, name='pool3') .conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4') .prelu(name='prelu4') .fc(256, relu=False, name='conv5') .prelu(name='prelu5') .fc(2, relu=False, name='conv6-1') .softmax(1, name='prob1')) (self.feed('prelu5') #pylint: disable=no-value-for-parameter .fc(4, relu=False, name='conv6-2')) (self.feed('prelu5') #pylint: disable=no-value-for-parameter .fc(10, relu=False, name='conv6-3')) def create_mtcnn(sess, model_path): if not model_path: model_path,_ = os.path.split(os.path.realpath(__file__)) with tf.variable_scope('pnet'): data = tf.placeholder(tf.float32, (None,None,None,3), 'input') pnet = PNet({'data':data}) pnet.load(os.path.join(model_path, 'det1.npy'), sess) with tf.variable_scope('rnet'): data = tf.placeholder(tf.float32, (None,24,24,3), 'input') rnet = RNet({'data':data}) rnet.load(os.path.join(model_path, 'det2.npy'), sess) with tf.variable_scope('onet'): data = tf.placeholder(tf.float32, (None,48,48,3), 'input') onet = ONet({'data':data}) onet.load(os.path.join(model_path, 'det3.npy'), sess) pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img}) rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img}) onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img}) return pnet_fun, rnet_fun, onet_fun def detect_face(img, minsize, pnet, rnet, onet, threshold, factor): # im: input image # minsize: minimum of faces' size # pnet, rnet, onet: caffemodel # threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold # fastresize: resize img from last scale (using in high-resolution images) if fastresize==true factor_count=0 total_boxes=np.empty((0,9)) points=np.empty(0) h=img.shape[0] w=img.shape[1] minl=np.amin([h, w]) m=12.0/minsize minl=minl*m # creat scale pyramid scales=[] while minl>=12: scales += [m*np.power(factor, factor_count)] minl = minl*factor factor_count += 1 # first stage for j in range(len(scales)): scale=scales[j] hs=int(np.ceil(h*scale)) ws=int(np.ceil(w*scale)) im_data = imresample(img, (hs, ws)) im_data = (im_data-127.5)*0.0078125 img_x = np.expand_dims(im_data, 0) img_y = np.transpose(img_x, (0,2,1,3)) out = pnet(img_y) out0 = np.transpose(out[0], (0,2,1,3)) out1 = np.transpose(out[1], (0,2,1,3)) boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) # inter-scale nms pick = nms(boxes.copy(), 0.5, 'Union') if boxes.size>0 and pick.size>0: boxes = boxes[pick,:] total_boxes = np.append(total_boxes, boxes, axis=0) numbox = total_boxes.shape[0] if numbox>0: pick = nms(total_boxes.copy(), 0.7, 'Union') total_boxes = total_boxes[pick,:] regw = total_boxes[:,2]-total_boxes[:,0] regh = total_boxes[:,3]-total_boxes[:,1] qq1 = total_boxes[:,0]+total_boxes[:,5]*regw qq2 = total_boxes[:,1]+total_boxes[:,6]*regh qq3 = total_boxes[:,2]+total_boxes[:,7]*regw qq4 = total_boxes[:,3]+total_boxes[:,8]*regh total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]])) total_boxes = rerec(total_boxes.copy()) total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) numbox = total_boxes.shape[0] if numbox>0: # second stage tempimg = np.zeros((24,24,3,numbox)) for k in range(0,numbox): tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: tempimg[:,:,:,k] = imresample(tmp, (24, 24)) else: return np.empty() tempimg = (tempimg-127.5)*0.0078125 tempimg1 = np.transpose(tempimg, (3,1,0,2)) out = rnet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) score = out1[1,:] ipass = np.where(score>threshold[1]) total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) mv = out0[:,ipass[0]] if total_boxes.shape[0]>0: pick = nms(total_boxes, 0.7, 'Union') total_boxes = total_boxes[pick,:] total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick])) total_boxes = rerec(total_boxes.copy()) numbox = total_boxes.shape[0] if numbox>0: # third stage total_boxes = np.fix(total_boxes).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) tempimg = np.zeros((48,48,3,numbox)) for k in range(0,numbox): tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3)) tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:] if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0: tempimg[:,:,:,k] = imresample(tmp, (48, 48)) else: return np.empty() tempimg = (tempimg-127.5)*0.0078125 tempimg1 = np.transpose(tempimg, (3,1,0,2)) out = onet(tempimg1) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1,:] points = out1 ipass = np.where(score>threshold[2]) points = points[:,ipass[0]] total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)]) mv = out0[:,ipass[0]] w = total_boxes[:,2]-total_boxes[:,0]+1 h = total_boxes[:,3]-total_boxes[:,1]+1 points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1 points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1 if total_boxes.shape[0]>0: total_boxes = bbreg(total_boxes.copy(), np.transpose(mv)) pick = nms(total_boxes.copy(), 0.7, 'Min') total_boxes = total_boxes[pick,:] points = points[:,pick] return total_boxes, points def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor): # im: input image # minsize: minimum of faces' size # pnet, rnet, onet: caffemodel # threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1] all_scales = [None] * len(images) images_with_boxes = [None] * len(images) for i in range(len(images)): images_with_boxes[i] = {'total_boxes': np.empty((0, 9))} # create scale pyramid for index, img in enumerate(images): all_scales[index] = [] h = img.shape[0] w = img.shape[1] minsize = int(detection_window_size_ratio * np.minimum(w, h)) factor_count = 0 minl = np.amin([h, w]) if minsize <= 12: minsize = 12 m = 12.0 / minsize minl = minl * m while minl >= 12: all_scales[index].append(m * np.power(factor, factor_count)) minl = minl * factor factor_count += 1 # # # # # # # # # # # # # # first stage - fast proposal network (pnet) to obtain face candidates # # # # # # # # # # # # # images_obj_per_resolution = {} # TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images for index, scales in enumerate(all_scales): h = images[index].shape[0] w = images[index].shape[1] for scale in scales: hs = int(np.ceil(h * scale)) ws = int(np.ceil(w * scale)) if (ws, hs) not in images_obj_per_resolution: images_obj_per_resolution[(ws, hs)] = [] im_data = imresample(images[index], (hs, ws)) im_data = (im_data - 127.5) * 0.0078125 img_y = np.transpose(im_data, (1, 0, 2)) # caffe uses different dimensions ordering images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index}) for resolution in images_obj_per_resolution: images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]] outs = pnet(images_per_resolution) for index in range(len(outs[0])): scale = images_obj_per_resolution[resolution][index]['scale'] image_index = images_obj_per_resolution[resolution][index]['index'] out0 = np.transpose(outs[0][index], (1, 0, 2)) out1 = np.transpose(outs[1][index], (1, 0, 2)) boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0]) # inter-scale nms pick = nms(boxes.copy(), 0.5, 'Union') if boxes.size > 0 and pick.size > 0: boxes = boxes[pick, :] images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'], boxes, axis=0) for index, image_obj in enumerate(images_with_boxes): numbox = image_obj['total_boxes'].shape[0] if numbox > 0: h = images[index].shape[0] w = images[index].shape[1] pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union') image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]])) image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) numbox = image_obj['total_boxes'].shape[0] tempimg = np.zeros((24, 24, 3, numbox)) if numbox > 0: for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: tempimg[:, :, :, k] = imresample(tmp, (24, 24)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) # # # # # # # # # # # # # # second stage - refinement of face candidates with rnet # # # # # # # # # # # # # bulk_rnet_input = np.empty((0, 24, 24, 3)) for index, image_obj in enumerate(images_with_boxes): if 'rnet_input' in image_obj: bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0) out = rnet(bulk_rnet_input) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) score = out1[1, :] i = 0 for index, image_obj in enumerate(images_with_boxes): if 'rnet_input' not in image_obj: continue rnet_input_count = image_obj['rnet_input'].shape[0] score_per_image = score[i:i + rnet_input_count] out0_per_image = out0[:, i:i + rnet_input_count] ipass = np.where(score_per_image > threshold[1]) image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), np.expand_dims(score_per_image[ipass].copy(), 1)]) mv = out0_per_image[:, ipass[0]] if image_obj['total_boxes'].shape[0] > 0: h = images[index].shape[0] w = images[index].shape[1] pick = nms(image_obj['total_boxes'], 0.7, 'Union') image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick])) image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) numbox = image_obj['total_boxes'].shape[0] if numbox > 0: tempimg = np.zeros((48, 48, 3, numbox)) image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32) dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) for k in range(0, numbox): tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3)) tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :] if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0: tempimg[:, :, :, k] = imresample(tmp, (48, 48)) else: return np.empty() tempimg = (tempimg - 127.5) * 0.0078125 image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) i += rnet_input_count # # # # # # # # # # # # # # third stage - further refinement and facial landmarks positions with onet # # # # # # # # # # # # # bulk_onet_input = np.empty((0, 48, 48, 3)) for index, image_obj in enumerate(images_with_boxes): if 'onet_input' in image_obj: bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0) out = onet(bulk_onet_input) out0 = np.transpose(out[0]) out1 = np.transpose(out[1]) out2 = np.transpose(out[2]) score = out2[1, :] points = out1 i = 0 ret = [] for index, image_obj in enumerate(images_with_boxes): if 'onet_input' not in image_obj: ret.append(None) continue onet_input_count = image_obj['onet_input'].shape[0] out0_per_image = out0[:, i:i + onet_input_count] score_per_image = score[i:i + onet_input_count] points_per_image = points[:, i:i + onet_input_count] ipass = np.where(score_per_image > threshold[2]) points_per_image = points_per_image[:, ipass[0]] image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(), np.expand_dims(score_per_image[ipass].copy(), 1)]) mv = out0_per_image[:, ipass[0]] w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1 h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1 points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile( image_obj['total_boxes'][:, 0], (5, 1)) - 1 points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile( image_obj['total_boxes'][:, 1], (5, 1)) - 1 if image_obj['total_boxes'].shape[0] > 0: image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv)) pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min') image_obj['total_boxes'] = image_obj['total_boxes'][pick, :] points_per_image = points_per_image[:, pick] ret.append((image_obj['total_boxes'], points_per_image)) else: ret.append(None) i += onet_input_count return ret # function [boundingbox] = bbreg(boundingbox,reg) def bbreg(boundingbox,reg): # calibrate bounding boxes if reg.shape[1]==1: reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) w = boundingbox[:,2]-boundingbox[:,0]+1 h = boundingbox[:,3]-boundingbox[:,1]+1 b1 = boundingbox[:,0]+reg[:,0]*w b2 = boundingbox[:,1]+reg[:,1]*h b3 = boundingbox[:,2]+reg[:,2]*w b4 = boundingbox[:,3]+reg[:,3]*h boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ])) return boundingbox def generateBoundingBox(imap, reg, scale, t): # use heatmap to generate bounding boxes stride=2 cellsize=12 imap = np.transpose(imap) dx1 = np.transpose(reg[:,:,0]) dy1 = np.transpose(reg[:,:,1]) dx2 = np.transpose(reg[:,:,2]) dy2 = np.transpose(reg[:,:,3]) y, x = np.where(imap >= t) if y.shape[0]==1: dx1 = np.flipud(dx1) dy1 = np.flipud(dy1) dx2 = np.flipud(dx2) dy2 = np.flipud(dy2) score = imap[(y,x)] reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) if reg.size==0: reg = np.empty((0,3)) bb = np.transpose(np.vstack([y,x])) q1 = np.fix((stride*bb+1)/scale) q2 = np.fix((stride*bb+cellsize-1+1)/scale) boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) return boundingbox, reg # function pick = nms(boxes,threshold,type) def nms(boxes, threshold, method): if boxes.size==0: return np.empty((0,3)) x1 = boxes[:,0] y1 = boxes[:,1] x2 = boxes[:,2] y2 = boxes[:,3] s = boxes[:,4] area = (x2-x1+1) * (y2-y1+1) I = np.argsort(s) pick = np.zeros_like(s, dtype=np.int16) counter = 0 while I.size>0: i = I[-1] pick[counter] = i counter += 1 idx = I[0:-1] xx1 = np.maximum(x1[i], x1[idx]) yy1 = np.maximum(y1[i], y1[idx]) xx2 = np.minimum(x2[i], x2[idx]) yy2 = np.minimum(y2[i], y2[idx]) w = np.maximum(0.0, xx2-xx1+1) h = np.maximum(0.0, yy2-yy1+1) inter = w * h if method is 'Min': o = inter / np.minimum(area[i], area[idx]) else: o = inter / (area[i] + area[idx] - inter) I = I[np.where(o<=threshold)] pick = pick[0:counter] return pick # function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h) def pad(total_boxes, w, h): # compute the padding coordinates (pad the bounding boxes to square) tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32) tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32) numbox = total_boxes.shape[0] dx = np.ones((numbox), dtype=np.int32) dy = np.ones((numbox), dtype=np.int32) edx = tmpw.copy().astype(np.int32) edy = tmph.copy().astype(np.int32) x = total_boxes[:,0].copy().astype(np.int32) y = total_boxes[:,1].copy().astype(np.int32) ex = total_boxes[:,2].copy().astype(np.int32) ey = total_boxes[:,3].copy().astype(np.int32) tmp = np.where(ex>w) edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1) ex[tmp] = w tmp = np.where(ey>h) edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1) ey[tmp] = h tmp = np.where(x<1) dx.flat[tmp] = np.expand_dims(2-x[tmp],1) x[tmp] = 1 tmp = np.where(y<1) dy.flat[tmp] = np.expand_dims(2-y[tmp],1) y[tmp] = 1 return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph # function [bboxA] = rerec(bboxA) def rerec(bboxA): # convert bboxA to square h = bboxA[:,3]-bboxA[:,1] w = bboxA[:,2]-bboxA[:,0] l = np.maximum(w, h) bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5 bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5 bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1))) return bboxA def imresample(img, sz): im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #@UndefinedVariable return im_data # This method is kept for debugging purpose # h=img.shape[0] # w=img.shape[1] # hs, ws = sz # dx = float(w) / ws # dy = float(h) / hs # im_data = np.zeros((hs,ws,3)) # for a1 in range(0,hs): # for a2 in range(0,ws): # for a3 in range(0,3): # im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3] # return im_data
the-stack_0_9436
#!/usr/bin/python # Copyright 2013 The Emscripten Authors. All rights reserved. # Emscripten is available under two separate licenses, the MIT license and the # University of Illinois/NCSA Open Source License. Both these licenses can be # found in the LICENSE file. """Runs csmith, a C fuzzer, and looks for bugs. CSMITH_PATH should be set to something like /usr/local/include/csmith """ import os import sys import shutil import random from distutils.spawn import find_executable from subprocess import check_call, Popen, PIPE, CalledProcessError script_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(os.path.dirname(os.path.dirname(script_dir)))) from tools import shared # can add flags like --no-threads --ion-offthread-compile=off engine = eval('shared.' + sys.argv[1]) if len(sys.argv) > 1 else shared.JS_ENGINES[0] print('testing js engine', engine) TEST_BINARYEN = 1 CSMITH = os.environ.get('CSMITH', find_executable('csmith')) assert CSMITH, 'Could not find CSmith on your PATH. Please set the environment variable CSMITH.' CSMITH_PATH = os.environ.get('CSMITH_PATH', '/usr/include/csmith') assert os.path.exists(CSMITH_PATH), 'Please set the environment variable CSMITH_PATH.' CSMITH_CFLAGS = ['-I', CSMITH_PATH] filename = os.path.join(os.getcwd(), 'temp_fuzzcode' + str(os.getpid()) + '_') shared.DEFAULT_TIMEOUT = 5 tried = 0 notes = {'invalid': 0, 'embug': 0} fails = 0 while 1: if random.random() < 0.666: opts = '-O' + str(random.randint(0, 3)) else: if random.random() < 0.5: opts = '-Os' else: opts = '-Oz' print('opt level:', opts) llvm_opts = [] if random.random() < 0.5: llvm_opts = ['--llvm-opts', str(random.randint(0, 3))] print('Tried %d, notes: %s' % (tried, notes)) print('1) Generate source') extra_args = [] if random.random() < 0.5: extra_args += ['--no-math64'] extra_args += ['--no-bitfields'] # due to pnacl bug 4027, "LLVM ERROR: can't convert calls with illegal types" # if random.random() < 0.5: extra_args += ['--float'] # XXX hits undefined behavior on float=>int conversions (too big to fit) if random.random() < 0.5: extra_args += ['--max-funcs', str(random.randint(10, 30))] suffix = '.c' COMP = shared.CLANG_CC fullname = filename + suffix check_call([CSMITH, '--no-volatiles', '--no-packed-struct'] + extra_args, # ['--max-block-depth', '2', '--max-block-size', '2', '--max-expr-complexity', '2', '--max-funcs', '2'], stdout=open(fullname, 'w')) print('1) Generate source... %.2f K' % (len(open(fullname).read()) / 1024.)) tried += 1 print('2) Compile natively') shared.try_delete(filename) try: shared.run_process([COMP, '-m32', opts, fullname, '-o', filename + '1'] + CSMITH_CFLAGS + ['-w']) # + shared.get_cflags() except CalledProcessError: print('Failed to compile natively using clang') notes['invalid'] += 1 continue shared.run_process([COMP, '-m32', opts, '-emit-llvm', '-c', fullname, '-o', filename + '.bc'] + CSMITH_CFLAGS + shared.get_cflags() + ['-w']) shared.run_process([shared.path_from_root('tools', 'nativize_llvm.py'), filename + '.bc'], stderr=PIPE) shutil.move(filename + '.bc.run', filename + '2') shared.run_process([COMP, fullname, '-o', filename + '3'] + CSMITH_CFLAGS + ['-w']) print('3) Run natively') try: correct1 = shared.timeout_run(Popen([filename + '1'], stdout=PIPE, stderr=PIPE), 3) if 'Segmentation fault' in correct1 or len(correct1) < 10: raise Exception('segfault') correct2 = shared.timeout_run(Popen([filename + '2'], stdout=PIPE, stderr=PIPE), 3) if 'Segmentation fault' in correct2 or len(correct2) < 10: raise Exception('segfault') correct3 = shared.timeout_run(Popen([filename + '3'], stdout=PIPE, stderr=PIPE), 3) if 'Segmentation fault' in correct3 or len(correct3) < 10: raise Exception('segfault') if correct1 != correct3: raise Exception('clang opts change result') except Exception as e: print('Failed or infinite looping in native, skipping', e) notes['invalid'] += 1 continue fail_output_name = 'newfail_%d_%d%s' % (os.getpid(), fails, suffix) print('4) Compile JS-ly and compare') def try_js(args=[]): shared.try_delete(filename + '.js') js_args = [shared.EMCC, fullname, '-o', filename + '.js'] + [opts] + llvm_opts + CSMITH_CFLAGS + args + ['-w'] if TEST_BINARYEN: if random.random() < 0.5: js_args += ['-g'] if random.random() < 0.5: # pick random passes BINARYEN_EXTRA_PASSES = [ "code-pushing", "duplicate-function-elimination", "dce", "remove-unused-brs", "remove-unused-names", "local-cse", "optimize-instructions", "post-emscripten", "precompute", "simplify-locals", "simplify-locals-nostructure", "vacuum", "coalesce-locals", "reorder-locals", "merge-blocks", "remove-unused-module-elements", "memory-packing", ] passes = [] while 1: passes.append(random.choice(BINARYEN_EXTRA_PASSES)) if random.random() < 0.1: break js_args += ['-s', 'BINARYEN_EXTRA_PASSES="' + ','.join(passes) + '"'] if random.random() < 0.5: js_args += ['-s', 'ALLOW_MEMORY_GROWTH=1'] if random.random() < 0.5 and 'ALLOW_MEMORY_GROWTH=1' not in js_args and 'BINARYEN=1' not in js_args: js_args += ['-s', 'MAIN_MODULE=1'] if random.random() < 0.25: js_args += ['-s', 'INLINING_LIMIT=1'] # inline nothing, for more call interaction if random.random() < 0.5: js_args += ["--memory-init-file", "0", "-s", "MEM_INIT_METHOD=2"] if random.random() < 0.5: js_args += ['-s', 'ASSERTIONS=1'] print('(compile)', ' '.join(js_args)) short_args = [shared.EMCC, fail_output_name] + js_args[5:] escaped_short_args = map(lambda x: ("'" + x + "'") if '"' in x else x, short_args) open(fullname, 'a').write('\n// ' + ' '.join(escaped_short_args) + '\n\n') try: shared.run_process(js_args) assert os.path.exists(filename + '.js') return js_args except Exception: return False def execute_js(engine): print('(run in %s)' % engine) try: js = shared.timeout_run(Popen(shared.NODE_JS + [filename + '.js'], stdout=PIPE, stderr=PIPE), 15 * 60) except Exception: print('failed to run in primary') return False js = js.split('\n')[0] + '\n' # remove any extra printed stuff (node workarounds) return correct1 == js or correct2 == js def fail(): global fails print("EMSCRIPTEN BUG") notes['embug'] += 1 fails += 1 shutil.copyfile(fullname, fail_output_name) js_args = try_js() if not js_args: fail() continue if not execute_js(engine): fail() continue
the-stack_0_9440
import pandas as pd import csv as csv import glob #Script that loops through sample CSV data and writes EDA results to .txt file path = 'sample_data' files = glob.glob(path + "/*.csv") def eda(): try: print("Writing sample data exploratory analysis to file 'eda_info.txt'...") with open('eda_info.txt', 'w') as f: for filename in files: f.write(filename + "\n") data = pd.read_csv(filename) data.info(verbose = True, buf=f) print("File successfully written!") except: print("File not found.") finally: f.close() print("File closed.") eda()
the-stack_0_9447
# -*- python -*- # # pyqmc.utils.gafqmc_cost module # # Wirawan Purwanto # Created: 20130923 # # """ pyqmc.utils.gafqmc_cost Cost estimator and analyzer for GAFQMC code. """ import numpy from pyqmc.utils import cost from pyqmc.utils import linalg_cost class gafqmc_sparse1_cost_estimator(cost.qmc_cost_estimator): """Cost estimator specifically for GAFQMC calculation. Names of precomputed objects: * Vijkl = four-indexed two-body operator * Vss = product of two trial wfn orbitals (same spin) with Vijkl * Vxs = product of two trial wfn orbitals (opposite spins) with Vijkl * Ls = product of one trial wfn orbital (for all spins) with L one-body operator. """ # (SPARSE) PRECOMPUTED MATRICES # Default sparse matrix density (ballpark estimate) # These values MAY NOT BE CORRECT for your particular calculation! # These are ok for GTO-basis calculations without frozen core: dens_Vss = 0.5 dens_Vxs = 0.5 dens_Ls = 0.7 tpref_gf1_ovlp = 9.74193418e-09 tpref_gf1_ovlpinv = 2.25385979e-09 tpref_FB = 1.83499926e-08 tpref_Elocal = 1.09604036e-08 # Turns out, empirically Vss and Vxs densities are the same def __init__(self): self.linalg = linalg_cost.linalg_cost_ops() def compute_mem_cost(self, Print=False): """ Estimate a calculation's MEMORY cost based on the given input sizes. For original sparse method due to Wissam. Required input: - nbasis - nflds - nwlkmax - nptot, nup, ndn - npsitdet Objects: Output: - mem_Vss = - mem_Vxs = - mem_rhos = """ nwlkmax_proc = self.get_nwlkmax_proc (M, Nptot, Nu, Nd, F, D) = self.params_wlkr(0) (dpc, dp, it) = self.params_sys(0) self.wlk_size = Nptot * M * dpc self.mem_wlk = self.wlk_size * nwlkmax_proc self.mem_Lvec = self.get_hsop_dim * F * dp # so far it is double precision # number of elements in the sparse objects, per determinant self.count_Vuu_det = self.dens_Vss * M**2 * Nu**2 self.count_Vdd_det = self.dens_Vss * M**2 * Nd**2 self.count_Vud_det = self.dens_Vxs * M**2 * Nu*Nd self.count_Ls_det = self.dens_Ls * F * M * (Nu+Nd) # number of elements in the sparse objects, ALL determinants self.count_Vuu = D * self.count_Vuu_det self.count_Vdd = D * self.count_Vdd_det self.count_Vud = D * self.count_Vud_det self.count_Ls = self.dens_Ls * D * F * M * (Nu+Nd) # Sparse object are currently stored as records, so here are their sizes: self.size_Vuu1 = dp + 4 * it self.size_Vdd1 = dp + 4 * it self.size_Vud1 = dp + 4 * it self.size_Ls1 = dp + 2 * it # memory required by the sparse objects, ALL determinants self.mem_Vss = (self.count_Vuu + self.count_Vdd) * self.size_Vuu1 self.mem_Vxs = (self.count_Vud) * self.size_Vud1 self.mem_Ls = (self.count_Ls) * self.size_Ls1 if Print: self.printout_mem() def printout_mem(self, out=None): """ Prints out a report for memory estimate. """ # Tentative way to compute naive multithreading task sharing def task_div(self, D, th): """`Task divide-and-share': The division of D iterations into th threads --- to approximately account for imperfect task balance in OpenMP way. """ inv_th = 1.0 / th return numpy.ceil(D * inv_th) def compute_step_cost(self, Print=False): # Placeholder: will be replaced by fancier stuff later # for more "symbolic" feel, or function that can give more actual # estimate of the operation cost. # For now these are merely LA = self.linalg mxm, mxv, vdot, mmtrace, tmmtrace = LA.mxm, LA.mxv, LA.vdot, LA.mmtrace, LA.tmmtrace (M, Nptot, Nu, Nd, F, D) = self.params_wlkr(0) try: th = self.num_threads except: th = 1 d_fac = self.task_div(D, th) #self.cost_pre_Q = d_fac * F * mxm(M,N,N) #self.cost_Theta = d_fac * mxm(M,N,N) # -- not considered for now self.ops_gf1_ovlp = d_fac * (mxm(Nu,Nu,M) + mxm(Nd,Nd,M)) # matmul of Psi^hc * Phi self.ops_gf1_ovlpinv = d_fac * (mxm(Nu,Nu,Nu) + mxm(Nd,Nd,Nd)) # the inverse of ovlp matrix self.ops_FB = d_fac * self.dens_Ls * F * (mmtrace(M,Nu) + mmtrace(M,Nd)) # the trace part self.ops_Elocal = d_fac * self.dens_Vss * (2*tmmtrace(M,M,Nu,Nu) + 2*tmmtrace(M,M,Nd,Nd) + tmmtrace(M,M,Nu,Nd)) # the trace part self.cost_gf1_ovlp = self.tpref_gf1_ovlp * self.ops_gf1_ovlp self.cost_gf1_ovlpinv = self.tpref_gf1_ovlpinv * self.ops_gf1_ovlpinv self.cost_FB = self.tpref_FB * self.ops_FB self.cost_Elocal = self.tpref_FB * self.ops_Elocal if Print: self.printout_compute()
the-stack_0_9449
from typing import Any, Dict, List from sciwing.data.seq_label import SeqLabel from sciwing.data.line import Line from sciwing.data.token import Token from sciwing.data.datasets_manager import DatasetsManager from sciwing.metrics.BaseMetric import BaseMetric import subprocess import wasabi from collections import defaultdict, Counter import pathlib import os import numpy as np import uuid class SummarizationMetrics(BaseMetric): """ Returns rouge for every namespace. The conll2003 metric assumes that the conlleval perl script is available It writes a file with true labels and pred labels for a namespace Parses the span level statistics which can then be used to select the model with the best F1 score """ def __init__( self, datasets_manager: DatasetsManager, predicted_tags_namespace_prefix="predicted_tags", words_namespace: str = "tokens", ): super(SummarizationMetrics, self).__init__(datasets_manager=datasets_manager) self.datasets_manager = datasets_manager self.label_namespaces = datasets_manager.label_namespaces self.words_namespace = words_namespace self.namespace_to_vocab = self.datasets_manager.namespace_to_vocab self.predicted_tags_namespace_prefix = predicted_tags_namespace_prefix self.msg_printer = wasabi.Printer() self.rouge_1_counter: Dict[str, List[float]] = defaultdict(list) self.rouge_2_counter: Dict[str, List[float]] = defaultdict(list) self.rouge_l_counter: Dict[str, List[float]] = defaultdict(list) def calc_metric( self, lines: List[Line], labels: List[Line], model_forward_dict: Dict[str, Any] ) -> None: # line_tokens: List[List[Token]] = [line.tokens["tokens"] for line in lines] # true_label_text = [label.text for label in labels] cwd = os.path.dirname(os.path.realpath(__file__)) for namespace in [self.words_namespace]: predicted_tags = model_forward_dict.get( f"{self.predicted_tags_namespace_prefix}_{namespace}" ) true_summary_tokens: List[List[Token]] = [ summary.tokens[namespace] for summary in labels ] true_summary_token_strs: List[List[str]] = [ [token.text for token in tokens] for tokens in true_summary_tokens ] namespace_filename = f"{cwd}/{str(uuid.uuid4())}_{namespace}_pred.txt" namespace_filename = pathlib.Path(namespace_filename) predicted_summary_token_strs = [] with open(namespace_filename, "w") as fp: for line, true_summary_token_strs_, predicted_tags_ in zip( lines, true_summary_token_strs, predicted_tags ): predicted_summary_token_strs_ = [] for predicted_tag in predicted_tags_: predicted_tag = self.namespace_to_vocab[ namespace ].get_token_from_idx(predicted_tag) predicted_summary_token_strs_.append(predicted_tag) predicted_summary_token_strs.append(predicted_summary_token_strs_) fp.write(line.text) fp.write("Ground Truth") fp.write( " ".join([f'"{token}"' for token in true_summary_token_strs_]) ) fp.write("Predicted") fp.write( " ".join( [f'"{token}"' for token in predicted_summary_token_strs_] ) ) fp.write("\n") for true_summary_token_strs_, predicted_summary_token_strs_ in zip( true_summary_token_strs, predicted_summary_token_strs ): rouge_1 = self._rouge_n( predicted_summary_token_strs_, true_summary_token_strs_, 1 ) rouge_2 = self._rouge_n( predicted_summary_token_strs_, true_summary_token_strs_, 2 ) rouge_l = self._rouge_l( predicted_summary_token_strs_, true_summary_token_strs_ ) rouge_1 = np.round(rouge_1, decimals=3) rouge_2 = np.round(rouge_2, decimals=3) rouge_l = np.round(rouge_l, decimals=3) # update the counter self.rouge_1_counter[namespace].append(rouge_1) self.rouge_2_counter[namespace].append(rouge_2) self.rouge_l_counter[namespace].append(rouge_l) def get_metric(self) -> Dict[str, Any]: metrics = {} for namespace in [self.words_namespace]: rouge_1s = self.rouge_1_counter[namespace] rouge_2s = self.rouge_2_counter[namespace] rouge_ls = self.rouge_l_counter[namespace] rouge_1 = sum(rouge_1s) / len(rouge_1s) rouge_2 = sum(rouge_2s) / len(rouge_2s) rouge_l = sum(rouge_ls) / len(rouge_ls) rouge_1 = np.round(rouge_1, decimals=3) rouge_2 = np.round(rouge_2, decimals=3) rouge_l = np.round(rouge_l, decimals=3) metrics[namespace] = { "rouge_1": rouge_1, "rouge_2": rouge_2, "rouge_l": rouge_l, } return metrics def report_metrics(self, report_type: str = "wasabi") -> Any: reports = {} if report_type == "wasabi": for namespace in [self.words_namespace]: metric = self.get_metric()[namespace] rouge_1 = metric["rouge_1"] rouge_2 = metric["rouge_2"] rouge_l = metric["rouge_l"] # build table header_row = ["Metric", "Value"] rows = [ ("Rouge_1", rouge_1), ("Rouge_2", rouge_2), ("Rouge_l", rouge_l), ] table = wasabi.table(rows, header=header_row, divider=True) reports[namespace] = table return reports def reset(self): self.rouge_1_counter = defaultdict(list) self.rouge_2_counter = defaultdict(list) self.rouge_l_counter = defaultdict(list) def _calc_f1(self, matches, count_for_recall, count_for_precision, alpha): def safe_div(x1, x2): return 0 if x2 == 0 else x1 / x2 recall = safe_div(matches, count_for_recall) precision = safe_div(matches, count_for_precision) denom = (1.0 - alpha) * precision + alpha * recall return safe_div(precision * recall, denom) def _lcs(self, a, b): longer = a base = b if len(longer) < len(base): longer, base = base, longer if len(base) == 0: return 0 row = [0] * len(base) for c_a in longer: left = 0 upper_left = 0 for i, c_b in enumerate(base): up = row[i] if c_a == c_b: value = upper_left + 1 else: value = max(left, up) row[i] = value left = value upper_left = up return left def _len_ngram(self, words, n): return max(len(words) - n + 1, 0) def _ngram_iter(self, words, n): for i in range(self._len_ngram(words, n)): n_gram = words[i : i + n] yield tuple(n_gram) def _count_ngrams(self, words, n): c = Counter(self._ngram_iter(words, n)) return c def _count_overlap(self, summary_ngrams, reference_ngrams): result = 0 for k, v in summary_ngrams.items(): result += min(v, reference_ngrams[k]) return result def _rouge_n(self, pred_summary, true_summary, n, alpha=0.5): """ Calculate ROUGE-N score. Parameters ---------- pred_summary: list of list of str generated summary after tokenization true_summary: list of list of str reference or references to evaluate summary n: int ROUGE kind. n=1, calculate when ROUGE-1 alpha: float (0~1) alpha -> 0: recall is more important alpha -> 1: precision is more important F = 1/(alpha * (1/P) + (1 - alpha) * (1/R)) Returns ------- f1: float f1 score """ pred_ngrams = self._count_ngrams(pred_summary, n) r_ngrams = self._count_ngrams(true_summary, n) matches = self._count_overlap(pred_ngrams, r_ngrams) count_for_recall = self._len_ngram(true_summary, n) count_for_prec = self._len_ngram(pred_summary, n) f1 = self._calc_f1(matches, count_for_recall, count_for_prec, alpha) return f1 def _rouge_l(self, pred_summary, true_summary, alpha=0.5): """ Calculate ROUGE-L score. Parameters ---------- pred_summary: list of list of str generated summary after tokenization true_summary: list of list of str reference or references to evaluate summary n: int ROUGE kind. n=1, calculate when ROUGE-1 alpha: float (0~1) alpha -> 0: recall is more important alpha -> 1: precision is more important F = 1/(alpha * (1/P) + (1 - alpha) * (1/R)) Returns ------- f1: float f1 score """ matches = self._lcs(true_summary, pred_summary) count_for_recall = len(true_summary) count_for_prec = len(pred_summary) f1 = self._calc_f1(matches, count_for_recall, count_for_prec, alpha) return f1
the-stack_0_9452
import logging from logging import getLogger from typing import Sequence, Optional import base58 from indy_crypto import IndyCryptoError from crypto.bls.bls_crypto import GroupParams, BlsGroupParamsLoader, BlsCryptoVerifier, BlsCryptoSigner from indy_crypto.bls import BlsEntity, Generator, VerKey, SignKey, Bls, \ Signature, MultiSignature, ProofOfPossession logging.getLogger("indy_crypto").setLevel(logging.WARNING) logger = getLogger() class BlsGroupParamsLoaderIndyCrypto(BlsGroupParamsLoader): def load_group_params(self) -> GroupParams: group_name = 'generator' g = "3LHpUjiyFC2q2hD7MnwwNmVXiuaFbQx2XkAFJWzswCjgN1utjsCeLzHsKk1nJvFEaS4fcrUmVAkdhtPCYbrVyATZcmzwJReTcJqwqBCPTmTQ9uWPwz6rEncKb2pYYYFcdHa8N17HzVyTqKfgPi4X9pMetfT3A5xCHq54R2pDNYWVLDX" return GroupParams(group_name, g) class IndyCryptoBlsUtils: SEED_LEN = 32 @staticmethod def bls_to_str(v: BlsEntity) -> str: try: return base58.b58encode(v.as_bytes()).decode("utf-8") except ValueError: logger.warning('BLS: BLS Entity can not be encoded as base58') @staticmethod def bls_from_str(v: str, cls) -> Optional[BlsEntity]: try: bts = base58.b58decode(v) except ValueError: logger.warning('BLS: value {} can not be decoded to base58'.format(v)) return None try: return cls.from_bytes(bts) except IndyCryptoError as e: logger.warning('BLS: Indy Crypto error: {}'.format(e)) return None @staticmethod def bls_pk_from_str(v: str) -> Optional[VerKey]: return IndyCryptoBlsUtils.bls_from_str(v, VerKey) @staticmethod def prepare_seed(seed): seed_bytes = None if isinstance(seed, str): seed_bytes = seed.encode() if isinstance(seed, (bytes, bytearray)): seed_bytes = seed # TODO: FIXME: indy-crypto supports 32-bit seeds only if seed_bytes: if len(seed_bytes) < IndyCryptoBlsUtils.SEED_LEN: seed_bytes += b'0' * (IndyCryptoBlsUtils.SEED_LEN - len(seed_bytes)) assert (len(seed_bytes) >= IndyCryptoBlsUtils.SEED_LEN) return seed_bytes class BlsCryptoVerifierIndyCrypto(BlsCryptoVerifier): def __init__(self, params: GroupParams): self._generator = \ IndyCryptoBlsUtils.bls_from_str(params.g, Generator) # type: Generator def verify_sig(self, signature: str, message: bytes, bls_pk: Optional[VerKey]) -> bool: bls_signature = IndyCryptoBlsUtils.bls_from_str(signature, Signature) if bls_signature is None: return False if bls_pk is None: return False return Bls.verify(bls_signature, message, bls_pk, self._generator) def verify_multi_sig(self, signature: str, message: bytes, pks: Sequence[Optional[VerKey]]) -> bool: # TODO: is it expected that we return False if one of the keys is None? if None in pks: return False multi_signature = \ IndyCryptoBlsUtils.bls_from_str(signature, MultiSignature) # type: MultiSignature if multi_signature is None: return False return Bls.verify_multi_sig(multi_sig=multi_signature, message=message, ver_keys=pks, gen=self._generator) def create_multi_sig(self, signatures: Sequence[str]) -> str: sigs = [IndyCryptoBlsUtils.bls_from_str(s, Signature) for s in signatures] bts = MultiSignature.new(sigs) return IndyCryptoBlsUtils.bls_to_str(bts) def verify_key_proof_of_possession(self, key_proof: Optional[ProofOfPossession], bls_pk: Optional[VerKey]) -> bool: if None in [key_proof, bls_pk]: return False return Bls.verify_pop(key_proof, bls_pk, self._generator) class BlsCryptoSignerIndyCrypto(BlsCryptoSigner): def __init__(self, sk: SignKey, pk: VerKey, params: GroupParams): self._sk = sk # type: SignKey self.pk = pk # type: VerKey self._generator = \ IndyCryptoBlsUtils.bls_from_str(params.g, Generator) # type: Generator @staticmethod def generate_keys(params: GroupParams, seed=None) -> (SignKey, VerKey, ProofOfPossession): seed = IndyCryptoBlsUtils.prepare_seed(seed) gen = IndyCryptoBlsUtils.bls_from_str(params.g, Generator) sk = SignKey.new(seed) vk = VerKey.new(gen, sk) key_proof = ProofOfPossession.new(ver_key=vk, sign_key=sk) return sk, vk, key_proof @staticmethod def generate_key_proof(sk: SignKey, pk: VerKey) -> ProofOfPossession: return ProofOfPossession.new(ver_key=pk, sign_key=sk) def sign(self, message: bytes) -> str: sign = Bls.sign(message, self._sk) return IndyCryptoBlsUtils.bls_to_str(sign)
the-stack_0_9454
#!/usr/bin/env python """Tests client actions related to administrating the client.""" import os import psutil import requests from grr import config from grr.client import comms from grr.client.client_actions import admin from grr.lib import flags from grr.lib import rdfvalue from grr.lib import stats from grr.lib import utils from grr.lib.rdfvalues import client as rdf_client from grr.lib.rdfvalues import protodict as rdf_protodict from grr.test_lib import client_test_lib from grr.test_lib import test_lib class ConfigActionTest(client_test_lib.EmptyActionTest): """Tests the client actions UpdateConfiguration and GetConfiguration.""" def setUp(self): super(ConfigActionTest, self).setUp() # These tests change the config so we preserve state. self.config_stubber = test_lib.PreserveConfig() self.config_stubber.Start() def tearDown(self): super(ConfigActionTest, self).tearDown() self.config_stubber.Stop() def testUpdateConfiguration(self): """Test that we can update the config.""" # A unique name on the filesystem for the writeback. self.config_file = os.path.join(self.temp_dir, "ConfigActionTest.yaml") # In a real client, the writeback location should be set to something real, # but for this test we make it the same as the config file.. config.CONFIG.SetWriteBack(self.config_file) # Make sure the file is gone self.assertRaises(IOError, open, self.config_file) location = ["http://www.example1.com/", "http://www.example2.com/"] request = rdf_protodict.Dict() request["Client.server_urls"] = location request["Client.foreman_check_frequency"] = 3600 result = self.RunAction(admin.UpdateConfiguration, request) self.assertEqual(result, []) self.assertEqual(config.CONFIG["Client.foreman_check_frequency"], 3600) # Test the config file got written. data = open(self.config_file, "rb").read() self.assertTrue("server_urls: {0}".format(",".join(location)) in data) self.urls = [] # Now test that our location was actually updated. def FakeUrlOpen(url=None, data=None, **_): self.urls.append(url) response = requests.Response() response.status_code = 200 response._content = data return response with utils.Stubber(requests, "request", FakeUrlOpen): client_context = comms.GRRHTTPClient(worker=MockClientWorker()) client_context.MakeRequest("") # Since the request is successful we only connect to one location. self.assertTrue(location[0] in self.urls[0]) def testUpdateConfigBlacklist(self): """Tests that disallowed fields are not getting updated.""" with test_lib.ConfigOverrider({ "Client.server_urls": ["http://something.com/"], "Client.server_serial_number": 1 }): location = ["http://www.example.com"] request = rdf_protodict.Dict() request["Client.server_urls"] = location request["Client.server_serial_number"] = 10 self.RunAction(admin.UpdateConfiguration, request) # Location can be set. self.assertEqual(config.CONFIG["Client.server_urls"], location) # But the server serial number can not be updated. self.assertEqual(config.CONFIG["Client.server_serial_number"], 1) def testGetConfig(self): """Check GetConfig client action works.""" # Use UpdateConfig to generate a config. location = ["http://example.com/"] request = rdf_protodict.Dict() request["Client.server_urls"] = location request["Client.foreman_check_frequency"] = 3600 self.RunAction(admin.UpdateConfiguration, request) # Check that our GetConfig actually gets the real data. self.RunAction(admin.GetConfiguration) self.assertEqual(config.CONFIG["Client.foreman_check_frequency"], 3600) self.assertEqual(config.CONFIG["Client.server_urls"], location) class MockStatsCollector(object): """Mock stats collector for GetClientStatsActionTest.""" # First value in every tuple is a timestamp (as if it was returned by # time.time()). cpu_samples = [ (rdfvalue.RDFDatetime().FromSecondsFromEpoch(100), 0.1, 0.1, 10.0), (rdfvalue.RDFDatetime().FromSecondsFromEpoch(110), 0.1, 0.2, 15.0), (rdfvalue.RDFDatetime().FromSecondsFromEpoch(120), 0.1, 0.3, 20.0) ] # pyformat: disable io_samples = [(rdfvalue.RDFDatetime().FromSecondsFromEpoch(100), 100, 100), (rdfvalue.RDFDatetime().FromSecondsFromEpoch(110), 200, 200), (rdfvalue.RDFDatetime().FromSecondsFromEpoch(120), 300, 300)] class MockClientWorker(object): """Mock client worker for GetClientStatsActionTest.""" def __init__(self): self.stats_collector = MockStatsCollector() class GetClientStatsActionTest(client_test_lib.EmptyActionTest): """Test GetClientStats client action.""" def setUp(self): super(GetClientStatsActionTest, self).setUp() self.old_boot_time = psutil.boot_time psutil.boot_time = lambda: 100 def tearDown(self): super(GetClientStatsActionTest, self).tearDown() psutil.boot_time = self.old_boot_time def testReturnsAllDataByDefault(self): """Checks that stats collection works.""" stats.STATS.RegisterCounterMetric("grr_client_received_bytes") stats.STATS.IncrementCounter("grr_client_received_bytes", 1566) stats.STATS.RegisterCounterMetric("grr_client_sent_bytes") stats.STATS.IncrementCounter("grr_client_sent_bytes", 2000) results = self.RunAction( admin.GetClientStats, grr_worker=MockClientWorker(), arg=rdf_client.GetClientStatsRequest()) response = results[0] self.assertEqual(response.bytes_received, 1566) self.assertEqual(response.bytes_sent, 2000) self.assertEqual(len(response.cpu_samples), 3) for i in range(3): self.assertEqual( response.cpu_samples[i].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(100 + i * 10)) self.assertAlmostEqual(response.cpu_samples[i].user_cpu_time, 0.1) self.assertAlmostEqual(response.cpu_samples[i].system_cpu_time, 0.1 * (i + 1)) self.assertAlmostEqual(response.cpu_samples[i].cpu_percent, 10.0 + 5 * i) self.assertEqual(len(response.io_samples), 3) for i in range(3): self.assertEqual( response.io_samples[i].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(100 + i * 10)) self.assertEqual(response.io_samples[i].read_bytes, 100 * (i + 1)) self.assertEqual(response.io_samples[i].write_bytes, 100 * (i + 1)) self.assertEqual(response.boot_time, long(100 * 1e6)) def testFiltersDataPointsByStartTime(self): start_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(117) results = self.RunAction( admin.GetClientStats, grr_worker=MockClientWorker(), arg=rdf_client.GetClientStatsRequest(start_time=start_time)) response = results[0] self.assertEqual(len(response.cpu_samples), 1) self.assertEqual(response.cpu_samples[0].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(120)) self.assertEqual(len(response.io_samples), 1) self.assertEqual(response.io_samples[0].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(120)) def testFiltersDataPointsByEndTime(self): end_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(102) results = self.RunAction( admin.GetClientStats, grr_worker=MockClientWorker(), arg=rdf_client.GetClientStatsRequest(end_time=end_time)) response = results[0] self.assertEqual(len(response.cpu_samples), 1) self.assertEqual(response.cpu_samples[0].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(100)) self.assertEqual(len(response.io_samples), 1) self.assertEqual(response.io_samples[0].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(100)) def testFiltersDataPointsByStartAndEndTimes(self): start_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(109) end_time = rdfvalue.RDFDatetime().FromSecondsFromEpoch(113) results = self.RunAction( admin.GetClientStats, grr_worker=MockClientWorker(), arg=rdf_client.GetClientStatsRequest( start_time=start_time, end_time=end_time)) response = results[0] self.assertEqual(len(response.cpu_samples), 1) self.assertEqual(response.cpu_samples[0].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(110)) self.assertEqual(len(response.io_samples), 1) self.assertEqual(response.io_samples[0].timestamp, rdfvalue.RDFDatetime().FromSecondsFromEpoch(110)) def main(argv): test_lib.main(argv) if __name__ == "__main__": flags.StartMain(main)
the-stack_0_9455
# ======================================================================== # # # Copyright (c) 2017 - 2020 scVAE authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ======================================================================== # import numpy from scvae.data.sparse import sparsity from scvae.data.utilities import standard_deviation MAXIMUM_NUMBER_OF_VALUES_FOR_NORMAL_STATISTICS_COMPUTATION = 5e8 def summary_statistics(x, name="", tolerance=1e-3, skip_sparsity=False): batch_size = None if x.size > MAXIMUM_NUMBER_OF_VALUES_FOR_NORMAL_STATISTICS_COMPUTATION: batch_size = 1000 x_mean = x.mean() x_std = standard_deviation(x, ddof=1, batch_size=batch_size) x_min = x.min() x_max = x.max() x_dispersion = x_std**2 / x_mean if skip_sparsity: x_sparsity = numpy.nan else: x_sparsity = sparsity(x, tolerance=tolerance, batch_size=batch_size) statistics = { "name": name, "mean": x_mean, "standard deviation": x_std, "minimum": x_min, "maximum": x_max, "dispersion": x_dispersion, "sparsity": x_sparsity } return statistics def format_summary_statistics(statistics_sets, name="Data set"): if not isinstance(statistics_sets, list): statistics_sets = [statistics_sets] name_width = max( [len(name)] + [len(statistics_set["name"]) for statistics_set in statistics_sets] ) table_heading = " ".join([ "{:{}}".format(name, name_width), " mean ", "std. dev. ", "dispersion", " minimum ", " maximum ", "sparsity" ]) table_rows = [table_heading] for statistics_set in statistics_sets: table_row_parts = [ "{:{}}".format(statistics_set["name"], name_width), "{:<9.5g}".format(statistics_set["mean"]), "{:<9.5g}".format(statistics_set["standard deviation"]), "{:<9.5g}".format(statistics_set["dispersion"]), "{:<11.5g}".format(statistics_set["minimum"]), "{:<11.5g}".format(statistics_set["maximum"]), "{:<7.5g}".format(statistics_set["sparsity"]), ] table_row = " ".join(table_row_parts) table_rows.append(table_row) table = "\n".join(table_rows) return table
the-stack_0_9456
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('gitrepo', '0002_gitbranchtrailentry_order'), ('commandrepo', '0004_commandgroupentry_user'), ('bluesteel', '0007_remove_bluesteellayoutentry_archive'), ] operations = [ migrations.CreateModel( name='BenchmarkDefinitionEntry', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default=b'Default benchmark name', max_length=128)), ('revision', models.IntegerField(default=0)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('command_set', models.ForeignKey(related_name='benchmark_command_set', to='commandrepo.CommandSetEntry')), ('layout', models.ForeignKey(related_name='benchmark_layout', to='bluesteel.BluesteelLayoutEntry')), ('project', models.ForeignKey(related_name='benchmark_project', to='bluesteel.BluesteelProjectEntry')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='BenchmarkExecutionEntry', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('invalidated', models.BooleanField(default=False)), ('revision_target', models.IntegerField(default=-1)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('commit', models.ForeignKey(related_name='benchmark_exec_commit', to='gitrepo.GitCommitEntry')), ('definition', models.ForeignKey(related_name='benchmark_exec_definition', to='benchmark.BenchmarkDefinitionEntry')), ('report', models.ForeignKey(related_name='benchmark_exec_command_set', to='commandrepo.CommandSetEntry')), ], options={ }, bases=(models.Model,), ), ]
the-stack_0_9458
# -*- coding: utf-8 -*- """ Copyright 2021 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ from django.test import TestCase import json import random class TestScalarRequest(TestCase): @classmethod def setUpClass(cls): super().setUpClass() def init_test(self): if getattr(self, "category", None) is None: _init_res = self.client.get("/api/init", format="json") self.assertEqual(_init_res.status_code, 200) _init_json = json.loads(_init_res.content) self.assertEqual(_init_json["code"], 200) _cate_res = self.client.get("/api/getCategory", format="json") self.category = json.loads(_cate_res.content)["data"] def test_get_scalar(self): self.init_test() _run = "" _tag = "" for k in self.category.keys(): if "scalar" in self.category[k].keys(): _run = k _tag = random.choice(list(self.category[k]['scalar'].keys())) break try: assert _run != "" and _tag != "", "There is no scalar data in test logs." except AssertionError as e: import logging logging.error(str(e)) return res = self.client.get("/api/scalar", {'run': _run, 'tag': _tag}) _json = json.loads(res.content) self.assertEqual(_json["code"], 200)
the-stack_0_9460
''' module for implementation of bucket sort ''' from pyalgo.sort.insertion_sort import insertion_sort def bucket_sort(arr: list): l = [] slot_num = 10 for i in range(slot_num): l.append([]) for j in arr: index_b = int(slot_num * j) l[index_b].append(j) for i in range(slot_num): l[i] = insertion_sort(l[i]) k = 0 for i in range(slot_num): for j in range(len(l[i])): arr[k] = l[i][j] k += 1 return arr ''' PyAlgo Devansh Singh, 2021 '''
the-stack_0_9463
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This module contains Google Compute Engine operators. """ from copy import deepcopy from typing import Dict from json_merge_patch import merge from googleapiclient.errors import HttpError from airflow import AirflowException from airflow.contrib.hooks.gcp_compute_hook import GceHook from airflow.contrib.utils.gcp_field_sanitizer import GcpBodyFieldSanitizer from airflow.contrib.utils.gcp_field_validator import GcpBodyFieldValidator from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class GceBaseOperator(BaseOperator): """ Abstract base operator for Google Compute Engine operators to inherit from. """ @apply_defaults def __init__(self, zone, resource_id, project_id=None, gcp_conn_id='google_cloud_default', api_version='v1', *args, **kwargs): self.project_id = project_id self.zone = zone self.resource_id = resource_id self.gcp_conn_id = gcp_conn_id self.api_version = api_version self._validate_inputs() self._hook = GceHook(gcp_conn_id=self.gcp_conn_id, api_version=self.api_version) super().__init__(*args, **kwargs) def _validate_inputs(self): if self.project_id == '': raise AirflowException("The required parameter 'project_id' is missing") if not self.zone: raise AirflowException("The required parameter 'zone' is missing") if not self.resource_id: raise AirflowException("The required parameter 'resource_id' is missing") def execute(self, context): pass class GceInstanceStartOperator(GceBaseOperator): """ Starts an instance in Google Compute Engine. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:GceInstanceStartOperator` :param zone: Google Cloud Platform zone where the instance exists. :type zone: str :param resource_id: Name of the Compute Engine instance resource. :type resource_id: str :param project_id: Optional, Google Cloud Platform Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud Platform. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param validate_body: Optional, If set to False, body validation is not performed. Defaults to False. """ # [START gce_instance_start_template_fields] template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version') # [END gce_instance_start_template_fields] @apply_defaults def __init__(self, zone, resource_id, project_id=None, gcp_conn_id='google_cloud_default', api_version='v1', *args, **kwargs): super().__init__( project_id=project_id, zone=zone, resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, *args, **kwargs) def execute(self, context): return self._hook.start_instance(zone=self.zone, resource_id=self.resource_id, project_id=self.project_id) class GceInstanceStopOperator(GceBaseOperator): """ Stops an instance in Google Compute Engine. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:GceInstanceStopOperator` :param zone: Google Cloud Platform zone where the instance exists. :type zone: str :param resource_id: Name of the Compute Engine instance resource. :type resource_id: str :param project_id: Optional, Google Cloud Platform Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud Platform. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param validate_body: Optional, If set to False, body validation is not performed. Defaults to False. """ # [START gce_instance_stop_template_fields] template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version') # [END gce_instance_stop_template_fields] @apply_defaults def __init__(self, zone, resource_id, project_id=None, gcp_conn_id='google_cloud_default', api_version='v1', *args, **kwargs): super().__init__( project_id=project_id, zone=zone, resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, *args, **kwargs) def execute(self, context): self._hook.stop_instance(zone=self.zone, resource_id=self.resource_id, project_id=self.project_id) SET_MACHINE_TYPE_VALIDATION_SPECIFICATION = [ dict(name="machineType", regexp="^.+$"), ] class GceSetMachineTypeOperator(GceBaseOperator): """ Changes the machine type for a stopped instance to the machine type specified in the request. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:GceSetMachineTypeOperator` :param zone: Google Cloud Platform zone where the instance exists. :type zone: str :param resource_id: Name of the Compute Engine instance resource. :type resource_id: str :param body: Body required by the Compute Engine setMachineType API, as described in https://cloud.google.com/compute/docs/reference/rest/v1/instances/setMachineType#request-body :type body: dict :param project_id: Optional, Google Cloud Platform Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud Platform. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param validate_body: Optional, If set to False, body validation is not performed. Defaults to False. :type validate_body: bool """ # [START gce_instance_set_machine_type_template_fields] template_fields = ('project_id', 'zone', 'resource_id', 'gcp_conn_id', 'api_version') # [END gce_instance_set_machine_type_template_fields] @apply_defaults def __init__(self, zone, resource_id, body, project_id=None, gcp_conn_id='google_cloud_default', api_version='v1', validate_body=True, *args, **kwargs): self.body = body self._field_validator = None if validate_body: self._field_validator = GcpBodyFieldValidator( SET_MACHINE_TYPE_VALIDATION_SPECIFICATION, api_version=api_version) super().__init__( project_id=project_id, zone=zone, resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, *args, **kwargs) def _validate_all_body_fields(self): if self._field_validator: self._field_validator.validate(self.body) def execute(self, context): self._validate_all_body_fields() return self._hook.set_machine_type(zone=self.zone, resource_id=self.resource_id, body=self.body, project_id=self.project_id) GCE_INSTANCE_TEMPLATE_VALIDATION_PATCH_SPECIFICATION = [ dict(name="name", regexp="^.+$"), dict(name="description", optional=True), dict(name="properties", type='dict', optional=True, fields=[ dict(name="description", optional=True), dict(name="tags", optional=True, fields=[ dict(name="items", optional=True) ]), dict(name="machineType", optional=True), dict(name="canIpForward", optional=True), dict(name="networkInterfaces", optional=True), # not validating deeper dict(name="disks", optional=True), # not validating the array deeper dict(name="metadata", optional=True, fields=[ dict(name="fingerprint", optional=True), dict(name="items", optional=True), dict(name="kind", optional=True), ]), dict(name="serviceAccounts", optional=True), # not validating deeper dict(name="scheduling", optional=True, fields=[ dict(name="onHostMaintenance", optional=True), dict(name="automaticRestart", optional=True), dict(name="preemptible", optional=True), dict(name="nodeAffinitites", optional=True), # not validating deeper ]), dict(name="labels", optional=True), dict(name="guestAccelerators", optional=True), # not validating deeper dict(name="minCpuPlatform", optional=True), ]), ] GCE_INSTANCE_TEMPLATE_FIELDS_TO_SANITIZE = [ "kind", "id", "name", "creationTimestamp", "properties.disks.sha256", "properties.disks.kind", "properties.disks.sourceImageEncryptionKey.sha256", "properties.disks.index", "properties.disks.licenses", "properties.networkInterfaces.kind", "properties.networkInterfaces.accessConfigs.kind", "properties.networkInterfaces.name", "properties.metadata.kind", "selfLink" ] class GceInstanceTemplateCopyOperator(GceBaseOperator): """ Copies the instance template, applying specified changes. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:GceInstanceTemplateCopyOperator` :param resource_id: Name of the Instance Template :type resource_id: str :param body_patch: Patch to the body of instanceTemplates object following rfc7386 PATCH semantics. The body_patch content follows https://cloud.google.com/compute/docs/reference/rest/v1/instanceTemplates Name field is required as we need to rename the template, all the other fields are optional. It is important to follow PATCH semantics - arrays are replaced fully, so if you need to update an array you should provide the whole target array as patch element. :type body_patch: dict :param project_id: Optional, Google Cloud Platform Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param request_id: Optional, unique request_id that you might add to achieve full idempotence (for example when client call times out repeating the request with the same request id will not create a new instance template again). It should be in UUID format as defined in RFC 4122. :type request_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud Platform. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param validate_body: Optional, If set to False, body validation is not performed. Defaults to False. :type validate_body: bool """ # [START gce_instance_template_copy_operator_template_fields] template_fields = ('project_id', 'resource_id', 'request_id', 'gcp_conn_id', 'api_version') # [END gce_instance_template_copy_operator_template_fields] @apply_defaults def __init__(self, resource_id, body_patch, project_id=None, request_id=None, gcp_conn_id='google_cloud_default', api_version='v1', validate_body=True, *args, **kwargs): self.body_patch = body_patch self.request_id = request_id self._field_validator = None if 'name' not in self.body_patch: raise AirflowException("The body '{}' should contain at least " "name for the new operator in the 'name' field". format(body_patch)) if validate_body: self._field_validator = GcpBodyFieldValidator( GCE_INSTANCE_TEMPLATE_VALIDATION_PATCH_SPECIFICATION, api_version=api_version) self._field_sanitizer = GcpBodyFieldSanitizer( GCE_INSTANCE_TEMPLATE_FIELDS_TO_SANITIZE) super().__init__( project_id=project_id, zone='global', resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, *args, **kwargs) def _validate_all_body_fields(self): if self._field_validator: self._field_validator.validate(self.body_patch) def execute(self, context): self._validate_all_body_fields() try: # Idempotence check (sort of) - we want to check if the new template # is already created and if is, then we assume it was created by previous run # of CopyTemplate operator - we do not check if content of the template # is as expected. Templates are immutable so we cannot update it anyway # and deleting/recreating is not worth the hassle especially # that we cannot delete template if it is already used in some Instance # Group Manager. We assume success if the template is simply present existing_template = self._hook.get_instance_template( resource_id=self.body_patch['name'], project_id=self.project_id) self.log.info( "The %s template already existed. It was likely created by previous run of the operator. " "Assuming success.", existing_template ) return existing_template except HttpError as e: # We actually expect to get 404 / Not Found here as the template should # not yet exist if not e.resp.status == 404: raise e old_body = self._hook.get_instance_template(resource_id=self.resource_id, project_id=self.project_id) new_body = deepcopy(old_body) self._field_sanitizer.sanitize(new_body) new_body = merge(new_body, self.body_patch) self.log.info("Calling insert instance template with updated body: %s", new_body) self._hook.insert_instance_template(body=new_body, request_id=self.request_id, project_id=self.project_id) return self._hook.get_instance_template(resource_id=self.body_patch['name'], project_id=self.project_id) class GceInstanceGroupManagerUpdateTemplateOperator(GceBaseOperator): """ Patches the Instance Group Manager, replacing source template URL with the destination one. API V1 does not have update/patch operations for Instance Group Manager, so you must use beta or newer API version. Beta is the default. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:GceInstanceGroupManagerUpdateTemplateOperator` :param resource_id: Name of the Instance Group Manager :type resource_id: str :param zone: Google Cloud Platform zone where the Instance Group Manager exists. :type zone: str :param source_template: URL of the template to replace. :type source_template: str :param destination_template: URL of the target template. :type destination_template: str :param project_id: Optional, Google Cloud Platform Project ID where the Compute Engine Instance exists. If set to None or missing, the default project_id from the GCP connection is used. :type project_id: str :param request_id: Optional, unique request_id that you might add to achieve full idempotence (for example when client call times out repeating the request with the same request id will not create a new instance template again). It should be in UUID format as defined in RFC 4122. :type request_id: str :param gcp_conn_id: Optional, The connection ID used to connect to Google Cloud Platform. Defaults to 'google_cloud_default'. :type gcp_conn_id: str :param api_version: Optional, API version used (for example v1 - or beta). Defaults to v1. :type api_version: str :param validate_body: Optional, If set to False, body validation is not performed. Defaults to False. :type validate_body: bool """ # [START gce_igm_update_template_operator_template_fields] template_fields = ('project_id', 'resource_id', 'zone', 'request_id', 'source_template', 'destination_template', 'gcp_conn_id', 'api_version') # [END gce_igm_update_template_operator_template_fields] @apply_defaults def __init__(self, resource_id, zone, source_template, destination_template, project_id=None, update_policy=None, request_id=None, gcp_conn_id='google_cloud_default', api_version='beta', *args, **kwargs): self.zone = zone self.source_template = source_template self.destination_template = destination_template self.request_id = request_id self.update_policy = update_policy self._change_performed = False if api_version == 'v1': raise AirflowException("Api version v1 does not have update/patch " "operations for Instance Group Managers. Use beta" " api version or above") super().__init__( project_id=project_id, zone=self.zone, resource_id=resource_id, gcp_conn_id=gcp_conn_id, api_version=api_version, *args, **kwargs) def _possibly_replace_template(self, dictionary: Dict) -> None: if dictionary.get('instanceTemplate') == self.source_template: dictionary['instanceTemplate'] = self.destination_template self._change_performed = True def execute(self, context): old_instance_group_manager = self._hook.get_instance_group_manager( zone=self.zone, resource_id=self.resource_id, project_id=self.project_id) patch_body = {} if 'versions' in old_instance_group_manager: patch_body['versions'] = old_instance_group_manager['versions'] if 'instanceTemplate' in old_instance_group_manager: patch_body['instanceTemplate'] = old_instance_group_manager['instanceTemplate'] if self.update_policy: patch_body['updatePolicy'] = self.update_policy self._possibly_replace_template(patch_body) if 'versions' in patch_body: for version in patch_body['versions']: self._possibly_replace_template(version) if self._change_performed or self.update_policy: self.log.info( "Calling patch instance template with updated body: %s", patch_body) return self._hook.patch_instance_group_manager( zone=self.zone, resource_id=self.resource_id, body=patch_body, request_id=self.request_id, project_id=self.project_id) else: # Idempotence achieved return True
the-stack_0_9464
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import numpy as np def decode_image(im_file, im_info): """read rgb image Args: im_file (str|np.ndarray): input can be image path or np.ndarray im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ if isinstance(im_file, str): with open(im_file, 'rb') as f: im_read = f.read() data = np.frombuffer(im_read, dtype='uint8') im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) else: im = im_file im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) return im, im_info class Resize(object): """resize image by target_size and max_size Args: target_size (int): the target size of image keep_ratio (bool): whether keep_ratio or not, default true interp (int): method of resize """ def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR): if isinstance(target_size, int): target_size = [target_size, target_size] self.target_size = target_size self.keep_ratio = keep_ratio self.interp = interp def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ assert len(self.target_size) == 2 assert self.target_size[0] > 0 and self.target_size[1] > 0 im_channel = im.shape[2] im_scale_y, im_scale_x = self.generate_scale(im) im = cv2.resize( im, None, None, fx=im_scale_x, fy=im_scale_y, interpolation=self.interp) im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') im_info['scale_factor'] = np.array( [im_scale_y, im_scale_x]).astype('float32') return im, im_info def generate_scale(self, im): """ Args: im (np.ndarray): image (np.ndarray) Returns: im_scale_x: the resize ratio of X im_scale_y: the resize ratio of Y """ origin_shape = im.shape[:2] im_c = im.shape[2] if self.keep_ratio: im_size_min = np.min(origin_shape) im_size_max = np.max(origin_shape) target_size_min = np.min(self.target_size) target_size_max = np.max(self.target_size) im_scale = float(target_size_min) / float(im_size_min) if np.round(im_scale * im_size_max) > target_size_max: im_scale = float(target_size_max) / float(im_size_max) im_scale_x = im_scale im_scale_y = im_scale else: resize_h, resize_w = self.target_size im_scale_y = resize_h / float(origin_shape[0]) im_scale_x = resize_w / float(origin_shape[1]) return im_scale_y, im_scale_x class NormalizeImage(object): """normalize image Args: mean (list): im - mean std (list): im / std is_scale (bool): whether need im / 255 is_channel_first (bool): if True: image shape is CHW, else: HWC """ def __init__(self, mean, std, is_scale=True): self.mean = mean self.std = std self.is_scale = is_scale def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.astype(np.float32, copy=False) mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] if self.is_scale: im = im / 255.0 im -= mean im /= std return im, im_info class Permute(object): """permute image Args: to_bgr (bool): whether convert RGB to BGR channel_first (bool): whether convert HWC to CHW """ def __init__(self, ): super(Permute, self).__init__() def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ im = im.transpose((2, 0, 1)).copy() return im, im_info class PadStride(object): """ padding image for model with FPN, instead PadBatch(pad_to_stride) in original config Args: stride (bool): model with FPN need image shape % stride == 0 """ def __init__(self, stride=0): self.coarsest_stride = stride def __call__(self, im, im_info): """ Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image Returns: im (np.ndarray): processed image (np.ndarray) im_info (dict): info of processed image """ coarsest_stride = self.coarsest_stride if coarsest_stride <= 0: return im, im_info im_c, im_h, im_w = im.shape pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) padding_im[:, :im_h, :im_w] = im return padding_im, im_info def preprocess(im, preprocess_ops): # process image by preprocess_ops im_info = { 'scale_factor': np.array( [1., 1.], dtype=np.float32), 'im_shape': None, } im, im_info = decode_image(im, im_info) for operator in preprocess_ops: im, im_info = operator(im, im_info) return im, im_info
the-stack_0_9466
import requests, logging import pytest, json from settings import TEST_DATA, DEPLOYMENTS from suite.resources_utils import ( wait_before_test, create_items_from_yaml, wait_before_test, get_file_contents, get_service_endpoint, ) from suite.custom_resources_utils import ( create_crd_from_yaml, delete_crd, ) from suite.vs_vsr_resources_utils import( delete_virtual_server, create_virtual_server_from_yaml, patch_virtual_server_from_yaml, patch_v_s_route_from_yaml, create_v_s_route_from_yaml, delete_v_s_route, ) from suite.policy_resources_utils import( create_policy_from_yaml, delete_policy, read_policy, ) from suite.ap_resources_utils import ( create_ap_usersig_from_yaml, delete_ap_usersig, delete_and_create_ap_policy_from_yaml, read_ap_custom_resource, create_ap_logconf_from_yaml, create_ap_policy_from_yaml, delete_ap_policy, delete_ap_logconf, create_ap_waf_policy_from_yaml, ) from suite.yaml_utils import get_first_ingress_host_from_yaml, get_name_from_yaml ap_pol_name = "" log_name = "" std_vs_src = f"{TEST_DATA}/ap-waf/standard/virtual-server.yaml" waf_spec_vs_src = f"{TEST_DATA}/ap-waf/virtual-server-waf-spec.yaml" waf_route_vs_src = f"{TEST_DATA}/ap-waf/virtual-server-waf-route.yaml" waf_subroute_vsr_src = f"{TEST_DATA}/ap-waf/virtual-server-route-waf-subroute.yaml" waf_pol_default_src = f"{TEST_DATA}/ap-waf/policies/waf-default.yaml" waf_pol_dataguard_src = f"{TEST_DATA}/ap-waf/policies/waf-dataguard.yaml" ap_policy_uds = "dataguard-alarm-uds" uds_crd_resource = f"{TEST_DATA}/ap-waf/ap-ic-uds.yaml" valid_resp_addr = "Server address:" valid_resp_name = "Server name:" invalid_resp_title = "Request Rejected" invalid_resp_body = "The requested URL was rejected. Please consult with your administrator." @pytest.fixture(scope="class") def appprotect_setup(request, kube_apis, test_namespace) -> None: """ Deploy simple application and all the AppProtect(dataguard-alarm) resources under test in one namespace. :param request: pytest fixture :param kube_apis: client apis :param ingress_controller_endpoint: public endpoint :param test_namespace: """ print("------------------------- Deploy logconf -----------------------------") src_log_yaml = f"{TEST_DATA}/ap-waf/logconf.yaml" global log_name log_name = create_ap_logconf_from_yaml(kube_apis.custom_objects, src_log_yaml, test_namespace) print("------------------------- Create UserSig CRD resource-----------------------------") usersig_name = create_ap_usersig_from_yaml( kube_apis.custom_objects, uds_crd_resource, test_namespace ) print(f"------------------------- Deploy dataguard-alarm appolicy ---------------------------") src_pol_yaml = f"{TEST_DATA}/ap-waf/{ap_policy_uds}.yaml" global ap_pol_name ap_pol_name = create_ap_policy_from_yaml(kube_apis.custom_objects, src_pol_yaml, test_namespace) def fin(): print("Clean up:") delete_ap_policy(kube_apis.custom_objects, ap_pol_name, test_namespace) delete_ap_usersig(kube_apis.custom_objects, usersig_name, test_namespace) delete_ap_logconf(kube_apis.custom_objects, log_name, test_namespace) request.addfinalizer(fin) def assert_ap_crd_info(ap_crd_info, policy_name) -> None: """ Assert fields in AppProtect policy documents :param ap_crd_info: CRD output from k8s API :param policy_name: """ assert ap_crd_info["kind"] == "APPolicy" assert ap_crd_info["metadata"]["name"] == policy_name assert ap_crd_info["spec"]["policy"]["enforcementMode"] == "blocking" assert ( ap_crd_info["spec"]["policy"]["blocking-settings"]["violations"][0]["name"] == "VIOL_DATA_GUARD" ) def assert_invalid_responses(response) -> None: """ Assert responses when policy config is blocking requests :param response: Response """ assert invalid_resp_title in response.text assert invalid_resp_body in response.text assert response.status_code == 200 def assert_valid_responses(response) -> None: """ Assert responses when policy config is allowing requests :param response: Response """ assert valid_resp_name in response.text assert valid_resp_addr in response.text assert response.status_code == 200 @pytest.mark.skip_for_nginx_oss @pytest.mark.appprotect @pytest.mark.parametrize( "crd_ingress_controller_with_ap, virtual_server_setup", [ ( { "type": "complete", "extra_args": [ f"-enable-custom-resources", f"-enable-leader-election=false", f"-enable-app-protect", ], }, {"example": "ap-waf", "app_type": "simple",}, ) ], indirect=True, ) class TestAppProtectWAFPolicyVS: def restore_default_vs(self, kube_apis, virtual_server_setup) -> None: """ Restore VirtualServer without policy spec """ delete_virtual_server( kube_apis.custom_objects, virtual_server_setup.vs_name, virtual_server_setup.namespace ) create_virtual_server_from_yaml( kube_apis.custom_objects, std_vs_src, virtual_server_setup.namespace ) wait_before_test() @pytest.mark.smoke @pytest.mark.parametrize( "vs_src, waf", [ (waf_spec_vs_src, waf_pol_default_src), (waf_spec_vs_src, waf_pol_dataguard_src), (waf_route_vs_src, waf_pol_default_src), (waf_route_vs_src, waf_pol_dataguard_src), ], ) def test_ap_waf_policy_block( self, kube_apis, crd_ingress_controller_with_ap, virtual_server_setup, appprotect_setup, test_namespace, vs_src, waf, ): """ Test waf policy when enabled with default and dataguard-alarm AP Policies """ print(f"Create waf policy") if waf == waf_pol_dataguard_src: create_ap_waf_policy_from_yaml( kube_apis.custom_objects, waf, test_namespace, test_namespace, True, False, ap_pol_name, log_name, "syslog:server=127.0.0.1:514", ) elif waf == waf_pol_default_src: pol_name = create_policy_from_yaml(kube_apis.custom_objects, waf, test_namespace) else: pytest.fail(f"Invalid argument") wait_before_test() print(f"Patch vs with policy: {vs_src}") patch_virtual_server_from_yaml( kube_apis.custom_objects, virtual_server_setup.vs_name, vs_src, virtual_server_setup.namespace, ) wait_before_test() ap_crd_info = read_ap_custom_resource( kube_apis.custom_objects, test_namespace, "appolicies", ap_policy_uds ) assert_ap_crd_info(ap_crd_info, ap_policy_uds) wait_before_test(120) print( "----------------------- Send request with embedded malicious script----------------------" ) response1 = requests.get( virtual_server_setup.backend_1_url + "</script>", headers={"host": virtual_server_setup.vs_host}, ) print(response1.text) print( "----------------------- Send request with blocked keyword in UDS----------------------" ) response2 = requests.get( virtual_server_setup.backend_1_url, headers={"host": virtual_server_setup.vs_host}, data="kic", ) print(response2.text) delete_policy(kube_apis.custom_objects, "waf-policy", test_namespace) self.restore_default_vs(kube_apis, virtual_server_setup) assert_invalid_responses(response1) if waf == waf_pol_dataguard_src: assert_invalid_responses(response2) elif waf == waf_pol_default_src: assert_valid_responses(response2) else: pytest.fail(f"Invalid arguments") @pytest.mark.parametrize( "vs_src, waf", [(waf_spec_vs_src, waf_pol_dataguard_src), (waf_route_vs_src, waf_pol_dataguard_src),], ) def test_ap_waf_policy_allow( self, kube_apis, crd_ingress_controller_with_ap, virtual_server_setup, appprotect_setup, test_namespace, vs_src, waf, ): """ Test waf policy when disabled """ print(f"Create waf policy") create_ap_waf_policy_from_yaml( kube_apis.custom_objects, waf, test_namespace, test_namespace, False, False, ap_pol_name, log_name, "syslog:server=127.0.0.1:514", ) wait_before_test() print(f"Patch vs with policy: {vs_src}") patch_virtual_server_from_yaml( kube_apis.custom_objects, virtual_server_setup.vs_name, vs_src, virtual_server_setup.namespace, ) wait_before_test() ap_crd_info = read_ap_custom_resource( kube_apis.custom_objects, test_namespace, "appolicies", ap_policy_uds ) assert_ap_crd_info(ap_crd_info, ap_policy_uds) wait_before_test(120) print( "----------------------- Send request with embedded malicious script----------------------" ) response1 = requests.get( virtual_server_setup.backend_1_url + "</script>", headers={"host": virtual_server_setup.vs_host}, ) print(response1.text) print( "----------------------- Send request with blocked keyword in UDS----------------------" ) response2 = requests.get( virtual_server_setup.backend_1_url, headers={"host": virtual_server_setup.vs_host}, data="kic", ) print(response2.text) delete_policy(kube_apis.custom_objects, "waf-policy", test_namespace) self.restore_default_vs(kube_apis, virtual_server_setup) assert_valid_responses(response1) assert_valid_responses(response2) @pytest.mark.flaky(max_runs=3) def test_ap_waf_policy_logs( self, kube_apis, crd_ingress_controller_with_ap, virtual_server_setup, appprotect_setup, test_namespace, ): """ Test waf policy logs """ src_syslog_yaml = f"{TEST_DATA}/ap-waf/syslog.yaml" log_loc = f"/var/log/messages" create_items_from_yaml(kube_apis, src_syslog_yaml, test_namespace) syslog_dst = f"syslog-svc.{test_namespace}" syslog_pod = kube_apis.v1.list_namespaced_pod(test_namespace).items[-1].metadata.name print(f"Create waf policy") create_ap_waf_policy_from_yaml( kube_apis.custom_objects, waf_pol_dataguard_src, test_namespace, test_namespace, True, True, ap_pol_name, log_name, f"syslog:server={syslog_dst}:514", ) wait_before_test() print(f"Patch vs with policy: {waf_spec_vs_src}") patch_virtual_server_from_yaml( kube_apis.custom_objects, virtual_server_setup.vs_name, waf_spec_vs_src, virtual_server_setup.namespace, ) wait_before_test() ap_crd_info = read_ap_custom_resource( kube_apis.custom_objects, test_namespace, "appolicies", ap_policy_uds ) assert_ap_crd_info(ap_crd_info, ap_policy_uds) wait_before_test(120) print( "----------------------- Send request with embedded malicious script----------------------" ) response = requests.get( virtual_server_setup.backend_1_url + "</script>", headers={"host": virtual_server_setup.vs_host}, ) print(response.text) log_contents = "" retry = 0 while "ASM:attack_type" not in log_contents and retry <= 30: log_contents = get_file_contents( kube_apis.v1, log_loc, syslog_pod, test_namespace ) retry += 1 wait_before_test(1) print(f"Security log not updated, retrying... #{retry}") delete_policy(kube_apis.custom_objects, "waf-policy", test_namespace) self.restore_default_vs(kube_apis, virtual_server_setup) assert_invalid_responses(response) assert ( f'ASM:attack_type="Non-browser Client,Abuse of Functionality,Cross Site Scripting (XSS)"' in log_contents ) assert f'severity="Critical"' in log_contents assert f'request_status="blocked"' in log_contents assert f'outcome="REJECTED"' in log_contents @pytest.mark.skip_for_nginx_oss @pytest.mark.appprotect @pytest.mark.parametrize( "crd_ingress_controller_with_ap, v_s_route_setup", [ ( { "type": "complete", "extra_args": [ f"-enable-custom-resources", f"-enable-leader-election=false", f"-enable-app-protect", ], }, {"example": "virtual-server-route"}, ) ], indirect=True, ) class TestAppProtectWAFPolicyVSR: def restore_default_vsr(self, kube_apis, v_s_route_setup) -> None: """ Function to revert vsr deployments to standard state """ patch_src_m = f"{TEST_DATA}/virtual-server-route/route-multiple.yaml" patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, patch_src_m, v_s_route_setup.route_m.namespace, ) wait_before_test() @pytest.mark.parametrize( "ap_enable", [ True, # False ], ) def test_ap_waf_policy_block( self, kube_apis, crd_ingress_controller_with_ap, v_s_route_setup, appprotect_setup, test_namespace, ap_enable, ): """ Test if WAF policy is working with VSR deployments """ req_url = f"http://{v_s_route_setup.public_endpoint.public_ip}:{v_s_route_setup.public_endpoint.port}" print(f"Create waf policy") create_ap_waf_policy_from_yaml( kube_apis.custom_objects, waf_pol_dataguard_src, v_s_route_setup.route_m.namespace, test_namespace, ap_enable, ap_enable, ap_pol_name, log_name, "syslog:server=127.0.0.1:514", ) wait_before_test() print(f"Patch vsr with policy: {waf_subroute_vsr_src}") patch_v_s_route_from_yaml( kube_apis.custom_objects, v_s_route_setup.route_m.name, waf_subroute_vsr_src, v_s_route_setup.route_m.namespace, ) wait_before_test() ap_crd_info = read_ap_custom_resource( kube_apis.custom_objects, test_namespace, "appolicies", ap_policy_uds ) assert_ap_crd_info(ap_crd_info, ap_policy_uds) wait_before_test(120) response = requests.get( f"{req_url}{v_s_route_setup.route_m.paths[0]}+'</script>'", headers={"host": v_s_route_setup.vs_host}, ) print(response.text) delete_policy(kube_apis.custom_objects, "waf-policy", v_s_route_setup.route_m.namespace) self.restore_default_vsr(kube_apis, v_s_route_setup) if ap_enable == True: assert_invalid_responses(response) elif ap_enable == False: assert_valid_responses(response) else: pytest.fail(f"Invalid arguments")
the-stack_0_9467
# type: ignore import time from robomaster import robot, logger, logging, sensor # noqa import patch_ftp # noqa def data_info(self): return self._cmd_id, self._direct, self._flag, self._distance sensor.TofSubject.data_info = data_info def cb(msg): print(msg) def main(): logger.setLevel(logging.ERROR) ep_robot = robot.Robot() ep_robot.initialize(conn_type="sta") ep_robot.chassis.drive_speed(z=30) ep_robot.sensor.sub_distance(freq=5, callback=cb) time.sleep(10) ep_robot.sensor.unsub_distance() ep_robot.chassis.drive_speed(z=0) ep_robot.close() if __name__ == '__main__': main()
the-stack_0_9468
"""Automated data download and IO.""" # Builtins import glob import os import gzip import bz2 import hashlib import shutil import zipfile import sys import math import logging from functools import partial, wraps import time import fnmatch import urllib.request import urllib.error from urllib.parse import urlparse import socket import multiprocessing from netrc import netrc import ftplib import ssl import tarfile # External libs import pandas as pd import numpy as np from shapely.ops import transform as shp_trafo from shapely.ops import unary_union import shapely.geometry as shpg import requests # Optional libs try: import geopandas as gpd except ImportError: pass try: import salem from salem import wgs84 except ImportError: pass try: import rasterio try: # rasterio V > 1.0 from rasterio.merge import merge as merge_tool except ImportError: from rasterio.tools.merge import merge as merge_tool except ImportError: pass try: ModuleNotFoundError except NameError: ModuleNotFoundError = ImportError # Locals import oggm.cfg as cfg from oggm.exceptions import (InvalidParamsError, NoInternetException, DownloadVerificationFailedException, DownloadCredentialsMissingException, HttpDownloadError, HttpContentTooShortError, InvalidDEMError, FTPSDownloadError) # Module logger logger = logging.getLogger('.'.join(__name__.split('.')[:-1])) # Github repository and commit hash/branch name/tag name on that repository # The given commit will be downloaded from github and used as source for # all sample data SAMPLE_DATA_GH_REPO = 'OGGM/oggm-sample-data' SAMPLE_DATA_COMMIT = '18210326c4a212bd75fe21ba5355571e02938ff9' GDIR_URL = 'https://cluster.klima.uni-bremen.de/~oggm/gdirs/oggm_v1.1/' DEMO_GDIR_URL = 'https://cluster.klima.uni-bremen.de/~oggm/demo_gdirs/' DEMS_GDIR_URL = 'https://cluster.klima.uni-bremen.de/data/gdirs/dems_v0/' CMIP5_URL = 'https://cluster.klima.uni-bremen.de/~nicolas/cmip5-ng/' CHECKSUM_URL = 'https://cluster.klima.uni-bremen.de/data/downloads.sha256.hdf' CHECKSUM_VALIDATION_URL = CHECKSUM_URL + '.sha256' # Web mercator proj constants WEB_N_PIX = 256 WEB_EARTH_RADUIS = 6378137. DEM_SOURCES = ['GIMP', 'ARCTICDEM', 'RAMP', 'TANDEM', 'AW3D30', 'MAPZEN', 'DEM3', 'ASTER', 'SRTM', 'REMA', 'ALASKA', 'COPDEM', 'NASADEM'] _RGI_METADATA = dict() DEM3REG = { 'ISL': [-25., -13., 63., 67.], # Iceland 'SVALBARD': [9., 35.99, 75., 84.], 'JANMAYEN': [-10., -7., 70., 72.], 'FJ': [36., 68., 79., 90.], # Franz Josef Land 'FAR': [-8., -6., 61., 63.], # Faroer 'BEAR': [18., 20., 74., 75.], # Bear Island 'SHL': [-3., 0., 60., 61.], # Shetland # Antarctica tiles as UTM zones, large files '01-15': [-180., -91., -90, -60.], '16-30': [-91., -1., -90., -60.], '31-45': [-1., 89., -90., -60.], '46-60': [89., 189., -90., -60.], # Greenland tiles 'GL-North': [-72., -11., 76., 84.], 'GL-West': [-62., -42., 64., 76.], 'GL-South': [-52., -40., 59., 64.], 'GL-East': [-42., -17., 64., 76.] } # Function tuple2int = partial(np.array, dtype=np.int64) lock = None def mkdir(path, reset=False): """Checks if directory exists and if not, create one. Parameters ---------- reset: erase the content of the directory if exists Returns ------- the path """ if reset and os.path.exists(path): shutil.rmtree(path) try: os.makedirs(path) except FileExistsError: pass return path def del_empty_dirs(s_dir): """Delete empty directories.""" b_empty = True for s_target in os.listdir(s_dir): s_path = os.path.join(s_dir, s_target) if os.path.isdir(s_path): if not del_empty_dirs(s_path): b_empty = False else: b_empty = False if b_empty: os.rmdir(s_dir) return b_empty def findfiles(root_dir, endswith): """Finds all files with a specific ending in a directory Parameters ---------- root_dir : str The directory to search fo endswith : str The file ending (e.g. '.hgt' Returns ------- the list of files """ out = [] for dirpath, dirnames, filenames in os.walk(root_dir): for filename in [f for f in filenames if f.endswith(endswith)]: out.append(os.path.join(dirpath, filename)) return out def get_lock(): """Get multiprocessing lock.""" global lock if lock is None: # Global Lock if cfg.PARAMS.get('use_mp_spawn', False): lock = multiprocessing.get_context('spawn').Lock() else: lock = multiprocessing.Lock() return lock def get_dl_verify_data(section): """Returns a pandas DataFrame with all known download object hashes. The returned dictionary resolves str: cache_obj_name (without section) to a tuple int(size) and bytes(sha256) """ verify_key = 'dl_verify_data_' + section if cfg.DATA.get(verify_key) is not None: return cfg.DATA[verify_key] verify_file_path = os.path.join(cfg.CACHE_DIR, 'downloads.sha256.hdf') def verify_file(): """Check the hash file's own hash""" logger.info('Checking the download verification file checksum...') try: with requests.get(CHECKSUM_VALIDATION_URL) as req: req.raise_for_status() verify_file_sha256 = req.text.split(maxsplit=1)[0] verify_file_sha256 = bytearray.fromhex(verify_file_sha256) except Exception as e: verify_file_sha256 = None logger.warning('Failed getting verification checksum: ' + repr(e)) if os.path.isfile(verify_file_path) and verify_file_sha256: sha256 = hashlib.sha256() with open(verify_file_path, 'rb') as f: for b in iter(lambda: f.read(0xFFFF), b''): sha256.update(b) if sha256.digest() != verify_file_sha256: logger.warning('%s changed or invalid, deleting.' % (verify_file_path)) os.remove(verify_file_path) if not np.any(['dl_verify_data_' in k for k in cfg.DATA.keys()]): # We check the hash file only once per session # no need to do it at each call verify_file() if not os.path.isfile(verify_file_path): logger.info('Downloading %s to %s...' % (CHECKSUM_URL, verify_file_path)) with requests.get(CHECKSUM_URL, stream=True) as req: if req.status_code == 200: mkdir(os.path.dirname(verify_file_path)) with open(verify_file_path, 'wb') as f: for b in req.iter_content(chunk_size=0xFFFF): if b: f.write(b) logger.info('Done downloading.') verify_file() if not os.path.isfile(verify_file_path): logger.warning('Downloading and verifying checksums failed.') return pd.DataFrame() try: data = pd.read_hdf(verify_file_path, key=section) except KeyError: data = pd.DataFrame() cfg.DATA[verify_key] = data return data def _call_dl_func(dl_func, cache_path): """Helper so the actual call to downloads can be overridden """ return dl_func(cache_path) def _cached_download_helper(cache_obj_name, dl_func, reset=False): """Helper function for downloads. Takes care of checking if the file is already cached. Only calls the actual download function when no cached version exists. """ cache_dir = cfg.PATHS['dl_cache_dir'] cache_ro = cfg.PARAMS['dl_cache_readonly'] # A lot of logic below could be simplified but it's also not too important wd = cfg.PATHS.get('working_dir') if wd: # this is for real runs fb_cache_dir = os.path.join(wd, 'cache') check_fb_dir = False else: # Nothing have been set up yet, this is bad - find a place to write # This should happen on read-only cluster only but still wd = os.environ.get('OGGM_WORKDIR') if wd is not None and os.path.isdir(wd): fb_cache_dir = os.path.join(wd, 'cache') else: fb_cache_dir = os.path.join(cfg.CACHE_DIR, 'cache') check_fb_dir = True if not cache_dir: # Defaults to working directory: it must be set! if not cfg.PATHS['working_dir']: raise InvalidParamsError("Need a valid PATHS['working_dir']!") cache_dir = fb_cache_dir cache_ro = False fb_path = os.path.join(fb_cache_dir, cache_obj_name) if not reset and os.path.isfile(fb_path): return fb_path cache_path = os.path.join(cache_dir, cache_obj_name) if not reset and os.path.isfile(cache_path): return cache_path if cache_ro: if check_fb_dir: # Add a manual check that we are caching sample data download if 'oggm-sample-data' not in fb_path: raise InvalidParamsError('Attempting to download something ' 'with invalid global settings.') cache_path = fb_path if not cfg.PARAMS['has_internet']: raise NoInternetException("Download required, but " "`has_internet` is False.") mkdir(os.path.dirname(cache_path)) try: cache_path = _call_dl_func(dl_func, cache_path) except BaseException: if os.path.exists(cache_path): os.remove(cache_path) raise return cache_path def _verified_download_helper(cache_obj_name, dl_func, reset=False): """Helper function for downloads. Verifies the size and hash of the downloaded file against the included list of known static files. Uses _cached_download_helper to perform the actual download. """ path = _cached_download_helper(cache_obj_name, dl_func, reset) try: dl_verify = cfg.PARAMS['dl_verify'] except KeyError: dl_verify = True if dl_verify and path and cache_obj_name not in cfg.DL_VERIFIED: cache_section, cache_path = cache_obj_name.split('/', 1) data = get_dl_verify_data(cache_section) if cache_path not in data.index: logger.info('No known hash for %s' % cache_obj_name) cfg.DL_VERIFIED[cache_obj_name] = True else: # compute the hash sha256 = hashlib.sha256() with open(path, 'rb') as f: for b in iter(lambda: f.read(0xFFFF), b''): sha256.update(b) sha256 = sha256.digest() size = os.path.getsize(path) # check data = data.loc[cache_path] if data['size'] != size or bytes(data['sha256']) != sha256: err = '%s failed to verify!\nis: %s %s\nexpected: %s %s' % ( path, size, sha256.hex(), data[0], data[1].hex()) raise DownloadVerificationFailedException(msg=err, path=path) logger.info('%s verified successfully.' % path) cfg.DL_VERIFIED[cache_obj_name] = True return path def _requests_urlretrieve(url, path, reporthook, auth=None, timeout=None): """Implements the required features of urlretrieve on top of requests """ chunk_size = 128 * 1024 chunk_count = 0 with requests.get(url, stream=True, auth=auth, timeout=timeout) as r: if r.status_code != 200: raise HttpDownloadError(r.status_code, url) r.raise_for_status() size = r.headers.get('content-length') or -1 size = int(size) if reporthook: reporthook(chunk_count, chunk_size, size) with open(path, 'wb') as f: for chunk in r.iter_content(chunk_size=chunk_size): if not chunk: continue f.write(chunk) chunk_count += 1 if reporthook: reporthook(chunk_count, chunk_size, size) if chunk_count * chunk_size < size: raise HttpContentTooShortError() def _classic_urlretrieve(url, path, reporthook, auth=None, timeout=None): """Thin wrapper around pythons urllib urlretrieve """ ourl = url if auth: u = urlparse(url) if '@' not in u.netloc: netloc = auth[0] + ':' + auth[1] + '@' + u.netloc url = u._replace(netloc=netloc).geturl() old_def_timeout = socket.getdefaulttimeout() if timeout is not None: socket.setdefaulttimeout(timeout) try: urllib.request.urlretrieve(url, path, reporthook) except urllib.error.HTTPError as e: raise HttpDownloadError(e.code, ourl) except urllib.error.ContentTooShortError as e: raise HttpContentTooShortError() finally: socket.setdefaulttimeout(old_def_timeout) class ImplicitFTPTLS(ftplib.FTP_TLS): """ FTP_TLS subclass that automatically wraps sockets in SSL to support implicit FTPS. Taken from https://stackoverflow.com/a/36049814 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._sock = None @property def sock(self): """Return the socket.""" return self._sock @sock.setter def sock(self, value): """When modifying the socket, ensure that it is ssl wrapped.""" if value is not None and not isinstance(value, ssl.SSLSocket): value = self.context.wrap_socket(value) self._sock = value def _ftps_retrieve(url, path, reporthook, auth=None, timeout=None): """ Wrapper around ftplib to download from FTPS server """ if not auth: raise DownloadCredentialsMissingException('No authentication ' 'credentials given!') upar = urlparse(url) # Decide if Implicit or Explicit FTPS is used based on the port in url if upar.port == 990: ftps = ImplicitFTPTLS() elif upar.port == 21: ftps = ftplib.FTP_TLS() try: # establish ssl connection ftps.connect(host=upar.hostname, port=upar.port, timeout=timeout) ftps.login(user=auth[0], passwd=auth[1]) ftps.prot_p() logger.info('Established connection %s' % upar.hostname) # meta for progress bar size count = 0 total = ftps.size(upar.path) bs = 12*1024 def _ftps_progress(data): outfile.write(data) nonlocal count count += 1 reporthook(count, count*bs, total) with open(path, 'wb') as outfile: ftps.retrbinary('RETR ' + upar.path, _ftps_progress, blocksize=bs) except (ftplib.error_perm, socket.timeout, socket.gaierror) as err: raise FTPSDownloadError(err) finally: ftps.close() def _get_url_cache_name(url): """Returns the cache name for any given url. """ res = urlparse(url) return res.netloc.split(':', 1)[0] + res.path def oggm_urlretrieve(url, cache_obj_name=None, reset=False, reporthook=None, auth=None, timeout=None): """Wrapper around urlretrieve, to implement our caching logic. Instead of accepting a destination path, it decided where to store the file and returns the local path. auth is expected to be either a tuple of ('username', 'password') or None. """ if cache_obj_name is None: cache_obj_name = _get_url_cache_name(url) def _dlf(cache_path): logger.info("Downloading %s to %s..." % (url, cache_path)) try: _requests_urlretrieve(url, cache_path, reporthook, auth, timeout) except requests.exceptions.InvalidSchema: if 'ftps://' in url: _ftps_retrieve(url, cache_path, reporthook, auth, timeout) else: _classic_urlretrieve(url, cache_path, reporthook, auth, timeout) return cache_path return _verified_download_helper(cache_obj_name, _dlf, reset) def _progress_urlretrieve(url, cache_name=None, reset=False, auth=None, timeout=None): """Downloads a file, returns its local path, and shows a progressbar.""" try: from progressbar import DataTransferBar, UnknownLength pbar = [None] def _upd(count, size, total): if pbar[0] is None: pbar[0] = DataTransferBar() if pbar[0].max_value is None: if total > 0: pbar[0].start(total) else: pbar[0].start(UnknownLength) pbar[0].update(min(count * size, total)) sys.stdout.flush() res = oggm_urlretrieve(url, cache_obj_name=cache_name, reset=reset, reporthook=_upd, auth=auth, timeout=timeout) try: pbar[0].finish() except BaseException: pass return res except (ImportError, ModuleNotFoundError): return oggm_urlretrieve(url, cache_obj_name=cache_name, reset=reset, auth=auth, timeout=timeout) def aws_file_download(aws_path, cache_name=None, reset=False): with get_lock(): return _aws_file_download_unlocked(aws_path, cache_name, reset) def _aws_file_download_unlocked(aws_path, cache_name=None, reset=False): """Download a file from the AWS drive s3://astgtmv2/ **Note:** you need AWS credentials for this to work. Parameters ---------- aws_path: path relative to s3://astgtmv2/ """ while aws_path.startswith('/'): aws_path = aws_path[1:] if cache_name is not None: cache_obj_name = cache_name else: cache_obj_name = 'astgtmv2/' + aws_path def _dlf(cache_path): raise NotImplementedError("Downloads from AWS are no longer supported") return _verified_download_helper(cache_obj_name, _dlf, reset) def file_downloader(www_path, retry_max=5, cache_name=None, reset=False, auth=None, timeout=None): """A slightly better downloader: it tries more than once.""" local_path = None retry_counter = 0 while retry_counter <= retry_max: # Try to download try: retry_counter += 1 local_path = _progress_urlretrieve(www_path, cache_name=cache_name, reset=reset, auth=auth, timeout=timeout) # if no error, exit break except HttpDownloadError as err: # This works well for py3 if err.code == 404 or err.code == 300: # Ok so this *should* be an ocean tile return None elif err.code >= 500 and err.code < 600: logger.info("Downloading %s failed with HTTP error %s, " "retrying in 10 seconds... %s/%s" % (www_path, err.code, retry_counter, retry_max)) time.sleep(10) continue else: raise except HttpContentTooShortError as err: logger.info("Downloading %s failed with ContentTooShortError" " error %s, retrying in 10 seconds... %s/%s" % (www_path, err.code, retry_counter, retry_max)) time.sleep(10) continue except DownloadVerificationFailedException as err: if (cfg.PATHS['dl_cache_dir'] and err.path.startswith(cfg.PATHS['dl_cache_dir']) and cfg.PARAMS['dl_cache_readonly']): if not cache_name: cache_name = _get_url_cache_name(www_path) cache_name = "GLOBAL_CACHE_INVALID/" + cache_name retry_counter -= 1 logger.info("Global cache for %s is invalid!") else: try: os.remove(err.path) except FileNotFoundError: pass logger.info("Downloading %s failed with " "DownloadVerificationFailedException\n %s\n" "The file might have changed or is corrupted. " "File deleted. Re-downloading... %s/%s" % (www_path, err.msg, retry_counter, retry_max)) continue except requests.ConnectionError as err: if err.args[0].__class__.__name__ == 'MaxRetryError': # if request tried often enough we don't have to do this # this error does happen for not existing ASTERv3 files return None else: # in other cases: try again logger.info("Downloading %s failed with ConnectionError, " "retrying in 10 seconds... %s/%s" % (www_path, retry_counter, retry_max)) time.sleep(10) continue except FTPSDownloadError as err: logger.info("Downloading %s failed with FTPSDownloadError" " error: '%s', retrying in 10 seconds... %s/%s" % (www_path, err.orgerr, retry_counter, retry_max)) time.sleep(10) continue # See if we managed (fail is allowed) if not local_path or not os.path.exists(local_path): logger.warning('Downloading %s failed.' % www_path) return local_path def locked_func(func): """To decorate a function that needs to be locked for multiprocessing""" @wraps(func) def wrapper(*args, **kwargs): with get_lock(): return func(*args, **kwargs) return wrapper def file_extractor(file_path): """For archives with only one file inside extract the file to tmpdir.""" filename, file_extension = os.path.splitext(file_path) # Second one for tar.gz files f2, ex2 = os.path.splitext(filename) if ex2 == '.tar': filename, file_extension = f2, '.tar.gz' bname = os.path.basename(file_path) # This is to give a unique name to the tmp file hid = hashlib.md5(file_path.encode()).hexdigest()[:7] + '_' # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # Check output extension def _check_ext(f): _, of_ext = os.path.splitext(f) if of_ext not in ['.nc', '.tif']: raise InvalidParamsError('Extracted file extension not recognized' ': {}'.format(of_ext)) return of_ext if file_extension == '.zip': with zipfile.ZipFile(file_path) as zf: members = zf.namelist() if len(members) != 1: raise RuntimeError('Cannot extract multiple files') o_name = hid + members[0] o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with open(o_path, 'wb') as f: f.write(zf.read(members[0])) elif file_extension == '.gz': # Gzip files cannot be inspected. It's always only one file # Decide on its name o_name = hid + os.path.basename(filename) o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with gzip.GzipFile(file_path) as zf: with open(o_path, 'wb') as outfile: for line in zf: outfile.write(line) elif file_extension == '.bz2': # bzip2 files cannot be inspected. It's always only one file # Decide on its name o_name = hid + os.path.basename(filename) o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with bz2.open(file_path) as zf: with open(o_path, 'wb') as outfile: for line in zf: outfile.write(line) elif file_extension in ['.tar.gz', '.tar']: with tarfile.open(file_path) as zf: members = zf.getmembers() if len(members) != 1: raise RuntimeError('Cannot extract multiple files') o_name = hid + members[0].name o_path = os.path.join(tmpdir, o_name) of_ext = _check_ext(o_path) if not os.path.exists(o_path): logger.info('Extracting {} to {}...'.format(bname, o_path)) with open(o_path, 'wb') as f: f.write(zf.extractfile(members[0]).read()) else: raise InvalidParamsError('Extension not recognized: ' '{}'.format(file_extension)) # Be sure we don't overfill the folder cfg.get_lru_handler(tmpdir, ending=of_ext).append(o_path) return o_path def download_with_authentication(wwwfile, key): """ Uses credentials from a local .netrc file to download files This is function is currently used for TanDEM-X and ASTER Parameters ---------- wwwfile : str path to the file to download key : str the machine to to look at in the .netrc file Returns ------- """ # Check the cache first. Use dummy download function to assure nothing is # tried to be downloaded without credentials: def _always_none(foo): return None cache_obj_name = _get_url_cache_name(wwwfile) dest_file = _verified_download_helper(cache_obj_name, _always_none) # Grab auth parameters if not dest_file: authfile = os.path.expanduser('~/.netrc') if not os.path.isfile(authfile): raise DownloadCredentialsMissingException( (authfile, ' does not exist. Add necessary credentials for ', key, ' with `oggm_netrc_credentials. You may have to ', 'register at the respective service first.')) try: netrc(authfile).authenticators(key)[0] except TypeError: raise DownloadCredentialsMissingException( ('Credentials for ', key, ' are not in ', authfile, '. Add ', 'credentials for with `oggm_netrc_credentials`.')) dest_file = file_downloader( wwwfile, auth=(netrc(authfile).authenticators(key)[0], netrc(authfile).authenticators(key)[2])) return dest_file def download_oggm_files(): with get_lock(): return _download_oggm_files_unlocked() def _download_oggm_files_unlocked(): """Checks if the demo data is already on the cache and downloads it.""" zip_url = 'https://github.com/%s/archive/%s.zip' % \ (SAMPLE_DATA_GH_REPO, SAMPLE_DATA_COMMIT) odir = os.path.join(cfg.CACHE_DIR) sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT) # download only if necessary if not os.path.exists(sdir): ofile = file_downloader(zip_url) with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) assert os.path.isdir(sdir) # list of files for output out = dict() for root, directories, filenames in os.walk(sdir): for filename in filenames: if filename in out: # This was a stupid thing, and should not happen # TODO: duplicates in sample data... k = os.path.join(os.path.basename(root), filename) assert k not in out out[k] = os.path.join(root, filename) else: out[filename] = os.path.join(root, filename) return out def _download_srtm_file(zone): with get_lock(): return _download_srtm_file_unlocked(zone) def _download_srtm_file_unlocked(zone): """Checks if the srtm data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, 'srtm_' + zone + '.tif') # check if extracted file exists already if os.path.exists(outpath): return outpath # Did we download it yet? wwwfile = ('http://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/' 'TIFF/srtm_' + zone + '.zip') dest_file = file_downloader(wwwfile) # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_nasadem_file(zone): with get_lock(): return _download_nasadem_file_unlocked(zone) def _download_nasadem_file_unlocked(zone): """Checks if the NASADEM data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) wwwfile = ('https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/' '2000.02.11/NASADEM_HGT_{}.zip'.format(zone)) demfile = '{}.hgt'.format(zone) outpath = os.path.join(tmpdir, demfile) # check if extracted file exists already if os.path.exists(outpath): return outpath # Did we download it yet? dest_file = file_downloader(wwwfile) # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extract(demfile, path=tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_tandem_file(zone): with get_lock(): return _download_tandem_file_unlocked(zone) def _download_tandem_file_unlocked(zone): """Checks if the tandem data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) bname = zone.split('/')[-1] + '_DEM.tif' wwwfile = ('https://download.geoservice.dlr.de/TDM90/files/' '{}.zip'.format(zone)) outpath = os.path.join(tmpdir, bname) # check if extracted file exists already if os.path.exists(outpath): return outpath dest_file = download_with_authentication(wwwfile, 'geoservice.dlr.de') # That means we tried hard but we couldn't find it if not dest_file: return None elif not zipfile.is_zipfile(dest_file): # If the TanDEM-X tile does not exist, a invalid file is created. # See https://github.com/OGGM/oggm/issues/893 for more details return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: for fn in zf.namelist(): if 'DEM/' + bname in fn: break with open(outpath, 'wb') as fo: fo.write(zf.read(fn)) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_dem3_viewpano(zone): with get_lock(): return _download_dem3_viewpano_unlocked(zone) def _download_dem3_viewpano_unlocked(zone): """Checks if the DEM3 data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, zone + '.tif') extract_dir = os.path.join(tmpdir, 'tmp_' + zone) mkdir(extract_dir, reset=True) # check if extracted file exists already if os.path.exists(outpath): return outpath # OK, so see if downloaded already # some files have a newer version 'v2' if zone in ['R33', 'R34', 'R35', 'R36', 'R37', 'R38', 'Q32', 'Q33', 'Q34', 'Q35', 'Q36', 'Q37', 'Q38', 'Q39', 'Q40', 'P31', 'P32', 'P33', 'P34', 'P35', 'P36', 'P37', 'P38', 'P39', 'P40']: ifile = 'http://viewfinderpanoramas.org/dem3/' + zone + 'v2.zip' elif zone in DEM3REG.keys(): # We prepared these files as tif already ifile = ('https://cluster.klima.uni-bremen.de/~oggm/dem/' 'DEM3_MERGED/{}.tif'.format(zone)) return file_downloader(ifile) else: ifile = 'http://viewfinderpanoramas.org/dem3/' + zone + '.zip' dfile = file_downloader(ifile) # None means we tried hard but we couldn't find it if not dfile: return None # ok we have to extract it with zipfile.ZipFile(dfile) as zf: zf.extractall(extract_dir) # Serious issue: sometimes, if a southern hemisphere URL is queried for # download and there is none, a NH zip file is downloaded. # Example: http://viewfinderpanoramas.org/dem3/SN29.zip yields N29! # BUT: There are southern hemisphere files that download properly. However, # the unzipped folder has the file name of # the northern hemisphere file. Some checks if correct file exists: if len(zone) == 4 and zone.startswith('S'): zonedir = os.path.join(extract_dir, zone[1:]) else: zonedir = os.path.join(extract_dir, zone) globlist = glob.glob(os.path.join(zonedir, '*.hgt')) # take care of the special file naming cases if zone in DEM3REG.keys(): globlist = glob.glob(os.path.join(extract_dir, '*', '*.hgt')) if not globlist: # Final resort globlist = (findfiles(extract_dir, '.hgt') or findfiles(extract_dir, '.HGT')) if not globlist: raise RuntimeError("We should have some files here, but we don't") # merge the single HGT files (can be a bit ineffective, because not every # single file might be exactly within extent...) rfiles = [rasterio.open(s) for s in globlist] dest, output_transform = merge_tool(rfiles) profile = rfiles[0].profile if 'affine' in profile: profile.pop('affine') profile['transform'] = output_transform profile['height'] = dest.shape[1] profile['width'] = dest.shape[2] profile['driver'] = 'GTiff' with rasterio.open(outpath, 'w', **profile) as dst: dst.write(dest) for rf in rfiles: rf.close() # delete original files to spare disk space for s in globlist: os.remove(s) del_empty_dirs(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_aster_file(zone): with get_lock(): return _download_aster_file_unlocked(zone) def _download_aster_file_unlocked(zone): """Checks if the ASTER data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) wwwfile = ('https://e4ftl01.cr.usgs.gov/ASTER_B/ASTT/ASTGTM.003/' '2000.03.01/{}.zip'.format(zone)) outpath = os.path.join(tmpdir, zone + '_dem.tif') # check if extracted file exists already if os.path.exists(outpath): return outpath # download from NASA Earthdata with credentials dest_file = download_with_authentication(wwwfile, 'urs.earthdata.nasa.gov') # That means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(outpath): with zipfile.ZipFile(dest_file) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_topo_file_from_cluster(fname): with get_lock(): return _download_topo_file_from_cluster_unlocked(fname) def _download_topo_file_from_cluster_unlocked(fname): """Checks if the special topo data is in the directory and if not, download it from the cluster. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) outpath = os.path.join(tmpdir, fname) url = 'https://cluster.klima.uni-bremen.de/data/dems/' url += fname + '.zip' dfile = file_downloader(url) if not os.path.exists(outpath): logger.info('Extracting ' + fname + '.zip to ' + outpath + '...') with zipfile.ZipFile(dfile) as zf: zf.extractall(tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(outpath) cfg.get_lru_handler(tmpdir).append(outpath) return outpath def _download_copdem_file(cppfile, tilename): with get_lock(): return _download_copdem_file_unlocked(cppfile, tilename) def _download_copdem_file_unlocked(cppfile, tilename): """Checks if Copernicus DEM file is in the directory, if not download it. cppfile : name of the tarfile to download tilename : name of folder and tif file within the cppfile """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # tarfiles are extracted in directories per each tile fpath = '{0}_DEM.tif'.format(tilename) demfile = os.path.join(tmpdir, fpath) # check if extracted file exists already if os.path.exists(demfile): return demfile # Did we download it yet? ftpfile = ('ftps://cdsdata.copernicus.eu:990/' + 'datasets/COP-DEM_GLO-90-DGED/2019_1/' + cppfile) dest_file = download_with_authentication(ftpfile, 'spacedata.copernicus.eu') # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(demfile): tiffile = os.path.join(tilename, 'DEM', fpath) with tarfile.open(dest_file) as tf: tmember = tf.getmember(tiffile) # do not extract the full path of the file tmember.name = os.path.basename(tf.getmember(tiffile).name) tf.extract(tmember, tmpdir) # See if we're good, don't overfill the tmp directory assert os.path.exists(demfile) cfg.get_lru_handler(tmpdir).append(demfile) return demfile def _download_aw3d30_file(zone): with get_lock(): return _download_aw3d30_file_unlocked(zone) def _download_aw3d30_file_unlocked(fullzone): """Checks if the AW3D30 data is in the directory and if not, download it. """ # extract directory tmpdir = cfg.PATHS['tmp_dir'] mkdir(tmpdir) # tarfiles are extracted in directories per each tile tile = fullzone.split('/')[1] demfile = os.path.join(tmpdir, tile, tile + '_AVE_DSM.tif') # check if extracted file exists already if os.path.exists(demfile): return demfile # Did we download it yet? ftpfile = ('ftp://ftp.eorc.jaxa.jp/pub/ALOS/ext1/AW3D30/release_v1804/' + fullzone + '.tar.gz') try: dest_file = file_downloader(ftpfile, timeout=180) except urllib.error.URLError: # This error is raised if file is not available, could be water return None # None means we tried hard but we couldn't find it if not dest_file: return None # ok we have to extract it if not os.path.exists(demfile): from oggm.utils import robust_tar_extract dempath = os.path.dirname(demfile) robust_tar_extract(dest_file, dempath) # See if we're good, don't overfill the tmp directory assert os.path.exists(demfile) # this tarfile contains several files for file in os.listdir(dempath): cfg.get_lru_handler(tmpdir).append(os.path.join(dempath, file)) return demfile def _download_mapzen_file(zone): with get_lock(): return _download_mapzen_file_unlocked(zone) def _download_mapzen_file_unlocked(zone): """Checks if the mapzen data is in the directory and if not, download it. """ bucket = 'elevation-tiles-prod' prefix = 'geotiff' url = 'http://s3.amazonaws.com/%s/%s/%s' % (bucket, prefix, zone) # That's all return file_downloader(url, timeout=180) def _get_centerline_lonlat(gdir): """Quick n dirty solution to write the centerlines as a shapefile""" cls = gdir.read_pickle('centerlines') olist = [] for j, cl in enumerate(cls[::-1]): mm = 1 if j == 0 else 0 gs = gpd.GeoSeries() gs['RGIID'] = gdir.rgi_id gs['LE_SEGMENT'] = np.rint(np.max(cl.dis_on_line) * gdir.grid.dx) gs['MAIN'] = mm tra_func = partial(gdir.grid.ij_to_crs, crs=wgs84) gs['geometry'] = shp_trafo(tra_func, cl.line) olist.append(gs) return olist def get_prepro_gdir(rgi_version, rgi_id, border, prepro_level, base_url=None): with get_lock(): return _get_prepro_gdir_unlocked(rgi_version, rgi_id, border, prepro_level, base_url=base_url) def _get_prepro_gdir_unlocked(rgi_version, rgi_id, border, prepro_level, base_url=None): # Prepro URL if base_url is None: base_url = GDIR_URL if not base_url.endswith('/'): base_url += '/' url = base_url url += 'RGI{}/'.format(rgi_version) url += 'b_{:03d}/'.format(border) url += 'L{:d}/'.format(prepro_level) url += '{}/{}.tar' .format(rgi_id[:8], rgi_id[:11]) tar_base = file_downloader(url) if tar_base is None: raise RuntimeError('Could not find file at ' + url) return tar_base def srtm_zone(lon_ex, lat_ex): """Returns a list of SRTM zones covering the desired extent. """ # SRTM are sorted in tiles of 5 degrees srtm_x0 = -180. srtm_y0 = 60. srtm_dx = 5. srtm_dy = -5. # quick n dirty solution to be sure that we will cover the whole range mi, ma = np.min(lon_ex), np.max(lon_ex) # int() to avoid Deprec warning: lon_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) + 3))) mi, ma = np.min(lat_ex), np.max(lat_ex) # int() to avoid Deprec warning lat_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) + 3))) zones = [] for lon in lon_ex: for lat in lat_ex: dx = lon - srtm_x0 dy = lat - srtm_y0 assert dy < 0 zx = np.ceil(dx / srtm_dx) zy = np.ceil(dy / srtm_dy) zones.append('{:02.0f}_{:02.0f}'.format(zx, zy)) return list(sorted(set(zones))) def _tandem_path(lon_tile, lat_tile): # OK we have a proper tile now # First folder level is sorted from S to N level_0 = 'S' if lat_tile < 0 else 'N' level_0 += '{:02d}'.format(abs(lat_tile)) # Second folder level is sorted from W to E, but in 10 steps level_1 = 'W' if lon_tile < 0 else 'E' level_1 += '{:03d}'.format(divmod(abs(lon_tile), 10)[0] * 10) # Level 2 is formating, but depends on lat level_2 = 'W' if lon_tile < 0 else 'E' if abs(lat_tile) <= 60: level_2 += '{:03d}'.format(abs(lon_tile)) elif abs(lat_tile) <= 80: level_2 += '{:03d}'.format(divmod(abs(lon_tile), 2)[0] * 2) else: level_2 += '{:03d}'.format(divmod(abs(lon_tile), 4)[0] * 4) # Final path out = (level_0 + '/' + level_1 + '/' + 'TDM1_DEM__30_{}{}'.format(level_0, level_2)) return out def tandem_zone(lon_ex, lat_ex): """Returns a list of TanDEM-X zones covering the desired extent. """ # Files are one by one tiles, so lets loop over them # For higher lats they are stored in steps of 2 and 4. My code below # is probably giving more files than needed but better safe than sorry lat_tiles = np.arange(np.floor(lat_ex[0]), np.ceil(lat_ex[1]+1e-9), dtype=np.int) zones = [] for lat in lat_tiles: if abs(lat) < 60: l0 = np.floor(lon_ex[0]) l1 = np.floor(lon_ex[1]) elif abs(lat) < 80: l0 = divmod(lon_ex[0], 2)[0] * 2 l1 = divmod(lon_ex[1], 2)[0] * 2 elif abs(lat) < 90: l0 = divmod(lon_ex[0], 4)[0] * 4 l1 = divmod(lon_ex[1], 4)[0] * 4 lon_tiles = np.arange(l0, l1+1, dtype=np.int) for lon in lon_tiles: zones.append(_tandem_path(lon, lat)) return list(sorted(set(zones))) def _aw3d30_path(lon_tile, lat_tile): # OK we have a proper tile now # Folders are sorted with N E S W in 5 degree steps # But in N and E the lower boundary is indicated # e.g. N060 contains N060 - N064 # e.g. E000 contains E000 - E004 # but S and W indicate the upper boundary: # e.g. S010 contains S006 - S010 # e.g. W095 contains W091 - W095 # get letters ns = 'S' if lat_tile < 0 else 'N' ew = 'W' if lon_tile < 0 else 'E' # get lat/lon lon = abs(5 * np.floor(lon_tile/5)) lat = abs(5 * np.floor(lat_tile/5)) folder = '%s%.3d%s%.3d' % (ns, lat, ew, lon) filename = '%s%.3d%s%.3d' % (ns, abs(lat_tile), ew, abs(lon_tile)) # Final path out = folder + '/' + filename return out def aw3d30_zone(lon_ex, lat_ex): """Returns a list of AW3D30 zones covering the desired extent. """ # Files are one by one tiles, so lets loop over them lon_tiles = np.arange(np.floor(lon_ex[0]), np.ceil(lon_ex[1]+1e-9), dtype=np.int) lat_tiles = np.arange(np.floor(lat_ex[0]), np.ceil(lat_ex[1]+1e-9), dtype=np.int) zones = [] for lon in lon_tiles: for lat in lat_tiles: zones.append(_aw3d30_path(lon, lat)) return list(sorted(set(zones))) def _extent_to_polygon(lon_ex, lat_ex, to_crs=None): if lon_ex[0] == lon_ex[1] and lat_ex[0] == lat_ex[1]: out = shpg.Point(lon_ex[0], lat_ex[0]) else: x = [lon_ex[0], lon_ex[1], lon_ex[1], lon_ex[0], lon_ex[0]] y = [lat_ex[0], lat_ex[0], lat_ex[1], lat_ex[1], lat_ex[0]] out = shpg.Polygon(np.array((x, y)).T) if to_crs is not None: out = salem.transform_geometry(out, to_crs=to_crs) return out def arcticdem_zone(lon_ex, lat_ex): """Returns a list of Arctic-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('ArcticDEM_Tile_Index_Rel7_by_tile.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def rema_zone(lon_ex, lat_ex): """Returns a list of REMA-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('REMA_Tile_Index_Rel1.1.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def alaska_dem_zone(lon_ex, lat_ex): """Returns a list of Alaska-DEM zones covering the desired extent. """ gdf = gpd.read_file(get_demo_file('Alaska_albers_V3_tiles.shp')) p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] return gdf.tile.values if len(gdf) > 0 else [] def copdem_zone(lon_ex, lat_ex): """Returns a list of Copernicus DEM tarfile and tilename tuples """ # path to the lookup shapefiles gdf = gpd.read_file(get_demo_file('RGI60_COPDEM_lookup.shp')) # intersect with lat lon extents p = _extent_to_polygon(lon_ex, lat_ex, to_crs=gdf.crs) gdf = gdf.loc[gdf.intersects(p)] # COPDEM is global, if we miss any tile it is worth an error if (len(gdf) == 0) or (not unary_union(gdf.geometry).contains(p)): raise InvalidDEMError('Could not find all necessary Copernicus DEM ' 'tiles. This should not happen in a global DEM. ' 'Check the RGI-CopernicusDEM lookup shapefile ' 'for this particular glacier!') flist = [] for _, g in gdf.iterrows(): cpp = g['CPP File'] eop = g['Eop Id'] eop = eop.split(':')[-2] assert 'Copernicus' in eop flist.append((cpp, eop)) return flist def dem3_viewpano_zone(lon_ex, lat_ex): """Returns a list of DEM3 zones covering the desired extent. http://viewfinderpanoramas.org/Coverage%20map%20viewfinderpanoramas_org3.htm """ for _f in DEM3REG.keys(): if (np.min(lon_ex) >= DEM3REG[_f][0]) and \ (np.max(lon_ex) <= DEM3REG[_f][1]) and \ (np.min(lat_ex) >= DEM3REG[_f][2]) and \ (np.max(lat_ex) <= DEM3REG[_f][3]): # test some weird inset files in Antarctica if (np.min(lon_ex) >= -91.) and (np.max(lon_ex) <= -90.) and \ (np.min(lat_ex) >= -72.) and (np.max(lat_ex) <= -68.): return ['SR15'] elif (np.min(lon_ex) >= -47.) and (np.max(lon_ex) <= -43.) and \ (np.min(lat_ex) >= -61.) and (np.max(lat_ex) <= -60.): return ['SP23'] elif (np.min(lon_ex) >= 162.) and (np.max(lon_ex) <= 165.) and \ (np.min(lat_ex) >= -68.) and (np.max(lat_ex) <= -66.): return ['SQ58'] # test some rogue Greenland tiles as well elif (np.min(lon_ex) >= -72.) and (np.max(lon_ex) <= -66.) and \ (np.min(lat_ex) >= 76.) and (np.max(lat_ex) <= 80.): return ['T19'] elif (np.min(lon_ex) >= -72.) and (np.max(lon_ex) <= -66.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U19'] elif (np.min(lon_ex) >= -66.) and (np.max(lon_ex) <= -60.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U20'] elif (np.min(lon_ex) >= -60.) and (np.max(lon_ex) <= -54.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U21'] elif (np.min(lon_ex) >= -54.) and (np.max(lon_ex) <= -48.) and \ (np.min(lat_ex) >= 80.) and (np.max(lat_ex) <= 83.): return ['U22'] elif (np.min(lon_ex) >= -25.) and (np.max(lon_ex) <= -13.) and \ (np.min(lat_ex) >= 63.) and (np.max(lat_ex) <= 67.): return ['ISL'] else: return [_f] # if the tile doesn't have a special name, its name can be found like this: # corrected SRTMs are sorted in tiles of 6 deg longitude and 4 deg latitude srtm_x0 = -180. srtm_y0 = 0. srtm_dx = 6. srtm_dy = 4. # quick n dirty solution to be sure that we will cover the whole range mi, ma = np.min(lon_ex), np.max(lon_ex) # TODO: Fabien, find out what Johannes wanted with this +3 # +3 is just for the number to become still a bit larger # int() to avoid Deprec warning lon_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) / srtm_dy) + 3)) mi, ma = np.min(lat_ex), np.max(lat_ex) # int() to avoid Deprec warning lat_ex = np.linspace(mi, ma, int(np.ceil((ma - mi) / srtm_dx) + 3)) zones = [] for lon in lon_ex: for lat in lat_ex: dx = lon - srtm_x0 dy = lat - srtm_y0 zx = np.ceil(dx / srtm_dx) # convert number to letter zy = chr(int(abs(dy / srtm_dy)) + ord('A')) if lat >= 0: zones.append('%s%02.0f' % (zy, zx)) else: zones.append('S%s%02.0f' % (zy, zx)) return list(sorted(set(zones))) def aster_zone(lon_ex, lat_ex): """Returns a list of ASTGTMV3 zones covering the desired extent. ASTER v3 tiles are 1 degree x 1 degree N50 contains 50 to 50.9 E10 contains 10 to 10.9 S70 contains -69.99 to -69.0 W20 contains -19.99 to -19.0 """ # adding small buffer for unlikely case where one lon/lat_ex == xx.0 lons = np.arange(np.floor(lon_ex[0]-1e-9), np.ceil(lon_ex[1]+1e-9)) lats = np.arange(np.floor(lat_ex[0]-1e-9), np.ceil(lat_ex[1]+1e-9)) zones = [] for lat in lats: # north or south? ns = 'S' if lat < 0 else 'N' for lon in lons: # east or west? ew = 'W' if lon < 0 else 'E' filename = 'ASTGTMV003_{}{:02.0f}{}{:03.0f}'.format(ns, abs(lat), ew, abs(lon)) zones.append(filename) return list(sorted(set(zones))) def nasadem_zone(lon_ex, lat_ex): """Returns a list of NASADEM zones covering the desired extent. NASADEM tiles are 1 degree x 1 degree N50 contains 50 to 50.9 E10 contains 10 to 10.9 S70 contains -69.99 to -69.0 W20 contains -19.99 to -19.0 """ # adding small buffer for unlikely case where one lon/lat_ex == xx.0 lons = np.arange(np.floor(lon_ex[0]-1e-9), np.ceil(lon_ex[1]+1e-9)) lats = np.arange(np.floor(lat_ex[0]-1e-9), np.ceil(lat_ex[1]+1e-9)) zones = [] for lat in lats: # north or south? ns = 's' if lat < 0 else 'n' for lon in lons: # east or west? ew = 'w' if lon < 0 else 'e' filename = '{}{:02.0f}{}{:03.0f}'.format(ns, abs(lat), ew, abs(lon)) zones.append(filename) return list(sorted(set(zones))) def mapzen_zone(lon_ex, lat_ex, dx_meter=None, zoom=None): """Returns a list of AWS mapzen zones covering the desired extent. For mapzen one has to specify the level of detail (zoom) one wants. The best way in OGGM is to specify dx_meter of the underlying map and OGGM will decide which zoom level works best. """ if dx_meter is None and zoom is None: raise InvalidParamsError('Need either zoom level or dx_meter.') bottom, top = lat_ex left, right = lon_ex ybound = 85.0511 if bottom <= -ybound: bottom = -ybound if top <= -ybound: top = -ybound if bottom > ybound: bottom = ybound if top > ybound: top = ybound if right >= 180: right = 179.999 if left >= 180: left = 179.999 if dx_meter: # Find out the zoom so that we are close to the desired accuracy lat = np.max(np.abs([bottom, top])) zoom = int(np.ceil(math.log2((math.cos(lat * math.pi / 180) * 2 * math.pi * WEB_EARTH_RADUIS) / (WEB_N_PIX * dx_meter)))) # According to this we should just always stay above 10 (sorry) # https://github.com/tilezen/joerd/blob/master/docs/data-sources.md zoom = 10 if zoom < 10 else zoom # Code from planetutils size = 2 ** zoom xt = lambda x: int((x + 180.0) / 360.0 * size) yt = lambda y: int((1.0 - math.log(math.tan(math.radians(y)) + (1 / math.cos(math.radians(y)))) / math.pi) / 2.0 * size) tiles = [] for x in range(xt(left), xt(right) + 1): for y in range(yt(top), yt(bottom) + 1): tiles.append('/'.join(map(str, [zoom, x, str(y) + '.tif']))) return tiles def get_demo_file(fname): """Returns the path to the desired OGGM-sample-file. If Sample data is not cached it will be downloaded from https://github.com/OGGM/oggm-sample-data Parameters ---------- fname : str Filename of the desired OGGM-sample-file Returns ------- str Absolute path to the desired file. """ d = download_oggm_files() if fname in d: return d[fname] else: return None def get_wgms_files(): """Get the path to the default WGMS-RGI link file and the data dir. Returns ------- (file, dir) : paths to the files """ download_oggm_files() sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT, 'wgms') datadir = os.path.join(sdir, 'mbdata') assert os.path.exists(datadir) outf = os.path.join(sdir, 'rgi_wgms_links_20200415.csv') outf = pd.read_csv(outf, dtype={'RGI_REG': object}) return outf, datadir def get_geodetic_files(geodetic_folder_path=None, geodetic_filename=None): """Get the path to the combined geodetic and WGMS-RGI link file and the data dir. Returns ------- (file, dir) : paths to the files """ download_oggm_files() sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT, 'wgms') sdir = os.path.join(geodetic_folder_path) datadir = os.path.join(sdir, 'mbdata_with_geo') assert os.path.exists(datadir) outf = os.path.join(sdir, geodetic_filename) outf = pd.read_csv(outf, dtype={'RGI_REG': object}) return outf, datadir def get_glathida_file(): """Get the path to the default GlaThiDa-RGI link file. Returns ------- file : paths to the file """ # Roll our own download_oggm_files() sdir = os.path.join(cfg.CACHE_DIR, 'oggm-sample-data-%s' % SAMPLE_DATA_COMMIT, 'glathida') outf = os.path.join(sdir, 'rgi_glathida_links.csv') assert os.path.exists(outf) return outf def get_rgi_dir(version=None, reset=False): """Path to the RGI directory. If the RGI files are not present, download them. Parameters ---------- version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the RGI directory first and downloads the data Returns ------- str path to the RGI directory """ with get_lock(): return _get_rgi_dir_unlocked(version=version, reset=reset) def _get_rgi_dir_unlocked(version=None, reset=False): rgi_dir = cfg.PATHS['rgi_dir'] if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' # Be sure the user gave a sensible path to the RGI dir if not rgi_dir: raise InvalidParamsError('The RGI data directory has to be' 'specified explicitly.') rgi_dir = os.path.abspath(os.path.expanduser(rgi_dir)) rgi_dir = os.path.join(rgi_dir, 'RGIV' + version) mkdir(rgi_dir, reset=reset) if version == '50': dfile = 'http://www.glims.org/RGI/rgi50_files/rgi50.zip' elif version == '60': dfile = 'http://www.glims.org/RGI/rgi60_files/00_rgi60.zip' elif version == '61': dfile = 'https://cluster.klima.uni-bremen.de/data/rgi/rgi_61.zip' elif version == '62': dfile = 'https://cluster.klima.uni-bremen.de/~oggm/rgi/rgi62.zip' test_file = os.path.join(rgi_dir, '*_rgi*{}_manifest.txt'.format(version)) if len(glob.glob(test_file)) == 0: # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(rgi_dir) # Extract subdirs pattern = '*_rgi{}_*.zip'.format(version) for root, dirs, files in os.walk(cfg.PATHS['rgi_dir']): for filename in fnmatch.filter(files, pattern): zfile = os.path.join(root, filename) with zipfile.ZipFile(zfile) as zf: ex_root = zfile.replace('.zip', '') mkdir(ex_root) zf.extractall(ex_root) # delete the zipfile after success os.remove(zfile) if len(glob.glob(test_file)) == 0: raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + rgi_dir) return rgi_dir def get_rgi_region_file(region, version=None, reset=False): """Path to the RGI region file. If the RGI files are not present, download them. Parameters ---------- region : str from '01' to '19' version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the RGI directory first and downloads the data Returns ------- str path to the RGI shapefile """ rgi_dir = get_rgi_dir(version=version, reset=reset) f = list(glob.glob(rgi_dir + "/*/{}_*.shp".format(region))) assert len(f) == 1 return f[0] def get_rgi_glacier_entities(rgi_ids, version=None): """Get a list of glacier outlines selected from their RGI IDs. Will download RGI data if not present. Parameters ---------- rgi_ids : list of str the glaciers you want the outlines for version : str the rgi version Returns ------- geopandas.GeoDataFrame containing the desired RGI glacier outlines """ regions = [s.split('-')[1].split('.')[0] for s in rgi_ids] if version is None: version = rgi_ids[0].split('-')[0][-2:] selection = [] for reg in sorted(np.unique(regions)): sh = gpd.read_file(get_rgi_region_file(reg, version=version)) selection.append(sh.loc[sh.RGIId.isin(rgi_ids)]) # Make a new dataframe of those selection = pd.concat(selection) selection.crs = sh.crs # for geolocalisation if len(selection) != len(rgi_ids): raise RuntimeError('Could not find all RGI ids') return selection def get_rgi_intersects_dir(version=None, reset=False): """Path to the RGI directory containing the intersect files. If the files are not present, download them. Parameters ---------- version : str '5', '6', defaults to None (linking to the one specified in cfg.PARAMS) reset : bool If True, deletes the intersects before redownloading them Returns ------- str path to the directory """ with get_lock(): return _get_rgi_intersects_dir_unlocked(version=version, reset=reset) def _get_rgi_intersects_dir_unlocked(version=None, reset=False): rgi_dir = cfg.PATHS['rgi_dir'] if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' # Be sure the user gave a sensible path to the RGI dir if not rgi_dir: raise InvalidParamsError('The RGI data directory has to be' 'specified explicitly.') rgi_dir = os.path.abspath(os.path.expanduser(rgi_dir)) mkdir(rgi_dir) dfile = 'https://cluster.klima.uni-bremen.de/data/rgi/' dfile += 'RGI_V{}_Intersects.zip'.format(version) if version == '62': dfile = ('https://cluster.klima.uni-bremen.de/~oggm/rgi/' 'rgi62_Intersects.zip') odir = os.path.join(rgi_dir, 'RGI_V' + version + '_Intersects') if reset and os.path.exists(odir): shutil.rmtree(odir) # A lot of code for backwards compat (sigh...) if version in ['50', '60']: test_file = os.path.join(odir, 'Intersects_OGGM_Manifest.txt') if not os.path.exists(test_file): # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) if not os.path.exists(test_file): raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + odir) else: test_file = os.path.join(odir, '*ntersect*anifest.txt'.format(version)) if len(glob.glob(test_file)) == 0: # if not there download it ofile = file_downloader(dfile, reset=reset) # Extract root with zipfile.ZipFile(ofile) as zf: zf.extractall(odir) # Extract subdirs pattern = '*_rgi{}_*.zip'.format(version) for root, dirs, files in os.walk(cfg.PATHS['rgi_dir']): for filename in fnmatch.filter(files, pattern): zfile = os.path.join(root, filename) with zipfile.ZipFile(zfile) as zf: ex_root = zfile.replace('.zip', '') mkdir(ex_root) zf.extractall(ex_root) # delete the zipfile after success os.remove(zfile) if len(glob.glob(test_file)) == 0: raise RuntimeError('Could not find a manifest file in the RGI ' 'directory: ' + odir) return odir def get_rgi_intersects_region_file(region=None, version=None, reset=False): """Path to the RGI regional intersect file. If the RGI files are not present, download them. Parameters ---------- region : str from '00' to '19', with '00' being the global file (deprecated). From RGI version '61' onwards, please use `get_rgi_intersects_entities` with a list of glaciers instead of relying to the global file. version : str '5', '6', '61'... defaults the one specified in cfg.PARAMS reset : bool If True, deletes the intersect file before redownloading it Returns ------- str path to the RGI intersects shapefile """ if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' rgi_dir = get_rgi_intersects_dir(version=version, reset=reset) if region == '00': if version in ['50', '60']: version = 'AllRegs' region = '*' else: raise InvalidParamsError("From RGI version 61 onwards, please use " "get_rgi_intersects_entities() instead.") f = list(glob.glob(os.path.join(rgi_dir, "*", '*intersects*' + region + '_rgi*' + version + '*.shp'))) assert len(f) == 1 return f[0] def get_rgi_intersects_entities(rgi_ids, version=None): """Get a list of glacier intersects selected from their RGI IDs. Parameters ---------- rgi_ids: list of str list of rgi_ids you want to look for intersections for version: str '5', '6', '61'... defaults the one specified in cfg.PARAMS Returns ------- geopandas.GeoDataFrame with the selected intersects """ if version is None: version = cfg.PARAMS['rgi_version'] if len(version) == 1: version += '0' regions = [s.split('-')[1].split('.')[0] for s in rgi_ids] selection = [] for reg in sorted(np.unique(regions)): sh = gpd.read_file(get_rgi_intersects_region_file(reg, version=version)) selection.append(sh.loc[sh.RGIId_1.isin(rgi_ids) | sh.RGIId_2.isin(rgi_ids)]) # Make a new dataframe of those selection = pd.concat(selection) selection.crs = sh.crs # for geolocalisation return selection def is_dem_source_available(source, lon_ex, lat_ex): """Checks if a DEM source is available for your purpose. This is only a very rough check! It doesn't mean that the data really is available, but at least it's worth a try. Parameters ---------- source : str, required the source you want to check for lon_ex : tuple or int, required a (min_lon, max_lon) tuple delimiting the requested area longitudes lat_ex : tuple or int, required a (min_lat, max_lat) tuple delimiting the requested area latitudes Returns ------- True or False """ from oggm.utils import tolist lon_ex = tolist(lon_ex, length=2) lat_ex = tolist(lat_ex, length=2) def _in_grid(grid_json, lon, lat): i, j = cfg.DATA['dem_grids'][grid_json].transform(lon, lat, maskout=True) return np.all(~ (i.mask | j.mask)) if source == 'GIMP': return _in_grid('gimpdem_90m_v01.1.json', lon_ex, lat_ex) elif source == 'ARCTICDEM': return _in_grid('arcticdem_mosaic_100m_v3.0.json', lon_ex, lat_ex) elif source == 'RAMP': return _in_grid('AntarcticDEM_wgs84.json', lon_ex, lat_ex) elif source == 'REMA': return _in_grid('REMA_100m_dem.json', lon_ex, lat_ex) elif source == 'ALASKA': return _in_grid('Alaska_albers_V3.json', lon_ex, lat_ex) elif source == 'TANDEM': return True elif source == 'AW3D30': return np.min(lat_ex) > -60 elif source == 'MAPZEN': return True elif source == 'DEM3': return True elif source == 'ASTER': return True elif source == 'SRTM': return np.max(np.abs(lat_ex)) < 60 elif source == 'COPDEM': return True elif source == 'NASADEM': return (np.min(lat_ex) > -56) and (np.max(lat_ex) < 60) elif source == 'USER': return True elif source is None: return True def default_dem_source(lon_ex, lat_ex, rgi_region=None, rgi_subregion=None): """Current default DEM source at a given location. Parameters ---------- lon_ex : tuple or int, required a (min_lon, max_lon) tuple delimiting the requested area longitudes lat_ex : tuple or int, required a (min_lat, max_lat) tuple delimiting the requested area latitudes rgi_region : str, optional the RGI region number (required for the GIMP DEM) rgi_subregion : str, optional the RGI subregion str (useful for RGI Reg 19) Returns ------- the chosen DEM source """ from oggm.utils import tolist lon_ex = tolist(lon_ex, length=2) lat_ex = tolist(lat_ex, length=2) # GIMP is in polar stereographic, not easy to test if glacier is on the map # It would be possible with a salem grid but this is a bit more expensive # Instead, we are just asking RGI for the region if rgi_region is not None and int(rgi_region) == 5: return 'GIMP' # ARCTIC DEM is not yet automatized # If we have to automatise this one day, we should use the shapefile # of the tiles, and then check for RGI region: # use_without_check = ['03', '05', '06', '07', '09'] # to_test_on_shape = ['01', '02', '04', '08'] # Antarctica if rgi_region is not None and int(rgi_region) == 19: if rgi_subregion is None: raise InvalidParamsError('Must specify subregion for Antarctica') if rgi_subregion in ['19-01', '19-02', '19-03', '19-04', '19-05']: # special case for some distant islands return 'DEM3' return 'RAMP' # In high latitudes and an exceptional region in Eastern Russia, DEM3 # exceptional test for eastern russia: if ((np.min(lat_ex) < -60.) or (np.max(lat_ex) > 60.) or (np.min(lat_ex) > 59 and np.min(lon_ex) > 170)): return 'DEM3' # Everywhere else SRTM return 'SRTM' def get_topo_file(lon_ex, lat_ex, rgi_region=None, rgi_subregion=None, dx_meter=None, zoom=None, source=None): """Path(s) to the DEM file(s) covering the desired extent. If the needed files for covering the extent are not present, download them. By default it will be referred to SRTM for [-60S; 60N], GIMP for Greenland, RAMP for Antarctica, and a corrected DEM3 (viewfinderpanoramas.org) elsewhere. A user-specified data source can be given with the ``source`` keyword. Parameters ---------- lon_ex : tuple or int, required a (min_lon, max_lon) tuple delimiting the requested area longitudes lat_ex : tuple or int, required a (min_lat, max_lat) tuple delimiting the requested area latitudes rgi_region : str, optional the RGI region number (required for the GIMP DEM) rgi_subregion : str, optional the RGI subregion str (useful for RGI Reg 19) dx_meter : float, required for source='MAPZEN' the resolution of the glacier map (to decide the zoom level of mapzen) zoom : int, optional if you know the zoom already (for MAPZEN only) source : str or list of str, optional Name of specific DEM source. See gis.define_glacier_region for details Returns ------- tuple: (list with path(s) to the DEM file(s), data source str) """ from oggm.utils import tolist lon_ex = tolist(lon_ex, length=2) lat_ex = tolist(lat_ex, length=2) if source is not None and not isinstance(source, str): # check all user options for s in source: demf, source_str = get_topo_file(lon_ex, lat_ex, rgi_region=rgi_region, rgi_subregion=rgi_subregion, source=s) if demf[0]: return demf, source_str # Did the user specify a specific DEM file? if 'dem_file' in cfg.PATHS and os.path.isfile(cfg.PATHS['dem_file']): source = 'USER' if source is None else source if source == 'USER': return [cfg.PATHS['dem_file']], source # Some logic to decide which source to take if unspecified if source is None: source = default_dem_source(lon_ex, lat_ex, rgi_region=rgi_region, rgi_subregion=rgi_subregion) if source not in DEM_SOURCES: raise InvalidParamsError('`source` must be one of ' '{}'.format(DEM_SOURCES)) # OK go files = [] if source == 'GIMP': _file = _download_topo_file_from_cluster('gimpdem_90m_v01.1.tif') files.append(_file) if source == 'ARCTICDEM': zones = arcticdem_zone(lon_ex, lat_ex) for z in zones: with get_lock(): url = 'https://cluster.klima.uni-bremen.de/~oggm/' url += 'dem/ArcticDEM_100m_v3.0/' url += '{}_100m_v3.0/{}_100m_v3.0_reg_dem.tif'.format(z, z) files.append(file_downloader(url)) if source == 'RAMP': _file = _download_topo_file_from_cluster('AntarcticDEM_wgs84.tif') files.append(_file) if source == 'ALASKA': zones = alaska_dem_zone(lon_ex, lat_ex) for z in zones: with get_lock(): url = 'https://cluster.klima.uni-bremen.de/~oggm/' url += 'dem/Alaska_albers_V3/' url += '{}_Alaska_albers_V3/'.format(z) url += '{}_Alaska_albers_V3.tif'.format(z) files.append(file_downloader(url)) if source == 'REMA': zones = rema_zone(lon_ex, lat_ex) for z in zones: with get_lock(): url = 'https://cluster.klima.uni-bremen.de/~oggm/' url += 'dem/REMA_100m_v1.1/' url += '{}_100m_v1.1/{}_100m_v1.1_reg_dem.tif'.format(z, z) files.append(file_downloader(url)) if source == 'TANDEM': zones = tandem_zone(lon_ex, lat_ex) for z in zones: files.append(_download_tandem_file(z)) if source == 'AW3D30': zones = aw3d30_zone(lon_ex, lat_ex) for z in zones: files.append(_download_aw3d30_file(z)) if source == 'MAPZEN': zones = mapzen_zone(lon_ex, lat_ex, dx_meter=dx_meter, zoom=zoom) for z in zones: files.append(_download_mapzen_file(z)) if source == 'ASTER': zones = aster_zone(lon_ex, lat_ex) for z in zones: files.append(_download_aster_file(z)) if source == 'DEM3': zones = dem3_viewpano_zone(lon_ex, lat_ex) for z in zones: files.append(_download_dem3_viewpano(z)) if source == 'SRTM': zones = srtm_zone(lon_ex, lat_ex) for z in zones: files.append(_download_srtm_file(z)) if source == 'COPDEM': filetuple = copdem_zone(lon_ex, lat_ex) for cpp, eop in filetuple: files.append(_download_copdem_file(cpp, eop)) if source == 'NASADEM': zones = nasadem_zone(lon_ex, lat_ex) for z in zones: files.append(_download_nasadem_file(z)) # filter for None (e.g. oceans) files = [s for s in files if s] if files: return files, source else: raise InvalidDEMError('Source: {2} no topography file available for ' 'extent lat:{0}, lon:{1}!'. format(lat_ex, lon_ex, source)) def get_cmip5_file(filename, reset=False): """Download a global CMIP5 file. List of files: https://cluster.klima.uni-bremen.de/~nicolas/cmip5-ng/ Parameters ---------- filename : str the file to download, e.g 'pr_ann_ACCESS1-3_rcp85_r1i1p1_g025.nc' or 'tas_ann_ACCESS1-3_rcp45_r1i1p1_g025.nc' reset : bool force re-download of an existing file Returns ------- the path to the netCDF file """ prefix = filename.split('_')[0] dfile = CMIP5_URL + prefix + '/' + filename return file_downloader(dfile, reset=reset) def get_ref_mb_glaciers_candidates(rgi_version=None): """Reads in the WGMS list of glaciers with available MB data. Can be found afterwards (and extended) in cdf.DATA['RGIXX_ref_ids']. """ if rgi_version is None: rgi_version = cfg.PARAMS['rgi_version'] if len(rgi_version) == 2: # We might change this one day rgi_version = rgi_version[:1] key = 'RGI{}0_ref_ids'.format(rgi_version) if key not in cfg.DATA: flink, _ = get_wgms_files() cfg.DATA[key] = flink['RGI{}0_ID'.format(rgi_version)].tolist() return cfg.DATA[key] def get_ref_mb_glaciers(gdirs): """Get the list of glaciers we have valid mass balance measurements for. To be valid glaciers must have more than 5 years of measurements and be land terminating. Therefore, the list depends on the time period of the baseline climate data and this method selects them out of a list of potential candidates (`gdirs` arg). Parameters ---------- gdirs : list of :py:class:`oggm.GlacierDirectory` objects list of glaciers to check for valid reference mass balance data Returns ------- ref_gdirs : list of :py:class:`oggm.GlacierDirectory` objects list of those glaciers with valid reference mass balance data See Also -------- get_ref_mb_glaciers_candidates """ # Get the links ref_ids = get_ref_mb_glaciers_candidates(gdirs[0].rgi_version) # We remove tidewater glaciers and glaciers with < 5 years ref_gdirs = [] for g in gdirs: if g.rgi_id not in ref_ids or g.is_tidewater: continue try: mbdf = g.get_ref_mb_data() if len(mbdf) >= 5: ref_gdirs.append(g) except RuntimeError as e: if 'Please process some climate data before call' in str(e): raise return ref_gdirs def get_ref_mb_glaciers_candidates_geodetic(rgi_version=None, folder_path=None,filename=None): """Reads in the WGMS list of glaciers with available MB data. Can be found afterwards (and extended) in cdf.DATA['RGIXX_ref_ids']. """ if rgi_version is None: rgi_version = cfg.PARAMS['rgi_version'] if len(rgi_version) == 2: # We might change this one day rgi_version = rgi_version[:1] key = 'RGI{}0_ref_ids'.format(rgi_version) if key not in cfg.DATA: flink, _ = get_geodetic_files(geodetic_folder_path=folder_path, geodetic_filename=filename) cfg.DATA[key] = flink['RGI{}0_ID'.format(rgi_version)].tolist() return cfg.DATA[key] def get_ref_mb_glaciers_geodetic(gdirs,temp_geodetic_folder_path=None,temp_geodetic_filename=None): """Get the list of glaciers we have valid mass balance measurements for. To be valid glaciers must have more than 5 years of measurements and be land terminating. Therefore, the list depends on the time period of the baseline climate data and this method selects them out of a list of potential candidates (`gdirs` arg). Parameters ---------- gdirs : list of :py:class:`oggm.GlacierDirectory` objects list of glaciers to check for valid reference mass balance data Returns ------- ref_gdirs : list of :py:class:`oggm.GlacierDirectory`geodetic_folder_path=geo_folder_path, geodetic_filename=geo_file_name objects list of those glaciers with valid reference mass balance data See Also -------- get_ref_mb_glaciers_candidates """ # Get the links ref_ids = get_ref_mb_glaciers_candidates_geodetic(gdirs[0].rgi_version,folder_path=temp_geodetic_folder_path,filename=temp_geodetic_filename) # We remove tidewater glaciers and glaciers with < 5 years ref_gdirs = [] for g in gdirs: if g.rgi_id not in ref_ids or g.is_tidewater: continue try: mbdf = g.get_ref_mb_data_geodetic(folder_path=temp_geodetic_folder_path,filename=temp_geodetic_filename) if len(mbdf) >= 5: ref_gdirs.append(g) except RuntimeError as e: if 'Please process some climate data before call' in str(e): raise return ref_gdirs
the-stack_0_9470
""" post to api data from sanitized_reference_json/ python post_reference_to_api.py update okta_token only python post_reference_to_api.py -a keys that exist in data 2021-05-25 21:16:53,372 - literature logger - INFO - key abstract 2021-05-25 21:16:53,372 - literature logger - INFO - key citation 2021-05-25 21:16:53,372 - literature logger - INFO - key datePublished 2021-05-25 21:16:53,373 - literature logger - INFO - key dateArrivedInPubmed 2021-05-25 21:16:53,373 - literature logger - INFO - key dateLastModified 2021-05-25 21:16:53,373 - literature logger - INFO - key keywords 2021-05-25 21:16:53,373 - literature logger - INFO - key crossReferences 2021-05-25 21:16:53,373 - literature logger - INFO - key title 2021-05-25 21:16:53,373 - literature logger - INFO - key tags 2021-05-25 21:16:53,373 - literature logger - INFO - key issueName 2021-05-25 21:16:53,373 - literature logger - INFO - key issueDate 2021-05-25 21:16:53,373 - literature logger - INFO - key MODReferenceType 2021-05-25 21:16:53,373 - literature logger - INFO - key pubMedType 2021-05-25 21:16:53,373 - literature logger - INFO - key meshTerms 2021-05-25 21:16:53,373 - literature logger - INFO - key allianceCategory 2021-05-25 21:16:53,373 - literature logger - INFO - key volume 2021-05-25 21:16:53,373 - literature logger - INFO - key authors 2021-05-25 21:16:53,373 - literature logger - INFO - key pages 2021-05-25 21:16:53,373 - literature logger - INFO - key publisher 2021-05-25 21:16:53,373 - literature logger - INFO - key resource 2021-05-25 21:16:53,373 - literature logger - INFO - key language 2021-05-25 21:16:53,373 - literature logger - INFO - key modResources 2021-05-25 21:16:53,373 - literature logger - INFO - key MODReferenceTypes 2021-05-25 21:16:53,373 - literature logger - INFO - key resourceAbbreviation """ # import requests import argparse import json import logging import logging.config import re from os import environ, listdir, path from helper_file_processing import ( generate_cross_references_file, load_ref_xref, split_identifier, ) from helper_post_to_api import ( generate_headers, get_authentication_token, process_api_request, update_token, ) log_file_path = path.join(path.dirname(path.abspath(__file__)), "../logging.conf") logging.config.fileConfig(log_file_path) logger = logging.getLogger("literature logger") parser = argparse.ArgumentParser() parser.add_argument("-a", "--authorization", action="store_true", help="update authorization token") parser.add_argument("-f", "--file", action="store", help="take input from input file in full path") parser.add_argument("-c", "--commandline", nargs="*", action="store", help="placeholder for process_single_pmid.py") args = vars(parser.parse_args()) def camel_to_snake(name): """ :param name: :return: """ return re.sub("([a-z0-9])([A-Z])", r"\1_\2", name).lower() def post_references(input_file, check_file_flag): # noqa: C901 """ :param input_file: :param check_file_flag: :return: """ api_port = environ.get("API_PORT") # base_path = '/home/azurebrd/git/agr_literature_service_demo/src/xml_processing/' base_path = environ.get("XML_PATH") files_to_process = [] if input_file == "sanitized": json_storage_path = base_path + "sanitized_reference_json/" dir_list = listdir(json_storage_path) for filename in dir_list: # logger.info(filename) if "REFERENCE_" in filename and ".REFERENCE_" not in filename: # logger.info(filename) files_to_process.append(json_storage_path + filename) else: files_to_process.append(input_file) keys_to_remove = {"nlm", "primaryId", "modResources", "resourceAbbreviation"} remap_keys = {"datePublished": "date_published", "dateArrivedInPubmed": "date_arrived_in_pubmed", "dateLastModified": "date_last_modified", "crossReferences": "cross_references", "issueName": "issue_name", "issueDate": "issue_date", "pubMedType": "pubmed_type", "meshTerms": "mesh_terms", "allianceCategory": "category", "MODReferenceType": "mod_reference_types", "MODReferenceTypes": "mod_reference_types", "plainLanguageAbstract": "plain_language_abstract", "pubmedAbstractLanguages": "pubmed_abstract_languages", "publicationStatus": "pubmed_publication_status"} subkeys_to_remove = {} remap_subkeys = {} subkeys_to_remove["mesh_terms"] = {"referenceId"} subkeys_to_remove["tags"] = {"referenceId"} subkeys_to_remove["authors"] = {"referenceId", "firstinit", "firstInit", "crossReferences", "collectivename"} remap_subkeys["mesh_terms"] = {} remap_subkeys["mesh_terms"]["meshHeadingTerm"] = "heading_term" remap_subkeys["mesh_terms"]["meshQualfierTerm"] = "qualifier_term" remap_subkeys["mesh_terms"]["meshQualifierTerm"] = "qualifier_term" remap_subkeys["mod_reference_types"] = {} remap_subkeys["mod_reference_types"]["referenceType"] = "reference_type" remap_subkeys["tags"] = {} remap_subkeys["tags"]["tagName"] = "tag_name" remap_subkeys["tags"]["tagSource"] = "tag_source" remap_subkeys["cross_references"] = {} remap_subkeys["cross_references"]["id"] = "curie" remap_subkeys["authors"] = {} remap_subkeys["authors"]["authorRank"] = "order" remap_subkeys["authors"]["firstName"] = "first_name" remap_subkeys["authors"]["lastName"] = "last_name" remap_subkeys["authors"]["middleNames"] = "middle_names" remap_subkeys["authors"]["firstname"] = "first_name" remap_subkeys["authors"]["lastname"] = "last_name" remap_subkeys["authors"]["middlenames"] = "middle_names" remap_subkeys["authors"]["correspondingAuthor"] = "corresponding_author" remap_subkeys["authors"]["firstAuthor"] = "first_author" keys_found = set([]) # token = '' # okta_file = base_path + 'okta_token' # if path.isfile(okta_file): # with open(okta_file, 'r') as okta_fh: # token = okta_fh.read().replace('\n', '') # okta_fh.close # else: # token = update_token() token = get_authentication_token() headers = generate_headers(token) api_server = environ.get("API_SERVER", "localhost") url = "http://" + api_server + ":" + api_port + "/reference/" reference_primary_id_to_curie_file = base_path + "reference_primary_id_to_curie" errors_in_posting_reference_file = base_path + "errors_in_posting_reference" # previously loading from reference_primary_id_to_curie from past run of this script # already_processed_primary_id = set() # if check_file_flag == 'yes_file_check': # if path.isfile(reference_primary_id_to_curie_file): # with open(reference_primary_id_to_curie_file, 'r') as read_fh: # for line in read_fh: # line_data = line.split("\t") # if line_data[0]: # already_processed_primary_id.add(line_data[0].rstrip()) # read_fh.close # this updates from resources in the database, and takes 4 seconds. if updating this script, comment it out after running it once generate_cross_references_file("resource") # this updates from references in the database, and takes 88 seconds. if updating this script, comment it out after running it once generate_cross_references_file("reference") xref_ref, ref_xref_valid, ref_xref_obsolete = load_ref_xref("resource") resource_to_curie = {} for prefix in xref_ref: for identifier in xref_ref[prefix]: xref_curie = prefix + ":" + identifier resource_to_curie[xref_curie] = xref_ref[prefix][identifier] # previously loading from resource_primary_id_to_curie from past run of post_resource_to_api # resource_primary_id_to_curie_file = base_path + 'resource_primary_id_to_curie' # if path.isfile(resource_primary_id_to_curie_file): # with open(resource_primary_id_to_curie_file, 'r') as read_fh: # for line in read_fh: # line_data = line.rstrip().split("\t") # if line_data[0]: # resource_to_curie[line_data[0]] = line_data[1] # read_fh.close xref_ref, ref_xref_valid, ref_xref_obsolete = load_ref_xref("reference") process_results = [] with open(reference_primary_id_to_curie_file, "a") as mapping_fh, open(errors_in_posting_reference_file, "a") as error_fh: for filepath in sorted(files_to_process): # only test one file for run # if filepath != json_storage_path + 'REFERENCE_PUBMED_WB_1.json': # continue # logger.info("opening file\t%s", filepath) f = open(filepath) reference_data = json.load(f) # counter = 0 for entry in reference_data: # only take a couple of sample from each file for testing # counter += 1 # if counter > 2: # break # output what we get from the file before converting for the API # json_object = json.dumps(entry, indent=4) # print(json_object) primary_id = entry["primaryId"] prefix, identifier, separator = split_identifier(primary_id) if prefix in xref_ref: if identifier in xref_ref[prefix]: logger.info("%s\talready in", primary_id) continue # previously loading from reference_primary_id_to_curie from past run of this script # if primary_id in already_processed_primary_id: # continue # if primary_id != 'PMID:9643811': # continue new_entry = {} for key in entry: keys_found.add(key) # logger.info("key found\t%s\t%s", key, entry[key]) if key in remap_keys: # logger.info("remap\t%s\t%s", key, remap_keys[key]) # this renames a key, but it can be accessed again in the for key loop, so sometimes a key is # visited twice while another is skipped, so have to create a new dict to populate instead # entry[remap_keys[key]] = entry.pop(key) new_entry[remap_keys[key]] = entry[key] elif key not in keys_to_remove: new_entry[key] = entry[key] for key in remap_subkeys: if key in new_entry: # logger.info("%s\t%s\t%s", primary_id, key, new_entry[key]) new_list = [] for sub_element in new_entry[key]: new_sub_element = {} for subkey in sub_element: if subkey in remap_subkeys[key]: new_sub_element[remap_subkeys[key][subkey]] = sub_element[subkey] # logger.info('remap subkey\t%s\t%s', subkey, remap_subkeys[key][subkey]) elif key not in subkeys_to_remove or subkey not in subkeys_to_remove[key]: new_sub_element[subkey] = sub_element[subkey] new_list.append(new_sub_element) new_entry[key] = new_list # can only enter agr resource curie, if resource does not map to one, enter nothing if "resource" in new_entry: if new_entry["resource"] in resource_to_curie: new_entry["resource"] = resource_to_curie[new_entry["resource"]] else: del new_entry["resource"] if "category" in new_entry: new_entry["category"] = (new_entry["category"].lower().replace(" ", "_")) if "tags" in new_entry: for sub_element in new_entry["tags"]: if "tag_name" in sub_element: sub_element["tag_name"] = camel_to_snake(sub_element["tag_name"]) if "authors" in new_entry: for author in new_entry["authors"]: if "orcid" in author: # orcid field in json has just the identifier, need to add the prefix if 'ORCID:' not in author['orcid']: author['orcid'] = 'ORCID:' + author['orcid'] if 'cross_references' in new_entry: new_entry['cross_references'] = list(filter(lambda x: "curie" in x and "NLM:" not in x['curie'] and "ISSN:" not in x["curie"], new_entry["cross_references"])) # output what is sent to API after converting file data # json_object = json.dumps(new_entry, indent=4) # print(json_object) # get rid of this if process_api_request works on a full run # process_post_tuple = process_post(url, headers, new_entry, primary_id, mapping_fh, error_fh) # headers = process_post_tuple[0] # process_text = process_post_tuple[1] # process_status_code = process_post_tuple[2] # process_result = {} # process_result['text'] = process_text # process_result['status_code'] = process_status_code # process_results.append(process_result) api_response_tuple = process_api_request("POST", url, headers, new_entry, primary_id, None, None) headers = api_response_tuple[0] response_text = api_response_tuple[1] response_status_code = api_response_tuple[2] log_info = api_response_tuple[3] response_dict = json.loads(response_text) if log_info: logger.info(log_info) if response_status_code == 201: response_dict = response_dict.replace('"', "") logger.info("%s\t%s", primary_id, response_dict) mapping_fh.write("%s\t%s\n" % (primary_id, response_dict)) else: logger.info("api error %s primaryId %s message %s", str(response_status_code), primary_id, response_dict['detail']) error_fh.write("api error %s primaryId %s message %s\n" % (str(response_status_code), primary_id, response_dict['detail'])) # if wanting to output keys in data for figuring out mapping # for key in keys_found: # logger.info("key %s", key) mapping_fh.close error_fh.close return process_results # get rid of this if process_api_request works on a full run # def process_post(url, headers, new_entry, primary_id, mapping_fh, error_fh): # """ # # output the json getting posted to the API # json_object = json.dumps(new_entry, indent = 4) # print(json_object) # # :param url: # :param headers: # :param new_entry: # :param primary_id: # :param mapping_fh: # :param error_fh: # :return: # """ # # post_return = requests.post(url, headers=headers, json=new_entry) # process_text = str(post_return.text) # process_status_code = str(post_return.status_code) # logger.info(primary_id + ' text ' + process_text) # logger.info(primary_id + ' status_code ' + process_status_code) # # response_dict = {} # try: # response_dict = json.loads(post_return.text) # except ValueError: # logger.info("%s\tValueError", primary_id) # error_fh.write("ERROR %s primaryId did not convert to json\n" % (primary_id)) # return headers, process_text, process_status_code # # if (post_return.status_code == 201): # response_dict = response_dict.replace('"', '') # logger.info("%s\t%s", primary_id, response_dict) # mapping_fh.write("%s\t%s\n" % (primary_id, response_dict)) # elif (post_return.status_code == 401): # logger.info("%s\texpired token", primary_id) # mapping_fh.write("%s\t%s\n" % (primary_id, response_dict)) # token = update_token() # headers = generate_headers(token) # process_post_tuple = process_post(url, headers, new_entry, primary_id, mapping_fh, error_fh) # headers = process_post_tuple[0] # process_text = process_post_tuple[1] # process_status_code = process_post_tuple[2] # elif (post_return.status_code == 500): # logger.info("%s\tFAILURE", primary_id) # mapping_fh.write("%s\t%s\n" % (primary_id, response_dict)) # # if redoing a run and want to skip errors of data having already gone in # # elif (post_return.status_code == 409): # # continue # else: # logger.info("ERROR %s primaryId %s message %s", post_return.status_code, primary_id, response_dict['detail']) # error_fh.write("ERROR %s primaryId %s message %s\n" % (post_return.status_code, primary_id, response_dict['detail'])) # return headers, process_text, process_status_code if __name__ == "__main__": """ call main start function """ logger.info("Starting post_reference_to_api.py") if args["authorization"]: update_token() elif args["commandline"]: logger.info("placeholder for process_single_pmid.py") elif args["file"]: logger.info("placeholder for parse_pubmed_json_reference.py") else: post_references("sanitized", "yes_file_check") logger.info("ending post_reference_to_api.py") # pipenv run python post_reference_to_api.py
the-stack_0_9473
# -*- coding: utf-8 -*- # ____ __ __ ___ _ _ _ # |_ /___ / _|/ _|/ __| (_)___ _ _| |_ # / // -_) _| _| (__| | / -_) ' \ _| # /___\___|_| |_| \___|_|_\___|_||_\__| # """Zeff Cloud training status.""" __author__ = """Lance Finn Helsten <[email protected]>""" __copyright__ = """Copyright © 2019, Ziff, Inc. — All Rights Reserved""" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import enum import datetime import logging import json class TrainingStatus(enum.Enum): """Model training status.""" unknown = "UNKNOWN" queued = "QUEUED" started = "STARTED" progress = "PCT_COMPLETE" complete = "COMPLETE" def __str__(self): """Return a user appropriate name of this status.""" return self.name def __repr__(self): """Return a representation of this status.""" return "<%s.%s>" % (self.__class__.__name__, self.name) class TrainingSessionInfo: """Information about the current training session.""" def __init__(self, status_json): """Create a new training information. :param status_json: The status JSON returned from a train status request. """ self.__data = status_json logging.debug("Training Session JSON: \n%s", self.__data_str()) def __data_str(self): """Return the data as a JSON formatted string.""" return json.dumps(self.__data, indent="\t", sort_keys=True) @property def status(self) -> TrainingStatus: """Return state of current training session.""" value = self.__data["status"] return TrainingStatus(value if value is not None else "UNKNOWN") @property def progress(self) -> float: """Return progress, [0.0, 1.0], of current training session.""" value = self.__data["percentComplete"] return float(value) if value is not None else 0.0 @property def model_version(self) -> str: """Return model version of the current training session.""" value = self.__data["modelVersion"] return str(value) if value is not None else "unknown" @property def model_location(self) -> str: """Return the URL to the model.""" value = self.__data["modelLocation"] return str(value) if value is not None else "unknown" @property def created_timestamp(self) -> datetime.datetime: """Return the timestamp when this training session was created.""" value = self.__data["createdAt"] if value is not None: ret = datetime.datetime.fromisoformat(value) else: ret = datetime.datetime.min return ret @property def updated_timestamp(self) -> datetime.datetime: """Return timestamp when current session status was last updated.""" value = self.__data["updatedAt"] if value is not None: ret = datetime.datetime.fromisoformat(value) else: ret = self.created_timestamp return ret
the-stack_0_9474
""" This module calls the setuplogging function and creates a root logger instance. All future loggers will inherit these yaml configurations from this root logger. Python uses __init__.py files to navigate between folders. They are implicitly executed. """ import logging from logconfig.logconfig import setup_logging from pathlib import Path # make sure logfiles/ directory exists p = Path.cwd() / "src/logfiles" if not p.exists(): Path.mkdir(p) # setuplogging function called from logconfig.py setup_logging() # Root logger instance logging.RootLogger(level=logging.DEBUG) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) logger.info("Root logger setup successful")
the-stack_0_9475
import numpy as np from environments.DeterministicMDP import DeterministicMDP from spaces.DiscreteSpace import DiscreteSpace class SharedLearningChain(DeterministicMDP): def __init__(self, name, num_states, N): # create the state and action space self.inner_size = N state_space = DiscreteSpace(N) action_space = DiscreteSpace(3) # one maps to 2 starting_state = 1 # specify the transition function transition_func = np.zeros((N, 3), dtype=np.int32) # iterate over and fill with the transitions for i in range(N): transition_func[i, 0] = i - 1 transition_func[i, 1] = i + 1 transition_func[i, 2] = 0 transition_func[0, 0] = 0 transition_func[N - 1, 1] = N - 1 transition_func[N - 1, 2] = N - 1 # now we define the reward function reward_function = np.zeros((N, 3), dtype=np.float64) for i in range(N - 1): reward_function[i, 2] = -0.1 reward_function[0, 0] = -0.1 reward_function[0, 2] = -0.1 reward_function[1, 0] = -0.1 reward_function[N-2, 1] = 1 super().__init__(name, num_states, action_space, state_space, transition_func, reward_function, starting_state) def get_name(self): return "shared_chain"
the-stack_0_9476
#!/usr/bin/env python3 # Copyright (c) 2013-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from Pieter's DNS seeder # import re import sys import dns.resolver import collections NSEEDS=512 MAX_SEEDS_PER_ASN=2 MIN_BLOCKS = 2000000 PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") PATTERN_AGENT = re.compile( r"^/Feathercoin:(" r"0.13.(0|1|2|3|99)|" r"0.16.(0|1|2|3|4|99)|" r"0.17.(0|1|99)|" r"0.18.(0|1|2|3|4|99)|" r")") def parseline(line): sline = line.split() if len(sline) < 11: return None m = PATTERN_IPV4.match(sline[0]) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(sline[0]) if m is None: m = PATTERN_ONION.match(sline[0]) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'net': net, 'ip': ipstr, 'port': port, 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, 'sortkey': sortkey, } def dedup(ips): '''deduplicate by address,port''' d = {} for ip in ips: d[ip['ip'],ip['port']] = ip return list(d.values()) def filtermultiport(ips): '''Filter out hosts with more nodes per IP''' hist = collections.defaultdict(list) for ip in ips: hist[ip['sortkey']].append(ip) return [value[0] for (key,value) in list(hist.items()) if len(value)==1] def lookup_asn(net, ip): ''' Look up the asn for an IP (4 or 6) address by querying cymry.com, or None if it could not be found. ''' try: if net == 'ipv4': ipaddr = ip prefix = '.origin' else: # http://www.team-cymru.com/IP-ASN-mapping.html res = str() # 2001:4860:b002:23::68 for nb in ip.split(':')[:4]: # pick the first 4 nibbles for c in nb.zfill(4): # right padded with '0' res += c + '.' # 2001 4860 b002 0023 ipaddr = res.rstrip('.') # 2.0.0.1.4.8.6.0.b.0.0.2.0.0.2.3 prefix = '.origin6' asn = int([x.to_text() for x in dns.resolver.query('.'.join( reversed(ipaddr.split('.'))) + prefix + '.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) return asn except Exception: sys.stderr.write('ERR: Could not resolve ASN for "' + ip + '"\n') return None # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_per_net): # Sift out ips by type ips_ipv46 = [ip for ip in ips if ip['net'] in ['ipv4', 'ipv6']] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] # Filter IPv46 by ASN, and limit to max_per_net per network result = [] net_count = collections.defaultdict(int) asn_count = collections.defaultdict(int) for ip in ips_ipv46: if net_count[ip['net']] == max_per_net: continue asn = lookup_asn(ip['net'], ip['ip']) if asn is None or asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 net_count[ip['net']] += 1 result.append(ip) # Add back Onions (up to max_per_net) result.extend(ips_onion[0:max_per_net]) return result def ip_stats(ips): hist = collections.defaultdict(int) for ip in ips: if ip is not None: hist[ip['net']] += 1 return '%6d %6d %6d' % (hist['ipv4'], hist['ipv6'], hist['onion']) def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] print('\x1b[7m IPv4 IPv6 Onion Pass \x1b[0m', file=sys.stderr) print('%s Initial' % (ip_stats(ips)), file=sys.stderr) # Skip entries with invalid address. ips = [ip for ip in ips if ip is not None] print('%s Skip entries with invalid address' % (ip_stats(ips)), file=sys.stderr) # Skip duplicattes (in case multiple seeds files were concatenated) ips = dedup(ips) print('%s After removing duplicates' % (ip_stats(ips)), file=sys.stderr) # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] print('%s Enforce minimal number of blocks' % (ip_stats(ips)), file=sys.stderr) # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] print('%s Require service bit 1' % (ip_stats(ips)), file=sys.stderr) # Require at least 50% 30-day uptime for clearnet, 10% for onion. req_uptime = { 'ipv4': 50, 'ipv6': 50, 'onion': 10, } ips = [ip for ip in ips if ip['uptime'] > req_uptime[ip['net']]] print('%s Require minimum uptime' % (ip_stats(ips)), file=sys.stderr) # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(ip['agent'])] print('%s Require a known and recent user agent' % (ip_stats(ips)), file=sys.stderr) # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Filter out hosts with multiple bitcoin ports, these are likely abusive ips = filtermultiport(ips) print('%s Filter out hosts with multiple bitcoin ports' % (ip_stats(ips)), file=sys.stderr) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) print('%s Look up ASNs and limit results per ASN and per net' % (ip_stats(ips)), file=sys.stderr) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print('[%s]:%i' % (ip['ip'], ip['port'])) else: print('%s:%i' % (ip['ip'], ip['port'])) if __name__ == '__main__': main()
the-stack_0_9479
from django.shortcuts import render, get_object_or_404, redirect from django.views.generic import DetailView from django.utils.translation import gettext as _ from froide.account.preferences import get_preferences_for_user from froide.helper.utils import render_403 from ..models import FoiRequest, FoiEvent, FoiAttachment from ..forms.preferences import request_page_tour_pref, message_received_tour_pref from ..auth import can_read_foirequest, can_write_foirequest, check_foirequest_auth_code def shortlink(request, obj_id, url_path=""): foirequest = get_object_or_404(FoiRequest, pk=obj_id) if not can_read_foirequest(foirequest, request): return render_403(request) url = foirequest.get_absolute_url() if url_path: url_path = url_path[1:] return redirect(url + url_path) def auth(request, obj_id, code): foirequest = get_object_or_404(FoiRequest, pk=obj_id) if check_foirequest_auth_code(foirequest, code): request.session["pb_auth"] = code return redirect(foirequest) if can_read_foirequest(foirequest, request): return redirect(foirequest) return render_403(request) def can_see_attachment(att, can_write): if att.approved: return True if att.redacted_id and not can_write: return False if att.converted_id and not can_write: return False return True def show_foirequest( request, obj, template_name="foirequest/alpha/show.html", context=None, status=200 ): if context is None: context = {} context.update(get_foirequest_context(request, obj)) return render(request, template_name, context, status=status) class FoiRequestView(DetailView): queryset = FoiRequest.objects.select_related( "public_body", "jurisdiction", "user", "law", ).prefetch_related( "tags", ) template_name = "foirequest/alpha/show.html" def get(self, request, *args, **kwargs): self.object = self.get_object() if not can_read_foirequest(self.object, self.request): return render_403(self.request) context = self.get_context_data(object=self.object) return self.render_to_response(context) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) obj = self.object request = self.request context.update(get_foirequest_context(request, obj)) return context def get_foirequest_context(request, obj): context = {} all_attachments = FoiAttachment.objects.select_related("redacted").filter( belongs_to__request=obj ) can_write = can_write_foirequest(obj, request) messages = obj.get_messages(with_tags=can_write) for message in messages: message.request = obj message.all_attachments = [ a for a in all_attachments if a.belongs_to_id == message.id ] # Preempt attribute access for att in message.all_attachments: att.belongs_to = message message.listed_attachments = [ a for a in all_attachments if a.belongs_to_id == message.id and can_see_attachment(a, can_write) ] message.hidden_attachments = [ a for a in message.listed_attachments if a.is_irrelevant ] message.can_edit_attachments = bool( [a for a in message.listed_attachments if a.can_edit] ) message.approved_attachments = [ a for a in message.listed_attachments if a.approved and a not in message.hidden_attachments ] message.unapproved_attachments = [ a for a in message.listed_attachments if not a.approved and a not in message.hidden_attachments ] events = ( FoiEvent.objects.filter(request=obj) .select_related("user", "request", "public_body") .order_by("timestamp") ) event_count = len(events) last_index = event_count for message in reversed(obj.messages): message.events = [ ev for ev in events[:last_index] if ev.timestamp >= message.timestamp ] last_index = last_index - len(message.events) # TODO: remove active_tab active_tab = "info" if can_write: active_tab = get_active_tab(obj, context) context.update({"object": obj, "active_tab": active_tab, "preferences": {}}) if can_write: preferences = get_preferences_for_user( request.user, [request_page_tour_pref, message_received_tour_pref] ) context.update({"preferences": preferences}) if ( obj.reply_received() and not preferences["foirequest_messagereceived_tour"].value ): context.update( {"foirequest_messagereceived_tour": get_messagereceived_tour_data()} ) elif not preferences["foirequest_requestpage_tour"].value: context.update({"foirequest_requestpage_tour": get_requestpage_tour_data()}) return context def get_active_tab(obj, context): if "postal_reply_form" in context: return "add-postal-reply" elif "postal_message_form" in context: return "add-postal-message" elif "status_form" in context: return "set-status" elif "send_message_form" in context: return "write-message" elif "escalation_form" in context: return "escalate" if "active_tab" in context: return context["active_tab"] if obj.awaits_classification(): return "set-status" elif obj.is_overdue() and obj.awaits_response(): return "write-message" return "info" def get_base_tour_data(): return { "i18n": { "done": _("👋 Goodbye!"), "next": _("Next"), "previous": _("Previous"), "close": _("Close"), "start": _("Next"), } } def get_requestpage_tour_data(): return { **get_base_tour_data(), "steps": [ { "element": "#infobox .info-box__header", "popover": { "title": _("Status of request"), "description": _( """Here you can see the status your request. Below you can update the status of your request when you receive a response.""" ), }, }, { "element": "#due-date", "popover": { "title": _("Deadline"), "description": _( """This is the deadline for your request. If the public body has not replied by then, we will let you know, so you can send a reminder. You can also adjust the date if necessary.""" ), }, }, { "element": "#share-links", "popover": { "title": _("Share links"), "description": _( """Here are some quick links for you to share your request with others.""" ), }, }, { "element": "#download-links", "popover": { "title": _("Download"), "description": _( """You can download all messages of your request. The RSS link allows you to subscribe to the request in a feed reader.""" ), }, }, { "element": "#correspondence-tab", "popover": { "title": _("Messages in this request"), "description": _( """Below you find all messages that you sent and received in this request. When you receive a response it appears at the end and we let you know about it via email.""" ), }, }, { "element": "#correspondence .alpha-message .alpha-message__head", "popover": { "title": _("Details of your message"), "description": _( """This is your message. There's more information e.g. about the delivery status of your message when you click on the “Details” link.""" ), }, "position": "top-center", }, { "element": ".write-message-top-link", "popover": { "title": _("Need to reply or send a reminder?"), "description": _( """This button takes you to the send message form.""" ), }, }, { "element": ".upload-post-link", "popover": { "title": _("Got postal mail?"), "description": _( """When you receive a letter, you can click this button and upload a scan or photo of the letter. You can redact parts of the letter with our tool before publishing it.""" ), }, }, { "element": ".request-title", "popover": { "title": _("The end."), "description": _( """That concludes this tour! We'll let you know via email if anything around your request changes.""" ), "position": "top-center", }, }, ], } def get_messagereceived_tour_data(): return { **get_base_tour_data(), "steps": [ { "element": "#infobox .info-box__header", "popover": { "title": _("Status of request"), "description": _( """After you read your replies you need to update the status of your request here below.""" ), }, }, { "element": "#correspondence .alpha-message", "popover": { "title": _("Message toolbar"), "description": _( """The “Redact” button allows you to redact the text of a message in case sensitive information is accidentally not automatically removed. The “Problem?” allows you to notify our moderation team, if you have a problem with a message.""" ), "position": "bottom-center", }, }, { "element": ".reply-form__wrap", "popover": { "title": _("Reply"), "description": _( """At the bottom of the page you can send replies to the public body or start a mediation process with the mediation authority.""" ), "position": "top-center", }, }, { "element": "#request-summary", "popover": { "title": _("Got the information you asked for?"), "description": _( """When you received documents, you can write a summary of what you have learned.""" ), }, }, { "element": ".request-title", "popover": { "title": _("The end."), "description": _("""That concludes this tour!"""), "position": "top-center", }, }, ], }
the-stack_0_9484
import os.path import config.basic ################################################################ # Configurations for processing ################################################################ # This is where all of the output files are stored # Must be writable and have lots of free space... #base_results_directory = "/home/fs01/lgs23/PALFA/results" base_results_directory = "/mnt/data1/adam_dev/results" # The following is the name of the scratch working directory # basename on the individual processing nodes base_working_directory = "/tmp" # The following is the path where the temporary working directory # should be created. This could be /dev/shm, or simply another # directory on the worker node. base_tmp_dir= "/tmp" # Should not need to change the names of the zaplists... zaplistdir = os.path.join(config.basic.pipelinedir, "lib", "zaplists") default_zaplist = os.path.join(zaplistdir, "PALFA.zaplist") # The following don't currently get used. They are placeholders. num_cores = 1 # The number of cores to use/request for each job use_hyperthreading = False # Whether or not to use HyperThreading # Do only single-pulse search? Added by LGS do_noaccel = True import processing_check processing_check.processing.populate_configs(locals()) processing_check.processing.check_sanity()
the-stack_0_9485
import setuptools from distutils.core import Extension with open("README.md") as f: long_description = f.read() with open("./src/viztracer/__init__.py") as f: for line in f.readlines(): if line.startswith("__version__"): # __version__ = "0.9" delim = '"' if '"' in line else "'" version = line.split(delim)[1] break else: print("Can't find version! Stop Here!") exit(1) setuptools.setup( name="viztracer", version=version, author="Tian Gao", author_email="[email protected]", description="A debugging and profiling tool that can trace and visualize python code execution", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/gaogaotiantian/viztracer", packages=setuptools.find_packages("src"), package_dir={"": "src"}, package_data={ "viztracer": [ "html/*.js", "html/*.css", "html/*.html" ] }, ext_modules=[ Extension( "viztracer.snaptrace", sources=[ "src/viztracer/modules/util.c", "src/viztracer/modules/snaptrace.c" ], extra_link_args=["-lpthread"] ) ], classifiers=[ "Development Status :: 4 - Beta", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Operating System :: MacOS", "Operating System :: POSIX :: Linux", "Operating System :: Microsoft :: Windows", "Topic :: Software Development :: Quality Assurance", "Topic :: Software Development :: Bug Tracking", "Topic :: System :: Logging" ], python_requires=">=3.6", extras_require={ "full": ["rich", "orjson"] }, entry_points={ "console_scripts": [ "viztracer = viztracer:main", "vizviewer = viztracer:viewer_main", "vdb = viztracer:sim_main" ] }, )
the-stack_0_9486
from st2actions.runners.pythonrunner import Action import requests __all__ = [ 'NetboxBaseAction' ] class NetboxBaseAction(Action): """Base Action for all Netbox API based actions """ def __init__(self, config): super(NetboxBaseAction, self).__init__(config) def get(self, endpoint_uri, **kwargs): """Make a get request to the API URI passed in """ self.logger.debug("Calling base get with kwargs: {}".format(kwargs)) if self.config['use_https']: url = 'https://' else: url = 'http://' url = url + self.config['hostname'] + endpoint_uri headers = { 'Authorization': 'Token ' + self.config['api_token'], 'Accept': 'application/json' } # transform `in__id` if present if kwargs.get('id__in'): kwargs['id__in'] = ','.join(kwargs['id__in']) self.logger.debug('id__in transformed to {}'.format(kwargs['id__in'])) r = requests.get(url, verify=self.config['ssl_verify'], headers=headers, params=kwargs) return {'raw': r.json()}
the-stack_0_9487
#!/usr/bin/python # -*- coding: utf-8 -*- r""" This bot uses external filtering programs for munging text. For example: python pwb.py piper -filter:"tr A-Z a-z" -page:Wikipedia:Sandbox Would lower case the article with tr(1). Muliple -filter commands can be specified: python pwb.py piper -filter:cat -filter:"tr A-Z a-z" -filter:"tr a-z A-Z" \ -page:Wikipedia:Sandbox Would pipe the article text through cat(1) (NOOP) and then lower case it with tr(1) and upper case it again with tr(1) The following parameters are supported: -always Always commit changes without asking you to accept them -filter: Filter the article text through this program, can be given multiple times to filter through multiple programs in the order which they are given The following generators and filters are supported: &params; """ # # (C) Pywikibot team, 2008-2019 # # Distributed under the terms of the MIT license. # from __future__ import absolute_import, division, unicode_literals import os import pipes import tempfile import pywikibot from pywikibot import pagegenerators from pywikibot.bot import (MultipleSitesBot, ExistingPageBot, NoRedirectPageBot, AutomaticTWSummaryBot) from pywikibot.tools import UnicodeType # This is required for the text that is shown when you run this script # with the parameter -help. docuReplacements = {'&params;': pagegenerators.parameterHelp} # noqa: N816 class PiperBot(MultipleSitesBot, ExistingPageBot, NoRedirectPageBot, AutomaticTWSummaryBot): """Bot for munging text using external filtering programs.""" summary_key = 'piper-edit-summary' def __init__(self, generator, **kwargs): """ Initializer. @param generator: The page generator that determines on which pages to work on. @type generator: generator """ self.availableOptions.update({ 'filters': [], }) super(PiperBot, self).__init__(generator=generator, **kwargs) @property def summary_parameters(self): """Return the filter parameter.""" return {'filters': ', '.join(self.getOption('filters'))} def pipe(self, program, text): """Pipe a given text through a given program. @return: processed text after piping @rtype: str """ if not isinstance(text, str): # py2-py3 compatibility text = text.encode('utf-8') pipe = pipes.Template() pipe.append(str(program), '--') # py2-py3 compatibility # Create a temporary filename to save the piped stuff to temp_filename = '%s.%s' % (tempfile.mktemp(), 'txt') with pipe.open(temp_filename, 'w') as file: file.write(text) # Now retrieve the munged text with open(temp_filename, 'r') as file: unicode_text = file.read() if not isinstance(unicode_text, UnicodeType): # py2-py3 compatibility unicode_text = unicode_text.decode('utf-8') # clean up os.unlink(temp_filename) return unicode_text def treat_page(self): """Load the given page, do some changes, and save it.""" # Load the page text = self.current_page.text # Munge! for program in self.getOption('filters'): text = self.pipe(program, text) # only save if something was changed self.put_current(text) def main(*args): """Create and run a PiperBot instance from the given command arguments.""" local_args = pywikibot.handle_args(args) # This factory is responsible for processing command line arguments # that are also used by other scripts and that determine on which pages # to work on. gen_factory = pagegenerators.GeneratorFactory() # The program to pipe stuff through filters = [] options = {} # Parse command line arguments for arg in local_args: option, sep, value = arg.partition(':') if option == '-filter': filters.append(value) elif option == '-always': options['always'] = True else: # check if a standard argument like # -start:XYZ or -ref:Asdf was given. gen_factory.handleArg(arg) options['filters'] = filters gen = gen_factory.getCombinedGenerator(preload=True) if gen: # The preloading generator is responsible for downloading multiple # pages from the wiki simultaneously. bot = PiperBot(gen, **options) bot.run() return True else: pywikibot.bot.suggest_help(missing_generator=True) return False if __name__ == '__main__': main()
the-stack_0_9488
class Solution: """ @param nums: A set of numbers @return: A list of lists """ def subsets(self, nums): # write your code here if not nums: return [[]] nums = sorted(nums) res = [] self.helper(res, [], nums, 0) return res def helper(self, res, part, nums, pos): res.append(list(part)) for i in range(pos, len(nums)): part.append(nums[i]) self.helper(res, part, nums, i + 1) part.pop() s=Solution() print(s.subsets([1]))
the-stack_0_9492
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Tests for the SKA Dish simulator. """ import pkg_resources import time import pytest from unittest import mock from tango_simlib import tango_sim_generator from ska_dish_master_mid.dish_master_behaviour import AzEl, OverrideDish, get_enum_str, set_enum FGO_FILE_PATH = pkg_resources.resource_filename("ska_dish_master_mid", "dish_master.fgo") JSON_FILE_PATH = pkg_resources.resource_filename("ska_dish_master_mid", "dish_master_SimDD.json") class TestMpiDshModel: @pytest.fixture(scope="function") def provision_setup(self): model = tango_sim_generator.configure_device_models( [FGO_FILE_PATH, JSON_FILE_PATH], "test/nodb/mpidish" ) return model["test/nodb/mpidish"], OverrideDish() def test_update_desired_pointing_history(self, provision_setup): """Check the logic in get_new_pointing_coordinates and that the update gets applied correctly """ # Note: coords are are sets of 3: [timestamp, azim, elev] device_model, dish_override = provision_setup now = time.time() now_millisec = now * 1000.0 dish_override.desired_pointings = [[now_millisec + 10.0, 2.0, 3.0]] desired_pointing_coordinates = [now_millisec + 40.0, 5.0, 6.0] program_track_table_coordinates = [ now_millisec + 70.0, 8.0, 9.0, now_millisec + 100.0, 11.0, 12.0, ] # desiredPointing is newest, so must be used dish_override.last_coordinate_update_timestamp = now - 5.0 device_model.sim_quantities["programTrackTable"].set_val( program_track_table_coordinates, now - 3.0 ) device_model.sim_quantities["desiredPointing"].set_val( desired_pointing_coordinates, now - 2.0 ) current_pointings = list(dish_override.desired_pointings) dish_override.update_desired_pointing_history(device_model) expected_pointings = current_pointings + [desired_pointing_coordinates] assert dish_override.desired_pointings == expected_pointings # programTrackTable is newest, so must be used dish_override.last_coordinate_update_timestamp = now - 5.0 device_model.sim_quantities["desiredPointing"].set_val( desired_pointing_coordinates, now - 3.0 ) device_model.sim_quantities["programTrackTable"].set_val( program_track_table_coordinates, now - 2.0 ) current_pointings = list(dish_override.desired_pointings) dish_override.update_desired_pointing_history(device_model) expected_pointings = ( current_pointings + [program_track_table_coordinates[0:3]] + [program_track_table_coordinates[3:6]] ) assert dish_override.desired_pointings == expected_pointings # Neither is newest, so no update expected current_pointings = list(dish_override.desired_pointings) dish_override.last_coordinate_update_timestamp = now device_model.sim_quantities["desiredPointing"].set_val( desired_pointing_coordinates, now - 2.0 ) device_model.sim_quantities["programTrackTable"].set_val( program_track_table_coordinates, now - 3.0 ) dish_override.update_desired_pointing_history(device_model) assert dish_override.desired_pointings == current_pointings device_model.sim_quantities["desiredPointing"].set_val( desired_pointing_coordinates, now - 3.0 ) device_model.sim_quantities["programTrackTable"].set_val( program_track_table_coordinates, now - 2.0 ) dish_override.update_desired_pointing_history(device_model) assert dish_override.desired_pointings == current_pointings # New updates, but timestamps in the past, so no update expected desired_pointing_coordinates = [now_millisec - 40.0, 5.0, 6.0] program_track_table_coordinates = [ now_millisec - 60.0, 8.0, 9.0, now_millisec - 50.0, 10.0, 11.0, ] dish_override.last_coordinate_update_timestamp = now - 10 device_model.sim_quantities["desiredPointing"].set_val(desired_pointing_coordinates, now) device_model.sim_quantities["programTrackTable"].set_val( program_track_table_coordinates, now - 1.0 ) dish_override.update_desired_pointing_history(device_model) assert dish_override.desired_pointings == current_pointings dish_override.last_coordinate_update_timestamp = now - 10 device_model.sim_quantities["desiredPointing"].set_val( desired_pointing_coordinates, now - 1.0 ) device_model.sim_quantities["programTrackTable"].set_val( program_track_table_coordinates, now ) dish_override.update_desired_pointing_history(device_model) assert dish_override.desired_pointings == current_pointings def test_pointing_state_reports_track_when_on_target(self, provision_setup): def _update_pointing_state(device_model, dish_override): now = time.time() # ensure dish is in allowed mode before requesting track # track command will change pointing state to slew set_enum(device_model.sim_quantities["dishMode"], "OPERATE", now) dish_override.action_track(device_model) # update pointing state to TRACK if dish is on target, otherwise report slew dish_override.update_movement_attributes(device_model, now) current_pointing_state = get_enum_str(device_model.sim_quantities["pointingState"]) return current_pointing_state device_model, dish_override = provision_setup # ensure pointing state reports TRACK for requested and # actual position default values of AzEl(0, 30) current_pointing_state = _update_pointing_state(device_model, dish_override) assert current_pointing_state == "TRACK" # ensure pointing state reports SLEW when the dish is not on target dish_override.requested_position = AzEl(azim=10.0, elev=40.0) current_pointing_state = _update_pointing_state(device_model, dish_override) assert current_pointing_state == "SLEW" # move the dish to the desired position and check that pointing state is TRACK dish_override.actual_position = AzEl(azim=10.0, elev=40.0) current_pointing_state = _update_pointing_state(device_model, dish_override) assert current_pointing_state == "TRACK" def test_achieved_pointing_changes_when_dish_is_stowing(self, provision_setup): device_model, dish_override = provision_setup # send the dish closer to the stow position dish_override.requested_position = AzEl(azim=0.0, elev=82.0) dish_override.actual_position = AzEl(azim=0.0, elev=82.0) # record initial az, el before movement initial_az = device_model.sim_quantities["achievedPointing"].last_val[1] initial_el = device_model.sim_quantities["achievedPointing"].last_val[2] # request stow mode and move the dish close to the stow position dish_override.action_setstowmode(device_model, tango_dev=mock.Mock()) stow_position = dish_override.STOW_ELEV_POSITION dish_far_from_target = True last_time = time.time() timeout = time.time() + 5 # 5 seconds from now while dish_far_from_target: start_time = time.time() dish_override.pre_update(device_model, start_time, start_time - last_time) last_time = start_time current_el = device_model.sim_quantities["achievedPointing"].last_val[2] dish_far_from_target = not (stow_position - current_el == pytest.approx(1, abs=1)) time.sleep(1) if timeout < start_time: raise Exception("Timeout occurred") current_az = device_model.sim_quantities["achievedPointing"].last_val[1] current_el = device_model.sim_quantities["achievedPointing"].last_val[2] assert current_el != initial_el, "The stow command did not move the dish at all" assert ( current_az == initial_az ), "The dish should only move in elevation to stow, azimuth movement detected" assert stow_position - current_el == pytest.approx( 1, abs=1 ), "Dish did not arrive at stow position"
the-stack_0_9493
def findDecision(obj): #obj[0]: Passanger, obj[1]: Weather, obj[2]: Time, obj[3]: Coupon, obj[4]: Coupon_validity, obj[5]: Gender, obj[6]: Age, obj[7]: Maritalstatus, obj[8]: Children, obj[9]: Education, obj[10]: Occupation, obj[11]: Income, obj[12]: Bar, obj[13]: Coffeehouse, obj[14]: Restaurant20to50, obj[15]: Direction_same, obj[16]: Distance # {"feature": "Age", "instances": 23, "metric_value": 0.9986, "depth": 1} if obj[6]>1: # {"feature": "Children", "instances": 13, "metric_value": 0.8905, "depth": 2} if obj[8]>0: # {"feature": "Income", "instances": 7, "metric_value": 0.9852, "depth": 3} if obj[11]<=3: # {"feature": "Passanger", "instances": 4, "metric_value": 0.8113, "depth": 4} if obj[0]>1: return 'True' elif obj[0]<=1: return 'False' else: return 'False' elif obj[11]>3: return 'False' else: return 'False' elif obj[8]<=0: return 'True' else: return 'True' elif obj[6]<=1: # {"feature": "Distance", "instances": 10, "metric_value": 0.8813, "depth": 2} if obj[16]>1: # {"feature": "Education", "instances": 6, "metric_value": 1.0, "depth": 3} if obj[9]>1: # {"feature": "Weather", "instances": 4, "metric_value": 0.8113, "depth": 4} if obj[1]<=1: return 'False' elif obj[1]>1: return 'True' else: return 'True' elif obj[9]<=1: return 'True' else: return 'True' elif obj[16]<=1: return 'False' else: return 'False' else: return 'False'
the-stack_0_9494
# -*- coding: utf-8 -*- # # Copyright 2017-2021 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Options for BigMLer retrain option """ def get_retrain_options(defaults=None): """Retrain-related options """ if defaults is None: defaults = {} options = { # Resource ID '--id': { 'dest': 'resource_id', 'default': defaults.get('resource_id', None), 'help': ("ID for the resource to be retrained.")}, # path to the data file to be added '--add': { 'dest': 'add', 'default': defaults.get('add', None), 'help': ("Path to the data file to be added.")}, # maximum number of datasets to be used when retraining '--window-size': { 'type': int, 'dest': 'window_size', 'default': defaults.get('window_size', -1), 'help': ("Maximum number of datasets to be used in retraining." " When not set, the new dataset will be added to the" " last one used.")} } return options
the-stack_0_9495
import json from typing import Dict, List from mach_nix.data.providers import WheelDependencyProvider, SdistDependencyProvider, NixpkgsDependencyProvider from mach_nix.data.nixpkgs import NixpkgsIndex from mach_nix.generators import ExpressionGenerator from mach_nix.resolver import ResolvedPkg def unindent(text: str, remove: int): # removes indentation of text # also strips leading newlines return ''.join(map(lambda l: l[remove:], text.splitlines(keepends=True))) class OverridesGenerator(ExpressionGenerator): def __init__( self, py_ver, nixpkgs: NixpkgsIndex, pypi_fetcher_commit, pypi_fetcher_sha256, disable_checks, *args, **kwargs): self.nixpkgs = nixpkgs self.disable_checks = disable_checks self.pypi_fetcher_commit = pypi_fetcher_commit self.pypi_fetcher_sha256 = pypi_fetcher_sha256 self.py_ver_nix = py_ver.nix() super(OverridesGenerator, self).__init__(*args, **kwargs) def generate(self, reqs) -> str: pkgs = self.resolver.resolve(reqs) pkgs = dict(sorted(((p.name, p) for p in pkgs), key=lambda x: x[1].name)) return self._gen_python_env(pkgs) def _gen_imports(self): out = f""" {{ pkgs, python, ... }}: with builtins; with pkgs.lib; let pypi_fetcher_src = builtins.fetchTarball {{ name = "nix-pypi-fetcher"; url = "https://github.com/DavHau/nix-pypi-fetcher/tarball/{self.pypi_fetcher_commit}"; # Hash obtained using `nix-prefetch-url --unpack <url>` sha256 = "{self.pypi_fetcher_sha256}"; }}; pypiFetcher = import pypi_fetcher_src {{ inherit pkgs; }}; fetchPypi = pypiFetcher.fetchPypi; fetchPypiWheel = pypiFetcher.fetchPypiWheel; isPyModule = pkg: isAttrs pkg && hasAttr "pythonModule" pkg; normalizeName = name: (replaceStrings ["_"] ["-"] (toLower name)); depNamesOther = [ "depsBuildBuild" "depsBuildBuildPropagated" "nativeBuildInputs" "propagatedNativeBuildInputs" "depsBuildTarget" "depsBuildTargetPropagated" "depsHostHost" "depsHostHostPropagated" "depsTargetTarget" "depsTargetTargetPropagated" "checkInputs" "installCheckInputs" ]; depNamesAll = depNamesOther ++ [ "propagatedBuildInputs" "buildInputs" ]; updatePythonDepsRec = newPkgs: pkg: if ! isPyModule pkg then pkg else let pname = normalizeName (get_pname pkg); newP = if newPkgs ? "${{pname}}" && pkg != newPkgs."${{pname}}" then trace "Updated inherited nixpkgs dep ${{pname}} from ${{pkg.version}} to ${{newPkgs."${{pname}}".version}}" newPkgs."${{pname}}" else pkg; in newP.overrideAttrs (old: mapAttrs (n: v: if elem n depNamesAll then map (p: updatePythonDepsRec newPkgs p) v else v ) old); override = pkg: if hasAttr "overridePythonAttrs" pkg then pkg.overridePythonAttrs else pkg.overrideAttrs; nameMap = {{ pytorch = "torch"; }}; get_pname = pkg: let res = tryEval ( if pkg ? src.pname then pkg.src.pname else if pkg ? pname then let pname = pkg.pname; in if nameMap ? "${{pname}}" then nameMap."${{pname}}" else pname else "" ); in toString res.value; get_passthru = pypi_name: nix_name: # if pypi_name is in nixpkgs, we must pick it, otherwise risk infinite recursion. let python_pkgs = python.pkgs; pname = if hasAttr "${{pypi_name}}" python_pkgs then pypi_name else nix_name; in if hasAttr "${{pname}}" python_pkgs then let result = (tryEval (if isNull python_pkgs."${{pname}}" then {{}} else python_pkgs."${{pname}}".passthru)); in if result.success then result.value else {{}} else {{}}; tests_on_off = enabled: pySelf: pySuper: let mod = {{ doCheck = enabled; doInstallCheck = enabled; }}; in {{ buildPythonPackage = args: pySuper.buildPythonPackage ( args // {{ doCheck = enabled; doInstallCheck = enabled; }} ); buildPythonApplication = args: pySuper.buildPythonPackage ( args // {{ doCheck = enabled; doInstallCheck = enabled; }} ); }}; pname_passthru_override = pySelf: pySuper: {{ fetchPypi = args: (pySuper.fetchPypi args).overrideAttrs (oa: {{ passthru = {{ inherit (args) pname; }}; }}); }}; mergeOverrides = with pkgs.lib; foldl composeExtensions (self: super: {{}}); merge_with_overr = enabled: overr: mergeOverrides [(tests_on_off enabled) pname_passthru_override overr]; """ return unindent(out, 12) def _gen_build_inputs(self, build_inputs_local, build_inputs_nixpkgs) -> str: name = lambda n: f'python-self."{n}"' if '.' in n else n build_inputs_str = ' '.join( name(b) for b in sorted(build_inputs_local | build_inputs_nixpkgs)) return build_inputs_str def _gen_prop_build_inputs(self, prop_build_inputs_local, prop_build_inputs_nixpkgs) -> str: name = lambda n: f'python-self."{n}"' if '.' in n else n prop_build_inputs_str = ' '.join( name(b) for b in sorted(prop_build_inputs_local | prop_build_inputs_nixpkgs)) return prop_build_inputs_str def _gen_overrideAttrs( self, name, ver, circular_deps, nix_name, provider, build_inputs_str, prop_build_inputs_str, keep_src=False): out = f""" "{name}" = override python-super.{nix_name} ( oldAttrs: (mapAttrs (n: v: if elem n depNamesOther then map (dep: updatePythonDepsRec python-self dep) v else v ) oldAttrs) // {{ pname = "{name}"; version = "{ver}"; passthru = (get_passthru "{name}" "{nix_name}") // {{ provider = "{provider}"; }}; buildInputs = with python-self; (map (dep: updatePythonDepsRec python-self dep) (oldAttrs."buildInputs" or [])) ++ [ {build_inputs_str} ]; propagatedBuildInputs = with python-self; (map (dep: updatePythonDepsRec python-self dep) (oldAttrs."propagatedBuildInputs" or [])) ++ [ {prop_build_inputs_str} ];""" if not keep_src: out += f""" src = fetchPypi "{name}" "{ver}";""" if circular_deps: out += f""" pipInstallFlags = "--no-dependencies";""" out += """ } );\n""" return unindent(out, 8) def _gen_builPythonPackage(self, name, ver, circular_deps, nix_name, build_inputs_str, prop_build_inputs_str): out = f""" "{name}" = python-self.buildPythonPackage {{ pname = "{name}"; version = "{ver}"; src = fetchPypi "{name}" "{ver}"; passthru = (get_passthru "{name}" "{nix_name}") // {{ provider = "sdist"; }};""" if circular_deps: out += f""" pipInstallFlags = "--no-dependencies";""" if build_inputs_str.strip(): out += f""" buildInputs = with python-self; [ {build_inputs_str} ];""" if prop_build_inputs_str.strip(): out += f""" propagatedBuildInputs = with python-self; [ {prop_build_inputs_str} ];""" out += """ };\n""" return unindent(out, 8) def _gen_wheel_buildPythonPackage(self, name, ver, circular_deps, nix_name, prop_build_inputs_str, fname): manylinux = "manylinux1 ++ " if 'manylinux' in fname else '' # dontStrip added due to this bug - https://github.com/pypa/manylinux/issues/119 out = f""" "{name}" = python-self.buildPythonPackage {{ pname = "{name}"; version = "{ver}"; src = fetchPypiWheel "{name}" "{ver}" "{fname}"; format = "wheel"; dontStrip = true; passthru = (get_passthru "{name}" "{nix_name}") // {{ provider = "wheel"; }};""" if circular_deps: out += f""" pipInstallFlags = "--no-dependencies";""" if manylinux: out += f""" nativeBuildInputs = [ autoPatchelfHook ]; autoPatchelfIgnoreMissingDeps = true;""" if prop_build_inputs_str.strip() or manylinux: out += f""" propagatedBuildInputs = with python-self; {manylinux}[ {prop_build_inputs_str} ];""" out += """ };\n""" return unindent(out, 8) def _gen_overrides(self, pkgs: Dict[str, ResolvedPkg], overrides_keys): pkg_names_str = "".join( (f"ps.\"{name}\"\n{' ' * 14}" for (name, pkg) in pkgs.items() if pkg.is_root)) check = json.dumps(not self.disable_checks) out = f""" select_pkgs = ps: [ {pkg_names_str.strip()} ]; overrides = manylinux1: autoPatchelfHook: merge_with_overr {check} (python-self: python-super: {{ """ out = unindent(out, 10) for pkg in pkgs.values(): if pkg.name not in overrides_keys: continue overlays_required = True build_inputs_local = {b for b in pkg.build_inputs if b in overrides_keys} build_inputs_nixpkgs = set(pkg.build_inputs) - build_inputs_local prop_build_inputs_local = {b for b in pkg.prop_build_inputs if b in overrides_keys} prop_build_inputs_nixpkgs = set(pkg.prop_build_inputs) - prop_build_inputs_local # convert build inputs to string build_inputs_str = self._gen_build_inputs(build_inputs_local, build_inputs_nixpkgs, ).strip() # convert prop build inputs to string prop_build_inputs_str = self._gen_prop_build_inputs( prop_build_inputs_local, prop_build_inputs_nixpkgs).strip() # SDIST if isinstance(pkg.provider_info.provider, SdistDependencyProvider): # generate package overlays either via `overrideAttrs` if package already exists in nixpkgs, # or by creating it from scratch using `buildPythonPackage` nix_name = self._get_ref_name(pkg.name, pkg.ver) if self.nixpkgs.exists(pkg.name): out += self._gen_overrideAttrs( pkg.name, pkg.provider_info.provider.deviated_version(pkg.name, pkg.ver), pkg.removed_circular_deps, nix_name, 'sdist', build_inputs_str, prop_build_inputs_str) else: out += self._gen_builPythonPackage( pkg.name, pkg.provider_info.provider.deviated_version(pkg.name, pkg.ver), pkg.removed_circular_deps, nix_name, build_inputs_str, prop_build_inputs_str) # WHEEL elif isinstance(pkg.provider_info.provider, WheelDependencyProvider): out += self._gen_wheel_buildPythonPackage( pkg.name, pkg.provider_info.provider.deviated_version(pkg.name, pkg.ver), pkg.removed_circular_deps, self._get_ref_name(pkg.name, pkg.ver), prop_build_inputs_str, pkg.provider_info.wheel_fname) # NIXPKGS elif isinstance(pkg.provider_info.provider, NixpkgsDependencyProvider): nix_name = self.nixpkgs.find_best_nixpkgs_candidate(pkg.name, pkg.ver) out += self._gen_overrideAttrs( pkg.name, pkg.ver, pkg.removed_circular_deps, nix_name, 'nixpkgs', build_inputs_str, prop_build_inputs_str, keep_src=True) end_overlay_section = f""" }}); """ return out + unindent(end_overlay_section, 14) def _get_ref_name(self, name, ver) -> str: if self.nixpkgs.exists(name): return self.nixpkgs.find_best_nixpkgs_candidate(name, ver) return name def _gen_python_env(self, pkgs: Dict[str, ResolvedPkg]): overrides_keys = {p.name for p in pkgs.values()} out = self._gen_imports() + self._gen_overrides(pkgs, overrides_keys) python_with_packages = f""" in {{ inherit overrides select_pkgs; }} """ return out + unindent(python_with_packages, 12)
the-stack_0_9497
# from https://www.datacamp.com/community/tutorials/face-detection-python-opencv # from https://github.com/parulnith/Face-Detection-in-Python-using-OpenCV # Import the necessary libraries import numpy as np import cv2 import matplotlib.pyplot as plt def convertToRGB(image): return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def detect_faces(cascade, test_image, scaleFactor = 1.1): # create a copy of the image to prevent any changes to the original one. image_copy = test_image.copy() #convert the test image to gray scale as opencv face detector expects gray images gray_image = cv2.cvtColor(image_copy, cv2.COLOR_BGR2GRAY) # Applying the haar classifier to detect faces faces_rect = cascade.detectMultiScale(gray_image, scaleFactor=scaleFactor, minNeighbors=5) for (x, y, w, h) in faces_rect: cv2.rectangle(image_copy, (x, y), (x+w, y+h), (0, 255, 0), 2) return image_copy #loading image test_image = cv2.imread('data/baby1.png') #call the function to detect faces haar_cascade_face = cv2.CascadeClassifier('data/haarcascades/haarcascade_frontalface_alt2.xml') faces = detect_faces(haar_cascade_face, test_image) #convert to RGB and display image plt.imshow(convertToRGB(faces)) plt.show()
the-stack_0_9500
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test p2p mempool message. Test that nodes are disconnected if they send mempool messages when bloom filters are not enabled. """ from test_framework.mininode import * from test_framework.test_framework import SchleemsTestFramework from test_framework.util import * class P2PMempoolTests(SchleemsTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.extra_args = [["-peerbloomfilters=0"]] def run_test(self): #connect a mininode aTestNode = NodeConnCB() node = NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], aTestNode) aTestNode.add_connection(node) NetworkThread().start() aTestNode.wait_for_verack() #request mempool aTestNode.send_message(msg_mempool()) aTestNode.wait_for_disconnect() #mininode must be disconnected at this point assert_equal(len(self.nodes[0].getpeerinfo()), 0) if __name__ == '__main__': P2PMempoolTests().main()
the-stack_0_9501
from setuptools import setup, find_packages install_requirements = ['splinter', 'docopt'] version = '0.2.0' try: import importlib except ImportError: install_requirements.append('importlib') setup( name='ticketmachine', version=version, description='The universal travel ticket machine', #long_description=open('README.md').read(), author='Tomas Babej', author_email='[email protected]', license='MIT', url='https://github.com/tbabej/ticketmachine', download_url='https://github.com/tbabej/ticketmachine/downloads', packages=find_packages(exclude=['tests']), include_package_data=True, install_requires=install_requirements, classifiers=[ 'Development Status :: 4 - Beta', ], entry_points={ 'console_scripts': [ 'ticketmachine = ticketmachine.main:main', ] }, )
the-stack_0_9503
import os from spirl.models.closed_loop_spirl_mdl import ClSPiRLMdl from spirl.components.logger import Logger from spirl.utils.general_utils import AttrDict from spirl.configs.default_data_configs.kitchen import data_spec from spirl.components.evaluator import TopOfNSequenceEvaluator from spirl.data.kitchen.src.kitchen_data_loader import KitchenStateSeqDataset from spirl.models.bc_atomic import BCMdl current_dir = os.path.dirname(os.path.realpath(__file__)) fewshot_dataset = KitchenStateSeqDataset( data_path='data/kitchen/kitchen-demo-microwave_kettle_topknob_switch.hdf5', subseq_len=10, ) env = AttrDict( task_list = ['microwave', 'kettle', 'top burner', 'light switch'] ) contra_model_cf = AttrDict( state_dimension=data_spec.state_dim, hidden_size=128, feature_size=32, ) configuration = { 'model': ClSPiRLMdl, 'logger': Logger, 'data_dir': '.', 'epoch_cycles_train': 1, 'evaluator': TopOfNSequenceEvaluator, 'top_of_n_eval': 100, 'top_comp_metric': 'mse', 'batch_size': 128, 'num_epochs': 50, 'fewshot_data': fewshot_dataset, 'fewshot_batch_size': 128, 'offline_data': False, 'contra_config': contra_model_cf, 'contra_ckpt': './experiments/contrastive/kitchen/exact-mixed-all/exact_model.pt', 'bc_model': BCMdl, } configuration = AttrDict(configuration) model_config = AttrDict( state_dim=data_spec.state_dim, action_dim=data_spec.n_actions, n_rollout_steps=10, kl_div_weight=5e-4, nz_enc=128, nz_mid=128, n_processing_layers=5, cond_decode=True, ) bc_model = AttrDict( state_dim=data_spec.state_dim, action_dim=data_spec.n_actions, nz_mid=128, n_processing_layers=5, # checkpt_path=f'{os.environ["EXP_DIR"]}/bc_atomic/kitchen/offline_data/no-topknob', ) # Dataset data_config = AttrDict() data_config.dataset_spec = data_spec data_config.dataset_spec['dataset_path'] = './data/kitchen/kitchen-mixed-no-topknob.hdf5' data_config.dataset_spec.subseq_len = model_config.n_rollout_steps + 1 # flat last action from seq gets cropped
the-stack_0_9504
#!/usr/bin/env python # spongemock __main__.py # author: Noah Krim # email: [email protected] from __future__ import print_function import argparse import re from pyperclip import copy import sys def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) def main(): parser = init_parser() args = parser.parse_args() try: out = mock(' '.join(args.text), args.bias, args.seed or args.strseed or None) except Exception as e: eprint('Error: '+sys.argv[0]+': '+str(e)) return 1 if args.copy: try: copy(out) except Exception: eprint('Warning: '+sys.argv[0]+': could not copy the output to the clipboard because of an unexpected error. ' +'If using Linux, pleaes make sure you have all the proper modules installed for pyperclip ' +'(more info: https://tkinter.unpythonic.net/wiki/How_to_install_Tkinter).') print(out) return 0 def init_parser(): parser = argparse.ArgumentParser(description='Mock some text like spongebob would. mOCk SoMe TexT lIKe SpONGebOb wOuLd.') parser.add_argument('text', nargs='+', help='the text to mock. ThE tExT tO mOCk.') parser.add_argument('-c', '--copy', action='store_true', help='Mocked text will be copied to the clipboard.') parser.add_argument('-b', '--bias', type=float, default=0.5, help='This bias is used to succesively increase the chance of swapping from the previously-mocked case. ' +'A value of `0` will ensure the chance is always 50/50, ' +'and a value of `1` will ensure that after the first random choice the capitalization perfectly oscilates. ' +'Default is `0.5`.') seed_group = parser.add_mutually_exclusive_group() seed_group.add_argument('-s', '--seed', type=parsable_seed, help='Seed for random number generator. Can be any number or string (numbers are parsed).') seed_group.add_argument('-S', '--strseed', help='Seed for random number generator. Does not attempt to parse the string to a number.') return parser def parsable_seed(str_seed): # Try int parse if re.match(r'^-?\d+$', str_seed): return int(float(str_seed)) # Try float parse try: return float(str_seed) except Exception: pass return str_seed if __name__ == '__main__': if __package__ is None: from os import path sys.path.append( path.dirname(path.abspath(__file__) ) ) from spongemock import mock else: from .spongemock import mock main() else: from .spongemock import mock
the-stack_0_9506
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import datetime # 用于管理日期时间 import os.path # 来管理路径 import sys # 用于找到脚本名称(argv[0]) # 导入BackTrader平台 import backtrader as bt # 创建一个策略 class TestStrategy(bt.Strategy): params = ( ('deep', -0.3), ('printlog', False), ('profit',0.3), ('isA', False), ('onlyprintgood',True) ) def log(self, txt, dt=None, doprint=False): '''此策略的日志记录功能''' if self.params.printlog or doprint: dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def __init__(self): # 保存对收盘价线最新数据的引用 self.dataclose = self.datas[0].close # 跟踪待处理订单和买入价格/佣金 self.order = None self.buyprice = None self.buycomm = None self.init_cash = self.broker.getvalue() def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # 做多/做空 订单 已提交/已执行 到/被代理 - 无事可做 return # 检查订单是否已经完成 # 注意:如果没有足够资金,代理可能拒绝订单 if order.status in [order.Completed]: if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # 做空 self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' % (order.executed.price, order.executed.value, order.executed.comm)) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Margin, order.Rejected]: self.log('Order Canceled/Margin/Rejected') self.order = None def notify_trade(self, trade): if not trade.isclosed: return self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def next(self): # 引用的收盘价的日志 self.log('Close, %.2f' % self.dataclose[0]) # 检查订单是否挂起。。。如果是,我们无法发送第二个 if self.order: return # 检查我们是否在市场上 if not self.position: if len(self) > 10 and (self.dataclose[0] - max(self.dataclose)) / max(self.dataclose) <= self.params.deep: # 最大回撤达到deep 买,买,买!!! (应用所有可能的默认参数) self.log('BUY CREATE, %.2f' % self.dataclose[0]) # 跟踪创建的订单以避免第二个订单 if self.params.isA: size = int(self.broker.getvalue()*0.9 / self.dataclose[0]/100)*100 else: size =self.broker.getvalue()*0.9/self.dataclose[0]-0.1 self.order = self.buy(size=size) else: # 已经在市场,我们可能需要做空 if (self.dataclose[0] - self.position.price) / self.position.price >= self.params.profit: # 卖,卖,卖!!! (应用所有可能的默认参数) self.log('SELL CREATE, %.2f' % self.dataclose[0]) # 跟踪创建的订单以避免第二个订单 self.order = self.sell(size=self.position.size) def stop(self): if self.params.isA: self.basesize = int(self.init_cash / self.dataclose[-(len(self)-1)] / 100) * 100 self.rest = self.init_cash- self.basesize * self.dataclose[-(len(self)-1)] else: self.basesize = self.init_cash / self.dataclose[-(len(self)-1)] - 0.1 self.rest = self.init_cash - self.basesize * self.dataclose[-(len(self)-1)] self.basline = self.basesize * self.dataclose[0] + self.rest if self.params.onlyprintgood: if self.broker.getvalue()/self.init_cash - 1 > self.basline/self.init_cash - 1: self.log('(MA deep %f, P %f, profit %f, baseline %f) Ending Value %.2f,baseline Value %.2f' % (self.params.deep, self.params.profit, self.broker.getvalue()/self.init_cash - 1,self.basline/self.init_cash - 1, self.broker.getvalue(),self.basline), doprint=True) else: self.log('(MA deep %f, P %f, profit %f, baseline %f) Ending Value %.2f,baseline Value %.2f' % (self.params.deep, self.params.profit, self.broker.getvalue() / self.init_cash - 1, self.basline / self.init_cash - 1, self.broker.getvalue(), self.basline), doprint=True) if __name__ == '__main__': # 创建一个大脑实例 cerebro = bt.Cerebro() # 添加一个策略(最大跌幅超过deep买,买入后盈利超过profit卖) #cerebro.addstrategy(TestStrategy) #最大回撤达到deep后买入,盈利profit后卖出 cerebro.optstrategy( TestStrategy, deep=[-i/20 for i in range(1, 20)], profit=[i/20 for i in range(1, 20)], isA=True, printlog=False, onlyprintgood=True) # 数据保存在样本的一个子文件夹中。我们需要找到脚本的位置 modpath = os.path.dirname(os.path.abspath(sys.argv[0])) datapath = os.path.join(modpath, '../../datas/orcl-1995-2014.txt') # 创建一个数据槽 data = bt.feeds.YahooFinanceCSVData( dataname=datapath, # 不接收这个日期更早的数据 fromdate=datetime.datetime(2000, 1, 1), # 不接收晚于这个日期的数据 todate=datetime.datetime(2000, 12, 31), reverse=False) import pandas as pd df = pd.read_csv('./samples/candlestick1') df.index = pd.to_datetime(df.pop('id'), unit='s') df.columns = ['high','low','open','close','volume','Adjusted_Close'] df.pop('Adjusted_Close') df = df.sort_index() df1 = df[-345:] import tushare as ts ts.set_token('1eda71057295b5ba834d31d24b572521d24689463e7328ca84fed1d6') pro = ts.pro_api() #df = pro.query('daily', ts_code='600519.SH', start_date='20150123',end_date='20210619') #df = pro.query('daily', ts_code='601318.SH', start_date='20150123', end_date='20210530') df = ts.pro_bar(ts_code='600519.SH', adj='qfq', start_date='20150123', end_date='20210619') df = df.set_index(["trade_date"]) df = df.sort_index(ascending=True) features_considered = ['open', 'close', 'high', 'low', "vol"] features = df[features_considered] features.columns = ['open', 'close', 'high', 'low','volume'] df = features print(df.loc['20150123']) df.index = pd.to_datetime(df.index, format='%Y%m%d') data = bt.feeds.PandasData(dataname=df) # 把数据槽添加到大脑引擎中 cerebro.adddata(data) # 设定我们希望的初始金额 cerebro.broker.setcash(20000000.0) # 根据stake添加一个固定下单量 #cerebro.addsizer(bt.sizers.FixedSize, stake=1) # 设定佣金为0.1%,去掉百分号除以100 cerebro.broker.setcommission(commission=0.001) # 运行所有命令 cerebro.run(maxcpus=1)
the-stack_0_9509
from data import warehouse, word_frequencies from puzzle.heuristics import acrostic from puzzle.puzzlepedia import prod_config from spec.mamba import * BA_PREFIX_TRIE = word_frequencies.load( zip(('bad', 'bag', 'ban', 'bar', 'bat'), [1]*5)) with description('acrostic'): with it('uses a mock trie'): a = acrostic.Acrostic(list('bag'), BA_PREFIX_TRIE) expect(len(a._trie)).to(be_below(100)) with it('yields multi-character solutions'): a = acrostic.Acrostic(list('bag'), BA_PREFIX_TRIE) expect(list(a)).to(contain('bag')) with it('is observable'): a = acrostic.Acrostic(list('bag'), BA_PREFIX_TRIE) subs = mock.Mock() a.subscribe(subs) expect(subs.on_next.call_args).to(equal(mock.call('bag'))) with it('yields unique solutions'): a = acrostic.Acrostic(list('ba') + ['ggg'], BA_PREFIX_TRIE) expect(list(a)).to(have_len(1)) with it('yields multiple multi-character solutions'): a = acrostic.Acrostic(list('ba') + ['dgnrt'], BA_PREFIX_TRIE) expect(list(a)).to(contain('bad', 'bag', 'ban', 'bar', 'bat')) with _description('real data'): with before.all: warehouse.save() prod_config.init() with after.all: prod_config.reset() warehouse.restore() with it('finds simple words'): a = acrostic.Acrostic('cab') expected = [ 'cab', 'ca b', 'c ab', ] for i, (answer, weight) in enumerate(a.items()): expect('#%s = %s @ %s' % (i, answer, weight)).to(equal( '#%s = %s @ %s' % (i, expected[i], weight) )) expect(a.items()).to(have_len(len(expected))) with it('finds important words'): a = acrostic.Acrostic('binary') expect(next(a.items())).to(equal(('binary', 1))) with _it('modestly expensive'): words = [ 'larch', 'simple', 'foray', 'doyen', 'eerily', 'soup', 'must', ] a = acrostic.Acrostic(words) limit = 1000000 for i, (answer, weight) in enumerate(a.items()): if answer.startswith('answer') or i % 1000 == 0: print(answer, weight) if i > limit: print('tried %s' % i) break with _it('crazy expensive'): words = [ 'champion', 'nitpick', 'conspiracy', 'windpipe', 'epinephrine', 'philanthropic', 'sierpinski', 'mississippi', 'pilaf', 'vulpine', 'spinach', 'pinochet', 'porcupine', 'megapixels', 'australopithecus', 'sharpie', 'intrepid', 'insipid', 'robespierre' ] a = acrostic.Acrostic(words) limit = 1000000 for i, (answer, weight) in enumerate(a.items()): if answer.startswith('answer') or i % (limit / 10) == 0: print(answer, weight) if i > limit: print('tried %s' % i) break """ 4/24 a to incipient each rss 120548796 a to incipient opps eii 153396 a to incipient eipe rni 59329 a to incipient ipps epe 174519 a to incipient cmss ede 290375 a to incipient csts rsr 175192 a to incipient opca dsr 752124 a to incipient cisr tnp 87249 a to incipient ilos dps 1290835 a to pntemplates cs tio 770193 a to perempuan usps tio 770193 4/25 + early break in walk when scores are low a to incipient each rss 120548796 a to incipient iste eie 57198 a to incipient cmss dss 1995347 a to incipient imia rsi 697477 a to incipient osrs eip 398559 a to perempuan peas tpe 275152 a to perempuan imcs nss 990710 a to perempuan caar ens 717319 a to perempuan usea tns 523866 a to perempuan epra pii 512601 a to dicipline imps psi 6101411 9/15 38 seconds; 35 seconds a to incipient usui ipi 1.699863585947228e-07 a in incipient isps psr 3.399727171894456e-07 a in incipient rire dns 5.7795361922205745e-06 a i applesauce isls pdo 1.699863585947228e-07 a i applesauce pirs inr 6.799454343788912e-07 a i renaisance csus iss 2.209822661731396e-06 a i renaisance cmaa nsp 3.399727171894456e-07 a i renassance imes nss 5.099590757841683e-07 a can eliminate aisi ds 3.399727171894456e-07 a can eliminate phr dio 1.699863585947228e-07 """
the-stack_0_9510
from unicorn.arm_const import * from ..fuzz import get_fuzz import sys def puts(uc): ptr = uc.reg_read(UC_ARM_REG_R0) assert(ptr != 0) msg = uc.mem_read(ptr, 256) #ptr += 1 #while msg[-1] != b"\0": # msg += uc.mem_read(ptr, 1) # ptr += 1 if b'\0' in msg: msg = msg[:msg.find(b'\0')] print(msg) def putchar(uc): c = uc.reg_read(UC_ARM_REG_R0) assert (c < 256) sys.stdout.write(chr(c)) sys.stdout.flush() def printf(uc): # for now just print out the fmt string ptr = uc.reg_read(UC_ARM_REG_R0) assert(ptr != 0) msg = uc.mem_read(ptr, 256) # ptr += 1 # while msg[-1] != b"\0": # msg += uc.mem_read(ptr, 1) # ptr += 1 if b'\0' in msg: msg = msg[:msg.find(b'\0')] sys.stdout.write(msg.decode('latin1')) sys.stdout.flush() def readline(uc): ptr = uc.reg_read(UC_ARM_REG_R0) l = uc.reg_read(UC_ARM_REG_R1) assert(ptr != 0) data = b'' while len(data) < l: data += get_fuzz(1) if data.endswith(b'\n'): break uc.mem_write(ptr, data) uc.reg_write(UC_ARM_REG_R0, 0) # echo sys.stdout.write(data.decode('latin1')) sys.stdout.flush()
the-stack_0_9513
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import math """ ############# GENERAL GAS CLASS ########### """ class Gas(): def __init__(self,T,P,R_u=8.31447): self.T = T self.P = P self.R_u=R_u self.normalshock=self.Shock(self) def gas_list(self): print(" Code\t","Gas","\n", "----\t","---","\n", "Air\t","Air" ,"\n", "Ar\t\t","Argon" ,"\n" , "CO2\t","Carbon dioxide" ,"\n", "CO\t\t","Carbon monoxide" ,"\n", "N2\t\t","Nitrogen" ,"\n" ) def area(self, diameter): return (np.pi*(diameter**2))/4 def critical_area(self,massflowrate): return massflowrate/(self.P*1000*(self.k**(1/2))*(2/(self.k+1))**((self.k+1)/(2*self.k-2))/((self.R*1000*self.T)**(1/2))) def critical_m_dot(self, Ma, diameter=1): return self.critical_density()*self.area(diameter)*self.critical_speed_of_sound(Ma) def critical_temperature(self, Ma): return self.stagnation_temp(Ma)*2/(self.k+1) def critical_pressure(self): return self.P*(2/(self.k+1))**(self.k/(self.k-1)) def critical_density(self): return self.rho*(2/(self.k+1))**(1/(self.k-1)) def critical_speed_of_sound(self, Ma): return np.sqrt(self.k*self.R*self.critical_temperature(Ma)*1000) def density(self): return self.P/(self.R*self.T) def diameter(self, area): return np.sqrt(4/np.pi*area) def enthalpy(self): return self.cp*self.T def exit_temperature(self,Mach): return self.T/(1+(self.k-1)/2*Mach**2) def exit_pressure(self,Mach): return self.P/(1+(self.k-1)/2*Mach**2)**(self.k/(self.k-1)) def exit_density(self, Mach): return self.rho/(1+(self.k-1)/2*Mach**2)**(1/(self.k-1)) def exit_speed(self, Mach): return Mach*np.sqrt(self.k*self.R*self.exit_temperature(Mach)*1000) def exit_area(self, Throat_Area, Mach): return Throat_Area*(1/Mach)*((2/(self.k+1))*(1+(self.k-1)/2*Mach**2))**((self.k+1)/(2*self.k-2)) def mach_number(self, velocity): return velocity/self.speed_of_sound() def m_dot(self, velocity, diameter=1): return self.density()*self.area(diameter)*velocity def mfr(self,velocity, diameter): return self.critical_pressure()*self.area(diameter)*self.mach_number(velocity)*np.sqrt(self.k/(self.R*self.critical_temperature())) def mass_flowrate(self, velocity, diameter=1): return (self.area(diameter)*self.mach_number(velocity)*self.stagnation_pressure(velocity)*np.sqrt(self.k/(self.R*self.stagnation_temp(velocity))))\ /((1+(self.k-1)*(self.mach_number(velocity)**2)/2)**((self.k+1)/(2*(self.k-1)))) def ma_finder(self, section, area_ratio, show_iterations=False, tolerance=10e-6, method="bisection"): try: if section !="upward" and section !="downward": raise NameError("Please specify the flow by using these keywords: \"upward\" or \"downward\"") def finder(Ma): value = (1/Ma*((1+0.5*(self.k-1)*Ma**2)/(0.5*(self.k+1)))**(0.5*(self.k+1)/(self.k-1))) if method=='golden' or method=='secant': target = abs(value - area_ratio) elif method=='bisection': target = value - area_ratio return target # def check_boundaries(Ma_0, Ma_1): # if section=="upward": # if Ma_0>1 or Ma_1>1: # Ma_0 = 1/Ma_0 # Ma_1 = Ma_0+0.001 # # print("ma kucuk 1 den calisti") # elif section=="downward": # if Ma_0<1 or Ma_1<1: # Ma_0 = 1+Ma_0 # Ma_1 = Ma_0+0.1 # # print("ma buyuk 1 den calisti") if section=="upward": if method=='bisection': Ma=bisection_method( finder,0, 1, tolerance = 10e-6,show_iterations=show_iterations) elif method=='secant': Ma=secant_method( finder,0, 1, tolerance = 10e-6,show_iterations=show_iterations) elif method=='golden': Ma=golden_section(finder,0, 1, tolerance = 10e-6,show_iterations=show_iterations) elif section=="downward": if method=='bisection': Ma=bisection_method( finder,1, 5, tolerance = 10e-6,show_iterations=show_iterations) elif method=='secant': Ma=secant_method( finder,1, 5, tolerance = 10e-6,show_iterations=show_iterations) elif method=='golden': Ma=golden_section(finder,1, 5, tolerance = 10e-6,show_iterations=show_iterations) return Ma except NameError: raise NameError("Please specify the flow by using these keywords: \"upward\" or \"downward\"") from None except ValueError: raise ValueError("Given area is smaller than throat area. Program has terminated.\n Hint: You could change the division number.") from None def plot(self,area_start, area_end, Mach_start, y_axis='T', color_bar='Ma', division=250 ,x_axis='A', method="bisection"): area_upward = np.linspace(area_start, self.throat_area(area_start,Mach_start), division) area_downward = np.linspace(self.throat_area(area_start,Mach_start), area_end, division) area_total = np.concatenate((area_upward,area_downward)) ST = self.stagnation_temp(Mach_start) temp_upward = [] Ma_upward = [] for i in range(division): ratio = self.throat_area_ratio(area_upward[i], area_start, Mach_start) Ma=self.ma_finder("upward",ratio,method=method) Ma_upward.append(Ma) temp_upward.append(self.temperature(Ma, ST)) temp_downward = [] Ma_downward = [] for i in range(division): ratio = self.throat_area_ratio(area_downward[i], area_start, Mach_start) Ma=self.ma_finder("downward",ratio,method=method) Ma_downward.append(Ma) temp_downward.append(self.temperature(Ma, ST)) temp_total = temp_upward +temp_downward Ma_total = Ma_upward +Ma_downward fig = plt.figure(figsize=(10,7.5)) ax = fig.add_subplot(111) xs = np.linspace(0,1,2*division) if y_axis == 'T': y_lbl='Temperature (K)' if color_bar=='Ma': color = Ma_total mp = ax.scatter((xs),(temp_total),c=color,cmap=plt.cm.get_cmap('jet')) c_lbl = 'Mach Number' elif color_bar=='T': mp = ax.scatter((xs),(temp_total),c=temp_total,cmap=plt.cm.get_cmap('jet')) c_lbl = 'T (K)' elif y_axis == 'Ma': y_lbl='Mach Number' if color_bar=='Ma': color = Ma_total mp = ax.scatter((xs),(Ma_total),c=color,cmap=plt.cm.get_cmap('jet')) c_lbl = 'Mach Number' elif color_bar=='T': mp = ax.scatter((xs),(Ma_total),c=temp_total,cmap=plt.cm.get_cmap('jet')) c_lbl = 'T (K)' cb = plt.colorbar(mp) cb.set_label(c_lbl) ax.set(title=r'Converging- Diverging Nozzle', xlabel='Area $m^2$', ylabel=y_lbl) tick_labels=[] for j in np.linspace(0,(2*division),7): if j==2*division: tick_labels.append(round(area_total[-1],4)) else: tick_labels.append(round(area_total[int(j)],4)) plt.xticks(np.linspace(0,1,7),tick_labels) plt.show() def pressure(self, Mach, Stagnation_Pressure): return Stagnation_Pressure/((1+0.5*(self.k-1)*Mach**2)**(self.k/(self.k-1))) def speed_of_sound(self): return np.sqrt(self.k*self.R*self.T*1000) def stagnation_temp(self,Mach): return self.T*(1+(self.k-1)/2*Mach**2) def stagnation_pressure(self,Mach): return self.P*(1+0.5*(self.k-1)*Mach**2)**(self.k/(self.k-1)) def temperature(self, Mach, Stagnation_Temperature): return Stagnation_Temperature/(1+(self.k-1)/2*Mach**2) def throat_area(self,known_area,Mach): return known_area/((1/Mach)*((2/(self.k+1))*(1+(self.k-1)/2*Mach**2))**((self.k+1)/(2*self.k-2))) def throat_area_ratio(self,wanted_area, known_area,known_Mach): return wanted_area/self.throat_area(known_area, known_Mach) class Shock(): def __init__(self, gas): self.gas = gas def P2(self, Ma1, P1): return P1*(1/(self.gas.k+1)*(2*self.gas.k*Ma1**2-(self.gas.k-1))) def Ma2(self,Ma1): return np.sqrt(((self.gas.k-1)*Ma1**2+2)/(2*self.gas.k*Ma1**2-(self.gas.k-1))) def P0_2(self,Stagnation_Pressure, Ma1): return Stagnation_Pressure*((((self.gas.k+1)*Ma1**2)/(2+(self.gas.k-1)*Ma1**2))**(self.gas.k/(self.gas.k-1))\ *((self.gas.k+1)/(2*self.gas.k*Ma1**2-(self.gas.k-1)))**(1/(self.gas.k-1))) def area_shock_star(self, area1_star, Ma1): return area1_star*(self.Ma2(Ma1)/Ma1)*((2+(self.gas.k-1)*Ma1**2)/(2+(self.gas.k-1)*self.Ma2(Ma1)**2))**((self.gas.k+1)/(2*self.gas.k-2)) def Ma_beforeshock(self, P2_P1): return np.sqrt((P2_P1*(self.gas.k+1)+(self.gas.k-1))/(2*self.gas.k)) def T2(self,T1,Ma1): return T1*(2+(self.gas.k-1)*Ma1**2)*(2*self.gas.k*Ma1**2-(self.gas.k-1))/(((self.gas.k+1)**2)*(Ma1**2)) def V2(self, T1, V1): return np.sqrt(2*self.gas.cp*(T1-self.T2(T1, V1/(self.gas.speed_of_sound())))+V1**2) class Air(Gas): def __init__(self,T=298.15,P=101.325): super().__init__(T, P) self.M=28.97 self.k=1.4 self.R=self.R_u/self.M self.cp=1.9327E-10*self.T**4 - 7.9999E-07*self.T**3 + 1.1407E-03*self.T**2 - 4.4890E-01*self.T + 1.0575E+03 self.rho = self.P/(self.R*self.T) class CO2(Gas): def __init__(self,T=298.15,P=101.325): super().__init__(T, P) self.M=44.01 self.k=1.289 self.R=self.R_u/self.M self.cp=0.849 self.rho = self.P/(self.R*self.T) class CO(Gas): def __init__(self,T=298.15,P=101.325): super().__init__(T, P) self.M=28.01 self.k=1.4 self.R=self.R_u/self.M self.cp=1.039 self.rho = self.P/(self.R*self.T) class N2(Gas): def __init__(self,T=298.15,P=101.325): super().__init__(T, P) self.M=28.01 self.k=1.4 self.R=self.R_u/self.M self.cp=1.040 self.rho = self.P/(self.R*self.T) class Ar(Gas): def __init__(self,T=298.15,P=101.325): super().__init__(T, P) self.M=39.95 self.k=1.667 self.R=self.R_u/self.M self.cp=0.5203 self.rho = self.P/(self.R*self.T) """ ############# NUMERICAL METHODS ########### """ def golden_section(func,starting, ending, show_iterations=False, tolerance = 10e-6): gr=(np.sqrt(5)+1)/2-1 dm=tolerance a0 = starting+dm b0 = ending-dm count=0 while True: count+=1 # print(finder(Ma_0)) # print(finder(Ma_1)) d=gr*(b0-a0) a1=a0+d b1=b0-d if abs((a1-b1)/a1)<=tolerance: if 1>=ending: print("The Mach number below unity is: ",a1,"\n") elif starting>=1: print("The Mach number above unity is: ",a1,"\n") break else: if func(a0)>func(b0): a0=a1 b1=b1 else: a0=a0 b0=b1 if show_iterations ==True: print("Iteration ", count, " :",a1) return (a1+b1)/2 def secant_method(func, lower_bound, upper_bound, show_iterations=False,tolerance=10e-6): Ma_0 = (upper_bound+lower_bound)/2 dMa = 0.01 Ma_1 = Ma_0+dMa count=0 while True: count+=1 Ma_2 = Ma_1 - func(Ma_1)*(Ma_1-Ma_0)/(func(Ma_1)-func(Ma_0)) if show_iterations ==True: print("Iteration ", count, " :",Ma_2) if func(Ma_2)<=tolerance: if show_iterations ==True: print("The Mach number below unity is: ",Ma_2,"\n") break else: Ma_0 = Ma_1 Ma_1 = Ma_2 return Ma_2 def bisection_method(func, lower_bound, upper_bound, show_iterations=False,tolerance=10e-6): if lower_bound==0 : lower_bound+=tolerance a=lower_bound b= upper_bound count = 0 while True: count+=1 c = (a+b)/2 if abs(func(c))<=tolerance: if show_iterations ==True: print("The root is: ",c,"\n") break else: if func(a)*func(c)>func(b)*func(c): b=b a=c else: a=a b=c if show_iterations ==True: print("Iteration ", count, " :",c) return c """ ############# ROCKET NOZZLE CLASS ########### """ class Nozzle(Gas): def __init__(self, class_gas): self.T=class_gas.T self.P=class_gas.P self.k=class_gas.k self.M=class_gas.M self.k=class_gas.k self.R=class_gas.R_u/class_gas.M self.cp=class_gas.cp self.rho = class_gas.P/(class_gas.R*class_gas.T) def critical_throat_pressure(self): return self.P*(2/(self.k+1))**(self.k/(self.k-1)) def exit_mach(self,backflow_pressure): if self.ischoked(backflow_pressure): Ma = 1 else: Ma = np.sqrt(5*((self.P/backflow_pressure)**(2/7)-1)) return Ma def ischoked(self, backflow_pressure ): if backflow_pressure < self.critical_pressure(): condition=True else: condition = False return condition def massflowrate(self, backflow_pressure, area): if self.ischoked(backflow_pressure): mdot = (area*self.P*1000)/(np.sqrt(self.R*self.T*1000))*np.sqrt((2*self.k/(self.k-1))*((self.critical_pressure()/self.P)**(2/self.k))*(1-(self.critical_pressure()/self.P)**(1-1/self.k))) else: mdot = (area*self.P*1000)/(np.sqrt(self.R*self.T*1000))*np.sqrt((2*self.k/(self.k-1))*((backflow_pressure/self.P)**(2/self.k))*(1-(backflow_pressure/self.P)**(1-1/self.k))) return mdot class RocketNozzle(Gas): def __init__(self, class_gas): self.T=class_gas.T self.P=class_gas.P self.k=class_gas.k self.M=class_gas.M self.k=class_gas.k self.R=class_gas.R_u/class_gas.M self.cp=class_gas.cp self.rho = class_gas.P/(class_gas.R*class_gas.T) self.normalshock=self.Shock(self) def geometry(self, area_start, area_throat, area_end, division=250, color = 'black'): A_start = area_start A1_star = area_throat A_exit = area_end division = 250 r1=int((A_start/A1_star)/(A_start/A1_star+A_exit/A1_star)*division) r2=int((A_exit/A1_star)/(A_start/A1_star+A_exit/A1_star)*division) area_upward = np.linspace((A_start), (A1_star), r1) area_downward = np.linspace((A1_star), (A_exit), r2) area_total = np.concatenate((area_upward,area_downward)) diameter_total = self.diameter(area_total) # plt.style.use('dark_background') fig = plt.figure(figsize=(12,6)) ax = fig.add_subplot(111) xs = np.linspace(0,1,r1+r2) tick_labels=[] for j in np.linspace(0,(r1+r2),11): if j==r1+r2: tick_labels.append(round(area_total[-1],4)) else: tick_labels.append(round(area_total[int(j)],4)) plt.xticks(np.linspace(0,1,11),tick_labels) plt.plot(xs,diameter_total/2,color=color,linewidth=3) plt.plot(xs,-diameter_total/2,color=color,linewidth=3) centerline,=plt.plot(xs, 0*xs,linewidth=1,color=color) dashes=[30,5,5,5] centerline.set_dashes(dashes) plt.xlabel("Area (m2)") plt.ylabel("Radius (m)") plt.title("Rocket Nozzle Geometry") plt.show() plt.style.use('default') def shock(self, exit_pressure, throat_area, exit_area, start_area, plot=True,division = 250): def shock_finder(A_shock): ratio = A_shock/throat_area M1 = self.ma_finder('downward', ratio) P1 = self.pressure(M1, self.P) T1 = self.temperature(M1, self.T) M2 = self.normalshock.Ma2(M1) P2 = self.normalshock.P2(M1,P1) T2 = self.normalshock.T2(T1, M1) P02 = self.normalshock.P0_2(self.P, M1) A2_star = self.normalshock.area_shock_star(throat_area, M1) ratio2 = exit_area/A2_star Me = self.ma_finder('upward', ratio2) Pe = self.pressure(Me,P02) target = Pe-exit_pressure return target if shock_finder(exit_area)>0: print("There is no shock wave in the rocket nozzle") A_shock = None else: A_shock=bisection_method( shock_finder,throat_area, exit_area, tolerance = 10e-3,show_iterations=True) def shock_plot(start_area): A_start = start_area A1_star = throat_area A_exit = exit_area r1=int((A_start/A1_star)/(A_start/A1_star+A_exit/A1_star)*division) r2=int((A_exit/A1_star)/(A_start/A1_star+A_exit/A1_star)*division) area_upward = np.linspace((start_area), (throat_area), r1) area_downward = np.linspace((throat_area), (exit_area), r2) area_total = np.concatenate((area_upward,area_downward)) def find_closest(A, target): #A must be sorted idx = A.searchsorted(target) idx = np.clip(idx, 1, len(A)-1) left = A[idx-1] right = A[idx] idx -= target - left < right - target return idx idx=find_closest(area_total,A_shock) r=self.diameter(A_shock)/2 plt.style.use('dark_background') self.geometry(start_area, throat_area, exit_area,color='white') y=np.linspace(r,-r) # correction = ((A_shock/throat_area)+(start_area/throat_area))/((exit_area/throat_area)+(start_area/throat_area)) x=A_shock*np.sin(5000*y)+idx/division plt.plot(x,y,color='gold') plt.show() plt.style.use('default') if plot==True: shock_plot(start_area) return A_shock """ ############# RELATIONS CLASS ########### """ class relations: def change_in_entropy(T2,T1,P2,P1,cp,R): return cp*np.log(T2/T1)-R*np.log(P2/P1)
the-stack_0_9514
"""The match_hostname() function from Python 3.3.3, essential when using SSL.""" # Note: This file is under the PSF license as the code comes from the python # stdlib. http://docs.python.org/3/license.html import re import sys # ipaddress has been backported to 2.6+ in pypi. If it is installed on the # system, use it to handle IPAddress ServerAltnames (this was added in # python-3.5) otherwise only do DNS matching. This allows # backports.ssl_match_hostname to continue to be used in Python 2.7. try: from pip._vendor import ipaddress except ImportError: ipaddress = None __version__ = '3.5.0.1' class CertificateError(ValueError): pass def _dnsname_match(dn, hostname, max_wildcards=1): """Matching according to RFC 6125, section 6.4.3 http://tools.ietf.org/html/rfc6125#section-6.4.3 """ pats = [] if not dn: return False # Ported from python3-syntax: # leftmost, *remainder = dn.split(r'.') parts = dn.split(r'.') leftmost = parts[0] remainder = parts[1:] wildcards = leftmost.count('*') if wildcards > max_wildcards: # Issue #17980: avoid denials of service by refusing more # than one wildcard per fragment. A survey of established # policy among SSL implementations showed it to be a # reasonable choice. raise CertificateError( "too many wildcards in certificate DNS name: " + repr(dn)) # speed up common case w/o wildcards if not wildcards: return dn.lower() == hostname.lower() # RFC 6125, section 6.4.3, subitem 1. # The client SHOULD NOT attempt to match a presented identifier in which # the wildcard character comprises a label other than the left-most label. if leftmost == '*': # When '*' is a fragment by itself, it matches a non-empty dotless # fragment. pats.append('[^.]+') elif leftmost.startswith('xn--') or hostname.startswith('xn--'): # RFC 6125, section 6.4.3, subitem 3. # The client SHOULD NOT attempt to match a presented identifier # where the wildcard character is embedded within an A-label or # U-label of an internationalized domain name. pats.append(re.escape(leftmost)) else: # Otherwise, '*' matches any dotless string, e.g. www* pats.append(re.escape(leftmost).replace(r'\*', '[^.]*')) # add the remaining fragments, ignore any wildcards for frag in remainder: pats.append(re.escape(frag)) pat = re.compile(r'\A' + r'\.'.join(pats) + r'\Z', re.IGNORECASE) return pat.match(hostname) def _to_unicode(obj): if isinstance(obj, str) and sys.version_info < (3,): obj = unicode(obj, encoding='ascii', errors='strict') return obj def _ipaddress_match(ipname, host_ip): """Exact matching of IP addresses. RFC 6125 explicitly doesn't define an algorithm for this (section 1.7.2 - "Out of Scope"). """ # OpenSSL may add a trailing newline to a subjectAltName's IP address # Divergence from upstream: ipaddress can't handle byte str ip = ipaddress.ip_address(_to_unicode(ipname).rstrip()) return ip == host_ip def match_hostname(cert, hostname): """Verify that *cert* (in decoded format as returned by SSLSocket.getpeercert()) matches the *hostname*. RFC 2818 and RFC 6125 rules are followed, but IP addresses are not accepted for *hostname*. CertificateError is raised on failure. On success, the function returns nothing. """ if not cert: raise ValueError("empty or no certificate, match_hostname needs a " "SSL socket or SSL context with either " "CERT_OPTIONAL or CERT_REQUIRED") try: # Divergence from upstream: ipaddress can't handle byte str host_ip = ipaddress.ip_address(_to_unicode(hostname)) except ValueError: # Not an IP address (common case) host_ip = None except UnicodeError: # Divergence from upstream: Have to deal with ipaddress not taking # byte strings. addresses should be all ascii, so we consider it not # an ipaddress in this case host_ip = None except AttributeError: # Divergence from upstream: Make ipaddress library optional if ipaddress is None: host_ip = None else: raise dnsnames = [] san = cert.get('subjectAltName', ()) for key, value in san: if key == 'DNS': if host_ip is None and _dnsname_match(value, hostname): return dnsnames.append(value) elif key == 'IP Address': if host_ip is not None and _ipaddress_match(value, host_ip): return dnsnames.append(value) if not dnsnames: # The subject is only checked when there is no dNSName entry # in subjectAltName for sub in cert.get('subject', ()): for key, value in sub: # XXX according to RFC 2818, the most specific Common Name # must be used. if key == 'commonName': if _dnsname_match(value, hostname): return dnsnames.append(value) if len(dnsnames) > 1: raise CertificateError("hostname %r " "doesn't match either of %s" % (hostname, ', '.join(map(repr, dnsnames)))) elif len(dnsnames) == 1: raise CertificateError("hostname %r " "doesn't match %r" % (hostname, dnsnames[0])) else: raise CertificateError("no appropriate commonName or " "subjectAltName fields were found")
the-stack_0_9516
import numpy as np import matplotlib.pyplot as plt # EXAMPLE ON THE GUIDE a = np.arange(-5, 5, 0.1) f_x = np.power(a,2) plt.plot(a, f_x) plt.xlim(-5,5) plt.ylim(-5,15) k = np.array([-2,0,2]) plt.plot(k, k**2, "bo") for i in k: plt.plot(a, (2*i)*a-(i**2)) plt.show()
the-stack_0_9518
""" Plot one week of events loaded from file (starting from the earliest event). Examples: plot_events.py --from events.json Usage: plot_events.py [--from=<FILE>] Options: -h --help Show this screen. -f --from=<FILE> File containing a list of event descriptions [default: default] """ from os.path import join, dirname, exists import sys import random import matplotlib.pyplot as plt import numpy as np import json import pytz import matplotlib.ticker as ticker import re from datetime import datetime, time, timedelta from matplotlib.patches import FancyBboxPatch from PIL import Image from docopt import docopt from datetime import time from math import ceil from collections import namedtuple from typing import List, Dict from schedulingassistant.data import Event from schedulingassistant.conversion_utils import time_to_float # TODO: # * Complete all docstrings for function in this file # * Add tests for `str_to_datetime` DAY_COUNT = 7 def main(sys_args: List[str] = []) -> None: args = parse_args(docopt(__doc__, argv=sys_args)) try: events = extract_events_from(args['event_file']) plot_events(events) return 0 except Exception as e_info: print(e_info) return 1 def parse_args(args: Dict[str, str]) -> Dict[str, any]: """Parse the arguments passed in, and return a dictionary containing the final input values for the application.""" DEFAULT_EVENT_FILE = "generated_events.json" event_file_arg = args['--from'] event_file_path = event_file_arg if event_file_arg == "default": event_file_path = join(dirname(__file__), DEFAULT_EVENT_FILE) if exists(event_file_path): return { 'event_file': event_file_path } else: raise ValueError("File '" + event_file_path + "' could not be found.") def plot_events(events: List[Event]) -> None: fig = plt.figure(figsize=(10, 16)) fig.tight_layout() plt.title('Events', y=1, fontsize=14) ax = fig.add_subplot(1, 1, 1) # X ax.set_xlim(0.5, DAY_COUNT + 0.5) earliest_date = min([e.start_datetime.date() for e in events]) date_labels = [(earliest_date + timedelta(days=i)).strftime("%d/%m/%Y") for i in range(DAY_COUNT + 1)] ax.set_xticks(range(1, DAY_COUNT + 1)) ax.set_xticklabels(date_labels) plt.tick_params(bottom=False) # Hide ticks # Y start_of_day = 0 end_of_day = 24 ax.set_ylim(end_of_day, start_of_day) block_times = np.arange(start_of_day, end_of_day, float(5.0/60.0)) ax.set_yticks(block_times) hour_labels = [("{0}:00".format(int(b)) if b.is_integer() else "") for b in block_times] ax.set_yticklabels(hour_labels) # Create the horizontal timeblock grid lines ax.grid(axis='y', linestyle='-', linewidth=0.3, color="black", alpha=0.05) grid_lines = ax.yaxis.get_gridlines() for h in range(end_of_day): label = "{0}:00".format(h) label_idx = hour_labels.index(label) grid_lines[label_idx].set_alpha(1.0) # Go through and make all hour grid lines bold # https://stackoverflow.com/questions/53781180/polar-plot-put-one-grid-line-in-bold # Plot the events for e in events: plot_event(e, earliest_date, ax) # Save this output to an image file and open it img_name = 'events.png' plt.savefig(img_name, dpi=400, bbox_inches='tight') img = Image.open(img_name) img.show() def extract_events_from(events_file_path: str) -> List[Event]: """todo, also add docstrings to all other functions in this file""" events = [] with open(events_file_path) as events_file: json_events = json.load(events_file) for e in json_events: name = e['name'] start = str_to_datetime(e['start_datetime']) end = str_to_datetime(e['end_datetime']) events.append(Event(name, start, end)) return events def str_to_datetime(input_str: str) -> datetime: """Parse a string `input_str` and return a corresponding `datetime` object.""" microseconds = 0 if '.' in input_str: seconds_decimal_component_match = re.match(r"[^.]*\d+[^.]*(.\d+)", input_str) if seconds_decimal_component_match: decimal_component_str = seconds_decimal_component_match.group(1) input_str = input_str.replace(decimal_component_str, '') microseconds = int(float("0" + decimal_component_str) * 1000000) output = datetime.strptime(input_str, "%Y-%m-%dT%H:%M:%S%z").replace(microsecond=microseconds, tzinfo=pytz.utc) return output def plot_event(e: Event, earliest_date: datetime.date, ax) -> None: boxes = convert_event_to_boxes(e) # An index representing the first day that the start of this event should be on day_offset = (e.start_datetime.date() - earliest_date).days color = rand_hex_col() start_hour = e.start_datetime.hour start_min = e.start_datetime.minute event_label = '{0}:{1:0>2} {2}'.format(start_hour, start_min, e.name) for box_idx in range(len(boxes)): label = event_label if box_idx == 0 else "" draw_event_box(boxes[box_idx], day_offset, label, color, ax) # An `EventBox` represents a window of time that can be drawn with one rectangle on a calendar with multiple days in # different columns. E.g 9am - 10am would be valid `EventBox`, but 11pm - 1am would not as this would have to be broken # down into two windows. EventBox = namedtuple('EventBox', ['column_idx', 'start_time_float', 'end_time_float']) def draw_event_box(box: EventBox, day_offset: int, label: str, color: str, ax): """Draws an event box on the plot using a day index (used internally to calculate the horizontal components of the box, and two start/end floats representing percentages through the day, used to calculate the vertical components.""" top = box.start_time_float bottom = box.end_time_float left = 0.5 + box.column_idx + day_offset # If this event would be drawn outside the view of the plot if left >= 7.0: return padding_between_days = 0.05 right = left + 1 - padding_between_days # Draw boxes and labels on top of everything else z = 2.0 box = FancyBboxPatch( (left, top), abs(right - left), abs(bottom - top), boxstyle="round,pad=-0.0040,rounding_size=0.02", ec="black", fc=color, lw=0.2, zorder=z, mutation_aspect=1) ax.add_patch(box) plt.text(left + 0.01, top + 0.01, label, va='top', fontsize=3, zorder=z) def convert_event_to_boxes(event: Event) -> List[EventBox]: """Takes in an event and converts this into a list of boxes that when combined completely cover the time allocated to this event. Usually, this list will contain a single EventBox as many events start and end on the same day, but any events split across multiple day boundaries will be split into multiple boxes.""" start_date = event.start_datetime.date() end_date = event.end_datetime.date() start_time_float = time_to_float(event.start_datetime.time()) end_time_float = time_to_float(event.end_datetime.time()) days_spanned = (end_date - start_date).days + 1 boxes = [] if days_spanned == 1: boxes.append(EventBox(0, start_time_float, end_time_float)) else: boxes.append(EventBox(0, start_time_float, 24.0)) for i in range(max(0, days_spanned - 2)): boxes.append(EventBox(i + 1, 0.0, 24.0)) boxes.append(EventBox(days_spanned - 1, 0.0, end_time_float)) return boxes # Create rounded box for the event with a random colour # https://stackoverflow.com/questions/58425392/bar-chart-with-rounded-corners-in-matplotlib def rand_hex_col() -> str: r = lambda: 128 + random.randint(0, 127) return '#%02X%02X%02X' % (r(),r(),r()) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
the-stack_0_9519
# Copyright 2020 Dragonchain, Inc. # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # You may obtain a copy of the Apache License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. from typing import TYPE_CHECKING, List, Any from dragonchain import exceptions from dragonchain.lib.dto import eth from dragonchain.lib.dto import btc from dragonchain.lib.dto import bnb from dragonchain.lib.interfaces import storage if TYPE_CHECKING: from dragonchain.lib.dto import model FOLDER = "INTERCHAINS" def save_interchain_client(interchain_client: "model.InterchainModel") -> None: """Save an interchain model to storage""" storage.put_object_as_json(f"{FOLDER}/{interchain_client.blockchain}/{interchain_client.name}", interchain_client.export_as_at_rest()) def does_interchain_exist(blockchain: str, name: str) -> bool: """Check if a specific interchain exists Args: blockchain: the blockchain of the desired client (i.e. bitcoin, ethereum, etc) name: the name (id) of the network to get (user defined on the creation of the interchain) """ if blockchain == "bitcoin": return storage.does_object_exist(f"{FOLDER}/bitcoin/{name}") elif blockchain == "ethereum": return storage.does_object_exist(f"{FOLDER}/ethereum/{name}") elif blockchain == "binance": return storage.does_object_exist(f"{FOLDER}/binance/{name}") else: return False def get_interchain_client(blockchain: str, name: str) -> "model.InterchainModel": """Get a specific interchain client Args: blockchain: the blockchain of the desired client (i.e. bitcoin, ethereum, etc) name: the name (id) of the network to get (user defined on the creation of the interchain) Raises: exceptions.NotFound: When the requested client can't be found """ if blockchain == "bitcoin": return btc.new_from_at_rest(storage.get_json_from_object(f"{FOLDER}/bitcoin/{name}")) elif blockchain == "ethereum": return eth.new_from_at_rest(storage.get_json_from_object(f"{FOLDER}/ethereum/{name}")) elif blockchain == "binance": return bnb.new_from_at_rest(storage.get_json_from_object(f"{FOLDER}/binance/{name}")) else: raise exceptions.NotFound(f"Blockchain network {blockchain} is not supported") def list_interchain_clients(blockchain: str) -> List["model.InterchainModel"]: """Get all of the interchain clients for a specific blockchain type Args: blockchain: The blockchain of the desired clients to get Returns: List of instantiated interchain clients for the specified blockchain """ from_rest_function: Any = None if blockchain == "bitcoin": from_rest_function = btc.new_from_at_rest elif blockchain == "ethereum": from_rest_function = eth.new_from_at_rest elif blockchain == "binance": from_rest_function = bnb.new_from_at_rest else: raise exceptions.NotFound(f"Blockchain network {blockchain} is not supported") return [from_rest_function(storage.get_json_from_object(x)) for x in storage.list_objects(f"{FOLDER}/{blockchain}/")] def set_default_interchain_client(blockchain: str, name: str) -> "model.InterchainModel": """Set the default interchain model for this chain Args: blockchain: the blockchain of the desired client (i.e. bitcoin, ethereum, etc) name: the name (id) of the network to set as default (user defined on the creation of the interchain) Returns: The client for the interchain which was set as default Raises: exceptions.NotFound: When trying to set a default to an interchain that doesn't exist on this chain """ # Make sure the specified interchain exists before setting as default client = get_interchain_client(blockchain, name) storage.put_object_as_json(f"{FOLDER}/default", {"version": "1", "blockchain": blockchain, "name": name}) return client def get_default_interchain_client() -> "model.InterchainModel": """Get the interchain model which has been set as the default for this chain Returns: Instantiated InterchainModel Raises: exceptions.NotFound: When default has not been set, or set default cannot be found NotImplementedError: WHen the saved default is a bad version """ default_dto = storage.get_json_from_object(f"{FOLDER}/default") if default_dto.get("version") == "1": return get_interchain_client(default_dto.get("blockchain"), default_dto.get("name")) else: raise NotImplementedError(f"Default dto error. Version {default_dto.get('version')} not supported") def delete_interchain_client(blockchain: str, name: str) -> None: """Delete an interchain client from this chain Args: blockchain: the blockchain of the desired client (i.e. bitcoin, ethereum, etc) name: the name (id) of the network to delete (user defined on the creation of the interchain) """ storage.delete(f"{FOLDER}/{blockchain}/{name}")
the-stack_0_9520
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012, Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit Tests for openvswitch rpc """ import stubout from neutron.agent import rpc as agent_rpc from neutron.common import topics from neutron.openstack.common import context from neutron.openstack.common import rpc from neutron.plugins.openvswitch.common import constants from neutron.plugins.openvswitch import ovs_neutron_plugin as povs from neutron.tests import base class rpcApiTestCase(base.BaseTestCase): def _test_ovs_api(self, rpcapi, topic, method, rpc_method, **kwargs): ctxt = context.RequestContext('fake_user', 'fake_project') expected_retval = 'foo' if method == 'call' else None expected_msg = rpcapi.make_msg(method, **kwargs) expected_msg['version'] = rpcapi.BASE_RPC_API_VERSION if rpc_method == 'cast' and method == 'run_instance': kwargs['call'] = False self.fake_args = None self.fake_kwargs = None def _fake_rpc_method(*args, **kwargs): self.fake_args = args self.fake_kwargs = kwargs if expected_retval: return expected_retval self.stubs = stubout.StubOutForTesting() self.stubs.Set(rpc, rpc_method, _fake_rpc_method) retval = getattr(rpcapi, method)(ctxt, **kwargs) self.assertEqual(retval, expected_retval) expected_args = [ctxt, topic, expected_msg] for arg, expected_arg in zip(self.fake_args, expected_args): self.assertEqual(arg, expected_arg) def test_delete_network(self): rpcapi = povs.AgentNotifierApi(topics.AGENT) self._test_ovs_api(rpcapi, topics.get_topic_name(topics.AGENT, topics.NETWORK, topics.DELETE), 'network_delete', rpc_method='fanout_cast', network_id='fake_request_spec') def test_port_update(self): rpcapi = povs.AgentNotifierApi(topics.AGENT) self._test_ovs_api(rpcapi, topics.get_topic_name(topics.AGENT, topics.PORT, topics.UPDATE), 'port_update', rpc_method='fanout_cast', port='fake_port', network_type='fake_network_type', segmentation_id='fake_segmentation_id', physical_network='fake_physical_network') def test_tunnel_update(self): rpcapi = povs.AgentNotifierApi(topics.AGENT) self._test_ovs_api(rpcapi, topics.get_topic_name(topics.AGENT, constants.TUNNEL, topics.UPDATE), 'tunnel_update', rpc_method='fanout_cast', tunnel_ip='fake_ip', tunnel_id='fake_id', tunnel_type=None) def test_device_details(self): rpcapi = agent_rpc.PluginApi(topics.PLUGIN) self._test_ovs_api(rpcapi, topics.PLUGIN, 'get_device_details', rpc_method='call', device='fake_device', agent_id='fake_agent_id') def test_update_device_down(self): rpcapi = agent_rpc.PluginApi(topics.PLUGIN) self._test_ovs_api(rpcapi, topics.PLUGIN, 'update_device_down', rpc_method='call', device='fake_device', agent_id='fake_agent_id', host='fake_host') def test_tunnel_sync(self): rpcapi = agent_rpc.PluginApi(topics.PLUGIN) self._test_ovs_api(rpcapi, topics.PLUGIN, 'tunnel_sync', rpc_method='call', tunnel_ip='fake_tunnel_ip', tunnel_type=None) def test_update_device_up(self): rpcapi = agent_rpc.PluginApi(topics.PLUGIN) self._test_ovs_api(rpcapi, topics.PLUGIN, 'update_device_up', rpc_method='call', device='fake_device', agent_id='fake_agent_id', host='fake_host')
the-stack_0_9521
"""Tests for HTMLParser.py.""" import html.parser import pprint import unittest from test import support class EventCollector(html.parser.HTMLParser): def __init__(self, *args, **kw): self.events = [] self.append = self.events.append html.parser.HTMLParser.__init__(self, *args, **kw) def get_events(self): # Normalize the list of events so that buffer artefacts don't # separate runs of contiguous characters. L = [] prevtype = None for event in self.events: type = event[0] if type == prevtype == "data": L[-1] = ("data", L[-1][1] + event[1]) else: L.append(event) prevtype = type self.events = L return L # structure markup def handle_starttag(self, tag, attrs): self.append(("starttag", tag, attrs)) def handle_startendtag(self, tag, attrs): self.append(("startendtag", tag, attrs)) def handle_endtag(self, tag): self.append(("endtag", tag)) # all other markup def handle_comment(self, data): self.append(("comment", data)) def handle_charref(self, data): self.append(("charref", data)) def handle_data(self, data): self.append(("data", data)) def handle_decl(self, data): self.append(("decl", data)) def handle_entityref(self, data): self.append(("entityref", data)) def handle_pi(self, data): self.append(("pi", data)) def unknown_decl(self, decl): self.append(("unknown decl", decl)) class EventCollectorExtra(EventCollector): def handle_starttag(self, tag, attrs): EventCollector.handle_starttag(self, tag, attrs) self.append(("starttag_text", self.get_starttag_text())) class EventCollectorCharrefs(EventCollector): def get_events(self): return self.events def handle_charref(self, data): self.fail('This should never be called with convert_charrefs=True') def handle_entityref(self, data): self.fail('This should never be called with convert_charrefs=True') class TestCaseBase(unittest.TestCase): def get_collector(self): raise NotImplementedError def _run_check(self, source, expected_events, collector=None): if collector is None: collector = self.get_collector() parser = collector for s in source: parser.feed(s) parser.close() events = parser.get_events() if events != expected_events: self.fail("received events did not match expected events" + "\nSource:\n" + repr(source) + "\nExpected:\n" + pprint.pformat(expected_events) + "\nReceived:\n" + pprint.pformat(events)) def _run_check_extra(self, source, events): self._run_check(source, events, EventCollectorExtra(convert_charrefs=False)) def _parse_error(self, source): def parse(source=source): parser = self.get_collector() parser.feed(source) parser.close() with self.assertRaises(html.parser.HTMLParseError): with self.assertWarns(DeprecationWarning): parse() class HTMLParserStrictTestCase(TestCaseBase): def get_collector(self): with support.check_warnings(("", DeprecationWarning), quite=False): return EventCollector(strict=True, convert_charrefs=False) def test_processing_instruction_only(self): self._run_check("<?processing instruction>", [ ("pi", "processing instruction"), ]) self._run_check("<?processing instruction ?>", [ ("pi", "processing instruction ?"), ]) def test_simple_html(self): self._run_check(""" <!DOCTYPE html PUBLIC 'foo'> <HTML>&entity;&#32; <!--comment1a -></foo><bar>&lt;<?pi?></foo<bar comment1b--> <Img sRc='Bar' isMAP>sample text &#x201C; <!--comment2a-- --comment2b--> </Html> """, [ ("data", "\n"), ("decl", "DOCTYPE html PUBLIC 'foo'"), ("data", "\n"), ("starttag", "html", []), ("entityref", "entity"), ("charref", "32"), ("data", "\n"), ("comment", "comment1a\n-></foo><bar>&lt;<?pi?></foo<bar\ncomment1b"), ("data", "\n"), ("starttag", "img", [("src", "Bar"), ("ismap", None)]), ("data", "sample\ntext\n"), ("charref", "x201C"), ("data", "\n"), ("comment", "comment2a-- --comment2b"), ("data", "\n"), ("endtag", "html"), ("data", "\n"), ]) def test_malformatted_charref(self): self._run_check("<p>&#bad;</p>", [ ("starttag", "p", []), ("data", "&#bad;"), ("endtag", "p"), ]) def test_unclosed_entityref(self): self._run_check("&entityref foo", [ ("entityref", "entityref"), ("data", " foo"), ]) def test_bad_nesting(self): # Strangely, this *is* supposed to test that overlapping # elements are allowed. HTMLParser is more geared toward # lexing the input that parsing the structure. self._run_check("<a><b></a></b>", [ ("starttag", "a", []), ("starttag", "b", []), ("endtag", "a"), ("endtag", "b"), ]) def test_bare_ampersands(self): self._run_check("this text & contains & ampersands &", [ ("data", "this text & contains & ampersands &"), ]) def test_bare_pointy_brackets(self): self._run_check("this < text > contains < bare>pointy< brackets", [ ("data", "this < text > contains < bare>pointy< brackets"), ]) def test_illegal_declarations(self): self._parse_error('<!spacer type="block" height="25">') def test_starttag_end_boundary(self): self._run_check("""<a b='<'>""", [("starttag", "a", [("b", "<")])]) self._run_check("""<a b='>'>""", [("starttag", "a", [("b", ">")])]) def test_buffer_artefacts(self): output = [("starttag", "a", [("b", "<")])] self._run_check(["<a b='<'>"], output) self._run_check(["<a ", "b='<'>"], output) self._run_check(["<a b", "='<'>"], output) self._run_check(["<a b=", "'<'>"], output) self._run_check(["<a b='<", "'>"], output) self._run_check(["<a b='<'", ">"], output) output = [("starttag", "a", [("b", ">")])] self._run_check(["<a b='>'>"], output) self._run_check(["<a ", "b='>'>"], output) self._run_check(["<a b", "='>'>"], output) self._run_check(["<a b=", "'>'>"], output) self._run_check(["<a b='>", "'>"], output) self._run_check(["<a b='>'", ">"], output) output = [("comment", "abc")] self._run_check(["", "<!--abc-->"], output) self._run_check(["<", "!--abc-->"], output) self._run_check(["<!", "--abc-->"], output) self._run_check(["<!-", "-abc-->"], output) self._run_check(["<!--", "abc-->"], output) self._run_check(["<!--a", "bc-->"], output) self._run_check(["<!--ab", "c-->"], output) self._run_check(["<!--abc", "-->"], output) self._run_check(["<!--abc-", "->"], output) self._run_check(["<!--abc--", ">"], output) self._run_check(["<!--abc-->", ""], output) def test_starttag_junk_chars(self): self._parse_error("</>") self._parse_error("</$>") self._parse_error("</") self._parse_error("</a") self._parse_error("<a<a>") self._parse_error("</a<a>") self._parse_error("<!") self._parse_error("<a") self._parse_error("<a foo='bar'") self._parse_error("<a foo='bar") self._parse_error("<a foo='>'") self._parse_error("<a foo='>") self._parse_error("<a$>") self._parse_error("<a$b>") self._parse_error("<a$b/>") self._parse_error("<a$b >") self._parse_error("<a$b />") def test_valid_doctypes(self): # from http://www.w3.org/QA/2002/04/valid-dtd-list.html dtds = ['HTML', # HTML5 doctype ('HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" ' '"http://www.w3.org/TR/html4/strict.dtd"'), ('HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" ' '"http://www.w3.org/TR/html4/loose.dtd"'), ('html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ' '"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"'), ('html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" ' '"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd"'), ('math PUBLIC "-//W3C//DTD MathML 2.0//EN" ' '"http://www.w3.org/Math/DTD/mathml2/mathml2.dtd"'), ('html PUBLIC "-//W3C//DTD ' 'XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" ' '"http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg.dtd"'), ('svg PUBLIC "-//W3C//DTD SVG 1.1//EN" ' '"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"'), 'html PUBLIC "-//IETF//DTD HTML 2.0//EN"', 'html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"'] for dtd in dtds: self._run_check("<!DOCTYPE %s>" % dtd, [('decl', 'DOCTYPE ' + dtd)]) def test_declaration_junk_chars(self): self._parse_error("<!DOCTYPE foo $ >") def test_startendtag(self): self._run_check("<p/>", [ ("startendtag", "p", []), ]) self._run_check("<p></p>", [ ("starttag", "p", []), ("endtag", "p"), ]) self._run_check("<p><img src='foo' /></p>", [ ("starttag", "p", []), ("startendtag", "img", [("src", "foo")]), ("endtag", "p"), ]) def test_get_starttag_text(self): s = """<foo:bar \n one="1"\ttwo=2 >""" self._run_check_extra(s, [ ("starttag", "foo:bar", [("one", "1"), ("two", "2")]), ("starttag_text", s)]) def test_cdata_content(self): contents = [ '<!-- not a comment --> &not-an-entity-ref;', "<not a='start tag'>", '<a href="" /> <p> <span></span>', 'foo = "</scr" + "ipt>";', 'foo = "</SCRIPT" + ">";', 'foo = <\n/script> ', '<!-- document.write("</scr" + "ipt>"); -->', ('\n//<![CDATA[\n' 'document.write(\'<s\'+\'cript type="text/javascript" ' 'src="http://www.example.org/r=\'+new ' 'Date().getTime()+\'"><\\/s\'+\'cript>\');\n//]]>'), '\n<!-- //\nvar foo = 3.14;\n// -->\n', 'foo = "</sty" + "le>";', '<!-- \u2603 -->', # these two should be invalid according to the HTML 5 spec, # section 8.1.2.2 #'foo = </\nscript>', #'foo = </ script>', ] elements = ['script', 'style', 'SCRIPT', 'STYLE', 'Script', 'Style'] for content in contents: for element in elements: element_lower = element.lower() s = '<{element}>{content}</{element}>'.format(element=element, content=content) self._run_check(s, [("starttag", element_lower, []), ("data", content), ("endtag", element_lower)]) def test_cdata_with_closing_tags(self): # see issue #13358 # make sure that HTMLParser calls handle_data only once for each CDATA. # The normal event collector normalizes the events in get_events, # so we override it to return the original list of events. class Collector(EventCollector): def get_events(self): return self.events content = """<!-- not a comment --> &not-an-entity-ref; <a href="" /> </p><p> <span></span></style> '</script' + '>'""" for element in [' script', 'script ', ' script ', '\nscript', 'script\n', '\nscript\n']: element_lower = element.lower().strip() s = '<script>{content}</{element}>'.format(element=element, content=content) self._run_check(s, [("starttag", element_lower, []), ("data", content), ("endtag", element_lower)], collector=Collector(convert_charrefs=False)) def test_comments(self): html = ("<!-- I'm a valid comment -->" '<!--me too!-->' '<!------>' '<!---->' '<!----I have many hyphens---->' '<!-- I have a > in the middle -->' '<!-- and I have -- in the middle! -->') expected = [('comment', " I'm a valid comment "), ('comment', 'me too!'), ('comment', '--'), ('comment', ''), ('comment', '--I have many hyphens--'), ('comment', ' I have a > in the middle '), ('comment', ' and I have -- in the middle! ')] self._run_check(html, expected) def test_condcoms(self): html = ('<!--[if IE & !(lte IE 8)]>aren\'t<![endif]-->' '<!--[if IE 8]>condcoms<![endif]-->' '<!--[if lte IE 7]>pretty?<![endif]-->') expected = [('comment', "[if IE & !(lte IE 8)]>aren't<![endif]"), ('comment', '[if IE 8]>condcoms<![endif]'), ('comment', '[if lte IE 7]>pretty?<![endif]')] self._run_check(html, expected) def test_convert_charrefs(self): collector = lambda: EventCollectorCharrefs(convert_charrefs=True) self.assertTrue(collector().convert_charrefs) charrefs = ['&quot;', '&#34;', '&#x22;', '&quot', '&#34', '&#x22'] # check charrefs in the middle of the text/attributes expected = [('starttag', 'a', [('href', 'foo"zar')]), ('data', 'a"z'), ('endtag', 'a')] for charref in charrefs: self._run_check('<a href="foo{0}zar">a{0}z</a>'.format(charref), expected, collector=collector()) # check charrefs at the beginning/end of the text/attributes expected = [('data', '"'), ('starttag', 'a', [('x', '"'), ('y', '"X'), ('z', 'X"')]), ('data', '"'), ('endtag', 'a'), ('data', '"')] for charref in charrefs: self._run_check('{0}<a x="{0}" y="{0}X" z="X{0}">' '{0}</a>{0}'.format(charref), expected, collector=collector()) # check charrefs in <script>/<style> elements for charref in charrefs: text = 'X'.join([charref]*3) expected = [('data', '"'), ('starttag', 'script', []), ('data', text), ('endtag', 'script'), ('data', '"'), ('starttag', 'style', []), ('data', text), ('endtag', 'style'), ('data', '"')] self._run_check('{1}<script>{0}</script>{1}' '<style>{0}</style>{1}'.format(text, charref), expected, collector=collector()) # check truncated charrefs at the end of the file html = '&quo &# &#x' for x in range(1, len(html)): self._run_check(html[:x], [('data', html[:x])], collector=collector()) # check a string with no charrefs self._run_check('no charrefs here', [('data', 'no charrefs here')], collector=collector()) class HTMLParserTolerantTestCase(HTMLParserStrictTestCase): def get_collector(self): return EventCollector(convert_charrefs=False) def test_deprecation_warnings(self): with self.assertWarns(DeprecationWarning): EventCollector() # convert_charrefs not passed explicitly with self.assertWarns(DeprecationWarning): EventCollector(strict=True) with self.assertWarns(DeprecationWarning): EventCollector(strict=False) with self.assertRaises(html.parser.HTMLParseError): with self.assertWarns(DeprecationWarning): EventCollector().error('test') def test_tolerant_parsing(self): self._run_check('<html <html>te>>xt&a<<bc</a></html>\n' '<img src="URL><//img></html</html>', [ ('starttag', 'html', [('<html', None)]), ('data', 'te>>xt'), ('entityref', 'a'), ('data', '<'), ('starttag', 'bc<', [('a', None)]), ('endtag', 'html'), ('data', '\n<img src="URL>'), ('comment', '/img'), ('endtag', 'html<')]) def test_starttag_junk_chars(self): self._run_check("</>", []) self._run_check("</$>", [('comment', '$')]) self._run_check("</", [('data', '</')]) self._run_check("</a", [('data', '</a')]) self._run_check("<a<a>", [('starttag', 'a<a', [])]) self._run_check("</a<a>", [('endtag', 'a<a')]) self._run_check("<!", [('data', '<!')]) self._run_check("<a", [('data', '<a')]) self._run_check("<a foo='bar'", [('data', "<a foo='bar'")]) self._run_check("<a foo='bar", [('data', "<a foo='bar")]) self._run_check("<a foo='>'", [('data', "<a foo='>'")]) self._run_check("<a foo='>", [('data', "<a foo='>")]) self._run_check("<a$>", [('starttag', 'a$', [])]) self._run_check("<a$b>", [('starttag', 'a$b', [])]) self._run_check("<a$b/>", [('startendtag', 'a$b', [])]) self._run_check("<a$b >", [('starttag', 'a$b', [])]) self._run_check("<a$b />", [('startendtag', 'a$b', [])]) def test_slashes_in_starttag(self): self._run_check('<a foo="var"/>', [('startendtag', 'a', [('foo', 'var')])]) html = ('<img width=902 height=250px ' 'src="/sites/default/files/images/homepage/foo.jpg" ' '/*what am I doing here*/ />') expected = [( 'startendtag', 'img', [('width', '902'), ('height', '250px'), ('src', '/sites/default/files/images/homepage/foo.jpg'), ('*what', None), ('am', None), ('i', None), ('doing', None), ('here*', None)] )] self._run_check(html, expected) html = ('<a / /foo/ / /=/ / /bar/ / />' '<a / /foo/ / /=/ / /bar/ / >') expected = [ ('startendtag', 'a', [('foo', None), ('=', None), ('bar', None)]), ('starttag', 'a', [('foo', None), ('=', None), ('bar', None)]) ] self._run_check(html, expected) #see issue #14538 html = ('<meta><meta / ><meta // ><meta / / >' '<meta/><meta /><meta //><meta//>') expected = [ ('starttag', 'meta', []), ('starttag', 'meta', []), ('starttag', 'meta', []), ('starttag', 'meta', []), ('startendtag', 'meta', []), ('startendtag', 'meta', []), ('startendtag', 'meta', []), ('startendtag', 'meta', []), ] self._run_check(html, expected) def test_declaration_junk_chars(self): self._run_check("<!DOCTYPE foo $ >", [('decl', 'DOCTYPE foo $ ')]) def test_illegal_declarations(self): self._run_check('<!spacer type="block" height="25">', [('comment', 'spacer type="block" height="25"')]) def test_with_unquoted_attributes(self): # see #12008 html = ("<html><body bgcolor=d0ca90 text='181008'>" "<table cellspacing=0 cellpadding=1 width=100% ><tr>" "<td align=left><font size=-1>" "- <a href=/rabota/><span class=en> software-and-i</span></a>" "- <a href='/1/'><span class=en> library</span></a></table>") expected = [ ('starttag', 'html', []), ('starttag', 'body', [('bgcolor', 'd0ca90'), ('text', '181008')]), ('starttag', 'table', [('cellspacing', '0'), ('cellpadding', '1'), ('width', '100%')]), ('starttag', 'tr', []), ('starttag', 'td', [('align', 'left')]), ('starttag', 'font', [('size', '-1')]), ('data', '- '), ('starttag', 'a', [('href', '/rabota/')]), ('starttag', 'span', [('class', 'en')]), ('data', ' software-and-i'), ('endtag', 'span'), ('endtag', 'a'), ('data', '- '), ('starttag', 'a', [('href', '/1/')]), ('starttag', 'span', [('class', 'en')]), ('data', ' library'), ('endtag', 'span'), ('endtag', 'a'), ('endtag', 'table') ] self._run_check(html, expected) def test_comma_between_attributes(self): self._run_check('<form action="/xxx.php?a=1&amp;b=2&amp", ' 'method="post">', [ ('starttag', 'form', [('action', '/xxx.php?a=1&b=2&'), (',', None), ('method', 'post')])]) def test_weird_chars_in_unquoted_attribute_values(self): self._run_check('<form action=bogus|&#()value>', [ ('starttag', 'form', [('action', 'bogus|&#()value')])]) def test_invalid_end_tags(self): # A collection of broken end tags. <br> is used as separator. # see http://www.w3.org/TR/html5/tokenization.html#end-tag-open-state # and #13993 html = ('<br></label</p><br></div end tmAd-leaderBoard><br></<h4><br>' '</li class="unit"><br></li\r\n\t\t\t\t\t\t</ul><br></><br>') expected = [('starttag', 'br', []), # < is part of the name, / is discarded, p is an attribute ('endtag', 'label<'), ('starttag', 'br', []), # text and attributes are discarded ('endtag', 'div'), ('starttag', 'br', []), # comment because the first char after </ is not a-zA-Z ('comment', '<h4'), ('starttag', 'br', []), # attributes are discarded ('endtag', 'li'), ('starttag', 'br', []), # everything till ul (included) is discarded ('endtag', 'li'), ('starttag', 'br', []), # </> is ignored ('starttag', 'br', [])] self._run_check(html, expected) def test_broken_invalid_end_tag(self): # This is technically wrong (the "> shouldn't be included in the 'data') # but is probably not worth fixing it (in addition to all the cases of # the previous test, it would require a full attribute parsing). # see #13993 html = '<b>This</b attr=">"> confuses the parser' expected = [('starttag', 'b', []), ('data', 'This'), ('endtag', 'b'), ('data', '"> confuses the parser')] self._run_check(html, expected) def test_correct_detection_of_start_tags(self): # see #13273 html = ('<div style="" ><b>The <a href="some_url">rain</a> ' '<br /> in <span>Spain</span></b></div>') expected = [ ('starttag', 'div', [('style', '')]), ('starttag', 'b', []), ('data', 'The '), ('starttag', 'a', [('href', 'some_url')]), ('data', 'rain'), ('endtag', 'a'), ('data', ' '), ('startendtag', 'br', []), ('data', ' in '), ('starttag', 'span', []), ('data', 'Spain'), ('endtag', 'span'), ('endtag', 'b'), ('endtag', 'div') ] self._run_check(html, expected) html = '<div style="", foo = "bar" ><b>The <a href="some_url">rain</a>' expected = [ ('starttag', 'div', [('style', ''), (',', None), ('foo', 'bar')]), ('starttag', 'b', []), ('data', 'The '), ('starttag', 'a', [('href', 'some_url')]), ('data', 'rain'), ('endtag', 'a'), ] self._run_check(html, expected) def test_EOF_in_charref(self): # see #17802 # This test checks that the UnboundLocalError reported in the issue # is not raised, however I'm not sure the returned values are correct. # Maybe HTMLParser should use self.unescape for these data = [ ('a&', [('data', 'a&')]), ('a&b', [('data', 'ab')]), ('a&b ', [('data', 'a'), ('entityref', 'b'), ('data', ' ')]), ('a&b;', [('data', 'a'), ('entityref', 'b')]), ] for html, expected in data: self._run_check(html, expected) def test_unescape_method(self): from html import unescape p = self.get_collector() with self.assertWarns(DeprecationWarning): s = '&quot;&#34;&#x22;&quot&#34&#x22&#bad;' self.assertEqual(p.unescape(s), unescape(s)) def test_broken_comments(self): html = ('<! not really a comment >' '<! not a comment either -->' '<! -- close enough -->' '<!><!<-- this was an empty comment>' '<!!! another bogus comment !!!>') expected = [ ('comment', ' not really a comment '), ('comment', ' not a comment either --'), ('comment', ' -- close enough --'), ('comment', ''), ('comment', '<-- this was an empty comment'), ('comment', '!! another bogus comment !!!'), ] self._run_check(html, expected) def test_broken_condcoms(self): # these condcoms are missing the '--' after '<!' and before the '>' html = ('<![if !(IE)]>broken condcom<![endif]>' '<![if ! IE]><link href="favicon.tiff"/><![endif]>' '<![if !IE 6]><img src="firefox.png" /><![endif]>' '<![if !ie 6]><b>foo</b><![endif]>' '<![if (!IE)|(lt IE 9)]><img src="mammoth.bmp" /><![endif]>') # According to the HTML5 specs sections "8.2.4.44 Bogus comment state" # and "8.2.4.45 Markup declaration open state", comment tokens should # be emitted instead of 'unknown decl', but calling unknown_decl # provides more flexibility. # See also Lib/_markupbase.py:parse_declaration expected = [ ('unknown decl', 'if !(IE)'), ('data', 'broken condcom'), ('unknown decl', 'endif'), ('unknown decl', 'if ! IE'), ('startendtag', 'link', [('href', 'favicon.tiff')]), ('unknown decl', 'endif'), ('unknown decl', 'if !IE 6'), ('startendtag', 'img', [('src', 'firefox.png')]), ('unknown decl', 'endif'), ('unknown decl', 'if !ie 6'), ('starttag', 'b', []), ('data', 'foo'), ('endtag', 'b'), ('unknown decl', 'endif'), ('unknown decl', 'if (!IE)|(lt IE 9)'), ('startendtag', 'img', [('src', 'mammoth.bmp')]), ('unknown decl', 'endif') ] self._run_check(html, expected) class AttributesStrictTestCase(TestCaseBase): def get_collector(self): with support.check_warnings(("", DeprecationWarning), quite=False): return EventCollector(strict=True, convert_charrefs=False) def test_attr_syntax(self): output = [ ("starttag", "a", [("b", "v"), ("c", "v"), ("d", "v"), ("e", None)]) ] self._run_check("""<a b='v' c="v" d=v e>""", output) self._run_check("""<a b = 'v' c = "v" d = v e>""", output) self._run_check("""<a\nb\n=\n'v'\nc\n=\n"v"\nd\n=\nv\ne>""", output) self._run_check("""<a\tb\t=\t'v'\tc\t=\t"v"\td\t=\tv\te>""", output) def test_attr_values(self): self._run_check("""<a b='xxx\n\txxx' c="yyy\t\nyyy" d='\txyz\n'>""", [("starttag", "a", [("b", "xxx\n\txxx"), ("c", "yyy\t\nyyy"), ("d", "\txyz\n")])]) self._run_check("""<a b='' c="">""", [("starttag", "a", [("b", ""), ("c", "")])]) # Regression test for SF patch #669683. self._run_check("<e a=rgb(1,2,3)>", [("starttag", "e", [("a", "rgb(1,2,3)")])]) # Regression test for SF bug #921657. self._run_check( "<a href=mailto:[email protected]>", [("starttag", "a", [("href", "mailto:[email protected]")])]) def test_attr_nonascii(self): # see issue 7311 self._run_check( "<img src=/foo/bar.png alt=\u4e2d\u6587>", [("starttag", "img", [("src", "/foo/bar.png"), ("alt", "\u4e2d\u6587")])]) self._run_check( "<a title='\u30c6\u30b9\u30c8' href='\u30c6\u30b9\u30c8.html'>", [("starttag", "a", [("title", "\u30c6\u30b9\u30c8"), ("href", "\u30c6\u30b9\u30c8.html")])]) self._run_check( '<a title="\u30c6\u30b9\u30c8" href="\u30c6\u30b9\u30c8.html">', [("starttag", "a", [("title", "\u30c6\u30b9\u30c8"), ("href", "\u30c6\u30b9\u30c8.html")])]) def test_attr_entity_replacement(self): self._run_check( "<a b='&amp;&gt;&lt;&quot;&apos;'>", [("starttag", "a", [("b", "&><\"'")])]) def test_attr_funky_names(self): self._run_check( "<a a.b='v' c:d=v e-f=v>", [("starttag", "a", [("a.b", "v"), ("c:d", "v"), ("e-f", "v")])]) def test_entityrefs_in_attributes(self): self._run_check( "<html foo='&euro;&amp;&#97;&#x61;&unsupported;'>", [("starttag", "html", [("foo", "\u20AC&aa&unsupported;")])]) class AttributesTolerantTestCase(AttributesStrictTestCase): def get_collector(self): return EventCollector(convert_charrefs=False) def test_attr_funky_names2(self): self._run_check( "<a $><b $=%><c \=/>", [("starttag", "a", [("$", None)]), ("starttag", "b", [("$", "%")]), ("starttag", "c", [("\\", "/")])]) def test_entities_in_attribute_value(self): # see #1200313 for entity in ['&', '&amp;', '&#38;', '&#x26;']: self._run_check('<a href="%s">' % entity, [("starttag", "a", [("href", "&")])]) self._run_check("<a href='%s'>" % entity, [("starttag", "a", [("href", "&")])]) self._run_check("<a href=%s>" % entity, [("starttag", "a", [("href", "&")])]) def test_malformed_attributes(self): # see #13357 html = ( "<a href=test'style='color:red;bad1'>test - bad1</a>" "<a href=test'+style='color:red;ba2'>test - bad2</a>" "<a href=test'&nbsp;style='color:red;bad3'>test - bad3</a>" "<a href = test'&nbsp;style='color:red;bad4' >test - bad4</a>" ) expected = [ ('starttag', 'a', [('href', "test'style='color:red;bad1'")]), ('data', 'test - bad1'), ('endtag', 'a'), ('starttag', 'a', [('href', "test'+style='color:red;ba2'")]), ('data', 'test - bad2'), ('endtag', 'a'), ('starttag', 'a', [('href', "test'\xa0style='color:red;bad3'")]), ('data', 'test - bad3'), ('endtag', 'a'), ('starttag', 'a', [('href', "test'\xa0style='color:red;bad4'")]), ('data', 'test - bad4'), ('endtag', 'a') ] self._run_check(html, expected) def test_malformed_adjacent_attributes(self): # see #12629 self._run_check('<x><y z=""o"" /></x>', [('starttag', 'x', []), ('startendtag', 'y', [('z', ''), ('o""', None)]), ('endtag', 'x')]) self._run_check('<x><y z="""" /></x>', [('starttag', 'x', []), ('startendtag', 'y', [('z', ''), ('""', None)]), ('endtag', 'x')]) # see #755670 for the following 3 tests def test_adjacent_attributes(self): self._run_check('<a width="100%"cellspacing=0>', [("starttag", "a", [("width", "100%"), ("cellspacing","0")])]) self._run_check('<a id="foo"class="bar">', [("starttag", "a", [("id", "foo"), ("class","bar")])]) def test_missing_attribute_value(self): self._run_check('<a v=>', [("starttag", "a", [("v", "")])]) def test_javascript_attribute_value(self): self._run_check("<a href=javascript:popup('/popup/help.html')>", [("starttag", "a", [("href", "javascript:popup('/popup/help.html')")])]) def test_end_tag_in_attribute_value(self): # see #1745761 self._run_check("<a href='http://www.example.org/\">;'>spam</a>", [("starttag", "a", [("href", "http://www.example.org/\">;")]), ("data", "spam"), ("endtag", "a")]) if __name__ == "__main__": unittest.main()
the-stack_0_9523
import os import unittest from openeo_pg_parser.translate import translate_process_graph class GraphTester(unittest.TestCase): """ Tests all functionalities of the class `Graph`. """ def setUp(self): """ Setting up variables for one test. """ pg_dirpath = os.path.join(os.path.dirname(__file__), 'process_graphs') self.max_ndvi_pg_filepath = os.path.join(pg_dirpath, "s2_max_ndvi.json") def test_sort_process_graph(self): """ Tests sorting of a process graph. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) assert list(graph.ids) == ["apply_0", "linear_scale_range_1", "load_collection_2", "reduce_bands_3", "red_4", "nir_5", "ndvi_6", "reduce_time_7", "max_8", "save_9"] sorted_graph = graph.sort(by='dependency') assert list(sorted_graph.ids) == ["load_collection_2", "reduce_bands_3", "red_4", "nir_5", "ndvi_6", "reduce_time_7", "max_8", "apply_0", "linear_scale_range_1", "save_9"] def test_get_parent_process(self): """ Tests to retrieve the parent process of an embedded process graph. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) lsr_node = graph['linear_scale_range_1'] apply_node = graph['apply_0'] assert lsr_node.parent_process == apply_node def test_is_reducer(self): """ Tests reducer identification. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) apply_node = graph['apply_0'] assert not apply_node.is_reducer reduce_node = graph['reduce_time_7'] assert reduce_node.is_reducer def test_get_dimension(self): """ Tests dimension retrieval. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) apply_node = graph['apply_0'] assert apply_node.dimension is None reduce_node = graph['reduce_time_7'] assert reduce_node.dimension == 't' def test_get_node_by_id(self): """ Tests node access in a graph by node id. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) apply_node = graph['apply_0'] assert apply_node.id == 'apply_0' def test_get_node_by_name(self): """ Tests node access in a graph by node name. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) apply_node = graph['apply'] assert apply_node.id == 'apply_0' def test_has_descendant_process(self): """ Tests if a node has a descendant process. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) dc_node = graph['load_collection_2'] assert dc_node.has_descendant_process(graph, 'save_result') def test_to_igraph(self): """ Tests conversion of internal graph to an iGraph object. """ graph = translate_process_graph(self.max_ndvi_pg_filepath) graph.to_igraph(edge_name="process") assert True if __name__ == '__main__': unittest.main()