filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_10025
import ibm_boto3 from ibm_botocore.client import Config, ClientError class CloudObjectStore: DEFAULT_ENDPOINT = \ 'https://s3.us-east.cloud-object-storage.appdomain.cloud' DEFAULT_AUTH_ENDPOINT = \ 'https://iam.cloud.ibm.com/identity/token' ''' Interface to IBM Cloud Object Store, typical values: bucket_name: name of your storage bucket api_key: your API key (go to Cloud Storage dashboard -> Service credentials) resource_crn: your bucket CRN (go to your bucket -> Configuration: Bucket instance CRN) endpoint: for external access, "https://s3.us-east.cloud-object-storage.appdomain.cloud" endpoint: for internal access, "https://s3.private.us-east.cloud-object-storage.appdomain.cloud" auth_endpoint: "https://iam.cloud.ibm.com/identity/token" ''' def __init__(self, bucket_name, api_key, resource_crn, endpoint=DEFAULT_ENDPOINT, auth_endpoint=DEFAULT_AUTH_ENDPOINT, ): self.bucket_name = bucket_name self.COS_API_KEY_ID = api_key self.COS_RESOURCE_CRN = resource_crn self.COS_ENDPOINT = endpoint self.COS_AUTH_ENDPOINT = auth_endpoint self.cos = ibm_boto3.resource( "s3", ibm_api_key_id=self.COS_API_KEY_ID, ibm_service_instance_id=self.COS_RESOURCE_CRN, ibm_auth_endpoint=self.COS_AUTH_ENDPOINT, config=Config(signature_version="oauth"), endpoint_url=self.COS_ENDPOINT ) def get_bucket_contents(self): try: files = self.cos.Bucket(self.bucket_name).objects.all() return [file.key for file in files] except ClientError as be: print("CLIENT ERROR: {0}\n".format(be)) except Exception as e: print("Unable to retrieve bucket contents: {0}".format(e)) def get_item(self, item_name): try: file = self.cos.Object(self.bucket_name, item_name).get() return file["Body"].read() except ClientError as be: print("CLIENT ERROR: {0}\n".format(be)) except Exception as e: print("Unable to retrieve file contents: {0}".format(e)) def create_item(self, item_name, file_text): print("Creating new item: {0}".format(item_name)) try: self.cos.Object(self.bucket_name, item_name).put( Body=file_text ) except ClientError as be: print("CLIENT ERROR: {0}\n".format(be)) except Exception as e: print("Unable to create text file: {0}".format(e))
the-stack_0_10030
# Copyright 2015 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools import random import netaddr from neutron_lib import exceptions as n_exc from neutron_lib.plugins import directory from oslo_db import exception as db_exc from oslo_log import log from oslo_utils import uuidutils from neutron._i18n import _, _LE from neutron.ipam import driver as ipam_base from neutron.ipam.drivers.neutrondb_ipam import db_api as ipam_db_api from neutron.ipam import exceptions as ipam_exc from neutron.ipam import requests as ipam_req from neutron.ipam import subnet_alloc from neutron.ipam import utils as ipam_utils LOG = log.getLogger(__name__) class NeutronDbSubnet(ipam_base.Subnet): """Manage IP addresses for Neutron DB IPAM driver. This class implements the strategy for IP address allocation and deallocation for the Neutron DB IPAM driver. """ @classmethod def create_allocation_pools(cls, subnet_manager, context, pools, cidr): for pool in pools: # IPv6 addresses that start '::1', '::2', etc cause IP version # ambiguity when converted to integers by pool.first and pool.last. # Infer the IP version from the subnet cidr. ip_version = cidr.version subnet_manager.create_pool( context, netaddr.IPAddress(pool.first, ip_version).format(), netaddr.IPAddress(pool.last, ip_version).format()) @classmethod def create_from_subnet_request(cls, subnet_request, ctx): ipam_subnet_id = uuidutils.generate_uuid() subnet_manager = ipam_db_api.IpamSubnetManager( ipam_subnet_id, subnet_request.subnet_id) # Create subnet resource subnet_manager.create(ctx) # If allocation pools are not specified, define them around # the subnet's gateway IP if not subnet_request.allocation_pools: pools = ipam_utils.generate_pools(subnet_request.subnet_cidr, subnet_request.gateway_ip) else: pools = subnet_request.allocation_pools # Create IPAM allocation pools cls.create_allocation_pools(subnet_manager, ctx, pools, subnet_request.subnet_cidr) return cls(ipam_subnet_id, ctx, cidr=subnet_request.subnet_cidr, allocation_pools=pools, gateway_ip=subnet_request.gateway_ip, tenant_id=subnet_request.tenant_id, subnet_id=subnet_request.subnet_id) @classmethod def load(cls, neutron_subnet_id, ctx): """Load an IPAM subnet from the database given its neutron ID. :param neutron_subnet_id: neutron subnet identifier. """ ipam_subnet = ipam_db_api.IpamSubnetManager.load_by_neutron_subnet_id( ctx, neutron_subnet_id) if not ipam_subnet: LOG.error(_LE("IPAM subnet referenced to " "Neutron subnet %s does not exist"), neutron_subnet_id) raise n_exc.SubnetNotFound(subnet_id=neutron_subnet_id) pools = [] for pool in ipam_subnet.allocation_pools: pools.append(netaddr.IPRange(pool['first_ip'], pool['last_ip'])) neutron_subnet = cls._fetch_subnet(ctx, neutron_subnet_id) return cls(ipam_subnet['id'], ctx, cidr=neutron_subnet['cidr'], allocation_pools=pools, gateway_ip=neutron_subnet['gateway_ip'], tenant_id=neutron_subnet['tenant_id'], subnet_id=neutron_subnet_id) @classmethod def _fetch_subnet(cls, context, id): plugin = directory.get_plugin() return plugin._get_subnet(context, id) def __init__(self, internal_id, ctx, cidr=None, allocation_pools=None, gateway_ip=None, tenant_id=None, subnet_id=None): # NOTE: In theory it could have been possible to grant the IPAM # driver direct access to the database. While this is possible, # it would have led to duplicate code and/or non-trivial # refactorings in neutron.db.db_base_plugin_v2. # This is because in the Neutron V2 plugin logic DB management is # encapsulated within the plugin. self._cidr = cidr self._pools = allocation_pools self._gateway_ip = gateway_ip self._tenant_id = tenant_id self._subnet_id = subnet_id self.subnet_manager = ipam_db_api.IpamSubnetManager(internal_id, self._subnet_id) self._context = ctx def _verify_ip(self, context, ip_address): """Verify whether IP address can be allocated on subnet. :param context: neutron api request context :param ip_address: String representing the IP address to verify :raises: InvalidInput, IpAddressAlreadyAllocated """ # Ensure that the IP's are unique if not self.subnet_manager.check_unique_allocation(context, ip_address): raise ipam_exc.IpAddressAlreadyAllocated( subnet_id=self.subnet_manager.neutron_id, ip=ip_address) # Ensure that the IP is valid on the subnet if not ipam_utils.check_subnet_ip(self._cidr, ip_address): raise ipam_exc.InvalidIpForSubnet( subnet_id=self.subnet_manager.neutron_id, ip=ip_address) def _generate_ip(self, context, prefer_next=False): """Generate an IP address from the set of available addresses.""" ip_allocations = netaddr.IPSet() for ipallocation in self.subnet_manager.list_allocations(context): ip_allocations.add(ipallocation.ip_address) for ip_pool in self.subnet_manager.list_pools(context): ip_set = netaddr.IPSet() ip_set.add(netaddr.IPRange(ip_pool.first_ip, ip_pool.last_ip)) av_set = ip_set.difference(ip_allocations) if av_set.size == 0: continue if prefer_next: window = 1 else: # Compute a value for the selection window window = min(av_set.size, 30) ip_index = random.randint(1, window) candidate_ips = list(itertools.islice(av_set, ip_index)) allocated_ip = candidate_ips[ random.randint(0, len(candidate_ips) - 1)] return str(allocated_ip), ip_pool.id raise ipam_exc.IpAddressGenerationFailure( subnet_id=self.subnet_manager.neutron_id) def allocate(self, address_request): # NOTE(pbondar): Ipam driver is always called in context of already # running transaction, which is started on create_port or upper level. # To be able to do rollback/retry actions correctly ipam driver # should not create new nested transaction blocks. all_pool_id = None # NOTE(salv-orlando): It would probably better to have a simpler # model for address requests and just check whether there is a # specific IP address specified in address_request if isinstance(address_request, ipam_req.SpecificAddressRequest): # This handles both specific and automatic address requests # Check availability of requested IP ip_address = str(address_request.address) self._verify_ip(self._context, ip_address) else: prefer_next = isinstance(address_request, ipam_req.PreferNextAddressRequest) ip_address, all_pool_id = self._generate_ip(self._context, prefer_next) # Create IP allocation request object # The only defined status at this stage is 'ALLOCATED'. # More states will be available in the future - e.g.: RECYCLABLE try: with self._context.session.begin(subtransactions=True): # NOTE(kevinbenton): we use a subtransaction to force # a flush here so we can capture DBReferenceErrors due # to concurrent subnet deletions. (galera would deadlock # later on final commit) self.subnet_manager.create_allocation(self._context, ip_address) except db_exc.DBReferenceError: raise n_exc.SubnetNotFound( subnet_id=self.subnet_manager.neutron_id) return ip_address def deallocate(self, address): # This is almost a no-op because the Neutron DB IPAM driver does not # delete IPAllocation objects at every deallocation. The only # operation it performs is to delete an IPRequest entry. count = self.subnet_manager.delete_allocation( self._context, address) # count can hardly be greater than 1, but it can be 0... if not count: raise ipam_exc.IpAddressAllocationNotFound( subnet_id=self.subnet_manager.neutron_id, ip_address=address) def _no_pool_changes(self, context, pools): """Check if pool updates in db are required.""" db_pools = self.subnet_manager.list_pools(context) iprange_pools = [netaddr.IPRange(pool.first_ip, pool.last_ip) for pool in db_pools] return pools == iprange_pools def update_allocation_pools(self, pools, cidr): # Pools have already been validated in the subnet request object which # was sent to the subnet pool driver. Further validation should not be # required. if self._no_pool_changes(self._context, pools): return self.subnet_manager.delete_allocation_pools(self._context) self.create_allocation_pools(self.subnet_manager, self._context, pools, cidr) self._pools = pools def get_details(self): """Return subnet data as a SpecificSubnetRequest""" return ipam_req.SpecificSubnetRequest( self._tenant_id, self.subnet_manager.neutron_id, self._cidr, self._gateway_ip, self._pools) class NeutronDbPool(subnet_alloc.SubnetAllocator): """Subnet pools backed by Neutron Database. As this driver does not implement yet the subnet pool concept, most operations are either trivial or no-ops. """ def get_subnet(self, subnet_id): """Retrieve an IPAM subnet. :param subnet_id: Neutron subnet identifier :returns: a NeutronDbSubnet instance """ return NeutronDbSubnet.load(subnet_id, self._context) def allocate_subnet(self, subnet_request): """Create an IPAMSubnet object for the provided cidr. This method does not actually do any operation in the driver, given its simplified nature. :param cidr: subnet's CIDR :returns: a NeutronDbSubnet instance """ if self._subnetpool: subnet = super(NeutronDbPool, self).allocate_subnet(subnet_request) subnet_request = subnet.get_details() # SubnetRequest must be an instance of SpecificSubnet if not isinstance(subnet_request, ipam_req.SpecificSubnetRequest): raise ipam_exc.InvalidSubnetRequestType( subnet_type=type(subnet_request)) return NeutronDbSubnet.create_from_subnet_request(subnet_request, self._context) def update_subnet(self, subnet_request): """Update subnet info the in the IPAM driver. The only update subnet information the driver needs to be aware of are allocation pools. """ if not subnet_request.subnet_id: raise ipam_exc.InvalidSubnetRequest( reason=_("An identifier must be specified when updating " "a subnet")) if subnet_request.allocation_pools is None: LOG.debug("Update subnet request for subnet %s did not specify " "new allocation pools, there is nothing to do", subnet_request.subnet_id) return subnet = NeutronDbSubnet.load(subnet_request.subnet_id, self._context) cidr = netaddr.IPNetwork(subnet._cidr) subnet.update_allocation_pools(subnet_request.allocation_pools, cidr) return subnet def remove_subnet(self, subnet_id): """Remove data structures for a given subnet. IPAM-related data has no foreign key relationships to neutron subnet, so removing ipam subnet manually """ count = ipam_db_api.IpamSubnetManager.delete(self._context, subnet_id) if count < 1: LOG.error(_LE("IPAM subnet referenced to " "Neutron subnet %s does not exist"), subnet_id) raise n_exc.SubnetNotFound(subnet_id=subnet_id) def needs_rollback(self): return False
the-stack_0_10031
import warnings import numpy as np from vispy.color import Colormap as VispyColormap from vispy.scene.node import Node from ..utils.translations import trans from .image import Image as ImageNode from .utils_gl import fix_data_dtype from .vispy_base_layer import VispyBaseLayer from .volume import Volume as VolumeNode class ImageLayerNode: def __init__(self, custom_node: Node = None): self._custom_node = custom_node self._image_node = ImageNode(None, method='auto') self._volume_node = VolumeNode( np.zeros((1, 1, 1), dtype=np.float32), clim=[0, 1] ) def get_node(self, ndisplay: int) -> Node: # Return custom node if we have one. if self._custom_node is not None: return self._custom_node # Return Image or Volume node based on 2D or 3D. if ndisplay == 2: return self._image_node return self._volume_node class VispyImageLayer(VispyBaseLayer): def __init__(self, layer, node=None): # Use custom node from caller, or our standard image/volume nodes. self._layer_node = ImageLayerNode(node) # Default to 2D (image) node. super().__init__(layer, self._layer_node.get_node(2)) self._array_like = True self.layer.events.rendering.connect(self._on_rendering_change) self.layer.events.interpolation.connect(self._on_interpolation_change) self.layer.events.colormap.connect(self._on_colormap_change) self.layer.events.contrast_limits.connect( self._on_contrast_limits_change ) self.layer.events.gamma.connect(self._on_gamma_change) self.layer.events.iso_threshold.connect(self._on_iso_threshold_change) self.layer.events.attenuation.connect(self._on_attenuation_change) self.layer.experimental_slicing_plane.events.enabled.connect( self._on_experimental_slicing_plane_enabled_change ) self.layer.experimental_slicing_plane.events.position.connect( self._on_experimental_slicing_plane_position_change ) self.layer.experimental_slicing_plane.events.thickness.connect( self._on_experimental_slicing_plane_thickness_change ) self.layer.experimental_slicing_plane.events.normal.connect( self._on_experimental_slicing_plane_normal_change ) self._on_display_change() self._on_data_change() def _on_display_change(self, data=None): parent = self.node.parent self.node.parent = None self.node = self._layer_node.get_node(self.layer._ndisplay) if data is None: data = np.zeros((1,) * self.layer._ndisplay) if self.layer._empty: self.node.visible = False else: self.node.visible = self.layer.visible if self.layer.loaded: self.node.set_data(data) self.node.parent = parent self.node.order = self.order self.reset() def _on_data_change(self, event=None): if not self.layer.loaded: # Do nothing if we are not yet loaded. Calling astype below could # be very expensive. Lets not do it until our data has been loaded. return self._set_node_data(self.node, self.layer._data_view) def _set_node_data(self, node, data): """Our self.layer._data_view has been updated, update our node.""" data = fix_data_dtype(data) if self.layer._ndisplay == 3 and self.layer.ndim == 2: data = np.expand_dims(data, axis=0) # Check if data exceeds MAX_TEXTURE_SIZE and downsample if self.MAX_TEXTURE_SIZE_2D is not None and self.layer._ndisplay == 2: data = self.downsample_texture(data, self.MAX_TEXTURE_SIZE_2D) elif ( self.MAX_TEXTURE_SIZE_3D is not None and self.layer._ndisplay == 3 ): data = self.downsample_texture(data, self.MAX_TEXTURE_SIZE_3D) # Check if ndisplay has changed current node type needs updating if ( self.layer._ndisplay == 3 and not isinstance(node, VolumeNode) ) or (self.layer._ndisplay == 2 and not isinstance(node, ImageNode)): self._on_display_change(data) else: node.set_data(data) if self.layer._empty: node.visible = False else: node.visible = self.layer.visible # Call to update order of translation values with new dims: self._on_matrix_change() node.update() def _on_interpolation_change(self, event=None): self.node.interpolation = self.layer.interpolation def _on_rendering_change(self, event=None): if isinstance(self.node, VolumeNode): self.node.method = self.layer.rendering self._on_attenuation_change() self._on_iso_threshold_change() def _on_colormap_change(self, event=None): self.node.cmap = VispyColormap(*self.layer.colormap) def _on_contrast_limits_change(self, event=None): self.node.clim = self.layer.contrast_limits def _on_gamma_change(self, event=None): if len(self.node.shared_program.frag._set_items) > 0: self.node.gamma = self.layer.gamma def _on_iso_threshold_change(self, event=None): if isinstance(self.node, VolumeNode): self.node.threshold = self.layer.iso_threshold def _on_attenuation_change(self, event=None): if isinstance(self.node, VolumeNode): self.node.attenuation = self.layer.attenuation def _on_experimental_slicing_plane_enabled_change(self, event=None): if isinstance(self.node, VolumeNode): if self.layer.experimental_slicing_plane.enabled is True: raycasting_mode = 'plane' else: raycasting_mode = 'volume' self.node.raycasting_mode = raycasting_mode def _on_experimental_slicing_plane_thickness_change(self, event=None): if isinstance(self.node, VolumeNode): self.node.plane_thickness = ( self.layer.experimental_slicing_plane.thickness ) def _on_experimental_slicing_plane_position_change(self, event=None): if isinstance(self.node, VolumeNode): self.node.plane_position = ( self.layer.experimental_slicing_plane.position ) def _on_experimental_slicing_plane_normal_change(self, event=None): if isinstance(self.node, VolumeNode): self.node.plane_normal = ( self.layer.experimental_slicing_plane.normal ) def reset(self, event=None): self._reset_base() self._on_interpolation_change() self._on_colormap_change() self._on_contrast_limits_change() self._on_gamma_change() self._on_rendering_change() self._on_experimental_slicing_plane_enabled_change() self._on_experimental_slicing_plane_position_change() self._on_experimental_slicing_plane_normal_change() self._on_experimental_slicing_plane_thickness_change() def downsample_texture(self, data, MAX_TEXTURE_SIZE): """Downsample data based on maximum allowed texture size. Parameters ---------- data : array Data to be downsampled if needed. MAX_TEXTURE_SIZE : int Maximum allowed texture size. Returns ------- data : array Data that now fits inside texture. """ if np.any(np.greater(data.shape, MAX_TEXTURE_SIZE)): if self.layer.multiscale: raise ValueError( trans._( "Shape of in dividual tiles in multiscale {shape} cannot exceed GL_MAX_TEXTURE_SIZE {texture_size}. Rendering is currently in {ndisplay}D mode.", deferred=True, shape=data.shape, texture_size=MAX_TEXTURE_SIZE, ndisplay=self.layer._ndisplay, ) ) warnings.warn( trans._( "data shape {shape} exceeds GL_MAX_TEXTURE_SIZE {texture_size} in at least one axis and will be downsampled. Rendering is currently in {ndisplay}D mode.", deferred=True, shape=data.shape, texture_size=MAX_TEXTURE_SIZE, ndisplay=self.layer._ndisplay, ) ) downsample = np.ceil( np.divide(data.shape, MAX_TEXTURE_SIZE) ).astype(int) scale = np.ones(self.layer.ndim) for i, d in enumerate(self.layer._dims_displayed): scale[d] = downsample[i] self.layer._transforms['tile2data'].scale = scale self._on_matrix_change() slices = tuple(slice(None, None, ds) for ds in downsample) data = data[slices] return data
the-stack_0_10033
############################################################################### # # The MIT License (MIT) # # Copyright (c) Tavendo GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ############################################################################### from __future__ import print_function import random from os import environ from twisted.internet.defer import inlineCallbacks from autobahn.twisted.util import sleep from autobahn.twisted.wamp import ApplicationSession, ApplicationRunner class Component(ApplicationSession): """ An application component that publishes events with no payload """ @inlineCallbacks def onJoin(self, details): print("session attached") counter = 0 while True: print("publish: com.myapp.heartbeat") self.publish(u'com.myapp.heartbeat') yield sleep(1) if __name__ == '__main__': runner = ApplicationRunner( environ.get("AUTOBAHN_DEMO_ROUTER", u"ws://127.0.0.1:8080/ws"), u"realm1", ) runner.run(Component)
the-stack_0_10034
import unittest from tri.delaunay.helpers import ToPointsAndSegments from grassfire import calc_skel, calc_offsets from grassfire.events import at_same_location from grassfire.test.intersection import segments_intersecting from grassfire.vectorops import dist import fixtures def all_tests(): """Find all functions inside the *fixtures* module and returns a list with all function objects""" import inspect all_functions = inspect.getmembers(fixtures, inspect.isfunction) return [fn for fn_nm, fn in sorted(all_functions)] def make_test_cases(fixtures): """For all functions in the list, make an entry in the cases dictionary, by invoking the function. """ cases = {} for i, f in enumerate(fixtures): data, total, node, infinite, = f() assert f.__name__ not in cases, "duplicate test name ({}) found".format( f.__name__ ) cases[f.__name__] = ( "* {:>2d}: ".format(i) + str(f.__doc__), data, total, node, infinite, ) return cases EXPENSIVE_POST_CONDITION = True CASES = make_test_cases(all_tests()) INTERACTIVE = False # CASES = make_test_cases([all_tests()[48]]) # INTERACTIVE = True # After: https://stackoverflow.com/a/20870875 class TestSequenceMeta(type): """A meta class for all our TestCases""" def __new__(mcs, name, bases, dict): def gen_test(description, data, total, node, infinite): def test(self): if INTERACTIVE: skel = calc_skel( data, pause=True, output=True, internal_only=False, shrink=True # data, pause=False, output=False, internal_only=False, shrink=True ) else: skel = calc_skel(data) # check the amount of segments in the skeleton self.assertEqual(len(skel.segments()), total) # check the amount of skeleton nodes self.assertEqual(len(skel.sk_nodes), node) # # check the amount of kinetic vertices that are (not) stopped not_stopped = [v for v in skel.vertices if v.stops_at is None] stopped = [v for v in skel.vertices if v.stops_at is not None and v.start_node is not v.stop_node] self.assertEqual(len(not_stopped), infinite) self.assertEqual(len(stopped), total - infinite) # check cross relationship between kinetic vertices and skeleton nodes for v in skel.vertices: # exact same starting location if abs(v.velocity[0]) < 100 and abs(v.velocity[1]) < 100: # check only 'slow' moving vertices self.assertTrue(at_same_location([v.start_node, v], v.starts_at), "{} [{}] {} does not have correct start_node(!) position".format(id(v), v.info, v.velocity)) # quite close at the stop node (given the vertex + its direction/speed) if True and v.stops_at is not None and not v.inf_fast and (abs(v.velocity[0]) < 100 and abs(v.velocity[1]) < 100): d = dist( v.stop_node.position_at(v.stops_at), v.position_at(v.stops_at), ) self.assertAlmostEqual( d, 0.0, 2, "{} [{}] velocity '{}' does not have correct stop_node position -- dist: {}".format(id(v), v.info, v.velocity, d) ) # self.assertTrue(at_same_location([v.stop_node, v], v.stops_at), # '{} != {}; {}'.format(v.stop_node.position_at(v.stops_at), v.position_at(v.stops_at), # dist(v.stop_node.position_at(v.stops_at), v.position_at(v.stops_at))) # ) if EXPENSIVE_POST_CONDITION == True: # check that we do not have any self intersections between segments self.assertFalse( segments_intersecting(skel.segments()), "intersection between straight skeleton segments found", ) # offset segments should not intersect # (FIXME: these use left_at of kinetic vertices, also check right_at) last_evt_time = max(v.stops_at for v in skel.vertices if v.stops_at is not None) offset_segments = [ (line[0], line[1]) for line in calc_offsets(skel, last_evt_time, 25) ] self.assertFalse( segments_intersecting(offset_segments), "Intersection in offsets found", ) # with open("/tmp/offsets.wkt", "w") as fh: # for segment in offset_segments: # s = "LINESTRING({0[0]} {0[1]}, {1[0]} {1[1]})".format(segment[0], segment[1]) # fh.write(s) # fh.write("\n") # set the docstring of the test function test.__doc__ = description return test for tname in CASES: test_name = "test_%s" % tname dict[test_name] = gen_test(*CASES[tname]) return type.__new__(mcs, name, bases, dict) class GrassfireTestCase(unittest.TestCase, metaclass=TestSequenceMeta): pass if __name__ == "__main__": if INTERACTIVE: import logging import sys root = logging.getLogger() root.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s - %(message)s") ch.setFormatter(formatter) root.addHandler(ch) # import cProfile # command = """unittest.main(verbosity=10)""" # cProfile.runctx( command, globals(), locals(), filename="/tmp/gf.profile" ) unittest.main()
the-stack_0_10035
from typing import Callable, List, Tuple from outdated_item_selection_strategy.no_update import * from outdated_item_selection_strategy.oldest_chunks_update import * from outdated_item_selection_strategy.last_n_chunks_update import * from outdated_item_selection_strategy.regular_interval_update import * from outdated_item_selection_strategy.binned_update import * UPDATE_STRATEGY_LABELS = [ "no update", "oldest n chunks", "last n chunks", "regular intervals", "outdated bins" ] def get_update_strategies(n_dims: int, n_chunks: int, max_age: int, n_bins: int) -> List[Tuple[str, Callable[[], OutdatedItemSelectionStrategy]]]: return list( map( lambda label: (label, lambda: get_update_strategy(label, n_dims, n_chunks, max_age, n_bins)), UPDATE_STRATEGY_LABELS ) ) def get_update_strategy(label: str, n_dims: int, n_chunks: int, max_age: int, n_bins: int) -> OutdatedItemSelectionStrategy: if label == "no update": return NoUpdate(n_dims=n_dims, storage=None) elif label == "oldest n chunks": return OldestChunksUpdate(n_dims=n_dims, storage=None, max_age=max_age) elif label == "last n chunks": return LastNChunksUpdate(n_dims=n_dims, n_chunks=n_chunks, storage=None) elif label == "regular intervals": return RegularIntervalUpdate(n_dims=n_dims, n_chunks=n_chunks, storage=None, max_age=max_age) elif label == "outdated bins": return BinnedUpdate(n_dims=n_dims, storage=None, n_bins=n_bins)
the-stack_0_10037
import pytest from src.project.risks import Risk from src.project.risks.helpers import RiskCounterMeasure, RiskImpact, RiskProbabilty, RiskScore from tests.faker import faker @pytest.fixture def risk(): yield Risk(risk_name="Fake Risk Name", probability=50, impact=100) def test_create_Risk_object_directly(monkeypatch, stakeholder, risk): assert risk.risk_name == "Fake Risk Name" assert risk.impact == 100 assert risk.probability == 50 assert risk.risk_owner is None assert risk.description is None assert risk.counter_measure is None assert risk.get_risk_score() == RiskScore.HIGH assert isinstance(risk.get_risk_score(), RiskScore) monkeypatch.setattr(risk, "risk_owner", stakeholder, raising=True) assert risk.risk_owner == stakeholder monkeypatch.setattr(risk, "description", "Fake Description", raising=True) assert risk.description == "Fake Description" def test_cannot_set_unallowed_counter_measure(risk): with pytest.raises(AssertionError): setattr(risk, "counter_measure", "Fake counter measure") assert risk.counter_measure is None @pytest.mark.parametrize("counter_measure", ["ReDuce", "prevenT", "aCCepT", "transfer"]) def test_can_set_allowed_counter_measures_and_value_is_case_insensitive(counter_measure, risk): setattr(risk, "counter_measure", counter_measure) assert isinstance(risk.counter_measure, RiskCounterMeasure) assert risk.counter_measure == RiskCounterMeasure(counter_measure.upper()) @pytest.mark.parametrize("wrong_classmethod", ["not_a_real_classmethod", "maybe_probability_high_impact"]) def test_access_to_dynamic_classmethod_not_matched_by_regex_raises(wrong_classmethod): with pytest.raises(AttributeError): getattr(Risk, wrong_classmethod) @pytest.mark.parametrize( "class_method", [ "rare_probability_high_impact", "rare_probability_medium_impact", "rare_probability_low_impact", "unlikely_probability_high_impact", "unlikely_probability_medium_impact", "unlikely_probability_low_impact", "moderate_probability_high_impact", "moderate_probability_medium_impact", "moderate_probability_low_impact", "likely_probability_high_impact", "likely_probability_medium_impact", "likely_probability_low_impact", "certain_probability_high_impact", "certain_probability_medium_impact", "certain_probability_low_impact", ], ) def test_access_to_dynamic_classmethod_matched_by_regex_will_not_raise(class_method): name = faker.unique.name() instance = getattr(Risk, class_method)(risk_name=name) assert instance.risk_name == name assert isinstance(instance.get_risk_score(), RiskScore) probability, _, impact, _ = class_method.split("_") probability_value = RiskProbabilty[probability.upper()].value impact_value = RiskImpact[impact.upper()].value assert instance.get_risk_score() == RiskScore.get_risk_score(int(probability_value / 100 * impact_value))
the-stack_0_10042
# Author: Hamzeh Alsalhi <[email protected]> # # License: BSD 3 clause import numpy as np import scipy.sparse as sp import array from . import check_random_state from ._random import sample_without_replacement __all__ = ["sample_without_replacement"] def _random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of \ shape (n_classes,), default=None Class distribution of each column. If None, uniform distribution is assumed. random_state : int, RandomState instance or None, default=None Controls the randomness of the sampled classes. See :term:`Glossary <random_state>`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array("i") indices = array.array("i") indptr = array.array("i", [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != "i": raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = classes[j].astype(np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if not np.isclose(np.sum(class_prob_j), 1.0): raise ValueError( "Probability array at index {0} does not sum to one".format(j) ) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError( "classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format( j, classes[j].shape[0], class_prob_j.shape[0] ) ) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement( n_population=n_samples, n_samples=nnz, random_state=random_state ) indices.extend(ind_sample) # Normalize probabilities for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = class_probability_nz / np.sum( class_probability_nz ) classes_ind = np.searchsorted( class_probability_nz_norm.cumsum(), rng.rand(nnz) ) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
the-stack_0_10043
# Development specific settings DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'postgres', 'USER': 'postgres', 'HOST': 'db', 'PORT': 5432, } } EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' ALLOWED_HOSTS = ['0.0.0.0']
the-stack_0_10046
#!/usr/bin/env python # -*- coding: utf-8 -*- """ post_ongoing_update.py Script to post an ongoing books update on tumblr. """ import datetime import json import random import sys import traceback from optparse import OptionParser from twitter import TwitterHTTPError from gluon import * from applications.zcomx.modules.creators import Creator from applications.zcomx.modules.stickon.dal import RecordGenerator from applications.zcomx.modules.facebook import \ Authenticator as FbAuthenticator, \ FacebookAPIError, \ Poster as FbPoster, \ TextDataPreparer as FbTextDataPreparer from applications.zcomx.modules.social_media import OngoingPost from applications.zcomx.modules.tumblr import \ Authenticator, \ Poster, \ TextDataPreparer, \ postable_activity_log_ids from applications.zcomx.modules.tweeter import \ Authenticator as TwAuthenticator, \ Poster as TwPoster, \ TextDataPreparer as TwTextDataPreparer, \ creators_in_ongoing_post from applications.zcomx.modules.zco import \ IN_PROGRESS, \ SITE_NAME from applications.zcomx.modules.logger import set_cli_logging VERSION = 'Version 0.1' def post_on_facebook(ongoing_post): """Post on facebook Args: ongoing_post: OngoingPost instance Returns: str, facebook post id """ LOG.debug( 'Creating facebook posting for date: %s', str(ongoing_post.post_date)) settings = current.app.local_settings credentials = { 'email': settings.facebook_email, 'password': settings.facebook_password, 'client_id': settings.facebook_client_id, 'redirect_uri': settings.facebook_redirect_uri, 'page_name': settings.facebook_page_name } client = FbAuthenticator(credentials).authenticate() poster = FbPoster(client) facebook_data = {'tumblr_post_id': ongoing_post.tumblr_post_id} text_data = FbTextDataPreparer(facebook_data).data() error = None try: result = poster.post_text(text_data) except FacebookAPIError as err: error = err result = {} if 'id' not in result: LOG.error( 'Facebook post failed for ongoing_post: %s', ongoing_post.id ) LOG.error( 'Fix: post_ongoing_update.py --facebook %s', str(ongoing_post.date) ) if error: LOG.error(err) return post_id = result['id'] LOG.debug('post_id: %s', post_id) return post_id def post_on_tumblr(ongoing_post): """Post on tumblr Args: ongoing_post: OngoingPost instance Returns: str, tumblr posting id """ LOG.debug( 'Creating tumblr posting for date: %s', str(ongoing_post.post_date)) settings = current.app.local_settings credentials = { 'consumer_key': settings.tumblr_consumer_key, 'consumer_secret': settings.tumblr_consumer_secret, 'oauth_token': settings.tumblr_oauth_token, 'oauth_secret': settings.tumblr_oauth_secret, } client = Authenticator(credentials).authenticate() poster = Poster(client) query = (db.activity_log.ongoing_post_id == ongoing_post.id) generator = RecordGenerator(query) text_data = TextDataPreparer(ongoing_post.post_date, generator).data() if settings.tumblr_post_state: text_data['state'] = settings.tumblr_post_state result = poster.post_text(settings.tumblr_username, text_data) if 'id' not in result: LOG.error( 'Tumblr ongoing post failed for date: %s', str(ongoing_post.post_date) ) # Try to get an error message. if 'meta' in result: if 'status' in result['meta'] and 'msg' in result['meta']: LOG.error( 'Status: %s, msg: %s', result['meta']['status'], result['meta']['msg'] ) if 'response' in result and 'errors' in result['response']: for error in result['response']['errors']: LOG.error(error) return post_id = result['id'] LOG.debug('post_id: %s', post_id) return post_id def post_on_twitter(ongoing_post): """Post on twitter Args: ongoing_post: OngoingPost instance Returns: str, twitter posting id """ LOG.debug( 'Creating twitter posting for date: %s', str(ongoing_post.post_date)) settings = current.app.local_settings credentials = { 'consumer_key': settings.twitter_consumer_key, 'consumer_secret': settings.twitter_consumer_secret, 'oauth_token': settings.twitter_oauth_token, 'oauth_secret': settings.twitter_oauth_secret, } client = TwAuthenticator(credentials).authenticate() poster = TwPoster(client) creators = [] # [{'name': 'Joe Smoe', 'twitter': '@joesmoe'},...] for creator_id in creators_in_ongoing_post(ongoing_post): try: creator = Creator.from_id(creator_id) except LookupError: LOG.error('Creator not found, id: %s', creator_id) continue creators.append({ 'name': creator.name, 'twitter': creator.twitter, }) # Shuffle creators so there is no alphabetical bias random.shuffle(creators) twitter_data = { 'ongoing_post': { 'creators': creators, 'tumblr_post_id': ongoing_post.tumblr_post_id, }, 'site': {'name': SITE_NAME}, } text_data = TwTextDataPreparer(twitter_data).data() error = None try: result = poster.post_text(text_data) except TwitterHTTPError as err: error = err result = {} if 'id' not in result: LOG.error( 'Twitter post failed for ongoing_post: %s', ongoing_post.id ) if error: response_data = json.loads(error.response_data) if 'errors' in response_data and response_data['errors']: code = response_data['errors'][0]['code'] msg = response_data['errors'][0]['message'] LOG.error('Code: %s, msg: %s', code, msg) return post_id = result['id'] LOG.debug('post_id: %s', post_id) return post_id def get_ongoing_post(date, create=True): """Get the ongoing_post record for the given date. Args: date: datetime.date instance create: If true, create an ongoing_post record if not found. Returns: OngoingPost instance """ key = dict(post_date=date) try: ongoing_post = OngoingPost.from_key(key) except LookupError: ongoing_post = None if not ongoing_post and create: ongoing_post = OngoingPost.from_add(key) return ongoing_post def man_page(): """Print manual page-like help""" print(""" USAGE post_ongoing_update.py [OPTIONS] yyyy-mm-dd OPTIONS -f, --force Post regardless if ongoing_post record indicates a post has already been made (ie ongoing_post.tumblr_post_id and ongoing_post.twitter_post_id are set) --facebook Post only on facebook. -h, --help Print a brief help. --man Print man page-like help. -p --process-activity-logs By default posts are made for existing ongoing_post records only (matched on date) and no activity_log records are processed. With this option an ongoing_post is created for the date if necessary, and all activity_log records not yet associated with an ongoing_post are associated with the new ongoing_post. --tumblr Post only on tumblr. --twitter Post only on twitter. -v, --verbose Print information messages to stdout. --vv, More verbose. Print debug messages to stdout. """) def main(): """Main processing.""" usage = '%prog [options] YYYY-MM-DD' parser = OptionParser(usage=usage, version=VERSION) parser.add_option( '-f', '--force', action='store_true', dest='force', default=False, help='Post regardles if ongoing post_ids exist.', ) parser.add_option( '--facebook', action='store_true', dest='facebook', default=False, help='Post only on facebook.', ) parser.add_option( '--man', action='store_true', dest='man', default=False, help='Display manual page-like help and exit.', ) parser.add_option( '-p', '--process-activity-logs', action='store_true', dest='process_activity_logs', default=False, help='Process activity_log records.', ) parser.add_option( '--tumblr', action='store_true', dest='tumblr', default=False, help='Post only on tumblr.', ) parser.add_option( '--twitter', action='store_true', dest='twitter', default=False, help='Post only on twitter.', ) parser.add_option( '-v', '--verbose', action='store_true', dest='verbose', default=False, help='Print messages to stdout.', ) parser.add_option( '--vv', action='store_true', dest='vv', default=False, help='More verbose.', ) (options, args) = parser.parse_args() if options.man: man_page() quit(0) set_cli_logging(LOG, options.verbose, options.vv) if len(args) != 1: parser.print_help() exit(1) LOG.debug('Starting') try: date = datetime.datetime.strptime(args[0], '%Y-%m-%d').date() except ValueError as err: LOG.error('Invalid date: %s, %s', args[0], err) exit(1) if options.process_activity_logs: activity_log_ids = postable_activity_log_ids() if not activity_log_ids: LOG.info('There are no postable activity_log records') LOG.info('Nothing to do. Aborting') exit(0) ongoing_post = get_ongoing_post(date) for activity_log_id in activity_log_ids: query = (db.activity_log.id == activity_log_id) db(query).update(ongoing_post_id=ongoing_post.id) else: ongoing_post = get_ongoing_post(date, create=False) if not ongoing_post: LOG.error('Ongoing post not found, date: %s', str(date)) exit(1) services = [] if options.facebook: services.append('facebook') if options.tumblr: services.append('tumblr') if options.twitter: services.append('twitter') if not options.facebook and not options.tumblr and not options.twitter: services = ['facebook', 'tumblr', 'twitter'] if 'tumblr' in services: if ongoing_post.tumblr_post_id \ and ongoing_post.tumblr_post_id != IN_PROGRESS \ and not options.force: LOG.warn( 'Ongoing_post has tumblr_post_id: %s', ongoing_post.tumblr_post_id ) LOG.warn('Refusing to post to tumblr without --force') else: tumblr_post_id = post_on_tumblr(ongoing_post) if tumblr_post_id: ongoing_post = OngoingPost.from_updated( ongoing_post, dict(tumblr_post_id=tumblr_post_id)) if 'twitter' in services: if ongoing_post.twitter_post_id \ and ongoing_post.twitter_post_id != IN_PROGRESS \ and not options.force: LOG.warn( 'Ongoing_post has twitter_post_id: %s', ongoing_post.twitter_post_id ) LOG.warn('Refusing to post to twitter without --force') else: twitter_post_id = post_on_twitter(ongoing_post) if twitter_post_id: ongoing_post = OngoingPost.from_updated( ongoing_post, dict(twitter_post_id=twitter_post_id)) if 'facebook' in services: if not ongoing_post.tumblr_post_id \ or ongoing_post.tumblr_post_id == IN_PROGRESS: LOG.error('Unable to post to facebook without a tumblr_post_id') elif ongoing_post.facebook_post_id \ and ongoing_post.facebook_post_id != IN_PROGRESS \ and not options.force: LOG.warn( 'Ongoing_post has facebook_post_id: %s', ongoing_post.facebook_post_id ) LOG.warn('Refusing to post to facebook without --force') else: facebook_post_id = post_on_facebook(ongoing_post) if facebook_post_id: ongoing_post = OngoingPost.from_updated( ongoing_post, dict(facebook_post_id=facebook_post_id)) LOG.debug('Done') if __name__ == '__main__': # pylint: disable=broad-except try: main() except SystemExit: pass except Exception: traceback.print_exc(file=sys.stderr) exit(1)
the-stack_0_10047
# -*- coding: utf-8 -*- from __future__ import unicode_literals from datetime import date from workalendar.core import WesternCalendar, ChristianMixin from ..registry_tools import iso_register @iso_register('NL') class Netherlands(WesternCalendar, ChristianMixin): 'Netherlands' include_good_friday = True include_easter_sunday = True include_easter_monday = True include_ascension = True include_whit_sunday = True include_whit_monday = True include_boxing_day = True FIXED_HOLIDAYS = WesternCalendar.FIXED_HOLIDAYS + ( (5, 5, "Liberation Day"), ) def get_king_queen_day(self, year): """27 April unless this is a Sunday in which case it is the 26th Before 2013 it was called Queensday, falling on 30 April, unless this is a Sunday in which case it is the 29th. """ if year > 2013: if date(year, 4, 27).weekday() != 6: return date(year, 4, 27), "King's day" else: return date(year, 4, 26), "King's day" else: if date(year, 4, 30).weekday() != 6: return date(year, 4, 30), "Queen's day" else: return date(year, 4, 29), "Queen's day" def get_variable_days(self, year): days = super(Netherlands, self).get_variable_days(year) days.append(self.get_king_queen_day(year)) return days
the-stack_0_10048
"""I/O format for MongoDB This plugin is designed with data monitoring in mind, to put smaller amounts of extracted data into a database for quick access. However it should work with any plugin. Note that there is no check to make sure the 16MB document size limit is respected! """ import strax import numpy as np from pymongo import MongoClient, DESCENDING from strax import StorageFrontend, StorageBackend, Saver from datetime import datetime from pytz import utc as py_utc from warnings import warn from sys import getsizeof export, __all__ = strax.exporter() # Some data is stored in the buffer. Delete when either of these values # are exceeded DEFAULT_MONGO_BACKEND_BUFFER_MB = 200 DEFAULT_MONGO_BACKEND_BUFFER_NRUNS = 5 @export class MongoBackend(StorageBackend): """Mongo storage backend""" def __init__(self, uri, database, col_name=None): """ Backend for reading/writing data from Mongo :param uri: Mongo url (with pw and username) :param database: name of database (str) :param col_name: collection name (str) to look for data """ self.client = MongoClient(uri) self.db = self.client[database] self.col_name = col_name # Attributes for the chunks-buffer self.chunks_registry = {} self._buffered_backend_keys = [] self._buff_mb = DEFAULT_MONGO_BACKEND_BUFFER_MB self._buff_nruns = DEFAULT_MONGO_BACKEND_BUFFER_NRUNS def _read_chunk(self, backend_key, chunk_info, dtype, compressor): """See strax.Backend""" chunk_i = chunk_info["chunk_i"] registry_key = backend_key + str(chunk_i) # Build the chunk-registry if not done already, also rebuild if # the key is not in the registry (will fail below if also not # there on rebuild). if registry_key not in self.chunks_registry.keys(): self._build_chunk_registry(backend_key) # Unpack info about this chunk from the query. Return empty if # not available. Use a *string* in the registry to lookup the # chunk-data (like we do in _build_chunk_registry). doc = self.chunks_registry.get(registry_key, None) if doc is None: # Did not find the data. NB: can be that the query is off in # the _build_chunk_registry. In case you end up here but did # not expect that, double check that self.chunks_registry is # not an empty dict! raise ValueError( f'Metadata claims chunk{chunk_i} exists but it is unknown to ' f'the chunks_registry') else: chunk_doc = doc.get('data', None) if chunk_doc is None: raise ValueError( f'Doc for chunk_{chunk_i} in wrong format:\n{doc}') # Convert JSON to numpy chunk_len = len(chunk_doc) result = np.zeros(chunk_len, dtype=dtype) for i in range(chunk_len): for key in np.dtype(dtype).names: result[i][key] = chunk_doc[i][key] return result def _saver(self, key, metadata): """See strax.Backend""" # Use the key to make a collection otherwise, use the backend-key col = self.db[self.col_name if self.col_name is not None else str(key)] return MongoSaver(key, metadata, col) def get_metadata(self, key): """See strax.Backend""" query = backend_key_to_query(key) # Make sure to get the last of the meta-data docs. Otherwise we # might be getting a previously failed document. Sort argument # should be obsolete (due to the self.col.delete_many in the # MongoSaver) but rather safe than sorry. doc = self.db[self.col_name].find_one({ **query, 'metadata': {"$exists": True}}, # **query, 'provides_meta': True}, <-change to this after TTL has flushed sort=[('write_time', DESCENDING)]) if doc and 'metadata' in doc: return doc['metadata'] raise strax.DataNotAvailable def _build_chunk_registry(self, backend_key): """ Build chunk info in a single registry using only one query to the database. This is much faster as one does not have to do n-chunk queries to the database. Just one will do. As the documents-size is limited to 16 MB, it's unlikely that we will run into memory issues (that we otherwise would not run into). :param backend_key: strax.DataKey to query the collection for """ query = backend_key_to_query(backend_key) chunks_registry = self.db[self.col_name].find( {**query, 'chunk_i': {'$exists': True}}, # {**query, 'provides_meta': False}, <-change to this after TTL has flushed {"chunk_i": 1, "data": 1}) # We are going to convert this to a dictionary as that is # easier to lookup for doc in chunks_registry: chunk_key = doc.get('chunk_i', None) if chunk_key is None: # Should not happen because of the projection in find # but let's double check: raise ValueError( f'Projection failed, got doc with no "chunk_i":\n{doc}') # Update our registry with this chunks info. Use chunk_i as # chunk_key. Make it a *string* to avoid potential key-error # issues or json-encoding headaches. self.chunks_registry[backend_key + str(chunk_key)] = doc.copy() # Some bookkeeping to make sure we don't buffer too much in this # backend. We still need to return at least one hence the 'and'. # See: https://github.com/AxFoundation/strax/issues/346 if backend_key not in self._buffered_backend_keys: self._buffered_backend_keys.append(backend_key) while ((getsizeof(self.chunks_registry) / 1e6 > self._buff_mb and len(self._buffered_backend_keys) > 1) or len(self._buffered_backend_keys) > self._buff_nruns): self._clean_first_key_from_registry() def _clean_first_key_from_registry(self): """ Remove the first item in the self.buffered_keys and all the associated keys in the self.chunks_registry to limit RAM-usage """ # only clean the first entry from the list to_clean = self._buffered_backend_keys[0] for registry_key in list(self.chunks_registry.keys()): if to_clean in registry_key: del self.chunks_registry[registry_key] del self._buffered_backend_keys[0] @export class MongoFrontend(StorageFrontend): """MongoDB storage frontend""" def __init__(self, uri, database, col_name=None, *args, **kwargs): """ MongoFrontend for reading/writing data from Mongo :param uri: Mongo url (with pw and username) :param database: name of database (str) :param col_name: collection name (str) to look for data :param args: init for StorageFrontend :param kwargs: init for StorageFrontend """ super().__init__(*args, **kwargs) self.client = MongoClient(uri) self.db = self.client[database] self.backends = [MongoBackend(uri, database, col_name=col_name)] self.col_name = col_name def _find(self, key, write, allow_incomplete, fuzzy_for, fuzzy_for_options): """See strax.Frontend""" if write: return self.backends[0].__class__.__name__, str(key) query = backend_key_to_query(str(key)) if self.db[self.col_name].count_documents(query): self.log.debug(f"{key} is in cache.") return self.backends[0].__class__.__name__, str(key) self.log.debug(f"{key} is NOT in cache.") raise strax.DataNotAvailable @export class MongoSaver(Saver): allow_rechunk = False def __init__(self, key, metadata, col): """ Mongo saver :param key: strax.Datakey :param metadata: metadata to save belonging to data :param col: collection (NB! pymongo collection object) of mongo instance to write to """ super().__init__(metadata) self.col = col # All meta_documents should have the key to query against basic_meta = backend_key_to_query(key).copy() # Start with a clean sheet, we are just going to overwrite self.col.delete_many(basic_meta) # Add datetime objects as candidates for TTL collections. Either # can be used according to the preference of the user to index. # Two entries can be used: # 1. The time of writing. # 2. The time of data taking. basic_meta['write_time'] = datetime.now(py_utc) # The run_start_time below is a placeholder and will be updated # in the _save_chunk_metadata for the first chunk. Nevertheless # we need an object in case there e.g. is no chunk. basic_meta['run_start_time'] = datetime.now(py_utc) # Add flag to doc that we are providing the metadata basic_meta['provides_meta'] = True # If available later update with this value: self.run_start = None # This info should be added to all of the associated documents self.basic_md = basic_meta # For the metadata copy this too: meta_data = basic_meta.copy() meta_data['metadata'] = self.md # Save object_ids for fast querying and updates self.id_md = self.col.insert_one(meta_data).inserted_id # Also save all the chunks self.ids_chunk = {} def _save_chunk(self, data, chunk_info, executor=None): """see strax.Saver""" chunk_i = chunk_info['chunk_i'] if getattr(data, 'nbytes') > 10_000_000: warn('Inserting documents of size > 10 MB, this is getting ' 'close to the 16 MB document size in mongo', UserWarning) aggregate_data = [] # Remove the numpy structures and parse the data. The dtype # information is saved with the metadata so don't worry for row in data: ins = {} for key in list(data.dtype.names): ins[key] = row[key] ins = remove_np(ins) aggregate_data.append(ins) # Get the document to update, if none available start a new one # for this chunk chunk_id = self.ids_chunk.get(chunk_i, None) # We can fail here if the document is too large to be written # out to mongo. One could do a try: except # pymongo.errors.WriteError: pass, but that potentially leads to # abuse of a Mongo instance going unnoticed. if chunk_id is not None: # In principle this should not end up here as each chunk # should be it's own document unless you re-chunk self.col.update_one({'_id': chunk_id}, {'$push': {f'data': aggregate_data}}) else: # Start a new document, update it with the proper information doc = self.basic_md.copy() doc['write_time'] = datetime.now(py_utc) doc['chunk_i'] = chunk_i doc["data"] = aggregate_data doc['provides_meta'] = False chunk_id = self.col.insert_one(doc).inserted_id self.ids_chunk[chunk_i] = chunk_id return dict(), None def _save_chunk_metadata(self, chunk_info): """see strax.Saver""" # For the first chunk we get the run_start_time and update the # run-metadata file if int(chunk_info['chunk_i']) == 0: self.run_start = datetime.fromtimestamp( chunk_info['start']/1e9).replace(tzinfo=py_utc) self.col.update_one({'_id': self.id_md}, {'$addToSet': {'metadata.chunks': chunk_info}}) def _close(self): """see strax.Saver""" # First update the run-starts of all of the chunk-documents as # this is a TTL index-candidate if self.run_start is not None: update = {'run_start_time': self.run_start} query = {k: v for k, v in self.basic_md.items() if k in ('number', 'data_type', 'lineage_hash')} self.col.update_many(query, {'$set': update}) # Update the metadata update = {f'metadata.{k}': v for k, v in self.md.items() if k in ('writing_ended', 'exception')} # Also update all of the chunk-documents with the run_start_time self.col.update_one({'_id': self.id_md}, {'$set': update}) def backend_key_to_query(backend_key): """Convert backend key to queryable dictionary""" n, d, l = backend_key.split('-') return {'number': int(n), 'data_type': d, 'lineage_hash': l} def remove_np(dictin): """Remove numpy types from a dict so it can be inserted into mongo.""" if isinstance(dictin, dict): result = {} for k in dictin.keys(): result[k] = remove_np(dictin[k]) elif isinstance(dictin, (np.ndarray, list)): result = [] for k in dictin: result.append(remove_np(k)) elif isinstance(dictin, np.integer): return int(dictin) elif isinstance(dictin, np.floating): return float(dictin) else: return dictin return result
the-stack_0_10049
import numpy as np import matplotlib.pyplot as plt print("Running plot_runtime script..") maindir = 'res/runtime/' filename = 'runtime_results.csv' file = maindir + filename print("Reading input data from " + file + "..") data = np.genfromtxt(file, delimiter=',', skip_header=1) print("Input completed..") kind = ['static', 'dynamic', 'guided'] chunksize=[1, 2, 4, 8, 16, 32, 64] avg_time_loop1 = np.zeros((len(chunksize),len(kind))) avg_time_loop2 = np.zeros((len(chunksize),len(kind))) for num, label in enumerate(kind): # read kind type column blocks = data[:,1] # get data that only match the current kind type kind_data = data[blocks==num+1,:] for idx in range(len(chunksize)): # get data that only match the current chunksize blocks = kind_data[:,2] chunk_data = kind_data[blocks==chunksize[idx],:] # take the average time for each chunksize avg_time_loop1[idx,num] = np.mean(chunk_data[:,5]) avg_time_loop2[idx,num] = np.mean(chunk_data[:,7]) #time vs chunksize plt.figure() plt.plot(chunksize, avg_time_loop1[:,0], '-*', label='Static') plt.plot(chunksize, avg_time_loop1[:,1], '-^', label='Dynamic') plt.plot(chunksize, avg_time_loop1[:,2], '-<', label='Guided') plt.xlabel('Chunksize') plt.ylabel('Time (s)') # plt.legend(loc=2) plt.legend() plt.grid(True) plt.savefig(maindir + 'runtime_loop1.eps', format='eps', dpi=1000) plt.close() print("Execution time for plot for loop1 completed..") #time vs chunksize plt.figure() plt.plot(chunksize, avg_time_loop2[:,0], '-*', label='Static') plt.plot(chunksize, avg_time_loop2[:,1], '-^', label='Dynamic') plt.plot(chunksize, avg_time_loop2[:,2], '-<', label='Guided') plt.xlabel('Chunksize') plt.ylabel('Time (s)') # plt.legend(loc=2) plt.legend() plt.grid(True) plt.savefig(maindir + 'runtime_loop2.eps', format='eps', dpi=1000) plt.close() print("Execution time for plot for loop2 completed..") print("plot_runtime script completed..")
the-stack_0_10050
"""Gunicorn configuration file.""" import multiprocessing import environ from koku.feature_flags import UNLEASH_CLIENT from koku.probe_server import BasicProbeServer from koku.probe_server import start_probe_server ENVIRONMENT = environ.Env() SOURCES = ENVIRONMENT.bool("SOURCES", default=False) CLOWDER_PORT = "8000" if ENVIRONMENT.bool("CLOWDER_ENABLED", default=False): from app_common_python import LoadedConfig CLOWDER_PORT = LoadedConfig.publicPort if ENVIRONMENT.bool("MASU", default=False) or ENVIRONMENT.bool("SOURCES", default=False): CLOWDER_PORT = LoadedConfig.privatePort bind = f"0.0.0.0:{CLOWDER_PORT}" cpu_resources = ENVIRONMENT.int("POD_CPU_LIMIT", default=multiprocessing.cpu_count()) workers = 1 if SOURCES else cpu_resources * 2 + 1 timeout = ENVIRONMENT.int("TIMEOUT", default=90) loglevel = ENVIRONMENT.get_value("GUNICORN_LOG_LEVEL", default="INFO") graceful_timeout = ENVIRONMENT.int("GRACEFUL_TIMEOUT", default=180) gunicorn_threads = ENVIRONMENT.bool("GUNICORN_THREADS", default=False) if gunicorn_threads: threads = cpu_resources * 2 + 1 # Server Hooks def on_starting(server): """Called just before the main process is initialized.""" httpd = start_probe_server(BasicProbeServer, server.log) httpd.RequestHandlerClass.ready = True def post_fork(server, worker): """Called just after a worker has been forked.""" UNLEASH_CLIENT.unleash_instance_id += f"_pid_{worker.pid}" worker.log.info("Initializing UNLEASH_CLIENT for gunicorn worker.") UNLEASH_CLIENT.initialize_client() def worker_exit(server, worker): """Called just after a worker has been exited, in the worker process.""" worker.log.info("Shutting down UNLEASH_CLIENT for gunicorn worker.") UNLEASH_CLIENT.destroy()
the-stack_0_10051
import requests import time class Facebook: def __init__(self, config, permutations_list): # 1000 ms self.delay = config['plateform']['facebook']['rate_limit'] / 1000 # https://facebook.com/{username} self.format = config['plateform']['facebook']['format'] # facebook usernames are not case sensitive self.permutations_list = [perm.lower() for perm in permutations_list] # social self.type = config['plateform']['facebook']['type'] # Generate all potential facebook usernames def possible_usernames(self): possible_usernames = [] for permutation in self.permutations_list: possible_usernames.append(self.format.format( permutation = permutation, )) return possible_usernames def search(self): facebook_usernames = { "type": self.type, "accounts": [] } possible_usernames_list = self.possible_usernames() for username in possible_usernames_list: try: r = requests.get(username, timeout=5) except requests.ConnectionError: print("failed to connect to facebook") # If the account exists if r.status_code == 200: facebook_usernames["accounts"].append({"value": username}) time.sleep(self.delay) return facebook_usernames
the-stack_0_10052
# TODO nits: # Get rid of asserts that are the caller's fault. # Docstrings (e.g. ABCs). import abc from abc import abstractmethod, abstractproperty import collections import functools import re as stdlib_re # Avoid confusion with the re we export. import sys import types try: import collections.abc as collections_abc except ImportError: import collections as collections_abc # Fallback for PY3.2. # Please keep __all__ alphabetized within each category. __all__ = [ # Super-special typing primitives. 'Any', 'Callable', 'Generic', 'Optional', 'TypeVar', 'Union', 'Tuple', # ABCs (from collections.abc). 'AbstractSet', # collections.abc.Set. 'ByteString', 'Container', 'Hashable', 'ItemsView', 'Iterable', 'Iterator', 'KeysView', 'Mapping', 'MappingView', 'MutableMapping', 'MutableSequence', 'MutableSet', 'Sequence', 'Sized', 'ValuesView', # Structural checks, a.k.a. protocols. 'Reversible', 'SupportsAbs', 'SupportsFloat', 'SupportsInt', 'SupportsRound', # Concrete collection types. 'Dict', 'List', 'Set', 'NamedTuple', # Not really a type. 'Generator', # One-off things. 'AnyStr', 'cast', 'get_type_hints', 'no_type_check', 'no_type_check_decorator', 'overload', # Submodules. 'io', 're', ] def _qualname(x): if sys.version_info[:2] >= (3, 3): return x.__qualname__ else: # Fall back to just name. return x.__name__ class TypingMeta(type): """Metaclass for every type defined below. This overrides __new__() to require an extra keyword parameter '_root', which serves as a guard against naive subclassing of the typing classes. Any legitimate class defined using a metaclass derived from TypingMeta (including internal subclasses created by e.g. Union[X, Y]) must pass _root=True. This also defines a dummy constructor (all the work is done in __new__) and a nicer repr(). """ _is_protocol = False def __new__(cls, name, bases, namespace, *, _root=False): if not _root: raise TypeError("Cannot subclass %s" % (', '.join(map(_type_repr, bases)) or '()')) return super().__new__(cls, name, bases, namespace) def __init__(self, *args, **kwds): pass def _eval_type(self, globalns, localns): """Override this in subclasses to interpret forward references. For example, Union['C'] is internally stored as Union[_ForwardRef('C')], which should evaluate to _Union[C], where C is an object found in globalns or localns (searching localns first, of course). """ return self def _has_type_var(self): return False def __repr__(self): return '%s.%s' % (self.__module__, _qualname(self)) class Final: """Mix-in class to prevent instantiation.""" __slots__ = () def __new__(self, *args, **kwds): raise TypeError("Cannot instantiate %r" % self.__class__) class _ForwardRef(TypingMeta): """Wrapper to hold a forward reference.""" def __new__(cls, arg): if not isinstance(arg, str): raise TypeError('ForwardRef must be a string -- got %r' % (arg,)) try: code = compile(arg, '<string>', 'eval') except SyntaxError: raise SyntaxError('ForwardRef must be an expression -- got %r' % (arg,)) self = super().__new__(cls, arg, (), {}, _root=True) self.__forward_arg__ = arg self.__forward_code__ = code self.__forward_evaluated__ = False self.__forward_value__ = None typing_globals = globals() frame = sys._getframe(1) while frame is not None and frame.f_globals is typing_globals: frame = frame.f_back assert frame is not None self.__forward_frame__ = frame return self def _eval_type(self, globalns, localns): if not isinstance(localns, dict): raise TypeError('ForwardRef localns must be a dict -- got %r' % (localns,)) if not isinstance(globalns, dict): raise TypeError('ForwardRef globalns must be a dict -- got %r' % (globalns,)) if not self.__forward_evaluated__: if globalns is None and localns is None: globalns = localns = {} elif globalns is None: globalns = localns elif localns is None: localns = globalns self.__forward_value__ = _type_check( eval(self.__forward_code__, globalns, localns), "Forward references must evaluate to types.") self.__forward_evaluated__ = True return self.__forward_value__ def __instancecheck__(self, obj): raise TypeError("Forward references cannot be used with isinstance().") def __subclasscheck__(self, cls): if not self.__forward_evaluated__: globalns = self.__forward_frame__.f_globals localns = self.__forward_frame__.f_locals try: self._eval_type(globalns, localns) except NameError: return False # Too early. return issubclass(cls, self.__forward_value__) def __repr__(self): return '_ForwardRef(%r)' % (self.__forward_arg__,) class _TypeAlias: """Internal helper class for defining generic variants of concrete types. Note that this is not a type; let's call it a pseudo-type. It can be used in instance and subclass checks, e.g. isinstance(m, Match) or issubclass(type(m), Match). However, it cannot be itself the target of an issubclass() call; e.g. issubclass(Match, C) (for some arbitrary class C) raises TypeError rather than returning False. """ __slots__ = ('name', 'type_var', 'impl_type', 'type_checker') def __new__(cls, *args, **kwds): """Constructor. This only exists to give a better error message in case someone tries to subclass a type alias (not a good idea). """ if (len(args) == 3 and isinstance(args[0], str) and isinstance(args[1], tuple)): # Close enough. raise TypeError("A type alias cannot be subclassed") return object.__new__(cls) def __init__(self, name, type_var, impl_type, type_checker): """Initializer. Args: name: The name, e.g. 'Pattern'. type_var: The type parameter, e.g. AnyStr, or the specific type, e.g. str. impl_type: The implementation type. type_checker: Function that takes an impl_type instance. and returns a value that should be a type_var instance. """ assert isinstance(name, str), repr(name) assert isinstance(type_var, type), repr(type_var) assert isinstance(impl_type, type), repr(impl_type) assert not isinstance(impl_type, TypingMeta), repr(impl_type) self.name = name self.type_var = type_var self.impl_type = impl_type self.type_checker = type_checker def __repr__(self): return "%s[%s]" % (self.name, _type_repr(self.type_var)) def __getitem__(self, parameter): assert isinstance(parameter, type), repr(parameter) if not isinstance(self.type_var, TypeVar): raise TypeError("%s cannot be further parameterized." % self) if self.type_var.__constraints__: if not issubclass(parameter, Union[self.type_var.__constraints__]): raise TypeError("%s is not a valid substitution for %s." % (parameter, self.type_var)) return self.__class__(self.name, parameter, self.impl_type, self.type_checker) def __instancecheck__(self, obj): raise TypeError("Type aliases cannot be used with isinstance().") def __subclasscheck__(self, cls): if cls is Any: return True if isinstance(cls, _TypeAlias): # Covariance. For now, we compare by name. return (cls.name == self.name and issubclass(cls.type_var, self.type_var)) else: # Note that this is too lenient, because the # implementation type doesn't carry information about # whether it is about bytes or str (for example). return issubclass(cls, self.impl_type) def _has_type_var(t): return t is not None and isinstance(t, TypingMeta) and t._has_type_var() def _eval_type(t, globalns, localns): if isinstance(t, TypingMeta): return t._eval_type(globalns, localns) else: return t def _type_check(arg, msg): """Check that the argument is a type, and return it. As a special case, accept None and return type(None) instead. Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable. The msg argument is a human-readable error message, e.g. "Union[arg, ...]: arg should be a type." We append the repr() of the actual value (truncated to 100 chars). """ if arg is None: return type(None) if isinstance(arg, str): arg = _ForwardRef(arg) if not isinstance(arg, (type, _TypeAlias)): raise TypeError(msg + " Got %.100r." % (arg,)) return arg def _type_repr(obj): """Return the repr() of an object, special-casing types. If obj is a type, we return a shorter version than the default type.__repr__, based on the module and qualified name, which is typically enough to uniquely identify a type. For everything else, we fall back on repr(obj). """ if isinstance(obj, type) and not isinstance(obj, TypingMeta): if obj.__module__ == 'builtins': return _qualname(obj) else: return '%s.%s' % (obj.__module__, _qualname(obj)) else: return repr(obj) class AnyMeta(TypingMeta): """Metaclass for Any.""" def __new__(cls, name, bases, namespace, _root=False): self = super().__new__(cls, name, bases, namespace, _root=_root) return self def __instancecheck__(self, obj): raise TypeError("Any cannot be used with isinstance().") def __subclasscheck__(self, cls): if not isinstance(cls, type): return super().__subclasscheck__(cls) # To TypeError. return True class Any(Final, metaclass=AnyMeta, _root=True): """Special type indicating an unconstrained type. - Any object is an instance of Any. - Any class is a subclass of Any. - As a special case, Any and object are subclasses of each other. """ __slots__ = () class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True): """Type variable. Usage:: T = TypeVar('T') # Can be anything A = TypeVar('A', str, bytes) # Must be str or bytes Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows: def repeat(x: T, n: int) -> Sequence[T]: '''Return a list containing n references to x.''' return [x]*n def longest(x: A, y: A) -> A: '''Return the longest of two strings.''' return x if len(x) >= len(y) else y The latter example's signature is essentially the overloading of (str, str) -> str and (bytes, bytes) -> bytes. Also note that if the arguments are instances of some subclass of str, the return type is still plain str. At runtime, isinstance(x, T) will raise TypeError. However, issubclass(C, T) is true for any class C, and issubclass(str, A) and issubclass(bytes, A) are true, and issubclass(int, A) is false. Type variables may be marked covariant or contravariant by passing covariant=True or contravariant=True. See PEP 484 for more details. By default type variables are invariant. Type variables can be introspected. e.g.: T.__name__ == 'T' T.__constraints__ == () T.__covariant__ == False T.__contravariant__ = False A.__constraints__ == (str, bytes) """ def __new__(cls, name, *constraints, bound=None, covariant=False, contravariant=False): self = super().__new__(cls, name, (Final,), {}, _root=True) if covariant and contravariant: raise ValueError("Bivariant type variables are not supported.") self.__covariant__ = bool(covariant) self.__contravariant__ = bool(contravariant) if constraints and bound is not None: raise TypeError("Constraints cannot be combined with bound=...") if constraints and len(constraints) == 1: raise TypeError("A single constraint is not allowed") msg = "TypeVar(name, constraint, ...): constraints must be types." self.__constraints__ = tuple(_type_check(t, msg) for t in constraints) if bound: self.__bound__ = _type_check(bound, "Bound must be a type.") else: self.__bound__ = None return self def _has_type_var(self): return True def __repr__(self): if self.__covariant__: prefix = '+' elif self.__contravariant__: prefix = '-' else: prefix = '~' return prefix + self.__name__ def __instancecheck__(self, instance): raise TypeError("Type variables cannot be used with isinstance().") def __subclasscheck__(self, cls): # TODO: Make this raise TypeError too? if cls is self: return True if cls is Any: return True if self.__bound__ is not None: return issubclass(cls, self.__bound__) if self.__constraints__: return any(issubclass(cls, c) for c in self.__constraints__) return True # Some unconstrained type variables. These are used by the container types. T = TypeVar('T') # Any type. KT = TypeVar('KT') # Key type. VT = TypeVar('VT') # Value type. T_co = TypeVar('T_co', covariant=True) # Any type covariant containers. V_co = TypeVar('V_co', covariant=True) # Any type covariant containers. VT_co = TypeVar('VT_co', covariant=True) # Value type covariant containers. T_contra = TypeVar('T_contra', contravariant=True) # Ditto contravariant. # A useful type variable with constraints. This represents string types. # TODO: What about bytearray, memoryview? AnyStr = TypeVar('AnyStr', bytes, str) class UnionMeta(TypingMeta): """Metaclass for Union.""" def __new__(cls, name, bases, namespace, parameters=None, _root=False): if parameters is None: return super().__new__(cls, name, bases, namespace, _root=_root) if not isinstance(parameters, tuple): raise TypeError("Expected parameters=<tuple>") # Flatten out Union[Union[...], ...] and type-check non-Union args. params = [] msg = "Union[arg, ...]: each arg must be a type." for p in parameters: if isinstance(p, UnionMeta): params.extend(p.__union_params__) else: params.append(_type_check(p, msg)) # Weed out strict duplicates, preserving the first of each occurrence. all_params = set(params) if len(all_params) < len(params): new_params = [] for t in params: if t in all_params: new_params.append(t) all_params.remove(t) params = new_params assert not all_params, all_params # Weed out subclasses. # E.g. Union[int, Employee, Manager] == Union[int, Employee]. # If Any or object is present it will be the sole survivor. # If both Any and object are present, Any wins. # Never discard type variables, except against Any. # (In particular, Union[str, AnyStr] != AnyStr.) all_params = set(params) for t1 in params: if t1 is Any: return Any if isinstance(t1, TypeVar): continue if any(issubclass(t1, t2) for t2 in all_params - {t1} if not isinstance(t2, TypeVar)): all_params.remove(t1) # It's not a union if there's only one type left. if len(all_params) == 1: return all_params.pop() # Create a new class with these params. self = super().__new__(cls, name, bases, {}, _root=True) self.__union_params__ = tuple(t for t in params if t in all_params) self.__union_set_params__ = frozenset(self.__union_params__) return self def _eval_type(self, globalns, localns): p = tuple(_eval_type(t, globalns, localns) for t in self.__union_params__) if p == self.__union_params__: return self else: return self.__class__(self.__name__, self.__bases__, {}, p, _root=True) def _has_type_var(self): if self.__union_params__: for t in self.__union_params__: if _has_type_var(t): return True return False def __repr__(self): r = super().__repr__() if self.__union_params__: r += '[%s]' % (', '.join(_type_repr(t) for t in self.__union_params__)) return r def __getitem__(self, parameters): if self.__union_params__ is not None: raise TypeError( "Cannot subscript an existing Union. Use Union[u, t] instead.") if parameters == (): raise TypeError("Cannot take a Union of no types.") if not isinstance(parameters, tuple): parameters = (parameters,) return self.__class__(self.__name__, self.__bases__, dict(self.__dict__), parameters, _root=True) def __eq__(self, other): if not isinstance(other, UnionMeta): return NotImplemented return self.__union_set_params__ == other.__union_set_params__ def __hash__(self): return hash(self.__union_set_params__) def __instancecheck__(self, obj): raise TypeError("Unions cannot be used with isinstance().") def __subclasscheck__(self, cls): if cls is Any: return True if self.__union_params__ is None: return isinstance(cls, UnionMeta) elif isinstance(cls, UnionMeta): if cls.__union_params__ is None: return False return all(issubclass(c, self) for c in (cls.__union_params__)) elif isinstance(cls, TypeVar): if cls in self.__union_params__: return True if cls.__constraints__: return issubclass(Union[cls.__constraints__], self) return False else: return any(issubclass(cls, t) for t in self.__union_params__) class Union(Final, metaclass=UnionMeta, _root=True): """Union type; Union[X, Y] means either X or Y. To define a union, use e.g. Union[int, str]. Details: - The arguments must be types and there must be at least one. - None as an argument is a special case and is replaced by type(None). - Unions of unions are flattened, e.g.:: Union[Union[int, str], float] == Union[int, str, float] - Unions of a single argument vanish, e.g.:: Union[int] == int # The constructor actually returns int - Redundant arguments are skipped, e.g.:: Union[int, str, int] == Union[int, str] - When comparing unions, the argument order is ignored, e.g.:: Union[int, str] == Union[str, int] - When two arguments have a subclass relationship, the least derived argument is kept, e.g.:: class Employee: pass class Manager(Employee): pass Union[int, Employee, Manager] == Union[int, Employee] Union[Manager, int, Employee] == Union[int, Employee] Union[Employee, Manager] == Employee - Corollary: if Any is present it is the sole survivor, e.g.:: Union[int, Any] == Any - Similar for object:: Union[int, object] == object - To cut a tie: Union[object, Any] == Union[Any, object] == Any. - You cannot subclass or instantiate a union. - You cannot write Union[X][Y] (what would it mean?). - You can use Optional[X] as a shorthand for Union[X, None]. """ # Unsubscripted Union type has params set to None. __union_params__ = None __union_set_params__ = None class OptionalMeta(TypingMeta): """Metaclass for Optional.""" def __new__(cls, name, bases, namespace, _root=False): return super().__new__(cls, name, bases, namespace, _root=_root) def __getitem__(self, arg): arg = _type_check(arg, "Optional[t] requires a single type.") return Union[arg, type(None)] class Optional(Final, metaclass=OptionalMeta, _root=True): """Optional type. Optional[X] is equivalent to Union[X, type(None)]. """ __slots__ = () class TupleMeta(TypingMeta): """Metaclass for Tuple.""" def __new__(cls, name, bases, namespace, parameters=None, use_ellipsis=False, _root=False): self = super().__new__(cls, name, bases, namespace, _root=_root) self.__tuple_params__ = parameters self.__tuple_use_ellipsis__ = use_ellipsis return self def _has_type_var(self): if self.__tuple_params__: for t in self.__tuple_params__: if _has_type_var(t): return True return False def _eval_type(self, globalns, localns): tp = self.__tuple_params__ if tp is None: return self p = tuple(_eval_type(t, globalns, localns) for t in tp) if p == self.__tuple_params__: return self else: return self.__class__(self.__name__, self.__bases__, {}, p, _root=True) def __repr__(self): r = super().__repr__() if self.__tuple_params__ is not None: params = [_type_repr(p) for p in self.__tuple_params__] if self.__tuple_use_ellipsis__: params.append('...') r += '[%s]' % ( ', '.join(params)) return r def __getitem__(self, parameters): if self.__tuple_params__ is not None: raise TypeError("Cannot re-parameterize %r" % (self,)) if not isinstance(parameters, tuple): parameters = (parameters,) if len(parameters) == 2 and parameters[1] == Ellipsis: parameters = parameters[:1] use_ellipsis = True msg = "Tuple[t, ...]: t must be a type." else: use_ellipsis = False msg = "Tuple[t0, t1, ...]: each t must be a type." parameters = tuple(_type_check(p, msg) for p in parameters) return self.__class__(self.__name__, self.__bases__, dict(self.__dict__), parameters, use_ellipsis=use_ellipsis, _root=True) def __eq__(self, other): if not isinstance(other, TupleMeta): return NotImplemented return self.__tuple_params__ == other.__tuple_params__ def __hash__(self): return hash(self.__tuple_params__) def __instancecheck__(self, obj): raise TypeError("Tuples cannot be used with isinstance().") def __subclasscheck__(self, cls): if cls is Any: return True if not isinstance(cls, type): return super().__subclasscheck__(cls) # To TypeError. if issubclass(cls, tuple): return True # Special case. if not isinstance(cls, TupleMeta): return super().__subclasscheck__(cls) # False. if self.__tuple_params__ is None: return True if cls.__tuple_params__ is None: return False # ??? if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__: return False # Covariance. return (len(self.__tuple_params__) == len(cls.__tuple_params__) and all(issubclass(x, p) for x, p in zip(cls.__tuple_params__, self.__tuple_params__))) class Tuple(Final, metaclass=TupleMeta, _root=True): """Tuple type; Tuple[X, Y] is the cross-product type of X and Y. Example: Tuple[T1, T2] is a tuple of two elements corresponding to type variables T1 and T2. Tuple[int, float, str] is a tuple of an int, a float and a string. To specify a variable-length tuple of homogeneous type, use Sequence[T]. """ __slots__ = () class CallableMeta(TypingMeta): """Metaclass for Callable.""" def __new__(cls, name, bases, namespace, _root=False, args=None, result=None): if args is None and result is None: pass # Must be 'class Callable'. else: if args is not Ellipsis: if not isinstance(args, list): raise TypeError("Callable[args, result]: " "args must be a list." " Got %.100r." % (args,)) msg = "Callable[[arg, ...], result]: each arg must be a type." args = tuple(_type_check(arg, msg) for arg in args) msg = "Callable[args, result]: result must be a type." result = _type_check(result, msg) self = super().__new__(cls, name, bases, namespace, _root=_root) self.__args__ = args self.__result__ = result return self def _has_type_var(self): if self.__args__: for t in self.__args__: if _has_type_var(t): return True return _has_type_var(self.__result__) def _eval_type(self, globalns, localns): if self.__args__ is None and self.__result__ is None: return self if self.__args__ is Ellipsis: args = self.__args__ else: args = [_eval_type(t, globalns, localns) for t in self.__args__] result = _eval_type(self.__result__, globalns, localns) if args == self.__args__ and result == self.__result__: return self else: return self.__class__(self.__name__, self.__bases__, {}, args=args, result=result, _root=True) def __repr__(self): r = super().__repr__() if self.__args__ is not None or self.__result__ is not None: if self.__args__ is Ellipsis: args_r = '...' else: args_r = '[%s]' % ', '.join(_type_repr(t) for t in self.__args__) r += '[%s, %s]' % (args_r, _type_repr(self.__result__)) return r def __getitem__(self, parameters): if self.__args__ is not None or self.__result__ is not None: raise TypeError("This Callable type is already parameterized.") if not isinstance(parameters, tuple) or len(parameters) != 2: raise TypeError( "Callable must be used as Callable[[arg, ...], result].") args, result = parameters return self.__class__(self.__name__, self.__bases__, dict(self.__dict__), _root=True, args=args, result=result) def __eq__(self, other): if not isinstance(other, CallableMeta): return NotImplemented return (self.__args__ == other.__args__ and self.__result__ == other.__result__) def __hash__(self): return hash(self.__args__) ^ hash(self.__result__) def __instancecheck__(self, obj): # For unparametrized Callable we allow this, because # typing.Callable should be equivalent to # collections.abc.Callable. if self.__args__ is None and self.__result__ is None: return isinstance(obj, collections_abc.Callable) else: raise TypeError("Callable[] cannot be used with isinstance().") def __subclasscheck__(self, cls): if cls is Any: return True if not isinstance(cls, CallableMeta): return super().__subclasscheck__(cls) if self.__args__ is None and self.__result__ is None: return True # We're not doing covariance or contravariance -- this is *invariance*. return self == cls class Callable(Final, metaclass=CallableMeta, _root=True): """Callable type; Callable[[int], str] is a function of (int) -> str. The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types; the return type must be a single type. There is no syntax to indicate optional or keyword arguments, such function types are rarely used as callback types. """ __slots__ = () def _gorg(a): """Return the farthest origin of a generic class.""" assert isinstance(a, GenericMeta) while a.__origin__ is not None: a = a.__origin__ return a def _geqv(a, b): """Return whether two generic classes are equivalent. The intention is to consider generic class X and any of its parameterized forms (X[T], X[int], etc.) as equivalent. However, X is not equivalent to a subclass of X. The relation is reflexive, symmetric and transitive. """ assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta) # Reduce each to its origin. return _gorg(a) is _gorg(b) class GenericMeta(TypingMeta, abc.ABCMeta): """Metaclass for generic types.""" # TODO: Constrain more how Generic is used; only a few # standard patterns should be allowed. # TODO: Use a more precise rule than matching __name__ to decide # whether two classes are the same. Also, save the formal # parameters. (These things are related! A solution lies in # using origin.) __extra__ = None def __new__(cls, name, bases, namespace, parameters=None, origin=None, extra=None): if parameters is None: # Extract parameters from direct base classes. Only # direct bases are considered and only those that are # themselves generic, and parameterized with type # variables. Don't use bases like Any, Union, Tuple, # Callable or type variables. params = None for base in bases: if isinstance(base, TypingMeta): if not isinstance(base, GenericMeta): raise TypeError( "You cannot inherit from magic class %s" % repr(base)) if base.__parameters__ is None: continue # The base is unparameterized. for bp in base.__parameters__: if _has_type_var(bp) and not isinstance(bp, TypeVar): raise TypeError( "Cannot inherit from a generic class " "parameterized with " "non-type-variable %s" % bp) if params is None: params = [] if bp not in params: params.append(bp) if params is not None: parameters = tuple(params) self = super().__new__(cls, name, bases, namespace, _root=True) self.__parameters__ = parameters if extra is not None: self.__extra__ = extra # Else __extra__ is inherited, eventually from the # (meta-)class default above. self.__origin__ = origin return self def _has_type_var(self): if self.__parameters__: for t in self.__parameters__: if _has_type_var(t): return True return False def __repr__(self): r = super().__repr__() if self.__parameters__ is not None: r += '[%s]' % ( ', '.join(_type_repr(p) for p in self.__parameters__)) return r def __eq__(self, other): if not isinstance(other, GenericMeta): return NotImplemented return (_geqv(self, other) and self.__parameters__ == other.__parameters__) def __hash__(self): return hash((self.__name__, self.__parameters__)) def __getitem__(self, params): if not isinstance(params, tuple): params = (params,) if not params: raise TypeError("Cannot have empty parameter list") msg = "Parameters to generic types must be types." params = tuple(_type_check(p, msg) for p in params) if self.__parameters__ is None: for p in params: if not isinstance(p, TypeVar): raise TypeError("Initial parameters must be " "type variables; got %s" % p) if len(set(params)) != len(params): raise TypeError( "All type variables in Generic[...] must be distinct.") else: if len(params) != len(self.__parameters__): raise TypeError("Cannot change parameter count from %d to %d" % (len(self.__parameters__), len(params))) for new, old in zip(params, self.__parameters__): if isinstance(old, TypeVar): if not old.__constraints__: # Substituting for an unconstrained TypeVar is OK. continue if issubclass(new, Union[old.__constraints__]): # Specializing a constrained type variable is OK. continue if not issubclass(new, old): raise TypeError( "Cannot substitute %s for %s in %s" % (_type_repr(new), _type_repr(old), self)) return self.__class__(self.__name__, self.__bases__, dict(self.__dict__), parameters=params, origin=self, extra=self.__extra__) def __instancecheck__(self, instance): # Since we extend ABC.__subclasscheck__ and # ABC.__instancecheck__ inlines the cache checking done by the # latter, we must extend __instancecheck__ too. For simplicity # we just skip the cache check -- instance checks for generic # classes are supposed to be rare anyways. return self.__subclasscheck__(instance.__class__) def __subclasscheck__(self, cls): if cls is Any: return True if isinstance(cls, GenericMeta): # For a class C(Generic[T]) where T is co-variant, # C[X] is a subclass of C[Y] iff X is a subclass of Y. origin = self.__origin__ if origin is not None and origin is cls.__origin__: assert len(self.__parameters__) == len(origin.__parameters__) assert len(cls.__parameters__) == len(origin.__parameters__) for p_self, p_cls, p_origin in zip(self.__parameters__, cls.__parameters__, origin.__parameters__): if isinstance(p_origin, TypeVar): if p_origin.__covariant__: # Covariant -- p_cls must be a subclass of p_self. if not issubclass(p_cls, p_self): break elif p_origin.__contravariant__: # Contravariant. I think it's the opposite. :-) if not issubclass(p_self, p_cls): break else: # Invariant -- p_cls and p_self must equal. if p_self != p_cls: break else: # If the origin's parameter is not a typevar, # insist on invariance. if p_self != p_cls: break else: return True # If we break out of the loop, the superclass gets a chance. if super().__subclasscheck__(cls): return True if self.__extra__ is None or isinstance(cls, GenericMeta): return False return issubclass(cls, self.__extra__) class Generic(metaclass=GenericMeta): """Abstract base class for generic types. A generic type is typically declared by inheriting from an instantiation of this class with one or more type variables. For example, a generic mapping type might be defined as:: class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc. This class can then be used as follows:: def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT: try: return mapping[key] except KeyError: return default For clarity the type variables may be redefined, e.g.:: X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: # Same body as above. """ __slots__ = () def __new__(cls, *args, **kwds): next_in_mro = object # Look for the last occurrence of Generic or Generic[...]. for i, c in enumerate(cls.__mro__[:-1]): if isinstance(c, GenericMeta) and _gorg(c) is Generic: next_in_mro = cls.__mro__[i+1] return next_in_mro.__new__(_gorg(cls)) def cast(typ, val): """Cast a value to a type. This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don't check anything (we want this to be as fast as possible). """ return val def _get_defaults(func): """Internal helper to extract the default arguments, by name.""" code = func.__code__ pos_count = code.co_argcount kw_count = code.co_kwonlyargcount arg_names = code.co_varnames kwarg_names = arg_names[pos_count:pos_count + kw_count] arg_names = arg_names[:pos_count] defaults = func.__defaults__ or () kwdefaults = func.__kwdefaults__ res = dict(kwdefaults) if kwdefaults else {} pos_offset = pos_count - len(defaults) for name, value in zip(arg_names[pos_offset:], defaults): assert name not in res res[name] = value return res def get_type_hints(obj, globalns=None, localns=None): """Return type hints for a function or method object. This is often the same as obj.__annotations__, but it handles forward references encoded as string literals, and if necessary adds Optional[t] if a default value equal to None is set. BEWARE -- the behavior of globalns and localns is counterintuitive (unless you are familiar with how eval() and exec() work). The search order is locals first, then globals. - If no dict arguments are passed, an attempt is made to use the globals from obj, and these are also used as the locals. If the object does not appear to have globals, an exception is raised. - If one dict argument is passed, it is used for both globals and locals. - If two dict arguments are passed, they specify globals and locals, respectively. """ if getattr(obj, '__no_type_check__', None): return {} if globalns is None: globalns = getattr(obj, '__globals__', {}) if localns is None: localns = globalns elif localns is None: localns = globalns defaults = _get_defaults(obj) hints = dict(obj.__annotations__) for name, value in hints.items(): if isinstance(value, str): value = _ForwardRef(value) value = _eval_type(value, globalns, localns) if name in defaults and defaults[name] is None: value = Optional[value] hints[name] = value return hints # TODO: Also support this as a class decorator. def no_type_check(arg): """Decorator to indicate that annotations are not type hints. The argument must be a class or function; if it is a class, it applies recursively to all methods defined in that class (but not to methods defined in its superclasses or subclasses). This mutates the function(s) in place. """ if isinstance(arg, type): for obj in arg.__dict__.values(): if isinstance(obj, types.FunctionType): obj.__no_type_check__ = True else: arg.__no_type_check__ = True return arg def no_type_check_decorator(decorator): """Decorator to give another decorator the @no_type_check effect. This wraps the decorator with something that wraps the decorated function in @no_type_check. """ @functools.wraps(decorator) def wrapped_decorator(*args, **kwds): func = decorator(*args, **kwds) func = no_type_check(func) return func return wrapped_decorator def overload(func): raise RuntimeError("Overloading is only supported in library stubs") class _ProtocolMeta(GenericMeta): """Internal metaclass for _Protocol. This exists so _Protocol classes can be generic without deriving from Generic. """ def __instancecheck__(self, obj): raise TypeError("Protocols cannot be used with isinstance().") def __subclasscheck__(self, cls): if not self._is_protocol: # No structural checks since this isn't a protocol. return NotImplemented if self is _Protocol: # Every class is a subclass of the empty protocol. return True # Find all attributes defined in the protocol. attrs = self._get_protocol_attrs() for attr in attrs: if not any(attr in d.__dict__ for d in cls.__mro__): return False return True def _get_protocol_attrs(self): # Get all Protocol base classes. protocol_bases = [] for c in self.__mro__: if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol': protocol_bases.append(c) # Get attributes included in protocol. attrs = set() for base in protocol_bases: for attr in base.__dict__.keys(): # Include attributes not defined in any non-protocol bases. for c in self.__mro__: if (c is not base and attr in c.__dict__ and not getattr(c, '_is_protocol', False)): break else: if (not attr.startswith('_abc_') and attr != '__abstractmethods__' and attr != '_is_protocol' and attr != '__dict__' and attr != '__slots__' and attr != '_get_protocol_attrs' and attr != '__parameters__' and attr != '__origin__' and attr != '__module__'): attrs.add(attr) return attrs class _Protocol(metaclass=_ProtocolMeta): """Internal base class for protocol classes. This implements a simple-minded structural isinstance check (similar but more general than the one-offs in collections.abc such as Hashable). """ __slots__ = () _is_protocol = True # Various ABCs mimicking those in collections.abc. # A few are simply re-exported for completeness. Hashable = collections_abc.Hashable # Not generic. class Iterable(Generic[T_co], extra=collections_abc.Iterable): __slots__ = () class Iterator(Iterable[T_co], extra=collections_abc.Iterator): __slots__ = () class SupportsInt(_Protocol): __slots__ = () @abstractmethod def __int__(self) -> int: pass class SupportsFloat(_Protocol): __slots__ = () @abstractmethod def __float__(self) -> float: pass class SupportsComplex(_Protocol): __slots__ = () @abstractmethod def __complex__(self) -> complex: pass class SupportsBytes(_Protocol): __slots__ = () @abstractmethod def __bytes__(self) -> bytes: pass class SupportsAbs(_Protocol[T_co]): __slots__ = () @abstractmethod def __abs__(self) -> T_co: pass class SupportsRound(_Protocol[T_co]): __slots__ = () @abstractmethod def __round__(self, ndigits: int = 0) -> T_co: pass class Reversible(_Protocol[T_co]): __slots__ = () @abstractmethod def __reversed__(self) -> 'Iterator[T_co]': pass Sized = collections_abc.Sized # Not generic. class Container(Generic[T_co], extra=collections_abc.Container): __slots__ = () # Callable was defined earlier. class AbstractSet(Sized, Iterable[T_co], Container[T_co], extra=collections_abc.Set): pass class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet): pass # NOTE: Only the value type is covariant. class Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co], extra=collections_abc.Mapping): pass class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping): pass class Sequence(Sized, Iterable[T_co], Container[T_co], extra=collections_abc.Sequence): pass class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence): pass class ByteString(Sequence[int], extra=collections_abc.ByteString): pass ByteString.register(type(memoryview(b''))) class List(list, MutableSequence[T]): def __new__(cls, *args, **kwds): if _geqv(cls, List): raise TypeError("Type List cannot be instantiated; " "use list() instead") return list.__new__(cls, *args, **kwds) class Set(set, MutableSet[T]): def __new__(cls, *args, **kwds): if _geqv(cls, Set): raise TypeError("Type Set cannot be instantiated; " "use set() instead") return set.__new__(cls, *args, **kwds) class _FrozenSetMeta(GenericMeta): """This metaclass ensures set is not a subclass of FrozenSet. Without this metaclass, set would be considered a subclass of FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and set is a subclass of that. """ def __subclasscheck__(self, cls): if issubclass(cls, Set): return False return super().__subclasscheck__(cls) class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta): __slots__ = () def __new__(cls, *args, **kwds): if _geqv(cls, FrozenSet): raise TypeError("Type FrozenSet cannot be instantiated; " "use frozenset() instead") return frozenset.__new__(cls, *args, **kwds) class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView): pass class KeysView(MappingView[KT], AbstractSet[KT], extra=collections_abc.KeysView): pass # TODO: Enable Set[Tuple[KT, VT_co]] instead of Generic[KT, VT_co]. class ItemsView(MappingView, Generic[KT, VT_co], extra=collections_abc.ItemsView): pass class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView): pass class Dict(dict, MutableMapping[KT, VT]): def __new__(cls, *args, **kwds): if _geqv(cls, Dict): raise TypeError("Type Dict cannot be instantiated; " "use dict() instead") return dict.__new__(cls, *args, **kwds) # Determine what base class to use for Generator. if hasattr(collections_abc, 'Generator'): # Sufficiently recent versions of 3.5 have a Generator ABC. _G_base = collections_abc.Generator else: # Fall back on the exact type. _G_base = types.GeneratorType class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co], extra=_G_base): __slots__ = () def __new__(cls, *args, **kwds): if _geqv(cls, Generator): raise TypeError("Type Generator cannot be instantiated; " "create a subclass instead") return super().__new__(cls, *args, **kwds) def NamedTuple(typename, fields): """Typed version of namedtuple. Usage:: Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)]) This is equivalent to:: Employee = collections.namedtuple('Employee', ['name', 'id']) The resulting class has one extra attribute: _field_types, giving a dict mapping field names to types. (The field names are in the _fields attribute, which is part of the namedtuple API.) """ fields = [(n, t) for n, t in fields] cls = collections.namedtuple(typename, [n for n, t in fields]) cls._field_types = dict(fields) return cls class IO(Generic[AnyStr]): """Generic base class for TextIO and BinaryIO. This is an abstract, generic version of the return of open(). NOTE: This does not distinguish between the different possible classes (text vs. binary, read vs. write vs. read/write, append-only, unbuffered). The TextIO and BinaryIO subclasses below capture the distinctions between text vs. binary, which is pervasive in the interface; however we currently do not offer a way to track the other distinctions in the type system. """ __slots__ = () @abstractproperty def mode(self) -> str: pass @abstractproperty def name(self) -> str: pass @abstractmethod def close(self) -> None: pass @abstractmethod def closed(self) -> bool: pass @abstractmethod def fileno(self) -> int: pass @abstractmethod def flush(self) -> None: pass @abstractmethod def isatty(self) -> bool: pass @abstractmethod def read(self, n: int = -1) -> AnyStr: pass @abstractmethod def readable(self) -> bool: pass @abstractmethod def readline(self, limit: int = -1) -> AnyStr: pass @abstractmethod def readlines(self, hint: int = -1) -> List[AnyStr]: pass @abstractmethod def seek(self, offset: int, whence: int = 0) -> int: pass @abstractmethod def seekable(self) -> bool: pass @abstractmethod def tell(self) -> int: pass @abstractmethod def truncate(self, size: int = None) -> int: pass @abstractmethod def writable(self) -> bool: pass @abstractmethod def write(self, s: AnyStr) -> int: pass @abstractmethod def writelines(self, lines: List[AnyStr]) -> None: pass @abstractmethod def __enter__(self) -> 'IO[AnyStr]': pass @abstractmethod def __exit__(self, type, value, traceback) -> None: pass class BinaryIO(IO[bytes]): """Typed version of the return of open() in binary mode.""" __slots__ = () @abstractmethod def write(self, s: Union[bytes, bytearray]) -> int: pass @abstractmethod def __enter__(self) -> 'BinaryIO': pass class TextIO(IO[str]): """Typed version of the return of open() in text mode.""" __slots__ = () @abstractproperty def buffer(self) -> BinaryIO: pass @abstractproperty def encoding(self) -> str: pass @abstractproperty def errors(self) -> str: pass @abstractproperty def line_buffering(self) -> bool: pass @abstractproperty def newlines(self) -> Any: pass @abstractmethod def __enter__(self) -> 'TextIO': pass class io: """Wrapper namespace for IO generic classes.""" __all__ = ['IO', 'TextIO', 'BinaryIO'] IO = IO TextIO = TextIO BinaryIO = BinaryIO io.__name__ = __name__ + '.io' sys.modules[io.__name__] = io Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')), lambda p: p.pattern) Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')), lambda m: m.re.pattern) class re: """Wrapper namespace for re type aliases.""" __all__ = ['Pattern', 'Match'] Pattern = Pattern Match = Match re.__name__ = __name__ + '.re' sys.modules[re.__name__] = re
the-stack_0_10053
# -*- coding: utf-8 -*- # # John C. Thomas 2021 gpSTS import torch import torch.nn as nn import torch.utils.data as dataloader import torchvision from torchvision.datasets import DatasetFolder import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np import Config import Config as conf def make_predictions(model, device, test_loader): # Set model to eval mode to notify all layers. model.eval() targets = [] preds = [] # Set torch.no_grad() to disable gradient computation and backpropagation with torch.no_grad(): for sample in test_loader: data, target = sample data, target = data.to(device), target.to(device) # Predict for data by doing forward pass output = model(data) pred = output.max(1, keepdim=True)[1] preds.append(pred.cpu().numpy()) targets.append(target.cpu().numpy()) targets = [np.hstack(y) for y in targets] preds = [np.hstack(y) for y in preds] targets = np.hstack(targets) preds = np.hstack(preds) return targets, preds def progbar(curr, total, full_progbar, epoch, num_epochs, loss, accuracy): frac = curr/total filled_progbar = round(frac*full_progbar) print('\r', '#'*filled_progbar + '-'*(full_progbar-filled_progbar), f'Epoch [{epoch}/{num_epochs}]', f'Step [{curr}/{total}]', 'Loss: {:.6f}'.format(loss), 'Accuracy: [{:>7.2%}]'.format(accuracy), end='') def specnorm(data): dmin = np.min(data) dmax = np.max(data) out = np.zeros(data.shape[0]) for i in range(0,data.shape[0]): out[i] = (data[i] - dmin)/(dmax-dmin) return out def np_loader(path): with open(path, 'rb') as f: data = np.load(f,allow_pickle=True) dnp = data[0] dnp = specnorm(dnp) dout = torch.from_numpy(dnp).float() return torch.reshape(dout,(1,len(dnp))) def spec_loader(data): dnp = data dnp = specnorm(dnp) dout = torch.from_numpy(dnp).float() return torch.reshape(dout,(1,1,len(dnp))) def dplot(imagein, title='Interpolated'): fig, ax = plt.subplots() z_min, z_max = imagein.min(), imagein.max() xx, yy = np.meshgrid(np.linspace(1, imagein.shape[0], imagein.shape[0]), np.linspace(1, imagein.shape[1], imagein.shape[1])) x = xx[::1] y = yy[::1] cout = ax.pcolormesh(x, y, imagein, cmap='bwr', vmin=z_min, vmax=z_max) ax.set_title(title) ax.axis([x.min(), x.max(), y.min(), y.max()]) ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) plt.axis('scaled') fig.tight_layout() plt.show() def dscplot(dx,dy,di, title='Collected Points'): fig = plt.figure(1, clear=True) plt.scatter(dx, dy, c=di, cmap='viridis') #0,1 plt.title(title) plt.colorbar() plt.axis('scaled') fig.tight_layout() plt.show() # Convolutional neural network class Conv1d(nn.Module): def __init__(self,num_classes=4): super(Conv1d, self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1, 64, kernel_size=3, stride=1, padding=1), nn.BatchNorm1d(64), nn.ReLU(), nn.MaxPool1d(2, stride=1)) self.layer2 = nn.Sequential( nn.Conv1d(64, 128, kernel_size=3, stride=1, padding=1), nn.BatchNorm1d(128), nn.ReLU(), nn.MaxPool1d(2, stride=1)) self.layer3 = nn.Dropout(p=0.2) self.fc = nn.Linear(self.getinput(), num_classes) def size_postopt(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) return out.size() def getinput(self): size = self.size_postopt(torch.rand(1,1,conf.nanonis_config['Nanonis_Settings']['NumSpectralPoints'])) # image size: 64x32 m = 1 for i in size: m *= i return int(m) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = out.reshape(out.size(0), -1) out = self.fc(out) return out
the-stack_0_10054
import os import numpy as np from matplotlib import pyplot as plt import figlatex import hist2d import colormap commands = [ '-m 100000 -L 15250 -U 15850 darksidehd/merged_000886.root:53', '-m 100000 -L 750 -v 750 -l 8900 darksidehd/nuvhd_lf_3x_tile53_77K_64V_6VoV_1.wav', '-m 100000 -L 750 -v 750 -l 8900 darksidehd/nuvhd_lf_3x_tile53_77K_66V_7VoV_1.wav', ] ########################### figs = [] cmap = colormap.uniform() for ifile, cmd in enumerate(commands): figname = f'fighist2dtile53-{ifile}' fig = plt.figure(num=figname, clear=True, figsize=[9, 4]) save = f'figthesis/{figname}.npz' if not os.path.exists(save): hist = hist2d.Hist2D(cmd.split()) print(f'save {save}...') hist.save(save, compress=True) print(f'load {save}...') hist = hist2d.Hist2D.load(save) hist.hist2d(fig, cmap=cmap) figs.append(fig) for fig in figs: figlatex.save(fig) for fig in figs: fig.show()
the-stack_0_10056
### Team6 main.py ### ### author: tanahashi, kurita, ito ### import os import eel import csv import datetime from datetime import datetime as dt import numpy import random import matplotlib.pyplot as plt import japanize_matplotlib # グラフの日本語表示に必要 from typing import Counter # import importer # import exporter # P000の初期PWは000b print("404 Not Found エラーが出た場合、VSCodeでこのファイルを開いてから実行してみてください。") eel.init("MainProject/view") eel.start("login.html", size=(800, 480), block=False) @eel.expose def registtData(): #print(registtDatatoPy()) try: if registtDatatoPy() == True: return "tomato" else: return "onion" except(KeyError): return "onion" def gettData(): tData = eel.sendtDatatoPy()() gtID = tData[0] gtPW = tData[1] return gtID, gtPW tID, tPW = "xxxx", "yyyy" #main.htmlで入力されたtIDとtPWを照合した先の処理 def registtDatatoPy(): global tID, tPW tID, tPW = gettData() print("tID: {0} tPW: {1}".format(tID, tPW)) if tIDtPWverify(tID,tPW): print("Yeeeeeeeeee") return True else: print("Noooooooooo") return False #教員ファイル読み込み/tID,tPW照合 def tIDtPWverify(tID,tPW): tID, tPW = gettData() tnamecsv = {} with open("./data/教員・担当科目リスト.csv", "r", encoding="utf_8", errors="", newline="") as f: reader = csv.DictReader(f) for row in reader: tnamecsv[row["ID"]] = row["氏名"] print(tnamecsv[tID]) tpwcsv = {} with open("./data/tPW.csv","r")as p: reader = csv.DictReader(p) for prow in reader: tpwcsv[prow["tID"]] = prow["tPW"] tPWoncsv = tpwcsv[tID] #print(tPWoncsv) if tPW == tPWoncsv: return True else: return False #管理モードで教員氏名を表示 @eel.expose def picktName(): try: global tID tnamecsv = {} with open("./data/教員・担当科目リスト.csv", "r", encoding="utf_8", errors="", newline="") as f: reader = csv.DictReader(f) for row in reader: tnamecsv[row["ID"]] = row["氏名"] #print(tnamecsv[tID]) tName = str(tnamecsv[tID]) print("user: " + tName) eel.printtName(tName) except(FileNotFoundError): os.getcwd() os.chdir("./team6/MainProject/") picktName() # reader = "x" tcName = ["xx", "xx"] tcDay = [0, 0] tcPeriod = [0, 0] @eel.expose def pickcName(): global tID global tcName global tcDay global tcPeriod # tccsv = [[0] * 5 for i in range(4)] # print(tccsv) # tcName = [[0] * 5 for i in range(4)] # tccsvx = [] # for i in range(5): # with open("./data/教員・担当科目リスト.csv", "r", encoding="utf_8", errors="", newline="") as f: # reader = csv.DictReader(f) # for row in reader: # print(row) # tanto = str('担当科目' + str(i+1)) # print(tanto) # tccsvx[row["ID"]] = row["担当科目1"] # tcName[i] = str(tccsvx[tID]) # print("calss1: " + tcName[i]) tc1csv = {} tc2csv = {} tcName = ["name", "name"] with open("./data/教員・担当科目リスト.csv", "r", encoding="utf_8", errors="", newline="") as f: reader = csv.DictReader(f) for row in reader: tc1csv[row["ID"]] = row["担当科目1"] tc2csv[row["ID"]] = row["担当科目2"] tcName[0] = str(tc1csv[tID]) tcName[1] = str(tc2csv[tID]) print("calss1: " + tcName[0]) print("calss2: " + tcName[1]) # tcID = [[0] * 5 for i in range(4)] # tcxID = [[0] * 5 for i in range(4)] # for j in range(5): # with open("./data/講義科目ルール.csv", "r", encoding="utf_8", errors="", newline="") as p: # reader = csv.DictReader(p) # for row in reader: # tcxID[j][row["科目名"]] = row["講義ID"] # tcID[j] = str(tcxID[tc1Name]) # print("classID: " + tcID[j]) tc1xID = {} tc2xID = {} with open("./data/講義科目ルール.csv", "r", encoding="utf_8", errors="", newline="") as p: reader = csv.DictReader(p) for row in reader: tc1xID[row["科目名"]] = row["講義ID"] tc2xID[row["科目名"]] = row["講義ID"] tc1ID = str(tc1xID[tcName[0]]) try: tc2ID = str(tc2xID[tcName[1]]) except(KeyError): tc2ID = "X0_" print("calss1ID: " + tc1ID) print("calss2ID: " + tc2ID) tcDay = [0, 0] tcPeriod = [0, 0] cID = [tc1ID, tc2ID] for n in range(0, len(cID)): # print(n) # print(len(cID)) if('M' in cID[n]): tcDay[n] = '月' elif('Tu' in cID[n]): tcDay[n] = '火' elif('W' in cID[n]): tcDay[n] = '水' elif('Th' in cID[n]): tcDay[n] = '木' elif('F' in cID[n]): tcDay[n] = '金' else: tcDay[n] = '' tcName[1] = "undefined" print('Day config error') if('12_' in cID[n]): tcPeriod[n] = '1,2限' elif('23_' in cID[n]): tcPeriod[n] = '2,3限' elif('34_' in cID[n]): tcPeriod[n] = '3,4限' elif('45_' in cID[n]): tcPeriod[n] = '4,5限' elif('1_' in cID[n]): tcPeriod[n] = '1限' elif('2_' in cID[n]): tcPeriod[n] = '2限' elif('3_' in cID[n]): tcPeriod[n] = '3限' elif('4_' in cID[n]): tcPeriod[n] = '4限' elif('5_' in cID[n]): tcPeriod[n] = '5限' else: tcPeriod[n] = '' print('Class period config error') try: print(tcDay[n] + tcPeriod[n]) except(TypeError): pass except(IndexError): pass n = n+1 tc1Name = tcName[0] tc2Name = tcName[1] tclen = len(tcName) tclen = 5 eel.addcData(tcName, tclen, tcDay, tcPeriod) #adminでの分岐用 @eel.expose def clidSet(clid): global tcName global tcDay global tcPeriod print(clid) print(tcName) cDay = "0" cPeriod = "0" try: if clid == "101": cConfig = tcName[0] cDay = tcDay[0] cPeriod = tcPeriod[0] elif clid == "102": cConfig = tcName[1] cDay = tcDay[1] cPeriod = tcPeriod[1] elif clid == "103": cConfig = tcName[2] cDay = tcDay[2] cPeriod = tcPeriod[2] elif clid == "104": cConfig = tcName[3] cDay = tcDay[3] cPeriod = tcPeriod[4] elif clid == "105": cConfig = tcName[4] cDay = tcDay[4] cPeriod = tcPeriod[4] except(IndexError): pass print(cConfig) tcxID = {} tcxCT1 = {} tcxCT2 = {} tcxLT1 = {} tcxLT2 = {} with open("./data/講義科目ルール.csv", "r", encoding="utf_8", errors="", newline="") as p: reader = csv.DictReader(p) for row in reader: tcxID[row["科目名"]] = row["講義ID"] tcxCT1[row["科目名"]] = row["開始時間"] tcxCT2[row["科目名"]] = row["終了時間"] tcxLT1[row["科目名"]] = row["出席限度(分)"] tcxLT2[row["科目名"]] = row["遅刻限度(分)"] tccID = str(tcxID[cConfig]) tccCT1 = str(tcxCT1[cConfig]) tccCT2 = str(tcxCT2[cConfig]) tccLT1 = str(tcxLT1[cConfig]) tccLT2 = str(tcxLT2[cConfig]) print("ID: " + tccID) print("Day: " + cDay) print("Period:" + cPeriod) print("Start: " + tccCT1) print("End: " + tccCT2) print("Limit1:" + tccLT1) print("Limit2:" + tccLT2) tccCT1 = str(tcxCT1[cConfig]) tccCT2 = str(tcxCT2[cConfig]) tccLT1 = str(tcxCT1[cConfig][0:5]) tccLT2 = str(tcxCT1[cConfig][0:5]) tcxLT1m = int(tcxLT1[cConfig]) tcxLT2m = int(tcxLT2[cConfig]) # tcxLT1m = dt.strptime(tcxLT1m, '%H:%M:%S') # tcxLT2m = dt.strptime(tcxLT2m, '%H:%M:%S') tccCT1t = dt.strptime(tccCT1, '%H:%M') tccCT2t = dt.strptime(tccCT2, '%H:%M') tccLT1t = dt.strptime(tccLT1, '%H:%M') tccLT2t = dt.strptime(tccLT2, '%H:%M') tccLT1t = tccLT1t + datetime.timedelta(minutes=tcxLT1m) tccLT2t = tccLT2t + datetime.timedelta(minutes=tcxLT2m) tccCT1 = str(tccCT1t.time()) tccCT2 = str(tccCT2t.time()) tccLT1 = str(tccLT1t.time()) tccLT2 = str(tccLT2t.time()) tccCT1 = tccCT1[0:5] tccCT2 = tccCT2[0:5] tccLT1 = tccLT1[0:5] tccLT2 = tccLT2[0:5] print("授業開始: " + tccCT1) print("授業終了: " + tccCT2) print("以降遅刻: " + tccLT1) print("以降欠席: " + tccLT2) eel.initialID(cConfig, tccID, cDay, cPeriod, tccCT1, tccCT2, tccLT1, tccLT2) # eel.initialCT(tccCT1, tccCT2) # eel.initialLT(tccLT1, tccLT2) # return tccCT1, tccCT2, tccLT1, tccLT2 datew = datetime.date.today() datew = datew.strftime("%Y_%m_%d") print(datew) # 仮の出席者 # main author: ito def stdSim(cID): number=range(1,101) rnumber=random.sample(number,len(number)) #学籍番号を(ランダムに)生成 temlist=[] for i in rnumber: temNo= "S{:0>3}".format(i) #"S001" "S012"のように3桁表示 temlist.append(temNo) #temlistはS001からS100の100個の要素からなるリスト #講義IDに一致した履修者csvを開く stdIDmx = {} #辞書型 stdIDm = [] #配列 stdcsvName = "./data/履修者-" + cID + ".csv" with open(stdcsvName, "r", encoding="utf_8", errors="", newline="") as p: reader = csv.DictReader(p) for row in reader: stdIDmx[row["学籍番号"]] = row["IDm"] for i in range(len(temlist)): try: IDm = str(stdIDmx[temlist[i]]) stdIDm.append(IDm) except KeyError: pass # print(stdcsvName) # print(len(stdIDm)) return stdIDm IOcsvName = "xx" #出欠リストCSV操作 兼 出席シミュレータ @eel.expose def openIOcsv(cID, cName): global datew global IOcsvName tcxCT1 = {} tcxCT2 = {} tcxLT1 = {} tcxLT2 = {} with open("./data/講義科目ルール.csv", "r", encoding="utf_8", errors="", newline="") as p: reader = csv.DictReader(p) for row in reader: tcxCT1[row["科目名"]] = row["開始時間"] tcxCT2[row["科目名"]] = row["終了時間"] tcxLT1[row["科目名"]] = row["出席限度(分)"] tcxLT2[row["科目名"]] = row["遅刻限度(分)"] tccCT1 = str(tcxCT1[cName]) + ":00" tccCT2 = str(tcxCT2[cName]) + ":00" tccLT1 = str(tcxCT1[cName][0:5]) + ":00" tccLT2 = str(tcxCT1[cName][0:5]) + ":00" tcxLT1m = int(tcxLT1[cName]) tcxLT2m = int(tcxLT2[cName]) # tcxLT1m = dt.strptime(tcxLT1m, '%H:%M:%S') # tcxLT2m = dt.strptime(tcxLT2m, '%H:%M:%S') tccCT1t = dt.strptime(tccCT1, '%H:%M:%S') tccCT2t = dt.strptime(tccCT2, '%H:%M:%S') tccLT1t = dt.strptime(tccLT1, '%H:%M:%S') tccLT2t = dt.strptime(tccLT2, '%H:%M:%S') tccLT1t = tccLT1t + datetime.timedelta(minutes=tcxLT1m) tccLT2t = tccLT2t + datetime.timedelta(minutes=tcxLT2m) tccCT1t = tccCT1t.time() tccCT2t = tccCT2t.time() tccLT1t = tccLT1t.time() tccLT2t = tccLT2t.time() print("授業開始: " + str(tccCT1t)) print("授業終了: " + str(tccCT2t)) print("以降遅刻: " + str(tccLT1t)) print("以降欠席: " + str(tccLT2t)) LimitTime = [tccCT1t, tccCT2t, tccLT1t, tccLT2t] stdIDm = stdSim(cID) # print(stdIDm) stdIDx = {} stdNamex = {} stdID = [] stdName = [] print("Preparations are underway: " + cName) dirName = "./Mainproject/IOList/" + cName IOcsvName = "./Mainproject/IOList/" + cName + "/" + cName + datew + "出欠リスト.csv" stdcsvName = "./data/履修者-" + cID + ".csv" if(os.path.exists(dirName) == False): os.mkdir(dirName) #履修者のリストを取得 with open(stdcsvName, "r", encoding="utf_8", errors="") as stdcsv: reader = csv.DictReader(stdcsv) for row in reader: stdIDx[row["IDm"]] = row["学籍番号"] stdNamex[row["IDm"]] = row["名前"] stdlen = len(stdIDm) print("履修者数: " + str(stdlen)) for i in range(len(stdIDm)): try: try: stdID.append(str(stdIDx[stdIDm[i]])) stdName.append(str(stdNamex[stdIDm[i]])) except(KeyError): stdID.append("S000") stdName.append("名無ノ権兵衛") except(IndexError): pass #初期出欠リストcsv作成 if(os.path.exists(IOcsvName) == False): with open(IOcsvName, "w", encoding="utf_8", newline="") as IOcsv: writer = csv.writer(IOcsv) writer.writerow(["学籍番号", "名前", "IDm", "入室時刻", "出欠"]) for k in range(len(stdIDm)): writer.writerow([stdID[k], stdName[k], stdIDm[k], "00:00:00", "欠席"]) # ソート with open(IOcsvName, "r", encoding="utf_8") as IOcsvs: reader = csv.DictReader(IOcsvs) IOdict = [] for row in reader: IOdict.append(row) sortedIOdict = sorted(IOdict, key=lambda x:x["学籍番号"]) with open(IOcsvName, "w", encoding="utf_8", newline="") as IOcsvw: writer2 = csv.writer(IOcsvw) writer2.writerow(["学籍番号", "名前", "IDm", "入室時刻", "出欠"]) for g in range(len(stdIDm)): dictvalues = sortedIOdict[g].values() writer2.writerow(dictvalues) # print(stdID) # print(stdName) # for in rangeでstdIDとstdNameをJS関数に投げることで出席 # 適度な間隔をあけて # カードタッチ間隔 timespanx = numpy.random.normal( loc = 7, # 平均 scale = (len(stdIDm)/6), # 標準偏差 size = len(stdIDm) # 出力配列のサイズ ) timespan = timespanx tmp = 0 for j in range(len(timespanx)): timespan[j] = int(timespan[j]) tmp = tmp + timespan[j] # print(timespan) print(tmp/60) #出席リスト更新 def touchIDcard(no, stdlenx, LimitTime): dtNow = datetime.datetime.now() now = dtNow.time() print(now) status = "出席" if now < LimitTime[2]: status = "出席" elif now < LimitTime[3]: status = "遅刻" elif now < LimitTime[1]: status = "欠席" else: status = "欠席" print(status) eel.showIDinfo(stdID[no], stdName[no]) eel.showNo(no + 1, stdlenx) eel.showStatus(status) f = open(IOcsvName, "r", encoding="utf-8") csv_data = csv.reader(f) list = [ e for e in csv_data] f.close() now = str(now) now = now[0:8] # 更新後のデータ data = [stdID[no], stdName[no], stdIDm[no], now, status] for i in range(len(list)): if list[i][0]==data[0]: list[i] = data # csv更新 with open(IOcsvName, "w", encoding="utf_8", newline="") as f: writer = csv.writer(f) writer.writerows(list) # タッチのトリガー eel.sleep(3) for s in range(len(stdIDm)): if s != (len(stdIDm)-1): if timespan[s]<=0: timespan[s] = (timespan[s] * -1) + 1 print(timespan[s], end=" ") print(stdIDm[s]) touchIDcard(s, stdlen, LimitTime) eel.sleep(timespan[s]) else: # 遅刻ちゃん num = random.randint(0,9) print(num) if num > 8: eel.sleep(800) elif num > 7: eel.sleep(300) elif num > 4: eel.sleep(60) else: eel.sleep(3) print(stdIDm[s]) touchIDcard(s, stdlen, LimitTime) @eel.expose def generateIOcsvName(clid): global tcName try: if clid == "101": cName = tcName[0] elif clid == "102": cName = tcName[1] elif clid == "103": cName = tcName[2] elif clid == "104": cName = tcName[3] elif clid == "105": cName = tcName[4] except(IndexError): pass IOcsvName = "./Mainproject/IOList/" + cName + "/" + cName + datew + "出欠リスト.csv" print(IOcsvName) eel.getcName(cName) eel.getIOcsvName(IOcsvName) @eel.expose def updateIOcsv(cDataPockets): newcData = cDataPockets print(newcData[0]) print(newcData[1]) print(newcData[2]) print(newcData[3]) print(newcData[4]) cName = newcData[0] newcDay = newcData[1] newcPeri = newcData[2] newLT1 = newcData[3] newLT2 = newcData[4] f = open("./data/講義科目ルール.csv", "r", encoding="utf-8") csv_data = csv.reader(f) list = [ e for e in csv_data] f.close() # print(list) # newcID for s in range(len(list)): if list[s][1]==cName: basecID = list[s][0] tID = list[s][2] tName = list[s][3] exam = list[s][8] sNo = list[s][9] newcID = newcDay + newcPeri if basecID[-1:] == "1": newcID = newcID + "1" if basecID[-1:] == "2": newcID = newcID + "2" if basecID[-1:] == "3": newcID = newcID + "3" if basecID[-1:] == "4": newcID = newcID + "4" # cID重複回避 for t in range(len(list)): if list[t][0]==newcID: if list[t][1]!=cName: excID = list[t][0] if excID[-1:] == "_": newcID = newcID + "1" elif excID[-1:] == "1": newcID = newcID[:-1] + "2" elif excID[-1:] == "2": newcID = newcID[:-1] + "1" if excID[-1:] == "2": newcID = newcID[:-1] + "3" elif excID[-1:] == "3": newcID = newcID[:-1] + "4" # newCT1, newCT2 (授業開始、終了時刻) if newcPeri == "1_": newCT1 = "09:00" newCT2 = "10:30" if newcPeri == "2_": newCT1 = "10:40" newCT2 = "12:10" if newcPeri == "3_": newCT1 = "13:00" newCT2 = "14:30" if newcPeri == "4_": newCT1 = "14:40" newCT2 = "16:10" if newcPeri == "5_": newCT1 = "16:20" newCT2 = "17:50" if newcPeri == "12_": newCT1 = "09:00" newCT2 = "12:10" if newcPeri == "23_": newCT1 = "10:40" newCT2 = "14:30" if newcPeri == "34_": newCT1 = "13:00" newCT2 = "16:10" if newcPeri == "45_": newCT1 = "14:40" newCT2 = "17:50" # newLT1 (出席限度) newCT1t = dt.strptime(newCT1, '%H:%M') newCT2t = dt.strptime(newCT2, '%H:%M') newLT1t = dt.strptime(newLT1, '%H:%M') newLT2t = dt.strptime(newLT2, '%H:%M') if newLT1t<newCT1t: eel.showErrorInfo() return if newLT2t<newCT1t: eel.showErrorInfo() return if newLT2t<newLT1t: eel.showErrorInfo() return if newCT2t<newLT2t: eel.showErrorInfo() return newLT1t = newLT1t - newCT1t newLT2t = newLT2t - newCT1t newLT1 = str(newLT1t) newLT2 = str(newLT2t) print(newLT1) print(newLT2) newLT1 = newLT1[2:4] newLT2 = newLT2[2:4] if newLT1 == " d": newLT1 = "00" if newLT2 == " d": newLT2 = "00" # 更新後のデータ data = [newcID, cName, tID, tName, newCT1, newCT2, newLT1, newLT2, exam, sNo] print(data) for i in range(len(list)): if list[i][1]==cName: list[i] = data # csv更新 with open("./data/講義科目ルール.csv", "w", encoding="utf_8", newline="") as f: writer = csv.writer(f) writer.writerows(list) eel.toAdmin() #出欠リスト表示用 @eel.expose def chooseIOList(cName, iNo): path = "./Mainproject/IOList/" + cName + "/" try: IOcsvNames = os.listdir(path) except(FileNotFoundError): eel.showNameError() return csvNo = len(IOcsvNames) listS = [] sStatusVal = [] for c in range(csvNo): IOcsvNamepath = path + IOcsvNames[c] print(IOcsvNamepath) f = open(IOcsvNamepath, "r", encoding="utf-8") csv_data = csv.reader(f) listS = [ o for o in csv_data] f.close() # print(listS) sStatusVal.append(listS) # 最新の出欠リスト IOcsvNamepath = path + IOcsvNames[int(iNo)] nIOcsvName = IOcsvNames[int(iNo)] print(IOcsvNamepath) f = open(IOcsvNamepath, "r", encoding="utf-8") csv_data = csv.reader(f) list = [ e for e in csv_data] f.close() sID = [] sName = [] sIDm = [] sIntime = [] sStatus = [] sStatusValApnd = 0 sStatusValLate = 0 sStatusValAbsc = 0 sStatusRates = [] sNo = len(list)-1 for i in range(sNo): sID.append(list[i+1][0]) sName.append(list[i+1][1]) sIDm.append(list[i+1][2]) sIntime.append(list[i+1][3]) sStatus.append(list[i+1][4]) for x in range(csvNo): if sStatusVal[x][i+1][4] == "出席": sStatusValApnd += 1 elif sStatusVal[x][i+1][4] == "遅刻": sStatusValLate += 1 elif sStatusVal[x][i+1][4] == "欠席": sStatusValAbsc += 1 rate = str(sStatusValApnd) + "/" + str(sStatusValApnd + sStatusValLate + sStatusValAbsc) # rate = round(rate) # rate = str(rate) + "%" sStatusRates.append(rate) sStatusValApnd = 0 sStatusValLate = 0 sStatusValAbsc = 0 # print(sStatusRates) # print(list) eel.createIOTable(sID, sName, sIDm, sIntime, sStatus, sStatusRates, sNo, nIOcsvName, csvNo, IOcsvNames) @eel.expose def createOneClassGraph(cName, iNo): # 講義回グラフ作成 # main author: kurita path = "./Mainproject/IOList/" + cName + "/" IOcsvNames = os.listdir(path) print(path) print(IOcsvNames) # 最新の出欠リスト IOcsvName = path + IOcsvNames[int(iNo)] #グラフタイトル用の読み込みです。 file_path = IOcsvName file_name_path=os.path.basename(file_path) #出席,遅刻,欠席のカウント count0 = {} with open(IOcsvName,encoding='UTF8') as fo: atl_reader = csv.reader(fo) atl_header = next(atl_reader) # data=fo print(atl_header) for row in atl_reader: data0=row[4] count0.setdefault(data0,0) count0[data0] +=1 with open(IOcsvName,encoding='UTF8') as fc: line_count=sum([1 for line in fc]) li_ct=line_count-1 print(li_ct) y_list=[] x_label=[] #グラフ保存用 fig=plt.figure() plt.title(file_name_path) for key0, value0 in count0.items(): att_counter='{}: {:d}'.format(key0,value0) #y軸設定用 y_list.append(int(value0)) #x軸の文字ラベル用 x_label.append('{}'.format(key0)) #ここでy軸を降順にソート y_list2=sorted(y_list,reverse=True) #'遅刻''欠席'が一人もいないとき用の処理(y軸用) if len(y_list2)==2: y_list2.append(0) #要素が2つのとき elif len(y_list2)==1: y_list2.append(0) y_list2.append(0) #要素が1つのとき else: y_list2 #要素が3つのとき x=[0,1,2] #このex_labelで出席遅刻欠席の順番を指定 ex_label=['出席','遅刻','欠席'] #'遅刻''欠席'が一人もいないとき用の処理(x軸用) if len(x_label)==2: if '出席' in x_label: if '遅刻' in x_label: x_label.append('欠席') #'欠席'がないとき else: x_label.append('遅刻') #'遅刻'がないとき else: x_label.append('出席') #'出席'がないとき ←この場合はいらないとは思うが例外から外すために記載 #要素が2つのとき elif len(x_label)==1: if '出席' in x_label: x_label.append('遅刻') x_label.append('欠席') #'遅刻','欠席'がないとき elif '遅刻' in x_label: x_label.append('出席') x_label.append('欠席') #'出席''欠席'がないとき else: x_label.append('出席') x_label.append('遅刻') #'出席''遅刻'がないとき ←この場合はいらないとは思うが例外から外すために記載2 else: x_label x_label2=sorted(x_label,key=ex_label.index) #↓棒グラフ作成 print(y_list2) print(x_label2) plt.ylim(0,li_ct) graph=plt.bar(x,y_list2) #棒の上に数値を挿入するための処理 height=y_list2 for rect in graph: height=rect.get_height() plt.annotate('{}'.format(height),xy=(rect.get_x() + rect.get_width()/2,height),xytext=(0,3),textcoords="offset points",ha='center',va='bottom') plt.xticks(x,x_label2) plt.show() #ここまでが一つの出席リストをグラフ化するスクリプト @eel.expose def createCumulativeClassGraph(cName): # 累積講義グラフ作成 # main author: kurita path = "./Mainproject/IOList/" + cName + "/" csv_list3 = os.listdir(path) os.chdir(path) #csv_list3=glob.glob("/*.csv") #csv_list3 #print(IOcsvNames) print(csv_list3) count1 = {} # csv_list3=glob.glob(IOcsvNames) for n in range(len(csv_list3)): print(csv_list3[n]) with open(csv_list3[n],encoding='UTF8') as f3: atl_reader3 = csv.reader(f3) atl_header3 = next(atl_reader3) #print(atl_header3) for row in atl_reader3: data=row[0] data2=row[4] count1.setdefault(data,0) if '出席' in data2: count1[data] +=1 #alatd_list=[] #各生徒ごとに'出席'の数をカウント stnumb_list=[] atd_count_list=[] for key, value in count1.items(): att_counter='{}: {:d}'.format(key,value) #学番と出席数リスト #alatd_list.append(att_counter) #学番リスト stnumb_list.append('{}'.format(key)) #出席数リスト atd_count_list.append(int(value)) #print(stnumb_list) #print(atd_count_list) count2 = {} for m in range(len(csv_list3)): with open(csv_list3[m],encoding='UTF8') as f4: atl_reader4 = csv.reader(f4) atl_header4 = next(atl_reader4) #print(atl_header3) for row in atl_reader4: data3=row[0] data4=row[4] count2.setdefault(data3,0) if '遅刻' in data4: count2[data3] +=1 #alatd_list=[] stnumb_list2=[] atd_count_list2=[] for key2, value2 in count2.items(): att_counter2='{}: {:d}'.format(key2,value2) #学番と出席数リスト #alatd_list.append(att_counter) #学番リスト stnumb_list2.append('{}'.format(key2)) #出席数リスト atd_count_list2.append(int(value2)) #print(stnumb_list) #print(atd_count_list) count3 = {} for l in range(len(csv_list3)): with open(csv_list3[l],encoding='UTF8') as f5: atl_reader5 = csv.reader(f5) atl_header5 = next(atl_reader5) #print(atl_header3) for row in atl_reader5: data5=row[0] data6=row[4] count3.setdefault(data5,0) if '欠席' in data6: count3[data5] +=1 #alatd_list=[] stnumb_list3=[] atd_count_list3=[] for key3, value3 in count3.items(): att_counter3='{}: {:d}'.format(key3,value3) #学番と出席数リスト #alatd_list.append(att_counter) #学番リスト stnumb_list3.append('{}'.format(key3)) #出席数リスト atd_count_list3.append(int(value3)) #print(stnumb_list) #print(atd_count_list) #人数 list_length=len(stnumb_list) print(list_length) #リストの先頭('出席'と出席数)を削除 #stnumb_list.remove('出席') #atd_count_list.remove(list_length) #print(alatd_list) #print(stnumb_list) #print(atd_count_list) #print(stnumb_list2) #print(atd_count_list2) #↓ここから棒グラフ作成 fig=plt.figure() #学生の数,0から連続した整数のリスト y_set=list(range(list_length)) graph1=plt.bar(y_set,atd_count_list,align="edge",width=-0.5,color="#44cca3",label="出席") graph2=plt.bar(y_set,atd_count_list2,align="center",width=0.5,color="#c3cc44",label="遅刻") graph3=plt.bar(y_set,atd_count_list3,align="edge",width=0.5,color="#cc5844",label="欠席") plt.xticks(y_set,stnumb_list,rotation=90) plt.legend() plt.show() print(os.getcwd()) os.chdir("./team6/MainProject/") #これがないと動かないんでよ while True: eel.sleep(2.0)
the-stack_0_10059
import random rock = """ _______ ---' ____) (_____) (_____) (____) ---.__(___) """ paper = """ _______ ---' ____)____ ______) _______) _______) ---.__________) """ scissors = """ _______ ---' ____)____ ______) __________) (____) ---.__(___) """ symbols = [rock, paper, scissors] user_symbol = int(input("Chosse between Rock, Paper or Scissors (0, 1 or 2) ==> ")) computer_symbol = random.randint(0,2) if user_symbol > 2: print("Value out of valid range, retry!") exit print("User selected:\n") print(symbols[user_symbol] + "\n") print("Computer Selected:\n") print(symbols[computer_symbol] + "\n") if user_symbol == 0: #rock if computer_symbol == 0: #rock vs rock print("Nobody Win 😶") elif computer_symbol == 1: #rock vs paper print("You Lose 😓 ") else: #rock vs scissors print("You Win 😁") elif user_symbol == 1: #paper if computer_symbol == 0: #paper vs rock print("You Win 😁") elif computer_symbol == 1: #paper vs paper print("Nobody Win 😶") else: #paper vs scissors print("You Lose 😓 ") elif user_symbol == 2: #scissors if computer_symbol == 0: #scissors vs rock print("You Lose 😓 ") elif computer_symbol == 1: #scissors vs paper print("You Win 😁") else: #scissors vs scissors print("Nobody Win 😶")
the-stack_0_10062
#!/usr/bin/env python # Copyright 2019 Jian Wu # License: Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import io import os import subprocess import numpy as np import soundfile as sf import scipy.signal as ss from kaldi_python_io import Reader as BaseReader from typing import Optional, IO, Union, Any, NoReturn, Tuple def read_audio(fname: Union[str, IO[Any]], beg: int = 0, end: Optional[int] = None, norm: bool = True, sr: int = 16000) -> np.ndarray: """ Read audio files using soundfile (support multi-channel & chunk) Args: fname: file name or object beg, end: begin and end index for chunk-level reading norm: normalized samples between -1 and 1 sr: sample rate of the audio Return: samps: in shape C x N sr: sample rate """ # samps: N x C or N # N: number of samples # C: number of channels samps, ret_sr = sf.read(fname, start=beg, stop=end, dtype="float32" if norm else "int16") if sr != ret_sr: raise RuntimeError(f"Expect sr={sr} of {fname}, get {ret_sr} instead") if not norm: samps = samps.astype("float32") # put channel axis first # N x C => C x N if samps.ndim != 1: samps = np.transpose(samps) return samps def write_audio(fname: Union[str, IO[Any]], samps: np.ndarray, sr: int = 16000, norm: bool = True) -> NoReturn: """ Write audio files, support single/multi-channel Args: fname: IO object or str samps: np.ndarray, C x S or S sr: sample rate norm: keep same as the one in read_audio """ samps = samps.astype("float32" if norm else "int16") # for multi-channel, accept ndarray N x C if samps.ndim != 1 and samps.shape[0] < samps.shape[1]: samps = np.transpose(samps) samps = np.squeeze(samps) # make dirs if isinstance(fname, str): parent = os.path.dirname(fname) if parent and not os.path.exists(parent): os.makedirs(parent) sf.write(fname, samps, sr) def add_room_response(spk: np.ndarray, rir: np.ndarray, early_energy: bool = False, sr: int = 16000) -> Tuple[np.ndarray, float]: """ Convolute source signal with selected rirs Args spk: S, close talk signal rir: N x R, single or multi-channel RIRs early_energy: return energy of early parts sr: sample rate of the signal Return revb: N x S, reverberated signals """ if spk.ndim != 1: raise RuntimeError(f"Can not convolve rir with {spk.ndim}D signals") S = spk.shape[-1] revb = ss.convolve(spk[None, ...], rir)[..., :S] revb = np.asarray(revb) if early_energy: rir_ch0 = rir[0] rir_peak = np.argmax(rir_ch0) rir_beg_idx = max(0, int(rir_peak - 0.001 * sr)) rir_end_idx = min(rir_ch0.size, int(rir_peak + 0.05 * sr)) early_rir = np.zeros_like(rir_ch0) early_rir[rir_beg_idx:rir_end_idx] = rir_ch0[rir_beg_idx:rir_end_idx] early_rev = ss.convolve(spk, early_rir)[:S] return revb, np.mean(early_rev**2) else: return revb, np.mean(revb[0]**2) def run_command(command: str, wait: bool = True): """ Runs shell commands """ p = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if wait: [stdout, stderr] = p.communicate() if p.returncode != 0: stderr_str = bytes.decode(stderr) raise Exception("There was an error while running the " + f"command \"{command}\":\n{stderr_str}\n") return stdout, stderr else: return p class AudioReader(BaseReader): """ Sequential/Random Reader for single/multiple channel audio using soundfile as the backend The format of wav.scp follows Kaldi's definition: key1 /path/to/key1.wav key2 /path/to/key2.wav ... or key1 sox /home/data/key1.wav -t wav - remix 1 | key2 sox /home/data/key2.wav -t wav - remix 1 | ... or key1 /path/to/ark1:XXXX key2 /path/to/ark1:XXXY are supported Args: wav_scp: path of the audio script sr: sample rate of the audio norm: normalize audio samples between (-1, 1) if true channel: read audio at #channel if > 0 (-1 means all) """ def __init__(self, wav_scp: str, sr: int = 16000, norm: bool = True, channel: int = -1) -> None: super(AudioReader, self).__init__(wav_scp, num_tokens=2) self.sr = sr self.ch = channel self.norm = norm self.mngr = {} def _load(self, key: str) -> Optional[np.ndarray]: fname = self.index_dict[key] samps = None # return C x N or N if ":" in fname: tokens = fname.split(":") if len(tokens) != 2: raise RuntimeError(f"Value format error: {fname}") fname, offset = tokens[0], int(tokens[1]) # get ark object if fname not in self.mngr: self.mngr[fname] = open(fname, "rb") wav_ark = self.mngr[fname] # wav_ark = open(fname, "rb") # seek and read wav_ark.seek(offset) try: samps = read_audio(wav_ark, norm=self.norm, sr=self.sr) except RuntimeError: print(f"Read audio {key} {fname}:{offset} failed...", flush=True) else: if fname[-1] == "|": shell, _ = run_command(fname[:-1], wait=True) fname = io.BytesIO(shell) try: samps = read_audio(fname, norm=self.norm, sr=self.sr) except RuntimeError: print(f"Load audio {key} {fname} failed...", flush=True) if samps is None: raise RuntimeError("Audio IO failed ...") if self.ch >= 0 and samps.ndim == 2: samps = samps[self.ch] return samps def nsamps(self, key: str) -> int: """ Number of samples """ data = self._load(key) return data.shape[-1] def power(self, key: str) -> float: """ Power of utterance """ data = self._load(key) s = data if data.ndim == 1 else data[0] return np.linalg.norm(s, 2)**2 / data.size def duration(self, key: str) -> float: """ Utterance duration """ N = self.nsamps(key) return N / self.sr
the-stack_0_10064
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'DocStack' copyright = '2019, d05660' author = 'd05660' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '1.0' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'alabaster' on_rtd = os.environ.get('READTHEDOCS') == 'True' if on_rtd: html_theme = 'default' else: html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} html_show_sourcelink = False html_favicon = 'favicon.ico' # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'DocStackdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'DocStack.tex', 'DocStack Documentation', 'd05660', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'docstack', 'DocStack Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'DocStack', 'DocStack Documentation', author, 'DocStack', 'One line description of project.', 'Miscellaneous'), ] def setup(app): app.add_stylesheet('css/custom.css?v20190329')
the-stack_0_10065
# -*- coding: utf-8 -*- from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('authentication', '0008_auto_20151014_2027'), ] operations = [ migrations.AlterField( model_name='position', name='committee', field=models.CharField(default=b'hs', max_length=10, verbose_name='komite', choices=[(b'hs', 'Hovedstyret'), (b'appkom', 'Applikasjonskomiteen'), (b'arrkom', 'Arrangementskomiteen'), (b'bankom', 'Bank- og \xf8konomikomiteen'), (b'bedkom', 'Bedriftskomiteen'), (b'dotkom', 'Drifts- og utviklingskomiteen'), (b'ekskom', 'Ekskursjonskomiteen'), (b'fagkom', 'Fag- og kurskomiteen'), (b'jubkom', 'Jubileumskomiteen'), (b'pangkom', 'Pensjonistkomiteen'), (b'prokom', 'Profil-og aviskomiteen'), (b'redaksjonen', 'Redaksjonen'), (b'trikom', 'Trivselskomiteen'), (b'velkom', 'Velkomstkomiteen')]), preserve_default=True, ), migrations.AlterField( model_name='position', name='position', field=models.CharField(default=b'medlem', max_length=10, verbose_name='stilling', choices=[(b'medlem', 'Medlem'), (b'leder', 'Leder'), (b'nestleder', 'Nestleder'), (b'redaktor', 'Redakt\xf8r'), (b'okoans', '\xd8konomiansvarlig')]), preserve_default=True, ), ]
the-stack_0_10067
from django.shortcuts import render # pdf from django.http import FileResponse import io from reportlab.pdfgen import canvas from reportlab.lib.units import inch from reportlab.lib.pagesizes import letter import os from django.conf import settings # Create your views here. def get_pdf_name(request): pdf_dir = os.listdir(os.path.join(settings.MEDIA_ROOT, 'sample_pdf')) pdf_dir_path = list(map( lambda x : '/{}/{}/{}'.format('media', 'sample_pdf', x), pdf_dir)) res = [] for ind, item in enumerate(pdf_dir): res.append("<a href='{}' target='_blank' >{}</a>".format(pdf_dir_path[ind], item)) content = {'list' : res} return render(request, 'index.html', content) def get_pdf(request): # ccreaate Bytestream Buffer buf = io.BytesIO() # create a canvas c = canvas.Canvas(buf, pagesize=letter, bottomup=0) # Create a text Object textob = c.beginText() textob.setTextOrigin(inch, inch) textob.setFont("Helvetica", 14) # add Some lines of text lines = [ "This is line one", "This is line two", "This is line three", ] for line in lines: textob.textLine(line) #Finsh up c.drawText(textob) c.showPage() c.save() buf.seek(0) response = FileResponse(buf, as_attachment=True, filename='file.pdf') response.headers['Content-Type'] = 'application/pdf' return response contnet = {} return render(request, 'index.html', content)
the-stack_0_10070
#!/usr/bin/python # # CLI compiler for bcmd's new model description language # import sys import argparse import bcmd_yacc import os import decimal import string import pprint import logger import ast import codegen import info # default compiler configuration # (this is effectively a template whose details # may be adapted by command line args) CONFIG = {'modelpath': ['.', 'models'], 'outdir': '.', 'outfile': None, 'treefile': None, 'name': None, 'unused': True, 'graph': None, 'graph-exclude-unused': False, 'graph-exclude-init': False, 'graph-exclude-self': True, 'graph-exclude-clusters': False, 'graph-exclude-params': False, 'independent': 't', 'input-makes-intermed': True} # these are effectively constants VERSION = 0.6 MODELDEF_EXT = '.modeldef' CODE_EXT = '.c' MODEL_EXT = '.model' TREE_EXT = '.tree' COMPILE_EXT = '.bcmpl' GRAPHVIZ_EXT = '.gv' DUMMY_SOURCE = '##\n' # parse a chosen model definition file and return the AST def parse_file(filename): try: f = open(filename) data = f.read() f.close() except IOError as e: logger.error("I/O error({0}): {1}".format(e.errno, e.strerror)) return None logger.message("Processing file: " + filename) bcmd_yacc.currentFile = filename errsBefore = len(bcmd_yacc.compilationInfo['errors']) lp = bcmd_yacc.get_lexer_parser() result = lp[1].parse(data, lexer=lp[0]) fileErrs = len(bcmd_yacc.compilationInfo['errors']) - errsBefore bcmd_yacc.currentFile = None if fileErrs == 1: logger.error('Compilation failed with 1 syntax error') elif fileErrs > 1: logger.error('Compilation failed with %d syntax errors' % fileErrs) return fileErrs, result def print_errors(): logger.error('*** Summary of model compilation errors ***') errs = bcmd_yacc.compilationInfo for ii in range(len(errs['errors'])): logger.error(errs['messages'][ii] + ' (' + errs['files'][ii] + ', line ' + str(errs['lines'][ii]) + ')') # find a file on the search path def search_file(filename, search_path): for path in search_path: candidate = os.path.join(path, filename) if os.path.isfile(candidate): return os.path.abspath(candidate) return None # process arguments def process_args(): config = CONFIG ap = argparse.ArgumentParser( description="Model compiler for the BCMD modelling system.") ap.add_argument('--version', action='version', version='bcmd version %.1fa' % VERSION) ap.add_argument( '-i', help='append to default model search path', metavar='PATH') ap.add_argument( '-I', help='replace default model search path', metavar='PATH') ap.add_argument( '-n', '--name', help='specify model name (default: <file1>)', metavar='NAME') ap.add_argument( '-o', help='specify output file name (default: <modelname>.model)', metavar='FILE') ap.add_argument( '-d', help='specify output directory (default: .)', metavar='DIR') ap.add_argument( '-u', '--unused', help='omit apparently unused intermediates', action='store_false') ap.add_argument( '-g', '--debug', help='include debug outputs in generated model code', action='store_true') ap.add_argument('-t', '--tree', help='write parse tree to file (default: <modelname>.tree)', nargs='?', default=None, const='', metavar='FILE') ap.add_argument('-p', '--processed', help='write compilation data to file (default: <modelname>.bcmpl)', nargs='?', default=None, const='', metavar='FILE') ap.add_argument('-G', '--graph', help='write dependency structure in GraphViz format (default: <modelname>.gv)', nargs='?', default=None, const='', metavar='FILE') ap.add_argument('-U', '--graphxunused', help='exclude apparently unused elements from graph output', action='store_true') ap.add_argument('-N', '--graphxinit', help='exclude initialisation dependencies from graph output', action='store_true') ap.add_argument('-C', '--graphxclust', help='exclude clustering from graph output', action='store_true') ap.add_argument('-S', '--graphself', help='include direct circular dependencies in graph output', action='store_false') ap.add_argument('-v', '--verbose', help='set level of detail logged to stderr (0-7, default: 3)', metavar='LEVEL', type=int) ap.add_argument( '-Y', '--yacc', help='run a dummy parse to rebuild parse tables', action='store_true') # ... add further options here as needed ... ap.add_argument('file', nargs='+', help='one or more model description files to be compiled') args = ap.parse_args() if args.yacc: lp = bcmd_yacc.get_lexer_parser() result = lp[1].parse(DUMMY_SOURCE, lexer=lp[0]) return False if not (args.I is None): config['modelpath'] = args.I.split(os.pathsep) elif not (args.i is None): config['modelpath'] = config['modelpath'] + \ args.i.split(os.pathsep) if not (args.name is None): config['name'] = args.name else: srcname, srcext = os.path.splitext(args.file[0]) config['name'] = srcname if not (args.o is None): config['outfile'] = args.o else: config['outfile'] = config['name'] + MODEL_EXT if args.d is not None: if not os.path.isdir(args.d): os.makedirs(args.d) config['outdir'] = args.d config['treefile'] = args.tree config['compfile'] = args.processed config['sources'] = args.file config['unused'] = args.unused config['debug'] = args.debug config['graph'] = args.graph config['graph-exclude-unused'] = args.graphxunused config['graph-exclude-init'] = args.graphxinit config['graph-exclude-self'] = args.graphself config['graph-exclude-clusters'] = args.graphxclust if args.verbose is not None: logger.verbosity = args.verbose return config # load and parse source files named on the command line, plus imports # note failures and return a structure including those details and # the resulting merged item list def load_sources(config): sources = config['sources'] srcIndex = 0 parsedSources = [] failedSources = [] merged = [] while srcIndex < len(sources): logger.message("Searching for source file: " + sources[srcIndex]) src = search_file(sources[srcIndex], config['modelpath']) if (src is None) and (not sources[srcIndex].endswith(MODELDEF_EXT)): logger.message( "Not found, trying with added extension: " + sources[srcIndex] + MODELDEF_EXT) src = search_file(sources[srcIndex] + MODELDEF_EXT, config['modelpath']) if src is None: logger.warn("File not found: " + sources[srcIndex]) failedSources.append(sources[srcIndex]) else: nErrs, ast = parse_file(src) if nErrs > 0 or ast is None: failedSources.append(src) else: ast = list(ast) # add imports that are not already in the source list to it for imp in list(sum([x[1:] for x in ast if x[0] == 'import'], ())): if imp not in sources and imp + MODELDEF_EXT not in sources: sources.append(imp) logger.detail(ast, prettify=True) parsedSources.append((sources[srcIndex], src)) merged = merged + ast srcIndex = srcIndex + 1 logger.message("Total number of attempted source files: %d" % srcIndex) logger.message("%d parsed, %d failed" % (len(parsedSources), len(failedSources))) for failed in failedSources: logger.message(" -> %s" % failed) return {'sources': sources, 'parsed': parsedSources, 'failed': failedSources, 'merged': merged} # write the loaded merged item list to a file, if so specified def write_tree(config, work): if not config['treefile'] is None: if config['treefile'] == '': config['treefile'] = config['name'] + TREE_EXT treePath = os.path.join(config['outdir'], config['treefile']) logger.message("Attempting to write parse tree to " + treePath) try: treeStream = open(treePath, 'w') pprint.pprint(work['merged'], stream=treeStream) treeStream.close() except IOError as e: logger.error("Error writing file ({0}): {1}".format( e.errno, e.strerror)) # write the processed model structure to a file, if so specified def write_comp(config, processed): if not config['compfile'] is None: if config['compfile'] == '': config['compfile'] = config['name'] + COMPILE_EXT compPath = os.path.join(config['outdir'], config['compfile']) logger.message( "Attempting to write compilation structure to " + compPath) try: compStream = open(compPath, 'w') pprint.pprint(processed, stream=compStream) compStream.close() except IOError as e: logger.error("Error writing file ({0}): {1}".format( e.errno, e.strerror)) # write the model dependencies to a graph, if so specified def write_graph(config, model): if not config['graph'] is None: if config['graph'] == '': config['graph'] = config['name'] + GRAPHVIZ_EXT graphPath = os.path.join(config['outdir'], config['graph']) logger.message("Attempting to write dependency graph to " + graphPath) try: stream = open(graphPath, 'w') print(info.generateGraphViz(model, config), file=stream) stream.close() except IOError as e: logger.error("Error writing file ({0}): {1}".format( e.errno, e.strerror)) # ---------------------------------------------------------------------------- # main entry point of this compiler script if __name__ == '__main__': config = process_args() if not config: sys.exit(2) work = load_sources(config) if len(work['failed']) > 0: print_errors() sys.exit(1) write_tree(config, work) processed = ast.process(work['merged'], work[ 'parsed'], config['independent']) info.logModelInfo(processed, config) write_comp(config, processed) write_graph(config, processed) source = codegen.generateSource(processed, config) codepath = os.path.join(config['outdir'], config['name'] + CODE_EXT) logger.message("Attempting to write C code to " + codepath) try: cfile = open(codepath, 'w') cfile.write(source) cfile.close() except IOError as e: logger.error("Error writing file ({0}): {1}".format( e.errno, e.strerror)) sys.exit(1)
the-stack_0_10071
import os import sys sys.path.insert(0, ".") sys.path.insert(1, "..") from praw import __version__ copyright = "2020, Bryce Boe" exclude_patterns = ["_build"] extensions = ["sphinx.ext.autodoc", "sphinx.ext.intersphinx"] html_static_path = ["_static"] html_theme = "sphinx_rtd_theme" html_theme_options = {"collapse_navigation": True} htmlhelp_basename = "PRAW" intersphinx_mapping = {"python": ("https://docs.python.org/3.8", None)} master_doc = "index" nitpicky = True project = "PRAW" pygments_style = "sphinx" release = __version__ source_suffix = ".rst" suppress_warnings = ["image.nonlocal_uri"] version = ".".join(__version__.split(".", 2)[:2]) # Use RTD theme locally if not os.environ.get("READTHEDOCS"): import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] def skip(app, what, name, obj, skip, options): if name in { "__call__", "__contains__", "__getitem__", "__init__", "__iter__", "__len__", }: return False return skip def setup(app): app.connect("autodoc-skip-member", skip) app.add_stylesheet("theme_override.css")
the-stack_0_10072
import filecmp import logging import os import textwrap import uuid from pathlib import Path from unittest import mock import pytest from dvc.cli import main from dvc.dependency.base import DependencyIsStageFileError from dvc.dvcfile import DVC_FILE_SUFFIX from dvc.exceptions import ( ArgumentDuplicationError, CircularDependencyError, CyclicGraphError, OutputDuplicationError, OverlappingOutputPathsError, StagePathAsOutputError, ) from dvc.fs import system from dvc.objects.hash import file_md5 from dvc.output import Output, OutputIsStageFileError from dvc.repo import Repo as DvcRepo from dvc.stage import Stage from dvc.stage.exceptions import ( StageFileAlreadyExistsError, StageFileBadNameError, StagePathNotDirectoryError, StagePathNotFoundError, StagePathOutsideError, ) from dvc.utils.serialize import load_yaml from tests.basic_env import TestDvc, TestDvcGit class TestRun(TestDvc): def test(self): cmd = "python {} {} {}".format(self.CODE, self.FOO, "out") deps = [self.FOO, self.CODE] outs = [os.path.join(self.dvc.root_dir, "out")] outs_no_cache = [] fname = "out.dvc" self.dvc.add(self.FOO) stage = self.dvc.run( cmd=cmd, deps=deps, outs=outs, outs_no_cache=outs_no_cache, fname=fname, single_stage=True, ) self.assertTrue(filecmp.cmp(self.FOO, "out", shallow=False)) self.assertTrue(os.path.isfile(stage.path)) self.assertEqual(stage.cmd, cmd) self.assertEqual(len(stage.deps), len(deps)) self.assertEqual(len(stage.outs), len(outs + outs_no_cache)) self.assertEqual(stage.outs[0].fspath, outs[0]) self.assertEqual( stage.outs[0].hash_info.value, file_md5(self.FOO, self.dvc.fs) ) self.assertTrue(stage.path, fname) with self.assertRaises(OutputDuplicationError): self.dvc.run( cmd=cmd, deps=deps, outs=outs, outs_no_cache=outs_no_cache, fname="duplicate" + fname, single_stage=True, ) class TestRunEmpty(TestDvc): def test(self): self.dvc.run( cmd="echo hello world", deps=[], outs=[], outs_no_cache=[], fname="empty.dvc", single_stage=True, ) class TestRunMissingDep(TestDvc): def test(self): from dvc.dependency.base import DependencyDoesNotExistError with self.assertRaises(DependencyDoesNotExistError): self.dvc.run( cmd="command", deps=["non-existing-dep"], outs=[], outs_no_cache=[], fname="empty.dvc", single_stage=True, ) class TestRunNoExec(TestDvcGit): def test(self): self.dvc.run( cmd="python {} {} {}".format(self.CODE, self.FOO, "out"), deps=[self.CODE, self.FOO], outs=["out"], no_exec=True, single_stage=True, ) self.assertFalse(os.path.exists("out")) with open(".gitignore", encoding="utf-8") as fobj: self.assertEqual(fobj.read(), "/out\n") class TestRunCircularDependency(TestDvc): def test(self): with self.assertRaises(CircularDependencyError): self.dvc.run( cmd="command", deps=[self.FOO], outs=[self.FOO], fname="circular-dependency.dvc", single_stage=True, ) def test_outs_no_cache(self): with self.assertRaises(CircularDependencyError): self.dvc.run( cmd="command", deps=[self.FOO], outs_no_cache=[self.FOO], fname="circular-dependency.dvc", single_stage=True, ) def test_non_normalized_paths(self): with self.assertRaises(CircularDependencyError): self.dvc.run( cmd="command", deps=["./foo"], outs=["foo"], fname="circular-dependency.dvc", single_stage=True, ) def test_graph(self): self.dvc.run( deps=[self.FOO], outs=["bar.txt"], cmd="echo bar > bar.txt", single_stage=True, ) self.dvc.run( deps=["bar.txt"], outs=["baz.txt"], cmd="echo baz > baz.txt", single_stage=True, ) with self.assertRaises(CyclicGraphError): self.dvc.run( deps=["baz.txt"], outs=[self.FOO], cmd="echo baz > foo", single_stage=True, ) class TestRunDuplicatedArguments(TestDvc): def test(self): with self.assertRaises(ArgumentDuplicationError): self.dvc.run( cmd="command", deps=[], outs=[self.FOO, self.FOO], fname="circular-dependency.dvc", single_stage=True, ) def test_outs_no_cache(self): with self.assertRaises(ArgumentDuplicationError): self.dvc.run( cmd="command", outs=[self.FOO], outs_no_cache=[self.FOO], fname="circular-dependency.dvc", single_stage=True, ) def test_non_normalized_paths(self): with self.assertRaises(ArgumentDuplicationError): self.dvc.run( cmd="command", deps=[], outs=["foo", "./foo"], fname="circular-dependency.dvc", single_stage=True, ) class TestRunStageInsideOutput(TestDvc): def test_cwd(self): self.dvc.run( cmd=f"mkdir {self.DATA_DIR}", deps=[], outs=[self.DATA_DIR], single_stage=True, ) with self.assertRaises(StagePathAsOutputError): self.dvc.run( cmd="command", fname=os.path.join(self.DATA_DIR, "inside-cwd.dvc"), single_stage=True, ) def test_file_name(self): self.dvc.run( cmd=f"mkdir {self.DATA_DIR}", deps=[], outs=[self.DATA_DIR], single_stage=True, ) with self.assertRaises(StagePathAsOutputError): self.dvc.run( cmd="command", outs=[self.FOO], fname=os.path.join(self.DATA_DIR, "inside-cwd.dvc"), single_stage=True, ) class TestRunBadCwd(TestDvc): def test(self): with self.assertRaises(StagePathOutsideError): self.dvc.run(cmd="command", wdir=self.mkdtemp(), single_stage=True) def test_same_prefix(self): with self.assertRaises(StagePathOutsideError): path = f"{self._root_dir}-{uuid.uuid4()}" os.mkdir(path) self.dvc.run(cmd="command", wdir=path, single_stage=True) class TestRunBadWdir(TestDvc): def test(self): with self.assertRaises(StagePathOutsideError): self.dvc.run(cmd="command", wdir=self.mkdtemp(), single_stage=True) def test_same_prefix(self): with self.assertRaises(StagePathOutsideError): path = f"{self._root_dir}-{uuid.uuid4()}" os.mkdir(path) self.dvc.run(cmd="command", wdir=path, single_stage=True) def test_not_found(self): with self.assertRaises(StagePathNotFoundError): path = os.path.join(self._root_dir, str(uuid.uuid4())) self.dvc.run(cmd="command", wdir=path, single_stage=True) def test_not_dir(self): with self.assertRaises(StagePathNotDirectoryError): path = os.path.join(self._root_dir, str(uuid.uuid4())) os.mkdir(path) path = os.path.join(path, str(uuid.uuid4())) open(path, "a", encoding="utf-8").close() self.dvc.run(cmd="command", wdir=path, single_stage=True) class TestRunBadName(TestDvc): def test(self): with self.assertRaises(StagePathOutsideError): self.dvc.run( cmd="command", fname=os.path.join(self.mkdtemp(), self.FOO + DVC_FILE_SUFFIX), single_stage=True, ) def test_same_prefix(self): with self.assertRaises(StagePathOutsideError): path = f"{self._root_dir}-{uuid.uuid4()}" os.mkdir(path) self.dvc.run( cmd="command", fname=os.path.join(path, self.FOO + DVC_FILE_SUFFIX), single_stage=True, ) def test_not_found(self): with self.assertRaises(StagePathNotFoundError): path = os.path.join(self._root_dir, str(uuid.uuid4())) self.dvc.run( cmd="command", fname=os.path.join(path, self.FOO + DVC_FILE_SUFFIX), single_stage=True, ) class TestRunRemoveOuts(TestDvc): def test(self): with open(self.CODE, "w+", encoding="utf-8") as fobj: fobj.write("import sys\n") fobj.write("import os\n") fobj.write("if os.path.exists(sys.argv[1]):\n") fobj.write(" sys.exit(1)\n") fobj.write("open(sys.argv[1], 'w+').close()\n") self.dvc.run( deps=[self.CODE], outs=[self.FOO], cmd=f"python {self.CODE} {self.FOO}", single_stage=True, ) class TestRunUnprotectOutsCopy(TestDvc): def test(self): with open(self.CODE, "w+", encoding="utf-8") as fobj: fobj.write("import sys\n") fobj.write("with open(sys.argv[1], 'a+') as fobj:\n") fobj.write(" fobj.write('foo')\n") ret = main(["config", "cache.type", "copy"]) self.assertEqual(ret, 0) ret = main( [ "run", "-d", self.CODE, "-o", self.FOO, "--single-stage", "python", self.CODE, self.FOO, ] ) self.assertEqual(ret, 0) self.assertTrue(os.access(self.FOO, os.W_OK)) with open(self.FOO, encoding="utf-8") as fd: self.assertEqual(fd.read(), "foo") ret = main( [ "run", "--force", "--no-run-cache", "--single-stage", "-d", self.CODE, "-o", self.FOO, "python", self.CODE, self.FOO, ] ) self.assertEqual(ret, 0) self.assertTrue(os.access(self.FOO, os.W_OK)) with open(self.FOO, encoding="utf-8") as fd: self.assertEqual(fd.read(), "foo") class TestRunUnprotectOutsSymlink(TestDvc): def test(self): with open(self.CODE, "w+", encoding="utf-8") as fobj: fobj.write("import sys\n") fobj.write("import os\n") fobj.write("with open(sys.argv[1], 'a+') as fobj:\n") fobj.write(" fobj.write('foo')\n") ret = main(["config", "cache.type", "symlink"]) self.assertEqual(ret, 0) self.assertEqual(ret, 0) ret = main( [ "run", "-d", self.CODE, "-o", self.FOO, "--single-stage", "python", self.CODE, self.FOO, ] ) self.assertEqual(ret, 0) if os.name == "nt": # NOTE: Windows symlink perms don't propagate to the target self.assertTrue(os.access(self.FOO, os.W_OK)) else: self.assertFalse(os.access(self.FOO, os.W_OK)) self.assertTrue(system.is_symlink(self.FOO)) with open(self.FOO, encoding="utf-8") as fd: self.assertEqual(fd.read(), "foo") ret = main( [ "run", "--force", "--no-run-cache", "--single-stage", "-d", self.CODE, "-o", self.FOO, "python", self.CODE, self.FOO, ] ) self.assertEqual(ret, 0) if os.name == "nt": # NOTE: Windows symlink perms don't propagate to the target self.assertTrue(os.access(self.FOO, os.W_OK)) else: self.assertFalse(os.access(self.FOO, os.W_OK)) self.assertTrue(system.is_symlink(self.FOO)) with open(self.FOO, encoding="utf-8") as fd: self.assertEqual(fd.read(), "foo") class TestRunUnprotectOutsHardlink(TestDvc): def test(self): with open(self.CODE, "w+", encoding="utf-8") as fobj: fobj.write("import sys\n") fobj.write("import os\n") fobj.write("with open(sys.argv[1], 'a+') as fobj:\n") fobj.write(" fobj.write('foo')\n") ret = main(["config", "cache.type", "hardlink"]) self.assertEqual(ret, 0) self.assertEqual(ret, 0) ret = main( [ "run", "-d", self.CODE, "-o", self.FOO, "--single-stage", "python", self.CODE, self.FOO, ] ) self.assertEqual(ret, 0) self.assertFalse(os.access(self.FOO, os.W_OK)) self.assertTrue(system.is_hardlink(self.FOO)) with open(self.FOO, encoding="utf-8") as fd: self.assertEqual(fd.read(), "foo") ret = main( [ "run", "--force", "--no-run-cache", "--single-stage", "-d", self.CODE, "-o", self.FOO, "python", self.CODE, self.FOO, ] ) self.assertEqual(ret, 0) self.assertFalse(os.access(self.FOO, os.W_OK)) self.assertTrue(system.is_hardlink(self.FOO)) with open(self.FOO, encoding="utf-8") as fd: self.assertEqual(fd.read(), "foo") class TestCmdRunOverwrite(TestDvc): def test(self): # NOTE: using sleep() is a workaround for filesystems # with low mtime resolution. We have to use mtime since # comparing mtime's is the only way to check that the stage # file didn't change(size and inode in the first test down # below don't change). import time ret = main( [ "run", "-d", self.FOO, "-d", self.CODE, "-o", "out", "--file", "out.dvc", "--single-stage", "python", self.CODE, self.FOO, "out", ] ) self.assertEqual(ret, 0) stage_mtime = os.path.getmtime("out.dvc") time.sleep(1) ret = main( [ "run", "-d", self.FOO, "-d", self.CODE, "--force", "--no-run-cache", "--single-stage", "-o", "out", "--file", "out.dvc", "python", self.CODE, self.FOO, "out", ] ) self.assertEqual(ret, 0) # NOTE: check that dvcfile was overwritten self.assertNotEqual(stage_mtime, os.path.getmtime("out.dvc")) stage_mtime = os.path.getmtime("out.dvc") time.sleep(1) ret = main( [ "run", "--force", "--single-stage", "--file", "out.dvc", "-d", self.BAR, f"cat {self.BAR}", ] ) self.assertEqual(ret, 0) # NOTE: check that dvcfile was overwritten self.assertNotEqual(stage_mtime, os.path.getmtime("out.dvc")) class TestCmdRunCliMetrics(TestDvc): def test_cached(self): ret = main( [ "run", "-m", "metrics.txt", "--single-stage", "echo test > metrics.txt", ] ) self.assertEqual(ret, 0) with open("metrics.txt", encoding="utf-8") as fd: self.assertEqual(fd.read().rstrip(), "test") def test_not_cached(self): ret = main( [ "run", "-M", "metrics.txt", "--single-stage", "echo test > metrics.txt", ] ) self.assertEqual(ret, 0) with open("metrics.txt", encoding="utf-8") as fd: self.assertEqual(fd.read().rstrip(), "test") class TestCmdRunWorkingDirectory(TestDvc): def test_default_wdir_is_not_written(self): stage = self.dvc.run( cmd=f"echo test > {self.FOO}", outs=[self.FOO], wdir=".", single_stage=True, ) d = load_yaml(stage.relpath) self.assertNotIn(Stage.PARAM_WDIR, d.keys()) stage = self.dvc.run( cmd=f"echo test > {self.BAR}", outs=[self.BAR], single_stage=True ) d = load_yaml(stage.relpath) self.assertNotIn(Stage.PARAM_WDIR, d.keys()) def test_fname_changes_path_and_wdir(self): dname = "dir" os.mkdir(os.path.join(self._root_dir, dname)) foo = os.path.join(dname, self.FOO) fname = os.path.join(dname, "stage" + DVC_FILE_SUFFIX) stage = self.dvc.run( cmd=f"echo test > {foo}", outs=[foo], fname=fname, single_stage=True, ) self.assertEqual(stage.wdir, os.path.realpath(self._root_dir)) self.assertEqual( stage.path, os.path.join(os.path.realpath(self._root_dir), fname) ) # Check that it is dumped properly (relative to fname) d = load_yaml(stage.relpath) self.assertEqual(d[Stage.PARAM_WDIR], "..") def test_rerun_deterministic(tmp_dir, run_copy, mocker): from dvc.stage.run import subprocess tmp_dir.gen("foo", "foo content") spy = mocker.spy(subprocess, "Popen") run_copy("foo", "out", single_stage=True) assert spy.called spy.reset_mock() run_copy("foo", "out", single_stage=True) assert not spy.called def test_rerun_deterministic_ignore_cache(tmp_dir, run_copy, mocker): from dvc.stage.run import subprocess tmp_dir.gen("foo", "foo content") spy = mocker.spy(subprocess, "Popen") run_copy("foo", "out", single_stage=True) assert spy.called spy.reset_mock() run_copy("foo", "out", run_cache=False, single_stage=True) assert spy.called def test_rerun_callback(dvc): def run_callback(force=False): return dvc.run( cmd="echo content > out", force=force, single_stage=True ) assert run_callback() is not None with pytest.raises(StageFileAlreadyExistsError): assert run_callback() is not None assert run_callback(force=True) is not None def test_rerun_changed_dep(tmp_dir, run_copy): tmp_dir.gen("foo", "foo content") assert run_copy("foo", "out", single_stage=True) is not None tmp_dir.gen("foo", "changed content") with pytest.raises(StageFileAlreadyExistsError): run_copy("foo", "out", force=False, single_stage=True) assert run_copy("foo", "out", force=True, single_stage=True) def test_rerun_changed_stage(tmp_dir, run_copy): tmp_dir.gen("foo", "foo content") assert run_copy("foo", "out", single_stage=True) is not None tmp_dir.gen("bar", "bar content") with pytest.raises(StageFileAlreadyExistsError): run_copy("bar", "out", force=False, single_stage=True) def test_rerun_changed_out(tmp_dir, run_copy): tmp_dir.gen("foo", "foo content") assert run_copy("foo", "out", single_stage=True) is not None Path("out").write_text("modification", encoding="utf-8") with pytest.raises(StageFileAlreadyExistsError): run_copy("foo", "out", force=False, single_stage=True) class TestRunCommit(TestDvc): def test(self): fname = "test" ret = main( [ "run", "-o", fname, "--no-commit", "--single-stage", "echo", "test", ">", fname, ] ) self.assertEqual(ret, 0) self.assertTrue(os.path.isfile(fname)) self.assertFalse(os.path.exists(self.dvc.odb.local.cache_dir)) ret = main(["commit", fname + ".dvc"]) self.assertEqual(ret, 0) self.assertTrue(os.path.isfile(fname)) self.assertEqual(len(os.listdir(self.dvc.odb.local.cache_dir)), 1) class TestRunPersist(TestDvc): @property def outs_command(self): raise NotImplementedError def _test(self): file = "file.txt" file_content = "content" stage_file = file + DVC_FILE_SUFFIX self.run_command(file, file_content) self.stage_should_contain_persist_flag(stage_file) self.should_append_upon_repro(file, stage_file) self.should_remove_persistent_outs(file, stage_file) def run_command(self, file, file_content): ret = main( [ "run", "--single-stage", "--always-changed", self.outs_command, file, f"echo {file_content} >> {file}", ] ) self.assertEqual(0, ret) def stage_should_contain_persist_flag(self, stage_file): stage_file_content = load_yaml(stage_file) self.assertEqual( True, stage_file_content["outs"][0][Output.PARAM_PERSIST] ) def should_append_upon_repro(self, file, stage_file): ret = main(["repro", stage_file]) self.assertEqual(0, ret) with open(file, encoding="utf-8") as fobj: lines = fobj.readlines() self.assertEqual(2, len(lines)) def should_remove_persistent_outs(self, file, stage_file): ret = main(["remove", stage_file, "--outs"]) self.assertEqual(0, ret) self.assertFalse(os.path.exists(file)) class TestRunPersistOuts(TestRunPersist): @property def outs_command(self): return "--outs-persist" def test(self): self._test() class TestRunPersistOutsNoCache(TestRunPersist): @property def outs_command(self): return "--outs-persist-no-cache" def test(self): self._test() class TestShouldRaiseOnOverlappingOutputPaths(TestDvc): def test(self): ret = main(["add", self.DATA_DIR]) self.assertEqual(0, ret) with self.assertRaises(OverlappingOutputPathsError) as err: self.dvc.run( outs=[self.DATA], cmd=f"echo data >> {self.DATA}", single_stage=True, ) error_output = str(err.exception) data_dir_stage = self.DATA_DIR + DVC_FILE_SUFFIX data_stage = os.path.basename(self.DATA) + DVC_FILE_SUFFIX self.assertIn("The output paths:\n", error_output) self.assertIn( f"\n'{self.DATA_DIR}'('{data_dir_stage}')\n", error_output ) self.assertIn(f"\n'{self.DATA}'('{data_stage}')\n", error_output) self.assertIn( "overlap and are thus in the same tracked directory.\n" "To keep reproducibility, outputs should be in separate " "tracked directories or tracked individually.", error_output, ) class TestRerunWithSameOutputs(TestDvc): def _read_content_only(self, path): with open(path, encoding="utf-8") as fobj: return [line.rstrip() for line in fobj] @property def _outs_command(self): raise NotImplementedError def _run_twice_with_same_outputs(self): ret = main( [ "run", "--single-stage", "--outs", self.FOO, f"echo {self.FOO_CONTENTS} > {self.FOO}", ] ) self.assertEqual(0, ret) output_file_content = self._read_content_only(self.FOO) self.assertEqual([self.FOO_CONTENTS], output_file_content) ret = main( [ "run", self._outs_command, self.FOO, "--force", "--single-stage", f"echo {self.BAR_CONTENTS} >> {self.FOO}", ] ) self.assertEqual(0, ret) class TestNewRunShouldRemoveOutsOnNoPersist(TestRerunWithSameOutputs): def test(self): self._run_twice_with_same_outputs() output_file_content = self._read_content_only(self.FOO) self.assertEqual([self.BAR_CONTENTS], output_file_content) @property def _outs_command(self): return "--outs" class TestNewRunShouldNotRemoveOutsOnPersist(TestRerunWithSameOutputs): def test(self): self._run_twice_with_same_outputs() output_file_content = self._read_content_only(self.FOO) self.assertEqual( [self.FOO_CONTENTS, self.BAR_CONTENTS], output_file_content ) @property def _outs_command(self): return "--outs-persist" class TestShouldNotCheckoutUponCorruptedLocalHardlinkCache(TestDvc): def setUp(self): super().setUp() ret = main(["config", "cache.type", "hardlink"]) self.assertEqual(ret, 0) self.dvc.close() self.dvc = DvcRepo(".") def test(self): from tests.utils import clean_staging cmd = f"python {self.CODE} {self.FOO} {self.BAR}" stage = self.dvc.run( deps=[self.FOO], outs=[self.BAR], cmd=cmd, single_stage=True ) clean_staging() os.chmod(self.BAR, 0o644) with open(self.BAR, "w", encoding="utf-8") as fd: fd.write("corrupting the output cache") patch_checkout = mock.patch.object( stage.outs[0], "checkout", wraps=stage.outs[0].checkout ) from dvc.stage.run import cmd_run patch_run = mock.patch("dvc.stage.run.cmd_run", wraps=cmd_run) with self.dvc.lock: with patch_checkout as mock_checkout: with patch_run as mock_run: stage.run() mock_run.assert_called_once() mock_checkout.assert_not_called() def test_bad_stage_fname(tmp_dir, dvc, run_copy): tmp_dir.dvc_gen("foo", "foo content") with pytest.raises(StageFileBadNameError): # fname should end with .dvc run_copy("foo", "foo_copy", fname="out_stage", single_stage=True) # Check that command hasn't been run assert not (tmp_dir / "foo_copy").exists() def test_should_raise_on_stage_dependency(run_copy): with pytest.raises(DependencyIsStageFileError): run_copy("name.dvc", "stage_copy", single_stage=True) def test_should_raise_on_stage_output(tmp_dir, dvc, run_copy): tmp_dir.dvc_gen("foo", "foo content") with pytest.raises(OutputIsStageFileError): run_copy("foo", "name.dvc", single_stage=True) @pytest.mark.parametrize("metrics_type", ["metrics", "metrics_no_cache"]) def test_metrics_dir(tmp_dir, dvc, caplog, run_copy_metrics, metrics_type): copyargs = {metrics_type: ["dir_metric"]} tmp_dir.gen({"dir": {"file": "content"}}) with caplog.at_level(logging.DEBUG, "dvc"): run_copy_metrics("dir", "dir_metric", **copyargs) assert ( "directory 'dir_metric' cannot be used as metrics." in caplog.messages ) def test_run_force_preserves_comments_and_meta(tmp_dir, dvc, run_copy): tmp_dir.gen({"foo": "foo", "foo1": "foo1"}) text = textwrap.dedent( """\ desc: top desc cmd: python copy.py foo bar deps: - path: copy.py - path: foo outs: # comment preserved - path: bar desc: out desc meta: name: copy-foo-bar """ ) (tmp_dir / "bar.dvc").write_text(text) dvc.reproduce("bar.dvc") # CRLF on windows makes the generated file bigger in size code_size = 143 if os.name == "nt" else 142 assert (tmp_dir / "bar.dvc").read_text() == textwrap.dedent( f"""\ desc: top desc cmd: python copy.py foo bar deps: - path: copy.py md5: 90c27dd80b698fe766f0c3ee0b6b9729 size: {code_size} - path: foo md5: acbd18db4cc2f85cedef654fccc4a4d8 size: 3 outs: # comment preserved - path: bar desc: out desc md5: acbd18db4cc2f85cedef654fccc4a4d8 size: 3 meta: name: copy-foo-bar md5: be659ce4a33cebb85d4e8e1335d394ad """ ) run_copy("foo1", "bar1", single_stage=True, force=True, fname="bar.dvc") assert (tmp_dir / "bar.dvc").read_text() == textwrap.dedent( f"""\ desc: top desc cmd: python copy.py foo1 bar1 deps: - path: foo1 md5: 299a0be4a5a79e6a59fdd251b19d78bb size: 4 - path: copy.py md5: 90c27dd80b698fe766f0c3ee0b6b9729 size: {code_size} outs: # comment preserved - path: bar1 md5: 299a0be4a5a79e6a59fdd251b19d78bb size: 4 meta: name: copy-foo-bar md5: 9e725b11cb393e6a7468369fa50328b7 """ )
the-stack_0_10074
from rdkit import Chem from rdkit.Chem import AllChem, Draw from rdkit.Chem import rdMolDescriptors import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageFilter #please check the rdkit manual drawing chemical fragments #https://www.rdkit.org/docs/GettingStartedInPython.html#drawing-molecules class FPVisualizer: """ Utility class to visualize and process chemical fragments """ def __init__(self, dataset, draw_all=False): """ Parameters -------------------- dataset: tuple of (list of string , list of bit) SMILES_list: list of smiles recorded in the database fingerprint_list: list of the corresponding FPs recorded in the database draw_all: bool if true, draw all fragments in a chemical """ self.SMILES_list, self.fingerprint_list = zip(*dataset) self.draw_all = draw_all def get_mol_id_with_specific_bit_id(self, bit_ID): """ extract chemicals whose fingerprint[bit_ID]==1 Parameters -------------------- bit_ID: int id of fignerprint Returns ------------------- hit_ID: int ID of chemicals whose fingerpint's bit_ID ==1 """ hit = [True if fp[bit_ID] == 1 else False for fp in self.fingerprint_list] temp = list(range(len(hit))) hit_ID = [i for i, j in zip(temp, hit) if j == 1] return hit_ID def auto_draw_fragments(self, ID_list,draw=True): """ draw chemical fragments with specific bit_ID Parameters --------------- ID_list: list of int list of bit_ID Returns ----------------- self.draw_fragments(tup): image object chemical structures smiles_list: list of string corresponding smiles """ tup, smiles_list = self.calc_draw_tuples(ID_list) #TODO: kekulization errors with some compounds if draw: img=self.draw_fragments(tup) else: img=None return img, smiles_list def calc_draw_tuples(self, ID_list): """ internal function of auto_draw_fragments """ draw_tuple = [] smiles_list = [] for bit_ID in ID_list: #get smiles indexes whose bit_ID ==1 hit_ID = self.get_mol_id_with_specific_bit_id(bit_ID) #create mol object whose molecular weight is smallest match_SMILES_list = np.array(self.SMILES_list)[hit_ID] sm = sort_SMILES_list_by_MW(match_SMILES_list)[0] if sm == -1: continue smiles_list.append(sm) mol = Chem.MolFromSmiles(sm) bitI_rdkit = {} fp_rdkit = Chem.RDKFingerprint(mol, bitInfo=bitI_rdkit) draw_tuple.append((mol, bit_ID, bitI_rdkit)) return draw_tuple, smiles_list def draw_fragments(self, draw_tuple): image_list = [] for tup in draw_tuple: mol, bit_ID, fp = tup if self.draw_all: # one molecule can have multiple fragments for i in range(len(fp[bit_ID])): img = Draw.DrawRDKitBit(mol, bit_ID, fp, whichExample=i) image_list.append(img) else: img = Draw.DrawRDKitBit(mol, bit_ID, fp, whichExample=0) image_list.append(img) imgs = Image.fromarray(np.concatenate(image_list, axis=0)) return imgs def calc_duplicate_array(self, bit_ID_list, threshold=0.5, plot=True): """ this is an original function to drop similar fingerprints Parameters ----------------- bit_ID_list: list of int list of bit_ID of fignerprints. If different bit_ID have simialr contributions, they will be merged. threshold: float threshold to drop similar bit_IDs plot: bool if true, plot similarity heatmap """ ID_types = len(bit_ID_list) subset_array = np.ones((ID_types, ID_types)) # from the database, extract a compound whose bit_ID ==1 for n1, i in enumerate(bit_ID_list): hit_ids1 = self.get_mol_id_with_specific_bit_id(i) for n2, j in enumerate(bit_ID_list): hit_ids2 = self.get_mol_id_with_specific_bit_id(j) # calcualte the difference of FP_i and FP_j subset_array[n1][n2] = len( list((set(hit_ids1)-set(hit_ids2))))/len(hit_ids1) if plot: plt.imshow(subset_array, interpolation='nearest', cmap='jet') # delete similar bit_ids dup_score = np.mean(subset_array, axis=0) modif_bit_ID_list = [i for i, j in zip( bit_ID_list, dup_score) if j > threshold] return modif_bit_ID_list, subset_array def calc_MW_from_SMILES_list(SMILES): mol = Chem.MolFromSmiles(SMILES) return rdMolDescriptors._CalcMolWt(mol) def sort_SMILES_list_by_MW(SMILES_list): """ sort smiles by molecular weight """ if len(SMILES_list) == 0: return [-1] mw_list = [calc_MW_from_SMILES_list(i) for i in SMILES_list] dataset = (list(zip(mw_list, SMILES_list))) dataset.sort(key=lambda x: x[0]) mw_list, SMILES_list = list(zip(*dataset)) return SMILES_list
the-stack_0_10075
# MIT License # # Copyright (c) 2020 Arkadiusz Netczuk <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import unittest import datetime from worklog.gui.dataobject import KernLogParser from testworklog.data import get_data_path class KernLogParserTest(unittest.TestCase): def setUp(self): ## Called before testfunction is executed pass def tearDown(self): ## Called after testfunction was executed pass def test_parseKernLog_regular(self): kernlogPath = get_data_path( "kern.log_regular" ) logList = KernLogParser.parseKernLog( kernlogPath ) self.assertEqual( len( logList ), 9 ) item = logList[0] self.assertEqual( item[0], datetime.datetime( year=2020, month=10, day=26, hour=0, minute=9 ) ) self.assertEqual( item[1], datetime.datetime( year=2020, month=10, day=26, hour=1, minute=22 ) ) def test_parseKernLog_fail(self): kernlogPath = get_data_path( "kern.log_fail" ) logList = KernLogParser.parseKernLog( kernlogPath ) self.assertEqual( len( logList ), 1 ) item = logList[0] self.assertEqual( item[0], datetime.datetime( year=2020, month=10, day=26, hour=15, minute=49 ) ) self.assertEqual( item[1], datetime.datetime( year=2020, month=10, day=26, hour=15, minute=49 ) ) def test_parseKernLog_suspend(self): kernlogPath = get_data_path( "kern.log_suspend" ) logList = KernLogParser.parseKernLog( kernlogPath ) self.assertEqual( len( logList ), 4 ) item = logList[0] self.assertEqual( item[0], datetime.datetime( year=2020, month=10, day=31, hour=10, minute=46 ) ) self.assertEqual( item[1], datetime.datetime( year=2020, month=10, day=31, hour=10, minute=53 ) ) def test_parseKernLog_newyear(self): kernlogPath = get_data_path( "kern.log_newyear" ) logList = KernLogParser.parseKernLog( kernlogPath ) self.assertEqual( len( logList ), 2 ) item1 = logList[0] self.assertEqual( item1[0], datetime.datetime( year=2020, month=12, day=31, hour=18, minute=28 ) ) self.assertEqual( item1[1], datetime.datetime( year=2020, month=12, day=31, hour=18, minute=32 ) ) item2 = logList[1] self.assertEqual( item2[0], datetime.datetime( year=2021, month=1, day=1, hour=20, minute=31 ) ) self.assertEqual( item2[1], datetime.datetime( year=2021, month=1, day=1, hour=20, minute=32 ) ) def test_parseKernLog_joinline(self): ## sometimes can happen that two lines of log are joined together without newline separator kernlogPath = get_data_path( "kern.log_joinline" ) logList = KernLogParser.parseKernLog( kernlogPath ) self.assertEqual( len( logList ), 2 ) item1 = logList[0] self.assertEqual( item1[0], datetime.datetime( year=2021, month=5, day=7, hour=23, minute=24 ) ) self.assertEqual( item1[1], datetime.datetime( year=2021, month=5, day=7, hour=23, minute=24 ) ) item2 = logList[1] self.assertEqual( item2[0], datetime.datetime( year=2021, month=5, day=8, hour=21, minute=35 ) ) self.assertEqual( item2[1], datetime.datetime( year=2021, month=5, day=8, hour=21, minute=35 ) )
the-stack_0_10076
# Copyright 2014 Mellanox Technologies, Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import re from oslo_log import log as logging from neutron._i18n import _, _LE from neutron.agent.linux import utils from neutron.common import exceptions as n_exc LOG = logging.getLogger(__name__) class IpLinkSupportError(n_exc.NeutronException): pass class UnsupportedIpLinkCommand(IpLinkSupportError): message = _("ip link command is not supported: %(reason)s") class InvalidIpLinkCapability(IpLinkSupportError): message = _("ip link capability %(capability)s is not supported") class IpLinkConstants(object): IP_LINK_CAPABILITY_STATE = "state" IP_LINK_CAPABILITY_VLAN = "vlan" IP_LINK_CAPABILITY_RATE = "rate" IP_LINK_CAPABILITY_SPOOFCHK = "spoofchk" IP_LINK_SUB_CAPABILITY_QOS = "qos" class IpLinkSupport(object): VF_BLOCK_REGEX = r"\[ vf NUM(?P<vf_block>.*) \] \]" CAPABILITY_REGEX = r"\[ %s (.*)" SUB_CAPABILITY_REGEX = r"\[ %(cap)s (.*) \[ %(subcap)s (.*)" @classmethod def get_vf_mgmt_section(cls): """Parses ip link help output, and gets vf block""" output = cls._get_ip_link_output() vf_block_pattern = re.search(cls.VF_BLOCK_REGEX, output, re.DOTALL | re.MULTILINE) if vf_block_pattern: return vf_block_pattern.group("vf_block") @classmethod def vf_mgmt_capability_supported(cls, vf_section, capability, subcapability=None): """Validate vf capability support Checks if given vf capability (and sub capability if given) supported :param vf_section: vf Num block content :param capability: for example: vlan, rate, spoofchk, state :param subcapability: for example: qos """ if not vf_section: return False if subcapability: regex = cls.SUB_CAPABILITY_REGEX % {"cap": capability, "subcap": subcapability} else: regex = cls.CAPABILITY_REGEX % capability pattern_match = re.search(regex, vf_section, re.DOTALL | re.MULTILINE) return pattern_match is not None @classmethod def _get_ip_link_output(cls): """Gets the output of the ip link help command Runs ip link help command and stores its output Note: ip link help return error and writes its output to stderr so we get the output from there. however, if this issue will be solved and the command will write to stdout, we will get the output from there too. """ try: ip_cmd = ['ip', 'link', 'help'] _stdout, _stderr = utils.execute( ip_cmd, check_exit_code=False, return_stderr=True, log_fail_as_error=False) except Exception as e: LOG.exception(_LE("Failed executing ip command")) raise UnsupportedIpLinkCommand(reason=e) return _stdout or _stderr
the-stack_0_10077
import pathlib import warnings import functools from typing import Dict from contextlib import contextmanager from urllib.parse import urlparse from sunpy.util.exceptions import SunpyUserWarning from sunpy.util.util import hash_file __all__ = ['DataManager'] class DataManager: """ This class provides a remote data manager for managing remote files. Parameters ---------- cache: `sunpy.data.data_manager.cache.Cache` Cache object to be used by `~sunpy.data.data_manager.manager.DataManager`. """ def __init__(self, cache): self._cache = cache self._file_cache = {} self._skip_hash_check = False self._skip_file: Dict[str, str] = {} def require(self, name, urls, sha_hash): """ Decorator for informing the data manager about the requirement of a file by a function. Parameters ---------- name: `str` The name to reference the file with. urls: `list` or `str` A list of urls to download the file from. sha_hash: `str` SHA-1 hash of file. """ if isinstance(urls, str): urls = [urls] def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): replace = self._skip_file.get(name, None) if replace: uri_parse = urlparse(replace['uri']) if uri_parse.scheme in ("", "file"): # If a relative file uri is specified (i.e. # `file://sunpy/test`) this maintains compatibility # with the original behaviour where this would be # interpreted as `./sunpy/test` if no scheme is # specified netloc will be '' by default. file_path = uri_parse.netloc + uri_parse.path file_hash = hash_file(file_path) else: file_path, file_hash, _ = self._cache._download_and_hash([replace['uri']]) if replace['hash'] and file_hash != replace['hash']: # if hash provided to replace function doesn't match the hash of the file # raise error raise ValueError( "Hash provided to override_file does not match hash of the file.") elif self._skip_hash_check: file_path = self._cache.download(urls, redownload=True) else: details = self._cache.get_by_hash(sha_hash) if not details: # In case we are matching by hash and file does not exist # That might mean the wrong hash is supplied to decorator # We match by urls to make sure that is not the case if self._cache_has_file(urls): raise ValueError(" Hash provided does not match the hash in database.") file_path = self._cache.download(urls) if hash_file(file_path) != sha_hash: # the hash of the file downloaded does not match provided hash # this means the file has changed on the server. # the function should be updated to use the new # hash. Raise an error to notify. raise RuntimeError( "Remote file on the server has changed. Update hash of the function.") else: # This is to handle the case when the local file # appears to be tampered/corrupted if hash_file(details['file_path']) != details['file_hash']: warnings.warn("Hashes do not match, the file will be redownloaded (could be be tampered/corrupted)", SunpyUserWarning) file_path = self._cache.download(urls, redownload=True) # Recheck the hash again, if this fails, we will exit. if hash_file(file_path) != details['file_hash']: raise RuntimeError("Redownloaded file also has the incorrect hash." "The remote file on the server might have changed.") else: file_path = details['file_path'] self._file_cache[name] = file_path return func(*args, **kwargs) return wrapper return decorator @contextmanager def override_file(self, name, uri, sha_hash=None): """ Replaces the file by the name with the file provided by the url/path. Parameters ---------- name: `str` Name of the file provided in the `require` decorator. uri: `str` URI of the file which replaces original file. Scheme should be one of ``http``, ``https``, ``ftp`` or ``file``. If no scheme is given the uri will be interpreted as a local path. i.e. ``file:///tmp/test`` and ``/tmp/test`` are the same. sha_hash: `str`, optional SHA256 hash of the file to compared to after downloading. """ try: self._skip_file[name] = { 'uri': uri, 'hash': sha_hash, } yield finally: _ = self._skip_file.pop(name, None) @contextmanager def skip_hash_check(self): """ Disables hash checking temporarily Examples -------- >>> with remote_data_manager.skip_hash_check(): # doctest: +SKIP ... myfunction() # doctest: +SKIP """ try: self._skip_hash_check = True yield finally: self._skip_hash_check = False def get(self, name): """ Get the file by name. Parameters ---------- name: `str` Name of the file given to the data manager, same as the one provided in `~sunpy.data.data_manager.manager.DataManager.require`. Returns ------- `pathlib.Path` Path of the file. Raises ------ `KeyError` If ``name`` is not in the cache. """ return pathlib.Path(self._file_cache[name]) def _cache_has_file(self, urls): for url in urls: if self._cache._get_by_url(url): return True return False
the-stack_0_10078
"""Emoji Available Commands: .emoji shrug .emoji apple .emoji :/ .emoji -_-""" from telethon import events import asyncio @borg.on(events.NewMessage(pattern=r"\.(.*)", outgoing=True)) async def _(event): if event.fwd_from: return animation_interval = 3 animation_ttl = range(0, 18) input_str = event.pattern_match.group(1) if input_str == "call": await event.edit(input_str) animation_chars = [ "`Connecting To Telegram Headquarters...`", "`Call Connected.`", "`Telegram: Hello This is Telegram HQ. Who is this?`", "`Me: Yo this is` @mantiz_rip ,`Please Connect me to my lil bro,Pavel Durov`", "`User Authorised.`", "`Calling Pavel Durov` `At +916969696969`", "`Private Call Connected...`", "`Me: Hello Sir, Please Ban This Telegram Account.`", "`Pavel: May I Know Who Is This?`", "`Me: Yo Brah, I Am` @mantiz_rip ", "`Pavel: OMG!!! Long time no see, Wassup Brother...\nI'll Make Sure That Guy Account Will Get Blocked Within 24Hrs.`", "`Me: Thanks, See You Later Brah.`", "`Pavel: Please Don't Thank Brah, Telegram Is Our's. Just Gimme A Call When You Become Free.`", "`Me: Is There Any Issue/Emergency???`", "`Pavel: Yes Sur, There Is A Bug In Telegram v69.6.9.\nI Am Not Able To Fix It. If Possible, Please Help Fix The Bug.`", "`Me: Send Me The App On My Telegram Account, I Will Fix The Bug & Send You.`", "`Pavel: Sure Sur \nTC Bye Bye :)`", "`Private Call Disconnected.`" ] for i in animation_ttl: await asyncio.sleep(animation_interval) await event.edit(animation_chars[i % 18])
the-stack_0_10079
import itertools import logging from pint import pi_theorem from pint.testsuite import QuantityTestCase class TestPiTheorem(QuantityTestCase): def test_simple(self, caplog): # simple movement with caplog.at_level(logging.DEBUG): assert pi_theorem({"V": "m/s", "T": "s", "L": "m"}) == [ {"V": 1, "T": 1, "L": -1} ] # pendulum assert pi_theorem({"T": "s", "M": "grams", "L": "m", "g": "m/s**2"}) == [ {"g": 1, "T": 2, "L": -1} ] assert len(caplog.records) == 7 def test_inputs(self): V = "km/hour" T = "ms" L = "cm" f1 = lambda x: x f2 = lambda x: self.Q_(1, x) f3 = lambda x: self.Q_(1, x).units f4 = lambda x: self.Q_(1, x).dimensionality fs = f1, f2, f3, f4 for fv, ft, fl in itertools.product(fs, fs, fs): qv = fv(V) qt = ft(T) ql = ft(L) assert self.ureg.pi_theorem({"V": qv, "T": qt, "L": ql}) == [ {"V": 1.0, "T": 1.0, "L": -1.0} ]
the-stack_0_10081
import sys from setuptools import find_packages, setup from setuptools.command.test import test as TestCommand class NoseTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import nose errcode = nose.main(self.test_args) sys.exit(errcode) setup(name='battleforcastile', version='0.0.2', description='Play a fantasy cards game on your terminal', maintainer='José Vidal', maintainer_email='[email protected]', author='José Vidal', author_email='[email protected]', url='https://github.com/battleforcastile/battleforcastile', license='MIT', long_description=open('README.md').read(), platforms='any', keywords=[ 'fantasy', 'game', ], packages=find_packages(), install_requires=[ 'click==7.0' ], entry_points={ "console_scripts": [ "battleforcastile = battleforcastile.main:cli", ], }, classifiers=[ 'Programming Language :: Python', 'Operating System :: OS Independent' ], tests_require=['nose'], cmdclass={'test': NoseTest} )
the-stack_0_10083
# coding: utf-8 # # Copyright 2022 :Barry-Thomas-Paul: Moss # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Exception Class # this is a auto generated file generated by Cheetah # Namespace: com.sun.star.ucb # Libre Office Version: 7.3 from ooo.oenv.env_const import UNO_NONE import typing from ..task.classified_interaction_request import ClassifiedInteractionRequest as ClassifiedInteractionRequest_9f72121b from ..uno.x_interface import XInterface as XInterface_8f010a43 from ..task.interaction_classification import InteractionClassification as InteractionClassification_6c4d10e7 class InteractiveAppException(ClassifiedInteractionRequest_9f72121b): """ Exception Class An application error. **since** OOo 1.1.2 See Also: `API InteractiveAppException <https://api.libreoffice.org/docs/idl/ref/exceptioncom_1_1sun_1_1star_1_1ucb_1_1InteractiveAppException.html>`_ """ __ooo_ns__: str = 'com.sun.star.ucb' __ooo_full_ns__: str = 'com.sun.star.ucb.InteractiveAppException' __ooo_type_name__: str = 'exception' __pyunointerface__: str = 'com.sun.star.ucb.InteractiveAppException' __pyunostruct__: str = 'com.sun.star.ucb.InteractiveAppException' typeName: str = 'com.sun.star.ucb.InteractiveAppException' """Literal Constant ``com.sun.star.ucb.InteractiveAppException``""" def __init__(self, Message: typing.Optional[str] = '', Context: typing.Optional[XInterface_8f010a43] = None, Classification: typing.Optional[InteractionClassification_6c4d10e7] = InteractionClassification_6c4d10e7.ERROR, Code: typing.Optional[int] = 0) -> None: """ Constructor Arguments: Message (str, optional): Message value. Context (XInterface, optional): Context value. Classification (InteractionClassification, optional): Classification value. Code (int, optional): Code value. """ kargs = { "Message": Message, "Context": Context, "Classification": Classification, "Code": Code, } self._init(**kargs) def _init(self, **kwargs) -> None: self._code = kwargs["Code"] inst_keys = ('Code',) kargs = kwargs.copy() for key in inst_keys: del kargs[key] super()._init(**kargs) @property def Code(self) -> int: """ The type of application error. """ return self._code @Code.setter def Code(self, value: int) -> None: self._code = value __all__ = ['InteractiveAppException']
the-stack_0_10084
#!/usr/bin/env python ################################################################# ## ## Script: pyttt.py ## Author: Premshree Pillai ## Description: Tic-Tac-Toe game in Python ## Web: http://www.qiksearch.com/ ## http://premshree.resource-locator.com/ ## Created: 19/03/04 (dd/mm/yy) ## ## (C) 2004 Premshree Pillai ## ################################################################# import cgi print("Content-type: text/html\n\n") global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 bsize = 3 playerToken = "X" myToken = "0" gameOver = 0 winArr = [] rowArr = [] colArr = [] digArr = [] x = 0 while x < bsize * bsize : rowArr.append(0) colArr.append(0) digArr.append(0) x = x + 1 out1 = """<html> <head> <title>Tic Tac Toe in Python</title> <style type="text/css"> .main{border:#9999CC solid 2px; width:350px} .btn{font-family:comic sans ms,verdana,arial,helvetica; font-size:20pt; font-weight:bold; background:#9999CC; width:50px; height:50px; border:#666699 solid 1px; cursor:hand; color:#EFEFFF} .btn_over{font-family:comic sans ms,verdana,arial,helvetica; font-size:20pt; font-weight:bold; background:#EFEFFF; width:50px; height:50px; border:#666699 solid 1px; cursor:hand; color:#9999CC} .btn_down{font-family:comic sans ms,verdana,arial,helvetica; font-size:20pt; font-weight:bold; background:#666699; width:50px; height:50px; border:#666699 solid 1px; cursor:hand; color:#EFEFFF} .footer{font-family:verdana,arial,helvetica; font-size:8pt; color:#FFFFFF} .link{font-family:verdana,arial,helvetica; font-size:8pt; color:#FFFFFF} .link:hover{font-family:verdana,arial,helvetica; font-size:8pt; color:#EFEFFF} </style> <script language="JavaScript"> var doneFlag=false; function toggleVal(who) { var check; eval('check=document.ttt.'+who+'_btn.value;'); if(check==" ") { if(!doneFlag) { eval('document.ttt.'+who+'_btn.value="X";'); eval('document.ttt.'+who+'_btn.disabled="true";'); eval('document.ttt.'+who+'.value="X";'); document.ttt.submit(); doneFlag=true; document.getElementById('process').innerHTML="Processing........."; } } else { alert('Invalid Move!'); } } </script> </head> <body> <table width="100%" height="100%"><tr><td align="center"> <table width="346" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> <table width="348" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> <table align="center" cellspacing="0" cellpadding="0" class="main"><tr><td align="center"> <table width="100%" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td align="center"><a href="pyttt.py"><img src="../ttt_py.gif" border="0" alt="Tic Tac Toe (in Python)"></a></td></tr></table> <table width="100%" bgcolor="#EFEFFF" cellspacing="0" cellpadding="0"><tr><td align="center"><a href="http://www.qiksearch.com"><img src="../qiksearch_ttt_py.gif" border="0" alt="www.qiksearch.com"></a></td></tr></table>""" print(out1) def genBox(size): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 count = 0 retVal = '<form name="ttt" method="post" action="pyttt.py">' i = 0 while i < size : j = 0 while j < size : count = count + 1 retVal = retVal + '<input type="button" name="s' + str(count) + '_btn" value=" " class="btn" onClick="toggleVal(\'s' + str(count) + '\')" onMouseover="this.className=\'btn_over\'" onMouseout="this.className=\'btn\'" onMousedown="this.className=\'btn_down\'"><input type="hidden" name="s' + str(count) + '" value=" ">' j = j + 1 retVal = retVal + '<br>' i = i + 1 retVal = retVal + '</form>' print(retVal) def genBox2(size,arr): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 count = 0 retVal = '<form name="ttt" method="post" action="pyttt.py">' i = 0 while i < size : j = 0 while j < size : count = count + 1 retVal = retVal + '<input type="button" name="s' + str(count) + '_btn" value="' + str(arr[count-1]) + '" class="btn" onClick="toggleVal(\'s' + str(count) + '\')" onMouseover="this.className=\'btn_over\'" onMouseout="this.className=\'btn\'" onMousedown="this.className=\'btn_down\'"><input type="hidden" name="s' + str(count) + '" value="' + str(arr[count-1]) + '">' j = j + 1 retVal = retVal + '<br>' i = i + 1 retVal = retVal + '</form>' print(retVal) def isEmpty(who): if who == " ": return 1 else: return 0; def move(bsize,arr): global playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 count = 0 maxCount = 0 pos = 0 retVal = 0 # Build Row Array i = 0 while i < bsize : maxCount = 0 fullCounter = 0 j = 0 while j < bsize : count = count + 1 who = arr[count-1] if who == playerToken : maxCount = maxCount + 1 fullCounter = fullCounter + 1 if who == myToken : fullCounter = fullCounter + 1 j = j + 1 rowArr[i] = maxCount if fullCounter == bsize : rowArr[i] = -1 i = i + 1 # Building Column Array i = 0 while i < bsize : count = i + 1 maxCount = 0 fullCounter = 0 j = 0 while j < bsize : who = arr[count-1] if who == playerToken : maxCount = maxCount + 1 fullCounter = fullCounter + 1 if who == myToken : fullCounter = fullCounter + 1 count = count + bsize j = j + 1 colArr[i] = maxCount if fullCounter == bsize : colArr[i] = -1 i = i + 1 # Building Diagonal Array i = 0 while i < 2 : if i == 0 : count = i + 1 else: count = bsize maxCount = 0 fullCounter = 0 j = 0 while j < bsize : who = arr[count-1] if who == playerToken : maxCount = maxCount + 1 fullCounter = fullCounter + 1 if who == myToken : fullCounter = fullCounter + 1 if i == 0 : count = count + bsize + 1 else: count = count + bsize - 1 j = j + 1 digArr[i] = maxCount if fullCounter == bsize : digArr[i] = -1 i = i + 1 # Finding Max Values maxRow = myMax(0,bsize,"row",rowArr) maxCol = myMax(0,bsize,"col",colArr) maxDig = myMax(0,bsize,"dig",digArr) maxArrs = [] maxArrs.append(myMax(1,bsize,"row",rowArr)) maxArrs.append(myMax(1,bsize,"col",colArr)) maxArrs.append(myMax(1,bsize,"dig",digArr)) if myMax(0,bsize,"x",maxArrs) == 0 : pos = bsize * (maxRow + 1) - bsize if myMax(0,bsize,"x",maxArrs) == 1 : pos = maxCol if myMax(0,bsize,"x",maxArrs) == 2 : if maxDig == 0 : pos = maxDig else: pos = bsize - 1 retFlag = 0 y = 0 while y < bsize : if not(retFlag): if arr[pos] == " " : retVal = pos retFlag = 1 if myMax(0,bsize,"x",maxArrs) == 0 : pos = pos + 1 if myMax(0,bsize,"x",maxArrs) == 1 : pos = pos + bsize if myMax(0,bsize,"x",maxArrs) == 2 : if maxDig == 0 : pos = pos + bsize + 1 else: pos = pos + bsize - 1 y = y + 1 return retVal def myMax(what,bsize,type,arr): global playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 max = -1 maxIndex = -1 if type != "dig" : i = 0 while i < bsize : if arr[i] > max : max = arr[i] maxIndex = i i = i + 1 if type == "dig" : i = 0 while i < 2 : if arr[i] > max : max = arr[i] maxIndex = i i = i + 1 if what == 0 : return maxIndex else: return max def playerWin(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = playerToken if (s1 == who == s2 == s3) or (s4 == who == s5 == s6) or (s7 == who == s8 == s9) or (s1 == who == s4 == s7) or (s2 == who == s5 == s8) or (s3 == who == s6 == s9) or (s1 == who == s5 == s9) or (s3 == who == s5 == s7) : return 1 else: return 0 def iWin(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = myToken if (s1 == who == s2 == s3) or (s4 == who == s5 == s6) or (s7 == who == s8 == s9) or (s1 == who == s4 == s7) or (s2 == who == s5 == s8) or (s3 == who == s6 == s9) or (s1 == who == s5 == s9) or (s3 == who == s5 == s7) : return 1 else: return 0 def whereWinComp(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = myToken if (s1 == who == s2 == s3) : winArr = ['s1','s2','s3'] if (s4 == who == s5 == s6) : winArr = ['s4','s5','s6'] if (s7 == who == s8 == s9) : winArr = ['s7','s8','s9'] if (s1 == who == s4 == s7) : winArr = ['s1','s4','s7'] if (s2 == who == s5 == s8) : winArr = ['s2','s5','s8'] if (s3 == who == s6 == s9) : winArr = ['s3','s6','s9'] if (s1 == who == s5 == s9) : winArr = ['s1','s5','s9'] if (s3 == who == s5 == s7) : winArr = ['s3','s5','s7'] def whereWinPlayer(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 who = playerToken if (s1 == who == s2 == s3) : winArr = ['s1','s2','s3'] if (s4 == who == s5 == s6) : winArr = ['s4','s5','s6'] if (s7 == who == s8 == s9) : winArr = ['s7','s8','s9'] if (s1 == who == s4 == s7) : winArr = ['s1','s4','s7'] if (s2 == who == s5 == s8) : winArr = ['s2','s5','s8'] if (s3 == who == s6 == s9) : winArr = ['s3','s6','s9'] if (s1 == who == s5 == s9) : winArr = ['s1','s5','s9'] if (s3 == who == s5 == s7) : winArr = ['s3','s5','s7'] def draw(): global bsize,playerToken,myToken,gameOver,winArr,rowArr,colArr,digArr,vals,s1,s2,s3,s4,s5,s6,s7,s8,s9 drawCounter = 0 dCounter = 0 while dCounter < len(vals) : if vals[dCounter] != " " : drawCounter = drawCounter + 1 dCounter = dCounter + 1 if drawCounter == bsize * bsize : return 1 else: return 0 form = cgi.FieldStorage() if form : s1 = form['s1'].value s2 = form['s2'].value s3 = form['s3'].value s4 = form['s4'].value s5 = form['s5'].value s6 = form['s6'].value s7 = form['s7'].value s8 = form['s8'].value s9 = form['s9'].value vals = [s1,s2,s3,s4,s5,s6,s7,s8,s9] if draw() or playerWin() : gameOver = 1 # Computer's Move! movIndex = move(bsize,vals) if not(gameOver) : vals[movIndex] = myToken # Update S's if not(gameOver) : if movIndex == 0 : s1 = myToken if movIndex == 1 : s2 = myToken if movIndex == 2 : s3 = myToken if movIndex == 3 : s4 = myToken if movIndex == 4 : s5 = myToken if movIndex == 5 : s6 = myToken if movIndex == 6 : s7 = myToken if movIndex == 7 : s8 = myToken if movIndex == 8 : s9 = myToken genBox2(bsize,vals) if playerWin() : print('<font face="verdana,arial,helvetica" color="#009900" size="4"><b>Wow! You Won!</b></font><br><br>') print('<input type="button" onClick="location.href=\'pyttt.py\'" value="Play Again!" style="background:#CCCCCC; font-weight:bold; cursor:hand"><br><br>') whereWinPlayer() print('<script language="JavaScript">') winCount = 0 while winCount < len(winArr) : print('document.ttt.' + winArr[winCount] + '_btn.style.color=\'#009900\';') winCount = winCount + 1 w = 0 while w < (bsize * bsize) : if vals[w] == " " : print('document.ttt.s' + str(w + 1) + '_btn.disabled=true;') w = w + 1 print('</script>') gameOver = 1 if iWin() and not(gameOver) : print('<font face="verdana,arial,helvetica" color="#FF0000" size="4"><b>Oops! You Lost!</b></font><br><br>') print('<input type="button" onClick="location.href=\'pyttt.py\'" value="Play Again!" style="background:#CCCCCC; font-weight:bold; cursor:hand"><br><br>') whereWinComp() print('<script language="JavaScript">') winCount = 0 while winCount < len(winArr) : print('document.ttt.' + winArr[winCount] + '_btn.style.color=\'#FF0000\';'); winCount = winCount + 1 w = 0 while w < bsize * bsize : if vals[w] == " " : print('document.ttt.s' + str(w + 1) + '_btn.disabled=true;') w = w + 1 print('</script>') gameOver = 1 if draw() and not(playerWin()) and not(iWin()) : print('<font face="verdana,arial,helvetica" color="#000000" size="4"><b>It\'s a Draw!</b></font><br><br>') print('<input type="button" onClick="location.href=\'pyttt.py\'" value="Play Again!" style="background:#CCCCCC; font-weight:bold; cursor:hand"><br><br>') print('<script language="JavaScript">') w = 0 while w < bsize * bsize : if vals[w] == " " : print('document.ttt.s' + str(w + 1) + '_btn.disabled=true;') w = w + 1 print('</script>') else: genBox(bsize) out2 = """<div style="font-family:verdana,arial,helvetica; font-weight:bold; font-size:10pt; color:#CC0000; background:#EFEFFF; width:100%; padding:3px" id="process"></div> <table width="100%" bgcolor="#9999CC"><tr><td><span class="footer">&#169; 2004 <a href="http://www.qiksearch.com" class="link">Premshree Pillai</a> | <a href="http://www.guestbookdepot.com/cgi-bin/guestbook.cgi?book_id=374186" class="link">Sign my Guestbook</a>.</span></td></tr></table> </td></tr></table> <table width="348" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> <table width="346" align="center" bgcolor="#9999CC" cellspacing="0" cellpadding="0"><tr><td></td></tr></table> </td></tr></table> </body> </html>""" print(out2)
the-stack_0_10085
import os import time import string import argparse import re import torch import torch.backends.cudnn as cudnn import torch.utils.data import torch.nn.functional as F import numpy as np from nltk.metrics.distance import edit_distance from utils import CTCLabelConverter, AttnLabelConverter, Averager from dataset import hierarchical_dataset, AlignCollate from model import Model device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def benchmark_all_eval(model, criterion, converter, opt, calculate_infer_time=False): """ evaluation with 10 benchmark evaluation datasets """ # The evaluation datasets, dataset order is same with Table 1 in our paper. eval_data_list = ['IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'SVTP', 'CUTE80', 'IC15_2077'] if calculate_infer_time: evaluation_batch_size = 1 # batch_size should be 1 to calculate the GPU inference time per image. else: evaluation_batch_size = opt.batch_size list_accuracy = [] total_forward_time = 0 total_evaluation_data_number = 0 total_correct_number = 0 log = open(f'./result/{opt.exp_name}/log_all_evaluation.txt', 'a') dashed_line = '-' * 80 print(dashed_line) log.write(dashed_line + '\n') for eval_data in eval_data_list: eval_data_path = os.path.join(opt.eval_data, eval_data) AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt) evaluation_loader = torch.utils.data.DataLoader( eval_data, batch_size=evaluation_batch_size, shuffle=False, num_workers=int(opt.workers), collate_fn=AlignCollate_evaluation, pin_memory=True) _, accuracy_by_best_model, norm_ED_by_best_model, _, _, _, infer_time, length_of_data = validation( model, criterion, evaluation_loader, converter, opt) list_accuracy.append(f'{accuracy_by_best_model:0.3f}') total_forward_time += infer_time total_evaluation_data_number += len(eval_data) total_correct_number += accuracy_by_best_model * length_of_data log.write(eval_data_log) print(f'Acc {accuracy_by_best_model:0.3f}\t normalized_ED {norm_ED_by_best_model:0.3f}') log.write(f'Acc {accuracy_by_best_model:0.3f}\t normalized_ED {norm_ED_by_best_model:0.3f}\n') print(dashed_line) log.write(dashed_line + '\n') averaged_forward_time = total_forward_time / total_evaluation_data_number * 1000 total_accuracy = total_correct_number / total_evaluation_data_number params_num = sum([np.prod(p.size()) for p in model.parameters()]) evaluation_log = 'accuracy: ' for name, accuracy in zip(eval_data_list, list_accuracy): evaluation_log += f'{name}: {accuracy}\t' evaluation_log += f'total_accuracy: {total_accuracy:0.3f}\t' evaluation_log += f'averaged_infer_time: {averaged_forward_time:0.3f}\t# parameters: {params_num/1e6:0.3f}' print(evaluation_log) log.write(evaluation_log + '\n') log.close() return None def validation(model, criterion, evaluation_loader, converter, opt): """ validation or evaluation """ n_correct = 0 norm_ED = 0 length_of_data = 0 infer_time = 0 valid_loss_avg = Averager() for i, (image_tensors, labels) in enumerate(evaluation_loader): batch_size = image_tensors.size(0) length_of_data = length_of_data + batch_size image = image_tensors.to(device) # For max length prediction length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device) text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length) start_time = time.time() preds, _= model(image, text_for_pred, is_train=False) preds = preds[-1] forward_time = time.time() - start_time preds = preds[:, :text_for_loss.shape[1] - 1, :] target = text_for_loss[:, 1:] # without [GO] Symbol cost = criterion(preds.contiguous().view(-1, preds.shape[-1]), target.contiguous().view(-1)) # select max probability (greedy decoding) then decode index to character _, preds_index = preds.max(2) preds_str = converter.decode(preds_index, length_for_pred) labels = converter.decode(text_for_loss[:, 1:], length_for_loss) infer_time += forward_time valid_loss_avg.add(cost) # calculate accuracy & confidence score preds_prob = F.softmax(preds, dim=2) preds_max_prob, _ = preds_prob.max(dim=2) confidence_score_list = [] for gt, pred, pred_max_prob in zip(labels, preds_str, preds_max_prob): gt = gt[:gt.find('[s]')] pred_EOS = pred.find('[s]') pred = pred[:pred_EOS] # prune after "end of sentence" token ([s]) pred_max_prob = pred_max_prob[:pred_EOS] # To evaluate 'case sensitive model' with alphanumeric and case insensitive setting. if opt.sensitive and opt.data_filtering_off: pred = pred.lower() gt = gt.lower() alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz' out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]' pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred) gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt) if pred == gt: n_correct += 1 ''' (old version) ICDAR2017 DOST Normalized Edit Distance https://rrc.cvc.uab.es/?ch=7&com=tasks "For each word we calculate the normalized edit distance to the length of the ground truth transcription." if len(gt) == 0: norm_ED += 1 else: norm_ED += edit_distance(pred, gt) / len(gt) ''' # ICDAR2019 Normalized Edit Distance if len(gt) == 0 or len(pred) == 0: norm_ED += 0 elif len(gt) > len(pred): norm_ED += 1 - edit_distance(pred, gt) / len(gt) else: norm_ED += 1 - edit_distance(pred, gt) / len(pred) # calculate confidence score (= multiply of pred_max_prob) try: confidence_score = pred_max_prob.cumprod(dim=0)[-1] except: confidence_score = 0 # for empty pred case, when prune after "end of sentence" token ([s]) confidence_score_list.append(confidence_score) # print(pred, gt, pred==gt, confidence_score) accuracy = n_correct / float(length_of_data) * 100 norm_ED = norm_ED / float(length_of_data) # ICDAR2019 Normalized Edit Distance return valid_loss_avg.val(), accuracy, norm_ED, preds_str, confidence_score_list, labels, infer_time, length_of_data def test(opt): """ model configuration """ converter = AttnLabelConverter(opt.character) opt.num_class = len(converter.character) if opt.rgb: opt.input_channel = 3 model = Model(opt) print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, opt.hidden_size, opt.num_class, opt.batch_max_length) model = torch.nn.DataParallel(model).to(device) # load model print('loading pretrained model from %s' % opt.saved_model) model.load_state_dict(torch.load(opt.saved_model, map_location=device)) opt.exp_name = '_'.join(opt.saved_model.split('/')[1:]) # print(model) """ keep evaluation model and result logs """ os.makedirs(f'./result/{opt.exp_name}', exist_ok=True) os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/') """ setup loss """ criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0 """ evaluation """ model.eval() with torch.no_grad(): if opt.benchmark_all_eval: # evaluation with 10 benchmark evaluation datasets benchmark_all_eval(model, criterion, converter, opt) else: log = open(f'./result/{opt.exp_name}/log_evaluation.txt', 'a') AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) eval_data, eval_data_log = hierarchical_dataset(root=opt.eval_data, opt=opt) evaluation_loader = torch.utils.data.DataLoader( eval_data, batch_size=opt.batch_size, shuffle=False, num_workers=int(opt.workers), collate_fn=AlignCollate_evaluation, pin_memory=True) _, accuracy_by_best_model, _, _, _, _, _, _ = validation( model, criterion, evaluation_loader, converter, opt) log.write(eval_data_log) print(f'{accuracy_by_best_model:0.3f}') log.write(f'{accuracy_by_best_model:0.3f}\n') log.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--eval_data', default='../data_lmdb_release/evaluation/', help='path to evaluation dataset') parser.add_argument('--benchmark_all_eval', default=True, action='store_true', help='evaluate 10 benchmark evaluation datasets') parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) parser.add_argument('--batch_size', type=int, default=192, help='input batch size') parser.add_argument('--saved_model', required=True, help="path to saved_model to evaluation") """ Data processing """ parser.add_argument('--batch_max_length', type=int, default=35, help='maximum-label-length') parser.add_argument('--imgH', type=int, default=32, help='the height of the input image') parser.add_argument('--imgW', type=int, default=100, help='the width of the input image') parser.add_argument('--rgb', action='store_true', help='use rgb input') parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label') parser.add_argument('--sensitive', action='store_true', default=True, help='for sensitive character mode') parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize') parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode') """ Model Architecture """ parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN') parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor') parser.add_argument('--output_channel', type=int, default=512, help='the number of output channel of Feature extractor') parser.add_argument('--hidden_size', type=int, default=512, help='the size of the LSTM hidden state') opt = parser.parse_args() """ vocab / character number configuration """ if opt.sensitive: opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). cudnn.benchmark = True cudnn.deterministic = True opt.num_gpu = torch.cuda.device_count() test(opt)
the-stack_0_10086
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp import pickle import time import warnings import mmcv from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmcv.utils import get_git_hash from mmdet import __version__ from mmdet.apis import init_random_seed, set_random_seed, train_detector from mmdet.apis.active_learning import ( custom_logic_pretraining, custom_logic_posttraining, active_learning_inference, MAX_IMAGE_HEIGHT, MAX_IMAGE_WIDTH, ) from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.utils import collect_env, get_root_logger def parse_args(): parser = argparse.ArgumentParser( description='Train a detector for active learning and use it for ' 'active learning inference, with the default dataset ' 'being `DatumaroV1Dataset`' ) parser.add_argument( 'train_dataset_dir', help="""Dataset directory for training. It should have the following structure train_dataset_dir/ ├── annotations │   ├── train.json │   └── val.json └── images └── default ├── xxx.jpg ├── ... └── yyy.jpg where `train.json` and `val.json` should have already been processed with `mmdetection/tools/dataset_converters/datumaro_to_coco.py`. """, ) parser.add_argument( 'inference_dataset_dir', help="Dataset directory for AL inference. To be used with " "`inference_patterns`", ) parser.add_argument('work_dir', help='the dir to save logs and models') parser.add_argument( '--config', help='train config file path', default='configs/_active_learning_/faster_rcnn_r50_fpn_1x_datumaro.py', ) parser.add_argument( '--inference_patterns', type=str, nargs="+", default=["*.jpg", "*.png", "*.jpeg"], help="Search patterns for data. For example, in a image-based task, " "one should specify ['*.jpg', '*.png', '*.jpeg']", ) parser.add_argument( '--max-image-width', help='Maximum image width', default=MAX_IMAGE_WIDTH, ) parser.add_argument( '--max-image-height', help='Maximum image height', default=MAX_IMAGE_HEIGHT, ) parser.add_argument( '--no-autoscale-lr', action="store_true", help='Whether NOT to auto-scale the learning rate based on the batch ' 'size and number of GPUs. By default lr autoscaling is enabled.', ) parser.add_argument( '--backbone-path', help='Whether NOT to auto-scale the learning rate based on the batch ' 'size and number of GPUs. By default lr autoscaling is enabled.', required=False, type=str, ) group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): """ ====================================================================== Basic settings. Largely remain the same as the original `train.py` script. ====================================================================== """ args = parse_args() cfg = Config.fromfile(args.config) orig_batch_size = cfg.data.samples_per_gpu if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) cfg.work_dir = args.work_dir cfg.auto_resume = False if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False if len(cfg.gpu_ids) > 1: warnings.warn( f'We treat {cfg.gpu_ids} as gpu-ids, and reset to ' f'{cfg.gpu_ids[0:1]} as gpu-ids to avoid potential error in ' 'non-distribute training time.') cfg.gpu_ids = cfg.gpu_ids[0:1] else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) cfg.distributed = distributed # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # set random seeds seed = init_random_seed(args.seed) logger.info(f'Set random seed to {seed}, ' f'deterministic: False') set_random_seed(seed, deterministic=False) cfg.seed = seed meta['seed'] = seed meta['exp_name'] = osp.basename(args.config) """ ====================================================================== Custom pre-training logic. ====================================================================== """ # Set custom attributes custom_logic_pretraining(cfg, args, logger, orig_batch_size) # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') """ ====================================================================== Define model, datasets, etc. then start training. ====================================================================== """ model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) model.init_weights() datasets = [build_dataset(cfg.data.train)] logger.info(f"Number of training samples: {len(datasets[0])}") # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__ + get_git_hash()[:7], CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES runner = train_detector( model, datasets, cfg, distributed=distributed, validate=True, timestamp=timestamp, meta=meta) """ ====================================================================== Custom post-training logic. ====================================================================== """ custom_logic_posttraining(runner, cfg, logger) """ ====================================================================== Active learning inference. ====================================================================== """ results = active_learning_inference( cfg=cfg, model=model, data_dir=args.inference_dataset_dir, patterns=args.inference_patterns, logger=logger, ) # Consolidate results mAPs = runner.meta["all_metrics"]["bbox_mAP"] best_performance = max(mAPs) if len(mAPs) > 0 else -1 cat2label = datasets[0].cat2label # Sanity checks to make sure that original classes are still preserved assert all(k == v for k, v in cat2label.items()) # sanity check assert len(cat2label) == len(datasets[0].CLASSES) categories = [ {"id": i, "name": cat} for i, cat in enumerate(datasets[0].CLASSES)] results = { "images": results, "model_performance": best_performance, "classes": categories, } # Save with open(osp.join(cfg.work_dir, "al_inference.pkl"), "wb") as fout: pickle.dump(results, fout) if __name__ == '__main__': main()
the-stack_0_10088
from invmonInfra.enum import InventoryLastStatusEnum from invmonService import FirefoxDriverService, HtmlParser, BasicLoggerService from invmonInfra.base import JobsInventoryBase from invmonInfra.domain import JobsInventoryInterface, DriverInterface, LoggerInterface from invmonInfra.models import InventorySqlModel class JobShopDisneyService(JobsInventoryBase, JobsInventoryInterface): _logger: LoggerInterface _driver: DriverInterface _parser: HtmlParser _urlPattern: str = '%shopdisney.com%' def __init__(self, logger: LoggerInterface, driver = DriverInterface) -> None: self._logger = logger self._driver = driver self._parser = HtmlParser() self._parser.setLogger(self._logger) def __checkInventoryStatus__(self, item: InventorySqlModel) -> None: # Set the URI self._logger.info(f"Checking '{item.url}'") self.setUri(item.url) self._driver.driverGoTo(self.getUri()) self.parser = HtmlParser(sourceCode=self._driver.driverGetContent()) # validate the HTML format didnt change # Check if 'out of stock' is present outOfStock = self.__checkIfOutOfStock__(tag='div', key='class', value='product-oos-info-title') #inStock = self.checkIfInStock() if outOfStock == True: # if the lastStatus didnt change, move on self._logger.debug("Item is out of stock") if item.lastStatus == InventoryLastStatusEnum.OUTOFSTOCK.value: self._logger.debug("Inventory Status didnt change, checking the next item.") return None item.lastStatus = InventoryLastStatusEnum.OUTOFSTOCK.value if outOfStock == False: # if the lastStatus didnt change, move on self._logger.debug("Item is in stock!") if item.lastStatus == InventoryLastStatusEnum.INSTOCK.value: self._logger.debug("Inventory Status didnt change, checking the next item.") return None item.lastStatus = InventoryLastStatusEnum.INSTOCK.value self.__updateInventoryRecord__(item) self.__addAlerts__(item) def checkIfInStock(self) -> bool: invStatus: str = self.parser.findSingle(name='div', attrKey='class', attrValue='col-12 prices-add-to-cart-actions' )
the-stack_0_10091
#!/usr/bin/python3 # all arguments to this script are considered as json files # and attempted to be formatted alphabetically import json import os from sys import argv files = argv[1:] for file in files[:]: if os.path.isdir(file): files.remove(file) for f in os.listdir(file): files.append(os.path.join(file, f)) for file in files: if not file.endswith('.json'): continue print("formatting file {}".format(file)) with open(file) as f: j = json.load(f) if isinstance(j, list): for item in j: item["Exposes"] = sorted(item["Exposes"], key=lambda k: k["Type"]) else: j["Exposes"] = sorted(j["Exposes"], key=lambda k: k["Type"]) with open(file, 'w') as f: f.write(json.dumps(j, indent=4, sort_keys=True, separators=(',', ': ')))
the-stack_0_10092
from aces import Aces class sub(Aces): def submit(self): opt=dict( units="metal", species="graphene_knot", method="nvt", nodes=1, procs=4, queue="q1.4", runTime=500000 ,runner="strain" ) for T in range(100,300,20): app=dict(vStrain=True,reverseStrain=True,equTime=200000,T=T,strainStep=1000,minStrain=-0.15,maxStrain=0.05,timestep=.3e-3,latx=70,laty=2) self.commit(opt,app); if __name__=='__main__': sub().run()
the-stack_0_10093
#!/usr/bin/python # Copyright (c) 2014 Wladmir J. van der Laan # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Script to generate list of seed nodes for chainparams.cpp. This script expects two text files in the directory that is passed as an argument: nodes_main.txt nodes_test.txt These files must consist of lines in the format <ip> <ip>:<port> [<ipv6>] [<ipv6>]:<port> <onion>.onion 0xDDBBCCAA (IPv4 little-endian old pnSeeds format) The output will be two data structures with the peers in binary format: static SeedSpec6 pnSeed6_main[]={ ... } static SeedSpec6 pnSeed6_test[]={ ... } These should be pasted into `src/chainparamsseeds.h`. ''' from __future__ import print_function, division from base64 import b32decode from binascii import a2b_hex import sys, os import re # ipv4 in ipv6 prefix pchIPv4 = bytearray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]) # tor-specific ipv6 prefix pchOnionCat = bytearray([0xFD,0x87,0xD8,0x7E,0xEB,0x43]) def name_to_ipv6(addr): if len(addr)>6 and addr.endswith('.onion'): vchAddr = b32decode(addr[0:-6], True) if len(vchAddr) != 16-len(pchOnionCat): raise ValueError('Invalid onion %s' % s) return pchOnionCat + vchAddr elif '.' in addr: # IPv4 return pchIPv4 + bytearray((int(x) for x in addr.split('.'))) elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) return bytearray(sub[0] + ([0] * nullbytes) + sub[1]) elif addr.startswith('0x'): # IPv4-in-little-endian return pchIPv4 + bytearray(reversed(a2b_hex(addr[2:]))) else: raise ValueError('Could not parse address %s' % addr) def parse_spec(s, defaultport): match = re.match('\[([0-9a-fA-F:]+)\](?::([0-9]+))?$', s) if match: # ipv6 host = match.group(1) port = match.group(2) else: (host,_,port) = s.partition(':') if not port: port = defaultport else: port = int(port) host = name_to_ipv6(host) return (host,port) def process_nodes(g, f, structname, defaultport): g.write('static SeedSpec6 %s[] = {\n' % structname) first = True for line in f: comment = line.find('#') if comment != -1: line = line[0:comment] line = line.strip() if not line: continue if not first: g.write(',\n') first = False (host,port) = parse_spec(line, defaultport) hoststr = ','.join(('0x%02x' % b) for b in host) g.write(' {{%s}, %i}' % (hoststr, port)) g.write('\n};\n') def main(): if len(sys.argv)<2: print(('Usage: %s <path_to_nodes_txt>' % sys.argv[0]), file=sys.stderr) exit(1) g = sys.stdout indir = sys.argv[1] g.write('#ifndef H_CHAINPARAMSSEEDS\n') g.write('#define H_CHAINPARAMSSEEDS\n') g.write('// List of fixed seed nodes for the bitcoin network\n') g.write('// AUTOGENERATED by contrib/devtools/generate-seeds.py\n\n') g.write('// Each line contains a 16-byte IPv6 address and a port.\n') g.write('// IPv4 as well as onion addresses are wrapped inside a IPv6 address accordingly.\n') with open(os.path.join(indir,'nodes_main.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_main', 8273) g.write('\n') with open(os.path.join(indir,'nodes_test.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_test', 8272) g.write('#endif\n') if __name__ == '__main__': main()
the-stack_0_10096
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class Operations: """Operations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.containerregistry.v2019_05_01_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, **kwargs ) -> AsyncIterable["models.OperationListResult"]: """Lists all of the available Azure Container Registry REST API operations. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either OperationListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.containerregistry.v2019_05_01_preview.models.OperationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.OperationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-10-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('OperationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/providers/Microsoft.ContainerRegistry/operations'} # type: ignore
the-stack_0_10098
import cv2 import numpy as np from .utils import load_json, load_value_file def get_video_names_and_annotations(data, subset): """Selects clips of a given subset from the parsed json annotation""" video_names = [] annotations = [] for key, value in data['database'].items(): this_subset = value['subset'] if this_subset == subset: video_name = key label = value['annotations'].get('label', '') if label: video_name = label + '/' + video_name video_names.append(video_name) annotations.append(value) return video_names, annotations def get_video_props(video_path, video_format, annotation): """Tries to read video properties (total number of frames and FPS) from annotation file or read it from file otherwise""" n_frames = annotation.get('n_frames') fps = annotation.get('fps') if n_frames and fps: return n_frames, fps if video_format == 'frames': if not video_path.exists(): return 0, 0 n_frames = int(load_value_file(video_path / 'n_frames')) fps = 30 else: cap = cv2.VideoCapture(video_path.as_posix()) n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = cap.get(cv2.CAP_PROP_FPS) return n_frames, fps def load_json_annotation(root_path, annotation_path, subset, flow_path=None, video_format='frames'): """Load annotation in ActivityNet-like format""" data = load_json(annotation_path) video_names, annotations = get_video_names_and_annotations(data, subset) idx_to_class = dict(enumerate(data['labels'])) class_to_idx = {v: k for k, v in idx_to_class.items()} videos = [] for i, (video_name, annotation) in enumerate(zip(video_names, annotations)): if i % 1000 == 0: print('dataset loading [{}/{}]'.format(i, len(video_names))) if video_format == 'video' and not video_name.lower().endswith('.mp4'): video_name += '.mp4' video_path = root_path / video_name n_frames, fps = get_video_props(video_path, video_format, annotation) if n_frames == 0: continue flow_full_path = flow_path if flow_path is not None: flow_full_path = (flow_path / video_name).as_posix() try: video_id = video_name.split('/')[1] except IndexError: video_id = video_name def add_sample(begin_frame, end_frame, label): sample = { 'video': video_path.as_posix(), 'flow': flow_full_path, 'segment': [begin_frame, end_frame], 'n_frames': n_frames, 'fps': fps, 'video_id': video_id, 'label': class_to_idx[label] } videos.append(sample) video_annotation = annotation['annotations'] events_annotation = video_annotation.get('events', None) if events_annotation is not None: for event in events_annotation: begin_time = float(event['start']) end_time = float(event['stop']) label = event['event'] assert label in class_to_idx # From time to frame number. timestamps = video_annotation['timestamps'] begin_frame, end_frame = np.searchsorted(timestamps, [begin_time, end_time]) # Frame indices are one-based. begin_frame += 1 if begin_frame < end_frame: add_sample(begin_frame, end_frame, label) else: begin_frame = 1 end_frame = n_frames add_sample(begin_frame, end_frame, annotation['annotations']['label']) return videos, idx_to_class
the-stack_0_10099
import smtplib import typing import flask import flask_mail from ... import mail from . import core from ...models import BackgroundTask, BackgroundTaskStatus def post_send_mail_task( subject: str, recipients: typing.List[str], text: str, html: str, auto_delete: bool = True ) -> typing.Tuple[BackgroundTaskStatus, typing.Optional[BackgroundTask]]: return core.post_background_task( type='send_mail', data={ 'subject': subject, 'recipients': recipients, 'text': text, 'html': html }, auto_delete=auto_delete ) def handle_send_mail_task( data: typing.Dict[str, typing.Any] ) -> bool: try: mail.send(flask_mail.Message( subject=data['subject'], sender=flask.current_app.config['MAIL_SENDER'], recipients=data['recipients'], body=data['text'], html=data['html'] )) return True except smtplib.SMTPRecipientsRefused: return False
the-stack_0_10101
from cirq_qaoa.cirq_max_cut_solver import define_grid_qubits, solve_maxcut def main(): size = 2 steps = 2 qubits = define_grid_qubits(size=size) qubit_pairs = [(qubits[0], qubits[1]), (qubits[0], qubits[2]), (qubits[1], qubits[2])] solve_maxcut(qubit_pairs=qubit_pairs, steps=steps) if __name__ == '__main__': main()
the-stack_0_10104
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2022 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Mark Koennecke <[email protected]> # Jakob Lass <[email protected]> # # ***************************************************************************** """ This is part of the TAS library which implemnts Mark Lumsden's UB matrix algorithm for triple axis. See J. Appl. Cryst. (2005). 38, 405-411 https://doi.org/10.1107/S0021889805004875 for reference. The original implementation was in ANSII-C by Mark Koennecke at PSI. This implementation has been ported from C to python by Jakob Lass, then also at PSI """ from copy import deepcopy import numpy as np from nicos_sinq.sxtal.singlexlib import matFromTwoVectors from nicos_sinq.sxtal.trigd import Acosd, Atand2, Cosd, Rtand, Sind, \ angleBetween def tasAngleBetween(v1, v2): return np.rad2deg(angleBetween(v1, v2)) def fmod(x, y): s = np.sign(x) res = s*np.mod(np.abs(x), y) return res class tasQEPosition(): def __init__(self, ki, kf, qh, qk, ql, qm): self.ki = ki self.kf = kf self.qh = qh self.qk = qk self.ql = ql self.qm = qm class tasAngles(): def __init__(self, monochromator_two_theta, a3, sample_two_theta, sgl, sgu, analyzer_two_theta): self.monochromator_two_theta = monochromator_two_theta self.a3 = a3 self.sample_two_theta = sample_two_theta self.sgu = sgu self.sgl = sgl self.analyzer_two_theta = analyzer_two_theta class tasReflection(): def __init__(self, qe=None, angles=None, ki=None, kf=None, qh=None, qk=None, ql=None, qm=None, monochromator_two_theta=None, a3=None, sample_two_theta=None, sgl=None, sgu=None, analyzer_two_theta=None): if isinstance(qe, tasReflection): self.qe = deepcopy(qe.qe) self.angles = deepcopy(qe.angles) else: if qe is None: self.qe = tasQEPosition(ki, kf, qh, qk, ql, qm) else: self.qe = qe if angles is None: self.angles = tasAngles(monochromator_two_theta, a3, sample_two_theta, sgl, sgu, analyzer_two_theta) else: self.angles = angles def __getattr__(self, key): # if key in ['qe','angles']: # Is automatically tested # return self.__dict__[key] if key in self.qe.__dict__.keys(): return getattr(self.qe, key) elif key in self.angles.__dict__.keys(): return getattr(self.angles, key) else: raise AttributeError( "'tasReflection' object hs no attribute '{}'".format(key)) ECONST = 2.072 # 2.072122396 def energyToK(energy): """Convert energy in meV to K in q/A""" return np.sqrt(energy / ECONST) def KToEnergy(K): """Convert K in 1/A to E in meV""" return ECONST*np.power(K, 2.0) def tasReflectionToHC(r, B): """Calculate HC from HKL and B matrix""" return tasHKLToHC(r.qh, r.qk, r.ql, B) def tasHKLToHC(qh, qk, ql, B): """Calculate HC from reflection r and B matrix""" h = np.array([qh, qk, ql]) hc = np.dot(B, h) return hc def calcTheta(ki, kf, two_theta): """ |ki| - |kf|cos(two_theta) tan(theta) = -------------------------- |kf|sin(two_theta) """ return Rtand(np.abs(ki) - np.abs(kf) * Cosd(two_theta), np.abs(kf) * Sind(two_theta)) def tasAngleBetweenReflections(B, r1, r2): """Calculate angle between two reflections""" return tasAngleBetweenReflectionsHKL(B, r1.qh, r1.qk, r1.ql, r2.qh, r2.qk, r2.ql) def tasAngleBetweenReflectionsHKL(B, h1, k1, l1, h2, k2, l2): """Calculate angle between two reflections""" v1 = np.array([h1, k1, l1]) v2 = np.array([h2, k2, l2]) chi1 = np.einsum('ij,j...->i...', B, v1) chi2 = np.einsum('ij,j...->i...', B, v2) angle = tasAngleBetween(chi1, chi2) return angle def uFromAngles(om, sgu, sgl): u = np.array([Cosd(om)*Cosd(sgl), -Sind(om)*Cosd(sgu)+Cosd(om)*Sind(sgl)*Sind(sgu), Sind(om)*Sind(sgu)+Cosd(om)*Sind(sgl)*Cosd(sgu)]) return u def calcTasUVectorFromAngles(rr): ss = np.sign(rr.sample_two_theta) r = tasReflection(rr) r.sample_two_theta = np.abs(r.sample_two_theta) theta = calcTheta(r.ki, r.kf, r.sample_two_theta) om = r.angles.a3 - ss*theta m = uFromAngles(om, r.angles.sgu, ss*r.angles.sgl) return m def tasReflectionToQC(r, UB): return tasReflectionToQCHKL(r.qh, r.qk, r.ql, UB) def tasReflectionToQCHKL(h, k, ll, UB): Q = np.array([h, k, ll]) return np.einsum('ij,j...->i...', UB, Q) def makeAuxReflection(B, r1, ss, hkl): r2 = tasReflection(r1) r2.qe.qh, r2.qe.qk, r2.qe.ql = hkl theta = calcTheta(r1.qe.ki, r1.qe.kf, ss*r1.angles.sample_two_theta) om = r1.angles.a3 - ss*theta om += tasAngleBetweenReflectionsHKL(B, r1.qh, r1.qk, r1.ql, *hkl) QC = tasReflectionToHC(r2.qe, B) q = np.linalg.norm(QC) cos2t = np.divide(r1.ki * r1.ki + r1.kf * r1.kf - q * q, (2. * np.abs(r1.ki) * np.abs(r1.kf))) if np.abs(cos2t) > 1.: raise RuntimeError('Scattering angle not closed!') r2.angles.sample_two_theta = ss * Acosd(cos2t) theta = calcTheta(r1.qe.ki, r1.qe.kf, ss*r2.angles.sample_two_theta) r2.angles.a3 = om + ss*theta r2.angles.a3 = fmod(r2.angles.a3 + ss*180., 360.) - ss*180. return r2 def calcTwoTheta(B, ref, ss): QC = tasReflectionToHC(ref, B) q = np.linalg.norm(QC) cos2t = np.divide(ref.ki * ref.ki + ref.kf * ref.kf - q * q, (2. * np.abs(ref.ki) * np.abs(ref.kf))) if np.abs(cos2t) > 1.: raise RuntimeError( 'Calculated abs(cos2t) value {} bigger than 1!' ' Scattering angle not closed'.format(np.abs(cos2t))) value = ss * Acosd(cos2t) return value def calcPlaneNormal(r1, r2): u1 = calcTasUVectorFromAngles(r1) u2 = calcTasUVectorFromAngles(r2) planeNormal = np.cross(u1, u2) planeNormal *= 1.0/np.linalg.norm(planeNormal) # In TasCode code is commented out performing check # for sign of planeNormal[2] is performed. # If negative, z component negated. planeNormal[2] = np.abs(planeNormal[2]) return planeNormal def calcTasUBFromTwoReflections(cell, r1, r2): B = cell.calculateBMatrix() h1 = tasReflectionToHC(r1.qe, B) h2 = tasReflectionToHC(r2.qe, B) HT = matFromTwoVectors(h1, h2) # calculate U vectors and UT matrix u1 = calcTasUVectorFromAngles(r1) u2 = calcTasUVectorFromAngles(r2) UT = matFromTwoVectors(u1, u2) # UT = U * HT U = np.dot(UT, HT.T) UB = np.dot(U, B) return UB def buildRMatrix(UB, planeNormal, qe): U1V = tasReflectionToQC(qe, UB) U1V *= 1.0/np.linalg.norm(U1V) U2V = np.cross(planeNormal, U1V) if np.linalg.norm(U2V) < .0001: raise RuntimeError('Found vector is too short') TV = buildTVMatrix(U1V, U2V) TVINV = np.linalg.inv(TV) return TVINV def buildTVMatrix(U1V, U2V): U2V *= 1.0/np.linalg.norm(U2V) T3V = np.cross(U1V, U2V) T3V *= 1.0/np.linalg.norm(T3V) T = np.zeros((3, 3)) for i in range(3): T[i][0] = U1V[i] T[i][1] = U2V[i] T[i][2] = T3V[i] return T def calcTasQAngles(UB, planeNormal, ss, a3offset, qe): R = buildRMatrix(UB, planeNormal, qe) angles = tasAngles(0, 0, 0, 0, 0, 0) cossgl = np.sqrt(R[0][0]*R[0][0]+R[1][0]*R[1][0]) angles.sgl = ss*Atand2(-R[2][0], cossgl) if np.abs(angles.sgl - 90.) < .5: raise RuntimeError('Combination of UB and Q is not valid') # Now, this is slightly different then in the publication by M. Lumsden. # The reason is that the atan2 helps to determine the sign of om # whereas the sin, cos formula given by M. Lumsden yield ambiguous signs # especially for om. # sgu = atan(R[2][1],R[2][2]) where: # R[2][1] = cos(sgl)sin(sgu) # R[2][2] = cos(sgu)cos(sgl) # om = atan(R[1][0],R[0][0]) where: # R[1][0] = sin(om)cos(sgl) # R[0][0] = cos(om)cos(sgl) # The definitions of the R components are taken from M. Lumsden # R-matrix definition. om = Atand2(R[1][0]/cossgl, R[0][0]/cossgl) angles.sgu = Atand2(R[2][1]/cossgl, R[2][2]/cossgl) QC = tasReflectionToQC(qe, UB) # q = 2.*np.pi*np.linalg.norm(QC) q = np.linalg.norm(QC) cos2t = (qe.ki * qe.ki + qe.kf * qe.kf - q * q) / (2. * np.abs(qe.ki) * np.abs(qe.kf)) if np.abs(cos2t) > 1.: raise RuntimeError('Scattering angle cannot ' 'be closed, cos2t = ', cos2t) theta = calcTheta(qe.ki, qe.kf, Acosd(cos2t)) angles.sample_two_theta = ss * Acosd(cos2t) angles.a3 = om + ss*theta + a3offset # # put a3 into -180, 180 properly. We can always turn by 180 # because the scattering geometry is symmetric in this respect. # It is like looking at the scattering plane from the other side angles.a3 = fmod(angles.a3 + ss*180., 360.) - ss*180. return angles def calcScatteringPlaneNormal(qe1, qe2): v1 = [qe1.qh, qe1.qk, qe1.ql] v2 = [qe2.qh, qe2.qk, qe2.ql] planeNormal = np.cross(v1, v2) planeNormal *= 1.0/np.linalg.norm(planeNormal) return planeNormal def calcTasQH(ub, angles, ki, kf): ubinv = np.linalg.inv(ub) om = angles.a3 sample_two_theta = angles.sample_two_theta sgu = angles.sgu sgl = angles.sgl ss = np.sign(sample_two_theta) theta = calcTheta(ki, kf, abs(sample_two_theta)) om = om - ss*theta qv = uFromAngles(om, sgu, ss*sgl) # normalize the QV vector to be the length of the Q vector # Thereby take into account the physicists magic fudge # 2PI factor q = np.sqrt(ki**2 + kf**2 - 2. * ki * kf * Cosd(sample_two_theta)) # The line below depends on the 2PI conventions. q /= np.pi*2. qv *= q return ubinv.dot(qv)
the-stack_0_10106
from telethon.tl.functions.account import UpdateProfileRequest from telethon.tl.functions.photos import DeletePhotosRequest, UploadProfilePhotoRequest from telethon.tl.functions.users import GetFullUserRequest from telethon.tl.types import InputPhoto from userbot import CMD_HELP, LOGS, STORAGE, bot from userbot.events import register if not hasattr(STORAGE, "userObj"): STORAGE.userObj = False @register(outgoing=True, pattern=r"^\.impostor ?(.*)") async def impostor(event): inputArgs = event.pattern_match.group(1) if "restore" in inputArgs: await event.edit("**Voltando à minha verdadeira identidade...**") if not STORAGE.userObj: return await event.edit( "**Você precisa clonar um perfil antes de reverter!**" ) await updateProfile(STORAGE.userObj, restore=True) return await event.edit("**Revertido com sucesso!**") if inputArgs: try: user = await event.client.get_entity(inputArgs) except: return await event.edit("**Nome de usuário/ID inválido.**") userObj = await event.client(GetFullUserRequest(user)) elif event.reply_to_msg_id: replyMessage = await event.get_reply_message() if replyMessage.sender_id is None: return await event.edit("**Não é possível se passar por administradores anônimos, sed.**") userObj = await event.client(GetFullUserRequest(replyMessage.sender_id)) else: return await event.edit( "**Use** `.help impersonate` **para aprender como usá-lo.**" ) if not STORAGE.userObj: STORAGE.userObj = await event.client(GetFullUserRequest(event.sender_id)) LOGS.info(STORAGE.userObj) await event.edit("**Roubando a identidade dessa pessoa aleatória...**") await updateProfile(userObj) await event.edit("**Eu sou você e você é eu, somos um só.**") async def updateProfile(userObj, restore=False): firstName = ( "Deleted Account" if userObj.user.first_name is None else userObj.user.first_name ) lastName = "" if userObj.user.last_name is None else userObj.user.last_name userAbout = userObj.about if userObj.about is not None else "" userAbout = "" if len(userAbout) > 70 else userAbout if restore: userPfps = await bot.get_profile_photos("me") userPfp = userPfps[0] await bot( DeletePhotosRequest( id=[ InputPhoto( id=userPfp.id, access_hash=userPfp.access_hash, file_reference=userPfp.file_reference, ) ] ) ) else: try: userPfp = userObj.profile_photo pfpImage = await bot.download_media(userPfp) await bot(UploadProfilePhotoRequest(await bot.upload_file(pfpImage))) except BaseException: pass await bot( UpdateProfileRequest(about=userAbout, first_name=firstName, last_name=lastName) ) CMD_HELP.update( { "impostor": ">`.impostor` (como uma resposta a uma mensagem de um usuário)\ \n**Uso:** Rouba a identidade do usuário.\ \n\n>`.impostor <username/ID>`\ \n**Uso:** Rouba do nome de usuário/ID fornecido.\ \n\n>`.impostor restore`\ \n**Uso:** Reverta para sua verdadeira identidade.\ \n\n**Sempre restaure antes de executá-lo novamente.**\ " } )
the-stack_0_10111
import tensorflow as tf import os import time from tqdm import tqdm from src.utils import get_cli_params, process_cli_params, \ order_param_settings from src.lva import build_graph, measure_smoothness, VERBOSE from src.train import evaluate_metric_list, update_decays, evaluate_metric import numpy as np def main(p): p = process_cli_params(p) global VERBOSE VERBOSE = p.verbose # ----------------------------- # Set GPU device to use os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(p.which_gpu) config = tf.ConfigProto() config.gpu_options.allow_growth = True # Set seeds np.random.seed(p.seed) tf.set_random_seed(p.seed) # Load data print("=== Loading Data ===") if p.dataset == 'svhn': from src.svhn import read_data_sets dataset = read_data_sets( "../../data/svhn/", n_labeled=p.num_labeled, validation_size=p.validation, one_hot=True, disjoint=False, downsample=True, download_and_extract=True ) else: from src.mnist import read_data_sets dataset = read_data_sets("MNIST_data", n_labeled=p.num_labeled, validation_size=p.validation, one_hot=True, disjoint=False) num_examples = dataset.train.num_examples p.num_examples = num_examples if p.validation > 0: dataset.test = dataset.validation p.iter_per_epoch = (num_examples // p.ul_batch_size) p.num_iter = p.iter_per_epoch * p.end_epoch # ----------------------------- # Build graph g, m, trainable_parameters = build_graph(p) # Collect losses train_losses = [m['loss'], m['cost'], m['uc'], m['vc']] test_losses = [m['cost']] aer = tf.constant(100.0) - m['acc'] if p.measure_smoothness: s = measure_smoothness(g, p) # print(s.get_shape()) train_losses.append(tf.reduce_mean(s)) if p.tb is not False: train_merged = tf.summary.merge([ tf.summary.scalar(x) for x in train_losses ] + [tf.summary.scalar(aer)]) test_merged = tf.summary.merge([ tf.summary.scalar(x) for x in test_losses ] + [tf.summary.scalar(aer)]) # Set up tensorboard logging if not os.path.exists(p.tb): os.makedirs(p.tb_dir) # ----------------------------- print("=== Starting Session ===") sess = tf.Session(config=config) i_iter = 0 # ----------------------------- id_seed_dir = p.id + "/" + "seed-{}".format(p.seed) + "/" # Write logs to appropriate directory log_dir = p.logdir + id_seed_dir if not os.path.exists(log_dir): os.makedirs(log_dir) desc_file = log_dir + "description" with open(desc_file, 'a') as f: print(*order_param_settings(p), sep='\n', file=f, flush=True) print("Trainable parameters:", trainable_parameters, file=f, flush=True) log_file = log_dir + "train_log" # Resume from checkpoint ckpt_dir = p.ckptdir + id_seed_dir ckpt = tf.train.get_checkpoint_state( ckpt_dir) # get latest checkpoint (if any) if ckpt and ckpt.model_checkpoint_path: # if checkpoint exists, # restore the parameters # and set epoch_n and i_iter g['saver'].restore(sess, ckpt.model_checkpoint_path) ep = int(ckpt.model_checkpoint_path.split('/')[-1].split('-')[1]) i_iter = (ep + 1) * p.iter_per_epoch print("Restored Epoch ", ep) else: # no checkpoint exists. # create checkpoints directory if it does not exist. if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) init = tf.global_variables_initializer() sess.run(init) i_iter = 0 if p.tb is not False: train_writer = tf.summary.FileWriter(p.tb_dir + '/train', sess.graph) test_writer = tf.summary.FileWriter(p.tb_dir + '/test', sess.graph) # ----------------------------- print("=== Training ===") # ----------------------------- def eval_metrics(dataset, sess, ops): return evaluate_metric_list(dataset, sess, ops, graph=g, params=p) def eval_metric(dataset, sess, op): return evaluate_metric(dataset, sess, op, graph=g, params=p) # Evaluate initial training accuracy and losses # init_loss = evaluate_metric( # mnist.train.labeled_ds, sess, cost) with open(desc_file, 'a') as f: print('================================', file=f, flush=True) print("Initial Train AER: ", eval_metric(dataset.train.labeled_ds, sess, aer), "%", file=f, flush=True) # ----------------------------- # Evaluate initial testing accuracy and cross-entropy loss print("Initial Test AER: ", eval_metric(dataset.test, sess, aer), "%", file=f, flush=True) # print("Initial Test Losses: ", # *eval_metrics( # mnist.test, sess, test_losses), file=f, # flush=True) train_dict = {g['beta1']: p.beta1, g['lr']: p.initial_learning_rate} start = time.time() for i in range(i_iter, p.iter_per_epoch * p.end_epoch): images, labels = dataset.train.next_batch(p.batch_size, p.ul_batch_size) train_dict.update({ g['images']: images, g['labels']: labels, g['train_flag']: True}) _ = sess.run( [g['train_step']], feed_dict=train_dict) if (i > 1) and ((i + 1) % p.iter_per_epoch == 0): # Epoch complete? ep = i // p.iter_per_epoch # Update learning rate and momentum if ((ep + 1) >= p.decay_start_epoch) and ( ep % (p.lr_decay_frequency) == 0): # epoch_n + 1 because learning rate is set for next epoch ratio = 1.0 * (p.end_epoch - (ep + 1)) decay_epochs = p.end_epoch - p.decay_start_epoch ratio = max(0., ratio / decay_epochs) if decay_epochs != 0 else 1.0 train_dict[g['lr']] = (p.initial_learning_rate * ratio) train_dict[g['beta1']] = p.beta1_during_decay # For the last ten epochs, test every epoch if (ep + 1) > (p.end_epoch - 10): p.test_frequency_in_epochs = 1 # --------------------------------------------- # Evaluate every test_frequency_in_epochs if int((ep + 1) % p.test_frequency_in_epochs) == 0: now = time.time() - start if not p.do_not_save: g['saver'].save(sess, ckpt_dir + 'model.ckpt', ep) # --------------------------------------------- # Compute error on testing set (10k examples) test_aer_and_costs = \ eval_metrics(dataset.test, sess, [aer] + test_losses) train_aer = eval_metrics(dataset.train.labeled_ds, sess, [aer]) train_costs = sess.run(train_losses, feed_dict={g['images']: images, g['labels']: labels, g['train_flag']: False}) # Create log of: # time, epoch number, test accuracy, test cross entropy, # train accuracy, train loss, train cross entropy, # train reconstruction loss, smoothness log_i = [int(now), ep] + test_aer_and_costs + train_aer + \ train_costs with open(log_file, 'a') as train_log: print(*log_i, sep=',', flush=True, file=train_log) with open(desc_file, 'a') as f: final_aer = eval_metric(dataset.test, sess, aer) print("Final AER: ", final_aer, "%", file=f, flush=True) sess.close() if __name__ == '__main__': p = get_cli_params() main(p)
the-stack_0_10113
# Time: O(|V| + |E|) # Space: O(|V| + |E|) import collections class Solution(object): def possibleBipartition(self, N, dislikes): """ :type N: int :type dislikes: List[List[int]] :rtype: bool """ adj = [[] for _ in xrange(N)] for u, v in dislikes: adj[u-1].append(v-1) adj[v-1].append(u-1) color = [0]*N color[0] = 1 q = collections.deque([0]) while q: cur = q.popleft() for nei in adj[cur]: if color[nei] == color[cur]: return False elif color[nei] == -color[cur]: continue color[nei] = -color[cur] q.append(nei) return True
the-stack_0_10115
def process(uri: str): f = open(uri, 'r') stack = [int(x) for x in f.readline().replace('\n', '').strip().split('\t')] prev_sets = [] steps = 0 while str(stack) not in prev_sets: prev_sets.append(str(stack)) maxb = max(stack) index = stack.index(maxb) stack[index] = 0 for i in range(maxb): index = (index + 1) if index != len(stack) - 1 else 0 stack[index] += 1 steps += 1 return steps - prev_sets.index(str(stack)) print(process('input_t')) print(process('input'))
the-stack_0_10117
#!/usr/bin/python import sys from typing import Any, Dict from requests.api import get import semver import requests repo: str = 'groovy-guru' owner: str = 'DontShaveTheYak' def do_action(action, version): function = getattr(version, action) new_version = function() print(f'{version} {action} to {new_version}') return new_version def get_response(url) -> Dict[str, Any]: response = requests.get(url) return response.json() def get_action(pull_request: str) -> str: valid_labels = ['major','minor','patch'] response = get_response(f"https://api.github.com/repos/{owner}/{repo}/pulls/{pull_request}") label = [label['name'] for label in response['labels'] if label['name'] in valid_labels][0] return label def set_output(name: str, value: str): print(f"::set-output name={name}::{value}") def get_latest_release() -> str: response = get_response(f"https://api.github.com/repos/{owner}/{repo}/releases") for release in response: if not release['draft'] and not release['prerelease']: return release raise Exception('Unable to find production relase.') latest_tag = sys.argv[1] pull_request = sys.argv[2] branch = sys.argv[3] action_methods = { 'patch': 'bump_patch', 'minor': 'bump_minor', 'major': 'bump_major' } if branch != "master": action_name = get_action(pull_request) action = action_methods[action_name] next_version: str = '' print(f'Latest tag is {latest_tag}') latest_release = get_latest_release() release_tag = latest_release['tag_name'] print(f'Latest release is {release_tag}') if branch == 'master': print("This release is a final release!") base_tag = latest_tag.split("-")[0] bump_rule = "None" set_output('next_tag', base_tag) sys.exit(0) if '-SNAPSHOT' in latest_tag: print('Checking if we can reuse latest tag.') latest_tag = latest_tag.split('-')[0] next_tag = semver.VersionInfo.parse(release_tag) next_tag = do_action(action, next_tag) latest_tag = semver.VersionInfo.parse(latest_tag) compare = semver.compare(str(latest_tag),str(next_tag)) next_tag = f'{next_tag}-SNAPSHOT' latest_tag = f'{latest_tag}-SNAPSHOT' if compare == -1: print(f'Creating {next_tag} because its version is higher than latest tag: {latest_tag}') next_version = next_tag elif compare == 1: print(f'Reusing latest tag ({latest_tag}) because next tag ({next_tag}) is lower.') next_version = latest_tag else: print(f'Reusing latest tag ({latest_tag}) because its version is equal to next tag ({next_tag})') next_version = latest_tag else: # create new snapshot tag and exit version = semver.VersionInfo.parse(latest_tag) new_tag = do_action(action, version) print(f'Creating new SNAPSHOT tag {new_tag}-SNAPSHOT') next_version = f'{new_tag}-SNAPSHOT' set_output('next_tag', next_version)
the-stack_0_10118
# ----------------------------------------------------------------------------------------- # Code taken from https://github.com/iwantooxxoox/Keras-OpenFace (with minor modifications) # ----------------------------------------------------------------------------------------- import tensorflow as tf import numpy as np import os from numpy import genfromtxt from keras.layers import Conv2D, ZeroPadding2D, Activation from keras.layers.normalization import BatchNormalization _FLOATX = 'float32' def variable(value, dtype=_FLOATX, name=None): v = tf.Variable(np.asarray(value, dtype=dtype), name=name) _get_session().run(v.initializer) return v def shape(x): return x.get_shape() def square(x): return tf.square(x) def zeros(shape, dtype=_FLOATX, name=None): return variable(np.zeros(shape), dtype, name) def concatenate(tensors, axis=-1): if axis < 0: axis = axis % len(tensors[0].get_shape()) return tf.concat(axis, tensors) def LRN2D(x): return tf.nn.lrn(x, alpha=1e-4, beta=0.75) def conv2d_bn( x, layer=None, cv1_out=None, cv1_filter=(1, 1), cv1_strides=(1, 1), cv2_out=None, cv2_filter=(3, 3), cv2_strides=(1, 1), padding=None, ): num = '' if cv2_out == None else '1' tensor = Conv2D(cv1_out, cv1_filter, strides=cv1_strides, name=layer+'_conv'+num)(x) tensor = BatchNormalization(axis=3, epsilon=0.00001, name=layer+'_bn'+num)(tensor) tensor = Activation('relu')(tensor) if padding == None: return tensor tensor = ZeroPadding2D(padding=padding)(tensor) if cv2_out == None: return tensor tensor = Conv2D(cv2_out, cv2_filter, strides=cv2_strides, name=layer+'_conv'+'2')(tensor) tensor = BatchNormalization(axis=3, epsilon=0.00001, name=layer+'_bn'+'2')(tensor) tensor = Activation('relu')(tensor) return tensor weights = [ 'conv1', 'bn1', 'conv2', 'bn2', 'conv3', 'bn3', 'inception_3a_1x1_conv', 'inception_3a_1x1_bn', 'inception_3a_pool_conv', 'inception_3a_pool_bn', 'inception_3a_5x5_conv1', 'inception_3a_5x5_conv2', 'inception_3a_5x5_bn1', 'inception_3a_5x5_bn2', 'inception_3a_3x3_conv1', 'inception_3a_3x3_conv2', 'inception_3a_3x3_bn1', 'inception_3a_3x3_bn2', 'inception_3b_3x3_conv1', 'inception_3b_3x3_conv2', 'inception_3b_3x3_bn1', 'inception_3b_3x3_bn2', 'inception_3b_5x5_conv1', 'inception_3b_5x5_conv2', 'inception_3b_5x5_bn1', 'inception_3b_5x5_bn2', 'inception_3b_pool_conv', 'inception_3b_pool_bn', 'inception_3b_1x1_conv', 'inception_3b_1x1_bn', 'inception_3c_3x3_conv1', 'inception_3c_3x3_conv2', 'inception_3c_3x3_bn1', 'inception_3c_3x3_bn2', 'inception_3c_5x5_conv1', 'inception_3c_5x5_conv2', 'inception_3c_5x5_bn1', 'inception_3c_5x5_bn2', 'inception_4a_3x3_conv1', 'inception_4a_3x3_conv2', 'inception_4a_3x3_bn1', 'inception_4a_3x3_bn2', 'inception_4a_5x5_conv1', 'inception_4a_5x5_conv2', 'inception_4a_5x5_bn1', 'inception_4a_5x5_bn2', 'inception_4a_pool_conv', 'inception_4a_pool_bn', 'inception_4a_1x1_conv', 'inception_4a_1x1_bn', 'inception_4e_3x3_conv1', 'inception_4e_3x3_conv2', 'inception_4e_3x3_bn1', 'inception_4e_3x3_bn2', 'inception_4e_5x5_conv1', 'inception_4e_5x5_conv2', 'inception_4e_5x5_bn1', 'inception_4e_5x5_bn2', 'inception_5a_3x3_conv1', 'inception_5a_3x3_conv2', 'inception_5a_3x3_bn1', 'inception_5a_3x3_bn2', 'inception_5a_pool_conv', 'inception_5a_pool_bn', 'inception_5a_1x1_conv', 'inception_5a_1x1_bn', 'inception_5b_3x3_conv1', 'inception_5b_3x3_conv2', 'inception_5b_3x3_bn1', 'inception_5b_3x3_bn2', 'inception_5b_pool_conv', 'inception_5b_pool_bn', 'inception_5b_1x1_conv', 'inception_5b_1x1_bn', 'dense_layer' ] conv_shape = { 'conv1': [64, 3, 7, 7], 'conv2': [64, 64, 1, 1], 'conv3': [192, 64, 3, 3], 'inception_3a_1x1_conv': [64, 192, 1, 1], 'inception_3a_pool_conv': [32, 192, 1, 1], 'inception_3a_5x5_conv1': [16, 192, 1, 1], 'inception_3a_5x5_conv2': [32, 16, 5, 5], 'inception_3a_3x3_conv1': [96, 192, 1, 1], 'inception_3a_3x3_conv2': [128, 96, 3, 3], 'inception_3b_3x3_conv1': [96, 256, 1, 1], 'inception_3b_3x3_conv2': [128, 96, 3, 3], 'inception_3b_5x5_conv1': [32, 256, 1, 1], 'inception_3b_5x5_conv2': [64, 32, 5, 5], 'inception_3b_pool_conv': [64, 256, 1, 1], 'inception_3b_1x1_conv': [64, 256, 1, 1], 'inception_3c_3x3_conv1': [128, 320, 1, 1], 'inception_3c_3x3_conv2': [256, 128, 3, 3], 'inception_3c_5x5_conv1': [32, 320, 1, 1], 'inception_3c_5x5_conv2': [64, 32, 5, 5], 'inception_4a_3x3_conv1': [96, 640, 1, 1], 'inception_4a_3x3_conv2': [192, 96, 3, 3], 'inception_4a_5x5_conv1': [32, 640, 1, 1,], 'inception_4a_5x5_conv2': [64, 32, 5, 5], 'inception_4a_pool_conv': [128, 640, 1, 1], 'inception_4a_1x1_conv': [256, 640, 1, 1], 'inception_4e_3x3_conv1': [160, 640, 1, 1], 'inception_4e_3x3_conv2': [256, 160, 3, 3], 'inception_4e_5x5_conv1': [64, 640, 1, 1], 'inception_4e_5x5_conv2': [128, 64, 5, 5], 'inception_5a_3x3_conv1': [96, 1024, 1, 1], 'inception_5a_3x3_conv2': [384, 96, 3, 3], 'inception_5a_pool_conv': [96, 1024, 1, 1], 'inception_5a_1x1_conv': [256, 1024, 1, 1], 'inception_5b_3x3_conv1': [96, 736, 1, 1], 'inception_5b_3x3_conv2': [384, 96, 3, 3], 'inception_5b_pool_conv': [96, 736, 1, 1], 'inception_5b_1x1_conv': [256, 736, 1, 1], } def load_weights(): weightsDir = './weights' fileNames = filter(lambda f: not f.startswith('.'), os.listdir(weightsDir)) paths = {} weights_dict = {} for n in fileNames: paths[n.replace('.csv', '')] = weightsDir + '/' + n for name in weights: if 'conv' in name: conv_w = genfromtxt(paths[name + '_w'], delimiter=',', dtype=None) conv_w = np.reshape(conv_w, conv_shape[name]) conv_w = np.transpose(conv_w, (2, 3, 1, 0)) conv_b = genfromtxt(paths[name + '_b'], delimiter=',', dtype=None) weights_dict[name] = [conv_w, conv_b] elif 'bn' in name: bn_w = genfromtxt(paths[name + '_w'], delimiter=',', dtype=None) bn_b = genfromtxt(paths[name + '_b'], delimiter=',', dtype=None) bn_m = genfromtxt(paths[name + '_m'], delimiter=',', dtype=None) bn_v = genfromtxt(paths[name + '_v'], delimiter=',', dtype=None) weights_dict[name] = [bn_w, bn_b, bn_m, bn_v] elif 'dense' in name: dense_w = genfromtxt(weightsDir+'/dense_w.csv', delimiter=',', dtype=None) dense_w = np.reshape(dense_w, (128, 736)) dense_w = np.transpose(dense_w, (1, 0)) dense_b = genfromtxt(weightsDir+'/dense_b.csv', delimiter=',', dtype=None) weights_dict[name] = [dense_w, dense_b] return weights_dict
the-stack_0_10120
import jax.numpy as jnp import numpy as np import netket as nk import flax.linen as nn class test(nn.Module): @nn.compact def __call__(self, x): nothing = self.param("nothing", lambda *args: jnp.ones(1)) if len(x.shape) != 1: return jnp.array(x.size * [1.0]) return 1.0 class test2(nn.Module): @nn.compact def __call__(self, x): nothing = self.param("nothing", lambda *args: jnp.ones(1)) sol = jnp.sum(nothing ** 2 * x, axis=-1) return sol # continuous preparations def v1(x): return 1 / jnp.sqrt(2 * jnp.pi) * jnp.sum(jnp.exp(-0.5 * ((x - 2.5) ** 2)), axis=-1) def v2(x): return 1 / jnp.sqrt(2 * jnp.pi) * jnp.sum(jnp.exp(-0.5 * ((x - 2.5) ** 2)), axis=-1) hilb = nk.hilbert.Particle(N=1, L=5, pbc=True) pot = nk.operator.PotentialEnergy(hilb, v1) kin = nk.operator.KineticEnergy(hilb, mass=1.0) e = pot + kin sab = nk.sampler.MetropolisGaussian(hilb, sigma=1.0, n_chains=16, n_sweeps=1) model = test() model2 = test2() vs_continuous = nk.vqs.MCState(sab, model, n_samples=10 ** 6, n_discard=2000) vs_continuous2 = nk.vqs.MCState(sab, model2, n_samples=10 ** 7, n_discard=2000) def test_expect(): x = vs_continuous2.samples.reshape(-1, 1) sol = vs_continuous.expect(pot) O_stat, O_grad = vs_continuous2.expect_and_grad(e) O_grad, _ = nk.jax.tree_ravel(O_grad) O_grad_exact = 2 * jnp.dot(x.T, (v1(x) - jnp.mean(v1(x), axis=0))) / x.shape[0] r""" :math:`<V> = \int_0^5 dx V(x) |\psi(x)|^2 / \int_0^5 |\psi(x)|^2 = 0.1975164 (\psi = 1)` :math:`<\nabla V> = \nabla_p \int_0^5 dx V(x) |\psi(x)|^2 / \int_0^5 |\psi(x)|^2 = -0.140256 (\psi = \exp(p^2 x))` """ np.testing.assert_allclose(0.1975164, sol.mean, atol=10 ** (-3)) np.testing.assert_allclose(-0.140256, 2 * O_grad, atol=10 ** (-3))
the-stack_0_10121
# pylint: disable=g-bad-file-header # Copyright 2016 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuring the C++ toolchain on Windows.""" load( "@bazel_tools//tools/cpp:lib_cc_configure.bzl", "escape_string", "auto_configure_fail", "auto_configure_warning", "get_env_var", "which", "which_cmd", "execute", "tpl", "is_cc_configure_debug", ) def _get_escaped_windows_msys_crosstool_content(repository_ctx, use_mingw = False): """Return the content of msys crosstool which is still the default CROSSTOOL on Windows.""" bazel_sh = get_env_var(repository_ctx, "BAZEL_SH").replace("\\", "/").lower() tokens = bazel_sh.rsplit("/", 1) prefix = "mingw64" if use_mingw else "usr" msys_root = None if tokens[0].endswith("/usr/bin"): msys_root = tokens[0][:len(tokens[0]) - len("usr/bin")] elif tokens[0].endswith("/bin"): msys_root = tokens[0][:len(tokens[0]) - len("bin")] if not msys_root: auto_configure_fail( "Could not determine MSYS/Cygwin root from BAZEL_SH (%s)" % bazel_sh) escaped_msys_root = escape_string(msys_root) return ((( ' abi_version: "local"\n' + ' abi_libc_version: "local"\n' + ' builtin_sysroot: ""\n' + ' compiler: "msys-gcc"\n' + ' host_system_name: "local"\n' + ' needsPic: false\n' + ' target_libc: "msys"\n' + ' target_cpu: "x64_windows"\n' + ' target_system_name: "local"\n') if not use_mingw else '') + ' tool_path { name: "ar" path: "%s%s/bin/ar" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "compat-ld" path: "%s%s/bin/ld" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "cpp" path: "%s%s/bin/cpp" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "dwp" path: "%s%s/bin/dwp" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "gcc" path: "%s%s/bin/gcc" }\n' % (escaped_msys_root, prefix) + ' cxx_flag: "-std=gnu++0x"\n' + ' linker_flag: "-lstdc++"\n' + ' cxx_builtin_include_directory: "%s%s/"\n' % (escaped_msys_root, prefix) + ' tool_path { name: "gcov" path: "%s%s/bin/gcov" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "ld" path: "%s%s/bin/ld" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "nm" path: "%s%s/bin/nm" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "objcopy" path: "%s%s/bin/objcopy" }\n' % (escaped_msys_root, prefix) + ' objcopy_embed_flag: "-I"\n' + ' objcopy_embed_flag: "binary"\n' + ' tool_path { name: "objdump" path: "%s%s/bin/objdump" }\n' % (escaped_msys_root, prefix) + ' tool_path { name: "strip" path: "%s%s/bin/strip" }'% (escaped_msys_root, prefix) + ' feature { name: "targets_windows" implies: "copy_dynamic_libraries_to_binary" enabled: true }' + ' feature { name: "copy_dynamic_libraries_to_binary" }' ) def _get_system_root(repository_ctx): r"""Get System root path on Windows, default is C:\\Windows. Doesn't %-escape the result.""" if "SYSTEMROOT" in repository_ctx.os.environ: return escape_string(repository_ctx.os.environ["SYSTEMROOT"]) auto_configure_warning("SYSTEMROOT is not set, using default SYSTEMROOT=C:\\Windows") return "C:\\Windows" def _find_cuda(repository_ctx): """Find out if and where cuda is installed. Doesn't %-escape the result.""" if "CUDA_PATH" in repository_ctx.os.environ: return repository_ctx.os.environ["CUDA_PATH"] nvcc = which(repository_ctx, "nvcc.exe") if nvcc: return nvcc[:-len("/bin/nvcc.exe")] return None def _find_python(repository_ctx): """Find where is python on Windows. Doesn't %-escape the result.""" if "BAZEL_PYTHON" in repository_ctx.os.environ: python_binary = repository_ctx.os.environ["BAZEL_PYTHON"] if not python_binary.endswith(".exe"): python_binary = python_binary + ".exe" return python_binary auto_configure_warning("'BAZEL_PYTHON' is not set, start looking for python in PATH.") python_binary = which_cmd(repository_ctx, "python.exe") auto_configure_warning("Python found at %s" % python_binary) return python_binary def _add_system_root(repository_ctx, env): r"""Running VCVARSALL.BAT and VCVARSQUERYREGISTRY.BAT need %SYSTEMROOT%\\system32 in PATH.""" if "PATH" not in env: env["PATH"] = "" env["PATH"] = env["PATH"] + ";" + _get_system_root(repository_ctx) + "\\system32" return env def find_vc_path(repository_ctx): """Find Visual C++ build tools install path. Doesn't %-escape the result.""" # 1. Check if BAZEL_VC or BAZEL_VS is already set by user. if "BAZEL_VC" in repository_ctx.os.environ: return repository_ctx.os.environ["BAZEL_VC"] if "BAZEL_VS" in repository_ctx.os.environ: return repository_ctx.os.environ["BAZEL_VS"] + "\\VC\\" auto_configure_warning("'BAZEL_VC' is not set, " + "start looking for the latest Visual C++ installed.") # 2. Check if VS%VS_VERSION%COMNTOOLS is set, if true then try to find and use # vcvarsqueryregistry.bat to detect VC++. auto_configure_warning("Looking for VS%VERSION%COMNTOOLS environment variables, " + "eg. VS140COMNTOOLS") for vscommontools_env in ["VS140COMNTOOLS", "VS120COMNTOOLS", "VS110COMNTOOLS", "VS100COMNTOOLS", "VS90COMNTOOLS"]: if vscommontools_env not in repository_ctx.os.environ: continue vcvarsqueryregistry = repository_ctx.os.environ[vscommontools_env] + "\\vcvarsqueryregistry.bat" if not repository_ctx.path(vcvarsqueryregistry).exists: continue repository_ctx.file("get_vc_dir.bat", "@echo off\n" + "call \"" + vcvarsqueryregistry + "\"\n" + "echo %VCINSTALLDIR%", True) env = _add_system_root(repository_ctx, repository_ctx.os.environ) vc_dir = execute(repository_ctx, ["./get_vc_dir.bat"], environment=env) auto_configure_warning("Visual C++ build tools found at %s" % vc_dir) return vc_dir # 3. User might clean up all environment variables, if so looking for Visual C++ through registry. # Works for all VS versions, including Visual Studio 2017. auto_configure_warning("Looking for Visual C++ through registry") reg_binary = _get_system_root(repository_ctx) + "\\system32\\reg.exe" vc_dir = None for key, suffix in (("VC7", ""), ("VS7", "\\VC")): for version in ["15.0", "14.0", "12.0", "11.0", "10.0", "9.0", "8.0"]: if vc_dir: break result = repository_ctx.execute([reg_binary, "query", "HKEY_LOCAL_MACHINE\\SOFTWARE\\Wow6432Node\\Microsoft\\VisualStudio\\SxS\\" + key, "/v", version]) if is_cc_configure_debug(repository_ctx): auto_configure_warning("registry query result for VC %s:\n\nSTDOUT(start)\n%s\nSTDOUT(end)\nSTDERR(start):\n%s\nSTDERR(end)\n" % (version, result.stdout, result.stderr)) if not result.stderr: for line in result.stdout.split("\n"): line = line.strip() if line.startswith(version) and line.find("REG_SZ") != -1: vc_dir = line[line.find("REG_SZ") + len("REG_SZ"):].strip() + suffix if not vc_dir: return None auto_configure_warning("Visual C++ build tools found at %s" % vc_dir) return vc_dir def _is_vs_2017(vc_path): """Check if the installed VS version is Visual Studio 2017.""" # In VS 2017, the location of VC is like: # C:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools\VC\ # In VS 2015 or older version, it is like: # C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\ return vc_path.find("2017") != -1 def _find_vcvarsall_bat_script(repository_ctx, vc_path): """Find vcvarsall.bat script. Doesn't %-escape the result.""" if _is_vs_2017(vc_path): vcvarsall = vc_path + "\\Auxiliary\\Build\\VCVARSALL.BAT" else: vcvarsall = vc_path + "\\VCVARSALL.BAT" if not repository_ctx.path(vcvarsall).exists: return None return vcvarsall def _find_env_vars(repository_ctx, vc_path): """Get environment variables set by VCVARSALL.BAT. Doesn't %-escape the result!""" vcvarsall = _find_vcvarsall_bat_script(repository_ctx, vc_path) repository_ctx.file("get_env.bat", "@echo off\n" + "call \"" + vcvarsall + "\" amd64 > NUL \n" + "echo PATH=%PATH%,INCLUDE=%INCLUDE%,LIB=%LIB% \n", True) env = _add_system_root(repository_ctx, {"PATH": "", "INCLUDE": "", "LIB": ""}) envs = execute(repository_ctx, ["./get_env.bat"], environment=env).split(",") env_map = {} for env in envs: key, value = env.split("=", 1) env_map[key] = escape_string(value.replace("\\", "\\\\")) return env_map def find_msvc_tool(repository_ctx, vc_path, tool): """Find the exact path of a specific build tool in MSVC. Doesn't %-escape the result.""" tool_path = "" if _is_vs_2017(vc_path): # For VS 2017, the tools are under a directory like: # C:\Program Files (x86)\Microsoft Visual Studio\2017\BuildTools\VC\Tools\MSVC\14.10.24930\bin\HostX64\x64 dirs = repository_ctx.path(vc_path + "\\Tools\\MSVC").readdir() if len(dirs) < 1: return None # Normally there should be only one child directory under %VC_PATH%\TOOLS\MSVC, # but iterate every directory to be more robust. for path in dirs: tool_path = str(path) + "\\bin\\HostX64\\x64\\" + tool if repository_ctx.path(tool_path).exists: break else: # For VS 2015 and older version, the tools are under: # C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64 tool_path = vc_path + "\\bin\\amd64\\" + tool if not repository_ctx.path(tool_path).exists: return None return tool_path def _find_missing_vc_tools(repository_ctx, vc_path): """Check if any required tool is missing under given VC path.""" missing_tools = [] if not _find_vcvarsall_bat_script(repository_ctx, vc_path): missing_tools.append("VCVARSALL.BAT") for tool in ["cl.exe", "link.exe", "lib.exe", "ml64.exe"]: if not find_msvc_tool(repository_ctx, vc_path, tool): missing_tools.append(tool) return missing_tools def _is_support_whole_archive(repository_ctx, vc_path): """Run MSVC linker alone to see if it supports /WHOLEARCHIVE.""" env = repository_ctx.os.environ if "NO_WHOLE_ARCHIVE_OPTION" in env and env["NO_WHOLE_ARCHIVE_OPTION"] == "1": return False linker = find_msvc_tool(repository_ctx, vc_path, "link.exe") result = execute(repository_ctx, [linker], expect_failure = True) return result.find("/WHOLEARCHIVE") != -1 def _is_support_debug_fastlink(repository_ctx, vc_path): """Run MSVC linker alone to see if it supports /DEBUG:FASTLINK.""" linker = find_msvc_tool(repository_ctx, vc_path, "link.exe") result = execute(repository_ctx, [linker], expect_failure = True) return result.find("/DEBUG[:{FASTLINK|FULL|NONE}]") != -1 def _is_use_msvc_wrapper(repository_ctx): """Returns True if USE_MSVC_WRAPPER is set to 1.""" env = repository_ctx.os.environ return "USE_MSVC_WRAPPER" in env and env["USE_MSVC_WRAPPER"] == "1" def _get_compilation_mode_content(): """Return the content for adding flags for different compilation modes when using MSVC wrapper.""" return "\n".join([ " compilation_mode_flags {", " mode: DBG", " compiler_flag: '-Xcompilation-mode=dbg'", " linker_flag: '-Xcompilation-mode=dbg'", " }", " compilation_mode_flags {", " mode: FASTBUILD", " compiler_flag: '-Xcompilation-mode=fastbuild'", " linker_flag: '-Xcompilation-mode=fastbuild'", " }", " compilation_mode_flags {", " mode: OPT", " compiler_flag: '-Xcompilation-mode=opt'", " linker_flag: '-Xcompilation-mode=opt'", " }"]) def _escaped_cuda_compute_capabilities(repository_ctx): """Returns a %-escaped list of strings representing cuda compute capabilities.""" if "CUDA_COMPUTE_CAPABILITIES" not in repository_ctx.os.environ: return ["3.5", "5.2"] capabilities_str = escape_string(repository_ctx.os.environ["CUDA_COMPUTE_CAPABILITIES"]) capabilities = capabilities_str.split(",") for capability in capabilities: # Workaround for Skylark's lack of support for regex. This check should # be equivalent to checking: # if re.match("[0-9]+.[0-9]+", capability) == None: parts = capability.split(".") if len(parts) != 2 or not parts[0].isdigit() or not parts[1].isdigit(): auto_configure_fail("Invalid compute capability: %s" % capability) return capabilities def configure_windows_toolchain(repository_ctx): """Configure C++ toolchain on Windows.""" repository_ctx.symlink(Label("@bazel_tools//tools/cpp:BUILD.static"), "BUILD") vc_path = find_vc_path(repository_ctx) missing_tools = None vc_installation_error_script = "vc_installation_error.bat" if not vc_path: tpl(repository_ctx, vc_installation_error_script, {"%{vc_error_message}" : ""}) else: missing_tools = _find_missing_vc_tools(repository_ctx, vc_path) if missing_tools: tpl(repository_ctx, vc_installation_error_script, { "%{vc_error_message}" : "\r\n".join([ "echo. 1>&2", "echo Visual C++ build tools seems to be installed at %s 1>&2" % vc_path, "echo But Bazel can't find the following tools: 1>&2", "echo %s 1>&2" % ", ".join(missing_tools), "echo. 1>&2", ])}) if not vc_path or missing_tools: tpl(repository_ctx, "CROSSTOOL", { "%{cpu}": "x64_windows", "%{default_toolchain_name}": "msvc_x64", "%{toolchain_name}": "msys_x64", "%{msvc_env_tmp}": "", "%{msvc_env_path}": "", "%{msvc_env_include}": "", "%{msvc_env_lib}": "", "%{msvc_cl_path}": vc_installation_error_script, "%{msvc_ml_path}": vc_installation_error_script, "%{msvc_link_path}": vc_installation_error_script, "%{msvc_lib_path}": vc_installation_error_script, "%{dbg_mode_debug}": "/DEBUG", "%{fastbuild_mode_debug}": "/DEBUG", "%{compilation_mode_content}": "", "%{content}": _get_escaped_windows_msys_crosstool_content(repository_ctx), "%{msys_x64_mingw_content}": _get_escaped_windows_msys_crosstool_content(repository_ctx, use_mingw = True), "%{opt_content}": "", "%{dbg_content}": "", "%{link_content}": "", "%{cxx_builtin_include_directory}": "", "%{coverage}": "", }) return env = _find_env_vars(repository_ctx, vc_path) escaped_paths = escape_string(env["PATH"]) escaped_include_paths = escape_string(env["INCLUDE"]) escaped_lib_paths = escape_string(env["LIB"]) escaped_tmp_dir = escape_string( get_env_var(repository_ctx, "TMP", "C:\\Windows\\Temp").replace("\\", "\\\\")) msvc_cl_path = find_msvc_tool(repository_ctx, vc_path, "cl.exe").replace("\\", "/") msvc_ml_path = find_msvc_tool(repository_ctx, vc_path, "ml64.exe").replace("\\", "/") msvc_link_path = find_msvc_tool(repository_ctx, vc_path, "link.exe").replace("\\", "/") msvc_lib_path = find_msvc_tool(repository_ctx, vc_path, "lib.exe").replace("\\", "/") escaped_cxx_include_directories = [] compilation_mode_content = "" if _is_use_msvc_wrapper(repository_ctx): if _is_support_whole_archive(repository_ctx, vc_path): support_whole_archive = "True" else: support_whole_archive = "False" nvcc_tmp_dir_name = escaped_tmp_dir + "\\\\nvcc_inter_files_tmp_dir" # Make sure nvcc.exe is in PATH cuda_path = _find_cuda(repository_ctx) if cuda_path: escaped_paths = escape_string(cuda_path.replace("\\", "\\\\") + "/bin;") + escaped_paths escaped_compute_capabilities = _escaped_cuda_compute_capabilities(repository_ctx) tpl(repository_ctx, "wrapper/bin/pydir/msvc_tools.py", { "%{lib_tool}": escape_string(msvc_lib_path), "%{support_whole_archive}": support_whole_archive, "%{cuda_compute_capabilities}": ", ".join( ["\"%s\"" % c for c in escaped_compute_capabilities]), "%{nvcc_tmp_dir_name}": nvcc_tmp_dir_name, }) # nvcc will generate some source files under %{nvcc_tmp_dir_name} # The generated files are guranteed to have unique name, so they can share the same tmp directory escaped_cxx_include_directories += [ "cxx_builtin_include_directory: \"%s\"" % nvcc_tmp_dir_name ] msvc_wrapper = repository_ctx.path(Label("@bazel_tools//tools/cpp:CROSSTOOL")).dirname.get_child("wrapper").get_child("bin") for f in ["msvc_cl.bat", "msvc_link.bat", "msvc_nop.bat"]: repository_ctx.symlink(msvc_wrapper.get_child(f), "wrapper/bin/" + f) msvc_wrapper = msvc_wrapper.get_child("pydir") for f in ["msvc_cl.py", "msvc_link.py"]: repository_ctx.symlink(msvc_wrapper.get_child(f), "wrapper/bin/pydir/" + f) python_binary = _find_python(repository_ctx) tpl(repository_ctx, "wrapper/bin/call_python.bat", {"%{python_binary}": escape_string(python_binary)}) msvc_cl_path = "wrapper/bin/msvc_cl.bat" msvc_link_path = "wrapper/bin/msvc_link.bat" msvc_lib_path = "wrapper/bin/msvc_link.bat" compilation_mode_content = _get_compilation_mode_content() for path in escaped_include_paths.split(";"): if path: escaped_cxx_include_directories.append("cxx_builtin_include_directory: \"%s\"" % path) support_debug_fastlink = _is_support_debug_fastlink(repository_ctx, vc_path) tpl(repository_ctx, "CROSSTOOL", { "%{cpu}": "x64_windows", "%{default_toolchain_name}": "msvc_x64", "%{toolchain_name}": "msys_x64", "%{msvc_env_tmp}": escaped_tmp_dir, "%{msvc_env_path}": escaped_paths, "%{msvc_env_include}": escaped_include_paths, "%{msvc_env_lib}": escaped_lib_paths, "%{msvc_cl_path}": msvc_cl_path, "%{msvc_ml_path}": msvc_ml_path, "%{msvc_link_path}": msvc_link_path, "%{msvc_lib_path}": msvc_lib_path, "%{dbg_mode_debug}": "/DEBUG:FULL" if support_debug_fastlink else "/DEBUG", "%{fastbuild_mode_debug}": "/DEBUG:FASTLINK" if support_debug_fastlink else "/DEBUG", "%{compilation_mode_content}": compilation_mode_content, "%{content}": _get_escaped_windows_msys_crosstool_content(repository_ctx), "%{msys_x64_mingw_content}": _get_escaped_windows_msys_crosstool_content(repository_ctx, use_mingw = True), "%{opt_content}": "", "%{dbg_content}": "", "%{link_content}": "", "%{cxx_builtin_include_directory}": "\n".join(escaped_cxx_include_directories), "%{coverage}": "", })
the-stack_0_10122
""" Commands for home spaces/rooms. """ from evennia import CmdSet from commands.base import ArxCommand from django.conf import settings from world.dominion.models import LIFESTYLES from django.db.models import Q from evennia.objects.models import ObjectDB from world.dominion.models import AssetOwner, Organization, CraftingRecipe from commands.base_commands.crafting import CmdCraft from commands.base_commands.overrides import CmdDig from server.utils.prettytable import PrettyTable from server.utils.arx_utils import inform_staff, raw from evennia.utils import utils from evennia.utils.evtable import EvTable from typeclasses.characters import Character import re # error return function, needed by Extended Look command AT_SEARCH_RESULT = utils.variable_from_module(*settings.SEARCH_AT_RESULT.rsplit('.', 1)) DESC_COST = 0 class HomeCmdSet(CmdSet): """CmdSet for a home spaces.""" key = "HomeCmdSet" priority = 101 duplicates = False no_exits = False no_objs = False def at_cmdset_creation(self): """ This is the only method defined in a cmdset, called during its creation. It should populate the set with command instances. Note that it can also take other cmdsets as arguments, which will be used by the character default cmdset to add all of these onto the internal cmdset stack. They will then be able to removed or replaced as needed. """ self.add(CmdManageHome()) class CmdManageHome(ArxCommand): """ +home Usage: +home +home/lock +home/unlock +home/key <character> +home/passmsg <message people see when entering> +home/lockmsg <message those who can't enter see> +home/rmkey <character> +home/lifestyle <rating> Controls your home. /passmsg is for use of the 'pass' command to go through a locked door. /lockmsg is for those who are denied entry. /lifestyle is to control how much silver you spend per week and earn prestige. """ key = "+home" # aliases = ["@home"] locks = "cmd:all()" help_category = "Home" def display_lifestyles(self): """Displays table of Dominion lifestyles with the character's current selection""" caller = self.caller table = PrettyTable(["{wRating{n", "{wCost{n", "{wPrestige{n"]) caller.msg("{wLifestyles:{n") for rating in LIFESTYLES: num = str(rating) if caller.player_ob.Dominion.lifestyle_rating == rating: num += '{w*{n' table.add_row([num, LIFESTYLES[rating][0], LIFESTYLES[rating][1]]) caller.msg(str(table), options={'box': True}) def func(self): """Execute command.""" caller = self.caller loc = caller.location entrances = loc.entrances owners = loc.db.owners or [] keylist = loc.db.keylist or [] if caller not in owners and not caller.check_permstring("builders"): caller.msg("You are not the owner of this room.") return if not self.args and not self.switches: locked = "{rlocked{n" if loc.db.locked else "{wunlocked{n" caller.msg("Your home is currently %s." % locked) caller.msg("{wOwners:{n %s" % ", ".join(str(ob) for ob in owners)) caller.msg("{wCharacters who have keys:{n %s" % ", ".join(str(ob) for ob in keylist)) entrance = entrances[0] entmsg = entrance.db.success_traverse or "" errmsg = entrance.db.err_traverse or "" caller.msg("{wMessage upon passing through locked door:{n %s" % entmsg) caller.msg("{wMessage upon being denied access:{n %s" % errmsg) return if "unlock" in self.switches: # we only show as locked if -all- entrances are locked for ent in entrances: ent.unlock_exit() loc.db.locked = False caller.msg("Your house is now unlocked.") return if "lock" in self.switches: loc.db.locked = True caller.msg("Your house is now locked.") for ent in entrances: ent.lock_exit() return if "lifestyle" in self.switches and not self.args: # list lifestyles self.display_lifestyles() return if not self.args: caller.msg("You must provide an argument to the command.") return if "lockmsg" in self.switches: for r_exit in entrances: r_exit.db.err_traverse = self.args caller.msg("{wThe message those who can't enter now see is{n: %s" % self.args) return if "passmsg" in self.switches: for r_exit in entrances: r_exit.db.success_traverse = self.args caller.msg("{wThe message those who enter will now see is{n: %s" % self.args) return if "lifestyle" in self.switches or "lifestyles" in self.switches: if caller not in owners: caller.msg("You may only set the lifestyle rating for an owner.") return try: LIFESTYLES[int(self.args)] except (KeyError, TypeError, ValueError): caller.msg("%s is not a valid lifestyle." % self.args) self.display_lifestyles() return caller.player_ob.Dominion.lifestyle_rating = int(self.args) caller.player_ob.Dominion.save() caller.msg("Your lifestyle rating has been set to %s." % self.args) return player = caller.player.search(self.lhs) if not player: return char = player.char_ob if not char: caller.msg("No character found.") return keys = char.db.keylist or [] if "key" in self.switches: if loc in keys and char in keylist: caller.msg("They already have a key to here.") return if loc not in keys: keys.append(loc) char.db.keylist = keys if char not in keylist: keylist.append(char) loc.db.keylist = keylist char.msg("{c%s{w has granted you a key to %s." % (caller, loc)) caller.msg("{wYou have granted {c%s{w a key.{n" % char) return if "rmkey" in self.switches: if loc not in keys and char not in keylist: caller.msg("They don't have a key to here.") return if loc in keys: keys.remove(loc) char.db.keylist = keys if char in keylist: keylist.remove(char) loc.db.keylist = keylist char.msg("{c%s{w has removed your access to %s." % (caller, loc)) caller.msg("{wYou have removed {c%s{w's key.{n" % char) return class CmdAllowBuilding(ArxCommand): """ @allowbuilding Usage: @allowbuilding @allowbuilding all[=<cost>] @allowbuilding <name>[,<name2>,...][=<cost>] @allowbuilding/clear Flags your current room as permitting characters to build there. The name provided can either be a character or organization name. Cost is 100 economic resources unless specified otherwise. Max rooms that anyone can build off here is set by the 'expansion_cap' attribute, defaults to 1 if not defined. Tracked separately for each org/player, so any number of people could build 1 room off a room with expansion_cap of 1 in a room, as long as they are permitted to do so. """ key = "@allowbuilding" locks = "cmd:perm(Builders)" help_category = "Building" def func(self): """Execute command.""" caller = self.caller loc = caller.location permits = loc.db.permitted_builders or {} if not self.args and not self.switches: table = PrettyTable(["Name", "Cost"]) for permit_id in permits: if permit_id == "all": owner = "all" else: owner = AssetOwner.objects.get(id=permit_id) cost = permits[permit_id] table.add_row([str(owner), cost]) caller.msg(str(table)) return if "clear" in self.switches: loc.db.permitted_builders = {} caller.msg("Perms wiped.") return cost = self.rhs and int(self.rhs) or 100 for name in self.lhslist: if name == "all": permits["all"] = cost continue try: owner = AssetOwner.objects.get(Q(organization_owner__name__iexact=name) | Q(player__player__username__iexact=name)) except AssetOwner.DoesNotExist: caller.msg("No owner by name of %s." % name) continue permits[owner.id] = cost loc.db.permitted_builders = permits caller.msg("Perms set.") return class CmdBuildRoom(CmdDig): """ +buildroom - build and connect new rooms to the current one Usage: +buildroom roomname=exit_to_there[;alias], exit_to_here[;alias] +buildroom/org orgname/roomname=[exits] Examples: +buildroom kitchen = north;n, south;s +buildroom sheer cliff= climb up, climb down +buildroom/org velenosa/dungeon=door;d, out;o This command is a convenient way to build rooms quickly; it creates the new room and you can optionally set up exits back and forth between your current room and the new one. You can add as many aliases as you like to the name of the room and the exits in question; an example would be 'north;no;n'. """ key = "+buildroom" locks = "cmd:all()" help_category = "Home" help_entry_tags = ["housing"] # noinspection PyAttributeOutsideInit def func(self): """Do the digging. Inherits variables from ObjManipCommand.parse()""" caller = self.caller loc = caller.location # lots of checks and shit here permits = loc.db.permitted_builders or {} if not permits: caller.msg("No one is currently allowed to build a house from here.") return expansions = loc.db.expansions or {} max_expansions = loc.db.expansion_cap or 20 assets = None # base cost = 1000 dompc = caller.player_ob.Dominion if "org" in self.switches: # max_rooms = 100 try: largs = self.lhs.split("/") orgname = largs[0] roomname = largs[1] except IndexError: caller.msg("Please specify orgname/roomname.") return try: org = Organization.objects.get(Q(name__iexact=orgname) & Q(members__player=dompc) & Q(members__deguilded=False)) if not org.access(caller, 'build'): caller.msg("You are not permitted to build for this org.") return self.lhs = roomname self.lhslist = [roomname] self.args = "%s=%s" % (self.lhs, self.rhs) # fix args for CmdDig self.parse() assets = org.assets cost = permits[assets.id] except KeyError: if "all" not in permits: caller.msg("That org is not permitted to build here.") return cost = permits["all"] except Organization.DoesNotExist: caller.msg("No org by that name: %s." % orgname) return else: # max_rooms = 3 assets = dompc.assets if assets.id in permits: cost = permits[assets.id] else: if "all" not in permits: caller.msg("You are not allowed to build here.") return cost = permits["all"] try: if expansions.get(assets.id, 0) >= max_expansions: caller.msg("You have built as many rooms from this space as you are allowed.") return except (AttributeError, TypeError, ValueError): caller.msg("{rError logged.{n") inform_staff("Room %s has an invalid expansions attribute." % loc.id) return if not self.lhs: caller.msg("The cost for you to build from this room is %s." % cost) return if cost > assets.economic: noun = "you" if dompc.assets == assets else str(assets) caller.msg("It would cost %s %s to build here, but only have %s." % (noun, cost, assets.economic)) if noun != "you": caller.msg("Deposit resources into the account of %s." % noun) return tagname = "%s_owned_room" % str(assets) # because who fucking cares # if tagname not in loc.tags.all() and ( # ObjectDB.objects.filter(Q(db_typeclass_path=settings.BASE_ROOM_TYPECLASS) # & Q(db_tags__db_key__iexact=tagname) # ).count() > max_rooms): # caller.msg("You have as many rooms as you are allowed.") # return if not self.rhs or len(self.rhslist) < 2: caller.msg("You must specify an exit and return exit for the new room.") return if not re.findall('^[\-\w\'{\[,%;|# ]+$', self.lhs) or not re.findall('^[\-\w\'{\[,%;|<># ]+$', self.rhs): caller.msg("Invalid characters entered for names or exits.") return new_room = CmdDig.func(self) if not new_room: return assets.economic -= cost assets.save() # do setup shit for new room here new_room.db.room_owner = assets.id new_room.tags.add("player_made_room") new_room.tags.add(tagname) new_room.tags.add("private") new_room.db.expansion_cap = 20 new_room.db.expansions = {} new_room.db.cost_increase_per_expansion = 25 cost_increase = loc.db.cost_increase_per_expansion or 0 new_room.db.permitted_builders = {assets.id: cost + cost_increase} new_room.db.x_coord = loc.db.x_coord new_room.db.y_coord = loc.db.y_coord my_expansions = expansions.get(assets.id, 0) + 1 expansions[assets.id] = my_expansions loc.db.expansions = expansions new_room.name = new_room.name # this will setup .db.colored_name and strip ansi from key if cost_increase and assets.id in permits: permits[assets.id] += cost_increase loc.db.permitted_builders = permits class CmdManageRoom(ArxCommand): """ +manageroom Usage: +manageroom +manageroom/name <name> +manageroom/desc <description> +manageroom/springdesc <description> +manageroom/summerdesc <description> +manageroom/falldesc <description> +manageroom/winterdesc <description> +manageroom/exitname <exit>=<new name> +manageroom/addhome <owner> +manageroom/confirmhome <owner> +manageroom/rmhome <owner> +manageroom/addshop <owner> +manageroom/confirmshop <owner> +manageroom/rmshop <owner> +manageroom/toggleprivate +manageroom/setbarracks +manageroom/addbouncer <character> +manageroom/rmbouncer <character> +manageroom/adddecorator <character> +manageroom/rmdecorator <character> +manageroom/ban <character> +manageroom/unban <character> +manageroom/boot <character>=<exit> Flags your current room as permitting characters to build there. Cost is 100 economic resources unless specified otherwise. To set a seasonal description for your room, use /springdesc, /summerdesc, etc. /desc will always be shown as a fallback otherwise. You can also embed special time markers in your room description, like this: ``` <night>In the darkness, the forest looks foreboding.</night>. <morning>Birds are chirping and whatnot.</morning> <afternoon>Birds are no longer chirping.</morning> <evening>THEY WILL NEVER CHIRP AGAIN.</evening> ``` Text marked this way will only display when the server is truly at the given timeslot. The available times are night, morning, afternoon and evening. Note that `@detail`, seasons and time-of-day slots only work on rooms in this version of the `@desc` command. Owners can appoint characters to be decorators or bouncers, to allow them to use commands while not owners. The ban switch prevents characters from being able to enter the room. The boot switch removes characters from the room. Bouncers are able to use ban and boot. Decorators are permitted to use the desc switches. """ key = "+manageroom" locks = "cmd:all()" help_category = "Home" desc_switches = ("desc", "winterdesc", "springdesc", "summerdesc", "falldesc") bouncer_switches = ("ban", "unban", "boot") personnel_switches = ("addbouncer", "rmbouncer", "adddecorator", "rmdecorator") help_entry_tags = ["housing"] def check_perms(self): """Checks the permissions for the room""" caller = self.caller loc = caller.location if not self.switches or set(self.switches) & set(self.bouncer_switches): if caller in loc.bouncers: return True if not self.switches or set(self.switches) & set(self.desc_switches): if caller in loc.decorators: return True try: owner = AssetOwner.objects.get(id=loc.db.room_owner) except AssetOwner.DoesNotExist: caller.msg("No owner is defined here.") return org = owner.organization_owner if not org and not (owner == caller.player_ob.Dominion.assets or ('confirmhome' in self.switches or 'confirmshop' in self.switches)): caller.msg("You are not the owner here.") return if org and not (org.access(caller, 'build') or ('confirmhome' in self.switches or 'confirmshop' in self.switches)): caller.msg("You do not have permission to build here.") return return True def func(self): """Execute command.""" caller = self.caller loc = caller.location if not self.check_perms(): return if not self.switches: # display who has a home here, who has a shop here owners = loc.db.owners or [] caller.msg("{wHome Owners:{n %s" % ", ".join(str(ob) for ob in owners)) shops = loc.db.shopowner caller.msg("{wShop Owners:{n %s" % shops) self.msg("{wBouncers:{n %s" % ", ".join(str(ob) for ob in loc.bouncers)) self.msg("{wDecorators:{n %s" % ", ".join(str(ob) for ob in loc.decorators)) self.msg("{wBanned:{n %s" % ", ".join(str(ob) for ob in loc.banlist)) return if "name" in self.switches: loc.name = self.args or loc.name caller.msg("Room name changed to %s." % loc) return if "exitname" in self.switches: if not self.rhs: caller.msg("Invalid usage.") return rhslist = self.rhs.split(";") rhs = rhslist[0] aliases = rhslist[1:] exit_object = caller.search(self.lhs) if not exit_object: return old = str(exit_object) if exit_object.typeclass_path != settings.BASE_EXIT_TYPECLASS: caller.msg("That is not an exit.") return exit_object.name = rhs exit_object.save() exit_object.aliases.clear() for alias in aliases: exit_object.aliases.add(alias) if exit_object.destination: exit_object.flush_from_cache() caller.msg("%s changed to %s." % (old, exit_object)) return if (set(self.switches) & set(self.personnel_switches)) or (set(self.switches) & set(self.bouncer_switches)): targ = self.caller.player.search(self.lhs) if not targ: return targ = targ.char_ob if "addbouncer" in self.switches: loc.add_bouncer(targ) self.msg("%s is now a bouncer." % targ) return if "rmbouncer" in self.switches: loc.remove_bouncer(targ) self.msg("%s is no longer a bouncer." % targ) return if "adddecorator" in self.switches: loc.add_decorator(targ) self.msg("%s is now a decorator." % targ) return if "rmdecorator" in self.switches: loc.remove_decorator(targ) self.msg("%s is no longer a decorator." % targ) return if "unban" in self.switches: loc.unban_character(targ) self.msg("%s is no longer banned from entering." % targ) return if "ban" in self.switches: loc.ban_character(targ) self.msg("%s is now prevented from entering." % targ) return if "boot" in self.switches: from typeclasses.exits import Exit exit_obj = self.caller.search(self.rhs, typeclass=Exit) if not exit_obj: return if not exit_obj.can_traverse(targ): self.msg("They cannot move through that exit.") return if targ.location != self.caller.location: self.msg("They aren't here.") return exit_obj.at_traverse(targ, exit_obj.destination) self.msg("You have kicked out %s." % targ) targ.msg("You have been kicked out by %s." % self.caller) return try: owner = AssetOwner.objects.get(id=loc.db.room_owner) except AssetOwner.DoesNotExist: caller.msg("No owner is defined here.") return if set(self.switches) & set(self.desc_switches): if "player_made_room" not in loc.tags.all(): self.msg("You cannot change the description to a room that was made by a GM.") return if loc.desc: cost = loc.db.desc_cost or DESC_COST else: cost = 0 if loc.ndb.confirm_desc_change != self.args: caller.msg("Your room's current %s is:" % self.switches[0]) if "desc" in self.switches: caller.msg(loc.desc) elif "springdesc" in self.switches: caller.msg(loc.db.spring_desc) elif "summerdesc" in self.switches: caller.msg(loc.db.summer_desc) elif "winterdesc" in self.switches: caller.msg(loc.db.winter_desc) elif "falldesc" in self.switches: caller.msg(loc.db.autumn_desc) caller.msg("{wCost of changing desc:{n %s economic resources" % cost) if self.args: caller.msg("New desc:") caller.msg(self.args) caller.msg("{wTo confirm this, use the command again.{n") caller.msg("{wChanging this desc will prompt you again for a confirmation.{n") loc.ndb.confirm_desc_change = self.args return if cost: if cost > owner.economic: caller.msg("It would cost %s to re-desc the room, and you have %s." % (cost, owner.economic)) return owner.economic -= cost owner.save() if "desc" in self.switches: loc.desc = self.args if not loc.db.raw_desc: loc.db.raw_desc = self.args if not loc.db.general_desc: loc.db.general_desc = self.args elif "winterdesc" in self.switches: loc.db.winter_desc = self.args elif "summerdesc" in self.switches: loc.db.summer_desc = self.args elif "springdesc" in self.switches: loc.db.spring_desc = self.args elif "falldesc" in self.switches: loc.db.autumn_desc = self.args loc.ndb.confirm_desc_change = None # force raw_desc to update and parse our descs loc.ndb.last_season = None loc.ndb.last_timeslot = None caller.msg("%s changed to:" % self.switches[0]) caller.msg(self.args) return if "confirmhome" in self.switches: if caller.db.homeproposal != loc: caller.msg("You don't have an active invitation to accept here. Have them reissue it.") return caller.attributes.remove("homeproposal") loc.setup_home(caller) caller.msg("You have set up your home here.") return if "confirmshop" in self.switches: if caller.db.shopproposal != loc: caller.msg("You don't have an active invitation to accept here. Have them reissue it.") return caller.attributes.remove("shopproposal") loc.setup_shop(caller) caller.msg("You have set up a shop here.") return if "toggleprivate" in self.switches: if "private" in loc.tags.all(): loc.tags.remove("private") caller.msg("Room no longer private.") return loc.tags.add("private") caller.msg("Room is now private.") return if "setbarracks" in self.switches: tagname = str(owner) + "_barracks" other_barracks = ObjectDB.objects.filter(db_tags__db_key=tagname) for obj in other_barracks: obj.tags.remove(tagname) loc.tags.add(tagname) self.msg("%s set to %s's barracks." % (loc, owner)) return player = caller.player.search(self.args) if not player: return char = player.char_ob if not char: caller.msg("No char.") return if "addhome" in self.switches or "addshop" in self.switches: noun = "home" if "addhome" in self.switches else "shop" if noun == "home": char.db.homeproposal = loc else: char.db.shopproposal = loc if loc.db.shopowner: caller.msg("You must shut down the current shop here before adding another.") return msg = "%s has offered you a %s. To accept it, go to %s" % (caller, noun, loc.key) msg += " and use {w+manageroom/confirm%s{n." % noun player.send_or_queue_msg(msg) caller.msg("You have offered %s this room as a %s." % (char, noun)) return if "rmhome" in self.switches: loc.remove_homeowner(char) player.send_or_queue_msg("Your home at %s has been removed." % loc) return if "rmshop" in self.switches: loc.del_shop() player.send_or_queue_msg("Your shop at %s has been removed." % loc) return class CmdManageShop(ArxCommand): """ +manageshop Usage: +manageshop +manageshop/sellitem <object>=<price> +manageshop/rmitem <object id> +manageshop/all <markup percentage> +manageshop/refinecost <percentage> +manageshop/addrecipe <recipe name>=<markup percentage> +manageshop/rmrecipe <recipe name> +manageshop/addblacklist <player or org name> +manageshop/rmblacklist <player or org name> +manageshop/orgdiscount <org name>=<percentage> +manageshop/chardiscount <character>=<percentage> +manageshop/adddesign <key>=<code> +manageshop/rmdesign <key> Sets prices for your shop. Note that if you use 'all', that will be used for any recipe you don't explicitly set a price for. """ key = "+manageshop" locks = "cmd:all()" help_category = "Home" help_entry_tags = ["shops"] def list_prices(self): """Lists a table of prices for the shop owner""" loc = self.caller.location prices = loc.db.crafting_prices or {} msg = "{wCrafting Prices{n\n" table = PrettyTable(["{wName{n", "{wPrice Markup Percentage{n"]) for price in prices: if price == "removed": continue if price == "all" or price == "refine": name = price else: name = (CraftingRecipe.objects.get(id=price)).name table.add_row([name, "%s%%" % prices[price]]) msg += str(table) msg += "\n{wItem Prices{n\n" table = EvTable("{wID{n", "{wName{n", "{wPrice{n", width=78, border="cells") prices = loc.db.item_prices or {} for price in prices: obj = ObjectDB.objects.get(id=price) table.add_row(price, str(obj), prices[price]) msg += str(table) return msg def list_designs(self): """Lists designs the shop owner has created for crafting templates""" designs = self.caller.location.db.template_designs or {} self.msg("{wTemplate designs:{n %s" % ", ".join(designs.keys())) def func(self): """Execute command.""" caller = self.caller loc = caller.location if caller != loc.db.shopowner: caller.msg("You are not the shop's owner.") return if not self.args: caller.msg(self.list_prices()) org_discounts = (loc.db.discounts or {}).items() char_discounts = (loc.db.char_discounts or {}).items() # replace char with char.key in char_discounts list char_discounts = [(ob[0].key, ob[1]) for ob in char_discounts] discounts = ", ".join(("%s: %s%%" % (ob, val) for ob, val in (org_discounts + char_discounts))) caller.msg("{wDiscounts{n: %s" % discounts) blacklist = [] if loc.db.blacklist: # if ob doesn't have a key, it becomes a string (because corporations aren't ppl) blacklist = [getattr(ob, 'key', str(ob)) for ob in loc.db.blacklist] caller.msg("{wBlacklist{n: %s" % ", ".join(blacklist)) self.list_designs() return if "sellitem" in self.switches: try: price = int(self.rhs) if price < 0: raise ValueError except (TypeError, ValueError): caller.msg("Price must be a positive number.") return results = caller.search(self.lhs, location=caller, quiet=True) obj = AT_SEARCH_RESULT(results, caller, self.lhs, False, nofound_string="You don't carry %s." % self.lhs, multimatch_string="You carry more than one %s:" % self.lhs) if not obj: return obj.at_drop(caller) obj.location = None loc.db.item_prices[obj.id] = price obj.tags.add("for_sale") obj.db.sale_location = loc caller.msg("You put %s for sale for %s silver." % (obj, price)) return if "rmitem" in self.switches: try: num = int(self.args) if num not in loc.db.item_prices: caller.msg("No item by that ID being sold.") return obj = ObjectDB.objects.get(id=num) except ObjectDB.DoesNotExist: caller.msg("No object by that ID exists.") return except (ValueError, TypeError): caller.msg("You have to specify the ID # of an item you're trying to remove.") return obj.move_to(caller) obj.tags.remove("for_sale") obj.attributes.remove("sale_location") del loc.db.item_prices[obj.id] caller.msg("You have removed %s from your sale list." % obj) return if "all" in self.switches or "refinecost" in self.switches: try: cost = int(self.args) if cost < 0: raise ValueError except ValueError: caller.msg("Cost must be a non-negative number.") return if "all" in self.switches: loc.db.crafting_prices['all'] = cost caller.msg("Cost for non-specified recipes set to %s percent markup." % cost) else: loc.db.crafting_prices['refine'] = cost caller.msg("Cost for refining set to %s percent markup." % cost) return if "addrecipe" in self.switches: prices = loc.db.crafting_prices or {} try: recipe = caller.player_ob.Dominion.assets.recipes.get(name__iexact=self.lhs) cost = int(self.rhs) if cost < 0: raise ValueError except (TypeError, ValueError): caller.msg("Cost must be a positive number.") return except (CraftingRecipe.DoesNotExist, CraftingRecipe.MultipleObjectsReturned): caller.msg("Could not retrieve a recipe by that name.") return prices[recipe.id] = cost caller.msg("Price for %s set to %s." % (recipe.name, cost)) removedlist = prices.get("removed", []) if recipe.id in removedlist: removedlist.remove(recipe.id) prices['removed'] = removedlist loc.db.crafting_prices = prices return if "rmrecipe" in self.switches: arg = None prices = loc.db.crafting_prices or {} try: recipe = None if self.lhs.lower() == "all": arg = "all" elif self.lhs.lower() == "refining": arg = "refining" else: recipe = caller.player_ob.Dominion.assets.recipes.get(name__iexact=self.lhs) arg = recipe.id del prices[arg] caller.msg("Price for %s has been removed." % recipe.name if recipe else arg) except KeyError: removedlist = prices.get("removed", []) if arg in removedlist: caller.msg("You had no price listed for that recipe.") else: try: removedlist.append(int(arg)) prices["removed"] = removedlist except ValueError: caller.msg("Must be an ID.") except CraftingRecipe.DoesNotExist: caller.msg("No recipe found by that name.") finally: loc.db.crafting_prices = prices return if "adddesign" in self.switches: designs = loc.db.template_designs or {} try: if not self.rhs: self.msg("Design for %s: %s" % (self.lhs, designs[self.lhs])) return except KeyError: self.list_designs() return designs[self.lhs] = self.rhs self.msg("Raw Design for %s is now: %s" % (self.lhs, raw(self.rhs))) self.msg("Design for %s appears as: %s" % (self.lhs, self.rhs)) loc.db.template_designs = designs return if "rmdesign" in self.switches: designs = loc.db.template_designs or {} try: del designs[self.lhs] self.msg("Design deleted.") except KeyError: self.msg("No design by that name.") self.list_designs() loc.db.template_designs = designs return if "addblacklist" in self.switches or "rmblacklist" in self.switches: blacklist = loc.db.blacklist or [] try: targ = caller.player.search(self.args, nofound_string="No player by that name. Checking organizations.") org = False if not targ: org = True targ = Organization.objects.get(name__iexact=self.args) else: targ = targ.char_ob if "addblacklist" in self.switches: if org: if targ.name in blacklist: caller.msg("They are already in the blacklist.") return blacklist.append(targ.name) else: if targ in blacklist: caller.msg("They are already in the blacklist.") return blacklist.append(targ) caller.msg("%s added to blacklist." % getattr(targ, 'key', targ)) else: if org: if targ.name not in blacklist: caller.msg("They are not in the blacklist.") return blacklist.remove(targ.name) else: if targ not in blacklist: caller.msg("They are not in the blacklist.") return blacklist.remove(targ) caller.msg("%s removed from blacklist." % getattr(targ, 'key', targ)) except Organization.DoesNotExist: caller.msg("No valid target found by that name.") loc.db.blacklist = blacklist return if "orgdiscount" in self.switches: try: org = Organization.objects.get(name__iexact=self.lhs) discount = int(self.rhs) if discount > 100: raise ValueError if discount == 0: loc.db.discounts.pop(org.name, 0) self.msg("Removed discount for %s." % org) return loc.db.discounts[org.name] = discount caller.msg("%s given a discount of %s percent." % (org, discount)) return except (TypeError, ValueError): caller.msg("Discount must be a number, max of 100.") return except Organization.DoesNotExist: caller.msg("No organization by that name found.") return if "chardiscount" in self.switches: if loc.db.char_discounts is None: loc.db.char_discounts = {} try: character = Character.objects.get(db_key__iexact=self.lhs) discount = int(self.rhs) if discount > 100: raise ValueError if discount == 0: loc.db.char_discounts.pop(character, 0) self.msg("Removed discount for %s." % character.key) return loc.db.char_discounts[character] = discount caller.msg("%s given a discount of %s percent." % (character.key, discount)) return except (TypeError, ValueError): caller.msg("Discount must be a number, max of 100.") return except Character.DoesNotExist: caller.msg("No character found by that name.") return caller.msg("Invalid switch.") class CmdBuyFromShop(CmdCraft): """ +shop Usage: +shop +shop/filter <word in item name> +shop/buy <item number> +shop/look <item number> +shop/viewdesigns [<key>] +shop/name <name> +shop/desc <description> +shop/altdesc <description> +shop/adorn <material type>=<amount> +shop/translated_text <language>=<text> +shop/finish [<additional silver to invest>,<AP to invest>] +shop/abandon +shop/changename <object>=<new name> +shop/refine <object>[=<additional silver to spend>,AP to spend>] +shop/addadorn <object>=<material type>,<amount> +shop/craft Allows you to buy objects from a shop. +shop/craft allows you to use a crafter's skill to create an item. Similarly, +shop/refine lets you use a crafter's skill to attempt to improve a crafted object. Check 'help craft' for an explanation of switches, all of which can be used with +shop. Costs and materials are covered by you. +shop/viewdesigns lets you see the crafter's pre-made descriptions that you can copy for items you create. """ key = "+shop" aliases = ["@shop", "shop"] locks = "cmd:all()" help_category = "Home" def get_discount(self): """Returns our percentage discount""" loc = self.caller.location char_discounts = loc.db.char_discounts or {} discount = 0.0 discounts = loc.db.discounts or {} if self.caller in char_discounts: return char_discounts[self.caller] for org in self.caller.player_ob.Dominion.current_orgs: odiscount = discounts.get(org.name, 0.0) if odiscount and not discount: discount = odiscount if odiscount and discount and odiscount > discount: discount = odiscount return discount def get_refine_price(self, base): """Price of refining""" loc = self.caller.location price = 0 prices = loc.db.crafting_prices or {} if "refine" in prices: price = (base * prices["refine"]) / 100.0 elif "all" in prices: price = (base * prices["all"]) / 100.0 if price == 0: return price if price > 0: price -= (price * self.get_discount() / 100.0) if price < 0: return 0 return price raise ValueError def get_recipe_price(self, recipe): """Price for crafting a recipe""" loc = self.caller.location base = recipe.value price = 0 crafting_prices = loc.db.crafting_prices or {} if recipe.id in crafting_prices: price = (base * crafting_prices[recipe.id]) / 100.0 elif "all" in crafting_prices: price = (base * crafting_prices["all"]) / 100.0 if price is not None: price -= (price * self.get_discount() / 100.0) if price < 0: return 0 return price # no price defined raise ValueError def list_prices(self): """List prices of everything""" loc = self.caller.location prices = loc.db.crafting_prices or {} msg = "{wCrafting Prices{n\n" table = PrettyTable(["{wName{n", "{wCraft Price{n", "{wRefine Price{n"]) recipes = loc.db.shopowner.player_ob.Dominion.assets.recipes.all().order_by('name') # This try/except block corrects 'removed' lists that are corrupted by # non-integers, because that was a thing once upon a time. try: removed = prices.get("removed", []) recipes = recipes.exclude(id__in=removed) except ValueError: removed = [ob for ob in removed if isinstance(ob, int)] prices['removed'] = removed recipes = recipes.exclude(id__in=removed) recipes = self.filter_shop_qs(recipes, "name") for recipe in recipes: try: refineprice = str(self.get_refine_price(recipe.value)) table.add_row([recipe.name, str(recipe.additional_cost + self.get_recipe_price(recipe)), refineprice]) except (ValueError, TypeError): self.msg("{rError: Recipe %s does not have a price defined.{n" % recipe.name) if recipes: msg += str(table) msg += "\n{wItem Prices{n\n" table = EvTable("{wID{n", "{wName{n", "{wPrice{n", width=78, border="cells") prices = loc.db.item_prices or {} sale_items = ObjectDB.objects.filter(id__in=prices.keys()) sale_items = self.filter_shop_qs(sale_items, "db_key") for item in sale_items: price = prices[item.id] price -= (price * self.get_discount() / 100.0) table.add_row(item.id, item.name, price) if sale_items: msg += str(table) designs = self.filter_shop_dict(loc.db.template_designs or {}) if designs: msg += "\n{wNames of designs:{n %s" % ", ".join(designs.keys()) if not recipes and not sale_items and not designs: msg = "Nothing found." return msg def filter_shop_qs(self, shop_qs, field_name): """Returns filtered queryset if a filter word exists""" if "filter" in self.switches and self.args: filter_query = {"%s__icontains" % field_name: self.args} shop_qs = shop_qs.filter(**filter_query) return shop_qs def filter_shop_dict(self, shop_dict): """Returns filtered dict if a filter word exists""" if "filter" in self.switches and self.args: shop_dict = {name: value for name, value in shop_dict.items() if self.args.lower() in name.lower()} return shop_dict def pay_owner(self, price, msg): """Pay money to the other and send an inform of the sale""" loc = self.caller.location loc.db.shopowner.pay_money(-price) assets = loc.db.shopowner.player_ob.assets if price >= assets.min_silver_for_inform: assets.inform(msg, category="shop", append=True) def buy_item(self, item): """Buy an item from inventory - pay the owner and get the item""" loc = self.caller.location price = loc.db.item_prices[item.id] price -= price * (self.get_discount() / 100.0) self.caller.pay_money(price) self.pay_owner(price, "%s has bought %s for %s." % (self.caller, item, price)) self.caller.msg("You paid %s for %s." % (price, item)) item.move_to(self.caller) item.tags.remove("for_sale") item.attributes.remove("sale_location") del loc.db.item_prices[item.id] if hasattr(item, "rmkey"): if item.rmkey(loc.db.shopowner): item.grantkey(self.caller) self.caller.msg("Good deal! The owner gave you a key for %s." % item) return self.caller.msg("Shady deal? The owner didn't have a key for %s to give you." % item) def check_blacklist(self): """See if we're allowed to buy""" caller = self.caller loc = caller.location blacklist = loc.db.blacklist or [] if caller in blacklist: return True for org in caller.player_ob.Dominion.current_orgs: if org.name in blacklist: return True return False def func(self): """Execute command.""" caller = self.caller loc = caller.location self.crafter = loc.db.shopowner if not self.crafter: self.msg("No shop owner is defined.") return if self.check_blacklist(): caller.msg("You are not permitted to buy from this shop.") return if self.crafter.roster.roster.name == "Gone": self.msg("The shop owner is dead.") return if "filter" in self.switches or (not self.switches and not self.args): caller.msg(self.list_prices()) project = caller.db.crafting_project if project: caller.msg(self.display_project(project)) return if "viewdesigns" in self.switches: designs = loc.db.template_designs or {} if not self.args: self.msg("Names of designs: %s" % ", ".join(designs.keys())) return try: design = designs[self.args] self.msg("{wDesign's appearance:{n\n%s" % design) self.msg("\n{wRaw code of design:{n\n%s" % raw(design)) except KeyError: self.msg("No design found by that name.") self.msg("Names of designs: %s" % ", ".join(designs.keys())) return if "buy" in self.switches: try: num = int(self.args) price = loc.db.item_prices[num] obj = ObjectDB.objects.get(id=num) except (TypeError, ValueError, KeyError): caller.msg("You must supply the ID number of an item being sold.") return if price > caller.db.currency: caller.msg("You cannot afford it.") return self.buy_item(obj) return if "look" in self.switches: try: num = int(self.args) obj = ObjectDB.objects.get(id=num, id__in=loc.db.item_prices.keys()) except (TypeError, ValueError): self.msg("Please provide a number of an item.") return except ObjectDB.DoesNotExist: caller.msg("No item found by that number.") return caller.msg(obj.return_appearance(caller)) return if set(self.switches) & set(self.crafting_switches + ("craft",)): return CmdCraft.func(self) caller.msg("Invalid switch.") class ShopCmdSet(CmdSet): """CmdSet for shop spaces.""" key = "ShopCmdSet" priority = 101 duplicates = False no_exits = False no_objs = False def at_cmdset_creation(self): """ This is the only method defined in a cmdset, called during its creation. It should populate the set with command instances. Note that it can also take other cmdsets as arguments, which will be used by the character default cmdset to add all of these onto the internal cmdset stack. They will then be able to removed or replaced as needed. """ self.add(CmdManageShop()) self.add(CmdBuyFromShop())
the-stack_0_10127
# # Copyright 2013 eNovance # # Author: Julien Danjou <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for ceilometer/publisher/udp.py """ import datetime import mock import msgpack from ceilometer.openstack.common.fixture import config from ceilometer.openstack.common import network_utils from ceilometer.openstack.common import test from ceilometer.publisher import udp from ceilometer.publisher import utils from ceilometer import sample COUNTER_SOURCE = 'testsource' class TestUDPPublisher(test.BaseTestCase): test_data = [ sample.Sample( name='test', type=sample.TYPE_CUMULATIVE, unit='', volume=1, user_id='test', project_id='test', resource_id='test_run_tasks', timestamp=datetime.datetime.utcnow().isoformat(), resource_metadata={'name': 'TestPublish'}, source=COUNTER_SOURCE, ), sample.Sample( name='test', type=sample.TYPE_CUMULATIVE, unit='', volume=1, user_id='test', project_id='test', resource_id='test_run_tasks', timestamp=datetime.datetime.utcnow().isoformat(), resource_metadata={'name': 'TestPublish'}, source=COUNTER_SOURCE, ), sample.Sample( name='test2', type=sample.TYPE_CUMULATIVE, unit='', volume=1, user_id='test', project_id='test', resource_id='test_run_tasks', timestamp=datetime.datetime.utcnow().isoformat(), resource_metadata={'name': 'TestPublish'}, source=COUNTER_SOURCE, ), sample.Sample( name='test2', type=sample.TYPE_CUMULATIVE, unit='', volume=1, user_id='test', project_id='test', resource_id='test_run_tasks', timestamp=datetime.datetime.utcnow().isoformat(), resource_metadata={'name': 'TestPublish'}, source=COUNTER_SOURCE, ), sample.Sample( name='test3', type=sample.TYPE_CUMULATIVE, unit='', volume=1, user_id='test', project_id='test', resource_id='test_run_tasks', timestamp=datetime.datetime.utcnow().isoformat(), resource_metadata={'name': 'TestPublish'}, source=COUNTER_SOURCE, ), ] def _make_fake_socket(self, published): def _fake_socket_socket(family, type): def record_data(msg, dest): published.append((msg, dest)) udp_socket = mock.Mock() udp_socket.sendto = record_data return udp_socket return _fake_socket_socket def setUp(self): super(TestUDPPublisher, self).setUp() self.CONF = self.useFixture(config.Config()).conf self.CONF.publisher.metering_secret = 'not-so-secret' def test_published(self): self.data_sent = [] with mock.patch('socket.socket', self._make_fake_socket(self.data_sent)): publisher = udp.UDPPublisher( network_utils.urlsplit('udp://somehost')) publisher.publish_samples(None, self.test_data) self.assertEqual(5, len(self.data_sent)) sent_counters = [] for data, dest in self.data_sent: counter = msgpack.loads(data) sent_counters.append(counter) # Check destination self.assertEqual(('somehost', self.CONF.collector.udp_port), dest) # Check that counters are equal self.assertEqual(sorted( [utils.meter_message_from_counter(d, "not-so-secret") for d in self.test_data]), sorted(sent_counters)) @staticmethod def _raise_ioerror(*args): raise IOError def _make_broken_socket(self, family, type): udp_socket = mock.Mock() udp_socket.sendto = self._raise_ioerror return udp_socket def test_publish_error(self): with mock.patch('socket.socket', self._make_broken_socket): publisher = udp.UDPPublisher( network_utils.urlsplit('udp://localhost')) publisher.publish_samples(None, self.test_data)
the-stack_0_10128
from dataLoader import * import tensorflow as tf from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow import keras from tensorflow.keras import metrics from ModelUtil import * import configparser import sys import numpy as np os.environ['CUDA_VISIBLE_DEVICES'] = '0' tf.config.experimental.set_memory_growth(tf.config.experimental.list_physical_devices('GPU')[0], True) config = configparser.ConfigParser() config.read('target_model_config.ini') DATA_NAME = sys.argv[1] if len(sys.argv) > 1 else "CIFAR" MODEL = sys.argv[2] if len(sys.argv) > 2 else "ResNet50" EPOCHS = int(config['{}_{}'.format(DATA_NAME, MODEL)]['EPOCHS']) BATCH_SIZE = 64 LEARNING_RATE = float(config['{}_{}'.format(DATA_NAME, MODEL)]['LEARNING_RATE']) WEIGHTS_PATH = "weights/Target/{}_{}.hdf5".format(DATA_NAME, MODEL) (x_train, y_train), (x_test, y_test), _ = globals()['load_' + DATA_NAME]('TargetModel') np.random.seed(1) tf.random.set_seed(1) def train(model, x_train, y_train): """ Train the target model and save the weight of the model :param model: the model that will be trained :param x_train: the image as numpy format :param y_train: the label for x_train :param weights_path: path to save the model file :return: None """ model.compile(loss='categorical_crossentropy', optimizer=keras.optimizers.Adam(lr=5e-5), metrics=[metrics.CategoricalAccuracy(), metrics.Precision(), metrics.Recall()]) model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=BATCH_SIZE, epochs=EPOCHS) model.save(WEIGHTS_PATH) def evaluate(x_test, y_test): model = keras.models.load_model(WEIGHTS_PATH) model.compile(loss='categorical_crossentropy', metrics=[metrics.CategoricalAccuracy(), metrics.Precision(), metrics.Recall()]) loss, accuracy, precision, recall = model.evaluate(x_test, y_test, verbose=1) F1_Score = 2 * (precision * recall) / (precision + recall) print('loss:%.4f accuracy:%.4f precision:%.4f recall:%.4f F1_Score:%.4f' % (loss, accuracy, precision, recall, F1_Score)) TargetModel = globals()['create_{}_model'.format(MODEL)](x_train.shape[1:], y_train.shape[1]) train(TargetModel, x_train, y_train) evaluate(x_train, y_train) evaluate(x_test, y_test)
the-stack_0_10129
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .proxy_resource import ProxyResource class ServerDnsAlias(ProxyResource): """A server DNS alias. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource ID. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :ivar azure_dns_record: The fully qualified DNS record for alias :vartype azure_dns_record: str """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'azure_dns_record': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'azure_dns_record': {'key': 'properties.azureDnsRecord', 'type': 'str'}, } def __init__(self, **kwargs) -> None: super(ServerDnsAlias, self).__init__(**kwargs) self.azure_dns_record = None
the-stack_0_10130
from rainworms import * import random class Bot(): def __init__(self): self.game: RainWorms = None @staticmethod def in_roll_take_phase(possible_actions: List[PlayerAction]) -> bool: return any([ action for action in possible_actions if action.action_type == PlayerActionType.ROLL_DICE ]) @staticmethod def in_take_steal_phase(possible_actions: List[PlayerAction]) -> bool: return any([ action for action in possible_actions if action.action_type == PlayerActionType.TAKE_STONE_WITH_VALUE or action.action_type == PlayerActionType.STEAL_STONE_WITH_VALUE ]) @staticmethod def in_pick_dice_phase(possible_actions: List[PlayerAction]) -> bool: return any([ action for action in possible_actions if action.action_type == PlayerActionType.PICK_DICE_SET_WITH_FACE ]) def select_action(self, player: Player, possible_actions: List[PlayerAction]): raise NotImplementedError def game_loop(self, game, player: Player, turn): self.game = game possible_actions = next(turn) while 1: action = self.select_action(player, possible_actions) try: possible_actions = turn.send(action) except StopIteration: break class RandomBot(Bot): def __init__(self): super(RandomBot, self).__init__() self.name = f"RandomBot" def select_action(self, player: Player, possible_actions: List[PlayerAction]): return random.choice(possible_actions) class GreedyBot(Bot): """ This bot tries to take the highest scoring set of dice every time, and will always take the highest stone it can. It will start looking to take stones after a set threshold number of rolls. """ def __init__(self, take_stone_threshold): super(GreedyBot, self).__init__() self.name = f"GreedyBot_{take_stone_threshold}" self.take_stone_threshold = take_stone_threshold @staticmethod def key_dice_set_actions(action: PlayerAction) -> int: number = action.argument.face.value is_worm = int(action.argument.face.name == "Worm") return number + is_worm def select_action(self, player: Player, possible_actions: List[PlayerAction]) -> PlayerAction: if Bot.in_roll_take_phase(possible_actions): # Pick `roll` until we reach a threshold, then pick take a stone if possible. if len(Utils.count_faces(player.selected_dice)) < self.take_stone_threshold: return PlayerAction(PlayerActionType.ROLL_DICE, None) if any([action for action in possible_actions if action.action_type == PlayerActionType.TAKE_STONE]): return PlayerAction(PlayerActionType.TAKE_STONE, None) return PlayerAction(PlayerActionType.ROLL_DICE, None) elif Bot.in_pick_dice_phase(possible_actions): possible_actions = sorted(possible_actions, key=self.key_dice_set_actions) return possible_actions[-1] elif Bot.in_take_steal_phase(possible_actions): # Try to pick the highest stone, disregarding stealing or taking from the bank sorted_actions = sorted(possible_actions, key=lambda x: x.argument) best_stone_action = sorted_actions[-1] return best_stone_action else: # Fall back to a random choice return random.choice(possible_actions) class GreedyStealingBot(GreedyBot): """ This is GreedyBot, except it tries to take the highest stone that it can steal. """ def __init__(self, take_stone_threshold): super(GreedyStealingBot, self).__init__() self.name = f"GreedyStealingBot_{take_stone_threshold}" self.take_stone_threshold = take_stone_threshold @staticmethod def key_pick_stone(action: PlayerAction) -> int: score = action.argument # Add 20 points if this is a stealable stone. if action.action_type == PlayerActionType.STEAL_STONE_WITH_VALUE: score += 20 return score
the-stack_0_10131
# Copyright 2021 solo-learn development team. # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the # Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies # or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE # FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import os from pprint import pprint from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import LearningRateMonitor from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.plugins import DDPPlugin from solo.args.setup import parse_args_pretrain from solo.methods import METHODS from solo.utils.auto_resumer import AutoResumer try: from solo.methods.dali import PretrainABC except ImportError as e: print(e) _dali_avaliable = False else: _dali_avaliable = True try: from solo.utils.auto_umap import AutoUMAP except ImportError: _umap_available = False else: _umap_available = True from solo.utils.checkpointer import Checkpointer from solo.utils.classification_dataloader import prepare_data as prepare_data_classification from solo.utils.pretrain_dataloader import ( prepare_dataloader, prepare_datasets, prepare_n_crop_transform, prepare_transform, ) def main(): seed_everything(5) args = parse_args_pretrain() assert args.method in METHODS, f"Choose from {METHODS.keys()}" if args.num_large_crops != 2: assert args.method == "wmse" MethodClass = METHODS[args.method] if args.dali: assert ( _dali_avaliable ), "Dali is not currently avaiable, please install it first with [dali]." MethodClass = type(f"Dali{MethodClass.__name__}", (MethodClass, PretrainABC), {}) model = MethodClass(**args.__dict__) # contrastive dataloader if not args.dali: # asymmetric augmentations if args.unique_augs > 1: transform = [ prepare_transform(args.dataset, **kwargs) for kwargs in args.transform_kwargs ] else: transform = [prepare_transform(args.dataset, **args.transform_kwargs)] transform = prepare_n_crop_transform(transform, num_crops_per_aug=args.num_crops_per_aug) if args.debug_augmentations: print("Transforms:") pprint(transform) train_dataset = prepare_datasets( args.dataset, transform, data_dir=args.data_dir, train_dir=args.train_dir, no_labels=args.no_labels, ) train_loader = prepare_dataloader( train_dataset, batch_size=args.batch_size, num_workers=args.num_workers ) # normal dataloader for when it is available if args.dataset == "custom" and (args.no_labels or args.val_dir is None): val_loader = None elif args.dataset in ["imagenet100", "imagenet"] and args.val_dir is None: val_loader = None else: _, val_loader = prepare_data_classification( args.dataset, data_dir=args.data_dir, train_dir=args.train_dir, val_dir=args.val_dir, batch_size=args.batch_size, num_workers=args.num_workers, ) callbacks = [] # wandb logging if args.wandb: wandb_logger = WandbLogger( name=args.name, project=args.project, entity=args.entity, offline=args.offline, ) wandb_logger.watch(model, log="gradients", log_freq=100) wandb_logger.log_hyperparams(args) # lr logging lr_monitor = LearningRateMonitor(logging_interval="epoch") callbacks.append(lr_monitor) if args.save_checkpoint: # save checkpoint on last epoch only ckpt = Checkpointer( args, logdir=os.path.join(args.checkpoint_dir, args.method), frequency=args.checkpoint_frequency, ) callbacks.append(ckpt) if args.auto_umap: assert ( _umap_available ), "UMAP is not currently avaiable, please install it first with [umap]." auto_umap = AutoUMAP( args, logdir=os.path.join(args.auto_umap_dir, args.method), frequency=args.auto_umap_frequency, ) callbacks.append(auto_umap) if args.auto_resume and args.resume_from_checkpoint is None: auto_resumer = AutoResumer( checkpoint_dir=os.path.join(args.checkpoint_dir, args.method), max_hours=args.auto_resumer_max_hours, ) resume_from_checkpoint = auto_resumer.find_checkpoint(args) if resume_from_checkpoint is not None: print( "Resuming from previous checkpoint that matches specifications:", f"'{resume_from_checkpoint}'", ) args.resume_from_checkpoint = resume_from_checkpoint trainer = Trainer.from_argparse_args( args, logger=wandb_logger if args.wandb else None, callbacks=callbacks, plugins=DDPPlugin(find_unused_parameters=True) if args.accelerator == "ddp" else None, checkpoint_callback=False, terminate_on_nan=True, ) if args.dali: trainer.fit(model, val_dataloaders=val_loader) else: trainer.fit(model, train_loader, val_loader) if __name__ == "__main__": main()
the-stack_0_10132
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_cv.utils import preprocessing class MockRandomGenerator: def __init__(self, value): self.value = value def random_uniform(self, shape, minval, maxval, dtype=None): del minval, maxval return tf.constant(self.value, dtype=dtype) class PreprocessingTestCase(tf.test.TestCase): def setUp(self): super().setUp() def test_transform_to_standard_range_neg_one_range(self): x = tf.constant([-1, 0, 1]) x = preprocessing.transform_value_range( x, original_range=[-1, 1], target_range=[0, 255] ) self.assertAllClose(x, [0.0, 127.5, 255.0]) def test_transform_to_same_range(self): x = tf.constant([-1, 0, 1]) x = preprocessing.transform_value_range( x, original_range=[0, 255], target_range=[0, 255] ) self.assertAllClose(x, [-1, 0, 1]) def test_transform_to_standard_range(self): x = tf.constant([8 / 255, 9 / 255, 255 / 255]) x = preprocessing.transform_value_range( x, original_range=[0, 1], target_range=[0, 255] ) self.assertAllClose(x, [8.0, 9.0, 255.0]) def test_transform_to_value_range(self): x = tf.constant([128.0, 255.0, 0.0]) x = preprocessing.transform_value_range( x, original_range=[0, 255], target_range=[0, 1] ) self.assertAllClose(x, [128 / 255, 1, 0]) def test_random_inversion(self): generator = MockRandomGenerator(0.75) self.assertEqual(preprocessing.random_inversion(generator), -1.0) generator = MockRandomGenerator(0.25) self.assertEqual(preprocessing.random_inversion(generator), 1.0)
the-stack_0_10133
from __future__ import absolute_import import re import os import time import math import toolz import click import pprint import logging import inspect import warnings import itertools import functools import subprocess from jrnr._compat import exclusive_open FORMAT = '%(asctime)-15s %(message)s' logger = logging.getLogger('uploader') logger.setLevel('DEBUG') formatter = logging.Formatter(FORMAT) SLURM_SCRIPT = ''' #!/bin/bash # Job name: #SBATCH --job-name={jobname} # # Partition: #SBATCH --partition={partition} # # Account: #SBATCH --account=co_laika # # QoS: #SBATCH --qos=savio_lowprio # #SBATCH --nodes=1 # # Wall clock limit: #SBATCH --time=72:00:00 # #SBATCH --requeue {dependencies} {output} '''.strip() SLURM_MULTI_SCRIPT = SLURM_SCRIPT + ''' # #SBATCH --array=0-{maxnodes} # set up directories mkdir -p {logdir} mkdir -p locks ## Run command for i in {{1..{jobs_per_node}}} do nohup python {filepath} do_job --job_name {jobname} \ --job_id {uniqueid} --num_jobs {numjobs} --logdir "{logdir}" {flags} \ > {logdir}/nohup-{jobname}-{uniqueid}-${{SLURM_ARRAY_TASK_ID}}-$i.out & done python {filepath} wait --job_name {jobname} \ --job_id {uniqueid} --num_jobs {numjobs} {flags} ''' SLURM_SINGLE_SCRIPT = SLURM_SCRIPT + ''' ## Run command python {filepath} {flags} ''' def _product(values): ''' Examples -------- .. code-block:: python >>> _product([3, 4, 5]) 60 ''' return functools.reduce(lambda x, y: x*y, values, 1) def _unpack_job(specs): job = {} for spec in specs: job.update(spec) return job def generate_jobs(job_spec): for specs in itertools.product(*job_spec): yield _unpack_job(specs) def count_jobs(job_spec): return _product(map(len, job_spec)) def _prep_slurm( filepath, jobname='slurm_job', partition='savio2', job_spec=None, limit=None, uniqueid='"${SLURM_ARRAY_JOB_ID}"', jobs_per_node=24, maxnodes=100, dependencies=None, logdir='log', flags=None): depstr = '' if (dependencies is not None) and (len(dependencies) > 1): status, deps = dependencies if len(deps) > 0: depstr += ( '#\n#SBATCH --dependency={}:{}' .format(status, ','.join(map(str, deps)))) if flags: flagstr = ' '.join(map(str, flags)) else: flagstr = '' if job_spec: n = count_jobs(job_spec) if limit is not None: n = min(limit, n) numjobs = n output = ( '#\n#SBATCH --output {logdir}/slurm-{jobname}-%A_%a.out' .format(jobname=jobname, logdir=logdir)) template = SLURM_MULTI_SCRIPT else: numjobs = 1 output = ( '#\n#SBATCH --output {logdir}/slurm-{jobname}-%A.out' .format(jobname=jobname, logdir=logdir)) template = SLURM_SINGLE_SCRIPT with open('run-slurm.sh', 'w+') as f: f.write(template.format( jobname=jobname, partition=partition, numjobs=numjobs, jobs_per_node=jobs_per_node, maxnodes=(maxnodes-1), uniqueid=uniqueid, filepath=filepath.replace(os.sep, '/'), dependencies=depstr, flags=flagstr, logdir=logdir, output=output)) def run_slurm( filepath, jobname='slurm_job', partition='savio2', job_spec=None, limit=None, uniqueid='"${SLURM_ARRAY_JOB_ID}"', jobs_per_node=24, maxnodes=100, dependencies=None, logdir='log', flags=None): _prep_slurm( filepath=filepath, jobname=jobname, partition=partition, job_spec=job_spec, limit=limit, uniqueid=uniqueid, jobs_per_node=jobs_per_node, maxnodes=maxnodes, dependencies=dependencies, logdir=logdir, flags=flags) job_command = ['sbatch', 'run-slurm.sh'] proc = subprocess.Popen( job_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() matcher = re.search(r'^\s*Submitted batch job (?P<run_id>[0-9]+)\s*$', out) if matcher: run_id = int(matcher.group('run_id')) else: run_id = None if err: raise OSError('Error encountered submitting job: {}'.format(err)) return run_id def get_job_by_index(job_spec, index): ''' Examples -------- .. code-block:: python >>> job = get_job_by_index( ... ( ... [{'let': 'a'}, {'let': 'b'}, {'let': 'c'}], ... [{'num': 1}, {'num': 2}, {'num': 3}], ... [{'pitch': 'do'}, {'pitch': 'rey'}, {'pitch': 'mi'}]), ... 5) ... >>> sorted(zip(job.keys(), job.values())) # test job ordered [('let', 'a'), ('num', 2), ('pitch', 'mi')] >>> job = get_job_by_index( ... tuple(map( ... lambda x: [{x: i} for i in x], ... ['hi', 'hello', 'bye'])), ... 10) ... >>> sorted(zip(job.keys(), job.values())) # test job ordered [('bye', 'y'), ('hello', 'l'), ('hi', 'h')] ''' return _unpack_job([ job_spec[i][ (index//(_product(map(len, job_spec[i+1:]))) % len(job_spec[i]))] for i in range(len(job_spec))]) def _get_call_args(job_spec, index=0): ''' Places stringified job parameters into `metadata` dict along with job spec .. code-block:: python >>> job_spec = ( ... [{'ordinal': 1, 'zeroth': 0}, {'ordinal': 2, 'zeroth': 1}], ... [{'letter': 'a'}, {'letter': 'b'}], ... [{'name': 'susie', 'age': 8}, {'name': 'billy', 'age': 6}]) ... >>> job = _get_call_args(job_spec, 2) >>> job # doctest: +SKIP {'age': 8, 'letter': 'b', 'name': 'susie', 'ordinal': 1, 'zeroth': 0} >>> notmeta = {k: v for k, v in job.items() if k != 'metadata'} >>> meta = job['metadata'] >>> sorted(zip(notmeta.keys(), notmeta.values())) \ # doctest: +NORMALIZE_WHITESPACE [('age', 8), ('letter', 'b'), ('name', 'susie'), ('ordinal', 1), ('zeroth', 0)] >>> sorted(zip(meta.keys(), meta.values())) \ # doctest: +NORMALIZE_WHITESPACE [('age', '8'), ('letter', 'b'), ('name', 'susie'), ('ordinal', '1'), ('zeroth', '0')] ''' job = get_job_by_index(job_spec, index) metadata = {} metadata.update({k: str(v) for k, v in job.items()}) call_args = {'metadata': metadata} call_args.update(job) return call_args @toolz.curry def slurm_runner( run_job, job_spec, filepath=None, onfinish=None, return_index=False): ''' Decorator to create a SLURM runner job management command-line application Parameters ---------- run_job : function Function executed for each task specified by ``job_spec``. ``run_job`` must be of the form ``run_job(metadata, interactive=False, **kwargs)`` where ``kwargs`` is the set of keyword terms specified by ``job_spec``. job_spec : tuple of lists of dicts Job specification in the format ``([{kwargs: vals}, ...], [...], )``. ``slurm_runner`` will iterate through all combinations of the lists in ``job_spec``, combining paired kwarg dictionaries and passing them as arguments to ``run_job``. filepath : str, optional Path to file to call when running tasks. By default (None), slurm_runner infers the filepath from the location of ``run_job``. onfinish : function, optional Provide a function to call when all jobs have been completed. Default (None) takes no action. return_index : bool, optional Adds a ``task_id`` argument to run_job call with 0-indexed ID of current task Returns ------- slurm_runner : click.Group A SLURM runner job management command-line application ''' if filepath is None: filepath = os.path.abspath(inspect.getfile(run_job)) else: warning = ( "the `filepath` argument is deprecated and will be " + "removed in the future.") warnings.warn(warning, FutureWarning) @click.group() def slurm(): pass @slurm.command() @click.option( '--limit', '-l', type=int, required=False, default=None, help='Number of iterations to run') @click.option( '--jobs_per_node', '-n', type=int, required=False, default=24, help='Number of jobs to run per node') @click.option( '--maxnodes', '-x', type=int, required=False, default=100, help='Number of nodes to request for this job') @click.option( '--jobname', '-j', default='test', help='name of the job') @click.option( '--partition', '-p', default='savio2', help='resource on which to run') @click.option('--dependency', '-d', type=int, multiple=True) @click.option( '--logdir', '-L', default='log', help='Directory to write log files') @click.option( '--uniqueid', '-u', default='"${SLURM_ARRAY_JOB_ID}"', help='Unique job pool id') def prep( limit=None, jobs_per_node=24, jobname='slurm_job', dependency=None, partition='savio2', maxnodes=100, logdir='log', uniqueid='"${SLURM_ARRAY_JOB_ID}"'): _prep_slurm( filepath=filepath, jobname=jobname, partition=partition, job_spec=job_spec, jobs_per_node=jobs_per_node, maxnodes=maxnodes, limit=limit, uniqueid=uniqueid, logdir=logdir, dependencies=('afterany', list(dependency))) @slurm.command() @click.option( '--limit', '-l', type=int, required=False, default=None, help='Number of iterations to run') @click.option( '--jobs_per_node', '-n', type=int, required=False, default=24, help='Number of jobs to run per node') @click.option( '--maxnodes', '-x', type=int, required=False, default=100, help='Number of nodes to request for this job') @click.option( '--jobname', '-j', default='test', help='name of the job') @click.option( '--partition', '-p', default='savio2', help='resource on which to run') @click.option( '--dependency', '-d', type=int, multiple=True) @click.option( '--logdir', '-L', default='log', help='Directory to write log files') @click.option( '--uniqueid', '-u', default='"${SLURM_ARRAY_JOB_ID}"', help='Unique job pool id') def run( limit=None, jobs_per_node=24, jobname='slurm_job', dependency=None, partition='savio2', maxnodes=100, logdir='log', uniqueid='"${SLURM_ARRAY_JOB_ID}"'): if not os.path.isdir(logdir): os.makedirs(logdir) slurm_id = run_slurm( filepath=filepath, jobname=jobname, partition=partition, job_spec=job_spec, jobs_per_node=jobs_per_node, maxnodes=maxnodes, limit=limit, uniqueid=uniqueid, logdir=logdir, dependencies=('afterany', list(dependency))) finish_id = run_slurm( filepath=filepath, jobname=jobname+'_finish', partition=partition, dependencies=('afterany', [slurm_id]), logdir=logdir, flags=['cleanup', slurm_id]) print('run job: {}\non-finish job: {}'.format(slurm_id, finish_id)) @slurm.command() @click.argument('slurm_id') def cleanup(slurm_id): proc = subprocess.Popen( [ 'sacct', '-j', slurm_id, '--format=JobID,JobName,MaxRSS,Elapsed,State'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() print(out) if onfinish: onfinish() @slurm.command() @click.option('--job_name', required=True) @click.option('--job_id', required=True) @click.option('--num_jobs', required=True, type=int) @click.option( '--logdir', '-L', default='log', help='Directory to write log files') def do_job(job_name, job_id, num_jobs=None, logdir='log'): if not os.path.isdir('locks'): os.makedirs('locks') if not os.path.isdir(logdir): os.makedirs(logdir) for task_id in range(num_jobs): lock_file = ( 'locks/{}-{}-{}.{{}}' .format(job_name, job_id, task_id)) if os.path.exists(lock_file.format('done')): print('{} already done. skipping'.format(task_id)) continue elif os.path.exists(lock_file.format('err')): print('{} previously errored. skipping'.format(task_id)) continue try: with exclusive_open(lock_file.format('lck')): pass # Check for race conditions if os.path.exists(lock_file.format('done')): print('{} already done. skipping'.format(task_id)) if os.path.exists(lock_file.format('lck')): os.remove(lock_file.format('lck')) continue elif os.path.exists(lock_file.format('err')): print('{} previously errored. skipping'.format(task_id)) if os.path.exists(lock_file.format('lck')): os.remove(lock_file.format('lck')) continue except OSError: print('{} already in progress. skipping'.format(task_id)) continue handler = logging.FileHandler(os.path.join( logdir, 'run-{}-{}-{}.log'.format(job_name, job_id, task_id))) handler.setFormatter(formatter) handler.setLevel(logging.DEBUG) logger.addHandler(handler) try: job_kwargs = _get_call_args(job_spec, task_id) if return_index: job_kwargs.update({'task_id': task_id}) logger.debug('Beginning job\nkwargs:\t{}'.format( pprint.pformat(job_kwargs['metadata'], indent=2))) run_job(**job_kwargs) except (KeyboardInterrupt, SystemExit): try: logger.error('{} interupted, removing .lck file before exiting'.format(task_id)) os.remove(lock_file.format('lck')) except: pass raise except Exception as e: logger.error( 'Error encountered in job {} {} {}' .format(job_name, job_id, task_id), exc_info=e) with open(lock_file.format('err'), 'w+'): pass else: with open(lock_file.format('done'), 'w+'): pass finally: if os.path.exists(lock_file.format('lck')): os.remove(lock_file.format('lck')) logger.removeHandler(handler) @slurm.command() @click.option('--job_name', '-j', required=True) @click.option('--job_id', '-u', required=True) def status(job_name, job_id, num_jobs=None, logdir='log'): n = count_jobs(job_spec) locks = os.listdir('locks') count = int(math.log10(n)//1 + 1) locked = len([ i for i in range(n) if '{}-{}-{}.lck'.format(job_name, job_id, i) in locks]) done = len([ i for i in range(n) if '{}-{}-{}.done'.format(job_name, job_id, i) in locks]) err = len([ i for i in range(n) if '{}-{}-{}.err'.format(job_name, job_id, i) in locks]) print( ("\n".join(["{{:<15}}{{:{}d}}".format(count) for _ in range(4)])) .format( 'jobs:', n, 'done:', done, 'in progress:', locked, 'errored:', err)) @slurm.command() @click.option('--job_name', required=True) @click.option('--job_id', required=True) @click.option('--num_jobs', required=True, type=int) def wait(job_name, job_id, num_jobs=None): for task_id in range(num_jobs): while not os.path.exists( 'locks/{}-{}-{}.done' .format(job_name, job_id, task_id)): time.sleep(10) def run_interactive(task_id=0): job_kwargs = _get_call_args(job_spec, task_id) logger.debug('Beginning job\nkwargs:\t{}'.format( pprint.pformat(job_kwargs['metadata'], indent=2))) if return_index: job_kwargs.update({'task_id': task_id}) return run_job(interactive=True, **job_kwargs) slurm.run_interactive = run_interactive return slurm
the-stack_0_10138
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thrusday 08 Feb 2018 Testing suite for topopy Flow class @author: J. Vicente Perez @email: [email protected] """ import unittest import sys import numpy as np # Add to the path code folder and data folder sys.path.append("../") from topopy import Grid, Flow, Network class CreateNetwork(unittest.TestCase): def test_create_load(self): dem_files = ['tunez', 'tunez2', 'small25'] for filename in dem_files: fd = Flow("data/fd_{0}.tif".format(filename)) st = Network(fd, 1000) computed = [st.get_dims(), st.get_size(), st.get_ncells(), st.get_cellsize(), st.get_geotransform(), st.get_projection()] expected = [fd.get_dims(), fd.get_size(), fd.get_ncells(), fd.get_cellsize(), fd.get_geotransform(), fd.get_projection()] self.assertTrue(computed, expected) def test_streams(self): dem_files = ['tunez', 'tunez2', 'small25'] for filename in dem_files: fd = Flow("data/fd_{0}.tif".format(filename)) st = Network(fd, 1000) streams = st.get_streams() st01 = streams.read_array() st02 = Grid("data/str_{0}.tif".format(filename)).read_array() self.assertTrue(np.array_equal(st01, st02), True) def test_streampoi(self): dem_files = ['tunez', 'tunez2', 'small25'] for filename in dem_files: fd = Flow("data/fd_{0}.tif".format(filename)) st = Network(fd, 1000) kinds = ['heads', 'confluences', 'outlets'] for kind in kinds: poi = st.get_stream_poi(kind) rows = poi[0].reshape((poi[0].size, 1)) cols = poi[1].reshape((poi[1].size, 1)) comp_poi = np.append(rows, cols, axis=1) exp_poi = np.load("data/mlab_files/{0}_{1}.npy".format(filename, kind)) self.assertEqual(np.array_equal(comp_poi, exp_poi), True) def test_stream_segments(self): dem_files = ['tunez', 'tunez2', 'small25'] for filename in dem_files: fd = Flow("data/fd_{0}.tif".format(filename)) st = Network(fd, 1000) ssegments = st.get_stream_segments(False) esegments = Grid("data/mlab_files/{0}_segments.tif".format(filename)).read_array() self.assertTrue(np.array_equal(ssegments, esegments), True) def test_stream_order(self): dem_files = ['tunez', 'tunez2', 'small25'] for filename in dem_files: fd = Flow("data/fd_{0}.tif".format(filename)) st = Network(fd, 1000) for kind in ['strahler', 'shreeve']: exp_order = st.get_stream_order(kind = kind, asgrid=False) cmp_order = Grid("data/mlab_files/{0}_{1}.tif".format(filename, kind)).read_array() self.assertTrue(np.array_equal(exp_order, cmp_order), True) if __name__ == "__main__": unittest.main()
the-stack_0_10139
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys, glob sys.path.insert(0, './gen-py') lib_path = glob.glob('../../lib/py/build/lib.*') if lib_path: sys.path.insert(0, lib_path[0]) if sys.version_info[0] >= 3: xrange = range from ThriftTest import ThriftTest from ThriftTest.ttypes import * from thrift.transport import TTransport from thrift.transport import TSocket from thrift.protocol import TBinaryProtocol import unittest import time import socket import random from optparse import OptionParser class TimeoutTest(unittest.TestCase): def setUp(self): for i in xrange(50): try: # find a port we can use self.listen_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.port = random.randint(10000, 30000) self.listen_sock.bind(('localhost', self.port)) self.listen_sock.listen(5) break except Exception: if i == 49: raise def testConnectTimeout(self): starttime = time.time() try: leaky = [] for _ in xrange(100): socket = TSocket.TSocket('localhost', self.port) socket.setTimeout(10) socket.open() leaky.append(socket) except Exception: self.assert_(time.time() - starttime < 5.0) def testWriteTimeout(self): starttime = time.time() try: socket = TSocket.TSocket('localhost', self.port) socket.setTimeout(10) socket.open() self.listen_sock.accept() while True: socket.write("hi" * 100) except Exception: self.assert_(time.time() - starttime < 5.0) def suite(): suite = unittest.TestSuite() loader = unittest.TestLoader() suite.addTest(loader.loadTestsFromTestCase(TimeoutTest)) return suite if __name__ == "__main__": testRunner = unittest.TextTestRunner(verbosity=2) testRunner.run(suite())
the-stack_0_10141
import logging import os import tempfile from contextlib import contextmanager from typing import TYPE_CHECKING, Optional from funcy import cached_property, first from dvc import fs from dvc.exceptions import DvcException from dvc.utils import dict_sha256, relpath from dvc_data.transfer import _log_exceptions if TYPE_CHECKING: from dvc_objects.db import ObjectDB logger = logging.getLogger(__name__) class RunCacheNotFoundError(DvcException): def __init__(self, stage): super().__init__(f"No run-cache for {stage.addressing}") def _get_cache_hash(cache, key=False): from dvc_objects.meta import Meta if key: cache["outs"] = [out["path"] for out in cache.get("outs", [])] return dict_sha256(cache, exclude=[Meta.PARAM_SIZE, Meta.PARAM_NFILES]) def _can_hash(stage): if stage.is_callback or stage.always_changed: return False if not all([stage.cmd, stage.deps, stage.outs]): return False for dep in stage.deps: if not (dep.protocol == "local" and dep.def_path and dep.get_hash()): return False for out in stage.outs: if out.protocol != "local" or not out.def_path or out.persist: return False return True def _get_stage_hash(stage): from .serialize import to_single_stage_lockfile assert _can_hash(stage) return _get_cache_hash(to_single_stage_lockfile(stage), key=True) class StageCache: def __init__(self, repo): self.repo = repo @cached_property def cache_dir(self): return os.path.join(self.repo.odb.local.cache_dir, "runs") def _get_cache_dir(self, key): return os.path.join(self.cache_dir, key[:2], key) def _get_cache_path(self, key, value): return os.path.join(self._get_cache_dir(key), value) def _load_cache(self, key, value): from voluptuous import Invalid from dvc.schema import COMPILED_LOCK_FILE_STAGE_SCHEMA from dvc.utils.serialize import YAMLFileCorruptedError, load_yaml path = self._get_cache_path(key, value) try: return COMPILED_LOCK_FILE_STAGE_SCHEMA(load_yaml(path)) except FileNotFoundError: return None except (YAMLFileCorruptedError, Invalid): logger.warning("corrupted cache file '%s'.", relpath(path)) os.unlink(path) return None def _load(self, stage): key = _get_stage_hash(stage) if not key: return None cache_dir = self._get_cache_dir(key) if not os.path.exists(cache_dir): return None for value in os.listdir(cache_dir): cache = self._load_cache(key, value) if cache: return cache return None def _create_stage(self, cache, wdir=None): from . import PipelineStage, create_stage from .loader import StageLoader stage = create_stage( PipelineStage, repo=self.repo, path="dvc.yaml", cmd=cache["cmd"], wdir=wdir, outs=[out["path"] for out in cache["outs"]], external=True, ) StageLoader.fill_from_lock(stage, cache) return stage @contextmanager def _cache_type_copy(self): cache_types = self.repo.odb.local.cache_types self.repo.odb.local.cache_types = ["copy"] try: yield finally: self.repo.odb.local.cache_types = cache_types def _uncached_outs(self, stage, cache): # NOTE: using temporary stage to avoid accidentally modifying original # stage and to workaround `commit/checkout` not working for uncached # outputs. cached_stage = self._create_stage(cache, wdir=stage.wdir) outs_no_cache = [ out.def_path for out in stage.outs if not out.use_cache ] # NOTE: using copy link to make it look like a git-tracked file with self._cache_type_copy(): for out in cached_stage.outs: if out.def_path in outs_no_cache: yield out def save(self, stage): from .serialize import to_single_stage_lockfile if not _can_hash(stage): return cache_key = _get_stage_hash(stage) cache = to_single_stage_lockfile(stage) cache_value = _get_cache_hash(cache) existing_cache = self._load_cache(cache_key, cache_value) cache = existing_cache or cache for out in self._uncached_outs(stage, cache): out.commit() if existing_cache: return from dvc.schema import COMPILED_LOCK_FILE_STAGE_SCHEMA from dvc.utils.serialize import dump_yaml # sanity check COMPILED_LOCK_FILE_STAGE_SCHEMA(cache) path = self._get_cache_path(cache_key, cache_value) parent = self.repo.odb.local.fs.path.parent(path) self.repo.odb.local.makedirs(parent) tmp = tempfile.NamedTemporaryFile(delete=False, dir=parent).name assert os.path.exists(parent) assert os.path.isdir(parent) dump_yaml(tmp, cache) self.repo.odb.local.move(tmp, path) def restore(self, stage, run_cache=True, pull=False): from .serialize import to_single_stage_lockfile if not _can_hash(stage): raise RunCacheNotFoundError(stage) if ( not stage.changed_stage() and stage.deps_cached() and all(bool(out.hash_info) for out in stage.outs) ): cache = to_single_stage_lockfile(stage) else: if not run_cache: # backward compatibility raise RunCacheNotFoundError(stage) stage.save_deps() cache = self._load(stage) if not cache: raise RunCacheNotFoundError(stage) cached_stage = self._create_stage(cache, wdir=stage.wdir) if pull: for objs in cached_stage.get_used_objs().values(): self.repo.cloud.pull(objs) if not cached_stage.outs_cached(): raise RunCacheNotFoundError(stage) logger.info( "Stage '%s' is cached - skipping run, checking out outputs", stage.addressing, ) cached_stage.checkout() def transfer(self, from_odb, to_odb): from dvc.fs.callbacks import Callback from_fs = from_odb.fs to_fs = to_odb.fs func = _log_exceptions(fs.generic.copy) runs = from_fs.path.join(from_odb.fs_path, "runs") ret = [] if not from_fs.exists(runs): return ret for src in from_fs.find(runs): rel = from_fs.path.relpath(src, from_odb.fs_path) dst = to_fs.path.join(to_odb.fs_path, rel) key = to_fs.path.parent(dst) # check if any build cache already exists for this key # TODO: check if MaxKeys=1 or something like that applies # or otherwise this will take a lot of time! if to_fs.exists(key) and first(to_fs.find(key)): continue src_name = from_fs.path.name(src) parent_name = from_fs.path.name(from_fs.path.parent(src)) with Callback.as_tqdm_callback( desc=src_name, bytes=True, ) as cb: func(from_fs, src, to_fs, dst, callback=cb) ret.append((parent_name, src_name)) return ret def push(self, remote: Optional[str], odb: Optional["ObjectDB"] = None): dest_odb = odb or self.repo.cloud.get_remote_odb(remote) return self.transfer(self.repo.odb.local, dest_odb) def pull(self, remote: Optional[str], odb: Optional["ObjectDB"] = None): odb = odb or self.repo.cloud.get_remote_odb(remote) return self.transfer(odb, self.repo.odb.local) def get_used_objs(self, used_run_cache, *args, **kwargs): """Return used cache for the specified run-cached stages.""" from collections import defaultdict used_objs = defaultdict(set) for key, value in used_run_cache: entry = self._load_cache(key, value) if not entry: continue stage = self._create_stage(entry) for odb, objs in stage.get_used_objs(*args, **kwargs).items(): used_objs[odb].update(objs) return used_objs
the-stack_0_10142
# -*- coding: utf-8 -*- import getopt import sys import matplotlib.pyplot as plt from simulation import Simulation def main(argv): population_size = 20 individual_size = 8 delta = 0.005 cross_point_count = 1 verbose = False try: opts, args = getopt.getopt(argv, 'hvp:i:c:d:', [ 'help', 'verbose', 'population-size=', 'individual-size=', 'cross-points=', 'delta=' ]) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ('-h', '--help'): usage() sys.exit() if opt in ('-v', '--verbose'): verbose = True if opt in ('-p', '--population-size'): population_size = int(arg) if opt in ('-i', '--individual-size'): individual_size = int(arg) if opt in ('-c', '--cross-points'): cross_point_count = int(arg) if opt in ('-d', '--delta'): delta = float(arg) print("pop size = {}, ind size = {}, cross points = {}, delta = {}".format( population_size, individual_size, cross_point_count, delta)) simulation = Simulation( population_size, individual_size, cross_point_count, delta) simulation.run_simulation() if verbose: print(simulation.population) # Ploting x_values = range(0, len(simulation.global_fitness_records)) y_values = [ simulation.global_fitness_records, simulation.convergence_values ] labels = ["Average fitness score", "Convergence values"] for y_array, label in zip(y_values, labels): plt.plot(x_values, y_array, label=label) plt.legend() plt.show() def usage(): print(""" Usage : python genetic.py [OPTIONS] You can specify the following options : -v, --verbose: If specified the last population will be printed out in the terminal. -p, --population-size [integer]: The size of the population that will be use in the genetic algorithm. -u, --individual-size [integer] The number of gene of each individual member of the population. -d, --delta [float] A value for the convergence detection. The less this value will be, the longer the algorithm will take to stop but the greater the average fitness value will be. This value must be less than 1. """) if __name__ == "__main__": main(sys.argv[1:])
the-stack_0_10143
from proteus import * from twp_navier_stokes_p import * from dambreak_Ubbink_coarse import * if timeDiscretization=='vbdf': timeIntegration = VBDF timeOrder=2 stepController = Min_dt_cfl_controller elif timeDiscretization=='flcbdf': timeIntegration = FLCBDF #stepController = FLCBDF_controller_sys stepController = Min_dt_cfl_controller time_tol = 10.0*ns_nl_atol_res atol_u = {1:time_tol,2:time_tol,3:time_tol} rtol_u = {1:time_tol,2:time_tol,3:time_tol} else: timeIntegration = BackwardEuler_cfl stepController = Min_dt_cfl_controller femSpaces = {0:basis, 1:basis, 2:basis, 3:basis} massLumping = False numericalFluxType = None conservativeFlux = None numericalFluxType = RANS2P.NumericalFlux subgridError = RANS2P.SubgridError(coefficients,nd,lag=ns_lag_subgridError,hFactor=hFactor) shockCapturing = RANS2P.ShockCapturing(coefficients,nd,ns_shockCapturingFactor,lag=ns_lag_shockCapturing) fullNewtonFlag = True multilevelNonlinearSolver = Newton levelNonlinearSolver = Newton nonlinearSmoother = None linearSmoother = SimpleNavierStokes3D matrix = SparseMatrix if useOldPETSc: multilevelLinearSolver = PETSc levelLinearSolver = PETSc else: multilevelLinearSolver = KSP_petsc4py levelLinearSolver = KSP_petsc4py if useSuperlu: multilevelLinearSolver = LU levelLinearSolver = LU linear_solver_options_prefix = 'rans2p_' levelNonlinearSolverConvergenceTest = 'r' linearSolverConvergenceTest = 'r-true' tolFac = 0.0 linTolFac = 0.01 l_atol_res = 0.01*vof_nl_atol_res nl_atol_res = ns_nl_atol_res useEisenstatWalker = False maxNonlinearIts = 50 maxLineSearches = 0 conservativeFlux = {0:'pwl-bdm-opt'} #auxiliaryVariables=[pointGauges,lineGauges]
the-stack_0_10144
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Protocol for objects that are mixtures (probabilistic combinations).""" from typing import Any, Sequence, Tuple, Union import numpy as np from typing_extensions import Protocol from cirq.protocols.unitary import has_unitary from cirq.type_workarounds import NotImplementedType # This is a special indicator value used by the inverse method to determine # whether or not the caller provided a 'default' argument. RaiseTypeErrorIfNotProvided = ((0.0, []),) # type: Sequence[Tuple[float, Any]] class SupportsMixture(Protocol): """An object that may be describable as a probabilistic combination. """ def _mixture_(self) -> Union[ Sequence[Tuple[float, Any]], NotImplementedType]: """Return the probabilistic mixture. A mixture is described by an iterable of tuples of the form (probability of object, object) The probability components of the tuples must sum to 1.0 and be between 0 and 1 (inclusive). Returns: A tuple of (probability of object, object) """ def _has_mixture_(self) -> bool: """Whether this value has a mixture representation. This method is used by the global `cirq.has_mixture` method. If this method is not present, or returns NotImplemented, it will fallback to using _mixture_ with a default value, or False if neither exist. Returns: True if the value has a mixture representation, Falseotherwise. """ def mixture( val: Any, default: Any = RaiseTypeErrorIfNotProvided) -> Sequence[Tuple[float, Any]]: """Return a sequence of tuples representing a probabilistic combination. A mixture is described by an iterable of tuples of the form (probability of object, object) The probability components of the tuples must sum to 1.0 and be between 0 and 1 (inclusive). Args: val: The value whose mixture is being computed. default: A default value if val does not support mixture. Returns: An iterable of tuples of size 2. The first element of the tuple is a probability (between 0 and 1) and the second is the object that occurs with that probability in the mixture. The probabilities will sum to 1.0. """ getter = getattr(val, '_mixture_', None) result = NotImplemented if getter is None else getter() if result is not NotImplemented: return result if default is not RaiseTypeErrorIfNotProvided: return default if getter is None: raise TypeError( "object of type '{}' has no _mixture_ method.".format(type(val))) raise TypeError("object of type '{}' does have a _mixture_ method, " "but it returned NotImplemented.".format(type(val))) def has_mixture(val: Any) -> bool: """Returns whether the value has a mixture representation. Returns: If `val` has a `_has_mixture_` method and its result is not NotImplemented, that result is returned. Otherwise, if the value has a `_mixture_` method return True if that has a non-default value. Returns False if neither function exists. """ getter = getattr(val, '_has_mixture_', None) result = NotImplemented if getter is None else getter() if result is not NotImplemented: return result # No _has_mixture_ function, use _mixture_ instead return mixture(val, None) is not None def mixture_channel( val: Any, default: Any = RaiseTypeErrorIfNotProvided) -> Sequence[ Tuple[float, np.ndarray]]: """Return a sequence of tuples for a channel that is a mixture of unitaries. In contrast to `mixture` this method falls back to `unitary` if `_mixture_` is not implemented. A mixture channel is described by an iterable of tuples of the form (probability of unitary, unitary) The probability components of the tuples must sum to 1.0 and be between 0 and 1 (inclusive) and the `unitary` must be a unitary matrix. Args: val: The value whose mixture_channel is being computed. default: A default value if val does not support mixture. Returns: An iterable of tuples of size 2. The first element of the tuple is a probability (between 0 and 1) and the second is the unitary that occurs with that probability. The probabilities will sum to 1.0. """ mixture_getter = getattr(val, '_mixture_', None) result = NotImplemented if mixture_getter is None else mixture_getter() if result is not NotImplemented: return result unitary_getter = getattr(val, '_unitary_', None) result = NotImplemented if unitary_getter is None else unitary_getter() if result is not NotImplemented: return ((1.0, result),) if default is not RaiseTypeErrorIfNotProvided: return default if mixture_getter is None and unitary_getter is None: raise TypeError( "object of type '{}' has no _mixture_ or _unitary_ method." .format(type(val))) raise TypeError("object of type '{}' does have a _mixture_ or _unitary_ " "method, but it returned NotImplemented.".format(type(val))) def has_mixture_channel(val: Any) -> bool: """Returns whether the value has a mixture channel representation. In contrast to `has_mixture` this method falls back to checking whether the value has a unitary representation via `has_channel`. Returns: If `val` has a `_has_mixture_` method and its result is not NotImplemented, that result is returned. Otherwise, if `val` has a `_has_unitary_` method and its results is not NotImplemented, that result is returned. Otherwise, if the value has a `_mixture_` method that is not a non-default value, True is returned. Returns False if none of these functions. """ mixture_getter = getattr(val, '_has_mixture_', None) result = NotImplemented if mixture_getter is None else mixture_getter() if result is not NotImplemented: return result result = has_unitary(val) if result is not NotImplemented and result: return result # No _has_mixture_ or _has_unitary_ function, use _mixture_ instead. return mixture_channel(val, None) is not None def validate_mixture(supports_mixture: SupportsMixture): """Validates that the mixture's tuple are valid probabilities.""" mixture_tuple = mixture(supports_mixture, None) if mixture_tuple is None: raise TypeError('{}_mixture did not have a _mixture_ method'.format( supports_mixture)) def validate_probability(p, p_str): if p < 0: raise ValueError('{} was less than 0.'.format(p_str)) elif p > 1: raise ValueError('{} was greater than 1.'.format(p_str)) total = 0.0 for p, val in mixture_tuple: validate_probability(p, '{}\'s probability'.format(str(val))) total += p if not np.isclose(total, 1.0): raise ValueError('Sum of probabilities of a mixture was not 1.0')
the-stack_0_10146
"""Config flow for HVV integration.""" import logging from pygti.auth import GTI_DEFAULT_HOST from pygti.exceptions import CannotConnect, InvalidAuth import voluptuous as vol from homeassistant import config_entries from homeassistant.const import CONF_HOST, CONF_OFFSET, CONF_PASSWORD, CONF_USERNAME from homeassistant.core import callback from homeassistant.helpers import aiohttp_client import homeassistant.helpers.config_validation as cv from .const import ( # pylint:disable=unused-import CONF_FILTER, CONF_REAL_TIME, CONF_STATION, DOMAIN, ) from .hub import GTIHub _LOGGER = logging.getLogger(__name__) SCHEMA_STEP_USER = vol.Schema( { vol.Required(CONF_HOST, default=GTI_DEFAULT_HOST): str, vol.Required(CONF_USERNAME): str, vol.Required(CONF_PASSWORD): str, } ) SCHEMA_STEP_STATION = vol.Schema({vol.Required(CONF_STATION): str}) SCHEMA_STEP_OPTIONS = vol.Schema( { vol.Required(CONF_FILTER): vol.In([]), vol.Required(CONF_OFFSET, default=0): cv.positive_int, vol.Optional(CONF_REAL_TIME, default=True): bool, } ) class ConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow for HVV.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL def __init__(self): """Initialize component.""" self.hub = None self.data = None self.stations = {} async def async_step_user(self, user_input=None): """Handle the initial step.""" errors = {} if user_input is not None: session = aiohttp_client.async_get_clientsession(self.hass) self.hub = GTIHub( user_input[CONF_HOST], user_input[CONF_USERNAME], user_input[CONF_PASSWORD], session, ) try: response = await self.hub.authenticate() _LOGGER.debug("Init gti: %r", response) except CannotConnect: errors["base"] = "cannot_connect" except InvalidAuth: errors["base"] = "invalid_auth" if not errors: self.data = user_input return await self.async_step_station() return self.async_show_form( step_id="user", data_schema=SCHEMA_STEP_USER, errors=errors ) async def async_step_station(self, user_input=None): """Handle the step where the user inputs his/her station.""" if user_input is not None: errors = {} check_name = await self.hub.gti.checkName( {"theName": {"name": user_input[CONF_STATION]}, "maxList": 20} ) stations = check_name.get("results") self.stations = { f"{station.get('name')}": station for station in stations if station.get("type") == "STATION" } if not self.stations: errors["base"] = "no_results" return self.async_show_form( step_id="station", data_schema=SCHEMA_STEP_STATION, errors=errors ) # schema return await self.async_step_station_select() return self.async_show_form(step_id="station", data_schema=SCHEMA_STEP_STATION) async def async_step_station_select(self, user_input=None): """Handle the step where the user inputs his/her station.""" schema = vol.Schema({vol.Required(CONF_STATION): vol.In(list(self.stations))}) if user_input is None: return self.async_show_form(step_id="station_select", data_schema=schema) self.data.update({"station": self.stations[user_input[CONF_STATION]]}) title = self.data[CONF_STATION]["name"] return self.async_create_entry(title=title, data=self.data) @staticmethod @callback def async_get_options_flow(config_entry): """Get options flow.""" return OptionsFlowHandler(config_entry) class OptionsFlowHandler(config_entries.OptionsFlow): """Options flow handler.""" def __init__(self, config_entry): """Initialize HVV Departures options flow.""" self.config_entry = config_entry self.options = dict(config_entry.options) self.departure_filters = {} self.hub = None async def async_step_init(self, user_input=None): """Manage the options.""" errors = {} if not self.departure_filters: departure_list = {} self.hub = self.hass.data[DOMAIN][self.config_entry.entry_id] try: departure_list = await self.hub.gti.departureList( { "station": self.config_entry.data[CONF_STATION], "time": {"date": "heute", "time": "jetzt"}, "maxList": 5, "maxTimeOffset": 200, "useRealtime": True, "returnFilters": True, } ) except CannotConnect: errors["base"] = "cannot_connect" except InvalidAuth: errors["base"] = "invalid_auth" if not errors: self.departure_filters = { str(i): departure_filter for i, departure_filter in enumerate(departure_list.get("filter")) } if user_input is not None and not errors: options = { CONF_FILTER: [ self.departure_filters[x] for x in user_input[CONF_FILTER] ], CONF_OFFSET: user_input[CONF_OFFSET], CONF_REAL_TIME: user_input[CONF_REAL_TIME], } return self.async_create_entry(title="", data=options) if CONF_FILTER in self.config_entry.options: old_filter = [ i for (i, f) in self.departure_filters.items() if f in self.config_entry.options.get(CONF_FILTER) ] else: old_filter = [] return self.async_show_form( step_id="init", data_schema=vol.Schema( { vol.Optional(CONF_FILTER, default=old_filter): cv.multi_select( { key: f"{departure_filter['serviceName']}, {departure_filter['label']}" for key, departure_filter in self.departure_filters.items() } ), vol.Required( CONF_OFFSET, default=self.config_entry.options.get(CONF_OFFSET, 0), ): cv.positive_int, vol.Optional( CONF_REAL_TIME, default=self.config_entry.options.get(CONF_REAL_TIME, True), ): bool, } ), errors=errors, )
the-stack_0_10148
# Copyright 2019 The Shaderc Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the expect module.""" import expect from glslc_test_framework import TestStatus import re import unittest class TestStdoutMatchADotC(expect.StdoutMatch): expected_stdout = re.compile('a.c') class TestExpect(unittest.TestCase): def test_get_object_name(self): """Tests get_object_filename().""" source_and_object_names = [('a.vert', 'a.vert.spv'), ('b.frag', 'b.frag.spv'), ('c.tesc', 'c.tesc.spv'), ('d.tese', 'd.tese.spv'), ('e.geom', 'e.geom.spv'), ('f.comp', 'f.comp.spv'), ('file', 'file.spv'), ('file.', 'file.spv'), ('file.uk', 'file.spv'), ('file.vert.', 'file.vert.spv'), ('file.vert.bla', 'file.vert.spv')] actual_object_names = [ expect.get_object_filename(f[0]) for f in source_and_object_names ] expected_object_names = [f[1] for f in source_and_object_names] self.assertEqual(actual_object_names, expected_object_names) def test_stdout_match_regex_has_match(self): test = TestStdoutMatchADotC() status = TestStatus( test_manager=None, returncode=0, stdout=b'0abc1', stderr=None, directory=None, inputs=None, input_filenames=None) self.assertTrue(test.check_stdout_match(status)[0]) def test_stdout_match_regex_no_match(self): test = TestStdoutMatchADotC() status = TestStatus( test_manager=None, returncode=0, stdout=b'ab', stderr=None, directory=None, inputs=None, input_filenames=None) self.assertFalse(test.check_stdout_match(status)[0]) def test_stdout_match_regex_empty_stdout(self): test = TestStdoutMatchADotC() status = TestStatus( test_manager=None, returncode=0, stdout=b'', stderr=None, directory=None, inputs=None, input_filenames=None) self.assertFalse(test.check_stdout_match(status)[0])
the-stack_0_10152
from fuzzysearch import find_near_matches from . import x_execer, filepath, x_env import subprocess def f_search(keyword: str, paths: [str]): res = [] for p in paths: if find_near_matches(keyword, p, max_l_dist=0) != []: # ヒット res.append(p) return res def interactive(l: [str]): if len(l) <= 0: return None str_list = repr("\n".join(l)) tmpFile = x_env["ENHANCD_DIR"] / "tmp" filterCmd = filepath.split_filterlist(x_env["ENHANCD_FILTER"]) if filterCmd is None: return None x_execer.eval(f'echo {str_list} | {filterCmd} > {str(tmpFile)}') file = open(tmpFile, "r") select = str(file.read()) file.close() tmpFile.unlink() if select is None: return None return select.rstrip("\n")
the-stack_0_10153
import random import argparse from functools import partial import numpy as np import paddle import paddle.distributed as dist from paddle.io import DataLoader, DistributedBatchSampler, BatchSampler from paddlenlp.data import Pad # yapf: disable def parse_args(): parser = argparse.ArgumentParser(__doc__) parser.add_argument('--model_name_or_path', type=str, default='unified_transformer-12L-cn-luge', help='The path or shortcut name of the pre-trained model.') parser.add_argument('--save_dir', type=str, default='./checkpoints', help='The directory where the checkpoints will be saved.') parser.add_argument('--output_path', type=str, default='./predict.txt', help='The file path where the infer result will be saved.') parser.add_argument('--logging_steps', type=int, default=100, help='Log every X updates steps.') parser.add_argument('--save_steps', type=int, default=1000, help='Save checkpoint every X updates steps.') parser.add_argument('--seed', type=int, default=2021, help='Random seed for initialization.') parser.add_argument('--batch_size', type=int, default=16, help='Batch size per GPU/CPU for training.') parser.add_argument('--lr', type=float, default=5e-5, help='The initial learning rate.') parser.add_argument('--weight_decay', type=float, default=0.01, help='The weight decay for optimizer.') parser.add_argument('--epochs', type=int, default=3, help='Total number of training epochs to perform.') parser.add_argument('--warmup_steps', type=int, default=2500, help='The number of warmup steps.') parser.add_argument('--max_grad_norm', type=float, default=0.1, help='The max value of grad norm.') parser.add_argument('--max_seq_len', type=int, default=512, help='The maximum sequence length of training.') parser.add_argument('--max_response_len', type=int, default=128, help='The maximum response sequence length of training.') parser.add_argument('--max_knowledge_len', type=int, default=256, help='The maximum knowledge sequence length of training.') parser.add_argument('--min_dec_len', type=int, default=1, help='The minimum sequence length of generation.') parser.add_argument('--max_dec_len', type=int, default=64, help='The maximum sequence length of generation.') parser.add_argument('--num_samples', type=int, default=1, help='The decode numbers in generation.') parser.add_argument('--decode_strategy', type=str, default='sampling', help='The decode strategy in generation.') parser.add_argument('--top_k', type=int, default=0, help='The number of highest probability vocabulary tokens to keep for top-k sampling.') parser.add_argument('--temperature', type=float, default=1.0, help='The value used to module the next token probabilities.') parser.add_argument('--top_p', type=float, default=1.0, help='The cumulative probability for top-p sampling.') parser.add_argument('--num_beams', type=int, default=0, help='The number of beams for beam search.') parser.add_argument('--length_penalty', type=float, default=1.0, help='The exponential penalty to the sequence length for beam search.') parser.add_argument('--early_stopping', type=eval, default=False, help='Whether to stop the beam search when at least `num_beams` sentences are finished per batch or not.') parser.add_argument('--device', type=str, default='gpu', help='The device to select for training the model.') args = parser.parse_args() return args # yapf: enable def print_args(args): print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------------') def set_seed(seed): # Use the same data seed(for data shuffle) for all procs to guarantee data # consistency after sharding. random.seed(seed) np.random.seed(seed) # Maybe different op seeds(for dropout) for different procs is better. paddle.seed(seed + dist.get_rank()) def preprocess_examples(examples, mode='train'): """ For training set and dev set, treat each utterance of the first speaker as the response, and concatenate the goal, knowledge and the dialog’s previous utterances as the history. In this way, multiple history-response pairs are constructed. """ if mode == 'test': return examples new_examples = [] for example in examples: conversation = example['conversation'] for i in range(0, len(conversation), 2): new_examples.append({ 'goal': example['goal'], 'knowledge': example['knowledge'], 'history': conversation[:i], 'response': conversation[i] }) return new_examples def convert_example(example, tokenizer, max_seq_len=512, max_response_len=128, max_knowledge_len=256, mode='train'): """Convert all examples into necessary features.""" goal = example['goal'] knowledge = example['knowledge'] goal_knowledge = ' '.join([' '.join(lst) for lst in goal + knowledge]) if mode != 'test': tokenized_example = tokenizer.dialogue_encode( example['history'], response=example['response'], knowledge=goal_knowledge, task_type='knowledge', max_seq_len=max_seq_len, max_response_len=max_response_len, max_knowledge_len=max_knowledge_len, return_length=True) response_start = tokenized_example['input_ids'].index( tokenizer.cls_token_id, 1) response_end = tokenized_example['seq_len'] # Use to gather the logits corresponding to the labels during training tokenized_example['masked_positions'] = list( range(response_start, response_end - 1)) tokenized_example['labels'] = tokenized_example['input_ids'][ response_start + 1:response_end] return tokenized_example else: tokenized_example = tokenizer.dialogue_encode( example['history'], knowledge=goal_knowledge, task_type='knowledge', max_seq_len=max_seq_len, max_knowledge_len=max_knowledge_len, add_start_token_as_response=True) if 'response' in example: tokenized_example['response'] = example['response'] return tokenized_example def batchify_fn(batch_examples, pad_val, mode): def pad_mask(batch_attention_mask): batch_size = len(batch_attention_mask) max_len = max(map(len, batch_attention_mask)) attention_mask = np.ones( (batch_size, max_len, max_len), dtype='float32') * -1e9 for i, mask_data in enumerate(attention_mask): seq_len = len(batch_attention_mask[i]) mask_data[-seq_len:, -seq_len:] = np.array( batch_attention_mask[i], dtype='float32') # In order to ensure the correct broadcasting mechanism, expand one # dimension to the second dimension (n_head of Transformer). attention_mask = np.expand_dims(attention_mask, axis=1) return attention_mask pad_func = Pad(pad_val=pad_val, pad_right=False) input_ids = pad_func([example['input_ids'] for example in batch_examples]) token_type_ids = pad_func( [example['token_type_ids'] for example in batch_examples]) position_ids = pad_func( [example['position_ids'] for example in batch_examples]) attention_mask = pad_mask( [example['attention_mask'] for example in batch_examples]) if mode != 'test': max_len = max([example['seq_len'] for example in batch_examples]) masked_positions = np.concatenate([ np.array(example['masked_positions']) + (max_len - example['seq_len']) + i * max_len for i, example in enumerate(batch_examples) ]) labels = np.concatenate( [np.array(example['labels']) for example in batch_examples]) return input_ids, token_type_ids, position_ids, attention_mask, masked_positions, labels else: return input_ids, token_type_ids, position_ids, attention_mask def create_data_loader(dataset, tokenizer, args, mode): trans_func1 = partial(preprocess_examples, mode=mode) trans_func2 = partial( convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len, max_response_len=args.max_response_len, max_knowledge_len=args.max_knowledge_len, mode=mode) dataset = dataset.map(trans_func1, batched=True).map(trans_func2, lazy=True) if mode == 'train': batch_sampler = DistributedBatchSampler( dataset, batch_size=args.batch_size, shuffle=True) else: batch_sampler = BatchSampler( dataset, batch_size=args.batch_size, shuffle=False) collate_fn = partial(batchify_fn, pad_val=tokenizer.pad_token_id, mode=mode) data_loader = DataLoader( dataset, batch_sampler=batch_sampler, collate_fn=collate_fn, return_list=True) return dataset, data_loader def post_process_response(token_ids, tokenizer): """Post-process the decoded sequence. Truncate from the first <eos>.""" eos_pos = len(token_ids) for i, tok_id in enumerate(token_ids): if tok_id == tokenizer.sep_token_id: eos_pos = i break token_ids = token_ids[:eos_pos] tokens = tokenizer.convert_ids_to_tokens(token_ids) tokens = tokenizer.merge_subword(tokens) return token_ids, tokens def get_in_turn_repetition(pred, is_cn=False): """Get in-turn repetition.""" if len(pred) == 0: return 1.0 if isinstance(pred[0], str): pred = [tok.lower() for tok in pred] if is_cn: pred = "".join(pred) tri_grams = set() for i in range(len(pred) - 2): tri_gram = tuple(pred[i:i + 3]) if tri_gram in tri_grams: return True tri_grams.add(tri_gram) return False def select_response(ids, scores, tokenizer, max_dec_len=None, num_samples=1): ids = ids.numpy().tolist() scores = scores.numpy() if len(ids) != len(scores) or (len(ids) % num_samples) != 0: raise ValueError( "the length of `ids` is {}, but the `num_samples` is {}".format( len(ids), num_samples)) group = [] tmp = [] for pred, score in zip(ids, scores): pred_token_ids, pred_tokens = post_process_response(pred, tokenizer) num_token = len(pred_token_ids) response = " ".join(pred_tokens) in_turn_repetition = get_in_turn_repetition( pred_tokens, True) or get_in_turn_repetition(pred_token_ids) # not ending if max_dec_len is not None and num_token >= max_dec_len: score -= 1e3 elif in_turn_repetition: score -= 1e3 tmp.append([response, score]) if len(tmp) == num_samples: group.append(tmp) tmp = [] results = [] for preds in group: preds = sorted(preds, key=lambda x: -x[1]) results.append(preds[0][0]) return results
the-stack_0_10155
#!/usr/bin/python # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example creates a flash display creative. Requires a flash asset, backup image asset, and an advertiser ID as input. To get an advertiser ID, run get_advertisers.py. """ import argparse import sys from apiclient.http import MediaFileUpload from oauth2client import client import dfareporting_utils # Declare command-line flags. argparser = argparse.ArgumentParser(add_help=False) argparser.add_argument( 'profile_id', type=int, help='The ID of the profile to add a user role for') argparser.add_argument( 'advertiser_id', type=int, help='The ID of the advertiser to associate this creative with.') argparser.add_argument( 'size_id', type=int, help='The ID of the size of this creative.') argparser.add_argument( 'flash_asset_name', help='Suggested name to use for the uploaded creative asset.') argparser.add_argument( 'path_to_flash_asset_file', help='Path to the asset file to be uploaded.') argparser.add_argument( 'backup_image_name', help='Suggested name to use for the uploaded creative asset.') argparser.add_argument( 'path_to_backup_image_file', help='Path to the asset file to be uploaded.') def main(argv): # Retrieve command line arguments. flags = dfareporting_utils.get_arguments(argv, __doc__, parents=[argparser]) # Authenticate and construct service. service = dfareporting_utils.setup(flags) profile_id = flags.profile_id advertiser_id = flags.advertiser_id backup_image_name = flags.backup_image_name flash_asset_name = flags.flash_asset_name path_to_backup_image_file = flags.path_to_backup_image_file path_to_flash_asset_file = flags.path_to_flash_asset_file size_id = flags.size_id try: # Upload the flash asset flash_asset_id = upload_creative_asset( service, profile_id, advertiser_id, flash_asset_name, path_to_flash_asset_file, 'FLASH') # Upload the backup image asset backup_image_asset_id = upload_creative_asset( service, profile_id, advertiser_id, backup_image_name, path_to_backup_image_file, 'HTML_IMAGE') # Construct the creative structure. creative = { 'advertiserId': advertiser_id, 'backupImageClickThroughUrl': 'https://www.google.com', 'backupImageReportingLabel': 'backup_image_exit', 'backupImageTargetWindow': {'targetWindowOption': 'NEW_WINDOW'}, 'clickTags': [{ 'eventName': 'exit', 'name': 'click_tag', 'value': 'https://www.google.com' }], 'creativeAssets': [ {'assetIdentifier': flash_asset_id, 'role': 'PRIMARY', 'windowMode': 'TRANSPARENT'}, {'assetIdentifier': backup_image_asset_id, 'role': 'BACKUP_IMAGE'}, ], 'name': 'Test flash display creative', 'size': {'id': size_id}, 'type': 'ENHANCED_BANNER' } request = service.creatives().insert(profileId=profile_id, body=creative) # Execute request and print response. response = request.execute() print ('Created flash display creative with ID %s and name "%s".' % (response['id'], response['name'])) except client.AccessTokenRefreshError: print ('The credentials have been revoked or expired, please re-run the ' 'application to re-authorize') def upload_creative_asset( service, profile_id, advertiser_id, asset_name, path_to_asset_file, asset_type): """Uploads a creative asset and returns an assetIdentifier.""" # Construct the creative asset metadata creative_asset = { 'assetIdentifier': { 'name': asset_name, 'type': asset_type } } media = MediaFileUpload(path_to_asset_file) if not media.mimetype(): media = MediaFileUpload(path_to_asset_file, 'application/octet-stream') response = service.creativeAssets().insert( advertiserId=advertiser_id, profileId=profile_id, media_body=media, body=creative_asset).execute() return response['assetIdentifier'] if __name__ == '__main__': main(sys.argv)
the-stack_0_10157
# Copyright 2012 Red Hat, Inc. # Copyright 2013 IBM Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ gettext for openstack-common modules. Usual usage in an openstack.common module: from heatclient.openstack.common.gettextutils import _ """ import copy import functools import gettext import locale from logging import handlers import os import re from babel import localedata import six _localedir = os.environ.get('heatclient'.upper() + '_LOCALEDIR') _t = gettext.translation('heatclient', localedir=_localedir, fallback=True) # We use separate translation catalogs for each log level, so set up a # mapping between the log level name and the translator. The domain # for the log level is project_name + "-log-" + log_level so messages # for each level end up in their own catalog. _t_log_levels = dict( (level, gettext.translation('heatclient' + '-log-' + level, localedir=_localedir, fallback=True)) for level in ['info', 'warning', 'error', 'critical'] ) _AVAILABLE_LANGUAGES = {} USE_LAZY = False def enable_lazy(): """Convenience function for configuring _() to use lazy gettext Call this at the start of execution to enable the gettextutils._ function to use lazy gettext functionality. This is useful if your project is importing _ directly instead of using the gettextutils.install() way of importing the _ function. """ global USE_LAZY USE_LAZY = True def _(msg): if USE_LAZY: return Message(msg, domain='heatclient') else: if six.PY3: return _t.gettext(msg) return _t.ugettext(msg) def _log_translation(msg, level): """Build a single translation of a log message """ if USE_LAZY: return Message(msg, domain='heatclient' + '-log-' + level) else: translator = _t_log_levels[level] if six.PY3: return translator.gettext(msg) return translator.ugettext(msg) # Translators for log levels. # # The abbreviated names are meant to reflect the usual use of a short # name like '_'. The "L" is for "log" and the other letter comes from # the level. _LI = functools.partial(_log_translation, level='info') _LW = functools.partial(_log_translation, level='warning') _LE = functools.partial(_log_translation, level='error') _LC = functools.partial(_log_translation, level='critical') def install(domain, lazy=False): """Install a _() function using the given translation domain. Given a translation domain, install a _() function using gettext's install() function. The main difference from gettext.install() is that we allow overriding the default localedir (e.g. /usr/share/locale) using a translation-domain-specific environment variable (e.g. NOVA_LOCALEDIR). :param domain: the translation domain :param lazy: indicates whether or not to install the lazy _() function. The lazy _() introduces a way to do deferred translation of messages by installing a _ that builds Message objects, instead of strings, which can then be lazily translated into any available locale. """ if lazy: # NOTE(mrodden): Lazy gettext functionality. # # The following introduces a deferred way to do translations on # messages in OpenStack. We override the standard _() function # and % (format string) operation to build Message objects that can # later be translated when we have more information. def _lazy_gettext(msg): """Create and return a Message object. Lazy gettext function for a given domain, it is a factory method for a project/module to get a lazy gettext function for its own translation domain (i.e. nova, glance, cinder, etc.) Message encapsulates a string so that we can translate it later when needed. """ return Message(msg, domain=domain) from six import moves moves.builtins.__dict__['_'] = _lazy_gettext else: localedir = '%s_LOCALEDIR' % domain.upper() if six.PY3: gettext.install(domain, localedir=os.environ.get(localedir)) else: gettext.install(domain, localedir=os.environ.get(localedir), unicode=True) class Message(six.text_type): """A Message object is a unicode object that can be translated. Translation of Message is done explicitly using the translate() method. For all non-translation intents and purposes, a Message is simply unicode, and can be treated as such. """ def __new__(cls, msgid, msgtext=None, params=None, domain='heatclient', *args): """Create a new Message object. In order for translation to work gettext requires a message ID, this msgid will be used as the base unicode text. It is also possible for the msgid and the base unicode text to be different by passing the msgtext parameter. """ # If the base msgtext is not given, we use the default translation # of the msgid (which is in English) just in case the system locale is # not English, so that the base text will be in that locale by default. if not msgtext: msgtext = Message._translate_msgid(msgid, domain) # We want to initialize the parent unicode with the actual object that # would have been plain unicode if 'Message' was not enabled. msg = super(Message, cls).__new__(cls, msgtext) msg.msgid = msgid msg.domain = domain msg.params = params return msg def translate(self, desired_locale=None): """Translate this message to the desired locale. :param desired_locale: The desired locale to translate the message to, if no locale is provided the message will be translated to the system's default locale. :returns: the translated message in unicode """ translated_message = Message._translate_msgid(self.msgid, self.domain, desired_locale) if self.params is None: # No need for more translation return translated_message # This Message object may have been formatted with one or more # Message objects as substitution arguments, given either as a single # argument, part of a tuple, or as one or more values in a dictionary. # When translating this Message we need to translate those Messages too translated_params = _translate_args(self.params, desired_locale) translated_message = translated_message % translated_params return translated_message @staticmethod def _translate_msgid(msgid, domain, desired_locale=None): if not desired_locale: system_locale = locale.getdefaultlocale() # If the system locale is not available to the runtime use English if not system_locale[0]: desired_locale = 'en_US' else: desired_locale = system_locale[0] locale_dir = os.environ.get(domain.upper() + '_LOCALEDIR') lang = gettext.translation(domain, localedir=locale_dir, languages=[desired_locale], fallback=True) if six.PY3: translator = lang.gettext else: translator = lang.ugettext translated_message = translator(msgid) return translated_message def __mod__(self, other): # When we mod a Message we want the actual operation to be performed # by the parent class (i.e. unicode()), the only thing we do here is # save the original msgid and the parameters in case of a translation params = self._sanitize_mod_params(other) unicode_mod = super(Message, self).__mod__(params) modded = Message(self.msgid, msgtext=unicode_mod, params=params, domain=self.domain) return modded def _sanitize_mod_params(self, other): """Sanitize the object being modded with this Message. - Add support for modding 'None' so translation supports it - Trim the modded object, which can be a large dictionary, to only those keys that would actually be used in a translation - Snapshot the object being modded, in case the message is translated, it will be used as it was when the Message was created """ if other is None: params = (other,) elif isinstance(other, dict): params = self._trim_dictionary_parameters(other) else: params = self._copy_param(other) return params def _trim_dictionary_parameters(self, dict_param): """Return a dict that only has matching entries in the msgid.""" # NOTE(luisg): Here we trim down the dictionary passed as parameters # to avoid carrying a lot of unnecessary weight around in the message # object, for example if someone passes in Message() % locals() but # only some params are used, and additionally we prevent errors for # non-deepcopyable objects by unicoding() them. # Look for %(param) keys in msgid; # Skip %% and deal with the case where % is first character on the line keys = re.findall('(?:[^%]|^)?%\((\w*)\)[a-z]', self.msgid) # If we don't find any %(param) keys but have a %s if not keys and re.findall('(?:[^%]|^)%[a-z]', self.msgid): # Apparently the full dictionary is the parameter params = self._copy_param(dict_param) else: params = {} # Save our existing parameters as defaults to protect # ourselves from losing values if we are called through an # (erroneous) chain that builds a valid Message with # arguments, and then does something like "msg % kwds" # where kwds is an empty dictionary. src = {} if isinstance(self.params, dict): src.update(self.params) src.update(dict_param) for key in keys: params[key] = self._copy_param(src[key]) return params def _copy_param(self, param): try: return copy.deepcopy(param) except TypeError: # Fallback to casting to unicode this will handle the # python code-like objects that can't be deep-copied return six.text_type(param) def __add__(self, other): msg = _('Message objects do not support addition.') raise TypeError(msg) def __radd__(self, other): return self.__add__(other) def __str__(self): # NOTE(luisg): Logging in python 2.6 tries to str() log records, # and it expects specifically a UnicodeError in order to proceed. msg = _('Message objects do not support str() because they may ' 'contain non-ascii characters. ' 'Please use unicode() or translate() instead.') raise UnicodeError(msg) def get_available_languages(domain): """Lists the available languages for the given translation domain. :param domain: the domain to get languages for """ if domain in _AVAILABLE_LANGUAGES: return copy.copy(_AVAILABLE_LANGUAGES[domain]) localedir = '%s_LOCALEDIR' % domain.upper() find = lambda x: gettext.find(domain, localedir=os.environ.get(localedir), languages=[x]) # NOTE(mrodden): en_US should always be available (and first in case # order matters) since our in-line message strings are en_US language_list = ['en_US'] # NOTE(luisg): Babel <1.0 used a function called list(), which was # renamed to locale_identifiers() in >=1.0, the requirements master list # requires >=0.9.6, uncapped, so defensively work with both. We can remove # this check when the master list updates to >=1.0, and update all projects list_identifiers = (getattr(localedata, 'list', None) or getattr(localedata, 'locale_identifiers')) locale_identifiers = list_identifiers() for i in locale_identifiers: if find(i) is not None: language_list.append(i) # NOTE(luisg): Babel>=1.0,<1.3 has a bug where some OpenStack supported # locales (e.g. 'zh_CN', and 'zh_TW') aren't supported even though they # are perfectly legitimate locales: # https://github.com/mitsuhiko/babel/issues/37 # In Babel 1.3 they fixed the bug and they support these locales, but # they are still not explicitly "listed" by locale_identifiers(). # That is why we add the locales here explicitly if necessary so that # they are listed as supported. aliases = {'zh': 'zh_CN', 'zh_Hant_HK': 'zh_HK', 'zh_Hant': 'zh_TW', 'fil': 'tl_PH'} for (locale, alias) in six.iteritems(aliases): if locale in language_list and alias not in language_list: language_list.append(alias) _AVAILABLE_LANGUAGES[domain] = language_list return copy.copy(language_list) def translate(obj, desired_locale=None): """Gets the translated unicode representation of the given object. If the object is not translatable it is returned as-is. If the locale is None the object is translated to the system locale. :param obj: the object to translate :param desired_locale: the locale to translate the message to, if None the default system locale will be used :returns: the translated object in unicode, or the original object if it could not be translated """ message = obj if not isinstance(message, Message): # If the object to translate is not already translatable, # let's first get its unicode representation message = six.text_type(obj) if isinstance(message, Message): # Even after unicoding() we still need to check if we are # running with translatable unicode before translating return message.translate(desired_locale) return obj def _translate_args(args, desired_locale=None): """Translates all the translatable elements of the given arguments object. This method is used for translating the translatable values in method arguments which include values of tuples or dictionaries. If the object is not a tuple or a dictionary the object itself is translated if it is translatable. If the locale is None the object is translated to the system locale. :param args: the args to translate :param desired_locale: the locale to translate the args to, if None the default system locale will be used :returns: a new args object with the translated contents of the original """ if isinstance(args, tuple): return tuple(translate(v, desired_locale) for v in args) if isinstance(args, dict): translated_dict = {} for (k, v) in six.iteritems(args): translated_v = translate(v, desired_locale) translated_dict[k] = translated_v return translated_dict return translate(args, desired_locale) class TranslationHandler(handlers.MemoryHandler): """Handler that translates records before logging them. The TranslationHandler takes a locale and a target logging.Handler object to forward LogRecord objects to after translating them. This handler depends on Message objects being logged, instead of regular strings. The handler can be configured declaratively in the logging.conf as follows: [handlers] keys = translatedlog, translator [handler_translatedlog] class = handlers.WatchedFileHandler args = ('/var/log/api-localized.log',) formatter = context [handler_translator] class = openstack.common.log.TranslationHandler target = translatedlog args = ('zh_CN',) If the specified locale is not available in the system, the handler will log in the default locale. """ def __init__(self, locale=None, target=None): """Initialize a TranslationHandler :param locale: locale to use for translating messages :param target: logging.Handler object to forward LogRecord objects to after translation """ # NOTE(luisg): In order to allow this handler to be a wrapper for # other handlers, such as a FileHandler, and still be able to # configure it using logging.conf, this handler has to extend # MemoryHandler because only the MemoryHandlers' logging.conf # parsing is implemented such that it accepts a target handler. handlers.MemoryHandler.__init__(self, capacity=0, target=target) self.locale = locale def setFormatter(self, fmt): self.target.setFormatter(fmt) def emit(self, record): # We save the message from the original record to restore it # after translation, so other handlers are not affected by this original_msg = record.msg original_args = record.args try: self._translate_and_log_record(record) finally: record.msg = original_msg record.args = original_args def _translate_and_log_record(self, record): record.msg = translate(record.msg, self.locale) # In addition to translating the message, we also need to translate # arguments that were passed to the log method that were not part # of the main message e.g., log.info(_('Some message %s'), this_one)) record.args = _translate_args(record.args, self.locale) self.target.emit(record)
the-stack_0_10158
#!/usr/bin/env python import sys import os.path from os.path import join as PJ import re import json import numpy as np from tqdm import tqdm import igraph as ig import louvain import math import jgf import graph_tool as gt; import graph_tool.inference as gtInference; # import infomap def isFloat(value): if(value is None): return False try: numericValue = float(value) return np.isfinite(numericValue) except ValueError: return False class NumpyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): ret = int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): ret = float(obj) elif isinstance(obj, (np.ndarray,)): ret = obj.tolist() else: ret = json.JSONEncoder.default(self, obj) if isinstance(ret, (float)): if math.isnan(ret): ret = None if isinstance(ret, (bytes, bytearray)): ret = ret.decode("utf-8") return ret results = {"errors": [], "warnings": [], "brainlife": [], "datatype_tags": [], "tags": []} def warning(msg): global results results['warnings'].append(msg) #results['brainlife'].append({"type": "warning", "msg": msg}) print(msg) def error(msg): global results results['errors'].append(msg) #results['brainlife'].append({"type": "error", "msg": msg}) print(msg) def exitApp(): global results with open("product.json", "w") as fp: json.dump(results, fp, cls=NumpyEncoder) if len(results["errors"]) > 0: sys.exit(1) else: sys.exit() def exitAppWithError(msg): global results results['errors'].append(msg) #results['brainlife'].append({"type": "error", "msg": msg}) print(msg) exitApp() def louvain_find_partition_multiplex(graphs, partition_type,layer_weights=None, seed=None, **kwargs): """ Detect communities for multiplex graphs. Each graph should be defined on the same set of vertices, only the edges may differ for different graphs. See :func:`Optimiser.optimise_partition_multiplex` for a more detailed explanation. Parameters ---------- graphs : list of :class:`ig.Graph` List of :class:`louvain.VertexPartition` layers to optimise. partition_type : type of :class:`MutableVertexPartition` The type of partition to use for optimisation (identical for all graphs). seed : int Seed for the random number generator. By default uses a random seed if nothing is specified. **kwargs Remaining keyword arguments, passed on to constructor of ``partition_type``. Returns ------- list of int membership of nodes. float Improvement in quality of combined partitions, see :func:`Optimiser.optimise_partition_multiplex`. Notes ----- We don't return a partition in this case because a partition is always defined on a single graph. We therefore simply return the membership (which is the same for all layers). See Also -------- :func:`Optimiser.optimise_partition_multiplex` :func:`slices_to_layers` Examples -------- >>> n = 100 >>> G_1 = ig.Graph.Lattice([n], 1) >>> G_2 = ig.Graph.Lattice([n], 1) >>> membership, improvement = louvain.find_partition_multiplex([G_1, G_2], ... louvain.ModularityVertexPartition) """ n_layers = len(graphs) partitions = [] if(layer_weights is None): layer_weights = [1]*n_layers for graph in graphs: partitions.append(partition_type(graph, **kwargs)) optimiser = louvain.Optimiser() if (not seed is None): optimiser.set_rng_seed(seed) improvement = optimiser.optimise_partition_multiplex(partitions, layer_weights) return partitions[0].membership, improvement def SBMMinimizeMembership(graphs,layerWeights=None, weightMode = "real-normal"): layered = (len(graphs)>1) graph = graphs[0] vertexCount = graph.vcount() g = gt.Graph(directed=graph.is_directed()) for _ in range(vertexCount): g.add_vertex() weighted = "weights" in graph.edge_attributes() if(weighted): weightsProperty = g.new_edge_property("double") if(layered): layerProperty = g.new_edge_property("int32_t") for graphIndex, graph in enumerate(graphs): if(weighted): weightMultiplier = 1 if(layered and layerWeights is not None): weightMultiplier = layerWeights[graphIndex] for edge in graph.es: gedge = g.add_edge(edge.source,edge.target) if(weighted): weight = weightMultiplier*edge["weight"] weightsProperty[gedge] = weight if(layered): layerProperty[gedge] = graphIndex if(weighted): g.edge_properties["weight"] = weightsProperty if(layered): g.edge_properties["layer"] = layerProperty state_args = {} if(weighted): state_args["recs"] = [g.ep.weight] state_args["rec_types"] = [weightMode] if(layered): state_args["ec"] = g.ep.layer state_args["layers"] = True # print(state_args) state = gtInference.minimize.minimize_blockmodel_dl(g,deg_corr=True, layers=layered, state_args=state_args); return list(state.get_blocks()) # def infomapMembership(g, parameters): # vertexCount = g.vcount() # infomapSimple = infomap.Infomap(parameters) # infomapSimple.setVerbosity(0) # infoNetwork = infomapSimple.network() # for nodeIndex in range(0,vertexCount): # infoNetwork.addNode(nodeIndex) # weighted = "weights" in g.edge_attributes() # for edge in edges: # weight = 1.0 # if(weighted): # weight = edge["weight"]; # infoNetwork.addLink(edge.source, edge.target) # infomapSimple.run() # membership = [0]*vertexCount # # print("Result") # # print("\n#node module") # for node in infomapSimple.iterTree(): # if node.isLeaf(): # # print((node.physicalId,node.moduleIndex())); # membership[node.physicalId] = node.moduleIndex(); # return membership; configFilename = "config.json" argCount = len(sys.argv) if(argCount > 1): configFilename = sys.argv[1] outputDirectory = "output" outputFile = PJ(outputDirectory,"network.json.gz") if(not os.path.exists(outputDirectory)): os.makedirs(outputDirectory) with open(configFilename, "r") as fd: config = json.load(fd) communiMethod = "louvain" infomap_trials = 10 louvain_resolution = 1.0 louvain_quality_function = "modularity" assymetricNegativeWeights = True if("method" in config): communiMethod = config["method"].lower() if("louvain-quality-function" in config and config["louvain-quality-function"]): louvain_quality_function = config["louvain-quality-function"].lower() if("louvain-resolution" in config and isFloat(config["louvain-resolution"])): louvain_resolution = float(config["louvain-resolution"]) if("infomap-trials" in config and config["infomap-trials"]): infomap_trials = int(config["infomap-trials"]) if("assymetric-negative" in config): assymetricNegativeWeights = config["assymetric-negative"] networks = jgf.igraph.load(config["network"], compressed=True) outputNetworks = [] for network in tqdm(networks): weighted = "weight" in network.edge_attributes() layered = False if(weighted): signed = np.any(np.array(network.es["weight"])<0) if(signed): network_pos = network.subgraph_edges(network.es.select(weight_gt = 0), delete_vertices=False) network_neg = network.subgraph_edges(network.es.select(weight_lt = 0), delete_vertices=False) network_neg.es['weight'] = [-w for w in network_neg.es['weight']] layerNetworks = [network_pos,network_neg] layerWeights = [1,-1] layerNames = ["positive","negative"] layered=True if("layer" in network.edge_attributes()): if("edge-layer-weights" in network.attributes()): layerNames = list(network["edge-layer-weights"].keys()) layerWeights = list(network["edge-layer-weights"].values()) else: layerNames = list(set(network.es["layer"])) layerWeights = [1]*len(layerNames) layerNetworks = [] for layerIndex,layerName in enumerate(layerNames): layerNetwork = network.subgraph_edges(network.es.select(layer_eq = layerName), delete_vertices=False) layerNetworks.append(layerNetwork) layered = True if(communiMethod=="louvain"): # optimiser = louvain.Optimiser() # diff = optimiser.optimise_partition_multiplex( # [part_pos, part_neg] hasResolution = False if(layered): modularityWeights = layerWeights partitionFunction = louvain.ModularityVertexPartition if(louvain_quality_function=="modularity"): partitionFunction = louvain.ModularityVertexPartition if(layered and assymetricNegativeWeights): layerSizes = [g.ecount() for g in layerNetworks] allCount = np.sum(layerSizes) modularityWeights = [layerWeights[layerIndex]*layerSizes[layerIndex]/allCount for layerIndex in range(len(layerWeights))] modularityWeights[0] = 1.0 elif(louvain_quality_function=="rbconfiguration"): partitionFunction = louvain.RBConfigurationVertexPartition hasResolution = True if(layered and assymetricNegativeWeights): layerSizes = [g.ecount() for g in layerNetworks] allCount = np.sum(layerSizes) modularityWeights = [layerWeights[layerIndex]/allCount for layerIndex in range(len(layerWeights))] modularityWeights[0] = 1.0/layerWeights[0] elif(louvain_quality_function=="rber"): partitionFunction = louvain.RBERVertexPartition hasResolution = True if(layered and assymetricNegativeWeights): layerSizes = [g.ecount() for g in layerNetworks] allCount = np.sum(layerSizes) modularityWeights = [layerWeights[layerIndex]/allCount for layerIndex in range(len(layerWeights))] modularityWeights[0] = 1.0/layerWeights[0] elif(louvain_quality_function=="cpm"): partitionFunction = louvain.CPMVertexPartition hasResolution = True if(layered and assymetricNegativeWeights): layerSizes = [g.ecount() for g in layerNetworks] allCount = np.sum(layerSizes) modularityWeights = [layerWeights[layerIndex]/allCount for layerIndex in range(len(layerWeights))] modularityWeights[0] = 1.0/layerWeights[0] elif(louvain_quality_function=="significance"): partitionFunction = louvain.SignificanceVertexPartition hasResolution = False if(weighted): exitAppWithError("Significance quality does not work for weighted networks") elif(louvain_quality_function=="surprise"): partitionFunction = louvain.SurpriseVertexPartition hasResolution = False if(layered and assymetricNegativeWeights): layerSizes = [g.ecount() for g in layerNetworks] allCount = np.sum(layerSizes) modularityWeights = [layerWeights[layerIndex]/allCount for layerIndex in range(len(layerWeights))] modularityWeights[0] = 1.0/layerWeights[0] else: exitAppWithError("Invalid louvain method.") if(layered): if(hasResolution): membership, improv = louvain_find_partition_multiplex(layerNetworks,partitionFunction, layer_weights=modularityWeights,resolution_parameter=louvain_resolution,weights="weight") else: membership, improv = louvain_find_partition_multiplex(layerNetworks,partitionFunction, layer_weights=modularityWeights,weights="weight") else: if(hasResolution): membership = louvain.find_partition(network,partitionFunction, weights="weight",resolution_parameter=louvain_resolution).membership else: membership = louvain.find_partition(network,partitionFunction, weights="weight").membership elif(communiMethod=="infomap"): if(signed): exitAppWithError("Infomap does not work for negative weights.") else: membership = network.community_infomap(edge_weights="weight",trials=infomap_trials).membership elif(communiMethod=="sbm"): if(layered): membership = SBMMinimizeMembership(layerNetworks,layerWeights = layerWeights) else: membership = SBMMinimizeMembership([network]) else: exitAppWithError("Invalid community detection method (%s)."%communiMethod) network.vs["Community"] = membership outputNetworks.append(network) jgf.igraph.save(outputNetworks, outputFile, compressed=True) exitApp()
the-stack_0_10159
#!/usr/bin/env python # # Copyright (c) 2009-2013, Luke Maurits <[email protected]> # All rights reserved. # With contributions from: # * Chris Clark # * Klein Stephane # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * The name of the author may not be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. __version__ = '0.7.2' import copy import csv import random import re import sys import textwrap import unicodedata # from ax.utils.six.moves import zip, map py3k = sys.version_info[0] >= 3 if py3k: str = str str = str uni_chr = chr from html.parser import HTMLParser else: uni_chr = chr from html.parser import HTMLParser if py3k and sys.version_info[1] >= 2: from html import escape else: from cgi import escape # hrule styles FRAME = 0 ALL = 1 NONE = 2 HEADER = 3 # Table styles DEFAULT = 10 MSWORD_FRIENDLY = 11 PLAIN_COLUMNS = 12 RANDOM = 20 _re = re.compile('\\033\\[[0-9;]*m') def _get_size(text): lines = text.split('\n') height = len(lines) width = max([_str_block_width(line) for line in lines]) return (width, height) class PrettyTable(object): def __init__(self, field_names=None, **kwargs): """Return a new PrettyTable instance Arguments: encoding - Unicode encoding scheme used to decode any encoded input field_names - list or tuple of field names fields - list or tuple of field names to include in displays start - index of first data row to include in output end - index of last data row to include in output PLUS ONE (list slice style) header - print a header showing field names (True or False) header_style - stylisation to apply to field names in header ("cap", "title", "upper", "lower" or None) border - print a border around the table (True or False) hrules - controls printing of horizontal rules after rows. Allowed values: FRAME, HEADER, ALL, NONE vrules - controls printing of vertical rules between columns. Allowed values: FRAME, ALL, NONE int_format - controls formatting of integer data float_format - controls formatting of floating point data padding_width - number of spaces on either side of column data (only used if left and right paddings are None) left_padding_width - number of spaces on left hand side of column data right_padding_width - number of spaces on right hand side of column data vertical_char - single character string used to draw vertical lines horizontal_char - single character string used to draw horizontal lines junction_char - single character string used to draw line junctions sortby - name of field to sort rows by sort_key - sorting key function, applied to data points before sorting valign - default valign for each row (None, "t", "m" or "b") reversesort - True or False to sort in descending or ascending order""" self.encoding = kwargs.get('encoding', 'UTF-8') # Data self._field_names = [] self._align = {} self._valign = {} self._max_width = {} self._rows = [] if field_names: self.field_names = field_names else: self._widths = [] # Options self._options = 'start end fields header border sortby reversesort sort_key attributes format hrules vrules'.split() self._options.extend( 'int_format float_format padding_width left_padding_width right_padding_width'.split() ) self._options.extend( 'vertical_char horizontal_char junction_char header_style valign xhtml print_empty'.split() ) for option in self._options: if option in kwargs: self._validate_option(option, kwargs[option]) else: kwargs[option] = None self._start = kwargs['start'] or 0 self._end = kwargs['end'] or None self._fields = kwargs['fields'] or None if kwargs['header'] in (True, False): self._header = kwargs['header'] else: self._header = True self._header_style = kwargs['header_style'] or None if kwargs['border'] in (True, False): self._border = kwargs['border'] else: self._border = True self._hrules = kwargs['hrules'] or FRAME self._vrules = kwargs['vrules'] or ALL self._sortby = kwargs['sortby'] or None if kwargs['reversesort'] in (True, False): self._reversesort = kwargs['reversesort'] else: self._reversesort = False self._sort_key = kwargs['sort_key'] or (lambda x: x) self._int_format = kwargs['int_format'] or {} self._float_format = kwargs['float_format'] or {} self._padding_width = kwargs['padding_width'] or 1 self._left_padding_width = kwargs['left_padding_width'] or None self._right_padding_width = kwargs['right_padding_width'] or None self._vertical_char = kwargs['vertical_char'] or self._unicode('|') self._horizontal_char = kwargs['horizontal_char'] or self._unicode('-') self._junction_char = kwargs['junction_char'] or self._unicode('+') if kwargs['print_empty'] in (True, False): self._print_empty = kwargs['print_empty'] else: self._print_empty = True self._format = kwargs['format'] or False self._xhtml = kwargs['xhtml'] or False self._attributes = kwargs['attributes'] or {} def _unicode(self, value): if not isinstance(value, str): value = str(value) if not isinstance(value, str): value = str(value, self.encoding, 'strict') return value def _justify(self, text, width, align): excess = width - _str_block_width(text) if align == 'l': return text + excess * ' ' elif align == 'r': return excess * ' ' + text else: if excess % 2: # Uneven padding # Put more space on right if text is of odd length... if _str_block_width(text) % 2: return (excess // 2) * ' ' + text + (excess // 2 + 1) * ' ' # and more space on left if text is of even length else: return (excess // 2 + 1) * ' ' + text + (excess // 2) * ' ' # Why distribute extra space this way? To match the behaviour of # the inbuilt str.center() method. else: # Equal padding on either side return (excess // 2) * ' ' + text + (excess // 2) * ' ' def __getattr__(self, name): if name == 'rowcount': return len(self._rows) elif name == 'colcount': if self._field_names: return len(self._field_names) elif self._rows: return len(self._rows[0]) else: return 0 else: raise AttributeError(name) def __getitem__(self, index): new = PrettyTable() new.field_names = self.field_names for attr in self._options: setattr(new, '_' + attr, getattr(self, '_' + attr)) setattr(new, '_align', getattr(self, '_align')) if isinstance(index, slice): for row in self._rows[index]: new.add_row(row) elif isinstance(index, int): new.add_row(self._rows[index]) else: raise Exception( 'Index %s is invalid, must be an integer or slice' % str(index) ) return new if py3k: def __str__(self): return self.__unicode__() else: def __str__(self): return self.__unicode__().encode(self.encoding) def __unicode__(self): return self.get_string() ############################## # ATTRIBUTE VALIDATORS # ############################## # The method _validate_option is all that should be used elsewhere in the code base to validate options. # It will call the appropriate validation method for that option. The individual validation methods should # never need to be called directly (although nothing bad will happen if they *are*). # Validation happens in TWO places. # Firstly, in the property setters defined in the ATTRIBUTE MANAGMENT section. # Secondly, in the _get_options method, where keyword arguments are mixed with persistent settings def _validate_option(self, option, val): if option in ('field_names'): self._validate_field_names(val) elif option in ( 'start', 'end', 'max_width', 'padding_width', 'left_padding_width', 'right_padding_width', 'format', ): self._validate_nonnegative_int(option, val) elif option in ('sortby'): self._validate_field_name(option, val) elif option in ('sort_key'): self._validate_function(option, val) elif option in ('hrules'): self._validate_hrules(option, val) elif option in ('vrules'): self._validate_vrules(option, val) elif option in ('fields'): self._validate_all_field_names(option, val) elif option in ('header', 'border', 'reversesort', 'xhtml', 'print_empty'): self._validate_true_or_false(option, val) elif option in ('header_style'): self._validate_header_style(val) elif option in ('int_format'): self._validate_int_format(option, val) elif option in ('float_format'): self._validate_float_format(option, val) elif option in ('vertical_char', 'horizontal_char', 'junction_char'): self._validate_single_char(option, val) elif option in ('attributes'): self._validate_attributes(option, val) else: raise Exception('Unrecognised option: %s!' % option) def _validate_field_names(self, val): # Check for appropriate length if self._field_names: try: assert len(val) == len(self._field_names) except AssertionError: raise Exception( 'Field name list has incorrect number of values, (actual) %d!=%d (expected)' % (len(val), len(self._field_names)) ) if self._rows: try: assert len(val) == len(self._rows[0]) except AssertionError: raise Exception( 'Field name list has incorrect number of values, (actual) %d!=%d (expected)' % (len(val), len(self._rows[0])) ) # Check for uniqueness try: assert len(val) == len(set(val)) except AssertionError: raise Exception('Field names must be unique!') def _validate_header_style(self, val): try: assert val in ('cap', 'title', 'upper', 'lower', None) except AssertionError: raise Exception( 'Invalid header style, use cap, title, upper, lower or None!' ) def _validate_align(self, val): try: assert val in ['l', 'c', 'r'] except AssertionError: raise Exception('Alignment %s is invalid, use l, c or r!' % val) def _validate_valign(self, val): try: assert val in ['t', 'm', 'b', None] except AssertionError: raise Exception('Alignment %s is invalid, use t, m, b or None!' % val) def _validate_nonnegative_int(self, name, val): try: assert int(val) >= 0 except AssertionError: raise Exception('Invalid value for %s: %s!' % (name, self._unicode(val))) def _validate_true_or_false(self, name, val): try: assert val in (True, False) except AssertionError: raise Exception('Invalid value for %s! Must be True or False.' % name) def _validate_int_format(self, name, val): if val == '': return try: assert type(val) in (str, str) assert val.isdigit() except AssertionError: raise Exception( 'Invalid value for %s! Must be an integer format string.' % name ) def _validate_float_format(self, name, val): if val == '': return try: assert type(val) in (str, str) assert '.' in val bits = val.split('.') assert len(bits) <= 2 assert bits[0] == '' or bits[0].isdigit() assert bits[1] == '' or bits[1].isdigit() except AssertionError: raise Exception( 'Invalid value for %s! Must be a float format string.' % name ) def _validate_function(self, name, val): try: assert hasattr(val, '__call__') except AssertionError: raise Exception('Invalid value for %s! Must be a function.' % name) def _validate_hrules(self, name, val): try: assert val in (ALL, FRAME, HEADER, NONE) except AssertionError: raise Exception( 'Invalid value for %s! Must be ALL, FRAME, HEADER or NONE.' % name ) def _validate_vrules(self, name, val): try: assert val in (ALL, FRAME, NONE) except AssertionError: raise Exception( 'Invalid value for %s! Must be ALL, FRAME, or NONE.' % name ) def _validate_field_name(self, name, val): try: assert (val in self._field_names) or (val is None) except AssertionError: raise Exception('Invalid field name: %s!' % val) def _validate_all_field_names(self, name, val): try: for x in val: self._validate_field_name(name, x) except AssertionError: raise Exception('fields must be a sequence of field names!') def _validate_single_char(self, name, val): return try: assert _str_block_width(val) == 1 except AssertionError: raise Exception( 'Invalid value for %s! Must be a string of length 1.' % name ) def _validate_attributes(self, name, val): try: assert isinstance(val, dict) except AssertionError: raise Exception('attributes must be a dictionary of name/value pairs!') ############################## # ATTRIBUTE MANAGEMENT # ############################## def _get_field_names(self): return self._field_names """The names of the fields Arguments: fields - list or tuple of field names""" def _set_field_names(self, val): val = [self._unicode(x) for x in val] self._validate_option('field_names', val) if self._field_names: old_names = self._field_names[:] self._field_names = val if self._align and old_names: for old_name, new_name in zip(old_names, val): self._align[new_name] = self._align[old_name] for old_name in old_names: if old_name not in self._align: self._align.pop(old_name) else: for field in self._field_names: self._align[field] = 'c' if self._valign and old_names: for old_name, new_name in zip(old_names, val): self._valign[new_name] = self._valign[old_name] for old_name in old_names: if old_name not in self._valign: self._valign.pop(old_name) else: for field in self._field_names: self._valign[field] = 't' field_names = property(_get_field_names, _set_field_names) def _get_align(self): return self._align def _set_align(self, val): self._validate_align(val) for field in self._field_names: self._align[field] = val align = property(_get_align, _set_align) def _get_valign(self): return self._valign def _set_valign(self, val): self._validate_valign(val) for field in self._field_names: self._valign[field] = val valign = property(_get_valign, _set_valign) def _get_max_width(self): return self._max_width def _set_max_width(self, val): self._validate_option('max_width', val) for field in self._field_names: self._max_width[field] = val max_width = property(_get_max_width, _set_max_width) def _get_fields(self): """List or tuple of field names to include in displays Arguments: fields - list or tuple of field names to include in displays""" return self._fields def _set_fields(self, val): self._validate_option('fields', val) self._fields = val fields = property(_get_fields, _set_fields) def _get_start(self): """Start index of the range of rows to print Arguments: start - index of first data row to include in output""" return self._start def _set_start(self, val): self._validate_option('start', val) self._start = val start = property(_get_start, _set_start) def _get_end(self): """End index of the range of rows to print Arguments: end - index of last data row to include in output PLUS ONE (list slice style)""" return self._end def _set_end(self, val): self._validate_option('end', val) self._end = val end = property(_get_end, _set_end) def _get_sortby(self): """Name of field by which to sort rows Arguments: sortby - field name to sort by""" return self._sortby def _set_sortby(self, val): self._validate_option('sortby', val) self._sortby = val sortby = property(_get_sortby, _set_sortby) def _get_reversesort(self): """Controls direction of sorting (ascending vs descending) Arguments: reveresort - set to True to sort by descending order, or False to sort by ascending order""" return self._reversesort def _set_reversesort(self, val): self._validate_option('reversesort', val) self._reversesort = val reversesort = property(_get_reversesort, _set_reversesort) def _get_sort_key(self): """Sorting key function, applied to data points before sorting Arguments: sort_key - a function which takes one argument and returns something to be sorted""" return self._sort_key def _set_sort_key(self, val): self._validate_option('sort_key', val) self._sort_key = val sort_key = property(_get_sort_key, _set_sort_key) def _get_header(self): """Controls printing of table header with field names Arguments: header - print a header showing field names (True or False)""" return self._header def _set_header(self, val): self._validate_option('header', val) self._header = val header = property(_get_header, _set_header) def _get_header_style(self): """Controls stylisation applied to field names in header Arguments: header_style - stylisation to apply to field names in header ("cap", "title", "upper", "lower" or None)""" return self._header_style def _set_header_style(self, val): self._validate_header_style(val) self._header_style = val header_style = property(_get_header_style, _set_header_style) def _get_border(self): """Controls printing of border around table Arguments: border - print a border around the table (True or False)""" return self._border def _set_border(self, val): self._validate_option('border', val) self._border = val border = property(_get_border, _set_border) def _get_hrules(self): """Controls printing of horizontal rules after rows Arguments: hrules - horizontal rules style. Allowed values: FRAME, ALL, HEADER, NONE""" return self._hrules def _set_hrules(self, val): self._validate_option('hrules', val) self._hrules = val hrules = property(_get_hrules, _set_hrules) def _get_vrules(self): """Controls printing of vertical rules between columns Arguments: vrules - vertical rules style. Allowed values: FRAME, ALL, NONE""" return self._vrules def _set_vrules(self, val): self._validate_option('vrules', val) self._vrules = val vrules = property(_get_vrules, _set_vrules) def _get_int_format(self): """Controls formatting of integer data Arguments: int_format - integer format string""" return self._int_format def _set_int_format(self, val): # self._validate_option("int_format", val) for field in self._field_names: self._int_format[field] = val int_format = property(_get_int_format, _set_int_format) def _get_float_format(self): """Controls formatting of floating point data Arguments: float_format - floating point format string""" return self._float_format def _set_float_format(self, val): # self._validate_option("float_format", val) for field in self._field_names: self._float_format[field] = val float_format = property(_get_float_format, _set_float_format) def _get_padding_width(self): """The number of empty spaces between a column's edge and its content Arguments: padding_width - number of spaces, must be a positive integer""" return self._padding_width def _set_padding_width(self, val): self._validate_option('padding_width', val) self._padding_width = val padding_width = property(_get_padding_width, _set_padding_width) def _get_left_padding_width(self): """The number of empty spaces between a column's left edge and its content Arguments: left_padding - number of spaces, must be a positive integer""" return self._left_padding_width def _set_left_padding_width(self, val): self._validate_option('left_padding_width', val) self._left_padding_width = val left_padding_width = property(_get_left_padding_width, _set_left_padding_width) def _get_right_padding_width(self): """The number of empty spaces between a column's right edge and its content Arguments: right_padding - number of spaces, must be a positive integer""" return self._right_padding_width def _set_right_padding_width(self, val): self._validate_option('right_padding_width', val) self._right_padding_width = val right_padding_width = property(_get_right_padding_width, _set_right_padding_width) def _get_vertical_char(self): """The charcter used when printing table borders to draw vertical lines Arguments: vertical_char - single character string used to draw vertical lines""" return self._vertical_char def _set_vertical_char(self, val): val = self._unicode(val) self._validate_option('vertical_char', val) self._vertical_char = val vertical_char = property(_get_vertical_char, _set_vertical_char) def _get_horizontal_char(self): """The charcter used when printing table borders to draw horizontal lines Arguments: horizontal_char - single character string used to draw horizontal lines""" return self._horizontal_char def _set_horizontal_char(self, val): val = self._unicode(val) self._validate_option('horizontal_char', val) self._horizontal_char = val horizontal_char = property(_get_horizontal_char, _set_horizontal_char) def _get_junction_char(self): """The charcter used when printing table borders to draw line junctions Arguments: junction_char - single character string used to draw line junctions""" return self._junction_char def _set_junction_char(self, val): val = self._unicode(val) self._validate_option('vertical_char', val) self._junction_char = val junction_char = property(_get_junction_char, _set_junction_char) def _get_format(self): """Controls whether or not HTML tables are formatted to match styling options Arguments: format - True or False""" return self._format def _set_format(self, val): self._validate_option('format', val) self._format = val format = property(_get_format, _set_format) def _get_print_empty(self): """Controls whether or not empty tables produce a header and frame or just an empty string Arguments: print_empty - True or False""" return self._print_empty def _set_print_empty(self, val): self._validate_option('print_empty', val) self._print_empty = val print_empty = property(_get_print_empty, _set_print_empty) def _get_attributes(self): """A dictionary of HTML attribute name/value pairs to be included in the <table> tag when printing HTML Arguments: attributes - dictionary of attributes""" return self._attributes def _set_attributes(self, val): self._validate_option('attributes', val) self._attributes = val attributes = property(_get_attributes, _set_attributes) ############################## # OPTION MIXER # ############################## def _get_options(self, kwargs): options = {} for option in self._options: if option in kwargs: self._validate_option(option, kwargs[option]) options[option] = kwargs[option] else: options[option] = getattr(self, '_' + option) return options ############################## # PRESET STYLE LOGIC # ############################## def set_style(self, style): if style == DEFAULT: self._set_default_style() elif style == MSWORD_FRIENDLY: self._set_msword_style() elif style == PLAIN_COLUMNS: self._set_columns_style() elif style == RANDOM: self._set_random_style() else: raise Exception('Invalid pre-set style!') def _set_default_style(self): self.header = True self.border = True self._hrules = FRAME self._vrules = ALL self.padding_width = 1 self.left_padding_width = 1 self.right_padding_width = 1 self.vertical_char = '|' self.horizontal_char = '-' self.junction_char = '+' def _set_msword_style(self): self.header = True self.border = True self._hrules = NONE self.padding_width = 1 self.left_padding_width = 1 self.right_padding_width = 1 self.vertical_char = '|' def _set_columns_style(self): self.header = True self.border = False self.padding_width = 1 self.left_padding_width = 0 self.right_padding_width = 8 def _set_random_style(self): # Just for fun! self.header = random.choice((True, False)) self.border = random.choice((True, False)) self._hrules = random.choice((ALL, FRAME, HEADER, NONE)) self._vrules = random.choice((ALL, FRAME, NONE)) self.left_padding_width = random.randint(0, 5) self.right_padding_width = random.randint(0, 5) self.vertical_char = random.choice('~!@#$%^&*()_+|-={}[];\':",./;<>?') self.horizontal_char = random.choice('~!@#$%^&*()_+|-={}[];\':",./;<>?') self.junction_char = random.choice('~!@#$%^&*()_+|-={}[];\':",./;<>?') ############################## # DATA INPUT METHODS # ############################## def add_row(self, row): """Add a row to the table Arguments: row - row of data, should be a list with as many elements as the table has fields""" if self._field_names and len(row) != len(self._field_names): raise Exception( 'Row has incorrect number of values, (actual) %d!=%d (expected)' % (len(row), len(self._field_names)) ) if not self._field_names: self.field_names = [('Field %d' % (n + 1)) for n in range(0, len(row))] self._rows.append(list(row)) def del_row(self, row_index): """Delete a row to the table Arguments: row_index - The index of the row you want to delete. Indexing starts at 0.""" if row_index > len(self._rows) - 1: raise Exception( 'Cant delete row at index %d, table only has %d rows!' % (row_index, len(self._rows)) ) del self._rows[row_index] def add_column(self, fieldname, column, align='c', valign='t'): """Add a column to the table. Arguments: fieldname - name of the field to contain the new column of data column - column of data, should be a list with as many elements as the table has rows align - desired alignment for this column - "l" for left, "c" for centre and "r" for right valign - desired vertical alignment for new columns - "t" for top, "m" for middle and "b" for bottom""" if len(self._rows) in (0, len(column)): self._validate_align(align) self._validate_valign(valign) self._field_names.append(fieldname) self._align[fieldname] = align self._valign[fieldname] = valign for i in range(0, len(column)): if len(self._rows) < i + 1: self._rows.append([]) self._rows[i].append(column[i]) else: raise Exception( 'Column length %d does not match number of rows %d!' % (len(column), len(self._rows)) ) def clear_rows(self): """Delete all rows from the table but keep the current field names""" self._rows = [] def clear(self): """Delete all rows and field names from the table, maintaining nothing but styling options""" self._rows = [] self._field_names = [] self._widths = [] ############################## # MISC PUBLIC METHODS # ############################## def copy(self): return copy.deepcopy(self) ############################## # MISC PRIVATE METHODS # ############################## def _format_value(self, field, value): if isinstance(value, int) and field in self._int_format: value = self._unicode(('%%%sd' % self._int_format[field]) % value) elif isinstance(value, float) and field in self._float_format: value = self._unicode(('%%%sf' % self._float_format[field]) % value) return self._unicode(value) def _compute_widths(self, rows, options): if options['header']: widths = [_get_size(field)[0] for field in self._field_names] else: widths = len(self.field_names) * [0] for row in rows: for index, value in enumerate(row): fieldname = self.field_names[index] if fieldname in self.max_width: widths[index] = max( widths[index], min(_get_size(value)[0], self.max_width[fieldname]), ) else: widths[index] = max(widths[index], _get_size(value)[0]) self._widths = widths def _get_padding_widths(self, options): if options['left_padding_width'] is not None: lpad = options['left_padding_width'] else: lpad = options['padding_width'] if options['right_padding_width'] is not None: rpad = options['right_padding_width'] else: rpad = options['padding_width'] return lpad, rpad def _get_rows(self, options): """Return only those data rows that should be printed, based on slicing and sorting. Arguments: options - dictionary of option settings.""" # Make a copy of only those rows in the slice range rows = copy.deepcopy(self._rows[options['start'] : options['end']]) # Sort if necessary if options['sortby']: sortindex = self._field_names.index(options['sortby']) # Decorate rows = [[row[sortindex]] + row for row in rows] # Sort rows.sort(reverse=options['reversesort'], key=options['sort_key']) # Undecorate rows = [row[1:] for row in rows] return rows def _format_row(self, row, options): return [ self._format_value(field, value) for (field, value) in zip(self._field_names, row) ] def _format_rows(self, rows, options): return [self._format_row(row, options) for row in rows] ############################## # PLAIN TEXT STRING METHODS # ############################## def get_string(self, **kwargs): """Return string representation of table in current state. Arguments: start - index of first data row to include in output end - index of last data row to include in output PLUS ONE (list slice style) fields - names of fields (columns) to include header - print a header showing field names (True or False) border - print a border around the table (True or False) hrules - controls printing of horizontal rules after rows. Allowed values: ALL, FRAME, HEADER, NONE vrules - controls printing of vertical rules between columns. Allowed values: FRAME, ALL, NONE int_format - controls formatting of integer data float_format - controls formatting of floating point data padding_width - number of spaces on either side of column data (only used if left and right paddings are None) left_padding_width - number of spaces on left hand side of column data right_padding_width - number of spaces on right hand side of column data vertical_char - single character string used to draw vertical lines horizontal_char - single character string used to draw horizontal lines junction_char - single character string used to draw line junctions sortby - name of field to sort rows by sort_key - sorting key function, applied to data points before sorting reversesort - True or False to sort in descending or ascending order print empty - if True, stringify just the header for an empty table, if False return an empty string """ options = self._get_options(kwargs) lines = [] # Don't think too hard about an empty table # Is this the desired behaviour? Maybe we should still print the header? if self.rowcount == 0 and (not options['print_empty'] or not options['border']): return '' # Get the rows we need to print, taking into account slicing, sorting, etc. rows = self._get_rows(options) # Turn all data in all rows into Unicode, formatted as desired formatted_rows = self._format_rows(rows, options) # Compute column widths self._compute_widths(formatted_rows, options) # Add header or top of border self._hrule = self._stringify_hrule(options) if options['header']: lines.append(self._stringify_header(options)) elif options['border'] and options['hrules'] in (ALL, FRAME): lines.append(self._hrule) # Add rows for row in formatted_rows: lines.append(self._stringify_row(row, options)) # Add bottom of border if options['border'] and options['hrules'] == FRAME: lines.append(self._hrule) return self._unicode('\n').join(lines) def _stringify_hrule(self, options): if not options['border']: return '' lpad, rpad = self._get_padding_widths(options) if options['vrules'] in (ALL, FRAME): bits = [options['junction_char']] else: bits = [options['horizontal_char']] # For tables with no data or fieldnames if not self._field_names: bits.append(options['junction_char']) return ''.join(bits) for field, width in zip(self._field_names, self._widths): if options['fields'] and field not in options['fields']: continue bits.append((width + lpad + rpad) * options['horizontal_char']) if options['vrules'] == ALL: bits.append(options['junction_char']) else: bits.append(options['horizontal_char']) if options['vrules'] == FRAME: bits.pop() bits.append(options['junction_char']) return ''.join(bits) def _stringify_header(self, options): bits = [] lpad, rpad = self._get_padding_widths(options) if options['border']: if options['hrules'] in (ALL, FRAME): bits.append(self._hrule) bits.append('\n') if options['vrules'] in (ALL, FRAME): bits.append(options['vertical_char']) else: bits.append(' ') # For tables with no data or field names if not self._field_names: if options['vrules'] in (ALL, FRAME): bits.append(options['vertical_char']) else: bits.append(' ') for field, width, in zip(self._field_names, self._widths): if options['fields'] and field not in options['fields']: continue if self._header_style == 'cap': fieldname = field.capitalize() elif self._header_style == 'title': fieldname = field.title() elif self._header_style == 'upper': fieldname = field.upper() elif self._header_style == 'lower': fieldname = field.lower() else: fieldname = field bits.append( ' ' * lpad + self._justify(fieldname, width, self._align[field]) + ' ' * rpad ) if options['border']: if options['vrules'] == ALL: bits.append(options['vertical_char']) else: bits.append(' ') # If vrules is FRAME, then we just appended a space at the end # of the last field, when we really want a vertical character if options['border'] and options['vrules'] == FRAME: bits.pop() bits.append(options['vertical_char']) if options['border'] and options['hrules'] != NONE: bits.append('\n') bits.append(self._hrule) return ''.join(bits) def _stringify_row(self, row, options): for index, field, value, width, in zip( list(range(0, len(row))), self._field_names, row, self._widths ): # Enforce max widths lines = value.split('\n') new_lines = [] for line in lines: if _str_block_width(line) > width: line = textwrap.fill(line, width) new_lines.append(line) lines = new_lines value = '\n'.join(lines) row[index] = value row_height = 0 for c in row: h = _get_size(c)[1] if h > row_height: row_height = h bits = [] lpad, rpad = self._get_padding_widths(options) for y in range(0, row_height): bits.append([]) if options['border']: if options['vrules'] in (ALL, FRAME): bits[y].append(self.vertical_char) else: bits[y].append(' ') for field, value, width, in zip(self._field_names, row, self._widths): valign = self._valign[field] lines = value.split('\n') dHeight = row_height - len(lines) if dHeight: if valign == 'm': lines = ( [''] * int(dHeight / 2) + lines + [''] * (dHeight - int(dHeight / 2)) ) elif valign == 'b': lines = [''] * dHeight + lines else: lines = lines + [''] * dHeight y = 0 for l in lines: if options['fields'] and field not in options['fields']: continue bits[y].append( ' ' * lpad + self._justify(l, width, self._align[field]) + ' ' * rpad ) if options['border']: if options['vrules'] == ALL: bits[y].append(self.vertical_char) else: bits[y].append(' ') y += 1 # If vrules is FRAME, then we just appended a space at the end # of the last field, when we really want a vertical character for y in range(0, row_height): if options['border'] and options['vrules'] == FRAME: bits[y].pop() bits[y].append(options['vertical_char']) if options['border'] and options['hrules'] == ALL: bits[row_height - 1].append('\n') bits[row_height - 1].append(self._hrule) for y in range(0, row_height): bits[y] = ''.join(bits[y]) return '\n'.join(bits) ############################## # HTML STRING METHODS # ############################## def get_html_string(self, **kwargs): """Return string representation of HTML formatted version of table in current state. Arguments: start - index of first data row to include in output end - index of last data row to include in output PLUS ONE (list slice style) fields - names of fields (columns) to include header - print a header showing field names (True or False) border - print a border around the table (True or False) hrules - controls printing of horizontal rules after rows. Allowed values: ALL, FRAME, HEADER, NONE vrules - controls printing of vertical rules between columns. Allowed values: FRAME, ALL, NONE int_format - controls formatting of integer data float_format - controls formatting of floating point data padding_width - number of spaces on either side of column data (only used if left and right paddings are None) left_padding_width - number of spaces on left hand side of column data right_padding_width - number of spaces on right hand side of column data sortby - name of field to sort rows by sort_key - sorting key function, applied to data points before sorting attributes - dictionary of name/value pairs to include as HTML attributes in the <table> tag xhtml - print <br/> tags if True, <br> tags if false""" options = self._get_options(kwargs) if options['format']: string = self._get_formatted_html_string(options) else: string = self._get_simple_html_string(options) return string def _get_simple_html_string(self, options): lines = [] if options['xhtml']: linebreak = '<br/>' else: linebreak = '<br>' open_tag = [] open_tag.append('<table') if options['attributes']: for attr_name in options['attributes']: open_tag.append( ' %s="%s"' % (attr_name, options['attributes'][attr_name]) ) open_tag.append('>') lines.append(''.join(open_tag)) # Headers if options['header']: lines.append(' <tr>') for field in self._field_names: if options['fields'] and field not in options['fields']: continue lines.append( ' <th>%s</th>' % escape(field).replace('\n', linebreak) ) lines.append(' </tr>') # Data rows = self._get_rows(options) formatted_rows = self._format_rows(rows, options) for row in formatted_rows: lines.append(' <tr>') for field, datum in zip(self._field_names, row): if options['fields'] and field not in options['fields']: continue lines.append( ' <td>%s</td>' % escape(datum).replace('\n', linebreak) ) lines.append(' </tr>') lines.append('</table>') return self._unicode('\n').join(lines) def _get_formatted_html_string(self, options): lines = [] lpad, rpad = self._get_padding_widths(options) if options['xhtml']: linebreak = '<br/>' else: linebreak = '<br>' open_tag = [] open_tag.append('<table') if options['border']: if options['hrules'] == ALL and options['vrules'] == ALL: open_tag.append(' frame="box" rules="all"') elif options['hrules'] == FRAME and options['vrules'] == FRAME: open_tag.append(' frame="box"') elif options['hrules'] == FRAME and options['vrules'] == ALL: open_tag.append(' frame="box" rules="cols"') elif options['hrules'] == FRAME: open_tag.append(' frame="hsides"') elif options['hrules'] == ALL: open_tag.append(' frame="hsides" rules="rows"') elif options['vrules'] == FRAME: open_tag.append(' frame="vsides"') elif options['vrules'] == ALL: open_tag.append(' frame="vsides" rules="cols"') if options['attributes']: for attr_name in options['attributes']: open_tag.append( ' %s="%s"' % (attr_name, options['attributes'][attr_name]) ) open_tag.append('>') lines.append(''.join(open_tag)) # Headers if options['header']: lines.append(' <tr>') for field in self._field_names: if options['fields'] and field not in options['fields']: continue lines.append( ' <th style="padding-left: %dem; padding-right: %dem; text-align: center">%s</th>' % (lpad, rpad, escape(field).replace('\n', linebreak)) ) lines.append(' </tr>') # Data rows = self._get_rows(options) formatted_rows = self._format_rows(rows, options) aligns = [] valigns = [] for field in self._field_names: aligns.append( {'l': 'left', 'r': 'right', 'c': 'center'}[self._align[field]] ) valigns.append( {'t': 'top', 'm': 'middle', 'b': 'bottom'}[self._valign[field]] ) for row in formatted_rows: lines.append(' <tr>') for field, datum, align, valign in zip( self._field_names, row, aligns, valigns ): if options['fields'] and field not in options['fields']: continue lines.append( ' <td style="padding-left: %dem; padding-right: %dem; text-align: %s; vertical-align: %s">%s</td>' % ( lpad, rpad, align, valign, escape(datum).replace('\n', linebreak), ) ) lines.append(' </tr>') lines.append('</table>') return self._unicode('\n').join(lines) ############################## # UNICODE WIDTH FUNCTIONS # ############################## def _char_block_width(char): # Basic Latin, which is probably the most common case # if char in xrange(0x0021, 0x007e): # if char >= 0x0021 and char <= 0x007e: if 0x0021 <= char <= 0x007E: return 1 # Chinese, Japanese, Korean (common) if 0x4E00 <= char <= 0x9FFF: return 2 # Hangul if 0xAC00 <= char <= 0xD7AF: return 2 # Combining? if unicodedata.combining(uni_chr(char)): return 0 # Hiragana and Katakana if 0x3040 <= char <= 0x309F or 0x30A0 <= char <= 0x30FF: return 2 # Full-width Latin characters if 0xFF01 <= char <= 0xFF60: return 2 # CJK punctuation if 0x3000 <= char <= 0x303E: return 2 # Backspace and delete if char in (0x0008, 0x007F): return -1 # Other control characters elif char in (0x0000, 0x001F): return 0 # Take a guess return 1 def _str_block_width(val): return sum(map(_char_block_width, list(map(ord, _re.sub('', val))))) ############################## # TABLE FACTORIES # ############################## def from_csv(fp, field_names=None, **kwargs): dialect = csv.Sniffer().sniff(fp.read(1024)) fp.seek(0) reader = csv.reader(fp, dialect) table = PrettyTable(**kwargs) if field_names: table.field_names = field_names else: if py3k: table.field_names = [x.strip() for x in next(reader)] else: table.field_names = [x.strip() for x in next(reader)] for row in reader: table.add_row([x.strip() for x in row]) return table def from_db_cursor(cursor, **kwargs): if cursor.description: table = PrettyTable(**kwargs) table.field_names = [col[0] for col in cursor.description] for row in cursor.fetchall(): table.add_row(row) return table class TableHandler(HTMLParser): def __init__(self, **kwargs): HTMLParser.__init__(self) self.kwargs = kwargs self.tables = [] self.last_row = [] self.rows = [] self.max_row_width = 0 self.active = None self.last_content = '' self.is_last_row_header = False def handle_starttag(self, tag, attrs): self.active = tag if tag == 'th': self.is_last_row_header = True def handle_endtag(self, tag): if tag in ['th', 'td']: stripped_content = self.last_content.strip() self.last_row.append(stripped_content) if tag == 'tr': self.rows.append((self.last_row, self.is_last_row_header)) self.max_row_width = max(self.max_row_width, len(self.last_row)) self.last_row = [] self.is_last_row_header = False if tag == 'table': table = self.generate_table(self.rows) self.tables.append(table) self.rows = [] self.last_content = ' ' self.active = None def handle_data(self, data): self.last_content += data def generate_table(self, rows): """ Generates from a list of rows a PrettyTable object. """ table = PrettyTable(**self.kwargs) for row in self.rows: if len(row[0]) < self.max_row_width: appends = self.max_row_width - len(row[0]) for i in range(1, appends): row[0].append('-') if row[1] == True: self.make_fields_unique(row[0]) table.field_names = row[0] else: table.add_row(row[0]) return table def make_fields_unique(self, fields): """ iterates over the row and make each field unique """ for i in range(0, len(fields)): for j in range(i + 1, len(fields)): if fields[i] == fields[j]: fields[j] += "'" def from_html(html_code, **kwargs): """ Generates a list of PrettyTables from a string of HTML code. Each <table> in the HTML becomes one PrettyTable object. """ parser = TableHandler(**kwargs) parser.feed(html_code) return parser.tables def from_html_one(html_code, **kwargs): """ Generates a PrettyTables from a string of HTML code which contains only a single <table> """ tables = from_html(html_code, **kwargs) try: assert len(tables) == 1 except AssertionError: raise Exception( 'More than one <table> in provided HTML code! Use from_html instead.' ) return tables[0] ############################## # MAIN (TEST FUNCTION) # ############################## def main(): x = PrettyTable(['City name', 'Area', 'Population', 'Annual Rainfall']) x.sortby = 'Population' x.reversesort = True x.int_format['Area'] = '04d' x.float_format = '6.1f' x.align['City name'] = 'l' # Left align city names x.add_row(['Hoehenkirchen\nSiegertsbrunn', 1295, 1158259, 600.5]) x.add_row(['Adelaide', 1295, 1158259, 600.5]) x.add_row(['Brisbane', 5905, 1857594, 1146.4]) x.add_row(['Darwin', 112, 120900, 1714.7]) x.add_row(['Hobart', 1357, 205556, 619.5]) x.add_row(['Sydney', 2058, 4336374, 1214.8]) x.add_row(['Melbourne', 1566, 3806092, 646.9]) x.add_row(['Perth', 5386, 1554769, 869.4]) print(x) if __name__ == '__main__': main()
the-stack_0_10160
import logging import time from collections import defaultdict from queue import Queue from threading import Thread from kube_hunter.conf import get_config from kube_hunter.core.types import ActiveHunter, HunterBase from kube_hunter.core.events.types import Vulnerability, EventFilterBase, MultipleEventsContainer logger = logging.getLogger(__name__) # Inherits Queue object, handles events asynchronously class EventQueue(Queue): def __init__(self, num_worker=10): super().__init__() self.passive_hunters = dict() self.active_hunters = dict() self.all_hunters = dict() self.running = True self.workers = list() # -- Regular Subscription -- # Structure: key: Event Class, value: tuple(Registered Hunter, Predicate Function) self.hooks = defaultdict(list) self.filters = defaultdict(list) # -------------------------- # -- Multiple Subscription -- # Structure: key: Event Class, value: tuple(Registered Hunter, Predicate Function) self.multi_hooks = defaultdict(list) # When subscribing to multiple events, this gets populated with required event classes # Structure: key: Hunter Class, value: set(RequiredEventClass1, RequiredEventClass2) self.hook_dependencies = defaultdict(set) # To keep track of fulfilled dependencies. we need to have a structure which saves historical instanciated # events mapped to a registered hunter. # We used a 2 dimensional dictionary in order to fulfill two demands: # * correctly count published required events # * save historical events fired, easily sorted by their type # # Structure: hook_fulfilled_deps[hunter_class] -> fulfilled_events_for_hunter[event_class] -> [EventObject, EventObject2] self.hook_fulfilled_deps = defaultdict(lambda: defaultdict(list)) # --------------------------- for _ in range(num_worker): t = Thread(target=self.worker) t.daemon = True t.start() self.workers.append(t) t = Thread(target=self.notifier) t.daemon = True t.start() """ ###################################################### + ----------------- Public Methods ----------------- + ###################################################### """ def subscribe(self, event, hook=None, predicate=None, is_register=True): """ The Subscribe Decorator - For Regular Registration Use this to register for one event only. Your hunter will execute each time this event is published @param event - Event class to subscribe to @param predicate - Optional: Function that will be called with the published event as a parameter before trigger. If it's return value is False, the Hunter will not run (default=None). @param hook - Hunter class to register for (ignore when using as a decorator) """ def wrapper(hook): self.subscribe_event(event, hook=hook, predicate=predicate, is_register=is_register) return hook return wrapper def subscribe_many(self, events, hook=None, predicates=None, is_register=True): """ The Subscribe Many Decorator - For Multiple Registration, When your attack needs several prerequisites to exist in the cluster, You need to register for multiple events. Your hunter will execute once for every new combination of required events. For example: 1. event A was published 3 times 2. event B was published once. 3. event B was published again Your hunter will execute 2 times: * (on step 2) with the newest version of A * (on step 3) with the newest version of A and newest version of B @param events - List of event classes to subscribe to @param predicates - Optional: List of function that will be called with the published event as a parameter before trigger. If it's return value is False, the Hunter will not run (default=None). @param hook - Hunter class to register for (ignore when using as a decorator) """ def wrapper(hook): self.subscribe_events(events, hook=hook, predicates=predicates, is_register=is_register) return hook return wrapper def subscribe_once(self, event, hook=None, predicate=None, is_register=True): """ The Subscribe Once Decorator - For Single Trigger Registration, Use this when you want your hunter to execute only in your entire program run wraps subscribe_event method @param events - List of event classes to subscribe to @param predicates - Optional: List of function that will be called with the published event as a parameter before trigger. If it's return value is False, the Hunter will not run (default=None). @param hook - Hunter class to register for (ignore when using as a decorator) """ def wrapper(hook): # installing a __new__ magic method on the hunter # which will remove the hunter from the list upon creation def __new__unsubscribe_self(self, cls): handler.hooks[event].remove((hook, predicate)) return object.__new__(self) hook.__new__ = __new__unsubscribe_self self.subscribe_event(event, hook=hook, predicate=predicate, is_register=is_register) return hook return wrapper def publish_event(self, event, caller=None): """ The Publish Event Method - For Publishing Events To Kube-Hunter's Queue """ # Document that the hunter published a vulnerability (if it's indeed a vulnerability) # For statistics options self._increase_vuln_count(event, caller) # sets the event's parent to be it's publisher hunter. self._set_event_chain(event, caller) # applying filters on the event, before publishing it to subscribers. # if filter returned None, not proceeding to publish event = self.apply_filters(event) if event: # If event was rewritten, make sure it's linked again self._set_event_chain(event, caller) # Regular Hunter registrations - publish logic # Here we iterate over all the registered-to events: for hooked_event in self.hooks.keys(): # We check if the event we want to publish is an inherited class of the current registered-to iterated event # Meaning - if this is a relevant event: if hooked_event in event.__class__.__mro__: # If so, we want to publish to all registerd hunters. for hook, predicate in self.hooks[hooked_event]: if predicate and not predicate(event): continue self.put(hook(event)) logger.debug(f"Event {event.__class__} got published to hunter - {hook} with {event}") # Multiple Hunter registrations - publish logic # Here we iterate over all the registered-to events: for hooked_event in self.multi_hooks.keys(): # We check if the event we want to publish is an inherited class of the current registered-to iterated event # Meaning - if this is a relevant event: if hooked_event in event.__class__.__mro__: # now we iterate over the corresponding registered hunters. for hook, predicate in self.multi_hooks[hooked_event]: if predicate and not predicate(event): continue self._update_multi_hooks(hook, event) if self._is_all_fulfilled_for_hunter(hook): events_container = MultipleEventsContainer(self._get_latest_events_from_multi_hooks(hook)) self.put(hook(events_container)) logger.debug( f"Multiple subscription requirements were met for hunter {hook}. events container was \ published with {self.hook_fulfilled_deps[hook].keys()}" ) """ ###################################################### + ---------------- Private Methods ----------------- + + ---------------- (Backend Logic) ----------------- + ###################################################### """ def _get_latest_events_from_multi_hooks(self, hook): """ Iterates over fulfilled deps for the hunter, and fetching the latest appended events from history """ latest_events = list() for event_class in self.hook_fulfilled_deps[hook].keys(): latest_events.append(self.hook_fulfilled_deps[hook][event_class][-1]) return latest_events def _update_multi_hooks(self, hook, event): """ Updates published events in the multi hooks fulfilled store. """ self.hook_fulfilled_deps[hook][event.__class__].append(event) def _is_all_fulfilled_for_hunter(self, hook): """ Returns true for multi hook fulfilled, else oterwise """ # Check if the first dimension already contains all necessary event classes return len(self.hook_fulfilled_deps[hook].keys()) == len(self.hook_dependencies[hook]) def _set_event_chain(self, event, caller): """ Sets' events attribute chain. In here we link the event with it's publisher (Hunter), so in the next hunter that catches this event, we could access the previous one's attributes. @param event: the event object to be chained @param caller: the Hunter object that published this event. """ if caller: event.previous = caller.event event.hunter = caller.__class__ def _register_hunters(self, hook=None): """ This method is called when a Hunter registers itself to the handler. this is done in order to track and correctly configure the current run of the program. passive_hunters, active_hunters, all_hunters """ config = get_config() if ActiveHunter in hook.__mro__: if not config.active: return False else: self.active_hunters[hook] = hook.__doc__ elif HunterBase in hook.__mro__: self.passive_hunters[hook] = hook.__doc__ if HunterBase in hook.__mro__: self.all_hunters[hook] = hook.__doc__ return True def _register_filter(self, event, hook=None, predicate=None): if hook not in self.filters[event]: self.filters[event].append((hook, predicate)) logging.debug("{} filter subscribed to {}".format(hook, event)) def _register_hook(self, event, hook=None, predicate=None): if hook not in self.hooks[event]: self.hooks[event].append((hook, predicate)) logging.debug("{} subscribed to {}".format(hook, event)) def subscribe_event(self, event, hook=None, predicate=None, is_register=True): if not is_register: return if not self._register_hunters(hook): return # registering filters if EventFilterBase in hook.__mro__: self._register_filter(event, hook, predicate) # registering hunters else: self._register_hook(event, hook, predicate) def subscribe_events(self, events, hook=None, predicates=None, is_register=True): if not is_register: return False if not self._register_hunters(hook): return False if predicates is None: predicates = [None] * len(events) # registering filters. if EventFilterBase in hook.__mro__: for event, predicate in zip(events, predicates): self._register_filter(event, hook, predicate) # registering hunters. else: for event, predicate in zip(events, predicates): self.multi_hooks[event].append((hook, predicate)) self.hook_dependencies[hook] = frozenset(events) def apply_filters(self, event): # if filters are subscribed, apply them on the event for hooked_event in self.filters.keys(): if hooked_event in event.__class__.__mro__: for filter_hook, predicate in self.filters[hooked_event]: if predicate and not predicate(event): continue logger.debug(f"Event {event.__class__} filtered with {filter_hook}") event = filter_hook(event).execute() # if filter decided to remove event, returning None if not event: return None return event def _increase_vuln_count(self, event, caller): config = get_config() if config.statistics and caller: if Vulnerability in event.__class__.__mro__: caller.__class__.publishedVulnerabilities += 1 # executes callbacks on dedicated thread as a daemon def worker(self): while self.running: try: hook = self.get() logger.debug(f"Executing {hook.__class__} with {hook.event.__dict__}") hook.execute() except Exception as ex: logger.debug(ex, exc_info=True) finally: self.task_done() logger.debug("closing thread...") def notifier(self): time.sleep(2) # should consider locking on unfinished_tasks while self.unfinished_tasks > 0: logger.debug(f"{self.unfinished_tasks} tasks left") time.sleep(3) if self.unfinished_tasks == 1: logger.debug("final hook is hanging") # stops execution of all daemons def free(self): self.running = False with self.mutex: self.queue.clear() handler = EventQueue(800)
the-stack_0_10162
from cConstants import cEPAConstants, cPlotConstants from cEnum import eEPA import cPlot2D import cPlotEPA import sys sys.path.append("../") import bayesact import wx class cPlotFrame(cPlotEPA.cPlotFrame): def __init__(self, iParent, **kwargs): cPlot2D.cPlotFrame.__init__(self, iParent, **kwargs) def initPanel(self, *args, **kwargs): self.m_PlotPanel = cPlotPanel(self, **kwargs) class cPlotPanel(cPlot2D.cPlotPanel): def __init__(self, iParent, iXAxisItem=eEPA.evaluation, iYAxisItem=eEPA.potency, iPlotType=eEPA.fundamental, **kwargs): cPlot2D.cPlotPanel.__init__(self, iParent, **kwargs) self.m_XAxisItem = iXAxisItem self.m_YAxisItem = iYAxisItem self.m_PlotType = iPlotType self.m_SimInteractiveTabsPanel = iParent # The other plots, changes the x and y boundaries of this plot will be done the same to other plots # Good for comparing multiple plots self.m_TwinPlots = [] self.m_LearnerSamples = [] self.m_SimulatorSamples = [] def getSentimentEPAIndex(self, iEPA, iSentiment): return iEPA + (cEPAConstants.m_Dimensions * iSentiment) # Axis items are the enumerations of the elements in eEPA, so they're basically numbers def setAxis(iXAxisItem, iYAxisItem): self.m_XAxisItem = iXAxisItem self.m_YAxisItem = iYAxisItem def plotEPA(self, iLearnerSamples, iSimulatorSamples, iLearnerPreviousAction, iSimulatorPreviousAction): self.clearAxes() # Size is the size of the point in terms of viewing size lsize=50 # Alpha is the opacity of the point lalpha=0.5 self.m_LearnerSamples = iLearnerSamples self.m_SimulatorSamples = iSimulatorSamples if (0 < len(iLearnerSamples)): # Learner's sentiments on self and other, green and pink respectively learnerSamplesXIndexSelf = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_SelfMultiplier) learnerSamplesYIndexSelf = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_SelfMultiplier) learnerSamplesXIndexOther = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_OtherMultiplier) learnerSamplesYIndexOther = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_OtherMultiplier) self.plotScatter( iLearnerSamples[learnerSamplesXIndexSelf], iLearnerSamples[learnerSamplesYIndexSelf], iAutoScaling=False, iRedraw=False, iUpdate=False, marker="o", s=lsize, c="cyan", alpha=lalpha, animated=False) self.plotScatter( iLearnerSamples[learnerSamplesXIndexOther], iLearnerSamples[learnerSamplesYIndexOther], iAutoScaling=False, iRedraw=False, iUpdate=False, marker="o", s=lsize, c="blue", alpha=lalpha, animated=False) # This also checks that when an action has an EPA rating of (0, 0, 0), it will not plot it if (0 < len(iLearnerPreviousAction)): if ((0, 0, 0) == (iLearnerPreviousAction[0], iLearnerPreviousAction[1], iLearnerPreviousAction[2])): pass else: self.plotScatter( iLearnerPreviousAction[self.m_XAxisItem], iLearnerPreviousAction[self.m_YAxisItem], marker="*", s=200, c="turquoise", alpha=1) if (0 < len(iSimulatorSamples)): # Simulator's sentiments on self and other, goldenrod and blue respectively simulatorSamplesXIndexSelf = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_SelfMultiplier) simulatorSamplesYIndexSelf = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_SelfMultiplier) simulatorSamplesXIndexOther = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_OtherMultiplier) simulatorSamplesYIndexOther = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_OtherMultiplier) self.plotScatter( iSimulatorSamples[simulatorSamplesXIndexSelf], iSimulatorSamples[simulatorSamplesYIndexSelf], iAutoScaling=False, iRedraw=False, iUpdate=False, marker="o", s=lsize, c="magenta", alpha=lalpha, animated=False) self.plotScatter( iSimulatorSamples[simulatorSamplesXIndexOther], iSimulatorSamples[simulatorSamplesYIndexOther], iAutoScaling=False, iRedraw=False, iUpdate=False, marker="o", s=lsize, c="red", alpha=lalpha, animated=False) if (0 < len(iSimulatorPreviousAction)): if ((0, 0, 0) == (iSimulatorPreviousAction[0],iSimulatorPreviousAction[1], iSimulatorPreviousAction[2])): pass else: self.plotScatter( iSimulatorPreviousAction[self.m_XAxisItem], iSimulatorPreviousAction[self.m_YAxisItem], marker="*", s=200, c="magenta", alpha=1) self.m_Axes.set_title(self.m_Title, fontsize=12) self.m_Axes.set_xlabel(cEPAConstants.m_EPALabels[self.m_XAxisItem]) self.m_Axes.set_ylabel(cEPAConstants.m_EPALabels[self.m_YAxisItem]) self.redrawAxes() def onMousePress(self, iEvent): # Returns (index, minDist), where minDist is the minimum euclidean distance calculated def getMin(data, x, y): index = 0 minDist = ((data[0][0] - x) ** 2) + ((data[1][0] - y) ** 2) points = len(data[0]) for i in range(points-1): dist = ((data[0][i+1] - x) ** 2) + ((data[1][i+1] - y) ** 2) if (dist < minDist): minDist = dist index = i+1 return (index, minDist) def getSampleEPA(data, dataIndex, evaluationIndex, potencyIndex, activityIndex): return [data[evaluationIndex][dataIndex], data[potencyIndex][dataIndex], data[activityIndex][dataIndex]] # Do default function, then find closest point, if anything is plotted # Please note that this does not include the previous action super(cPlotPanel, self).onMousePress(iEvent) # 1 represents left click, check for closest point when left clicking if(1 != iEvent.button): return if (iEvent.inaxes != self.m_Axes): return if (0 >= len(self.m_LearnerSamples)): return xPoint = iEvent.xdata yPoint = iEvent.ydata learnerSamplesXIndexSelf = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_SelfMultiplier) learnerSamplesYIndexSelf = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_SelfMultiplier) learnerSamplesXIndexOther = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_OtherMultiplier) learnerSamplesYIndexOther = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_OtherMultiplier) simulatorSamplesXIndexSelf = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_SelfMultiplier) simulatorSamplesYIndexSelf = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_SelfMultiplier) simulatorSamplesXIndexOther = self.getSentimentEPAIndex(self.m_XAxisItem, cEPAConstants.m_OtherMultiplier) simulatorSamplesYIndexOther = self.getSentimentEPAIndex(self.m_YAxisItem, cEPAConstants.m_OtherMultiplier) # To find the closest point to where the mouse clicked visibleLearnerSelfData = [self.m_LearnerSamples[learnerSamplesXIndexSelf], self.m_LearnerSamples[learnerSamplesYIndexSelf]] visibleLearnerOtherData = [self.m_LearnerSamples[learnerSamplesXIndexOther], self.m_LearnerSamples[learnerSamplesYIndexOther]] visibleSimulatorSelfData = [self.m_SimulatorSamples[simulatorSamplesXIndexSelf], self.m_SimulatorSamples[simulatorSamplesYIndexSelf]] visibleSimulatorOtherData = [self.m_SimulatorSamples[simulatorSamplesXIndexOther], self.m_SimulatorSamples[simulatorSamplesYIndexOther]] learnerSelf, learnerOther, simulatorSelf, simulatorOther = range(4) currentMinIndex, currentMinDist = getMin(visibleLearnerSelfData, xPoint, yPoint) currentMinData = learnerSelf allOtherData = [visibleLearnerOtherData, visibleSimulatorSelfData, visibleSimulatorOtherData] for i in range(len(allOtherData)): tempMinIndex, tempMinDist = getMin(allOtherData[i], xPoint, yPoint) if (tempMinDist < currentMinDist): currentMinIndex, currentMinDist = tempMinIndex, tempMinDist currentMinData = i+1 if (currentMinData == learnerSelf): epa = getSampleEPA(self.m_LearnerSamples, currentMinIndex, eEPA.evaluationSelf, eEPA.potencySelf, eEPA.activitySelf) elif (currentMinData == learnerOther): epa = getSampleEPA(self.m_LearnerSamples, currentMinIndex, eEPA.evaluationOther, eEPA.potencyOther, eEPA.activityOther) elif (currentMinData == simulatorSelf): epa = getSampleEPA(self.m_SimulatorSamples, currentMinIndex, eEPA.evaluationSelf, eEPA.potencySelf, eEPA.activitySelf) else: epa = getSampleEPA(self.m_SimulatorSamples, currentMinIndex, eEPA.evaluationOther, eEPA.potencyOther, eEPA.activityOther) gender = self.m_SimInteractiveTabsPanel.m_OptionsAgentPanel.m_ClientGenderChoice.GetStringSelection() if ("male" == gender): estimatedIdentity = bayesact.findNearestEPAVector(epa, self.m_SimInteractiveTabsPanel.m_fidentitiesMale) else: estimatedIdentity = bayesact.findNearestEPAVector(epa, self.m_SimInteractiveTabsPanel.m_fidentitiesFemale) # Those threes mean 3 decimal places message = "You clicked on point: {}".format((round(xPoint, 3), round(yPoint, 3))) +\ "\nHere is the closest point:" +\ "\nEvaluation: {}\nPotency: {}\nActivity: {}".format(round(epa[eEPA.evaluation], 3), round(epa[eEPA.potency], 3), round(epa[eEPA.activity], 3)) +\ "\nClosest Identity: {}".format(estimatedIdentity) +\ "\nType: {}".format(cEPAConstants.m_PlotDetails[currentMinData]) wx.MessageBox(message, "Closest Point") def changeXAxisLabel(self, iLabel): self.m_XAxisItem = iLabel for plotEPA2D in self.m_TwinPlots: plotEPA2D.m_XAxisItem = iLabel def changeYAxisLabel(self, iLabel): self.m_YAxisItem = iLabel for plotEPA2D in self.m_TwinPlots: plotEPA2D.m_YAxisItem = iLabel def shiftXAxis(self, iShiftAmount): super(cPlotPanel, self).shiftXAxis(iShiftAmount) self.updateAxesData() for plotEPA2D in self.m_TwinPlots: plotEPA2D.m_Axes.set_xlim(self.m_XAxisMin, self.m_XAxisMax) plotEPA2D.redrawAxes() def shiftYAxis(self, iShiftAmount): super(cPlotPanel, self).shiftYAxis(iShiftAmount) self.updateAxesData() for plotEPA2D in self.m_TwinPlots: plotEPA2D.m_Axes.set_ylim(self.m_YAxisMin, self.m_YAxisMax) plotEPA2D.redrawAxes() def zoomAxes(self, iZoomAmount): super(cPlotPanel, self).zoomAxes(iZoomAmount) self.updateAxesData() for plotEPA2D in self.m_TwinPlots: plotEPA2D.m_Axes.set_xlim(self.m_XAxisMin, self.m_XAxisMax) plotEPA2D.m_Axes.set_ylim(self.m_YAxisMin, self.m_YAxisMax) plotEPA2D.redrawAxes() def resetAxes(self): super(cPlotPanel, self).resetAxes() self.updateAxesData() for plotEPA2D in self.m_TwinPlots: plotEPA2D.m_Axes.set_xlim(self.m_XAxisMin, self.m_XAxisMax) plotEPA2D.m_Axes.set_ylim(self.m_YAxisMin, self.m_YAxisMax) plotEPA2D.redrawAxes()
the-stack_0_10163
from os import error import threading from threading import Thread from multiprocessing import Process import json import sys from put import split from cat import cat from remove import remove from ls import listallfiles from mapreduce import mapreduce #change path to this file accordingly dfs_setup_config = "/users/vinaynaidu/DFS/setup.json" setupfiledir = "/users/vinaynaidu/DFS/" f = open(dfs_setup_config) config = json.load(f) block_size = config['block_size'] path_to_datanodes = config['path_to_datanodes'] path_to_namenodes = config['path_to_namenodes'] replication_factor = config['replication_factor'] num_datanodes = config['num_datanodes'] datanode_size = config['datanode_size'] sync_period = config['sync_period'] datanode_log_path = config['datanode_log_path'] namenode_log_path = config['namenode_log_path'] namenode_checkpoints = config['namenode_checkpoints'] fs_path = config['fs_path'] dfs_setup_config = config['dfs_setup_config'] setupfiledir = config['dfs_setup_config'][:-10] sys.path.append(path_to_datanodes) sys.path.append(path_to_namenodes) from namenode import namenodereceiveheartbeat1 from secondarynamenode import secnamenodereceiveheartbeat dsthreads = {} for i in range(1, num_datanodes + 1): sys.path.append(path_to_datanodes + 'datanode{}/'.format(i)) exec("from datanode{} import datanode{}HB".format(i, i)) exec("dsthreads['datanodehbthread{}'] = threading.Thread(target = datanode{}HB, name = 'DatanodeHBThread{}')".format(i, i, i)) namenodeHBthread = threading.Thread(target=namenodereceiveheartbeat1, name='namenodeHBthread') secnamenodeHBthread = threading.Thread(target=secnamenodereceiveheartbeat, name='secnamenodeHBthread') namenodeHBthread.start() secnamenodeHBthread.start() for i in range(1, num_datanodes + 1): dsthreads['datanodehbthread{}'.format(i)].start() functionality = '''put, syntax - put <absolute path of the file> cat, syntax - cat <filename> ls, syntax - ls rm, syntax - rm <filename> runmapreducejob -i <absolute path of input file> -o <absolute path of output> -c <dfs setup file> -m <mapper absolute path> -r <reducer absolute path>''' print("The default HDFS or the previous session is loaded...") print("Provide configuration file and run createhdfs.py if you wish to create a new DFS.") while True: print() print("Enter the DFS command...") print(functionality) print() command = input().split() if command[0] == "put": if len(command) == 2: try: message = split(command[1]) print(message) print() except error as e: print(e) else: print("Invalid syntax for put command") if command[0] == "cat": if len(command) == 2: try: cat(command[1]) except error as e: print(e) else: print("Invalid syntax for cat command") if command[0] == "rm": if len(command) == 2: try: remove(command[1]) except error as e: print(e) else: print("Invalid syntax for rm command") if command[0] == "runmapreducejob": if len(command) == 11: inputfilepath = command[2] outputfilepath = command[4] setupfilepath = command[6] mapperpath = command[8] reducerpath = command[10] mapreduce(inputfilepath, outputfilepath, setupfilepath, mapperpath, reducerpath) else: print("Invalid syntax for running Map Reduce job") if command[0] == "ls": print() print("Files present in the DFS -") listallfiles()
the-stack_0_10164
#python main.py --env-name "HalfCheetah-v2" # --algo ppo # --use-gae # --log-interval 1 # --num-steps 2048 # --num-processes 1 # --lr 3e-4 # --entropy-coef 0 # --value-loss-coef 0.5 # --ppo-epoch 10 # --num-mini-batch 32 # --gamma 0.99 # --gae-lambda 0.95 # --num-env-steps 10000000 # --use-linear-lr-decay # --use-proper-time-limits # --gail # import argparse # # parser = argparse.ArgumentParser() # parser.add_argument('--sparse', action='store_true', default=True, help='GAT with sparse version or not.') # parser.add_argument('--seed', type=int, default=72, help='Random seed.') # parser.add_argument('--epochs', type=int, default=10000, help='Number of epochs to train.') # # args = parser.parse_args() # # print(args.sparse) # print(args.seed) # print(args.epochs) import torch import numpy as np import random if __name__ == '__main__': # torch.manual_seed(1) # #torch.cuda.manual_seed_all(args.seed) # np.random.seed(1) # for i in range(2): # # for j in range(2): # # a = np.random.rand(3) # # print(a) # a = np.random.rand(3) # print(a) # print("--------1----------") # a = np.random.rand(3) # print(a) # print("--------2----------") # a = np.random.rand(3) # print(a) # #print("------------------") # print("------*------------") # print("[4.17022005e-01 7.20324493e-01 1.14374817e-04]\ # [0.30233257 0.14675589 0.09233859]\ # [0.18626021 0.34556073 0.39676747]\ # [0.53881673 0.41919451 0.6852195 ]")# # print("[4.17022005e-01 7.20324493e-01 1.14374817e-04 3.02332573e-01\ # 1.46755891e-01]") # for _ in range(4): # np.random.seed(1) # b = np.random.choice(a) # print(b) # w = torch.empty(3, 5) # print(w) # print(torch.nn.init.orthogonal_(w)) # a = 3 / 1 # b = 3 // 1 # print("a:", a, "b:", b) # a = [1, 2, 3, 4, 5, 6, 7, 8] # print(a[:8]) # torch.manual_seed(1) # a = torch.randint(1, 100, (1, 9, 2)) # #b = torch.rand(1, ).long() # # print(b) # # b1 = torch.tensor([1, 1, 0]).long() # # b2 = torch.tensor([1]).long() # # c1 = a[b1] # # c2 = a[b2] # print("a:", a) # # print("b1:", b1)random # # print("b2:", b2) # # print("c1:", c1) # # print("c2:", c2) # # b = a[0, 0::4] # b = a // 3 # print("b:", b) # a = torch.tensor([1, 2, 3]) # d = {"A": a} # e = d["A"] # f = d["A"].sum() # g = d["A"].sum().item() # print("e:", e) # print("f:", f) # print("g:", g) # for i, j in d.items(): # print("i:", i, "j:", j) # b = 2 > 1 # print("b:", b) a = np.random.rand(3, 4, 6) b = np.random.rand(2, 5) np.savez('/home/johnny/Document/Python/baselines/data/test.npz', a=a, b=b) print("a:", a, "\n", "b:", b) data = np.load('/home/johnny/Document/Python/baselines/data/test.npz') print("data:", data) print("data['a']:", data['a'], "\n", "data['b']:", data['b']) print("len(data['a']):", len(data['a'])) c = data['a'][:len(data['a'])] print("c:", c)
the-stack_0_10166
import collections import random import threading import time import weakref import sqlalchemy as tsa from sqlalchemy import event from sqlalchemy import pool from sqlalchemy import select from sqlalchemy import testing from sqlalchemy.engine import default from sqlalchemy.testing import assert_raises from sqlalchemy.testing import assert_raises_context_ok from sqlalchemy.testing import assert_raises_message from sqlalchemy.testing import eq_ from sqlalchemy.testing import expect_raises from sqlalchemy.testing import fixtures from sqlalchemy.testing import is_ from sqlalchemy.testing import is_not from sqlalchemy.testing import is_true from sqlalchemy.testing import mock from sqlalchemy.testing.engines import testing_engine from sqlalchemy.testing.mock import ANY from sqlalchemy.testing.mock import call from sqlalchemy.testing.mock import Mock from sqlalchemy.testing.mock import patch from sqlalchemy.testing.util import gc_collect from sqlalchemy.testing.util import lazy_gc join_timeout = 10 def MockDBAPI(): # noqa def cursor(): return Mock() def connect(*arg, **kw): def close(): conn.closed = True # mock seems like it might have an issue logging # call_count correctly under threading, not sure. # adding a side_effect for close seems to help. conn = Mock( cursor=Mock(side_effect=cursor), close=Mock(side_effect=close), closed=False, ) return conn def shutdown(value): if value: db.connect = Mock(side_effect=Exception("connect failed")) else: db.connect = Mock(side_effect=connect) db.is_shutdown = value db = Mock( connect=Mock(side_effect=connect), shutdown=shutdown, is_shutdown=False ) return db class PoolTestBase(fixtures.TestBase): def setup(self): pool.clear_managers() self._teardown_conns = [] def teardown(self): for ref in self._teardown_conns: conn = ref() if conn: conn.close() @classmethod def teardown_class(cls): pool.clear_managers() def _with_teardown(self, connection): self._teardown_conns.append(weakref.ref(connection)) return connection def _queuepool_fixture(self, **kw): dbapi, pool = self._queuepool_dbapi_fixture(**kw) return pool def _queuepool_dbapi_fixture(self, **kw): dbapi = MockDBAPI() return ( dbapi, pool.QueuePool(creator=lambda: dbapi.connect("foo.db"), **kw), ) class PoolTest(PoolTestBase): @testing.fails_on( "+pyodbc", "pyodbc cursor doesn't implement tuple __eq__" ) @testing.fails_on("+pg8000", "returns [1], not (1,)") def test_cursor_iterable(self): conn = testing.db.raw_connection() cursor = conn.cursor() cursor.execute(str(select([1], bind=testing.db))) expected = [(1,)] for row in cursor: eq_(row, expected.pop(0)) def test_no_connect_on_recreate(self): def creator(): raise Exception("no creates allowed") for cls in ( pool.SingletonThreadPool, pool.StaticPool, pool.QueuePool, pool.NullPool, pool.AssertionPool, ): p = cls(creator=creator) p.dispose() p2 = p.recreate() assert p2.__class__ is cls mock_dbapi = MockDBAPI() p = cls(creator=mock_dbapi.connect) conn = p.connect() conn.close() mock_dbapi.connect.side_effect = Exception("error!") p.dispose() p.recreate() def test_info(self): p = self._queuepool_fixture(pool_size=1, max_overflow=0) c = p.connect() self.assert_(not c.info) self.assert_(c.info is c._connection_record.info) c.info["foo"] = "bar" c.close() del c c = p.connect() self.assert_("foo" in c.info) c.invalidate() c = p.connect() self.assert_("foo" not in c.info) c.info["foo2"] = "bar2" c.detach() self.assert_("foo2" in c.info) c2 = p.connect() is_not(c.connection, c2.connection) assert not c2.info assert "foo2" in c.info def test_rec_info(self): p = self._queuepool_fixture(pool_size=1, max_overflow=0) c = p.connect() self.assert_(not c.record_info) self.assert_(c.record_info is c._connection_record.record_info) c.record_info["foo"] = "bar" c.close() del c c = p.connect() self.assert_("foo" in c.record_info) c.invalidate() c = p.connect() self.assert_("foo" in c.record_info) c.record_info["foo2"] = "bar2" c.detach() is_(c.record_info, None) is_(c._connection_record, None) c2 = p.connect() assert c2.record_info assert "foo2" in c2.record_info def test_rec_unconnected(self): # test production of a _ConnectionRecord with an # initially unconnected state. dbapi = MockDBAPI() p1 = pool.Pool(creator=lambda: dbapi.connect("foo.db")) r1 = pool._ConnectionRecord(p1, connect=False) assert not r1.connection c1 = r1.get_connection() is_(c1, r1.connection) def test_rec_close_reopen(self): # test that _ConnectionRecord.close() allows # the record to be reusable dbapi = MockDBAPI() p1 = pool.Pool(creator=lambda: dbapi.connect("foo.db")) r1 = pool._ConnectionRecord(p1) c1 = r1.connection c2 = r1.get_connection() is_(c1, c2) r1.close() assert not r1.connection eq_(c1.mock_calls, [call.close()]) c2 = r1.get_connection() is_not(c1, c2) is_(c2, r1.connection) eq_(c2.mock_calls, []) @testing.combinations( ( pool.QueuePool, dict(pool_size=8, max_overflow=10, timeout=25, use_lifo=True), ), (pool.QueuePool, {}), (pool.NullPool, {}), (pool.SingletonThreadPool, {}), (pool.StaticPool, {}), (pool.AssertionPool, {}), ) def test_recreate_state(self, pool_cls, pool_args): creator = object() pool_args["pre_ping"] = True pool_args["reset_on_return"] = "commit" pool_args["recycle"] = 35 pool_args["logging_name"] = "somepool" pool_args["dialect"] = default.DefaultDialect() pool_args["echo"] = "debug" p1 = pool_cls(creator=creator, **pool_args) cls_keys = dir(pool_cls) d1 = dict(p1.__dict__) p2 = p1.recreate() d2 = dict(p2.__dict__) for k in cls_keys: d1.pop(k, None) d2.pop(k, None) for k in ( "_threadconns", "_invoke_creator", "_pool", "_overflow_lock", "_fairy", "_conn", "logger", ): if k in d2: d2[k] = mock.ANY eq_(d1, d2) eq_(p1.echo, p2.echo) is_(p1._dialect, p2._dialect) if "use_lifo" in pool_args: eq_(p1._pool.use_lifo, p2._pool.use_lifo) class PoolDialectTest(PoolTestBase): def _dialect(self): canary = [] class PoolDialect(object): def do_rollback(self, dbapi_connection): canary.append("R") dbapi_connection.rollback() def do_commit(self, dbapi_connection): canary.append("C") dbapi_connection.commit() def do_close(self, dbapi_connection): canary.append("CL") dbapi_connection.close() return PoolDialect(), canary def _do_test(self, pool_cls, assertion): mock_dbapi = MockDBAPI() dialect, canary = self._dialect() p = pool_cls(creator=mock_dbapi.connect) p._dialect = dialect conn = p.connect() conn.close() p.dispose() p.recreate() conn = p.connect() conn.close() eq_(canary, assertion) def test_queue_pool(self): self._do_test(pool.QueuePool, ["R", "CL", "R"]) def test_assertion_pool(self): self._do_test(pool.AssertionPool, ["R", "CL", "R"]) def test_singleton_pool(self): self._do_test(pool.SingletonThreadPool, ["R", "CL", "R"]) def test_null_pool(self): self._do_test(pool.NullPool, ["R", "CL", "R", "CL"]) def test_static_pool(self): self._do_test(pool.StaticPool, ["R", "R"]) class PoolEventsTest(PoolTestBase): def _first_connect_event_fixture(self): p = self._queuepool_fixture() canary = [] def first_connect(*arg, **kw): canary.append("first_connect") event.listen(p, "first_connect", first_connect) return p, canary def _connect_event_fixture(self): p = self._queuepool_fixture() canary = [] def connect(*arg, **kw): canary.append("connect") event.listen(p, "connect", connect) return p, canary def _checkout_event_fixture(self): p = self._queuepool_fixture() canary = [] def checkout(*arg, **kw): canary.append("checkout") event.listen(p, "checkout", checkout) return p, canary def _checkin_event_fixture(self): p = self._queuepool_fixture() canary = [] def checkin(*arg, **kw): canary.append("checkin") event.listen(p, "checkin", checkin) return p, canary def _reset_event_fixture(self): p = self._queuepool_fixture() canary = [] def reset(*arg, **kw): canary.append("reset") event.listen(p, "reset", reset) return p, canary def _invalidate_event_fixture(self): p = self._queuepool_fixture() canary = Mock() event.listen(p, "invalidate", canary) return p, canary def _soft_invalidate_event_fixture(self): p = self._queuepool_fixture() canary = Mock() event.listen(p, "soft_invalidate", canary) return p, canary def _close_event_fixture(self): p = self._queuepool_fixture() canary = Mock() event.listen(p, "close", canary) return p, canary def _detach_event_fixture(self): p = self._queuepool_fixture() canary = Mock() event.listen(p, "detach", canary) return p, canary def _close_detached_event_fixture(self): p = self._queuepool_fixture() canary = Mock() event.listen(p, "close_detached", canary) return p, canary def test_close(self): p, canary = self._close_event_fixture() c1 = p.connect() connection = c1.connection rec = c1._connection_record c1.close() eq_(canary.mock_calls, []) p.dispose() eq_(canary.mock_calls, [call(connection, rec)]) def test_detach(self): p, canary = self._detach_event_fixture() c1 = p.connect() connection = c1.connection rec = c1._connection_record c1.detach() eq_(canary.mock_calls, [call(connection, rec)]) def test_detach_close(self): p, canary = self._close_detached_event_fixture() c1 = p.connect() connection = c1.connection c1.detach() c1.close() eq_(canary.mock_calls, [call(connection)]) def test_first_connect_event(self): p, canary = self._first_connect_event_fixture() p.connect() eq_(canary, ["first_connect"]) def test_first_connect_event_fires_once(self): p, canary = self._first_connect_event_fixture() p.connect() p.connect() eq_(canary, ["first_connect"]) def test_first_connect_on_previously_recreated(self): p, canary = self._first_connect_event_fixture() p2 = p.recreate() p.connect() p2.connect() eq_(canary, ["first_connect", "first_connect"]) def test_first_connect_on_subsequently_recreated(self): p, canary = self._first_connect_event_fixture() p.connect() p2 = p.recreate() p2.connect() eq_(canary, ["first_connect", "first_connect"]) def test_connect_event(self): p, canary = self._connect_event_fixture() p.connect() eq_(canary, ["connect"]) def test_connect_insert_event(self): p = self._queuepool_fixture() canary = [] def connect_one(*arg, **kw): canary.append("connect_one") def connect_two(*arg, **kw): canary.append("connect_two") def connect_three(*arg, **kw): canary.append("connect_three") event.listen(p, "connect", connect_one) event.listen(p, "connect", connect_two, insert=True) event.listen(p, "connect", connect_three) p.connect() eq_(canary, ["connect_two", "connect_one", "connect_three"]) def test_connect_event_fires_subsequent(self): p, canary = self._connect_event_fixture() c1 = p.connect() # noqa c2 = p.connect() # noqa eq_(canary, ["connect", "connect"]) def test_connect_on_previously_recreated(self): p, canary = self._connect_event_fixture() p2 = p.recreate() p.connect() p2.connect() eq_(canary, ["connect", "connect"]) def test_connect_on_subsequently_recreated(self): p, canary = self._connect_event_fixture() p.connect() p2 = p.recreate() p2.connect() eq_(canary, ["connect", "connect"]) def test_checkout_event(self): p, canary = self._checkout_event_fixture() p.connect() eq_(canary, ["checkout"]) def test_checkout_event_fires_subsequent(self): p, canary = self._checkout_event_fixture() p.connect() p.connect() eq_(canary, ["checkout", "checkout"]) def test_checkout_event_on_subsequently_recreated(self): p, canary = self._checkout_event_fixture() p.connect() p2 = p.recreate() p2.connect() eq_(canary, ["checkout", "checkout"]) def test_checkin_event(self): p, canary = self._checkin_event_fixture() c1 = p.connect() eq_(canary, []) c1.close() eq_(canary, ["checkin"]) def test_reset_event(self): p, canary = self._reset_event_fixture() c1 = p.connect() eq_(canary, []) c1.close() eq_(canary, ["reset"]) def test_soft_invalidate_event_no_exception(self): p, canary = self._soft_invalidate_event_fixture() c1 = p.connect() c1.close() assert not canary.called c1 = p.connect() dbapi_con = c1.connection c1.invalidate(soft=True) assert canary.call_args_list[0][0][0] is dbapi_con assert canary.call_args_list[0][0][2] is None def test_soft_invalidate_event_exception(self): p, canary = self._soft_invalidate_event_fixture() c1 = p.connect() c1.close() assert not canary.called c1 = p.connect() dbapi_con = c1.connection exc = Exception("hi") c1.invalidate(exc, soft=True) assert canary.call_args_list[0][0][0] is dbapi_con assert canary.call_args_list[0][0][2] is exc def test_invalidate_event_no_exception(self): p, canary = self._invalidate_event_fixture() c1 = p.connect() c1.close() assert not canary.called c1 = p.connect() dbapi_con = c1.connection c1.invalidate() assert canary.call_args_list[0][0][0] is dbapi_con assert canary.call_args_list[0][0][2] is None def test_invalidate_event_exception(self): p, canary = self._invalidate_event_fixture() c1 = p.connect() c1.close() assert not canary.called c1 = p.connect() dbapi_con = c1.connection exc = Exception("hi") c1.invalidate(exc) assert canary.call_args_list[0][0][0] is dbapi_con assert canary.call_args_list[0][0][2] is exc @testing.requires.predictable_gc def test_checkin_event_gc(self): p, canary = self._checkin_event_fixture() c1 = p.connect() eq_(canary, []) del c1 lazy_gc() eq_(canary, ["checkin"]) def test_checkin_event_on_subsequently_recreated(self): p, canary = self._checkin_event_fixture() c1 = p.connect() p2 = p.recreate() c2 = p2.connect() eq_(canary, []) c1.close() eq_(canary, ["checkin"]) c2.close() eq_(canary, ["checkin", "checkin"]) def test_listen_targets_scope(self): canary = [] def listen_one(*args): canary.append("listen_one") def listen_two(*args): canary.append("listen_two") def listen_three(*args): canary.append("listen_three") def listen_four(*args): canary.append("listen_four") engine = testing_engine(testing.db.url) event.listen(pool.Pool, "connect", listen_one) event.listen(engine.pool, "connect", listen_two) event.listen(engine, "connect", listen_three) event.listen(engine.__class__, "connect", listen_four) engine.execute(select(1)).close() eq_( canary, ["listen_one", "listen_four", "listen_two", "listen_three"] ) def test_listen_targets_per_subclass(self): """test that listen() called on a subclass remains specific to that subclass.""" canary = [] def listen_one(*args): canary.append("listen_one") def listen_two(*args): canary.append("listen_two") def listen_three(*args): canary.append("listen_three") event.listen(pool.Pool, "connect", listen_one) event.listen(pool.QueuePool, "connect", listen_two) event.listen(pool.SingletonThreadPool, "connect", listen_three) p1 = pool.QueuePool(creator=MockDBAPI().connect) p2 = pool.SingletonThreadPool(creator=MockDBAPI().connect) assert listen_one in p1.dispatch.connect assert listen_two in p1.dispatch.connect assert listen_three not in p1.dispatch.connect assert listen_one in p2.dispatch.connect assert listen_two not in p2.dispatch.connect assert listen_three in p2.dispatch.connect p1.connect() eq_(canary, ["listen_one", "listen_two"]) p2.connect() eq_(canary, ["listen_one", "listen_two", "listen_one", "listen_three"]) def test_connect_event_fails_invalidates(self): fail = False def listen_one(conn, rec): if fail: raise Exception("it failed") def listen_two(conn, rec): rec.info["important_flag"] = True p1 = pool.QueuePool( creator=MockDBAPI().connect, pool_size=1, max_overflow=0 ) event.listen(p1, "connect", listen_one) event.listen(p1, "connect", listen_two) conn = p1.connect() eq_(conn.info["important_flag"], True) conn.invalidate() conn.close() fail = True assert_raises(Exception, p1.connect) fail = False conn = p1.connect() eq_(conn.info["important_flag"], True) conn.close() def teardown(self): # TODO: need to get remove() functionality # going pool.Pool.dispatch._clear() class PoolFirstConnectSyncTest(PoolTestBase): # test [ticket:2964] @testing.requires.timing_intensive def test_sync(self): pool = self._queuepool_fixture(pool_size=3, max_overflow=0) evt = Mock() @event.listens_for(pool, "first_connect") def slow_first_connect(dbapi_con, rec): time.sleep(1) evt.first_connect() @event.listens_for(pool, "connect") def on_connect(dbapi_con, rec): evt.connect() def checkout(): for j in range(2): c1 = pool.connect() time.sleep(0.02) c1.close() time.sleep(0.02) threads = [] # what we're trying to do here is have concurrent use of # all three pooled connections at once, and the thing we want # to test is that first_connect() finishes completely before # any of the connections get returned. so first_connect() # sleeps for one second, then pings the mock. the threads should # not have made it to the "checkout() event for that one second. for i in range(5): th = threading.Thread(target=checkout) th.start() threads.append(th) for th in threads: th.join(join_timeout) # there is a very unlikely condition observed in CI on windows # where even though we have five threads above all calling upon the # pool, we didn't get concurrent use of all three connections, two # connections were enough. so here we purposely just check out # all three at once just to get a consistent test result. make_sure_all_three_are_connected = [pool.connect() for i in range(3)] for conn in make_sure_all_three_are_connected: conn.close() eq_( evt.mock_calls, [ call.first_connect(), call.connect(), call.connect(), call.connect(), ], ) class QueuePoolTest(PoolTestBase): def test_queuepool_del(self): self._do_testqueuepool(useclose=False) def test_queuepool_close(self): self._do_testqueuepool(useclose=True) def _do_testqueuepool(self, useclose=False): p = self._queuepool_fixture(pool_size=3, max_overflow=-1) reaper = testing.engines.ConnectionKiller() reaper.add_pool(p) def status(pool): return ( pool.size(), pool.checkedin(), pool.overflow(), pool.checkedout(), ) c1 = p.connect() self.assert_(status(p) == (3, 0, -2, 1)) c2 = p.connect() self.assert_(status(p) == (3, 0, -1, 2)) c3 = p.connect() self.assert_(status(p) == (3, 0, 0, 3)) c4 = p.connect() self.assert_(status(p) == (3, 0, 1, 4)) c5 = p.connect() self.assert_(status(p) == (3, 0, 2, 5)) c6 = p.connect() self.assert_(status(p) == (3, 0, 3, 6)) if useclose: c4.close() c3.close() c2.close() else: c4 = c3 = c2 = None lazy_gc() self.assert_(status(p) == (3, 3, 3, 3)) if useclose: c1.close() c5.close() c6.close() else: c1 = c5 = c6 = None lazy_gc() self.assert_(status(p) == (3, 3, 0, 0)) c1 = p.connect() c2 = p.connect() self.assert_(status(p) == (3, 1, 0, 2), status(p)) if useclose: c2.close() else: c2 = None lazy_gc() self.assert_(status(p) == (3, 2, 0, 1)) c1.close() reaper.assert_all_closed() def test_timeout_accessor(self): expected_timeout = 123 p = self._queuepool_fixture(timeout=expected_timeout) eq_(p.timeout(), expected_timeout) @testing.requires.timing_intensive def test_timeout(self): p = self._queuepool_fixture(pool_size=3, max_overflow=0, timeout=2) c1 = p.connect() # noqa c2 = p.connect() # noqa c3 = p.connect() # noqa now = time.time() assert_raises(tsa.exc.TimeoutError, p.connect) assert int(time.time() - now) == 2 @testing.requires.timing_intensive def test_timeout_subsecond_precision(self): p = self._queuepool_fixture(pool_size=1, max_overflow=0, timeout=0.5) c1 = p.connect() # noqa with expect_raises(tsa.exc.TimeoutError): now = time.time() c2 = p.connect() # noqa # Python timing is not very accurate, the time diff should be very # close to 0.5s but we give 200ms of slack. assert 0.3 <= time.time() - now <= 0.7, "Pool timeout not respected" @testing.requires.threading_with_mock @testing.requires.timing_intensive def test_timeout_race(self): # test a race condition where the initial connecting threads all race # to queue.Empty, then block on the mutex. each thread consumes a # connection as they go in. when the limit is reached, the remaining # threads go in, and get TimeoutError; even though they never got to # wait for the timeout on queue.get(). the fix involves checking the # timeout again within the mutex, and if so, unlocking and throwing # them back to the start of do_get() dbapi = MockDBAPI() p = pool.QueuePool( creator=lambda: dbapi.connect(delay=0.05), pool_size=2, max_overflow=1, timeout=3, ) timeouts = [] def checkout(): for x in range(1): now = time.time() try: c1 = p.connect() except tsa.exc.TimeoutError: timeouts.append(time.time() - now) continue time.sleep(4) c1.close() threads = [] for i in range(10): th = threading.Thread(target=checkout) th.start() threads.append(th) for th in threads: th.join(join_timeout) assert len(timeouts) > 0 for t in timeouts: assert t >= 3, "Not all timeouts were >= 3 seconds %r" % timeouts # normally, the timeout should under 4 seconds, # but on a loaded down buildbot it can go up. assert t < 14, "Not all timeouts were < 14 seconds %r" % timeouts def _test_overflow(self, thread_count, max_overflow): reaper = testing.engines.ConnectionKiller() dbapi = MockDBAPI() mutex = threading.Lock() def creator(): time.sleep(0.05) with mutex: return dbapi.connect() p = pool.QueuePool( creator=creator, pool_size=3, timeout=2, max_overflow=max_overflow ) reaper.add_pool(p) peaks = [] def whammy(): for i in range(10): try: con = p.connect() time.sleep(0.005) peaks.append(p.overflow()) con.close() del con except tsa.exc.TimeoutError: pass threads = [] for i in range(thread_count): th = threading.Thread(target=whammy) th.start() threads.append(th) for th in threads: th.join(join_timeout) self.assert_(max(peaks) <= max_overflow) reaper.assert_all_closed() def test_overflow_reset_on_failed_connect(self): dbapi = Mock() def failing_dbapi(): raise Exception("connection failed") creator = dbapi.connect def create(): return creator() p = pool.QueuePool(creator=create, pool_size=2, max_overflow=3) c1 = self._with_teardown(p.connect()) # noqa c2 = self._with_teardown(p.connect()) # noqa c3 = self._with_teardown(p.connect()) # noqa eq_(p._overflow, 1) creator = failing_dbapi assert_raises(Exception, p.connect) eq_(p._overflow, 1) @testing.requires.threading_with_mock @testing.requires.timing_intensive def test_hanging_connect_within_overflow(self): """test that a single connect() call which is hanging does not block other connections from proceeding.""" dbapi = Mock() mutex = threading.Lock() def hanging_dbapi(): time.sleep(2) with mutex: return dbapi.connect() def fast_dbapi(): with mutex: return dbapi.connect() creator = threading.local() def create(): return creator.mock_connector() def run_test(name, pool, should_hang): if should_hang: creator.mock_connector = hanging_dbapi else: creator.mock_connector = fast_dbapi conn = pool.connect() conn.operation(name) time.sleep(1) conn.close() p = pool.QueuePool(creator=create, pool_size=2, max_overflow=3) threads = [ threading.Thread(target=run_test, args=("success_one", p, False)), threading.Thread(target=run_test, args=("success_two", p, False)), threading.Thread(target=run_test, args=("overflow_one", p, True)), threading.Thread(target=run_test, args=("overflow_two", p, False)), threading.Thread( target=run_test, args=("overflow_three", p, False) ), ] for t in threads: t.start() time.sleep(0.2) for t in threads: t.join(timeout=join_timeout) eq_( dbapi.connect().operation.mock_calls, [ call("success_one"), call("success_two"), call("overflow_two"), call("overflow_three"), call("overflow_one"), ], ) @testing.requires.threading_with_mock @testing.requires.timing_intensive def test_waiters_handled(self): """test that threads waiting for connections are handled when the pool is replaced. """ mutex = threading.Lock() dbapi = MockDBAPI() def creator(): with mutex: return dbapi.connect() success = [] for timeout in (None, 30): for max_overflow in (0, -1, 3): p = pool.QueuePool( creator=creator, pool_size=2, timeout=timeout, max_overflow=max_overflow, ) def waiter(p, timeout, max_overflow): success_key = (timeout, max_overflow) conn = p.connect() success.append(success_key) time.sleep(0.1) conn.close() c1 = p.connect() # noqa c2 = p.connect() threads = [] for i in range(2): t = threading.Thread( target=waiter, args=(p, timeout, max_overflow) ) t.daemon = True t.start() threads.append(t) # this sleep makes sure that the # two waiter threads hit upon wait() # inside the queue, before we invalidate the other # two conns time.sleep(0.2) p._invalidate(c2) for t in threads: t.join(join_timeout) eq_(len(success), 12, "successes: %s" % success) def test_connrec_invalidated_within_checkout_no_race(self): """Test that a concurrent ConnectionRecord.invalidate() which occurs after the ConnectionFairy has called _ConnectionRecord.checkout() but before the ConnectionFairy tests "fairy.connection is None" will not result in an InvalidRequestError. This use case assumes that a listener on the checkout() event will be raising DisconnectionError so that a reconnect attempt may occur. """ dbapi = MockDBAPI() def creator(): return dbapi.connect() p = pool.QueuePool(creator=creator, pool_size=1, max_overflow=0) conn = p.connect() conn.close() _existing_checkout = pool._ConnectionRecord.checkout @classmethod def _decorate_existing_checkout(cls, *arg, **kw): fairy = _existing_checkout(*arg, **kw) connrec = fairy._connection_record connrec.invalidate() return fairy with patch( "sqlalchemy.pool._ConnectionRecord.checkout", _decorate_existing_checkout, ): conn = p.connect() is_(conn._connection_record.connection, None) conn.close() @testing.requires.threading_with_mock @testing.requires.timing_intensive def test_notify_waiters(self): dbapi = MockDBAPI() canary = [] def creator(): canary.append(1) return dbapi.connect() p1 = pool.QueuePool( creator=creator, pool_size=1, timeout=None, max_overflow=0 ) def waiter(p): conn = p.connect() canary.append(2) time.sleep(0.5) conn.close() c1 = p1.connect() threads = [] for i in range(5): t = threading.Thread(target=waiter, args=(p1,)) t.start() threads.append(t) time.sleep(0.5) eq_(canary, [1]) # this also calls invalidate() # on c1 p1._invalidate(c1) for t in threads: t.join(join_timeout) eq_(canary, [1, 1, 2, 2, 2, 2, 2]) def test_dispose_closes_pooled(self): dbapi = MockDBAPI() p = pool.QueuePool( creator=dbapi.connect, pool_size=2, timeout=None, max_overflow=0 ) c1 = p.connect() c2 = p.connect() c1_con = c1.connection c2_con = c2.connection c1.close() eq_(c1_con.close.call_count, 0) eq_(c2_con.close.call_count, 0) p.dispose() eq_(c1_con.close.call_count, 1) eq_(c2_con.close.call_count, 0) # currently, if a ConnectionFairy is closed # after the pool has been disposed, there's no # flag that states it should be invalidated # immediately - it just gets returned to the # pool normally... c2.close() eq_(c1_con.close.call_count, 1) eq_(c2_con.close.call_count, 0) # ...and that's the one we'll get back next. c3 = p.connect() assert c3.connection is c2_con @testing.requires.threading_with_mock @testing.requires.timing_intensive def test_no_overflow(self): self._test_overflow(40, 0) @testing.requires.threading_with_mock @testing.requires.timing_intensive def test_max_overflow(self): self._test_overflow(40, 5) def test_overflow_no_gc(self): p = self._queuepool_fixture(pool_size=2, max_overflow=2) # disable weakref collection of the # underlying connections strong_refs = set() def _conn(): c = p.connect() strong_refs.add(c.connection) return c for j in range(5): # open 4 conns at a time. each time this # will yield two pooled connections + two # overflow connections. conns = [_conn() for i in range(4)] for c in conns: c.close() # doing that for a total of 5 times yields # ten overflow connections closed plus the # two pooled connections unclosed. eq_( set([c.close.call_count for c in strong_refs]), set([1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0]), ) def test_recycle(self): with patch("sqlalchemy.pool.base.time.time") as mock: mock.return_value = 10000 p = self._queuepool_fixture( pool_size=1, max_overflow=0, recycle=30 ) c1 = p.connect() c_ref = weakref.ref(c1.connection) c1.close() mock.return_value = 10001 c2 = p.connect() is_(c2.connection, c_ref()) c2.close() mock.return_value = 10035 c3 = p.connect() is_not(c3.connection, c_ref()) @testing.requires.timing_intensive def test_recycle_on_invalidate(self): p = self._queuepool_fixture(pool_size=1, max_overflow=0) c1 = p.connect() c_ref = weakref.ref(c1.connection) c1.close() c2 = p.connect() is_(c2.connection, c_ref()) c2_rec = c2._connection_record p._invalidate(c2) assert c2_rec.connection is None c2.close() time.sleep(0.5) c3 = p.connect() is_not(c3.connection, c_ref()) @testing.requires.timing_intensive def test_recycle_on_soft_invalidate(self): p = self._queuepool_fixture(pool_size=1, max_overflow=0) c1 = p.connect() c_ref = weakref.ref(c1.connection) c1.close() c2 = p.connect() is_(c2.connection, c_ref()) c2_rec = c2._connection_record # ensure pool invalidate time will be later than starttime # for ConnectionRecord objects above time.sleep(0.1) c2.invalidate(soft=True) is_(c2_rec.connection, c2.connection) c2.close() c3 = p.connect() is_not(c3.connection, c_ref()) is_(c3._connection_record, c2_rec) is_(c2_rec.connection, c3.connection) def _no_wr_finalize(self): finalize_fairy = pool._finalize_fairy def assert_no_wr_callback( connection, connection_record, pool, ref, echo, fairy=None ): if fairy is None: raise AssertionError( "finalize fairy was called as a weakref callback" ) return finalize_fairy( connection, connection_record, pool, ref, echo, fairy ) return patch.object(pool, "_finalize_fairy", assert_no_wr_callback) def _assert_cleanup_on_pooled_reconnect(self, dbapi, p): # p is QueuePool with size=1, max_overflow=2, # and one connection in the pool that will need to # reconnect when next used (either due to recycle or invalidate) with self._no_wr_finalize(): eq_(p.checkedout(), 0) eq_(p._overflow, 0) dbapi.shutdown(True) assert_raises_context_ok(Exception, p.connect) eq_(p._overflow, 0) eq_(p.checkedout(), 0) # and not 1 dbapi.shutdown(False) c1 = self._with_teardown(p.connect()) # noqa assert p._pool.empty() # poolsize is one, so we're empty OK c2 = self._with_teardown(p.connect()) # noqa eq_(p._overflow, 1) # and not 2 # this hangs if p._overflow is 2 c3 = self._with_teardown(p.connect()) c3.close() def test_error_on_pooled_reconnect_cleanup_invalidate(self): dbapi, p = self._queuepool_dbapi_fixture(pool_size=1, max_overflow=2) c1 = p.connect() c1.invalidate() c1.close() self._assert_cleanup_on_pooled_reconnect(dbapi, p) @testing.requires.timing_intensive def test_error_on_pooled_reconnect_cleanup_recycle(self): dbapi, p = self._queuepool_dbapi_fixture( pool_size=1, max_overflow=2, recycle=1 ) c1 = p.connect() c1.close() time.sleep(1.5) self._assert_cleanup_on_pooled_reconnect(dbapi, p) @testing.requires.timing_intensive def test_connect_handler_not_called_for_recycled(self): """test [ticket:3497]""" dbapi, p = self._queuepool_dbapi_fixture(pool_size=2, max_overflow=2) canary = Mock() c1 = p.connect() c2 = p.connect() c1.close() c2.close() dbapi.shutdown(True) # ensure pool invalidate time will be later than starttime # for ConnectionRecord objects above time.sleep(0.1) bad = p.connect() p._invalidate(bad) bad.close() assert p._invalidate_time event.listen(p, "connect", canary.connect) event.listen(p, "checkout", canary.checkout) assert_raises(Exception, p.connect) p._pool.queue = collections.deque( [c for c in p._pool.queue if c.connection is not None] ) dbapi.shutdown(False) c = p.connect() c.close() eq_( canary.mock_calls, [call.connect(ANY, ANY), call.checkout(ANY, ANY, ANY)], ) @testing.requires.timing_intensive def test_connect_checkout_handler_always_gets_info(self): """test [ticket:3497]""" dbapi, p = self._queuepool_dbapi_fixture(pool_size=2, max_overflow=2) c1 = p.connect() c2 = p.connect() c1.close() c2.close() dbapi.shutdown(True) # ensure pool invalidate time will be later than starttime # for ConnectionRecord objects above time.sleep(0.1) bad = p.connect() p._invalidate(bad) bad.close() assert p._invalidate_time @event.listens_for(p, "connect") def connect(conn, conn_rec): conn_rec.info["x"] = True @event.listens_for(p, "checkout") def checkout(conn, conn_rec, conn_f): assert "x" in conn_rec.info assert_raises(Exception, p.connect) p._pool.queue = collections.deque( [c for c in p._pool.queue if c.connection is not None] ) dbapi.shutdown(False) c = p.connect() c.close() def test_error_on_pooled_reconnect_cleanup_wcheckout_event(self): dbapi, p = self._queuepool_dbapi_fixture(pool_size=1, max_overflow=2) c1 = p.connect() c1.close() @event.listens_for(p, "checkout") def handle_checkout_event(dbapi_con, con_record, con_proxy): if dbapi.is_shutdown: raise tsa.exc.DisconnectionError() self._assert_cleanup_on_pooled_reconnect(dbapi, p) @testing.requires.predictable_gc def test_userspace_disconnectionerror_weakref_finalizer(self): dbapi, pool = self._queuepool_dbapi_fixture( pool_size=1, max_overflow=2 ) @event.listens_for(pool, "checkout") def handle_checkout_event(dbapi_con, con_record, con_proxy): if getattr(dbapi_con, "boom") == "yes": raise tsa.exc.DisconnectionError() conn = pool.connect() old_dbapi_conn = conn.connection conn.close() eq_(old_dbapi_conn.mock_calls, [call.rollback()]) old_dbapi_conn.boom = "yes" conn = pool.connect() dbapi_conn = conn.connection del conn gc_collect() # new connection was reset on return appropriately eq_(dbapi_conn.mock_calls, [call.rollback()]) # old connection was just closed - did not get an # erroneous reset on return eq_(old_dbapi_conn.mock_calls, [call.rollback(), call.close()]) @testing.requires.timing_intensive def test_recycle_pool_no_race(self): def slow_close(): slow_closing_connection._slow_close() time.sleep(0.5) slow_closing_connection = Mock() slow_closing_connection.connect.return_value.close = slow_close class Error(Exception): pass dialect = Mock() dialect.is_disconnect = lambda *arg, **kw: True dialect.dbapi.Error = Error pools = [] class TrackQueuePool(pool.QueuePool): def __init__(self, *arg, **kw): pools.append(self) super(TrackQueuePool, self).__init__(*arg, **kw) def creator(): return slow_closing_connection.connect() p1 = TrackQueuePool(creator=creator, pool_size=20) from sqlalchemy import create_engine eng = create_engine(testing.db.url, pool=p1, _initialize=False) eng.dialect = dialect # 15 total connections conns = [eng.connect() for i in range(15)] # return 8 back to the pool for conn in conns[3:10]: conn.close() def attempt(conn): time.sleep(random.random()) try: conn._handle_dbapi_exception( Error(), "statement", {}, Mock(), Mock() ) except tsa.exc.DBAPIError: pass # run an error + invalidate operation on the remaining 7 open # connections threads = [] for conn in conns: t = threading.Thread(target=attempt, args=(conn,)) t.start() threads.append(t) for t in threads: t.join() # return all 15 connections to the pool for conn in conns: conn.close() # re-open 15 total connections conns = [eng.connect() for i in range(15)] # 15 connections have been fully closed due to invalidate assert slow_closing_connection._slow_close.call_count == 15 # 15 initial connections + 15 reconnections assert slow_closing_connection.connect.call_count == 30 assert len(pools) <= 2, len(pools) def test_invalidate(self): p = self._queuepool_fixture(pool_size=1, max_overflow=0) c1 = p.connect() c_id = c1.connection.id c1.close() c1 = None c1 = p.connect() assert c1.connection.id == c_id c1.invalidate() c1 = None c1 = p.connect() assert c1.connection.id != c_id def test_recreate(self): p = self._queuepool_fixture( reset_on_return=None, pool_size=1, max_overflow=0 ) p2 = p.recreate() assert p2.size() == 1 assert p2._reset_on_return is pool.reset_none assert p2._max_overflow == 0 def test_reconnect(self): """tests reconnect operations at the pool level. SA's engine/dialect includes another layer of reconnect support for 'database was lost' errors.""" dbapi, p = self._queuepool_dbapi_fixture(pool_size=1, max_overflow=0) c1 = p.connect() c_id = c1.connection.id c1.close() c1 = None c1 = p.connect() assert c1.connection.id == c_id dbapi.raise_error = True c1.invalidate() c1 = None c1 = p.connect() assert c1.connection.id != c_id def test_detach(self): dbapi, p = self._queuepool_dbapi_fixture(pool_size=1, max_overflow=0) c1 = p.connect() c1.detach() c2 = p.connect() # noqa eq_(dbapi.connect.mock_calls, [call("foo.db"), call("foo.db")]) c1_con = c1.connection assert c1_con is not None eq_(c1_con.close.call_count, 0) c1.close() eq_(c1_con.close.call_count, 1) def test_detach_via_invalidate(self): dbapi, p = self._queuepool_dbapi_fixture(pool_size=1, max_overflow=0) c1 = p.connect() c1_con = c1.connection c1.invalidate() assert c1.connection is None eq_(c1_con.close.call_count, 1) c2 = p.connect() assert c2.connection is not c1_con c2_con = c2.connection c2.close() eq_(c2_con.close.call_count, 0) def test_no_double_checkin(self): p = self._queuepool_fixture(pool_size=1) c1 = p.connect() rec = c1._connection_record c1.close() assert_raises_message( Warning, "Double checkin attempted on %s" % rec, rec.checkin ) def test_lifo(self): c1, c2, c3 = Mock(), Mock(), Mock() connections = [c1, c2, c3] def creator(): return connections.pop(0) p = pool.QueuePool(creator, use_lifo=True) pc1 = p.connect() pc2 = p.connect() pc3 = p.connect() pc1.close() pc2.close() pc3.close() for i in range(5): pc1 = p.connect() is_(pc1.connection, c3) pc1.close() pc1 = p.connect() is_(pc1.connection, c3) pc2 = p.connect() is_(pc2.connection, c2) pc2.close() pc3 = p.connect() is_(pc3.connection, c2) pc2 = p.connect() is_(pc2.connection, c1) pc2.close() pc3.close() pc1.close() def test_fifo(self): c1, c2, c3 = Mock(), Mock(), Mock() connections = [c1, c2, c3] def creator(): return connections.pop(0) p = pool.QueuePool(creator) pc1 = p.connect() pc2 = p.connect() pc3 = p.connect() pc1.close() pc2.close() pc3.close() pc1 = p.connect() is_(pc1.connection, c1) pc1.close() pc1 = p.connect() is_(pc1.connection, c2) pc2 = p.connect() is_(pc2.connection, c3) pc2.close() pc3 = p.connect() is_(pc3.connection, c1) pc2 = p.connect() is_(pc2.connection, c3) pc2.close() pc3.close() pc1.close() class ResetOnReturnTest(PoolTestBase): def _fixture(self, **kw): dbapi = Mock() return ( dbapi, pool.QueuePool(creator=lambda: dbapi.connect("foo.db"), **kw), ) def test_plain_rollback(self): dbapi, p = self._fixture(reset_on_return="rollback") c1 = p.connect() c1.close() assert dbapi.connect().rollback.called assert not dbapi.connect().commit.called def test_plain_commit(self): dbapi, p = self._fixture(reset_on_return="commit") c1 = p.connect() c1.close() assert not dbapi.connect().rollback.called assert dbapi.connect().commit.called def test_plain_none(self): dbapi, p = self._fixture(reset_on_return=None) c1 = p.connect() c1.close() assert not dbapi.connect().rollback.called assert not dbapi.connect().commit.called def test_agent_rollback(self): dbapi, p = self._fixture(reset_on_return="rollback") class Agent(object): def __init__(self, conn): self.conn = conn is_active = True def rollback(self): self.conn.special_rollback() def commit(self): self.conn.special_commit() c1 = p.connect() c1._reset_agent = Agent(c1) c1.close() assert dbapi.connect().special_rollback.called assert not dbapi.connect().special_commit.called assert not dbapi.connect().rollback.called assert not dbapi.connect().commit.called c1 = p.connect() c1.close() eq_(dbapi.connect().special_rollback.call_count, 1) eq_(dbapi.connect().special_commit.call_count, 0) assert dbapi.connect().rollback.called assert not dbapi.connect().commit.called def test_agent_commit(self): dbapi, p = self._fixture(reset_on_return="commit") class Agent(object): def __init__(self, conn): self.conn = conn is_active = True def rollback(self): self.conn.special_rollback() def commit(self): self.conn.special_commit() c1 = p.connect() c1._reset_agent = Agent(c1) c1.close() assert not dbapi.connect().special_rollback.called assert dbapi.connect().special_commit.called assert not dbapi.connect().rollback.called assert not dbapi.connect().commit.called c1 = p.connect() c1.close() eq_(dbapi.connect().special_rollback.call_count, 0) eq_(dbapi.connect().special_commit.call_count, 1) assert not dbapi.connect().rollback.called assert dbapi.connect().commit.called def test_reset_agent_disconnect(self): dbapi, p = self._fixture(reset_on_return="rollback") class Agent(object): def __init__(self, conn): self.conn = conn def rollback(self): p._invalidate(self.conn) raise Exception("hi") def commit(self): self.conn.commit() c1 = p.connect() c1._reset_agent = Agent(c1) c1.close() # no warning raised. We know it would warn due to # QueuePoolTest.test_no_double_checkin class SingletonThreadPoolTest(PoolTestBase): @testing.requires.threading_with_mock def test_cleanup(self): self._test_cleanup(False) # TODO: the SingletonThreadPool cleanup method # has an unfixed race condition within the "cleanup" system that # leads to this test being off by one connection under load; in any # case, this connection will be closed once it is garbage collected. # this pool is not a production-level pool and is only used for the # SQLite "memory" connection, and is not very useful under actual # multi-threaded conditions # @testing.requires.threading_with_mock # def test_cleanup_no_gc(self): # self._test_cleanup(True) def _test_cleanup(self, strong_refs): """test that the pool's connections are OK after cleanup() has been called.""" dbapi = MockDBAPI() lock = threading.Lock() def creator(): # the mock iterator isn't threadsafe... with lock: return dbapi.connect() p = pool.SingletonThreadPool(creator=creator, pool_size=3) if strong_refs: sr = set() def _conn(): c = p.connect() sr.add(c.connection) return c else: def _conn(): return p.connect() def checkout(): for x in range(10): c = _conn() assert c c.cursor() c.close() time.sleep(0.01) threads = [] for i in range(10): th = threading.Thread(target=checkout) th.start() threads.append(th) for th in threads: th.join(join_timeout) lp = len(p._all_conns) is_true(3 <= lp <= 4) if strong_refs: still_opened = len([c for c in sr if not c.close.call_count]) eq_(still_opened, 3) def test_no_rollback_from_nested_connections(self): dbapi = MockDBAPI() lock = threading.Lock() def creator(): # the mock iterator isn't threadsafe... with lock: return dbapi.connect() p = pool.SingletonThreadPool(creator=creator, pool_size=3) c1 = p.connect() mock_conn = c1.connection c2 = p.connect() is_(c1, c2) c2.close() eq_(mock_conn.mock_calls, []) c1.close() eq_(mock_conn.mock_calls, [call.rollback()]) class AssertionPoolTest(PoolTestBase): def test_connect_error(self): dbapi = MockDBAPI() p = pool.AssertionPool(creator=lambda: dbapi.connect("foo.db")) c1 = p.connect() # noqa assert_raises(AssertionError, p.connect) def test_connect_multiple(self): dbapi = MockDBAPI() p = pool.AssertionPool(creator=lambda: dbapi.connect("foo.db")) c1 = p.connect() c1.close() c2 = p.connect() c2.close() c3 = p.connect() # noqa assert_raises(AssertionError, p.connect) class NullPoolTest(PoolTestBase): def test_reconnect(self): dbapi = MockDBAPI() p = pool.NullPool(creator=lambda: dbapi.connect("foo.db")) c1 = p.connect() c1.close() c1 = None c1 = p.connect() c1.invalidate() c1 = None c1 = p.connect() dbapi.connect.assert_has_calls( [call("foo.db"), call("foo.db")], any_order=True ) class StaticPoolTest(PoolTestBase): def test_recreate(self): dbapi = MockDBAPI() def creator(): return dbapi.connect("foo.db") p = pool.StaticPool(creator) p2 = p.recreate() assert p._creator is p2._creator class CreatorCompatibilityTest(PoolTestBase): def test_creator_callable_outside_noarg(self): e = testing_engine() creator = e.pool._creator try: conn = creator() finally: conn.close() def test_creator_callable_outside_witharg(self): e = testing_engine() creator = e.pool._creator try: conn = creator(Mock()) finally: conn.close() def test_creator_patching_arg_to_noarg(self): e = testing_engine() creator = e.pool._creator try: # the creator is the two-arg form conn = creator(Mock()) finally: conn.close() def mock_create(): return creator() conn = e.connect() conn.invalidate() conn.close() # test that the 'should_wrap_creator' status # will dynamically switch if the _creator is monkeypatched. # patch it with a zero-arg form with patch.object(e.pool, "_creator", mock_create): conn = e.connect() conn.invalidate() conn.close() conn = e.connect() conn.close()
the-stack_0_10168
# -*- coding: utf-8 -*- # Authors: Mark Wronkiewicz <[email protected]> # Yousra Bekhti <[email protected]> # Eric Larson <[email protected]> # # License: BSD-3-Clause from collections.abc import Iterable import numpy as np from ..event import _get_stim_channel from .._ola import _Interp2 from ..io.pick import (pick_types, pick_info, pick_channels, pick_channels_forward) from ..cov import make_ad_hoc_cov, read_cov, Covariance from ..bem import fit_sphere_to_headshape, make_sphere_model, read_bem_solution from ..io import RawArray, BaseRaw, Info from ..chpi import (read_head_pos, head_pos_to_trans_rot_t, get_chpi_info, _get_hpi_initial_fit) from ..io.constants import FIFF from ..forward import (_magnetic_dipole_field_vec, _merge_meg_eeg_fwds, _stc_src_sel, convert_forward_solution, _prepare_for_forward, _transform_orig_meg_coils, _compute_forwards, _to_forward_dict, restrict_forward_to_stc, _prep_meg_channels) from ..transforms import _get_trans, transform_surface_to from ..source_space import (_ensure_src, _set_source_space_vertices, setup_volume_source_space) from ..source_estimate import _BaseSourceEstimate from ..surface import _CheckInside from ..utils import (logger, verbose, check_random_state, _pl, _validate_type, _check_preload) from ..parallel import check_n_jobs from .source import SourceSimulator def _check_cov(info, cov): """Check that the user provided a valid covariance matrix for the noise.""" if isinstance(cov, Covariance) or cov is None: pass elif isinstance(cov, dict): cov = make_ad_hoc_cov(info, cov, verbose=False) elif isinstance(cov, str): if cov == 'simple': cov = make_ad_hoc_cov(info, None, verbose=False) else: cov = read_cov(cov, verbose=False) else: raise TypeError('Covariance matrix type not recognized. Valid input ' 'types are: instance of Covariance, dict, str, None. ' ', got %s' % (cov,)) return cov def _check_stc_iterable(stc, info): # 1. Check that our STC is iterable (or convert it to one using cycle) # 2. Do first iter so we can get the vertex subselection # 3. Get the list of verts, which must stay the same across iterations if isinstance(stc, _BaseSourceEstimate): stc = [stc] _validate_type(stc, Iterable, 'SourceEstimate, tuple, or iterable') stc_enum = enumerate(stc) del stc try: stc_counted = next(stc_enum) except StopIteration: raise RuntimeError('Iterable did not provide stc[0]') _, _, verts = _stc_data_event(stc_counted, 1, info['sfreq']) return stc_enum, stc_counted, verts def _log_ch(start, info, ch): """Log channel information.""" if ch is not None: extra, just, ch = ' stored on channel:', 50, info['ch_names'][ch] else: extra, just, ch = ' not stored', 0, '' logger.info((start + extra).ljust(just) + ch) def _check_head_pos(head_pos, info, first_samp, times=None): if head_pos is None: # use pos from info['dev_head_t'] head_pos = dict() if isinstance(head_pos, str): # can be a head pos file head_pos = read_head_pos(head_pos) if isinstance(head_pos, np.ndarray): # can be head_pos quats head_pos = head_pos_to_trans_rot_t(head_pos) if isinstance(head_pos, tuple): # can be quats converted to trans, rot, t transs, rots, ts = head_pos first_time = first_samp / info['sfreq'] ts = ts - first_time # MF files need reref dev_head_ts = [np.r_[np.c_[r, t[:, np.newaxis]], [[0, 0, 0, 1]]] for r, t in zip(rots, transs)] del transs, rots elif isinstance(head_pos, dict): ts = np.array(list(head_pos.keys()), float) ts.sort() dev_head_ts = [head_pos[float(tt)] for tt in ts] else: raise TypeError('unknown head_pos type %s' % type(head_pos)) bad = ts < 0 if bad.any(): raise RuntimeError('All position times must be >= 0, found %s/%s' '< 0' % (bad.sum(), len(bad))) if times is not None: bad = ts > times[-1] if bad.any(): raise RuntimeError('All position times must be <= t_end (%0.1f ' 'sec), found %s/%s bad values (is this a split ' 'file?)' % (times[-1], bad.sum(), len(bad))) # If it starts close to zero, make it zero (else unique(offset) fails) if len(ts) > 0 and ts[0] < (0.5 / info['sfreq']): ts[0] = 0. # If it doesn't start at zero, insert one at t=0 elif len(ts) == 0 or ts[0] > 0: ts = np.r_[[0.], ts] dev_head_ts.insert(0, info['dev_head_t']['trans']) dev_head_ts = [{'trans': d, 'to': info['dev_head_t']['to'], 'from': info['dev_head_t']['from']} for d in dev_head_ts] offsets = np.round(ts * info['sfreq']).astype(int) assert np.array_equal(offsets, np.unique(offsets)) assert len(offsets) == len(dev_head_ts) offsets = list(offsets) return dev_head_ts, offsets @verbose def simulate_raw(info, stc=None, trans=None, src=None, bem=None, head_pos=None, mindist=1.0, interp='cos2', n_jobs=1, use_cps=True, forward=None, first_samp=0, max_iter=10000, verbose=None): u"""Simulate raw data. Head movements can optionally be simulated using the ``head_pos`` parameter. Parameters ---------- %(info_not_none)s Used for simulation. .. versionchanged:: 0.18 Support for :class:`mne.Info`. stc : iterable | SourceEstimate | SourceSimulator The source estimates to use to simulate data. Each must have the same sample rate as the raw data, and the vertices of all stcs in the iterable must match. Each entry in the iterable can also be a tuple of ``(SourceEstimate, ndarray)`` to allow specifying the stim channel (e.g., STI001) data accompany the source estimate. See Notes for details. .. versionchanged:: 0.18 Support for tuple, iterable of tuple or `~mne.SourceEstimate`, or `~mne.simulation.SourceSimulator`. trans : dict | str | None Either a transformation filename (usually made using mne_analyze) or an info dict (usually opened using read_trans()). If string, an ending of ``.fif`` or ``.fif.gz`` will be assumed to be in FIF format, any other ending will be assumed to be a text file with a 4x4 transformation matrix (like the ``--trans`` MNE-C option). If trans is None, an identity transform will be used. src : str | instance of SourceSpaces | None Source space corresponding to the stc. If string, should be a source space filename. Can also be an instance of loaded or generated SourceSpaces. Can be None if ``forward`` is provided. bem : str | dict | None BEM solution corresponding to the stc. If string, should be a BEM solution filename (e.g., "sample-5120-5120-5120-bem-sol.fif"). Can be None if ``forward`` is provided. %(head_pos)s See for example :footcite:`LarsonTaulu2017`. mindist : float Minimum distance between sources and the inner skull boundary to use during forward calculation. %(interp)s %(n_jobs)s %(use_cps)s forward : instance of Forward | None The forward operator to use. If None (default) it will be computed using ``bem``, ``trans``, and ``src``. If not None, ``bem``, ``trans``, and ``src`` are ignored. .. versionadded:: 0.17 first_samp : int The first_samp property in the output Raw instance. .. versionadded:: 0.18 max_iter : int The maximum number of STC iterations to allow. This is a sanity parameter to prevent accidental blowups. .. versionadded:: 0.18 %(verbose)s Returns ------- raw : instance of Raw The simulated raw file. See Also -------- mne.chpi.read_head_pos add_chpi add_noise add_ecg add_eog simulate_evoked simulate_stc simulate_sparse_stc Notes ----- **Stim channel encoding** By default, the stimulus channel will have the head position number (starting at 1) stored in the trigger channel (if available) at the t=0 point in each repetition of the ``stc``. If ``stc`` is a tuple of ``(SourceEstimate, ndarray)`` the array values will be placed in the stim channel aligned with the :class:`mne.SourceEstimate`. **Data simulation** In the most advanced case where ``stc`` is an iterable of tuples the output will be concatenated in time as: .. table:: Data alignment and stim channel encoding +---------+--------------------------+--------------------------+---------+ | Channel | Data | +=========+==========================+==========================+=========+ | M/EEG | ``fwd @ stc[0][0].data`` | ``fwd @ stc[1][0].data`` | ``...`` | +---------+--------------------------+--------------------------+---------+ | STIM | ``stc[0][1]`` | ``stc[1][1]`` | ``...`` | +---------+--------------------------+--------------------------+---------+ | | *time →* | +---------+--------------------------+--------------------------+---------+ .. versionadded:: 0.10.0 References ---------- .. footbibliography:: """ # noqa: E501 _validate_type(info, Info, 'info') raw_verbose = verbose if len(pick_types(info, meg=False, stim=True)) == 0: event_ch = None else: event_ch = pick_channels(info['ch_names'], _get_stim_channel(None, info))[0] n_jobs = check_n_jobs(n_jobs) if forward is not None: if any(x is not None for x in (trans, src, bem, head_pos)): raise ValueError('If forward is not None then trans, src, bem, ' 'and head_pos must all be None') if not np.allclose(forward['info']['dev_head_t']['trans'], info['dev_head_t']['trans'], atol=1e-6): raise ValueError('The forward meg<->head transform ' 'forward["info"]["dev_head_t"] does not match ' 'the one in raw.info["dev_head_t"]') src = forward['src'] dev_head_ts, offsets = _check_head_pos(head_pos, info, first_samp, None) src = _ensure_src(src, verbose=False) if isinstance(bem, str): bem = read_bem_solution(bem, verbose=False) # Extract necessary info meeg_picks = pick_types(info, meg=True, eeg=True, exclude=[]) logger.info('Setting up raw simulation: %s position%s, "%s" interpolation' % (len(dev_head_ts), _pl(dev_head_ts), interp)) if isinstance(stc, SourceSimulator) and stc.first_samp != first_samp: logger.info('SourceSimulator first_samp does not match argument.') stc_enum, stc_counted, verts = _check_stc_iterable(stc, info) if forward is not None: forward = restrict_forward_to_stc(forward, verts) src = forward['src'] else: _stc_src_sel(src, verts, on_missing='warn', extra='') src = _set_source_space_vertices(src.copy(), verts) # array used to store result raw_datas = list() _log_ch('Event information', info, event_ch) # don't process these any more if no MEG present n = 1 get_fwd = _SimForwards( dev_head_ts, offsets, info, trans, src, bem, mindist, n_jobs, meeg_picks, forward, use_cps) interper = _Interp2(offsets, get_fwd, interp) this_start = 0 for n in range(max_iter): if isinstance(stc_counted[1], (list, tuple)): this_n = stc_counted[1][0].data.shape[1] else: this_n = stc_counted[1].data.shape[1] this_stop = this_start + this_n logger.info(' Interval %0.3f-%0.3f sec' % (this_start / info['sfreq'], this_stop / info['sfreq'])) n_doing = this_stop - this_start assert n_doing > 0 this_data = np.zeros((len(info['ch_names']), n_doing)) raw_datas.append(this_data) # Stim channel fwd, fi = interper.feed(this_stop - this_start) fi = fi[0] stc_data, stim_data, _ = _stc_data_event( stc_counted, fi, info['sfreq'], get_fwd.src, None if n == 0 else verts) if event_ch is not None: this_data[event_ch, :] = stim_data[:n_doing] this_data[meeg_picks] = np.einsum('svt,vt->st', fwd, stc_data) try: stc_counted = next(stc_enum) except StopIteration: logger.info(' %d STC iteration%s provided' % (n + 1, _pl(n + 1))) break del fwd else: raise RuntimeError('Maximum number of STC iterations (%d) ' 'exceeded' % (n,)) raw_data = np.concatenate(raw_datas, axis=-1) raw = RawArray(raw_data, info, first_samp=first_samp, verbose=False) raw.set_annotations(raw.annotations) raw.verbose = raw_verbose logger.info('Done') return raw @verbose def add_eog(raw, head_pos=None, interp='cos2', n_jobs=1, random_state=None, verbose=None): """Add blink noise to raw data. Parameters ---------- raw : instance of Raw The raw instance to modify. %(head_pos)s %(interp)s %(n_jobs)s %(random_state)s The random generator state used for blink, ECG, and sensor noise randomization. %(verbose)s Returns ------- raw : instance of Raw The instance, modified in place. See Also -------- add_chpi add_ecg add_noise simulate_raw Notes ----- The blink artifacts are generated by: 1. Random activation times are drawn from an inhomogeneous poisson process whose blink rate oscillates between 4.5 blinks/minute and 17 blinks/minute based on the low (reading) and high (resting) blink rates from :footcite:`BentivoglioEtAl1997`. 2. The activation kernel is a 250 ms Hanning window. 3. Two activated dipoles are located in the z=0 plane (in head coordinates) at ±30 degrees away from the y axis (nasion). 4. Activations affect MEG and EEG channels. The scale-factor of the activation function was chosen based on visual inspection to yield amplitudes generally consistent with those seen in experimental data. Noisy versions of the activation will be stored in the first EOG channel in the raw instance, if it exists. References ---------- .. footbibliography:: """ return _add_exg(raw, 'blink', head_pos, interp, n_jobs, random_state) @verbose def add_ecg(raw, head_pos=None, interp='cos2', n_jobs=1, random_state=None, verbose=None): """Add ECG noise to raw data. Parameters ---------- raw : instance of Raw The raw instance to modify. %(head_pos)s %(interp)s %(n_jobs)s %(random_state)s The random generator state used for blink, ECG, and sensor noise randomization. %(verbose)s Returns ------- raw : instance of Raw The instance, modified in place. See Also -------- add_chpi add_eog add_noise simulate_raw Notes ----- The ECG artifacts are generated by: 1. Random inter-beat intervals are drawn from a uniform distribution of times corresponding to 40 and 80 beats per minute. 2. The activation function is the sum of three Hanning windows with varying durations and scales to make a more complex waveform. 3. The activated dipole is located one (estimated) head radius to the left (-x) of head center and three head radii below (+z) head center; this dipole is oriented in the +x direction. 4. Activations only affect MEG channels. The scale-factor of the activation function was chosen based on visual inspection to yield amplitudes generally consistent with those seen in experimental data. Noisy versions of the activation will be stored in the first EOG channel in the raw instance, if it exists. .. versionadded:: 0.18 """ return _add_exg(raw, 'ecg', head_pos, interp, n_jobs, random_state) def _add_exg(raw, kind, head_pos, interp, n_jobs, random_state): assert isinstance(kind, str) and kind in ('ecg', 'blink') _validate_type(raw, BaseRaw, 'raw') _check_preload(raw, 'Adding %s noise ' % (kind,)) rng = check_random_state(random_state) info, times, first_samp = raw.info, raw.times, raw.first_samp data = raw._data meg_picks = pick_types(info, meg=True, eeg=False, exclude=()) meeg_picks = pick_types(info, meg=True, eeg=True, exclude=()) R, r0 = fit_sphere_to_headshape(info, units='m', verbose=False)[:2] bem = make_sphere_model(r0, head_radius=R, relative_radii=(0.97, 0.98, 0.99, 1.), sigmas=(0.33, 1.0, 0.004, 0.33), verbose=False) trans = None dev_head_ts, offsets = _check_head_pos(head_pos, info, first_samp, times) if kind == 'blink': # place dipoles at 45 degree angles in z=0 plane exg_rr = np.array([[np.cos(np.pi / 3.), np.sin(np.pi / 3.), 0.], [-np.cos(np.pi / 3.), np.sin(np.pi / 3), 0.]]) exg_rr /= np.sqrt(np.sum(exg_rr * exg_rr, axis=1, keepdims=True)) exg_rr *= 0.96 * R exg_rr += r0 # oriented upward nn = np.array([[0., 0., 1.], [0., 0., 1.]]) # Blink times drawn from an inhomogeneous poisson process # by 1) creating the rate and 2) pulling random numbers blink_rate = (1 + np.cos(2 * np.pi * 1. / 60. * times)) / 2. blink_rate *= 12.5 / 60. blink_rate += 4.5 / 60. blink_data = rng.uniform(size=len(times)) < blink_rate / info['sfreq'] blink_data = blink_data * (rng.uniform(size=len(times)) + 0.5) # amps # Activation kernel is a simple hanning window blink_kernel = np.hanning(int(0.25 * info['sfreq'])) exg_data = np.convolve(blink_data, blink_kernel, 'same')[np.newaxis, :] * 1e-7 # Add rescaled noisy data to EOG ch ch = pick_types(info, meg=False, eeg=False, eog=True) picks = meeg_picks del blink_kernel, blink_rate, blink_data else: if len(meg_picks) == 0: raise RuntimeError('Can only add ECG artifacts if MEG data ' 'channels are present') exg_rr = np.array([[-R, 0, -3 * R]]) max_beats = int(np.ceil(times[-1] * 80. / 60.)) # activation times with intervals drawn from a uniform distribution # based on activation rates between 40 and 80 beats per minute cardiac_idx = np.cumsum(rng.uniform(60. / 80., 60. / 40., max_beats) * info['sfreq']).astype(int) cardiac_idx = cardiac_idx[cardiac_idx < len(times)] cardiac_data = np.zeros(len(times)) cardiac_data[cardiac_idx] = 1 # kernel is the sum of three hanning windows cardiac_kernel = np.concatenate([ 2 * np.hanning(int(0.04 * info['sfreq'])), -0.3 * np.hanning(int(0.05 * info['sfreq'])), 0.2 * np.hanning(int(0.26 * info['sfreq']))], axis=-1) exg_data = np.convolve(cardiac_data, cardiac_kernel, 'same')[np.newaxis, :] * 15e-8 # Add rescaled noisy data to ECG ch ch = pick_types(info, meg=False, eeg=False, ecg=True) picks = meg_picks del cardiac_data, cardiac_kernel, max_beats, cardiac_idx nn = np.zeros_like(exg_rr) nn[:, 0] = 1 # arbitrarily rightward del meg_picks, meeg_picks noise = rng.standard_normal(exg_data.shape[1]) * 5e-6 if len(ch) >= 1: ch = ch[-1] data[ch, :] = exg_data * 1e3 + noise else: ch = None src = setup_volume_source_space(pos=dict(rr=exg_rr, nn=nn), sphere_units='mm') _log_ch('%s simulated and trace' % kind, info, ch) del ch, nn, noise used = np.zeros(len(raw.times), bool) get_fwd = _SimForwards( dev_head_ts, offsets, info, trans, src, bem, 0.005, n_jobs, picks) interper = _Interp2(offsets, get_fwd, interp) proc_lims = np.concatenate([np.arange(0, len(used), 10000), [len(used)]]) for start, stop in zip(proc_lims[:-1], proc_lims[1:]): fwd, _ = interper.feed(stop - start) data[picks, start:stop] += np.einsum( 'svt,vt->st', fwd, exg_data[:, start:stop]) assert not used[start:stop].any() used[start:stop] = True assert used.all() @verbose def add_chpi(raw, head_pos=None, interp='cos2', n_jobs=1, verbose=None): """Add cHPI activations to raw data. Parameters ---------- raw : instance of Raw The raw instance to be modified. %(head_pos)s %(interp)s %(n_jobs)s %(verbose)s Returns ------- raw : instance of Raw The instance, modified in place. Notes ----- .. versionadded:: 0.18 """ _validate_type(raw, BaseRaw, 'raw') _check_preload(raw, 'Adding cHPI signals ') info, first_samp, times = raw.info, raw.first_samp, raw.times meg_picks = pick_types(info, meg=True, eeg=False, exclude=[]) # for CHPI if len(meg_picks) == 0: raise RuntimeError('Cannot add cHPI if no MEG picks are present') dev_head_ts, offsets = _check_head_pos(head_pos, info, first_samp, times) hpi_freqs, hpi_pick, hpi_ons = get_chpi_info(info, on_missing='raise') hpi_rrs = _get_hpi_initial_fit(info, verbose='error') hpi_nns = hpi_rrs / np.sqrt(np.sum(hpi_rrs * hpi_rrs, axis=1))[:, np.newaxis] # turn on cHPI in file data = raw._data data[hpi_pick, :] = hpi_ons.sum() _log_ch('cHPI status bits enbled and', info, hpi_pick) sinusoids = 70e-9 * np.sin(2 * np.pi * hpi_freqs[:, np.newaxis] * (np.arange(len(times)) / info['sfreq'])) info = pick_info(info, meg_picks) with info._unlock(): info.update(projs=[], bads=[]) # Ensure no 'projs' or 'bads' megcoils, _, _, _ = _prep_meg_channels(info, ignore_ref=False) used = np.zeros(len(raw.times), bool) dev_head_ts.append(dev_head_ts[-1]) # ZOH after time ends get_fwd = _HPIForwards(offsets, dev_head_ts, megcoils, hpi_rrs, hpi_nns) interper = _Interp2(offsets, get_fwd, interp) lims = np.concatenate([offsets, [len(raw.times)]]) for start, stop in zip(lims[:-1], lims[1:]): fwd, = interper.feed(stop - start) data[meg_picks, start:stop] += np.einsum( 'svt,vt->st', fwd, sinusoids[:, start:stop]) assert not used[start:stop].any() used[start:stop] = True assert used.all() return raw class _HPIForwards(object): def __init__(self, offsets, dev_head_ts, megcoils, hpi_rrs, hpi_nns): self.offsets = offsets self.dev_head_ts = dev_head_ts self.hpi_rrs = hpi_rrs self.hpi_nns = hpi_nns self.megcoils = megcoils self.idx = 0 def __call__(self, offset): assert offset == self.offsets[self.idx] _transform_orig_meg_coils(self.megcoils, self.dev_head_ts[self.idx]) fwd = _magnetic_dipole_field_vec(self.hpi_rrs, self.megcoils).T # align cHPI magnetic dipoles in approx. radial direction fwd = np.array([np.dot(fwd[:, 3 * ii:3 * (ii + 1)], self.hpi_nns[ii]) for ii in range(len(self.hpi_rrs))]).T self.idx += 1 return (fwd,) def _stc_data_event(stc_counted, head_idx, sfreq, src=None, verts=None): stc_idx, stc = stc_counted if isinstance(stc, (list, tuple)): if len(stc) != 2: raise ValueError('stc, if tuple, must be length 2, got %s' % (len(stc),)) stc, stim_data = stc else: stim_data = None _validate_type(stc, _BaseSourceEstimate, 'stc', 'SourceEstimate or tuple with first entry SourceEstimate') # Convert event data if stim_data is None: stim_data = np.zeros(len(stc.times), int) stim_data[np.argmin(np.abs(stc.times))] = head_idx del head_idx _validate_type(stim_data, np.ndarray, 'stim_data') if stim_data.dtype.kind != 'i': raise ValueError('stim_data in a stc tuple must be an integer ndarray,' ' got dtype %s' % (stim_data.dtype,)) if stim_data.shape != (len(stc.times),): raise ValueError('event data had shape %s but needed to be (%s,) to' 'match stc' % (stim_data.shape, len(stc.times))) # Validate STC if not np.allclose(sfreq, 1. / stc.tstep): raise ValueError('stc and info must have same sample rate, ' 'got %s and %s' % (1. / stc.tstep, sfreq)) if len(stc.times) <= 2: # to ensure event encoding works raise ValueError('stc must have at least three time points, got %s' % (len(stc.times),)) verts_ = stc.vertices if verts is None: assert stc_idx == 0 else: if len(verts) != len(verts_) or not all( np.array_equal(a, b) for a, b in zip(verts, verts_)): raise RuntimeError('Vertex mismatch for stc[%d], ' 'all stc.vertices must match' % (stc_idx,)) stc_data = stc.data if src is None: assert stc_idx == 0 else: # on_missing depends on whether or not this is the first iteration on_missing = 'warn' if verts is None else 'ignore' _, stc_sel, _ = _stc_src_sel(src, stc, on_missing=on_missing) stc_data = stc_data[stc_sel] return stc_data, stim_data, verts_ class _SimForwards(object): def __init__(self, dev_head_ts, offsets, info, trans, src, bem, mindist, n_jobs, meeg_picks, forward=None, use_cps=True): self.idx = 0 self.offsets = offsets self.use_cps = use_cps self.iter = iter(_iter_forward_solutions( info, trans, src, bem, dev_head_ts, mindist, n_jobs, forward, meeg_picks)) def __call__(self, offset): assert self.offsets[self.idx] == offset self.idx += 1 fwd = next(self.iter) self.src = fwd['src'] # XXX eventually we could speed this up by allowing the forward # solution code to only compute the normal direction convert_forward_solution(fwd, surf_ori=True, force_fixed=True, use_cps=self.use_cps, copy=False, verbose=False) return fwd['sol']['data'], np.array(self.idx, float) def _iter_forward_solutions(info, trans, src, bem, dev_head_ts, mindist, n_jobs, forward, picks): """Calculate a forward solution for a subject.""" logger.info('Setting up forward solutions') info = pick_info(info, picks) with info._unlock(): info.update(projs=[], bads=[]) # Ensure no 'projs' or 'bads' mri_head_t, trans = _get_trans(trans) megcoils, meg_info, compcoils, megnames, eegels, eegnames, rr, info, \ update_kwargs, bem = _prepare_for_forward( src, mri_head_t, info, bem, mindist, n_jobs, allow_bem_none=True, verbose=False) del (src, mindist) if forward is None: eegfwd = _compute_forwards(rr, bem, [eegels], [None], [None], ['eeg'], n_jobs, verbose=False)[0] eegfwd = _to_forward_dict(eegfwd, eegnames) else: if len(eegnames) > 0: eegfwd = pick_channels_forward(forward, eegnames, verbose=False) else: eegfwd = None # short circuit here if there are no MEG channels (don't need to iterate) if len(pick_types(info, meg=True)) == 0: eegfwd.update(**update_kwargs) for _ in dev_head_ts: yield eegfwd yield eegfwd return coord_frame = FIFF.FIFFV_COORD_HEAD if bem is not None and not bem['is_sphere']: idx = np.where(np.array([s['id'] for s in bem['surfs']]) == FIFF.FIFFV_BEM_SURF_ID_BRAIN)[0] assert len(idx) == 1 # make a copy so it isn't mangled in use bem_surf = transform_surface_to(bem['surfs'][idx[0]], coord_frame, mri_head_t, copy=True) for ti, dev_head_t in enumerate(dev_head_ts): # Could be *slightly* more efficient not to do this N times, # but the cost here is tiny compared to actual fwd calculation logger.info('Computing gain matrix for transform #%s/%s' % (ti + 1, len(dev_head_ts))) _transform_orig_meg_coils(megcoils, dev_head_t) _transform_orig_meg_coils(compcoils, dev_head_t) # Make sure our sensors are all outside our BEM coil_rr = np.array([coil['r0'] for coil in megcoils]) # Compute forward if forward is None: if not bem['is_sphere']: outside = ~_CheckInside(bem_surf)(coil_rr, n_jobs, verbose=False) elif bem.radius is not None: d = coil_rr - bem['r0'] outside = np.sqrt(np.sum(d * d, axis=1)) > bem.radius else: # only r0 provided outside = np.ones(len(coil_rr), bool) if not outside.all(): raise RuntimeError('%s MEG sensors collided with inner skull ' 'surface for transform %s' % (np.sum(~outside), ti)) megfwd = _compute_forwards(rr, bem, [megcoils], [compcoils], [meg_info], ['meg'], n_jobs, verbose=False)[0] megfwd = _to_forward_dict(megfwd, megnames) else: megfwd = pick_channels_forward(forward, megnames, verbose=False) fwd = _merge_meg_eeg_fwds(megfwd, eegfwd, verbose=False) fwd.update(**update_kwargs) yield fwd # need an extra one to fill last buffer yield fwd
the-stack_0_10169
import copy import json import logging import os import torch from torch.utils.data import TensorDataset from utils import get_intent_labels, get_slot_labels logger = logging.getLogger(__name__) class InputExample(object): """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. words: list. The words of the sequence. intent_label: (Optional) string. The intent label of the example. slot_labels: (Optional) list. The slot labels of the example. """ def __init__(self, guid, words, intent_label=None, slot_labels=None): self.guid = guid self.words = words self.intent_label = intent_label self.slot_labels = slot_labels def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, attention_mask, token_type_ids, intent_label_id, slot_labels_ids): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.intent_label_id = intent_label_id self.slot_labels_ids = slot_labels_ids def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class JointProcessor(object): """Processor for the JointBERT data set """ def __init__(self, args): self.args = args self.intent_labels = get_intent_labels(args) self.slot_labels = get_slot_labels(args) self.input_text_file = "seq.in" self.intent_label_file = "label" self.slot_labels_file = "seq.out" @classmethod def _read_file(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8") as f: lines = [] for line in f: lines.append(line.strip()) return lines def _create_examples(self, texts, intents, slots, set_type): """Creates examples for the training and dev sets.""" examples = [] for i, (text, intent, slot) in enumerate(zip(texts, intents, slots)): guid = "%s-%s" % (set_type, i) # 1. input_text words = text.split() # Some are spaced twice # 2. intent intent_label = ( self.intent_labels.index(intent) if intent in self.intent_labels else self.intent_labels.index("UNK") ) # 3. slot slot_labels = [] for s in slot.split(): slot_labels.append( self.slot_labels.index(s) if s in self.slot_labels else self.slot_labels.index("UNK") ) assert len(words) == len(slot_labels) examples.append(InputExample(guid=guid, words=words, intent_label=intent_label, slot_labels=slot_labels)) return examples def get_examples(self, mode): """ Args: mode: train, dev, test """ data_path = os.path.join(self.args.data_dir, self.args.token_level, mode) logger.info("LOOKING AT {}".format(data_path)) return self._create_examples( texts=self._read_file(os.path.join(data_path, self.input_text_file)), intents=self._read_file(os.path.join(data_path, self.intent_label_file)), slots=self._read_file(os.path.join(data_path, self.slot_labels_file)), set_type=mode, ) processors = {"syllable-level": JointProcessor, "word-level": JointProcessor} def convert_examples_to_features( examples, max_seq_len, tokenizer, pad_token_label_id=-100, cls_token_segment_id=0, pad_token_segment_id=0, sequence_a_segment_id=0, mask_padding_with_zero=True, ): # Setting based on the current model type cls_token = tokenizer.cls_token sep_token = tokenizer.sep_token unk_token = tokenizer.unk_token pad_token_id = tokenizer.pad_token_id features = [] for (ex_index, example) in enumerate(examples): if ex_index % 5000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) # Tokenize word by word (for NER) tokens = [] slot_labels_ids = [] for word, slot_label in zip(example.words, example.slot_labels): word_tokens = tokenizer.tokenize(word) if not word_tokens: word_tokens = [unk_token] # For handling the bad-encoded word tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens slot_labels_ids.extend([int(slot_label)] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] special_tokens_count = 2 if len(tokens) > max_seq_len - special_tokens_count: tokens = tokens[: (max_seq_len - special_tokens_count)] slot_labels_ids = slot_labels_ids[: (max_seq_len - special_tokens_count)] # Add [SEP] token tokens += [sep_token] slot_labels_ids += [pad_token_label_id] token_type_ids = [sequence_a_segment_id] * len(tokens) # Add [CLS] token tokens = [cls_token] + tokens slot_labels_ids = [pad_token_label_id] + slot_labels_ids token_type_ids = [cls_token_segment_id] + token_type_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_len - len(input_ids) input_ids = input_ids + ([pad_token_id] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) slot_labels_ids = slot_labels_ids + ([pad_token_label_id] * padding_length) assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len) assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format( len(attention_mask), max_seq_len ) assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format( len(token_type_ids), max_seq_len ) assert len(slot_labels_ids) == max_seq_len, "Error with slot labels length {} vs {}".format( len(slot_labels_ids), max_seq_len ) intent_label_id = int(example.intent_label) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % example.guid) logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("intent_label: %s (id = %d)" % (example.intent_label, intent_label_id)) logger.info("slot_labels: %s" % " ".join([str(x) for x in slot_labels_ids])) features.append( InputFeatures( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, intent_label_id=intent_label_id, slot_labels_ids=slot_labels_ids, ) ) return features def load_and_cache_examples(args, tokenizer, mode): processor = processors[args.token_level](args) # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( mode, args.token_level, list(filter(None, args.model_name_or_path.split("/"))).pop(), args.max_seq_len ), ) if os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: # Load data features from dataset file logger.info("Creating features from dataset file at %s", args.data_dir) if mode == "train": examples = processor.get_examples("train") elif mode == "dev": examples = processor.get_examples("dev") elif mode == "test": examples = processor.get_examples("test") else: raise Exception("For mode, Only train, dev, test is available") # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later pad_token_label_id = args.ignore_index features = convert_examples_to_features( examples, args.max_seq_len, tokenizer, pad_token_label_id=pad_token_label_id ) logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_intent_label_ids = torch.tensor([f.intent_label_id for f in features], dtype=torch.long) all_slot_labels_ids = torch.tensor([f.slot_labels_ids for f in features], dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_mask, all_token_type_ids, all_intent_label_ids, all_slot_labels_ids ) return dataset
the-stack_0_10170
from __future__ import division import numpy as np import chainer from chainer.functions import dropout from chainer.functions import max_pooling_2d from chainer.functions import relu from chainer.functions import softmax from chainer.initializers import constant from chainer.initializers import normal from chainer.links import Linear from chainercv.links.connection.conv_2d_activ import Conv2DActiv from chainercv.links.model.pickable_sequential_chain import \ PickableSequentialChain from chainercv import utils # RGB order _imagenet_mean = np.array( [123.68, 116.779, 103.939], dtype=np.float32)[:, np.newaxis, np.newaxis] class VGG16(PickableSequentialChain): """VGG-16 Network. This is a pickable sequential link. The network can choose output layers from set of all intermediate layers. The attribute :obj:`pick` is the names of the layers that are going to be picked by :meth:`forward`. The attribute :obj:`layer_names` is the names of all layers that can be picked. Examples: >>> model = VGG16() # By default, forward returns a probability score (after Softmax). >>> prob = model(imgs) >>> model.pick = 'conv5_3' # This is layer conv5_3 (after ReLU). >>> conv5_3 = model(imgs) >>> model.pick = ['conv5_3', 'fc6'] >>> # These are layers conv5_3 (after ReLU) and fc6 (before ReLU). >>> conv5_3, fc6 = model(imgs) .. seealso:: :class:`chainercv.links.model.PickableSequentialChain` When :obj:`pretrained_model` is the path of a pre-trained chainer model serialized as a :obj:`.npz` file in the constructor, this chain model automatically initializes all the parameters with it. When a string in the prespecified set is provided, a pretrained model is loaded from weights distributed on the Internet. The list of pretrained models supported are as follows: * :obj:`imagenet`: Loads weights trained with ImageNet and distributed \ at `Model Zoo \ <https://github.com/BVLC/caffe/wiki/Model-Zoo>`_. Args: n_class (int): The number of classes. If :obj:`None`, the default values are used. If a supported pretrained model is used, the number of classes used to train the pretrained model is used. Otherwise, the number of classes in ILSVRC 2012 dataset is used. pretrained_model (string): The destination of the pre-trained chainer model serialized as a :obj:`.npz` file. If this is one of the strings described above, it automatically loads weights stored under a directory :obj:`$CHAINER_DATASET_ROOT/pfnet/chainercv/models/`, where :obj:`$CHAINER_DATASET_ROOT` is set as :obj:`$HOME/.chainer/dataset` unless you specify another value by modifying the environment variable. mean (numpy.ndarray): A mean value. If :obj:`None`, the default values are used. If a supported pretrained model is used, the mean value used to train the pretrained model is used. Otherwise, the mean value calculated from ILSVRC 2012 dataset is used. initialW (callable): Initializer for the weights. initial_bias (callable): Initializer for the biases. """ _models = { 'imagenet': { 'param': {'n_class': 1000, 'mean': _imagenet_mean}, 'overwritable': ('mean',), 'url': 'https://chainercv-models.preferred.jp/' 'vgg16_imagenet_converted_2017_07_18.npz' } } def __init__(self, n_class=None, pretrained_model=None, mean=None, initialW=None, initial_bias=None): param, path = utils.prepare_pretrained_model( {'n_class': n_class, 'mean': mean}, pretrained_model, self._models, {'n_class': 1000, 'mean': _imagenet_mean}) self.mean = param['mean'] if initialW is None: # Employ default initializers used in the original paper. initialW = normal.Normal(0.01) if pretrained_model: # As a sampling process is time-consuming, # we employ a zero initializer for faster computation. initialW = constant.Zero() kwargs = {'initialW': initialW, 'initial_bias': initial_bias} super(VGG16, self).__init__() with self.init_scope(): self.conv1_1 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs) self.conv1_2 = Conv2DActiv(None, 64, 3, 1, 1, **kwargs) self.pool1 = _max_pooling_2d self.conv2_1 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs) self.conv2_2 = Conv2DActiv(None, 128, 3, 1, 1, **kwargs) self.pool2 = _max_pooling_2d self.conv3_1 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs) self.conv3_2 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs) self.conv3_3 = Conv2DActiv(None, 256, 3, 1, 1, **kwargs) self.pool3 = _max_pooling_2d self.conv4_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv4_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv4_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.pool4 = _max_pooling_2d self.conv5_1 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv5_2 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.conv5_3 = Conv2DActiv(None, 512, 3, 1, 1, **kwargs) self.pool5 = _max_pooling_2d self.fc6 = Linear(None, 4096, **kwargs) self.fc6_relu = relu self.fc6_dropout = dropout self.fc7 = Linear(None, 4096, **kwargs) self.fc7_relu = relu self.fc7_dropout = dropout self.fc8 = Linear(None, param['n_class'], **kwargs) self.prob = softmax if path: chainer.serializers.load_npz(path, self) def _max_pooling_2d(x): return max_pooling_2d(x, ksize=2)
the-stack_0_10171
from shapely.geometry import Polygon from rtree import index import copy import uuid from collections import Counter class Box: def __init__(self): self.box= {} self.box['boundingBox'] = {'vertices':[{'x':0,'y':0} ,{'x':0,'y':0},{'x':0,'y':0},{'x':0,'y':0}]} self.box['identifier'] = str(uuid.uuid4()) self.box['text'] = '' self.box['class'] ='TEXT' self.box['font'] = {'family':'Arial Unicode MS', 'size':0, 'style':'REGULAR'} def get_box(self): return self.box class MapKeys: def __init__(self,box): self.box = box self.left = None self.right = None self.top = None self.height = None self.width = None self.bottom = None def get_left(self): if self.left != None: return self.left else : self.left = int(self.box['boundingBox']['vertices'][0]['x']) return self.left def get_right(self): if self.right != None: return self.right else : self.right = int(self.box['boundingBox']['vertices'][1]['x']) return self.right def get_top(self): if self.top != None: return self.top else : self.top = int(self.box['boundingBox']['vertices'][0]['y']) return self.top def get_bottom(self): if self.bottom != None: return self.bottom else : self.bottom = int(self.box['boundingBox']['vertices'][3]['y']) return self.bottom def get_height(self): if self.height != None: return self.height else : self.height = int(abs(self.get_top() - self.get_bottom())) return self.height def get_width(self): if self.width != None: return self.width else : self.width = int(abs(self.get_left() - self.get_right())) return self.width def index_tree(poly_index, poly, idx): idx.insert(poly_index, poly.bounds) def get_polygon(region): points = [] vertices = region['vertices'] for point in vertices: points.append((point['x'], point['y'])) if not (max(points)==(0,0) and min(points)==(0,0)): poly = Polygon(points) if not poly.is_valid: poly = poly.buffer(0.01) return poly else: return False def sort_regions(region_lines, sorted_lines=[]): check_y =region_lines[0]['boundingBox']['vertices'][0]['y'] spacing_threshold = abs(check_y - region_lines[0]['boundingBox']['vertices'][3]['y'])* 0.6 #0.8 # *2 #*0.5 same_line = list(filter(lambda x: (abs(x['boundingBox']['vertices'][0]['y'] - check_y) <= spacing_threshold), region_lines)) next_line = list(filter(lambda x: (abs(x['boundingBox']['vertices'][0]['y'] - check_y) > spacing_threshold), region_lines)) if len(same_line) >1 : same_line.sort(key=lambda x: x['boundingBox']['vertices'][0]['x'],reverse=False) sorted_lines += same_line if len(next_line) > 0: sort_regions(next_line, sorted_lines) return sorted_lines def add_font(regions): for idx,region in enumerate(regions): if not 'font' in region.keys(): height = abs(region['boundingBox']['vertices'][0]['y'] - region['boundingBox']['vertices'][2]['y']) regions[idx]['font']={'family':'Arial Unicode MS', 'size':height, 'style':'REGULAR'} return regions def collate_regions(regions, lines, child_class=None, grand_children=False,region_flag = True,skip_enpty_children=False,add_font=False ): child_key='regions' idx = index.Index() lines_intersected = [] if regions !=None and len(regions) > 0: lines_intersected =[] for line_idx, line in enumerate(lines): if child_class == 'LINE': if 'text' in line.keys(): del lines[line_idx]['text'] if add_font and 'font' not in line.keys(): height = abs(line['boundingBox']['vertices'][0]['y'] - line['boundingBox']['vertices'][2]['y']) lines[line_idx]['font']={'family':'Arial Unicode MS', 'size':height, 'style':'REGULAR'} if child_class is not None: lines[line_idx]['class'] = child_class poly = get_polygon(line['boundingBox']) if poly: idx.insert(line_idx, poly.bounds) for region_index, region in enumerate(regions): region_poly = get_polygon(region['boundingBox']) children_lines =[] if region_poly: children_lines = list(idx.intersection(region_poly.bounds)) if len(children_lines) > 0: region_lines = [] for intr_index in children_lines: if intr_index not in lines_intersected: if grand_children : if child_key not in lines[intr_index].keys(): grand_child = copy.deepcopy(lines[intr_index]) grand_child['class'] = 'WORD' lines[intr_index][child_key] = [grand_child] line_poly = get_polygon(lines[intr_index]['boundingBox']) if line_poly: area = region_poly.intersection(line_poly).area reg_area = region_poly.area line_area = line_poly.area if reg_area>0 and line_area>0 and area/min(line_area,reg_area) >0.5 : region_lines.append(lines[intr_index]) lines_intersected.append(intr_index) region_lines.sort(key=lambda x:x['boundingBox']['vertices'][0]['y']) if len(region_lines) > 0: regions[region_index][child_key] = sort_regions(region_lines,[]) regions[region_index]['avg_size'] = get_avrage_size(region_lines) else: regions[region_index][child_key] = [] else: regions[region_index][child_key] = [] if region_flag: for line_index, line in enumerate(lines): if line_index not in lines_intersected: line[child_key] = [ copy.deepcopy(line)] if child_class is not None: if child_class is 'LINE': line['class'] = 'PARA' if child_class is 'WORD': line['class'] ='LINE' regions.append(line) return regions def collate_cell_regions(regions, lines, child_class=None, grand_children=False,region_flag = True,skip_enpty_children=False,add_font=False ): child_key='regions' idx = index.Index() lines_intersected = [] if regions !=None and len(regions) > 0: lines_intersected =[] for line_idx, line in enumerate(lines): if child_class == 'LINE': if 'text' in line.keys(): del lines[line_idx]['text'] if add_font: height = abs(line['boundingBox']['vertices'][0]['y'] - line['boundingBox']['vertices'][2]['y']) lines[line_idx]['font']={'family':'Arial Unicode MS', 'size':height, 'style':'REGULAR'} if child_class is not None: lines[line_idx]['class'] = child_class poly = get_polygon(line['boundingBox']) if poly: idx.insert(line_idx, poly.bounds) for region_index, region in enumerate(regions): children_lines =[] region_poly = get_polygon(region['boundingBox']) if region_poly: children_lines = list(idx.intersection(region_poly.bounds)) if len(children_lines) > 0: region_lines = [] for intr_index in children_lines: if intr_index not in lines_intersected: if grand_children : if child_key not in lines[intr_index].keys(): grand_child = copy.deepcopy(lines[intr_index]) grand_child['class'] = 'WORD' lines[intr_index][child_key] = [grand_child] line_poly = get_polygon(lines[intr_index]['boundingBox']) if line_poly: area = region_poly.intersection(line_poly).area reg_area = region_poly.area line_area = line_poly.area if reg_area>0 and line_area>0 and area/min(line_area,reg_area) >0.5 : region_lines.append(lines[intr_index]) lines_intersected.append(intr_index) if child_key in region.keys() and type(region[child_key]) is list: pass else: region[child_key] = [] region_lines.sort(key=lambda x:x['boundingBox']['vertices'][0]['y']) if len(region_lines) > 1: regions[region_index][child_key].extend(sort_regions(region_lines,[])) regions[region_index]['avg_size'] = get_avrage_size(region_lines) else : regions[region_index][child_key].extend(region_lines) regions[region_index]['avg_size'] = get_avrage_size(region_lines) return regions def collate_text(file,craft_words, google_words): idx = index.Index() words_intersected = [] if craft_words !=None and len(craft_words) > 0: words_intersected =[] for word_idx, g_word in enumerate(google_words): poly = get_polygon(g_word['boundingBox']) if poly: idx.insert(word_idx, poly.bounds) for region_index, region in enumerate(craft_words): region_poly = get_polygon(region['boundingBox']) if region_poly: child_words = list(idx.intersection(region_poly.bounds)) text= ''; avg_conf = 0; conf_counter = 0; lang = [] if len(child_words) > 0: region_words = [] for intr_index in child_words: if intr_index not in words_intersected: line_poly = get_polygon(google_words[intr_index]['boundingBox']) if line_poly: area = region_poly.intersection(line_poly).area reg_area = region_poly.area line_area = line_poly.area if reg_area>0 and line_area>0 and area/min(line_area,reg_area) >0.3 : region_words.append(google_words[intr_index]) words_intersected.append(intr_index) region_words.sort(key=lambda x:x['boundingBox']['vertices'][0]['x']) for region_word in region_words: try: text = text + str(region_word['text']) if 'conf' in region_word.keys() and region_word['conf'] is not None: avg_conf += region_word['conf'] conf_counter += 1 if 'language' in region_word.keys() and region_word['language'] is not None: lang.append(region_word['language']) except Exception as e: print('error in collating text' + str(e)) if "craft_word" in file['config']["OCR"].keys() and file['config']["OCR"]["craft_word"]=="False" and len(region_words)>0: craft_words[region_index]['boundingBox'] = merge_corrds(region_words) if "craft_word" not in file['config']["OCR"].keys() and len(region_words)>0: craft_words[region_index]['boundingBox'] = merge_corrds(region_words) craft_words[region_index]['text'] = text if conf_counter> 0: craft_words[region_index]['conf'] = avg_conf/conf_counter else : craft_words[region_index]['conf'] = avg_conf craft_words[region_index]['language'] = frequent_element(lang) for g_word_index, g_word in enumerate(google_words): if g_word_index not in words_intersected: craft_words.append(g_word) return craft_words def remvoe_regions(regions, lines): idx = index.Index() lines_intersected = [] not_intersecting = [] if regions !=None and len(regions) > 0: lines_intersected =[] for line_idx, line in enumerate(lines): poly = get_polygon(line['boundingBox']) if poly: idx.insert(line_idx, poly.bounds) for region_index, region in enumerate(regions): region_poly = get_polygon(region['boundingBox']) if region_poly: children_lines = list(idx.intersection(region_poly.bounds)) if len(children_lines) > 0: region_lines = [] for intr_index in children_lines: region_lines.append(lines[intr_index]) lines_intersected.append(intr_index) for line_index, line in enumerate(lines): if line_index not in lines_intersected: not_intersecting.append(line) return not_intersecting def filterd_regions(regions): f_regions = [] if regions != None : for region in regions : height = abs(region['boundingBox']['vertices'][0]['y'] - region['boundingBox']['vertices'][2]['y']) if height > 0 : f_regions.append(region) return f_regions def frequent_element(l_ist): if len(l_ist) > 0 : occurence_count = Counter(l_ist) return occurence_count.most_common(1)[0][0] else : return None def get_ngram(indices, window_size = 2): ngrams = [] count = 0 for token in indices[:len(indices)-window_size+1]: ngrams.append(indices[count:count+window_size]) count = count+1 return ngrams def are_hlines(region1,region2,avg_ver_ratio): space = abs( region1['boundingBox']['vertices'][0]['y'] - region2['boundingBox']['vertices'][0]['y']) sepration = region2['boundingBox']['vertices'][0]['x'] - region1['boundingBox']['vertices'][1]['x'] h1 = abs(region1['boundingBox']['vertices'][3]['y'] - region1['boundingBox']['vertices'][0]['y']) h2 = abs(region2['boundingBox']['vertices'][3]['y'] - region2['boundingBox']['vertices'][0]['y']) max_height = max( h1 , h2 ) #*0.5 if avg_ver_ratio < 1.8 : diff_threshold = max_height * 0.8 if avg_ver_ratio >= 1.8 : diff_threshold = max_height * 0.9 #return ((space <= diff_threshold ) or(sepration <= 3 *avg_height)) and (sepration < 6 * avg_height) and (space <= diff_threshold *2.5 ) return sepration < 5 * max_height and space <= diff_threshold def merge_text(v_blocks): for block_index, v_block in enumerate(v_blocks): try: v_blocks[block_index]['font'] ={'family':'Arial Unicode MS', 'size':0, 'style':'REGULAR'} v_blocks['font']['size'] = max(v_block['regions'], key=lambda x: x['font']['size'])['font']['size'] if len(v_block['regions']) > 0 : v_blocks[block_index]['text'] = v_block['regions'][0]['text'] if len(v_block['regions']) > 1: for child in range(1, len(v_block['regions'])): v_blocks[block_index]['text'] += ' ' + str(v_block['regions'][child]['text']) except Exception as e: print('Error in merging text {}'.format(e)) return v_blocks def get_avrage_size(regions): size = 0 if regions != None: len_regions = len(regions) count=0 if len_regions> 0 : for region in regions : if 'font' in region.keys(): size += region['font']['size'] count=count+1 if count==0: count=1 return int(size/ count) else: return size else: return size def set_font_info(page_words,font_info): idx = index.Index() if font_info != None and len(font_info) > 0: for word_idx, word in enumerate(page_words): height = abs(word['boundingBox']['vertices'][0]['y'] - word['boundingBox']['vertices'][2]['y']) page_words[word_idx]['font'] = {'family': 'Arial Unicode MS', 'size': height, 'style': 'REGULAR'} poly = get_polygon(word['boundingBox']) if poly: idx.insert(word_idx, poly.bounds) for region_index, region in enumerate(font_info): region_poly = get_polygon(region['boundingBox']) if region_poly: children_lines = list(idx.intersection(region_poly.bounds)) if len(children_lines) > 0: for intr_index in children_lines: #if intr_index not in words_intersected: line_poly = get_polygon(page_words[intr_index]['boundingBox']) if line_poly: area = region_poly.intersection(line_poly).area reg_area = region_poly.area line_area = line_poly.area if reg_area > 0 and line_area > 0 : if (region['class'] == 'BOLD') and (area / min(line_area, reg_area) > 0.2): page_words[intr_index]['font']['style']= update_style(page_words[intr_index]['font']['style'], 'BOLD') if (region['class'] == 'SUPERSCRIPT') and (region_poly.union(line_poly).area != 0): iou = area / region_poly.union(line_poly).area if iou > 0.33: page_words[intr_index]['font']['style']= update_style(page_words[intr_index]['font']['style'], 'SUPERSCRIPT') return page_words def update_style(prior_cls, cls): if prior_cls == 'REGULAR': return cls else : if prior_cls == cls: return cls else : return '{},{}'.format(prior_cls,cls) def merge_children(siblings,children_none=False): box = Box().get_box() if not children_none: box['regions'] = copy.deepcopy(siblings) box['boundingBox']['vertices'][0]['x'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][0]['x'])['boundingBox']['vertices'][0]['x'] box['boundingBox']['vertices'][0]['y'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][0]['y'])['boundingBox']['vertices'][0]['y'] box['boundingBox']['vertices'][1]['x'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][1]['x'])['boundingBox']['vertices'][1]['x'] box['boundingBox']['vertices'][1]['y'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][1]['y'])['boundingBox']['vertices'][1]['y'] box['boundingBox']['vertices'][2]['x'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][2]['x'])['boundingBox']['vertices'][2]['x'] box['boundingBox']['vertices'][2]['y'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][2]['y'])['boundingBox']['vertices'][2]['y'] box['boundingBox']['vertices'][3]['x'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][3]['x'])['boundingBox']['vertices'][3]['x'] box['boundingBox']['vertices'][3]['y'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][3]['y'])['boundingBox']['vertices'][3]['y'] return box def merge_corrds(siblings,children_none=False): box = Box().get_box() box['boundingBox']['vertices'][0]['x'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][0]['x'])['boundingBox']['vertices'][0]['x'] box['boundingBox']['vertices'][0]['y'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][0]['y'])['boundingBox']['vertices'][0]['y'] box['boundingBox']['vertices'][1]['x'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][1]['x'])['boundingBox']['vertices'][1]['x'] box['boundingBox']['vertices'][1]['y'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][1]['y'])['boundingBox']['vertices'][1]['y'] box['boundingBox']['vertices'][2]['x'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][2]['x'])['boundingBox']['vertices'][2]['x'] box['boundingBox']['vertices'][2]['y'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][2]['y'])['boundingBox']['vertices'][2]['y'] box['boundingBox']['vertices'][3]['x'] = min(siblings, key=lambda x: x['boundingBox']['vertices'][3]['x'])['boundingBox']['vertices'][3]['x'] box['boundingBox']['vertices'][3]['y'] = max(siblings, key=lambda x: x['boundingBox']['vertices'][3]['y'])['boundingBox']['vertices'][3]['y'] return box['boundingBox']
the-stack_0_10172
load(":known_shas.bzl", "FILE_KEY_TO_SHA") load("//rust/platform:triple_mappings.bzl", "system_to_binary_ext", "system_to_dylib_ext", "system_to_staticlib_ext", "triple_to_constraint_set", "triple_to_system") load("@bazel_tools//tools/build_defs/repo:utils.bzl", "maybe") load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") DEFAULT_TOOLCHAIN_NAME_PREFIX = "toolchain_for" def rust_repositories(): """Emits a default set of toolchains for Linux, OSX, and Freebsd Skip this macro and call the `rust_repository_set` macros directly if you need a compiler for other hosts or for additional target triples. """ RUST_VERSION = "1.35.0" maybe( http_archive, name = "rules_cc", url = "https://github.com/bazelbuild/rules_cc/archive/624b5d59dfb45672d4239422fa1e3de1822ee110.zip", sha256 = "8c7e8bf24a2bf515713445199a677ee2336e1c487fa1da41037c6026de04bbc3", strip_prefix = "rules_cc-624b5d59dfb45672d4239422fa1e3de1822ee110", type = "zip", ) rust_repository_set( name = "rust_linux_x86_64", exec_triple = "x86_64-unknown-linux-gnu", extra_target_triples = ["wasm32-unknown-unknown"], version = RUST_VERSION, ) rust_repository_set( name = "rust_darwin_x86_64", exec_triple = "x86_64-apple-darwin", extra_target_triples = ["wasm32-unknown-unknown"], version = RUST_VERSION, ) rust_repository_set( name = "rust_freebsd_x86_64", exec_triple = "x86_64-unknown-freebsd", extra_target_triples = ["wasm32-unknown-unknown"], version = RUST_VERSION, ) def _check_version_valid(version, iso_date, param_prefix = ""): """Verifies that the provided rust version and iso_date make sense.""" if not version and iso_date: fail("{param_prefix}iso_date must be paired with a {param_prefix}version".format(param_prefix = param_prefix)) if version in ("beta", "nightly") and not iso_date: fail("{param_prefix}iso_date must be specified if version is 'beta' or 'nightly'".format(param_prefix = param_prefix)) if version not in ("beta", "nightly") and iso_date: print("{param_prefix}iso_date is ineffective if an exact version is specified".format(param_prefix = param_prefix)) def serialized_constraint_set_from_triple(target_triple): constraint_set = triple_to_constraint_set(target_triple) constraint_set_strs = [] for constraint in constraint_set: constraint_set_strs.append("\"{}\"".format(constraint)) return "[{}]".format(", ".join(constraint_set_strs)) def BUILD_for_compiler(target_triple): """Emits a BUILD file the compiler .tar.gz.""" system = triple_to_system(target_triple) return """ load("@io_bazel_rules_rust//rust:toolchain.bzl", "rust_toolchain") filegroup( name = "rustc", srcs = ["bin/rustc{binary_ext}"], visibility = ["//visibility:public"], ) filegroup( name = "rustc_lib", srcs = glob([ "lib/*{dylib_ext}", "lib/rustlib/{target_triple}/codegen-backends/*{dylib_ext}", ]), visibility = ["//visibility:public"], ) filegroup( name = "rustdoc", srcs = ["bin/rustdoc{binary_ext}"], visibility = ["//visibility:public"], ) """.format( binary_ext = system_to_binary_ext(system), staticlib_ext = system_to_staticlib_ext(system), dylib_ext = system_to_dylib_ext(system), target_triple = target_triple, ) def BUILD_for_stdlib(target_triple): """Emits a BUILD file the stdlib .tar.gz.""" system = triple_to_system(target_triple) return """ filegroup( name = "rust_lib-{target_triple}", srcs = glob( [ "lib/rustlib/{target_triple}/lib/*.rlib", "lib/rustlib/{target_triple}/lib/*{dylib_ext}", "lib/rustlib/{target_triple}/lib/*{staticlib_ext}", ], # Some patterns (e.g. `lib/*.a`) don't match anything, see https://github.com/bazelbuild/rules_rust/pull/245 allow_empty = True, ), visibility = ["//visibility:public"], ) """.format( binary_ext = system_to_binary_ext(system), staticlib_ext = system_to_staticlib_ext(system), dylib_ext = system_to_dylib_ext(system), target_triple = target_triple, ) def BUILD_for_rust_toolchain(workspace_name, name, exec_triple, target_triple, default_edition = "2015"): """Emits a toolchain declaration to match an existing compiler and stdlib. Args: workspace_name: The name of the workspace that this toolchain resides in name: The name of the toolchain declaration exec_triple: The rust-style target that this compiler runs on target_triple: The rust-style target triple of the tool """ system = triple_to_system(target_triple) return """ rust_toolchain( name = "{toolchain_name}_impl", rust_doc = "@{workspace_name}//:rustdoc", rust_lib = "@{workspace_name}//:rust_lib-{target_triple}", rustc = "@{workspace_name}//:rustc", rustc_lib = "@{workspace_name}//:rustc_lib", staticlib_ext = "{staticlib_ext}", dylib_ext = "{dylib_ext}", os = "{system}", default_edition = "{default_edition}", exec_triple = "{exec_triple}", target_triple = "{target_triple}", visibility = ["//visibility:public"], ) """.format( toolchain_name = name, workspace_name = workspace_name, staticlib_ext = system_to_staticlib_ext(system), dylib_ext = system_to_dylib_ext(system), system = system, default_edition = default_edition, exec_triple = exec_triple, target_triple = target_triple, ) def BUILD_for_toolchain(name, parent_workspace_name, exec_triple, target_triple): return """ toolchain( name = "{name}", exec_compatible_with = {exec_constraint_sets_serialized}, target_compatible_with = {target_constraint_sets_serialized}, toolchain = "@{parent_workspace_name}//:{name}_impl", toolchain_type = "@io_bazel_rules_rust//rust:toolchain", ) """.format( name = name, exec_constraint_sets_serialized = serialized_constraint_set_from_triple(exec_triple), target_constraint_sets_serialized = serialized_constraint_set_from_triple(target_triple), parent_workspace_name = parent_workspace_name, ) def produce_tool_suburl(tool_name, target_triple, version, iso_date = None): """Produces a fully qualified Rust tool name for URL Args: tool_name: The name of the tool per static.rust-lang.org target_triple: The rust-style target triple of the tool version: The version of the tool among "nightly", "beta', or an exact version. iso_date: The date of the tool (or None, if the version is a specific version). """ if iso_date: return "{}/{}-{}-{}".format(iso_date, tool_name, version, target_triple) else: return "{}-{}-{}".format(tool_name, version, target_triple) def produce_tool_path(tool_name, target_triple, version): """Produces a qualified Rust tool name Args: tool_name: The name of the tool per static.rust-lang.org target_triple: The rust-style target triple of the tool version: The version of the tool among "nightly", "beta', or an exact version. """ return "{}-{}-{}".format(tool_name, version, target_triple) def load_arbitrary_tool(ctx, tool_name, param_prefix, tool_subdirectory, version, iso_date, target_triple): """Loads a Rust tool, downloads, and extracts into the common workspace. This function sources the tool from the Rust-lang static file server. The index is available at: https://static.rust-lang.org/dist/index.html (or the path specified by "${RUST_STATIC_URL}/dist/index.html" if the RUST_STATIC_URL envinronment variable is set). Args: ctx: A repository_ctx (no attrs required). tool_name: The name of the given tool per the archive naming. param_prefix: The name of the versioning param if the repository rule supports multiple tools. tool_subdirectory: The subdirectory of the tool files (wo level below the root directory of the archive. The root directory of the archive is expected to match $TOOL_NAME-$VERSION-$TARGET_TRIPLE. version: The version of the tool among "nightly", "beta', or an exact version. iso_date: The date of the tool (or None, if the version is a specific version). target_triple: The rust-style target triple of the tool """ _check_version_valid(version, iso_date, param_prefix) # N.B. See https://static.rust-lang.org/dist/index.html to find the tool_suburl for a given # tool. tool_suburl = produce_tool_suburl(tool_name, target_triple, version, iso_date) static_rust = ctx.os.environ["STATIC_RUST_URL"] if "STATIC_RUST_URL" in ctx.os.environ else "https://static.rust-lang.org" url = "{}/dist/{}.tar.gz".format(static_rust, tool_suburl) tool_path = produce_tool_path(tool_name, target_triple, version) ctx.download_and_extract( url, output = "", sha256 = FILE_KEY_TO_SHA.get(tool_suburl) or "", stripPrefix = "{}/{}".format(tool_path, tool_subdirectory), ) def _load_rust_compiler(ctx): """Loads a rust compiler and yields corresponding BUILD for it Args: ctx: A repository_ctx. Returns: The BUILD file contents for this compiler and compiler library """ target_triple = ctx.attr.exec_triple load_arbitrary_tool( ctx, iso_date = ctx.attr.iso_date, param_prefix = "rustc_", target_triple = target_triple, tool_name = "rustc", tool_subdirectory = "rustc", version = ctx.attr.version, ) compiler_BUILD = BUILD_for_compiler(target_triple) return compiler_BUILD def _load_rust_stdlib(ctx, target_triple): """Loads a rust standard library and yields corresponding BUILD for it Args: ctx: A repository_ctx. target_triple: The rust-style target triple of the tool Returns: The BUILD file contents for this stdlib, and a toolchain decl to match """ load_arbitrary_tool( ctx, iso_date = ctx.attr.iso_date, param_prefix = "rust-std_", target_triple = target_triple, tool_name = "rust-std", tool_subdirectory = "rust-std-{}".format(target_triple), version = ctx.attr.version, ) toolchain_prefix = ctx.attr.toolchain_name_prefix or DEFAULT_TOOLCHAIN_NAME_PREFIX stdlib_BUILD = BUILD_for_stdlib(target_triple) toolchain_BUILD = BUILD_for_rust_toolchain( name = "{toolchain_prefix}_{target_triple}".format( toolchain_prefix = toolchain_prefix, target_triple = target_triple, ), exec_triple = ctx.attr.exec_triple, target_triple = target_triple, workspace_name = ctx.attr.name, ) return stdlib_BUILD + toolchain_BUILD def _rust_toolchain_repository_impl(ctx): """The implementation of the rust toolchain repository rule.""" _check_version_valid(ctx.attr.version, ctx.attr.iso_date) BUILD_components = [_load_rust_compiler(ctx)] for target_triple in [ctx.attr.exec_triple] + ctx.attr.extra_target_triples: BUILD_components.append(_load_rust_stdlib(ctx, target_triple)) ctx.file("WORKSPACE", "") ctx.file("BUILD", "\n".join(BUILD_components)) def _rust_toolchain_repository_proxy_impl(ctx): BUILD_components = [] for target_triple in [ctx.attr.exec_triple] + ctx.attr.extra_target_triples: BUILD_components.append(BUILD_for_toolchain( name = "{toolchain_prefix}_{target_triple}".format( toolchain_prefix = ctx.attr.toolchain_name_prefix, target_triple = target_triple, ), exec_triple = ctx.attr.exec_triple, parent_workspace_name = ctx.attr.parent_workspace_name, target_triple = target_triple, )) ctx.file("WORKSPACE", "") ctx.file("BUILD", "\n".join(BUILD_components)) """Composes a single workspace containing the toolchain components for compiling on a given platform to a series of target platforms. A given instance of this rule should be accompanied by a rust_toolchain_repository_proxy invocation to declare its toolchains to Bazel; the indirection allows separating toolchain selection from toolchain fetching Args: name: A unique name for this rule exec_triple: The Rust-style target triple for the compilation platform extra_target_triples: The Rust-style triples for extra compilation targets toolchain_name_prefix: The per-target prefix expected for the rust_toolchain declarations version: The version of the tool among "nightly", "beta', or an exact version. iso_date: The date of the tool (or None, if the version is a specific version). """ rust_toolchain_repository = repository_rule( attrs = { "version": attr.string(mandatory = True), "iso_date": attr.string(), "exec_triple": attr.string(mandatory = True), "extra_target_triples": attr.string_list(), "toolchain_name_prefix": attr.string(), }, implementation = _rust_toolchain_repository_impl, ) """Generates a toolchain-bearing repository that declares the toolchains from some other rust_toolchain_repository. Args: name: A unique name for this rule parent_workspace_name: The name of the other rust_toolchain_repository exec_triple: The Rust-style target triple for the compilation platform extra_target_triples: The Rust-style triples for extra compilation targets toolchain_name_prefix: The per-target prefix expected for the rust_toolchain declarations in the parent workspace. """ rust_toolchain_repository_proxy = repository_rule( attrs = { "parent_workspace_name": attr.string(mandatory = True), "exec_triple": attr.string(mandatory = True), "extra_target_triples": attr.string_list(), "toolchain_name_prefix": attr.string(), }, implementation = _rust_toolchain_repository_proxy_impl, ) def rust_repository_set(name, version, exec_triple, extra_target_triples, iso_date = None): """Assembles a remote repository for the given toolchain params, produces a proxy repository to contain the toolchain declaration, and registers the toolchains. N.B. A "proxy repository" is needed to allow for registering the toolchain (with constraints) without actually downloading the toolchain. Args: name: The name of the generated repository version: The version of the tool among "nightly", "beta', or an exact version. iso_date: The date of the tool (or None, if the version is a specific version). exec_triple: The Rust-style target that this compiler runs on extra_target_triples: Additional rust-style targets that this set of toolchains should support. """ rust_toolchain_repository( name = name, exec_triple = exec_triple, extra_target_triples = extra_target_triples, iso_date = iso_date, toolchain_name_prefix = DEFAULT_TOOLCHAIN_NAME_PREFIX, version = version, ) rust_toolchain_repository_proxy( name = name + "_toolchains", exec_triple = exec_triple, extra_target_triples = extra_target_triples, parent_workspace_name = name, toolchain_name_prefix = DEFAULT_TOOLCHAIN_NAME_PREFIX, ) all_toolchain_names = [] for target_triple in [exec_triple] + extra_target_triples: all_toolchain_names.append("@{name}_toolchains//:{toolchain_name_prefix}_{triple}".format( name = name, toolchain_name_prefix = DEFAULT_TOOLCHAIN_NAME_PREFIX, triple = target_triple, )) # Register toolchains native.register_toolchains(*all_toolchain_names) native.register_toolchains("@io_bazel_rules_rust//rust/private/dummy_cc_toolchain:dummy_cc_wasm32_toolchain")
the-stack_0_10173
""" lml.plugin ~~~~~~~~~~~~~~~~~~~ lml divides the plugins into two category: load-me-later plugins and load-me-now ones. load-me-later plugins refer to the plugins were loaded when needed due its bulky and/or memory hungry dependencies. Those plugins has to use lml and respect lml's design principle. load-me-now plugins refer to the plugins are immediately imported. All conventional Python classes are by default immediately imported. :class:`~lml.plugin.PluginManager` should be inherited to form new plugin manager class. If you have more than one plugins in your architecture, it is advisable to have one class per plugin type. :class:`~lml.plugin.PluginInfoChain` helps the plugin module to declare the available plugins in the module. :class:`~lml.plugin.PluginInfo` can be subclassed to describe your plugin. Its method :meth:`~lml.plugin.PluginInfo.tags` can be overridden to help its matching :class:`~lml.plugin.PluginManager` to look itself up. :copyright: (c) 2017-2020 by Onni Software Ltd. :license: New BSD License, see LICENSE for more details """ import logging from collections import defaultdict from lml.utils import json_dumps, do_import_class PLUG_IN_MANAGERS = {} CACHED_PLUGIN_INFO = defaultdict(list) log = logging.getLogger(__name__) class PluginInfo(object): """ Information about the plugin. It is used together with PluginInfoChain to describe the plugins. Meanwhile, it is a class decorator and can be used to register a plugin immediately for use, in other words, the PluginInfo decorated plugin class is not loaded later. Parameters ------------- name: plugin name absolute_import_path: absolute import path from your plugin name space for your plugin class tags: a list of keywords help the plugin manager to retrieve your plugin keywords: Another custom properties. Examples ------------- For load-me-later plugins: >>> info = PluginInfo("sample", ... abs_class_path='lml.plugin.PluginInfo', # demonstration only. ... tags=['load-me-later'], ... custom_property = 'I am a custom property') >>> print(info.module_name) lml >>> print(info.custom_property) I am a custom property For load-me-now plugins: >>> @PluginInfo("sample", tags=['load-me-now']) ... class TestPlugin: ... def echo(self, words): ... print("echoing %s" % words) Now let's retrive the second plugin back: >>> class SamplePluginManager(PluginManager): ... def __init__(self): ... PluginManager.__init__(self, "sample") >>> sample_manager = SamplePluginManager() >>> test_plugin=sample_manager.get_a_plugin("load-me-now") >>> test_plugin.echo("hey..") echoing hey.. """ def __init__( self, plugin_type, abs_class_path=None, tags=None, **keywords ): self.plugin_type = plugin_type self.absolute_import_path = abs_class_path self.cls = None self.properties = keywords self.__tags = tags def __getattr__(self, name): if name == "module_name": if self.absolute_import_path: module_name = self.absolute_import_path.split(".")[0] else: module_name = self.cls.__module__ return module_name return self.properties.get(name) def tags(self): """ A list of tags for identifying the plugin class The plugin class is described at the absolute_import_path """ if self.__tags is None: yield self.plugin_type else: for tag in self.__tags: yield tag def __repr__(self): rep = { "plugin_type": self.plugin_type, "path": self.absolute_import_path, } rep.update(self.properties) return json_dumps(rep) def __call__(self, cls): self.cls = cls _register_a_plugin(self, cls) return cls class PluginInfoChain(object): """ Pandas style, chained list declaration It is used in the plugin packages to list all plugin classes """ def __init__(self, path): self._logger = logging.getLogger( self.__class__.__module__ + "." + self.__class__.__name__ ) self.module_name = path def add_a_plugin(self, plugin_type, submodule=None, **keywords): """ Add a plain plugin Parameters ------------- plugin_type: plugin manager name submodule: the relative import path to your plugin class """ a_plugin_info = PluginInfo( plugin_type, self._get_abs_path(submodule), **keywords ) self.add_a_plugin_instance(a_plugin_info) return self def add_a_plugin_instance(self, plugin_info_instance): """ Add a plain plugin Parameters ------------- plugin_info_instance: an instance of PluginInfo The developer has to specify the absolute import path """ self._logger.debug( "add %s as '%s' plugin", plugin_info_instance.absolute_import_path, plugin_info_instance.plugin_type, ) _load_me_later(plugin_info_instance) return self def _get_abs_path(self, submodule): return "%s.%s" % (self.module_name, submodule) class PluginManager(object): """ Load plugin info into in-memory dictionary for later import Parameters -------------- plugin_type: the plugin type. All plugins of this plugin type will be registered to it. """ def __init__(self, plugin_type): self.plugin_name = plugin_type self.registry = defaultdict(list) self.tag_groups = dict() self._logger = logging.getLogger( self.__class__.__module__ + "." + self.__class__.__name__ ) _register_class(self) def get_a_plugin(self, key, **keywords): """ Get a plugin Parameters --------------- key: the key to find the plugins keywords: additional parameters for help the retrieval of the plugins """ self._logger.debug("get a plugin called") plugin = self.load_me_now(key) return plugin() def raise_exception(self, key): """Raise plugin not found exception Override this method to raise custom exception Parameters ----------------- key: the key to find the plugin """ self._logger.debug(self.registry.keys()) raise Exception("No %s is found for %s" % (self.plugin_name, key)) def load_me_later(self, plugin_info): """ Register a plugin info for later loading Parameters -------------- plugin_info: a instance of plugin info """ self._logger.debug("load %s later", plugin_info.absolute_import_path) self._update_registry_and_expand_tag_groups(plugin_info) def load_me_now(self, key, library=None, **keywords): """ Import a plugin from plugin registry Parameters ----------------- key: the key to find the plugin library: to use a specific plugin module """ if keywords: self._logger.debug(keywords) __key = key.lower() if __key in self.registry: for plugin_info in self.registry[__key]: cls = self.dynamic_load_library(plugin_info) module_name = _get_me_pypi_package_name(cls) if library and module_name != library: continue else: break else: # only library condition could raise an exception self._logger.debug("%s is not installed" % library) self.raise_exception(key) self._logger.debug("load %s now for '%s'", cls, key) return cls else: self.raise_exception(key) def dynamic_load_library(self, a_plugin_info): """Dynamically load the plugin info if not loaded Parameters -------------- a_plugin_info: a instance of plugin info """ if a_plugin_info.cls is None: self._logger.debug("import " + a_plugin_info.absolute_import_path) cls = do_import_class(a_plugin_info.absolute_import_path) a_plugin_info.cls = cls return a_plugin_info.cls def register_a_plugin(self, plugin_cls, plugin_info): """ for dynamically loaded plugin during runtime Parameters -------------- plugin_cls: the actual plugin class refered to by the second parameter plugin_info: a instance of plugin info """ self._logger.debug("register %s", _show_me_your_name(plugin_cls)) plugin_info.cls = plugin_cls self._update_registry_and_expand_tag_groups(plugin_info) def get_primary_key(self, key): __key = key.lower() return self.tag_groups.get(__key, None) def _update_registry_and_expand_tag_groups(self, plugin_info): primary_tag = None for index, key in enumerate(plugin_info.tags()): self.registry[key.lower()].append(plugin_info) if index == 0: primary_tag = key.lower() self.tag_groups[key.lower()] = primary_tag def _register_class(cls): """Reigister a newly created plugin manager""" log.debug("declare '%s' plugin manager", cls.plugin_name) PLUG_IN_MANAGERS[cls.plugin_name] = cls if cls.plugin_name in CACHED_PLUGIN_INFO: # check if there is early registrations or not for plugin_info in CACHED_PLUGIN_INFO[cls.plugin_name]: if plugin_info.absolute_import_path: log.debug( "load cached plugin info: %s", plugin_info.absolute_import_path, ) else: log.debug( "load cached plugin info: %s", _show_me_your_name(plugin_info.cls), ) cls.load_me_later(plugin_info) del CACHED_PLUGIN_INFO[cls.plugin_name] def _register_a_plugin(plugin_info, plugin_cls): """module level function to register a plugin""" manager = PLUG_IN_MANAGERS.get(plugin_info.plugin_type) if manager: manager.register_a_plugin(plugin_cls, plugin_info) else: # let's cache it and wait the manager to be registered try: log.debug("caching %s", _show_me_your_name(plugin_cls.__name__)) except AttributeError: log.debug("caching %s", _show_me_your_name(plugin_cls)) CACHED_PLUGIN_INFO[plugin_info.plugin_type].append(plugin_info) def _load_me_later(plugin_info): """ module level function to load a plugin later""" manager = PLUG_IN_MANAGERS.get(plugin_info.plugin_type) if manager: manager.load_me_later(plugin_info) else: # let's cache it and wait the manager to be registered log.debug( "caching %s for %s", plugin_info.absolute_import_path, plugin_info.plugin_type, ) CACHED_PLUGIN_INFO[plugin_info.plugin_type].append(plugin_info) def _get_me_pypi_package_name(module): try: module_name = module.__module__ root_module_name = module_name.split(".")[0] return root_module_name.replace("_", "-") except AttributeError: return None def _show_me_your_name(cls_func_or_data_type): try: return cls_func_or_data_type.__name__ except AttributeError: return str(type(cls_func_or_data_type))
the-stack_0_10176
""" Imports the various compute backends """ from typing import Set from ..exceptions import InputError, ResourceError from .cfour import CFOURHarness from .dftd3 import DFTD3Harness from .entos import EntosHarness from .gamess import GAMESSHarness from .molpro import MolproHarness from .mopac import MopacHarness from .mp2d import MP2DHarness from .nwchem import NWChemHarness from .openmm import OpenMMHarness from .psi4 import Psi4Harness from .qchem import QChemHarness from .rdkit import RDKitHarness from .terachem import TeraChemHarness from .torchani import TorchANIHarness from .turbomole import TurbomoleHarness __all__ = ["register_program", "get_program", "list_all_programs", "list_available_programs"] programs = {} def register_program(entry_point: "ProgramHarness") -> None: """ Register a new ProgramHarness with QCEngine. """ name = entry_point.name if name.lower() in programs.keys(): raise ValueError("{} is already a registered program.".format(name)) programs[name.lower()] = entry_point def unregister_program(name: str) -> None: """ Unregisters a given program. """ ret = programs.pop(name.lower(), None) if ret is None: raise KeyError(f"Program {name} is not registered with QCEngine") def get_program(name: str, check: bool = True) -> "ProgramHarness": """ Returns a program's executor class Parameters ---------- check ``True`` Do raise error if program not found. ``False`` is handy for the specialized case of calling non-execution methods (like parsing for testing) on the returned ``Harness``. """ name = name.lower() if name not in programs: raise InputError(f"Program {name} is not registered to QCEngine.") ret = programs[name] if check: try: ret.found(raise_error=True) except ModuleNotFoundError as err: raise ResourceError(f"Program {name} is registered with QCEngine, but cannot be found.") from err return ret def list_all_programs() -> Set[str]: """ List all programs registered by QCEngine. """ return set(programs.keys()) def list_available_programs() -> Set[str]: """ List all programs that can be exectued (found) by QCEngine. """ ret = set() for k, p in programs.items(): if p.found(): ret.add(k) return ret # Quantum register_program(CFOURHarness()) register_program(EntosHarness()) register_program(GAMESSHarness()) register_program(MolproHarness()) register_program(NWChemHarness()) register_program(Psi4Harness()) register_program(QChemHarness()) register_program(TeraChemHarness()) register_program(TurbomoleHarness()) # Semi-empirical register_program(MopacHarness()) # AI register_program(TorchANIHarness()) # Molecular Mechanics register_program(RDKitHarness()) register_program(OpenMMHarness()) # Analytical Corrections register_program(DFTD3Harness()) register_program(MP2DHarness())
the-stack_0_10177
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: image_data :platform: Unix :synopsis: A module for loading any of the FabIO python module supported \ image formats (e.g. tiffs) .. moduleauthor:: Nicola Wadeson <[email protected]> """ import os import fabio import numpy as np from savu.data.data_structures.data_types.base_type import BaseType class ImageData(BaseType): """ This class loads any of the FabIO python module supported image formats. """ def __init__(self, folder, Data, dim, shape=None, data_prefix=None): self.folder = folder self._data_obj = Data self.frame_dim = dim self.shape = shape self.prefix = data_prefix super(ImageData, self).__init__() self.nFrames = None self.file_names = self.__get_file_names(folder, data_prefix) self.start_file = fabio.open(self.file_names[0]) self.dtype = self.start_file.data[0, 0].dtype self.image_shape = (self.start_file.dim2, self.start_file.dim1) if shape is None: self.shape = (self.nFrames,) else: self.shape = shape self.full_shape = self.image_shape + self.shape self.image_dims = set(np.arange(len(self.full_shape)))\ .difference(set(self.frame_dim)) def clone_data_args(self, args, kwargs, extras): args = ['folder', 'self', 'frame_dim'] kwargs['shape'] = 'shape' kwargs['prefix'] = 'prefix' return args, kwargs, extras def __getitem__(self, index): index = [index[i] if index[i].start is not None else slice(0, self.shape[i]) for i in range(len(index))] size = [len(np.arange(i.start, i.stop, i.step)) for i in index] data = np.empty(size, dtype=self.dtype) tiff_slices = [index[i] for i in self.image_dims] # shift tiff dims to start from 0 index = list(index) for i in self.image_dims: end = \ len(np.arange(0, index[i].stop-index[i].start, index[i].step)) index[i] = slice(0, end, 1) index, frameidx = self.__get_indices(index, size) for i in range(len(frameidx)): image = fabio.open(self.file_names[frameidx[i]]).data[tuple(tiff_slices)] for d in self.frame_dim: image = np.expand_dims(image, axis=d) data[tuple(index[i])] = image return data def __get_file_names(self, folder, prefix): import re import glob # files = os.listdir(folder) fullpath = str.strip(folder) if prefix is not None: fullpath = os.path.join(folder, prefix + '*') else: fullpath = os.path.join(fullpath, '*') files = glob.glob(fullpath) self.nFrames = len(files) file_nos = [int(re.findall(r'\d+', f)[-1]) for f in files] sort_idx = np.argsort(file_nos) self.start_no = file_nos[sort_idx[0]] return list(np.array(files)[sort_idx]) def get_shape(self): dims = list(self.image_dims) + self.frame_dim shape = [x for _, x in sorted(zip(dims, self.full_shape))] return tuple(shape) def __get_idx(self, dim, sl, shape): c = int(np.prod(shape[0:dim])) r = int(np.prod(shape[dim+1:])) vals = np.arange(sl.start, sl.stop, sl.step) vals_shift = np.arange(0, len(vals), 1) return [np.ravel(np.kron(v, np.ones((r, c)))) for v in \ [vals, vals_shift]] def __get_indices(self, index, size): """ Get the indices for the new data array and the file numbers. """ # indices for non-image dims only sub_idx = np.array(index)[np.array(self.frame_dim)] sub_size = [size[i] for i in self.frame_dim] idx_list = [] frame_list = [] for dim in range(len(sub_idx)): frame, idx = self.__get_idx(dim, sub_idx[dim], sub_size) frame_list.append(frame.astype(int)) idx_list.append(idx.astype(int)) lshape = idx_list[0].shape[0] # this is just size of first frame dim? sub_size[0] index = np.tile(index, (lshape, 1)) frameidx = np.zeros(lshape) for dim in range(len(sub_idx)): index[:, self.frame_dim[dim]] = \ [slice(i, i+1, 1) for i in idx_list[dim]] frameidx[:] += frame_list[dim]*np.prod(self.shape[dim+1:]) return index.tolist(), frameidx.astype(int)
the-stack_0_10178
import boto3 import botocore import os import io import json import time import sys from google.protobuf import text_format from tensorflow.python.training.checkpoint_state_pb2 import CheckpointState import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger("SageS3Client") class SageS3Client(): def __init__(self, bucket=None, s3_prefix=None, aws_region=None): self.aws_region = aws_region self.bucket = bucket self.s3_prefix = s3_prefix self.config_key = os.path.normpath(s3_prefix + "/ip/ip.json") self.markov_prefix = os.path.normpath(s3_prefix + "/markov") self.hyperparameters_key = os.path.normpath(s3_prefix + "/ip/hyperparameters.json") self.done_file_key = os.path.normpath(s3_prefix + "/ip/done") self.model_checkpoints_prefix = os.path.normpath(s3_prefix + "/model/") + "/" self.lock_file = ".lock" logger.info("Initializing SageS3Client...") def get_client(self): session = boto3.session.Session() return session.client('s3', region_name=self.aws_region) def _get_s3_key(self, key): return os.path.normpath(self.model_checkpoints_prefix + "/" + key) def download_markov(self): s3_client = self.get_client() response = s3_client.list_objects_v2(Bucket=self.bucket, Prefix=self.markov_prefix) if "Contents" in response: for i in response["Contents"]: if ".ipynb_checkpoints" in i["Key"]: continue s3_client.download_file(Bucket=self.bucket, Key=i["Key"], Filename=i["Key"].replace(self.markov_prefix,"./custom_files/markov")) logger.info("Downloaded %s" % i["Key"]) def write_ip_config(self, ip): s3_client = self.get_client() data = {"IP": ip} json_blob = json.dumps(data) file_handle = io.BytesIO(json_blob.encode()) file_handle_done = io.BytesIO(b'done') s3_client.upload_fileobj(file_handle, self.bucket, self.config_key) s3_client.upload_fileobj(file_handle_done, self.bucket, self.done_file_key) def upload_hyperparameters(self, hyperparams_json): s3_client = self.get_client() file_handle = io.BytesIO(hyperparams_json.encode()) s3_client.upload_fileobj(file_handle, self.bucket, self.hyperparameters_key) def upload_model(self, checkpoint_dir): s3_client = self.get_client() num_files = 0 for root, dirs, files in os.walk("./" + checkpoint_dir): for filename in files: abs_name = os.path.abspath(os.path.join(root, filename)) s3_client.upload_file(abs_name, self.bucket, "%s/%s/%s" % (self.s3_prefix, checkpoint_dir, filename)) num_files += 1 def download_model(self, checkpoint_dir): s3_client = self.get_client() filename = "None" try: filename = os.path.abspath(os.path.join(checkpoint_dir, "checkpoint")) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) while True: response = s3_client.list_objects_v2(Bucket=self.bucket, Prefix=self._get_s3_key(self.lock_file)) if "Contents" not in response: # If no lock is found, try getting the checkpoint try: s3_client.download_file(Bucket=self.bucket, Key=self._get_s3_key("checkpoint"), Filename=filename) except Exception as e: time.sleep(2) continue else: time.sleep(2) continue ckpt = CheckpointState() if os.path.exists(filename): contents = open(filename, 'r').read() text_format.Merge(contents, ckpt) rel_path = ckpt.model_checkpoint_path checkpoint = int(rel_path.split('_Step')[0]) response = s3_client.list_objects_v2(Bucket=self.bucket, Prefix=self._get_s3_key(rel_path)) if "Contents" in response: num_files = 0 for obj in response["Contents"]: filename = os.path.abspath(os.path.join(checkpoint_dir, obj["Key"].replace(self.model_checkpoints_prefix, ""))) s3_client.download_file(Bucket=self.bucket, Key=obj["Key"], Filename=filename) num_files += 1 return True except Exception as e: logger.error("{} while downloading the model {} from S3".format(e, filename)) return False def get_ip(self): s3_client = self.get_client() self._wait_for_ip_upload() try: s3_client.download_file(self.bucket, self.config_key, 'ip.json') with open("ip.json") as f: ip = json.load(f)["IP"] return ip except Exception as e: logger.error("Exception [{}] occured, Cannot fetch IP of redis server running in SageMaker. Job failed!".format(e)) sys.exit(1) def _wait_for_ip_upload(self, timeout=600): s3_client = self.get_client() time_elapsed = 0 while True: response = s3_client.list_objects(Bucket=self.bucket, Prefix=self.done_file_key) if "Contents" not in response: time.sleep(1) time_elapsed += 1 if time_elapsed % 5 == 0: logger.info ("Waiting for SageMaker Redis server IP... Time elapsed: %s seconds" % time_elapsed) if time_elapsed >= timeout: logger.error("Cannot retrieve IP of redis server running in SageMaker. Job failed!") sys.exit(1) else: return def download_file(self, s3_key, local_path): s3_client = self.get_client() try: s3_client.download_file(self.bucket, s3_key, local_path) return True except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": logger.info("Exception [{}] occured on download file-{} from s3 bucket-{} key-{}".format(e.response['Error'], local_path, self.bucket, s3_key)) return False else: logger.error("boto client exception error [{}] occured on download file-{} from s3 bucket-{} key-{}" .format(e.response['Error'], local_path, self.bucket, s3_key)) return False except Exception as e: logger.error("Exception [{}] occcured on download file-{} from s3 bucket-{} key-{}".format(e, local_path, self.bucket, s3_key)) return False def upload_file(self, s3_key, local_path): s3_client = self.get_client() try: s3_client.upload_file(Filename=local_path, Bucket=self.bucket, Key=s3_key) return True except Exception as e: logger.error("{} on upload file-{} to s3 bucket-{} key-{}".format(e, local_path, self.bucket, s3_key)) return False if __name__ == '__main__': CUSTOM_FILES_PATH = "./custom_files" dirs_to_create = ["./custom_files", "./custom_files/markov", "./custom_files/markov/actions", "./custom_files/markov/presets", "./custom_files/markov/environments", "./custom_files/markov/rewards" ] for path in dirs_to_create: if not os.path.exists(path): os.makedirs(path) s3_bucket = os.environ.get("SAGEMAKER_SHARED_S3_BUCKET", "gsaur-test") s3_prefix = os.environ.get("SAGEMAKER_SHARED_S3_PREFIX", "sagemaker") aws_region = os.environ.get("APP_REGION", "us-east-1") s3_client = SageS3Client(bucket=s3_bucket, s3_prefix=s3_prefix, aws_region=aws_region) s3_client.download_markov()
the-stack_0_10181
from typing import Any, Dict, List, Type, TypeVar, Union import attr from ..models.grupo import Grupo from ..models.trecho import Trecho from ..models.viagem import Viagem from ..types import UNSET, Unset T = TypeVar("T", bound="PurchaseEventIn") @attr.s(auto_attribs=True) class PurchaseEventIn: """ Attributes: trecho (Trecho): grupo (Grupo): viagem (Viagem): token (Union[Unset, str]): """ trecho: Trecho grupo: Grupo viagem: Viagem token: Union[Unset, str] = UNSET additional_properties: Dict[str, Any] = attr.ib(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: trecho = self.trecho.to_dict() grupo = self.grupo.to_dict() viagem = self.viagem.to_dict() token = self.token field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update( { "trecho": trecho, "grupo": grupo, "viagem": viagem, } ) if token is not UNSET: field_dict["token"] = token return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: d = src_dict.copy() trecho = Trecho.from_dict(d.pop("trecho")) grupo = Grupo.from_dict(d.pop("grupo")) viagem = Viagem.from_dict(d.pop("viagem")) token = d.pop("token", UNSET) purchase_event_in = cls( trecho=trecho, grupo=grupo, viagem=viagem, token=token, ) purchase_event_in.additional_properties = d return purchase_event_in @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> Any: return self.additional_properties[key] def __setitem__(self, key: str, value: Any) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
the-stack_0_10184
''' This module has utilities1 for the arithmetic functions. The parameters are of variable length. ''' __author__ = 'vinay' __version__ = "alpha_1" def myvsum(*args): ''' function which takes in variable count of numbers and returns their sum ''' s = 0 for n in args: s = s + n return s def myvproduct(*args): ''' function which takes in variable count of numbers and returns their product ''' p = 1 for n in args: p = p * n return p if __name__ == '__main__': s = myvsum(1,2,3,4,5,6,7) print(s) p = myvproduct(1,2,3,4,5,6,7) print(p)
the-stack_0_10186
import logging from typing import List, Optional, Sequence import telebot from quiz_bot.entity import ( AnswerEvaluation, AnyChallengeInfo, ChallengeSettings, CheckedResult, ContextChallenge, ContextParticipant, ContextUser, EvaluationStatus, PictureModel, QuizState, RegularChallengeInfo, UnexpectedChallengeAmountError, ) from quiz_bot.quiz.errors import ChallengeNotFoundError, NullableParticipantError from quiz_bot.quiz.keeper import ChallengeKeeper from quiz_bot.quiz.registrar import Registrar from quiz_bot.storage import IChallengeStorage logger = logging.getLogger(__name__) class ChallengeMaster: def __init__( self, storage: IChallengeStorage, settings: ChallengeSettings, registrar: Registrar, keeper: ChallengeKeeper, ) -> None: self._storage = storage self._settings = settings self._registrar = registrar self._keeper = keeper self._sync_challenge() if all((self._settings.autostart, not self._keeper.has_data or self._keeper.finished,)): self.start_next_challenge() @property def keeper(self) -> ChallengeKeeper: return self._keeper @property def _is_last_challenge(self) -> bool: return self._keeper.has_data and self._keeper.number == self._settings.challenge_amount def _save_challenge_data(self, challenge: ContextChallenge) -> None: self._keeper.set(data=challenge, info=self._settings.get_challenge_model(challenge.id)) def _sync_challenge(self) -> None: actual_challenge = self._storage.get_actual_challenge() if actual_challenge is not None: logger.info("Actual challenge with ID %s", actual_challenge.id) self._save_challenge_data(actual_challenge) return finished_challenge_ids = self._storage.get_finished_challenge_ids() if not finished_challenge_ids: logger.info("Quiz has not been running yet.") return if len(finished_challenge_ids) > self._settings.challenge_amount: raise UnexpectedChallengeAmountError( f"Not equal challenge amount: expected {self._settings.challenge_amount}, " f"got {len(finished_challenge_ids)} finished challenges!" ) logger.info("Quiz is not running now. Finished challenges: %s", finished_challenge_ids) challenge = self._storage.get_challenge(finished_challenge_ids[-1]) if challenge is None: raise ChallengeNotFoundError("Could not found finished challenge - WTF?") self._save_challenge_data(challenge) def resolve_quiz_state(self) -> QuizState: self._sync_challenge() if not self._keeper.has_data: return QuizState.NEW if self._keeper.finished: if self._is_last_challenge: return QuizState.FINISHED return QuizState.WAIT_NEXT return QuizState.IN_PROGRESS def _get_next_challenge_info(self) -> AnyChallengeInfo: if not self._keeper.has_data: return self._settings.get_challenge_model(1) return self._settings.get_challenge_model(self._keeper.number + 1) def start_next_challenge(self) -> None: next_challenge_info = self._get_next_challenge_info() next_challenge = self._storage.create_challenge( name=next_challenge_info.name, phase_amount=next_challenge_info.phase_amount, winner_amount=next_challenge_info.max_winners, duration=next_challenge_info.duration, ) logger.info("Next challenge: %s", next_challenge) self._sync_challenge() def _get_evaluation( self, status: EvaluationStatus, replies: Optional[Sequence[str]] = (), picture: Optional[PictureModel] = None ) -> AnswerEvaluation: return AnswerEvaluation(status=status, replies=replies, quiz_state=self.resolve_quiz_state(), picture=picture) def start_challenge_for_user( self, user: ContextUser, status: EvaluationStatus = EvaluationStatus.NOT_CHECKED, additional_replies: Sequence[str] = (), ) -> AnswerEvaluation: participant = self._registrar.get_participation_for_user(user=user, challenge=self._keeper.data) if participant is None: participant = self._registrar.create_participation_for_user(user=user, challenge=self._keeper.data) result = self._keeper.checker.create_initial_phase(participant=participant) logger.warning("Started challenge ID %s for user @%s", self._keeper.number, user.nick_name) replies = list(additional_replies) + [ self._settings.get_start_notification( challenge_num=self._keeper.number, challenge_name=self._keeper.info.name, description=f"{self._keeper.info.description}", ), ] if isinstance(self._keeper.info, RegularChallengeInfo): replies.append( self._settings.get_next_answer_notification( question=self._keeper.info.get_question(result.phase), question_num=result.phase, ) ) return self._get_evaluation(status=status, replies=replies, picture=self._keeper.info.picture,) return self._get_evaluation( status=status, replies=[self._settings.get_already_started_notification(challenge_name=self._keeper.info.name)], ) def _resolve_next_event(self, participant: ContextParticipant, result: CheckedResult) -> AnswerEvaluation: status = EvaluationStatus.CORRECT if result.next_phase is not None: replies: List[str] = [] if isinstance(self._keeper.info, RegularChallengeInfo): replies.append( self._settings.get_next_answer_notification( question=self._keeper.info.get_question(result.next_phase), question_num=result.next_phase, ) ) return self._get_evaluation(status=status, replies=replies) self._registrar.finish_participation(participant) pretender_replies = [ self._settings.get_pretender_notification( challenge_name=self._keeper.info.name, scores=participant.scores, finished_at=participant.finished_at, ) ] has_all_winners = self._registrar.all_winners_exist(challenge=self._keeper.data) if not has_all_winners: return self._get_evaluation(status=status, replies=pretender_replies) self._storage.finish_actual_challenge() logger.info( "Challenge #%s '%s' finished with all winners resolution!", self._keeper.number, self._keeper.info.name, ) if not self._is_last_challenge and self._settings.autostart: self.start_next_challenge() return self.start_challenge_for_user( user=participant.user, status=status, additional_replies=pretender_replies ) return self._get_evaluation(status=status, replies=pretender_replies) def evaluate(self, user: ContextUser, message: telebot.types.Message) -> AnswerEvaluation: # noqa: C901 if self._keeper.out_of_date: self._storage.finish_actual_challenge() participant = self._registrar.get_participation_for_user(user=user, challenge=self._keeper.data) if participant is None: logger.info( "User @%s is not a Participant for challenge with ID %s!", user.nick_name, self._keeper.data.id, ) return self._get_evaluation(status=EvaluationStatus.NOT_CHECKED) if participant.completed_challenge: logger.info( "User @%s has already completed challenge with ID %s!", user.nick_name, self._keeper.data.id, ) return self._get_evaluation(status=EvaluationStatus.ALREADY_COMPLETED) if self._keeper.finished: return self._get_evaluation(status=EvaluationStatus.INCORRECT) checked_result = self._keeper.checker.check_answer( participant=participant, data=self._keeper.data, info=self._keeper.info, message=message # type: ignore ) if not checked_result.correct: return self._get_evaluation(status=EvaluationStatus.INCORRECT) self._registrar.add_correct_answer(participant) logger.info("Added +1 score for user '%s'!", user.nick_name) return self._resolve_next_event(participant=participant, result=checked_result) def skip_evaluation(self, user: ContextUser) -> AnswerEvaluation: participant = self._registrar.get_participation_for_user(user=user, challenge=self._keeper.data) if participant is None: raise NullableParticipantError unchecked_result = self._keeper.checker.skip_question(participant=participant, data=self._keeper.data) return self._resolve_next_event(participant=participant, result=unchecked_result) def get_challenge_info(self, challenge_id: Optional[int] = None) -> str: if not isinstance(challenge_id, int): logger.info("Challenge ID was not specified, so use current challenge information.") challenge_id = self._keeper.number context_challenge = self._storage.get_challenge(challenge_id) if context_challenge is None: raise ChallengeNotFoundError(f"Challenge with ID {challenge_id} was not found!") self._save_challenge_data(context_challenge) winner_results = self._registrar.get_winners(self._keeper.data) if not self._keeper.finished: results = self._settings.get_time_left_info(self._keeper.finish_after) else: results = ( "\n".join(self._settings.get_results_info(winner_results)) + "\n\n" + self._settings.get_time_over_info(self._keeper.data) ) return self._settings.get_challenge_info(number=self._keeper.number, info=self._keeper.info, results=results)
the-stack_0_10188
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Resource Constants RESOURCE_ADMIN_MENU = "Admin" RESOURCE_AIRFLOW = "Airflow" RESOURCE_AUDIT_LOG = "Audit Logs" RESOURCE_BROWSE_MENU = "Browse" RESOURCE_DAG = "DAGs" RESOURCE_DAG_PREFIX = "DAG:" RESOURCE_DOCS_MENU = "Docs" RESOURCE_DOCS = "Documentation" RESOURCE_CONFIG = "Configurations" RESOURCE_CONNECTION = "Connections" RESOURCE_DAG_CODE = "DAG Code" RESOURCE_DAG_RUN = "DAG Runs" RESOURCE_IMPORT_ERROR = "ImportError" RESOURCE_JOB = "Jobs" RESOURCE_POOL = "Pools" RESOURCE_PLUGIN = "Plugins" RESOURCE_SLA_MISS = "SLA Misses" RESOURCE_TASK_INSTANCE = "Task Instances" RESOURCE_TASK_LOG = "Task Logs" RESOURCE_TASK_RESCHEDULE = "Task Reschedules" RESOURCE_VARIABLE = "Variables" RESOURCE_WEBSITE = "Website" RESOURCE_XCOM = "XComs" RESOURCE_USERINFO_EDIT_VIEW = "UserInfoEditView" RESOURCE_RESET_MY_PASSWORD_VIEW = "ResetMyPasswordView" RESOURCE_USER_DB_MODELVIEW = "UserDBModelView" RESOURCE_USER_OID_MODELVIEW = "UserOIDModelView" RESOURCE_USER_LDAP_MODELVIEW = "UserLDAPModelView" RESOURCE_USER_OAUTH_MODELVIEW = "UserOAuthModelView" RESOURCE_USER_REMOTEUSER_MODELVIEW = "UserRemoteUserModelView" RESOURCE_ROLE_MODEL_VIEW = "RoleModelView" RESOURCE_PERMISSION_MODEL_VIEW = "PermissionModelView" # Action Constants ACTION_CAN_LIST = "can_list" ACTION_CAN_SHOW = "can_show" ACTION_CAN_CREATE = "can_create" ACTION_CAN_READ = "can_read" ACTION_CAN_EDIT = "can_edit" ACTION_CAN_DELETE = "can_delete" ACTION_CAN_ACCESS_MENU = "menu_access" ACTION_CAN_THIS_FORM_GET = "can_this_form_get" ACTION_CAN_THIS_FORM_POST = "can_this_form_post" ACTION_RESETMYPASSWORD = "resetmypassword" ACTION_CAN_USERINFO = "can_userinfo" ACTION_USERINFOEDIT = "userinfoedit" DEPRECATED_ACTION_CAN_DAG_READ = "can_dag_read" DEPRECATED_ACTION_CAN_DAG_EDIT = "can_dag_edit"
the-stack_0_10191
# Copyright The Linux Foundation and each contributor to CommunityBridge. # SPDX-License-Identifier: MIT import pytest import cla import pynamodb from unittest.mock import Mock, patch, MagicMock from cla.models.dynamo_models import GitHubOrg, GitHubOrgModel from cla.utils import get_github_organization_instance from cla.tests.unit.data import GH_TABLE_DESCRIPTION PATCH_METHOD = "pynamodb.connection.Connection._make_api_call" @pytest.fixture() def gh_instance(): """ GitHubOrg instance """ with patch(PATCH_METHOD) as req: req.return_value = GH_TABLE_DESCRIPTION gh_org = cla.utils.get_github_organization_instance() gh_name = "FOO" gh_org.set_organization_name(gh_name) gh_org.set_organization_sfid("foo_sf_id") gh_org.set_project_sfid("foo_sf_id") gh_org.save() yield gh_org def test_set_organization_name(gh_instance): """ Test setting GitHub org name #1126 """ assert gh_instance.get_organization_name_lower() == "foo" def test_get_org_by_name_lower(gh_instance): """ Test getting GitHub org with case insensitive search """ gh_org = cla.utils.get_github_organization_instance() gh_org.model.scan = Mock(return_value=[gh_instance.model]) found_gh_org = gh_org.get_organization_by_lower_name(gh_instance.get_organization_name()) assert found_gh_org.get_organization_name_lower() == gh_instance.get_organization_name_lower()
the-stack_0_10195
# messageBox.py import ctypes user_handle = ctypes.WinDLL("User32.dll") # Handle to User32.dll kernel_handle = ctypes.WinDLL("kernel32.dll") # Handle to Kernel32.dll # WinAPI: MessageBoxW hWnd = None lpText = "Message Box" lpCaption = "Pop Up" uType = 0x00000001 response = user_handle.MessageBoxW(hWnd, lpText, lpCaption, uType) # Error Handling error = kernel_handle.GetLastError() if error != 0: print("[-] Error Code: {0}".format(error)) if response == 1: print("[+] User Clicked OK") elif response == 2: print("[+] User Clicked CANCEL")
the-stack_0_10198
# -*- coding: utf-8 -*- # Copyright (c) 2019 - 2020 Simon Kern # Copyright (c) 2015 - 2020 Holger Nahrstaedt # Copyright (c) 2011, 2015, Chris Lee-Messer # Copyright (c) 2016-2017 The pyedflib Developers # <https://github.com/holgern/pyedflib> # See LICENSE for license details. import numpy as np import sys from datetime import datetime, date from ._extensions._pyedflib import FILETYPE_EDFPLUS, FILETYPE_BDFPLUS, FILETYPE_BDF, FILETYPE_EDF from ._extensions._pyedflib import open_file_writeonly, set_physical_maximum, set_patient_additional, set_digital_maximum from ._extensions._pyedflib import set_birthdate, set_digital_minimum, set_technician, set_recording_additional, set_patientname from ._extensions._pyedflib import set_patientcode, set_equipment, set_admincode, set_gender, set_datarecord_duration, set_number_of_annotation_signals from ._extensions._pyedflib import set_startdatetime, set_starttime_subsecond, set_samplefrequency, set_physical_minimum, set_label, set_physical_dimension from ._extensions._pyedflib import set_transducer, set_prefilter, write_physical_samples, close_file, write_annotation_latin1, write_annotation_utf8 from ._extensions._pyedflib import blockwrite_physical_samples, write_errors, blockwrite_digital_samples, write_digital_short_samples, write_digital_samples, blockwrite_digital_short_samples __all__ = ['EdfWriter'] def u(x): return x.decode("utf-8", "strict") def du(x): if isbytestr(x): return x else: return x.encode("utf-8") def isstr(s): try: return isinstance(s, basestring) except NameError: return isinstance(s, str) def isbytestr(s): return isinstance(s, bytes) def gender2int(gender): if isinstance(gender, int) or gender is None: return gender elif gender.lower() in ['', 'x', 'xx', 'xxx', 'unknown', '?', '??']: return None elif gender.lower() in ["female", "woman", "f", "w"]: return 0 elif gender.lower() in ["male", "man", "m"]: return 1 else: raise ValueError("Unknown gender: '{}'".format(gender)) class ChannelDoesNotExist(Exception): def __init__(self, value): self.parameter = value def __str__(self): return repr(self.parameter) class WrongInputSize(Exception): def __init__(self, value): self.parameter = value def __str__(self): return repr(self.parameter) class EdfWriter(object): def __exit__(self, exc_type, exc_val, ex_tb): self.close() def __enter__(self): return self # return self def __del__(self): self.close() def __init__(self, file_name, n_channels, file_type=FILETYPE_EDFPLUS): """Initialises an EDF file at file_name. file_type is one of edflib.FILETYPE_EDFPLUS edflib.FILETYPE_BDFPLUS n_channels is the number of channels without the annotation channel channel_info should be a list of dicts, one for each channel in the data. Each dict needs these values: 'label' : channel label (string, <= 16 characters, must be unique) 'dimension' : physical dimension (e.g., mV) (string, <= 8 characters) 'sample_rate' : sample frequency in hertz (int) 'physical_max' : maximum physical value (float) 'physical_min' : minimum physical value (float) 'digital_max' : maximum digital value (int, -2**15 <= x < 2**15) 'digital_min' : minimum digital value (int, -2**15 <= x < 2**15) """ self.path = file_name self.file_type = file_type self.patient_name = '' self.patient_code = '' self.technician = '' self.equipment = '' self.recording_additional = '' self.patient_additional = '' self.admincode = '' self.gender = None self.recording_start_time = datetime.now().replace(microsecond=0) self.birthdate = '' self.duration = 1 self.number_of_annotations = 1 if file_type in [FILETYPE_EDFPLUS, FILETYPE_BDFPLUS] else 0 self.n_channels = n_channels self.channels = [] self.sample_buffer = [] for i in np.arange(self.n_channels): if self.file_type == FILETYPE_BDFPLUS or self.file_type == FILETYPE_BDF: self.channels.append({'label': 'test_label', 'dimension': 'mV', 'sample_rate': 100, 'physical_max': 1.0, 'physical_min': -1.0, 'digital_max': 8388607,'digital_min': -8388608, 'prefilter': 'pre1', 'transducer': 'trans1'}) elif self.file_type == FILETYPE_EDFPLUS or self.file_type == FILETYPE_EDF: self.channels.append({'label': 'test_label', 'dimension': 'mV', 'sample_rate': 100, 'physical_max': 1.0, 'physical_min': -1.0, 'digital_max': 32767, 'digital_min': -32768, 'prefilter': 'pre1', 'transducer': 'trans1'}) self.sample_buffer.append([]) self.handle = open_file_writeonly(self.path, self.file_type, self.n_channels) if (self.handle < 0): raise IOError(write_errors[self.handle]) def update_header(self): """ Updates header to edffile struct """ set_technician(self.handle, du(self.technician)) set_recording_additional(self.handle, du(self.recording_additional)) set_patientname(self.handle, du(self.patient_name)) set_patientcode(self.handle, du(self.patient_code)) set_patient_additional(self.handle, du(self.patient_additional)) set_equipment(self.handle, du(self.equipment)) set_admincode(self.handle, du(self.admincode)) set_gender(self.handle, gender2int(self.gender)) set_datarecord_duration(self.handle, self.duration) set_number_of_annotation_signals(self.handle, self.number_of_annotations) set_startdatetime(self.handle, self.recording_start_time.year, self.recording_start_time.month, self.recording_start_time.day, self.recording_start_time.hour, self.recording_start_time.minute, self.recording_start_time.second) # subseconds are noted in nanoseconds, so we multiply by 100 if self.recording_start_time.microsecond>0: set_starttime_subsecond(self.handle, self.recording_start_time.microsecond*100) if isstr(self.birthdate): if self.birthdate != '': birthday = datetime.strptime(self.birthdate, '%d %b %Y').date() set_birthdate(self.handle, birthday.year, birthday.month, birthday.day) else: set_birthdate(self.handle, self.birthdate.year, self.birthdate.month, self.birthdate.day) for i in np.arange(self.n_channels): set_samplefrequency(self.handle, i, self.channels[i]['sample_rate']) set_physical_maximum(self.handle, i, self.channels[i]['physical_max']) set_physical_minimum(self.handle, i, self.channels[i]['physical_min']) set_digital_maximum(self.handle, i, self.channels[i]['digital_max']) set_digital_minimum(self.handle, i, self.channels[i]['digital_min']) set_label(self.handle, i, du(self.channels[i]['label'])) set_physical_dimension(self.handle, i, du(self.channels[i]['dimension'])) set_transducer(self.handle, i, du(self.channels[i]['transducer'])) set_prefilter(self.handle, i, du(self.channels[i]['prefilter'])) def setHeader(self, fileHeader): """ Sets the file header """ self.technician = fileHeader["technician"] self.recording_additional = fileHeader["recording_additional"] self.patient_name = fileHeader["patientname"] self.patient_additional = fileHeader["patient_additional"] self.patient_code = fileHeader["patientcode"] self.equipment = fileHeader["equipment"] self.admincode = fileHeader["admincode"] self.gender = fileHeader["gender"] self.recording_start_time = fileHeader["startdate"] self.birthdate = fileHeader["birthdate"] self.update_header() def setSignalHeader(self, edfsignal, channel_info): """ Sets the parameter for signal edfsignal. channel_info should be a dict with these values: 'label' : channel label (string, <= 16 characters, must be unique) 'dimension' : physical dimension (e.g., mV) (string, <= 8 characters) 'sample_rate' : sample frequency in hertz (int) 'physical_max' : maximum physical value (float) 'physical_min' : minimum physical value (float) 'digital_max' : maximum digital value (int, -2**15 <= x < 2**15) 'digital_min' : minimum digital value (int, -2**15 <= x < 2**15) """ if edfsignal < 0 or edfsignal > self.n_channels: raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal] = channel_info self.update_header() def setSignalHeaders(self, signalHeaders): """ Sets the parameter for all signals Parameters ---------- signalHeaders : array_like containing dict with 'label' : str channel label (string, <= 16 characters, must be unique) 'dimension' : str physical dimension (e.g., mV) (string, <= 8 characters) 'sample_rate' : int sample frequency in hertz 'physical_max' : float maximum physical value 'physical_min' : float minimum physical value 'digital_max' : int maximum digital value (-2**15 <= x < 2**15) 'digital_min' : int minimum digital value (-2**15 <= x < 2**15) """ for edfsignal in np.arange(self.n_channels): self.channels[edfsignal] = signalHeaders[edfsignal] self.update_header() def setTechnician(self, technician): """ Sets the technicians name to `technician`. Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ self.technician = technician self.update_header() def setRecordingAdditional(self, recording_additional): """ Sets the additional recordinginfo Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ self.recording_additional = recording_additional self.update_header() def setPatientName(self, patient_name): """ Sets the patientname to `patient_name`. Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ self.patient_name = patient_name self.update_header() def setPatientCode(self, patient_code): """ Sets the patientcode to `patient_code`. Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ self.patient_code = patient_code self.update_header() def setPatientAdditional(self, patient_additional): """ Sets the additional patientinfo to `patient_additional`. Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ self.patient_additional = patient_additional self.update_header() def setEquipment(self, equipment): """ Sets the name of the param equipment used during the aquisition. This function is optional and can be called only after opening a file in writemode and before the first sample write action. Parameters ---------- equipment : str Describes the measurement equpipment """ self.equipment = equipment self.update_header() def setAdmincode(self, admincode): """ Sets the admincode. This function is optional and can be called only after opening a file in writemode and before the first sample write action. Parameters ---------- admincode : str admincode which is written into the header """ self.admincode = admincode self.update_header() def setGender(self, gender): """ Sets the gender. This function is optional and can be called only after opening a file in writemode and before the first sample write action. Parameters ---------- gender : int 1 is male, 0 is female """ self.gender = gender2int(gender) self.update_header() def setDatarecordDuration(self, duration): """ Sets the datarecord duration. The default value is 100000 which is 1 second. ATTENTION: the argument "duration" is expressed in units of 10 microSeconds! So, if you want to set the datarecord duration to 0.1 second, you must give the argument "duration" a value of "10000". This function is optional, normally you don't need to change the default value. The datarecord duration must be in the range 0.001 to 60 seconds. Returns 0 on success, otherwise -1. Parameters ---------- duration : integer Sets the datarecord duration in units of 10 microSeconds Notes ----- This function is NOT REQUIRED but can be called after opening a file in writemode and before the first sample write action. This function can be used when you want to use a samplerate which is not an integer. For example, if you want to use a samplerate of 0.5 Hz, set the samplefrequency to 5 Hz and the datarecord duration to 10 seconds. Do not use this function, except when absolutely necessary! """ self.duration = duration self.update_header() def set_number_of_annotation_signals(self, number_of_annotations): """ Sets the number of annotation signals. The default value is 1 This function is optional and can be called only after opening a file in writemode and before the first sample write action Normally you don't need to change the default value. Only when the number of annotations you want to write is more than the number of seconds of the duration of the recording, you can use this function to increase the storage space for annotations Minimum is 1, maximum is 64 Parameters ---------- number_of_annotations : integer Sets the number of annotation signals """ number_of_annotations = max((min((int(number_of_annotations), 64)), 1)) self.number_of_annotations = number_of_annotations self.update_header() def setStartdatetime(self, recording_start_time): """ Sets the recording start Time Parameters ---------- recording_start_time: datetime object Sets the recording start Time """ if not isinstance(recording_start_time, datetime): recording_start_time = datetime.strptime(recording_start_time,"%d %b %Y %H:%M:%S") self.recording_start_time = recording_start_time self.update_header() def setBirthdate(self, birthdate): """ Sets the birthdate. Parameters ---------- birthdate: date object from datetime Examples -------- >>> import pyedflib >>> from datetime import datetime, date >>> f = pyedflib.EdfWriter('test.bdf', 1, file_type=pyedflib.FILETYPE_BDFPLUS) >>> f.setBirthdate(date(1951, 8, 2)) >>> f.close() Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ if isinstance(birthdate, str): birthdate = datetime.strptime(birthdate, "%d.%m.%Y") self.birthdate = birthdate self.update_header() def setSamplefrequency(self, edfsignal, samplefrequency): """ Sets the samplefrequency of signal edfsignal. Notes ----- This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action. """ if edfsignal < 0 or edfsignal > self.n_channels: raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['sample_rate'] = samplefrequency self.update_header() def setPhysicalMaximum(self, edfsignal, physical_maximum): """ Sets the physical_maximum of signal edfsignal. Parameters ---------- edfsignal: int signal number physical_maximum: float Sets the physical maximum Notes ----- This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action. """ if edfsignal < 0 or edfsignal > self.n_channels: raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['physical_max'] = physical_maximum self.update_header() def setPhysicalMinimum(self, edfsignal, physical_minimum): """ Sets the physical_minimum of signal edfsignal. Parameters ---------- edfsignal: int signal number physical_minimum: float Sets the physical minimum Notes ----- This function is required for every signal and can be called only after opening a file in writemode and before the first sample write action. """ if (edfsignal < 0 or edfsignal > self.n_channels): raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['physical_min'] = physical_minimum self.update_header() def setDigitalMaximum(self, edfsignal, digital_maximum): """ Sets the maximum digital value of signal edfsignal. Usually, the value 32767 is used for EDF+ and 8388607 for BDF+. Parameters ---------- edfsignal : int signal number digital_maximum : int Sets the maximum digital value Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ if (edfsignal < 0 or edfsignal > self.n_channels): raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['digital_max'] = digital_maximum self.update_header() def setDigitalMinimum(self, edfsignal, digital_minimum): """ Sets the minimum digital value of signal edfsignal. Usually, the value -32768 is used for EDF+ and -8388608 for BDF+. Usually this will be (-(digital_maximum + 1)). Parameters ---------- edfsignal : int signal number digital_minimum : int Sets the minimum digital value Notes ----- This function is optional and can be called only after opening a file in writemode and before the first sample write action. """ if (edfsignal < 0 or edfsignal > self.n_channels): raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['digital_min'] = digital_minimum self.update_header() def setLabel(self, edfsignal, label): """ Sets the label (name) of signal edfsignal ("FP1", "SaO2", etc.). Parameters ---------- edfsignal : int signal number on which the label should be changed label : str signal label Notes ----- This function is recommended for every signal and can be called only after opening a file in writemode and before the first sample write action. """ if (edfsignal < 0 or edfsignal > self.n_channels): raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['label'] = label self.update_header() def setPhysicalDimension(self, edfsignal, physical_dimension): """ Sets the physical dimension of signal edfsignal ("uV", "BPM", "mA", "Degr.", etc.) :param edfsignal: int :param physical_dimension: str Notes ----- This function is recommended for every signal and can be called only after opening a file in writemode and before the first sample write action. """ if edfsignal < 0 or edfsignal > self.n_channels: raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['dimension'] = physical_dimension self.update_header() def setTransducer(self, edfsignal, transducer): """ Sets the transducer of signal edfsignal :param edfsignal: int :param transducer: str Notes ----- This function is optional for every signal and can be called only after opening a file in writemode and before the first sample write action. """ if (edfsignal < 0 or edfsignal > self.n_channels): raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['transducer'] = transducer self.update_header() def setPrefilter(self, edfsignal, prefilter): """ Sets the prefilter of signal edfsignal ("HP:0.1Hz", "LP:75Hz N:50Hz", etc.) :param edfsignal: int :param prefilter: str Notes ----- This function is optional for every signal and can be called only after opening a file in writemode and before the first sample write action. """ if edfsignal < 0 or edfsignal > self.n_channels: raise ChannelDoesNotExist(edfsignal) self.channels[edfsignal]['prefilter'] = prefilter self.update_header() def writePhysicalSamples(self, data): """ Writes n physical samples (uV, mA, Ohm) belonging to one signal where n is the samplefrequency of the signal. data_vec belonging to one signal. The size must be the samplefrequency of the signal. Notes ----- Writes n physical samples (uV, mA, Ohm) from data_vec belonging to one signal where n is the samplefrequency of the signal. The physical samples will be converted to digital samples using the values of physical maximum, physical minimum, digital maximum and digital minimum. The number of samples written is equal to the samplefrequency of the signal. Call this function for every signal in the file. The order is important! When there are 4 signals in the file, the order of calling this function must be: signal 0, signal 1, signal 2, signal 3, signal 0, signal 1, signal 2, etc. All parameters must be already written into the bdf/edf-file. """ return write_physical_samples(self.handle, data) def writeDigitalSamples(self, data): return write_digital_samples(self.handle, data) def writeDigitalShortSamples(self, data): return write_digital_short_samples(self.handle, data) def blockWritePhysicalSamples(self, data): """ Writes physical samples (uV, mA, Ohm) must be filled with samples from all signals where each signal has n samples which is the samplefrequency of the signal. data_vec belonging to one signal. The size must be the samplefrequency of the signal. Notes ----- buf must be filled with samples from all signals, starting with signal 0, 1, 2, etc. one block equals one second The physical samples will be converted to digital samples using the values of physical maximum, physical minimum, digital maximum and digital minimum The number of samples written is equal to the sum of the samplefrequencies of all signals Size of buf should be equal to or bigger than sizeof(double) multiplied by the sum of the samplefrequencies of all signals Returns 0 on success, otherwise -1 All parameters must be already written into the bdf/edf-file. """ return blockwrite_physical_samples(self.handle, data) def blockWriteDigitalSamples(self, data): return blockwrite_digital_samples(self.handle, data) def blockWriteDigitalShortSamples(self, data): return blockwrite_digital_short_samples(self.handle, data) def writeSamples(self, data_list, digital = False): """ Writes physical samples (uV, mA, Ohm) from data belonging to all signals The physical samples will be converted to digital samples using the values of physical maximum, physical minimum, digital maximum and digital minimum. if the samplefrequency of all signals are equal, then the data could be saved into a matrix with the size (N,signals) If the samplefrequency is different, then sample_freq is a vector containing all the different samplefrequencys. The data is saved as list. Each list entry contains a vector with the data of one signal. If digital is True, digital signals (as directly from the ADC) will be expected. (e.g. int16 from 0 to 2048) All parameters must be already written into the bdf/edf-file. """ if (len(data_list) != len(self.channels)): raise WrongInputSize(len(data_list)) if digital: if any([not np.issubdtype(a.dtype, np.integer) for a in data_list]): raise TypeError('Digital = True requires all signals in int') # Check that all channels have different physical_minimum and physical_maximum for chan in self.channels: assert chan['physical_min'] != chan['physical_max'], \ 'In chan {} physical_min {} should be different from '\ 'physical_max {}'.format(chan['label'], chan['physical_min'], chan['physical_max']) ind = [] notAtEnd = True for i in np.arange(len(data_list)): ind.append(0) sampleLength = 0 sampleRates = np.zeros(len(data_list), dtype=np.int32) for i in np.arange(len(data_list)): sampleRates[i] = self.channels[i]['sample_rate'] if (np.size(data_list[i]) < ind[i] + self.channels[i]['sample_rate']): notAtEnd = False sampleLength += self.channels[i]['sample_rate'] dataOfOneSecond = np.array([], dtype=np.int32 if digital else None) while notAtEnd: # dataOfOneSecondInd = 0 del dataOfOneSecond dataOfOneSecond = np.array([], dtype=np.int32 if digital else None) for i in np.arange(len(data_list)): # dataOfOneSecond[dataOfOneSecondInd:dataOfOneSecondInd+self.channels[i]['sample_rate']] = data_list[i].ravel()[int(ind[i]):int(ind[i]+self.channels[i]['sample_rate'])] dataOfOneSecond = np.append(dataOfOneSecond,data_list[i].ravel()[int(ind[i]):int(ind[i]+sampleRates[i])]) # self.writePhysicalSamples(data_list[i].ravel()[int(ind[i]):int(ind[i]+self.channels[i]['sample_rate'])]) ind[i] += sampleRates[i] # dataOfOneSecondInd += sampleRates[i] if digital: success = self.blockWriteDigitalSamples(dataOfOneSecond) else: success = self.blockWritePhysicalSamples(dataOfOneSecond) if success<0: raise IOError('Unknown error while calling blockWriteSamples') for i in np.arange(len(data_list)): if (np.size(data_list[i]) < ind[i] + sampleRates[i]): notAtEnd = False # dataOfOneSecondInd = 0 for i in np.arange(len(data_list)): lastSamples = np.zeros(sampleRates[i], dtype=np.int32 if digital else None) lastSampleInd = int(np.max(data_list[i].shape) - ind[i]) lastSampleInd = int(np.min((lastSampleInd,sampleRates[i]))) if lastSampleInd > 0: lastSamples[:lastSampleInd] = data_list[i].ravel()[-lastSampleInd:] # dataOfOneSecond[dataOfOneSecondInd:dataOfOneSecondInd+self.channels[i]['sample_rate']] = lastSamples # dataOfOneSecondInd += self.channels[i]['sample_rate'] if digital: success = self.writeDigitalSamples(lastSamples) else: success = self.writePhysicalSamples(lastSamples) if success<0: raise IOError('Unknown error while calling writeSamples') # self.blockWritePhysicalSamples(dataOfOneSecond) def writeAnnotation(self, onset_in_seconds, duration_in_seconds, description, str_format='utf-8'): """ Writes an annotation/event to the file """ if self.file_type in [FILETYPE_EDF, FILETYPE_BDF]: raise TypeError('Trying to write annotation to EDF/BDF, must use EDF+/BDF+') if str_format == 'utf-8': if duration_in_seconds >= 0: return write_annotation_utf8(self.handle, np.round(onset_in_seconds*10000).astype(int), np.round(duration_in_seconds*10000).astype(int), du(description)) else: return write_annotation_utf8(self.handle, np.round(onset_in_seconds*10000).astype(int), -1, du(description)) else: if duration_in_seconds >= 0: return write_annotation_latin1(self.handle, np.round(onset_in_seconds*10000).astype(int), np.round(duration_in_seconds*10000).astype(int), u(description).encode('latin1')) else: return write_annotation_latin1(self.handle, np.round(onset_in_seconds*10000).astype(int), -1, u(description).encode('latin1')) def close(self): """ Closes the file. """ close_file(self.handle) self.handle = -1
the-stack_0_10199
import pytest from galaxy.config import BaseAppConfiguration from galaxy.config.schema import AppSchema from galaxy.exceptions import ConfigurationError # When a config property 'foo' has an attribute 'path_resolves_to', that attribute is a reference to # another property 'bar'. Together, these two properties form a graph where 'foo' and 'bar are # vertices and the reference from 'foo' to 'bar' is a directed edge. # # A schema may have any number of such implicit graphs, each having one or more edges. All together, # they should form a DAG (directed acyclic graph). # # These tests ensure that the graph is loaded correctly for a variety of valid configurations, # whereas an invalid configuration raises an error. def get_schema(app_mapping): return {'mapping': {'_': {'mapping': app_mapping}}} def test_basecase(monkeypatch): # Check that a valid graph is loaded correctly (this graph has 2 components) mock_schema = { 'component1_path0': { 'type': 'str', 'default': 'value0', }, 'component1_path1': { 'type': 'str', 'default': 'value1', 'path_resolves_to': 'component1_path0', }, 'component1_path2': { 'type': 'str', 'default': 'value2', 'path_resolves_to': 'component1_path1', }, 'component2_path0': { 'type': 'str', 'default': 'value3', }, 'component2_path1': { 'type': 'str', 'default': 'value4', 'path_resolves_to': 'component2_path0', }, } monkeypatch.setattr(AppSchema, '_read_schema', lambda a, b: get_schema(mock_schema)) monkeypatch.setattr(BaseAppConfiguration, '_load_schema', lambda a: AppSchema(None, '_')) config = BaseAppConfiguration() assert config.component1_path0 == 'value0' assert config.component1_path1 == 'value0/value1' assert config.component1_path2 == 'value0/value1/value2' assert config.component2_path0 == 'value3' assert config.component2_path1 == 'value3/value4' def test_resolves_to_invalid_property(monkeypatch): # 'path_resolves_to' should point to an existing property in the schema mock_schema = { 'path0': { 'type': 'str', 'default': 'value0', }, 'path1': { 'type': 'str', 'default': 'value1', 'path_resolves_to': 'invalid', # invalid }, } monkeypatch.setattr(AppSchema, '_read_schema', lambda a, b: get_schema(mock_schema)) with pytest.raises(ConfigurationError): AppSchema(None, '_').validate_path_resolution_graph() def test_path_resolution_cycle(monkeypatch): # Must be a DAG, but this one has a cycle mock_schema = { 'path0': { 'type': 'str', 'default': 'value0', 'path_resolves_to': 'path2', }, 'path1': { 'type': 'str', 'default': 'value1', 'path_resolves_to': 'path0', }, 'path2': { 'type': 'str', 'default': 'value2', 'path_resolves_to': 'path1', }, } monkeypatch.setattr(AppSchema, '_read_schema', lambda a, b: get_schema(mock_schema)) with pytest.raises(ConfigurationError): AppSchema(None, '_').validate_path_resolution_graph() def test_path_invalid_type(monkeypatch): # Paths should be strings mock_schema = { 'path0': { 'type': 'str', 'default': 'value0', }, 'path1': { 'type': 'float', # invalid 'default': 'value1', 'path_resolves_to': 'path0', }, } monkeypatch.setattr(AppSchema, '_read_schema', lambda a, b: get_schema(mock_schema)) with pytest.raises(ConfigurationError): AppSchema(None, '_').validate_path_resolution_graph() def test_resolves_to_invalid_type(monkeypatch): # Paths should be strings mock_schema = { 'path0': { 'type': 'int', # invalid 'default': 'value0', }, 'path1': { 'type': 'str', 'default': 'value1', 'path_resolves_to': 'path0', }, } monkeypatch.setattr(AppSchema, '_read_schema', lambda a, b: get_schema(mock_schema)) with pytest.raises(ConfigurationError): AppSchema(None, '_').validate_path_resolution_graph() def test_resolves_with_empty_component(monkeypatch): # A path can be None (root path is never None; may be asigned elsewhere) mock_schema = { 'path0': { 'type': 'str', 'default': 'value0', }, 'path1': { 'type': 'str', 'path_resolves_to': 'path0', }, 'path2': { 'type': 'str', 'default': 'value2', 'path_resolves_to': 'path1', }, } monkeypatch.setattr(AppSchema, '_read_schema', lambda a, b: get_schema(mock_schema)) monkeypatch.setattr(BaseAppConfiguration, '_load_schema', lambda a: AppSchema(None, '_')) config = BaseAppConfiguration() assert config.path0 == 'value0' assert config.path1 == 'value0' assert config.path2 == 'value0/value2'
the-stack_0_10200
# -*- coding: utf-8 -*- # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import time import re from typing import Any, Dict, List, Optional from google.auth import credentials as auth_credentials from google.cloud.aiplatform import base from google.cloud.aiplatform import initializer from google.cloud.aiplatform import utils from google.cloud.aiplatform.utils import json_utils from google.cloud.aiplatform.utils import pipeline_utils from google.protobuf import json_format from google.cloud.aiplatform.compat.types import ( pipeline_job_v1beta1 as gca_pipeline_job_v1beta1, pipeline_state_v1beta1 as gca_pipeline_state_v1beta1, ) _LOGGER = base.Logger(__name__) _PIPELINE_COMPLETE_STATES = set( [ gca_pipeline_state_v1beta1.PipelineState.PIPELINE_STATE_SUCCEEDED, gca_pipeline_state_v1beta1.PipelineState.PIPELINE_STATE_FAILED, gca_pipeline_state_v1beta1.PipelineState.PIPELINE_STATE_CANCELLED, gca_pipeline_state_v1beta1.PipelineState.PIPELINE_STATE_PAUSED, ] ) _PIPELINE_ERROR_STATES = set( [gca_pipeline_state_v1beta1.PipelineState.PIPELINE_STATE_FAILED] ) # Pattern for valid names used as a Vertex resource name. _VALID_NAME_PATTERN = re.compile("^[a-z][-a-z0-9]{0,127}$") def _get_current_time() -> datetime.datetime: """Gets the current timestamp.""" return datetime.datetime.now() def _set_enable_caching_value( pipeline_spec: Dict[str, Any], enable_caching: bool ) -> None: """Sets pipeline tasks caching options. Args: pipeline_spec (Dict[str, Any]): Required. The dictionary of pipeline spec. enable_caching (bool): Required. Whether to enable caching. """ for component in [pipeline_spec["root"]] + list( pipeline_spec["components"].values() ): if "dag" in component: for task in component["dag"]["tasks"].values(): task["cachingOptions"] = {"enableCache": enable_caching} class PipelineJob(base.VertexAiResourceNounWithFutureManager): client_class = utils.PipelineJobClientWithOverride _is_client_prediction_client = False _resource_noun = "pipelineJobs" _delete_method = "delete_pipeline_job" _getter_method = "get_pipeline_job" _list_method = "list_pipeline_jobs" def __init__( self, display_name: str, template_path: str, job_id: Optional[str] = None, pipeline_root: Optional[str] = None, parameter_values: Optional[Dict[str, Any]] = None, enable_caching: Optional[bool] = None, encryption_spec_key_name: Optional[str] = None, labels: Optional[Dict[str, str]] = None, credentials: Optional[auth_credentials.Credentials] = None, project: Optional[str] = None, location: Optional[str] = None, ): """Retrieves a PipelineJob resource and instantiates its representation. Args: display_name (str): Required. The user-defined name of this Pipeline. template_path (str): Required. The path of PipelineJob or PipelineSpec JSON file. It can be a local path or a Google Cloud Storage URI. Example: "gs://project.name" job_id (str): Optional. The unique ID of the job run. If not specified, pipeline name + timestamp will be used. pipeline_root (str): Optional. The root of the pipeline outputs. Default to be staging bucket. parameter_values (Dict[str, Any]): Optional. The mapping from runtime parameter names to its values that control the pipeline run. enable_caching (bool): Optional. Whether to turn on caching for the run. If this is not set, defaults to the compile time settings, which are True for all tasks by default, while users may specify different caching options for individual tasks. If this is set, the setting applies to all tasks in the pipeline. Overrides the compile time settings. encryption_spec_key_name (str): Optional. The Cloud KMS resource identifier of the customer managed encryption key used to protect the job. Has the form: ``projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key``. The key needs to be in the same region as where the compute resource is created. If this is set, then all resources created by the BatchPredictionJob will be encrypted with the provided encryption key. Overrides encryption_spec_key_name set in aiplatform.init. labels (Dict[str,str]): Optional. The user defined metadata to organize PipelineJob. credentials (auth_credentials.Credentials): Optional. Custom credentials to use to create this batch prediction job. Overrides credentials set in aiplatform.init. project (str), Optional. Project to retrieve PipelineJob from. If not set, project set in aiplatform.init will be used. location (str), Optional. Location to create PipelineJob. If not set, location set in aiplatform.init will be used. Raises: ValueError: If job_id or labels have incorrect format. """ utils.validate_display_name(display_name) if labels: utils.validate_labels(labels) super().__init__(project=project, location=location, credentials=credentials) self._parent = initializer.global_config.common_location_path( project=project, location=location ) pipeline_json = json_utils.load_json( template_path, self.project, self.credentials ) # Pipeline_json can be either PipelineJob or PipelineSpec. if pipeline_json.get("pipelineSpec") is not None: pipeline_job = pipeline_json pipeline_root = ( pipeline_root or pipeline_job["pipelineSpec"].get("defaultPipelineRoot") or pipeline_job["runtimeConfig"].get("gcsOutputDirectory") or initializer.global_config.staging_bucket ) else: pipeline_job = { "pipelineSpec": pipeline_json, "runtimeConfig": {}, } pipeline_root = ( pipeline_root or pipeline_job["pipelineSpec"].get("defaultPipelineRoot") or initializer.global_config.staging_bucket ) builder = pipeline_utils.PipelineRuntimeConfigBuilder.from_job_spec_json( pipeline_job ) builder.update_pipeline_root(pipeline_root) builder.update_runtime_parameters(parameter_values) runtime_config_dict = builder.build() runtime_config = gca_pipeline_job_v1beta1.PipelineJob.RuntimeConfig()._pb json_format.ParseDict(runtime_config_dict, runtime_config) pipeline_name = pipeline_job["pipelineSpec"]["pipelineInfo"]["name"] self.job_id = job_id or "{pipeline_name}-{timestamp}".format( pipeline_name=re.sub("[^-0-9a-z]+", "-", pipeline_name.lower()) .lstrip("-") .rstrip("-"), timestamp=_get_current_time().strftime("%Y%m%d%H%M%S"), ) if not _VALID_NAME_PATTERN.match(self.job_id): raise ValueError( "Generated job ID: {} is illegal as a Vertex pipelines job ID. " "Expecting an ID following the regex pattern " '"[a-z][-a-z0-9]{{0,127}}"'.format(job_id) ) if enable_caching is not None: _set_enable_caching_value(pipeline_job["pipelineSpec"], enable_caching) self._gca_resource = gca_pipeline_job_v1beta1.PipelineJob( display_name=display_name, pipeline_spec=pipeline_job["pipelineSpec"], labels=labels, runtime_config=runtime_config, encryption_spec=initializer.global_config.get_encryption_spec( encryption_spec_key_name=encryption_spec_key_name ), ) @base.optional_sync() def run( self, service_account: Optional[str] = None, network: Optional[str] = None, sync: Optional[bool] = True, ) -> None: """Run this configured PipelineJob and monitor the job until completion. Args: service_account (str): Optional. Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. network (str): Optional. The full name of the Compute Engine network to which the job should be peered. For example, projects/12345/global/networks/myVPC. Private services access must already be configured for the network. If left unspecified, the job is not peered with any network. sync (bool): Optional. Whether to execute this method synchronously. If False, this method will unblock and it will be executed in a concurrent Future. """ self.submit(service_account=service_account, network=network) self._block_until_complete() def submit( self, service_account: Optional[str] = None, network: Optional[str] = None, ) -> None: """Run this configured PipelineJob. Args: service_account (str): Optional. Specifies the service account for workload run-as account. Users submitting jobs must have act-as permission on this run-as account. network (str): Optional. The full name of the Compute Engine network to which the job should be peered. For example, projects/12345/global/networks/myVPC. Private services access must already be configured for the network. If left unspecified, the job is not peered with any network. """ if service_account: self._gca_resource.service_account = service_account if network: self._gca_resource.network = network _LOGGER.log_create_with_lro(self.__class__) self._gca_resource = self.api_client.create_pipeline_job( parent=self._parent, pipeline_job=self._gca_resource, pipeline_job_id=self.job_id, ) _LOGGER.log_create_complete_with_getter( self.__class__, self._gca_resource, "pipeline_job" ) _LOGGER.info("View Pipeline Job:\n%s" % self._dashboard_uri()) def wait(self): """Wait for thie PipelineJob to complete.""" if self._latest_future is None: self._block_until_complete() else: super().wait() @property def pipeline_spec(self): return self._gca_resource.pipeline_spec @property def state(self) -> Optional[gca_pipeline_state_v1beta1.PipelineState]: """Current pipeline state.""" self._sync_gca_resource() return self._gca_resource.state @property def has_failed(self) -> bool: """Returns True if pipeline has failed. False otherwise. """ return ( self.state == gca_pipeline_state_v1beta1.PipelineState.PIPELINE_STATE_FAILED ) def _dashboard_uri(self) -> str: """Helper method to compose the dashboard uri where pipeline can be viewed.""" fields = utils.extract_fields_from_resource_name(self.resource_name) url = f"https://console.cloud.google.com/vertex-ai/locations/{fields.location}/pipelines/runs/{fields.id}?project={fields.project}" return url def _block_until_complete(self): """Helper method to block and check on job until complete.""" # Used these numbers so failures surface fast wait = 5 # start at five seconds log_wait = 5 max_wait = 60 * 5 # 5 minute wait multiplier = 2 # scale wait by 2 every iteration previous_time = time.time() while self.state not in _PIPELINE_COMPLETE_STATES: current_time = time.time() if current_time - previous_time >= log_wait: _LOGGER.info( "%s %s current state:\n%s" % ( self.__class__.__name__, self._gca_resource.name, self._gca_resource.state, ) ) log_wait = min(log_wait * multiplier, max_wait) previous_time = current_time time.sleep(wait) # Error is only populated when the job state is # JOB_STATE_FAILED or JOB_STATE_CANCELLED. if self._gca_resource.state in _PIPELINE_ERROR_STATES: raise RuntimeError("Job failed with:\n%s" % self._gca_resource.error) else: _LOGGER.log_action_completed_against_resource("run", "completed", self) @classmethod def get( cls, resource_name: str, project: Optional[str] = None, location: Optional[str] = None, credentials: Optional[auth_credentials.Credentials] = None, ) -> "PipelineJob": """Get a Vertex AI Pipeline Job for the given resource_name. Args: resource_name (str): Required. A fully-qualified resource name or ID. project (str): Optional. Project to retrieve dataset from. If not set, project set in aiplatform.init will be used. location (str): Optional. Location to retrieve dataset from. If not set, location set in aiplatform.init will be used. credentials (auth_credentials.Credentials): Optional. Custom credentials to use to upload this model. Overrides credentials set in aiplatform.init. Returns: A Vertex AI PipelineJob. """ self = cls._empty_constructor( project=project, location=location, credentials=credentials, resource_name=resource_name, ) self._gca_resource = self._get_gca_resource(resource_name=resource_name) return self def cancel(self) -> None: """Starts asynchronous cancellation on the PipelineJob. The server makes a best effort to cancel the job, but success is not guaranteed. On successful cancellation, the PipelineJob is not deleted; instead it becomes a job with state set to `CANCELLED`. """ self.api_client.cancel_pipeline_job(name=self.resource_name) @classmethod def list( cls, filter: Optional[str] = None, order_by: Optional[str] = None, project: Optional[str] = None, location: Optional[str] = None, credentials: Optional[auth_credentials.Credentials] = None, ) -> List["PipelineJob"]: """List all instances of this PipelineJob resource. Example Usage: aiplatform.PipelineJob.list( filter='display_name="experiment_a27"', order_by='create_time desc' ) Args: filter (str): Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported. order_by (str): Optional. A comma-separated list of fields to order by, sorted in ascending order. Use "desc" after a field name for descending. Supported fields: `display_name`, `create_time`, `update_time` project (str): Optional. Project to retrieve list from. If not set, project set in aiplatform.init will be used. location (str): Optional. Location to retrieve list from. If not set, location set in aiplatform.init will be used. credentials (auth_credentials.Credentials): Optional. Custom credentials to use to retrieve list. Overrides credentials set in aiplatform.init. Returns: List[PipelineJob] - A list of PipelineJob resource objects """ return cls._list_with_local_order( filter=filter, order_by=order_by, project=project, location=location, credentials=credentials, ) def wait_for_resource_creation(self) -> None: """Waits until resource has been created.""" self._wait_for_resource_creation()