filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_16405
from cpf_cnpj import Documento from TelefonesBr import TelefonesBr from datasbr import DatasBr from acesso_cep import BuscaEndereco import requests exemplo_cpf = "94561576010" exemplo_cnpj = "35379838000112" telefone = "11976453329" cep = "01001000" cpf_um = Documento.cria_documento(exemplo_cpf) cnpj_um = Documento.cria_documento(exemplo_cnpj) telefone_um = TelefonesBr(telefone) hora_cadastro = DatasBr() tempo_cadastro = hora_cadastro.tempo_cadastro() objeto_cep = BuscaEndereco(cep) logradouro, bairro, cidade, uf = objeto_cep.acessa_via_cep() print(f''' CPF: {cpf_um} CNPJ: {cnpj_um} Telefone: {telefone_um}' Hora do Cadastro: {hora_cadastro} Tempo de Cadastro: {tempo_cadastro} Dados Cadastrais: Rua: {logradouro} Bairro: {bairro} Cidade: {cidade} Uf: {uf} ''')
the-stack_0_16406
# Copyright 2015 CloudByte Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import uuid from oslo_log import log as logging from oslo_service import loopingcall from oslo_utils import units import six from six.moves import http_client from six.moves import urllib from cinder import context from cinder import exception from cinder.i18n import _, _LE, _LI from cinder.volume.drivers.cloudbyte import options from cinder.volume.drivers.san import san from cinder.volume import qos_specs from cinder.volume import volume_types LOG = logging.getLogger(__name__) class CloudByteISCSIDriver(san.SanISCSIDriver): """CloudByte ISCSI Driver. Version history: 1.0.0 - Initial driver 1.1.0 - Add chap support and minor bug fixes 1.1.1 - Add wait logic for delete volumes 1.1.2 - Update ig to None before delete volume 1.2.0 - Add retype support """ VERSION = '1.2.0' volume_stats = {} def __init__(self, *args, **kwargs): super(CloudByteISCSIDriver, self).__init__(*args, **kwargs) self.configuration.append_config_values( options.cloudbyte_add_qosgroup_opts) self.configuration.append_config_values( options.cloudbyte_create_volume_opts) self.configuration.append_config_values( options.cloudbyte_update_volume_opts) self.configuration.append_config_values( options.cloudbyte_connection_opts) self.cb_use_chap = self.configuration.use_chap_auth self.get_volume_stats() def _get_url(self, cmd, params, apikey): """Will prepare URL that connects to CloudByte.""" if params is None: params = {} params['command'] = cmd params['response'] = 'json' sanitized_params = {} for key in params: value = params[key] if value is not None: sanitized_params[key] = six.text_type(value) sanitized_params = urllib.parse.urlencode(sanitized_params) url = ('/client/api?%s' % sanitized_params) LOG.debug("CloudByte URL to be executed: [%s].", url) # Add the apikey api = {} api['apiKey'] = apikey url = url + '&' + urllib.parse.urlencode(api) return url def _extract_http_error(self, error_data): # Extract the error message from error_data error_msg = "" # error_data is a single key value dict for key, value in error_data.items(): error_msg = value.get('errortext') return error_msg def _execute_and_get_response_details(self, host, url): """Will prepare response after executing an http request.""" res_details = {} try: # Prepare the connection connection = http_client.HTTPSConnection(host) # Make the connection connection.request('GET', url) # Extract the response as the connection was successful response = connection.getresponse() # Read the response data = response.read() # Transform the json string into a py object data = json.loads(data) # Extract http error msg if any error_details = None if response.status != 200: error_details = self._extract_http_error(data) # Prepare the return object res_details['data'] = data res_details['error'] = error_details res_details['http_status'] = response.status finally: connection.close() LOG.debug("CloudByte connection was closed successfully.") return res_details def _api_request_for_cloudbyte(self, cmd, params, version=None): """Make http calls to CloudByte.""" LOG.debug("Executing CloudByte API for command [%s].", cmd) if version is None: version = CloudByteISCSIDriver.VERSION # Below is retrieved from /etc/cinder/cinder.conf apikey = self.configuration.cb_apikey if apikey is None: msg = (_("API key is missing for CloudByte driver.")) raise exception.VolumeBackendAPIException(data=msg) host = self.configuration.san_ip # Construct the CloudByte URL with query params url = self._get_url(cmd, params, apikey) data = {} error_details = None http_status = None try: # Execute CloudByte API & frame the response res_obj = self._execute_and_get_response_details(host, url) data = res_obj['data'] error_details = res_obj['error'] http_status = res_obj['http_status'] except http_client.HTTPException as ex: msg = (_("Error executing CloudByte API [%(cmd)s], " "Error: %(err)s.") % {'cmd': cmd, 'err': ex}) raise exception.VolumeBackendAPIException(data=msg) # Check if it was an error response from CloudByte if http_status != 200: msg = (_("Failed to execute CloudByte API [%(cmd)s]." " Http status: %(status)s," " Error: %(error)s.") % {'cmd': cmd, 'status': http_status, 'error': error_details}) raise exception.VolumeBackendAPIException(data=msg) LOG.info(_LI("CloudByte API executed successfully for command [%s]."), cmd) return data def _request_tsm_details(self, account_id): params = {"accountid": account_id} # List all CloudByte tsm data = self._api_request_for_cloudbyte("listTsm", params) return data def _add_qos_group_request(self, volume, tsmid, volume_name, qos_group_params): # Prepare the user input params params = { "name": "QoS_" + volume_name, "tsmid": tsmid } # Get qos related params from configuration params.update(self.configuration.cb_add_qosgroup) # Override the default configuration by qos specs if qos_group_params: params.update(qos_group_params) data = self._api_request_for_cloudbyte("addQosGroup", params) return data def _create_volume_request(self, volume, datasetid, qosgroupid, tsmid, volume_name, file_system_params): size = volume.get('size') quotasize = six.text_type(size) + "G" # Prepare the user input params params = { "datasetid": datasetid, "name": volume_name, "qosgroupid": qosgroupid, "tsmid": tsmid, "quotasize": quotasize } # Get the additional params from configuration params.update(self.configuration.cb_create_volume) # Override the default configuration by qos specs if file_system_params: params.update(file_system_params) data = self._api_request_for_cloudbyte("createVolume", params) return data def _queryAsyncJobResult_request(self, jobid): async_cmd = "queryAsyncJobResult" params = { "jobId": jobid, } data = self._api_request_for_cloudbyte(async_cmd, params) return data def _get_tsm_details(self, data, tsm_name, account_name): # Filter required tsm's details tsms = data['listTsmResponse'].get('listTsm') if tsms is None: msg = (_("TSM [%(tsm)s] was not found in CloudByte storage " "for account [%(account)s].") % {'tsm': tsm_name, 'account': account_name}) raise exception.VolumeBackendAPIException(data=msg) tsmdetails = {} for tsm in tsms: if tsm['name'] == tsm_name: tsmdetails['datasetid'] = tsm['datasetid'] tsmdetails['tsmid'] = tsm['id'] break return tsmdetails def _retry_volume_operation(self, operation, retries, max_retries, jobid, cb_volume): """CloudByte async calls via the FixedIntervalLoopingCall.""" # Query the CloudByte storage with this jobid volume_response = self._queryAsyncJobResult_request(jobid) count = retries['count'] result_res = None if volume_response is not None: result_res = volume_response.get('queryasyncjobresultresponse') if result_res is None: msg = (_( "Null response received while querying " "for [%(operation)s] based job [%(job)s] " "at CloudByte storage.") % {'operation': operation, 'job': jobid}) raise exception.VolumeBackendAPIException(data=msg) status = result_res.get('jobstatus') if status == 1: LOG.info(_LI("CloudByte operation [%(operation)s] succeeded for " "volume [%(cb_volume)s]."), {'operation': operation, 'cb_volume': cb_volume}) raise loopingcall.LoopingCallDone() elif status == 2: job_result = result_res.get("jobresult") err_msg = job_result.get("errortext") err_code = job_result.get("errorcode") msg = (_( "Error in Operation [%(operation)s] " "for volume [%(cb_volume)s] in CloudByte " "storage: [%(cb_error)s], " "error code: [%(error_code)s]."), {'cb_error': err_msg, 'error_code': err_code, 'cb_volume': cb_volume, 'operation': operation}) raise exception.VolumeBackendAPIException(data=msg) elif count == max_retries: # All attempts exhausted LOG.error(_LE("CloudByte operation [%(operation)s] failed" " for volume [%(vol)s]. Exhausted all" " [%(max)s] attempts."), {'operation': operation, 'vol': cb_volume, 'max': max_retries}) raise loopingcall.LoopingCallDone(retvalue=False) else: count += 1 retries['count'] = count LOG.debug("CloudByte operation [%(operation)s] for" " volume [%(vol)s]: retry [%(retry)s] of [%(max)s].", {'operation': operation, 'vol': cb_volume, 'retry': count, 'max': max_retries}) def _wait_for_volume_creation(self, volume_response, cb_volume_name): """Given the job wait for it to complete.""" vol_res = volume_response.get('createvolumeresponse') if vol_res is None: msg = _("Null response received while creating volume [%s] " "at CloudByte storage.") % cb_volume_name raise exception.VolumeBackendAPIException(data=msg) jobid = vol_res.get('jobid') if jobid is None: msg = _("Job id not found in CloudByte's " "create volume [%s] response.") % cb_volume_name raise exception.VolumeBackendAPIException(data=msg) retry_interval = ( self.configuration.cb_confirm_volume_create_retry_interval) max_retries = ( self.configuration.cb_confirm_volume_create_retries) retries = {'count': 0} timer = loopingcall.FixedIntervalLoopingCall( self._retry_volume_operation, 'Create Volume', retries, max_retries, jobid, cb_volume_name) timer.start(interval=retry_interval).wait() def _wait_for_volume_deletion(self, volume_response, cb_volume_id): """Given the job wait for it to complete.""" vol_res = volume_response.get('deleteFileSystemResponse') if vol_res is None: msg = _("Null response received while deleting volume [%s] " "at CloudByte storage.") % cb_volume_id raise exception.VolumeBackendAPIException(data=msg) jobid = vol_res.get('jobid') if jobid is None: msg = _("Job id not found in CloudByte's " "delete volume [%s] response.") % cb_volume_id raise exception.VolumeBackendAPIException(data=msg) retry_interval = ( self.configuration.cb_confirm_volume_delete_retry_interval) max_retries = ( self.configuration.cb_confirm_volume_delete_retries) retries = {'count': 0} timer = loopingcall.FixedIntervalLoopingCall( self._retry_volume_operation, 'Delete Volume', retries, max_retries, jobid, cb_volume_id) timer.start(interval=retry_interval).wait() def _get_volume_id_from_response(self, cb_volumes, volume_name): """Search the volume in CloudByte storage.""" vol_res = cb_volumes.get('listFilesystemResponse') if vol_res is None: msg = _("Null response received from CloudByte's " "list filesystem.") raise exception.VolumeBackendAPIException(data=msg) volumes = vol_res.get('filesystem') if volumes is None: msg = _('No volumes found in CloudByte storage.') raise exception.VolumeBackendAPIException(data=msg) volume_id = None for vol in volumes: if vol['name'] == volume_name: volume_id = vol['id'] break if volume_id is None: msg = _("Volume [%s] not found in CloudByte " "storage.") % volume_name raise exception.VolumeBackendAPIException(data=msg) return volume_id def _get_qosgroupid_id_from_response(self, cb_volumes, volume_id): volumes = cb_volumes['listFilesystemResponse']['filesystem'] qosgroup_id = None for vol in volumes: if vol['id'] == volume_id: qosgroup_id = vol['groupid'] break return qosgroup_id def _build_provider_details_from_volume(self, volume, chap): model_update = {} model_update['provider_location'] = ( '%s %s %s' % (volume['ipaddress'] + ':3260', volume['iqnname'], 0) ) # Will provide CHAP Authentication on forthcoming patches/release model_update['provider_auth'] = None if chap: model_update['provider_auth'] = ('CHAP %(username)s %(password)s' % chap) model_update['provider_id'] = volume['id'] LOG.debug("CloudByte volume iqn: [%(iqn)s] provider id: [%(proid)s].", {'iqn': volume['iqnname'], 'proid': volume['id']}) return model_update def _build_provider_details_from_response(self, cb_volumes, volume_name, chap): """Get provider information.""" model_update = {} volumes = cb_volumes['listFilesystemResponse']['filesystem'] for vol in volumes: if vol['name'] == volume_name: model_update = self._build_provider_details_from_volume(vol, chap) break return model_update def _get_initiator_group_id_from_response(self, data, filter): """Find iSCSI initiator group id.""" ig_list_res = data.get('listInitiatorsResponse') if ig_list_res is None: msg = _("Null response received from CloudByte's " "list iscsi initiators.") raise exception.VolumeBackendAPIException(data=msg) ig_list = ig_list_res.get('initiator') if ig_list is None: msg = _('No iscsi initiators were found in CloudByte.') raise exception.VolumeBackendAPIException(data=msg) ig_id = None for ig in ig_list: if ig.get('initiatorgroup') == filter: ig_id = ig['id'] break return ig_id def _get_iscsi_service_id_from_response(self, volume_id, data): iscsi_service_res = data.get('listVolumeiSCSIServiceResponse') if iscsi_service_res is None: msg = _("Null response received from CloudByte's " "list volume iscsi service.") raise exception.VolumeBackendAPIException(data=msg) iscsi_service_list = iscsi_service_res.get('iSCSIService') if iscsi_service_list is None: msg = _('No iscsi services found in CloudByte storage.') raise exception.VolumeBackendAPIException(data=msg) iscsi_id = None for iscsi_service in iscsi_service_list: if iscsi_service['volume_id'] == volume_id: iscsi_id = iscsi_service['id'] break if iscsi_id is None: msg = _("No iscsi service found for CloudByte " "volume [%s].") % volume_id raise exception.VolumeBackendAPIException(data=msg) else: return iscsi_id def _request_update_iscsi_service(self, iscsi_id, ig_id, ag_id): params = { "id": iscsi_id, "igid": ig_id } if ag_id: params['authgroupid'] = ag_id params['authmethod'] = "CHAP" self._api_request_for_cloudbyte( 'updateVolumeiSCSIService', params) def _get_cb_snapshot_path(self, snapshot_name, volume_id): """Find CloudByte snapshot path.""" params = {"id": volume_id} # List all snapshot from CloudByte cb_snapshots_list = self._api_request_for_cloudbyte( 'listStorageSnapshots', params) # Filter required snapshot from list cb_snap_res = cb_snapshots_list.get('listDatasetSnapshotsResponse') cb_snapshot = {} if cb_snap_res is not None: cb_snapshot = cb_snap_res.get('snapshot') path = None # Filter snapshot path for snap in cb_snapshot: if snap['name'] == snapshot_name: path = snap['path'] break return path def _get_account_id_from_name(self, account_name): params = {} data = self._api_request_for_cloudbyte("listAccount", params) accounts = data["listAccountResponse"]["account"] account_id = None for account in accounts: if account.get("name") == account_name: account_id = account.get("id") break if account_id is None: msg = _("Failed to get CloudByte account details " "for account [%s].") % account_name raise exception.VolumeBackendAPIException(data=msg) return account_id def _search_volume_id(self, cb_volumes, cb_volume_id): """Search the volume in CloudByte.""" volumes_res = cb_volumes.get('listFilesystemResponse') if volumes_res is None: msg = _("No response was received from CloudByte's " "list filesystem api call.") raise exception.VolumeBackendAPIException(data=msg) volumes = volumes_res.get('filesystem') if volumes is None: msg = _("No volume was found at CloudByte storage.") raise exception.VolumeBackendAPIException(data=msg) volume_id = None for vol in volumes: if vol['id'] == cb_volume_id: volume_id = vol['id'] break return volume_id def _get_storage_info(self, tsmname): """Get CloudByte TSM that is associated with OpenStack backend.""" # List all TSMs from CloudByte storage tsm_list = self._api_request_for_cloudbyte('listTsm', params={}) tsm_details_res = tsm_list.get('listTsmResponse') if tsm_details_res is None: msg = _("No response was received from CloudByte storage " "list tsm API call.") raise exception.VolumeBackendAPIException(data=msg) tsm_details = tsm_details_res.get('listTsm') data = {} flag = 0 # Filter required TSM and get storage info for tsms in tsm_details: if tsms['name'] == tsmname: flag = 1 data['total_capacity_gb'] = ( float(tsms['numericquota']) / units.Ki) data['free_capacity_gb'] = ( float(tsms['availablequota']) / units.Ki) break # TSM not found in CloudByte storage if flag == 0: LOG.error(_LE("TSM [%s] not found in CloudByte storage."), tsmname) data['total_capacity_gb'] = 0.0 data['free_capacity_gb'] = 0.0 return data def _get_auth_group_id_from_response(self, data): """Find iSCSI auth group id.""" chap_group = self.configuration.cb_auth_group ag_list_res = data.get('listiSCSIAuthGroupResponse') if ag_list_res is None: msg = _("Null response received from CloudByte's " "list iscsi auth groups.") raise exception.VolumeBackendAPIException(data=msg) ag_list = ag_list_res.get('authgroup') if ag_list is None: msg = _('No iscsi auth groups were found in CloudByte.') raise exception.VolumeBackendAPIException(data=msg) ag_id = None for ag in ag_list: if ag.get('name') == chap_group: ag_id = ag['id'] break else: msg = _("Auth group [%s] details not found in " "CloudByte storage.") % chap_group raise exception.VolumeBackendAPIException(data=msg) return ag_id def _get_auth_group_info(self, account_id, ag_id): """Fetch the auth group details.""" params = {"accountid": account_id, "authgroupid": ag_id} auth_users = self._api_request_for_cloudbyte( 'listiSCSIAuthUser', params) auth_user_details_res = auth_users.get('listiSCSIAuthUsersResponse') if auth_user_details_res is None: msg = _("No response was received from CloudByte storage " "list iSCSI auth user API call.") raise exception.VolumeBackendAPIException(data=msg) auth_user_details = auth_user_details_res.get('authuser') if auth_user_details is None: msg = _("Auth user details not found in CloudByte storage.") raise exception.VolumeBackendAPIException(data=msg) chapuser = auth_user_details[0].get('chapusername') chappassword = auth_user_details[0].get('chappassword') if chapuser is None or chappassword is None: msg = _("Invalid chap user details found in CloudByte storage.") raise exception.VolumeBackendAPIException(data=msg) data = {'username': chapuser, 'password': chappassword, 'ag_id': ag_id} return data def _get_chap_info(self, account_id): """Fetch the chap details.""" params = {"accountid": account_id} iscsi_auth_data = self._api_request_for_cloudbyte( 'listiSCSIAuthGroup', params) ag_id = self._get_auth_group_id_from_response( iscsi_auth_data) return self._get_auth_group_info(account_id, ag_id) def _export(self): model_update = {'provider_auth': None} if self.cb_use_chap is True: account_name = self.configuration.cb_account_name account_id = self._get_account_id_from_name(account_name) chap = self._get_chap_info(account_id) model_update['provider_auth'] = ('CHAP %(username)s %(password)s' % chap) return model_update def _update_initiator_group(self, volume_id, ig_name): # Get account id of this account account_name = self.configuration.cb_account_name account_id = self._get_account_id_from_name(account_name) # Fetch the initiator group ID params = {"accountid": account_id} iscsi_initiator_data = self._api_request_for_cloudbyte( 'listiSCSIInitiator', params) # Filter the list of initiator groups with the name ig_id = self._get_initiator_group_id_from_response( iscsi_initiator_data, ig_name) params = {"storageid": volume_id} iscsi_service_data = self._api_request_for_cloudbyte( 'listVolumeiSCSIService', params) iscsi_id = self._get_iscsi_service_id_from_response( volume_id, iscsi_service_data) # Update the iscsi service with above fetched iscsi_id self._request_update_iscsi_service(iscsi_id, ig_id, None) LOG.debug("CloudByte initiator group updated successfully for volume " "[%(vol)s] with ig [%(ig)s].", {'vol': volume_id, 'ig': ig_name}) def _get_qos_by_volume_type(self, ctxt, type_id): """Get the properties which can be QoS or file system related.""" update_qos_group_params = {} update_file_system_params = {} volume_type = volume_types.get_volume_type(ctxt, type_id) qos_specs_id = volume_type.get('qos_specs_id') extra_specs = volume_type.get('extra_specs') if qos_specs_id is not None: specs = qos_specs.get_qos_specs(ctxt, qos_specs_id)['specs'] # Override extra specs with specs # Hence specs will prefer QoS than extra specs extra_specs.update(specs) for key, value in extra_specs.items(): if ':' in key: fields = key.split(':') key = fields[1] if key in self.configuration.cb_update_qos_group: update_qos_group_params[key] = value elif key in self.configuration.cb_update_file_system: update_file_system_params[key] = value return update_qos_group_params, update_file_system_params def create_volume(self, volume): qos_group_params = {} file_system_params = {} tsm_name = self.configuration.cb_tsm_name account_name = self.configuration.cb_account_name # Get account id of this account account_id = self._get_account_id_from_name(account_name) # Set backend storage volume name using OpenStack volume id cb_volume_name = volume['id'].replace("-", "") ctxt = context.get_admin_context() type_id = volume['volume_type_id'] if type_id is not None: qos_group_params, file_system_params = ( self._get_qos_by_volume_type(ctxt, type_id)) LOG.debug("Will create a volume [%(cb_vol)s] in TSM [%(tsm)s] " "at CloudByte storage w.r.t " "OpenStack volume [%(stack_vol)s].", {'cb_vol': cb_volume_name, 'stack_vol': volume.get('id'), 'tsm': tsm_name}) tsm_data = self._request_tsm_details(account_id) tsm_details = self._get_tsm_details(tsm_data, tsm_name, account_name) # Send request to create a qos group before creating a volume LOG.debug("Creating qos group for CloudByte volume [%s].", cb_volume_name) qos_data = self._add_qos_group_request( volume, tsm_details.get('tsmid'), cb_volume_name, qos_group_params) # Extract the qos group id from response qosgroupid = qos_data['addqosgroupresponse']['qosgroup']['id'] LOG.debug("Successfully created qos group for CloudByte volume [%s].", cb_volume_name) # Send a create volume request to CloudByte API vol_data = self._create_volume_request( volume, tsm_details.get('datasetid'), qosgroupid, tsm_details.get('tsmid'), cb_volume_name, file_system_params) # Since create volume is an async call; # need to confirm the creation before proceeding further self._wait_for_volume_creation(vol_data, cb_volume_name) # Fetch iscsi id cb_volumes = self._api_request_for_cloudbyte( 'listFileSystem', params={}) volume_id = self._get_volume_id_from_response(cb_volumes, cb_volume_name) params = {"storageid": volume_id} iscsi_service_data = self._api_request_for_cloudbyte( 'listVolumeiSCSIService', params) iscsi_id = self._get_iscsi_service_id_from_response( volume_id, iscsi_service_data) # Fetch the initiator group ID params = {"accountid": account_id} iscsi_initiator_data = self._api_request_for_cloudbyte( 'listiSCSIInitiator', params) ig_id = self._get_initiator_group_id_from_response( iscsi_initiator_data, 'ALL') LOG.debug("Updating iscsi service for CloudByte volume [%s].", cb_volume_name) ag_id = None chap_info = {} if self.cb_use_chap is True: chap_info = self._get_chap_info(account_id) ag_id = chap_info['ag_id'] # Update the iscsi service with above fetched iscsi_id & ig_id self._request_update_iscsi_service(iscsi_id, ig_id, ag_id) LOG.debug("CloudByte volume [%(vol)s] updated with " "iscsi id [%(iscsi)s] and initiator group [%(ig)s] and " "authentication group [%(ag)s].", {'vol': cb_volume_name, 'iscsi': iscsi_id, 'ig': ig_id, 'ag': ag_id}) # Provide the model after successful completion of above steps provider = self._build_provider_details_from_response( cb_volumes, cb_volume_name, chap_info) LOG.info(_LI("Successfully created a CloudByte volume [%(cb_vol)s] " "w.r.t OpenStack volume [%(stack_vol)s]."), {'cb_vol': cb_volume_name, 'stack_vol': volume.get('id')}) return provider def delete_volume(self, volume): params = {} # OpenStack source volume id source_volume_id = volume['id'] # CloudByte volume id equals OpenStack volume's provider_id cb_volume_id = volume.get('provider_id') LOG.debug("Will delete CloudByte volume [%(cb_vol)s] " "w.r.t OpenStack volume [%(stack_vol)s].", {'cb_vol': cb_volume_id, 'stack_vol': source_volume_id}) # Delete volume at CloudByte if cb_volume_id is not None: cb_volumes = self._api_request_for_cloudbyte( 'listFileSystem', params) # Search cb_volume_id in CloudByte volumes # incase it has already been deleted from CloudByte cb_volume_id = self._search_volume_id(cb_volumes, cb_volume_id) # Delete volume at CloudByte if cb_volume_id is not None: # Need to set the initiator group to None before deleting self._update_initiator_group(cb_volume_id, 'None') params = {"id": cb_volume_id} del_res = self._api_request_for_cloudbyte('deleteFileSystem', params) self._wait_for_volume_deletion(del_res, cb_volume_id) LOG.info( _LI("Successfully deleted volume [%(cb_vol)s] " "at CloudByte corresponding to " "OpenStack volume [%(stack_vol)s]."), {'cb_vol': cb_volume_id, 'stack_vol': source_volume_id}) else: LOG.error(_LE("CloudByte does not have a volume corresponding " "to OpenStack volume [%s]."), source_volume_id) else: LOG.error(_LE("CloudByte volume information not available for" " OpenStack volume [%s]."), source_volume_id) def create_snapshot(self, snapshot): """Creates a snapshot at CloudByte.""" # OpenStack volume source_volume_id = snapshot['volume_id'] # CloudByte volume id equals OpenStack volume's provider_id cb_volume_id = snapshot.get('volume').get('provider_id') if cb_volume_id is not None: # Set backend storage snapshot name using OpenStack snapshot id snapshot_name = "snap_" + snapshot['id'].replace("-", "") params = { "name": snapshot_name, "id": cb_volume_id } LOG.debug( "Will create CloudByte snapshot [%(cb_snap)s] " "w.r.t CloudByte volume [%(cb_vol)s] " "and OpenStack volume [%(stack_vol)s].", {'cb_snap': snapshot_name, 'cb_vol': cb_volume_id, 'stack_vol': source_volume_id}) self._api_request_for_cloudbyte('createStorageSnapshot', params) # Get the snapshot path from CloudByte path = self._get_cb_snapshot_path(snapshot_name, cb_volume_id) LOG.info( _LI("Created CloudByte snapshot [%(cb_snap)s] " "w.r.t CloudByte volume [%(cb_vol)s] " "and OpenStack volume [%(stack_vol)s]."), {'cb_snap': path, 'cb_vol': cb_volume_id, 'stack_vol': source_volume_id}) model_update = {} # Store snapshot path as snapshot provider_id model_update['provider_id'] = path else: msg = _("Failed to create snapshot. CloudByte volume information " "not found for OpenStack volume [%s].") % source_volume_id raise exception.VolumeBackendAPIException(data=msg) return model_update def create_cloned_volume(self, cloned_volume, src_volume): """Create a clone of an existing volume. First it will create a snapshot of the source/parent volume, then it creates a clone of this newly created snapshot. """ # Extract necessary information from input params parent_volume_id = src_volume.get('id') # Generating id for snapshot # as this is not user entered in this particular usecase snapshot_id = six.text_type(uuid.uuid1()) # Prepare the params for create_snapshot # as well as create_volume_from_snapshot method snapshot_params = { 'id': snapshot_id, 'volume_id': parent_volume_id, 'volume': src_volume, } # Create a snapshot snapshot = self.create_snapshot(snapshot_params) snapshot_params['provider_id'] = snapshot.get('provider_id') # Create a clone of above snapshot return self.create_volume_from_snapshot(cloned_volume, snapshot_params) def create_volume_from_snapshot(self, cloned_volume, snapshot): """Create a clone from an existing snapshot.""" # Getting necessary data from input params parent_volume_id = snapshot['volume_id'] cloned_volume_name = cloned_volume['id'].replace("-", "") # CloudByte volume id equals OpenStack volume's provider_id cb_volume_id = snapshot.get('volume').get('provider_id') # CloudByte snapshot path equals OpenStack snapshot's provider_id cb_snapshot_path = snapshot['provider_id'] params = { "id": cb_volume_id, "clonename": cloned_volume_name, "path": cb_snapshot_path } LOG.debug( "Will create CloudByte clone [%(cb_clone)s] " "at CloudByte snapshot path [%(cb_snap)s] " "w.r.t parent OpenStack volume [%(stack_vol)s].", {'cb_clone': cloned_volume_name, 'cb_snap': cb_snapshot_path, 'stack_vol': parent_volume_id}) # Create clone of the snapshot clone_dataset_snapshot_res = ( self._api_request_for_cloudbyte('cloneDatasetSnapshot', params)) cb_snap = clone_dataset_snapshot_res.get('cloneDatasetSnapshot') cb_vol = {} if cb_snap is not None: cb_vol = cb_snap.get('filesystem') else: msg = ("Error: Clone creation failed for " "OpenStack volume [%(vol)s] with CloudByte " "snapshot path [%(path)s]" % {'vol': parent_volume_id, 'path': cb_snapshot_path}) raise exception.VolumeBackendAPIException(data=msg) LOG.info( _LI("Created a clone [%(cb_clone)s] " "at CloudByte snapshot path [%(cb_snap)s] " "w.r.t parent OpenStack volume [%(stack_vol)s]."), {'cb_clone': cloned_volume_name, 'cb_snap': cb_snapshot_path, 'stack_vol': parent_volume_id}) chap_info = {} if self.cb_use_chap is True: account_name = self.configuration.cb_account_name # Get account id of this account account_id = self._get_account_id_from_name(account_name) chap_info = self._get_chap_info(account_id) model_update = self._build_provider_details_from_volume(cb_vol, chap_info) return model_update def delete_snapshot(self, snapshot): """Delete a snapshot at CloudByte.""" # Find volume id source_volume_id = snapshot['volume_id'] # CloudByte volume id equals OpenStack volume's provider_id cb_volume_id = snapshot.get('volume').get('provider_id') # CloudByte snapshot path equals OpenStack snapshot's provider_id cb_snapshot_path = snapshot['provider_id'] # If cb_snapshot_path is 'None' # then no need to execute CloudByte API if cb_snapshot_path is not None: params = { "id": cb_volume_id, "path": cb_snapshot_path } LOG.debug("Will delete CloudByte snapshot [%(snap)s] w.r.t " "parent CloudByte volume [%(cb_vol)s] " "and parent OpenStack volume [%(stack_vol)s].", {'snap': cb_snapshot_path, 'cb_vol': cb_volume_id, 'stack_vol': source_volume_id}) # Execute CloudByte API self._api_request_for_cloudbyte('deleteSnapshot', params) LOG.info( _LI("Deleted CloudByte snapshot [%(snap)s] w.r.t " "parent CloudByte volume [%(cb_vol)s] " "and parent OpenStack volume [%(stack_vol)s]."), {'snap': cb_snapshot_path, 'cb_vol': cb_volume_id, 'stack_vol': source_volume_id}) else: LOG.error(_LE("CloudByte snapshot information is not available" " for OpenStack volume [%s]."), source_volume_id) def extend_volume(self, volume, new_size): # CloudByte volume id equals OpenStack volume's provider_id cb_volume_id = volume.get('provider_id') params = { "id": cb_volume_id, "quotasize": six.text_type(new_size) + 'G' } # Request the CloudByte api to update the volume self._api_request_for_cloudbyte('updateFileSystem', params) def create_export(self, context, volume, connector): """Setup the iscsi export info.""" return self._export() def ensure_export(self, context, volume): """Verify the iscsi export info.""" return self._export() def get_volume_stats(self, refresh=False): """Get volume statistics. If 'refresh' is True, update/refresh the statistics first. """ if refresh: # Get the TSM name from configuration tsm_name = self.configuration.cb_tsm_name # Get the storage details of this TSM data = self._get_storage_info(tsm_name) data["volume_backend_name"] = ( self.configuration.safe_get('volume_backend_name') or 'CloudByte') data["vendor_name"] = 'CloudByte' data['reserved_percentage'] = 0 data["driver_version"] = CloudByteISCSIDriver.VERSION data["storage_protocol"] = 'iSCSI' LOG.debug("CloudByte driver stats: [%s].", data) # Set this to the instance variable self.volume_stats = data return self.volume_stats def retype(self, ctxt, volume, new_type, diff, host): """Retypes a volume, QoS and file system update is only done.""" cb_volume_id = volume.get('provider_id') if cb_volume_id is None: message = _("Provider information w.r.t CloudByte storage " "was not found for OpenStack " "volume [%s].") % volume['id'] raise exception.VolumeBackendAPIException(message) update_qos_group_params, update_file_system_params = ( self._get_qos_by_volume_type(ctxt, new_type['id'])) if update_qos_group_params: list_file_sys_params = {'id': cb_volume_id} response = self._api_request_for_cloudbyte( 'listFileSystem', list_file_sys_params) response = response['listFilesystemResponse'] cb_volume_list = response['filesystem'] cb_volume = cb_volume_list[0] if not cb_volume: msg = (_("Volume [%(cb_vol)s] was not found at " "CloudByte storage corresponding to OpenStack " "volume [%(ops_vol)s].") % {'cb_vol': cb_volume_id, 'ops_vol': volume['id']}) raise exception.VolumeBackendAPIException(data=msg) update_qos_group_params['id'] = cb_volume.get('groupid') self._api_request_for_cloudbyte( 'updateQosGroup', update_qos_group_params) if update_file_system_params: update_file_system_params['id'] = cb_volume_id self._api_request_for_cloudbyte( 'updateFileSystem', update_file_system_params) LOG.info(_LI("Successfully updated CloudByte volume [%(cb_vol)s] " "corresponding to OpenStack volume [%(ops_vol)s]."), {'cb_vol': cb_volume_id, 'ops_vol': volume['id']}) return True
the-stack_0_16407
from flask import Flask, render_template, request, redirect, url_for from music_data_types import Artist, Song, Discography app = Flask(__name__) @app.route("/") def index(): return render_template('index.html') @app.route('/', methods=['POST']) def render_page(): name = request.form['name'] option = request.form['radios'] if name: if option == "Song": return redirect(url_for('render_song', name=name)) else: return redirect(url_for('render_artist', name=name)) @app.route('/song/<name>') def render_song(name): song = Song() song.search_song(name) song.get_mood() song.get_keywords() mood = song.mood words = song.keywords song_name = song.name artist = song.artist rating = song.rating album = song.album genre = song.genre link = song.lyrics_link return render_template("song.html", song_name=song_name, mood=mood, words=words, artist=artist, rating=rating, album=album, genre=genre, link=link) @app.route('/artist/<name>') def render_artist(name): artist = Artist(name) disc = Discography(artist) artist_name = artist.name rating = artist.rating genre = artist.genre country = artist.country words = disc.get_overall_keywords() moods = disc.get_overall_mood() songs_num = disc.songs_num songs = disc.top_songs link = artist.link return render_template("artist.html", artist_name=artist_name, moods=moods, words=words, genre=genre, rating=rating, country=country, link=link, songs_num=songs_num, songs=songs) @app.errorhandler(500) def internal_error(error): return render_template('error.html') @app.errorhandler(404) def internal_error(error): return render_template('error.html') if __name__ == '__main__': app.run()
the-stack_0_16408
from Bio.Seq import Seq from Bio.SeqUtils import nt_search, GC, molecular_weight from Bio import SeqIO seqobj = Seq("ATCGATATATACGCGAT") print(seqobj.translate(to_stop=True)) patron = Seq("ACG") resultado = nt_search(str(seqobj), patron) print(resultado) print(GC(seqobj)) print(molecular_weight(seqobj)) # Ejercicio 1: ORFs # 1. Se define la secuencia. sequence = Seq("AGCCATGTAGCTAACTCAGGTTACATGGGGATGACCCCGCGACTTGGATTAGAGTCTCTTTTGGAATAAGCCTGAATGATCCGAGTAGCATCTCAG") # 2. Se busca el codón de inicio. inicio = Seq("ATG") posicion = nt_search(str(sequence), inicio) # 3. Se recorre la secuencia en busca de los codones de inicio. Se obtiene su secuencia. for i in range(1, len(posicion)): seq_prot = sequence[i:] protein = seq_prot.translate(to_stop=True) # CLASE 2 VERSIÓN 2 # 1. Guardar IDs de records en lista. mala_calidad = [] umbral = 32 new = open("../docs/records.txt", "w") # 2. Acceder a Phred_qualities, ir sacando el promedio de cada record. for record in SeqIO.parse("../docs/sample.fastq", "fastq"): promedio = sum(record.letter_annotations["phred_quality"]) / len(record.letter_annotations["phred_quality"]) # 2.1. Añadir ID de record si el promedio es menor al umbral de calidad. if promedio < umbral: mala_calidad.append((promedio, record.id)) # 2.2. Guardar records que sí superan el umbral. if promedio > umbral: new.write(record.id) # 3. Imprimir la longitud de la lista de mala_calidad. print(len(mala_calidad)) new.close() # Gen Bank ''' for gb_record in SeqIO.parse("../docs/aichi.gb", "genbank"): print('ID', gb_record.id) print('Secuencia', str(gb_record.seq)[0:30], '...') print('Longitud', len(gb_record)) for annotation, value in gb_record.annotations.items(): print(annotation, value) ''' # Ejercicio 4. for gb_record in SeqIO.parse("../docs/virus.gb", "genbank"): for annotation, value in gb_record.annotations.items(): print(annotation, value) print(gb_record.annotations['organism']) print(gb_record.annotations['sequence_version']) print(gb_record.features[0].location) # Ejercicio 5. Extraer país y fuente del aislado (source = 0 en features). print(gb_record.features[0].qualifiers['isolation_source']) print(gb_record.features[0].qualifiers['country']) # Guardar inicio y final de la secuencia. start = gb_record.features[1].location.nofuzzy_start end = gb_record.features[1].location.nofuzzy_end # Guardar secuencia dentro del inicio y el final. nueva_seq = gb_record.seq[start:end] # Traducir proteína. protein = nueva_seq.translate() print(protein) # Imprimir datos del gen L. print(gb_record.features[9].qualifiers['gene']) start_L = gb_record.features[9].location.nofuzzy_start end_L = gb_record.features[9].location.nofuzzy_end sequence_L = gb_record.seq[start_L:end_L] print(sequence_L) rna_L = sequence_L.transcribe() print(rna_L[0:5]) protein_L = sequence_L.translate() print(protein_L) number = len(gb_record.features) - 1 while number > -1: if gb_record.features[number].qualifiers['gene'] == ['L']: print(gb_record.features[number].qualifiers['gene']) break number -= 1
the-stack_0_16409
from __future__ import print_function import json import urllib import boto3 import logging, logging.config from botocore.client import Config # Because Step Functions client uses long polling, read timeout has to be > 60 seconds sfn_client_config = Config(connect_timeout=50, read_timeout=70) sfn = boto3.client('stepfunctions', config=sfn_client_config) sts = boto3.client('sts') account_id = sts.get_caller_identity().get('Account') region_name = boto3.session.Session().region_name def load_log_config(): # Basic config. Replace with your own logging config if required root = logging.getLogger() root.setLevel(logging.INFO) return root def map_activity_arn(bucket, key): # Map s3 key to activity ARN based on a convention # Here, we simply map bucket name plus last element in the s3 object key (i.e. filename) to activity name key_elements = [x.strip() for x in key.split('/')] activity_name = '{}-{}'.format(bucket, key_elements[-1]) return 'arn:aws:states:{}:{}:activity:{}'.format(region_name, account_id, activity_name) # Load logging config and create logger logger = load_log_config() def handler(event, context): logger.info("Received event: " + json.dumps(event, indent=2)) # Get the object from the event and show its content type bucket = event['Records'][0]['s3']['bucket']['name'] key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8')) # Based on a naming convention that maps s3 keys to activity ARNs, deduce the activity arn sfn_activity_arn = map_activity_arn(bucket, key) sfn_worker_name = 'on_s3_object_created' try: try: response = sfn.get_activity_task( activityArn=sfn_activity_arn, workerName=sfn_worker_name ) except Exception as e: logger.critical(e.message) logger.critical( 'Unrecoverable error invoking get_activity_task for {}.'.format(sfn_activity_arn)) raise # Get the Task Token sfn_task_token = response.get('taskToken', '') logger.info('Sending "Task Succeeded" signal to Step Functions..') # Build an output dict and format it as JSON task_output_dict = { 'S3BucketName': bucket, 'S3Key': key, 'SFNActivityArn': sfn_activity_arn } task_output_json = json.dumps(task_output_dict) sfn_resp = sfn.send_task_success( taskToken=sfn_task_token, output=task_output_json ) except Exception as e: logger.critical(e) raise e
the-stack_0_16410
import math def no_moving_vehicles(object_localizer_inference) -> bool: no_movement_mdv_max_length = 3 for obstacle in object_localizer_inference: if obstacle["label"] == "car" or obstacle["label"] == "bicycle": mdv_length = math.sqrt(obstacle["mdv"][0]**2 + obstacle["mdv"][1]**2 + obstacle["mdv"][2]**2) if mdv_length > no_movement_mdv_max_length: return False return True # if cars mdv is less than threshold, than no movement or little movement
the-stack_0_16411
from datetime import timedelta from flask import Flask, redirect, render_template, request, url_for import json from tornado.httpserver import HTTPServer from tornado.ioloop import IOLoop from tornado.wsgi import WSGIContainer from webpixels import PixelSet, RgbPixel from webpixels.controller import ColorKinetics app = Flask(__name__) ioloop = IOLoop.instance() config_file = None channels = {} pixels = {} fixtures = {} presets = {} last_preset = None def load_config(config_file): with open(config_file) as f: config = json.loads(f.read()) for name, controllerConfig in config['controllers'].items(): controllerType = controllerConfig['type'] if controllerType == 'ColorKinetics': controller = ColorKinetics(name, controllerConfig['host']) for channel in controller.channels: channels[channel.get_name()] = channel for name, pixelConfig in config['pixels'].items(): chan_set = [channels[channel] for channel in pixelConfig['channels']] pixel = RgbPixel(name, *chan_set) pixels[pixel.get_name()] = pixel for name, fixtureConfig in config['fixtures'].items(): pixel_set = [pixels[pixel] for pixel in fixtureConfig['pixels']] fixture = PixelSet(name, pixel_set) fixtures[fixture.get_name()] = fixture global all_pixel all_pixel = PixelSet('all', pixels.values()) if 'presets' in config: presets.update(config['presets']) def save_config(config_file): controller_set = set() saved_controllers = {} saved_pixels = {} saved_fixtures = {} for pixel in pixels.values(): controller_set.update(pixel.get_controllers()) saved_pixels[pixel.get_name()] = { 'channels': [ pixel.red.get_name(), pixel.green.get_name(), pixel.blue.get_name() ] } for fixture in fixtures.values(): saved_fixtures[fixture.get_name()] = { 'pixels': [subpixel.get_name() for subpixel in fixture.get_pixels()] } for controller in controller_set: if isinstance(controller, ColorKinetics): controller_type = "ColorKinetics" saved_controllers[controller.get_name()] = { 'host': controller.host, 'type': controller_type } save_data = json.dumps({ 'controllers': saved_controllers, 'pixels': saved_pixels, 'fixtures': saved_fixtures, 'presets': presets }, sort_keys=True, indent=2, separators=(',', ': ')) with open(config_file, 'w') as f: f.write(save_data) def redirect_url(): return redirect(request.args.get('next') or \ request.referrer or \ url_for('index')) fade_in_progress = False def fade_step(): global fade_in_progress need_more = False controller_set = set() for pixel in pixels.values(): if pixel.step(): need_more = True controller_set.update(pixel.get_controllers()) for controller in controller_set: controller.sync() if need_more: ioloop.add_timeout(timedelta(milliseconds=25), fade_step) else: fade_in_progress = False def start_fade(): global fade_in_progress if fade_in_progress: return fade_in_progress = True fade_step() @app.route('/', methods=['GET']) def index(): fixture_list = [] for name, fixture in fixtures.items(): subpixels = [(pixel.get_name(), pixel.get_html_color()) for pixel in fixture.get_pixels()] fixture_list.append((name, fixture.get_html_color(), subpixels)) fixture_list.sort(key=lambda fixture: fixture[0]) return render_template('index.html', all=all_pixel.get_html_color(), fixtures=fixture_list) @app.route('/pixel/<name>', methods=['GET', 'POST']) def pixel(name): if name == 'all': pixel = all_pixel else: pixel = fixtures.get(name) if pixel is None: pixel = pixels[name] if request.method == 'POST': return pixel_post(pixel) else: return pixel_get(pixel) def pixel_post(pixel): r = int(request.form['r']) g = int(request.form['g']) b = int(request.form['b']) pixel.set_target(r, g, b) start_fade() return "" def pixel_get(pixel): r, g, b = pixel.get() return render_template('pixel.html', pixel=pixel.get_name(), r=r, g=g, b=b) @app.route('/presets', methods=['GET']) def preset_list(): preset_list = list(presets.keys()) preset_list.sort() return render_template('presets.html', presets=preset_list, last_preset=last_preset) @app.route('/preset/save', methods=['POST']) def preset_save(): preset = {} for name, pixel in pixels.items(): preset[name] = pixel.get() presets[request.form['name']] = preset save_config(config_file) global last_preset last_preset = request.form['name'] return "" @app.route('/preset/apply', methods=['POST']) def preset_apply(): name = request.form['preset'] preset = presets[name] for name, value in preset.items(): pixel = pixels[name] pixel.set_target(*value) start_fade() global last_preset last_preset = name return "" @app.route('/preset/delete', methods=['POST']) def preset_delete(): del presets[request.form['name']] save_config(config_file) return "" if __name__ == '__main__': import sys if len(sys.argv) != 2: print("Usage: python server.py config.json") config_file = sys.argv[1] load_config(config_file) app.debug = True http_server = HTTPServer(WSGIContainer(app)) http_server.listen(80) ioloop.start()
the-stack_0_16415
#!/usr/bin/env python3 import sys import tempfile import warnings from lxml import etree as ET def qname(ns, key, name): if key in ns: return "{{{}}}{}".format(ns[key], name) return name def create_naf(sofatext, sofaid, xminame): naf = ET.Element("NAF") naf.set('version', 'v1.naf') naf.set('{http://www.w3.org/XML/1998/namespace}lang', 'fr') nafHeader = ET.SubElement(naf, 'nafHeader') linguisticProcessors = ET.SubElement(nafHeader, 'linguisticProcessors') linguisticProcessors.set('layer', 'xmi') lp = ET.SubElement(linguisticProcessors, 'lp') lp.set('name', xminame) lp.set('version', sofaid) raw = ET.SubElement(naf, 'raw') raw.text = ET.CDATA(sofatext) return naf def search_text(xmi): ns = xmi.nsmap.copy() rawtext = "" sofaid = "-1" sofatag = qname(ns, 'cas', 'Sofa') sofas = xmi.findall(sofatag) if len(sofas) == 0: return rawtext, sofaid id = sofas[0].get(qname(ns, 'xmi', 'id')) if id is not None: sofaid = id rawtext = sofas[0].get('sofaString') for i in range(1, len(sofas)): sofa = sofas[i] if sofa.get('sofaID') != '_InitialView': continue id = sofa.get(qname(ns, 'xmi', 'id')) if id is not None: sofaid = id rawtext = sofa.get('sofaString') break return rawtext, sofaid def emptyNAF(): naf = ET.Element("NAF") naf.set('version', 'v1.naf') return naf def main(): try: tree = ET.parse(sys.stdin) xmi = tree.getroot() rawtext, sofaid = search_text(xmi) xmiTemp = tempfile.NamedTemporaryFile(delete=False) tree.write(xmiTemp) naf = create_naf(rawtext, sofaid, xmiTemp.name) except Exception as e: msg = "Warning: an exception occured: {}".format(e) warnings.warn(msg) naf = emptyNAF() #print(xmiTemp.name) # write a = ET.tostring(naf, encoding="utf-8") print(a.decode("utf-8")) main()
the-stack_0_16416
from multiprocessing import Process, Queue from Queue import Empty from ansible_server import ansible_server # DON'T USE THIS UNLESS YOU KNOW WHAT YOU'RE DOING # Low level message sending. For high level messaging, use send_msg. def send(msg): send_queue.put_nowait(msg) # Use this one instead of send def send_message(msg_type, content): send({ 'header': {'msg_type': msg_type}, 'content': content }) # Receives a message, or None if there is no current message. def recv(): try: return recv_queue.get_nowait() except Empty: return None # Start up the Flask-SocketIO server send_queue = Queue() recv_queue = Queue() ansible_p = Process(target=ansible_server, args=(send_queue, recv_queue)) ansible_p.start()
the-stack_0_16417
from django import forms from subscriptions.models import Subscription from django.utils.translation import gettext as _ class SubscriptionForm(forms.ModelForm): #STATUS_CHOICES IS SET TO BE LIKE STATUS_CHOICES IN SUBSCRIPTION MODEL BUT WITHOUT UKNOWN AND (UNKOWN) FOR USERS TO SELECT STATUS_CHOICES = ( (Subscription.STATUS_CHOICE_SUBSCRIBED, _('Subscribed')), (Subscription.STATUS_CHOICE_UNSUBSCRIBED, _('Unsubscribed')), ) status = forms.ChoiceField(choices=STATUS_CHOICES) class Meta: model = Subscription fields = [ 'status', ] def save(self, commit=True): usersubscription = super().save(commit=False) usersubscription.status = self.cleaned_data['status'] if commit: usersubscription.save() return usersubscription
the-stack_0_16418
# pylint: skip-file # flake8: noqa # pylint: disable=wrong-import-position,too-many-branches,invalid-name import json from ansible.module_utils.basic import AnsibleModule def _install(module, container, image, values_list): ''' install a container using atomic CLI. values_list is the list of --set arguments. container is the name given to the container. image is the image to use for the installation. ''' # NOTE: system-package=no is hardcoded. This should be changed to an option in the future. args = ['atomic', 'install', '--system', '--system-package=no', '--name=%s' % container] + values_list + [image] rc, out, err = module.run_command(args, check_rc=False) if rc != 0: return rc, out, err, False else: changed = "Extracting" in out return rc, out, err, changed def _uninstall(module, name): ''' uninstall an atomic container by its name. ''' args = ['atomic', 'uninstall', name] rc, out, err = module.run_command(args, check_rc=False) return rc, out, err, False def do_install(module, container, image, values_list): ''' install a container and exit the module. ''' rc, out, err, changed = _install(module, container, image, values_list) if rc != 0: module.fail_json(rc=rc, msg=err) else: module.exit_json(msg=out, changed=changed) def do_uninstall(module, name): ''' uninstall a container and exit the module. ''' rc, out, err, changed = _uninstall(module, name) if rc != 0: module.fail_json(rc=rc, msg=err) module.exit_json(msg=out, changed=changed) def do_update(module, container, old_image, image, values_list): ''' update a container and exit the module. If the container uses a different image than the current installed one, then first uninstall the old one ''' # the image we want is different than the installed one if old_image != image: rc, out, err, _ = _uninstall(module, container) if rc != 0: module.fail_json(rc=rc, msg=err) return do_install(module, container, image, values_list) # if the image didn't change, use "atomic containers update" args = ['atomic', 'containers', 'update'] + values_list + [container] rc, out, err = module.run_command(args, check_rc=False) if rc != 0: module.fail_json(rc=rc, msg=err) else: changed = "Extracting" in out module.exit_json(msg=out, changed=changed) def do_rollback(module, name): ''' move to the previous deployment of the container, if present, and exit the module. ''' args = ['atomic', 'containers', 'rollback', name] rc, out, err = module.run_command(args, check_rc=False) if rc != 0: module.fail_json(rc=rc, msg=err) else: changed = "Rolling back" in out module.exit_json(msg=out, changed=changed) def core(module): ''' entrypoint for the module. ''' name = module.params['name'] image = module.params['image'] values = module.params['values'] state = module.params['state'] module.run_command_environ_update = dict(LANG='C', LC_ALL='C', LC_MESSAGES='C') out = {} err = {} rc = 0 values_list = ["--set=%s" % x for x in values] if values else [] args = ['atomic', 'containers', 'list', '--json', '--all', '-f', 'container=%s' % name] rc, out, err = module.run_command(args, check_rc=False) if rc != 0: module.fail_json(rc=rc, msg=err) return # NOTE: "or '[]' is a workaround until atomic containers list --json # provides an empty list when no containers are present. containers = json.loads(out or '[]') present = len(containers) > 0 old_image = containers[0]["image_name"] if present else None if state == 'present' and present: module.exit_json(msg=out, changed=False) elif (state in ['latest', 'present']) and not present: do_install(module, name, image, values_list) elif state == 'latest': do_update(module, name, old_image, image, values_list) elif state == 'absent': if not present: module.exit_json(msg="", changed=False) else: do_uninstall(module, name) elif state == 'rollback': do_rollback(module, name) def main(): module = AnsibleModule( argument_spec=dict( name=dict(default=None, required=True), image=dict(default=None, required=True), state=dict(default='latest', choices=['present', 'absent', 'latest', 'rollback']), values=dict(type='list', default=[]), ), ) # Verify that the platform supports atomic command rc, _, err = module.run_command('atomic -v', check_rc=False) if rc != 0: module.fail_json(msg="Error in running atomic command", err=err) try: core(module) except Exception as e: # pylint: disable=broad-except module.fail_json(msg=str(e)) if __name__ == '__main__': main()
the-stack_0_16419
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'han' import os import re import zipfile import spacy import json import h5py import logging import numpy as np from functools import reduce from utils.functions import pad_sequences from .doc_text import DocText, Space logger = logging.getLogger(__name__) class PreprocessData: """ preprocess dataset and glove embedding to hdf5 files """ padding = '__padding__' # id = 0 padding_idx = 0 # all the features padding idx, exclude answer_range answer_padding_idx = -1 _compress_option = dict(compression="gzip", compression_opts=9, shuffle=False) def __init__(self, global_config): # data config self._dev_path = '' self._train_path = '' self._export_squad_path = '' self._glove_path = '' self._embedding_size = 300 self._ignore_max_len = 10000 self._load_config(global_config) # preprocess config self._max_answer_len = 0 # temp data self._word2id = {self.padding: 0} self._char2id = {self.padding: 0, '`': 1} # because nltk word tokenize will replace '"' with '``' self._pos2id = {self.padding: 0} self._ent2id = {self.padding: 0} self._word2vec = {self.padding: [0. for i in range(self._embedding_size)]} self._oov_num = 0 # data need to store in hdf5 file self._meta_data = {'id2vec': [[0. for i in range(self._embedding_size)]], 'id2word': [self.padding], 'id2char': [self.padding, '`'], 'id2pos': [self.padding], 'id2ent': [self.padding]} self._data = {} self._attr = {} self._nlp = spacy.load('en') self._nlp.remove_pipe('parser') if not any([self._use_em_lemma, self._use_pos, self._use_ent]): self._nlp.remove_pipe('tagger') if not self._use_ent: self._nlp.remove_pipe('ner') def _load_config(self, global_config): """ load config from a dictionary, such as dataset path :param global_config: dictionary :return: """ data_config = global_config['data'] self._train_path = data_config['dataset']['train_path'] self._dev_path = data_config['dataset']['dev_path'] self._export_squad_path = data_config['dataset_h5'] self._glove_path = data_config['embedding_path'] self.preprocess_config = global_config['preprocess'] self._ignore_max_len = self.preprocess_config['ignore_max_len'] self._use_char = self.preprocess_config['use_char'] self._use_pos = self.preprocess_config['use_pos'] self._use_ent = self.preprocess_config['use_ent'] self._use_em = self.preprocess_config['use_em'] self._use_em_lemma = self.preprocess_config['use_em_lemma'] self._embedding_size = int(self.preprocess_config['word_embedding_size']) def _read_json(self, path): """ read json format file from raw squad text :param path: squad file path :return: """ with open(path, 'r') as f: data = json.load(f) version = data['version'] data_list_tmp = [ele['paragraphs'] for ele in data['data']] contexts_qas = reduce(lambda a, b: a + b, data_list_tmp) self._attr['dataset_name'] = 'squad-' + version return contexts_qas def _build_data(self, contexts_qas, training): """ handle squad data to (context, question, answer_range) with word id representation :param contexts_qas: a context with several question-answers :return: """ contexts_doc = [] questions_doc = [] answers_range_wid = [] # each answer use the [start,end] representation, all the answer horizontal concat samples_id = [] cnt = 0 # every context for question_grp in contexts_qas: cur_context = question_grp['context'] cur_qas = question_grp['qas'] cur_context_doc = DocText(self._nlp, cur_context, self.preprocess_config) if training and len(cur_context_doc) > self._ignore_max_len: # some context token len too large continue if self._use_char: self._update_to_char(cur_context) cur_context_ids = self._doctext_to_id(cur_context_doc) # every question-answer for qa in cur_qas: cur_question = qa['question'] if self._use_char: self._update_to_char(cur_question) cur_question_doc = DocText(self._nlp, cur_question, self.preprocess_config) cur_question_ids = self._doctext_to_id(cur_question_doc) # get em feature if self._use_em or self._use_em_lemma: cur_context_doc.update_em(cur_question_doc) cur_question_doc.update_em(cur_context_doc) cur_context_ids['em'] = cur_context_doc.em cur_context_ids['em_lemma'] = cur_context_doc.em_lemma cur_question_ids['em'] = cur_question_doc.em cur_question_ids['em_lemma'] = cur_question_doc.em_lemma contexts_doc.append(cur_context_ids) questions_doc.append(cur_question_ids) samples_id.append(qa['id']) # find all the answer positions cur_answers = qa['answers'] self._max_answer_len = max(self._max_answer_len, len(cur_answers) * 2) cur_ans_range_ids = [0 for i in range(len(cur_answers) * 2)] for idx, cur_ans in enumerate(cur_answers): cur_ans_start = cur_ans['answer_start'] cur_ans_text = cur_ans['text'] pos_s, pos_e = self.find_ans_start_end(cur_context, cur_context_doc, cur_ans_text, cur_ans_start) if pos_e < pos_s: logger.error("Answer start position can't bigger than end position." + "\nContext:" + cur_context + "\nQuestion:" + cur_question + "\nAnswer:" + cur_ans_text) continue gen_ans = ''.join(cur_context_doc.token[pos_s:(pos_e + 1)]).replace(' ', '') true_ans = Space.remove_white_space(cur_ans['text']) if true_ans not in gen_ans: logger.error("Answer position wrong." + "\nContext:" + cur_context + "\nQuestion:" + cur_question + "\nAnswer:" + cur_ans_text) continue cur_ans_range_ids[(idx * 2):(idx * 2 + 2)] = [pos_s, pos_e] answers_range_wid.append(cur_ans_range_ids) cnt += 1 if cnt % 100 == 0: logger.info('No.%d sample handled.' % cnt) return {'context': contexts_doc, 'question': questions_doc, 'answer_range': answers_range_wid, 'samples_id': samples_id} def find_ans_start_end(self, context_text, context_doc, answer_text, answer_start): # find answer start position pre_ans_len = len(Space.remove_white_space(context_text[:answer_start])) tmp_len = 0 pos_s = 0 for i in range(len(context_doc)): tmp_len += len(context_doc.token[i]) if tmp_len > pre_ans_len: pos_s = i break # find answer end position pos_e = 0 tmp_str = "" tmp_ans = Space.remove_white_space(answer_text) if tmp_ans[0] == '.': # squad dataset have some mistakes tmp_ans = tmp_ans[1:] for i in range(pos_s, len(context_doc)): s = context_doc.token[i] tmp_str += s if tmp_ans in tmp_str: pos_e = i break return pos_s, pos_e def _doctext_to_id(self, doc_text): """ transform a sentence to word index id representation :param sentence: DocText :return: word ids """ sentence = {'token': [], 'pos': [], 'ent': [], 'right_space': doc_text.right_space} for i in range(len(doc_text)): # word word = doc_text.token[i] if word not in self._word2id: self._word2id[word] = len(self._word2id) self._meta_data['id2word'].append(word) # whether OOV if word in self._word2vec: self._meta_data['id2vec'].append(self._word2vec[word]) else: self._oov_num += 1 logger.debug('No.%d OOV word %s' % (self._oov_num, word)) self._meta_data['id2vec'].append([0. for i in range(self._embedding_size)]) sentence['token'].append(self._word2id[word]) # pos if self._use_pos: pos = doc_text.pos[i] if pos not in self._pos2id: self._pos2id[pos] = len(self._pos2id) self._meta_data['id2pos'].append(pos) sentence['pos'].append(self._pos2id[pos]) # ent if self._use_ent: ent = doc_text.ent[i] if ent not in self._ent2id: self._ent2id[ent] = len(self._ent2id) self._meta_data['id2ent'].append(ent) sentence['ent'].append(self._ent2id[ent]) return sentence def _update_to_char(self, sentence): """ update char2id :param sentence: raw sentence """ for ch in sentence: if ch not in self._char2id: self._char2id[ch] = len(self._char2id) self._meta_data['id2char'].append(ch) def _handle_glove(self): """ handle glove embeddings, restore embeddings with dictionary :return: """ logger.info("read glove from text file %s" % self._glove_path) import pdb; pdb.set_trace() with zipfile.ZipFile(self._glove_path, 'r') as zf: if len(zf.namelist()) != 1: raise ValueError('glove file "%s" not recognized' % self._glove_path) glove_name = zf.namelist()[0] word_num = 0 with zf.open(glove_name) as f: for line in f: line_split = line.decode('utf-8').split(' ') self._word2vec[line_split[0]] = [float(x) for x in line_split[1:]] word_num += 1 if word_num % 10000 == 0: logger.info('handle word No.%d' % word_num) def _export_squad_hdf5(self): """ export squad dataset to hdf5 file :return: """ f = h5py.File(self._export_squad_path, 'w') # str_dt = h5py.special_dtype(vlen=unicode) str_dt = h5py.special_dtype(vlen=int) # attributes for attr_name in self._attr: f.attrs[attr_name] = self._attr[attr_name] # meta_data f_meta_data = f.create_group('meta_data') for key in ['id2word', 'id2char', 'id2pos', 'id2ent']: value = np.array(self._meta_data[key], dtype=np.str) meta_data = f_meta_data.create_dataset(key, value.shape, dtype=str_dt, **self._compress_option) meta_data[...] = value id2vec = np.array(self._meta_data['id2vec'], dtype=np.float32) meta_data = f_meta_data.create_dataset('id2vec', id2vec.shape, dtype=id2vec.dtype, **self._compress_option) meta_data[...] = id2vec # data f_data = f.create_group('data') for key, value in self._data.items(): data_grp = f_data.create_group(key) for sub_key, sub_value in value.items(): if isinstance(sub_value, dict): sub_grp = data_grp.create_group(sub_key) for subsub_key, subsub_value in sub_value.items(): if len(subsub_value) == 0: continue cur_dtype = str_dt if subsub_value.dtype.type is np.str_ else subsub_value.dtype data = sub_grp.create_dataset(subsub_key, subsub_value.shape, dtype=cur_dtype, **self._compress_option) data[...] = subsub_value else: cur_dtype = str_dt if sub_value.dtype.type is np.str_ else sub_value.dtype data = data_grp.create_dataset(sub_key, sub_value.shape, dtype=cur_dtype, **self._compress_option) data[...] = sub_value f.flush() f.close() def run(self): """ main function to generate hdf5 file :return: """ logger.info('handle glove file...') self._handle_glove() logger.info('read squad json...') train_context_qas = self._read_json(self._train_path) dev_context_qas = self._read_json(self._dev_path) logger.info('transform word to id...') train_cache_nopad = self._build_data(train_context_qas, training=True) dev_cache_nopad = self._build_data(dev_context_qas, training=False) self._attr['train_size'] = len(train_cache_nopad['answer_range']) self._attr['dev_size'] = len(dev_cache_nopad['answer_range']) self._attr['word_dict_size'] = len(self._word2id) self._attr['char_dict_size'] = len(self._char2id) self._attr['pos_dict_size'] = len(self._pos2id) self._attr['ent_dict_size'] = len(self._ent2id) self._attr['embedding_size'] = self._embedding_size self._attr['oov_word_num'] = self._oov_num logger.info('padding id vectors...') self._data['train'] = { 'context': dict2array(train_cache_nopad['context']), 'question': dict2array(train_cache_nopad['question']), 'answer_range': np.array(train_cache_nopad['answer_range']), 'samples_id': np.array(train_cache_nopad['samples_id']) } self._data['dev'] = { 'context': dict2array(dev_cache_nopad['context']), 'question': dict2array(dev_cache_nopad['question']), 'answer_range': pad_sequences(dev_cache_nopad['answer_range'], maxlen=self._max_answer_len, padding='post', value=self.answer_padding_idx), 'samples_id': np.array(dev_cache_nopad['samples_id']) } logger.info('export to hdf5 file...') self._export_squad_hdf5() logger.info('finished.') def dict2array(data_doc): """ transform dict to numpy array :param data_doc: [{'token': [], 'pos': [], 'ent': [], 'em': [], 'em_lemma': [], 'right_space': []] :return: """ data = {'token': [], 'pos': [], 'ent': [], 'em': [], 'em_lemma': [], 'right_space': []} max_len = 0 for ele in data_doc: assert ele.keys() == data.keys() if len(ele['token']) > max_len: max_len = len(ele['token']) for k in ele.keys(): if len(ele[k]) > 0: data[k].append(ele[k]) for k in data.keys(): if len(data[k]) > 0: data[k] = pad_sequences(data[k], maxlen=max_len, padding='post', value=PreprocessData.padding_idx) return data
the-stack_0_16420
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' `generalFunctions.py` ================= Containing general purpose Python functions for small bits of manipulation. Import it: import generalFunctions Depends ======= datetime ''' import datetime def empty(string): if string in ['', ' ', None]: return True return False def formatInteger(integerstring): if empty(integerstring): return None return int(integerstring) def formatString(string): # NOTE: be careful stripping encoded strings, which may have empty values # representing unknown values for particular values if empty(string): return None return string def formatDate(datestring): '''Returns a datetime.date object when given a date as a string of the form DD/MM/YYYY (e.g. 30/01/2014)''' if empty(datestring): return None else: try: return datetime.datetime.strptime(datestring, "%d/%m/%Y").date() except ValueError: # Poorly formatted date in source data return None def ordinal(n): return str(n)+("th" if 4<=n%100<=20 else {1:"st",2:"nd",3:"rd"}.get(n%10, "th")) def formatNiceDate(datetime): '''Takes a datetime.datetime (e.g. datetime(2014,1,1)) and returns a nice string representation (e.g. "1st of January 2014"''' if empty(datetime): return None return ordinal(datetime.day) + " %s %d" % (datetime.strftime("%B"), datetime.year) def formatNiceTime(time): '''Takes a datetime.time (e.g. time(12,0,0)) and returns a nice string representation (e.g. 12:00). Seconds are ignored, and not even considered for rounding.''' if empty(time): return '' t = str(time).split(":") return "%s:%s" % (t[0],t[1]) def formatCrashTime(crashtime, dateobj): '''Returns a datetime.time object when given a time as a string from the `row`. These are purportedly recorded "in 24-hour time", but are lacking leading zeros in the dataset, which is addressed here.''' if empty(crashtime): return None return datetime.datetime.strptime(str(dateobj)+" "+'0'*(4-len(crashtime))+crashtime,'%Y-%m-%d %H%M').time() def check_offroad(crash_road): '''Applies a check for 'Z': the flat for offroad indicator, and corrects strings representing these places so that they're a bit nicer to read.''' if 'Z' in crash_road.split(' '): # The crash was off-road # Apply some special formatting to make this read nicely # 1. Remove the now-superfluous 'Z' crash_road = crash_road.split(' ') crash_road.remove('Z') # 2. Special exception for the use of 'Beach' at the beginning of some locations if crash_road[0] == 'Beach' and len(crash_road) > 1: crash_road = crash_road[1:] + [crash_road[0]] #. 3. Expand the off-road abbreviations patterns = {'CPK': 'Carpark', 'BCH': 'Beach', 'DWY': 'Driveway', 'DWAY': 'Driveway', 'FCT': 'Forecourt'} for i, r in enumerate(crash_road): if r.upper() in patterns.keys(): crash_road = crash_road[:i] + crash_road[i+1:] + [patterns[r.upper()], '(off-roadway)'] break # Join it back up to a proper description crash_road = ' '.join(crash_road) return crash_road def streetExpander(road,streetdecoder): '''Input: 'St John St' (for example) Output: St John Street''' # First, check St isn't the first element in a street name check = road.replace('near ','').replace('at ','') if check.split(' ')[0] == 'St' and 'St' not in check.split(' ')[1:]: # Then don't repalce the St as it means Saint and there is not Street in title return road # Otherwise, there are two instances of "St" and we want to only replace the second one road = road.split(' ') processed = [] road.reverse() # Flip order for i, elem in enumerate(road): # Do it in reverse so only the last instance of a road shortning trope # gets expanded. This prevents "St John St" becoming "Street John # Street" rather than "St John Street" if (elem in streetdecoder.keys()) and (elem not in processed): processed.append(elem) road[i] = streetdecoder[elem] road.reverse() # Back to original order return ' '.join(road) def formatNiceRoad(road): '''Takes a location expressed as a road, or a street or a highway... and makes some cosmetic changes. This includes taking State Highway linear references and returning something understandavble to people. Listed expressions from the documentation: CPK = car park BCH = beach DWY = driveway DWAY = driveway''' def striplinearref(linref): '''Fixes references to State Highways, by removing the linear referencing information''' if '/' not in linref: # Not a SH return linref elif '/' in linref: try: int(linref[0]) except: # Not a SH, just has a slash return linref # Remaining are State Highways if len(linref.split(' ')) > 1 and ' at ' not in linref: # There is other location information included linref = linref.split(' ')[0] + ' (%s)' % ' '.join(linref.split(' ')[1:]).replace(' SH ',' State Highway ') if ' at ' not in linref: # SH without an intersection SH = linref.split(' ') SH = "State Highway %s " % SH[0].split('/')[0] + ' '.join(SH[1:]) else: # SH with an intersection linref = linref.split(' at ') linref = [linref[0],'at',linref[1]] for i, r in enumerate(linref): if '/' in r: linref[i] = "State Highway %s" % r.split('/')[0] SH = ' '.join(linref) return SH def expander(road): '''Takes `road' (street of crash as ordered list of strings) and runs them past checks for acronyms and abbreviations known to exist in the data. Acronyms are kept as acronyms, and abbreviations are expanded. Returns a string (not the list), joined with spaces.''' knownAcronyms = ['BP', 'VTNZ'] # Ensure acronyms stay acronyms knownAbbreviations = {'Coun': 'Countdown', 'C/Down': 'Countdown', 'Reserv': 'Reserve', 'Stn': 'Station', 'Roa': 'Road', 'S': 'South', 'E': 'East', 'W': 'West', 'N': 'North', 'Riv': 'River', 'Br': 'Bridge', 'Wbd': 'Westbound', 'Ebd': 'Eastbound', 'Nbd': 'Northbound', 'Sbd': 'Southbound', 'Obr': 'Overbridge', 'Off': 'Off-ramp', 'On': 'On-ramp', 'Xing': 'Crossing', 'Mckays': 'McKays', 'Rly': 'Railway', 'Int': 'Interchange'} for i, r in enumerate(road): # Check for "knownAbbreviations" requires no brackets around term rd, left, right = r, False, False if '(' in rd: left = True rd = rd.replace('(','') if ')' in rd: right = True rd = rd.replace(')','') # Check acronyms if rd.upper() in knownAcronyms: rd = rd.upper() # Check abbreviations if rd.title() in knownAbbreviations.keys(): rd = knownAbbreviations[rd.title()] # Put brackets back, if neccessary if left: rd = '(%s' % rd if right: rd = '%s)' % rd # Update the element in road with the changes road[i] = rd # Join road to a single string and return return ' '.join(road) return expander(striplinearref(road).split(' ')) def formatStringList(listofstrings, delim=None): '''Returns a list of strings given a string representation of a list data structure, separated by `delim`. Example: input: '308A 371A 727B 929' output: ['308A', '371A', '727B', '929'] If delim is None, each character of the string is assumed to be an independent value''' if listofstrings == None or listofstrings == []: return None if delim != None: return [str(s) for s in listofstrings.split(delim) if not empty(s)] elif delim == None: return list(listofstrings) def round_down(integer, base): '''Rounds an `integer` down to the nearest `base` E.g. round_down(19,10) >>> 10 round_down(19,5) >>> 15 round_down(10,10) >>> 10''' return integer - (integer % base) def grammar(singular, plural, integer): '''Returns the string `singular` if integer == 1; else it returns `plural` if integer > 1. Example: grammar('person', 'people', 1) >>> 'person' grammar('person', 'people', 3) >>> 'people' ''' if integer == 1: return singular elif integer > 1: return plural
the-stack_0_16422
# -*- coding: utf-8 -*- """Pyramid request argument parsing. Example usage: :: from wsgiref.simple_server import make_server from pyramid.config import Configurator from pyramid.response import Response from marshmallow import fields from webargs.pyramidparser import use_args hello_args = { 'name': fields.Str(missing='World') } @use_args(hello_args) def hello_world(request, args): return Response('Hello ' + args['name']) if __name__ == '__main__': config = Configurator() config.add_route('hello', '/') config.add_view(hello_world, route_name='hello') app = config.make_wsgi_app() server = make_server('0.0.0.0', 6543, app) server.serve_forever() """ import collections import functools from webob.multidict import MultiDict from pyramid.httpexceptions import exception_response from marshmallow.compat import text_type from webargs import core class PyramidParser(core.Parser): """Pyramid request argument parser.""" __location_map__ = dict( matchdict='parse_matchdict', **core.Parser.__location_map__) def parse_querystring(self, req, name, field): """Pull a querystring value from the request.""" return core.get_value(req.GET, name, field) def parse_form(self, req, name, field): """Pull a form value from the request.""" return core.get_value(req.POST, name, field) def parse_json(self, req, name, field): """Pull a json value from the request.""" try: json_data = req.json_body except ValueError: return core.missing return core.get_value(json_data, name, field, allow_many_nested=True) def parse_cookies(self, req, name, field): """Pull the value from the cookiejar.""" return core.get_value(req.cookies, name, field) def parse_headers(self, req, name, field): """Pull a value from the header data.""" return core.get_value(req.headers, name, field) def parse_files(self, req, name, field): """Pull a file from the request.""" files = ((k, v) for k, v in req.POST.items() if hasattr(v, 'file')) return core.get_value(MultiDict(files), name, field) def parse_matchdict(self, req, name, field): """Pull a value from the request's `matchdict`.""" return core.get_value(req.matchdict, name, field) def handle_error(self, error): """Handles errors during parsing. Aborts the current HTTP request and responds with a 400 error. """ status_code = getattr(error, 'status_code', 422) raise exception_response(status_code, detail=text_type(error)) def use_args(self, argmap, req=None, locations=core.Parser.DEFAULT_LOCATIONS, as_kwargs=False, validate=None): """Decorator that injects parsed arguments into a view callable. Supports the *Class-based View* pattern where `request` is saved as an instance attribute on a view class. :param dict argmap: Either a `marshmallow.Schema`, a `dict` of argname -> `marshmallow.fields.Field` pairs, or a callable which accepts a request and returns a `marshmallow.Schema`. :param req: The request object to parse. Pulled off of the view by default. :param tuple locations: Where on the request to search for values. :param bool as_kwargs: Whether to insert arguments as keyword arguments. :param callable validate: Validation function that receives the dictionary of parsed arguments. If the function returns ``False``, the parser will raise a :exc:`ValidationError`. """ locations = locations or self.locations # Optimization: If argmap is passed as a dictionary, we only need # to generate a Schema once if isinstance(argmap, collections.Mapping): argmap = core.argmap2schema(argmap)() def decorator(func): @functools.wraps(func) def wrapper(obj, *args, **kwargs): # The first argument is either `self` or `request` try: # get self.request request = req or obj.request except AttributeError: # first arg is request request = obj # NOTE: At this point, argmap may be a Schema, callable, or dict parsed_args = self.parse(argmap, req=request, locations=locations, validate=validate, force_all=as_kwargs) if as_kwargs: kwargs.update(parsed_args) return func(obj, *args, **kwargs) else: return func(obj, parsed_args, *args, **kwargs) return wrapper return decorator parser = PyramidParser() use_args = parser.use_args use_kwargs = parser.use_kwargs
the-stack_0_16424
# -*- coding: utf-8 -*- """ Created on Thu Jun 23 09:45:44 2016 @author: Arturo """ import signal import sys import time import pyupm_grove as grove import pyupm_i2clcd as lcd def interruptHandler(signal, frame): sys.exit(0) if __name__ == '__main__': signal.signal(signal.SIGINT, interruptHandler) myLcd = lcd.Jhd1313m1(0, 0x3E, 0x62) sensortemp = grove.GroveTemp(0) colorR = 255; colorG = 0; colorB = 0; myLcd.setColor(colorR,colorG,colorB) # Read the input and print, waiting 1/2 second between readings while True: valorSensor= sensortemp.value(); myLcd.setCursor(0,0) myLcd.write('%6d'% valorSensor) time.sleep(0.5) del sensortemp
the-stack_0_16426
from unittest import TestCase from tests import get_data from pytezos.michelson.converter import build_schema, decode_micheline, encode_micheline, micheline_to_michelson class StorageTestKT1JH9GCs3Y3kiLEuu2n9bAJev2UaGJbVaJX(TestCase): @classmethod def setUpClass(cls): cls.maxDiff = None cls.contract = get_data('storage/zeronet/KT1JH9GCs3Y3kiLEuu2n9bAJev2UaGJbVaJX.json') def test_storage_encoding_KT1JH9GCs3Y3kiLEuu2n9bAJev2UaGJbVaJX(self): type_expr = self.contract['script']['code'][1] val_expr = self.contract['script']['storage'] schema = build_schema(type_expr) decoded = decode_micheline(val_expr, type_expr, schema) actual = encode_micheline(decoded, schema) self.assertEqual(val_expr, actual) def test_storage_schema_KT1JH9GCs3Y3kiLEuu2n9bAJev2UaGJbVaJX(self): _ = build_schema(self.contract['script']['code'][0]) def test_storage_format_KT1JH9GCs3Y3kiLEuu2n9bAJev2UaGJbVaJX(self): _ = micheline_to_michelson(self.contract['script']['code']) _ = micheline_to_michelson(self.contract['script']['storage'])
the-stack_0_16428
import sys # Needed for sys.argv from typing import List, Dict, Set from statistics import mean import collections import csv def get_climate(in_filename: str, out_filename: str) -> None: """Read historical weather from in_filename, write climate to out_filename. Parameters ---------- in_filename : name of the input file out_filename : name of the output file """ in_file = open(in_filename, 'r') """ What you should do: 1. Read each line of in_file 2. Skip the first (header) line 3. Split each line on commas 4. Get the year, month, and day 5. Update the statistics (total precip, total low temp, etc) 6. When done, open the output file. 7. for each day of the year: 8. Compute the climate for the day, write to output file. """ next(in_file) # Skips header row total_precip = {} total_tempmin = {} total_tempmax = {} record_tempmin = {} record_tempmax = {} total_tempmin_year = {} total_tempmax_year = {} century = 1900 previous_year = 0 for line in in_file.readlines(): line = line.rstrip('\r\n') date, precip, tempmax, tempmin = line.split(",") # Controls for bad data, such as no entry if not date or not precip or not tempmax or not tempmin: continue # Converts ISO dates if "-" in date: year, month, day = date.split("-") year = int(year) # Converts US dates if "/" in date: month, day, year = date.split("/") year = int(year) if year < 100 and year < previous_year: year += century if year == 1999: century = 2000 if len(month) == 1: month = "0" + month if len(day) == 1: day = "0" + day month_day = month + "/" + day # Skips leap years if month_day == "02/29": continue date_in_year = month + "/" + day + "/" + str(year) # Used to keep track of when to increment century due to # inconsistent date formatting. previous_year = year # Converts string data into floats. # Needed for finding maximum, average, minimum. precip = float(precip) tempmax = float(tempmax) tempmin = float(tempmin) total_precip.setdefault(month_day, []).append(precip) total_tempmin.setdefault(month_day, []).append(tempmin) total_tempmax.setdefault(month_day, []).append(tempmax) total_tempmin_year.setdefault(year, []).append(tempmin) total_tempmax_year.setdefault(year, []).append(tempmax) # Unsorted, but will be sorted as per assignment requirement. avg_precip = {month_day: round(mean(precip), 1) for month_day, precip in total_precip.items()} avg_tempmin = {month_day: round(mean(tempmin), 1) for month_day, tempmin in total_tempmin.items()} avg_tempmax = {month_day: round(mean(tempmax), 1) for month_day, tempmax in total_tempmax.items()} record_tempmin = {month_day: min(tempmin) for month_day, tempmin in total_tempmin.items()} record_tempmax = {month_day: max(tempmax) for month_day, tempmax in total_tempmax.items()} record_tempmin_year = {year: min(tempmin) for year, tempmin in total_tempmin_year.items()} record_tempmax_year = {year: max(tempmax) for year, tempmax in total_tempmax_year.items()} # Sorts dictionary keys, so that January 1st is first, and December 31st is last. sorted_avg_precip = {k: avg_precip[k] for k in sorted(avg_precip)} sorted_avg_tempmin = {k: avg_tempmin[k] for k in sorted(avg_tempmin)} sorted_avg_tempmax = {k: avg_tempmax[k] for k in sorted(avg_tempmax)} sorted_record_tempmin = {k: record_tempmin[k] for k in sorted(record_tempmin)} sorted_record_tempmax = {k: record_tempmax[k] for k in sorted(record_tempmax)} sorted_record_tempmin_year = {k: record_tempmin_year[k] for k in sorted(record_tempmin_year)} sorted_record_tempmax_year = {k: record_tempmax_year[k] for k in sorted(record_tempmax_year)} out_handle = open(out_filename, 'w') out_handle.write("Day,Avg precip,Avg low,Avg high,Min low,Max high,Min low year,Max high year\n") out_handle.write("{},{},{},{},{},{},{},{}\n".format(date_in_year, sorted_avg_precip, sorted_avg_tempmin, sorted_avg_tempmax, sorted_record_tempmin, sorted_record_tempmax, sorted_record_tempmin_year, sorted_record_tempmax_year)) out_handle.close() def usage(): """Complain that the user ran the program incorrectly.""" sys.stderr.write('Usage:\n') sys.stderr.write(' python climate.py <input-file.csv> <output-file.csv>\n') sys.exit() def main(): if len(sys.argv) != 3: usage() sys.exit() in_filename: str = sys.argv[1] out_filename: str = sys.argv[2] get_climate(in_filename, out_filename) if __name__ == '__main__': main()
the-stack_0_16429
# Define shout with the parameter, word def shout(word): """Return a string with three exclamation marks""" # Concatenate the strings: shout_word shout_word= word + '!!!' # Replace print with return return shout_word # Pass 'congratulations' to shout: yell yell=shout('congratulations') # Print yell print(yell)
the-stack_0_16430
#!/usr/bin/env python # Copyright (c) 2014 Intel Corporation. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. class AppInfo: def __init__(self): self.app_root = '' self.app_version = '1.0.0' self.app_versionCode = '' self.fullscreen_flag = '' self.icon = '' self.name = 'AppTemplate' self.orientation = 'unspecified' self.original_name = '' self.package = 'org.xwalk.app.template' self.remote_debugging = ''
the-stack_0_16433
# pylint: disable=too-many-lines import copy import json import os import re import six from typing import Any, Optional, Dict, List, Set, Union # noqa from typing import cast import yaml from yaml.scanner import ScannerError from yaml.nodes import Node, ScalarNode, SequenceNode from chalice.deploy.swagger import ( CFNSwaggerGenerator, TerraformSwaggerGenerator) from chalice.utils import ( OSUtils, UI, serialize_to_json, to_cfn_resource_name ) from chalice.awsclient import TypedAWSClient # noqa from chalice.config import Config # noqa from chalice.deploy import models from chalice.deploy.appgraph import ApplicationGraphBuilder, DependencyBuilder from chalice.deploy.deployer import BuildStage # noqa from chalice.deploy.deployer import create_build_stage def create_app_packager( config, options, package_format='cloudformation', template_format='json', merge_template=None): # type: (Config, PackageOptions, str, str, Optional[str]) -> AppPackager osutils = OSUtils() ui = UI() application_builder = ApplicationGraphBuilder() deps_builder = DependencyBuilder() post_processors = [] # type: List[TemplatePostProcessor] generator = None # type: Union[None, TemplateGenerator] template_serializer = cast(TemplateSerializer, JSONTemplateSerializer()) if package_format == 'cloudformation': build_stage = create_build_stage( osutils, ui, CFNSwaggerGenerator(), config) use_yaml_serializer = template_format == 'yaml' if merge_template is not None and \ YAMLTemplateSerializer.is_yaml_template(merge_template): # Automatically switch the serializer to yaml if they specify # a yaml template to merge, regardless of what template format # they specify. use_yaml_serializer = True if use_yaml_serializer: template_serializer = YAMLTemplateSerializer() post_processors.extend([ SAMCodeLocationPostProcessor(osutils=osutils), TemplateMergePostProcessor( osutils=osutils, merger=TemplateDeepMerger(), template_serializer=template_serializer, merge_template=merge_template)]) generator = SAMTemplateGenerator(config, options) else: build_stage = create_build_stage( osutils, ui, TerraformSwaggerGenerator(), config) generator = TerraformGenerator(config, options) post_processors.append( TerraformCodeLocationPostProcessor(osutils=osutils)) resource_builder = ResourceBuilder( application_builder, deps_builder, build_stage) return AppPackager( generator, resource_builder, CompositePostProcessor(post_processors), template_serializer, osutils) class UnsupportedFeatureError(Exception): pass class DuplicateResourceNameError(Exception): pass class PackageOptions(object): def __init__(self, client): # type: (TypedAWSClient) -> None self._client = client # type: TypedAWSClient def service_principal(self, service): # type: (str) -> str dns_suffix = self._client.endpoint_dns_suffix(service, self._client.region_name) return self._client.service_principal(service, self._client.region_name, dns_suffix) class ResourceBuilder(object): def __init__(self, application_builder, # type: ApplicationGraphBuilder deps_builder, # type: DependencyBuilder build_stage, # type: BuildStage ): # type: (...) -> None self._application_builder = application_builder self._deps_builder = deps_builder self._build_stage = build_stage def construct_resources(self, config, chalice_stage_name): # type: (Config, str) -> List[models.Model] application = self._application_builder.build( config, chalice_stage_name) resources = self._deps_builder.build_dependencies(application) self._build_stage.execute(config, resources) # Rebuild dependencies in case the build stage modified # the application graph. resources = self._deps_builder.build_dependencies(application) return resources class TemplateGenerator(object): template_file = None # type: str def __init__(self, config, options): # type: (Config, PackageOptions) -> None self._config = config self._options = options def dispatch(self, resource, template): # type: (models.Model, Dict[str, Any]) -> None name = '_generate_%s' % resource.__class__.__name__.lower() handler = getattr(self, name, self._default) handler(resource, template) def generate(self, resources): # type: (List[models.Model]) -> Dict[str, Any] raise NotImplementedError() def _generate_filebasediampolicy(self, resource, template): # type: (models.FileBasedIAMPolicy, Dict[str, Any]) -> None pass def _generate_autogeniampolicy(self, resource, template): # type: (models.AutoGenIAMPolicy, Dict[str, Any]) -> None pass def _generate_deploymentpackage(self, resource, template): # type: (models.DeploymentPackage, Dict[str, Any]) -> None pass def _generate_precreatediamrole(self, resource, template): # type: (models.PreCreatedIAMRole, Dict[str, Any]) -> None pass def _default(self, resource, template): # type: (models.Model, Dict[str, Any]) -> None raise UnsupportedFeatureError(resource) class SAMTemplateGenerator(TemplateGenerator): _BASE_TEMPLATE = { 'AWSTemplateFormatVersion': '2010-09-09', 'Transform': 'AWS::Serverless-2016-10-31', 'Outputs': {}, 'Resources': {}, } template_file = "sam" def __init__(self, config, options): # type: (Config, PackageOptions) -> None super(SAMTemplateGenerator, self).__init__(config, options) self._seen_names = set([]) # type: Set[str] self._chalice_layer = "" def generate(self, resources): # type: (List[models.Model]) -> Dict[str, Any] template = copy.deepcopy(self._BASE_TEMPLATE) self._seen_names.clear() for resource in resources: self.dispatch(resource, template) return template def _generate_lambdalayer(self, resource, template): # type: (models.LambdaLayer, Dict[str, Any]) -> None layer = to_cfn_resource_name( resource.resource_name) template['Resources'][layer] = { "Type": "AWS::Serverless::LayerVersion", "Properties": { "CompatibleRuntimes": [resource.runtime], "ContentUri": resource.deployment_package.filename, "LayerName": resource.layer_name } } self._chalice_layer = layer def _generate_scheduledevent(self, resource, template): # type: (models.ScheduledEvent, Dict[str, Any]) -> None function_cfn_name = to_cfn_resource_name( resource.lambda_function.resource_name) function_cfn = template['Resources'][function_cfn_name] event_cfn_name = self._register_cfn_resource_name( resource.resource_name) function_cfn['Properties']['Events'] = { event_cfn_name: { 'Type': 'Schedule', 'Properties': { 'Schedule': resource.schedule_expression, } } } def _generate_cloudwatchevent(self, resource, template): # type: (models.CloudWatchEvent, Dict[str, Any]) -> None function_cfn_name = to_cfn_resource_name( resource.lambda_function.resource_name) function_cfn = template['Resources'][function_cfn_name] event_cfn_name = self._register_cfn_resource_name( resource.resource_name) function_cfn['Properties']['Events'] = { event_cfn_name: { 'Type': 'CloudWatchEvent', 'Properties': { # For api calls we need serialized string form, for # SAM Templates we need datastructures. 'Pattern': json.loads(resource.event_pattern) } } } def _generate_lambdafunction(self, resource, template): # type: (models.LambdaFunction, Dict[str, Any]) -> None resources = template['Resources'] cfn_name = self._register_cfn_resource_name(resource.resource_name) lambdafunction_definition = { 'Type': 'AWS::Serverless::Function', 'Properties': { 'Runtime': resource.runtime, 'Handler': resource.handler, 'CodeUri': resource.deployment_package.filename, 'Tags': resource.tags, 'Tracing': resource.xray and 'Active' or 'PassThrough', 'Timeout': resource.timeout, 'MemorySize': resource.memory_size, }, } # type: Dict[str, Any] if resource.environment_variables: environment_config = { 'Environment': { 'Variables': resource.environment_variables } } # type: Dict[str, Dict[str, Dict[str, str]]] lambdafunction_definition['Properties'].update(environment_config) if resource.security_group_ids and resource.subnet_ids: vpc_config = { 'VpcConfig': { 'SecurityGroupIds': resource.security_group_ids, 'SubnetIds': resource.subnet_ids, } } # type: Dict[str, Dict[str, List[str]]] lambdafunction_definition['Properties'].update(vpc_config) if resource.reserved_concurrency is not None: reserved_concurrency_config = { 'ReservedConcurrentExecutions': resource.reserved_concurrency } lambdafunction_definition['Properties'].update( reserved_concurrency_config) layers = list(resource.layers) or [] # type: List[Any] if self._chalice_layer: layers.insert(0, {'Ref': self._chalice_layer}) if layers: layers_config = { 'Layers': layers } # type: Dict[str, Any] lambdafunction_definition['Properties'].update(layers_config) resources[cfn_name] = lambdafunction_definition self._add_iam_role(resource, resources[cfn_name]) def _add_iam_role(self, resource, cfn_resource): # type: (models.LambdaFunction, Dict[str, Any]) -> None role = resource.role if isinstance(role, models.ManagedIAMRole): cfn_resource['Properties']['Role'] = { 'Fn::GetAtt': [ to_cfn_resource_name(role.resource_name), 'Arn' ], } else: # resource is a PreCreatedIAMRole. This is the only other # subclass of IAMRole. role = cast(models.PreCreatedIAMRole, role) cfn_resource['Properties']['Role'] = role.role_arn def _generate_restapi(self, resource, template): # type: (models.RestAPI, Dict[str, Any]) -> None resources = template['Resources'] resources['RestAPI'] = { 'Type': 'AWS::Serverless::Api', 'Properties': { 'EndpointConfiguration': resource.endpoint_type, 'StageName': resource.api_gateway_stage, 'DefinitionBody': resource.swagger_doc, } } if resource.minimum_compression: properties = resources['RestAPI']['Properties'] properties['MinimumCompressionSize'] = \ int(resource.minimum_compression) handler_cfn_name = to_cfn_resource_name( resource.lambda_function.resource_name) api_handler = template['Resources'].pop(handler_cfn_name) template['Resources']['APIHandler'] = api_handler resources['APIHandlerInvokePermission'] = { 'Type': 'AWS::Lambda::Permission', 'Properties': { 'FunctionName': {'Ref': 'APIHandler'}, 'Action': 'lambda:InvokeFunction', 'Principal': self._options.service_principal('apigateway'), 'SourceArn': { 'Fn::Sub': [ ('arn:${AWS::Partition}:execute-api:${AWS::Region}' ':${AWS::AccountId}:${RestAPIId}/*'), {'RestAPIId': {'Ref': 'RestAPI'}}, ] }, } } for auth in resource.authorizers: auth_cfn_name = to_cfn_resource_name(auth.resource_name) resources[auth_cfn_name + 'InvokePermission'] = { 'Type': 'AWS::Lambda::Permission', 'Properties': { 'FunctionName': {'Fn::GetAtt': [auth_cfn_name, 'Arn']}, 'Action': 'lambda:InvokeFunction', 'Principal': self._options.service_principal('apigateway'), 'SourceArn': { 'Fn::Sub': [ ('arn:${AWS::Partition}:execute-api' ':${AWS::Region}:${AWS::AccountId}' ':${RestAPIId}/*'), {'RestAPIId': {'Ref': 'RestAPI'}}, ] }, } } self._add_domain_name(resource, template) self._inject_restapi_outputs(template) def _inject_restapi_outputs(self, template): # type: (Dict[str, Any]) -> None # The 'Outputs' of the SAM template are considered # part of the public API of chalice and therefore # need to maintain backwards compatibility. This # method uses the same output key names as the old # deployer. # For now, we aren't adding any of the new resources # to the Outputs section until we can figure out # a consist naming scheme. Ideally we don't use # the autogen'd names that contain the md5 suffixes. stage_name = template['Resources']['RestAPI'][ 'Properties']['StageName'] outputs = template['Outputs'] outputs['RestAPIId'] = { 'Value': {'Ref': 'RestAPI'} } outputs['APIHandlerName'] = { 'Value': {'Ref': 'APIHandler'} } outputs['APIHandlerArn'] = { 'Value': {'Fn::GetAtt': ['APIHandler', 'Arn']} } outputs['EndpointURL'] = { 'Value': { 'Fn::Sub': ( 'https://${RestAPI}.execute-api.${AWS::Region}' # The api_gateway_stage is filled in when # the template is built. '.${AWS::URLSuffix}/%s/' ) % stage_name } } def _add_websocket_lambda_integration( self, api_ref, websocket_handler, resources): # type: (Dict[str, Any], str, Dict[str, Any]) -> None resources['%sAPIIntegration' % websocket_handler] = { 'Type': 'AWS::ApiGatewayV2::Integration', 'Properties': { 'ApiId': api_ref, 'ConnectionType': 'INTERNET', 'ContentHandlingStrategy': 'CONVERT_TO_TEXT', 'IntegrationType': 'AWS_PROXY', 'IntegrationUri': { 'Fn::Sub': [ ( 'arn:${AWS::Partition}:apigateway:${AWS::Region}' ':lambda:path/2015-03-31/functions/arn' ':${AWS::Partition}:lambda:${AWS::Region}' ':${AWS::AccountId}:function' ':${WebsocketHandler}/invocations' ), {'WebsocketHandler': {'Ref': websocket_handler}} ], } } } def _add_websocket_lambda_invoke_permission( self, api_ref, websocket_handler, resources): # type: (Dict[str, str], str, Dict[str, Any]) -> None resources['%sInvokePermission' % websocket_handler] = { 'Type': 'AWS::Lambda::Permission', 'Properties': { 'FunctionName': {'Ref': websocket_handler}, 'Action': 'lambda:InvokeFunction', 'Principal': self._options.service_principal('apigateway'), 'SourceArn': { 'Fn::Sub': [ ('arn:${AWS::Partition}:execute-api' ':${AWS::Region}:${AWS::AccountId}' ':${WebsocketAPIId}/*'), {'WebsocketAPIId': api_ref}, ], }, } } def _add_websocket_lambda_integrations(self, api_ref, resources): # type: (Dict[str, str], Dict[str, Any]) -> None websocket_handlers = [ 'WebsocketConnect', 'WebsocketMessage', 'WebsocketDisconnect', ] for handler in websocket_handlers: if handler in resources: self._add_websocket_lambda_integration( api_ref, handler, resources) self._add_websocket_lambda_invoke_permission( api_ref, handler, resources) def _create_route_for_key(self, route_key, api_ref): # type: (str, Dict[str, str]) -> Dict[str, Any] integration_ref = { '$connect': 'WebsocketConnectAPIIntegration', '$disconnect': 'WebsocketDisconnectAPIIntegration', }.get(route_key, 'WebsocketMessageAPIIntegration') return { 'Type': 'AWS::ApiGatewayV2::Route', 'Properties': { 'ApiId': api_ref, 'RouteKey': route_key, 'Target': { 'Fn::Join': [ '/', [ 'integrations', {'Ref': integration_ref}, ] ] }, }, } def _generate_websocketapi(self, resource, template): # type: (models.WebsocketAPI, Dict[str, Any]) -> None resources = template['Resources'] api_ref = {'Ref': 'WebsocketAPI'} resources['WebsocketAPI'] = { 'Type': 'AWS::ApiGatewayV2::Api', 'Properties': { 'Name': resource.name, 'RouteSelectionExpression': '$request.body.action', 'ProtocolType': 'WEBSOCKET', } } self._add_websocket_lambda_integrations(api_ref, resources) route_key_names = [] for route in resource.routes: key_name = 'Websocket%sRoute' % route.replace( '$', '').replace('default', 'message').capitalize() route_key_names.append(key_name) resources[key_name] = self._create_route_for_key(route, api_ref) resources['WebsocketAPIDeployment'] = { 'Type': 'AWS::ApiGatewayV2::Deployment', 'DependsOn': route_key_names, 'Properties': { 'ApiId': api_ref, } } resources['WebsocketAPIStage'] = { 'Type': 'AWS::ApiGatewayV2::Stage', 'Properties': { 'ApiId': api_ref, 'DeploymentId': {'Ref': 'WebsocketAPIDeployment'}, 'StageName': resource.api_gateway_stage, } } self._add_websocket_domain_name(resource, template) self._inject_websocketapi_outputs(template) def _inject_websocketapi_outputs(self, template): # type: (Dict[str, Any]) -> None # The 'Outputs' of the SAM template are considered # part of the public API of chalice and therefore # need to maintain backwards compatibility. This # method uses the same output key names as the old # deployer. # For now, we aren't adding any of the new resources # to the Outputs section until we can figure out # a consist naming scheme. Ideally we don't use # the autogen'd names that contain the md5 suffixes. stage_name = template['Resources']['WebsocketAPIStage'][ 'Properties']['StageName'] outputs = template['Outputs'] resources = template['Resources'] outputs['WebsocketAPIId'] = { 'Value': {'Ref': 'WebsocketAPI'} } if 'WebsocketConnect' in resources: outputs['WebsocketConnectHandlerArn'] = { 'Value': {'Fn::GetAtt': ['WebsocketConnect', 'Arn']} } outputs['WebsocketConnectHandlerName'] = { 'Value': {'Ref': 'WebsocketConnect'} } if 'WebsocketMessage' in resources: outputs['WebsocketMessageHandlerArn'] = { 'Value': {'Fn::GetAtt': ['WebsocketMessage', 'Arn']} } outputs['WebsocketMessageHandlerName'] = { 'Value': {'Ref': 'WebsocketMessage'} } if 'WebsocketDisconnect' in resources: outputs['WebsocketDisconnectHandlerArn'] = { 'Value': {'Fn::GetAtt': ['WebsocketDisconnect', 'Arn']} } # There is not a lot of green in here. outputs['WebsocketDisconnectHandlerName'] = { 'Value': {'Ref': 'WebsocketDisconnect'} } outputs['WebsocketConnectEndpointURL'] = { 'Value': { 'Fn::Sub': ( 'wss://${WebsocketAPI}.execute-api.${AWS::Region}' # The api_gateway_stage is filled in when # the template is built. '.${AWS::URLSuffix}/%s/' ) % stage_name } } # The various IAM roles/policies are handled in the # Lambda function generation. We're creating these # noop methods to indicate we've accounted for these # resources. def _generate_managediamrole(self, resource, template): # type: (models.ManagedIAMRole, Dict[str, Any]) -> None role_cfn_name = self._register_cfn_resource_name( resource.resource_name) resource.trust_policy['Statement'][0]['Principal']['Service'] = \ self._options.service_principal('lambda') template['Resources'][role_cfn_name] = { 'Type': 'AWS::IAM::Role', 'Properties': { 'AssumeRolePolicyDocument': resource.trust_policy, 'Policies': [ {'PolicyDocument': resource.policy.document, 'PolicyName': role_cfn_name + 'Policy'}, ], } } def _generate_s3bucketnotification(self, resource, template): # type: (models.S3BucketNotification, Dict[str, Any]) -> None message = ( "Unable to package chalice apps that @app.on_s3_event decorator. " "CloudFormation does not support modifying the event " "notifications of existing buckets. " "You can deploy this app using `chalice deploy`." ) raise NotImplementedError(message) def _generate_snslambdasubscription(self, resource, template): # type: (models.SNSLambdaSubscription, Dict[str, Any]) -> None function_cfn_name = to_cfn_resource_name( resource.lambda_function.resource_name) function_cfn = template['Resources'][function_cfn_name] sns_cfn_name = self._register_cfn_resource_name( resource.resource_name) if re.match(r"^arn:aws[a-z\-]*:sns:", resource.topic): topic_arn = resource.topic # type: Union[str, Dict[str, str]] else: topic_arn = { 'Fn::Sub': ( 'arn:${AWS::Partition}:sns' ':${AWS::Region}:${AWS::AccountId}:%s' % resource.topic ) } function_cfn['Properties']['Events'] = { sns_cfn_name: { 'Type': 'SNS', 'Properties': { 'Topic': topic_arn, } } } def _generate_sqseventsource(self, resource, template): # type: (models.SQSEventSource, Dict[str, Any]) -> None function_cfn_name = to_cfn_resource_name( resource.lambda_function.resource_name) function_cfn = template['Resources'][function_cfn_name] sqs_cfn_name = self._register_cfn_resource_name( resource.resource_name) queue = '' # type: Union[str, Dict[str, Any]] if isinstance(resource.queue, models.QueueARN): queue = resource.queue.arn else: queue = { 'Fn::Sub': ('arn:${AWS::Partition}:sqs:${AWS::Region}' ':${AWS::AccountId}:%s' % resource.queue) } function_cfn['Properties']['Events'] = { sqs_cfn_name: { 'Type': 'SQS', 'Properties': { 'Queue': queue, 'BatchSize': resource.batch_size, 'MaximumBatchingWindowInSeconds': resource.maximum_batching_window_in_seconds, } } } def _generate_kinesiseventsource(self, resource, template): # type: (models.KinesisEventSource, Dict[str, Any]) -> None function_cfn_name = to_cfn_resource_name( resource.lambda_function.resource_name) function_cfn = template['Resources'][function_cfn_name] kinesis_cfn_name = self._register_cfn_resource_name( resource.resource_name) properties = { 'Stream': { 'Fn::Sub': ( 'arn:${AWS::Partition}:kinesis:${AWS::Region}' ':${AWS::AccountId}:stream/%s' % resource.stream ) }, 'BatchSize': resource.batch_size, 'StartingPosition': resource.starting_position, 'MaximumBatchingWindowInSeconds': resource.maximum_batching_window_in_seconds, } function_cfn['Properties']['Events'] = { kinesis_cfn_name: { 'Type': 'Kinesis', 'Properties': properties } } def _generate_dynamodbeventsource(self, resource, template): # type: (models.DynamoDBEventSource, Dict[str, Any]) -> None function_cfn_name = to_cfn_resource_name( resource.lambda_function.resource_name) function_cfn = template['Resources'][function_cfn_name] ddb_cfn_name = self._register_cfn_resource_name( resource.resource_name) properties = { 'Stream': resource.stream_arn, 'BatchSize': resource.batch_size, 'StartingPosition': resource.starting_position, 'MaximumBatchingWindowInSeconds': resource.maximum_batching_window_in_seconds, } function_cfn['Properties']['Events'] = { ddb_cfn_name: { 'Type': 'DynamoDB', 'Properties': properties } } def _generate_apimapping(self, resource, template): # type: (models.APIMapping, Dict[str, Any]) -> None pass def _generate_domainname(self, resource, template): # type: (models.DomainName, Dict[str, Any]) -> None pass def _add_domain_name(self, resource, template): # type: (models.RestAPI, Dict[str, Any]) -> None if resource.domain_name is None: return domain_name = resource.domain_name endpoint_type = resource.endpoint_type cfn_name = to_cfn_resource_name(domain_name.resource_name) properties = { 'DomainName': domain_name.domain_name, 'EndpointConfiguration': { 'Types': [endpoint_type], } } # type: Dict[str, Any] if endpoint_type == 'EDGE': properties['CertificateArn'] = domain_name.certificate_arn else: properties['RegionalCertificateArn'] = domain_name.certificate_arn if domain_name.tls_version is not None: properties['SecurityPolicy'] = domain_name.tls_version.value if domain_name.tags: properties['Tags'] = [ {'Key': key, 'Value': value} for key, value in sorted(domain_name.tags.items()) ] template['Resources'][cfn_name] = { 'Type': 'AWS::ApiGateway::DomainName', 'Properties': properties } template['Resources'][cfn_name + 'Mapping'] = { 'Type': 'AWS::ApiGateway::BasePathMapping', 'Properties': { 'DomainName': {'Ref': 'ApiGatewayCustomDomain'}, 'RestApiId': {'Ref': 'RestAPI'}, 'BasePath': domain_name.api_mapping.mount_path, 'Stage': resource.api_gateway_stage, } } def _add_websocket_domain_name(self, resource, template): # type: (models.WebsocketAPI, Dict[str, Any]) -> None if resource.domain_name is None: return domain_name = resource.domain_name cfn_name = to_cfn_resource_name(domain_name.resource_name) properties = { 'DomainName': domain_name.domain_name, 'DomainNameConfigurations': [ {'CertificateArn': domain_name.certificate_arn, 'EndpointType': 'REGIONAL'}, ] } if domain_name.tags: properties['Tags'] = domain_name.tags template['Resources'][cfn_name] = { 'Type': 'AWS::ApiGatewayV2::DomainName', 'Properties': properties, } template['Resources'][cfn_name + 'Mapping'] = { 'Type': 'AWS::ApiGatewayV2::ApiMapping', 'Properties': { 'DomainName': {'Ref': cfn_name}, 'ApiId': {'Ref': 'WebsocketAPI'}, 'ApiMappingKey': domain_name.api_mapping.mount_path, 'Stage': {'Ref': 'WebsocketAPIStage'}, } } def _register_cfn_resource_name(self, name): # type: (str) -> str cfn_name = to_cfn_resource_name(name) if cfn_name in self._seen_names: raise DuplicateResourceNameError( 'A duplicate resource name was generated for ' 'the SAM template: %s' % cfn_name, ) self._seen_names.add(cfn_name) return cfn_name class TerraformGenerator(TemplateGenerator): template_file = "chalice.tf" def __init__(self, config, options): # type: (Config, PackageOptions) -> None super(TerraformGenerator, self).__init__(config, options) self._chalice_layer = "" def generate(self, resources): # type: (List[models.Model]) -> Dict[str, Any] template = { 'resource': {}, 'locals': {}, 'terraform': { 'required_version': '>= 0.12.26, < 1.2.0', 'required_providers': { 'aws': {'version': '>= 2, < 4'}, 'null': {'version': '>= 2, < 4'} } }, 'data': { 'aws_caller_identity': {'chalice': {}}, 'aws_partition': {'chalice': {}}, 'aws_region': {'chalice': {}}, 'null_data_source': { 'chalice': { 'inputs': { 'app': self._config.app_name, 'stage': self._config.chalice_stage } } } } } for resource in resources: self.dispatch(resource, template) return template def _fref(self, lambda_function, attr='arn'): # type: (models.ManagedModel, str) -> str return '${aws_lambda_function.%s.%s}' % ( lambda_function.resource_name, attr) def _arnref(self, arn_template, **kw): # type: (str, str) -> str d = dict( partition='${data.aws_partition.chalice.partition}', region='${data.aws_region.chalice.name}', account_id='${data.aws_caller_identity.chalice.account_id}') d.update(kw) return arn_template % d def _generate_managediamrole(self, resource, template): # type: (models.ManagedIAMRole, Dict[str, Any]) -> None resource.trust_policy['Statement'][0]['Principal']['Service'] = \ self._options.service_principal('lambda') template['resource'].setdefault('aws_iam_role', {})[ resource.resource_name] = { 'name': resource.role_name, 'assume_role_policy': json.dumps(resource.trust_policy) } template['resource'].setdefault('aws_iam_role_policy', {})[ resource.resource_name] = { 'name': resource.resource_name + 'Policy', 'policy': json.dumps(resource.policy.document), 'role': '${aws_iam_role.%s.id}' % resource.resource_name, } def _generate_websocketapi(self, resource, template): # type: (models.WebsocketAPI, Dict[str, Any]) -> None message = ( "Unable to package chalice apps that use experimental " "Websocket decorators. Terraform AWS Provider " "support for websocket is pending see " "https://git.io/fj9X8 for details and progress. " "You can deploy this app using `chalice deploy`." ) raise NotImplementedError(message) def _generate_s3bucketnotification(self, resource, template): # type: (models.S3BucketNotification, Dict[str, Any]) -> None bnotify = { 'events': resource.events, 'lambda_function_arn': self._fref(resource.lambda_function) } if resource.prefix: bnotify['filter_prefix'] = resource.prefix if resource.suffix: bnotify['filter_suffix'] = resource.suffix # we use the bucket name here because we need to aggregate # all the notifications subscribers for a bucket. # Due to cyclic references to buckets created in terraform # we also try to detect and resolve. if '{aws_s3_bucket.' in resource.bucket: bucket_name = resource.bucket.split('.')[1] else: bucket_name = resource.bucket template['resource'].setdefault( 'aws_s3_bucket_notification', {}).setdefault( bucket_name + '_notify', {'bucket': resource.bucket}).setdefault( 'lambda_function', []).append(bnotify) template['resource'].setdefault('aws_lambda_permission', {})[ resource.resource_name] = { 'statement_id': resource.resource_name, 'action': 'lambda:InvokeFunction', 'function_name': self._fref(resource.lambda_function), 'principal': self._options.service_principal('s3'), 'source_account': '${data.aws_caller_identity.chalice.account_id}', 'source_arn': ('arn:${data.aws_partition.chalice.partition}:' 's3:::%s' % resource.bucket) } def _generate_sqseventsource(self, resource, template): # type: (models.SQSEventSource, Dict[str, Any]) -> None if isinstance(resource.queue, models.QueueARN): event_source_arn = resource.queue.arn else: event_source_arn = self._arnref( "arn:%(partition)s:sqs:%(region)s" ":%(account_id)s:%(queue)s", queue=resource.queue ) template['resource'].setdefault('aws_lambda_event_source_mapping', {})[ resource.resource_name] = { 'event_source_arn': event_source_arn, 'batch_size': resource.batch_size, 'maximum_batching_window_in_seconds': resource.maximum_batching_window_in_seconds, 'function_name': self._fref(resource.lambda_function) } def _generate_kinesiseventsource(self, resource, template): # type: (models.KinesisEventSource, Dict[str, Any]) -> None template['resource'].setdefault('aws_lambda_event_source_mapping', {})[ resource.resource_name] = { 'event_source_arn': self._arnref( "arn:%(partition)s:kinesis:%(region)s" ":%(account_id)s:stream/%(stream)s", stream=resource.stream), 'batch_size': resource.batch_size, 'starting_position': resource.starting_position, 'maximum_batching_window_in_seconds': resource.maximum_batching_window_in_seconds, 'function_name': self._fref(resource.lambda_function) } def _generate_dynamodbeventsource(self, resource, template): # type: (models.DynamoDBEventSource, Dict[str, Any]) -> None template['resource'].setdefault('aws_lambda_event_source_mapping', {})[ resource.resource_name] = { 'event_source_arn': resource.stream_arn, 'batch_size': resource.batch_size, 'starting_position': resource.starting_position, 'maximum_batching_window_in_seconds': resource.maximum_batching_window_in_seconds, 'function_name': self._fref(resource.lambda_function), } def _generate_snslambdasubscription(self, resource, template): # type: (models.SNSLambdaSubscription, Dict[str, Any]) -> None if resource.topic.startswith('arn:aws'): topic_arn = resource.topic else: topic_arn = self._arnref( 'arn:%(partition)s:sns:%(region)s:%(account_id)s:%(topic)s', topic=resource.topic) template['resource'].setdefault('aws_sns_topic_subscription', {})[ resource.resource_name] = { 'topic_arn': topic_arn, 'protocol': 'lambda', 'endpoint': self._fref(resource.lambda_function) } template['resource'].setdefault('aws_lambda_permission', {})[ resource.resource_name] = { 'function_name': self._fref(resource.lambda_function), 'action': 'lambda:InvokeFunction', 'principal': self._options.service_principal('sns'), 'source_arn': topic_arn } def _generate_cloudwatchevent(self, resource, template): # type: (models.CloudWatchEvent, Dict[str, Any]) -> None template['resource'].setdefault( 'aws_cloudwatch_event_rule', {})[ resource.resource_name] = { 'name': resource.resource_name, 'event_pattern': resource.event_pattern } self._cwe_helper(resource, template) def _generate_scheduledevent(self, resource, template): # type: (models.ScheduledEvent, Dict[str, Any]) -> None template['resource'].setdefault( 'aws_cloudwatch_event_rule', {})[ resource.resource_name] = { 'name': resource.resource_name, 'schedule_expression': resource.schedule_expression, 'description': resource.rule_description, } self._cwe_helper(resource, template) def _cwe_helper(self, resource, template): # type: (models.CloudWatchEventBase, Dict[str, Any]) -> None template['resource'].setdefault( 'aws_cloudwatch_event_target', {})[ resource.resource_name] = { 'rule': '${aws_cloudwatch_event_rule.%s.name}' % ( resource.resource_name), 'target_id': resource.resource_name, 'arn': self._fref(resource.lambda_function) } template['resource'].setdefault( 'aws_lambda_permission', {})[ resource.resource_name] = { 'function_name': self._fref(resource.lambda_function), 'action': 'lambda:InvokeFunction', 'principal': self._options.service_principal('events'), 'source_arn': "${aws_cloudwatch_event_rule.%s.arn}" % ( resource.resource_name) } def _generate_lambdalayer(self, resource, template): # type: (models.LambdaLayer, Dict[str, Any]) -> None template['resource'].setdefault( "aws_lambda_layer_version", {})[ resource.resource_name] = { 'layer_name': resource.layer_name, 'compatible_runtimes': [resource.runtime], 'filename': resource.deployment_package.filename, } self._chalice_layer = resource.resource_name def _generate_lambdafunction(self, resource, template): # type: (models.LambdaFunction, Dict[str, Any]) -> None func_definition = { 'function_name': resource.function_name, 'runtime': resource.runtime, 'handler': resource.handler, 'memory_size': resource.memory_size, 'tags': resource.tags, 'timeout': resource.timeout, 'source_code_hash': '${filebase64sha256("%s")}' % ( resource.deployment_package.filename), 'filename': resource.deployment_package.filename } # type: Dict[str, Any] if resource.security_group_ids and resource.subnet_ids: func_definition['vpc_config'] = { 'subnet_ids': resource.subnet_ids, 'security_group_ids': resource.security_group_ids } if resource.reserved_concurrency is not None: func_definition['reserved_concurrent_executions'] = ( resource.reserved_concurrency ) if resource.environment_variables: func_definition['environment'] = { 'variables': resource.environment_variables } if resource.xray: func_definition['tracing_config'] = { 'mode': 'Active' } if self._chalice_layer: func_definition['layers'] = [ '${aws_lambda_layer_version.%s.arn}' % self._chalice_layer ] if resource.layers: func_definition.setdefault('layers', []).extend( list(resource.layers)) if isinstance(resource.role, models.ManagedIAMRole): func_definition['role'] = '${aws_iam_role.%s.arn}' % ( resource.role.resource_name) else: # resource is a PreCreatedIAMRole. role = cast(models.PreCreatedIAMRole, resource.role) func_definition['role'] = role.role_arn template['resource'].setdefault('aws_lambda_function', {})[ resource.resource_name] = func_definition def _generate_restapi(self, resource, template): # type: (models.RestAPI, Dict[str, Any]) -> None # typechecker happiness swagger_doc = cast(Dict, resource.swagger_doc) template['locals']['chalice_api_swagger'] = json.dumps( swagger_doc) template['resource'].setdefault('aws_api_gateway_rest_api', {})[ resource.resource_name] = { 'body': '${local.chalice_api_swagger}', # Terraform will diff explicitly configured attributes # to the current state of the resource. Attributes configured # via swagger on the REST api need to be duplicated here, else # terraform will set them back to empty. 'name': swagger_doc['info']['title'], 'binary_media_types': swagger_doc[ 'x-amazon-apigateway-binary-media-types'], 'endpoint_configuration': {'types': [resource.endpoint_type]} } if 'x-amazon-apigateway-policy' in swagger_doc: template['resource'][ 'aws_api_gateway_rest_api'][ resource.resource_name]['policy'] = json.dumps( swagger_doc['x-amazon-apigateway-policy']) if resource.minimum_compression.isdigit(): template['resource'][ 'aws_api_gateway_rest_api'][ resource.resource_name][ 'minimum_compression_size'] = int( resource.minimum_compression) template['resource'].setdefault('aws_api_gateway_deployment', {})[ resource.resource_name] = { 'stage_name': resource.api_gateway_stage, # Ensure that the deployment gets redeployed if we update # the swagger description for the api by using its checksum # in the stage description. 'stage_description': ( "${md5(local.chalice_api_swagger)}"), 'rest_api_id': '${aws_api_gateway_rest_api.%s.id}' % ( resource.resource_name), 'lifecycle': {'create_before_destroy': True} } template['resource'].setdefault('aws_lambda_permission', {})[ resource.resource_name + '_invoke'] = { 'function_name': self._fref(resource.lambda_function), 'action': 'lambda:InvokeFunction', 'principal': self._options.service_principal('apigateway'), 'source_arn': "${aws_api_gateway_rest_api.%s.execution_arn}/*" % ( resource.resource_name) } template.setdefault('output', {})[ 'EndpointURL'] = { 'value': '${aws_api_gateway_deployment.%s.invoke_url}' % ( resource.resource_name) } template.setdefault('output', {})[ 'RestAPIId'] = { 'value': '${aws_api_gateway_rest_api.%s.id}' % ( resource.resource_name) } for auth in resource.authorizers: template['resource']['aws_lambda_permission'][ auth.resource_name + '_invoke'] = { 'function_name': self._fref(auth), 'action': 'lambda:InvokeFunction', 'principal': self._options.service_principal('apigateway'), 'source_arn': ( "${aws_api_gateway_rest_api.%s.execution_arn}" % ( resource.resource_name) + "/*" ) } self._add_domain_name(resource, template) def _add_domain_name(self, resource, template): # type: (models.RestAPI, Dict[str, Any]) -> None if resource.domain_name is None: return domain_name = resource.domain_name endpoint_type = resource.endpoint_type properties = { 'domain_name': domain_name.domain_name, 'endpoint_configuration': {'types': [endpoint_type]}, } if endpoint_type == 'EDGE': properties['certificate_arn'] = domain_name.certificate_arn else: properties[ 'regional_certificate_arn'] = domain_name.certificate_arn if domain_name.tls_version is not None: properties['security_policy'] = domain_name.tls_version.value if domain_name.tags: properties['tags'] = domain_name.tags template['resource']['aws_api_gateway_domain_name'] = { domain_name.resource_name: properties } template['resource']['aws_api_gateway_base_path_mapping'] = { domain_name.resource_name + '_mapping': { 'stage_name': resource.api_gateway_stage, 'domain_name': domain_name.domain_name, 'api_id': '${aws_api_gateway_rest_api.%s.id}' % ( resource.resource_name) } } self._add_domain_name_outputs(domain_name.resource_name, endpoint_type, template) def _add_domain_name_outputs(self, domain_resource_name, endpoint_type, template): # type: (str, str, Dict[str, Any]) -> None base = ( 'aws_api_gateway_domain_name.%s' % domain_resource_name ) if endpoint_type == 'EDGE': alias_domain_name = '${%s.cloudfront_domain_name}' % base hosted_zone_id = '${%s.cloudfront_zone_id}' % base else: alias_domain_name = '${%s.regional_domain_name}' % base hosted_zone_id = '${%s.regional_zone_id}' % base template.setdefault('output', {})['AliasDomainName'] = { 'value': alias_domain_name } template.setdefault('output', {})['HostedZoneId'] = { 'value': hosted_zone_id } def _generate_apimapping(self, resource, template): # type: (models.APIMapping, Dict[str, Any]) -> None pass def _generate_domainname(self, resource, template): # type: (models.DomainName, Dict[str, Any]) -> None pass class AppPackager(object): def __init__(self, templater, # type: TemplateGenerator resource_builder, # type: ResourceBuilder post_processor, # type: TemplatePostProcessor template_serializer, # type: TemplateSerializer osutils, # type: OSUtils ): # type: (...) -> None self._templater = templater self._resource_builder = resource_builder self._template_post_processor = post_processor self._template_serializer = template_serializer self._osutils = osutils def _to_json(self, doc): # type: (Any) -> str return serialize_to_json(doc) def _to_yaml(self, doc): # type: (Any) -> str return yaml.dump(doc, allow_unicode=True) def package_app(self, config, outdir, chalice_stage_name): # type: (Config, str, str) -> None # Deployment package resources = self._resource_builder.construct_resources( config, chalice_stage_name) template = self._templater.generate(resources) if not self._osutils.directory_exists(outdir): self._osutils.makedirs(outdir) self._template_post_processor.process( template, config, outdir, chalice_stage_name) contents = self._template_serializer.serialize_template(template) extension = self._template_serializer.file_extension filename = os.path.join( outdir, self._templater.template_file) + '.' + extension self._osutils.set_file_contents( filename=filename, contents=contents, binary=False ) class TemplatePostProcessor(object): def __init__(self, osutils): # type: (OSUtils) -> None self._osutils = osutils def process(self, template, config, outdir, chalice_stage_name): # type: (Dict[str, Any], Config, str, str) -> None raise NotImplementedError() class SAMCodeLocationPostProcessor(TemplatePostProcessor): def process(self, template, config, outdir, chalice_stage_name): # type: (Dict[str, Any], Config, str, str) -> None self._fixup_deployment_package(template, outdir) def _fixup_deployment_package(self, template, outdir): # type: (Dict[str, Any], str) -> None # NOTE: This isn't my ideal way to do this. I'd like # to move this into the build step where something # copies the DeploymentPackage.filename over to the # outdir. That would require plumbing through user # provided params such as "outdir" into the build stage # somehow, which isn't currently possible. copied = False for resource in template['Resources'].values(): if resource['Type'] == 'AWS::Serverless::Function': original_location = resource['Properties']['CodeUri'] new_location = os.path.join(outdir, 'deployment.zip') if not copied: self._osutils.copy(original_location, new_location) copied = True resource['Properties']['CodeUri'] = './deployment.zip' elif resource['Type'] == 'AWS::Serverless::LayerVersion': original_location = resource['Properties']['ContentUri'] new_location = os.path.join(outdir, 'layer-deployment.zip') self._osutils.copy(original_location, new_location) resource['Properties']['ContentUri'] = './layer-deployment.zip' class TerraformCodeLocationPostProcessor(TemplatePostProcessor): def process(self, template, config, outdir, chalice_stage_name): # type: (Dict[str, Any], Config, str, str) -> None copied = False resources = template['resource'] for r in resources.get('aws_lambda_function', {}).values(): if not copied: asset_path = os.path.join(outdir, 'deployment.zip') self._osutils.copy(r['filename'], asset_path) copied = True r['filename'] = "${path.module}/deployment.zip" r['source_code_hash'] = \ '${filebase64sha256("${path.module}/deployment.zip")}' copied = False for r in resources.get('aws_lambda_layer_version', {}).values(): if not copied: asset_path = os.path.join(outdir, 'layer-deployment.zip') self._osutils.copy(r['filename'], asset_path) copied = True r['filename'] = "${path.module}/layer-deployment.zip" r['source_code_hash'] = \ '${filebase64sha256("${path.module}/layer-deployment.zip")}' class TemplateMergePostProcessor(TemplatePostProcessor): def __init__(self, osutils, # type: OSUtils merger, # type: TemplateMerger template_serializer, # type: TemplateSerializer merge_template=None, # type: Optional[str] ): # type: (...) -> None super(TemplateMergePostProcessor, self).__init__(osutils) self._merger = merger self._template_serializer = template_serializer self._merge_template = merge_template def process(self, template, config, outdir, chalice_stage_name): # type: (Dict[str, Any], Config, str, str) -> None if self._merge_template is None: return loaded_template = self._load_template_to_merge() merged = self._merger.merge(loaded_template, template) template.clear() template.update(merged) def _load_template_to_merge(self): # type: () -> Dict[str, Any] template_name = cast(str, self._merge_template) filepath = os.path.abspath(template_name) if not self._osutils.file_exists(filepath): raise RuntimeError('Cannot find template file: %s' % filepath) template_data = self._osutils.get_file_contents(filepath, binary=False) loaded_template = self._template_serializer.load_template( template_data, filepath) return loaded_template class CompositePostProcessor(TemplatePostProcessor): def __init__(self, processors): # type: (List[TemplatePostProcessor]) -> None self._processors = processors def process(self, template, config, outdir, chalice_stage_name): # type: (Dict[str, Any], Config, str, str) -> None for processor in self._processors: processor.process(template, config, outdir, chalice_stage_name) class TemplateMerger(object): def merge(self, file_template, chalice_template): # type: (Dict[str, Any], Dict[str, Any]) -> Dict[str, Any] raise NotImplementedError('merge') class TemplateDeepMerger(TemplateMerger): def merge(self, file_template, chalice_template): # type: (Dict[str, Any], Dict[str, Any]) -> Dict[str, Any] return self._merge(file_template, chalice_template) def _merge(self, file_template, chalice_template): # type: (Any, Any) -> Any if isinstance(file_template, dict) and \ isinstance(chalice_template, dict): return self._merge_dict(file_template, chalice_template) return file_template def _merge_dict(self, file_template, chalice_template): # type: (Dict[str, Any], Dict[str, Any]) -> Dict[str, Any] merged = chalice_template.copy() for key, value in file_template.items(): merged[key] = self._merge(value, chalice_template.get(key)) return merged class TemplateSerializer(object): file_extension = '' def load_template(self, file_contents, filename=''): # type: (str, str) -> Dict[str, Any] pass def serialize_template(self, contents): # type: (Dict[str, Any]) -> str pass class JSONTemplateSerializer(TemplateSerializer): file_extension = 'json' def serialize_template(self, contents): # type: (Dict[str, Any]) -> str return serialize_to_json(contents) def load_template(self, file_contents, filename=''): # type: (str, str) -> Dict[str, Any] try: return json.loads(file_contents) except ValueError: raise RuntimeError( 'Expected %s to be valid JSON template.' % filename) class YAMLTemplateSerializer(TemplateSerializer): file_extension = 'yaml' @classmethod def is_yaml_template(cls, template_name): # type: (str) -> bool file_extension = os.path.splitext(template_name)[1].lower() return file_extension in [".yaml", ".yml"] def serialize_template(self, contents): # type: (Dict[str, Any]) -> str return yaml.safe_dump(contents, allow_unicode=True) def load_template(self, file_contents, filename=''): # type: (str, str) -> Dict[str, Any] yaml.SafeLoader.add_multi_constructor( tag_prefix='!', multi_constructor=self._custom_sam_instrinsics) try: return yaml.load( file_contents, Loader=yaml.SafeLoader, ) except ScannerError: raise RuntimeError( 'Expected %s to be valid YAML template.' % filename) def _custom_sam_instrinsics(self, loader, tag_prefix, node): # type: (yaml.SafeLoader, str, Node) -> Dict[str, Any] tag = node.tag[1:] if tag not in ['Ref', 'Condition']: tag = 'Fn::%s' % tag value = self._get_value(loader, node) return {tag: value} def _get_value(self, loader, node): # type: (yaml.SafeLoader, Node) -> Any if node.tag[1:] == 'GetAtt' and isinstance(node.value, six.string_types): value = node.value.split('.', 1) elif isinstance(node, ScalarNode): value = loader.construct_scalar(node) elif isinstance(node, SequenceNode): value = loader.construct_sequence(node) else: value = loader.construct_mapping(node) return value
the-stack_0_16436
import os import logging import random from typing import List, Optional import itertools import numpy as np from config import save_path from ..abstract_system import abstract_system from .controlloop import controlloop class system(abstract_system): def __init__(self, cl: List[controlloop], trap_state=False): if not all([type(i) == controlloop for i in cl]): print('All specified controlloops should be of the enumerative type') raise ValueError() super().__init__(cl) self.states = {} self.actions = {} self.transitions = {} self.outputs = {} self.output_map = {} self._trap_state = trap_state or any([not c._label_split for c in cl]) self.scheduler = None def post(self, x: dict, u: dict = None): """ Calculates the set of next states for given action(s) or all actions if actions is not given :param x: set of state(s) :param u: set of actions :return: set of next states """ r = set() if u is None: u = self.actions for i in x: for j in u: r.update(self.transitions[i][j]) return r def compose(self): """ Creates the sets and dictionaries describing all the NFA's in parallel. If R is True, use the partition systems, otherwise use the original systems. :return: None """ self.states = self._c_dict([o.states for o in self.control_loops]) self.outputs = self._c_dict([o._outputs for o in self.control_loops]) self.actions = self._c_dict([o.actions for o in self.control_loops]) self.output_map = self._c_dict([o.output_map for o in self.control_loops]) self.transitions = {x: {u: set() for u in self.actions} for x in self.states} for xxx in self.states: for uuu in self.actions: if self._trap_state and uuu.count('t') >= 2: self.transitions[xxx][uuu].update({'trap'}) else: s = [o.transitions[x][u] for (o, x, u) in zip(self.control_loops, xxx, uuu)] ls = set(itertools.product(*s)) self.transitions[xxx][uuu].update(ls) if self._trap_state: self.transitions['trap'] = {u: set() for u in self.actions} self.states.update({'trap': -1}) def safe_set(self) -> Optional[dict]: """ Creates a dict describing the safe set, defined as (x1,...,xn) in W if at most one of the outputs of xi is 'T'. :return: BDD function describing the safe set W """ if len(self.states) == 0: print("Compose the system before generating the safe set.") return dict() def isSafe(out: tuple): numT = 0 numX = 0 for i in out: if type(i) != tuple: numT += (i == 'T' or i == 'T1') else: numT += (i[0] == 'T' or i[0] == 'T1') numX += (i[1] == 'X') return (numX == 0 and numT <= 1) if self._trap_state: return {k: v for (k, v) in self.states.items() if k != 'trap'} else: W = {k: v for (k, v) in self.states.items() if isSafe(self.output_map[k])} return W def safety_game(self, W=None): """ Solve Safety Game for the NFA with safe set W using fixed-point iterations :param W: The safe set. If it is not specified, it is first created. :return: Solution to the Safety Game """ if self._trap_state: F_old = dict() F_new = self.states it = 1 while F_old != F_new: logging.info(f'Safety Game Iteration: {it}') F_old = F_new F_new = self.__safety_operator_trap(F_old) it += 1 if F_old == {}: return None return F_old else: if W is None: W = self.safe_set() F_old = dict() F_new = self.states it = 1 while F_old != F_new: logging.info(f'Safety Game Iteration: {it}') F_old = F_new F_new = self.__safety_operator(W, F_old) it += 1 if F_old == {}: return None return F_old # TODO: Add possibility to return full scheduler transition system def create_controller(self, Z: dict, StatesOnlyZ=True, convert_blocks=True): """ Creates a controller :param Z: :param StatesOnlyZ: Specifies whether to only use the states in Z for the controller :return: Ux, Optional[Block->State Mapping] """ if StatesOnlyZ: c_states = Z.copy() else: c_states = self.states.copy() U_c = {x: set() for x in c_states} for x in c_states: for u in self.actions: p = self.transitions[x][u] if len(p) > 0 and set(Z.keys()).issuperset(p): U_c[x].add(u) if not any([s._is_part for s in self.control_loops]): return U_c, None elif convert_blocks and any([s._is_part for s in self.control_loops]): U_c_n = {} for (b, uuu) in U_c.items(): if b != 'trap': U_c_n.update({x:uuu for x in itertools.product(*[xx.keys() for xx in self.states[b]])}) return U_c_n, None else: # Additionally supply look-up for the blocks invBs = [{x:b for (b,xx) in cl.states.items() for x in xx} for cl in self.control_loops] return U_c, invBs def simulate(self, Ts:float = 0.01, Tmax:float = 1, x0=None, use_scheduler=True, random_inputs=False): # Check correct/enough initial conditions if x0 is None: x0 = [np.random.uniform(low=-4, high=4, size=(cl.abstraction.plant.nx,)) for cl in self.control_loops] else: if len(x0) != len(self.control_loops): print('Supply initial conditions for each control loop.') return for x0i, cl in zip(x0, self.control_loops): if len(x0i) != cl.abstraction.plant.nx: print(f'Initial condition dimension ({len(x0i)}) does not correspond to the expected ({cl.abstraction.plant.nx}).') return x0 = [np.array(x) for x in x0] # Clip Ts such that it becomes a multiple of h t = int(Ts/self.h) Ts = t*self.h # 3D Matrix storing the evolution of the continuous states over time. x = [[np.array(x0i)] for x0i in x0] xhat = [[np.array(x0i)] for x0i in x0] u_hist = [[] for i in range(0, self.ns)] # continuous inputs # Evolution of the traffic model regions over time regions = [[cl.abstraction.region_of_state(x0i)] for (x0i, cl) in zip(x0, self.control_loops)] for i in range(0, self.ns): print(f'Controlloop {i} starts in region {regions[i][0]}') # 3D Matrix storing the evolution of the transitions sytem states over time. if self.state2block is None: s = [[f"T{'_'.join([str(l) for l in i[0]])}"] for i in regions] else: b = [self.state2block[j][f"T{'_'.join([str(l) for l in i[0]])}"] for (i,j) in zip(regions, range(0, self.ns))] s = [[b[i]] for i in range(0, self.ns)] v = [[[]] for i in range(0, self.ns)] # inputs (w/t/lw) TriggerTimes = [[0] for i in range(0, self.ns)] TriggerTimesEarly = [[] for i in range(0, self.ns)] CollisionTimes = {} N = int(Tmax/Ts) # Number of samples import scipy from scipy import integrate I = [scipy.integrate.quad_vec(lambda s: scipy.linalg.expm(cl.abstraction.plant.A * s), 0, Ts)[0] for cl in self.control_loops] for t in range(0, N): # Step 1: Update the continuous states utemp = [cl.abstraction.controller.K @ xn[-1] for (cl, xn) in zip(self.control_loops, xhat)] xn = [scipy.linalg.expm(cl.abstraction.plant.A * Ts) @ xi[-1] + integral @ cl.abstraction.plant.B @ ui for (cl, xi, ui, integral) in zip(self.control_loops, x, utemp, I)] for i in range(0, self.ns): x[i].append(xn[i]) for i in range(0, self.ns): xhat[i].append(xhat[i][-1]) for i in range(0, self.ns): u_hist[i].append(utemp[i]) ## Step 2: Check triggering conditions # If a scheduler is defined use that if self.scheduler is not None and use_scheduler: ss = tuple(q[-1] for q in s) u_ts = self.scheduler[ss] if random_inputs: u_ts = random.choice(list(u_ts)) else: all_w = tuple('w' for i in range(0, self.ns)) if all_w in u_ts: u_ts = all_w else: u_ts = random.choice(list(u_ts)) for i in range(0, self.ns): if u_ts[i] == 't': reg = self.control_loops[i].abstraction.region_of_state(x[i][-1]) si = f"T{'_'.join([str(l) for l in reg])}" if self.state2block is not None: si = self.state2block[i][si] s[i].append(si) xhat[i][-1] = xn[i] regions[i].append(reg) if t * Ts - TriggerTimes[i][-1] < self.control_loops[i].kmax: TriggerTimesEarly[i].append(t * Ts) else: TriggerTimes[i].append(t * Ts) else: # reg = self.control_loops[i].abstraction.region_of_state(x[i][-1]) regions[i].append(regions[i][-1]) sn = self.control_loops[i].post({s[i][-1]}, u_ts[i]) sn = random.choice(list(sn)) s[i].append(sn) # for else: triggers = set() for i in range(0, self.ns): xx = np.block([x[i][-1].T, xhat[i][-1]]) if xx.T @ self.control_loops[i].abstraction.trigger.Qbar @ xx.T > 0 or (t*Ts - TriggerTimes[i][-1]) >= self.h*self.control_loops[i].kmax: xhat[i][-1] = xn[i] TriggerTimes[i].append(t*Ts) triggers.add(i) reg = self.control_loops[i].abstraction.region_of_state(x[i][-1]) regions[i].append(reg) if len(triggers) > 1: CollisionTimes[t * Ts] = triggers for i in range(0, self.ns): TriggerTimes[i].pop(-1) import matplotlib.pyplot as plt name = 'safety_scheduler_' if not use_scheduler: name = 'no_scheduler_' dur = np.arange(0, Ts * N, Ts) for i in range(0, self.ns): plt.plot(dur, x[i][0:len(dur)], '--') plt.gca().set_prop_cycle(None) plt.plot(dur, xhat[i][0:len(dur)]) plt.title(f'Controlloop {i + 1}: $x(t)$ and $x_e(t)$.') plt.savefig(os.path.join(save_path, f'{name}simulation_Controlloop_{i + 1}_states.pdf')) plt.show() plt.clf() for i in range(0, self.ns): plt.plot(dur, u_hist[i][0:len(dur)]) plt.title(f'Controlloop {i + 1}: $u(t)$.') plt.savefig(os.path.join(save_path, f'{name}simulation_Controlloop_{i + 1}_inputs.pdf')) plt.show() plt.clf() for i in range(0, self.ns): plt.plot(TriggerTimes[i], i * np.ones(len(TriggerTimes[i])), 'x') plt.plot(TriggerTimesEarly[i], i * np.ones(len(TriggerTimesEarly[i])), 'o') for t, ii in CollisionTimes.items(): for i in ii: plt.plot(t, i, 'dk') plt.title('Trigger times') plt.yticks(range(0, self.ns), [f'Controlloop {i}' for i in range(1, self.ns + 1)]) plt.savefig(os.path.join(save_path, f'{name}simulation_trigger_events.pdf')) plt.show() plt.clf() for i in range(0, self.ns): plt.plot(dur, regions[i][0:len(dur)]) plt.title('Traffic Model Regions') plt.legend([f'Controlloop {i}' for i in range(1, self.ns + 1)], loc='upper left') plt.savefig(os.path.join(save_path, f'{name}simulation_traffic_model_regions.pdf')) plt.show() plt.clf() """ Private Helper Methods """ def __safety_operator_trap(self, Z:dict): F = dict() for (x, v) in Z.items(): if x == 'trap': continue else: for (uk, uv) in self.actions.items(): p = self.transitions[x][uk] if len(p) == 0: continue elif not set(Z.keys()).issuperset(p): continue else: F.update({x: v}) return F def __safety_operator(self, W: dict, Z: dict): """ :param W: :param Z: :return: """ F = dict() for (x, v) in Z.items(): if x not in W: continue else: for (uk, uv) in self.actions.items(): p = self.transitions[x][uk] if len(p) == 0: continue elif not set(Z.keys()).issuperset(p): continue else: F.update({x: v}) return F @staticmethod def _c_dict(l: list): """ Combination of list of dicts. I.e. l = [{a:1, b:2}, {c:3, d:4}] -> res = {(a,c):(1,3), (a,d):(1,4)...} :param l: List of dict's :return: """ a = [[key for key in d] for d in l] b = [[val for val in d.values()] for d in l] la = itertools.product(*a) lb = itertools.product(*b) return {a: b for (a, b) in zip(la, lb)}
the-stack_0_16437
# -*- coding: utf-8 -*- import prefect # base import is required for prefect context from prefect import task, Flow, Parameter from prefect.storage import Module from simmate.calculators.vasp.tasks.relaxation.third_party.mit import MITRelaxationTask from simmate.workflows.common_tasks.all import load_input from simmate.configuration.django import setup_full # sets database connection from simmate.database.local_calculations.relaxation import ( MITIonicStep, MITRelaxation, ) # -------------------------------------------------------------------------------------- # THIS SECTION SETS UP OUR TASKS # we initialize the task here so we can use it in the Prefect flow below relax_structure = MITRelaxationTask() @task def save_results(result_and_corrections): # split our results and corrections (which are given as a tuple) into # separate variables vasprun, corrections = result_and_corrections # initialize the MITRelaxation with the Prefect run info calculation = MITRelaxation.from_prefect_context(prefect.context) calculation.save() # now update the calculation entry with our results calculation.update_from_vasp_run(vasprun, corrections, MITIonicStep) return calculation.id # -------------------------------------------------------------------------------------- # THIS SECTION PUTS OUR TASKS TOGETHER TO MAKE A WORKFLOW # now make the overall workflow with Flow("MIT Relaxation") as workflow: # These are the input parameters for the overall workflow structure = Parameter("structure") vasp_command = Parameter("vasp_command", default="vasp_std > vasp.out") # load the structure to a pymatgen object structure_pmg = load_input(structure) # Run the calculation after we have saved the input result_and_corrections = relax_structure( structure=structure_pmg, command=vasp_command, ) # pass these results and corrections into our final task which saves # everything to the database calculation_id = save_results(result_and_corrections) # For when this workflow is registered with Prefect Cloud, we indicate that # it can be imported from a python module. Note __name__ provides the path # to this module. workflow.storage = Module(__name__) # --------------------------------------------------------------------------------------
the-stack_0_16438
# -*- coding: utf-8 -*- """ S3 Synchronization: Peer Repository Adapter for ADASHI @copyright: 2011-2020 (c) Sahana Software Foundation @license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os from gluon import * from ..s3sync import S3SyncBaseAdapter # ============================================================================= class S3SyncAdapter(S3SyncBaseAdapter): """ ADASHI Synchronization Adapter (passive) http://www.adashisystems.com """ # ------------------------------------------------------------------------- def register(self): """ Register this site at the peer repository @return: True to indicate success, otherwise False """ # No registration required (passive adapter) return True # ------------------------------------------------------------------------- def login(self): """ Login at the peer repository @return: None if successful, otherwise the error """ # No login required (passive adapter) return None # ------------------------------------------------------------------------- def pull(self, task, onconflict=None): """ Outgoing pull @param task: the task (sync_task Row) """ repository = self.repository log = repository.log # Import path PATH = os.path.join(current.request.folder, "uploads", "adashi_feeds") # Read names from path try: files_list = os.listdir(PATH) except os.error: message = "Upload path does not exist or can not be accessed" log.write(repository_id = repository.id, resource_name = "mixed", transmission = log.IN, mode = log.PUSH, action = "read files from %s" % PATH, remote = False, result = log.FATAL, message = message, ) return message, None # Add path to file names, filter for .xml files, sort by mtime files = [os.path.join(PATH, f) for f in files_list if f[-4:] == ".xml"] files = sorted(filter(os.path.isfile, files), key=os.path.getmtime) # Strategy and Policies from ..s3import import S3ImportItem default_update_policy = S3ImportItem.POLICY.NEWER default_conflict_policy = S3ImportItem.POLICY.MASTER strategy = task.strategy update_policy = task.update_policy or default_update_policy conflict_policy = task.conflict_policy or default_conflict_policy if update_policy not in ("THIS", "OTHER"): last_sync = task.last_pull # Import files for f in files: current.log.debug("ADASHI Sync: importing %s" % f) try: with open(f, "r") as source: result = self.receive([source], None, strategy=strategy, update_policy=update_policy, conflict_policy=conflict_policy, onconflict=onconflict, last_sync=last_sync, mixed=True, ) except IOError: continue # Log the operation log.write(repository_id = repository.id, resource_name = "mixed", transmission = log.IN, mode = log.PUSH, action = "import %s" % f, remote = result["remote"], result = result["status"], message = result["message"], ) # Remove the file try: os.remove(f) except os.error: current.log.error("ADASHI Sync: can not delete %s" % f) return None, current.request.utcnow # ------------------------------------------------------------------------- def push(self, task): """ Outgoing push @param task: the sync_task Row """ repository = self.repository # Log the operation message = "Push to ADASHI currently not supported" log = repository.log log.write(repository_id = repository.id, resource_name = task.resource_name, transmission = log.OUT, mode = log.PUSH, action = None, remote = False, result = log.FATAL, message = message, ) output = current.xml.json_message(False, 400, message) return output, None # ------------------------------------------------------------------------- def send(self, resource, start=None, limit=None, msince=None, filters=None, mixed=False, pretty_print=False): """ Respond to an incoming pull from a peer repository @param resource: the resource to be synchronized @param start: index of the first record to send @param limit: maximum number of records to send @param msince: minimum modification date/time for records to send @param filters: URL filters for record extraction @param mixed: negotiate resource with peer (disregard resource) @param pretty_print: make the output human-readable """ if not resource or mixed: msg = "Mixed resource synchronization not supported" return {"status": self.log.FATAL, "message": msg, "response": current.xml.json_message(False, 400, msg), } # Export the data as S3XML stylesheet = os.path.join(current.request.folder, "static", "formats", "georss", "export.xsl") output = resource.export_xml(start=start, limit=limit, filters=filters, msince=msince, stylesheet=stylesheet, pretty_print=pretty_print, ) count = resource.results msg = "Data sent to peer (%s records)" % count # Set content type header headers = current.response.headers headers["Content-Type"] = "text/xml" return {"status": self.log.SUCCESS, "message": msg, "response": output, } # ------------------------------------------------------------------------- def receive(self, source, resource, strategy=None, update_policy=None, conflict_policy=None, onconflict=None, last_sync=None, mixed=False): """ Respond to an incoming push from the peer repository @param source: the input stream (list of file-like objects) @param resource: the target resource @param strategy: the import strategy @param update_policy: the update policy @param conflict_policy: the conflict resolution policy @param onconflict: callback for conflict resolution @param last_sync: the last synchronization date/time for the peer @param mixed: negotiate resource with peer (disregard resource) """ s3db = current.s3db xml = current.xml log = self.log remote = False # Sync always has only one source per request source = source[0] # Parse the feed tree = xml.parse(source) if not tree: # Parser error msg = xml.error if xml.error else "Invalid source" return {"status": log.FATAL, "message": msg, "remote": remote, "response": xml.json_message(False, 400, msg), } # Identify feed category category = tree.findall("//channel/category") if not category: msg = "Feed category missing" return {"status": log.ERROR, "message": msg, "remote": remote, "response": xml.json_message(False, 400, msg), } category = category[0].text # Instantiate target resource after feed category if category == "AVL": resource = s3db.resource("pr_group") elif category == "Incidents": resource = s3db.resource("event_incident") resource.configure(oncommit_import_item = self.update_assignments) else: msg = "Unknown feed category" return {"status": log.WARNING, "message": msg, "remote": remote, "response": xml.json_message(False, 400, msg), } # Store source data? repository = self.repository if repository.keep_source: self.keep_source(tree, category) # Import transformation stylesheet stylesheet = os.path.join(current.request.folder, "static", "formats", "georss", "import.xsl", ) # Import parameters if onconflict: onconflict_callback = lambda item: onconflict(item, repository, resource, ) else: onconflict_callback = None ignore_errors = True # Import # Flag to let audit know the repository s3 = current.response.s3 s3.repository_id = self.repository.id output = resource.import_xml(tree, format = "xml", stylesheet = stylesheet, ignore_errors = ignore_errors, strategy = strategy, update_policy = update_policy, conflict_policy = conflict_policy, last_sync = last_sync, onconflict = onconflict_callback, source_type = "adashi", ) s3.repository_id = None # Process validation errors, if any if resource.error_tree is not None: result = log.WARNING if ignore_errors else log.FATAL message = "%s" % resource.error for element in resource.error_tree.findall("resource"): error_msg = element.get("error", "unknown error") error_fields = element.findall("data[@error]") if error_fields: for field in error_fields: error_msg = field.get("error", "unknown error") if error_msg: msg = "(UID: %s) %s.%s=%s: %s" % \ (element.get("uuid", None), element.get("name", None), field.get("field", None), field.get("value", field.text), error_msg) message = "%s, %s" % (message, msg) else: msg = "(UID: %s) %s: %s" % \ (element.get("uuid", None), element.get("name", None), error_msg) message = "%s, %s" % (message, msg) else: result = log.SUCCESS message = "Data received from peer" return {"status": result, "remote": remote, "message": message, "response": output, } # ------------------------------------------------------------------------- @staticmethod def update_assignments(item): """ Deactivate all previous unit assignments (event_team) for an incident which are not in this feed update. @param item: the import item @note: this assumes that the list of incident resources in the feed update is complete (confirmed for ADASHI) @note: must not deactivate assignments which are newer than the feed update (Sync policy NEWER) """ if item.tablename == "event_incident" and \ item.id and \ item.method == item.METHOD.UPDATE: job = item.job mtime = item.data.get("modified_on") if not job or not mtime: return get_item = job.items.get # Get the unit names of all current assignments in the feed team_names = set() add_name = team_names.add for citem in item.components: if citem.tablename == "event_team": for ref in citem.references: entry = ref.entry team_item_id = entry.item_id if entry.tablename == "pr_group" and team_item_id: team_item = get_item(team_item_id) team_name = team_item.data.get("name") if team_name: add_name(team_name) break s3db = current.s3db ltable = s3db.event_team gtable = s3db.pr_group # Get all active assignments in the database which are older # than the feed update and which are not in the feed update, # and deactivate them left = gtable.on(ltable.group_id == gtable.id) query = (ltable.incident_id == item.id) & \ (ltable.modified_on <= mtime) & \ (ltable.status == 3) & \ (~(gtable.name.belongs(team_names))) rows = current.db(query).select(ltable.id, left=left) inactive = set(row.id for row in rows) current.db(ltable.id.belongs(inactive)).update(status=4) # ------------------------------------------------------------------------- def keep_source(self, tree, category): """ Helper method to store source data in file system @param tree: the XML element tree of the source @param category: the feed category """ repository = self.repository # Log the operation log = repository.log log.write(repository_id = repository.id, resource_name = None, transmission = log.IN, mode = log.PUSH, action = "receive", remote = False, result = log.WARNING, message = "'Keep Source Data' active for this repository!", ) request = current.request folder = os.path.join(request.folder, "uploads", "adashi") dt = request.utcnow.replace(microsecond=0).isoformat() dt = dt.replace(":", "").replace("-", "") filename = os.path.join(folder, "%s_%s.xml" % (category, dt), ) if not os.path.exists(folder): try: os.mkdir(folder) except OSError: return if filename: try: with open(filename, "w") as f: tree.write(f, pretty_print=True) except IOError: return # End =========================================================================
the-stack_0_16440
""" Luna API. API is written via FastAPI. """ from fastapi import FastAPI, HTTPException, Response from pydantic import BaseModel from typing import List, Optional from natsort import natsorted, ns from luna.db.db_util import DbConnection from luna.db import bucket from luna.db import vignette from luna.db import cellular_annotation as ann from luna.db import scatter_plot as sca from luna.db.base import DB_DELIM from starlette.middleware.cors import CORSMiddleware app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class Bucket(BaseModel): """Bucket Object.""" slug: str name: str description: Optional[str] = None url: Optional[str] = None class Vignettes(BaseModel): """Vignettes Object.""" content: str class Annotation(BaseModel): """Annotation Object.""" slug: str label: str class AnnotationBundle(Annotation): """Annotation Bundle Object.""" values_distinct: List[str] values_ordered: List[str] class ExpressionBundle(BaseModel): """Expression Bundle Object.""" gene: str max_expression: float values_ordered: List[float] class Coordinate(BaseModel): """Coordinate Object.""" x: float y: float @app.get("/buckets", response_model=List[Bucket]) def get_buckets(): """Get list of all data buckets.""" session = _init_db_connection() try: sql_bucket_list = session.query(bucket.Bucket).all() api_bucket_list = [] for sql_bucket in sql_bucket_list: api_bucket = Bucket( name=sql_bucket.name, description=sql_bucket.description, url=sql_bucket.url, slug=sql_bucket.slug, ) api_bucket_list.append(api_bucket) return api_bucket_list finally: session.close() @app.get("/annotation_list/{bucket_slug}", response_model=List[Annotation]) def get_annotation_list(bucket_slug: str): """Get the list of annotations for the specified bucket.""" session = _init_db_connection() target_type = ann.CellularAnnotationType.OTHER try: bucket_id = _get_bucket_id(session, bucket_slug) record_list = ( session.query(ann.CellularAnnotation) .filter_by(bucket_id=bucket_id, type=target_type) .order_by(ann.CellularAnnotation.slug) .all() ) if len(record_list) == 0: raise HTTPException(status_code=404, detail="No annotations.") annotation_list = [] for r in record_list: current_annotation = Annotation(label=r.label, slug=r.slug) annotation_list.append(current_annotation) return annotation_list finally: session.close() @app.get( "/annotation/{bucket_slug}/{annotation_slug}", response_model=AnnotationBundle, ) def get_annotation_values(bucket_slug: str, annotation_slug: str): """Get the list of all values for the specified annotation.""" session = _init_db_connection() try: bucket_id = _get_bucket_id(session, bucket_slug) record = session.query(ann.CellularAnnotation) record = record.filter_by( bucket_id=bucket_id, slug=annotation_slug ).first() if record is None: raise HTTPException(status_code=404, detail="ID not found.") value_list = record.value_list.split(DB_DELIM) distinct_list = list({value.strip() for value in value_list}) distinct_list = natsorted(distinct_list, alg=ns.IGNORECASE) current_annotation = AnnotationBundle( label=record.label, slug=record.slug, values_distinct=distinct_list, values_ordered=value_list, ) return current_annotation finally: session.close() @app.get("/expression/{bucket_slug}/{gene}", response_model=ExpressionBundle) def get_expression_values(bucket_slug: str, gene: str): """Get the expression data for the specified gene.""" gene = gene.lower() session = _init_db_connection() try: bucket_id = _get_bucket_id(session, bucket_slug) record = ( session.query(ann.CellularAnnotation.value_list) .filter_by(bucket_id=bucket_id, slug=gene) .first() ) if record is None: raise HTTPException(status_code=404, detail="No data found.") value_list = record.value_list.split(DB_DELIM) expression_bundle = ExpressionBundle( gene=gene, max_expression=max(value_list), values_ordered=value_list, ) return expression_bundle finally: session.close() @app.get("/umap/{bucket_slug}", response_model=List[Coordinate]) def get_umap_coordinates(bucket_slug: str): """Get the UMAP coordinates for the specified bucket.""" session = _init_db_connection() try: bucket_id = _get_bucket_id(session, bucket_slug) record = ( session.query(sca.ScatterPlot.coordinate_list) .filter_by(bucket_id=bucket_id, type=sca.ScatterPlotType.UMAP) .first() ) if record is None: raise HTTPException(status_code=404, detail="No data found.") return _extract_coordinates(record) finally: session.close() @app.get("/tsne/{bucket_slug}", response_model=List[Coordinate]) def get_tsne_coordinates(bucket_slug: str): """Get the TSNE coordinates for the specified bucket.""" session = _init_db_connection() try: bucket_id = _get_bucket_id(session, bucket_slug) record = ( session.query(sca.ScatterPlot.coordinate_list) .filter_by(bucket_id=bucket_id, type=sca.ScatterPlotType.TSNE) .first() ) if record is None: raise HTTPException(status_code=404, detail="No data found.") return _extract_coordinates(record) finally: session.close() @app.get("/vignettes/{bucket_slug}") def get_vignettes(bucket_slug: str): """Get all Vignettes for the specified bucket.""" session = _init_db_connection() try: bucket_id = _get_bucket_id(session, bucket_slug) record = ( session.query(vignette.Vignette) .filter_by(bucket_id=bucket_id) .first() ) if record is None: raise HTTPException(status_code=404, detail="No data found.") return Response(content=record.json, media_type="application/json") finally: session.close() def _get_bucket_id(session, bucket_slug): record = session.query(bucket.Bucket).filter_by(slug=bucket_slug).first() if record: return record.id else: raise HTTPException(status_code=404, detail="Bucket not found") def _extract_coordinates(record): response_list = [] value_list = record.coordinate_list.split(DB_DELIM) for pair_str in value_list: if len(pair_str) > 0: parts = pair_str.split(",") current_value = Coordinate(x=float(parts[0]), y=float(parts[1])) response_list.append(current_value) return response_list def _init_db_connection(): db_connection = DbConnection() return db_connection.session
the-stack_0_16446
# -*- coding: utf-8 -*- class WriterRegistry: def __init__(self, listener): self.storage = {} self.id = 0 self.next_id = 0 self.listener = listener def get_id(self, value): try: value_id=self.storage[value] return value_id except: self.register(value) return self.storage[value] def register(self, value): if value not in self.storage: idee=self.next_id+1 self.next_id+=1 self.storage.update({value: idee}) print(self.storage) self.listener.on_new_registry_entry(value, idee)
the-stack_0_16451
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2012 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import signal import sys import traceback import threading from typing import Optional, TYPE_CHECKING try: import PyQt5 except Exception: sys.exit("Error: Could not import PyQt5 on Linux systems, you may try 'sudo apt-get install python3-pyqt5'") from PyQt5.QtGui import QGuiApplication from PyQt5.QtWidgets import (QApplication, QSystemTrayIcon, QWidget, QMenu, QMessageBox) from PyQt5.QtCore import QObject, pyqtSignal, QTimer import PyQt5.QtCore as QtCore from electrum_ltc.i18n import _, set_language from electrum_ltc.plugin import run_hook from electrum_ltc.base_wizard import GoBack from electrum_ltc.util import (UserCancelled, profiler, WalletFileException, BitcoinException, get_new_wallet_name) from electrum_ltc.wallet import Wallet, Abstract_Wallet from electrum_ltc.logging import Logger from .installwizard import InstallWizard, WalletAlreadyOpenInMemory from .util import get_default_language, read_QIcon, ColorScheme, custom_message_box from .main_window import ElectrumWindow from .network_dialog import NetworkDialog from .stylesheet_patcher import patch_qt_stylesheet from .lightning_dialog import LightningDialog from .watchtower_dialog import WatchtowerDialog if TYPE_CHECKING: from electrum_ltc.daemon import Daemon from electrum_ltc.simple_config import SimpleConfig from electrum_ltc.plugin import Plugins class OpenFileEventFilter(QObject): def __init__(self, windows): self.windows = windows super(OpenFileEventFilter, self).__init__() def eventFilter(self, obj, event): if event.type() == QtCore.QEvent.FileOpen: if len(self.windows) >= 1: self.windows[0].pay_to_URI(event.url().toEncoded()) return True return False class QElectrumApplication(QApplication): new_window_signal = pyqtSignal(str, object) class QNetworkUpdatedSignalObject(QObject): network_updated_signal = pyqtSignal(str, object) class ElectrumGui(Logger): @profiler def __init__(self, config: 'SimpleConfig', daemon: 'Daemon', plugins: 'Plugins'): set_language(config.get('language', get_default_language())) Logger.__init__(self) # Uncomment this call to verify objects are being properly # GC-ed when windows are closed #network.add_jobs([DebugMem([Abstract_Wallet, SPV, Synchronizer, # ElectrumWindow], interval=5)]) QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_X11InitThreads) if hasattr(QtCore.Qt, "AA_ShareOpenGLContexts"): QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_ShareOpenGLContexts) if hasattr(QGuiApplication, 'setDesktopFileName'): QGuiApplication.setDesktopFileName('electrum-ltc.desktop') self.gui_thread = threading.current_thread() self.config = config self.daemon = daemon self.plugins = plugins self.windows = [] self.efilter = OpenFileEventFilter(self.windows) self.app = QElectrumApplication(sys.argv) self.app.installEventFilter(self.efilter) self.app.setWindowIcon(read_QIcon("electrum-ltc.png")) # timer self.timer = QTimer(self.app) self.timer.setSingleShot(False) self.timer.setInterval(500) # msec self.network_dialog = None self.lightning_dialog = None self.watchtower_dialog = None self.network_updated_signal_obj = QNetworkUpdatedSignalObject() self._num_wizards_in_progress = 0 self._num_wizards_lock = threading.Lock() # init tray self.dark_icon = self.config.get("dark_icon", False) self.tray = QSystemTrayIcon(self.tray_icon(), None) self.tray.setToolTip('Electrum-LTC') self.tray.activated.connect(self.tray_activated) self.build_tray_menu() self.tray.show() self.app.new_window_signal.connect(self.start_new_window) self.set_dark_theme_if_needed() run_hook('init_qt', self) def set_dark_theme_if_needed(self): use_dark_theme = self.config.get('qt_gui_color_theme', 'default') == 'dark' if use_dark_theme: try: import qdarkstyle self.app.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5()) except BaseException as e: use_dark_theme = False self.logger.warning(f'Error setting dark theme: {repr(e)}') # Apply any necessary stylesheet patches patch_qt_stylesheet(use_dark_theme=use_dark_theme) # Even if we ourselves don't set the dark theme, # the OS/window manager/etc might set *a dark theme*. # Hence, try to choose colors accordingly: ColorScheme.update_from_widget(QWidget(), force_dark=use_dark_theme) def build_tray_menu(self): # Avoid immediate GC of old menu when window closed via its action if self.tray.contextMenu() is None: m = QMenu() self.tray.setContextMenu(m) else: m = self.tray.contextMenu() m.clear() network = self.daemon.network m.addAction(_("Network"), self.show_network_dialog) if network.lngossip: m.addAction(_("Lightning Network"), self.show_lightning_dialog) if network.local_watchtower: m.addAction(_("Local Watchtower"), self.show_watchtower_dialog) for window in self.windows: name = window.wallet.basename() submenu = m.addMenu(name) submenu.addAction(_("Show/Hide"), window.show_or_hide) submenu.addAction(_("Close"), window.close) m.addAction(_("Dark/Light"), self.toggle_tray_icon) m.addSeparator() m.addAction(_("Exit Electrum-LTC"), self.close) def tray_icon(self): if self.dark_icon: return read_QIcon('electrum_dark_icon.png') else: return read_QIcon('electrum_light_icon.png') def toggle_tray_icon(self): self.dark_icon = not self.dark_icon self.config.set_key("dark_icon", self.dark_icon, True) self.tray.setIcon(self.tray_icon()) def tray_activated(self, reason): if reason == QSystemTrayIcon.DoubleClick: if all([w.is_hidden() for w in self.windows]): for w in self.windows: w.bring_to_top() else: for w in self.windows: w.hide() def close(self): for window in self.windows: window.close() if self.network_dialog: self.network_dialog.close() if self.lightning_dialog: self.lightning_dialog.close() if self.watchtower_dialog: self.watchtower_dialog.close() def new_window(self, path, uri=None): # Use a signal as can be called from daemon thread self.app.new_window_signal.emit(path, uri) def show_lightning_dialog(self): if not self.lightning_dialog: self.lightning_dialog = LightningDialog(self) self.lightning_dialog.bring_to_top() def show_watchtower_dialog(self): if not self.watchtower_dialog: self.watchtower_dialog = WatchtowerDialog(self) self.watchtower_dialog.bring_to_top() def show_network_dialog(self): if self.network_dialog: self.network_dialog.on_update() self.network_dialog.show() self.network_dialog.raise_() return self.network_dialog = NetworkDialog(self.daemon.network, self.config, self.network_updated_signal_obj) self.network_dialog.show() def _create_window_for_wallet(self, wallet): w = ElectrumWindow(self, wallet) self.windows.append(w) self.build_tray_menu() # FIXME: Remove in favour of the load_wallet hook run_hook('on_new_window', w) w.warn_if_testnet() w.warn_if_watching_only() return w def count_wizards_in_progress(func): def wrapper(self: 'ElectrumGui', *args, **kwargs): with self._num_wizards_lock: self._num_wizards_in_progress += 1 try: return func(self, *args, **kwargs) finally: with self._num_wizards_lock: self._num_wizards_in_progress -= 1 return wrapper @count_wizards_in_progress def start_new_window(self, path, uri, *, app_is_starting=False): '''Raises the window for the wallet if it is open. Otherwise opens the wallet and creates a new window for it''' wallet = None try: wallet = self.daemon.load_wallet(path, None) except BaseException as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot load wallet') + ' (1):\n' + repr(e)) # if app is starting, still let wizard to appear if not app_is_starting: return if not wallet: try: wallet = self._start_wizard_to_select_or_create_wallet(path) except (WalletFileException, BitcoinException) as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot load wallet') + ' (2):\n' + repr(e)) if not wallet: return # create or raise window try: for window in self.windows: if window.wallet.storage.path == wallet.storage.path: break else: window = self._create_window_for_wallet(wallet) except BaseException as e: self.logger.exception('') custom_message_box(icon=QMessageBox.Warning, parent=None, title=_('Error'), text=_('Cannot create window for wallet') + ':\n' + repr(e)) if app_is_starting: wallet_dir = os.path.dirname(path) path = os.path.join(wallet_dir, get_new_wallet_name(wallet_dir)) self.start_new_window(path, uri) return if uri: window.pay_to_URI(uri) window.bring_to_top() window.setWindowState(window.windowState() & ~QtCore.Qt.WindowMinimized | QtCore.Qt.WindowActive) window.activateWindow() return window def _start_wizard_to_select_or_create_wallet(self, path) -> Optional[Abstract_Wallet]: wizard = InstallWizard(self.config, self.app, self.plugins) try: path, storage = wizard.select_storage(path, self.daemon.get_wallet) # storage is None if file does not exist if storage is None: wizard.path = path # needed by trustedcoin plugin wizard.run('new') storage = wizard.create_storage(path) else: wizard.run_upgrades(storage) except (UserCancelled, GoBack): return except WalletAlreadyOpenInMemory as e: return e.wallet finally: wizard.terminate() # return if wallet creation is not complete if storage is None or storage.get_action(): return wallet = Wallet(storage, config=self.config) wallet.start_network(self.daemon.network) self.daemon.add_wallet(wallet) return wallet def close_window(self, window: ElectrumWindow): if window in self.windows: self.windows.remove(window) self.build_tray_menu() # save wallet path of last open window if not self.windows: self.config.save_last_wallet(window.wallet) run_hook('on_close_window', window) self.daemon.stop_wallet(window.wallet.storage.path) def init_network(self): # Show network dialog if config does not exist if self.daemon.network: if self.config.get('auto_connect') is None: wizard = InstallWizard(self.config, self.app, self.plugins) wizard.init_network(self.daemon.network) wizard.terminate() def main(self): try: self.init_network() except UserCancelled: return except GoBack: return except BaseException as e: self.logger.exception('') return self.timer.start() path = self.config.get_wallet_path(use_gui_last_wallet=True) if not self.start_new_window(path, self.config.get('url'), app_is_starting=True): return signal.signal(signal.SIGINT, lambda *args: self.app.quit()) def quit_after_last_window(): # keep daemon running after close if self.config.get('daemon'): return # check if a wizard is in progress with self._num_wizards_lock: if self._num_wizards_in_progress > 0 or len(self.windows) > 0: return if self.config.get('persist_daemon'): return self.app.quit() self.app.setQuitOnLastWindowClosed(False) # so _we_ can decide whether to quit self.app.lastWindowClosed.connect(quit_after_last_window) def clean_up(): # Shut down the timer cleanly self.timer.stop() # clipboard persistence. see http://www.mail-archive.com/[email protected]/msg17328.html event = QtCore.QEvent(QtCore.QEvent.Clipboard) self.app.sendEvent(self.app.clipboard(), event) self.tray.hide() self.app.aboutToQuit.connect(clean_up) # main loop self.app.exec_() # on some platforms the exec_ call may not return, so use clean_up() def stop(self): self.logger.info('closing GUI') self.app.quit()
the-stack_0_16453
# Authors: # # Giorgio Patrini # # License: BSD 3 clause from __future__ import division import warnings import itertools import numpy as np import numpy.linalg as la from scipy import sparse, stats from scipy.sparse import random as sparse_random import pytest from sklearn.utils import gen_batches from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import assert_allclose_dense_sparse from sklearn.utils.testing import skip_if_32bit from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _handle_zeros_in_scale from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import minmax_scale from sklearn.preprocessing.data import QuantileTransformer from sklearn.preprocessing.data import quantile_transform from sklearn.preprocessing.data import MaxAbsScaler from sklearn.preprocessing.data import maxabs_scale from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.preprocessing.data import PowerTransformer from sklearn.preprocessing.data import power_transform from sklearn.exceptions import DataConversionWarning, NotFittedError from sklearn.base import clone from sklearn.pipeline import Pipeline from sklearn.model_selection import cross_val_predict from sklearn.svm import SVR from sklearn.utils import shuffle from sklearn import datasets iris = datasets.load_iris() # Make some data to be used many times rng = np.random.RandomState(0) n_features = 30 n_samples = 1000 offsets = rng.uniform(-1, 1, size=n_features) scales = rng.uniform(1, 10, size=n_features) X_2d = rng.randn(n_samples, n_features) * scales + offsets X_1row = X_2d[0, :].reshape(1, n_features) X_1col = X_2d[:, 0].reshape(n_samples, 1) X_list_1row = X_1row.tolist() X_list_1col = X_1col.tolist() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def _check_dim_1axis(a): if isinstance(a, list): return np.array(a).shape[0] return a.shape[0] def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size, n_samples_seen): if batch_stop != n: assert_equal((i + 1) * chunk_size, n_samples_seen) else: assert_equal(i * chunk_size + (batch_stop - batch_start), n_samples_seen) def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) assert_equal(interact.powers_.shape, (interact.n_output_features_, interact.n_input_features_)) def test_polynomial_feature_names(): X = np.arange(30).reshape(10, 3) poly = PolynomialFeatures(degree=2, include_bias=True).fit(X) feature_names = poly.get_feature_names() assert_array_equal(['1', 'x0', 'x1', 'x2', 'x0^2', 'x0 x1', 'x0 x2', 'x1^2', 'x1 x2', 'x2^2'], feature_names) poly = PolynomialFeatures(degree=3, include_bias=False).fit(X) feature_names = poly.get_feature_names(["a", "b", "c"]) assert_array_equal(['a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2', 'b c', 'c^2', 'a^3', 'a^2 b', 'a^2 c', 'a b^2', 'a b c', 'a c^2', 'b^3', 'b^2 c', 'b c^2', 'c^3'], feature_names) # test some unicode poly = PolynomialFeatures(degree=1, include_bias=True).fit(X) feature_names = poly.get_feature_names( [u"\u0001F40D", u"\u262E", u"\u05D0"]) assert_array_equal([u"1", u"\u0001F40D", u"\u262E", u"\u05D0"], feature_names) def test_polynomial_feature_array_order(): X = np.arange(10).reshape(5, 2) def is_c_contiguous(a): return np.isfortran(a.T) assert is_c_contiguous(PolynomialFeatures().fit_transform(X)) assert is_c_contiguous(PolynomialFeatures(order='C').fit_transform(X)) assert np.isfortran(PolynomialFeatures(order='F').fit_transform(X)) @pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'], [(1, True, False, int), (2, True, False, int), (2, True, False, np.float32), (2, True, False, np.float64), (3, False, False, np.float64), (3, False, True, np.float64), (4, False, False, np.float64), (4, False, True, np.float64)]) def test_polynomial_features_csc_X(deg, include_bias, interaction_only, dtype): rng = np.random.RandomState(0) X = rng.randint(0, 2, (100, 2)) X_csc = sparse.csc_matrix(X) est = PolynomialFeatures(deg, include_bias=include_bias, interaction_only=interaction_only) Xt_csc = est.fit_transform(X_csc.astype(dtype)) Xt_dense = est.fit_transform(X.astype(dtype)) assert isinstance(Xt_csc, sparse.csc_matrix) assert Xt_csc.dtype == Xt_dense.dtype assert_array_almost_equal(Xt_csc.A, Xt_dense) @pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'], [(1, True, False, int), (2, True, False, int), (2, True, False, np.float32), (2, True, False, np.float64), (3, False, False, np.float64), (3, False, True, np.float64)]) def test_polynomial_features_csr_X(deg, include_bias, interaction_only, dtype): rng = np.random.RandomState(0) X = rng.randint(0, 2, (100, 2)) X_csr = sparse.csr_matrix(X) est = PolynomialFeatures(deg, include_bias=include_bias, interaction_only=interaction_only) Xt_csr = est.fit_transform(X_csr.astype(dtype)) Xt_dense = est.fit_transform(X.astype(dtype)) assert isinstance(Xt_csr, sparse.csr_matrix) assert Xt_csr.dtype == Xt_dense.dtype assert_array_almost_equal(Xt_csr.A, Xt_dense) @pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'], [(2, True, False, np.float32), (2, True, False, np.float64), (3, False, False, np.float64), (3, False, True, np.float64)]) def test_polynomial_features_csr_X_floats(deg, include_bias, interaction_only, dtype): X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr() X = X_csr.toarray() est = PolynomialFeatures(deg, include_bias=include_bias, interaction_only=interaction_only) Xt_csr = est.fit_transform(X_csr.astype(dtype)) Xt_dense = est.fit_transform(X.astype(dtype)) assert isinstance(Xt_csr, sparse.csr_matrix) assert Xt_csr.dtype == Xt_dense.dtype assert_array_almost_equal(Xt_csr.A, Xt_dense) @pytest.mark.parametrize(['zero_row_index', 'deg', 'interaction_only'], [(0, 2, True), (1, 2, True), (2, 2, True), (0, 3, True), (1, 3, True), (2, 3, True), (0, 2, False), (1, 2, False), (2, 2, False), (0, 3, False), (1, 3, False), (2, 3, False)]) def test_polynomial_features_csr_X_zero_row(zero_row_index, deg, interaction_only): X_csr = sparse_random(3, 10, 1.0, random_state=0).tocsr() X_csr[zero_row_index, :] = 0.0 X = X_csr.toarray() est = PolynomialFeatures(deg, include_bias=False, interaction_only=interaction_only) Xt_csr = est.fit_transform(X_csr) Xt_dense = est.fit_transform(X) assert isinstance(Xt_csr, sparse.csr_matrix) assert Xt_csr.dtype == Xt_dense.dtype assert_array_almost_equal(Xt_csr.A, Xt_dense) # This degree should always be one more than the highest degree supported by # _csr_expansion. @pytest.mark.parametrize(['include_bias', 'interaction_only'], [(True, True), (True, False), (False, True), (False, False)]) def test_polynomial_features_csr_X_degree_4(include_bias, interaction_only): X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr() X = X_csr.toarray() est = PolynomialFeatures(4, include_bias=include_bias, interaction_only=interaction_only) Xt_csr = est.fit_transform(X_csr) Xt_dense = est.fit_transform(X) assert isinstance(Xt_csr, sparse.csr_matrix) assert Xt_csr.dtype == Xt_dense.dtype assert_array_almost_equal(Xt_csr.A, Xt_dense) @pytest.mark.parametrize(['deg', 'dim', 'interaction_only'], [(2, 1, True), (2, 2, True), (3, 1, True), (3, 2, True), (3, 3, True), (2, 1, False), (2, 2, False), (3, 1, False), (3, 2, False), (3, 3, False)]) def test_polynomial_features_csr_X_dim_edges(deg, dim, interaction_only): X_csr = sparse_random(1000, dim, 0.5, random_state=0).tocsr() X = X_csr.toarray() est = PolynomialFeatures(deg, interaction_only=interaction_only) Xt_csr = est.fit_transform(X_csr) Xt_dense = est.fit_transform(X) assert isinstance(Xt_csr, sparse.csr_matrix) assert Xt_csr.dtype == Xt_dense.dtype assert_array_almost_equal(Xt_csr.A, Xt_dense) def test_standard_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_almost_equal(scaler.mean_, X.ravel()) assert_almost_equal(scaler.scale_, np.ones(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.std(axis=0), np.zeros_like(n_features)) else: assert_almost_equal(scaler.mean_, X.mean()) assert_almost_equal(scaler.scale_, X.std()) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones((5, 1)) scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_almost_equal(scaler.mean_, 1.) assert_almost_equal(scaler.scale_, 1.) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), .0) assert_equal(scaler.n_samples_seen_, X.shape[0]) def test_standard_scaler_dtype(): # Ensure scaling does not affect dtype rng = np.random.RandomState(0) n_samples = 10 n_features = 3 for dtype in [np.float16, np.float32, np.float64]: X = rng.randn(n_samples, n_features).astype(dtype) scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X) assert X.dtype == X_scaled.dtype assert scaler.mean_.dtype == np.float64 assert scaler.scale_.dtype == np.float64 def test_scale_1d(): # 1-d inputs X_list = [1., 3., 5., 0.] X_arr = np.array(X_list) for X in [X_list, X_arr]: X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(), 0.0) assert_array_almost_equal(X_scaled.std(), 1.0) assert_array_equal(scale(X, with_mean=False, with_std=False), X) @skip_if_32bit def test_standard_scaler_numerical_stability(): # Test numerical stability of scaling # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.full(8, np.log(1e-5), dtype=np.float64) # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.full(10, np.log(1e-5), dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.full(10, 1e-100, dtype=np.float64) x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.full(10, 1e100, dtype=np.float64) w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) n_features = 5 n_samples = 4 X = rng.randn(n_samples, n_features) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) assert_equal(scaler.n_samples_seen_, n_samples) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert X_scaled is not X # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert X_scaled_back is not X assert X_scaled_back is not X_scaled assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0]) # Check that the data hasn't been modified assert X_scaled is not X X_scaled = scaler.fit(X).transform(X, copy=False) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert X_scaled is X X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert X_scaled is not X def test_handle_zeros_in_scale(): s1 = np.array([0, 1, 2, 3]) s2 = _handle_zeros_in_scale(s1, copy=True) assert not s1[0] == s2[0] assert_array_equal(s1, np.array([0, 1, 2, 3])) assert_array_equal(s2, np.array([1, 1, 2, 3])) def test_minmax_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MinMaxScaler().fit(X[batch0]) scaler_incr = MinMaxScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std until the end of partial fits, and scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = StandardScaler(with_std=False).fit(X) scaler_incr = StandardScaler(with_std=False) for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_) assert_equal(scaler_batch.var_, scaler_incr.var_) # Nones assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_incr = StandardScaler().partial_fit(X[batch0]) if chunk_size == 1: assert_array_almost_equal(np.zeros(n_features, dtype=np.float64), scaler_incr.var_) assert_array_almost_equal(np.ones(n_features, dtype=np.float64), scaler_incr.scale_) else: assert_array_almost_equal(np.var(X[batch0], axis=0), scaler_incr.var_) assert_array_almost_equal(np.std(X[batch0], axis=0), scaler_incr.scale_) # no constants # Test std until the end of partial fits, and scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit_numerical_stability(): # Test if the incremental computation introduces significative errors # for large datasets with values of large magniture rng = np.random.RandomState(0) n_features = 2 n_samples = 100 offsets = rng.uniform(-1e15, 1e15, size=n_features) scales = rng.uniform(1e3, 1e6, size=n_features) X = rng.randn(n_samples, n_features) * scales + offsets scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() for chunk in X: scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features)) # Regardless of abs values, they must not be more diff 6 significant digits tol = 10 ** (-6) assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol) assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol) # NOTE Be aware that for much larger offsets std is very unstable (last # assert) while mean is OK. # Sparse input size = (100, 3) scale = 1e20 X = rng.randint(0, 2, size).astype(np.float64) * scale X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) for X in [X_csr, X_csc]: # with_mean=False is required with sparse input scaler = StandardScaler(with_mean=False).fit(X) scaler_incr = StandardScaler(with_mean=False) for chunk in X: # chunk = sparse.csr_matrix(data_chunks) scaler_incr = scaler_incr.partial_fit(chunk) # Regardless of magnitude, they must not differ more than of 6 digits tol = 10 ** (-6) assert scaler.mean_ is not None assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol) def test_partial_fit_sparse_input(): # Check that sparsity is not destroyed X = np.array([[1.], [0.], [0.], [5.]]) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) for X in [X_csr, X_csc]: X_null = null_transform.partial_fit(X).transform(X) assert_array_equal(X_null.data, X.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_null.data) assert_array_equal(X_orig.data, X.data) def test_standard_scaler_trasform_with_partial_fit(): # Check some postconditions after applying partial_fit and transform X = X_2d[:100, :] scaler_incr = StandardScaler() for i, batch in enumerate(gen_batches(X.shape[0], 1)): X_sofar = X[:(i + 1), :] chunks_copy = X_sofar.copy() scaled_batch = StandardScaler().fit_transform(X_sofar) scaler_incr = scaler_incr.partial_fit(X[batch]) scaled_incr = scaler_incr.transform(X_sofar) assert_array_almost_equal(scaled_batch, scaled_incr) assert_array_almost_equal(X_sofar, chunks_copy) # No change right_input = scaler_incr.inverse_transform(scaled_incr) assert_array_almost_equal(X_sofar, right_input) zero = np.zeros(X.shape[1]) epsilon = np.finfo(float).eps assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal assert_array_less(zero, scaler_incr.scale_ + epsilon) # (i+1) because the Scaler has been already fitted assert_equal((i + 1), scaler_incr.n_samples_seen_) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MinMaxScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(X_scaled.min(axis=0), np.zeros(n_features)) assert_array_almost_equal(X_scaled.max(axis=0), np.zeros(n_features)) else: assert_array_almost_equal(X_scaled.min(axis=0), .0) assert_array_almost_equal(X_scaled.max(axis=0), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones((5, 1)) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # Function interface X_1d = X_1row.ravel() min_ = X_1d.min() max_ = X_1d.max() assert_array_almost_equal((X_1d - min_) / (max_ - min_), minmax_scale(X_1d, copy=True)) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) assert_raises(ValueError, StandardScaler().fit, X_csc) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert not np.any(np.isnan(X_csr_scaled.data)) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert not np.any(np.isnan(X_csc_scaled.data)) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert X_scaled is not X assert X_csr_scaled is not X_csr X_scaled_back = scaler.inverse_transform(X_scaled) assert X_scaled_back is not X assert X_scaled_back is not X_scaled assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert X_csr_scaled_back is not X_csr assert X_csr_scaled_back is not X_csr_scaled assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert X_csc_scaled_back is not X_csc assert X_csc_scaled_back is not X_csc_scaled assert_array_almost_equal(X_csc_scaled_back.toarray(), X) @pytest.mark.parametrize("with_mean", [True, False]) @pytest.mark.parametrize("with_std", [True, False]) @pytest.mark.parametrize("array_constructor", [np.asarray, sparse.csc_matrix, sparse.csr_matrix]) def test_scaler_n_samples_seen_with_nan(with_mean, with_std, array_constructor): X = np.array([[0, 1, 3], [np.nan, 6, 10], [5, 4, np.nan], [8, 0, np.nan]], dtype=np.float64) X = array_constructor(X) if sparse.issparse(X) and with_mean: pytest.skip("'with_mean=True' cannot be used with sparse matrix.") transformer = StandardScaler(with_mean=with_mean, with_std=with_std) transformer.fit(X) assert_array_equal(transformer.n_samples_seen_, np.array([3, 4, 2])) def _check_identity_scalers_attributes(scaler_1, scaler_2): assert scaler_1.mean_ is scaler_2.mean_ is None assert scaler_1.var_ is scaler_2.var_ is None assert scaler_1.scale_ is scaler_2.scale_ is None assert scaler_1.n_samples_seen_ == scaler_2.n_samples_seen_ def test_scaler_return_identity(): # test that the scaler return identity when with_mean and with_std are # False X_dense = np.array([[0, 1, 3], [5, 6, 0], [8, 0, 10]], dtype=np.float64) X_csr = sparse.csr_matrix(X_dense) X_csc = X_csr.tocsc() transformer_dense = StandardScaler(with_mean=False, with_std=False) X_trans_dense = transformer_dense.fit_transform(X_dense) transformer_csr = clone(transformer_dense) X_trans_csr = transformer_csr.fit_transform(X_csr) transformer_csc = clone(transformer_dense) X_trans_csc = transformer_csc.fit_transform(X_csc) assert_allclose_dense_sparse(X_trans_csr, X_csr) assert_allclose_dense_sparse(X_trans_csc, X_csc) assert_allclose(X_trans_dense, X_dense) for trans_1, trans_2 in itertools.combinations([transformer_dense, transformer_csr, transformer_csc], 2): _check_identity_scalers_attributes(trans_1, trans_2) transformer_dense.partial_fit(X_dense) transformer_csr.partial_fit(X_csr) transformer_csc.partial_fit(X_csc) for trans_1, trans_2 in itertools.combinations([transformer_dense, transformer_csr, transformer_csc], 2): _check_identity_scalers_attributes(trans_1, trans_2) transformer_dense.fit(X_dense) transformer_csr.fit(X_csr) transformer_csc.fit(X_csc) for trans_1, trans_2 in itertools.combinations([transformer_dense, transformer_csr, transformer_csc], 2): _check_identity_scalers_attributes(trans_1, trans_2) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert not np.any(np.isnan(X_csr_scaled.data)) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert not np.any(np.isnan(X_csc_scaled.data)) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert X_scaled is not X assert X_csr_scaled is not X_csr X_scaled_back = scaler.inverse_transform(X_scaled) assert X_scaled_back is not X assert X_scaled_back is not X_scaled assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert X_csr_scaled_back is not X_csr assert X_csr_scaled_back is not X_csr_scaled assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert X_csc_scaled_back is not X_csc assert X_csc_scaled_back is not X_csc_scaled assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) X_csc_copy = X_csc.copy() StandardScaler(with_mean=False, copy=False).fit(X_csc) assert_array_equal(X_csc.toarray(), X_csc_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) assert_raises(ValueError, scale, X_csc, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csc) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) assert_raises(ValueError, scaler.transform, X_csc) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) X_transformed_csc = sparse.csc_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csc) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [[np.inf, 5, 6, 7, 8]] assert_raises_regex(ValueError, "Input contains infinity or a value too large", scale, X) def test_robust_scaler_error_sparse(): X_sparse = sparse.rand(1000, 10) scaler = RobustScaler(with_centering=True) err_msg = "Cannot center sparse matrices" with pytest.raises(ValueError, match=err_msg): scaler.fit(X_sparse) @pytest.mark.parametrize("with_centering", [True, False]) @pytest.mark.parametrize("with_scaling", [True, False]) @pytest.mark.parametrize("X", [np.random.randn(10, 3), sparse.rand(10, 3, density=0.5)]) def test_robust_scaler_attributes(X, with_centering, with_scaling): # check consistent type of attributes if with_centering and sparse.issparse(X): pytest.skip("RobustScaler cannot center sparse matrix") scaler = RobustScaler(with_centering=with_centering, with_scaling=with_scaling) scaler.fit(X) if with_centering: assert isinstance(scaler.center_, np.ndarray) else: assert scaler.center_ is None if with_scaling: assert isinstance(scaler.scale_, np.ndarray) else: assert scaler.scale_ is None def test_robust_scaler_col_zero_sparse(): # check that the scaler is working when there is not data materialized in a # column of a sparse matrix X = np.random.randn(10, 5) X[:, 0] = 0 X = sparse.csr_matrix(X) scaler = RobustScaler(with_centering=False) scaler.fit(X) assert scaler.scale_[0] == pytest.approx(1) X_trans = scaler.transform(X) assert_allclose(X[:, 0].toarray(), X_trans[:, 0].toarray()) def test_robust_scaler_2d_arrays(): # Test robust scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) @pytest.mark.parametrize("density", [0, 0.05, 0.1, 0.5, 1]) @pytest.mark.parametrize("strictly_signed", ['positive', 'negative', 'zeros', None]) def test_robust_scaler_equivalence_dense_sparse(density, strictly_signed): # Check the equivalence of the fitting with dense and sparse matrices X_sparse = sparse.rand(1000, 5, density=density).tocsc() if strictly_signed == 'positive': X_sparse.data = np.abs(X_sparse.data) elif strictly_signed == 'negative': X_sparse.data = - np.abs(X_sparse.data) elif strictly_signed == 'zeros': X_sparse.data = np.zeros(X_sparse.data.shape, dtype=np.float64) X_dense = X_sparse.toarray() scaler_sparse = RobustScaler(with_centering=False) scaler_dense = RobustScaler(with_centering=False) scaler_sparse.fit(X_sparse) scaler_dense.fit(X_dense) assert_allclose(scaler_sparse.scale_, scaler_dense.scale_) def test_robust_scaler_transform_one_row_csr(): # Check RobustScaler on transforming csr matrix with one row rng = np.random.RandomState(0) X = rng.randn(4, 5) single_row = np.array([[0.1, 1., 2., 0., -1.]]) scaler = RobustScaler(with_centering=False) scaler = scaler.fit(X) row_trans = scaler.transform(sparse.csr_matrix(single_row)) row_expected = single_row / scaler.scale_ assert_array_almost_equal(row_trans.toarray(), row_expected) row_scaled_back = scaler.inverse_transform(row_trans) assert_array_almost_equal(single_row, row_scaled_back.toarray()) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_iris_quantiles(): X = iris.data scaler = RobustScaler(quantile_range=(10, 90)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(10, 90), axis=0) q_range = q[1] - q[0] assert_array_almost_equal(q_range, 1) def test_quantile_transform_iris(): X = iris.data # uniform output distribution transformer = QuantileTransformer(n_quantiles=30) X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # normal output distribution transformer = QuantileTransformer(n_quantiles=30, output_distribution='normal') X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure it is possible to take the inverse of a sparse matrix # which contain negative value; this is the case in the iris dataset X_sparse = sparse.csc_matrix(X) X_sparse_tran = transformer.fit_transform(X_sparse) X_sparse_tran_inv = transformer.inverse_transform(X_sparse_tran) assert_array_almost_equal(X_sparse.A, X_sparse_tran_inv.A) def test_quantile_transform_check_error(): X = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [2, 4, 0, 0, 6, 8, 0, 10, 0, 0], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) X = sparse.csc_matrix(X) X_neg = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [-2, 4, 0, 0, 6, 8, 0, 10, 0, 0], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) X_neg = sparse.csc_matrix(X_neg) assert_raises_regex(ValueError, "Invalid value for 'n_quantiles': 0.", QuantileTransformer(n_quantiles=0).fit, X) assert_raises_regex(ValueError, "Invalid value for 'subsample': 0.", QuantileTransformer(subsample=0).fit, X) assert_raises_regex(ValueError, "The number of quantiles cannot be" " greater than the number of samples used. Got" " 1000 quantiles and 10 samples.", QuantileTransformer(subsample=10).fit, X) transformer = QuantileTransformer(n_quantiles=10) assert_raises_regex(ValueError, "QuantileTransformer only accepts " "non-negative sparse matrices.", transformer.fit, X_neg) transformer.fit(X) assert_raises_regex(ValueError, "QuantileTransformer only accepts " "non-negative sparse matrices.", transformer.transform, X_neg) X_bad_feat = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) assert_raises_regex(ValueError, "X does not have the same number of " "features as the previously fitted data. Got 2" " instead of 3.", transformer.transform, X_bad_feat) assert_raises_regex(ValueError, "X does not have the same number of " "features as the previously fitted data. Got 2" " instead of 3.", transformer.inverse_transform, X_bad_feat) transformer = QuantileTransformer(n_quantiles=10, output_distribution='rnd') # check that an error is raised at fit time assert_raises_regex(ValueError, "'output_distribution' has to be either" " 'normal' or 'uniform'. Got 'rnd' instead.", transformer.fit, X) # check that an error is raised at transform time transformer.output_distribution = 'uniform' transformer.fit(X) X_tran = transformer.transform(X) transformer.output_distribution = 'rnd' assert_raises_regex(ValueError, "'output_distribution' has to be either" " 'normal' or 'uniform'. Got 'rnd' instead.", transformer.transform, X) # check that an error is raised at inverse_transform time assert_raises_regex(ValueError, "'output_distribution' has to be either" " 'normal' or 'uniform'. Got 'rnd' instead.", transformer.inverse_transform, X_tran) # check that an error is raised if input is scalar assert_raise_message(ValueError, 'Expected 2D array, got scalar array instead', transformer.transform, 10) def test_quantile_transform_sparse_ignore_zeros(): X = np.array([[0, 1], [0, 0], [0, 2], [0, 2], [0, 1]]) X_sparse = sparse.csc_matrix(X) transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) # dense case -> warning raise assert_warns_message(UserWarning, "'ignore_implicit_zeros' takes effect" " only with sparse matrix. This parameter has no" " effect.", transformer.fit, X) X_expected = np.array([[0, 0], [0, 0], [0, 1], [0, 1], [0, 0]]) X_trans = transformer.fit_transform(X_sparse) assert_almost_equal(X_expected, X_trans.A) # consider the case where sparse entries are missing values and user-given # zeros are to be considered X_data = np.array([0, 0, 1, 0, 2, 2, 1, 0, 1, 2, 0]) X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]) X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8]) X_sparse = sparse.csc_matrix((X_data, (X_row, X_col))) X_trans = transformer.fit_transform(X_sparse) X_expected = np.array([[0., 0.5], [0., 0.], [0., 1.], [0., 1.], [0., 0.5], [0., 0.], [0., 0.5], [0., 1.], [0., 0.]]) assert_almost_equal(X_expected, X_trans.A) transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) X_data = np.array([-1, -1, 1, 0, 0, 0, 1, -1, 1]) X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1]) X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6]) X_sparse = sparse.csc_matrix((X_data, (X_row, X_col))) X_trans = transformer.fit_transform(X_sparse) X_expected = np.array([[0, 1], [0, 0.375], [0, 0.375], [0, 0.375], [0, 1], [0, 0], [0, 1]]) assert_almost_equal(X_expected, X_trans.A) assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A) # check in conjunction with subsampling transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5, subsample=8, random_state=0) X_trans = transformer.fit_transform(X_sparse) assert_almost_equal(X_expected, X_trans.A) assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A) def test_quantile_transform_dense_toy(): X = np.array([[0, 2, 2.6], [25, 4, 4.1], [50, 6, 2.3], [75, 8, 9.5], [100, 10, 0.1]]) transformer = QuantileTransformer(n_quantiles=5) transformer.fit(X) # using the a uniform output, each entry of X should be map between 0 and 1 # and equally spaced X_trans = transformer.fit_transform(X) X_expected = np.tile(np.linspace(0, 1, num=5), (3, 1)).T assert_almost_equal(np.sort(X_trans, axis=0), X_expected) X_test = np.array([ [-1, 1, 0], [101, 11, 10], ]) X_expected = np.array([ [0, 0, 0], [1, 1, 1], ]) assert_array_almost_equal(transformer.transform(X_test), X_expected) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) def test_quantile_transform_subsampling(): # Test that subsampling the input yield to a consistent results We check # that the computed quantiles are almost mapped to a [0, 1] vector where # values are equally spaced. The infinite norm is checked to be smaller # than a given threshold. This is repeated 5 times. # dense support n_samples = 1000000 n_quantiles = 1000 X = np.sort(np.random.sample((n_samples, 1)), axis=0) ROUND = 5 inf_norm_arr = [] for random_state in range(ROUND): transformer = QuantileTransformer(random_state=random_state, n_quantiles=n_quantiles, subsample=n_samples // 10) transformer.fit(X) diff = (np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)) inf_norm = np.max(np.abs(diff)) assert inf_norm < 1e-2 inf_norm_arr.append(inf_norm) # each random subsampling yield a unique approximation to the expected # linspace CDF assert_equal(len(np.unique(inf_norm_arr)), len(inf_norm_arr)) # sparse support X = sparse.rand(n_samples, 1, density=.99, format='csc', random_state=0) inf_norm_arr = [] for random_state in range(ROUND): transformer = QuantileTransformer(random_state=random_state, n_quantiles=n_quantiles, subsample=n_samples // 10) transformer.fit(X) diff = (np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)) inf_norm = np.max(np.abs(diff)) assert inf_norm < 1e-1 inf_norm_arr.append(inf_norm) # each random subsampling yield a unique approximation to the expected # linspace CDF assert_equal(len(np.unique(inf_norm_arr)), len(inf_norm_arr)) def test_quantile_transform_sparse_toy(): X = np.array([[0., 2., 0.], [25., 4., 0.], [50., 0., 2.6], [0., 0., 4.1], [0., 6., 0.], [0., 8., 0.], [75., 0., 2.3], [0., 10., 0.], [0., 0., 9.5], [100., 0., 0.1]]) X = sparse.csc_matrix(X) transformer = QuantileTransformer(n_quantiles=10) transformer.fit(X) X_trans = transformer.fit_transform(X) assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.) assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) transformer_dense = QuantileTransformer(n_quantiles=10).fit( X.toarray()) X_trans = transformer_dense.transform(X) assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.) assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.) X_trans_inv = transformer_dense.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) def test_quantile_transform_axis1(): X = np.array([[0, 25, 50, 75, 100], [2, 4, 6, 8, 10], [2.6, 4.1, 2.3, 9.5, 0.1]]) X_trans_a0 = quantile_transform(X.T, axis=0, n_quantiles=5) X_trans_a1 = quantile_transform(X, axis=1, n_quantiles=5) assert_array_almost_equal(X_trans_a0, X_trans_a1.T) def test_quantile_transform_bounds(): # Lower and upper bounds are manually mapped. We checked that in the case # of a constant feature and binary feature, the bounds are properly mapped. X_dense = np.array([[0, 0], [0, 0], [1, 0]]) X_sparse = sparse.csc_matrix(X_dense) # check sparse and dense are consistent X_trans = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_dense) assert_array_almost_equal(X_trans, X_dense) X_trans_sp = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_sparse) assert_array_almost_equal(X_trans_sp.A, X_dense) assert_array_almost_equal(X_trans, X_trans_sp.A) # check the consistency of the bounds by learning on 1 matrix # and transforming another X = np.array([[0, 1], [0, 0.5], [1, 0]]) X1 = np.array([[0, 0.1], [0, 0.5], [1, 0.1]]) transformer = QuantileTransformer(n_quantiles=3).fit(X) X_trans = transformer.transform(X1) assert_array_almost_equal(X_trans, X1) # check that values outside of the range learned will be mapped properly. X = np.random.random((1000, 1)) transformer = QuantileTransformer() transformer.fit(X) assert_equal(transformer.transform([[-10]]), transformer.transform([[np.min(X)]])) assert_equal(transformer.transform([[10]]), transformer.transform([[np.max(X)]])) assert_equal(transformer.inverse_transform([[-10]]), transformer.inverse_transform( [[np.min(transformer.references_)]])) assert_equal(transformer.inverse_transform([[10]]), transformer.inverse_transform( [[np.max(transformer.references_)]])) def test_quantile_transform_and_inverse(): # iris dataset X = iris.data transformer = QuantileTransformer(n_quantiles=1000, random_state=0) X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) def test_quantile_transform_nan(): X = np.array([[np.nan, 0, 0, 1], [np.nan, np.nan, 0, 0.5], [np.nan, 1, 1, 0]]) transformer = QuantileTransformer(n_quantiles=10, random_state=42) transformer.fit_transform(X) # check that the quantile of the first column is all NaN assert np.isnan(transformer.quantiles_[:, 0]).all() # all other column should not contain NaN assert not np.isnan(transformer.quantiles_[:, 1:]).any() def test_robust_scaler_invalid_range(): for range_ in [ (-1, 90), (-2, -3), (10, 101), (100.5, 101), (90, 50), ]: scaler = RobustScaler(quantile_range=range_) assert_raises_regex(ValueError, r'Invalid quantile range: \(', scaler.fit, iris.data) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert not np.any(np.isnan(X_scaled)) X_csr_scaled = scale(X_csr, with_mean=False) assert not np.any(np.isnan(X_csr_scaled.data)) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert X_scaled is not X X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # null scale X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True) assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray()) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scale_1d_array(): X = iris.data[:, 1] X_trans = robust_scale(X) assert_array_almost_equal(np.median(X_trans), 0) q = np.percentile(X_trans, q=(25, 75)) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): # Check RobustScaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_maxabs_scaler_zero_variance_features(): # Check MaxAbsScaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # function interface X_trans = maxabs_scale(X) assert_array_almost_equal(X_trans, X_expected) # sparse data X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_trans_csr = scaler.fit_transform(X_csr) X_trans_csc = scaler.fit_transform(X_csc) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans_csr.A, X_expected) assert_array_almost_equal(X_trans_csc.A, X_expected) X_trans_csr_inv = scaler.inverse_transform(X_trans_csr) X_trans_csc_inv = scaler.inverse_transform(X_trans_csc) assert_array_almost_equal(X, X_trans_csr_inv.A) assert_array_almost_equal(X, X_trans_csc_inv.A) def test_maxabs_scaler_large_negative_value(): # Check MaxAbsScaler on toy data with a large negative value X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) def test_maxabs_scaler_transform_one_row_csr(): # Check MaxAbsScaler on transforming csr matrix with one row X = sparse.csr_matrix([[0.5, 1., 1.]]) scaler = MaxAbsScaler() scaler = scaler.fit(X) X_trans = scaler.transform(X) X_expected = sparse.csr_matrix([[1., 1., 1.]]) assert_array_almost_equal(X_trans.toarray(), X_expected.toarray()) X_scaled_back = scaler.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_scaled_back.toarray()) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_maxabs_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MaxAbsScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), np.ones(n_features)) else: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones((5, 1)) scaler = MaxAbsScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert_equal(scaler.n_samples_seen_, X.shape[0]) # function interface X_1d = X_1row.ravel() max_abs = np.abs(X_1d).max() assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True)) def test_maxabs_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d[:100, :] n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() scaler_incr_csr = MaxAbsScaler() scaler_incr_csc = MaxAbsScaler() for batch in gen_batches(n, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) X_csr = sparse.csr_matrix(X[batch]) scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr) X_csc = sparse.csc_matrix(X[batch]) scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csc.max_abs_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr_csr.n_samples_seen_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr_csc.n_samples_seen_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MaxAbsScaler().fit(X[batch0]) scaler_incr = MaxAbsScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert_equal(scaler_batch.n_samples_seen_, scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std until the end of partial fits, and scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() # Clean estimator for i, batch in enumerate(gen_batches(n, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert X_norm is not X X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert X_norm is X X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert X_norm is not X assert isinstance(X_norm, sparse.csr_matrix) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert X_norm1 is not X X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert X_norm2 is X X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert X_norm is not X assert isinstance(X_norm, sparse.csr_matrix) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert X_norm1 is not X X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert X_norm2 is X X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert X_norm is not X assert isinstance(X_norm, sparse.csr_matrix) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') rs = np.random.RandomState(0) X_dense = rs.randn(10, 5) X_sparse = sparse.csr_matrix(X_dense) ones = np.ones((10)) for X in (X_dense, X_sparse): for dtype in (np.float32, np.float64): for norm in ('l1', 'l2'): X = X.astype(dtype) X_norm = normalize(X, norm=norm) assert_equal(X_norm.dtype, dtype) X_norm = toarray(X_norm) if norm == 'l1': row_sums = np.abs(X_norm).sum(axis=1) else: X_norm_squared = X_norm**2 row_sums = X_norm_squared.sum(axis=1) assert_array_almost_equal(row_sums, ones) # Test return_norm X_dense = np.array([[3.0, 0, 4.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]]) for norm in ('l1', 'l2', 'max'): _, norms = normalize(X_dense, norm=norm, return_norm=True) if norm == 'l1': assert_array_almost_equal(norms, np.array([7.0, 1.0, 5.0])) elif norm == 'l2': assert_array_almost_equal(norms, np.array([5.0, 1.0, 3.60555127])) else: assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) X_sparse = sparse.csr_matrix(X_dense) for norm in ('l1', 'l2'): assert_raises(NotImplementedError, normalize, X_sparse, norm=norm, return_norm=True) _, norms = normalize(X_sparse, norm='max', return_norm=True) assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert X_bin is not X assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert X_bin is not X X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert X_bin is X binarizer = Binarizer(copy=False) X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64) X_bin = binarizer.transform(X_float) if init is not list: assert X_bin is X_float X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_cv_pipeline_precomputed(): # Cross-validate a regression on four coplanar points with the same # value. Use precomputed kernel to ensure Pipeline with KernelCenterer # is treated as a _pairwise operation. X = np.array([[3, 0, 0], [0, 3, 0], [0, 0, 3], [1, 1, 1]]) y_true = np.ones((4,)) K = X.dot(X.T) kcent = KernelCenterer() pipeline = Pipeline([("kernel_centerer", kcent), ("svr", SVR(gamma='scale'))]) # did the pipeline set the _pairwise attribute? assert pipeline._pairwise # test cross-validation, score should be almost perfect # NB: this test is pretty vacuous -- it's mainly to test integration # of Pipeline and KernelCenterer y_pred = cross_val_predict(pipeline, K, y_true, cv=2) assert_array_almost_equal(y_true, y_pred) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert sparse.isspmatrix_coo(X), X assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert sparse.isspmatrix_csc(X), X assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert sparse.isspmatrix_csr(X), X assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_fit_cold_start(): X = iris.data X_2d = X[:, :2] # Scalers that have a partial_fit method scalers = [StandardScaler(with_mean=False, with_std=False), MinMaxScaler(), MaxAbsScaler()] for scaler in scalers: scaler.fit_transform(X) # with a different shape, this may break the scaler unless the internal # state is reset scaler.fit_transform(X_2d) def test_quantile_transform_valid_axis(): X = np.array([[0, 25, 50, 75, 100], [2, 4, 6, 8, 10], [2.6, 4.1, 2.3, 9.5, 0.1]]) assert_raises_regex(ValueError, "axis should be either equal to 0 or 1" ". Got axis=2", quantile_transform, X.T, axis=2) @pytest.mark.parametrize("method", ['box-cox', 'yeo-johnson']) def test_power_transformer_notfitted(method): pt = PowerTransformer(method=method) X = np.abs(X_1col) assert_raises(NotFittedError, pt.transform, X) assert_raises(NotFittedError, pt.inverse_transform, X) @pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson']) @pytest.mark.parametrize('standardize', [True, False]) @pytest.mark.parametrize('X', [X_1col, X_2d]) def test_power_transformer_inverse(method, standardize, X): # Make sure we get the original input when applying transform and then # inverse transform X = np.abs(X) if method == 'box-cox' else X pt = PowerTransformer(method=method, standardize=standardize) X_trans = pt.fit_transform(X) assert_almost_equal(X, pt.inverse_transform(X_trans)) def test_power_transformer_1d(): X = np.abs(X_1col) for standardize in [True, False]: pt = PowerTransformer(method='box-cox', standardize=standardize) X_trans = pt.fit_transform(X) X_trans_func = power_transform( X, method='box-cox', standardize=standardize ) X_expected, lambda_expected = stats.boxcox(X.flatten()) if standardize: X_expected = scale(X_expected) assert_almost_equal(X_expected.reshape(-1, 1), X_trans) assert_almost_equal(X_expected.reshape(-1, 1), X_trans_func) assert_almost_equal(X, pt.inverse_transform(X_trans)) assert_almost_equal(lambda_expected, pt.lambdas_[0]) assert len(pt.lambdas_) == X.shape[1] assert isinstance(pt.lambdas_, np.ndarray) def test_power_transformer_2d(): X = np.abs(X_2d) for standardize in [True, False]: pt = PowerTransformer(method='box-cox', standardize=standardize) X_trans_class = pt.fit_transform(X) X_trans_func = power_transform( X, method='box-cox', standardize=standardize ) for X_trans in [X_trans_class, X_trans_func]: for j in range(X_trans.shape[1]): X_expected, lmbda = stats.boxcox(X[:, j].flatten()) if standardize: X_expected = scale(X_expected) assert_almost_equal(X_trans[:, j], X_expected) assert_almost_equal(lmbda, pt.lambdas_[j]) # Test inverse transformation X_inv = pt.inverse_transform(X_trans) assert_array_almost_equal(X_inv, X) assert len(pt.lambdas_) == X.shape[1] assert isinstance(pt.lambdas_, np.ndarray) def test_power_transformer_boxcox_strictly_positive_exception(): # Exceptions should be raised for negative arrays and zero arrays when # method is boxcox pt = PowerTransformer(method='box-cox') pt.fit(np.abs(X_2d)) X_with_negatives = X_2d not_positive_message = 'strictly positive' assert_raise_message(ValueError, not_positive_message, pt.transform, X_with_negatives) assert_raise_message(ValueError, not_positive_message, pt.fit, X_with_negatives) assert_raise_message(ValueError, not_positive_message, power_transform, X_with_negatives, 'box-cox') assert_raise_message(ValueError, not_positive_message, pt.transform, np.zeros(X_2d.shape)) assert_raise_message(ValueError, not_positive_message, pt.fit, np.zeros(X_2d.shape)) assert_raise_message(ValueError, not_positive_message, power_transform, np.zeros(X_2d.shape), 'box-cox') @pytest.mark.parametrize('X', [X_2d, np.abs(X_2d), -np.abs(X_2d), np.zeros(X_2d.shape)]) def test_power_transformer_yeojohnson_any_input(X): # Yeo-Johnson method should support any kind of input power_transform(X, method='yeo-johnson') @pytest.mark.parametrize("method", ['box-cox', 'yeo-johnson']) def test_power_transformer_shape_exception(method): pt = PowerTransformer(method=method) X = np.abs(X_2d) pt.fit(X) # Exceptions should be raised for arrays with different num_columns # than during fitting wrong_shape_message = 'Input data has a different number of features' assert_raise_message(ValueError, wrong_shape_message, pt.transform, X[:, 0:1]) assert_raise_message(ValueError, wrong_shape_message, pt.inverse_transform, X[:, 0:1]) def test_power_transformer_method_exception(): pt = PowerTransformer(method='monty-python') X = np.abs(X_2d) # An exception should be raised if PowerTransformer.method isn't valid bad_method_message = "'method' must be one of" assert_raise_message(ValueError, bad_method_message, pt.fit, X) def test_power_transformer_lambda_zero(): pt = PowerTransformer(method='box-cox', standardize=False) X = np.abs(X_2d)[:, 0:1] # Test the lambda = 0 case pt.lambdas_ = np.array([0]) X_trans = pt.transform(X) assert_array_almost_equal(pt.inverse_transform(X_trans), X) def test_power_transformer_lambda_one(): # Make sure lambda = 1 corresponds to the identity for yeo-johnson pt = PowerTransformer(method='yeo-johnson', standardize=False) X = np.abs(X_2d)[:, 0:1] pt.lambdas_ = np.array([1]) X_trans = pt.transform(X) assert_array_almost_equal(X_trans, X) @pytest.mark.parametrize("method, lmbda", [('box-cox', .1), ('box-cox', .5), ('yeo-johnson', .1), ('yeo-johnson', .5), ('yeo-johnson', 1.), ]) def test_optimization_power_transformer(method, lmbda): # Test the optimization procedure: # - set a predefined value for lambda # - apply inverse_transform to a normal dist (we get X_inv) # - apply fit_transform to X_inv (we get X_inv_trans) # - check that X_inv_trans is roughly equal to X rng = np.random.RandomState(0) n_samples = 20000 X = rng.normal(loc=0, scale=1, size=(n_samples, 1)) pt = PowerTransformer(method=method, standardize=False) pt.lambdas_ = [lmbda] X_inv = pt.inverse_transform(X) pt = PowerTransformer(method=method, standardize=False) X_inv_trans = pt.fit_transform(X_inv) assert_almost_equal(0, np.linalg.norm(X - X_inv_trans) / n_samples, decimal=2) assert_almost_equal(0, X_inv_trans.mean(), decimal=1) assert_almost_equal(1, X_inv_trans.std(), decimal=1) def test_yeo_johnson_darwin_example(): # test from original paper "A new family of power transformations to # improve normality or symmetry" by Yeo and Johnson. X = [6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0, 9.3, 7.5, -6.0] X = np.array(X).reshape(-1, 1) lmbda = PowerTransformer(method='yeo-johnson').fit(X).lambdas_ assert np.allclose(lmbda, 1.305, atol=1e-3) @pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson']) def test_power_transformer_nans(method): # Make sure lambda estimation is not influenced by NaN values # and that transform() supports NaN silently X = np.abs(X_1col) pt = PowerTransformer(method=method) pt.fit(X) lmbda_no_nans = pt.lambdas_[0] # concat nans at the end and check lambda stays the same X = np.concatenate([X, np.full_like(X, np.nan)]) X = shuffle(X, random_state=0) pt.fit(X) lmbda_nans = pt.lambdas_[0] assert_almost_equal(lmbda_no_nans, lmbda_nans, decimal=5) X_trans = pt.transform(X) assert_array_equal(np.isnan(X_trans), np.isnan(X)) @pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson']) @pytest.mark.parametrize('standardize', [True, False]) def test_power_transformer_fit_transform(method, standardize): # check that fit_transform() and fit().transform() return the same values X = X_1col if method == 'box-cox': X = np.abs(X) pt = PowerTransformer(method, standardize) assert_array_almost_equal(pt.fit(X).transform(X), pt.fit_transform(X)) @pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson']) @pytest.mark.parametrize('standardize', [True, False]) def test_power_transformer_copy_True(method, standardize): # Check that neither fit, transform, fit_transform nor inverse_transform # modify X inplace when copy=True X = X_1col if method == 'box-cox': X = np.abs(X) X_original = X.copy() assert X is not X_original # sanity checks assert_array_almost_equal(X, X_original) pt = PowerTransformer(method, standardize, copy=True) pt.fit(X) assert_array_almost_equal(X, X_original) X_trans = pt.transform(X) assert X_trans is not X X_trans = pt.fit_transform(X) assert_array_almost_equal(X, X_original) assert X_trans is not X X_inv_trans = pt.inverse_transform(X_trans) assert X_trans is not X_inv_trans @pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson']) @pytest.mark.parametrize('standardize', [True, False]) def test_power_transformer_copy_False(method, standardize): # check that when copy=False fit doesn't change X inplace but transform, # fit_transform and inverse_transform do. X = X_1col if method == 'box-cox': X = np.abs(X) X_original = X.copy() assert X is not X_original # sanity checks assert_array_almost_equal(X, X_original) pt = PowerTransformer(method, standardize, copy=False) pt.fit(X) assert_array_almost_equal(X, X_original) # fit didn't change X X_trans = pt.transform(X) assert X_trans is X if method == 'box-cox': X = np.abs(X) X_trans = pt.fit_transform(X) assert X_trans is X X_inv_trans = pt.inverse_transform(X_trans) assert X_trans is X_inv_trans def test_power_transform_default_method(): X = np.abs(X_2d) future_warning_message = ( "The default value of 'method' " "will change from 'box-cox'" ) assert_warns_message(FutureWarning, future_warning_message, power_transform, X) with warnings.catch_warnings(): warnings.simplefilter('ignore') X_trans_default = power_transform(X) X_trans_boxcox = power_transform(X, method='box-cox') assert_array_equal(X_trans_boxcox, X_trans_default)
the-stack_0_16454
from django.urls import path from .views import account_session, get_csrf, register, account_login, account_logout urlpatterns = [ path('get_session/', account_session), path('get_csrf/', get_csrf), path('register/', register, name='account_register'), path('login/', account_login, name="account_login"), path('logout/', account_logout), ]
the-stack_0_16455
import math from typing import Tuple import torch import torch.nn as nn from cached_property import cached_property from torch.nn.modules.transformer import ( TransformerDecoder, TransformerDecoderLayer, TransformerEncoder, TransformerEncoderLayer, ) from kobe.data.dataset import Batched, EncodedBatch from kobe.data.vocab import BOS_ID, EOS_ID, PAD_ID from kobe.utils import helpers class PositionalEncoding(nn.Module): def __init__(self, dropout, dim, max_len=5000): """ initialization of required variables and functions :param dropout: dropout probability :param dim: hidden size :param max_len: maximum length """ super(PositionalEncoding, self).__init__() # positional encoding initialization pe = torch.zeros(max_len, dim) position = torch.arange(0, max_len).unsqueeze(1) # term to divide div_term = torch.exp( (torch.arange(0, dim, 2, dtype=torch.float) * -(math.log(10000.0) / dim)) ) # sinusoidal positional encoding pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) pe = pe.unsqueeze(1) self.register_buffer("pe", pe) self.dropout = nn.Dropout(p=dropout) self.dim = dim def forward(self, emb): """ create positional encoding :param emb: word embedding :param step: step for decoding in inference :return: positional encoding representation """ emb *= math.sqrt(self.dim) emb = emb + self.pe[: emb.size(0)] # [len, batch, size] emb = self.dropout(emb) return emb class Encoder(nn.Module): @staticmethod def from_args(args) -> "Encoder": return Encoder( args.text_vocab_size + args.cond_vocab_size, args.max_seq_len, args.d_model, args.nhead, args.num_encoder_layers, args.dropout, args.mode, ) def __init__( self, vocab_size: int, max_seq_len: int, d_model: int, nhead: int, num_layers: int, dropout: float, mode: str, ): super().__init__() self.d_model = d_model self.max_seq_len = max_seq_len self.input_embedding = nn.Embedding(vocab_size, d_model) self.pos_encoder = PositionalEncoding(dropout, d_model) encoder_layer = TransformerEncoderLayer( d_model, nhead, d_model * 4, dropout, norm_first=True ) self.encoder = TransformerEncoder( encoder_layer, num_layers, nn.LayerNorm(d_model) ) self.mode = mode @cached_property def device(self): return list(self.parameters())[0].device def forward(self, batched: Batched) -> EncodedBatch: src, src_key_padding_mask = Encoder._get_input(batched, self.mode) src = self.input_embedding(src) src = self.pos_encoder(src) token_encodings = self.encoder.forward( src=src, src_key_padding_mask=src_key_padding_mask ) return EncodedBatch( context_encodings=token_encodings, context_encodings_mask=src_key_padding_mask, ) @staticmethod def _get_input(batched: Batched, mode: str) -> Tuple[torch.Tensor, torch.Tensor]: return { helpers.BASELINE: (batched.title_token_ids, batched.title_token_ids_mask), helpers.KOBE_ATTRIBUTE: ( batched.cond_title_token_ids, batched.cond_title_token_ids_mask, ), helpers.KOBE_KNOWLEDGE: ( batched.title_fact_token_ids, batched.title_fact_token_ids_mask, ), helpers.KOBE_FULL: ( batched.cond_title_fact_token_ids, batched.cond_title_fact_token_ids_mask, ), }[mode] class Decoder(nn.Module): @staticmethod def from_args(args) -> "Decoder": return Decoder( args.text_vocab_size, args.max_seq_len, args.d_model, args.nhead, args.num_encoder_layers, args.dropout, ) def __init__( self, vocab_size: int, max_seq_len: int, d_model: int, nhead: int, num_layers: int, dropout: float, ): super(Decoder, self).__init__() self.max_seq_len = max_seq_len self.embedding = nn.Embedding(vocab_size, d_model) self.pos_encoder = PositionalEncoding(dropout, d_model) decoder_layer = TransformerDecoderLayer( d_model, nhead, 4 * d_model, dropout, norm_first=True ) self.decoder = TransformerDecoder( decoder_layer, num_layers, nn.LayerNorm(d_model) ) self.output = nn.Linear(d_model, vocab_size) def forward(self, batch: Batched, encoded_batch: EncodedBatch) -> torch.Tensor: tgt = self.embedding(batch.description_token_ids[:-1]) tgt = self.pos_encoder(tgt) tgt_mask = Decoder.generate_square_subsequent_mask(tgt.shape[0], tgt.device) outputs = self.decoder( tgt=tgt, tgt_mask=tgt_mask, tgt_key_padding_mask=batch.description_token_ids_mask[:, :-1], memory=encoded_batch.context_encodings, memory_key_padding_mask=encoded_batch.context_encodings_mask, ) return self.output(outputs) def predict(self, encoded_batch: EncodedBatch, decoding_strategy: str): batch_size = encoded_batch.context_encodings.shape[1] tgt = torch.tensor( [BOS_ID] * batch_size, device=encoded_batch.context_encodings.device ).unsqueeze(dim=0) tgt_mask = Decoder.generate_square_subsequent_mask(self.max_seq_len, tgt.device) pred_all = [] for idx in range(self.max_seq_len): tgt_emb = self.pos_encoder(self.embedding(tgt)) outputs = self.decoder( tgt_emb, tgt_mask=tgt_mask[: idx + 1, : idx + 1], memory=encoded_batch.context_encodings, memory_key_padding_mask=encoded_batch.context_encodings_mask, ) logits = self.output(outputs[-1]) if decoding_strategy == "greedy": pred_step = logits.argmax(dim=1).tolist() elif decoding_strategy == "nucleus": pred_step = [ helpers.top_k_top_p_sampling(logits[i], top_p=0.95) for i in range(batch_size) ] else: raise NotImplementedError for b in range(batch_size): if pred_all and pred_all[-1][b].item() in [EOS_ID, PAD_ID]: pred_step[b] = PAD_ID if all([pred == PAD_ID for pred in pred_step]): break pred_step = torch.tensor(pred_step, device=tgt.device) pred_all.append(pred_step) if idx < self.max_seq_len - 1: tgt_step = pred_step.unsqueeze(dim=0) tgt = torch.cat([tgt, tgt_step], dim=0) preds = torch.stack(pred_all) return preds @staticmethod def generate_square_subsequent_mask(sz: int, device: torch.device) -> torch.Tensor: r""" Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). """ return torch.triu( torch.full((sz, sz), float("-inf"), device=device), diagonal=1 )
the-stack_0_16457
# -*- coding: future_fstrings -*- class GroupUser: group_user_access_right_key = 'groupUserAccessRight' email_address_key = 'emailAddress' display_name_key = 'displayName' identifier_key = 'identifier' principal_type_key = 'principalType' def __init__( self, group_user_access_right, email_address="", display_name="", identifier="", principal_type=None ): """Constructs a GroupUser object :param group_user_access_right: Enum GroupUserAccessRight - The access right to assign to the GroupUser :param email_address: str - E-mail address of the user if principal type is user :param display_name: str - Display name of the principal :param identifier: str - Identifier of the principal :param principal_type: Enum PrincipalType - The principal type """ self.group_user_access_right = group_user_access_right self.email_address = email_address self.display_name = display_name self.identifier = identifier self.principal_type = principal_type def as_set_values_dict(self): """Convert GroupUser object to dict with only values that are actually set. This dict can be used for groups.add_group_user requests. :return: Dict with object attributes in camelCase as keys, and attribute values as values. """ group_user_dict = dict() if self.group_user_access_right: group_user_dict[self.group_user_access_right_key] = self.group_user_access_right.value if self.email_address: group_user_dict[self.email_address_key] = self.email_address if self.display_name: group_user_dict[self.display_name_key] = self.display_name if self.identifier: group_user_dict[self.identifier_key] = self.identifier if self.principal_type: group_user_dict[self.principal_type_key] = self.principal_type.value return group_user_dict
the-stack_0_16458
# -*- coding: ascii -*- """ app.utils ~~~~~~~~~ Utils. for the application. """ import re import unicodedata from functools import partial from Levenshtein import distance __all__ = [ 'parse_db_uri', 'parse_citations', 'parse_doi', 'normalize', 'doi_normalize', 'matching' ] # Find citations from text find_citations = [ # APA style re.compile( ( r'((?#authors)[\w-]{2,}(?: *,(?: *[A-Z]\.)+|(?: +[\w-]+)+)?' r'(?: *,(?: *(?:&|\.{3}))? *[\w-]{2,}(?: *,(?: *[A-Z]\.)+|(?: +[\w-]+)+)?)*(?:(?<=\.)|(?<!\.) *\.)' r'(?#date) *\( *\d{4}(?: *, *\w+(?: +\d+(?: *- *\d+)?)?)? *\) *\.' r'(?#title)[^\n]+(?:(?<=\.)|(?<!\.)\.)' r'(?#journal|location)(?<=\.)(?:[^\n]+?(?=, *\d+ *\([\w-]+\)|, *\w+(?:-\w+)? *\.|\.)' r'(?#journal:volume)(?:, *\d+ *\([\w-]+\))?(?#journal:pages)(?:, *\w+(?:-\w+)?)? *\.)?' r'(?#doi)(?: *(?:doi: *|http://dx\.doi\.org/)[^\s]+)?)' ), flags=re.IGNORECASE + re.DOTALL ).findall, # AMA style re.compile( ( r'(?:\n|^)' r'((?#authors)(?:[\w-]{2,}(?: +[A-Z]+)?(?: *, *[\w-]{2,}(?: +[A-Z]+)?)* *\.)?' r'(?#title) *\w{2}[^\n;.]+\.(?#title:journal|conference) *\w{2}[^\n;.]+' r'(?:(?#journal)\.(?#date) *(?:[a-z]{3}(?: +\d{1,2})? *, *)?\d{4}' r'(?#volume)(?: *;(?: *\d+)?(?: *\( *[\w-]+ *\))?)?' r'(?#page)(?: *: *\w+(?: *- *\w+)?)?|(?#conference)' r'(?#date); *(?:[a-z]{3}(?: +\d+(?: *- *(?:\d+|[a-z]{3} +\d+))?)? *, *)?\d{4}' r'(?#location)(?: *; *\w{2}[^\n;.]+)?) *\.' r'(?#doi)(?: *(?:doi: *|http://dx\.doi\.org/)[^\s]+)?)' ), flags=re.IGNORECASE + re.DOTALL ).findall ] # Parse DOI in citation parse_doi = re.compile( r'(?:doi: *|http://dx\.doi\.org/)([^\s]+)', flags=re.IGNORECASE ).findall def parse_citations(text): """Parse text into list of citations""" ret = [] for finder in find_citations: ret.extend(finder(text)) return ret def parse_db_uri(conf): """ Parse input database config into database URI format :param conf: input database config :type conf: dict :return: string of database config in URI format :rtype: str """ # Input config must be a dict assert isinstance(conf, dict) # Key 'dbname' is required in config if 'dbname' not in conf: raise ValueError('No database specified') # Read and parse config dbname = str(conf['dbname']) host = str(conf.get('host', '127.0.0.1') or '127.0.0.1') port = str(conf.get('port', '')) user = str(conf.get('user', '')) passwd = str(conf.get('passwd', '')) driver = str(conf.get('driver', 'postgresql')).lower() or 'postgresql' if user and passwd: user = '%s:%s@' % (user, passwd) elif user: user = '%s@' % user elif passwd: raise ValueError('No user with that password') if port: if not port.isdigit(): raise ValueError('Database port must be a number') host = '%s:%s' % (host, port) # Return parsed config in URI format return '{}://{}{}/{}'.format(driver, user, host, dbname) def normalize(text, case=True, spaces=True, unicode=True): """ Normalize text :param text: input text :type text: str :param case: normalize to lower case, default is True :type case: bool :param spaces: normalize spaces, default is True :type spaces: bool :param unicode: convert unicode characters to ascii, default is True :type unicode: bool :return: normalized text :rtype: str """ # Normalize unicode if unicode: text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode() # Normalize case if case: text = text.lower() # Normalize spaces if spaces: text = ' '.join(text.split()) # Return normalized text return text # Normalize DOI doi_normalize = partial(normalize, case=True, spaces=False, unicode=False) def mark_exact(citation): """Highlight exact matches""" return '<mark class="exact-match">%s</mark>' % citation def mark_approx(citation): """Highlight approximate matches""" return '<mark class="approx-match">%s</mark>' % citation def doi_matched(citation, dois): """ Parse DOI value from the input citation, check if the DOI value exists in the list of DOIs :param citation: input citation :type citation: str :param dois: input list of DOIs :type dois: set or list or tuple :return: True if it exists, else False :rtype: bool """ # Parse DOI in citation doi = parse_doi(citation) # DOI found if doi: return doi_normalize(doi[0]) in dois # DOI not found return False def ld_matched(citation, citations, max_distance): """ Is there a match that is less than max_distance? Minimum Levenshtein distance between the citation and a list of available citations or None. :param citation: input citation :type citation: str :param citations: list of available citations being matched against :type citations: list or tuple :param max_distance: maximum edit distance :type max_distance: int :return: minimum edit distance number if match found, else None :rtype: int or None """ # Create a generator of edit distance numbers distances = (distance(normalize(citation), normalize(c.value)) for c in citations) # Filter distance numbers based on input max_distance candidates = filter(lambda x: x <= max_distance, distances) # Return min number of filtered distance numbers, or None return min(candidates, default=None) def matching(citation, dois, citations, max_distance): """ Main function for matching citation. Returns markup based on result from matching. :param citation: citation for doing matching :type citation: str :param dois: list of DOIs :type dois: set or list or tuple :param citations: list of available citations :type citations: list or tuple :param max_distance: maximum edit distance :type max_distance: int :return: markup text for input citation :rtype: str """ # Match using DOI if doi_matched(citation, dois): return mark_exact(citation) # Match using Levenshtein Edit Distance else: min_distance = ld_matched(citation, citations, max_distance) if min_distance is None: return citation # no match found elif min_distance == 0: return mark_exact(citation) # exact match else: return mark_approx(citation) # approx. match
the-stack_0_16461
import operator import re import sys from typing import Optional from packaging import version # The package importlib_metadata is in a different place, depending on the python version. if sys.version_info < (3, 8): import importlib_metadata else: import importlib.metadata as importlib_metadata ops = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _compare_versions(op, got_ver, want_ver, requirement, pkg, hint): if got_ver is None: raise ValueError("got_ver is None") if want_ver is None: raise ValueError("want_ver is None") if not ops[op](version.parse(got_ver), version.parse(want_ver)): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def require_version(requirement: str, hint: Optional[str] = None) -> None: """ Perform a runtime check of the dependency versions, using the exact same syntax used by pip. The installed module version comes from the *site-packages* dir via *importlib_metadata*. Args: requirement (`str`): pip style definition, e.g., "tokenizers==0.9.4", "tqdm>=4.27", "numpy" hint (`str`, *optional*): what suggestion to print in case of requirements not being met Example: ```python require_version("pandas>1.1.2") require_version("numpy>1.18.5", "this is important to have for whatever reason") ```""" hint = f"\n{hint}" if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$", requirement): pkg, op, want_ver = requirement, None, None else: match = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)", requirement) if not match: raise ValueError( f"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but got {requirement}" ) pkg, want_full = match[0] # there could be multiple requirements want_range = want_full.split(",") wanted = {} for w in want_range: match = re.findall(r"^([\s!=<>]{1,2})(.+)", w) if not match: raise ValueError( f"requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but got {requirement}" ) op, want_ver = match[0] wanted[op] = want_ver if op not in ops: raise ValueError( f"{requirement}: need one of {list(ops.keys())}, but got {op}") # special case if pkg == "python": got_ver = ".".join([str(x) for x in sys.version_info[:3]]) for op, want_ver in wanted.items(): _compare_versions(op, got_ver, want_ver, requirement, pkg, hint) return # check if any version is installed try: got_ver = importlib_metadata.version(pkg) except importlib_metadata.PackageNotFoundError: raise importlib_metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(op, got_ver, want_ver, requirement, pkg, hint) def require_version_core(requirement): """require_version wrapper which emits a core-specific hint on failure""" hint = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(requirement, hint)
the-stack_0_16463
#!/usr/bin/env python # -*- coding: utf-8 -* """ :authors: Guannan Ma @mythmgn :create_date: 2016/06/07 :description: heartbeat service """ from cup.services import heartbeat class HeartbeatService(heartbeat.HeartbeatService): """ heartbeat service. not in use yet """ def __init__(self, judge_lost_in_sec, keep_lost=False): heartbeat.HeartbeatService.__init__(self, judge_lost_in_sec, keep_lost) self._judge_lost_in_sec = judge_lost_in_sec self._keep_lost = keep_lost # vi:set tw=0 ts=4 sw=4 nowrap fdm=indent
the-stack_0_16465
# Copyright 2015-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """This module provides the Constraint class for handling filters and pivots in a modular fashion. This enable easy constraint application. An implementation of :mod:`trappy.plotter.AbstractDataPlotter` is expected to use the :mod:`trappy.plotter.Constraint.ConstraintManager` class to pivot and filter data and handle multiple column, trace and event inputs. The underlying object that encapsulates a unique set of a data column, data event and the requisite filters is :mod:`trappy.plotter.Constraint.Constraint` """ # pylint: disable=R0913 from trappy.plotter.Utils import decolonize, normalize_list from trappy.utils import listify from trappy.plotter import AttrConf class Constraint(object): """ What is a Constraint? It is collection of data based on two rules: - A Pivot - A Set of Filters - A Data Column For Example a :mod:`pandas.DataFrame` ===== ======== ========= Time CPU Latency ===== ======== ========= 1 x <val> 2 y <val> 3 z <val> 4 a <val> ===== ======== ========= The resultant data will be split for each unique pivot value with the filters applied :: result["x"] = pd.Series.filtered() result["y"] = pd.Series.filtered() result["z"] = pd.Series.filtered() result["a"] = pd.Series.filtered() :param trappy_trace: Input Data :type trappy_trace: :mod:`pandas.DataFrame` or a class derived from :mod:`trappy.trace.BareTrace` :param column: The data column :type column: str :param template: TRAPpy Event :type template: :mod:`trappy.base.Base` event :param trace_index: The index of the trace/data in the overall constraint data :type trace_index: int :param filters: A dictionary of filter values :type filters: dict :param window: A time window to apply to the constraint. E.g. window=(5, 20) will constraint to events that happened between Time=5 to Time=20. :type window: tuple of two ints """ def __init__(self, trappy_trace, pivot, column, template, trace_index, filters, window): self._trappy_trace = trappy_trace self._filters = filters self._pivot = pivot self.column = column self._template = template self._dup_resolved = False self._data = self.populate_data_frame() if window: # We want to include the previous value before the window # and the next after the window in the dataset min_idx = self._data.loc[:window[0]].index.max() max_idx = self._data.loc[window[1]:].index.min() self._data = self._data.loc[min_idx:max_idx] self.result = self._apply() self.trace_index = trace_index def _apply(self): """This method applies the filter on the resultant data on the input column. """ data = self._data result = {} try: values = data[self.column] except KeyError: return result if self._pivot == AttrConf.PIVOT: pivot_vals = [AttrConf.PIVOT_VAL] else: pivot_vals = self.pivot_vals(data) for pivot_val in pivot_vals: criterion = values.map(lambda x: True) for key in self._filters.keys(): if key != self._pivot and key in data.columns: criterion = criterion & data[key].map( lambda x: x in self._filters[key]) if pivot_val != AttrConf.PIVOT_VAL: criterion &= data[self._pivot] == pivot_val val_series = values[criterion] if len(val_series) != 0: result[pivot_val] = val_series return result def _uses_trappy_trace(self): if not self._template: return False else: return True def populate_data_frame(self): """Return the populated :mod:`pandas.DataFrame`""" if not self._uses_trappy_trace(): return self._trappy_trace data_container = getattr( self._trappy_trace, decolonize(self._template.name)) return data_container.data_frame def pivot_vals(self, data): """This method returns the unique pivot values for the Constraint's pivot and the column :param data: Input Data :type data: :mod:`pandas.DataFrame` """ if self._pivot == AttrConf.PIVOT: return AttrConf.PIVOT_VAL if self._pivot not in data.columns: return [] pivot_vals = set(data[self._pivot]) if self._pivot in self._filters: pivot_vals = pivot_vals & set(self._filters[self._pivot]) return list(pivot_vals) def __str__(self): name = self.get_data_name() if not self._uses_trappy_trace(): return name + ":" + str(self.column) return name + ":" + \ self._template.name + ":" + self.column def get_data_name(self): """Get name for the data member. This method relies on the "name" attribute for the name. If the name attribute is absent, it associates a numeric name to the respective data element :returns: The name of the data member """ if self._uses_trappy_trace(): if self._trappy_trace.name != "": return self._trappy_trace.name else: return "Trace {}".format(self.trace_index) else: return "DataFrame {}".format(self.trace_index) class ConstraintManager(object): """A class responsible for converting inputs to constraints and also ensuring sanity :param traces: Input Trace data :type traces: :mod:`trappy.trace.BareTrace`, list(:mod:`trappy.trace.BareTrace`) (or a class derived from :mod:`trappy.trace.BareTrace`) :param columns: The column values from the corresponding :mod:`pandas.DataFrame` :type columns: str, list(str) :param pivot: The column around which the data will be pivoted: :type pivot: str :param templates: TRAPpy events :type templates: :mod:`trappy.base.Base` :param filters: A dictionary of values to be applied on the respective columns :type filters: dict :param window: A time window to apply to the constraints :type window: tuple of ints :param zip_constraints: Permutes the columns and traces instead of a one-to-one correspondence :type zip_constraints: bool """ def __init__(self, traces, columns, templates, pivot, filters, window=None, zip_constraints=True): self._ip_vec = [] self._ip_vec.append(listify(traces)) self._ip_vec.append(listify(columns)) self._ip_vec.append(listify(templates)) self._lens = map(len, self._ip_vec) self._max_len = max(self._lens) self._pivot = pivot self._filters = filters self.window = window self._constraints = [] self._trace_expanded = False self._expand() if zip_constraints: self._populate_zip_constraints() else: self._populate_constraints() def _expand(self): """This is really important. We need to meet the following criteria for constraint expansion: :: Len[traces] == Len[columns] == Len[templates] Or: :: Permute( Len[traces] = 1 Len[columns] = 1 Len[templates] != 1 ) Permute( Len[traces] = 1 Len[columns] != 1 Len[templates] != 1 ) """ min_len = min(self._lens) max_pos_comp = [ i for i, j in enumerate( self._lens) if j != self._max_len] if self._max_len == 1 and min_len != 1: raise RuntimeError("Essential Arg Missing") if self._max_len > 1: # Are they all equal? if len(set(self._lens)) == 1: return if min_len > 1: raise RuntimeError("Cannot Expand a list of Constraints") for val in max_pos_comp: if val == 0: self._trace_expanded = True self._ip_vec[val] = normalize_list(self._max_len, self._ip_vec[val]) def _populate_constraints(self): """Populate the constraints creating one for each column in each trace In a multi-trace, multicolumn scenario, constraints are created for all the columns in each of the traces. _populate_constraints() creates one constraint for the first trace and first column, the next for the second trace and second column,... This function creates a constraint for every combination of traces and columns possible. """ for trace_idx, trace in enumerate(self._ip_vec[0]): for col in self._ip_vec[1]: template = self._ip_vec[2][trace_idx] constraint = Constraint(trace, self._pivot, col, template, trace_idx, self._filters, self.window) self._constraints.append(constraint) def get_column_index(self, constraint): return self._ip_vec[1].index(constraint.column) def _populate_zip_constraints(self): """Populate the expanded constraints In a multitrace, multicolumn scenario, create constraints for the first trace and the first column, second trace and second column,... that is, as if you run zip(traces, columns) """ for idx in range(self._max_len): if self._trace_expanded: trace_idx = 0 else: trace_idx = idx trace = self._ip_vec[0][idx] col = self._ip_vec[1][idx] template = self._ip_vec[2][idx] self._constraints.append( Constraint(trace, self._pivot, col, template, trace_idx, self._filters, self.window)) def generate_pivots(self, permute=False): """Return a union of the pivot values :param permute: Permute the Traces and Columns :type permute: bool """ pivot_vals = [] for constraint in self._constraints: pivot_vals += constraint.result.keys() p_list = list(set(pivot_vals)) traces = range(self._lens[0]) try: sorted_plist = sorted(p_list, key=int) except (ValueError, TypeError): try: sorted_plist = sorted(p_list, key=lambda x: int(x, 16)) except (ValueError, TypeError): sorted_plist = sorted(p_list) if permute: pivot_gen = ((trace_idx, pivot) for trace_idx in traces for pivot in sorted_plist) return pivot_gen, len(sorted_plist) * self._lens[0] else: return sorted_plist, len(sorted_plist) def constraint_labels(self): """ :return: string to represent the set of Constraints """ return map(str, self._constraints) def __len__(self): return len(self._constraints) def __iter__(self): return iter(self._constraints)
the-stack_0_16467
import discord from discord.ext import commands import stackprinter as sp from bin import zb class onmemberremoveCog(commands.Cog): def __init__(self, bot): self.bot = bot # Events on member join @commands.Cog.listener() async def on_member_remove(self, member): try: # If any bot if member.bot: return # try: # info = await member.guild.fetch_ban(member) # print(info) # except: # pass # banlist = await member.guild.bans() # for banned in banlist: # if member.id == banned.id: # return embed=discord.Embed(description=member.mention + " " + member.name, color=0xff470f) embed.add_field(name="Join Date", value=member.joined_at, inline=False) if not zb.is_pattern(member.display_name,'^[A-Z]\w+[0-9]{3,}'): embed.set_thumbnail(url=member.avatar_url) embed.set_author(name="Member Left", icon_url=member.avatar_url) await zb.print_log(self,member,embed) # junk1, junk2 = zb.del_all_special_role(member.guild,member.id) except Exception as e: await zb.bot_errors(self,sp.format(e)) def setup(bot): bot.add_cog(onmemberremoveCog(bot))
the-stack_0_16468
''' This script resets the escpos printer ''' import sys from escpos.printer import Usb from escpos import exceptions VENDOR_ID = 0x0456 PRODUCT_ID = 0x0808 P_INTERFACE = 4 P_IN_ENDPOINT = 0x81 P_OUT_ENDPOINT = 0x03 p = Usb(VENDOR_ID, PRODUCT_ID, P_INTERFACE, P_IN_ENDPOINT, P_OUT_ENDPOINT) reset_cmd = b'\x1b?\n\x00' try: p._raw(reset_cmd) except Exception as e: print(e) sys.exit(1)
the-stack_0_16469
import setuptools with open('README.md', 'r') as f: long_description = f.read() setuptools.setup( name='jc', version='1.17.1', author='Kelly Brazil', author_email='[email protected]', description='Converts the output of popular command-line tools and file-types to JSON.', install_requires=[ 'ruamel.yaml>=0.15.0', 'xmltodict>=0.12.0', 'Pygments>=2.3.0' ], license='MIT', long_description=long_description, long_description_content_type='text/markdown', python_requires='>=3.6', url='https://github.com/kellyjonbrazil/jc', packages=setuptools.find_packages(exclude=['*.tests', '*.tests.*', 'tests.*', 'tests']), entry_points={ 'console_scripts': [ 'jc=jc.cli:main' ] }, classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Topic :: Utilities' ] )
the-stack_0_16472
import numpy as np from KPI import KPI def calc(inp): return inp[:, 9] def gap(open_price, close_price, init_money): return 1.0 * (close_price / open_price - 1) * init_money def gap_colume(open_price, close_price, colume): return 1.0 * (close_price - open_price) * colume def RSI(data, paras, standard_data_file): TIME_PERIOD = 14 HIGH_RSI = 85 LOW_RSI = 30 ORDER_PERCENT = 0.3 money = paras['InitMoney'] cash = money start_money = money # 累计资金 str_money = money std_money = money # 基准数据 standard_data = np.load(standard_data_file) # 每日策略收益和基准收益 strategy_daily = [] standard_daily_reward = [] strategy_daily_reward = [] standard_daily_ratio = [] strategy_daily_ratio = [] std_cur_open = standard_data[0][1] NrOfShare = data.shape[0] hold_colume = np.zeros(NrOfShare, 'float32') length = np.zeros(NrOfShare, 'float32') p_pre = np.zeros(NrOfShare, 'float32') for i in range(data.shape[1]): if i < 14: continue # 基准收益计算 std_cur_close = standard_data[i][3] # 计算基准每日收益 std_gap_money = gap(std_cur_open, std_cur_close, init_money=std_money) # total——monry std_money += std_gap_money # 日收益放入到list standard_daily_reward.append(std_gap_money) # 收益率放到list standard_daily_ratio.append(1.0 * (std_cur_close - std_cur_open) / std_cur_open) RSI_val = data[:, i-13:i+1, 2] - data[:, i-14:i, 2] RSI_positive = [] for j in range(RSI_val.shape[0]): RSI_positive.append(np.sum(RSI_val[j, RSI_val[j,:] > 0])) RSI_positive = np.array(RSI_positive) RSI_negative = [] for j in range(RSI_val.shape[0]): RSI_negative.append(np.sum(RSI_val[j, RSI_val[j, :] < 0])) RSI_negative = np.array(RSI_negative) sell_share = RSI_positive / (RSI_positive - RSI_negative) * 100 > HIGH_RSI buy_share = RSI_positive / (RSI_positive - RSI_negative) * 100 < LOW_RSI hold_index = hold_colume > 0 str_cur_close = data[hold_index, i - 1, 2] str_pre_close = data[hold_index, i, 2] str_gap_money = gap_colume(str_pre_close, str_cur_close, hold_colume[hold_index]) str_money += np.sum(str_gap_money) strategy_daily_reward.append(np.sum(str_gap_money)) if np.sum(hold_index) != 0: strategy_daily_ratio.append(1.0 * np.mean((str_cur_close - str_pre_close) / str_pre_close)) else: strategy_daily_ratio.append(0) if np.sum(buy_share) > 0 and cash > 100: money_each_share = cash // np.sum(buy_share) hold_colume[buy_share] += money_each_share // (data[buy_share, i, 2] * 100) * 100 cash -= np.sum(money_each_share // (data[buy_share, i, 2] * 100) * 100 * data[buy_share, i, 2]) if np.sum(sell_share) > 0: sell_index = hold_index & sell_share cash += np.sum(hold_colume[sell_index] * data[sell_index, i, 2]) hold_colume[sell_share] = np.zeros(np.sum(sell_share)) p_pre = calc(data[:, i, :]) std_cur_open = std_cur_close N = data.shape[1] for i in range(500 - N): npzero = np.array([0.0]) strategy_daily_reward = np.append(npzero, strategy_daily_reward) strategy_daily_ratio = np.append(npzero, strategy_daily_ratio) standard_daily_reward = np.append(npzero, standard_daily_reward) standard_daily_ratio = np.append(npzero, standard_daily_ratio) N -= TIME_PERIOD return start_money, str_money, std_money, N, strategy_daily_reward, strategy_daily_ratio, standard_daily_reward, standard_daily_ratio if __name__ == '__main__': data = np.load('../saved files/data_zjz.npy')[:, :500, :] standard_data = '../saved files/standard_data.npy' init_money, str_money, std_money, N, strategy_daily_reward, strategy_daily_ratio, standard_daily_reward, standard_daily_ratio = RSI( data, {'InitMoney': 1000000}, standard_data) for i in range(500 - len(strategy_daily_reward)): npzero = np.array([0.0]) strategy_daily_reward = np.append(npzero, strategy_daily_reward) strategy_daily_ratio = np.append(npzero, strategy_daily_ratio) standard_daily_reward = np.append(npzero, standard_daily_reward) standard_daily_ratio = np.append(npzero, standard_daily_ratio) print('init_money shape:{}'.format(init_money)) print('str_money shape:{}'.format(str_money)) print('std_money shape:{}'.format(std_money)) print('N shape:{}'.format(N)) print('strategy_daily_reward shape:{}'.format(np.array(strategy_daily_reward).shape)) print('strategy_daily_ratio shape:{}'.format(np.array(strategy_daily_ratio).shape)) print('standard_daily_reward shape:{}'.format(np.array(standard_daily_reward).shape)) print('standard_daily_ratio shape:{}'.format(np.array(standard_daily_ratio).shape)) kpi = KPI( init_money=init_money, str_money=str_money, std_money=std_money, N=N, strategy_daily_reward=strategy_daily_reward, strategy_daily_ratio=strategy_daily_ratio, standard_daily_reward=standard_daily_reward, standard_daily_ratio=standard_daily_ratio ) all_filed = kpi.get_kpi() money1 = 1000000.0 money2 = 1000000.0 daily_reward1 = strategy_daily_reward daily_reward2 = standard_daily_reward str_daily_reward_list = [] std_daily_reward_list = [] for i in range(len(daily_reward1)): money1 += daily_reward1[i] str_daily_reward_list.append(money1) for i in range(len(daily_reward2)): money2 += daily_reward2[i] std_daily_reward_list.append(money2) print(str_daily_reward_list) print(std_daily_reward_list) daily = [] daily.append(np.array(str_daily_reward_list)) daily.append(np.array(std_daily_reward_list)) np.save('../saved files/strategy_0_daily.npy', np.array(daily))
the-stack_0_16473
from __future__ import absolute_import, print_function from django.conf import settings from django.core.management.base import BaseCommand from django.utils import timezone from zerver.models import UserProfile import argparse from datetime import datetime import requests import ujson from typing import Any class Command(BaseCommand): help = """Add users to a MailChimp mailing list.""" def add_arguments(self, parser): # type: (argparse.ArgumentParser) -> None parser.add_argument('--api-key', dest='api_key', type=str, help='MailChimp API key.') parser.add_argument('--list-id', dest='list_id', type=str, help='List ID of the MailChimp mailing list.') parser.add_argument('--optin-time', dest='optin_time', type=str, default=datetime.isoformat(timezone.now().replace(microsecond=0)), help='Opt-in time of the users.') def handle(self, *args, **options): # type: (*Any, **str) -> None if options['api_key'] is None: try: if settings.MAILCHIMP_API_KEY is None: print('MAILCHIMP_API_KEY is None. Check your server settings file.') exit(1) options['api_key'] = settings.MAILCHIMP_API_KEY except AttributeError: print('Please supply a MailChimp API key to --api-key, or add a ' 'MAILCHIMP_API_KEY to your server settings file.') exit(1) if options['list_id'] is None: try: if settings.ZULIP_FRIENDS_LIST_ID is None: print('ZULIP_FRIENDS_LIST_ID is None. Check your server settings file.') exit(1) options['list_id'] = settings.ZULIP_FRIENDS_LIST_ID except AttributeError: print('Please supply a MailChimp List ID to --list-id, or add a ' 'ZULIP_FRIENDS_LIST_ID to your server settings file.') exit(1) endpoint = "https://%s.api.mailchimp.com/3.0/lists/%s/members" % \ (options['api_key'].split('-')[1], options['list_id']) for user in UserProfile.objects.filter(is_bot=False, is_active=True) \ .values('email', 'full_name', 'realm_id') \ .filter(full_name='Zoe'): data = { 'email_address': user['email'], 'list_id': options['list_id'], 'status': 'subscribed', 'merge_fields': { 'NAME': user['full_name'], 'REALM_ID': user['realm_id'], 'OPTIN_TIME': options['optin_time'], }, } r = requests.post(endpoint, auth=('apikey', options['api_key']), json=data, timeout=10) if r.status_code == 400 and ujson.loads(r.text)['title'] == 'Member Exists': print("%s is already a part of the list." % (data['email_address'],)) elif r.status_code >= 400: print(r.text)
the-stack_0_16474
# -*- coding: utf-8 -*- # website: http://30daydo.com # @Time : 2019/10/24 0:03 # @File : new_stock_fund.py # 获取打新基金数据 import requests import time from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By import logging from scrapy.selector import Selector logger = logging.getLogger() PATH = r'C:\OneDrive\Python\selenium\chromedriver.exe' class TianTianFund(): def __init__(self): # 未上市 self.wss_url='http://fund.eastmoney.com/data/dxgjj_xgccjjyl.html#wss;SUMPLACE;desc;1' options = webdriver.ChromeOptions() options.add_argument( '--user-agent=Mozilla/5.0 (Windows NT 999999.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36') self.driver = webdriver.Chrome(executable_path=PATH, chrome_options=options) def get_fund(self): self.driver.get(self.wss_url) time.sleep(5) text=self.driver.page_source response = Selector(text=text) nodes = response.xpath('//tbody[@id="datalistwss_body"]/tr') for node in nodes: code = node.xpath('.//td[2]/a/text()').extract_first() name = node.xpath('.//td[3]/a/text()').extract_first() hit_count = node.xpath('.//td[6]/a[1]/text()').extract_first() fund_url = node.xpath('.//td[6]/a[1]/@href').extract_first() full_url = 'http://fund.eastmoney.com/data/'+fund_url new_stock_amount = node.xpath('.//td[6]/text()').extract_first() self.driver.get(fund_url) time.sleep(5) sub_response = Selector(text=self.driver.page_source) sub_nodes = sub_response.xpath('//tbody[@id="datalist_body"]/tr') new_stock_list = [] for sub_node in sub_nodes: d={} stock_code = sub_node.xpath('.//td[2]/a/text()').extract_first() stock_name = sub_node.xpath('.//td[3]/a/text()').extract_first() assign_mount = sub_node.xpath('.//td[9]/text()').extract_first() d['新股代码']=stock_code d['新股名称']=stock_name d['中的金额-万元']=assign_mount new_stock_list.append(d) print(new_stock_list) def start(self): self.get_fund() self.driver.close() if __name__=='__main__': fund = TianTianFund() fund.start()
the-stack_0_16475
import numpy as np from mygrad.operation_base import BroadcastableOp, Operation __all__ = ["GetItem", "SetItem"] class GetItem(Operation): """ Defines the __getitem__ interface for a Tensor, supporting back-propagation Supports back-propagation through all valid numpy-indexing (basic, advanced, mixed, etc.)""" def __call__(self, a, index): """ ``a[index]`` Parameters ---------- a : mygrad.Tensor The tensor whose entries are being accessed. index : valid-array-index An n-dimensional index for specifying entries or subregions of `a`. All means of numpy-array indexing (basic, advanced, mixed, etc) are supported. Returns ------- numpy.ndarray The array returned by the get-item operation""" self.variables = (a,) self.index = index return a.data[index] def backward_var(self, grad, index, **kwargs): a = self.variables[index] out = np.zeros_like(a.data) np.add.at(out, self.index, grad) return out def _arr(*shape): """ Construct an array of a specified consisting of values [0, _arr.size) filled in row-major order. Parameters ---------- *shape : int Returns ------- numpy.ndarray""" return np.arange(np.prod(shape)).reshape(shape) def _is_int_array_index(index): """ Returns True if `index` contains any array-like integer-valued sequences Parameters ---------- index : Tuple[Any] Returns ------- bool """ return any( np.issubdtype(np.asarray(ind).dtype, np.int_) and np.asarray(ind).ndim for ind in index ) def _is_bool_array_index(index): """ Returns True if `index` solely contains a boolean-valued array Parameters ---------- index : Tuple[Any] Returns ------- bool """ return len(index) == 1 and np.issubdtype(np.asarray(index[0]).dtype, np.bool_) class SetItem(BroadcastableOp): """ Defines the __setitem__ interface for a Tensor, supporting back-propagation through both the tensor being set and the tensor whose . Supports back-propagation through all valid numpy-indexing (basic, advanced, mixed, etc.), as well as """ def __call__(self, a, b, index): """ a[index] = b Parameters ---------- a : mygrad.Tensor The tensor whose entries are being set. A copy of the underlying data is made if `a` is a non-constant tensor. b : mygrad.Tensor `b` must be broadcast-compatible with `a[index]` index : valid-array-index An n-dimensional index for specifying entries or subregions of `a`. All means of numpy-array indexing (basic, advanced, mixed, etc) are supported. Notes ----- Additional computational overhead is required for back-propagation when `index` contains any integer-valued arrays, to accommodate for the scenario in which a single element is set multiple times.""" out = np.copy(a.data) if not a.constant else a.data self.variables = (a, b) self.index = index if isinstance(index, tuple) else (index,) out[index] = b.data return out def backward_var(self, grad, index, **kwargs): a, b = self.variables if index == 0: grad = np.copy(grad) grad[self.index] = 0 return grad elif index == 1: grad_sel = np.asarray(grad[self.index]) # Basic indexing and indexing with a single boolean-array is trivial. The # gradient into b can just be accessed by indexing into `grad`. # Indexing with integer-valued arrays can be problematic, as the same # item can be specified multiple for "setting"; here only the last set-item # for that element has an effect. For example: # x[np.array([0, 0])] = np.array([2, 3]) # `3` gets set to x[0]; 2 has no effect # Thus only that corresponding element in `grad` (that corresponding to `3`) # should be propagated back into b. Thus we must check to see if any items are # being set redundantly, and mask out any elements in `grad` corresponding to # the elements in `b` that weren't actually set. if ( not np.shares_memory(grad_sel, grad) and grad_sel.size > 0 and grad_sel.ndim > 0 and not _is_bool_array_index(self.index) and _is_int_array_index(self.index) ): # create an array of unique elements, and see if indexing into it produces # any redundant elements unique = _arr(*grad.shape) sub_sel = unique[self.index].flat elements, first_inds, = np.unique( np.flip(sub_sel, axis=0), return_index=True ) if len(first_inds) < len(sub_sel): # one or more elements were set redundantly, identify the entries in `b` # that actually were set to those elements (the last-most set-item calls # for those elements) and propagate only the corresponding elements from grad first_inds = (len(sub_sel) - 1) - first_inds mask = np.zeros_like(sub_sel) mask[first_inds] = 1 mask = mask.reshape(grad_sel.shape) grad_sel *= mask # handle the edge case of "projecting down" on setitem. E.g: # x = Tensor([0, 1, 2]) # y = Tensor([3]) # x[0] = y # this is legal since x[0] and y have the same size if grad_sel.ndim < b.ndim: if grad_sel.size == b.size: grad_sel = grad_sel.reshape(b.shape) else: # Broadcasting occurred during set-item and `b` contains # excess leading singleton dimensions. Make `grad_sel` # commensurate with `b` for subsequent `reduce_broadcast` # to work grad_sel = grad_sel[(np.newaxis,) * (b.ndim - grad_sel.ndim)] return grad_sel else: raise IndexError() # pragma: no cover
the-stack_0_16477
#!/usr/bin/env python # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Google Cloud Vision API Python Beta Snippets Example Usage: python beta_snippets.py -h python beta_snippets.py object-localization INPUT_IMAGE python beta_snippets.py object-localization-uri gs://... python beta_snippets.py handwritten-ocr INPUT_IMAGE python beta_snippets.py handwritten-ocr-uri gs://... python beta_snippets.py batch-annotate-files INPUT_PDF python beta_snippets.py batch-annotate-files-uri gs://... python beta_snippets.py batch-annotate-images-uri gs://... gs://... For more information, the documentation at https://cloud.google.com/vision/docs. """ import argparse import io # [START vision_localize_objects_beta] def localize_objects(path): """Localize objects in the local image. Args: path: The path to the local file. """ from google.cloud import vision_v1p3beta1 as vision client = vision.ImageAnnotatorClient() with open(path, 'rb') as image_file: content = image_file.read() image = vision.types.Image(content=content) objects = client.object_localization( image=image).localized_object_annotations print('Number of objects found: {}'.format(len(objects))) for object_ in objects: print('\n{} (confidence: {})'.format(object_.name, object_.score)) print('Normalized bounding polygon vertices: ') for vertex in object_.bounding_poly.normalized_vertices: print(' - ({}, {})'.format(vertex.x, vertex.y)) # [END vision_localize_objects_beta] # [START vision_localize_objects_gcs_beta] def localize_objects_uri(uri): """Localize objects in the image on Google Cloud Storage Args: uri: The path to the file in Google Cloud Storage (gs://...) """ from google.cloud import vision_v1p3beta1 as vision client = vision.ImageAnnotatorClient() image = vision.types.Image() image.source.image_uri = uri objects = client.object_localization( image=image).localized_object_annotations print('Number of objects found: {}'.format(len(objects))) for object_ in objects: print('\n{} (confidence: {})'.format(object_.name, object_.score)) print('Normalized bounding polygon vertices: ') for vertex in object_.bounding_poly.normalized_vertices: print(' - ({}, {})'.format(vertex.x, vertex.y)) # [END vision_localize_objects_gcs_beta] # [START vision_handwritten_ocr_beta] def detect_handwritten_ocr(path): """Detects handwritten characters in a local image. Args: path: The path to the local file. """ from google.cloud import vision_v1p3beta1 as vision client = vision.ImageAnnotatorClient() with io.open(path, 'rb') as image_file: content = image_file.read() image = vision.types.Image(content=content) # Language hint codes for handwritten OCR: # en-t-i0-handwrit, mul-Latn-t-i0-handwrit # Note: Use only one language hint code per request for handwritten OCR. image_context = vision.types.ImageContext( language_hints=['en-t-i0-handwrit']) response = client.document_text_detection(image=image, image_context=image_context) print('Full Text: {}'.format(response.full_text_annotation.text)) for page in response.full_text_annotation.pages: for block in page.blocks: print('\nBlock confidence: {}\n'.format(block.confidence)) for paragraph in block.paragraphs: print('Paragraph confidence: {}'.format( paragraph.confidence)) for word in paragraph.words: word_text = ''.join([ symbol.text for symbol in word.symbols ]) print('Word text: {} (confidence: {})'.format( word_text, word.confidence)) for symbol in word.symbols: print('\tSymbol: {} (confidence: {})'.format( symbol.text, symbol.confidence)) # [END vision_handwritten_ocr_beta] # [START vision_handwritten_ocr_gcs_beta] def detect_handwritten_ocr_uri(uri): """Detects handwritten characters in the file located in Google Cloud Storage. Args: uri: The path to the file in Google Cloud Storage (gs://...) """ from google.cloud import vision_v1p3beta1 as vision client = vision.ImageAnnotatorClient() image = vision.types.Image() image.source.image_uri = uri # Language hint codes for handwritten OCR: # en-t-i0-handwrit, mul-Latn-t-i0-handwrit # Note: Use only one language hint code per request for handwritten OCR. image_context = vision.types.ImageContext( language_hints=['en-t-i0-handwrit']) response = client.document_text_detection(image=image, image_context=image_context) print('Full Text: {}'.format(response.full_text_annotation.text)) for page in response.full_text_annotation.pages: for block in page.blocks: print('\nBlock confidence: {}\n'.format(block.confidence)) for paragraph in block.paragraphs: print('Paragraph confidence: {}'.format( paragraph.confidence)) for word in paragraph.words: word_text = ''.join([ symbol.text for symbol in word.symbols ]) print('Word text: {} (confidence: {})'.format( word_text, word.confidence)) for symbol in word.symbols: print('\tSymbol: {} (confidence: {})'.format( symbol.text, symbol.confidence)) # [END vision_handwritten_ocr_gcs_beta] # [START vision_batch_annotate_files_beta] def detect_batch_annotate_files(path): """Detects document features in a PDF/TIFF/GIF file. While your PDF file may have several pages, this API can process up to 5 pages only. Args: path: The path to the local file. """ from google.cloud import vision_v1p4beta1 as vision client = vision.ImageAnnotatorClient() with open(path, 'rb') as pdf_file: content = pdf_file.read() # Other supported mime_types: image/tiff' or 'image/gif' mime_type = 'application/pdf' input_config = vision.types.InputConfig( content=content, mime_type=mime_type) feature = vision.types.Feature( type=vision.enums.Feature.Type.DOCUMENT_TEXT_DETECTION) # Annotate the first two pages and the last one (max 5 pages) # First page starts at 1, and not 0. Last page is -1. pages = [1, 2, -1] request = vision.types.AnnotateFileRequest( input_config=input_config, features=[feature], pages=pages) response = client.batch_annotate_files(requests=[request]) for image_response in response.responses[0].responses: for page in image_response.full_text_annotation.pages: for block in page.blocks: print(u'\nBlock confidence: {}\n'.format(block.confidence)) for par in block.paragraphs: print(u'\tParagraph confidence: {}'.format(par.confidence)) for word in par.words: symbol_texts = [symbol.text for symbol in word.symbols] word_text = ''.join(symbol_texts) print(u'\t\tWord text: {} (confidence: {})'.format( word_text, word.confidence)) for symbol in word.symbols: print(u'\t\t\tSymbol: {} (confidence: {})'.format( symbol.text, symbol.confidence)) # [END vision_batch_annotate_files_beta] # [START vision_batch_annotate_files_gcs_beta] def detect_batch_annotate_files_uri(gcs_uri): """Detects document features in a PDF/TIFF/GIF file. While your PDF file may have several pages, this API can process up to 5 pages only. Args: uri: The path to the file in Google Cloud Storage (gs://...) """ from google.cloud import vision_v1p4beta1 as vision client = vision.ImageAnnotatorClient() # Other supported mime_types: image/tiff' or 'image/gif' mime_type = 'application/pdf' input_config = vision.types.InputConfig( gcs_source=vision.types.GcsSource(uri=gcs_uri), mime_type=mime_type) feature = vision.types.Feature( type=vision.enums.Feature.Type.DOCUMENT_TEXT_DETECTION) # Annotate the first two pages and the last one (max 5 pages) # First page starts at 1, and not 0. Last page is -1. pages = [1, 2, -1] request = vision.types.AnnotateFileRequest( input_config=input_config, features=[feature], pages=pages) response = client.batch_annotate_files(requests=[request]) for image_response in response.responses[0].responses: for page in image_response.full_text_annotation.pages: for block in page.blocks: print(u'\nBlock confidence: {}\n'.format(block.confidence)) for par in block.paragraphs: print(u'\tParagraph confidence: {}'.format(par.confidence)) for word in par.words: symbol_texts = [symbol.text for symbol in word.symbols] word_text = ''.join(symbol_texts) print(u'\t\tWord text: {} (confidence: {})'.format( word_text, word.confidence)) for symbol in word.symbols: print(u'\t\t\tSymbol: {} (confidence: {})'.format( symbol.text, symbol.confidence)) # [END vision_batch_annotate_files_gcs_beta] # [START vision_async_batch_annotate_images_beta] def async_batch_annotate_images_uri(input_image_uri, output_uri): """Batch annotation of images on Google Cloud Storage asynchronously. Args: input_image_uri: The path to the image in Google Cloud Storage (gs://...) output_uri: The path to the output path in Google Cloud Storage (gs://...) """ import re from google.cloud import storage from google.protobuf import json_format from google.cloud import vision_v1p4beta1 as vision client = vision.ImageAnnotatorClient() # Construct the request for the image(s) to be annotated: image_source = vision.types.ImageSource(image_uri=input_image_uri) image = vision.types.Image(source=image_source) features = [ vision.types.Feature(type=vision.enums.Feature.Type.LABEL_DETECTION), vision.types.Feature(type=vision.enums.Feature.Type.TEXT_DETECTION), vision.types.Feature(type=vision.enums.Feature.Type.IMAGE_PROPERTIES), ] requests = [ vision.types.AnnotateImageRequest(image=image, features=features), ] gcs_destination = vision.types.GcsDestination(uri=output_uri) output_config = vision.types.OutputConfig( gcs_destination=gcs_destination, batch_size=2) operation = client.async_batch_annotate_images( requests=requests, output_config=output_config) print('Waiting for the operation to finish.') operation.result(timeout=10000) # Once the request has completed and the output has been # written to Google Cloud Storage, we can list all the output files. storage_client = storage.Client() match = re.match(r'gs://([^/]+)/(.+)', output_uri) bucket_name = match.group(1) prefix = match.group(2) bucket = storage_client.get_bucket(bucket_name) # Lists objects with the given prefix. blob_list = list(bucket.list_blobs(prefix=prefix)) print('Output files:') for blob in blob_list: print(blob.name) # Processes the first output file from Google Cloud Storage. # Since we specified batch_size=2, the first response contains # annotations for the first two annotate image requests. output = blob_list[0] json_string = output.download_as_string() response = json_format.Parse(json_string, vision.types.BatchAnnotateImagesResponse()) # Prints the actual response for the first annotate image request. print(u'The annotation response for the first request: {}'.format( response.responses[0])) # [END vision_async_batch_annotate_images_beta] if __name__ == '__main__': parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) subparsers = parser.add_subparsers(dest='command') object_parser = subparsers.add_parser( 'object-localization', help=localize_objects.__doc__) object_parser.add_argument('path') object_uri_parser = subparsers.add_parser( 'object-localization-uri', help=localize_objects_uri.__doc__) object_uri_parser.add_argument('uri') handwritten_parser = subparsers.add_parser( 'handwritten-ocr', help=detect_handwritten_ocr.__doc__) handwritten_parser.add_argument('path') handwritten_uri_parser = subparsers.add_parser( 'handwritten-ocr-uri', help=detect_handwritten_ocr_uri.__doc__) handwritten_uri_parser.add_argument('uri') batch_annotate_parser = subparsers.add_parser( 'batch-annotate-files', help=detect_batch_annotate_files.__doc__) batch_annotate_parser.add_argument('path') batch_annotate_uri_parser = subparsers.add_parser( 'batch-annotate-files-uri', help=detect_batch_annotate_files_uri.__doc__) batch_annotate_uri_parser.add_argument('uri') batch_annotate__image_uri_parser = subparsers.add_parser( 'batch-annotate-images-uri', help=async_batch_annotate_images_uri.__doc__) batch_annotate__image_uri_parser.add_argument('uri') batch_annotate__image_uri_parser.add_argument('output') args = parser.parse_args() if 'uri' in args.command: if 'object-localization-uri' in args.command: localize_objects_uri(args.uri) elif 'handwritten-ocr-uri' in args.command: detect_handwritten_ocr_uri(args.uri) elif 'batch-annotate-files-uri' in args.command: detect_batch_annotate_files_uri(args.uri) elif 'batch-annotate-images-uri' in args.command: async_batch_annotate_images_uri(args.uri, args.output) else: if 'object-localization' in args.command: localize_objects(args.path) elif 'handwritten-ocr' in args.command: detect_handwritten_ocr(args.path) elif 'batch-annotate-files' in args.command: detect_batch_annotate_files(args.path)
the-stack_0_16478
from django.urls import path, include from rest_framework.routers import DefaultRouter from profiles_api import views router = DefaultRouter() router.register('hello-viewset', views.HelloViewSet, base_name='hello-viewset') router.register('profile', views.UserProfileViewSet) router.register('feed', views.UserProfileFeedViewSet) urlpatterns = [ path('hello-view/', views.HelloApiView.as_view()), path('login/', views.UserLoginApiView.as_view()), path('', include(router.urls)) ]
the-stack_0_16479
import os from src.antlr_utils import parse from src.grammar_cnf import GrammarCNF import pytest @pytest.mark.parametrize("grammar", [GrammarCNF.from_txt("dbql_grammar.txt")]) @pytest.mark.parametrize("test_input, expected", [ ( ''' connect "azat/home/db" ; select edges from query term("s")*|term("b")+.term("c")?; ''', True ), ( ''' select edges from name "sparsegraph" ; ''', True ), ( ''' connect "azat/home/db" ; ''', True ), ( ''' connect "azat/home/db" ; select edges from name "sparsegraph_256.txt" ; ''', True ), ( ''' connect "azat/home/db" ; select edges from startAndFinal(set(1, 2, 3), set (4, 5, 6)) of name "sparsegraph" ; ''', True ), ( ''' connect "azat/home/db" ; select edges from startAndFinal(set(1, 2, 3), set (4, 5, 6)) of name "sparsegraph" ; ''', True ), ( ''' connect "azat/home/db" ; select filter edges with ( u, l, v ) satisfies isStart(u) and isFinal(v) from name "sparsegraph" ; ''', True ), ( ''' connect "azat/home/db" ; select filter edges with ( u, l, v ) satisfies labelIs("ar") or (isStart(u) and isFinal(v)) from name "sparsegraph" ; ''', True ), ( ''' connect "azat/home/db" ; select filter edges with ( u, l, v ) satisfies labelIs("ar") or (isStart(u) and isFinal(v)) from name "sparsegraph.txt" ; ''', True ), ( ''' connect "azat/home/db" ; select edges from query term("s")*|term("b")+.term("c")? ; ''', True ), ( ''' connect "azat/home/db" ; select edges from name "sparsegraph" intersect query term("a") alt term("b") ; ''', True ), # graph expression with multiple levels: ( ''' connect "home/db" ; select count edges from startAndFinal(set(1, 2, 3), set(4, 5, 6)) of name "fullgraph" intersect query term("a") star concat term("b"); ''', True ), ( ''' connect "home/db" ; select count edges from startAndFinal(range(1, 3), set(4, 5, 6)) of name "fullgraph" intersect query term("a") star concat term("b"); ''', True ), # edge expressions with multiple levels: ( ''' connect "azat/home/db" ; select count filter edges with ( u, e, v ) satisfies not isStart(u) and isFinal(v) from name "worstcase" ; ''', True ), ( ''' connect "azat/home/db" ; define term("a").var("s").term("b").var("s") as "s" ; define term("a").var("s1").term("b") as "s1" ; select edges from name "sparsegraph256.txt" ; ''', True ), ( ''' connect "azat/home/db" ; define term("a").var("s").term("b").var("s") as "s" ; select edges from name "sparsegraph" intersect query term("a") | term("b"); ''', True ), # the rest are False test cases ( when grammar shouldn't accept ) # mismatched brackets in pattern: ( ''' connect "azat/home/db" ; select edges from term("a")*.(term("b")?.var("s")+ ; ''', False ), ( ''' connect "azat/home/db" ; select edges from query term("a"*.term("b")?.var("s")+ ; ''', False ), # wrong data type in range: ( ''' connect "azat/home/db" ; select edges from startAndFinal ( range( "typo", 3 ), set(4, 5, 6) ) of name "sparsegraph" ; ''', False ), # wrong data type in set: ( ''' connect "azat/home/db" ; select edges from startAndFinal ( range(1, 3 ), set(typo, 5, 6)) of name "sparsegraph" ; ''', False ), # not specified term or var in pattern: ( ''' connect "azat/home/db" ; select edges from query "a" star alt "a" opt concat "c" plus ; ''', False ), ]) # tests graph DB query language def test_grammar_antlr(test_input, expected, grammar): assert expected == parse(test_input)
the-stack_0_16482
from random import randint from epidemic_simulation.simulation import SimulationManager import pytest @pytest.fixture def test_data(): test_bodies=[{'position': (748, 634), 'state': 'INFECTIOUS'}, {'position': (1137, 351), 'state': 'SUSCEPTIBLE'}, {'position': (1017, 464), 'state': 'INFECTIOUS'}, {'position': (901, 368), 'state': 'INFECTIOUS'}, {'position': (1227, 549), 'state': 'REMOVED'}, {'position': (1193, 194), 'state': 'REMOVED'}, {'position': (654, 165), 'state': 'SUSCEPTIBLE'}, {'position': (1212, 260), 'state': 'INFECTIOUS'}, {'position': (820, 198), 'state': 'SUSCEPTIBLE'}, {'position': (826, 480), 'state': 'INFECTIOUS'}, {'position': (955, 58), 'state': 'REMOVED'}, {'position': (914, 78), 'state': 'INFECTIOUS'}, {'position': (1239, 86), 'state': 'SUSCEPTIBLE'}, {'position': (1132, 532), 'state': 'SUSCEPTIBLE'}, {'position': (1042, 41), 'state': 'REMOVED'}, {'position': (713, 590), 'state': 'SUSCEPTIBLE'}, {'position': (1169, 572), 'state': 'REMOVED'}, {'position': (778, 70), 'state': 'SUSCEPTIBLE'}, {'position': (906, 554), 'state': 'SUSCEPTIBLE'}, {'position': (797, 598), 'state': 'INFECTIOUS'}] test_calc=SimulationManager(test_bodies,{'infection_r':100,'infection_p':0.99,'sickness_duration':6}) return test_calc def test_infect_susceptibles(test_data): SUS_bodies_pre_function = test_data.susceptibles test_data.calculate_subjects_to_change() to_change_bodies = test_data.subjects_to_change test_data.infect_susceptibles() SUS_bodies_post_function=[body for body in test_data.subjects if body['state']=='SUSCEPTIBLE'] assert len(SUS_bodies_pre_function)-len(to_change_bodies)==len(SUS_bodies_post_function)
the-stack_0_16483
# encoding: UTF-8 __author__ = 'CHENXY' # C++和python类型的映射字典 type_dict = { 'int': 'int', 'char': 'string', 'double': 'float', 'short': 'int' } def process_line(line): """处理每行""" if '///' in line: # 注释 py_line = process_comment(line) elif 'typedef' in line: # 类型申明 py_line = process_typedef(line) elif '#define' in line: # 定义常量 py_line = process_define(line) elif line == '\n': # 空行 py_line = line else: py_line = '' return py_line def process_comment(line): """处理注释""" # if line[3] == '/': # py_line = '' # else: # py_line = '#' + line[3:] py_line = '#' + line[3:] return py_line def process_typedef(line): """处理类型申明""" content = line.split(' ') type_ = type_dict[content[1]] keyword = content[2] if '[' in keyword: i = keyword.index('[') keyword = keyword[:i] else: keyword = keyword.replace(';\n', '') # 删除行末分号 py_line = 'typedefDict["%s"] = "%s"\n' % (keyword, type_) return py_line def process_define(line): """处理定义常量""" content = line.split(' ') constant = content[1] if len(content)>2: value = content[-1] py_line = 'defineDict["%s"] = %s' % (constant, value) else: py_line = '' return py_line def main(): """主函数""" try: fcpp = open('USTPFtdcUserApiDataType.h','r') fpy = open('femas_data_type.py', 'w') fpy.write('# encoding: UTF-8\n') fpy.write('\n') fpy.write('defineDict = {}\n') fpy.write('typedefDict = {}\n') fpy.write('\n') for line in fcpp: py_line = process_line(line) if py_line: fpy.write(py_line.decode('gbk').encode('utf-8')) fcpp.close() fpy.close() print('data_type.py生成过程完成') except: print('data_type.py生成过程出错') if __name__ == '__main__': main()
the-stack_0_16485
import os import pefile import hashlib import pickle import time import pandas as pd from config import settings as cnst from collections import OrderedDict from utils import embedder all_sections = OrderedDict({".header": 0}) def raw_pe_to_pkl(path, is_benign, unprocessed, processed): list_idx = [] for src_dir, dirs, files in os.walk(path): for file_ in files: file_data = {} try: src_file = os.path.join(src_dir, file_) src_file_size = os.stat(src_file).st_size if src_file_size > cnst.MAX_FILE_SIZE_LIMIT: print("Skipping as file size exceeds ", cnst.MAX_FILE_SIZE_LIMIT, "[ Unprocessed / Skipped Count: "+str(unprocessed)+"]") unprocessed += 1 continue else: file_data["size_byte"] = src_file_size pe = pefile.PE(src_file) pe_name = "pe_" + str(processed) + ".pkl" with open(src_file, 'rb') as fhandle: file_byte_data = fhandle.read() fid = [pe_name , 0 if is_benign else 1 , file_ , hashlib.md5(file_byte_data).hexdigest() , hashlib.sha1(file_byte_data).hexdigest() , hashlib.sha256(file_byte_data).hexdigest()] file_data["whole_bytes"] = list(file_byte_data) wb_size = len(file_data["whole_bytes"]) file_data["whole_bytes_size"] = wb_size file_data["benign"] = is_benign # file_data["num_of_sections"] = pe.FILE_HEADER.NumberOfSections file_data["section_info"] = {} for section in pe.sections: section_name = section.Name.strip(b'\x00').decode("utf-8").strip() section_data = {} section_data["section_data"] = list(section.get_data()) section_data["section_size_byte"] = section.SizeOfRawData section_data["section_bounds"] = {} section_data["section_bounds"]["start_offset"] = section.PointerToRawData section_data["section_bounds"]["end_offset"] = section.PointerToRawData + section.SizeOfRawData - 1 file_data["section_info"][section_name] = section_data file_data["section_info"][".header"] = { "section_data": list(pe.header), "section_size_byte": len(pe.header), "section_bounds": { "start_offset": 0, "end_offset": len(pe.header) }} t1_pkl = {"whole_bytes": file_data["whole_bytes"], "benign": file_data["benign"]} sections_end = 0 keys = file_data["section_info"].keys() for key in keys: if file_data["section_info"][key]['section_bounds']["end_offset"] > sections_end: sections_end = file_data["section_info"][key]['section_bounds']["end_offset"] if sections_end <= 0: print("[OVERLAY DATA NOT ADDED] Invalid section end found - ", sections_end) elif sections_end < wb_size - 1: data = file_data["whole_bytes"][sections_end + 1:wb_size] section_data = dict() section_data["section_data"] = data section_data["section_size_byte"] = len(data) # section_bounds section_data["section_bounds"] = {} section_data["section_bounds"]["start_offset"] = sections_end + 1 section_data["section_bounds"]["end_offset"] = wb_size - 1 file_data["section_info"][cnst.TAIL] = section_data del file_data["whole_bytes"] t2_pkl = file_data with open(t1_dst_folder + pe_name, "wb") as t1handle: pickle.dump(t1_pkl, t1handle) with open(t2_dst_folder + pe_name, "wb") as t2handle: pickle.dump(t2_pkl, t2handle) list_idx.append(fid) processed += 1 for section in file_data["section_info"].keys(): if section in all_sections: all_sections[section] += 1 else: all_sections[section] = 1 all_sections['.header'] += 1 print("Total Count:", processed, "Unprocessed/Skipped:", unprocessed) # Test saved data # with open(pkl_file, "rb") as pkl: # print(pickle.load(pkl)["num_of_sections"]) except Exception as e: unprocessed += 1 print("parse failed . . . [ Unprocessed #:", str(unprocessed), "] [ ERROR: " + str(e) + " ] [ FILE: ", src_file, "] ") if processed % 1000 == 0: print("# files processed:", processed) pd.DataFrame(list_idx).to_csv(cnst.DATASET_BACKUP_FILE, index=False, header=None, mode='a') return unprocessed, processed if __name__ == '__main__': total_processed = 0 total_unprocessed = 0 start_time = time.time() t1_dst_folder = cnst.PKL_SOURCE_PATH + "t1" + cnst.ESC t2_dst_folder = cnst.PKL_SOURCE_PATH + "t2" + cnst.ESC if not os.path.exists(t1_dst_folder): os.makedirs(t1_dst_folder) if not os.path.exists(t2_dst_folder): os.makedirs(t2_dst_folder) if os.path.exists(cnst.DATASET_BACKUP_FILE): os.remove(cnst.DATASET_BACKUP_FILE) for dir in cnst.RAW_SAMPLE_DIRS.keys(): total_unprocessed, total_processed = raw_pe_to_pkl(dir, cnst.RAW_SAMPLE_DIRS[dir], total_unprocessed, total_processed) end_time = time.time() print("\nData collection completed for all given paths.") print("\nTotal:", total_processed+total_unprocessed, "\tprocessed: ", total_processed, "unprocessed:", total_unprocessed) print("Time elapsed: {0:.3f}".format((end_time - start_time) / 60), "minute(s)") # collect list of available sections from pkl and store mapping to their embedding pd.DataFrame.from_dict([all_sections.keys()]).to_csv(cnst.PKL_SOURCE_PATH + cnst.ESC + 'available_sections.csv', index=False, header=None) embedder.embed_section_names()
the-stack_0_16487
class Solution: def mostCompetitive(self, nums: List[int], k: int) -> List[int]: St = [] remove = len(nums) - k for num in nums: while St and num < St[-1] and remove > 0: St.pop() remove -= 1 St.append(num) return St[:len(St) - remove]
the-stack_0_16488
from cpc import CPCStateMachine as CPCwithTG from cpc import CPCStateMachineL4 as CPCwithTGL4 from cic.states import CICStateMachineLvl2 as CICwithCG from cic.states import CICStateMachineLvl4 as CICwithCGL4 from cic.states import CICStateMachineLvl1 as CICwithCGL1 from mp.state_machines import MPStateMachine as MPwithPG from residual_learning import residual_state_machines as rsm from cic import parameters_new_grasp as cic_parameters_new_grasp from mp import states, base_policies from cpc import parameters as cpc_params from combined_code import mix_and_match as mm state_machines = { 'mp-pg-l1': MPwithPG, 'mp-pg-l2': MPwithPG, 'mp-pg-l3': MPwithPG, 'mp-pg-l4': MPwithPG, 'cic-cg-l1': CICwithCGL1, 'cic-cg-l2': CICwithCG, 'cic-cg-l3': CICwithCG, 'cic-cg-l4': CICwithCGL4, 'cpc-tg-l1': CPCwithTG, 'cpc-tg-l2': CPCwithTG, 'cpc-tg-l3': CPCwithTG, 'cpc-tg-l4': CPCwithTGL4, 'residual-mp-pg-l3': rsm.ResidualMP_with_PG_LVL3, 'residual-mp-pg-l4': rsm.ResidualMP_with_PG_LVL4, 'residual-cic-cg-l3': rsm.ResidualCIC_with_CG_LVL3, 'residual-cic-cg-l4': rsm.ResidualCIC_with_CG_LVL4, 'residual-cpc-tg-l3': rsm.ResidualCPC_with_TG_LVL3, 'residual-cpc-tg-l4': rsm.ResidualCPC_with_TG_LVL4, 'mp-cg-l4': mm.MPwithCG, 'mp-tg-l4': mm.MPwithTG, 'cic-pg-l4': mm.CICwithPG, 'cic-tg-l4': mm.CICwithTG, 'cpc-pg-l4': mm.CPCwithPG, 'cpc-cg-l4': mm.CPCwithCG, } def create_state_machine(difficulty, method, env, residual=False, bo=False): if residual: if method not in ['mp-pg', 'cic-cg', 'cpc-tg'] and difficulty in [1, 2]: raise ValueError("Residual policies are only available for methods " "'mp-pg', 'cic-cg', 'cpc-tg' and difficulties 3 and 4." f"Method: {method}, difficulty: {difficulty}.") if bo: if method not in ['mp-pg', 'cic-cg', 'cpc-tg'] and difficulty in [1, 2]: raise ValueError("BO optimized parameters are only available for methods " "'mp-pg', 'cic-cg', 'cpc-tg' and difficulties 3 and 4." f"Method: {method}, difficulty: {difficulty}.") if method not in ['mp-pg', 'cic-cg', 'cpc-tg'] and difficulty != 4: raise ValueError(f'{method} is only implemented for difficulty 4.') id = method + f'-l{difficulty}' if residual: id = 'residual-' + id if id not in state_machines: raise ValueError( f"Unknown method: {method}. Options are: " "mp-pg, cic-cg, cpc-tg, mp-cg, mp-tg, cic-pg, cic-tg, cpc-pg, cpc-cg." ) if bo: return create_bo_state_machine(id, env, difficulty) else: return state_machines[id](env) def create_bo_state_machine(id, env, difficulty): if 'mp-pg' in id: return mp_bo_wrapper(id, env, difficulty) elif 'cic-cg' in id: return cic_bo_wrapper(id, env, difficulty) else: return cpc_bo_wrapper(id, env, difficulty) def mp_bo_wrapper(id, env, difficulty): if difficulty == 3: if (env.simulation): states.MoveToGoalState.BO_action_repeat = 10 base_policies.PlanningAndForceControlPolicy.BO_num_tipadjust_steps = 184 else: states.MoveToGoalState.BO_action_repeat = 26 # 12 # (int) [1, 100], default: 12 base_policies.PlanningAndForceControlPolicy.BO_num_tipadjust_steps = 63 # 50 # (int) [10, 200], default: 50 elif difficulty == 4: if (env.simulation): states.MoveToGoalState.BO_action_repeat = 13 base_policies.PlanningAndForceControlPolicy.BO_num_tipadjust_steps = 161 else: states.MoveToGoalState.BO_action_repeat = 29 # 12 # (int) [1, 100], default: 12 base_policies.PlanningAndForceControlPolicy.BO_num_tipadjust_steps = 182 # 50 # (int) [10, 200], default: 50 return state_machines[id](env) def cic_bo_wrapper(id, env, difficulty): if difficulty == 3: parameters = cic_parameters_new_grasp.CubeLvl2Params(env) elif difficulty == 4: parameters = cic_parameters_new_grasp.CubeLvl4Params(env) if (env.simulation): parameters.orient_grasp_xy_lift = -0.01932485358 parameters.orient_grasp_h_lift = 0.0167107629776001 parameters.orient_gain_xy_lift_lift = 500.0 parameters.orient_gain_z_lift_lift = 974.5037078857422 parameters.orient_pos_gain_impedance_lift_lift = 0.015002169609069825 parameters.orient_force_factor_lift = 0.6673897802829742 parameters.orient_force_factor_rot_lift = 0.010000000000000002 parameters.orient_int_orient_gain = 0.0003590885430574417 parameters.orient_int_pos_gain = 0.008034629583358766 else: parameters.orient_grasp_xy_lift = -0.03926035182 parameters.orient_grasp_h_lift = -0.005355795621871948 parameters.orient_gain_xy_lift_lift = 895.7465827465057 parameters.orient_gain_z_lift_lift = 1500.0 parameters.orient_pos_gain_impedance_lift_lift = 0.01427580736577511 parameters.orient_force_factor_lift = 0.49047523438930507 parameters.orient_force_factor_rot_lift = 0.0022044302672147753 parameters.orient_int_orient_gain = 0.027903699278831486 parameters.orient_int_pos_gain = 0.013680822849273681 return state_machines[id](env, parameters=parameters) def cpc_bo_wrapper(id, env, difficulty): if difficulty == 3: parameters = cpc_params.CubeParams(env) if (env.simulation): parameters.interval = 9 parameters.gain_increase_factor = 1.1110639113783836 parameters.k_p_goal = 0.5408251136541367 parameters.k_p_into = 0.17404515892267228 parameters.k_i_goal = 0.00801944613456726 else: parameters.interval = 3000 # 1800 # Range: 500 - 3000 not super important parameters.gain_increase_factor = 1.7353031241893768 # 1.04 # Range: 1.01 - 2.0 parameters.k_p_goal = 0.5804646849632262 # 0.75 # Range: 0.3 - 1.5, same for l4 parameters.k_p_into = 0.1 # 0.2 # Range: 0.1 - 0.6, same for l4 parameters.k_i_goal = 0.00801206259727478 # 0.005 # Range: 0.0008 - 0.1, same for l4 if difficulty == 4: parameters = cpc_params.CubeLvl4Params(env) if (env.simulation): parameters.interval = 10 parameters.gain_increase_factor = 1.2431243617534635 parameters.k_p_goal = 0.4393719419836998 parameters.k_p_into = 0.21185509711503983 parameters.k_i_goal = 0.008012341380119324 parameters.k_p_ang = 0.02238279849290848 parameters.k_i_ang = 0.0019905194759368898 else: parameters.interval = 579 parameters.gain_increase_factor = 1.07002716961503 parameters.k_p_goal = 0.6011996507644652 parameters.k_p_into = 0.13088179603219033 parameters.k_i_goal = 0.006161301851272583 parameters.k_p_ang = 0.06160478860139847 parameters.k_i_ang = 0.0007573306798934938 return state_machines[id](env, parameters=parameters)
the-stack_0_16490
""" (c) 2020 Spencer Rose, MIT Licence Python Landscape Classification Tool (PyLC) Reference: An evaluation of deep learning semantic segmentation for land cover classification of oblique ground-based photography, MSc. Thesis 2020. <http://hdl.handle.net/1828/12156> Spencer Rose <[email protected]>, June 2020 University of Victoria Module: Profiler File: profile.py """ import torch import torch.nn.functional from tqdm import tqdm from utils.metrics import m2, jsd import numpy as np def get_profile(dset): """ Computes dataset statistical profile - probability class distribution for database at db_path - sample metrics and statistics - image mean / standard deviation Parameters ------ dset: MLPDataset Image/mask dataset. Returns ------ self For chaining. Metadata class for analyzing and generating metadata for database. Arguments --------- args.id: int Identifier. args.ch: int Number of channels args.schema: str Path to schema JSON file. args.output: str Output path args.n_samples Number of samples. args.tile_size: int Tile size. args.scales: list Image scaling factors. args.stride: int Stride. args.m2: float M2 variance metric. args.jsd: float JSD coefficient. args.px_mean: np.array Pixel mean value. args.px_std: np.array Pixel standard deviation value. args.px_dist: np.array Tile pixel frequency distribution. args.tile_px_count: int Tile pixel count. args.dset_px_dist: np.array Dataset pixel frequency distribution. args.dset_px_count: int Dataset pixel count. args.probs: np.array Dataset probability distribution. args.weights: Dataset inverse weights. """ # update local metadata with dataset metadata meta = dset.get_meta() # get data loader loader, n_batches = dset.loader( batch_size=1, n_workers=0, drop_last=False ) meta.n_samples = dset.size # initialize global stats px_dist = [] px_mean = torch.zeros(meta.ch) px_std = torch.zeros(meta.ch) # load images and masks for i, (img, mask) in tqdm(enumerate(loader), total=n_batches, desc="Profiling: ", unit=' batches'): # Compute dataset pixel global mean / standard deviation if meta.ch == 3: px_mean += torch.mean(img, (0, 2, 3)) px_std += torch.std(img, (0, 2, 3)) else: px_mean += torch.mean(img) px_std += torch.std(img) # convert mask to one-hot encoding mask_1hot = torch.nn.functional.one_hot(mask, num_classes=meta.n_classes).permute(0, 3, 1, 2) px_dist_sample = [np.sum(mask_1hot.numpy(), axis=(2, 3))] px_dist += px_dist_sample # Divide by dataset size px_mean /= meta.n_samples px_std /= meta.n_samples # Calculate sample pixel distribution / sample pixel count px_dist = np.concatenate(px_dist) # Calculate dataset pixel distribution / dataset total pixel count dset_px_dist = np.sum(px_dist, axis=0) dset_px_count = np.sum(dset_px_dist) probs = dset_px_dist / dset_px_count assert dset_px_count / meta.tile_px_count == meta.n_samples, \ "Pixel distribution does not match tile count." # Calculate class weight balancing weights = 1 / (np.log(1.02 + probs)) weights = weights / np.max(weights) # initialize balanced distributions [n] balanced_px_prob = np.empty(meta.n_classes) balanced_px_prob.fill(1 / meta.n_classes) # Calculate JSD and M2 metrics meta.m2 = m2(probs, meta.n_classes) meta.jsd = jsd(probs, balanced_px_prob) # store metadata values meta.px_mean = px_mean.tolist() meta.px_std = px_std.tolist() meta.px_dist = px_dist.tolist() meta.tile_px_count = meta.tile_size * meta.tile_size meta.probs = probs.tolist() meta.weights = weights.tolist() meta.dset_px_count = int(dset_px_count) meta.dset_px_dist = dset_px_dist.tolist() return meta def print_meta(meta): """ Prints profile metadata to console """ hline = '\n' + '_' * 70 readout = '\n{}'.format('Profile Metadata') readout += hline readout += '\n {:30s}{}'.format('ID', meta.id) readout += '\n {:30s}{} ({})'.format('Channels', meta.ch, 'Grayscale' if meta.ch == 1 else 'Colour') readout += '\n {:30s}{}'.format('Classes', meta.n_classes) readout += '\n {:30s}{}'.format('Samples', meta.n_samples) readout += '\n {:30s}{}px x {}px'.format('Tile size (WxH)', meta.tile_size, meta.tile_size) # RGB/Grayscale mean px_mean = 'R{:3s} G{:3s} B{:3s}'.format( str(round(meta.px_mean[0], 3)), str(round(meta.px_mean[1], 3)), str(round(meta.px_mean[2], 3))) \ if meta.ch == 3 else str(round(meta.px_mean[0], 3) ) readout += '\n {:30s}{}'.format('Pixel mean', px_mean) # RGB/Grayscale std-dev px_std = 'R{:3s} G{:3s} B{:3s}'.format( str(round(meta.px_std[0], 3)), str(round(meta.px_std[1], 3)), str(round(meta.px_std[2], 3))) \ if meta.ch == 3 else str(round(meta.px_std[0], 3)) readout += '\n {:30s}{}'.format('Pixel std-dev', px_std) readout += '\n {:30s}{}'.format('M2', str(round(meta.m2, 3))) readout += '\n {:30s}{}'.format('JSD', str(round(meta.jsd, 3))) # palette readout += '\n\n{} ({})'.format('Palette', meta.schema) readout += hline readout += '\n {:8s}{:25s}{:20s}{:15s}'.format('Code', 'Name', 'RGB', 'Hex') readout += hline for i, rgb_colour in enumerate(meta.palette_rgb): rgb = 'R{:3s} G{:3s} B{:3s}'.format( str(rgb_colour[0]), str(rgb_colour[1]), str(rgb_colour[2])) readout += '\n {:8s}{:25s}{:20s}{:15s}'.format( meta.class_codes[i], meta.class_labels[i], rgb, meta.palette_hex[i]) readout += hline # class weights readout += '\n\n{:30s}'.format('Distribution') readout += hline readout += '\n {:30s}{:10s}{:10s}'.format('Class', 'Probs', 'Weights') readout += hline for i, w in enumerate(meta.weights): readout += '\n {:25s}{:10f} {:10f}'.format( meta.class_labels[i], round(meta.probs[i], 4), round(w, 4)) readout += hline readout += '\n{:25s}{:,}'.format('Tile pixel count', int(meta.tile_px_count)) readout += '\n{:25s}{:,}'.format('Dataset pixel count', int(meta.dset_px_count)) readout += hline + '\n' print(readout)
the-stack_0_16491
## @ingroupMethods-Noise-Fidelity_One-Propeller # noise_propeller_low_fidelty.py # # Created: Mar 2021, M. Clarke # Modified: Jul 2021, E. Botero # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import SUAVE from SUAVE.Core import Data import numpy as np from SUAVE.Methods.Noise.Fidelity_One.Noise_Tools.decibel_arithmetic import pressure_ratio_to_SPL_arithmetic from SUAVE.Methods.Noise.Fidelity_One.Noise_Tools import SPL_arithmetic from SUAVE.Methods.Noise.Fidelity_One.Noise_Tools import SPL_spectra_arithmetic from SUAVE.Methods.Noise.Fidelity_One.Noise_Tools import compute_point_source_coordinates from SUAVE.Methods.Noise.Fidelity_One.Propeller.compute_broadband_noise import compute_broadband_noise from SUAVE.Methods.Noise.Fidelity_One.Propeller.compute_harmonic_noise import compute_harmonic_noise # ------------------------------------------------------------------------------------- # Medium Fidelity Frequency Domain Methods for Acoustic Noise Prediction # ------------------------------------------------------------------------------------- ## @ingroupMethods-Noise-Fidelity_One-Propeller def propeller_mid_fidelity(network,auc_opts,segment,settings,source = 'propeller'): ''' This computes the acoustic signature (sound pressure level, weighted sound pressure levels, and frequency spectrums of a system of rotating blades (i.e. propellers and lift_rotors) Assumptions: None Source: None Inputs: network - vehicle energy network data structure [None] segment - flight segment data structure [None] mic_loc - microhone location [m] propeller - propeller class data structure [None] auc_opts - data structure of acoustic data [None] settings - accoustic settings [None] Outputs: Results. SPL - SPL [dB] SPL_dBA - dbA-Weighted SPL [dBA] SPL_bb_spectrum - broadband contribution to total SPL [dB] SPL_spectrum - 1/3 octave band SPL [dB] SPL_tonal_spectrum - harmonic contribution to total SPL [dB] SPL_bpfs_spectrum - 1/3 octave band harmonic contribution to total SPL [dB] Properties Used: N/A ''' # unpack conditions = segment.state.conditions microphone_locations = conditions.noise.total_microphone_locations angle_of_attack = conditions.aerodynamics.angle_of_attack velocity_vector = conditions.frames.inertial.velocity_vector freestream = conditions.freestream harmonics = settings.harmonics if not network.identical_propellers: assert('This method currently only works with identical propellers') # Because the propellers are identical, get the first propellers results auc_opts = auc_opts[list(auc_opts.keys())[0]] # create data structures for computation Noise = Data() Results = Data() # compute position vector of microphones position_vector = compute_point_source_coordinates(conditions,network,microphone_locations,source) # Harmonic Noise compute_harmonic_noise(harmonics,freestream,angle_of_attack,position_vector,velocity_vector,network,auc_opts,settings,Noise,source) # Broadband Noise compute_broadband_noise(freestream,angle_of_attack,position_vector, velocity_vector,network,auc_opts,settings,Noise,source) # Combine Rotational(periodic/tonal) and Broadband Noise Noise.SPL_prop_bpfs_spectrum = Noise.SPL_r Noise.SPL_prop_spectrum = 10*np.log10( 10**(Noise.SPL_prop_h_spectrum/10) + 10**(Noise.SPL_prop_bb_spectrum/10)) Noise.SPL_prop_spectrum[np.isnan(Noise.SPL_prop_spectrum)] = 0 # pressure ratios used to combine A weighted sound since decibel arithmetic does not work for #broadband noise since it is a continuous spectrum total_p_pref_dBA = np.concatenate((Noise.p_pref_r_dBA,Noise.p_pref_bb_dBA), axis=3) Noise.SPL_dBA_prop = pressure_ratio_to_SPL_arithmetic(total_p_pref_dBA) Noise.SPL_dBA_prop[np.isinf(Noise.SPL_dBA_prop)] = 0 Noise.SPL_dBA_prop[np.isnan(Noise.SPL_dBA_prop)] = 0 # Summation of spectra from propellers into into one SPL Results.bpfs = Noise.f[:,0,0,0,:] # blade passing frequency harmonics Results.SPL = SPL_arithmetic(SPL_arithmetic(Noise.SPL_prop_spectrum)) Results.SPL_dBA = SPL_arithmetic(Noise.SPL_dBA_prop) Results.SPL_spectrum = SPL_spectra_arithmetic(Noise.SPL_prop_spectrum) # 1/3 octave band Results.SPL_bpfs_spectrum = SPL_spectra_arithmetic(Noise.SPL_prop_bpfs_spectrum) # blade passing frequency specturm Results.SPL_tonal_spectrum = SPL_spectra_arithmetic(Noise.SPL_prop_tonal_spectrum) Results.SPL_bb_spectrum = SPL_spectra_arithmetic(Noise.SPL_prop_bb_spectrum) auc_opts.bpfs = Results.bpfs auc_opts.SPL = Results.SPL auc_opts.SPL_dBA = Results.SPL_dBA auc_opts.SPL_spectrum = Results.SPL_spectrum auc_opts.SPL_bpfs_spectrum = Results.SPL_bpfs_spectrum auc_opts.SPL_tonal_spectrum = Results.SPL_tonal_spectrum auc_opts.SPL_bb_spectrum = Results.SPL_bb_spectrum return Results
the-stack_0_16492
from struct import pack, unpack import hashlib import sys import traceback from electrum import bitcoin from electrum.bitcoin import TYPE_ADDRESS, int_to_hex, var_int from electrum.i18n import _ from electrum.plugins import BasePlugin from electrum.keystore import Hardware_KeyStore from electrum.transaction import Transaction from ..hw_wallet import HW_PluginBase from electrum.util import print_error, is_verbose, bfh, bh2u, versiontuple try: import hid from btchip.btchipComm import HIDDongleHIDAPI, DongleWait from btchip.btchip import btchip from btchip.btchipUtils import compress_public_key,format_transaction, get_regular_input_script, get_p2sh_input_script from btchip.bitcoinTransaction import bitcoinTransaction from btchip.btchipFirmwareWizard import checkFirmware, updateFirmware from btchip.btchipException import BTChipException BTCHIP = True BTCHIP_DEBUG = is_verbose except ImportError: BTCHIP = False MSG_NEEDS_FW_UPDATE_GENERIC = _('Firmware version too old. Please update at') + \ ' https://www.ledgerwallet.com' MSG_NEEDS_FW_UPDATE_SEGWIT = _('Firmware version (or "Bitcoin" app) too old for Segwit support. Please update at') + \ ' https://www.ledgerwallet.com' MULTI_OUTPUT_SUPPORT = '1.1.4' SEGWIT_SUPPORT = '1.1.10' SEGWIT_SUPPORT_SPECIAL = '1.0.4' class Ledger_Client(): def __init__(self, hidDevice): self.dongleObject = btchip(hidDevice) self.preflightDone = False def is_pairable(self): return True def close(self): self.dongleObject.dongle.close() def timeout(self, cutoff): pass def is_initialized(self): return True def label(self): return "" def i4b(self, x): return pack('>I', x) def has_usable_connection_with_device(self): try: self.dongleObject.getFirmwareVersion() except BaseException: return False return True def test_pin_unlocked(func): """Function decorator to test the Ledger for being unlocked, and if not, raise a human-readable exception. """ def catch_exception(self, *args, **kwargs): try: return func(self, *args, **kwargs) except BTChipException as e: if e.sw == 0x6982: raise Exception(_('Your Ledger is locked. Please unlock it.')) else: raise return catch_exception @test_pin_unlocked def get_xpub(self, bip32_path, xtype): self.checkDevice() # bip32_path is of the form 44'/0'/1' # S-L-O-W - we don't handle the fingerprint directly, so compute # it manually from the previous node # This only happens once so it's bearable #self.get_client() # prompt for the PIN before displaying the dialog if necessary #self.handler.show_message("Computing master public key") if xtype in ['p2wpkh', 'p2wsh'] and not self.supports_native_segwit(): raise Exception(MSG_NEEDS_FW_UPDATE_SEGWIT) if xtype in ['p2wpkh-p2sh', 'p2wsh-p2sh'] and not self.supports_segwit(): raise Exception(MSG_NEEDS_FW_UPDATE_SEGWIT) splitPath = bip32_path.split('/') if splitPath[0] == 'm': splitPath = splitPath[1:] bip32_path = bip32_path[2:] fingerprint = 0 if len(splitPath) > 1: prevPath = "/".join(splitPath[0:len(splitPath) - 1]) nodeData = self.dongleObject.getWalletPublicKey(prevPath) publicKey = compress_public_key(nodeData['publicKey']) h = hashlib.new('ripemd160') h.update(hashlib.sha256(publicKey).digest()) fingerprint = unpack(">I", h.digest()[0:4])[0] nodeData = self.dongleObject.getWalletPublicKey(bip32_path) publicKey = compress_public_key(nodeData['publicKey']) depth = len(splitPath) lastChild = splitPath[len(splitPath) - 1].split('\'') childnum = int(lastChild[0]) if len(lastChild) == 1 else 0x80000000 | int(lastChild[0]) xpub = bitcoin.serialize_xpub(xtype, nodeData['chainCode'], publicKey, depth, self.i4b(fingerprint), self.i4b(childnum)) return xpub def has_detached_pin_support(self, client): try: client.getVerifyPinRemainingAttempts() return True except BTChipException as e: if e.sw == 0x6d00: return False raise e def is_pin_validated(self, client): try: # Invalid SET OPERATION MODE to verify the PIN status client.dongle.exchange(bytearray([0xe0, 0x26, 0x00, 0x00, 0x01, 0xAB])) except BTChipException as e: if (e.sw == 0x6982): return False if (e.sw == 0x6A80): return True raise e def supports_multi_output(self): return self.multiOutputSupported def supports_segwit(self): return self.segwitSupported def supports_native_segwit(self): return self.nativeSegwitSupported def perform_hw1_preflight(self): try: firmwareInfo = self.dongleObject.getFirmwareVersion() firmware = firmwareInfo['version'] self.multiOutputSupported = versiontuple(firmware) >= versiontuple(MULTI_OUTPUT_SUPPORT) self.nativeSegwitSupported = versiontuple(firmware) >= versiontuple(SEGWIT_SUPPORT) self.segwitSupported = self.nativeSegwitSupported or (firmwareInfo['specialVersion'] == 0x20 and versiontuple(firmware) >= versiontuple(SEGWIT_SUPPORT_SPECIAL)) if not checkFirmware(firmwareInfo): self.dongleObject.dongle.close() raise Exception(MSG_NEEDS_FW_UPDATE_GENERIC) try: self.dongleObject.getOperationMode() except BTChipException as e: if (e.sw == 0x6985): self.dongleObject.dongle.close() self.handler.get_setup( ) # Acquire the new client on the next run else: raise e if self.has_detached_pin_support(self.dongleObject) and not self.is_pin_validated(self.dongleObject) and (self.handler is not None): remaining_attempts = self.dongleObject.getVerifyPinRemainingAttempts() if remaining_attempts != 1: msg = "Enter your Ledger PIN - remaining attempts : " + str(remaining_attempts) else: msg = "Enter your Ledger PIN - WARNING : LAST ATTEMPT. If the PIN is not correct, the dongle will be wiped." confirmed, p, pin = self.password_dialog(msg) if not confirmed: raise Exception('Aborted by user - please unplug the dongle and plug it again before retrying') pin = pin.encode() self.dongleObject.verifyPin(pin) except BTChipException as e: if (e.sw == 0x6faa): raise Exception("Dongle is temporarily locked - please unplug it and replug it again") if ((e.sw & 0xFFF0) == 0x63c0): raise Exception("Invalid PIN - please unplug the dongle and plug it again before retrying") if e.sw == 0x6f00 and e.message == 'Invalid channel': # based on docs 0x6f00 might be a more general error, hence we also compare message to be sure raise Exception("Invalid channel.\n" "Please make sure that 'Browser support' is disabled on your device.") raise e def checkDevice(self): if not self.preflightDone: try: self.perform_hw1_preflight() except BTChipException as e: if (e.sw == 0x6d00 or e.sw == 0x6700): raise Exception(_("Device not in Bitcoin mode")) from e raise e self.preflightDone = True def password_dialog(self, msg=None): response = self.handler.get_word(msg) if response is None: return False, None, None return True, response, response class Ledger_KeyStore(Hardware_KeyStore): hw_type = 'ledger' device = 'Ledger' def __init__(self, d): Hardware_KeyStore.__init__(self, d) # Errors and other user interaction is done through the wallet's # handler. The handler is per-window and preserved across # device reconnects self.force_watching_only = False self.signing = False self.cfg = d.get('cfg', {'mode':0,'pair':''}) def dump(self): obj = Hardware_KeyStore.dump(self) obj['cfg'] = self.cfg return obj def get_derivation(self): return self.derivation def get_client(self): return self.plugin.get_client(self).dongleObject def get_client_electrum(self): return self.plugin.get_client(self) def give_error(self, message, clear_client = False): print_error(message) if not self.signing: self.handler.show_error(message) else: self.signing = False if clear_client: self.client = None raise Exception(message) def set_and_unset_signing(func): """Function decorator to set and unset self.signing.""" def wrapper(self, *args, **kwargs): try: self.signing = True return func(self, *args, **kwargs) finally: self.signing = False return wrapper def address_id_stripped(self, address): # Strip the leading "m/" change, index = self.get_address_index(address) derivation = self.derivation address_path = "%s/%d/%d"%(derivation, change, index) return address_path[2:] def decrypt_message(self, pubkey, message, password): raise RuntimeError(_('Encryption and decryption are currently not supported for {}').format(self.device)) @set_and_unset_signing def sign_message(self, sequence, message, password): message = message.encode('utf8') message_hash = hashlib.sha256(message).hexdigest().upper() # prompt for the PIN before displaying the dialog if necessary client = self.get_client() address_path = self.get_derivation()[2:] + "/%d/%d"%sequence self.handler.show_message("Signing message ...\r\nMessage hash: "+message_hash) try: info = self.get_client().signMessagePrepare(address_path, message) pin = "" if info['confirmationNeeded']: pin = self.handler.get_auth( info ) # does the authenticate dialog and returns pin if not pin: raise UserWarning(_('Cancelled by user')) pin = str(pin).encode() signature = self.get_client().signMessageSign(pin) except BTChipException as e: if e.sw == 0x6a80: self.give_error("Unfortunately, this message cannot be signed by the Ledger wallet. Only alphanumerical messages shorter than 140 characters are supported. Please remove any extra characters (tab, carriage return) and retry.") elif e.sw == 0x6985: # cancelled by user return b'' else: self.give_error(e, True) except UserWarning: self.handler.show_error(_('Cancelled by user')) return b'' except Exception as e: self.give_error(e, True) finally: self.handler.finished() # Parse the ASN.1 signature rLength = signature[3] r = signature[4 : 4 + rLength] sLength = signature[4 + rLength + 1] s = signature[4 + rLength + 2:] if rLength == 33: r = r[1:] if sLength == 33: s = s[1:] # And convert it return bytes([27 + 4 + (signature[0] & 0x01)]) + r + s @set_and_unset_signing def sign_transaction(self, tx, password): if tx.is_complete(): return client = self.get_client() inputs = [] inputsPaths = [] pubKeys = [] chipInputs = [] redeemScripts = [] signatures = [] preparedTrustedInputs = [] changePath = "" changeAmount = None output = None outputAmount = None p2shTransaction = False segwitTransaction = False pin = "" self.get_client() # prompt for the PIN before displaying the dialog if necessary # Fetch inputs of the transaction to sign derivations = self.get_tx_derivations(tx) for txin in tx.inputs(): if txin['type'] == 'coinbase': self.give_error("Coinbase not supported") # should never happen if txin['type'] in ['p2sh']: p2shTransaction = True if txin['type'] in ['p2wpkh-p2sh', 'p2wsh-p2sh']: if not self.get_client_electrum().supports_segwit(): self.give_error(MSG_NEEDS_FW_UPDATE_SEGWIT) segwitTransaction = True if txin['type'] in ['p2wpkh', 'p2wsh']: if not self.get_client_electrum().supports_native_segwit(): self.give_error(MSG_NEEDS_FW_UPDATE_SEGWIT) segwitTransaction = True pubkeys, x_pubkeys = tx.get_sorted_pubkeys(txin) for i, x_pubkey in enumerate(x_pubkeys): if x_pubkey in derivations: signingPos = i s = derivations.get(x_pubkey) hwAddress = "%s/%d/%d" % (self.get_derivation()[2:], s[0], s[1]) break else: self.give_error("No matching x_key for sign_transaction") # should never happen redeemScript = Transaction.get_preimage_script(txin) if txin.get('prev_tx') is None: # and not Transaction.is_segwit_input(txin): # note: offline signing does not work atm even with segwit inputs for ledger raise Exception(_('Offline signing with {} is not supported.').format(self.device)) inputs.append([txin['prev_tx'].raw, txin['prevout_n'], redeemScript, txin['prevout_hash'], signingPos, txin.get('sequence', 0xffffffff - 1) ]) inputsPaths.append(hwAddress) pubKeys.append(pubkeys) # Sanity check if p2shTransaction: for txin in tx.inputs(): if txin['type'] != 'p2sh': self.give_error("P2SH / regular input mixed in same transaction not supported") # should never happen txOutput = var_int(len(tx.outputs())) for txout in tx.outputs(): output_type, addr, amount = txout txOutput += int_to_hex(amount, 8) script = tx.pay_script(output_type, addr) txOutput += var_int(len(script)//2) txOutput += script txOutput = bfh(txOutput) # Recognize outputs - only one output and one change is authorized if not p2shTransaction: if not self.get_client_electrum().supports_multi_output(): if len(tx.outputs()) > 2: self.give_error("Transaction with more than 2 outputs not supported") for _type, address, amount in tx.outputs(): assert _type == TYPE_ADDRESS info = tx.output_info.get(address) if (info is not None) and len(tx.outputs()) > 1 \ and info[0][0] == 1: # "is on 'change' branch" index, xpubs, m = info changePath = self.get_derivation()[2:] + "/%d/%d"%index changeAmount = amount else: output = address outputAmount = amount self.handler.show_message(_("Confirm Transaction on your Ledger device...")) try: # Get trusted inputs from the original transactions for utxo in inputs: sequence = int_to_hex(utxo[5], 4) if segwitTransaction: txtmp = bitcoinTransaction(bfh(utxo[0])) tmp = bfh(utxo[3])[::-1] tmp += bfh(int_to_hex(utxo[1], 4)) tmp += txtmp.outputs[utxo[1]].amount chipInputs.append({'value' : tmp, 'witness' : True, 'sequence' : sequence}) redeemScripts.append(bfh(utxo[2])) elif not p2shTransaction: txtmp = bitcoinTransaction(bfh(utxo[0])) trustedInput = self.get_client().getTrustedInput(txtmp, utxo[1]) trustedInput['sequence'] = sequence chipInputs.append(trustedInput) redeemScripts.append(txtmp.outputs[utxo[1]].script) else: tmp = bfh(utxo[3])[::-1] tmp += bfh(int_to_hex(utxo[1], 4)) chipInputs.append({'value' : tmp, 'sequence' : sequence}) redeemScripts.append(bfh(utxo[2])) # Sign all inputs firstTransaction = True inputIndex = 0 rawTx = tx.serialize() self.get_client().enableAlternate2fa(False) if segwitTransaction: self.get_client().startUntrustedTransaction(True, inputIndex, chipInputs, redeemScripts[inputIndex]) if changePath: # we don't set meaningful outputAddress, amount and fees # as we only care about the alternateEncoding==True branch outputData = self.get_client().finalizeInput(b'', 0, 0, changePath, bfh(rawTx)) else: outputData = self.get_client().finalizeInputFull(txOutput) outputData['outputData'] = txOutput transactionOutput = outputData['outputData'] if outputData['confirmationNeeded']: outputData['address'] = output self.handler.finished() pin = self.handler.get_auth( outputData ) # does the authenticate dialog and returns pin if not pin: raise UserWarning() if pin != 'paired': self.handler.show_message(_("Confirmed. Signing Transaction...")) while inputIndex < len(inputs): singleInput = [ chipInputs[inputIndex] ] self.get_client().startUntrustedTransaction(False, 0, singleInput, redeemScripts[inputIndex]) inputSignature = self.get_client().untrustedHashSign(inputsPaths[inputIndex], pin, lockTime=tx.locktime) inputSignature[0] = 0x30 # force for 1.4.9+ signatures.append(inputSignature) inputIndex = inputIndex + 1 else: while inputIndex < len(inputs): self.get_client().startUntrustedTransaction(firstTransaction, inputIndex, chipInputs, redeemScripts[inputIndex]) if changePath: # we don't set meaningful outputAddress, amount and fees # as we only care about the alternateEncoding==True branch outputData = self.get_client().finalizeInput(b'', 0, 0, changePath, bfh(rawTx)) else: outputData = self.get_client().finalizeInputFull(txOutput) outputData['outputData'] = txOutput if firstTransaction: transactionOutput = outputData['outputData'] if outputData['confirmationNeeded']: outputData['address'] = output self.handler.finished() pin = self.handler.get_auth( outputData ) # does the authenticate dialog and returns pin if not pin: raise UserWarning() if pin != 'paired': self.handler.show_message(_("Confirmed. Signing Transaction...")) else: # Sign input with the provided PIN inputSignature = self.get_client().untrustedHashSign(inputsPaths[inputIndex], pin, lockTime=tx.locktime) inputSignature[0] = 0x30 # force for 1.4.9+ signatures.append(inputSignature) inputIndex = inputIndex + 1 if pin != 'paired': firstTransaction = False except UserWarning: self.handler.show_error(_('Cancelled by user')) return except BTChipException as e: if e.sw == 0x6985: # cancelled by user return else: traceback.print_exc(file=sys.stderr) self.give_error(e, True) except BaseException as e: traceback.print_exc(file=sys.stdout) self.give_error(e, True) finally: self.handler.finished() for i, txin in enumerate(tx.inputs()): signingPos = inputs[i][4] txin['signatures'][signingPos] = bh2u(signatures[i]) tx.raw = tx.serialize() @set_and_unset_signing def show_address(self, sequence, txin_type): client = self.get_client() address_path = self.get_derivation()[2:] + "/%d/%d"%sequence self.handler.show_message(_("Showing address ...")) segwit = Transaction.is_segwit_inputtype(txin_type) segwitNative = txin_type == 'p2wpkh' try: client.getWalletPublicKey(address_path, showOnScreen=True, segwit=segwit, segwitNative=segwitNative) except BTChipException as e: if e.sw == 0x6985: # cancelled by user pass else: traceback.print_exc(file=sys.stderr) self.handler.show_error(e) except BaseException as e: traceback.print_exc(file=sys.stderr) self.handler.show_error(e) finally: self.handler.finished() class LedgerPlugin(HW_PluginBase): libraries_available = BTCHIP keystore_class = Ledger_KeyStore client = None DEVICE_IDS = [ (0x2581, 0x1807), # HW.1 legacy btchip (0x2581, 0x2b7c), # HW.1 transitional production (0x2581, 0x3b7c), # HW.1 ledger production (0x2581, 0x4b7c), # HW.1 ledger test (0x2c97, 0x0000), # Blue (0x2c97, 0x0001) # Nano-S ] def __init__(self, parent, config, name): self.segwit = config.get("segwit") HW_PluginBase.__init__(self, parent, config, name) if self.libraries_available: self.device_manager().register_devices(self.DEVICE_IDS) def get_btchip_device(self, device): ledger = False if device.product_key[0] == 0x2581 and device.product_key[1] == 0x3b7c: ledger = True if device.product_key[0] == 0x2581 and device.product_key[1] == 0x4b7c: ledger = True if device.product_key[0] == 0x2c97: if device.interface_number == 0 or device.usage_page == 0xffa0: ledger = True else: return None # non-compatible interface of a Nano S or Blue dev = hid.device() dev.open_path(device.path) dev.set_nonblocking(True) return HIDDongleHIDAPI(dev, ledger, BTCHIP_DEBUG) def create_client(self, device, handler): if handler: self.handler = handler client = self.get_btchip_device(device) if client is not None: client = Ledger_Client(client) return client def setup_device(self, device_info, wizard, purpose): devmgr = self.device_manager() device_id = device_info.device.id_ client = devmgr.client_by_id(device_id) client.handler = self.create_handler(wizard) client.get_xpub("m/44'/8'", 'standard') # TODO replace by direct derivation once Nano S > 1.1 def get_xpub(self, device_id, derivation, xtype, wizard): devmgr = self.device_manager() client = devmgr.client_by_id(device_id) client.handler = self.create_handler(wizard) client.checkDevice() xpub = client.get_xpub(derivation, xtype) return xpub def get_client(self, keystore, force_pair=True): # All client interaction should not be in the main GUI thread devmgr = self.device_manager() handler = keystore.handler with devmgr.hid_lock: client = devmgr.client_for_keystore(self, handler, keystore, force_pair) # returns the client for a given keystore. can use xpub #if client: # client.used() if client is not None: client.checkDevice() return client def show_address(self, wallet, address): sequence = wallet.get_address_index(address) txin_type = wallet.get_txin_type(address) wallet.get_keystore().show_address(sequence, txin_type)
the-stack_0_16493
import os import random import string import time from collections import defaultdict from contextlib import contextmanager import pendulum import pytest from dagster import ( Any, Field, ModeDefinition, daily_partitioned_config, fs_io_manager, graph, pipeline, repository, solid, ) from dagster.core.definitions import Partition, PartitionSetDefinition from dagster.core.definitions.reconstructable import ReconstructableRepository from dagster.core.execution.api import execute_pipeline from dagster.core.execution.backfill import BulkActionStatus, PartitionBackfill from dagster.core.host_representation import ( ExternalRepositoryOrigin, InProcessRepositoryLocationOrigin, ) from dagster.core.storage.pipeline_run import PipelineRunStatus, RunsFilter from dagster.core.storage.tags import BACKFILL_ID_TAG, PARTITION_NAME_TAG, PARTITION_SET_TAG from dagster.core.test_utils import create_test_daemon_workspace, instance_for_test from dagster.core.workspace.load_target import PythonFileTarget from dagster.daemon import get_default_daemon_logger from dagster.daemon.backfill import execute_backfill_iteration from dagster.seven import IS_WINDOWS, get_system_temp_directory from dagster.utils import touch_file from dagster.utils.error import SerializableErrorInfo default_mode_def = ModeDefinition(resource_defs={"io_manager": fs_io_manager}) def _failure_flag_file(): return os.path.join(get_system_temp_directory(), "conditionally_fail") def _step_events(instance, run): events_by_step = defaultdict(set) logs = instance.all_logs(run.run_id) for record in logs: if not record.is_dagster_event or not record.step_key: continue events_by_step[record.step_key] = record.dagster_event.event_type_value return events_by_step @solid def always_succeed(_): return 1 @graph() def comp_always_succeed(): always_succeed() @daily_partitioned_config(start_date="2021-05-05") def my_config(_start, _end): return {} always_succeed_job = comp_always_succeed.to_job(config=my_config) @solid def fail_solid(_): raise Exception("blah") @solid def conditionally_fail(_, _input): if os.path.isfile(_failure_flag_file()): raise Exception("blah") return 1 @solid def after_failure(_, _input): return 1 @pipeline(mode_defs=[default_mode_def]) def the_pipeline(): always_succeed() @pipeline(mode_defs=[default_mode_def]) def conditional_failure_pipeline(): after_failure(conditionally_fail(always_succeed())) @pipeline(mode_defs=[default_mode_def]) def partial_pipeline(): always_succeed.alias("step_one")() always_succeed.alias("step_two")() always_succeed.alias("step_three")() @pipeline(mode_defs=[default_mode_def]) def parallel_failure_pipeline(): fail_solid.alias("fail_one")() fail_solid.alias("fail_two")() fail_solid.alias("fail_three")() always_succeed.alias("success_four")() @solid(config_schema=Field(Any)) def config_solid(_): return 1 @pipeline(mode_defs=[default_mode_def]) def config_pipeline(): config_solid() simple_partition_set = PartitionSetDefinition( name="simple_partition_set", pipeline_name="the_pipeline", partition_fn=lambda: [Partition("one"), Partition("two"), Partition("three")], ) conditionally_fail_partition_set = PartitionSetDefinition( name="conditionally_fail_partition_set", pipeline_name="conditional_failure_pipeline", partition_fn=lambda: [Partition("one"), Partition("two"), Partition("three")], ) partial_partition_set = PartitionSetDefinition( name="partial_partition_set", pipeline_name="partial_pipeline", partition_fn=lambda: [Partition("one"), Partition("two"), Partition("three")], ) parallel_failure_partition_set = PartitionSetDefinition( name="parallel_failure_partition_set", pipeline_name="parallel_failure_pipeline", partition_fn=lambda: [Partition("one"), Partition("two"), Partition("three")], ) def _large_partition_config(_): REQUEST_CONFIG_COUNT = 50000 def _random_string(length): return "".join(random.choice(string.ascii_lowercase) for x in range(length)) return { "solids": { "config_solid": { "config": { "foo": { _random_string(10): _random_string(20) for i in range(REQUEST_CONFIG_COUNT) } } } } } large_partition_set = PartitionSetDefinition( name="large_partition_set", pipeline_name="config_pipeline", partition_fn=lambda: [Partition("one"), Partition("two"), Partition("three")], run_config_fn_for_partition=_large_partition_config, ) def _unloadable_partition_set_origin(): working_directory = os.path.dirname(__file__) recon_repo = ReconstructableRepository.for_file(__file__, "doesnt_exist", working_directory) return ExternalRepositoryOrigin( InProcessRepositoryLocationOrigin(recon_repo), "fake_repository" ).get_partition_set_origin("doesnt_exist") @repository def the_repo(): return [ the_pipeline, conditional_failure_pipeline, partial_pipeline, config_pipeline, simple_partition_set, conditionally_fail_partition_set, partial_partition_set, large_partition_set, always_succeed_job, parallel_failure_partition_set, parallel_failure_pipeline, ] @contextmanager def default_repo(): load_target = workspace_load_target() origin = load_target.create_origins()[0] with origin.create_single_location() as location: yield location.get_repository("the_repo") def workspace_load_target(): return PythonFileTarget( python_file=__file__, attribute=None, working_directory=os.path.dirname(__file__), location_name="test_location", ) @contextmanager def instance_for_context(external_repo_context, overrides=None): with instance_for_test(overrides) as instance: with create_test_daemon_workspace( workspace_load_target=workspace_load_target() ) as workspace: with external_repo_context() as external_repo: yield (instance, workspace, external_repo) def step_did_not_run(instance, run, step_name): step_events = _step_events(instance, run)[step_name] return len(step_events) == 0 def step_succeeded(instance, run, step_name): step_events = _step_events(instance, run)[step_name] return "STEP_SUCCESS" in step_events def step_failed(instance, run, step_name): step_events = _step_events(instance, run)[step_name] return "STEP_FAILURE" in step_events def wait_for_all_runs_to_start(instance, timeout=10): start_time = time.time() while True: if time.time() - start_time > timeout: raise Exception("Timed out waiting for runs to start") time.sleep(0.5) pending_states = [ PipelineRunStatus.NOT_STARTED, PipelineRunStatus.STARTING, PipelineRunStatus.STARTED, ] pending_runs = [run for run in instance.get_runs() if run.status in pending_states] if len(pending_runs) == 0: break def wait_for_all_runs_to_finish(instance, timeout=10): start_time = time.time() FINISHED_STATES = [ PipelineRunStatus.SUCCESS, PipelineRunStatus.FAILURE, PipelineRunStatus.CANCELED, ] while True: if time.time() - start_time > timeout: raise Exception("Timed out waiting for runs to start") time.sleep(0.5) not_finished_runs = [ run for run in instance.get_runs() if run.status not in FINISHED_STATES ] if len(not_finished_runs) == 0: break def test_simple_backfill(): with instance_for_context(default_repo) as ( instance, workspace, external_repo, ): external_partition_set = external_repo.get_external_partition_set("simple_partition_set") instance.add_backfill( PartitionBackfill( backfill_id="simple", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=False, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert instance.get_runs_count() == 0 list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) assert instance.get_runs_count() == 3 runs = instance.get_runs() three, two, one = runs assert one.tags[BACKFILL_ID_TAG] == "simple" assert one.tags[PARTITION_NAME_TAG] == "one" assert two.tags[BACKFILL_ID_TAG] == "simple" assert two.tags[PARTITION_NAME_TAG] == "two" assert three.tags[BACKFILL_ID_TAG] == "simple" assert three.tags[PARTITION_NAME_TAG] == "three" def test_canceled_backfill(): with instance_for_context(default_repo) as ( instance, workspace, external_repo, ): external_partition_set = external_repo.get_external_partition_set("simple_partition_set") instance.add_backfill( PartitionBackfill( backfill_id="simple", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=False, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert instance.get_runs_count() == 0 iterator = execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) next(iterator) assert instance.get_runs_count() == 1 backfill = instance.get_backfills()[0] assert backfill.status == BulkActionStatus.REQUESTED instance.update_backfill(backfill.with_status(BulkActionStatus.CANCELED)) list(iterator) backfill = instance.get_backfill(backfill.backfill_id) assert backfill.status == BulkActionStatus.CANCELED assert instance.get_runs_count() == 1 def test_failure_backfill(): output_file = _failure_flag_file() with instance_for_context(default_repo) as ( instance, workspace, external_repo, ): external_partition_set = external_repo.get_external_partition_set( "conditionally_fail_partition_set" ) instance.add_backfill( PartitionBackfill( backfill_id="shouldfail", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=False, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert instance.get_runs_count() == 0 try: touch_file(output_file) list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) wait_for_all_runs_to_start(instance) finally: os.remove(output_file) assert instance.get_runs_count() == 3 runs = instance.get_runs() three, two, one = runs assert one.tags[BACKFILL_ID_TAG] == "shouldfail" assert one.tags[PARTITION_NAME_TAG] == "one" assert one.status == PipelineRunStatus.FAILURE assert step_succeeded(instance, one, "always_succeed") assert step_failed(instance, one, "conditionally_fail") assert step_did_not_run(instance, one, "after_failure") assert two.tags[BACKFILL_ID_TAG] == "shouldfail" assert two.tags[PARTITION_NAME_TAG] == "two" assert two.status == PipelineRunStatus.FAILURE assert step_succeeded(instance, two, "always_succeed") assert step_failed(instance, two, "conditionally_fail") assert step_did_not_run(instance, two, "after_failure") assert three.tags[BACKFILL_ID_TAG] == "shouldfail" assert three.tags[PARTITION_NAME_TAG] == "three" assert three.status == PipelineRunStatus.FAILURE assert step_succeeded(instance, three, "always_succeed") assert step_failed(instance, three, "conditionally_fail") assert step_did_not_run(instance, three, "after_failure") instance.add_backfill( PartitionBackfill( backfill_id="fromfailure", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=True, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert not os.path.isfile(_failure_flag_file()) list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) wait_for_all_runs_to_start(instance) assert instance.get_runs_count() == 6 from_failure_filter = RunsFilter(tags={BACKFILL_ID_TAG: "fromfailure"}) assert instance.get_runs_count(filters=from_failure_filter) == 3 runs = instance.get_runs(filters=from_failure_filter) three, two, one = runs assert one.tags[BACKFILL_ID_TAG] == "fromfailure" assert one.tags[PARTITION_NAME_TAG] == "one" assert one.status == PipelineRunStatus.SUCCESS assert step_did_not_run(instance, one, "always_succeed") assert step_succeeded(instance, one, "conditionally_fail") assert step_succeeded(instance, one, "after_failure") assert two.tags[BACKFILL_ID_TAG] == "fromfailure" assert two.tags[PARTITION_NAME_TAG] == "two" assert two.status == PipelineRunStatus.SUCCESS assert step_did_not_run(instance, one, "always_succeed") assert step_succeeded(instance, one, "conditionally_fail") assert step_succeeded(instance, one, "after_failure") assert three.tags[BACKFILL_ID_TAG] == "fromfailure" assert three.tags[PARTITION_NAME_TAG] == "three" assert three.status == PipelineRunStatus.SUCCESS assert step_did_not_run(instance, one, "always_succeed") assert step_succeeded(instance, one, "conditionally_fail") assert step_succeeded(instance, one, "after_failure") @pytest.mark.skipif(IS_WINDOWS, reason="flaky in windows") def test_partial_backfill(): with instance_for_context(default_repo) as ( instance, workspace, external_repo, ): external_partition_set = external_repo.get_external_partition_set("partial_partition_set") # create full runs, where every step is executed instance.add_backfill( PartitionBackfill( backfill_id="full", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=False, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert instance.get_runs_count() == 0 list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) wait_for_all_runs_to_start(instance) assert instance.get_runs_count() == 3 runs = instance.get_runs() three, two, one = runs assert one.tags[BACKFILL_ID_TAG] == "full" assert one.tags[PARTITION_NAME_TAG] == "one" assert one.status == PipelineRunStatus.SUCCESS assert step_succeeded(instance, one, "step_one") assert step_succeeded(instance, one, "step_two") assert step_succeeded(instance, one, "step_three") assert two.tags[BACKFILL_ID_TAG] == "full" assert two.tags[PARTITION_NAME_TAG] == "two" assert two.status == PipelineRunStatus.SUCCESS assert step_succeeded(instance, two, "step_one") assert step_succeeded(instance, two, "step_two") assert step_succeeded(instance, two, "step_three") assert three.tags[BACKFILL_ID_TAG] == "full" assert three.tags[PARTITION_NAME_TAG] == "three" assert three.status == PipelineRunStatus.SUCCESS assert step_succeeded(instance, three, "step_one") assert step_succeeded(instance, three, "step_two") assert step_succeeded(instance, three, "step_three") # delete one of the runs, the partial reexecution should still succeed because the steps # can be executed independently, require no input/output config instance.delete_run(one.run_id) assert instance.get_runs_count() == 2 # create partial runs instance.add_backfill( PartitionBackfill( backfill_id="partial", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=False, reexecution_steps=["step_one"], tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) wait_for_all_runs_to_start(instance) assert instance.get_runs_count() == 5 partial_filter = RunsFilter(tags={BACKFILL_ID_TAG: "partial"}) assert instance.get_runs_count(filters=partial_filter) == 3 runs = instance.get_runs(filters=partial_filter) three, two, one = runs assert one.status == PipelineRunStatus.SUCCESS assert step_succeeded(instance, one, "step_one") assert step_did_not_run(instance, one, "step_two") assert step_did_not_run(instance, one, "step_three") assert two.status == PipelineRunStatus.SUCCESS assert step_succeeded(instance, two, "step_one") assert step_did_not_run(instance, two, "step_two") assert step_did_not_run(instance, two, "step_three") assert three.status == PipelineRunStatus.SUCCESS assert step_succeeded(instance, three, "step_one") assert step_did_not_run(instance, three, "step_two") assert step_did_not_run(instance, three, "step_three") def test_large_backfill(): with instance_for_context(default_repo) as ( instance, workspace, external_repo, ): external_partition_set = external_repo.get_external_partition_set("large_partition_set") instance.add_backfill( PartitionBackfill( backfill_id="simple", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=False, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert instance.get_runs_count() == 0 list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) assert instance.get_runs_count() == 3 def test_unloadable_backfill(): with instance_for_context(default_repo) as ( instance, workspace, _external_repo, ): unloadable_origin = _unloadable_partition_set_origin() instance.add_backfill( PartitionBackfill( backfill_id="simple", partition_set_origin=unloadable_origin, status=BulkActionStatus.REQUESTED, partition_names=["one", "two", "three"], from_failure=False, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert instance.get_runs_count() == 0 list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) assert instance.get_runs_count() == 0 backfill = instance.get_backfill("simple") assert backfill.status == BulkActionStatus.FAILED assert isinstance(backfill.error, SerializableErrorInfo) def test_backfill_from_partitioned_job(): partition_name_list = [ partition.name for partition in my_config.partitions_def.get_partitions() ] with instance_for_context(default_repo) as ( instance, workspace, external_repo, ): external_partition_set = external_repo.get_external_partition_set( "comp_always_succeed_partition_set" ) instance.add_backfill( PartitionBackfill( backfill_id="partition_schedule_from_job", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=partition_name_list[:3], from_failure=False, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) assert instance.get_runs_count() == 0 list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) assert instance.get_runs_count() == 3 runs = reversed(instance.get_runs()) for idx, run in enumerate(runs): assert run.tags[BACKFILL_ID_TAG] == "partition_schedule_from_job" assert run.tags[PARTITION_NAME_TAG] == partition_name_list[idx] assert run.tags[PARTITION_SET_TAG] == "comp_always_succeed_partition_set" def test_backfill_from_failure_for_subselection(): with instance_for_context(default_repo) as ( instance, workspace, external_repo, ): partition = parallel_failure_partition_set.get_partition("one") run_config = parallel_failure_partition_set.run_config_for_partition(partition) tags = parallel_failure_partition_set.tags_for_partition(partition) external_partition_set = external_repo.get_external_partition_set( "parallel_failure_partition_set" ) execute_pipeline( parallel_failure_pipeline, run_config=run_config, tags=tags, instance=instance, solid_selection=["fail_three", "success_four"], raise_on_error=False, ) assert instance.get_runs_count() == 1 wait_for_all_runs_to_finish(instance) run = instance.get_runs()[0] assert run.status == PipelineRunStatus.FAILURE instance.add_backfill( PartitionBackfill( backfill_id="fromfailure", partition_set_origin=external_partition_set.get_external_origin(), status=BulkActionStatus.REQUESTED, partition_names=["one"], from_failure=True, reexecution_steps=None, tags=None, backfill_timestamp=pendulum.now().timestamp(), ) ) list( execute_backfill_iteration( instance, workspace, get_default_daemon_logger("BackfillDaemon") ) ) assert instance.get_runs_count() == 2 run = instance.get_runs(limit=1)[0] assert run.solids_to_execute assert run.solid_selection assert len(run.solids_to_execute) == 2 assert len(run.solid_selection) == 2
the-stack_0_16494
# coding=utf-8 # # Copyright 2015-2016 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time from f5.bigip.resource import AsmResource from f5.bigip.resource import Collection from icontrol.exceptions import iControlUnexpectedHTTPError class Signatures_s(Collection): """BIG-IP® ASM Signatures collection.""" def __init__(self, asm): super(Signatures_s, self).__init__(asm) self._meta_data['object_has_stats'] = False self._meta_data['allowed_lazy_attributes'] = [Signature] self._meta_data['attribute_registry'] = { 'tm:asm:signatures:signaturestate': Signature } class Signature(AsmResource): """BIG-IP® ASM Signature resource. note:: Only user created signatures can be modified/deleted. Default signatures are READ-ONLY """ def __init__(self, signatures_s): super(Signature, self).__init__(signatures_s) self._meta_data['required_json_kind'] = 'tm:asm:signatures:signaturestate' self._meta_data['required_creation_parameters'].update( ('attackTypeReference', 'rule') ) def create(self, **kwargs): """Custom creation logic to handle edge cases This shouldn't be needed, but ASM has a tendency to raise various errors that are painful to handle from a customer point-of-view. These errors are especially pronounced when doing things concurrently with asm. The error itself are described in their exception handler To address these failure, we try a number of exception handling cases to catch and reliably deal with the error. :param kwargs: :return: """ ex = iControlUnexpectedHTTPError( "Failed to delete the signature" ) for _ in range(0, 30): try: return self._create(**kwargs) except iControlUnexpectedHTTPError as ex: if self._check_exception(ex): continue else: raise raise ex def delete(self, **kwargs): """Custom deletion logic to handle edge cases This shouldn't be needed, but ASM has a tendency to raise various errors that are painful to handle from a customer point-of-view. These errors are especially pronounced when doing things concurrently with asm. The error itself are described in their exception handler To address these failure, we try a number of exception handling cases to catch and reliably deal with the error. :param kwargs: :return: """ ex = iControlUnexpectedHTTPError( "Failed to delete the signature" ) for _ in range(0, 30): try: return self._delete(**kwargs) except iControlUnexpectedHTTPError as ex: if self._check_exception(ex): continue else: raise raise ex def modify(self, **kwargs): ex = iControlUnexpectedHTTPError( "Failed to modify the signature" ) for _ in range(0, 30): try: return self._modify(**kwargs) except iControlUnexpectedHTTPError as ex: if self._check_exception(ex): continue else: raise raise ex def update(self, **kwargs): ex = iControlUnexpectedHTTPError( "Failed to delete the signature" ) for _ in range(0, 30): try: return self._update(**kwargs) except iControlUnexpectedHTTPError as ex: if self._check_exception(ex): continue else: raise raise ex def _check_exception(self, ex): """Check for exceptions in action responses In versions of ASM < v12, the REST API is quite unstable and therefore needs some additional supporting retries to ensure that actions function as expected. In particular versions 11.5.4 and 11.6.0 are affected. This method handles checking for various exceptions and allowing the given command to retry itself. :param ex: :return: """ retryable = [ # iControlUnexpectedHTTPError: 500 Unexpected Error: Internal Server Error ... # { # "code": 500, # "message": "Could not add_signature the Attack Signature. " # "Failed on insert to PLC.NEGSIG_SET_SIGNATURES " # "(DBD::mysql::db do failed: Lock wait timeout exceeded; " # "try restarting transaction) # 'Lock wait timeout exceeded', # { # "code": 500, # "message": "DBD::mysql::db do failed: Deadlock found when " # "trying to get lock; try restarting transaction" # 'Deadlock found when', # { # "code": 404, # "message": "Could not add_signature the Attack Signature, " # "internal data inconsistency was detected.", 'internal data inconsistency', ] if any(x in str(ex) for x in retryable): time.sleep(3) return True elif 'errorStack' in ex: stack = ' '.join(ex['errorStack']) if any(x in stack for x in retryable): time.sleep(3) return True else: return False else: return False
the-stack_0_16495
# -*- coding: utf-8 -*- # Copyright (c) 2016-2020 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import inspect from pandapower.auxiliary import _check_bus_index_and_print_warning_if_high, \ _check_gen_index_and_print_warning_if_high, _init_runpp_options, _init_rundcopp_options, \ _init_rundcpp_options, _init_runopp_options, _internal_stored from pandapower.opf.validate_opf_input import _check_necessary_opf_parameters from pandapower.optimal_powerflow import _optimal_powerflow from pandapower.powerflow import _powerflow, _recycled_powerflow try: import pplog as logging except ImportError: import logging logger = logging.getLogger(__name__) def set_user_pf_options(net, overwrite=False, **kwargs): """ This function sets the 'user_pf_options' dict for net. These options overrule net.__internal_options once they are added to net. These options are used in configuration of load flow calculation. At the same time, user-defined arguments for pandapower.runpp() always have a higher priority. To remove user_pf_options, set overwrite=True and provide no additional arguments :param net: pandaPower network :param overwrite: specifies whether the user_pf_options is removed before setting new options :param kwargs: load flow options, e. g. tolerance_mva = 1e-3 :return: None """ standard_parameters = ['calculate_voltage_angles', 'trafo_model', 'check_connectivity', 'mode', 'copy_constraints_to_ppc', 'switch_rx_ratio', 'enforce_q_lims', 'recycle', 'voltage_depend_loads', 'consider_line_temperature', 'delta', 'trafo3w_losses', 'init_vm_pu', 'init_va_degree', 'init_results', 'tolerance_mva', 'trafo_loading', 'numba', 'ac', 'algorithm', 'max_iteration', 'v_debug', 'run_control'] if overwrite or 'user_pf_options' not in net.keys(): net['user_pf_options'] = dict() net.user_pf_options.update({key: val for key, val in kwargs.items() if key in standard_parameters}) additional_kwargs = {key: val for key, val in kwargs.items() if key not in standard_parameters} # this part is to inform user and to make typos in parameters visible if len(additional_kwargs) > 0: logger.info('parameters %s are not in the list of standard options' % list( additional_kwargs.keys())) net.user_pf_options.update(additional_kwargs) def runpp(net, algorithm='nr', calculate_voltage_angles="auto", init="auto", max_iteration="auto", tolerance_mva=1e-8, trafo_model="t", trafo_loading="current", enforce_q_lims=False, check_connectivity=True, voltage_depend_loads=True, consider_line_temperature=False, run_control=False, **kwargs): """ Runs a power flow INPUT: **net** - The pandapower format network OPTIONAL: **algorithm** (str, "nr") - algorithm that is used to solve the power flow problem. The following algorithms are available: - "nr" Newton-Raphson (pypower implementation with numba accelerations) - "iwamoto_nr" Newton-Raphson with Iwamoto multiplier (maybe slower than NR but more robust) - "bfsw" backward/forward sweep (specially suited for radial and weakly-meshed networks) - "gs" gauss-seidel (pypower implementation) - "fdbx" fast-decoupled (pypower implementation) - "fdxb" fast-decoupled (pypower implementation) **calculate_voltage_angles** (bool, "auto") - consider voltage angles in loadflow calculation If True, voltage angles of ext_grids and transformer shifts are considered in the loadflow calculation. Considering the voltage angles is only necessary in meshed networks that are usually found in higher voltage levels. calculate_voltage_angles in "auto" mode defaults to: - True, if the network voltage level is above 70 kV - False otherwise The network voltage level is defined as the maximum rated voltage of any bus in the network that is connected to a line. **init** (str, "auto") - initialization method of the loadflow pandapower supports four methods for initializing the loadflow: - "auto" - init defaults to "dc" if calculate_voltage_angles is True or "flat" otherwise - "flat"- flat start with voltage of 1.0pu and angle of 0° at all PQ-buses and 0° for PV buses as initial solution - "dc" - initial DC loadflow before the AC loadflow. The results of the DC loadflow are used as initial solution for the AC loadflow. - "results" - voltage vector of last loadflow from net.res_bus is used as initial solution. This can be useful to accelerate convergence in iterative loadflows like time series calculations. Considering the voltage angles might lead to non-convergence of the power flow in flat start. That is why in "auto" mode, init defaults to "dc" if calculate_voltage_angles is True or "flat" otherwise **max_iteration** (int, "auto") - maximum number of iterations carried out in the power flow algorithm. In "auto" mode, the default value depends on the power flow solver: - 10 for "nr" - 100 for "bfsw" - 1000 for "gs" - 30 for "fdbx" - 30 for "fdxb" **tolerance_mva** (float, 1e-8) - loadflow termination condition referring to P / Q mismatch of node power in MVA **trafo_model** (str, "t") - transformer equivalent circuit model pandapower provides two equivalent circuit models for the transformer: - "t" - transformer is modeled as equivalent with the T-model. - "pi" - transformer is modeled as equivalent PI-model. This is not recommended, since it is less exact than the T-model. It is only recommended for valdiation with other software that uses the pi-model. **trafo_loading** (str, "current") - mode of calculation for transformer loading Transformer loading can be calculated relative to the rated current or the rated power. In both cases the overall transformer loading is defined as the maximum loading on the two sides of the transformer. - "current"- transformer loading is given as ratio of current flow and rated current of the transformer. This is the recommended setting, since thermal as well as magnetic effects in the transformer depend on the current. - "power" - transformer loading is given as ratio of apparent power flow to the rated apparent power of the transformer. **enforce_q_lims** (bool, False) - respect generator reactive power limits If True, the reactive power limits in net.gen.max_q_mvar/min_q_mvar are respected in the loadflow. This is done by running a second loadflow if reactive power limits are violated at any generator, so that the runtime for the loadflow will increase if reactive power has to be curtailed. Note: enforce_q_lims only works if algorithm="nr"! **check_connectivity** (bool, True) - Perform an extra connectivity test after the conversion from pandapower to PYPOWER If True, an extra connectivity test based on SciPy Compressed Sparse Graph Routines is perfomed. If check finds unsupplied buses, they are set out of service in the ppc **voltage_depend_loads** (bool, True) - consideration of voltage-dependent loads. If False, net.load.const_z_percent and net.load.const_i_percent are not considered, i.e. net.load.p_mw and net.load.q_mvar are considered as constant-power loads. **consider_line_temperature** (bool, False) - adjustment of line impedance based on provided line temperature. If True, net.line must contain a column "temperature_degree_celsius". The temperature dependency coefficient alpha must be provided in the net.line.alpha column, otherwise the default value of 0.004 is used **KWARGS: **numba** (bool, True) - Activation of numba JIT compiler in the newton solver If set to True, the numba JIT compiler is used to generate matrices for the powerflow, which leads to significant speed improvements. **switch_rx_ratio** (float, 2) - rx_ratio of bus-bus-switches. If impedance is zero, buses connected by a closed bus-bus switch are fused to model an ideal bus. Otherwise, they are modelled as branches with resistance defined as z_ohm column in switch table and this parameter **delta_q** - Reactive power tolerance for option "enforce_q_lims" in kvar - helps convergence in some cases. **trafo3w_losses** - defines where open loop losses of three-winding transformers are considered. Valid options are "hv", "mv", "lv" for HV/MV/LV side or "star" for the star point. **v_debug** (bool, False) - if True, voltage values in each newton-raphson iteration are logged in the ppc **init_vm_pu** (string/float/array/Series, None) - Allows to define initialization specifically for voltage magnitudes. Only works with init == "auto"! - "auto": all buses are initialized with the mean value of all voltage controlled elements in the grid - "flat" for flat start from 1.0 - "results": voltage magnitude vector is taken from result table - a float with which all voltage magnitudes are initialized - an iterable with a voltage magnitude value for each bus (length and order has to match with the buses in net.bus) - a pandas Series with a voltage magnitude value for each bus (indexes have to match the indexes in net.bus) **init_va_degree** (string/float/array/Series, None) - Allows to define initialization specifically for voltage angles. Only works with init == "auto"! - "auto": voltage angles are initialized from DC power flow if angles are calculated or as 0 otherwise - "dc": voltage angles are initialized from DC power flow - "flat" for flat start from 0 - "results": voltage angle vector is taken from result table - a float with which all voltage angles are initialized - an iterable with a voltage angle value for each bus (length and order has to match with the buses in net.bus) - a pandas Series with a voltage angle value for each bus (indexes have to match the indexes in net.bus) **recycle** (dict, none) - Reuse of internal powerflow variables for time series calculation Contains a dict with the following parameters: bus_pq: If True PQ values of buses are updated trafo: If True trafo relevant variables, e.g., the Ybus matrix, is recalculated gen: If True Sbus and the gen table in the ppc are recalculated **neglect_open_switch_branches** (bool, False) - If True no auxiliary buses are created for branches when switches are opened at the branch. Instead branches are set out of service """ # if dict 'user_pf_options' is present in net, these options overrule the net.__internal_options # except for parameters that are passed by user recycle = kwargs.get("recycle", None) if isinstance(recycle, dict) and _internal_stored(net): _recycled_powerflow(net, **kwargs) return if run_control and net.controller.in_service.any(): from pandapower.control import run_control parameters = {**locals(), **kwargs} # disable run control for inner loop to avoid infinite loop parameters["run_control"] = False run_control(**parameters) else: passed_parameters = _passed_runpp_parameters(locals()) _init_runpp_options(net, algorithm=algorithm, calculate_voltage_angles=calculate_voltage_angles, init=init, max_iteration=max_iteration, tolerance_mva=tolerance_mva, trafo_model=trafo_model, trafo_loading=trafo_loading, enforce_q_lims=enforce_q_lims, check_connectivity=check_connectivity, voltage_depend_loads=voltage_depend_loads, consider_line_temperature=consider_line_temperature, passed_parameters=passed_parameters, **kwargs) _check_bus_index_and_print_warning_if_high(net) _check_gen_index_and_print_warning_if_high(net) _powerflow(net, **kwargs) def rundcpp(net, trafo_model="t", trafo_loading="current", recycle=None, check_connectivity=True, switch_rx_ratio=2, trafo3w_losses="hv", **kwargs): """ Runs PANDAPOWER DC Flow INPUT: **net** - The pandapower format network OPTIONAL: **trafo_model** (str, "t") - transformer equivalent circuit model pandapower provides two equivalent circuit models for the transformer: - "t" - transformer is modeled as equivalent with the T-model. This is consistent with PowerFactory and is also more accurate than the PI-model. We recommend using this transformer model. - "pi" - transformer is modeled as equivalent PI-model. This is consistent with Sincal, but the method is questionable since the transformer is physically T-shaped. We therefore recommend the use of the T-model. **trafo_loading** (str, "current") - mode of calculation for transformer loading Transformer loading can be calculated relative to the rated current or the rated power. In both cases the overall transformer loading is defined as the maximum loading on the two sides of the transformer. - "current"- transformer loading is given as ratio of current flow and rated current of the transformer. This is the recommended setting, since thermal as well as magnetic effects in the transformer depend on the current. - "power" - transformer loading is given as ratio of apparent power flow to the rated apparent power of the transformer. **check_connectivity** (bool, False) - Perform an extra connectivity test after the conversion from pandapower to PYPOWER If true, an extra connectivity test based on SciPy Compressed Sparse Graph Routines is perfomed. If check finds unsupplied buses, they are put out of service in the PYPOWER matrix **switch_rx_ratio** (float, 2) - rx_ratio of bus-bus-switches. If impedance is zero, buses connected by a closed bus-bus switch are fused to model an ideal bus. Otherwise, they are modelled as branches with resistance defined as z_ohm column in switch table and this parameter **trafo3w_losses** (str, "hv") - defines where open loop losses of three-winding transformers are considered. Valid options are "hv", "mv", "lv" for HV/MV/LV side or "star" for the star point. ****kwargs** - options to use for PYPOWER.runpf """ _init_rundcpp_options(net, trafo_model=trafo_model, trafo_loading=trafo_loading, recycle=recycle, check_connectivity=check_connectivity, switch_rx_ratio=switch_rx_ratio, trafo3w_losses=trafo3w_losses, **kwargs) _check_bus_index_and_print_warning_if_high(net) _check_gen_index_and_print_warning_if_high(net) _powerflow(net, **kwargs) def runopp(net, verbose=False, calculate_voltage_angles=False, check_connectivity=True, suppress_warnings=True, switch_rx_ratio=2, delta=1e-10, init="flat", numba=True, trafo3w_losses="hv", consider_line_temperature=False, **kwargs): """ Runs the pandapower Optimal Power Flow. Flexibilities, constraints and cost parameters are defined in the pandapower element tables. Flexibilities can be defined in net.sgen / net.gen /net.load / net.storage net.sgen.controllable if a static generator is controllable. If False, the active and reactive power are assigned as in a normal power flow. If True, the following flexibilities apply: - net.gen.min_p_mw / net.gen.max_p_mw - net.gen.min_q_mvar / net.gen.max_q_mvar - net.sgen.min_p_mw / net.sgen.max_p_mw - net.sgen.min_q_mvar / net.sgen.max_q_mvar - net.dcline.max_p_mw - net.dcline.min_q_to_mvar / net.dcline.max_q_to_mvar / net.dcline.min_q_from_mvar / net.dcline.max_q_from_mvar - net.ext_grid.min_p_mw / net.ext_grid.max_p_mw - net.ext_grid.min_q_mvar / net.ext_grid.max_q_mvar - net.load.min_p_mw / net.load.max_p_mw - net.load.min_q_mvar / net.load.max_q_mvar - net.storage.min_p_mw / net.storage.max_p_mw - net.storage.min_q_mvar / net.storage.max_q_mvar Controllable loads behave just like controllable static generators. It must be stated if they are controllable. Otherwise, they are not respected as flexibilities. Dc lines are controllable per default Network constraints can be defined for buses, lines and transformers the elements in the following columns: - net.bus.min_vm_pu / net.bus.max_vm_pu - net.line.max_loading_percent - net.trafo.max_loading_percent - net.trafo3w.max_loading_percent How these costs are combined into a cost function depends on the cost_function parameter. INPUT: **net** - The pandapower format network OPTIONAL: **verbose** (bool, False) - If True, some basic information is printed **suppress_warnings** (bool, True) - suppress warnings in pypower If set to True, warnings are disabled during the loadflow. Because of the way data is processed in pypower, ComplexWarnings are raised during the loadflow. These warnings are suppressed by this option, however keep in mind all other pypower warnings are suppressed, too. **init** (str, "flat") - init of starting opf vector. Options are "flat" or "pf" Starting solution vector (x0) for opf calculations is determined by this flag. Options are: "flat" (default): starting vector is (upper bound - lower bound) / 2 "pf": a power flow is executed prior to the opf and the pf solution is the starting vector. This may improve convergence, but takes a longer runtime (which are probably neglectible for opf calculations) **delta** (float, 1e-10) - power tolerance **trafo3w_losses** (str, "hv") - defines where open loop losses of three-winding transformers are considered. Valid options are "hv", "mv", "lv" for HV/MV/LV side or "star" for the star point. **consider_line_temperature** (bool, False) - adjustment of line impedance based on provided line temperature. If True, net.line must contain a column "temperature_degree_celsius". The temperature dependency coefficient alpha must be provided in the net.line.alpha column, otherwise the default value of 0.004 is used **kwargs** - Pypower / Matpower keyword arguments: - OPF_VIOLATION (5e-6) constraint violation tolerance - PDIPM_COSTTOL (1e-6) optimality tolerance - PDIPM_GRADTOL (1e-6) gradient tolerance - PDIPM_COMPTOL (1e-6) complementarity condition (inequality) tolerance - PDIPM_FEASTOL (set to OPF_VIOLATION if not specified) feasibiliy (equality) tolerance - PDIPM_MAX_IT (150) maximum number of iterations - SCPDIPM_RED_IT(20) maximum number of step size reductions per iteration """ _check_necessary_opf_parameters(net, logger) _init_runopp_options(net, calculate_voltage_angles=calculate_voltage_angles, check_connectivity=check_connectivity, switch_rx_ratio=switch_rx_ratio, delta=delta, init=init, numba=numba, trafo3w_losses=trafo3w_losses, consider_line_temperature=consider_line_temperature, **kwargs) _check_bus_index_and_print_warning_if_high(net) _check_gen_index_and_print_warning_if_high(net) _optimal_powerflow(net, verbose, suppress_warnings, **kwargs) def rundcopp(net, verbose=False, check_connectivity=True, suppress_warnings=True, switch_rx_ratio=0.5, delta=1e-10, trafo3w_losses="hv", **kwargs): """ Runs the pandapower Optimal Power Flow. Flexibilities, constraints and cost parameters are defined in the pandapower element tables. Flexibilities for generators can be defined in net.sgen / net.gen. net.sgen.controllable / net.gen.controllable signals if a generator is controllable. If False, the active and reactive power are assigned as in a normal power flow. If yes, the following flexibilities apply: - net.sgen.min_p_mw / net.sgen.max_p_mw - net.gen.min_p_mw / net.gen.max_p_mw - net.load.min_p_mw / net.load.max_p_mw Network constraints can be defined for buses, lines and transformers the elements in the following columns: - net.line.max_loading_percent - net.trafo.max_loading_percent - net.trafo3w.max_loading_percent INPUT: **net** - The pandapower format network OPTIONAL: **verbose** (bool, False) - If True, some basic information is printed **suppress_warnings** (bool, True) - suppress warnings in pypower If set to True, warnings are disabled during the loadflow. Because of the way data is processed in pypower, ComplexWarnings are raised during the loadflow. These warnings are suppressed by this option, however keep in mind all other pypower warnings are suppressed, too. **delta** (float, 1e-10) - power tolerance **trafo3w_losses** (str, "hv") - defines where open loop losses of three-winding transformers are considered. Valid options are "hv", "mv", "lv" for HV/MV/LV side or "star" for the star point. """ if (not net.sgen.empty) & ("controllable" not in net.sgen.columns): logger.warning('Warning: Please specify sgen["controllable"]\n') if (not net.load.empty) & ("controllable" not in net.load.columns): logger.warning('Warning: Please specify load["controllable"]\n') _init_rundcopp_options(net, check_connectivity=check_connectivity, switch_rx_ratio=switch_rx_ratio, delta=delta, trafo3w_losses=trafo3w_losses, **kwargs) _check_bus_index_and_print_warning_if_high(net) _check_gen_index_and_print_warning_if_high(net) _optimal_powerflow(net, verbose, suppress_warnings, **kwargs) def _passed_runpp_parameters(local_parameters): """ Internal function to distinguish arguments for pandapower.runpp() that are explicitly passed by the user. :param local_parameters: locals() in the runpp() function :return: dictionary of explicitly passed parameters """ net = local_parameters.pop("net") if not ("user_pf_options" in net.keys() and len(net.user_pf_options) > 0): return None try: default_parameters = {k: v.default for k, v in inspect.signature(runpp).parameters.items()} except: args, varargs, keywords, defaults = inspect.getfullargspec(runpp) default_parameters = dict(zip(args[-len(defaults):], defaults)) default_parameters.update({"init": "auto"}) passed_parameters = { key: val for key, val in local_parameters.items() if key in default_parameters.keys() and val != default_parameters.get(key, None)} return passed_parameters
the-stack_0_16496
import argparse import gym import numpy as np import os import tensorflow as tf import tempfile import time import json import random import rlattack.common.tf_util as U from rlattack import logger from rlattack import deepq from rlattack.deepq.replay_buffer import ReplayBuffer, PrioritizedReplayBuffer from rlattack.common.misc_util import ( boolean_flag, pickle_load, pretty_eta, relatively_safe_pickle_dump, set_global_seeds, RunningAvg, SimpleMonitor ) from rlattack.common.schedules import LinearSchedule, PiecewiseSchedule # when updating this to non-deprecated ones, it is important to # copy over LazyFrames from rlattack.common.atari_wrappers_deprecated import wrap_dqn from rlattack.common.azure_utils import Container from model import model, dueling_model from statistics import statistics def parse_args(): parser = argparse.ArgumentParser("DQN experiments for Atari games") # Environment parser.add_argument("--env", type=str, default="Pong", help="name of the game") parser.add_argument("--seed", type=int, default=42, help="which seed to use") # Core DQN parameters parser.add_argument("--replay-buffer-size", type=int, default=int(1e6), help="replay buffer size") parser.add_argument("--lr", type=float, default=1e-4, help="learning rate for Adam optimizer") parser.add_argument("--num-steps", type=int, default=int(2e8), help="total number of steps to \ run the environment for") parser.add_argument("--batch-size", type=int, default=32, help="number of transitions to optimize \ at the same time") parser.add_argument("--learning-freq", type=int, default=4, help="number of iterations between \ every optimization step") parser.add_argument("--target-update-freq", type=int, default=40000, help="number of iterations between \ every target network update") # Bells and whistles boolean_flag(parser, "noisy", default=False, help="whether or not to NoisyNetwork") boolean_flag(parser, "double-q", default=True, help="whether or not to use double q learning") boolean_flag(parser, "dueling", default=False, help="whether or not to use dueling model") boolean_flag(parser, "prioritized", default=False, help="whether or not to use prioritized replay buffer") parser.add_argument("--prioritized-alpha", type=float, default=0.6, help="alpha parameter for prioritized replay buffer") parser.add_argument("--prioritized-beta0", type=float, default=0.4, help="initial value of beta \ parameters for prioritized replay") parser.add_argument("--prioritized-eps", type=float, default=1e-6, help="eps parameter for prioritized replay buffer") # Checkpointing parser.add_argument("--save-dir", type=str, default=None, required=True, help="directory in which \ training state and model should be saved.") parser.add_argument("--save-azure-container", type=str, default=None, help="It present data will saved/loaded from Azure. \ Should be in format ACCOUNT_NAME:ACCOUNT_KEY:\ CONTAINER") parser.add_argument("--save-freq", type=int, default=1e6, help="save model once every time this many \ iterations are completed") boolean_flag(parser, "load-on-start", default=True, help="if true and model was previously saved then training \ will be resumed") # V: Attack Arguments # parser.add_argument("--attack", type=str, default=None, help="Method to attack the model.") parser.add_argument("--attack-init", type=int, default=0, help="Iteration no. to begin attacks") parser.add_argument("--attack-prob", type=float, default=0.0, help="Probability of attack at each step, \ float in range 0 - 1.0") return parser.parse_args() def make_env(game_name): env = gym.make(game_name + "NoFrameskip-v4") monitored_env = SimpleMonitor(env) env = wrap_dqn(monitored_env) return env, monitored_env def maybe_save_model(savedir, container, state): if savedir is None: return start_time = time.time() model_dir = "model-{}".format(state["num_iters"]) U.save_state(os.path.join(savedir, model_dir, "saved")) if container is not None: container.put(os.path.join(savedir, model_dir), model_dir) relatively_safe_pickle_dump(state, os.path.join(savedir, 'training_state.pkl.zip'), compression=True) if container is not None: container.put(os.path.join(savedir, 'training_state.pkl.zip'), 'training_state.pkl.zip') relatively_safe_pickle_dump(state["monitor_state"], os.path.join(savedir, 'monitor_state.pkl')) if container is not None: container.put(os.path.join(savedir, 'monitor_state.pkl'), 'monitor_state.pkl') logger.log("Saved model in {} seconds\n".format(time.time() - start_time)) def maybe_load_model(savedir, container): """Load model if present at the specified path.""" if savedir is None: return state_path = os.path.join(os.path.join(savedir, 'training_state.pkl.zip')) if container is not None: logger.log("Attempting to download model from Azure") found_model = container.get(savedir, 'training_state.pkl.zip') else: found_model = os.path.exists(state_path) if found_model: state = pickle_load(state_path, compression=True) model_dir = "model-{}".format(state["num_iters"]) if container is not None: container.get(savedir, model_dir) U.load_state(os.path.join(savedir, model_dir, "saved")) logger.log("Loaded models checkpoint at {} iterations".format( state["num_iters"])) return state if __name__ == '__main__': args = parse_args() # Parse savedir and azure container. savedir = args.save_dir if args.save_azure_container is not None: account_name, account_key, container_name = \ args.save_azure_container.split(":") container = Container( account_name=account_name, account_key=account_key, container_name=container_name, maybe_create=True ) if savedir is None: # Careful! This will not get cleaned up. savedir = tempfile.TemporaryDirectory().name else: container = None # Create and seed the env. env, monitored_env = make_env(args.env) if args.seed > 0: set_global_seeds(args.seed) env.unwrapped.seed(args.seed) # V: Save arguments, configure log dump path to savedir # if savedir: with open(os.path.join(savedir, 'args.json'), 'w') as f: json.dump(vars(args), f) logger.configure(dir=savedir) # log to savedir with U.make_session(4) as sess: # Create training graph and replay buffer act, train, update_target, debug, craft_adv = deepq.build_train( make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name), q_func=dueling_model if args.dueling else model, num_actions=env.action_space.n, optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=args.lr, epsilon=1e-4), gamma=0.99, grad_norm_clipping=10, double_q=args.double_q, noisy=args.noisy, attack=args.attack ) approximate_num_iters = args.num_steps / 4 exploration = PiecewiseSchedule([ (0, 1.0), (approximate_num_iters / 50, 0.1), (approximate_num_iters / 5, 0.01) ], outside_value=0.01) if args.prioritized: replay_buffer = PrioritizedReplayBuffer(args.replay_buffer_size, args.prioritized_alpha) beta_schedule = LinearSchedule(approximate_num_iters, initial_p=args.prioritized_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(args.replay_buffer_size) U.initialize() update_target() num_iters = 0 # Load the model state = maybe_load_model(savedir, container) if state is not None: num_iters, replay_buffer = state["num_iters"], state[ "replay_buffer"], monitored_env.set_state(state["monitor_state"]) start_time, start_steps = None, None steps_per_iter = RunningAvg(0.999) iteration_time_est = RunningAvg(0.999) obs = env.reset() # Record the mean of the \sigma sigma_name_list = [] sigma_list = [] for param in tf.compat.v1.trainable_variables(): # only record the \sigma in the action network if 'sigma' in param.name \ and 'deepq/q_func/action_value' in param.name: summary_name = \ param.name.replace( 'deepq/q_func/action_value/', '').replace( '/', '.').split(':')[0] sigma_name_list.append(summary_name) sigma_list.append(tf.reduce_mean(input_tensor=tf.abs(param))) f_mean_sigma = U.function(inputs=[], outputs=sigma_list) # Statistics writer = tf.compat.v1.summary.FileWriter(savedir, sess.graph) im_stats = statistics(scalar_keys=['action', 'im_reward', 'td_errors', 'huber_loss'] + sigma_name_list) ep_stats = statistics(scalar_keys=['ep_reward', 'ep_length']) # Main trianing loop ep_length = 0 while True: num_iters += 1 ep_length += 1 # V: Perturb observation if we are past the init stage # and at a designated attack step # if craft_adv != None and (num_iters >= args.attack_init) # and ((num_iters - args.attack_init) % args.attack_freq == 0) : if craft_adv is not None and (num_iters >= args.attack_init) and ( random.random() <= args.attack_prob): obs = craft_adv(np.array(obs)[None])[0] # Take action and store transition in the replay buffer. if args.noisy: # greedily choose action = act(np.array(obs)[None], stochastic=False)[0] else: # epsilon greedy action = act(np.array(obs)[None], update_eps=exploration.value(num_iters))[0] new_obs, rew, done, info = env.step(action) replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs if done: obs = env.reset() if (num_iters > max(5 * args.batch_size, args.replay_buffer_size // 20) and num_iters % args.learning_freq == 0): # Sample a bunch of transitions from replay buffer if args.prioritized: experience = replay_buffer.sample(args.batch_size, beta=beta_schedule.value( num_iters)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = \ replay_buffer.sample(args.batch_size) weights = np.ones_like(rewards) # Minimize the error in Bellman's and compute TD-error td_errors, huber_loss = train(obses_t, actions, rewards, obses_tp1, dones, weights) # Update the priorities in the replay buffer if args.prioritized: new_priorities = np.abs(td_errors) + args.prioritized_eps replay_buffer.update_priorities( batch_idxes, new_priorities ) # Write summary mean_sigma = f_mean_sigma() im_stats.add_all_summary(writer, [action, rew, np.mean(td_errors), np.mean(huber_loss)] + mean_sigma, num_iters) # Update target network. if num_iters % args.target_update_freq == 0: update_target() if start_time is not None: steps_per_iter.update(info['steps'] - start_steps) iteration_time_est.update(time.time() - start_time) start_time, start_steps = time.time(), info["steps"] # Save the model and training state. if num_iters > 0 and (num_iters % args.save_freq == 0 or info[ "steps"] > args.num_steps): maybe_save_model(savedir, container, { 'replay_buffer': replay_buffer, 'num_iters': num_iters, 'monitor_state': monitored_env.get_state() }) if info["steps"] > args.num_steps: break if done: steps_left = args.num_steps - info["steps"] completion = np.round(info["steps"] / args.num_steps, 1) mean_ep_reward = np.mean(info["rewards"][-100:]) logger.record_tabular("% completion", completion) logger.record_tabular("steps", info["steps"]) logger.record_tabular("iters", num_iters) logger.record_tabular("episodes", len(info["rewards"])) logger.record_tabular("reward (100 epi mean)", np.mean(info["rewards"][-100:])) if not args.noisy: logger.record_tabular("exploration", exploration.value(num_iters)) if args.prioritized: logger.record_tabular("max priority", replay_buffer._max_priority) fps_estimate = ( float(steps_per_iter) / (float(iteration_time_est) + 1e-6) if steps_per_iter._value is not None else "calculating:") logger.dump_tabular() logger.log() logger.log("ETA: " + pretty_eta(int(steps_left / fps_estimate))) logger.log() # add summary for one episode ep_stats.add_all_summary(writer, [mean_ep_reward, ep_length], num_iters) ep_length = 0
the-stack_0_16497
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential VERSION = "unknown" class MonitorClientConfiguration(Configuration): """Configuration for MonitorClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The Azure subscription Id. :type subscription_id: str """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(MonitorClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.api_version = "2017-04-01" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-eventhub/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.BearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
the-stack_0_16500
# Unwinder commands. # Copyright 2015 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import gdb import re def validate_regexp(exp, idstring): try: return re.compile(exp) except SyntaxError: raise SyntaxError("Invalid %s regexp: %s." % (idstring, exp)) def parse_unwinder_command_args(arg): """Internal utility to parse unwinder command argv. Arguments: arg: The arguments to the command. The format is: [locus-regexp [name-regexp]] Returns: A 2-tuple of compiled regular expressions. Raises: SyntaxError: an error processing ARG """ argv = gdb.string_to_argv(arg) argc = len(argv) if argc > 2: raise SyntaxError("Too many arguments.") locus_regexp = "" name_regexp = "" if argc >= 1: locus_regexp = argv[0] if argc >= 2: name_regexp = argv[1] return (validate_regexp(locus_regexp, "locus"), validate_regexp(name_regexp, "unwinder")) class InfoUnwinder(gdb.Command): """GDB command to list unwinders. Usage: info unwinder [locus-regexp [name-regexp]] LOCUS-REGEXP is a regular expression matching the location of the unwinder. If it is omitted, all registered unwinders from all loci are listed. A locus can be 'global', 'progspace' to list the unwinders from the current progspace, or a regular expression matching filenames of objfiles. NAME-REGEXP is a regular expression to filter unwinder names. If this omitted for a specified locus, then all registered unwinders in the locus are listed. """ def __init__(self): super(InfoUnwinder, self).__init__("info unwinder", gdb.COMMAND_STACK) def list_unwinders(self, title, unwinders, name_re): """Lists the unwinders whose name matches regexp. Arguments: title: The line to print before the list. unwinders: The list of the unwinders. name_re: unwinder name filter. """ if not unwinders: return print(title) for unwinder in unwinders: if name_re.match(unwinder.name): print(" %s%s" % (unwinder.name, "" if unwinder.enabled else " [disabled]")) def invoke(self, arg, from_tty): locus_re, name_re = parse_unwinder_command_args(arg) if locus_re.match("global"): self.list_unwinders("Global:", gdb.frame_unwinders, name_re) if locus_re.match("progspace"): cp = gdb.current_progspace() self.list_unwinders("Progspace %s:" % cp.filename, cp.frame_unwinders, name_re) for objfile in gdb.objfiles(): if locus_re.match(objfile.filename): self.list_unwinders("Objfile %s:" % objfile.filename, objfile.frame_unwinders, name_re) def do_enable_unwinder1(unwinders, name_re, flag): """Enable/disable unwinders whose names match given regex. Arguments: unwinders: The list of unwinders. name_re: Unwinder name filter. flag: Enable/disable. Returns: The number of unwinders affected. """ total = 0 for unwinder in unwinders: if name_re.match(unwinder.name): unwinder.enabled = flag total += 1 return total def do_enable_unwinder(arg, flag): """Enable/disable unwinder(s).""" (locus_re, name_re) = parse_unwinder_command_args(arg) total = 0 if locus_re.match("global"): total += do_enable_unwinder1(gdb.frame_unwinders, name_re, flag) if locus_re.match("progspace"): total += do_enable_unwinder1(gdb.current_progspace().frame_unwinders, name_re, flag) for objfile in gdb.objfiles(): if locus_re.match(objfile.filename): total += do_enable_unwinder1(objfile.frame_unwinders, name_re, flag) print("%d unwinder%s %s" % (total, "" if total == 1 else "s", "enabled" if flag else "disabled")) class EnableUnwinder(gdb.Command): """GDB command to enable unwinders. Usage: enable unwinder [locus-regexp [name-regexp]] LOCUS-REGEXP is a regular expression specifying the unwinders to enable. It can 'global', 'progspace', or the name of an objfile within that progspace. NAME_REGEXP is a regular expression to filter unwinder names. If this omitted for a specified locus, then all registered unwinders in the locus are affected. """ def __init__(self): super(EnableUnwinder, self).__init__("enable unwinder", gdb.COMMAND_STACK) def invoke(self, arg, from_tty): """GDB calls this to perform the command.""" do_enable_unwinder(arg, True) class DisableUnwinder(gdb.Command): """GDB command to disable the specified unwinder. Usage: disable unwinder [locus-regexp [name-regexp]] LOCUS-REGEXP is a regular expression specifying the unwinders to disable. It can 'global', 'progspace', or the name of an objfile within that progspace. NAME_REGEXP is a regular expression to filter unwinder names. If this omitted for a specified locus, then all registered unwinders in the locus are affected. """ def __init__(self): super(DisableUnwinder, self).__init__("disable unwinder", gdb.COMMAND_STACK) def invoke(self, arg, from_tty): """GDB calls this to perform the command.""" do_enable_unwinder(arg, False) def register_unwinder_commands(): """Installs the unwinder commands.""" InfoUnwinder() EnableUnwinder() DisableUnwinder() register_unwinder_commands()
the-stack_0_16501
from collections import defaultdict import errno import math import mmap import os import sys import time import multiprocessing as mp from six.moves import range import numpy as np from .lib import Bbox, Vec, mkdir SHM_DIRECTORY = '/dev/shm/' EMULATED_SHM_DIRECTORY = '/tmp/cloudvolume-shm' EMULATE_SHM = not os.path.isdir(SHM_DIRECTORY) PLATFORM_SHM_DIRECTORY = SHM_DIRECTORY if not EMULATE_SHM else EMULATED_SHM_DIRECTORY class SharedMemoryReadError(Exception): pass class SharedMemoryAllocationError(Exception): pass def ndarray(shape, dtype, location, order='F', readonly=False, lock=None, **kwargs): """ Create a shared memory numpy array. Lock is only necessary while doing multiprocessing on platforms without /dev/shm type shared memory as filesystem emulation will be used instead. Allocating the shared array requires cleanup on your part. A shared memory file will be located at sharedmemory.PLATFORM_SHM_DIRECTORY + location and must be unlinked when you're done. It will outlive the program. You should also call .close() on the mmap file handle when done. However, this is less of a problem because the operating system will close the file handle on process termination. Parameters: shape: same as numpy.ndarray dtype: same as numpy.ndarray location: the shared memory filename lock: (optional) multiprocessing.Lock Returns: (mmap filehandle, shared ndarray) """ if EMULATE_SHM: return ndarray_fs( shape, dtype, location, lock, readonly, order, emulate_shm=True, **kwargs ) return ndarray_shm(shape, dtype, location, readonly, order, **kwargs) def ndarray_fs( shape, dtype, location, lock, readonly=False, order='F', emulate_shm=False, **kwargs ): """Emulate shared memory using the filesystem.""" dbytes = np.dtype(dtype).itemsize nbytes = Vec(*shape).rectVolume() * dbytes if emulate_shm: directory = mkdir(EMULATED_SHM_DIRECTORY) filename = os.path.join(directory, location) else: filename = location if lock: lock.acquire() try: allocate_shm_file(filename, nbytes, dbytes, readonly) finally: if lock: lock.release() with open(filename, 'r+b') as f: array_like = mmap.mmap(f.fileno(), 0) # map entire file renderbuffer = np.ndarray(buffer=array_like, dtype=dtype, shape=shape, order=order, **kwargs) renderbuffer.setflags(write=(not readonly)) return array_like, renderbuffer def allocate_shm_file(filename, nbytes, dbytes, readonly): exists = os.path.exists(filename) size = 0 if not exists else os.path.getsize(filename) if readonly and not exists: raise SharedMemoryReadError(filename + " has not been allocated. Requested " + str(nbytes) + " bytes.") elif readonly and size != nbytes: raise SharedMemoryReadError("{} exists, but the allocation size ({} bytes) does not match the request ({} bytes).".format( filename, size, nbytes )) if exists: if size > nbytes: with open(filename, 'wb') as f: os.ftruncate(f.fileno(), nbytes) elif size < nbytes: # too small? just remake it below os.unlink(filename) exists = os.path.exists(filename) if not exists: # Previously we were writing out real files full of zeros, # but a) that takes forever and b) modern OSes support sparse # files (i.e. gigabytes of zeros that take up only a few real bytes). # # The following should take advantage of this functionality and be faster. # It should work on Python 2.7 Unix, and Python 3.5+ on Unix and Windows. # # References: # https://stackoverflow.com/questions/8816059/create-file-of-particular-size-in-python # https://docs.python.org/3/library/os.html#os.ftruncate # https://docs.python.org/2/library/os.html#os.ftruncate # with open(filename, 'wb') as f: os.ftruncate(f.fileno(), nbytes) def ndarray_shm(shape, dtype, location, readonly=False, order='F', **kwargs): """Create a shared memory numpy array. Requires /dev/shm to exist.""" import posix_ipc from posix_ipc import O_CREAT import psutil nbytes = Vec(*shape).rectVolume() * np.dtype(dtype).itemsize available = psutil.virtual_memory().available preexisting = 0 # This might only work on Ubuntu shmloc = os.path.join(SHM_DIRECTORY, location) if os.path.exists(shmloc): preexisting = os.path.getsize(shmloc) elif readonly: raise SharedMemoryReadError(shmloc + " has not been allocated. Requested " + str(nbytes) + " bytes.") if readonly and preexisting != nbytes: raise SharedMemoryReadError("{} exists, but the allocation size ({} bytes) does not match the request ({} bytes).".format( shmloc, preexisting, nbytes )) if (nbytes - preexisting) > available: overallocated = nbytes - preexisting - available overpercent = (100 * overallocated / (preexisting + available)) raise SharedMemoryAllocationError(""" Requested more memory than is available. Shared Memory Location: {} Shape: {} Requested Bytes: {} Available Bytes: {} Preexisting Bytes*: {} Overallocated Bytes*: {} (+{:.2f}%) * Preexisting is only correct on linux systems that support /dev/shm/""" \ .format(location, shape, nbytes, available, preexisting, overallocated, overpercent)) # This might seem like we're being "extra safe" but consider # a threading condition where the condition of the shared memory # was adjusted between the check above and now. Better to make sure # that we don't accidently change anything if readonly is set. flags = 0 if readonly else O_CREAT size = 0 if readonly else int(nbytes) try: shared = posix_ipc.SharedMemory(location, flags=flags, size=size) array_like = mmap.mmap(shared.fd, shared.size) os.close(shared.fd) renderbuffer = np.ndarray(buffer=array_like, dtype=dtype, shape=shape, order=order, **kwargs) except OSError as err: if err.errno == errno.ENOMEM: # Out of Memory posix_ipc.unlink_shared_memory(location) raise renderbuffer.setflags(write=(not readonly)) return array_like, renderbuffer def unlink(location): if EMULATE_SHM: return unlink_fs(location) return unlink_shm(location) def unlink_shm(location): import posix_ipc try: posix_ipc.unlink_shared_memory(location) except posix_ipc.ExistentialError: return False return True def unlink_fs(location): directory = mkdir(EMULATED_SHM_DIRECTORY) try: filename = os.path.join(directory, location) os.unlink(filename) return True except OSError: return False
the-stack_0_16502
# pcost.py import report def portfolio_cost(filename): ''' Computes the total cost (shares*price) of a portfolio file ''' portfolio = report.read_portfolio(filename) return portfolio.total_cost def main(args): if len(args) != 2: raise SystemExit('Usage: %s portfoliofile' % args[0]) filename = args[1] print('Total cost:', portfolio_cost(filename)) if __name__ == '__main__': import sys main(sys.argv)
the-stack_0_16503
# Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Main training script for the listops task.""" import functools import itertools import json import os import time from absl import app from absl import flags from absl import logging from flax import jax_utils from flax import nn from flax import optim from flax.metrics import tensorboard from flax.training import checkpoints from flax.training import common_utils import jax from jax import random import jax.nn import jax.numpy as jnp from lra_benchmarks.listops import input_pipeline from lra_benchmarks.models.transformer import transformer from lra_benchmarks.utils import train_utils from ml_collections import config_flags import numpy as np import tensorflow.compat.v2 as tf FLAGS = flags.FLAGS config_flags.DEFINE_config_file( 'config', None, 'Training configuration.', lock_config=True) flags.DEFINE_string( 'model_dir', default=None, help='Directory to store model data.') flags.DEFINE_string( 'task_name', default='basic', help='Name of the task used for load training/test data.') flags.DEFINE_string( 'data_dir', default=None, help='Directory containing datasets.') flags.DEFINE_bool( 'test_only', default=False, help='Run the evaluation on the test data.') def create_model(key, flax_module, input_shape, model_kwargs): """Creates and initializes the model.""" @functools.partial(jax.jit, backend='cpu') def _create_model(key): module = flax_module.partial(**model_kwargs) with nn.stochastic(key): _, initial_params = module.init_by_shape(key, [(input_shape, jnp.float32)]) model = nn.Model(module, initial_params) return model return _create_model(key) def create_optimizer(model, learning_rate): optimizer_def = optim.Adam( learning_rate, beta1=0.9, beta2=0.98, eps=1e-9, weight_decay=FLAGS.config.weight_decay) optimizer = optimizer_def.create(model) return optimizer def compute_metrics(logits, labels, weights): """Compute summary metrics.""" loss, weight_sum = train_utils.compute_weighted_cross_entropy( logits, labels, num_classes=10, weights=weights) acc, _ = train_utils.compute_weighted_accuracy(logits, labels, weights) metrics = { 'loss': loss, 'accuracy': acc, 'denominator': weight_sum, } metrics = jax.lax.psum(metrics, 'batch') return metrics def train_step(optimizer, batch, learning_rate_fn, dropout_rng=None): """Perform a single training step.""" train_keys = ['inputs', 'targets'] (inputs, targets) = [batch.get(k, None) for k in train_keys] # We handle PRNG splitting inside the top pmap, rather # than handling it outside in the training loop - doing the # latter can add some stalls to the devices. dropout_rng, new_dropout_rng = random.split(dropout_rng) def loss_fn(model): """Loss function used for training.""" with nn.stochastic(dropout_rng): logits = model(inputs, train=True) loss, weight_sum = train_utils.compute_weighted_cross_entropy( logits, targets, num_classes=10, weights=None) mean_loss = loss / weight_sum return mean_loss, logits step = optimizer.state.step lr = learning_rate_fn(step) grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (_, logits), grad = grad_fn(optimizer.target) grad = jax.lax.pmean(grad, 'batch') new_optimizer = optimizer.apply_gradient(grad, learning_rate=lr) metrics = compute_metrics(logits, targets, None) metrics['learning_rate'] = lr return new_optimizer, metrics, new_dropout_rng def eval_step(model, batch): eval_keys = ['inputs', 'targets'] (inputs, targets) = [batch.get(k, None) for k in eval_keys] logits = model(inputs, train=False) return compute_metrics(logits, targets, None) def tohost(x): """Collect batches from all devices to host and flatten batch dimensions.""" n_device, n_batch, *remaining_dims = x.shape return np.array(x).reshape((n_device * n_batch,) + tuple(remaining_dims)) def main(argv): if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') tf.enable_v2_behavior() config = FLAGS.config logging.info('===========Config Dict============') logging.info(config) batch_size = config.batch_size learning_rate = config.learning_rate num_train_steps = config.num_train_steps num_eval_steps = config.num_eval_steps eval_freq = config.eval_frequency random_seed = config.random_seed model_type = config.model_type model_kwargs = ( config.model_kwargs.to_dict() if 'model_kwargs' in config else {}) if jax.host_id() == 0: summary_writer = tensorboard.SummaryWriter( os.path.join(FLAGS.model_dir, 'summary')) if batch_size % jax.device_count() > 0: raise ValueError('Batch size must be divisible by the number of devices') train_ds, eval_ds, test_ds, encoder = input_pipeline.get_datasets( n_devices=jax.local_device_count(), task_name=FLAGS.task_name, data_dir=FLAGS.data_dir, batch_size=batch_size, max_length=config.max_length) vocab_size = encoder.vocab_size train_ds = train_ds.repeat() train_iter = iter(train_ds) max_length = config.max_length input_shape = (batch_size, max_length) model_kwargs.update({ 'vocab_size': vocab_size, 'emb_dim': config.emb_dim, 'num_heads': config.num_heads, 'num_layers': config.num_layers, 'qkv_dim': config.qkv_dim, 'mlp_dim': config.mlp_dim, 'max_len': config.max_length, 'classifier': True, 'num_classes': 10 }) if hasattr(config, 'attention_fn'): model_kwargs['attention_fn'] = config.attention_fn rng = random.PRNGKey(random_seed) rng = jax.random.fold_in(rng, jax.host_id()) rng, init_rng = random.split(rng) # We init the first set of dropout PRNG keys, but update it afterwards inside # the main pmap'd training update for performance. dropout_rngs = random.split(rng, jax.local_device_count()) if model_type == 'transformer': model = create_model(init_rng, transformer.TransformerEncoder, input_shape, model_kwargs) else: raise ValueError('Model type not supported') optimizer = create_optimizer(model, learning_rate) del model # Don't keep a copy of the initial model. start_step = 0 if config.restore_checkpoints or FLAGS.test_only: # Restore unreplicated optimizer + model state from last checkpoint. optimizer = checkpoints.restore_checkpoint(FLAGS.model_dir, optimizer) # Grab last step. start_step = int(optimizer.state.step) # Replicate optimizer. optimizer = jax_utils.replicate(optimizer) learning_rate_fn = train_utils.create_learning_rate_scheduler( base_learning_rate=learning_rate) p_train_step = jax.pmap( functools.partial(train_step, learning_rate_fn=learning_rate_fn), axis_name='batch') p_eval_step = jax.pmap(eval_step, axis_name='batch') # p_pred_step = jax.pmap(predict_step, axis_name='batch') def run_eval(eval_ds, num_eval_steps=-1): eval_metrics = [] eval_iter = iter(eval_ds) if num_eval_steps == -1: num_iter = itertools.count() else: num_iter = range(num_eval_steps) for _, eval_batch in zip(num_iter, eval_iter): # pylint: disable=protected-access eval_batch = common_utils.shard( jax.tree_map(lambda x: x._numpy(), eval_batch)) # pylint: enable=protected-access metrics = p_eval_step(optimizer.target, eval_batch) eval_metrics.append(metrics) eval_metrics = common_utils.get_metrics(eval_metrics) eval_metrics_sums = jax.tree_map(jnp.sum, eval_metrics) eval_denominator = eval_metrics_sums.pop('denominator') eval_summary = jax.tree_map( lambda x: x / eval_denominator, # pylint: disable=cell-var-from-loop eval_metrics_sums) # Calculate (clipped) perplexity after averaging log-perplexities: eval_summary['perplexity'] = jnp.clip( jnp.exp(eval_summary['loss']), a_max=1.0e4) return eval_summary if FLAGS.test_only: with tf.io.gfile.GFile( os.path.join(FLAGS.model_dir, 'results.json'), 'w') as f: test_summary = run_eval(test_ds) json.dump(jax.tree_map(lambda x: x.tolist(), test_summary), f) return metrics_all = [] tick = time.time() for step, batch in zip(range(start_step, num_train_steps), train_iter): batch = common_utils.shard(jax.tree_map(lambda x: x._numpy(), batch)) # pylint: disable=protected-access optimizer, metrics, dropout_rngs = p_train_step( optimizer, batch, dropout_rng=dropout_rngs) metrics_all.append(metrics) logging.info('train in step: %d', step) # Save a Checkpoint if ((step % config.checkpoint_freq == 0 and step > 0) or step == num_train_steps - 1): if jax.host_id() == 0 and config.save_checkpoints: # Save unreplicated optimizer + model state. checkpoints.save_checkpoint(FLAGS.model_dir, jax_utils.unreplicate(optimizer), step) # Periodic metric handling. if step % eval_freq == 0 and step > 0: metrics_all = common_utils.get_metrics(metrics_all) lr = metrics_all.pop('learning_rate').mean() metrics_sums = jax.tree_map(jnp.sum, metrics_all) denominator = metrics_sums.pop('denominator') summary = jax.tree_map(lambda x: x / denominator, metrics_sums) # pylint: disable=cell-var-from-loop summary['learning_rate'] = lr # Calculate (clipped) perplexity after averaging log-perplexities: summary['perplexity'] = jnp.clip(jnp.exp(summary['loss']), a_max=1.0e4) logging.info('train in step: %d, loss: %.4f', step, summary['loss']) if jax.host_id() == 0: tock = time.time() steps_per_sec = eval_freq / (tock - tick) tick = tock summary_writer.scalar('steps per second', steps_per_sec, step) for key, val in summary.items(): summary_writer.scalar(f'train_{key}', val, step) summary_writer.flush() # Reset metric accumulation for next evaluation cycle. metrics_all = [] # Eval Metrics eval_summary = run_eval(eval_ds, num_eval_steps) logging.info('eval in step: %d, loss: %.4f, acc: %.4f', step, eval_summary['loss'], eval_summary['accuracy']) if jax.host_id() == 0: for key, val in eval_summary.items(): summary_writer.scalar(f'eval_{key}', val, step) summary_writer.flush() if __name__ == '__main__': app.run(main)
the-stack_0_16505
import spidev, time spi = spidev.SpiDev() spi.open(0,0) def analog_read(channel): r = spi.xfer2([1, (8 + channel) << 4, 0]) adc_out = ((r[1]&3) << 8) + r[2] return adc_out while True: reading = analog_read(0) voltage = reading * 3.3 / 1024 print("Reading=%d\tVoltage=%f" % (reading, voltage)) time.sleep(1)
the-stack_0_16506
""" Compare two or more phasings """ import logging import math from collections import defaultdict from contextlib import ExitStack import dataclasses from itertools import chain, permutations from typing import Set, List, Optional, DefaultDict, Dict from whatshap.vcf import VcfReader, VcfVariant, VariantTable, PloidyError from whatshap.core import Genotype, SwitchFlipCalculator from whatshap.cli import CommandLineError logger = logging.getLogger(__name__) COUNT_WIDTH = 9 # fmt: off def add_arguments(parser): add = parser.add_argument add('--sample', metavar='SAMPLE', default=None, help='Name of the sample ' 'to process. If not given, use first sample found in VCF.') add('--names', metavar='NAMES', default=None, help='Comma-separated list ' 'of data set names to be used in the report (in same order as VCFs).') add('--ignore-sample-name', default=False, action='store_true', help='For single ' 'sample VCFs, ignore sample name and assume all samples are the same.') add('--tsv-pairwise', metavar='TSVPAIRWISE', default=None, help='Filename to write ' 'comparison results from pair-wise comparison to (tab-separated).') add('--tsv-multiway', metavar='TSVMULTIWAY', default=None, help='Filename to write ' 'comparison results from multiway comparison to (tab-separated). Only for diploid vcfs.') add('--only-snvs', default=False, action="store_true", help='Only process SNVs ' 'and ignore all other variants.') add('--switch-error-bed', default=None, help='Write BED file with switch error positions ' 'to given filename. Only for diploid vcfs.') add('--plot-blocksizes', default=None, help='Write PDF file with a block length histogram ' 'to given filename (requires matplotlib).') add('--plot-sum-of-blocksizes', default=None, help='Write PDF file with a block length histogram in which the height of each bar corresponds to the sum of lengths.') add('--longest-block-tsv', default=None, help='Write position-wise agreement of longest ' 'joint blocks in each chromosome to tab-separated file. Only for diploid vcfs.') add('--ploidy', '-p', metavar='PLOIDY', type=int, default=2, help='The ploidy of the sample(s) (default: %(default)s).') # TODO: what's the best way to request "two or more" VCFs? add('vcf', nargs='+', metavar='VCF', help='At least two phased VCF files to be compared.') # fmt: on def validate(args, parser): if len(args.vcf) < 2: parser.error("At least two VCFs need to be given.") if args.ploidy < 2: parser.error("Ploidy must be > 1.") if args.ploidy > 2 and args.tsv_multiway: parser.error("Option --tsv-multiway can only be used if ploidy=2.") if args.ploidy > 2 and args.switch_error_bed: parser.error("Option --switch-error-bed can only be used if ploidy=2.") if args.ploidy > 2 and args.longest_block_tsv: parser.error("Option --longest-block-tsv can only be used if ploidy=2.") class SwitchFlips: def __init__(self, switches: int = 0, flips: int = 0): self.switches: int = switches self.flips: int = flips def __iadd__(self, other): self.switches += other.switches self.flips += other.flips return self def __repr__(self): return "SwitchFlips(switches={}, flips={})".format(self.switches, self.flips) def __str__(self): return "{}/{}".format(self.switches, self.flips) class PhasingErrors: def __init__( self, switches: int = 0, hamming: int = 0, switch_flips: Optional[SwitchFlips] = None, diff_genotypes: int = 0, ): self.switches = switches self.hamming = hamming self.switch_flips = SwitchFlips() if switch_flips is None else switch_flips self.diff_genotypes = diff_genotypes def __iadd__(self, other: object) -> "PhasingErrors": if not isinstance(other, PhasingErrors): raise TypeError("Can only add to PhasingErrors") self.switches += other.switches self.hamming += other.hamming self.switch_flips += other.switch_flips self.diff_genotypes += other.diff_genotypes return self def __repr__(self): return "PhasingErrors(switches={}, hamming={}, switch_flips={}, diff_genotypes={})".format( self.switches, self.hamming, self.switch_flips, self.diff_genotypes ) def complement(s): """ >>> complement('01100') '10011' """ t = {"0": "1", "1": "0"} return "".join(t[c] for c in s) def hamming(s0, s1): """ >>> hamming('ABCD', 'AXCY') 2 """ assert len(s0) == len(s1) return sum(c0 != c1 for c0, c1 in zip(s0, s1)) def switch_encoding(phasing): """ >>> switch_encoding('0001011') '001110' """ assert isinstance(phasing, str) return "".join(("0" if phasing[i - 1] == phasing[i] else "1") for i in range(1, len(phasing))) def compute_switch_flips(phasing0, phasing1) -> SwitchFlips: assert len(phasing0) == len(phasing1) s0 = switch_encoding(phasing0) s1 = switch_encoding(phasing1) result = SwitchFlips() switches_in_a_row = 0 for i, (p0, p1) in enumerate(zip(s0, s1)): if p0 != p1: switches_in_a_row += 1 if (i + 1 == len(s0)) or (p0 == p1): result.flips += switches_in_a_row // 2 result.switches += switches_in_a_row % 2 switches_in_a_row = 0 return result def compute_matching_genotype_pos(phasing0, phasing1): """ Computes the positions on which both phasings agree on the genotype. """ assert len(phasing0) == len(phasing1) assert len(phasing0) >= 2 assert len(phasing0[0]) == len(phasing1[0]) assert all(len(phasing0[i]) == len(phasing0[0]) for i in range(1, len(phasing0))) num_vars = len(phasing0[0]) matching_pos = [ i for i in range(num_vars) if Genotype([int(hap[i]) for hap in phasing0]) == Genotype([int(hap[i]) for hap in phasing1]) ] return matching_pos def compute_switch_errors_poly(phasing0, phasing1, matching_pos=None): """ Computes the number of necessary switches to transform phasing 0 into phasing 1 or vice versa. Positions with non-matching genotypes are omitted. """ assert len(phasing0) == len(phasing1) assert len(phasing0) >= 2 assert len(phasing0[0]) == len(phasing1[0]) assert all(len(phasing0[i]) == len(phasing0[0]) for i in range(1, len(phasing0))) num_vars = len(phasing0[0]) # If positions with matching genotypes are not precomputed, do it here! if matching_pos is None: matching_pos = compute_matching_genotype_pos(phasing0, phasing1) phasing0_matched = ["".join([hap[i] for i in matching_pos]) for hap in phasing0] phasing1_matched = ["".join([hap[i] for i in matching_pos]) for hap in phasing1] vector_error = compute_switch_flips_poly( phasing0_matched, phasing1_matched, switch_cost=1, flip_cost=2 * num_vars * len(phasing0) + 1, ) assert vector_error.flips == 0 return vector_error.switches def compute_switch_flips_poly(phasing0, phasing1, switch_cost=1, flip_cost=1): """ Computes the combined number of switches and flips, which are needed to transform phasing 0 into phasing 1 or vice versa. """ (result, switches_in_column, flips_in_column, poswise_config) = compute_switch_flips_poly_bt( phasing0, phasing1, switch_cost=switch_cost, flip_cost=flip_cost ) return result def compute_switch_flips_poly_bt( phasing0, phasing1, report_error_positions=False, switch_cost=1, flip_cost=1 ): # Check input if len(phasing0) != len(phasing1): logger.error( "Incompatible phasings. Number of haplotypes is not equal " f"({len(phasing0)} != {len(phasing1)})." ) assert len(phasing0) == len(phasing1) num_pos = len(phasing0[0]) if num_pos == 0: return SwitchFlips(), None, None, None ploidy = len(phasing0) if ploidy == 0: return SwitchFlips(), None, None, None for i in range(0, len(phasing1)): if len(phasing1[i]) != num_pos: logger.error( "Inconsistent input for phasing. Haplotypes have different lengths " f"( len(phasing1[0]={num_pos} != len(phasing1[{i}]={len(phasing1[i])}." ) assert len(phasing1[i]) == num_pos if len(phasing0[i]) != num_pos: logger.error( "Inconsistent input for phasing. Haplotypes have different lengths " f"( len(phasing1[0]={num_pos} != len(phasing0[{i}]={len(phasing0[i])}." ) assert len(phasing1[i]) == num_pos if ploidy > 6: logger.warning( "Computing vector error with more than 6 haplotypes. This may take very long ..." ) # Compute comparison calc = SwitchFlipCalculator(ploidy, switch_cost, flip_cost) result = SwitchFlips() ( switches, flips, switches_in_column, flips_in_column, positionwise_config, ) = calc.compute_switch_flips_poly(phasing0, phasing1) # Aggregate results result.switches = switches / ploidy result.flips = flips / ploidy return result, switches_in_column, flips_in_column, positionwise_config def poly_num_switches(perm0, perm1): cost = 0 for i in range(len(perm0)): if perm0[i] != perm1[i]: cost += 1 return cost def compare_block(phasing0, phasing1): """ Input are two lists of haplotype sequences over {0,1}. """ assert len(phasing0) == len(phasing1) ploidy = len(phasing0) minimum_hamming_distance = float("inf") # compute minimum hamming distance for permutation in permutations(phasing0): # compute sum of hamming distances total_hamming = 0 for i in range(ploidy): total_hamming += hamming(phasing1[i], permutation[i]) total_hamming /= float(ploidy) minimum_hamming_distance = min(minimum_hamming_distance, total_hamming) matching_pos = compute_matching_genotype_pos(phasing0, phasing1) if ploidy == 2: # conversion to int is allowed, as there should be no fractional error counts for diploid comparisons switches = int(hamming(switch_encoding(phasing0[0]), switch_encoding(phasing1[0]))) switch_flips = compute_switch_flips(phasing0[0], phasing1[0]) minimum_hamming_distance = int(minimum_hamming_distance) else: switches = compute_switch_errors_poly(phasing0, phasing1, matching_pos) switch_flips = compute_switch_flips_poly(phasing0, phasing1) return PhasingErrors( switches=switches, hamming=minimum_hamming_distance, switch_flips=switch_flips, diff_genotypes=len(phasing0[0]) - len(matching_pos), ) def fraction2percentstr(nominator, denominator): if denominator == 0: return "--" else: return "{:.2f}%".format(nominator * 100.0 / denominator) def safefraction(nominator, denominator): if denominator == 0: return float("nan") else: return nominator / denominator def create_bed_records(chromosome, phasing0, phasing1, positions, annotation_string): """Determines positions of switch errors between two phasings and yields one BED record per switch error (encoded as a tuple). The annotation_string is added to each record.""" assert len(phasing0) == len(phasing1) == len(positions) switch_encoding0 = switch_encoding(phasing0) switch_encoding1 = switch_encoding(phasing1) for i, (sw0, sw1) in enumerate(zip(switch_encoding0, switch_encoding1)): if sw0 != sw1: yield (chromosome, positions[i] + 1, positions[i + 1] + 1, annotation_string) def print_stat(text: str, value=None, value2=None, text_width=37): """ Print a line like this: text: value """ text = text.rjust(text_width) if value is None: assert value2 is None print(text) else: if value == "-": value = "-" * COUNT_WIDTH else: value = str(value).rjust(COUNT_WIDTH) if value2 is None: print(text + ":", value) else: print(text + ":", value, str(value2).rjust(COUNT_WIDTH)) def print_errors(errors, phased_pairs): print_stat("phased pairs of variants assessed", phased_pairs) print_stat("switch errors", errors.switches) print_stat("switch error rate", fraction2percentstr(errors.switches, phased_pairs)) print_stat("switch/flip decomposition", errors.switch_flips) print_stat( "switch/flip rate", fraction2percentstr(errors.switch_flips.switches + errors.switch_flips.flips, phased_pairs), ) @dataclasses.dataclass class PairwiseComparisonResults: intersection_blocks: int covered_variants: int all_assessed_pairs: int all_switches: int all_switch_rate: float all_switchflips: SwitchFlips all_switchflip_rate: float blockwise_hamming: int blockwise_hamming_rate: int blockwise_diff_genotypes: int blockwise_diff_genotypes_rate: int largestblock_assessed_pairs: int largestblock_switches: int largestblock_switch_rate: float largestblock_switchflips: SwitchFlips largestblock_switchflip_rate: float largestblock_hamming: int largestblock_hamming_rate: float largestblock_diff_genotypes: int largestblock_diff_genotypes_rate: float @dataclasses.dataclass class BlockStats: variant_count: int span: int def collect_common_variants( variant_tables: List[VariantTable], sample_names: List[str] ) -> Set[VcfVariant]: common_variants = None for variant_table, sample in zip(variant_tables, sample_names): het_variants = [ v for v, gt in zip(variant_table.variants, variant_table.genotypes_of(sample)) if not gt.is_homozygous() ] if common_variants is None: common_variants = set(het_variants) else: common_variants.intersection_update(het_variants) assert common_variants is not None return common_variants def compare( variant_tables: List[VariantTable], sample_names: List[str], dataset_names: List[str], ploidy: int, ): """ Return a PairwiseComparisonResults object if the variant_tables has a length of 2. """ assert len(variant_tables) > 1 common_variants = collect_common_variants(variant_tables, sample_names) assert common_variants is not None print_stat("common heterozygous variants", len(common_variants)) print_stat("(restricting to these below)") phases = [] sorted_variants = sorted(common_variants, key=lambda v: v.position) for variant_table, sample in zip(variant_tables, sample_names): p = [ phase for variant, phase in zip(variant_table.variants, variant_table.phases_of(sample)) if variant in common_variants ] assert [v for v in variant_table.variants if v in common_variants] == sorted_variants assert len(p) == len(common_variants) phases.append(p) # blocks[variant_table_index][block_id] is a list of indices into common_variants blocks: List[DefaultDict[int, List[int]]] = [defaultdict(list) for _ in variant_tables] block_intersection = defaultdict(list) for variant_index in range(len(common_variants)): any_none = False for i in range(len(phases)): phase = phases[i][variant_index] if phase is None: any_none = True else: blocks[i][phase.block_id].append(variant_index) if not any_none: joint_block_id = tuple( phase[variant_index].block_id for phase in phases # type: ignore ) block_intersection[joint_block_id].append(variant_index) # create statistics on each block in each data set block_stats = compute_block_stats(blocks, sorted_variants) for dataset_name, blck in zip(dataset_names, blocks): print_stat( "non-singleton blocks in {}".format(dataset_name), len([b for b in blck.values() if len(b) > 1]), ) print_stat("--> covered variants", sum(len(b) for b in blck.values() if len(b) > 1)) intersection_block_count = sum(1 for b in block_intersection.values() if len(b) > 1) intersection_block_variants = sum(len(b) for b in block_intersection.values() if len(b) > 1) print_stat("non-singleton intersection blocks", intersection_block_count) print_stat("--> covered variants", intersection_block_variants) if len(variant_tables) == 2: ( bed_records, longest_block_agreement, longest_block_positions, pairwise_comparison, ) = compare_pair( block_intersection, dataset_names, intersection_block_count, intersection_block_variants, phases, ploidy, sorted_variants, variant_tables, ) return ( pairwise_comparison, bed_records, block_stats, longest_block_positions, longest_block_agreement, None, ) else: assert ploidy == 2 multiway_results = compare_multiway(block_intersection, dataset_names, phases) return None, None, block_stats, None, None, multiway_results def compare_pair( block_intersection, dataset_names, intersection_block_count, intersection_block_variants, phases, ploidy, sorted_variants, variant_tables, ): longest_block = 0 longest_block_errors = PhasingErrors() longest_block_positions = [] longest_block_agreement = [] phased_pairs = 0 bed_records = [] total_errors = PhasingErrors() total_compared_variants = 0 for block in block_intersection.values(): if len(block) < 2: continue phasing0 = [] phasing1 = [] for j in range(ploidy): p0 = "".join(str(phases[0][i].phase[j]) for i in block) p1 = "".join(str(phases[1][i].phase[j]) for i in block) phasing0.append(p0) phasing1.append(p1) block_positions = [sorted_variants[i].position for i in block] errors = compare_block(phasing0, phasing1) # TODO: extend to polyploid if ploidy == 2: bed_records.extend( create_bed_records( variant_tables[0].chromosome, phasing0[0], phasing1[0], block_positions, "{}<-->{}".format(*dataset_names), ) ) total_errors += errors phased_pairs += len(block) - 1 total_compared_variants += len(block) if len(block) > longest_block: longest_block = len(block) longest_block_errors = errors longest_block_positions = block_positions # TODO: extend to polyploid if ploidy == 2: if hamming(phasing0, phasing1) < hamming(phasing0[0], complement(phasing1[0])): longest_block_agreement = [ 1 * (p0 == p1) for p0, p1 in zip(phasing0[0], phasing1[0]) ] else: longest_block_agreement = [ 1 * (p0 != p1) for p0, p1 in zip(phasing0[0], phasing1[0]) ] longest_block_assessed_pairs = max(longest_block - 1, 0) print_stat("ALL INTERSECTION BLOCKS", "-") print_errors(total_errors, phased_pairs) print_stat("Block-wise Hamming distance", total_errors.hamming) print_stat( "Block-wise Hamming distance [%]", fraction2percentstr(total_errors.hamming, total_compared_variants), ) print_stat("Different genotypes", total_errors.diff_genotypes) print_stat( "Different genotypes [%]", fraction2percentstr(total_errors.diff_genotypes, total_compared_variants), ) print_stat("LARGEST INTERSECTION BLOCK", "-") print_errors(longest_block_errors, longest_block_assessed_pairs) print_stat("Hamming distance", longest_block_errors.hamming) print_stat( "Hamming distance [%]", fraction2percentstr(longest_block_errors.hamming, longest_block) ) print_stat("Different genotypes", longest_block_errors.diff_genotypes) print_stat( "Different genotypes [%]", fraction2percentstr(longest_block_errors.diff_genotypes, longest_block), ) pcr = PairwiseComparisonResults( intersection_blocks=intersection_block_count, covered_variants=intersection_block_variants, all_assessed_pairs=phased_pairs, all_switches=total_errors.switches, all_switch_rate=safefraction(total_errors.switches, phased_pairs), all_switchflips=total_errors.switch_flips, all_switchflip_rate=safefraction( total_errors.switch_flips.switches + total_errors.switch_flips.flips, phased_pairs ), blockwise_hamming=total_errors.hamming, blockwise_hamming_rate=safefraction(total_errors.hamming, total_compared_variants), blockwise_diff_genotypes=total_errors.diff_genotypes, blockwise_diff_genotypes_rate=safefraction( total_errors.diff_genotypes, total_compared_variants ), largestblock_assessed_pairs=longest_block_assessed_pairs, largestblock_switches=longest_block_errors.switches, largestblock_switch_rate=safefraction( longest_block_errors.switches, longest_block_assessed_pairs ), largestblock_switchflips=longest_block_errors.switch_flips, largestblock_switchflip_rate=safefraction( longest_block_errors.switch_flips.switches + longest_block_errors.switch_flips.flips, longest_block_assessed_pairs, ), largestblock_hamming=longest_block_errors.hamming, largestblock_hamming_rate=safefraction(longest_block_errors.hamming, longest_block), largestblock_diff_genotypes=longest_block_errors.diff_genotypes, largestblock_diff_genotypes_rate=safefraction( longest_block_errors.diff_genotypes, longest_block ), ) return bed_records, longest_block_agreement, longest_block_positions, pcr def compare_multiway(block_intersection, dataset_names, phases): histogram = defaultdict(int) total_compared = 0 for block in block_intersection.values(): if len(block) < 2: continue total_compared += len(block) - 1 phasings = ["".join(str(phases[j][i].phase[0]) for i in block) for j in range(len(phases))] switch_encodings = [switch_encoding(p) for p in phasings] for i in range(len(block) - 1): s = "".join(switch_encodings[j][i] for j in range(len(switch_encodings))) s = min(s, complement(s)) histogram[s] += 1 print_stat("Compared pairs of variants", total_compared) bipartitions = list(histogram.keys()) bipartitions.sort() multiway_results = {} # (dataset_list0, dataset_list1) --> count for i, s in enumerate(bipartitions): count = histogram[s] if i == 0: assert set(c for c in s) == set("0") print("ALL AGREE") elif i == 1: print("DISAGREEMENT") left, right = [], [] for name, leftright in zip(dataset_names, s): if leftright == "0": left.append(name) else: right.append(name) print_stat( ("{%s} vs. {%s}" % (",".join(left), ",".join(right))), count, fraction2percentstr(count, total_compared), ) multiway_results[(",".join(left), ",".join(right))] = count return multiway_results def compute_block_stats( blocks: List[DefaultDict[int, List[int]]], sorted_variants: List[VcfVariant] ): block_stats = [] for block in blocks: l = [] for block_id, variant_indices in block.items(): if len(variant_indices) < 2: continue span = ( sorted_variants[variant_indices[-1]].position - sorted_variants[variant_indices[0]].position ) l.append(BlockStats(len(variant_indices), span)) block_stats.append(l) return block_stats def create_blocksize_histogram(filename, block_stats, names, use_weights=False): try: import matplotlib import numpy matplotlib.use("pdf") from matplotlib import pyplot from matplotlib.backends.backend_pdf import PdfPages except ImportError: raise CommandLineError( "To use option --plot-blocksizes, you need to have numpy and matplotlib installed." ) assert len(block_stats) == len(names) color_list = ["#ffa347", "#0064c8", "#b42222", "#22a5b4", "#b47c22", "#6db6ff"] if len(color_list) < len(block_stats): color_count = len(block_stats) color_list = pyplot.cm.Set1([n / color_count for n in range(color_count)]) colors = color_list[: len(block_stats)] with PdfPages(filename) as pdf: for what, xlabel in [ (lambda stats: stats.variant_count, "variant count"), (lambda stats: stats.span, "span [bp]"), ]: pyplot.figure(figsize=(10, 8)) max_value = max(what(stats) for stats in chain(*block_stats)) common_bins = numpy.logspace(0, math.ceil(math.log10(max_value)), 50) for l, name, color in zip(block_stats, names, colors): x = [what(stats) for stats in l] n, bins, patches = pyplot.hist( x, bins=common_bins, alpha=0.6, color=color, label=name, weights=x if use_weights else None, ) pyplot.xlabel(xlabel) pyplot.ylabel("Number of blocks") pyplot.gca().set_xscale("log") pyplot.gca().set_yscale("log") pyplot.grid(True) pyplot.legend() pdf.savefig() pyplot.close() pyplot.figure(figsize=(10, 8)) common_bins = numpy.logspace(0, math.ceil(math.log10(max_value)), 25) x = [[what(stats) for stats in l] for l in block_stats] n, bins, patches = pyplot.hist( x, bins=common_bins, alpha=0.6, color=colors, label=names, weights=x if use_weights else None, ) pyplot.xlabel(xlabel) pyplot.ylabel("Number of blocks") pyplot.gca().set_xscale("log") pyplot.gca().set_yscale("log") pyplot.grid(True) pyplot.legend() pdf.savefig() pyplot.close() def run_compare( vcf, ploidy, names=None, sample=None, ignore_sample_name=False, tsv_pairwise=None, tsv_multiway=None, only_snvs=False, switch_error_bed=None, plot_blocksizes=None, plot_sum_of_blocksizes=None, longest_block_tsv=None, ): vcf_readers = [VcfReader(f, indels=not only_snvs, phases=True, ploidy=ploidy) for f in vcf] if names: dataset_names = names.split(",") if len(dataset_names) != len(vcf): raise CommandLineError( "Number of names given with --names does not equal number of VCFs." ) else: dataset_names = ["file{}".format(i) for i in range(len(vcf))] sample_names = get_sample_names( vcf_readers, requested_sample=sample, ignore_name=ignore_sample_name ) with ExitStack() as stack: tsv_pairwise_file = tsv_multiway_file = longest_block_tsv_file = switch_error_bedfile = None if tsv_pairwise: tsv_pairwise_file = stack.enter_context(open(tsv_pairwise, "w")) if tsv_multiway: tsv_multiway_file = stack.enter_context(open(tsv_multiway, "w")) print( "#sample", "chromosome", "dataset_list0", "dataset_list1", "count", sep="\t", file=tsv_multiway_file, ) if longest_block_tsv: longest_block_tsv_file = stack.enter_context(open(longest_block_tsv, "w")) print( "#dataset_name0", "dataset_name1", "#sample", "chromosome", "position", "phase_agreeing", sep="\t", file=longest_block_tsv_file, ) if tsv_pairwise_file: fields = [ "#sample", "chromosome", "dataset_name0", "dataset_name1", "file_name0", "file_name1", ] field_names = [f.name for f in dataclasses.fields(PairwiseComparisonResults)] fields.extend(field_names) fields.extend(["het_variants0", "only_snvs"]) print(*fields, sep="\t", file=tsv_pairwise_file) if switch_error_bed: switch_error_bedfile = stack.enter_context(open(switch_error_bed, "w")) if len(set(sample_names)) > 1 and ignore_sample_name: print( "Comparing phasings for samples:", ", ".join(sample_names), " (--ignore-sample-names selected)", ) else: print("Comparing phasings for sample", sample_names[0]) vcfs = get_variant_tables(vcf_readers, vcf) chromosomes = get_common_chromosomes(vcfs) if len(chromosomes) == 0: raise CommandLineError("No chromosome is contained in all VCFs. Aborting.") logger.info("Chromosomes present in all VCFs: %s", ", ".join(chromosomes)) print("FILENAMES") longest_name = max(len(n) for n in dataset_names) for name, filename in zip(dataset_names, vcf): print(name.rjust(longest_name + 2), "=", filename) width = max(longest_name, 15) + 5 all_block_stats = [[] for _ in vcfs] def add_block_stats(block_stats): assert len(block_stats) == len(all_block_stats) for big_list, new_list in zip(all_block_stats, block_stats): big_list.extend(new_list) for chromosome in sorted(chromosomes): print("---------------- Chromosome {} ----------------".format(chromosome)) all_bed_records = [] variant_tables = [vcf[chromosome] for vcf in vcfs] all_variants_union = set() all_variants_intersection = None het_variants_union = set() het_variants_intersection = None het_variant_sets = [] het_variants0 = None print("VARIANT COUNTS (heterozygous / all): ") for variant_table, name, sample in zip(variant_tables, dataset_names, sample_names): all_variants_union.update(variant_table.variants) het_variants = [ v for v, gt in zip(variant_table.variants, variant_table.genotypes_of(sample)) if not gt.is_homozygous() ] if het_variants0 is None: het_variants0 = len(het_variants) het_variants_union.update(het_variants) if all_variants_intersection is None: all_variants_intersection = set(variant_table.variants) het_variants_intersection = set(het_variants) else: all_variants_intersection.intersection_update(variant_table.variants) het_variants_intersection.intersection_update(het_variants) het_variant_sets.append(set(het_variants)) print( "{}:".format(name).rjust(width), str(len(het_variants)).rjust(COUNT_WIDTH), "/", str(len(variant_table.variants)).rjust(COUNT_WIDTH), ) print( "UNION:".rjust(width), str(len(het_variants_union)).rjust(COUNT_WIDTH), "/", str(len(all_variants_union)).rjust(COUNT_WIDTH), ) print( "INTERSECTION:".rjust(width), str(len(het_variants_intersection)).rjust(COUNT_WIDTH), "/", str(len(all_variants_intersection)).rjust(COUNT_WIDTH), ) for i in range(len(vcfs)): for j in range(i + 1, len(vcfs)): print( "PAIRWISE COMPARISON: {} <--> {}:".format( dataset_names[i], dataset_names[j] ) ) ( results, bed_records, block_stats, longest_block_positions, longest_block_agreement, multiway_results, ) = compare( [variant_tables[i], variant_tables[j]], [sample_names[i], sample_names[j]], [dataset_names[i], dataset_names[j]], ploidy, ) if len(vcfs) == 2: add_block_stats(block_stats) all_bed_records.extend(bed_records) sample_name = ( f"{sample_names[i]}_{sample_names[j]}" if ignore_sample_name else sample_names[i] ) if tsv_pairwise_file: fields = [ sample_name, chromosome, dataset_names[i], dataset_names[j], vcf[i], vcf[j], ] fields.extend(dataclasses.astuple(results)) fields.extend([het_variants0, int(only_snvs)]) print(*fields, sep="\t", file=tsv_pairwise_file) if longest_block_tsv_file: assert ploidy == 2 assert len(longest_block_positions) == len(longest_block_agreement) for position, phase_agreeing in zip( longest_block_positions, longest_block_agreement ): print( dataset_names[i], dataset_names[j], sample_name, chromosome, position, phase_agreeing, sep="\t", file=longest_block_tsv_file, ) # if requested, write all switch errors found in the current chromosome to the bed file if switch_error_bedfile: assert ploidy == 2 all_bed_records.sort() for record in all_bed_records: print(*record, sep="\t", file=switch_error_bedfile) if len(vcfs) > 2: assert ploidy == 2 print("MULTIWAY COMPARISON OF ALL PHASINGS:") ( results, bed_records, block_stats, longest_block_positions, longest_block_agreement, multiway_results, ) = compare(variant_tables, sample_names, dataset_names, ploidy) add_block_stats(block_stats) if tsv_multiway_file: sample_name = ( "_".join(set(sample_names)) if ignore_sample_name else sample_names[0] ) for ((dataset_list0, dataset_list1), count) in multiway_results.items(): print( sample_name, chromosome, "{" + dataset_list0 + "}", "{" + dataset_list1 + "}", count, sep="\t", file=tsv_multiway_file, ) if plot_blocksizes: create_blocksize_histogram(plot_blocksizes, all_block_stats, dataset_names) if plot_sum_of_blocksizes: create_blocksize_histogram( plot_sum_of_blocksizes, all_block_stats, dataset_names, use_weights=True ) def get_common_chromosomes(vcfs: List[Dict[str, VariantTable]]) -> List[str]: common = None for chrom_variant_table_map in vcfs: chromosomes = chrom_variant_table_map.keys() if common is None: common = set(chromosomes) else: common.intersection_update(chromosomes) if common is None: return [] return sorted(common) def get_variant_tables( vcf_readers: List[VcfReader], vcf_filenames: List[str] ) -> List[Dict[str, VariantTable]]: vcfs = [] for reader, filename in zip(vcf_readers, vcf_filenames): # create dict mapping chromosome names to VariantTables m = dict() logger.info("Reading phasing from %r", filename) try: for variant_table in reader: m[variant_table.chromosome] = variant_table except PloidyError as e: raise CommandLineError("Provided ploidy is invalid: {}. Aborting.".format(e)) vcfs.append(m) return vcfs def get_sample_names( vcf_readers: List[VcfReader], requested_sample: Optional[str], ignore_name: bool = False ) -> List[str]: first_samples = [] sample_intersection = None for vcf_reader in vcf_readers: if sample_intersection is None: sample_intersection = set(vcf_reader.samples) else: sample_intersection.intersection_update(vcf_reader.samples) if ignore_name and len(vcf_reader.samples) > 1: raise CommandLineError( "File '{file}' contains multiple samples, option --ignore-sample-name not available.".format( file=vcf_reader.path ) ) first_samples.append(vcf_reader.samples[0]) assert sample_intersection is not None if requested_sample: sample_intersection.intersection_update([requested_sample]) if len(sample_intersection) == 0: raise CommandLineError( "Sample {!r} requested on command-line not found in all VCFs".format( requested_sample ) ) sample_names = [requested_sample] * len(vcf_readers) elif ignore_name: sample_names = first_samples else: if len(sample_intersection) == 0: raise CommandLineError("None of the samples is present in all VCFs") elif len(sample_intersection) == 1: sample_names = [list(sample_intersection)[0]] * len(vcf_readers) else: raise CommandLineError( "More than one sample is present in all VCFs, please use" " --sample to specify which sample to work on." ) return sample_names def main(args): run_compare(**vars(args))
the-stack_0_16507
#!/usr/bin/env python # # Use the raw transactions API to spend bitcoins received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a bitcoind or Bitcoin-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the bitcoin data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/Bitcoin/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "Bitcoin") return os.path.expanduser("~/.bitcoin") def read_bitcoin_config(dbdir): """Read the bitcoin.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "bitcoin.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a bitcoin JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 16556 if testnet else 15556 connect = "http://%s:%[email protected]:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the bitcoind we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(bitcoind): info = bitcoind.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") bitcoind.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = bitcoind.getinfo() return int(info['unlocked_until']) > time.time() def list_available(bitcoind): address_summary = dict() address_to_account = dict() for info in bitcoind.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = bitcoind.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = bitcoind.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-bitcoin-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(bitcoind, fromaddresses, toaddress, amount, fee): all_coins = list_available(bitcoind) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f BTC available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to bitcoind. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = bitcoind.createrawtransaction(inputs, outputs) signed_rawtx = bitcoind.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(bitcoind, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = bitcoind.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(bitcoind, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = bitcoind.decoderawtransaction(txdata_hex) total_in = compute_amount_in(bitcoind, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get bitcoins from") parser.add_option("--to", dest="to", default=None, help="address to get send bitcoins to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of bitcoin.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_bitcoin_config(options.datadir) if options.testnet: config['testnet'] = True bitcoind = connect_JSON(config) if options.amount is None: address_summary = list_available(bitcoind) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(bitcoind) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(bitcoind, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(bitcoind, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = bitcoind.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
the-stack_0_16509
import asyncio import os.path import time import sys import platform import queue import traceback import os import webbrowser from decimal import Decimal from functools import partial, lru_cache from typing import (NamedTuple, Callable, Optional, TYPE_CHECKING, Union, List, Dict, Any, Sequence, Iterable) from PyQt5.QtGui import (QFont, QColor, QCursor, QPixmap, QStandardItem, QPalette, QIcon, QFontMetrics, QShowEvent) from PyQt5.QtCore import (Qt, QPersistentModelIndex, QModelIndex, pyqtSignal, QCoreApplication, QItemSelectionModel, QThread, QSortFilterProxyModel, QSize, QLocale, QAbstractItemModel) from PyQt5.QtWidgets import (QPushButton, QLabel, QMessageBox, QHBoxLayout, QAbstractItemView, QVBoxLayout, QLineEdit, QStyle, QDialog, QGroupBox, QButtonGroup, QRadioButton, QFileDialog, QWidget, QToolButton, QTreeView, QPlainTextEdit, QHeaderView, QApplication, QToolTip, QTreeWidget, QStyledItemDelegate, QMenu) from electrum_ltc.i18n import _, languages from electrum_ltc.util import FileImportFailed, FileExportFailed, make_aiohttp_session, resource_path from electrum_ltc.invoices import PR_UNPAID, PR_PAID, PR_EXPIRED, PR_INFLIGHT, PR_UNKNOWN, PR_FAILED, PR_ROUTING if TYPE_CHECKING: from .main_window import ElectrumWindow from .installwizard import InstallWizard if platform.system() == 'Windows': MONOSPACE_FONT = 'Lucida Console' elif platform.system() == 'Darwin': MONOSPACE_FONT = 'Monaco' else: MONOSPACE_FONT = 'monospace' dialogs = [] pr_icons = { PR_UNKNOWN:"warning.png", PR_UNPAID:"unpaid.png", PR_PAID:"confirmed.png", PR_EXPIRED:"expired.png", PR_INFLIGHT:"unconfirmed.png", PR_FAILED:"warning.png", PR_ROUTING:"unconfirmed.png", } # filter tx files in QFileDialog: TRANSACTION_FILE_EXTENSION_FILTER_ANY = "Transaction (*.txn *.psbt);;All files (*)" TRANSACTION_FILE_EXTENSION_FILTER_ONLY_PARTIAL_TX = "Partial Transaction (*.psbt)" TRANSACTION_FILE_EXTENSION_FILTER_ONLY_COMPLETE_TX = "Complete Transaction (*.txn)" TRANSACTION_FILE_EXTENSION_FILTER_SEPARATE = (f"{TRANSACTION_FILE_EXTENSION_FILTER_ONLY_PARTIAL_TX};;" f"{TRANSACTION_FILE_EXTENSION_FILTER_ONLY_COMPLETE_TX};;" f"All files (*)") class EnterButton(QPushButton): def __init__(self, text, func): QPushButton.__init__(self, text) self.func = func self.clicked.connect(func) def keyPressEvent(self, e): if e.key() in [ Qt.Key_Return, Qt.Key_Enter ]: self.func() class ThreadedButton(QPushButton): def __init__(self, text, task, on_success=None, on_error=None): QPushButton.__init__(self, text) self.task = task self.on_success = on_success self.on_error = on_error self.clicked.connect(self.run_task) def run_task(self): self.setEnabled(False) self.thread = TaskThread(self) self.thread.add(self.task, self.on_success, self.done, self.on_error) def done(self): self.setEnabled(True) self.thread.stop() class WWLabel(QLabel): def __init__ (self, text="", parent=None): QLabel.__init__(self, text, parent) self.setWordWrap(True) self.setTextInteractionFlags(Qt.TextSelectableByMouse) class HelpLabel(QLabel): def __init__(self, text, help_text): QLabel.__init__(self, text) self.help_text = help_text self.app = QCoreApplication.instance() self.font = QFont() def mouseReleaseEvent(self, x): custom_message_box(icon=QMessageBox.Information, parent=self, title=_('Help'), text=self.help_text) def enterEvent(self, event): self.font.setUnderline(True) self.setFont(self.font) self.app.setOverrideCursor(QCursor(Qt.PointingHandCursor)) return QLabel.enterEvent(self, event) def leaveEvent(self, event): self.font.setUnderline(False) self.setFont(self.font) self.app.setOverrideCursor(QCursor(Qt.ArrowCursor)) return QLabel.leaveEvent(self, event) class HelpButton(QPushButton): def __init__(self, text): QPushButton.__init__(self, '?') self.help_text = text self.setFocusPolicy(Qt.NoFocus) self.setFixedWidth(round(2.2 * char_width_in_lineedit())) self.clicked.connect(self.onclick) def onclick(self): custom_message_box(icon=QMessageBox.Information, parent=self, title=_('Help'), text=self.help_text, rich_text=True) class InfoButton(QPushButton): def __init__(self, text): QPushButton.__init__(self, 'Info') self.help_text = text self.setFocusPolicy(Qt.NoFocus) self.setFixedWidth(6 * char_width_in_lineedit()) self.clicked.connect(self.onclick) def onclick(self): custom_message_box(icon=QMessageBox.Information, parent=self, title=_('Info'), text=self.help_text, rich_text=True) class Buttons(QHBoxLayout): def __init__(self, *buttons): QHBoxLayout.__init__(self) self.addStretch(1) for b in buttons: if b is None: continue self.addWidget(b) class CloseButton(QPushButton): def __init__(self, dialog): QPushButton.__init__(self, _("Close")) self.clicked.connect(dialog.close) self.setDefault(True) class CopyButton(QPushButton): def __init__(self, text_getter, app): QPushButton.__init__(self, _("Copy")) self.clicked.connect(lambda: app.clipboard().setText(text_getter())) class CopyCloseButton(QPushButton): def __init__(self, text_getter, app, dialog): QPushButton.__init__(self, _("Copy and Close")) self.clicked.connect(lambda: app.clipboard().setText(text_getter())) self.clicked.connect(dialog.close) self.setDefault(True) class OkButton(QPushButton): def __init__(self, dialog, label=None): QPushButton.__init__(self, label or _("OK")) self.clicked.connect(dialog.accept) self.setDefault(True) class CancelButton(QPushButton): def __init__(self, dialog, label=None): QPushButton.__init__(self, label or _("Cancel")) self.clicked.connect(dialog.reject) class MessageBoxMixin(object): def top_level_window_recurse(self, window=None, test_func=None): window = window or self classes = (WindowModalDialog, QMessageBox) if test_func is None: test_func = lambda x: True for n, child in enumerate(window.children()): # Test for visibility as old closed dialogs may not be GC-ed. # Only accept children that confirm to test_func. if isinstance(child, classes) and child.isVisible() \ and test_func(child): return self.top_level_window_recurse(child, test_func=test_func) return window def top_level_window(self, test_func=None): return self.top_level_window_recurse(test_func) def question(self, msg, parent=None, title=None, icon=None, **kwargs) -> bool: Yes, No = QMessageBox.Yes, QMessageBox.No return Yes == self.msg_box(icon=icon or QMessageBox.Question, parent=parent, title=title or '', text=msg, buttons=Yes|No, defaultButton=No, **kwargs) def show_warning(self, msg, parent=None, title=None, **kwargs): return self.msg_box(QMessageBox.Warning, parent, title or _('Warning'), msg, **kwargs) def show_error(self, msg, parent=None, **kwargs): return self.msg_box(QMessageBox.Warning, parent, _('Error'), msg, **kwargs) def show_critical(self, msg, parent=None, title=None, **kwargs): return self.msg_box(QMessageBox.Critical, parent, title or _('Critical Error'), msg, **kwargs) def show_message(self, msg, parent=None, title=None, **kwargs): return self.msg_box(QMessageBox.Information, parent, title or _('Information'), msg, **kwargs) def msg_box(self, icon, parent, title, text, *, buttons=QMessageBox.Ok, defaultButton=QMessageBox.NoButton, rich_text=False, checkbox=None): parent = parent or self.top_level_window() return custom_message_box(icon=icon, parent=parent, title=title, text=text, buttons=buttons, defaultButton=defaultButton, rich_text=rich_text, checkbox=checkbox) def custom_message_box(*, icon, parent, title, text, buttons=QMessageBox.Ok, defaultButton=QMessageBox.NoButton, rich_text=False, checkbox=None): if type(icon) is QPixmap: d = QMessageBox(QMessageBox.Information, title, str(text), buttons, parent) d.setIconPixmap(icon) else: d = QMessageBox(icon, title, str(text), buttons, parent) d.setWindowModality(Qt.WindowModal) d.setDefaultButton(defaultButton) if rich_text: d.setTextInteractionFlags(Qt.TextSelectableByMouse | Qt.LinksAccessibleByMouse) # set AutoText instead of RichText # AutoText lets Qt figure out whether to render as rich text. # e.g. if text is actually plain text and uses "\n" newlines; # and we set RichText here, newlines would be swallowed d.setTextFormat(Qt.AutoText) else: d.setTextInteractionFlags(Qt.TextSelectableByMouse) d.setTextFormat(Qt.PlainText) if checkbox is not None: d.setCheckBox(checkbox) return d.exec_() class WindowModalDialog(QDialog, MessageBoxMixin): '''Handy wrapper; window modal dialogs are better for our multi-window daemon model as other wallet windows can still be accessed.''' def __init__(self, parent, title=None): QDialog.__init__(self, parent) self.setWindowModality(Qt.WindowModal) if title: self.setWindowTitle(title) class WaitingDialog(WindowModalDialog): '''Shows a please wait dialog whilst running a task. It is not necessary to maintain a reference to this dialog.''' def __init__(self, parent: QWidget, message: str, task, on_success=None, on_error=None): assert parent if isinstance(parent, MessageBoxMixin): parent = parent.top_level_window() WindowModalDialog.__init__(self, parent, _("Please wait")) self.message_label = QLabel(message) vbox = QVBoxLayout(self) vbox.addWidget(self.message_label) self.accepted.connect(self.on_accepted) self.show() self.thread = TaskThread(self) self.thread.finished.connect(self.deleteLater) # see #3956 self.thread.add(task, on_success, self.accept, on_error) def wait(self): self.thread.wait() def on_accepted(self): self.thread.stop() def update(self, msg): print(msg) self.message_label.setText(msg) class BlockingWaitingDialog(WindowModalDialog): """Shows a waiting dialog whilst running a task. Should be called from the GUI thread. The GUI thread will be blocked while the task is running; the point of the dialog is to provide feedback to the user regarding what is going on. """ def __init__(self, parent: QWidget, message: str, task: Callable[[], Any]): assert parent if isinstance(parent, MessageBoxMixin): parent = parent.top_level_window() WindowModalDialog.__init__(self, parent, _("Please wait")) self.message_label = QLabel(message) vbox = QVBoxLayout(self) vbox.addWidget(self.message_label) self.show() QCoreApplication.processEvents() task() self.accept() def line_dialog(parent, title, label, ok_label, default=None): dialog = WindowModalDialog(parent, title) dialog.setMinimumWidth(500) l = QVBoxLayout() dialog.setLayout(l) l.addWidget(QLabel(label)) txt = QLineEdit() if default: txt.setText(default) l.addWidget(txt) l.addLayout(Buttons(CancelButton(dialog), OkButton(dialog, ok_label))) if dialog.exec_(): return txt.text() def text_dialog(parent, title, header_layout, ok_label, default=None, allow_multi=False): from .qrtextedit import ScanQRTextEdit dialog = WindowModalDialog(parent, title) dialog.setMinimumWidth(600) l = QVBoxLayout() dialog.setLayout(l) if isinstance(header_layout, str): l.addWidget(QLabel(header_layout)) else: l.addLayout(header_layout) txt = ScanQRTextEdit(allow_multi=allow_multi) if default: txt.setText(default) l.addWidget(txt) l.addLayout(Buttons(CancelButton(dialog), OkButton(dialog, ok_label))) if dialog.exec_(): return txt.toPlainText() class ChoicesLayout(object): def __init__(self, msg, choices, on_clicked=None, checked_index=0): vbox = QVBoxLayout() if len(msg) > 50: vbox.addWidget(WWLabel(msg)) msg = "" gb2 = QGroupBox(msg) vbox.addWidget(gb2) vbox2 = QVBoxLayout() gb2.setLayout(vbox2) self.group = group = QButtonGroup() for i,c in enumerate(choices): button = QRadioButton(gb2) button.setText(c) vbox2.addWidget(button) group.addButton(button) group.setId(button, i) if i==checked_index: button.setChecked(True) if on_clicked: group.buttonClicked.connect(partial(on_clicked, self)) self.vbox = vbox def layout(self): return self.vbox def selected_index(self): return self.group.checkedId() def address_field(addresses): hbox = QHBoxLayout() address_e = QLineEdit() if addresses and len(addresses) > 0: address_e.setText(addresses[0]) else: addresses = [] def func(): try: i = addresses.index(str(address_e.text())) + 1 i = i % len(addresses) address_e.setText(addresses[i]) except ValueError: # the user might have changed address_e to an # address not in the wallet (or to something that isn't an address) if addresses and len(addresses) > 0: address_e.setText(addresses[0]) button = QPushButton(_('Address')) button.clicked.connect(func) hbox.addWidget(button) hbox.addWidget(address_e) return hbox, address_e def filename_field(parent, config, defaultname, select_msg): vbox = QVBoxLayout() vbox.addWidget(QLabel(_("Format"))) gb = QGroupBox("format", parent) b1 = QRadioButton(gb) b1.setText(_("CSV")) b1.setChecked(True) b2 = QRadioButton(gb) b2.setText(_("json")) vbox.addWidget(b1) vbox.addWidget(b2) hbox = QHBoxLayout() directory = config.get('io_dir', os.path.expanduser('~')) path = os.path.join( directory, defaultname ) filename_e = QLineEdit() filename_e.setText(path) def func(): text = filename_e.text() _filter = "*.csv" if text.endswith(".csv") else "*.json" if text.endswith(".json") else None p, __ = QFileDialog.getSaveFileName(None, select_msg, text, _filter) if p: filename_e.setText(p) button = QPushButton(_('File')) button.clicked.connect(func) hbox.addWidget(button) hbox.addWidget(filename_e) vbox.addLayout(hbox) def set_csv(v): text = filename_e.text() text = text.replace(".json",".csv") if v else text.replace(".csv",".json") filename_e.setText(text) b1.clicked.connect(lambda: set_csv(True)) b2.clicked.connect(lambda: set_csv(False)) return vbox, filename_e, b1 class ElectrumItemDelegate(QStyledItemDelegate): def __init__(self, tv: 'MyTreeView'): super().__init__(tv) self.tv = tv self.opened = None def on_closeEditor(editor: QLineEdit, hint): self.opened = None self.tv.is_editor_open = False if self.tv._pending_update: self.tv.update() def on_commitData(editor: QLineEdit): new_text = editor.text() idx = QModelIndex(self.opened) row, col = idx.row(), idx.column() _prior_text, user_role = self.tv.get_text_and_userrole_from_coordinate(row, col) # check that we didn't forget to set UserRole on an editable field assert user_role is not None, (row, col) self.tv.on_edited(idx, user_role, new_text) self.closeEditor.connect(on_closeEditor) self.commitData.connect(on_commitData) def createEditor(self, parent, option, idx): self.opened = QPersistentModelIndex(idx) self.tv.is_editor_open = True return super().createEditor(parent, option, idx) class MyTreeView(QTreeView): ROLE_CLIPBOARD_DATA = Qt.UserRole + 100 filter_columns: Iterable[int] def __init__(self, parent: 'ElectrumWindow', create_menu, *, stretch_column=None, editable_columns=None): super().__init__(parent) self.parent = parent self.config = self.parent.config self.stretch_column = stretch_column self.setContextMenuPolicy(Qt.CustomContextMenu) self.customContextMenuRequested.connect(create_menu) self.setUniformRowHeights(True) # Control which columns are editable if editable_columns is not None: editable_columns = set(editable_columns) elif stretch_column is not None: editable_columns = {stretch_column} else: editable_columns = {} self.editable_columns = editable_columns self.setItemDelegate(ElectrumItemDelegate(self)) self.current_filter = "" self.is_editor_open = False self.setRootIsDecorated(False) # remove left margin self.toolbar_shown = False # When figuring out the size of columns, Qt by default looks at # the first 1000 rows (at least if resize mode is QHeaderView.ResizeToContents). # This would be REALLY SLOW, and it's not perfect anyway. # So to speed the UI up considerably, set it to # only look at as many rows as currently visible. self.header().setResizeContentsPrecision(0) self._pending_update = False self._forced_update = False def set_editability(self, items): for idx, i in enumerate(items): i.setEditable(idx in self.editable_columns) def selected_in_column(self, column: int): items = self.selectionModel().selectedIndexes() return list(x for x in items if x.column() == column) def current_item_user_role(self, col) -> Any: idx = self.selectionModel().currentIndex() idx = idx.sibling(idx.row(), col) item = self.item_from_index(idx) if item: return item.data(Qt.UserRole) def item_from_index(self, idx: QModelIndex) -> Optional[QStandardItem]: model = self.model() if isinstance(model, QSortFilterProxyModel): idx = model.mapToSource(idx) return model.sourceModel().itemFromIndex(idx) else: return model.itemFromIndex(idx) def original_model(self) -> QAbstractItemModel: model = self.model() if isinstance(model, QSortFilterProxyModel): return model.sourceModel() else: return model def set_current_idx(self, set_current: QPersistentModelIndex): if set_current: assert isinstance(set_current, QPersistentModelIndex) assert set_current.isValid() self.selectionModel().select(QModelIndex(set_current), QItemSelectionModel.SelectCurrent) def update_headers(self, headers: Union[List[str], Dict[int, str]]): # headers is either a list of column names, or a dict: (col_idx->col_name) if not isinstance(headers, dict): # convert to dict headers = dict(enumerate(headers)) col_names = [headers[col_idx] for col_idx in sorted(headers.keys())] self.original_model().setHorizontalHeaderLabels(col_names) self.header().setStretchLastSection(False) for col_idx in headers: sm = QHeaderView.Stretch if col_idx == self.stretch_column else QHeaderView.ResizeToContents self.header().setSectionResizeMode(col_idx, sm) def keyPressEvent(self, event): if self.itemDelegate().opened: return if event.key() in [ Qt.Key_F2, Qt.Key_Return, Qt.Key_Enter ]: self.on_activated(self.selectionModel().currentIndex()) return super().keyPressEvent(event) def on_activated(self, idx): # on 'enter' we show the menu pt = self.visualRect(idx).bottomLeft() pt.setX(50) self.customContextMenuRequested.emit(pt) def edit(self, idx, trigger=QAbstractItemView.AllEditTriggers, event=None): """ this is to prevent: edit: editing failed from inside qt """ return super().edit(idx, trigger, event) def on_edited(self, idx: QModelIndex, user_role, text): self.parent.wallet.set_label(user_role, text) self.parent.history_model.refresh('on_edited in MyTreeView') self.parent.utxo_list.update() self.parent.update_completions() def should_hide(self, row): """ row_num is for self.model(). So if there is a proxy, it is the row number in that! """ return False def get_text_and_userrole_from_coordinate(self, row_num, column): idx = self.model().index(row_num, column) item = self.item_from_index(idx) user_role = item.data(Qt.UserRole) return item.text(), user_role def hide_row(self, row_num): """ row_num is for self.model(). So if there is a proxy, it is the row number in that! """ should_hide = self.should_hide(row_num) if not self.current_filter and should_hide is None: # no filters at all, neither date nor search self.setRowHidden(row_num, QModelIndex(), False) return for column in self.filter_columns: txt, _ = self.get_text_and_userrole_from_coordinate(row_num, column) txt = txt.lower() if self.current_filter in txt: # the filter matched, but the date filter might apply self.setRowHidden(row_num, QModelIndex(), bool(should_hide)) break else: # we did not find the filter in any columns, hide the item self.setRowHidden(row_num, QModelIndex(), True) def filter(self, p=None): if p is not None: p = p.lower() self.current_filter = p self.hide_rows() def hide_rows(self): for row in range(self.model().rowCount()): self.hide_row(row) def create_toolbar(self, config=None): hbox = QHBoxLayout() buttons = self.get_toolbar_buttons() for b in buttons: b.setVisible(False) hbox.addWidget(b) hide_button = QPushButton('x') hide_button.setVisible(False) hide_button.pressed.connect(lambda: self.show_toolbar(False, config)) self.toolbar_buttons = buttons + (hide_button,) hbox.addStretch() hbox.addWidget(hide_button) return hbox def save_toolbar_state(self, state, config): pass # implemented in subclasses def show_toolbar(self, state, config=None): if state == self.toolbar_shown: return self.toolbar_shown = state if config: self.save_toolbar_state(state, config) for b in self.toolbar_buttons: b.setVisible(state) if not state: self.on_hide_toolbar() def toggle_toolbar(self, config=None): self.show_toolbar(not self.toolbar_shown, config) def add_copy_menu(self, menu: QMenu, idx) -> QMenu: cc = menu.addMenu(_("Copy")) for column in self.Columns: column_title = self.original_model().horizontalHeaderItem(column).text() item_col = self.item_from_index(idx.sibling(idx.row(), column)) clipboard_data = item_col.data(self.ROLE_CLIPBOARD_DATA) if clipboard_data is None: clipboard_data = item_col.text().strip() cc.addAction(column_title, lambda text=clipboard_data, title=column_title: self.place_text_on_clipboard(text, title=title)) return cc def place_text_on_clipboard(self, text: str, *, title: str = None) -> None: self.parent.do_copy(text, title=title) def showEvent(self, e: 'QShowEvent'): super().showEvent(e) if e.isAccepted() and self._pending_update: self._forced_update = True self.update() self._forced_update = False def maybe_defer_update(self) -> bool: """Returns whether we should defer an update/refresh.""" defer = (not self._forced_update and (not self.isVisible() or self.is_editor_open)) # side-effect: if we decide to defer update, the state will become stale: self._pending_update = defer return defer class MySortModel(QSortFilterProxyModel): def __init__(self, parent, *, sort_role): super().__init__(parent) self._sort_role = sort_role def lessThan(self, source_left: QModelIndex, source_right: QModelIndex): item1 = self.sourceModel().itemFromIndex(source_left) item2 = self.sourceModel().itemFromIndex(source_right) data1 = item1.data(self._sort_role) data2 = item2.data(self._sort_role) if data1 is not None and data2 is not None: return data1 < data2 v1 = item1.text() v2 = item2.text() try: return Decimal(v1) < Decimal(v2) except: return v1 < v2 class ButtonsWidget(QWidget): def __init__(self): super(QWidget, self).__init__() self.buttons = [] # type: List[QToolButton] def resizeButtons(self): frameWidth = self.style().pixelMetric(QStyle.PM_DefaultFrameWidth) x = self.rect().right() - frameWidth - 10 y = self.rect().bottom() - frameWidth for button in self.buttons: sz = button.sizeHint() x -= sz.width() button.move(x, y - sz.height()) def addButton(self, icon_name, on_click, tooltip): button = QToolButton(self) button.setIcon(read_QIcon(icon_name)) button.setIconSize(QSize(25,25)) button.setCursor(QCursor(Qt.PointingHandCursor)) button.setStyleSheet("QToolButton { border: none; hover {border: 1px} pressed {border: 1px} padding: 0px; }") button.setVisible(True) button.setToolTip(tooltip) button.clicked.connect(on_click) self.buttons.append(button) return button def addCopyButton(self, app): self.app = app self.addButton("copy.png", self.on_copy, _("Copy to clipboard")) def on_copy(self): self.app.clipboard().setText(self.text()) QToolTip.showText(QCursor.pos(), _("Text copied to clipboard"), self) class ButtonsLineEdit(QLineEdit, ButtonsWidget): def __init__(self, text=None): QLineEdit.__init__(self, text) self.buttons = [] def resizeEvent(self, e): o = QLineEdit.resizeEvent(self, e) self.resizeButtons() return o class ButtonsTextEdit(QPlainTextEdit, ButtonsWidget): def __init__(self, text=None): QPlainTextEdit.__init__(self, text) self.setText = self.setPlainText self.text = self.toPlainText self.buttons = [] def resizeEvent(self, e): o = QPlainTextEdit.resizeEvent(self, e) self.resizeButtons() return o class PasswordLineEdit(QLineEdit): def __init__(self, *args, **kwargs): QLineEdit.__init__(self, *args, **kwargs) self.setEchoMode(QLineEdit.Password) def clear(self): # Try to actually overwrite the memory. # This is really just a best-effort thing... self.setText(len(self.text()) * " ") super().clear() class TaskThread(QThread): '''Thread that runs background tasks. Callbacks are guaranteed to happen in the context of its parent.''' class Task(NamedTuple): task: Callable cb_success: Optional[Callable] cb_done: Optional[Callable] cb_error: Optional[Callable] doneSig = pyqtSignal(object, object, object) def __init__(self, parent, on_error=None): super(TaskThread, self).__init__(parent) self.on_error = on_error self.tasks = queue.Queue() self.doneSig.connect(self.on_done) self.start() def add(self, task, on_success=None, on_done=None, on_error=None): on_error = on_error or self.on_error self.tasks.put(TaskThread.Task(task, on_success, on_done, on_error)) def run(self): while True: task = self.tasks.get() # type: TaskThread.Task if not task: break try: result = task.task() self.doneSig.emit(result, task.cb_done, task.cb_success) except BaseException: self.doneSig.emit(sys.exc_info(), task.cb_done, task.cb_error) def on_done(self, result, cb_done, cb_result): # This runs in the parent's thread. if cb_done: cb_done() if cb_result: cb_result(result) def stop(self): self.tasks.put(None) class ColorSchemeItem: def __init__(self, fg_color, bg_color): self.colors = (fg_color, bg_color) def _get_color(self, background): return self.colors[(int(background) + int(ColorScheme.dark_scheme)) % 2] def as_stylesheet(self, background=False): css_prefix = "background-" if background else "" color = self._get_color(background) return "QWidget {{ {}color:{}; }}".format(css_prefix, color) def as_color(self, background=False): color = self._get_color(background) return QColor(color) class ColorScheme: dark_scheme = False GREEN = ColorSchemeItem("#117c11", "#8af296") YELLOW = ColorSchemeItem("#897b2a", "#ffff00") RED = ColorSchemeItem("#7c1111", "#f18c8c") BLUE = ColorSchemeItem("#123b7c", "#8cb3f2") DEFAULT = ColorSchemeItem("black", "white") GRAY = ColorSchemeItem("gray", "gray") @staticmethod def has_dark_background(widget): brightness = sum(widget.palette().color(QPalette.Background).getRgb()[0:3]) return brightness < (255*3/2) @staticmethod def update_from_widget(widget, force_dark=False): if force_dark or ColorScheme.has_dark_background(widget): ColorScheme.dark_scheme = True class AcceptFileDragDrop: def __init__(self, file_type=""): assert isinstance(self, QWidget) self.setAcceptDrops(True) self.file_type = file_type def validateEvent(self, event): if not event.mimeData().hasUrls(): event.ignore() return False for url in event.mimeData().urls(): if not url.toLocalFile().endswith(self.file_type): event.ignore() return False event.accept() return True def dragEnterEvent(self, event): self.validateEvent(event) def dragMoveEvent(self, event): if self.validateEvent(event): event.setDropAction(Qt.CopyAction) def dropEvent(self, event): if self.validateEvent(event): for url in event.mimeData().urls(): self.onFileAdded(url.toLocalFile()) def onFileAdded(self, fn): raise NotImplementedError() def import_meta_gui(electrum_window, title, importer, on_success): filter_ = "JSON (*.json);;All files (*)" filename = electrum_window.getOpenFileName(_("Open {} file").format(title), filter_) if not filename: return try: importer(filename) except FileImportFailed as e: electrum_window.show_critical(str(e)) else: electrum_window.show_message(_("Your {} were successfully imported").format(title)) on_success() def export_meta_gui(electrum_window, title, exporter): filter_ = "JSON (*.json);;All files (*)" filename = electrum_window.getSaveFileName(_("Select file to save your {}").format(title), 'electrum-ltc_{}.json'.format(title), filter_) if not filename: return try: exporter(filename) except FileExportFailed as e: electrum_window.show_critical(str(e)) else: electrum_window.show_message(_("Your {0} were exported to '{1}'") .format(title, str(filename))) def get_parent_main_window( widget, *, allow_wizard: bool = False, ) -> Union[None, 'ElectrumWindow', 'InstallWizard']: """Returns a reference to the ElectrumWindow this widget belongs to.""" from .main_window import ElectrumWindow from .transaction_dialog import TxDialog from .installwizard import InstallWizard for _ in range(100): if widget is None: return None if isinstance(widget, ElectrumWindow): return widget if isinstance(widget, TxDialog): return widget.main_window if isinstance(widget, InstallWizard) and allow_wizard: return widget widget = widget.parentWidget() return None def icon_path(icon_basename): return resource_path('gui', 'icons', icon_basename) @lru_cache(maxsize=1000) def read_QIcon(icon_basename): return QIcon(icon_path(icon_basename)) def get_default_language(): name = QLocale.system().name() return name if name in languages else 'en_UK' def char_width_in_lineedit() -> int: char_width = QFontMetrics(QLineEdit().font()).averageCharWidth() # 'averageCharWidth' seems to underestimate on Windows, hence 'max()' return max(9, char_width) def webopen(url: str): if sys.platform == 'linux' and os.environ.get('APPIMAGE'): # When on Linux webbrowser.open can fail in AppImage because it can't find the correct libdbus. # We just fork the process and unset LD_LIBRARY_PATH before opening the URL. # See #5425 if os.fork() == 0: del os.environ['LD_LIBRARY_PATH'] webbrowser.open(url) os._exit(0) else: webbrowser.open(url) if __name__ == "__main__": app = QApplication([]) t = WaitingDialog(None, 'testing ...', lambda: [time.sleep(1)], lambda x: QMessageBox.information(None, 'done', "done")) t.start() app.exec_()
the-stack_0_16512
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('products', '0004_auto_20150820_2156'), ] operations = [ migrations.AlterModelOptions( name='product', options={'ordering': ['-title']}, ), ]
the-stack_0_16513
import argparse import os import shutil import sys import cv2 def label(img_dir, scale_factor): img_extensions = {'jpg', 'jpeg', 'png', 'bmp'} images = sorted([os.path.join(img_dir, f) for f in os.listdir(img_dir) if os.path.isfile(os.path.join(img_dir, f)) and f.lower().split('.')[-1] in img_extensions]) labels = [f for i, f in enumerate(sorted(os.listdir(img_dir))) if os.path.isdir(os.path.join(img_dir, f))] if not labels: raise RuntimeError('No subdirectories found. Please create subdirectories for ' + 'the labels you want to store (e.g. "negative", "positive")') for imgfile in images: img = cv2.imread(imgfile) img_name = os.path.basename(imgfile) if scale_factor != 1: size = (int(img.shape[0]*scale_factor), int(img.shape[1]*scale_factor)) img = cv2.resize(img, size) print('[{}] Keys:'.format(os.path.basename(imgfile))) for i, l in enumerate(labels): print('\t({}): Tag image as "{}"'.format(i+1, l)) print('\t(s): Skip this image') print('\t(d): Delete this image') print('\t(ESC/q): Quit the script') print('') cv2.namedWindow(img_name) cv2.imshow(img_name, img) k = cv2.waitKey() print('') if k == ord('c'): continue if ord('0') <= k <= ord('9'): label_index = int(chr(k))-1 if label_index >= len(labels): print('Invalid label index "{}", skipping image'.format(label_index)) shutil.move(imgfile, os.path.join(img_dir, labels[label_index])) if k == ord('d'): os.unlink(imgfile) # Quit upon 'q' or ESC if k == ord('q') or k == 27: break print('') cv2.destroyAllWindows() def main(): parser = argparse.ArgumentParser() parser.add_argument('--image-dir', '-d', dest='dir', required=True, help='Directory that contains the images to be processed ' + '(supported formats: jpg, png, tiff, bmp)') parser.add_argument('--scale-factor', '-s', dest='scale', required=False, default=1, type=float, help='Scale factor to be applied to the images for visualization (default: 1)') opts, args = parser.parse_known_args(sys.argv[1:]) label(img_dir=opts.dir, scale_factor=opts.scale) if __name__ == '__main__': main() # vim:sw=4:ts=4:et:
the-stack_0_16514
import tensorflow as tf import abc import logging LOSS_REGISTRY = {} logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # Default margin used by pairwise and absolute margin loss DEFAULT_MARGIN = 1 # default sampling temperature used by adversarial loss DEFAULT_ALPHA_ADVERSARIAL = 0.5 # Default margin used by margin based adversarial loss DEFAULT_MARGIN_ADVERSARIAL = 3 DEFAULT_CLASS_PARAMS = {'require_same_size_pos_neg': True, } def register_loss(name, external_params=[], class_params=DEFAULT_CLASS_PARAMS): def populate_class_params(): LOSS_REGISTRY[name].class_params = {} LOSS_REGISTRY[name].class_params['require_same_size_pos_neg'] = class_params.get('require_same_size_pos_neg', DEFAULT_CLASS_PARAMS['require_same_size_pos_neg']) def insert_in_registry(class_handle): LOSS_REGISTRY[name] = class_handle class_handle.name = name LOSS_REGISTRY[name].external_params = external_params populate_class_params() return class_handle return insert_in_registry class Loss(abc.ABC): """Abstract class for loss function. """ name = "" external_params = [] class_params = {} def __init__(self, eta, hyperparam_dict, verbose=False): """Initialize Loss. Parameters ---------- eta: int number of negatives hyperparam_dict : dict dictionary of hyperparams. (Keys are described in the hyperparameters section) """ self._loss_parameters = {} self._dependencies = [] # perform check to see if all the required external hyperparams are passed try: self._loss_parameters['eta'] = eta self._init_hyperparams(hyperparam_dict) if verbose: logger.info('\n--------- Loss ---------') logger.info('Name : {}'.format(self.name)) for key, value in self._loss_parameters.items(): logger.info('{} : {}'.format(key, value)) except KeyError as e: msg = 'Some of the hyperparams for loss were not passed to the loss function.\n{}'.format(e) logger.error(msg) raise Exception(msg) def get_state(self, param_name): """Get the state value. Parameters ---------- param_name : string name of the state for which one wants to query the value Returns ------- param_value: the value of the corresponding state """ try: param_value = LOSS_REGISTRY[self.name].class_params.get(param_name) return param_value except KeyError as e: msg = 'Invalid Keu.\n{}'.format(e) logger.error(msg) raise Exception(msg) def _init_hyperparams(self, hyperparam_dict): """ Initializes the hyperparameters needed by the algorithm. Parameters ---------- hyperparam_dict : dictionary Consists of key value pairs. The Loss will check the keys to get the corresponding params """ msg = 'This function is a placeholder in an abstract class' logger.error(msg) NotImplementedError(msg) def _inputs_check(self, scores_pos, scores_neg): """ Creates any dependencies that need to be checked before performing loss computations Parameters ---------- scores_pos : tf.Tensor A tensor of scores assigned to positive statements. scores_neg : tf.Tensor A tensor of scores assigned to negative statements. """ logger.debug('Creating dependencies before loss computations.') self._dependencies = [] if LOSS_REGISTRY[self.name].class_params['require_same_size_pos_neg'] and self._loss_parameters['eta'] != 1: logger.debug('Dependencies found: \n\tRequired same size positive and negative. \n\tEta is not 1.') self._dependencies.append(tf.Assert(tf.equal(tf.shape(scores_pos)[0], tf.shape(scores_neg)[0]), [tf.shape(scores_pos)[0], tf.shape(scores_neg)[0]])) def _apply(self, scores_pos, scores_neg): """ Apply the loss function. Every inherited class must implement this function. (All the TF code must go in this function.) Parameters ---------- scores_pos : tf.Tensor A tensor of scores assigned to positive statements. scores_neg : tf.Tensor A tensor of scores assigned to negative statements. Returns ------- loss : tf.Tensor The loss value that must be minimized. """ msg = 'This function is a placeholder in an abstract class.' logger.error(msg) NotImplementedError(msg) def apply(self, scores_pos, scores_neg): """ Interface to external world. This function does the input checks, preprocesses input and finally applies loss function. Parameters ---------- scores_pos : tf.Tensor A tensor of scores assigned to positive statements. scores_neg : tf.Tensor A tensor of scores assigned to negative statements. Returns ------- loss : tf.Tensor The loss value that must be minimized. """ self._inputs_check(scores_pos, scores_neg) with tf.control_dependencies(self._dependencies): loss = self._apply(scores_pos, scores_neg) return loss @register_loss("pairwise", ['margin']) class PairwiseLoss(Loss): """Pairwise, max-margin loss. Introduced in :cite:`bordes2013translating`. .. math:: \mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}}\sum_{t^- \in \mathcal{C}}max(0, [\gamma + f_{model}(t^-;\Theta) - f_{model}(t^+;\Theta)]) where :math:`\gamma` is the margin, :math:`\mathcal{G}` is the set of positives, :math:`\mathcal{C}` is the set of corruptions, :math:`f_{model}(t;\Theta)` is the model-specific scoring function. """ def __init__(self, eta, loss_params={'margin': DEFAULT_MARGIN}, verbose=False): """Initialize Loss. Parameters ---------- eta: int number of negatives loss_params : dict Dictionary of loss-specific hyperparams: - **'margin'**: (float). Margin to be used in pairwise loss computation (default: 1) Example: ``loss_params={'margin': 1}`` """ super().__init__(eta, loss_params, verbose) def _init_hyperparams(self, hyperparam_dict): """ Verifies and stores the hyperparameters needed by the algorithm. Parameters ---------- hyperparam_dict : dictionary Consists of key value pairs. The Loss will check the keys to get the corresponding params - **margin** - Margin to be used in pairwise loss computation(default:1) """ self._loss_parameters['margin'] = hyperparam_dict.get('margin', DEFAULT_MARGIN) def _apply(self, scores_pos, scores_neg): """ Apply the loss function. Parameters ---------- scores_pos : tf.Tensor, shape [n, 1] A tensor of scores assigned to positive statements. scores_neg : tf.Tensor, shape [n, 1] A tensor of scores assigned to negative statements. Returns ------- loss : tf.Tensor The loss value that must be minimized. """ margin = tf.constant(self._loss_parameters['margin'], dtype=tf.float32, name='margin') loss = tf.reduce_sum(tf.maximum(margin - scores_pos + scores_neg, 0)) return loss @register_loss("nll") class NLLLoss(Loss): """Negative log-likelihood loss. As described in :cite:`trouillon2016complex`. .. math:: \mathcal{L}(\Theta) = \sum_{t \in \mathcal{G} \cup \mathcal{C}}log(1 + exp(-y \, f_{model}(t;\Theta))) where :math:`y \in {-1, 1}` is the label of the statement, :math:`\mathcal{G}` is the set of positives, :math:`\mathcal{C}` is the set of corruptions, :math:`f_{model}(t;\Theta)` is the model-specific scoring function. """ def __init__(self, eta, loss_params={}, verbose=False): """Initialize Loss. Parameters ---------- eta: int number of negatives loss_params : dict dictionary of hyperparams. No hyperparameters are required for this loss. """ super().__init__(eta, loss_params, verbose) def _init_hyperparams(self, hyperparam_dict): """ Initializes the hyperparameters needed by the algorithm. Parameters ---------- hyperparam_dict : dictionary Consists of key value pairs. The Loss will check the keys to get the corresponding params """ return def _apply(self, scores_pos, scores_neg): """ Apply the loss function. Parameters ---------- scores_pos : tf.Tensor, shape [n, 1] A tensor of scores assigned to positive statements. scores_neg : tf.Tensor, shape [n, 1] A tensor of scores assigned to negative statements. Returns ------- loss : tf.Tensor The loss value that must be minimized. """ scores = tf.concat([-scores_pos, scores_neg], 0) return tf.reduce_sum(tf.log(1 + tf.exp(scores))) @register_loss("absolute_margin", ['margin']) class AbsoluteMarginLoss(Loss): """Absolute margin , max-margin loss. Introduced in :cite:`Hamaguchi2017`. .. math:: \mathcal{L}(\Theta) = \sum_{t^+ \in \mathcal{G}}\sum_{t^- \in \mathcal{C}} f_{model}(t^-;\Theta) - max(0, [\gamma - f_{model}(t^+;\Theta)]) where :math:`\gamma` is the margin, :math:`\mathcal{G}` is the set of positives, :math:`\mathcal{C}` is the set of corruptions, :math:`f_{model}(t;\Theta)` is the model-specific scoring function. """ def __init__(self, eta, loss_params={'margin': DEFAULT_MARGIN}, verbose=False): """Initialize Loss Parameters ---------- eta: int number of negatives loss_params : dict Dictionary of loss-specific hyperparams: - **'margin'**: float. Margin to be used in pairwise loss computation (default:1) Example: ``loss_params={'margin': 1}`` """ super().__init__(eta, loss_params, verbose) def _init_hyperparams(self, hyperparam_dict): """ Initializes the hyperparameters needed by the algorithm. Parameters ---------- hyperparam_dict : dict Consists of key value pairs. The Loss will check the keys to get the corresponding params. **margin** - Margin to be used in loss computation(default:1) Returns ------- """ self._loss_parameters['margin'] = hyperparam_dict.get('margin', DEFAULT_MARGIN) def _apply(self, scores_pos, scores_neg): """ Apply the loss function. Parameters ---------- scores_pos : tf.Tensor, shape [n, 1] A tensor of scores assigned to positive statements. scores_neg : tf.Tensor, shape [n, 1] A tensor of scores assigned to negative statements. Returns ------- loss : tf.Tensor The loss value that must be minimized. """ margin = tf.constant(self._loss_parameters['margin'], dtype=tf.float32, name='margin') loss = tf.reduce_sum(tf.maximum(margin + scores_neg, 0) - scores_pos) return loss @register_loss("self_adversarial", ['margin', 'alpha'], {'require_same_size_pos_neg': False}) class SelfAdversarialLoss(Loss): """ Self adversarial sampling loss. Introduced in :cite:`sun2018rotate`. .. math:: \mathcal{L} = -log\, \sigma(\gamma + f_{model} (\mathbf{s},\mathbf{o})) - \sum_{i=1}^{n} p(h_{i}^{'}, r, t_{i}^{'} ) \ log \ \sigma(-f_{model}(\mathbf{s}_{i}^{'},\mathbf{o}_{i}^{'}) - \gamma) where :math:`\mathbf{s}, \mathbf{o} \in \mathcal{R}^k` are the embeddings of the subject and object of a triple :math:`t=(s,r,o)`, :math:`\gamma` is the margin, :math:`\sigma` the sigmoid function, and :math:`p(s_{i}^{'}, r, o_{i}^{'} )` is the negatives sampling distribution which is defined as: .. math:: p(s'_j, r, o'_j | \{(s_i, r_i, o_i)\}) = \\frac{\exp \\alpha \, f_{model}(\mathbf{s'_j}, \mathbf{o'_j})}{\sum_i \exp \\alpha \, f_{model}(\mathbf{s'_i}, \mathbf{o'_i})} where :math:`\\alpha` is the temperature of sampling, :math:`f_{model}` is the scoring function of the desired embeddings model. """ def __init__(self, eta, loss_params={'margin': DEFAULT_MARGIN_ADVERSARIAL, 'alpha': DEFAULT_ALPHA_ADVERSARIAL}, verbose=False): """Initialize Loss Parameters ---------- eta: int number of negatives loss_params : dict Dictionary of loss-specific hyperparams: - **'margin'**: (float). Margin to be used for loss computation (default: 1) - **'alpha'** : (float). Temperature of sampling (default:0.5) Example: ``loss_params={'margin': 1, 'alpha': 0.5}`` """ super().__init__(eta, loss_params, verbose) def _init_hyperparams(self, hyperparam_dict): """ Initializes the hyperparameters needed by the algorithm. Parameters ---------- hyperparam_dict : dictionary Consists of key value pairs. The Loss will check the keys to get the corresponding params - **margin** - Margin to be used in adversarial loss computation (default:3) - **alpha** - Temperature of sampling (default:0.5) """ self._loss_parameters['margin'] = hyperparam_dict.get('margin', DEFAULT_MARGIN_ADVERSARIAL) self._loss_parameters['alpha'] = hyperparam_dict.get('alpha', DEFAULT_ALPHA_ADVERSARIAL) def _apply(self, scores_pos, scores_neg): """ Apply the loss function. Parameters ---------- scores_pos : tf.Tensor, shape [n, 1] A tensor of scores assigned to positive statements. scores_neg : tf.Tensor, shape [n*negative_count, 1] A tensor of scores assigned to negative statements. Returns ------- loss : tf.Tensor The loss value that must be minimized. """ margin = tf.constant(self._loss_parameters['margin'], dtype=tf.float32, name='margin') alpha = tf.constant(self._loss_parameters['alpha'], dtype=tf.float32, name='alpha') # Compute p(neg_samples) based on eq 4 scores_neg_reshaped = tf.reshape(scores_neg, [self._loss_parameters['eta'], tf.shape(scores_pos)[0]]) p_neg = tf.nn.softmax(alpha * scores_neg_reshaped, axis=0) # Compute Loss based on eg 5 loss = tf.reduce_sum(-tf.log(tf.nn.sigmoid(margin - tf.negative(scores_pos)))) - \ tf.reduce_sum(tf.multiply(p_neg, tf.log(tf.nn.sigmoid(tf.negative(scores_neg_reshaped) - margin)))) return loss @register_loss("multiclass_nll", [], {'require_same_size_pos_neg': False}) class NLLMulticlass(Loss): """ Multiclass NLL Loss. Introduced in :cite:`chen2015` where both the subject and objects are corrupted (to use it in this way pass corrupt_sides = ['s', 'o'] to embedding_model_params) . This loss was re-engineered in :cite:`kadlecBK17` where only the object was corrupted to get improved performance (to use it in this way pass corrupt_sides = 'o' to embedding_model_params). .. math:: \mathcal{L(X)} = -\sum_{x_{e_1,e_2,r_k} \in X} log\,p(e_2|e_1,r_k) -\sum_{x_{e_1,e_2,r_k} \in X} log\,p(e_1|r_k, e_2) Examples -------- >>> from ampligraph.latent_features import TransE >>> model = TransE(batches_count=1, seed=555, epochs=20, k=10, >>> embedding_model_params={'corrupt_sides':['s', 'o']}, >>> loss='multiclass_nll', loss_params={}) """ def __init__(self, eta, loss_params={}, verbose=False): """Initialize Loss Parameters ---------- eta: int number of negatives loss_params : dict Dictionary of loss-specific hyperparams: """ super().__init__(eta, loss_params, verbose) def _init_hyperparams(self, hyperparam_dict): """ Verifies and stores the hyperparameters needed by the algorithm. Parameters ---------- hyperparam_dict : dictionary Consists of key value pairs. The Loss will check the keys to get the corresponding params """ pass def _apply(self, scores_pos, scores_neg): """ Apply the loss function. Parameters ---------- scores_pos : tf.Tensor, shape [n, 1] A tensor of scores assigned to positive statements. scores_neg : tf.Tensor, shape [n*negative_count, 1] A tensor of scores assigned to negative statements. Returns ------- loss : float The loss value that must be minimized. """ scores_neg_reshaped = tf.reshape(scores_neg, [self._loss_parameters['eta'], tf.shape(scores_pos)[0]]) neg_exp = tf.exp(scores_neg_reshaped) pos_exp = tf.exp(scores_pos) softmax_score = pos_exp/(tf.reduce_sum(neg_exp, axis = 0) + pos_exp) loss = -tf.reduce_sum(tf.log(softmax_score)) return loss
the-stack_0_16515
import avroconvert as avc from multiprocessing import cpu_count import concurrent class Execute: def __init__(self, source: str, bucket: str, dst_format: str, outfolder: str, prefix: str = '', **kwargs): ''' A wrapper class to run the avro convert operation. This class calls the reader methods (gcs, s3 or local) and avro converter methods internally. :param source: Name of the source file system. Should be one of these: gs, s3 of fs. gs is for google cloud bucket s3 is for amazon s3 bucket fs is for local file system :type source: str :param bucket: Name of the bucket to read the files. For local file system, bucket would be the folder name from where the data will be read and converted to specified output format :type bucket: str :param dst_format: Target output format. The files read from different sources will be converted to the format specified by this parameter. It's value should be one of these: cs, parquet or json, defaults to parquet :type dst_format: str :param outfolder: Output folder. This is where the files converted from avro to csv, parquet or json will be stored :type outfolder: str :param prefix: File prefix. If given, files whose names start with the given prefix will be read and all the other files will be omitted :type prefix: str :key auth_file: Pass this parameter only when the source is `gs`. It specifies the location of service account json file to access google cloud storage. If google cloud is authenticated or the environment variable GOOGLE_APPLICATION_CREDENTIALS is set in the already, then this parameter is not required :key access_key: Pass this parameter only when the source is `s3`. It specifies AWS access key id. If aws is already authenticated or there exists a file ~/.aws/credentials or the environment variable AWS_ACCESS_KEY_ID is set, then this parameter is not required :key secret_key: Pass this parameter only when the source is `s3`. It specifies AWS secret key. If aws is already authenticated or there exists a file ~/.aws/credentials or the environment variable AWS_SECRET_ACCESS_KEY is set, then this parameter is not required :key session_token: Pass this parameter only when the source is `s3`. It specifies AWS session token. ''' _src = ['s3', 'gs', 'fs'] _dst_format = ['parquet', 'csv', 'json'] source = source.lower() if not dst_format: raise AttributeError(f'Output format not specified, should be one of {_dst_format}') if not outfolder: raise AttributeError(f'Please specify an output folder') dst_format = dst_format.lower() if source not in _src: raise Exception( f'Invalid source {source} passed. Source should be one of {_src}') if dst_format not in _dst_format: raise Exception( f'Invalid format {dst_format}. It should be one of {_dst_format}') if not bucket: raise Exception( f'Please specify a bucket') self.source = source self.bucket = bucket self.prefix = prefix self.dst_format = dst_format self.outfolder = outfolder self.params = kwargs def _resolve(self): ''' This method returns a reader instance depending upon the source specified. If the source is `gs`, this method will return `gs_reader`; if the source is `s3`, this method will return `s3_reader`; if the source is `fs`, this method will return `fs_reader` object ''' reader_function = getattr(avc, f'{self.source}_reader') reader = reader_function( bucket=self.bucket, prefix=self.prefix, **self.params) return reader def run(self) -> bool: ''' Executor method for the AvroConverter class. This method parallelizes the execution for all the file read->convert->write operations. ''' raw_content = self._resolve().get_data() if not raw_content: return num_process = cpu_count()*2 avro_object = avc.AvroConvert( dst_format=self.dst_format, outfolder=self.outfolder) with concurrent.futures.ProcessPoolExecutor(max_workers=int(num_process)) as executor: results = [executor.submit( avro_object.convert_avro, **{'filename': filename, 'data': avrodata}) for filename, avrodata in raw_content.items()] return True
the-stack_0_16516
import logging import os import subprocess logging.basicConfig() logger = logging.getLogger("kalliope") MPLAYER_EXEC_PATH = "/usr/bin/mplayer" class Mplayer(object): """ This Class is representing the MPlayer Object used to play the all sound of the system. """ def __init__(self): pass @classmethod def play(cls, filepath): """ Play the sound located in the provided filepath :param filepath: The file path of the sound to play :type filepath: str :Example: Mplayer.play(self.file_path) .. seealso:: TTS .. raises:: .. warnings:: Class Method and Public """ mplayer_exec_path = [MPLAYER_EXEC_PATH] mplayer_options = ['-slave', '-quiet'] mplayer_command = list() mplayer_command.extend(mplayer_exec_path) mplayer_command.extend(mplayer_options) mplayer_command.append(filepath) logger.debug("Mplayer cmd: %s" % str(mplayer_command)) fnull = open(os.devnull, 'w') subprocess.call(mplayer_command, stdout=fnull, stderr=fnull)
the-stack_0_16518
import os import requests import prometheus_client import threading import logging import time from prometheus_client import start_http_server from prometheus_client.core import GaugeMetricFamily, REGISTRY PORT=9387 APIBASEURL = os.environ['SABNZBD_BASEURL'] APIKEY = os.environ['SABNZBD_APIKEY'] logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',level=logging.INFO, datefmt='%Y/%m/%d %H:%M:%S') logging.info("Starting sabnzbd_exporter on port: %d",PORT) logging.info("Connecting to %s",APIBASEURL) def getAPIUrl(mode): return '{}/api?output=json&apikey={}&mode={}'.format(APIBASEURL, APIKEY, mode) def get_sec(time_str): h, m, s = time_str.split(':') return int(h) * 3600 + int(m) * 60 + int(s) class CustomCollector(object): def collect(self): try: server_stats_url = getAPIUrl('server_stats') start = time.time() server_stats = requests.get(server_stats_url).json() elapsed = time.time() - start logging.info("Request to %s returned in %s",server_stats_url, elapsed) dwn = GaugeMetricFamily('sabnzbd_download_bytes', 'SABnzbd Overall download metrics', labels=['period']) dwn.add_metric(['total'], server_stats['total']) dwn.add_metric(['day'], server_stats['day']) dwn.add_metric(['week'], server_stats['week']) dwn.add_metric(['month'], server_stats['month']) yield dwn server_dwn = GaugeMetricFamily('sabnzbd_server_download_bytes','SABnzbd per server download metrics',labels=['server','period']) for server, metrics in server_stats['servers'].items(): for metric,val in metrics.items(): if metric != 'daily': server_dwn.add_metric([server,metric],val) yield server_dwn start = time.time() queue_stats_url = getAPIUrl('queue') queue_stats = requests.get(queue_stats_url).json()["queue"] elapsed = time.time() - start logging.info("Request to %s returned in %s",queue_stats_url, elapsed) yield GaugeMetricFamily('sabnzbd_queue_size','SABnzbd Current Queue Length',value=queue_stats['noofslots_total']) yield GaugeMetricFamily('sabnzbd_queue_download_rate_bytes_per_second','SABnzbd download rate',value=float(queue_stats['kbpersec'])*1024) yield GaugeMetricFamily('sabnzbd_queue_remaining_bytes','SABnzbd queue remaining size',value=float(queue_stats['mbleft'])*1024*1024) yield GaugeMetricFamily('sabnzbd_queue_total_size_bytes','SABnzbd queue total size',value=float(queue_stats['mb'])*1024*1024) yield GaugeMetricFamily('sabnzbd_queue_remaining_seconds','SABnzbd estimated time remaining',value=get_sec(queue_stats['timeleft'])) except Exception as inst: logging.error('Error getting stats: %s', inst) REGISTRY.register(CustomCollector()) start_http_server(PORT) DE = threading.Event() DE.wait()
the-stack_0_16519
from subprocess import call isbn_regex = '^(97(8|9)-?)?\d{9}(\d|X)$' def fix_author(author): parts = author.split(u', ') if len(parts) == 2: return parts[1] + u' ' + parts[0] return author def call_mktorrent(target, torrent_filename, announce, torrent_name=None): args = [ 'mktorrent', '-a', announce, '-p', '-o', torrent_filename, ] if torrent_name: args.extend(('-n', torrent_name)) args.append(target) if call(args) != 0: raise Exception('mktorrent returned non-zero')
the-stack_0_16521
# pylint: disable=R0913 # pylint: disable=W0621 import os from urllib.parse import quote import pytest from aiohttp import web from simcore_service_storage.db import setup_db from simcore_service_storage.dsm import setup_dsm from simcore_service_storage.rest import setup_rest from simcore_service_storage.s3 import setup_s3 from simcore_service_storage.settings import APP_CONFIG_KEY, SIMCORE_S3_ID def parse_db(dsm_mockup_db): id_name_map = {} id_file_count = {} for d in dsm_mockup_db.keys(): md = dsm_mockup_db[d] if not md.user_id in id_name_map: id_name_map[md.user_id] = md.user_name id_file_count[md.user_id] = 1 else: id_file_count[md.user_id] = id_file_count[md.user_id] + 1 return id_file_count, id_name_map @pytest.fixture def client(loop, aiohttp_unused_port, aiohttp_client, python27_path, postgres_service, minio_service, osparc_api_specs_dir): app = web.Application() main_cfg = { 'port': aiohttp_unused_port(), 'host': 'localhost', 'python2': python27_path, "max_workers" : 4 } rest_cfg = { 'oas_repo': str(osparc_api_specs_dir), #'${OSPARC_SIMCORE_REPO_ROOTDIR}/api/specs', #oas_repo: http://localhost:8043/api/specs } postgres_cfg = postgres_service s3_cfg = minio_service # fake config app[APP_CONFIG_KEY] = { 'main': main_cfg, 'postgres' : postgres_cfg, 's3' : s3_cfg, 'rest': rest_cfg } #app.middlewares.append(dsm_middleware) setup_db(app) setup_rest(app) setup_dsm(app) setup_s3(app) cli = loop.run_until_complete( aiohttp_client(app, server_kwargs=main_cfg) ) return cli async def test_health_check(client): resp = await client.get("/v0/") text = await resp.text() assert resp.status == 200, text payload = await resp.json() data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert data assert not error assert data['name'] == 'simcore_service_storage' assert data['status'] == 'SERVICE_RUNNING' @pytest.mark.travis async def test_locations(client): user_id = "0" resp = await client.get("/v0/locations?user_id={}".format(user_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert len(data) == 2 assert not error async def test_s3_files_metadata(client, dsm_mockup_db): id_file_count, _id_name_map = parse_db(dsm_mockup_db) # list files for every user for _id in id_file_count: resp = await client.get("/v0/locations/0/files/metadata?user_id={}".format(_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert len(data) == id_file_count[_id] # list files fileterd by uuid for d in dsm_mockup_db.keys(): fmd = dsm_mockup_db[d] uuid_filter = os.path.join(fmd.project_id, fmd.node_id) resp = await client.get("/v0/locations/0/files/metadata?user_id={}&uuid_filter={}".format(fmd.user_id, quote(uuid_filter, safe=''))) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error for d in data: assert os.path.join(d['project_id'], d['node_id']) == uuid_filter async def test_s3_file_metadata(client, dsm_mockup_db): # go through all files and get them for d in dsm_mockup_db.keys(): fmd = dsm_mockup_db[d] resp = await client.get("/v0/locations/0/files/{}/metadata?user_id={}".format(quote(fmd.file_uuid, safe=''), fmd.user_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert data async def test_download_link(client, dsm_mockup_db): for d in dsm_mockup_db.keys(): fmd = dsm_mockup_db[d] resp = await client.get("/v0/locations/0/files/{}?user_id={}".format(quote(fmd.file_uuid, safe=''), fmd.user_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert data async def test_upload_link(client, dsm_mockup_db): for d in dsm_mockup_db.keys(): fmd = dsm_mockup_db[d] resp = await client.put("/v0/locations/0/files/{}?user_id={}".format(quote(fmd.file_uuid, safe=''), fmd.user_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert data @pytest.mark.travis async def test_copy(client, dsm_mockup_db, datcore_testbucket): # copy N files N = 2 counter = 0 for d in dsm_mockup_db.keys(): fmd = dsm_mockup_db[d] source_uuid = fmd.file_uuid datcore_uuid = os.path.join(datcore_testbucket, fmd.file_name) resp = await client.put("/v0/locations/1/files/{}?user_id={}&extra_location={}&extra_source={}".format(quote(datcore_uuid, safe=''), fmd.user_id, SIMCORE_S3_ID, quote(source_uuid, safe=''))) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert data counter = counter + 1 if counter == N: break # list files for every user user_id = "0" resp = await client.get("/v0/locations/1/files/metadata?user_id={}".format(user_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert len(data) == 2 + N async def test_delete_file(client, dsm_mockup_db): id_file_count, _id_name_map = parse_db(dsm_mockup_db) for d in dsm_mockup_db.keys(): fmd = dsm_mockup_db[d] resp = await client.delete("/v0/locations/0/files/{}?user_id={}".format(quote(fmd.file_uuid, safe=''), fmd.user_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert not data for _id in id_file_count: resp = await client.get("/v0/locations/0/files/metadata?user_id={}".format(_id)) payload = await resp.json() assert resp.status == 200, str(payload) data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert not error assert len(data) == 0 async def test_action_check(client): QUERY = 'mguidon' ACTION = 'echo' FAKE = { 'path_value': 'one', 'query_value': 'two', 'body_value': { 'a': 33, 'b': 45 } } resp = await client.post("/v0/check/{}?data={}".format(ACTION, QUERY), json=FAKE) payload = await resp.json() data, error = tuple( payload.get(k) for k in ('data', 'error') ) assert resp.status == 200, str(payload) assert data assert not error # TODO: validate response against specs assert data['path_value'] == ACTION assert data['query_value'] == QUERY
the-stack_0_16522
from telegram import Update from telegram.ext import CallbackContext from app.extensions import db from app.lib.handlers.base import BaseHandler, app_context from app.models import Channel class MigrateFilter(BaseHandler): @app_context def handler(self, update: Update, context: CallbackContext): message = update.message # Incase we get migrate_to_chat_id update, ignore. We'll be getting another update # from migrate_from_chat_id after it. if not message.migrate_from_chat_id: return original_chat_id = str(message.migrate_from_chat_id) new_chat_id = str(message.chat_id) self.logger.debug(f"migrating chat_id from {original_chat_id} to {new_chat_id}") channel = Channel.query.filter( Channel.chat_id == original_chat_id ).one_or_none() if not channel: self.logger.error( f"Unable to find a channel that should exists: original_chat_id: {original_chat_id}, new_chat_id: {new_chat_id}" ) return channel.chat_id = new_chat_id db.session.commit()
the-stack_0_16526
from django.conf import settings from zerver.lib.actions import set_default_streams, bulk_add_subscriptions, \ internal_prep_stream_message, internal_send_private_message, \ create_stream_if_needed, create_streams_if_needed, do_send_messages, \ do_add_reaction_legacy from zerver.models import Realm, UserProfile, Message, Reaction, get_system_bot from typing import Any, Dict, List, Mapping, Text def send_initial_pms(user): # type: (UserProfile) -> None organization_setup_text = "" if user.is_realm_admin: help_url = user.realm.uri + "/help/getting-your-organization-started-with-zulip" organization_setup_text = ("* [Read the guide](%s) for getting your organization " "started with Zulip\n" % (help_url,)) content = ( "Hello, and welcome to Zulip!\n\nThis is a private message from me, Welcome Bot. " "Here are some tips to get you started:\n" "* Download our [Desktop and mobile apps](/apps)\n" "* Customize your account and notifications on your [Settings page](#settings)\n" "* Type `?` to check out Zulip's keyboard shortcuts\n" "%s" "\n" "The most important shortcut is `r` to reply.\n\n" "Practice sending a few messages by replying to this conversation. If you're not into " "keyboards, that's okay too; clicking anywhere on this message will also do the trick!") \ % (organization_setup_text,) internal_send_private_message(user.realm, get_system_bot(settings.WELCOME_BOT), user, content) def setup_initial_streams(realm): # type: (Realm) -> None stream_dicts = [ {'name': "general"}, {'name': "new members", 'description': "For welcoming and onboarding new members. If you haven't yet, " "introduce yourself in a new thread using your name as the topic!"}, {'name': "zulip", 'description': "For discussing Zulip, Zulip tips and tricks, and asking " "questions about how Zulip works"}] # type: List[Mapping[str, Any]] create_streams_if_needed(realm, stream_dicts) set_default_streams(realm, {stream['name']: {} for stream in stream_dicts}) # For the first user in a realm def setup_initial_private_stream(user): # type: (UserProfile) -> None stream, _ = create_stream_if_needed(user.realm, "core team", invite_only=True, stream_description="A private stream for core team members.") bulk_add_subscriptions([stream], [user]) def send_initial_realm_messages(realm): # type: (Realm) -> None welcome_bot = get_system_bot(settings.WELCOME_BOT) # Make sure each stream created in the realm creation process has at least one message below # Order corresponds to the ordering of the streams on the left sidebar, to make the initial Home # view slightly less overwhelming welcome_messages = [ {'stream': Realm.DEFAULT_NOTIFICATION_STREAM_NAME, 'topic': "welcome", 'content': "This is a message on stream `%s` with the topic `welcome`. We'll use this stream " "for system-generated notifications." % (Realm.DEFAULT_NOTIFICATION_STREAM_NAME,)}, {'stream': "core team", 'topic': "private streams", 'content': "This is a private stream. Only admins and people you invite " "to the stream will be able to see that this stream exists."}, {'stream': "general", 'topic': "welcome", 'content': "Welcome to #**general**."}, {'stream': "new members", 'topic': "onboarding", 'content': "A #**new members** stream is great for onboarding new members.\n\nIf you're " "reading this and aren't the first person here, introduce yourself in a new thread " "using your name as the topic! Type `c` or click on `New Topic` at the bottom of the " "screen to start a new topic."}, {'stream': "zulip", 'topic': "topic demonstration", 'content': "Here is a message in one topic. Replies to this message will go to this topic."}, {'stream': "zulip", 'topic': "topic demonstration", 'content': "A second message in this topic. With [turtles](/static/images/cute/turtle.png)!"}, {'stream': "zulip", 'topic': "second topic", 'content': "This is a message in a second topic.\n\nTopics are similar to email subjects, " "in that each conversation should get its own topic. Keep them short, though; one " "or two words will do it!"}, ] # type: List[Dict[str, Text]] messages = [internal_prep_stream_message( realm, welcome_bot, message['stream'], message['topic'], message['content']) for message in welcome_messages] message_ids = do_send_messages(messages) # We find the one of our just-sent messages with turtle.png in it, # and react to it. This is a bit hacky, but works and is kinda a # 1-off thing. turtle_message = Message.objects.get( id__in=message_ids, subject='topic demonstration', content__icontains='cute/turtle.png') do_add_reaction_legacy(welcome_bot, turtle_message, 'turtle')
the-stack_0_16527
# -*- coding: utf-8 -*- import scrapy """ 需求: 大分类:名称,URL; 小分类名称,URL; 图书的标题,图片,出版商,价格信息 步骤: 1. 创建爬虫项目 2. 创建爬虫 3. 完善爬虫 3.1 修改起始URL 3.2 提取大分类,小分类标题和URL, 根据小分类的URL构建列表页请求 3.3 解析列表页, 提取图书标题和封面图片的URL, 构建详情页的请求 3.4 解析详情页, 提取出版社, 价格(构建价格请求) 3.5 解析价格 3.6 实现列表页分页 """ from copy import deepcopy import re class BookSpider(scrapy.Spider): name = 'book' allowed_domains = ['suning.com'] # 3.1 修改起始URL start_urls = ['https://book.suning.com/'] def parse(self, response): # 提取大分类和小分类信息 # 获取包含大分类, 小分类的div列表 divs = response.xpath('//div[@class="menu-item"]') # 获取子菜单div列表 sub_divs = response.xpath('//div[contains(@class, "menu-sub")]') # 遍历divs, 获取大分类小分类信息 for div in divs: item = {} item['b_category_name'] = div.xpath('./dl/dt/h3/a/text()').extract_first() item['b_category_url'] = div.xpath('./dl/dt/h3/a/@href').extract_first() # 获取包含小分类信息的a标签列表 a_s = div.xpath('./dl/dd/a') # 如果a_s是一个空列表, 就要从子菜单中提取小分类信息 if len(a_s) == 0: sub_div = sub_divs[divs.index(div)] a_s = sub_div.xpath('./div[1]/ul/li/a') # 遍历a_s, 提取小分类信息 for a in a_s: item['s_category_name'] = a.xpath('./text()').extract_first() item['s_category_url'] = a.xpath('./@href').extract_first() # print(item) # 根据小分类的URL, 构建列表页请求 # 当在循环外边创建的item对象(或字典), 传递给下一个解析函数时候, 需要进行一个深拷贝, 否则数据就会错乱 yield scrapy.Request(item['s_category_url'], callback=self.parse_book_list, meta={'item': deepcopy(item)}) def parse_book_list(self, response): # 3.3 解析列表页, 提取图书标题和封面图片的URL, 构建详情页的请求 item = response.meta['item'] # 获取包含图书信息的li标签列表 lis = response.xpath('//*[@id="filter-results"]/ul/li') # 遍历lis, 获取图书名称和图片信息 for li in lis: item['book_name'] = li.xpath('.//p[@class="sell-point"]/a/text()').extract_first() item['book_img'] = 'https:' + li.xpath('.//img/@src2').extract_first() # print(item) # 构建详情页的请求 # 详情URL detail_url = 'https:' + li.xpath('.//p[@class="sell-point"]/a/@href').extract_first() # 构建详情页请求, 交给引擎 yield scrapy.Request(detail_url, callback=self.parse_book_detail, meta={'item': deepcopy(item)}) # 实现翻页 # 1. 获取下一页URL # 观察规律: # 第一页: https://list.suning.com/1-264003-0.html # 第2页: https://list.suning.com/1-264003-1.html # 第3页: https://list.suning.com/1-264003-2.html # print(response.url) # 把 https://list.suning.com/1-262518-0-0-0-0.html 改为 https://list.suning.com/1-262518-0.html current_url = re.sub('(-0)+', '-0', response.url) # print(current_url) # param.currentPage = "0"; # param.pageNumbers = "61"; current_page = int(re.findall('param.currentPage\s*=\s*"(\d+)"', response.text)[0]) page_numbers = int(re.findall('param.pageNumbers\s*=\s*"(\d+)"', response.text)[0]) # print(current_page) # print(page_numbers) # 计算下1页的页号 next_page = current_page + 1 # 如果有下一页, 就生成下一页的URL if next_page < page_numbers: # 构建下一页的URL # 生成替换的后缀 subfix = '-{}.html'.format(next_page) # 举例: 1 -> -1.html next_url = re.sub('-\d+.html', subfix, current_url) print(next_url) # 构建下一页请求 yield scrapy.Request(next_url, callback=self.parse_book_list, meta={'item': deepcopy(item)}) def parse_book_detail(self, response): # 解析详情页 # 3.4 解析详情页, 提取出版社, 价格(构建价格请求) item = response.meta['item'] item['book_publisher'] = response.xpath('//*[@id="productName"]/a/text()').extract_first() # - 1. 准备价格URL模板 price_url = 'https://pas.suning.com/nspcsale_0_000000000{}_000000000{}_{}_20_021_0210101.html' # - 2. 从详情页URL中提取数据 datas = re.findall('https://product.suning.com/(\d+)/(\d+).html', response.url)[0] # - 3. 生成完整价格URL price_url = price_url.format(datas[1], datas[1], datas[0]) # print(item) # print(price_url) # 构建价格请求 yield scrapy.Request(price_url, callback=self.parse_price, meta={'item': item}) def parse_price(self, response): # 解析价格 item = response.meta['item'] # 思路: 如果有促销价格, 就使用促销价格, 如果没有就使用网络价格 price = re.findall('"promotionPrice":\s*"(\d+.\d+)"', response.text) if len(price) == 0: price = re.findall('"netPrice":\s*"(\d+.\d+)"', response.text) # 获取价格信息 item['price'] = price[0] # print(item) # 把数据交给引擎 yield item
the-stack_0_16528
# This file is part of Sequana software # # Copyright (c) 2016 - Sequana Development Team # # File author(s): # Thomas Cokelaer <[email protected]> # Dimitri Desvillechabrol <[email protected]>, # <[email protected]> # # Distributed under the terms of the 3-clause BSD license. # The full license is in the LICENSE file, distributed with this software. # # website: https://github.com/sequana/sequana # documentation: http://sequana.readthedocs.io # ############################################################################## """Sequana GUI. Can also be used for any snakemake pipeline""" import sys import os import shutil import re import time import psutil import subprocess as sp import argparse import signal import pkg_resources from PyQt5 import QtCore, QtGui from PyQt5 import QtWidgets as QW from PyQt5.QtCore import Qt, QTemporaryDir from sequana_pipetools import snaketools from sequanix.utils import YamlDocParser, on_cluster, rest2html from .ui import Ui_MainWindow from .widgets import ( Browser, QIPythonWidget, About, FileBrowser, SVGDialog, WarningMessage, CriticalMessage, PreferencesDialog, HelpDialog, SnakemakeDialog, Tools, QPlainTextEditLogger, Ruleform, ) import easydev import colorlog logger = colorlog.getLogger(__name__) def sigint_handler(*args): # pragma: no cover """Handler for the SIGINT signal.""" sys.stderr.write("\r") if ( QW.QMessageBox.question( None, "", "Are you sure you want to quit?", QW.QMessageBox.Yes | QW.QMessageBox.No, QW.QMessageBox.No ) == QW.QMessageBox.Yes ): QW.QApplication.quit() class BaseFactory(Tools): """Tab on top are all based on this abstract class It should provide access to a snakefile and its config file as well as working directory. Currently, the :class:`SequanaFactory` and :class:`GenericFactory` are implemented. """ def __init__(self, mode, run_button): super(BaseFactory, self).__init__() self.mode = mode self._run_button = run_button # And finally the working directory self._directory_browser = FileBrowser(directory=True) self._directory_browser.clicked_connect(self._switch_off_run) def _switch_off_run(self): # pragma: no cover self.debug("Switching off run button") self._run_button.setEnabled(False) def copy(self, source, target, force): # pragma: no cover if os.path.exists(target) and force is False: save_msg = WarningMessage("The file <i>{0}</i> already exists in the working directory".format(source)) save_msg.setInformativeText("Do you want to overwrite it?") save_msg.setStandardButtons(QW.QMessageBox.Yes | QW.QMessageBox.Discard | QW.QMessageBox.Cancel) save_msg.setDefaultButton(QW.QMessageBox.Yes) # Yes == 16384 # Save == 2048 retval = save_msg.exec_() if retval in [16384, 2048]: self.warning("Overwritting %s" % target) super(BaseFactory, self).copy(source, target) else: super(BaseFactory, self).copy(source, target) def _copy_snakefile(self, force=False): # pragma: no cover if self.snakefile is None: self.info("No pipeline selected yet") return # nothing to be done if self.directory is None: self.info("No working directory selected yet (copy snakefile)") return # source and target filenames target = self.directory + os.sep + os.path.basename(self.snakefile) if os.path.exists(target) and easydev.md5(target) == easydev.md5(self.snakefile): self.info("Target and source (pipeline) are identical. Skipping copy.") # if target and source are identical, nothing to do return # if filename are identical but different, do we want to overwrite it ? if os.path.basename(self.snakefile) == target: self.warning("%s exists already in %s" % (self.snakefile, self.directory)) return self.info("Copying snakefile in %s " % self.directory) self.copy(self.snakefile, target, force=force) def _copy_configfile(self): # pragma: no cover if self.configfile is None: self.info("No config selected yet") return # nothing to be done if self._directory_browser.path_is_setup() is False: self.info("No working directory selected yet (copy config)") return # FIXME # THis does not check the formatting so when saved, it is different # from original even though parameters are the same... target = self.directory + os.sep + os.path.basename(self.configfile) if os.path.exists(target) and easydev.md5(target) == easydev.md5(self.configfile): self.info("Target and source (pipeline) are identical. Skipping copy.") return self.info("Copying config in %s " % self.directory) self.copy(self.configfile, self.directory) def _get_directory(self): filename = self._directory_browser.get_filenames() if len(filename): return filename else: return None directory = property(_get_directory) def __repr__(self): return "%s Factory" % self.mode class SequanaFactory(BaseFactory): def __init__(self, run_button, combobox): super(SequanaFactory, self).__init__("sequana", run_button) self._imported_config = None self._choice_button = combobox # Some widgets to be used: a file browser for paired files fastq_filter = "Fastq file (*.fastq *.fastq.gz *.fq *.fq.gz)" self._sequana_paired_tab = FileBrowser(paired=True, file_filter=fastq_filter) self._sequana_readtag_label2 = QW.QLabel("Read tag (e.g. _[12].fastq)") self._sequana_readtag_lineedit2 = QW.QLineEdit("_R[12]_") # Set the file browser input_directory tab self._sequana_directory_tab = FileBrowser(directory=True) self._sequana_readtag_label = QW.QLabel("Read tag (e.g. _[12].fastq)") self._sequana_readtag_lineedit = QW.QLineEdit("_R[12]_") self._sequana_pattern_label = QW.QLabel("<div><i>Optional</i> pattern (e.g., Samples_1?/*fastq.gz)</div>") self._sequana_pattern_lineedit = QW.QLineEdit() # triggers/connectors self._sequana_directory_tab.clicked_connect(self._switch_off_run) self._choice_button.activated.connect(self._switch_off_run) self._sequana_paired_tab.clicked_connect(self._switch_off_run) def _get_pipeline(self): index = self._choice_button.currentIndex() if index == 0: return None else: return self._choice_button.currentText() pipeline = property(_get_pipeline) def _get_snakefile(self): if self.pipeline: module = snaketools.Module(self.pipeline) return module.snakefile snakefile = property(_get_snakefile) def _get_configfile(self): if self.pipeline: module = snaketools.Module(self.pipeline) return module.config configfile = property(_get_configfile) def _get_clusterconfigfile(self): if self.pipeline: module = snaketools.Module(self.pipeline) return module.cluster_config clusterconfigfile = property(_get_clusterconfigfile) def _get_multiqcconfigfile(self): if self.pipeline: module = snaketools.Module(self.pipeline) return module.multiqc_config multiqcconfigfile = property(_get_multiqcconfigfile) def _get_schemafile(self): if self.pipeline: module = snaketools.Module(self.pipeline) return module.schema_config schemafile = property(_get_schemafile) def _get_config(self): if self._imported_config: cfg = snaketools.SequanaConfig(self._imported_config) return cfg if self.configfile: try: cfg = snaketools.SequanaConfig(self.configfile) return cfg except AssertionError: self.warning("Warning: could not parse the config file") return config = property(_get_config) def __repr__(self): # pragma: no cover in1 = self._sequana_directory_tab.get_filenames() in2 = self._sequana_paired_tab.get_filenames() txt = super(SequanaFactory, self).__repr__() txt += "\npipeline:%s\ninput:\n - %s\n - %s\n - directory:%s\n" if self.clusterconfigfile: txt += " - cluster config: %s\n" % self.clusterconfigfile if self.schemafile: txt += " - schema config: %s" % self.schemafile if self.multiqcconfigfile: txt += " - schema config: %s" % self.multiqcconfigfile return txt % (self.pipeline, in1, in2, self.directory) class GenericFactory(BaseFactory): def __init__(self, run_button): super(GenericFactory, self).__init__("generic", run_button) # Define the Snakefile browser and config widgets self._snakefile_browser = FileBrowser(directory=False) self._config_browser = FileBrowser(directory=False, file_filter="YAML file (*.json *.yaml *.yml)") # when a snakefile or config is chosen, switch off run button self._config_browser.clicked_connect(self._switch_off_run) self._snakefile_browser.clicked_connect(self._switch_off_run) self._schema = None self._multiqcconfigfile = None def _return_none(self, this): if this is None or len(this) == 0: return None else: return this def _get_snakefile(self): return self._return_none(self._snakefile_browser.get_filenames()) snakefile = property(_get_snakefile) def _get_configfile(self): return self._return_none(self._config_browser.get_filenames()) configfile = property(_get_configfile) def _get_schemafile(self): return self._return_none(self._schema) schemafile = property(_get_schemafile) def _get_multiqcconfigfile(self): return self._return_none(self._multiqcconfigfile) multiqcconfigfile = property(_get_multiqcconfigfile) def _get_config(self): # pragma: no cover filename = self._return_none(self._config_browser.get_filenames()) if filename: try: configfile = snaketools.SequanaConfig(filename) except AssertionError: self.critical("Could not parse the config file %s" % filename) return except Exception: self.critical("Could not parse the config file %s. 2" % filename) return return configfile config = property(_get_config) def is_runnable(self): flag1 = self._directory_browser.path_is_setup() flag2 = self._snakefile_browser.path_is_setup() flag3 = self._config_browser.path_is_setup() # flag1 and flag2 are compulsary # flag3 (configfile) is most tricky to handle since it may be required # or not. So we just deal with the flag1 and 2 return flag1 and flag2 def __repr__(self): txt = super(GenericFactory, self).__repr__() txt += "\nsnakefile:%s\nconfigfile:%s\ndirectory:%s\nschema:%s\nmultiqcconfigfile:%s" return txt % (self.snakefile, self.configfile, self.directory, self.schemafile, self.multiqcconfigfile) class SequanixGUI(QW.QMainWindow, Tools): """ If quiet, progress bar cannot work. - do not copy again requirements if already there - extension of the different widgets ? Developer Guide ------------------ - The GUI is designed with qt designer as much as possible. - All GUI objects are in the **ui** attributes. Additional dialog such as the snakemake and preferences dialog have their own modules and stored in attributes ending in _dialog """ _not_a_rule = {"requirements", "gatk_bin", "input_directory", "input_pattern", "ignore"} _browser_keywords = {"reference"} _to_exclude = ["atac-seq", "compressor"] def __init__(self, parent=None, ipython=True, user_options={}): super(SequanixGUI, self).__init__(parent=parent) colorlog.getLogger().setLevel("INFO") colorlog.info("Welcome to Sequana GUI (aka Sequanix)") self._tempdir = QTemporaryDir() self.shell = "" self.shell_error = "" self._colors = { "green": QtGui.QColor(0, 170, 0), "red": QtGui.QColor(170, 0, 0), "orange": QtGui.QColor(170, 150, 0), "blue": QtGui.QColor(0, 90, 154), } # some global attributes self._undefined_section = "Parameters in no sections/rules" # self._config = None # Set the regex to catch steps in the progres bar self._step_regex = re.compile("([0-9]+) of ([0-9]+) steps") self._ipython_tab = ipython self.initUI() self.read_settings() # this should be after initUI and read_settings self.set_style_sheet() # User option. def isset(options, key): if key in options and getattr(options, key): return True else: return False if isset(user_options, "wkdir"): self.info("Setting working directory using user's argument %s" % user_options.wkdir) if os.path.exists(user_options.wkdir) is False: easydev.mkdirs(user_options.wkdir) # We must use the absolute path abspath = os.path.abspath(user_options.wkdir) self.sequana_factory._directory_browser.set_filenames(abspath) self.generic_factory._directory_browser.set_filenames(abspath) if isset(user_options, "snakefile"): filename = user_options.snakefile if os.path.exists(filename) is True: self.info("Setting snakefile using user's argument %s" % user_options.snakefile) self.generic_factory._snakefile_browser.set_filenames(filename) else: self.error("%s does not exist" % filename) self.ui.tabs_pipeline.setCurrentIndex(1) if isset(user_options, "configfile"): filename = user_options.configfile if os.path.exists(filename) is True: self.info("Setting config file using user's argument %s" % user_options.configfile) self.generic_factory._config_browser.set_filenames(filename) self.ui.tabs_pipeline.setCurrentIndex(1) if isset(user_options, "pipeline"): # pragma: no cover self.info("Setting Sequana pipeline %s " % user_options.pipeline) pipelines = self.sequana_factory.valid_pipelines if user_options.pipeline in pipelines: index = self.ui.choice_button.findText(user_options.pipeline) self.ui.choice_button.setCurrentIndex(index) # set focus on pipeline tab self.ui.tabs_pipeline.setCurrentIndex(0) else: self.error("unknown pipeline. Use one of %s " % pipelines) if isset(user_options, "input_directory"): # pragma: no cover directory = user_options.input_directory self.info("Setting Sequana input directory") if directory and os.path.exists(directory) is False: self.warning("%s does not exist" % directory) elif directory: abspath = os.path.abspath(user_options.input_directory) self.sequana_factory._sequana_directory_tab.set_filenames(abspath) self.ui.tabs_pipeline.setCurrentIndex(0) self.ui.tabWidget.setCurrentIndex(0) if isset(user_options, "input_files"): directory = user_options.input_files self.info("Setting Sequana input files") dirtab = self.sequana_factory._sequana_paired_tab dirtab._set_paired_filenames([os.path.abspath(f) for f in user_options.input_files]) self.ui.tabs_pipeline.setCurrentIndex(0) self.ui.tabWidget.setCurrentIndex(1) if isset(user_options, "sequana_configfile"): cfg = user_options.sequana_configfile self.info("Replace Sequana config file") self.menuImportConfig(cfg) if isset(user_options, "schemafile"): schemafile = user_options.schemafile self.info("Set the schema file") self.menuImportSchema(schemafile) # We may have set some pipeline, snakefile, working directory self.create_base_form() self.fill_until_starting() def initUI(self): # The logger is not yet set, so we use the module directly colorlog.info("Initialising GUI") # Set up the user interface from Designer. This is the general layout # without dedicated widgets and connections self.ui = Ui_MainWindow() self.ui.setupUi(self) # 2 more dialogs from designer self.preferences_dialog = PreferencesDialog(self) self.snakemake_dialog = SnakemakeDialog(self) self.preferences_dialog.ui.buttonBox.accepted.connect(self.set_level) # The IPython dialog, which is very useful for debugging if self._ipython_tab is True: self.ipyConsole = QIPythonWidget( customBanner="Welcome to Sequanix embedded ipython console\n" + "The entire GUI interface is stored in the variable gui\n" + "Note also that you can use this interface as a shell \n" + "command line interface preceding your command with ! character\n" ) # self.ipyConsole.printText("The variable 'foo' andion.") self.ipyConsole.execute("from sequana import *") self.ipyConsole.execute("import sequana") self.ipyConsole.execute("") self.ipyConsole.pushVariables({"gui": self}) self.ui.layout_ipython.addWidget(self.ipyConsole) # layout for config file parameters widget_form = QW.QWidget() self.form = QW.QVBoxLayout(widget_form) self.form.setSpacing(10) self.ui.scrollArea.setWidget(widget_form) self.ui.scrollArea.setWidgetResizable(True) self.ui.scrollArea.setMinimumHeight(200) # layout for the snakemake output self.output = QW.QTextEdit() self.output.setReadOnly(True) self.ui.layout_snakemake.addWidget(self.output) # Add the new logging box widget to the layout self.logTextBox = QPlainTextEditLogger(self) self.logTextBox.setFormatter( colorlog.ColoredFormatter( "%(log_color)s%(asctime)s - %(levelname)s - %(message)s", log_colors={ "DEBUG": "cyan", "INFO": "green", "WARNING": "yellow", "ERROR": "red", "CRITICAL": "red,bg_white", }, ) ) colorlog.getLogger().addHandler(self.logTextBox) self.set_level() self.ui.layout_logger.addWidget(self.logTextBox.widget) # Connectors to actions related to the menu bar self.ui.actionQuit.triggered.connect(self.menuQuit) self.ui.action_import_configfile.triggered.connect(self.menuImportConfig) self.ui.action_import_schemafile.triggered.connect(self.menuImportSchema) self.ui.actionHelp.triggered.connect(self.menuHelp) self.ui.actionAbout.triggered.connect(self.menuAbout) self.ui.actionSnakemake.triggered.connect(self.snakemake_dialog.exec_) self.ui.actionPreferences.triggered.connect(self.preferences_dialog.exec_) self.preferences_dialog.ui.preferences_options_general_tooltip_value.clicked.connect(self.set_style_sheet) # connectors related to the pipeline tabs (pipeline/generic) self.set_sequana_pipeline() self.set_generic_pipeline() # The run/save/dag footer buttons self.connect_footer_buttons() self.process = QtCore.QProcess(self) self.process.started.connect(lambda: self.ui.run_btn.setEnabled(False)) self.process.started.connect(lambda: self.ui.stop_btn.setEnabled(True)) self.process.started.connect(lambda: self.ui.unlock_btn.setEnabled(False)) self.process.started.connect(lambda: self.start_progress) self.process.started.connect(lambda: self.ui.save_btn.setEnabled(False)) self.process.started.connect(lambda: self.ui.tabs_pipeline.setEnabled(False)) self.process.finished.connect(lambda: self.ui.run_btn.setEnabled(True)) self.process.finished.connect(lambda: self.ui.stop_btn.setEnabled(False)) self.process.finished.connect(lambda: self.ui.unlock_btn.setEnabled(True)) self.process.finished.connect(lambda: self.ui.save_btn.setEnabled(True)) self.process.finished.connect(lambda: self.ui.tabs_pipeline.setEnabled(True)) self.process.finished.connect(self.end_run) self.process.readyReadStandardOutput.connect(self.snakemake_data_stdout) self.process.readyReadStandardError.connect(self.snakemake_data_error) # This is for the show dag btn. Created here once for all self.process1 = QtCore.QProcess(self) self.process2 = QtCore.QProcess(self) self.ui.tabWidget.currentChanged.connect(lambda: self.ui.run_btn.setEnabled(False)) # if we are on one of those clusters, switch to the cluster choice in # the pipeline control combo box if on_cluster() is True: self.ui.comboBox_local.setCurrentText("cluster") # connect show advanced button with the until/starting frame self.ui.show_advanced_control.clicked.connect(self.click_advanced) self.ui.frame_control.hide() def _get_opacity(self): dialog = self.preferences_dialog box = dialog.ui.preferences_options_general_tooltip_value if box.isChecked(): return 255 else: return 0 tooltip_opacity = property(_get_opacity) def set_style_sheet(self): self.setStyleSheet( """QToolTip { background-color: #aabbcc; color: black; border-style: double; border-width: 3px; border-color: green; border-radius: 5px; margin:5px; opacity: %s; } ; """ % self.tooltip_opacity ) # |-----------------------------------------------------| # | MENU related | # |-----------------------------------------------------| def menuImportConfig(self, configfile=None): # pragma: no cover # The connector send a False signal but default is None # so we need to handle the two cases if self.snakefile is None: self.error("You must set a pipeline first") msg = WarningMessage(("You must set a pipeline first")) msg.exec_() return if configfile and os.path.exists(configfile) is False: self.error("Config file (%s) does not exists" % configfile) return if configfile is None or configfile is False: self.info("Importing config file.") file_filter = "YAML file (*.json *.yaml *.yml)" browser = FileBrowser(file_filter=file_filter) browser.browse_file() configfile = browser.paths if configfile: self.sequana_factory._imported_config = configfile else: self.sequana_factory._imported_config = None self.create_base_form() def menuImportSchema(self, schemafile=None): # pragma: no cover if schemafile: self.generic_factory._schema = schemafile return self.info("Importing YAML schema file.") file_filter = "YAML file (*.yaml *.yml)" browser = FileBrowser(file_filter=file_filter) browser.browse_file() schemafile = browser.paths if schemafile: self.generic_factory._schema = schemafile else: self.generic_factory._schema = None def menuAbout(self): from sequana import version url = "sequana.readthedocs.io" widget = About() widget.setText("Sequana version %s " % version) widget.setInformativeText( """ Online documentation on <a href="http://%(url)s">%(url)s</a> <br> <br> Authors: Thomas Cokelaer and Dimitri Desvillechabrol, 2017-2018 """ % {"url": url} ) widget.setWindowTitle("Sequana") # widget.setStandardButtons(QW.QMessageBox.Ok) retval = widget.exec_() if retval == QW.QMessageBox.Ok: widget.close() def menuHelp(self): url = "sequana.readthedocs.io" pipelines_text = "<ul>\n" url = "http://sequana.readthedocs.io/en/master" for pipeline in snaketools.pipeline_names: pipelines_text += ' <li><a href="%(url)s/pipeline_%(name)s.html">%(name)s</a></li>\n' % { "url": url, "name": pipeline, } pipelines_text += "</ul>" msg = HelpDialog(pipelines=pipelines_text) retval = msg.exec_() if retval == QW.QMessageBox.Ok: msg.close() def menuQuit(self): self._quit_msg = WarningMessage("Do you really want to quit ?") self._quit_msg.setStandardButtons(QW.QMessageBox.Yes | QW.QMessageBox.No) self._quit_msg.setDefaultButton(QW.QMessageBox.No) quit_answer = self._quit_msg.exec_() if quit_answer == QW.QMessageBox.Yes: self.close() def set_level(self): # Set the level of the logging system pref = self.preferences_dialog.ui level = pref.preferences_options_general_logging_value.currentText() #level = getattr(colorlog.logging.logging, level) level = colorlog.getLogger().level colorlog.getLogger().setLevel(level) # --------------------------------------------------------------- # More GUI / reading the snakefile (sequana or generic) # --------------------------------------------------------------- def set_sequana_pipeline(self): # The pipeline connectors pipelines = sorted(snaketools.pipeline_names) pipelines = [this for this in pipelines if this not in self._to_exclude] self.ui.choice_button.addItems(pipelines) self.ui.choice_button.activated[str].connect(self._update_sequana) # FIXME do we want to use this ? self.ui.choice_button.installEventFilter(self) # populate the factory with the choice button self.sequana_factory = SequanaFactory(combobox=self.ui.choice_button, run_button=self.ui.run_btn) self.sequana_factory.valid_pipelines = pipelines # a local alias saf = self.sequana_factory # add widgets for the working dir self.ui.layout_sequana_wkdir.addWidget(saf._directory_browser) # add widget for the input sample # self.ui.layout_sequana_input_files.addWidget(saf._sequana_paired_tab) # hlayout = QW.QHBoxLayout() # hlayout.addWidget(saf._sequana_readtag_label2) # hlayout.addWidget(saf._sequana_readtag_lineedit2) # self.ui.layout_sequana_input_files.addLayout(hlayout) # add widget for the input directory self.ui.layout_sequana_input_dir.addWidget(saf._sequana_directory_tab) hlayout = QW.QHBoxLayout() hlayout.addWidget(saf._sequana_readtag_label) hlayout.addWidget(saf._sequana_readtag_lineedit) self.ui.layout_sequana_input_dir.addLayout(hlayout) hlayout = QW.QHBoxLayout() hlayout.addWidget(saf._sequana_pattern_label) hlayout.addWidget(saf._sequana_pattern_lineedit) self.ui.layout_sequana_input_dir.addLayout(hlayout) @QtCore.pyqtSlot(str) def _update_sequana(self, index): """Change options form when user changes the pipeline.""" if self.ui.choice_button.findText(index) == 0: self.clear_form() self.rule_list = [] self.fill_until_starting() return self.info("Reading sequana %s pipeline" % index) self.create_base_form() # Is there a cluster config file ? dialog = self.snakemake_dialog.ui if self.sequana_factory.clusterconfigfile: dialog.snakemake_options_cluster_cluster__config_value.set_filenames(self.sequana_factory.clusterconfigfile) else: dialog.snakemake_options_cluster_cluster__config_value.set_filenames("") self.fill_until_starting() self.switch_off() # Reset imported config file in SequanaFactory self.sequana_factory._imported_config = None def set_generic_pipeline(self): self.generic_factory = GenericFactory(self.ui.run_btn) gaf = self.generic_factory # The config file connectors gaf._config_browser.clicked_connect(self.create_base_form) # Update the main UI with self.ui.layout_generic_snakefile.addWidget(gaf._snakefile_browser) self.ui.layout_generic_config.addWidget(gaf._config_browser) self.ui.layout_generic_wkdir.addWidget(gaf._directory_browser) # When user press the cancel button, the config file browser is reset self.ui.cancel_push_button.clicked.connect(self.generic_factory._config_browser.set_empty_path) # --------------------------------------------------------------------- # Footer connectors # --------------------------------------------------------------------- def connect_footer_buttons(self): self.ui.run_btn.setEnabled(False) self.ui.run_btn.clicked.connect(self.click_run) self.ui.stop_btn.clicked.connect(self.click_stop) self.ui.stop_btn.setEnabled(False) self.ui.unlock_btn.clicked.connect(self.ui.run_btn.setEnabled) self.ui.unlock_btn.clicked.connect(self.unlock_snakemake) self.ui.unlock_btn.setEnabled(True) self.ui.report_btn.setEnabled(True) self.ui.report_btn.clicked.connect(self.open_report) self.ui.save_btn.clicked.connect(self.save_project) self.ui.dag_btn.setEnabled(False) self.ui.dag_btn.clicked.connect(self.show_dag) # ----------------------------------------------------------------- # function to link to the factory (sequana or generic) # ----------------------------------------------------------------- def _get_mode(self): # figure out if we are dealing with a sequana pipeline or not index = self.ui.tabs_pipeline.currentIndex() if index == 0: return "sequana" elif index == 1: return "generic" mode = property(_get_mode) def _get_factory(self): return getattr(self, "%s_factory" % self.mode) factory = property(_get_factory) def _get_config(self): return getattr(self, "%s_factory" % self.mode).config config = property(_get_config) def _get_configfile(self): return getattr(self, "%s_factory" % self.mode).configfile configfile = property(_get_configfile) def _get_snakefile(self): return getattr(self, "%s_factory" % self.mode).snakefile snakefile = property(_get_snakefile) def _get_working_dir(self): return getattr(self, "%s_factory" % self.mode).directory working_dir = property(_get_working_dir) # ---------------------------------------------------------------------- # Snakemake related (config, running) # ---------------------------------------------------------------------- def fill_until_starting(self): active_list = [w.get_name() for w in self.rule_list if w.get_do_rule()] self.ui.until_box.clear() self.ui.until_box.addItems([None] + active_list) self.ui.starting_box.clear() self.ui.starting_box.addItems([None] + active_list) # ---------------------------------------------------------- # Config file related # --------------------------------------------------------- def _set_focus_on_config_tab(self): # Set focus on config file if self._ipython_tab: self.ui.tabs.setCurrentIndex(3) else: self.ui.tabs.setCurrentIndex(2) # -------------------------------------------------------------------- # Advanced control # -------------------------------------------------------------------- def click_advanced(self): if self.ui.frame_control.isHidden(): self.ui.frame_control.show() else: self.ui.frame_control.hide() # -------------------------------------------------------------------- # Others # -------------------------------------------------------------------- def clear_layout(self, layout): """Clean all widgets contained in a layout.""" while layout.count(): child = layout.takeAt(0) if child.widget() is not None: child.widget().deleteLater() elif child.layout() is not None: self.clear_layout(child.layout()) # -------------------------------------------------------------------- # Running snakemake # -------------------------------------------------------------------- def _clean_line(self, line): # TODO: surely there is a better way to do that and not overlap # with tools.py ... line = line.replace("b'\\r'", "") line = line.replace("b'\r'", "") line = line.replace("b'\\r '", "") line = line.replace("b'\r '", "") line = line.replace("b' '", "") line = line.replace("\\t", "&nbsp;" * 4) line = line.replace("'b'", "") for this in ["b'", 'b"', "\r"]: if line.startswith(this): line = line.replace(this, "") if line.startswith('b"'): line = line.replace('b"', "") line = line.rstrip("\\x1b[0m") line = line.replace("\\x1b[33m", "") return line def snakemake_data_stdout(self): # pragma: no cover """Read standard output of snakemake process""" data = str(self.process.readAllStandardOutput()) self.shell += data self.update_progress_bar(data) for this in data.split("\\n"): line = this.strip() if line and len(line) > 3 and "complete in" not in line: # prevent all b'' strings line = self._clean_line(line) if len(line.strip()) == 0: continue self.output.append('<font style="color:blue">' + line + "</font>") def snakemake_data_error(self): """Read error output of snakemake process""" error = str(self.process.readAllStandardError()) self.shell_error += error self.update_progress_bar(error) for this in error.split("\\n"): line = this.strip() if line and len(line) > 3 and "complete in" not in line: # prevent all b'' strings line = self._clean_line(line) if line.startswith("b'"): line = line[2:] line.rstrip("'") grouprex = self._step_regex.findall(line) if grouprex: self.output.append('<font style="color:orange">' + line + "</font>") elif "Error" in line: self.output.append('<font style="color:red">' + line + "</font>") else: self.output.append('<font style="color:green">' + line + "</font>") def get_until_starting_option(self): """Return list with starting rule and end rule.""" until_rule = self.ui.until_box.currentText() starting_rule = self.ui.starting_box.currentText() option = [] if until_rule: option += ["--no-hooks", "-U", until_rule] if starting_rule: option += ["-R", starting_rule] return option def _get_snakemake_command(self, snakefile): # pragma: no cover """If the cluster option is selected, then the cluster field in the snakemake menu must be set to a string different from empty string. If we are on TARS, we also must set the option to cluster (not local) If one of the previous cases is true, this function returns None """ dialog = self.snakemake_dialog # an alias snakemake_line = ["-s", snakefile, "--stat", "stats.txt", "-p"] if self.ui.comboBox_local.currentText() == "local": if on_cluster(): msg = WarningMessage( ( "You are on TARS cluster. Please set the" "batch options and select the cluster option (not local)" ) ) msg.exec_() return None snakemake_line += dialog.get_snakemake_local_options() elif self.ui.comboBox_local.currentText() == "cluster": cluster = dialog.ui.snakemake_options_cluster_cluster_value.text() if len(cluster.strip()) == 0: msg = WarningMessage( ( "You selected a 'cluster run' but the " "cluster preferences are not set. Either switch to a local " "run or set a correct string in the Snakemake options menu " "(in cluster tab/ cluster field.)" ) ) msg.exec_() return None snakemake_line += dialog.get_snakemake_cluster_options() # cluster_config = dialog.ui.snakemake_options_cluster_config_value.text() # cluster_config = cluster_config.strip() # if len(cluster_config): # snakemake_line += ["--cluster-config", cluster_config] snakemake_line += dialog.get_snakemake_general_options() snakemake_line += self.get_until_starting_option() others = self.snakemake_dialog.ui.snakemake_options_general_custom.text() if others.strip(): snakemake_line += others.split() if self.configfile: configfile = os.path.basename(self.configfile) snakemake_line += ["--configfile", configfile] return snakemake_line def _set_pb_color(self, color): self.ui.progressBar.setStyleSheet( """ QProgressBar {{ color: black; border: 2px solid grey; margin: 2px; border-radius: 5px; text-align: center; }} QProgressBar::chunk {{ background: {}; }}""".format( color ) ) # pal = self.ui.progressBar.palette() # pal.setColor(QtGui.QPalette.Highlight, self._colors['blue']) # self.ui.progressBar.setPalette(pal) def click_run(self): # set focus on the snakemake output if self.snakefile is None or self.working_dir is None: self.warning("Working directory or snakefile not set.") return self.ui.tabs.setCurrentIndex(0) self.shell_error = "" self.shell = "" # Prepare the command and working directory. if self.working_dir is None: self.warning("Set the working directory first") return # We copy the sequana and genereic snakefile into a filename called # Snakefile snakefile = self.working_dir + os.sep + os.path.basename(self.snakefile) if os.path.exists(snakefile) is False: self.critical("%s does not exist" % snakefile) return snakemake_args = self._get_snakemake_command(snakefile) if snakemake_args is None: return # the progress bar self._set_pb_color(self._colors["blue"].name()) self.ui.progressBar.setValue(1) # Start process # If an argument contains spaces, we should use quotes. However, # with PyQt quotes must be escaped args = [] for this in snakemake_args: if re.search(r"\s", this) is True: args.append('"%s"' % this) else: args.append(this) snakemake_args = args self.info("Starting process with snakemake %s " % " ".join(snakemake_args)) self.output.clear() self.process.setWorkingDirectory(self.working_dir) self.process.start("snakemake", snakemake_args) # ------------------------------------------------------------------- # Create the base form # ------------------------------------------------------------------- def create_base_form(self): """Create form with all options necessary for a pipeline. :: ######################################################## # valid python docstring to be interepreted by sphinx # # section: # item1: 10 # item2: 20 """ self.rule_list = [] if self.config is None: self.clear_form() return self.info("Creating form based on config file") self.clear_form() rules_list = list(self.config._yaml_code.keys()) # We do not sort the list of rules anymore so that it is like in the # config file # rules_list.sort() self.necessary_dict = {} # For each section, we create a widget (RuleForm). For isntance, first, # one is accessible as follows: gui.form.itemAt(0).widget() docparser = YamlDocParser(self.configfile) import ruamel.yaml.comments for count, rule in enumerate(rules_list): self.debug("Scanning rule %s" % rule) # Check if this is a dictionnary contains = self.config._yaml_code[rule] # If this is a section/dictionary, create a section if isinstance(contains, (ruamel.yaml.comments.CommentedMap, dict)) and ( rule not in SequanixGUI._not_a_rule ): # Get the docstring from the Yaml section/rule docstring = docparser._block2docstring(rule) # Get any special keywords specials = docparser._get_specials(rule) # self.ui.preferences_options_general_addbrowser_value dialog = self.preferences_dialog.ui option = dialog.preferences_options_general_addbrowser_value.text() option = option.strip() option = option.replace(";", " ").replace(",", " ") if len(option): keywords = option.split() else: keywords = [] keywords += self._browser_keywords keywords = list(set(keywords)) rule_box = Ruleform(rule, contains, count, keywords, specials=specials) rule_box.connect_all_option(lambda: self.ui.run_btn.setEnabled(False)) # Try to interpret it with sphinx try: self.debug("parsing docstring of %s" % rule) comments = rest2html(docstring).decode() rule_box.setToolTip(comments) except Exception as err: print(err) self.warning("Could not interpret docstring of %s" % rule) rule_box.setToolTip("") self.form.addWidget(rule_box) self.rule_list.append(rule_box) rule_box.connect_do(self.fill_until_starting) else: # this is a parameter in a section, which may be # a list, a None or something else if isinstance(contains, list): self.necessary_dict = dict(self.necessary_dict, **{rule: contains}) elif contains is None or contains in ["''", '""']: self.necessary_dict = dict(self.necessary_dict, **{rule: None}) else: self.necessary_dict = dict(self.necessary_dict, **{rule: "{0}".format(contains)}) # if this is a generic pipeline, you may have parameters outside of a # section if self.mode == "generic" and len(self.necessary_dict): rule_box = Ruleform(self._undefined_section, self.necessary_dict, -1, generic=True) self.form.addWidget(rule_box) self._set_focus_on_config_tab() # ---------------------------------------------------------- # STOP footer button # ---------------------------------------------------------- def click_stop(self): """The stop button""" self._set_pb_color(self._colors["orange"].name()) # For windows: # http://stackoverflow.com/questions/8232544/how-to-terminate-a-process-without-os-kill-osgeo4w-python-2-5 if self.process.state() != 0: pid = self.process.pid() self.warning("Process {} running , stopping it... ".format(pid)) # We must use a ctrl+C interruption so that snakemake # handles the interruption smoothly. However, child processes # are lost so we also need to get their IDs and kill them. self.info("killing the main snakemake process. This may take a few seconds ") try: self.info("process pid={} being killed".format(self.process.pid())) pid_children = [this.pid for this in psutil.Process(pid).children(recursive=True)] # Kills the main process os.kill(pid, signal.SIGINT) # And the children for this in pid_children: # pragma: no cover self.info("Remove pid {} ".format(this)) try: os.kill(this, signal.SIGINT) except Exception as err: print(err) time.sleep(4) except Exception as err: print(err) pass # already stopped ? self.info("Process killed successfully.") self.ui.save_btn.setEnabled(True) self.ui.run_btn.setEnabled(True) self.ui.stop_btn.setEnabled(False) self.ui.tabs_pipeline.setEnabled(True) # -------------------------------------------------------------------- # Progress bar # -------------------------------------------------------------------- def update_progress_bar(self, line): """Parse with a regex to retrieve current step and total step.""" grouprex = self._step_regex.findall(line) # Use last "x of y" (not the first item at position 0) if grouprex: step = int(grouprex[-1][0]) / float(grouprex[-1][1]) * 100 self.ui.progressBar.setValue(step) if "Nothing to be done" in line: self.ui.progressBar.setValue(100) def start_progress(self): self.ui.progressBar.setRange(0, 1) def end_run(self): # pragma: no cover if self.ui.progressBar.value() >= 100: self._set_pb_color(self._colors["green"].name()) self.info("Run done. Status: successful") else: self._set_pb_color(self._colors["red"].name()) text = "Run manually to check the exact error or check the log." if "--unlock" in self.shell_error: text += "<br>You may need to unlock the directory. " text += "click on Unlock button" self.critical(text) return def _get_force(self): dialog = self.preferences_dialog box = dialog.ui.preferences_options_general_overwrite_value return box.isChecked() def _set_force(self, boolean): # pragma: no cover assert boolean in [True, False] dialog = self.preferences_dialog box = dialog.ui.preferences_options_general_overwrite_value box.setChecked(boolean) force = property(_get_force, _set_force) def save_project(self): # pragma: no cover self.info("Saving project") if self.configfile is None: if self.mode == "generic": if self.generic_factory.is_runnable(): self.critical("save_project: Generic case without config file") self._save_teardown() else: msg = WarningMessage("You must select a Snakefile and a working directory.") msg.exec_() elif self.mode == "sequana": msg = WarningMessage("You must choose a pipeline first.") msg.exec_() return if self.working_dir is None: self.critical("save_project: no working dir: return") msg = WarningMessage("You must select a working directory first.") msg.exec_() return try: form_dict = dict(self.create_form_dict(self.form), **self.necessary_dict) except AttributeError as err: self.error(err) msg = WarningMessage("You must choose a pipeline before saving.") msg.exec_() return # get samples names or input_directory if self.mode == "sequana": self.info("Sequana case") flag1 = self.sequana_factory._sequana_directory_tab.get_filenames() flag2 = self.sequana_factory._sequana_paired_tab.get_filenames() if ( self.ui.tabWidget.currentIndex() == 0 and len(flag1) == 0 or self.ui.tabWidget.currentIndex() == 1 and len(flag2) == 0 ): msg = WarningMessage("You must choose an input first.") msg.exec_() return filename = self.sequana_factory._sequana_directory_tab.get_filenames() form_dict["input_directory"] = filename # If pattern provided, the input_directory is reset but used in # the pattern as the basename pattern = self.sequana_factory._sequana_pattern_lineedit.text() if len(pattern.strip()): form_dict["input_pattern"] = filename form_dict["input_pattern"] += os.sep + pattern.strip() form_dict["input_directory"] = "" readtag = self.sequana_factory._sequana_readtag_lineedit.text() if len(readtag.strip()): form_dict["input_readtag"] = readtag else: form_dict["input_readtag"] = "_R[12]_" elif self.mode == "generic": # Here we save the undefined section in the form. if self._undefined_section in form_dict.keys(): for key, value in form_dict[self._undefined_section].items(): form_dict[key] = value del form_dict[self._undefined_section] self.info("Generic case") # Let us update the attribute with the content of the form # This uses the user's information cfg = self.config cfg.config.update(form_dict) cfg._update_yaml() self.cfg = cfg pref = self.preferences_dialog.ui box = pref.preferences_options_general_schema_value checked_schema = box.isChecked() if self.working_dir: # Save the configuration file if self.mode == "sequana": yaml_path = self.working_dir + os.sep + "config.yaml" self.warning("copy requirements (if any)") cfg.copy_requirements(target=self.working_dir) elif self.mode == "generic": yaml_path = os.sep.join((self.working_dir, os.path.basename(self.generic_factory.configfile))) if os.path.isfile(yaml_path) and self.force is False: save_msg = WarningMessage("The file <i>{0}</i> already exist".format(yaml_path)) save_msg.setInformativeText("Do you want to overwrite the file?") save_msg.setStandardButtons(QW.QMessageBox.Yes | QW.QMessageBox.Discard | QW.QMessageBox.Cancel) save_msg.setDefaultButton(QW.QMessageBox.Yes) # Yes == 16384 # Save == 2048 retval = save_msg.exec_() if retval in [16384, 2048]: self.info("Saving config file (exist already)") if checked_schema is False: cfg.save(yaml_path) else: ret = self._check_and_save_config(cfg, yaml_path) if ret is False: # we do not want to save the config file and call # _save_teardown return else: self.warning("Saving config file (does not exist)") if checked_schema is False: cfg.save(yaml_path) else: ret = self._check_and_save_config(cfg, yaml_path) if ret is False: # we do not want to save the config file and call # _save_teardown return # Save the configuration file for the cluster if self.mode == "sequana" and self.sequana_factory.clusterconfigfile: target = os.sep.join((self.working_dir, "cluster_config.json")) shutil.copy(self.sequana_factory.clusterconfigfile, target) # replace the name of the original file with the target one so # that the target can be edited. The target will also be used in # place of the original version when launnching snakemake! self.snakemake_dialog.ui.snakemake_options_cluster_cluster__config_value.set_filenames(target) # Save the multiqc_config file if provided in sequana pipeline if self.mode == "sequana" and self.sequana_factory.multiqcconfigfile: target = self.working_dir + os.sep + "multiqc_config.yaml" shutil.copy(self.sequana_factory.multiqcconfigfile, target) else: self.critical("Config file not saved (no wkdir)") msg = WarningMessage("You must set a working directory", self) msg.exec_() self.switch_off() return self._save_teardown() def _save_teardown(self): # Finally, save project and update footer run button self.factory._copy_snakefile(self.force) self.debug("Switching RUN and DAG button on") self.ui.run_btn.setEnabled(True) self.ui.dag_btn.setEnabled(True) def _check_and_save_config(self, cfg, yaml_path): # Here we save the config.yaml file when changed # However, before that if there is a schema, we can # use it. This is the case for some sequana pipelines # return False if the config is invalid and do not save it if self.mode == "sequana" and self.sequana_factory.schemafile is None: self.warning("No Schema found to validate the config file") if self.mode == "sequana" and self.sequana_factory.schemafile: schemafile = self.sequana_factory.schemafile elif self.mode == "generic" and self.generic_factory.schemafile: schemafile = self.generic_factory.schemafile else: schemafile = None if schemafile: # check that the config file is correct before saving it # only if we have a schema_config file. self.info("Checking config file with provided schema file.") # We save the config as a dummy temporary file to check it # if correct, we then save the file. If not, we provide an help # message from easydev import TempFile with TempFile(suffix=".yaml") as fout: # save a temporary version cfg.save(fout.name) import ruamel import warnings from pykwalify.core import Core # causes issue with ruamel.yaml 0.12.13. Works for 0.15 try: warnings.simplefilter("ignore", ruamel.yaml.error.UnsafeLoaderWarning) except: pass try: # open the config and the schema file c = Core(source_file=fout.name, schema_files=[schemafile]) except Exception as err: print(err) return False try: c.validate() except Exception as err: print(err) error_msg = "<b>CRITICAL: INVALID CONFIGURATION FILE</b>\n" error_msg += "<pre>" + str(err) + "</pre>" self.critical(error_msg) self.switch_off() msg = WarningMessage(error_msg, self) msg.exec_() return False cfg.save(yaml_path) def switch_off(self): self.debug("Switching RUN and DAG button off") self.ui.run_btn.setEnabled(False) self.ui.dag_btn.setEnabled(False) def _reset_schema(self): self.schemafile = None # ----------------------------------------------------------------------- # SAVE LOG in a files # ----------------------------------------------------------------------- def report_issues(self, filename="issue_debug.txt"): # save shell + shell_error in working directory as well as snakemake and # config file. with open(filename, "w") as fh: fh.write("\nsequanix logger ----------------------------------\n") try: file_logger = self.save_logger() with open(file_logger, "r") as fin: fh.write(fin.read()) except: pass fh.write("\nsequanix shell ----------------------------------\n") try: fh.writelines(self.shell) except: fh.write("No shell info") fh.write("\nsequanix shell error ------------------------------\n") try: fh.writelines(self.shell_error) except: fh.write("No shell error info") url = "https://github.com/sequana/sequana/issues " print("Created a file called {} to be posted on {}.".format(filename, url)) self.init_logger() # ----------------------------------------------------------------------- # UNLOCK footer button # ----------------------------------------------------------------------- def unlock_snakemake(self): if self.working_dir is None or self.snakefile is None: self.warning("working directory or snakefile not set") return # FIXME this does not work as expected self.ui.run_btn.setEnabled(False) if os.path.exists(self.snakefile) is False: self.warning("snakefile not found. should not happen") return self.cmd = ["snakemake", "-s", self.snakefile, "--unlock"] self.info("Running " + " ".join(self.cmd)) self.info("Please wait a second. Unlocking working directory") # focus on tab with snakemake output self.ui.tabs.setCurrentIndex(0) self.ui.tabs_pipeline.setEnabled(False) try: snakemake_proc = sp.Popen(self.cmd, cwd=self.working_dir) snakemake_proc.wait() except: self.critical("Issue while unlocking the directory") finally: self.ui.tabs_pipeline.setEnabled(True) self.info("unlocking done") self.output.append('<font style="color:brown">Unlocking working directory</font>') self.ui.run_btn.setEnabled(True) self.ui.stop_btn.setEnabled(False) # ----------------------------------------------------------------------- # DAG footer button # ----------------------------------------------------------------------- def show_dag(self): # pragma: no cover try: # This command should work on various platform, just in case # we add a try/except if easydev.cmd_exists("dot") is False: msg = "**dot** command not found. Use 'conda install graphviz' to install it." self.warning(msg) msg = WarningMessage((msg)) msg.exec_() return except: pass finally: self.info("Creating DAG image.") if self.snakefile is None: self.warning("No snakefile") return # We just need the basename because we will run it in the wkdir snakefile = os.path.basename(self.snakefile) snakemake_line = ["snakemake", "-s", snakefile] snakemake_line += ["--rulegraph"] if self.mode == "generic" and self.configfile: # make sure to copy the config file snakemake_line += ["--configfile"] snakemake_line += [os.path.basename(self.generic_factory.configfile)] snakemake_line += self.get_until_starting_option() # Where to save the SVG (temp directory) svg_filename = self._tempdir.path() + os.sep + "test.svg" self.info(snakemake_line) self.process1.setWorkingDirectory(self.working_dir) self.process1.setStandardOutputProcess(self.process2) self.process1.start("snakemake", snakemake_line[1:]) self.process2.start("dot", ["-Tsvg", "-o", svg_filename]) self.process1.waitForFinished(50000) self.process2.waitForFinished(50000) if os.path.exists(svg_filename): self.diag = SVGDialog(svg_filename) self.diag.show() else: msg = "Could not create the DAG file." error = str(self.process1.readAllStandardError()) msg = CriticalMessage(msg, error) msg.exec_() return def open_report(self): pref = self.preferences_dialog.ui filename = pref.preferences_options_general_htmlpage_value.text() if filename == "": filename = QW.QFileDialog.getOpenFileNames( self, "Select your HTML report", self.working_dir, "HTML files (*.html)" )[0] if len(filename) and os.path.exists(filename[0]): filename = filename[0] else: self.warning("No valid HTML selected and none specified in the preferences.") return else: # we have a filename hardcoded in the preferences if self.working_dir is None: self.error("Working directory not set yet") return filename = self.working_dir + os.sep + filename if os.path.exists(filename) is False: self.error("%s page does not exist. Check the preferences dialog." % filename) return else: self.info("Reading and openning %s" % filename) url = "file://" + filename # The browser executable itself self.browser = Browser(url) self.browser.show() def create_form_dict(self, layout): def _cleaner(value): # This is to save the YAML file correctly since the widgets tend to # convert None and empty strings as '""' or "''" if value in ["None", None, "", '""', "''"]: return None else: # this tries to convert to a list #issue #515 try: return eval(value) except: return value widgets = (layout.itemAt(i).widget() for i in range(layout.count())) form_dict = { w.get_name(): _cleaner(w.get_value()) if w.is_option() else self.create_form_dict(w.get_layout()) for w in widgets } return form_dict def clear_form(self): self.clear_layout(self.form) def eventFilter(self, source, event): """Inactivate wheel event of combobox""" if event.type() == QtCore.QEvent.Wheel and source is self.ui.choice_button: return True return False # --------------------------------------------------- # settings and close # --------------------------------------------------- def read_settings(self): self.info("Reading settings") settings = QtCore.QSettings("sequana_gui", "mainapp") if settings.value("tab_position") is not None: index = settings.value("tab_position") self.ui.tabs_pipeline.setCurrentIndex(int(index)) if settings.value("tab_generic_position") is not None: index = settings.value("tab_generic_position") self.ui.tabs_generic.setCurrentIndex(int(index)) if settings.value("tab_sequana_position") is not None: index = settings.value("tab_sequana_position") self.ui.tabs_sequana.setCurrentIndex(int(index)) if settings.value("tab_sequana_input_position") is not None: index = settings.value("tab_sequana_input_position") self.ui.tabWidget.setCurrentIndex(int(index)) def write_settings(self): settings = QtCore.QSettings("sequana_gui", "mainapp") # tab snakemake output/logger/ipython index = self.ui.tabs_pipeline.currentIndex() settings.setValue("tab_position", index) index = self.ui.tabs_generic.currentIndex() settings.setValue("tab_generic_position", index) index = self.ui.tabs_sequana.currentIndex() settings.setValue("tab_sequana_position", index) index = self.ui.tabWidget.currentIndex() settings.setValue("tab_sequana_input_position", index) def _close(self): self.write_settings() # end any process running that may be running self.click_stop() self._tempdir.remove() try: self.browser.close() except: pass def closeEvent(self, event): # Close button (red X) self._close() def close(self): # Menu or ctrl+q self._close() super().close() class Options(argparse.ArgumentParser): def __init__(self, prog="sequana_gui"): usage = """Sequanix (part of Sequana project) is a GUI for running Snakefiles For Sequana project, you can pre-filled sections as follows: sequanix -p quality_control -w analysis -i . to prefill the quality_control pipeline to used the local directory to search for input files (fastq.gz) and run the analysis in the working directory "analysis" For Generic snakefiles: sequanix -s SNAKEFILE -c CONFIGFILE -w analysis will run the snakefile (with its config file) into a working directory. """ description = """""" super(Options, self).__init__( usage=usage, prog=prog, description=description, formatter_class=easydev.SmartFormatter ) group = self.add_argument_group("GENERAL") group.add_argument("-w", "--working-directory", dest="wkdir", help="Set working directory", default=None) group.add_argument("-n", "--no-splash", dest="nosplash", action="store_true", help="No splash screen") group = self.add_argument_group("SEQUANA") group.add_argument("-p", "--pipeline", dest="pipeline", default=None, help="A valid sequana pipeline name") group_mut = group.add_mutually_exclusive_group() group_mut.add_argument( "-i", "--input-directory", dest="input_directory", default=None, help="input directory where to find the input data", ) group_mut.add_argument("-f", "--input-files", dest="input_files", default=None, nargs="*", help="input files") group.add_argument( "-C", "--replace-configfile", dest="sequana_configfile", default=None, help="Replace default sequana config file with local configfile", ) group = self.add_argument_group("GENERIC PIPELINES") group.add_argument("-s", "--snakefile", dest="snakefile", default=None, help="A valid Snakefile") group.add_argument( "-c", "--configfile", dest="configfile", default=None, help="optional config file to be used by the Snakefile", ) group.add_argument( "-y", "--schema", dest="schemafile", default=None, help="optional schema file to check the config file" ) def main(args=None): # pragma: no cover if args is None: args = sys.argv[:] user_options = Options() options = user_options.parse_args(args[1:]) signal.signal(signal.SIGINT, sigint_handler) # QtCore.QCoreApplication.setAttribute(QtCore.Qt.AA_ShareOpenGLContexts) app = QW.QApplication(sys.argv) filename = pkg_resources.resource_filename("sequanix", "media/drawing.png") if options.nosplash: app.processEvents() sequanix_gui = SequanixGUI(user_options=options) sequanix_gui.show() else: # Show the splash screen for a few seconds splash_pix = QtGui.QPixmap(filename) splash = QW.QSplashScreen(splash_pix, Qt.WindowStaysOnTopHint) splash.setMask(splash_pix.mask()) splash.show() for i in range(0, 100): t = time.time() while time.time() < t + 0.5 / 100.0: app.processEvents() app.processEvents() sequanix_gui = SequanixGUI(user_options=options) sequanix_gui.show() splash.finish(sequanix_gui) # Make sure the main window is the active one sequanix_gui.raise_() sequanix_gui.activateWindow() sys.exit(app.exec_()) if __name__ == "__main__": main()
the-stack_0_16529
from __future__ import print_function import numpy as np import nlcpy as vp import numba from math import * import time # target libraries nb = 'numba' vp_naive = 'nlcpy_naive' vp_sca = 'nlcpy_sca' @numba.stencil def numba_kernel_1(din): return (din[0, 0, -1] + din[0, 0, 0] + din[0, 0, 1] + din[0, -1, 0] + din[0, 1, 0] ) @numba.stencil def numba_kernel_2(din): return (din[0, 0, -2] + din[0, 0, -1] + din[0, 0, 0] + din[0, 0, 1] + din[0, 0, 2] + din[0, -2, 0] + din[0, -1, 0] + din[0, 2, 0] + din[0, 1, 0] ) @numba.stencil def numba_kernel_3(din): return (din[0, 0, -3] + din[0, 0, -2] + din[0, 0, -1] + din[0, 0, 0] + din[0, 0, 1] + din[0, 0, 2] + din[0, 0, 3] + din[0, -3, 0] + din[0, -2, 0] + din[0, -1, 0] + din[0, 3, 0] + din[0, 2, 0] + din[0, 1, 0] ) @numba.stencil def numba_kernel_4(din): return (din[0, 0, -4] + din[0, 0, -3] + din[0, 0, -2] + din[0, 0, -1] + din[0, 0, 0] + din[0, 0, 1] + din[0, 0, 2] + din[0, 0, 3] + din[0, 0, 4] + din[0, -4, 0] + din[0, -3, 0] + din[0, -2, 0] + din[0, -1, 0] + din[0, 4, 0] + din[0, 3, 0] + din[0, 2, 0] + din[0, 1, 0] ) @numba.njit def numba_launcher(din, dout, N, I=1): for _ in range(I): if N == 1: numba_kernel_1(din, out=dout) elif N == 2: numba_kernel_2(din, out=dout) elif N == 3: numba_kernel_3(din, out=dout) elif N == 4: numba_kernel_4(din, out=dout) def numba_impl(din, dout, N, I=1): # warmup numba_launcher(din, dout, N, I=1) s = time.time() numba_launcher(din, dout, N, I=I) e = time.time() return e - s def nlcpy_naive_impl(din, dout, N, I=1): loc_x = [i for i in range(-N, N+1)] loc_y = [i for i in range(-N, N+1)] vp.request.flush() s = time.time() for _ in range(I): dout_v = dout[:, N:-N, N:-N] dout_v[...] = 0 for lx in loc_x: for ly in loc_y: if lx != 0 and ly != 0: continue dout_v += din[:, N+ly:din.shape[-2]-N+ly, N+lx:din.shape[-1]-N+lx] vp.request.flush() e = time.time() return e - s def nlcpy_sca_impl(din, dout, N, I=1): loc_x = [i for i in range(-N, N+1)] loc_y = [i for i in range(-N, N+1)] sin, sout = vp.sca.create_descriptor((din, dout)) d = vp.sca.empty_description() for lx in loc_x: for ly in loc_y: if lx != 0 and ly != 0: continue d += sin[0, ly, lx] kern = vp.sca.create_kernel(d, sout[0, 0, 0]) vp.request.flush() s = time.time() for _ in range(I): kern.execute() vp.request.flush() e = time.time() return e - s def stencil_xya(din, dout, N, I=1, xp=np, lib=nb): if lib is nb: rt = numba_impl(din, dout, N, I) if lib is vp_naive: rt = nlcpy_naive_impl(din, dout, N, I) if lib is vp_sca: rt = nlcpy_sca_impl(din, dout, N, I) return rt
the-stack_0_16531
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test various command line arguments and configuration file parameters.""" import os from test_framework.test_framework import BitcoinTestFramework from test_framework.util import get_datadir_path class ConfArgsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def run_test(self): self.stop_node(0) # Remove the -datadir argument so it doesn't override the config file self.nodes[0].args = [arg for arg in self.nodes[0].args if not arg.startswith("-datadir")] default_data_dir = get_datadir_path(self.options.tmpdir, 0) new_data_dir = os.path.join(default_data_dir, 'newdatadir') new_data_dir_2 = os.path.join(default_data_dir, 'newdatadir2') # Check that using -datadir argument on non-existent directory fails self.nodes[0].datadir = new_data_dir self.assert_start_raises_init_error(0, ['-datadir='+new_data_dir], 'Error: Specified data directory "' + new_data_dir + '" does not exist.') # Check that using non-existent datadir in conf file fails conf_file = os.path.join(default_data_dir, "biblepay.conf") # datadir needs to be set before [regtest] section conf_file_contents = open(conf_file, encoding='utf8').read() with open(conf_file, 'w', encoding='utf8') as f: f.write("datadir=" + new_data_dir + "\n") f.write(conf_file_contents) self.assert_start_raises_init_error(0, ['-conf='+conf_file], 'Error reading configuration file: specified data directory "' + new_data_dir + '" does not exist.') # Create the directory and ensure the config file now works os.mkdir(new_data_dir) self.start_node(0, ['-conf='+conf_file, '-wallet=w1']) self.stop_node(0) assert os.path.exists(os.path.join(new_data_dir, 'regtest', 'wallets', 'w1')) # Ensure command line argument overrides datadir in conf os.mkdir(new_data_dir_2) self.nodes[0].datadir = new_data_dir_2 self.start_node(0, ['-datadir='+new_data_dir_2, '-conf='+conf_file, '-wallet=w2']) assert os.path.exists(os.path.join(new_data_dir_2, 'regtest', 'wallets', 'w2')) if __name__ == '__main__': ConfArgsTest().main()
the-stack_0_16532
from socket import * serverName = '127.0.0.1' serverPort = 12000 clientSocket = socket(AF_INET, SOCK_DGRAM) message = raw_input("Input lower case senrence:") clientSocket.sendto(message.encode(), (serverName, serverPort)) modifiedMessage, serverAddress = clientSocket.recvfrom(2048) print(modifiedMessage.decode()) clientSocket.close()
the-stack_0_16534
# This config does not work with the version of DD4hep that uses Geant4 units. This config performs a comparison # with a reference geometry which might use the ROOT units convention. This mismatch somehow triggers a ROOT exception. # We don't currently have a fix for this problem. import FWCore.ParameterSet.Config as cms process = cms.Process('VALID') process.source = cms.Source('EmptySource') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.load('Configuration.StandardSequences.DD4hep_GeometrySim_cff') process.load("FWCore.MessageLogger.MessageLogger_cfi") process.load("Geometry.MuonNumbering.muonNumberingInitialization_cfi") process.load("Geometry.MuonNumbering.muonGeometryConstants_cff") process.MessageLogger = cms.Service("MessageLogger", destinations = cms.untracked.vstring('myLog'), myLog = cms.untracked.PSet( threshold = cms.untracked.string('INFO'), ) ) process.DTGeometryESProducer = cms.ESProducer("DTGeometryESProducer", DDDetector = cms.ESInputTag('',''), appendToDataLabel = cms.string(''), applyAlignment = cms.bool(False), alignmentsLabel = cms.string(''), attribute = cms.string('MuStructure'), value = cms.string('MuonBarrelDT'), fromDDD = cms.bool(True) ) process.DDCompactViewESProducer = cms.ESProducer("DDCompactViewESProducer", appendToDataLabel = cms.string('') ) process.DDSpecParRegistryESProducer = cms.ESProducer("DDSpecParRegistryESProducer", appendToDataLabel = cms.string('') ) process.muonGeometryConstants.fromDD4Hep = True process.valid = cms.EDAnalyzer("DTGeometryValidate", infileName = cms.untracked.string('Geometry/DTGeometryBuilder/data/cmsRecoGeom-2021.root'), outfileName = cms.untracked.string('validateDTGeometry.root'), tolerance = cms.untracked.int32(7) ) process.p = cms.Path(process.valid)
the-stack_0_16535
"""empty message Revision ID: 09b6565cf4e7 Revises: 1aae34526a4a Create Date: 2018-02-12 12:21:05.984927 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '09b6565cf4e7' down_revision = '1aae34526a4a' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('user', sa.Column('signup_date', sa.DateTime(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('user', 'signup_date') # ### end Alembic commands ###
the-stack_0_16537
"This is the locale selecting middleware that will look at accept headers" from django.conf import settings from django.core.urlresolvers import ( LocaleRegexURLResolver, get_resolver, get_script_prefix, is_valid_path, ) from django.http import HttpResponseRedirect from django.utils import translation from django.utils.cache import patch_vary_headers from django.utils.functional import cached_property class LocaleMiddleware(object): """ This is a very simple middleware that parses a request and decides what translation object to install in the current thread context. This allows pages to be dynamically translated to the language the user desires (if the language is available, of course). """ response_redirect_class = HttpResponseRedirect def process_request(self, request): language = translation.get_language_from_request( request, check_path=self.is_language_prefix_patterns_used) translation.activate(language) request.LANGUAGE_CODE = translation.get_language() def process_response(self, request, response): language = translation.get_language() language_from_path = translation.get_language_from_path(request.path_info) if (response.status_code == 404 and not language_from_path and self.is_language_prefix_patterns_used): urlconf = getattr(request, 'urlconf', None) language_path = '/%s%s' % (language, request.path_info) path_valid = is_valid_path(language_path, urlconf) if (not path_valid and settings.APPEND_SLASH and not language_path.endswith('/')): path_valid = is_valid_path("%s/" % language_path, urlconf) if path_valid: script_prefix = get_script_prefix() # Insert language after the script prefix and before the # rest of the URL language_url = request.get_full_path().replace( script_prefix, '%s%s/' % (script_prefix, language), 1 ) return self.response_redirect_class(language_url) if not (self.is_language_prefix_patterns_used and language_from_path): patch_vary_headers(response, ('Accept-Language',)) if 'Content-Language' not in response: response['Content-Language'] = language return response @cached_property def is_language_prefix_patterns_used(self): """ Returns `True` if the `LocaleRegexURLResolver` is used at root level of the urlpatterns, else it returns `False`. """ for url_pattern in get_resolver(None).url_patterns: if isinstance(url_pattern, LocaleRegexURLResolver): return True return False
the-stack_0_16538
# coding=utf-8 # Licensed Materials - Property of IBM # Copyright IBM Corp. 2018 from __future__ import print_function from future.builtins import * import sys import sysconfig import os import argparse import streamsx.rest def _stop(sas, cmd_args): """Stop the service if no jobs are running unless force is set""" if not cmd_args.force: status = sas.get_instance_status() jobs = int(status['job_count']) if jobs: return status return sas.stop_instance() def run_cmd(args=None): cmd_args = _parse_args(args) sc = streamsx.rest.StreamingAnalyticsConnection(service_name=cmd_args.service_name) sas = sc.get_streaming_analytics() if cmd_args.subcmd == 'start': result = sc.get_streaming_analytics().start_instance() elif cmd_args.subcmd == 'stop': result = _stop(sas, cmd_args) elif cmd_args.subcmd == 'status': result = sc.get_streaming_analytics().get_instance_status() if not cmd_args.full_response: return {k: result[k] for k in ('state', 'status', 'job_count')} return result def main(args=None): """ Performs an action against a Streaming Analytics service. """ try: sr = run_cmd(args) sr['return_code'] = 0 except: sr = {'return_code':1, 'error': sys.exc_info()} return sr def _parse_args(args): """ Argument parsing """ cmd_parser = argparse.ArgumentParser(description='Control commands for a Streaming Analytics service.') cmd_parser.add_argument('--service-name', help='Streaming Analytics service name') cmd_parser.add_argument('--full-response', action='store_true', help='Print the full JSON response.') subparsers = cmd_parser.add_subparsers(help='Supported commands', dest='subcmd') parser_start = subparsers.add_parser('start', help='Start the service instance') parser_status = subparsers.add_parser('status', help='Get the service status.') parser_stop = subparsers.add_parser('stop', help='Stop the instance for the service.') parser_stop.add_argument('--force', action='store_true', help='Stop the service even if jobs are running.') return cmd_parser.parse_args(args) if __name__ == '__main__': sr = main() rc = sr['return_code'] del sr['return_code'] if rc == 0: print(sr) else: print(sr['error'][1], file=sys.stderr) sys.exit(rc)
the-stack_0_16539
# -*- coding: utf-8 -*- # Third party imports import pytest # Local application imports from mosqito.sq_metrics import loudness_zwtv from mosqito.utils import load from validations.sq_metrics.loudness_zwtv.validation_loudness_zwtv import ( _check_compliance, ) @pytest.mark.loudness_zwtv # to skip or run only loudness zwicker time-varying tests def test_loudness_zwtv(): """Test function for the script loudness_zwicker_time Test function for the script loudness_zwtv with .wav file as input. The input file is provided by ISO 532-1 annex B4 and B5, the compliance is assessed according to section 6.1 of the standard. One .png compliance plot is generated. Parameters ---------- None Outputs ------- None """ # Test signal as input for time-varying loudness # (from ISO 532-1 annex B4) signal = { "data_file": "tests/input/Test signal 10 (tone pulse 1 kHz 10 ms 70 dB).wav", "xls": "tests/input/Results and tests for synthetic signals (time varying loudness).xlsx", "tab": "Test signal 10", "N_specif_bark": 8.5, "field": "free", } # Load signal and compute third octave band spectrum sig, fs = load(signal["data_file"], wav_calib=2 * 2 ** 0.5) # Compute Loudness N, N_spec, bark_axis, time_axis = loudness_zwtv(sig, fs, signal["field"]) loudness = { "name": "Loudness", "values": N, "specific values": N_spec, "freqs": bark_axis, } # Check axis dimensions assert len(N) == len(time_axis) assert N_spec.shape[1] == len(time_axis) assert N_spec.shape[0] == len(bark_axis) # Check ISO 532-1 compliance assert _check_compliance(loudness, signal, "./tests/output/") # test de la fonction if __name__ == "__main__": test_loudness_zwtv()
the-stack_0_16541
""" sentry.buffer.redis ~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2014 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import six from time import time from binascii import crc32 from datetime import datetime from django.db import models from django.utils import timezone from django.utils.encoding import force_bytes from sentry.buffer import Buffer from sentry.exceptions import InvalidConfiguration from sentry.tasks.process_buffer import process_incr, process_pending from sentry.utils import json, metrics from sentry.utils.compat import pickle from sentry.utils.hashlib import md5_text from sentry.utils.imports import import_string from sentry.utils.redis import get_cluster_from_options class PendingBuffer(object): def __init__(self, size): assert size > 0 self.buffer = [None] * size self.size = size self.pointer = 0 def full(self): return self.pointer == self.size def empty(self): return self.pointer == 0 def append(self, item): assert not self.full() self.buffer[self.pointer] = item self.pointer += 1 def clear(self): self.pointer = 0 def flush(self): rv = self.buffer[:self.pointer] self.clear() return rv class RedisBuffer(Buffer): key_expire = 60 * 60 # 1 hour pending_key = 'b:p' def __init__(self, pending_partitions=1, incr_batch_size=2, **options): self.cluster, options = get_cluster_from_options('SENTRY_BUFFER_OPTIONS', options) self.pending_partitions = pending_partitions self.incr_batch_size = incr_batch_size assert self.pending_partitions > 0 assert self.incr_batch_size > 0 def validate(self): try: with self.cluster.all() as client: client.ping() except Exception as e: raise InvalidConfiguration(six.text_type(e)) def _coerce_val(self, value): if isinstance(value, models.Model): value = value.pk return force_bytes(value, errors='replace') def _make_key(self, model, filters): """ Returns a Redis-compatible key for the model given filters. """ return 'b:k:%s:%s' % ( model._meta, md5_text( '&'. join('%s=%s' % (k, self._coerce_val(v)) for k, v in sorted(six.iteritems(filters))) ).hexdigest(), ) def _make_pending_key(self, partition=None): """ Returns the key to be used for the pending buffer. When partitioning is enabled, there is a key for each partition, without it, there's only the default pending_key """ if partition is None: return self.pending_key assert partition >= 0 return '%s:%d' % (self.pending_key, partition) def _make_pending_key_from_key(self, key): """ Return the pending_key for a given key. This is used to route a key into the correct pending buffer. If partitioning is disabled, route into the no partition buffer. """ if self.pending_partitions == 1: return self.pending_key return self._make_pending_key(crc32(key) % self.pending_partitions) def _make_lock_key(self, key): return 'l:%s' % (key, ) def _dump_values(self, values): result = {} for k, v in six.iteritems(values): result[k] = self._dump_value(v) return result def _dump_value(self, value): if isinstance(value, six.string_types): type_ = 's' elif isinstance(value, datetime): type_ = 'd' value = value.strftime('%s.%f') elif isinstance(value, int): type_ = 'i' elif isinstance(value, float): type_ = 'f' else: raise TypeError(type(value)) return (type_, six.text_type(value)) def _load_values(self, payload): result = {} for k, (t, v) in six.iteritems(payload): result[k] = self._load_value((t, v)) return result def _load_value(self, payload): (type_, value) = payload if type_ == 's': return value elif type_ == 'd': return datetime.fromtimestamp(float(value)).replace( tzinfo=timezone.utc ) elif type_ == 'i': return int(value) elif type_ == 'f': return float(value) else: raise TypeError('invalid type: {}'.format(type_)) def incr(self, model, columns, filters, extra=None): """ Increment the key by doing the following: - Insert/update a hashmap based on (model, columns) - Perform an incrby on counters - Perform a set (last write wins) on extra - Add hashmap key to pending flushes """ # TODO(dcramer): longer term we'd rather not have to serialize values # here (unless it's to JSON) key = self._make_key(model, filters) pending_key = self._make_pending_key_from_key(key) # We can't use conn.map() due to wanting to support multiple pending # keys (one per Redis partition) conn = self.cluster.get_local_client_for_key(key) pipe = conn.pipeline() pipe.hsetnx(key, 'm', '%s.%s' % (model.__module__, model.__name__)) # TODO(dcramer): once this goes live in production, we can kill the pickle path # (this is to ensure a zero downtime deploy where we can transition event processing) pipe.hsetnx(key, 'f', pickle.dumps(filters)) # pipe.hsetnx(key, 'f', json.dumps(self._dump_values(filters))) for column, amount in six.iteritems(columns): pipe.hincrby(key, 'i+' + column, amount) if extra: # Group tries to serialize 'score', so we'd need some kind of processing # hook here # e.g. "update score if last_seen or times_seen is changed" for column, value in six.iteritems(extra): # TODO(dcramer): once this goes live in production, we can kill the pickle path # (this is to ensure a zero downtime deploy where we can transition event processing) pipe.hset(key, 'e+' + column, pickle.dumps(value)) # pipe.hset(key, 'e+' + column, json.dumps(self._dump_value(value))) pipe.expire(key, self.key_expire) pipe.zadd(pending_key, time(), key) pipe.execute() metrics.incr('buffer.incr', skip_internal=True, tags={ 'module': model.__module__, 'model': model.__name__, }) def process_pending(self, partition=None): if partition is None and self.pending_partitions > 1: # If we're using partitions, this one task fans out into # N subtasks instead. for i in range(self.pending_partitions): process_pending.apply_async(kwargs={'partition': i}) # Explicitly also run over the unpartitioned buffer as well # to ease in transition. In practice, this should just be # super fast and is fine to do redundantly. pending_key = self._make_pending_key(partition) client = self.cluster.get_routing_client() lock_key = self._make_lock_key(pending_key) # prevent a stampede due to celerybeat + periodic task if not client.set(lock_key, '1', nx=True, ex=60): return pending_buffer = PendingBuffer(self.incr_batch_size) try: keycount = 0 with self.cluster.all() as conn: results = conn.zrange(pending_key, 0, -1) with self.cluster.all() as conn: for host_id, keys in six.iteritems(results.value): if not keys: continue keycount += len(keys) for key in keys: pending_buffer.append(key) if pending_buffer.full(): process_incr.apply_async( kwargs={ 'batch_keys': pending_buffer.flush(), } ) conn.target([host_id]).zrem(pending_key, *keys) # queue up remainder of pending keys if not pending_buffer.empty(): process_incr.apply_async(kwargs={ 'batch_keys': pending_buffer.flush(), }) metrics.timing('buffer.pending-size', keycount) finally: client.delete(lock_key) def process(self, key=None, batch_keys=None): assert not (key is None and batch_keys is None) assert not (key is not None and batch_keys is not None) if key is not None: batch_keys = [key] for key in batch_keys: self._process_single_incr(key) def _process_single_incr(self, key): client = self.cluster.get_routing_client() lock_key = self._make_lock_key(key) # prevent a stampede due to the way we use celery etas + duplicate # tasks if not client.set(lock_key, '1', nx=True, ex=10): metrics.incr('buffer.revoked', tags={'reason': 'locked'}, skip_internal=False) self.logger.debug('buffer.revoked.locked', extra={'redis_key': key}) return pending_key = self._make_pending_key_from_key(key) try: conn = self.cluster.get_local_client_for_key(key) pipe = conn.pipeline() pipe.hgetall(key) pipe.zrem(pending_key, key) pipe.delete(key) values = pipe.execute()[0] if not values: metrics.incr('buffer.revoked', tags={'reason': 'empty'}, skip_internal=False) self.logger.debug('buffer.revoked.empty', extra={'redis_key': key}) return model = import_string(values.pop('m')) if values['f'].startswith('{'): filters = self._load_values(json.loads(values.pop('f'))) else: # TODO(dcramer): legacy pickle support - remove in Sentry 9.1 filters = pickle.loads(values.pop('f')) incr_values = {} extra_values = {} for k, v in six.iteritems(values): if k.startswith('i+'): incr_values[k[2:]] = int(v) elif k.startswith('e+'): if v.startswith('['): extra_values[k[2:]] = self._load_value(json.loads(v)) else: # TODO(dcramer): legacy pickle support - remove in Sentry 9.1 extra_values[k[2:]] = pickle.loads(v) super(RedisBuffer, self).process(model, incr_values, filters, extra_values) finally: client.delete(lock_key)
the-stack_0_16543
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals _DETECTRON_OPS_LIB = 'libcaffe2_detectron_ops_gpu.so' _CMAKE_INSTALL_PREFIX = '/usr/local' HIGHEST_BACKBONE_LVL = 5 LOWEST_BACKBONE_LVL = 2 import argparse import cv2 # import glob import copy import logging import os import sys import six import time import importlib import pprint import contextlib import re import scipy.sparse import collections import numpy as np import numpy.random as npr import matplotlib.pyplot as plt # sys.path.append('/root/pmt/thirdparty/densepose/np') # path to where detectron # bash this with model missing in 'filename' and add the path to sys # find / -type f -iname "filename*" # sys.path.append('path/to/where/cafffe2/is') from caffe2.python import workspace from caffe2.proto import caffe2_pb2 from caffe2.python import core from caffe2.python import dyndep from caffe2.python import scope from caffe2.python import cnn from caffe2.python import muji from caffe2.python.modeling import initializers from caffe2.python.modeling.parameter_info import ParameterTags from pycocotools import mask as COCOmask from pycocotools.coco import COCO import pycocotools.mask as mask_util from .assets.config import assert_and_infer_cfg from .assets.config import cfg from .assets.config import merge_cfg_from_file from .assets.config import load_cfg import cython_bbox as cython_bbox import cython_nms as cython_nms from collections import defaultdict from collections import OrderedDict from six import string_types from six.moves import cPickle as pickle from six.moves import urllib from glob import glob from scipy.io import loadmat from matplotlib.patches import Polygon box_utils_bbox_overlaps = cython_bbox.bbox_overlaps bbox_overlaps = cython_bbox.bbox_overlaps logger = logging.getLogger(__name__) FpnLevelInfo = collections.namedtuple( 'FpnLevelInfo', ['blobs', 'dims', 'spatial_scales'] ) def _progress_bar(count, total): """Report download progress. Credit: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console/27871113 """ bar_len = 60 filled_len = int(round(bar_len * count / float(total))) percents = round(100.0 * count / float(total), 1) bar = '=' * filled_len + '-' * (bar_len - filled_len) sys.stdout.write( ' [{}] {}% of {:.1f}MB file \r'. format(bar, percents, total / 1024 / 1024) ) sys.stdout.flush() if count >= total: sys.stdout.write('\n') def download_url( url, dst_file_path, chunk_size=8192, progress_hook=_progress_bar ): """Download url and write it to dst_file_path. Credit: https://stackoverflow.com/questions/2028517/python-urllib2-progress-hook """ response = urllib.request.urlopen(url) if six.PY2: total_size = response.info().getheader('Content-Length').strip() else: total_size = response.info().get('Content-Length').strip() total_size = int(total_size) bytes_so_far = 0 with open(dst_file_path, 'wb') as f: while 1: chunk = response.read(chunk_size) bytes_so_far += len(chunk) if not chunk: break if progress_hook: progress_hook(bytes_so_far, total_size) f.write(chunk) return bytes_so_far def get_class_string(class_index, score, dataset): class_text = dataset.classes[class_index] if dataset is not None else \ 'id{:d}'.format(class_index) return class_text + ' {:0.2f}'.format(score).lstrip('0') def kp_connections(keypoints): kp_lines = [ [keypoints.index('left_eye'), keypoints.index('right_eye')], [keypoints.index('left_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('right_ear')], [keypoints.index('left_eye'), keypoints.index('left_ear')], [keypoints.index('right_shoulder'), keypoints.index('right_elbow')], [keypoints.index('right_elbow'), keypoints.index('right_wrist')], [keypoints.index('left_shoulder'), keypoints.index('left_elbow')], [keypoints.index('left_elbow'), keypoints.index('left_wrist')], [keypoints.index('right_hip'), keypoints.index('right_knee')], [keypoints.index('right_knee'), keypoints.index('right_ankle')], [keypoints.index('left_hip'), keypoints.index('left_knee')], [keypoints.index('left_knee'), keypoints.index('left_ankle')], [keypoints.index('right_shoulder'), keypoints.index('left_shoulder')], [keypoints.index('right_hip'), keypoints.index('left_hip')], ] return kp_lines def colormap(rgb=False): color_list = np.array( [ 0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494, 0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078, 0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000, 1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667, 0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000, 0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000, 1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000, 0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500, 0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667, 0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333, 0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000, 0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333, 0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000, 1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.286, 0.286, 0.286, 0.429, 0.429, 0.429, 0.571, 0.571, 0.571, 0.714, 0.714, 0.714, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000 ] ).astype(np.float32) color_list = color_list.reshape((-1, 3)) * 255 if not rgb: color_list = color_list[:, ::-1] return color_list def keypoint_utils_get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle' } return keypoints, keypoint_flip_map def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps): """Convert from the class boxes/segms/keyps format generated by the testing code. """ box_list = [b for b in cls_boxes if len(b) > 0] if len(box_list) > 0: boxes = np.concatenate(box_list) else: boxes = None if cls_segms is not None: segms = [s for slist in cls_segms for s in slist] else: segms = None if cls_keyps is not None: keyps = [k for klist in cls_keyps for k in klist] else: keyps = None classes = [] for j in range(len(cls_boxes)): classes += [j] * len(cls_boxes[j]) return boxes, segms, keyps, classes def vis_utils_vis_one_image( im, boxes, segms=None, keypoints=None, body_uv=None, thresh=0.9, kp_thresh=2, dpi=200, box_alpha=0.0, dataset=None, show_class=False, ext='pdf'): """Visual debugging of detections.""" if isinstance(boxes, list): boxes, segms, keypoints, classes = convert_from_cls_format( boxes, segms, keypoints) if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh: return dataset_keypoints, _ = keypoint_utils_get_keypoints() if segms is not None and len(segms) > 0: masks = mask_util.decode(segms) color_list = colormap(rgb=True) / 255 kp_lines = kp_connections(dataset_keypoints) cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] # Display in largest to smallest order to reduce occlusion areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) sorted_inds = np.argsort(-areas) IUV_fields = body_uv[1] # All_Coords = np.zeros(im.shape) All_inds = np.zeros([im.shape[0],im.shape[1]]) K = 26 ## inds = np.argsort(boxes[:,4]) ## for i, ind in enumerate(inds): entry = boxes[ind,:] if entry[4] > 0.65: entry=entry[0:4].astype(int) #### output = IUV_fields[ind] #### All_Coords_Old = All_Coords[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2],:] All_Coords_Old[All_Coords_Old==0]=output.transpose([1,2,0])[All_Coords_Old==0] All_Coords[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2],:]= All_Coords_Old ### CurrentMask = (output[0,:,:]>0).astype(np.float32) All_inds_old = All_inds[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2]] All_inds_old[All_inds_old==0] = CurrentMask[All_inds_old==0]*i All_inds[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2]] = All_inds_old # All_Coords[:,:,1:3] = 255. * All_Coords[:,:,1:3] All_Coords[All_Coords>255] = 255. All_Coords = All_Coords.astype(np.uint8) return All_Coords def envu_get_detectron_ops_lib(): """Retrieve Detectron ops library.""" # Candidate prefixes for detectron ops lib path prefixes = [_CMAKE_INSTALL_PREFIX, sys.prefix, sys.exec_prefix] + sys.path # Candidate subdirs for detectron ops lib subdirs = ['lib', 'torch/lib'] # Try to find detectron ops lib for prefix in prefixes: for subdir in subdirs: ops_path = os.path.join(prefix, subdir, _DETECTRON_OPS_LIB) if os.path.exists(ops_path): #print('Found Detectron ops lib: {}'.format(ops_path)) return ops_path raise Exception('Detectron ops lib not found') def c2_utils_import_detectron_ops(): """Import Detectron ops.""" detectron_ops_lib = envu_get_detectron_ops_lib() dyndep.InitOpsLibrary(detectron_ops_lib) def dummy_datasets_get_coco_dataset(): """A dummy COCO dataset that includes only the 'classes' field.""" ds = AttrDict() classes = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds def im_detect_body_uv(model, im_scale, boxes): """Compute body uv predictions.""" M = cfg.BODY_UV_RCNN.HEATMAP_SIZE P = cfg.BODY_UV_RCNN.NUM_PATCHES if boxes.shape[0] == 0: pred_body_uvs = np.zeros((0, P, M, M), np.float32) return pred_body_uvs inputs = {'body_uv_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'body_uv_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.body_uv_net.Proto().name) AnnIndex = workspace.FetchBlob(core.ScopedName('AnnIndex')).squeeze() Index_UV = workspace.FetchBlob(core.ScopedName('Index_UV')).squeeze() U_uv = workspace.FetchBlob(core.ScopedName('U_estimated')).squeeze() V_uv = workspace.FetchBlob(core.ScopedName('V_estimated')).squeeze() # In case of 1 if AnnIndex.ndim == 3: AnnIndex = np.expand_dims(AnnIndex, axis=0) if Index_UV.ndim == 3: Index_UV = np.expand_dims(Index_UV, axis=0) if U_uv.ndim == 3: U_uv = np.expand_dims(U_uv, axis=0) if V_uv.ndim == 3: V_uv = np.expand_dims(V_uv, axis=0) K = cfg.BODY_UV_RCNN.NUM_PATCHES + 1 outputs = [] for ind, entry in enumerate(boxes): # Compute ref box width and height bx = int(max(entry[2] - entry[0], 1)) by = int(max(entry[3] - entry[1], 1)) # preds[ind] axes are CHW; bring p axes to WHC CurAnnIndex = np.swapaxes(AnnIndex[ind], 0, 2) CurIndex_UV = np.swapaxes(Index_UV[ind], 0, 2) CurU_uv = np.swapaxes(U_uv[ind], 0, 2) CurV_uv = np.swapaxes(V_uv[ind], 0, 2) # Resize p from (HEATMAP_SIZE, HEATMAP_SIZE, c) to (int(bx), int(by), c) CurAnnIndex = cv2.resize(CurAnnIndex, (by, bx)) CurIndex_UV = cv2.resize(CurIndex_UV, (by, bx)) CurU_uv = cv2.resize(CurU_uv, (by, bx)) CurV_uv = cv2.resize(CurV_uv, (by, bx)) # Bring Cur_Preds axes back to CHW CurAnnIndex = np.swapaxes(CurAnnIndex, 0, 2) CurIndex_UV = np.swapaxes(CurIndex_UV, 0, 2) CurU_uv = np.swapaxes(CurU_uv, 0, 2) CurV_uv = np.swapaxes(CurV_uv, 0, 2) # Removed squeeze calls due to singleton dimension issues CurAnnIndex = np.argmax(CurAnnIndex, axis=0) CurIndex_UV = np.argmax(CurIndex_UV, axis=0) CurIndex_UV = CurIndex_UV * (CurAnnIndex>0).astype(np.float32) output = np.zeros([3, int(by), int(bx)], dtype=np.float32) output[0] = CurIndex_UV for part_id in range(1, K): CurrentU = CurU_uv[part_id] CurrentV = CurV_uv[part_id] output[1, CurIndex_UV==part_id] = CurrentU[CurIndex_UV==part_id] output[2, CurIndex_UV==part_id] = CurrentV[CurIndex_UV==part_id] outputs.append(output) num_classes = cfg.MODEL.NUM_CLASSES cls_bodys = [[] for _ in range(num_classes)] person_idx = keypoint_utils_get_person_class_index() cls_bodys[person_idx] = outputs return cls_bodys def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi): """Compute OKS for predicted keypoints wrt gt_keypoints. src_keypoints: 4xK src_roi: 4x1 dst_keypoints: Nx4xK dst_roi: Nx4 """ sigmas = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 vars = (sigmas * 2)**2 # area src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1) # measure the per-keypoint distance if keypoints visible dx = dst_keypoints[:, 0, :] - src_keypoints[0, :] dy = dst_keypoints[:, 1, :] - src_keypoints[1, :] e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2 e = np.sum(np.exp(-e), axis=1) / e.shape[1] return e def keypoint_utils_nms_oks(kp_predictions, rois, thresh): """Nms based on kp predictions.""" scores = np.mean(kp_predictions[:, 2, :], axis=1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) ovr = compute_oks( kp_predictions[i], rois[i], kp_predictions[order[1:]], rois[order[1:]]) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def scores_to_probs(scores): """Transforms CxHxW of scores to probabilities spatially.""" channels = scores.shape[0] for c in range(channels): temp = scores[c, :, :] max_score = temp.max() temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score)) scores[c, :, :] = temp return scores def keypoint_utils_heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = cfg.KRCNN.INFERENCE_MIN_SIZE xy_preds = np.zeros( (len(rois), 4, cfg.KRCNN.NUM_KEYPOINTS), dtype=np.float32) for i in range(len(rois)): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = cv2.resize( maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] for k in range(cfg.KRCNN.NUM_KEYPOINTS): pos = roi_map[k, :, :].argmax() x_int = pos % w y_int = (pos - x_int) // w assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max()) x = (x_int + 0.5) * width_correction y = (y_int + 0.5) * height_correction xy_preds[i, 0, k] = x + offset_x[i] xy_preds[i, 1, k] = y + offset_y[i] xy_preds[i, 2, k] = roi_map[k, y_int, x_int] xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int] return xy_preds def keypoint_utils_get_person_class_index(): """Index of the person class in COCO.""" return 1 def keypoint_results(cls_boxes, pred_heatmaps, ref_boxes): num_classes = cfg.MODEL.NUM_CLASSES cls_keyps = [[] for _ in range(num_classes)] person_idx = keypoint_utils_get_person_class_index() xy_preds = keypoint_utils_heatmaps_to_keypoints(pred_heatmaps, ref_boxes) # NMS OKS if cfg.KRCNN.NMS_OKS: keep = keypoint_utils_nms_oks(xy_preds, ref_boxes, 0.3) xy_preds = xy_preds[keep, :, :] ref_boxes = ref_boxes[keep, :] pred_heatmaps = pred_heatmaps[keep, :, :, :] cls_boxes[person_idx] = cls_boxes[person_idx][keep, :] kps = [xy_preds[i] for i in range(xy_preds.shape[0])] cls_keyps[person_idx] = kps return cls_keyps def im_detect_keypoints(model, im_scale, boxes): """Infer instance keypoint poses. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_heatmaps (ndarray): R x J x M x M array of keypoint location logits (softmax inputs) for each of the J keypoint types output by the network (must be processed by keypoint_results to convert into point predictions in the original image coordinate space) """ M = cfg.KRCNN.HEATMAP_SIZE if boxes.shape[0] == 0: pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32) return pred_heatmaps inputs = {'keypoint_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'keypoint_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.keypoint_net.Proto().name) pred_heatmaps = workspace.FetchBlob(core.ScopedName('kps_score')).squeeze() # In case of 1 if pred_heatmaps.ndim == 3: pred_heatmaps = np.expand_dims(pred_heatmaps, axis=0) return pred_heatmaps def combine_heatmaps_size_dep(hms_ts, ds_ts, us_ts, boxes, heur_f): """Combines heatmaps while taking object sizes into account.""" assert len(hms_ts) == len(ds_ts) and len(ds_ts) == len(us_ts), \ 'All sets of hms must be tagged with downscaling and upscaling flags' # Classify objects into small+medium and large based on their box areas areas = box_utils_boxes_area(boxes) sm_objs = areas < cfg.TEST.KPS_AUG.AREA_TH l_objs = areas >= cfg.TEST.KPS_AUG.AREA_TH # Combine heatmaps computed under different transformations for each object hms_c = np.zeros_like(hms_ts[0]) for i in range(hms_c.shape[0]): hms_to_combine = [] for hms_t, ds_t, us_t in zip(hms_ts, ds_ts, us_ts): # Discard downscaling predictions for small and medium objects if sm_objs[i] and ds_t: continue # Discard upscaling predictions for large objects if l_objs[i] and us_t: continue hms_to_combine.append(hms_t[i]) hms_c[i] = heur_f(hms_to_combine) return hms_c def im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=False ): """Detects keypoints at the given width-relative aspect ratio.""" # Perform keypoint detectionon the transformed image im_ar = image_utils_aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils_aspect_ratio(boxes, aspect_ratio) if hflip: heatmaps_ar = im_detect_keypoints_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) heatmaps_ar = im_detect_keypoints(model, im_scale, boxes_ar) return heatmaps_ar def im_detect_keypoints_scale( model, im, target_scale, target_max_size, boxes, hflip=False ): """Computes keypoint predictions at the given scale.""" if hflip: heatmaps_scl = im_detect_keypoints_hflip( model, im, target_scale, target_max_size, boxes ) else: im_scale = im_conv_body_only(model, im, target_scale, target_max_size) heatmaps_scl = im_detect_keypoints(model, im_scale, boxes) return heatmaps_scl def get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle' } return keypoints, keypoint_flip_map def keypoint_utils_flip_heatmaps(heatmaps): """Flip heatmaps horizontally.""" keypoints, flip_map = get_keypoints() heatmaps_flipped = heatmaps.copy() for lkp, rkp in flip_map.items(): lid = keypoints.index(lkp) rid = keypoints.index(rkp) heatmaps_flipped[:, rid, :, :] = heatmaps[:, lid, :, :] heatmaps_flipped[:, lid, :, :] = heatmaps[:, rid, :, :] heatmaps_flipped = heatmaps_flipped[:, :, :, ::-1] return heatmaps_flipped def im_detect_keypoints_hflip(model, im, target_scale, target_max_size, boxes): """Computes keypoint predictions on the horizontally flipped image. Function signature is the same as for im_detect_keypoints_aug. """ # Compute keypoints for the flipped image im_hf = im[:, ::-1, :] boxes_hf = box_utils_flip_boxes(boxes, im.shape[1]) im_scale = im_conv_body_only(model, im_hf, target_scale, target_max_size) heatmaps_hf = im_detect_keypoints(model, im_scale, boxes_hf) # Invert the predicted keypoints heatmaps_inv = keypoint_utils_flip_heatmaps(heatmaps_hf) return heatmaps_inv def im_detect_keypoints_aug(model, im, boxes): """Computes keypoint predictions with test-time augmentations. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): BGR image to test boxes (ndarray): R x 4 array of bounding boxes Returns: heatmaps (ndarray): R x J x M x M array of keypoint location logits """ # Collect heatmaps predicted under different transformations heatmaps_ts = [] # Tag predictions computed under downscaling and upscaling transformations ds_ts = [] us_ts = [] def add_heatmaps_t(heatmaps_t, ds_t=False, us_t=False): heatmaps_ts.append(heatmaps_t) ds_ts.append(ds_t) us_ts.append(us_t) # Compute the heatmaps for the original image (identity transform) im_scale = im_conv_body_only(model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) heatmaps_i = im_detect_keypoints(model, im_scale, boxes) add_heatmaps_t(heatmaps_i) # Perform keypoints detection on the horizontally flipped image if cfg.TEST.KPS_AUG.H_FLIP: heatmaps_hf = im_detect_keypoints_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes ) add_heatmaps_t(heatmaps_hf) # Compute detections at different scales for scale in cfg.TEST.KPS_AUG.SCALES: ds_scl = scale < cfg.TEST.SCALE us_scl = scale > cfg.TEST.SCALE heatmaps_scl = im_detect_keypoints_scale( model, im, scale, cfg.TEST.KPS_AUG.MAX_SIZE, boxes ) add_heatmaps_t(heatmaps_scl, ds_scl, us_scl) if cfg.TEST.KPS_AUG.SCALE_H_FLIP: heatmaps_scl_hf = im_detect_keypoints_scale( model, im, scale, cfg.TEST.KPS_AUG.MAX_SIZE, boxes, hflip=True ) add_heatmaps_t(heatmaps_scl_hf, ds_scl, us_scl) # Compute keypoints at different aspect ratios for aspect_ratio in cfg.TEST.KPS_AUG.ASPECT_RATIOS: heatmaps_ar = im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes ) add_heatmaps_t(heatmaps_ar) if cfg.TEST.KPS_AUG.ASPECT_RATIO_H_FLIP: heatmaps_ar_hf = im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=True ) add_heatmaps_t(heatmaps_ar_hf) # Select the heuristic function for combining the heatmaps if cfg.TEST.KPS_AUG.HEUR == 'HM_AVG': np_f = np.mean elif cfg.TEST.KPS_AUG.HEUR == 'HM_MAX': np_f = np.amax else: raise NotImplementedError( 'Heuristic {} not supported'.format(cfg.TEST.KPS_AUG.HEUR) ) def heur_f(hms_ts): return np_f(hms_ts, axis=0) # Combine the heatmaps if cfg.TEST.KPS_AUG.SCALE_SIZE_DEP: heatmaps_c = combine_heatmaps_size_dep( heatmaps_ts, ds_ts, us_ts, boxes, heur_f ) else: heatmaps_c = heur_f(heatmaps_ts) return heatmaps_c def box_utils_expand_boxes(boxes, scale): """Expand an array of boxes by a given scale.""" w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def segm_results(cls_boxes, masks, ref_boxes, im_h, im_w): num_classes = cfg.MODEL.NUM_CLASSES cls_segms = [[] for _ in range(num_classes)] mask_ind = 0 # To work around an issue with cv2.resize (it seems to automatically pad # with repeated border values), we manually zero-pad the masks by 1 pixel # prior to resizing back to the original image resolution. This prevents # "top hat" artifacts. We therefore need to expand the reference boxes by an # appropriate factor. M = cfg.MRCNN.RESOLUTION scale = (M + 2.0) / M ref_boxes = box_utils_expand_boxes(ref_boxes, scale) ref_boxes = ref_boxes.astype(np.int32) padded_mask = np.zeros((M + 2, M + 2), dtype=np.float32) # skip j = 0, because it's the background class for j in range(1, num_classes): segms = [] for _ in range(cls_boxes[j].shape[0]): if cfg.MRCNN.CLS_SPECIFIC_MASK: padded_mask[1:-1, 1:-1] = masks[mask_ind, j, :, :] else: padded_mask[1:-1, 1:-1] = masks[mask_ind, 0, :, :] ref_box = ref_boxes[mask_ind, :] w = ref_box[2] - ref_box[0] + 1 h = ref_box[3] - ref_box[1] + 1 w = np.maximum(w, 1) h = np.maximum(h, 1) mask = cv2.resize(padded_mask, (w, h)) mask = np.array(mask > cfg.MRCNN.THRESH_BINARIZE, dtype=np.uint8) im_mask = np.zeros((im_h, im_w), dtype=np.uint8) x_0 = max(ref_box[0], 0) x_1 = min(ref_box[2] + 1, im_w) y_0 = max(ref_box[1], 0) y_1 = min(ref_box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[ (y_0 - ref_box[1]):(y_1 - ref_box[1]), (x_0 - ref_box[0]):(x_1 - ref_box[0]) ] # Get RLE encoding used by the COCO evaluation API rle = mask_util.encode( np.array(im_mask[:, :, np.newaxis], order='F') )[0] segms.append(rle) mask_ind += 1 cls_segms[j] = segms assert mask_ind == masks.shape[0] return cls_segms def im_detect_mask(model, im_scale, boxes): """Infer instance segmentation masks. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_masks (ndarray): R x K x M x M array of class specific soft masks output by the network (must be processed by segm_results to convert into hard masks in the original image coordinate space) """ M = cfg.MRCNN.RESOLUTION if boxes.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) return pred_masks inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.mask_net.Proto().name) # Fetch masks pred_masks = workspace.FetchBlob( core.ScopedName('mask_fcn_probs') ).squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) return pred_masks def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio.""" # Perform mask detection on the transformed image im_ar = image_utils_aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils_aspect_ratio(boxes, aspect_ratio) if hflip: masks_ar = im_detect_mask_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) masks_ar = im_detect_mask(model, im_scale, boxes_ar) return masks_ar def im_detect_mask_scale( model, im, target_scale, target_max_size, boxes, hflip=False ): """Computes masks at the given scale.""" if hflip: masks_scl = im_detect_mask_hflip( model, im, target_scale, target_max_size, boxes ) else: im_scale = im_conv_body_only(model, im, target_scale, target_max_size) masks_scl = im_detect_mask(model, im_scale, boxes) return masks_scl def im_detect_mask_hflip(model, im, target_scale, target_max_size, boxes): """Performs mask detection on the horizontally flipped image. Function signature is the same as for im_detect_mask_aug. """ # Compute the masks for the flipped image im_hf = im[:, ::-1, :] boxes_hf = box_utils_flip_boxes(boxes, im.shape[1]) im_scale = im_conv_body_only(model, im_hf, target_scale, target_max_size) masks_hf = im_detect_mask(model, im_scale, boxes_hf) # Invert the predicted soft masks masks_inv = masks_hf[:, :, :, ::-1] return masks_inv def im_conv_body_only(model, im, target_scale, target_max_size): """Runs `model.conv_body_net` on the given image `im`.""" im_blob, im_scale, _im_info = blob_utils_get_image_blob( im, target_scale, target_max_size ) workspace.FeedBlob(core.ScopedName('data'), im_blob) workspace.RunNet(model.conv_body_net.Proto().name) return im_scale def im_detect_mask_aug(model, im, boxes): """Performs mask detection with test-time augmentations. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): BGR image to test boxes (ndarray): R x 4 array of bounding boxes Returns: masks (ndarray): R x K x M x M array of class specific soft masks """ assert not cfg.TEST.MASK_AUG.SCALE_SIZE_DEP, \ 'Size dependent scaling not implemented' # Collect masks computed under different transformations masks_ts = [] # Compute masks for the original image (identity transform) im_scale_i = im_conv_body_only(model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) masks_i = im_detect_mask(model, im_scale_i, boxes) masks_ts.append(masks_i) # Perform mask detection on the horizontally flipped image if cfg.TEST.MASK_AUG.H_FLIP: masks_hf = im_detect_mask_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes ) masks_ts.append(masks_hf) # Compute detections at different scales for scale in cfg.TEST.MASK_AUG.SCALES: max_size = cfg.TEST.MASK_AUG.MAX_SIZE masks_scl = im_detect_mask_scale(model, im, scale, max_size, boxes) masks_ts.append(masks_scl) if cfg.TEST.MASK_AUG.SCALE_H_FLIP: masks_scl_hf = im_detect_mask_scale( model, im, scale, max_size, boxes, hflip=True ) masks_ts.append(masks_scl_hf) # Compute masks at different aspect ratios for aspect_ratio in cfg.TEST.MASK_AUG.ASPECT_RATIOS: masks_ar = im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes) masks_ts.append(masks_ar) if cfg.TEST.MASK_AUG.ASPECT_RATIO_H_FLIP: masks_ar_hf = im_detect_mask_aspect_ratio( model, im, aspect_ratio, boxes, hflip=True ) masks_ts.append(masks_ar_hf) # Combine the predicted soft masks if cfg.TEST.MASK_AUG.HEUR == 'SOFT_AVG': masks_c = np.mean(masks_ts, axis=0) elif cfg.TEST.MASK_AUG.HEUR == 'SOFT_MAX': masks_c = np.amax(masks_ts, axis=0) elif cfg.TEST.MASK_AUG.HEUR == 'LOGIT_AVG': def logit(y): return -1.0 * np.log((1.0 - y) / np.maximum(y, 1e-20)) logit_masks = [logit(y) for y in masks_ts] logit_masks = np.mean(logit_masks, axis=0) masks_c = 1.0 / (1.0 + np.exp(-logit_masks)) else: raise NotImplementedError( 'Heuristic {} not supported'.format(cfg.TEST.MASK_AUG.HEUR) ) return masks_c def box_utils_box_voting(top_dets, all_dets, thresh, scoring_method='ID', beta=1.0): """Apply bounding-box voting to refine `top_dets` by voting with `all_dets`. See: https://arxiv.org/abs/1505.01749. Optional score averaging (not in the referenced paper) can be applied by setting `scoring_method` appropriately. """ # top_dets is [N, 5] each row is [x1 y1 x2 y2, sore] # all_dets is [N, 5] each row is [x1 y1 x2 y2, sore] top_dets_out = top_dets.copy() top_boxes = top_dets[:, :4] all_boxes = all_dets[:, :4] all_scores = all_dets[:, 4] top_to_all_overlaps = bbox_overlaps(top_boxes, all_boxes) for k in range(top_dets_out.shape[0]): inds_to_vote = np.where(top_to_all_overlaps[k] >= thresh)[0] boxes_to_vote = all_boxes[inds_to_vote, :] ws = all_scores[inds_to_vote] top_dets_out[k, :4] = np.average(boxes_to_vote, axis=0, weights=ws) if scoring_method == 'ID': # Identity, nothing to do pass elif scoring_method == 'TEMP_AVG': # Average probabilities (considered as P(detected class) vs. # P(not the detected class)) after smoothing with a temperature # hyperparameter. P = np.vstack((ws, 1.0 - ws)) P_max = np.max(P, axis=0) X = np.log(P / P_max) X_exp = np.exp(X / beta) P_temp = X_exp / np.sum(X_exp, axis=0) P_avg = P_temp[0].mean() top_dets_out[k, 4] = P_avg elif scoring_method == 'AVG': # Combine new probs from overlapping boxes top_dets_out[k, 4] = ws.mean() elif scoring_method == 'IOU_AVG': P = ws ws = top_to_all_overlaps[k, inds_to_vote] P_avg = np.average(P, weights=ws) top_dets_out[k, 4] = P_avg elif scoring_method == 'GENERALIZED_AVG': P_avg = np.mean(ws**beta)**(1.0 / beta) top_dets_out[k, 4] = P_avg elif scoring_method == 'QUASI_SUM': top_dets_out[k, 4] = ws.sum() / float(len(ws))**beta else: raise NotImplementedError( 'Unknown scoring method {}'.format(scoring_method) ) return top_dets_out def box_utils_soft_nms( dets, sigma=0.5, overlap_thresh=0.3, score_thresh=0.001, method='linear' ): """Apply the soft NMS algorithm from https://arxiv.org/abs/1704.04503.""" if dets.shape[0] == 0: return dets, [] methods = {'hard': 0, 'linear': 1, 'gaussian': 2} assert method in methods, 'Unknown soft_nms method: {}'.format(method) dets, keep = cython_nms.soft_nms( np.ascontiguousarray(dets, dtype=np.float32), np.float32(sigma), np.float32(overlap_thresh), np.float32(score_thresh), np.uint8(methods[method]) ) return dets, keep def box_results_with_nms_and_limit(scores, boxes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). `boxes` has shape (#detections, 4 * #classes), where each row represents a list of predicted bounding boxes for each of the object classes in the dataset (including the background class). The detections in each row originate from the same object proposal. `scores` has shape (#detection, #classes), where each row represents a list of object detection confidence scores for each of the object classes in the dataset (including the background class). `scores[i, j]`` corresponds to the box at `boxes[i, j * 4:(j + 1) * 4]`. """ num_classes = cfg.MODEL.NUM_CLASSES cls_boxes = [[] for _ in range(num_classes)] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class for j in range(1, num_classes): inds = np.where(scores[:, j] > cfg.TEST.SCORE_THRESH)[0] scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4:(j + 1) * 4] dets_j = np.hstack((boxes_j, scores_j[:, np.newaxis])).astype( np.float32, copy=False ) if cfg.TEST.SOFT_NMS.ENABLED: nms_dets, _ = box_utils_soft_nms( dets_j, sigma=cfg.TEST.SOFT_NMS.SIGMA, overlap_thresh=cfg.TEST.NMS, score_thresh=0.0001, method=cfg.TEST.SOFT_NMS.METHOD ) else: keep = box_utils_nms(dets_j, cfg.TEST.NMS) nms_dets = dets_j[keep, :] # Refine the post-NMS boxes using bounding-box voting if cfg.TEST.BBOX_VOTE.ENABLED: nms_dets = box_utils_box_voting( nms_dets, dets_j, cfg.TEST.BBOX_VOTE.VOTE_TH, scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD ) cls_boxes[j] = nms_dets # Limit to max_per_image detections **over all classes** if cfg.TEST.DETECTIONS_PER_IM > 0: image_scores = np.hstack( [cls_boxes[j][:, -1] for j in range(1, num_classes)] ) if len(image_scores) > cfg.TEST.DETECTIONS_PER_IM: image_thresh = np.sort(image_scores)[-cfg.TEST.DETECTIONS_PER_IM] for j in range(1, num_classes): keep = np.where(cls_boxes[j][:, -1] >= image_thresh)[0] cls_boxes[j] = cls_boxes[j][keep, :] im_results = np.vstack([cls_boxes[j] for j in range(1, num_classes)]) boxes = im_results[:, :-1] scores = im_results[:, -1] return scores, boxes, cls_boxes def _add_multilevel_rois_for_test(blobs, name): """Distributes a set of RoIs across FPN pyramid levels by creating new level specific RoI blobs. Arguments: blobs (dict): dictionary of blobs name (str): a key in 'blobs' identifying the source RoI blob Returns: [by ref] blobs (dict): new keys named by `name + 'fpn' + level` are added to dict each with a value that's an R_level x 5 ndarray of RoIs (see _get_rois_blob for format) """ lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL lvls = fpn_map_rois_to_fpn_levels(blobs[name][:, 1:5], lvl_min, lvl_max) fpn_add_multilevel_roi_blobs( blobs, name, blobs[name], lvls, lvl_min, lvl_max ) def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (ndarray): image pyramid levels used by each projected RoI """ rois = im_rois.astype(np.float, copy=False) * scales levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) return rois, levels def _get_rois_blob(im_rois, im_scale): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid with columns [level, x1, y1, x2, y2] """ rois, levels = _project_im_rois(im_rois, im_scale) rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False) def _get_blobs(im, rois, target_scale, target_max_size): """Convert an image and RoIs within that image into network inputs.""" blobs = {} blobs['data'], im_scale, blobs['im_info'] = \ blob_utils_get_image_blob(im, target_scale, target_max_size) if rois is not None: blobs['rois'] = _get_rois_blob(rois, im_scale) return blobs, im_scale def im_detect_bbox(model, im, target_scale, target_max_size, boxes=None): """Bounding box object detection for an image with given box proposals. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals in 0-indexed [x1, y1, x2, y2] format, or None if using RPN Returns: scores (ndarray): R x K array of object class scores for K classes (K includes background as object category 0) boxes (ndarray): R x 4*K array of predicted bounding boxes im_scales (list): list of image scales used in the input blob (as returned by _get_blobs and for use with im_detect_mask, etc.) """ inputs, im_scale = _get_blobs(im, boxes, target_scale, target_max_size) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(inputs['rois'] * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique( hashes, return_index=True, return_inverse=True ) inputs['rois'] = inputs['rois'][index, :] boxes = boxes[index, :] # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS and not cfg.MODEL.FASTER_RCNN: _add_multilevel_rois_for_test(inputs, 'rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.net.Proto().name) # Read out blobs if cfg.MODEL.FASTER_RCNN: rois = workspace.FetchBlob(core.ScopedName('rois')) # unscale back to raw image space boxes = rois[:, 1:5] / im_scale # Softmax class probabilities scores = workspace.FetchBlob(core.ScopedName('cls_prob')).squeeze() # In case there is 1 proposal scores = scores.reshape([-1, scores.shape[-1]]) if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = workspace.FetchBlob(core.ScopedName('bbox_pred')).squeeze() # In case there is 1 proposal box_deltas = box_deltas.reshape([-1, box_deltas.shape[-1]]) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: # Remove predictions for bg class (compat with MSRA code) box_deltas = box_deltas[:, -4:] pred_boxes = box_utils_bbox_transform( boxes, box_deltas, cfg.MODEL.BBOX_REG_WEIGHTS ) pred_boxes = box_utils_clip_tiled_boxes(pred_boxes, im.shape) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: pred_boxes = np.tile(pred_boxes, (1, scores.shape[1])) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: # Map scores and predictions back to the original set of boxes scores = scores[inv_index, :] pred_boxes = pred_boxes[inv_index, :] return scores, pred_boxes, im_scale def box_utils_aspect_ratio(boxes, aspect_ratio): """Perform width-relative aspect ratio transformation.""" boxes_ar = boxes.copy() boxes_ar[:, 0::4] = aspect_ratio * boxes[:, 0::4] boxes_ar[:, 2::4] = aspect_ratio * boxes[:, 2::4] return boxes_ar def image_utils_aspect_ratio_rel(im, aspect_ratio): """Performs width-relative aspect ratio transformation.""" im_h, im_w = im.shape[:2] im_ar_w = int(round(aspect_ratio * im_w)) im_ar = cv2.resize(im, dsize=(im_ar_w, im_h)) return im_ar def im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals=None, hflip=False ): """Computes bbox detections at the given width-relative aspect ratio. Returns predictions in the original image space. """ # Compute predictions on the transformed image im_ar = image_utils_aspect_ratio_rel(im, aspect_ratio) if not cfg.MODEL.FASTER_RCNN: box_proposals_ar = box_utils_aspect_ratio(box_proposals, aspect_ratio) else: box_proposals_ar = None if hflip: scores_ar, boxes_ar, _ = im_detect_bbox_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals_ar ) else: scores_ar, boxes_ar, _ = im_detect_bbox( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals_ar ) # Invert the detected boxes boxes_inv = box_utils_aspect_ratio(boxes_ar, 1.0 / aspect_ratio) return scores_ar, boxes_inv def im_detect_bbox_scale( model, im, target_scale, target_max_size, box_proposals=None, hflip=False ): """Computes bbox detections at the given scale. Returns predictions in the original image space. """ if hflip: scores_scl, boxes_scl, _ = im_detect_bbox_hflip( model, im, target_scale, target_max_size, box_proposals=box_proposals ) else: scores_scl, boxes_scl, _ = im_detect_bbox( model, im, target_scale, target_max_size, boxes=box_proposals ) return scores_scl, boxes_scl def box_utils_flip_boxes(boxes, im_width): """Flip boxes horizontally.""" boxes_flipped = boxes.copy() boxes_flipped[:, 0::4] = im_width - boxes[:, 2::4] - 1 boxes_flipped[:, 2::4] = im_width - boxes[:, 0::4] - 1 return boxes_flipped def im_detect_bbox_hflip( model, im, target_scale, target_max_size, box_proposals=None ): """Performs bbox detection on the horizontally flipped image. Function signature is the same as for im_detect_bbox. """ # Compute predictions on the flipped image im_hf = im[:, ::-1, :] im_width = im.shape[1] if not cfg.MODEL.FASTER_RCNN: box_proposals_hf = box_utils_flip_boxes(box_proposals, im_width) else: box_proposals_hf = None scores_hf, boxes_hf, im_scale = im_detect_bbox( model, im_hf, target_scale, target_max_size, boxes=box_proposals_hf ) # Invert the detections computed on the flipped image boxes_inv = box_utils_flip_boxes(boxes_hf, im_width) return scores_hf, boxes_inv, im_scale def im_detect_bbox_aug(model, im, box_proposals=None): """Performs bbox detection with test-time augmentations. Function signature is the same as for im_detect_bbox. """ assert not cfg.TEST.BBOX_AUG.SCALE_SIZE_DEP, \ 'Size dependent scaling not implemented' assert not cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION' or \ cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION', \ 'Coord heuristic must be union whenever score heuristic is union' assert not cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION' or \ cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION', \ 'Score heuristic must be union whenever coord heuristic is union' assert not cfg.MODEL.FASTER_RCNN or \ cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION', \ 'Union heuristic must be used to combine Faster RCNN predictions' # Collect detections computed under different transformations scores_ts = [] boxes_ts = [] def add_preds_t(scores_t, boxes_t): scores_ts.append(scores_t) boxes_ts.append(boxes_t) # Perform detection on the horizontally flipped image if cfg.TEST.BBOX_AUG.H_FLIP: scores_hf, boxes_hf, _ = im_detect_bbox_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals ) add_preds_t(scores_hf, boxes_hf) # Compute detections at different scales for scale in cfg.TEST.BBOX_AUG.SCALES: max_size = cfg.TEST.BBOX_AUG.MAX_SIZE scores_scl, boxes_scl = im_detect_bbox_scale( model, im, scale, max_size, box_proposals ) add_preds_t(scores_scl, boxes_scl) if cfg.TEST.BBOX_AUG.SCALE_H_FLIP: scores_scl_hf, boxes_scl_hf = im_detect_bbox_scale( model, im, scale, max_size, box_proposals, hflip=True ) add_preds_t(scores_scl_hf, boxes_scl_hf) # Perform detection at different aspect ratios for aspect_ratio in cfg.TEST.BBOX_AUG.ASPECT_RATIOS: scores_ar, boxes_ar = im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals ) add_preds_t(scores_ar, boxes_ar) if cfg.TEST.BBOX_AUG.ASPECT_RATIO_H_FLIP: scores_ar_hf, boxes_ar_hf = im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals, hflip=True ) add_preds_t(scores_ar_hf, boxes_ar_hf) # Compute detections for the original image (identity transform) last to # ensure that the Caffe2 workspace is populated with blobs corresponding # to the original image on return (postcondition of im_detect_bbox) scores_i, boxes_i, im_scale_i = im_detect_bbox( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals ) add_preds_t(scores_i, boxes_i) # Combine the predicted scores if cfg.TEST.BBOX_AUG.SCORE_HEUR == 'ID': scores_c = scores_i elif cfg.TEST.BBOX_AUG.SCORE_HEUR == 'AVG': scores_c = np.mean(scores_ts, axis=0) elif cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION': scores_c = np.vstack(scores_ts) else: raise NotImplementedError( 'Score heur {} not supported'.format(cfg.TEST.BBOX_AUG.SCORE_HEUR) ) # Combine the predicted boxes if cfg.TEST.BBOX_AUG.COORD_HEUR == 'ID': boxes_c = boxes_i elif cfg.TEST.BBOX_AUG.COORD_HEUR == 'AVG': boxes_c = np.mean(boxes_ts, axis=0) elif cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION': boxes_c = np.vstack(boxes_ts) else: raise NotImplementedError( 'Coord heur {} not supported'.format(cfg.TEST.BBOX_AUG.COORD_HEUR) ) return scores_c, boxes_c, im_scale_i def im_list_to_blob(ims): """Convert a list of images into a network input. Assumes images were prepared using prep_im_for_blob or equivalent: i.e. - BGR channel order - pixel means subtracted - resized to the desired input size - float32 numpy ndarray format Output is a 4D HCHW tensor of the images concatenated along axis 0 with shape. """ if not isinstance(ims, list): ims = [ims] max_shape = np.array([im.shape for im in ims]).max(axis=0) # Pad the image so they can be divisible by a stride if cfg.FPN.FPN_ON: stride = float(cfg.FPN.COARSEST_STRIDE) max_shape[0] = int(np.ceil(max_shape[0] / stride) * stride) max_shape[1] = int(np.ceil(max_shape[1] / stride) * stride) num_images = len(ims) blob = np.zeros( (num_images, max_shape[0], max_shape[1], 3), dtype=np.float32 ) for i in range(num_images): im = ims[i] blob[i, 0:im.shape[0], 0:im.shape[1], :] = im # Move channels (axis 3) to axis 1 # Axis order will become: (batch elem, channel, height, width) channel_swap = (0, 3, 1, 2) blob = blob.transpose(channel_swap) return blob def prep_im_for_blob(im, pixel_means, target_size, max_size): """Prepare an image for use as a network input blob. Specially: - Subtract per-channel pixel mean - Convert to float32 - Rescale to each of the specified target size (capped at max_size) Returns a list of transformed images, one for each target size. Also returns the scale factors that were used to compute each returned image. """ im = im.astype(np.float32, copy=False) im -= pixel_means im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than max_size if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) im = cv2.resize( im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR ) return im, im_scale def blob_utils_get_image_blob(im, target_scale, target_max_size): """Convert an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale (float): image scale (target size) / (original size) im_info (ndarray) """ processed_im, im_scale = prep_im_for_blob( im, cfg.PIXEL_MEANS, target_scale, target_max_size ) blob = im_list_to_blob(processed_im) # NOTE: this height and width may be larger than actual scaled input image # due to the FPN.COARSEST_STRIDE related padding in im_list_to_blob. We are # maintaining this behavior for now to make existing results exactly # reproducible (in practice using the true input image height and width # yields nearly the same results, but they are sometimes slightly different # because predictions near the edge of the image will be pruned more # aggressively). height, width = blob.shape[2], blob.shape[3] im_info = np.hstack((height, width, im_scale))[np.newaxis, :] return blob, im_scale, im_info.astype(np.float32) def _scale_enum(anchor, scales): """Enumerate a set of anchors for each scale wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) ws = w * scales hs = h * scales anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors def _mkanchors(ws, hs, x_ctr, y_ctr): """Given a vector of widths (ws) and heights (hs) around a center (x_ctr, y_ctr), output a set of anchors (windows). """ ws = ws[:, np.newaxis] hs = hs[:, np.newaxis] anchors = np.hstack( ( x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1) ) ) return anchors def _whctrs(anchor): """Return width, height, x center, and y center for an anchor (window).""" w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def _ratio_enum(anchor, ratios): """Enumerate a set of anchors for each aspect ratio wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) size = w * h size_ratios = size / ratios ws = np.round(np.sqrt(size_ratios)) hs = np.round(ws * ratios) anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors def _generate_anchors(base_size, scales, aspect_ratios): """Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, base_size - 1, base_size - 1) window. """ anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 1 anchors = _ratio_enum(anchor, aspect_ratios) anchors = np.vstack( [_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])] ) return anchors def generate_anchors( stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2) ): """Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors are centered on stride / 2, have (approximate) sqrt areas of the specified sizes, and aspect ratios as given. """ return _generate_anchors( stride, np.array(sizes, dtype=np.float) / stride, np.array(aspect_ratios, dtype=np.float) ) def _create_cell_anchors(): """ Generate all types of anchors for all fpn levels/scales/aspect ratios. This function is called only once at the beginning of inference. """ k_max, k_min = cfg.FPN.RPN_MAX_LEVEL, cfg.FPN.RPN_MIN_LEVEL scales_per_octave = cfg.RETINANET.SCALES_PER_OCTAVE aspect_ratios = cfg.RETINANET.ASPECT_RATIOS anchor_scale = cfg.RETINANET.ANCHOR_SCALE A = scales_per_octave * len(aspect_ratios) anchors = {} for lvl in range(k_min, k_max + 1): # create cell anchors array stride = 2. ** lvl cell_anchors = np.zeros((A, 4)) a = 0 for octave in range(scales_per_octave): octave_scale = 2 ** (octave / float(scales_per_octave)) for aspect in aspect_ratios: anchor_sizes = (stride * octave_scale * anchor_scale, ) anchor_aspect_ratios = (aspect, ) cell_anchors[a, :] = generate_anchors( stride=stride, sizes=anchor_sizes, aspect_ratios=anchor_aspect_ratios) a += 1 anchors[lvl] = cell_anchors return anchors def test_retinanet_im_detect_bbox(model, im, timers=None): """Generate RetinaNet detections on a single image.""" if timers is None: timers = defaultdict(Timer) # Although anchors are input independent and could be precomputed, # recomputing them per image only brings a small overhead anchors = _create_cell_anchors() timers['im_detect_bbox'].tic() k_max, k_min = cfg.FPN.RPN_MAX_LEVEL, cfg.FPN.RPN_MIN_LEVEL A = cfg.RETINANET.SCALES_PER_OCTAVE * len(cfg.RETINANET.ASPECT_RATIOS) inputs = {} inputs['data'], im_scale, inputs['im_info'] = \ blob_utils_get_image_blob(im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) cls_probs, box_preds = [], [] for lvl in range(k_min, k_max + 1): suffix = 'fpn{}'.format(lvl) cls_probs.append(core.ScopedName('retnet_cls_prob_{}'.format(suffix))) box_preds.append(core.ScopedName('retnet_bbox_pred_{}'.format(suffix))) for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v.astype(np.float32, copy=False)) workspace.RunNet(model.net.Proto().name) cls_probs = workspace.FetchBlobs(cls_probs) box_preds = workspace.FetchBlobs(box_preds) # here the boxes_all are [x0, y0, x1, y1, score] boxes_all = defaultdict(list) cnt = 0 for lvl in range(k_min, k_max + 1): # create cell anchors array stride = 2. ** lvl cell_anchors = anchors[lvl] # fetch per level probability cls_prob = cls_probs[cnt] box_pred = box_preds[cnt] cls_prob = cls_prob.reshape(( cls_prob.shape[0], A, int(cls_prob.shape[1] / A), cls_prob.shape[2], cls_prob.shape[3])) box_pred = box_pred.reshape(( box_pred.shape[0], A, 4, box_pred.shape[2], box_pred.shape[3])) cnt += 1 if cfg.RETINANET.SOFTMAX: cls_prob = cls_prob[:, :, 1::, :, :] cls_prob_ravel = cls_prob.ravel() # In some cases [especially for very small img sizes], it's possible that # candidate_ind is empty if we impose threshold 0.05 at all levels. This # will lead to errors since no detections are found for this image. Hence, # for lvl 7 which has small spatial resolution, we take the threshold 0.0 th = cfg.RETINANET.INFERENCE_TH if lvl < k_max else 0.0 candidate_inds = np.where(cls_prob_ravel > th)[0] if (len(candidate_inds) == 0): continue pre_nms_topn = min(cfg.RETINANET.PRE_NMS_TOP_N, len(candidate_inds)) inds = np.argpartition( cls_prob_ravel[candidate_inds], -pre_nms_topn)[-pre_nms_topn:] inds = candidate_inds[inds] inds_5d = np.array(np.unravel_index(inds, cls_prob.shape)).transpose() classes = inds_5d[:, 2] anchor_ids, y, x = inds_5d[:, 1], inds_5d[:, 3], inds_5d[:, 4] scores = cls_prob[:, anchor_ids, classes, y, x] boxes = np.column_stack((x, y, x, y)).astype(dtype=np.float32) boxes *= stride boxes += cell_anchors[anchor_ids, :] if not cfg.RETINANET.CLASS_SPECIFIC_BBOX: box_deltas = box_pred[0, anchor_ids, :, y, x] else: box_cls_inds = classes * 4 box_deltas = np.vstack( [box_pred[0, ind:ind + 4, yi, xi] for ind, yi, xi in zip(box_cls_inds, y, x)] ) pred_boxes = ( box_utils_bbox_transform(boxes, box_deltas) if cfg.TEST.BBOX_REG else boxes) pred_boxes /= im_scale pred_boxes = box_utils_clip_tiled_boxes(pred_boxes, im.shape) box_scores = np.zeros((pred_boxes.shape[0], 5)) box_scores[:, 0:4] = pred_boxes box_scores[:, 4] = scores for cls in range(1, cfg.MODEL.NUM_CLASSES): inds = np.where(classes == cls - 1)[0] if len(inds) > 0: boxes_all[cls].extend(box_scores[inds, :]) timers['im_detect_bbox'].toc() # Combine predictions across all levels and retain the top scoring by class timers['misc_bbox'].tic() detections = [] for cls, boxes in boxes_all.items(): cls_dets = np.vstack(boxes).astype(dtype=np.float32) # do class specific nms here keep = box_utils_nms(cls_dets, cfg.TEST.NMS) cls_dets = cls_dets[keep, :] out = np.zeros((len(keep), 6)) out[:, 0:5] = cls_dets out[:, 5].fill(cls) detections.append(out) # detections (N, 6) format: # detections[:, :4] - boxes # detections[:, 4] - scores # detections[:, 5] - classes detections = np.vstack(detections) # sort all again inds = np.argsort(-detections[:, 4]) detections = detections[inds[0:cfg.TEST.DETECTIONS_PER_IM], :] # Convert the detections to image cls_ format (see core/test_engine.py) num_classes = cfg.MODEL.NUM_CLASSES cls_boxes = [[] for _ in range(cfg.MODEL.NUM_CLASSES)] for c in range(1, num_classes): inds = np.where(detections[:, 5] == c)[0] cls_boxes[c] = detections[inds, :5] timers['misc_bbox'].toc() return cls_boxes def infer_engine_im_detect_all(model, im, box_proposals, timers=None): if timers is None: timers = defaultdict(Timer) # Handle RetinaNet testing separately for now if cfg.RETINANET.RETINANET_ON: cls_boxes = test_retinanet_im_detect_bbox(model, im, timers) return cls_boxes, None, None timers['im_detect_bbox'].tic() if cfg.TEST.BBOX_AUG.ENABLED: scores, boxes, im_scale = im_detect_bbox_aug(model, im, box_proposals) else: scores, boxes, im_scale = im_detect_bbox( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals ) timers['im_detect_bbox'].toc() # score and boxes are from the whole image after score thresholding and nms # (they are not separated by class) # cls_boxes boxes and scores are separated by class and in the format used # for evaluating results timers['misc_bbox'].tic() scores, boxes, cls_boxes = box_results_with_nms_and_limit(scores, boxes) timers['misc_bbox'].toc() if cfg.MODEL.MASK_ON and boxes.shape[0] > 0: timers['im_detect_mask'].tic() if cfg.TEST.MASK_AUG.ENABLED: masks = im_detect_mask_aug(model, im, boxes) else: masks = im_detect_mask(model, im_scale, boxes) timers['im_detect_mask'].toc() timers['misc_mask'].tic() cls_segms = segm_results( cls_boxes, masks, boxes, im.shape[0], im.shape[1] ) timers['misc_mask'].toc() else: cls_segms = None if cfg.MODEL.KEYPOINTS_ON and boxes.shape[0] > 0: timers['im_detect_keypoints'].tic() if cfg.TEST.KPS_AUG.ENABLED: heatmaps = im_detect_keypoints_aug(model, im, boxes) else: heatmaps = im_detect_keypoints(model, im_scale, boxes) timers['im_detect_keypoints'].toc() timers['misc_keypoints'].tic() cls_keyps = keypoint_results(cls_boxes, heatmaps, boxes) timers['misc_keypoints'].toc() else: cls_keyps = None if cfg.MODEL.BODY_UV_ON and boxes.shape[0] > 0: timers['im_detect_body_uv'].tic() cls_bodys = im_detect_body_uv(model, im_scale, boxes) timers['im_detect_body_uv'].toc() else: cls_bodys = None return cls_boxes, cls_segms, cls_keyps, cls_bodys def model_builder_add_inference_inputs(model): """Create network input blobs used for inference.""" def create_input_blobs_for_net(net_def): for op in net_def.op: for blob_in in op.input: if not workspace.HasBlob(blob_in): workspace.CreateBlob(blob_in) create_input_blobs_for_net(model.net.Proto()) if cfg.MODEL.MASK_ON: create_input_blobs_for_net(model.mask_net.Proto()) if cfg.MODEL.KEYPOINTS_ON: create_input_blobs_for_net(model.keypoint_net.Proto()) if cfg.MODEL.BODY_UV_ON: create_input_blobs_for_net(model.body_uv_net.Proto()) def add_single_gpu_param_update_ops(model, gpu_id): # Learning rate of 0 is a dummy value to be set properly at the # start of training lr = model.param_init_net.ConstantFill( [], 'lr', shape=[1], value=0.0 ) one = model.param_init_net.ConstantFill( [], 'one', shape=[1], value=1.0 ) wd = model.param_init_net.ConstantFill( [], 'wd', shape=[1], value=cfg.SOLVER.WEIGHT_DECAY ) # weight decay of GroupNorm's parameters wd_gn = model.param_init_net.ConstantFill( [], 'wd_gn', shape=[1], value=cfg.SOLVER.WEIGHT_DECAY_GN ) for param in model.TrainableParams(gpu_id=gpu_id): logger.debug('param ' + str(param) + ' will be updated') param_grad = model.param_to_grad[param] # Initialize momentum vector param_momentum = model.param_init_net.ConstantFill( [param], param + '_momentum', value=0.0 ) if param in model.biases: # Special treatment for biases (mainly to match historical impl. # details): # (1) Do not apply weight decay # (2) Use a 2x higher learning rate model.Scale(param_grad, param_grad, scale=2.0) elif param in model.gn_params: # Special treatment for GroupNorm's parameters model.WeightedSum([param_grad, one, param, wd_gn], param_grad) elif cfg.SOLVER.WEIGHT_DECAY > 0: # Apply weight decay to non-bias weights model.WeightedSum([param_grad, one, param, wd], param_grad) # Update param_grad and param_momentum in place model.net.MomentumSGDUpdate( [param_grad, param_momentum, lr, param], [param_grad, param_momentum, param], momentum=cfg.SOLVER.MOMENTUM ) def _add_allreduce_graph(model): """Construct the graph that performs Allreduce on the gradients.""" # Need to all-reduce the per-GPU gradients if training with more than 1 GPU all_params = model.TrainableParams() assert len(all_params) % cfg.NUM_GPUS == 0 # The model parameters are replicated on each GPU, get the number # distinct parameter blobs (i.e., the number of parameter blobs on # each GPU) params_per_gpu = int(len(all_params) / cfg.NUM_GPUS) with c2_utils_CudaScope(0): # Iterate over distinct parameter blobs for i in range(params_per_gpu): # Gradients from all GPUs for this parameter blob gradients = [ model.param_to_grad[p] for p in all_params[i::params_per_gpu] ] if len(gradients) > 0: if cfg.USE_NCCL: model.net.NCCLAllreduce(gradients, gradients) else: muji.Allreduce(model.net, gradients, reduced_affix='') def _build_forward_graph(model, single_gpu_build_func): """Construct the forward graph on each GPU.""" all_loss_gradients = {} # Will include loss gradients from all GPUs # Build the model on each GPU with correct name and device scoping for gpu_id in range(cfg.NUM_GPUS): with c2_utils_NamedCudaScope(gpu_id): all_loss_gradients.update(single_gpu_build_func(model)) return all_loss_gradients def optim_build_data_parallel_model(model, single_gpu_build_func): """Build a data parallel model given a function that builds the model on a single GPU. """ if model.only_build_forward_pass: single_gpu_build_func(model) elif model.train: all_loss_gradients = _build_forward_graph(model, single_gpu_build_func) # Add backward pass on all GPUs model.AddGradientOperators(all_loss_gradients) if cfg.NUM_GPUS > 1: _add_allreduce_graph(model) for gpu_id in range(cfg.NUM_GPUS): # After allreduce, all GPUs perform SGD updates on their identical # params and gradients in parallel with c2_utils_NamedCudaScope(gpu_id): add_single_gpu_param_update_ops(model, gpu_id) else: # Test-time network operates on single GPU # Test-time parallelism is implemented through multiprocessing with c2_utils_NamedCudaScope(model.target_gpu_id): single_gpu_build_func(model) def body_uv_rcnn_heads_add_body_uv_losses(model, pref=''): ## Reshape for GT blobs. model.net.Reshape( ['body_uv_X_points'], ['X_points_reshaped'+pref, 'X_points_shape'+pref], shape=( -1 ,1 ) ) model.net.Reshape( ['body_uv_Y_points'], ['Y_points_reshaped'+pref, 'Y_points_shape'+pref], shape=( -1 ,1 ) ) model.net.Reshape( ['body_uv_I_points'], ['I_points_reshaped'+pref, 'I_points_shape'+pref], shape=( -1 ,1 ) ) model.net.Reshape( ['body_uv_Ind_points'], ['Ind_points_reshaped'+pref, 'Ind_points_shape'+pref], shape=( -1 ,1 ) ) ## Concat Ind,x,y to get Coordinates blob. model.net.Concat( ['Ind_points_reshaped'+pref,'X_points_reshaped'+pref, \ 'Y_points_reshaped'+pref],['Coordinates'+pref,'Coordinate_Shapes'+pref ], axis = 1 ) ## ### Now reshape UV blobs, such that they are 1x1x(196*NumSamples)xNUM_PATCHES ## U blob to ## model.net.Reshape(['body_uv_U_points'], \ ['U_points_reshaped'+pref, 'U_points_old_shape'+pref],\ shape=(-1,cfg.BODY_UV_RCNN.NUM_PATCHES+1,196)) model.net.Transpose(['U_points_reshaped'+pref] ,['U_points_reshaped_transpose'+pref],axes=(0,2,1) ) model.net.Reshape(['U_points_reshaped_transpose'+pref], \ ['U_points'+pref, 'U_points_old_shape2'+pref], \ shape=(1,1,-1,cfg.BODY_UV_RCNN.NUM_PATCHES+1)) ## V blob ## model.net.Reshape(['body_uv_V_points'], \ ['V_points_reshaped'+pref, 'V_points_old_shape'+pref],\ shape=(-1,cfg.BODY_UV_RCNN.NUM_PATCHES+1,196)) model.net.Transpose(['V_points_reshaped'+pref] ,['V_points_reshaped_transpose'+pref],axes=(0,2,1) ) model.net.Reshape(['V_points_reshaped_transpose'+pref], \ ['V_points'+pref, 'V_points_old_shape2'+pref], \ shape=(1,1,-1,cfg.BODY_UV_RCNN.NUM_PATCHES+1)) ### ## UV weights blob ## model.net.Reshape(['body_uv_point_weights'], \ ['Uv_point_weights_reshaped'+pref, 'Uv_point_weights_old_shape'+pref],\ shape=(-1,cfg.BODY_UV_RCNN.NUM_PATCHES+1,196)) model.net.Transpose(['Uv_point_weights_reshaped'+pref] ,['Uv_point_weights_reshaped_transpose'+pref],axes=(0,2,1) ) model.net.Reshape(['Uv_point_weights_reshaped_transpose'+pref], \ ['Uv_point_weights'+pref, 'Uv_point_weights_old_shape2'+pref], \ shape=(1,1,-1,cfg.BODY_UV_RCNN.NUM_PATCHES+1)) ##################### ### Pool IUV for points via bilinear interpolation. model.PoolPointsInterp(['U_estimated','Coordinates'+pref], ['interp_U'+pref]) model.PoolPointsInterp(['V_estimated','Coordinates'+pref], ['interp_V'+pref]) model.PoolPointsInterp(['Index_UV'+pref,'Coordinates'+pref], ['interp_Index_UV'+pref]) ## Reshape interpolated UV coordinates to apply the loss. model.net.Reshape(['interp_U'+pref], \ ['interp_U_reshaped'+pref, 'interp_U_shape'+pref],\ shape=(1, 1, -1 , cfg.BODY_UV_RCNN.NUM_PATCHES+1)) model.net.Reshape(['interp_V'+pref], \ ['interp_V_reshaped'+pref, 'interp_V_shape'+pref],\ shape=(1, 1, -1 , cfg.BODY_UV_RCNN.NUM_PATCHES+1)) ### ### Do the actual labels here !!!! model.net.Reshape( ['body_uv_ann_labels'], \ ['body_uv_ann_labels_reshaped' +pref, 'body_uv_ann_labels_old_shape'+pref], \ shape=(-1, cfg.BODY_UV_RCNN.HEATMAP_SIZE , cfg.BODY_UV_RCNN.HEATMAP_SIZE)) model.net.Reshape( ['body_uv_ann_weights'], \ ['body_uv_ann_weights_reshaped' +pref, 'body_uv_ann_weights_old_shape'+pref], \ shape=( -1 , cfg.BODY_UV_RCNN.HEATMAP_SIZE , cfg.BODY_UV_RCNN.HEATMAP_SIZE)) ### model.net.Cast( ['I_points_reshaped'+pref], ['I_points_reshaped_int'+pref], to=core.DataType.INT32) ### Now add the actual losses ## The mask segmentation loss (dense) probs_seg_AnnIndex, loss_seg_AnnIndex = model.net.SpatialSoftmaxWithLoss( \ ['AnnIndex'+pref, 'body_uv_ann_labels_reshaped'+pref,'body_uv_ann_weights_reshaped'+pref],\ ['probs_seg_AnnIndex'+pref,'loss_seg_AnnIndex'+pref], \ scale=cfg.BODY_UV_RCNN.INDEX_WEIGHTS / cfg.NUM_GPUS) ## Point Patch Index Loss. probs_IndexUVPoints, loss_IndexUVPoints = model.net.SoftmaxWithLoss(\ ['interp_Index_UV'+pref,'I_points_reshaped_int'+pref],\ ['probs_IndexUVPoints'+pref,'loss_IndexUVPoints'+pref], \ scale=cfg.BODY_UV_RCNN.PART_WEIGHTS / cfg.NUM_GPUS, spatial=0) ## U and V point losses. loss_Upoints = model.net.SmoothL1Loss( \ ['interp_U_reshaped'+pref, 'U_points'+pref, \ 'Uv_point_weights'+pref, 'Uv_point_weights'+pref], \ 'loss_Upoints'+pref, \ scale=cfg.BODY_UV_RCNN.POINT_REGRESSION_WEIGHTS / cfg.NUM_GPUS) loss_Vpoints = model.net.SmoothL1Loss( \ ['interp_V_reshaped'+pref, 'V_points'+pref, \ 'Uv_point_weights'+pref, 'Uv_point_weights'+pref], \ 'loss_Vpoints'+pref, scale=cfg.BODY_UV_RCNN.POINT_REGRESSION_WEIGHTS / cfg.NUM_GPUS) ## Add the losses. loss_gradients = blob_utils_get_loss_gradients(model, \ [ loss_Upoints, loss_Vpoints, loss_seg_AnnIndex, loss_IndexUVPoints]) model.losses = list(set(model.losses + \ ['loss_Upoints'+pref , 'loss_Vpoints'+pref , \ 'loss_seg_AnnIndex'+pref ,'loss_IndexUVPoints'+pref])) return loss_gradients def body_uv_rcnn_heads_add_body_uv_outputs(model, blob_in, dim, pref=''): #### model.ConvTranspose(blob_in, 'AnnIndex_lowres'+pref, dim, 15,cfg.BODY_UV_RCNN.DECONV_KERNEL, pad=int(cfg.BODY_UV_RCNN.DECONV_KERNEL / 2 - 1), stride=2, weight_init=(cfg.BODY_UV_RCNN.CONV_INIT, {'std': 0.001}), bias_init=('ConstantFill', {'value': 0.})) #### model.ConvTranspose(blob_in, 'Index_UV_lowres'+pref, dim, cfg.BODY_UV_RCNN.NUM_PATCHES+1,cfg.BODY_UV_RCNN.DECONV_KERNEL, pad=int(cfg.BODY_UV_RCNN.DECONV_KERNEL / 2 - 1), stride=2, weight_init=(cfg.BODY_UV_RCNN.CONV_INIT, {'std': 0.001}), bias_init=('ConstantFill', {'value': 0.})) #### model.ConvTranspose( blob_in, 'U_lowres'+pref, dim, (cfg.BODY_UV_RCNN.NUM_PATCHES+1), cfg.BODY_UV_RCNN.DECONV_KERNEL, pad=int(cfg.BODY_UV_RCNN.DECONV_KERNEL / 2 - 1), stride=2, weight_init=(cfg.BODY_UV_RCNN.CONV_INIT, {'std': 0.001}), bias_init=('ConstantFill', {'value': 0.})) ##### model.ConvTranspose( blob_in, 'V_lowres'+pref, dim, cfg.BODY_UV_RCNN.NUM_PATCHES+1, cfg.BODY_UV_RCNN.DECONV_KERNEL, pad=int(cfg.BODY_UV_RCNN.DECONV_KERNEL / 2 - 1), stride=2, weight_init=(cfg.BODY_UV_RCNN.CONV_INIT, {'std': 0.001}), bias_init=('ConstantFill', {'value': 0.})) #### blob_Ann_Index = model.BilinearInterpolation('AnnIndex_lowres'+pref, 'AnnIndex'+pref, cfg.BODY_UV_RCNN.NUM_PATCHES+1 , cfg.BODY_UV_RCNN.NUM_PATCHES+1, cfg.BODY_UV_RCNN.UP_SCALE) blob_Index = model.BilinearInterpolation('Index_UV_lowres'+pref, 'Index_UV'+pref, cfg.BODY_UV_RCNN.NUM_PATCHES+1 , cfg.BODY_UV_RCNN.NUM_PATCHES+1, cfg.BODY_UV_RCNN.UP_SCALE) blob_U = model.BilinearInterpolation('U_lowres'+pref, 'U_estimated'+pref, cfg.BODY_UV_RCNN.NUM_PATCHES+1 , cfg.BODY_UV_RCNN.NUM_PATCHES+1, cfg.BODY_UV_RCNN.UP_SCALE) blob_V = model.BilinearInterpolation('V_lowres'+pref, 'V_estimated'+pref, cfg.BODY_UV_RCNN.NUM_PATCHES+1 , cfg.BODY_UV_RCNN.NUM_PATCHES+1, cfg.BODY_UV_RCNN.UP_SCALE) ### return blob_U,blob_V,blob_Index,blob_Ann_Index def _add_roi_body_uv_head( model, add_roi_body_uv_head_func, blob_in, dim_in, spatial_scale_in ): """Add a body UV prediction head to the model.""" # Capture model graph before adding the mask head bbox_net = copy.deepcopy(model.net.Proto()) # Add the body UV head blob_body_uv_head, dim_body_uv_head = add_roi_body_uv_head_func( model, blob_in, dim_in, spatial_scale_in ) # Add the body UV output blobs_body_uv = body_uv_rcnn_heads_add_body_uv_outputs( model, blob_body_uv_head, dim_body_uv_head ) if not model.train: # == inference # Inference uses a cascade of box predictions, then body uv predictions # This requires separate nets for box and body uv prediction. # So we extract the keypoint prediction net, store it as its own # network, then restore model.net to be the bbox-only network model.body_uv_net, body_uv_blob_out = c2_utils_SuffixNet( 'body_uv_net', model.net, len(bbox_net.op), blobs_body_uv ) model.net._net = bbox_net loss_gradients = None else: loss_gradients = body_uv_rcnn_heads_add_body_uv_losses(model) return loss_gradients def keypoint_rcnn_heads_add_keypoint_losses(model): """Add Mask R-CNN keypoint specific losses.""" # Reshape input from (N, K, H, W) to (NK, HW) model.net.Reshape( ['kps_score'], ['kps_score_reshaped', '_kps_score_old_shape'], shape=(-1, cfg.KRCNN.HEATMAP_SIZE * cfg.KRCNN.HEATMAP_SIZE) ) # Softmax across **space** (woahh....space!) # Note: this is not what is commonly called "spatial softmax" # (i.e., softmax applied along the channel dimension at each spatial # location); This is softmax applied over a set of spatial locations (i.e., # each spatial location is a "class"). kps_prob, loss_kps = model.net.SoftmaxWithLoss( ['kps_score_reshaped', 'keypoint_locations_int32', 'keypoint_weights'], ['kps_prob', 'loss_kps'], scale=cfg.KRCNN.LOSS_WEIGHT / cfg.NUM_GPUS, spatial=0 ) if not cfg.KRCNN.NORMALIZE_BY_VISIBLE_KEYPOINTS: # Discussion: the softmax loss above will average the loss by the sum of # keypoint_weights, i.e. the total number of visible keypoints. Since # the number of visible keypoints can vary significantly between # minibatches, this has the effect of up-weighting the importance of # minibatches with few visible keypoints. (Imagine the extreme case of # only one visible keypoint versus N: in the case of N, each one # contributes 1/N to the gradient compared to the single keypoint # determining the gradient direction). Instead, we can normalize the # loss by the total number of keypoints, if it were the case that all # keypoints were visible in a full minibatch. (Returning to the example, # this means that the one visible keypoint contributes as much as each # of the N keypoints.) model.StopGradient( 'keypoint_loss_normalizer', 'keypoint_loss_normalizer' ) loss_kps = model.net.Mul( ['loss_kps', 'keypoint_loss_normalizer'], 'loss_kps_normalized' ) loss_gradients = blob_utils_get_loss_gradients(model, [loss_kps]) model.AddLosses(loss_kps) return loss_gradients def keypoint_rcnn_heads_add_keypoint_outputs(model, blob_in, dim): """Add Mask R-CNN keypoint specific outputs: keypoint heatmaps.""" # NxKxHxW upsample_heatmap = (cfg.KRCNN.UP_SCALE > 1) if cfg.KRCNN.USE_DECONV: # Apply ConvTranspose to the feature representation; results in 2x # upsampling blob_in = model.ConvTranspose( blob_in, 'kps_deconv', dim, cfg.KRCNN.DECONV_DIM, kernel=cfg.KRCNN.DECONV_KERNEL, pad=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1), stride=2, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) model.Relu('kps_deconv', 'kps_deconv') dim = cfg.KRCNN.DECONV_DIM if upsample_heatmap: blob_name = 'kps_score_lowres' else: blob_name = 'kps_score' if cfg.KRCNN.USE_DECONV_OUTPUT: # Use ConvTranspose to predict heatmaps; results in 2x upsampling blob_out = model.ConvTranspose( blob_in, blob_name, dim, cfg.KRCNN.NUM_KEYPOINTS, kernel=cfg.KRCNN.DECONV_KERNEL, pad=int(cfg.KRCNN.DECONV_KERNEL / 2 - 1), stride=2, weight_init=(cfg.KRCNN.CONV_INIT, {'std': 0.001}), bias_init=const_fill(0.0) ) else: # Use Conv to predict heatmaps; does no upsampling blob_out = model.Conv( blob_in, blob_name, dim, cfg.KRCNN.NUM_KEYPOINTS, kernel=1, pad=0, stride=1, weight_init=(cfg.KRCNN.CONV_INIT, {'std': 0.001}), bias_init=const_fill(0.0) ) if upsample_heatmap: # Increase heatmap output size via bilinear upsampling blob_out = model.BilinearInterpolation( blob_out, 'kps_score', cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.NUM_KEYPOINTS, cfg.KRCNN.UP_SCALE ) return blob_out def _add_roi_keypoint_head( model, add_roi_keypoint_head_func, blob_in, dim_in, spatial_scale_in ): """Add a keypoint prediction head to the model.""" # Capture model graph before adding the mask head bbox_net = copy.deepcopy(model.net.Proto()) # Add the keypoint head blob_keypoint_head, dim_keypoint_head = add_roi_keypoint_head_func( model, blob_in, dim_in, spatial_scale_in ) # Add the keypoint output blob_keypoint = keypoint_rcnn_heads_add_keypoint_outputs( model, blob_keypoint_head, dim_keypoint_head ) if not model.train: # == inference # Inference uses a cascade of box predictions, then keypoint predictions # This requires separate nets for box and keypoint prediction. # So we extract the keypoint prediction net, store it as its own # network, then restore model.net to be the bbox-only network model.keypoint_net, keypoint_blob_out = c2_utils_SuffixNet( 'keypoint_net', model.net, len(bbox_net.op), blob_keypoint ) model.net._net = bbox_net loss_gradients = None else: loss_gradients = keypoint_rcnn_heads_add_keypoint_losses(model) return loss_gradients def mask_rcnn_heads_add_mask_rcnn_losses(model, blob_mask): """Add Mask R-CNN specific losses.""" loss_mask = model.net.SigmoidCrossEntropyLoss( [blob_mask, 'masks_int32'], 'loss_mask', scale=model.GetLossScale() * cfg.MRCNN.WEIGHT_LOSS_MASK ) loss_gradients = blob_utils_get_loss_gradients(model, [loss_mask]) model.AddLosses('loss_mask') return loss_gradients def BlobReferenceList(blob_ref_or_list): """Ensure that the argument is returned as a list of BlobReferences.""" if isinstance(blob_ref_or_list, core.BlobReference): return [blob_ref_or_list] elif type(blob_ref_or_list) in (list, tuple): for b in blob_ref_or_list: assert isinstance(b, core.BlobReference) return blob_ref_or_list else: raise TypeError( 'blob_ref_or_list must be a BlobReference or a list/tuple of ' 'BlobReferences' ) def c2_utils_SuffixNet(name, net, prefix_len, outputs): """Returns a new Net from the given Net (`net`) that includes only the ops after removing the first `prefix_len` number of ops. The new Net is thus a suffix of `net`. Blobs listed in `outputs` are registered as external output blobs. """ outputs = BlobReferenceList(outputs) for output in outputs: assert net.BlobIsDefined(output) new_net = net.Clone(name) del new_net.Proto().op[:] del new_net.Proto().external_input[:] del new_net.Proto().external_output[:] # Add suffix ops new_net.Proto().op.extend(net.Proto().op[prefix_len:]) # Add external input blobs # Treat any undefined blobs as external inputs input_names = [ i for op in new_net.Proto().op for i in op.input if not new_net.BlobIsDefined(i)] new_net.Proto().external_input.extend(input_names) # Add external output blobs output_names = [str(o) for o in outputs] new_net.Proto().external_output.extend(output_names) return new_net, [new_net.GetBlobRef(o) for o in output_names] def mask_rcnn_heads_add_mask_rcnn_outputs(model, blob_in, dim): """Add Mask R-CNN specific outputs: either mask logits or probs.""" num_cls = cfg.MODEL.NUM_CLASSES if cfg.MRCNN.CLS_SPECIFIC_MASK else 1 if cfg.MRCNN.USE_FC_OUTPUT: # Predict masks with a fully connected layer (ignore 'fcn' in the blob # name) blob_out = model.FC( blob_in, 'mask_fcn_logits', dim, num_cls * cfg.MRCNN.RESOLUTION**2, weight_init=gauss_fill(0.001), bias_init=const_fill(0.0) ) else: # Predict mask using Conv # Use GaussianFill for class-agnostic mask prediction; fills based on # fan-in can be too large in this case and cause divergence fill = ( cfg.MRCNN.CONV_INIT if cfg.MRCNN.CLS_SPECIFIC_MASK else 'GaussianFill' ) blob_out = model.Conv( blob_in, 'mask_fcn_logits', dim, num_cls, kernel=1, pad=0, stride=1, weight_init=(fill, {'std': 0.001}), bias_init=const_fill(0.0) ) if cfg.MRCNN.UPSAMPLE_RATIO > 1: blob_out = model.BilinearInterpolation( 'mask_fcn_logits', 'mask_fcn_logits_up', num_cls, num_cls, cfg.MRCNN.UPSAMPLE_RATIO ) if not model.train: # == if test blob_out = model.net.Sigmoid(blob_out, 'mask_fcn_probs') return blob_out def _add_roi_mask_head( model, add_roi_mask_head_func, blob_in, dim_in, spatial_scale_in ): """Add a mask prediction head to the model.""" # Capture model graph before adding the mask head bbox_net = copy.deepcopy(model.net.Proto()) # Add the mask head blob_mask_head, dim_mask_head = add_roi_mask_head_func( model, blob_in, dim_in, spatial_scale_in ) # Add the mask output blob_mask = mask_rcnn_heads_add_mask_rcnn_outputs( model, blob_mask_head, dim_mask_head ) if not model.train: # == inference # Inference uses a cascade of box predictions, then mask predictions. # This requires separate nets for box and mask prediction. # So we extract the mask prediction net, store it as its own network, # then restore model.net to be the bbox-only network model.mask_net, blob_mask = c2_utils_SuffixNet( 'mask_net', model.net, len(bbox_net.op), blob_mask ) model.net._net = bbox_net loss_gradients = None else: loss_gradients = mask_rcnn_heads_add_mask_rcnn_losses(model, blob_mask) return loss_gradients def fast_rcnn_heads_add_fast_rcnn_losses(model): """Add losses for RoI classification and bounding box regression.""" cls_prob, loss_cls = model.net.SoftmaxWithLoss( ['cls_score', 'labels_int32'], ['cls_prob', 'loss_cls'], scale=model.GetLossScale() ) loss_bbox = model.net.SmoothL1Loss( [ 'bbox_pred', 'bbox_targets', 'bbox_inside_weights', 'bbox_outside_weights' ], 'loss_bbox', scale=model.GetLossScale() ) loss_gradients = blob_utils_get_loss_gradients(model, [loss_cls, loss_bbox]) model.Accuracy(['cls_prob', 'labels_int32'], 'accuracy_cls') model.AddLosses(['loss_cls', 'loss_bbox']) model.AddMetrics('accuracy_cls') return loss_gradients def fast_rcnn_heads_add_fast_rcnn_outputs(model, blob_in, dim): """Add RoI classification and bounding box regression output ops.""" # Box classification layer model.FC( blob_in, 'cls_score', dim, model.num_classes, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) if not model.train: # == if test # Only add softmax when testing; during training the softmax is combined # with the label cross entropy loss for numerical stability model.Softmax('cls_score', 'cls_prob', engine='CUDNN') # Box regression layer num_bbox_reg_classes = ( 2 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else model.num_classes ) model.FC( blob_in, 'bbox_pred', dim, num_bbox_reg_classes * 4, weight_init=gauss_fill(0.001), bias_init=const_fill(0.0) ) def _add_fast_rcnn_head( model, add_roi_box_head_func, blob_in, dim_in, spatial_scale_in ): """Add a Fast R-CNN head to the model.""" blob_frcn, dim_frcn = add_roi_box_head_func( model, blob_in, dim_in, spatial_scale_in ) fast_rcnn_heads_add_fast_rcnn_outputs(model, blob_frcn, dim_frcn) if model.train: loss_gradients = fast_rcnn_heads_add_fast_rcnn_losses(model) else: loss_gradients = None return loss_gradients def _narrow_to_fpn_roi_levels(blobs, spatial_scales): """Return only the blobs and spatial scales that will be used for RoI heads. Inputs `blobs` and `spatial_scales` may include extra blobs and scales that are used for RPN proposals, but not for RoI heads. """ # Code only supports case when RPN and ROI min levels are the same assert cfg.FPN.RPN_MIN_LEVEL == cfg.FPN.ROI_MIN_LEVEL # RPN max level can be >= to ROI max level assert cfg.FPN.RPN_MAX_LEVEL >= cfg.FPN.ROI_MAX_LEVEL # FPN RPN max level might be > FPN ROI max level in which case we # need to discard some leading conv blobs (blobs are ordered from # max/coarsest level to min/finest level) num_roi_levels = cfg.FPN.ROI_MAX_LEVEL - cfg.FPN.ROI_MIN_LEVEL + 1 return blobs[-num_roi_levels:], spatial_scales[-num_roi_levels:] def add_single_scale_rpn_losses(model): """Add losses for a single scale RPN model (i.e., no FPN).""" # Spatially narrow the full-sized RPN label arrays to match the feature map # shape model.net.SpatialNarrowAs( ['rpn_labels_int32_wide', 'rpn_cls_logits'], 'rpn_labels_int32' ) for key in ('targets', 'inside_weights', 'outside_weights'): model.net.SpatialNarrowAs( ['rpn_bbox_' + key + '_wide', 'rpn_bbox_pred'], 'rpn_bbox_' + key ) loss_rpn_cls = model.net.SigmoidCrossEntropyLoss( ['rpn_cls_logits', 'rpn_labels_int32'], 'loss_rpn_cls', scale=model.GetLossScale() ) loss_rpn_bbox = model.net.SmoothL1Loss( [ 'rpn_bbox_pred', 'rpn_bbox_targets', 'rpn_bbox_inside_weights', 'rpn_bbox_outside_weights' ], 'loss_rpn_bbox', beta=1. / 9., scale=model.GetLossScale() ) loss_gradients = blob_utils_get_loss_gradients( model, [loss_rpn_cls, loss_rpn_bbox] ) model.AddLosses(['loss_rpn_cls', 'loss_rpn_bbox']) return loss_gradients def add_single_scale_rpn_outputs(model, blob_in, dim_in, spatial_scale): """Add RPN outputs to a single scale model (i.e., no FPN).""" anchors = generate_anchors( stride=1. / spatial_scale, sizes=cfg.RPN.SIZES, aspect_ratios=cfg.RPN.ASPECT_RATIOS ) num_anchors = anchors.shape[0] dim_out = dim_in # RPN hidden representation model.Conv( blob_in, 'conv_rpn', dim_in, dim_out, kernel=3, pad=1, stride=1, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) model.Relu('conv_rpn', 'conv_rpn') # Proposal classification scores model.Conv( 'conv_rpn', 'rpn_cls_logits', dim_in, num_anchors, kernel=1, pad=0, stride=1, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) # Proposal bbox regression deltas model.Conv( 'conv_rpn', 'rpn_bbox_pred', dim_in, 4 * num_anchors, kernel=1, pad=0, stride=1, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) if not model.train or cfg.MODEL.FASTER_RCNN: # Proposals are needed during: # 1) inference (== not model.train) for RPN only and Faster R-CNN # OR # 2) training for Faster R-CNN # Otherwise (== training for RPN only), proposals are not needed model.net.Sigmoid('rpn_cls_logits', 'rpn_cls_probs') model.GenerateProposals( ['rpn_cls_probs', 'rpn_bbox_pred', 'im_info'], ['rpn_rois', 'rpn_roi_probs'], anchors=anchors, spatial_scale=spatial_scale ) if cfg.MODEL.FASTER_RCNN: if model.train: # Add op that generates training labels for in-network RPN proposals model.GenerateProposalLabels(['rpn_rois', 'roidb', 'im_info']) else: # Alias rois to rpn_rois for inference model.net.Alias('rpn_rois', 'rois') def blob_utils_get_loss_gradients(model, loss_blobs): """Generate a gradient of 1 for each loss specified in 'loss_blobs'""" loss_gradients = {} for b in loss_blobs: loss_grad = model.net.ConstantFill(b, [b + '_grad'], value=1.0) loss_gradients[str(b)] = str(loss_grad) return loss_gradients def FPN_add_fpn_rpn_losses(model): """Add RPN on FPN specific losses.""" loss_gradients = {} for lvl in range(cfg.FPN.RPN_MIN_LEVEL, cfg.FPN.RPN_MAX_LEVEL + 1): slvl = str(lvl) # Spatially narrow the full-sized RPN label arrays to match the feature map # shape model.net.SpatialNarrowAs( ['rpn_labels_int32_wide_fpn' + slvl, 'rpn_cls_logits_fpn' + slvl], 'rpn_labels_int32_fpn' + slvl ) for key in ('targets', 'inside_weights', 'outside_weights'): model.net.SpatialNarrowAs( [ 'rpn_bbox_' + key + '_wide_fpn' + slvl, 'rpn_bbox_pred_fpn' + slvl ], 'rpn_bbox_' + key + '_fpn' + slvl ) loss_rpn_cls_fpn = model.net.SigmoidCrossEntropyLoss( ['rpn_cls_logits_fpn' + slvl, 'rpn_labels_int32_fpn' + slvl], 'loss_rpn_cls_fpn' + slvl, normalize=0, scale=( model.GetLossScale() / cfg.TRAIN.RPN_BATCH_SIZE_PER_IM / cfg.TRAIN.IMS_PER_BATCH ) ) # Normalization by (1) RPN_BATCH_SIZE_PER_IM and (2) IMS_PER_BATCH is # handled by (1) setting bbox outside weights and (2) SmoothL1Loss # normalizes by IMS_PER_BATCH loss_rpn_bbox_fpn = model.net.SmoothL1Loss( [ 'rpn_bbox_pred_fpn' + slvl, 'rpn_bbox_targets_fpn' + slvl, 'rpn_bbox_inside_weights_fpn' + slvl, 'rpn_bbox_outside_weights_fpn' + slvl ], 'loss_rpn_bbox_fpn' + slvl, beta=1. / 9., scale=model.GetLossScale(), ) loss_gradients.update( blob_utils_get_loss_gradients(model, [loss_rpn_cls_fpn, loss_rpn_bbox_fpn]) ) model.AddLosses(['loss_rpn_cls_fpn' + slvl, 'loss_rpn_bbox_fpn' + slvl]) return loss_gradients def const_fill(value): """Constant fill helper to reduce verbosity.""" return ('ConstantFill', {'value': value}) def gauss_fill(std): """Gaussian fill helper to reduce verbosity.""" return ('GaussianFill', {'std': std}) def FPN_add_fpn_rpn_outputs(model, blobs_in, dim_in, spatial_scales): """Add RPN on FPN specific outputs.""" num_anchors = len(cfg.FPN.RPN_ASPECT_RATIOS) dim_out = dim_in k_max = cfg.FPN.RPN_MAX_LEVEL # coarsest level of pyramid k_min = cfg.FPN.RPN_MIN_LEVEL # finest level of pyramid assert len(blobs_in) == k_max - k_min + 1 for lvl in range(k_min, k_max + 1): bl_in = blobs_in[k_max - lvl] # blobs_in is in reversed order sc = spatial_scales[k_max - lvl] # in reversed order slvl = str(lvl) if lvl == k_min: # Create conv ops with randomly initialized weights and # zeroed biases for the first FPN level; these will be shared by # all other FPN levels # RPN hidden representation conv_rpn_fpn = model.Conv( bl_in, 'conv_rpn_fpn' + slvl, dim_in, dim_out, kernel=3, pad=1, stride=1, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) model.Relu(conv_rpn_fpn, conv_rpn_fpn) # Proposal classification scores rpn_cls_logits_fpn = model.Conv( conv_rpn_fpn, 'rpn_cls_logits_fpn' + slvl, dim_in, num_anchors, kernel=1, pad=0, stride=1, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) # Proposal bbox regression deltas rpn_bbox_pred_fpn = model.Conv( conv_rpn_fpn, 'rpn_bbox_pred_fpn' + slvl, dim_in, 4 * num_anchors, kernel=1, pad=0, stride=1, weight_init=gauss_fill(0.01), bias_init=const_fill(0.0) ) else: # Share weights and biases sk_min = str(k_min) # RPN hidden representation conv_rpn_fpn = model.ConvShared( bl_in, 'conv_rpn_fpn' + slvl, dim_in, dim_out, kernel=3, pad=1, stride=1, weight='conv_rpn_fpn' + sk_min + '_w', bias='conv_rpn_fpn' + sk_min + '_b' ) model.Relu(conv_rpn_fpn, conv_rpn_fpn) # Proposal classification scores rpn_cls_logits_fpn = model.ConvShared( conv_rpn_fpn, 'rpn_cls_logits_fpn' + slvl, dim_in, num_anchors, kernel=1, pad=0, stride=1, weight='rpn_cls_logits_fpn' + sk_min + '_w', bias='rpn_cls_logits_fpn' + sk_min + '_b' ) # Proposal bbox regression deltas rpn_bbox_pred_fpn = model.ConvShared( conv_rpn_fpn, 'rpn_bbox_pred_fpn' + slvl, dim_in, 4 * num_anchors, kernel=1, pad=0, stride=1, weight='rpn_bbox_pred_fpn' + sk_min + '_w', bias='rpn_bbox_pred_fpn' + sk_min + '_b' ) if not model.train or cfg.MODEL.FASTER_RCNN: # Proposals are needed during: # 1) inference (== not model.train) for RPN only and Faster R-CNN # OR # 2) training for Faster R-CNN # Otherwise (== training for RPN only), proposals are not needed lvl_anchors = generate_anchors( stride=2.**lvl, sizes=(cfg.FPN.RPN_ANCHOR_START_SIZE * 2.**(lvl - k_min), ), aspect_ratios=cfg.FPN.RPN_ASPECT_RATIOS ) rpn_cls_probs_fpn = model.net.Sigmoid( rpn_cls_logits_fpn, 'rpn_cls_probs_fpn' + slvl ) model.GenerateProposals( [rpn_cls_probs_fpn, rpn_bbox_pred_fpn, 'im_info'], ['rpn_rois_fpn' + slvl, 'rpn_roi_probs_fpn' + slvl], anchors=lvl_anchors, spatial_scale=sc ) def rpn_heads_add_generic_rpn_outputs(model, blob_in, dim_in, spatial_scale_in): """Add RPN outputs (objectness classification and bounding box regression) to an RPN model. Abstracts away the use of FPN. """ loss_gradients = None if cfg.FPN.FPN_ON: # Delegate to the FPN module FPN_add_fpn_rpn_outputs(model, blob_in, dim_in, spatial_scale_in) if cfg.MODEL.FASTER_RCNN: # CollectAndDistributeFpnRpnProposals also labels proposals when in # training mode model.CollectAndDistributeFpnRpnProposals() if model.train: loss_gradients = FPN_add_fpn_rpn_losses(model) else: # Not using FPN, add RPN to a single scale add_single_scale_rpn_outputs(model, blob_in, dim_in, spatial_scale_in) if model.train: loss_gradients = add_single_scale_rpn_losses(model) return loss_gradients def c2_utils_BlobReferenceList(blob_ref_or_list): """Ensure that the argument is returned as a list of BlobReferences.""" if isinstance(blob_ref_or_list, core.BlobReference): return [blob_ref_or_list] elif type(blob_ref_or_list) in (list, tuple): for b in blob_ref_or_list: assert isinstance(b, core.BlobReference) return blob_ref_or_list else: raise TypeError( 'blob_ref_or_list must be a BlobReference or a list/tuple of ' 'BlobReferences' ) def build_generic_detection_model( model, add_conv_body_func, add_roi_box_head_func=None, add_roi_mask_head_func=None, add_roi_keypoint_head_func=None, add_roi_body_uv_head_func=None, freeze_conv_body=False ): def _single_gpu_build_func(model): """Build the model on a single GPU. Can be called in a loop over GPUs with name and device scoping to create a data parallel model. """ # Add the conv body (called "backbone architecture" in papers) # E.g., ResNet-50, ResNet-50-FPN, ResNeXt-101-FPN, etc. blob_conv, dim_conv, spatial_scale_conv = add_conv_body_func(model) if freeze_conv_body: for b in c2_utils_BlobReferenceList(blob_conv): model.StopGradient(b, b) if not model.train: # == inference # Create a net that can be used to execute the conv body on an image # (without also executing RPN or any other network heads) model.conv_body_net = model.net.Clone('conv_body_net') head_loss_gradients = { 'rpn': None, 'box': None, 'mask': None, 'keypoints': None, 'body_uv' : None, } if cfg.RPN.RPN_ON: # Add the RPN head head_loss_gradients['rpn'] = rpn_heads_add_generic_rpn_outputs( model, blob_conv, dim_conv, spatial_scale_conv ) if cfg.FPN.FPN_ON: # After adding the RPN head, restrict FPN blobs and scales to # those used in the RoI heads blob_conv, spatial_scale_conv = _narrow_to_fpn_roi_levels( blob_conv, spatial_scale_conv ) if not cfg.MODEL.RPN_ONLY: # Add the Fast R-CNN head head_loss_gradients['box'] = _add_fast_rcnn_head( model, add_roi_box_head_func, blob_conv, dim_conv, spatial_scale_conv ) if cfg.MODEL.MASK_ON: # Add the mask head head_loss_gradients['mask'] = _add_roi_mask_head( model, add_roi_mask_head_func, blob_conv, dim_conv, spatial_scale_conv ) if cfg.MODEL.KEYPOINTS_ON: # Add the keypoint head head_loss_gradients['keypoint'] = _add_roi_keypoint_head( model, add_roi_keypoint_head_func, blob_conv, dim_conv, spatial_scale_conv ) if cfg.MODEL.BODY_UV_ON: # Add the body UV head head_loss_gradients['body_uv'] = _add_roi_body_uv_head( model, add_roi_body_uv_head_func, blob_conv, dim_conv, spatial_scale_conv ) if model.train: loss_gradients = {} for lg in head_loss_gradients.values(): if lg is not None: loss_gradients.update(lg) return loss_gradients else: return None optim_build_data_parallel_model(model, _single_gpu_build_func) return model def get_group_gn(dim): """ get number of groups used by GroupNorm, based on number of channels """ dim_per_gp = cfg.GROUP_NORM.DIM_PER_GP num_groups = cfg.GROUP_NORM.NUM_GROUPS assert dim_per_gp == -1 or num_groups == -1, \ "GroupNorm: can only specify G or C/G." if dim_per_gp > 0: assert dim % dim_per_gp == 0 group_gn = dim // dim_per_gp else: assert dim % num_groups == 0 group_gn = num_groups return group_gn def add_topdown_lateral_module( model, fpn_top, fpn_lateral, fpn_bottom, dim_top, dim_lateral ): """Add a top-down lateral module.""" # Lateral 1x1 conv if cfg.FPN.USE_GN: # use GroupNorm lat = model.ConvGN( fpn_lateral, fpn_bottom + '_lateral', dim_in=dim_lateral, dim_out=dim_top, group_gn=get_group_gn(dim_top), kernel=1, pad=0, stride=1, weight_init=( const_fill(0.0) if cfg.FPN.ZERO_INIT_LATERAL else ('XavierFill', {})), bias_init=const_fill(0.0) ) else: lat = model.Conv( fpn_lateral, fpn_bottom + '_lateral', dim_in=dim_lateral, dim_out=dim_top, kernel=1, pad=0, stride=1, weight_init=( const_fill(0.0) if cfg.FPN.ZERO_INIT_LATERAL else ('XavierFill', {}) ), bias_init=const_fill(0.0) ) # Top-down 2x upsampling td = model.net.UpsampleNearest(fpn_top, fpn_bottom + '_topdown', scale=2) # Sum lateral and top-down model.net.Sum([lat, td], fpn_bottom) def get_min_max_levels(): """The min and max FPN levels required for supporting RPN and/or RoI transform operations on multiple FPN levels. """ min_level = LOWEST_BACKBONE_LVL max_level = HIGHEST_BACKBONE_LVL if cfg.FPN.MULTILEVEL_RPN and not cfg.FPN.MULTILEVEL_ROIS: max_level = cfg.FPN.RPN_MAX_LEVEL min_level = cfg.FPN.RPN_MIN_LEVEL if not cfg.FPN.MULTILEVEL_RPN and cfg.FPN.MULTILEVEL_ROIS: max_level = cfg.FPN.ROI_MAX_LEVEL min_level = cfg.FPN.ROI_MIN_LEVEL if cfg.FPN.MULTILEVEL_RPN and cfg.FPN.MULTILEVEL_ROIS: max_level = max(cfg.FPN.RPN_MAX_LEVEL, cfg.FPN.ROI_MAX_LEVEL) min_level = min(cfg.FPN.RPN_MIN_LEVEL, cfg.FPN.ROI_MIN_LEVEL) return min_level, max_level def add_fpn(model, fpn_level_info): """Add FPN connections based on the model described in the FPN paper.""" # FPN levels are built starting from the highest/coarest level of the # backbone (usually "conv5"). First we build down, recursively constructing # lower/finer resolution FPN levels. Then we build up, constructing levels # that are even higher/coarser than the starting level. fpn_dim = cfg.FPN.DIM min_level, max_level = get_min_max_levels() # Count the number of backbone stages that we will generate FPN levels for # starting from the coarest backbone stage (usually the "conv5"-like level) # E.g., if the backbone level info defines stages 4 stages: "conv5", # "conv4", ... "conv2" and min_level=2, then we end up with 4 - (2 - 2) = 4 # backbone stages to add FPN to. num_backbone_stages = ( len(fpn_level_info.blobs) - (min_level - LOWEST_BACKBONE_LVL) ) lateral_input_blobs = fpn_level_info.blobs[:num_backbone_stages] output_blobs = [ 'fpn_inner_{}'.format(s) for s in fpn_level_info.blobs[:num_backbone_stages] ] fpn_dim_lateral = fpn_level_info.dims xavier_fill = ('XavierFill', {}) # For the coarsest backbone level: 1x1 conv only seeds recursion if cfg.FPN.USE_GN: # use GroupNorm c = model.ConvGN( lateral_input_blobs[0], output_blobs[0], # note: this is a prefix dim_in=fpn_dim_lateral[0], dim_out=fpn_dim, group_gn=get_group_gn(fpn_dim), kernel=1, pad=0, stride=1, weight_init=xavier_fill, bias_init=const_fill(0.0) ) output_blobs[0] = c # rename it else: model.Conv( lateral_input_blobs[0], output_blobs[0], dim_in=fpn_dim_lateral[0], dim_out=fpn_dim, kernel=1, pad=0, stride=1, weight_init=xavier_fill, bias_init=const_fill(0.0) ) # # Step 1: recursively build down starting from the coarsest backbone level # # For other levels add top-down and lateral connections for i in range(num_backbone_stages - 1): add_topdown_lateral_module( model, output_blobs[i], # top-down blob lateral_input_blobs[i + 1], # lateral blob output_blobs[i + 1], # next output blob fpn_dim, # output dimension fpn_dim_lateral[i + 1] # lateral input dimension ) # Post-hoc scale-specific 3x3 convs blobs_fpn = [] spatial_scales = [] for i in range(num_backbone_stages): if cfg.FPN.USE_GN: # use GroupNorm fpn_blob = model.ConvGN( output_blobs[i], 'fpn_{}'.format(fpn_level_info.blobs[i]), dim_in=fpn_dim, dim_out=fpn_dim, group_gn=get_group_gn(fpn_dim), kernel=3, pad=1, stride=1, weight_init=xavier_fill, bias_init=const_fill(0.0) ) else: fpn_blob = model.Conv( output_blobs[i], 'fpn_{}'.format(fpn_level_info.blobs[i]), dim_in=fpn_dim, dim_out=fpn_dim, kernel=3, pad=1, stride=1, weight_init=xavier_fill, bias_init=const_fill(0.0) ) blobs_fpn += [fpn_blob] spatial_scales += [fpn_level_info.spatial_scales[i]] # # Step 2: build up starting from the coarsest backbone level # # Check if we need the P6 feature map if not cfg.FPN.EXTRA_CONV_LEVELS and max_level == HIGHEST_BACKBONE_LVL + 1: # Original FPN P6 level implementation from our CVPR'17 FPN paper P6_blob_in = blobs_fpn[0] P6_name = P6_blob_in + '_subsampled_2x' # Use max pooling to simulate stride 2 subsampling P6_blob = model.MaxPool(P6_blob_in, P6_name, kernel=1, pad=0, stride=2) blobs_fpn.insert(0, P6_blob) spatial_scales.insert(0, spatial_scales[0] * 0.5) # Coarser FPN levels introduced for RetinaNet if cfg.FPN.EXTRA_CONV_LEVELS and max_level > HIGHEST_BACKBONE_LVL: fpn_blob = fpn_level_info.blobs[0] dim_in = fpn_level_info.dims[0] for i in range(HIGHEST_BACKBONE_LVL + 1, max_level + 1): fpn_blob_in = fpn_blob if i > HIGHEST_BACKBONE_LVL + 1: fpn_blob_in = model.Relu(fpn_blob, fpn_blob + '_relu') fpn_blob = model.Conv( fpn_blob_in, 'fpn_' + str(i), dim_in=dim_in, dim_out=fpn_dim, kernel=3, pad=1, stride=2, weight_init=xavier_fill, bias_init=const_fill(0.0) ) dim_in = fpn_dim blobs_fpn.insert(0, fpn_blob) spatial_scales.insert(0, spatial_scales[0] * 0.5) return blobs_fpn, fpn_dim, spatial_scales def add_fpn_onto_conv_body( model, conv_body_func, fpn_level_info_func, P2only=False ): """Add the specified conv body to the model and then add FPN levels to it. """ # Note: blobs_conv is in revsersed order: [fpn5, fpn4, fpn3, fpn2] # similarly for dims_conv: [2048, 1024, 512, 256] # similarly for spatial_scales_fpn: [1/32, 1/16, 1/8, 1/4] conv_body_func(model) blobs_fpn, dim_fpn, spatial_scales_fpn = add_fpn( model, fpn_level_info_func() ) if P2only: # use only the finest level return blobs_fpn[-1], dim_fpn, spatial_scales_fpn[-1] else: # use all levels return blobs_fpn, dim_fpn, spatial_scales_fpn def fpn_level_info_ResNet101_conv5(): return FpnLevelInfo( blobs=('res5_2_sum', 'res4_22_sum', 'res3_3_sum', 'res2_2_sum'), dims=(2048, 1024, 512, 256), spatial_scales=(1. / 32., 1. / 16., 1. / 8., 1. / 4.) ) def add_residual_block( model, prefix, blob_in, dim_in, dim_out, dim_inner, dilation, stride_init=2, inplace_sum=False ): """Add a residual block to the model.""" # prefix = res<stage>_<sub_stage>, e.g., res2_3 # Max pooling is performed prior to the first stage (which is uniquely # distinguished by dim_in = 64), thus we keep stride = 1 for the first stage stride = stride_init if ( dim_in != dim_out and dim_in != 64 and dilation == 1 ) else 1 # transformation blob tr = globals()[cfg.RESNETS.TRANS_FUNC]( model, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group=cfg.RESNETS.NUM_GROUPS, dilation=dilation ) # sum -> ReLU # shortcut function: by default using bn; support gn add_shortcut = globals()[cfg.RESNETS.SHORTCUT_FUNC] sc = add_shortcut(model, prefix, blob_in, dim_in, dim_out, stride) if inplace_sum: s = model.net.Sum([tr, sc], tr) else: s = model.net.Sum([tr, sc], prefix + '_sum') return model.Relu(s, s) def add_stage( model, prefix, blob_in, n, dim_in, dim_out, dim_inner, dilation, stride_init=2 ): """Add a ResNet stage to the model by stacking n residual blocks.""" # e.g., prefix = res2 for i in range(n): blob_in = add_residual_block( model, '{}_{}'.format(prefix, i), blob_in, dim_in, dim_out, dim_inner, dilation, stride_init, # Not using inplace for the last block; # it may be fetched externally or used by FPN inplace_sum=i < n - 1 ) dim_in = dim_out return blob_in, dim_in def add_ResNet_convX_body(model, block_counts, freeze_at=2): """Add a ResNet body from input data up through the res5 (aka conv5) stage. The final res5/conv5 stage may be optionally excluded (hence convX, where X = 4 or 5).""" assert freeze_at in [0, 2, 3, 4, 5] # add the stem (by default, conv1 and pool1 with bn; can support gn) p, dim_in = globals()[cfg.RESNETS.STEM_FUNC](model, 'data') dim_bottleneck = cfg.RESNETS.NUM_GROUPS * cfg.RESNETS.WIDTH_PER_GROUP (n1, n2, n3) = block_counts[:3] s, dim_in = add_stage(model, 'res2', p, n1, dim_in, 256, dim_bottleneck, 1) if freeze_at == 2: model.StopGradient(s, s) s, dim_in = add_stage( model, 'res3', s, n2, dim_in, 512, dim_bottleneck * 2, 1 ) if freeze_at == 3: model.StopGradient(s, s) s, dim_in = add_stage( model, 'res4', s, n3, dim_in, 1024, dim_bottleneck * 4, 1 ) if freeze_at == 4: model.StopGradient(s, s) if len(block_counts) == 4: n4 = block_counts[3] s, dim_in = add_stage( model, 'res5', s, n4, dim_in, 2048, dim_bottleneck * 8, cfg.RESNETS.RES5_DILATION ) if freeze_at == 5: model.StopGradient(s, s) return s, dim_in, 1. / 32. * cfg.RESNETS.RES5_DILATION else: return s, dim_in, 1. / 16. def ResNet_add_ResNet101_conv5_body(model): return add_ResNet_convX_body(model, (3, 4, 23, 3)) def FPN_add_fpn_ResNet101_conv5_body(model): return add_fpn_onto_conv_body( model, ResNet_add_ResNet101_conv5_body, fpn_level_info_ResNet101_conv5 ) def bottleneck_transformation( model, blob_in, dim_in, dim_out, stride, prefix, dim_inner, dilation=1, group=1 ): """Add a bottleneck transformation to the model.""" # In original resnet, stride=2 is on 1x1. # In fb.torch resnet, stride=2 is on 3x3. (str1x1, str3x3) = (stride, 1) if cfg.RESNETS.STRIDE_1X1 else (1, stride) # conv 1x1 -> BN -> ReLU cur = model.ConvAffine( blob_in, prefix + '_branch2a', dim_in, dim_inner, kernel=1, stride=str1x1, pad=0, inplace=True ) cur = model.Relu(cur, cur) # conv 3x3 -> BN -> ReLU cur = model.ConvAffine( cur, prefix + '_branch2b', dim_inner, dim_inner, kernel=3, stride=str3x3, pad=1 * dilation, dilation=dilation, group=group, inplace=True ) cur = model.Relu(cur, cur) # conv 1x1 -> BN (no ReLU) # NB: for now this AffineChannel op cannot be in-place due to a bug in C2 # gradient computation for graphs like this cur = model.ConvAffine( cur, prefix + '_branch2c', dim_inner, dim_out, kernel=1, stride=1, pad=0, inplace=False ) return cur def basic_bn_shortcut(model, prefix, blob_in, dim_in, dim_out, stride): """ For a pre-trained network that used BN. An AffineChannel op replaces BN during fine-tuning. """ if dim_in == dim_out: return blob_in c = model.Conv( blob_in, prefix + '_branch1', dim_in, dim_out, kernel=1, stride=stride, no_bias=1 ) return model.AffineChannel(c, prefix + '_branch1_bn', dim=dim_out) def basic_bn_stem(model, data, **kwargs): """Add a basic ResNet stem. For a pre-trained network that used BN. An AffineChannel op replaces BN during fine-tuning. """ dim = 64 p = model.Conv(data, 'conv1', 3, dim, 7, pad=3, stride=2, no_bias=1) p = model.AffineChannel(p, 'res_conv1_bn', dim=dim, inplace=True) p = model.Relu(p, p) p = model.MaxPool(p, 'pool1', kernel=3, pad=1, stride=2) return p, dim def get_func(func_name): """Helper to return a function object by name. func_name must identify a function in this module or the path to a function relative to the base 'modeling' module. """ if func_name == '': return None try: parts = func_name.split('.') # Refers to a function in this module if len(parts) == 1: return globals()[parts[0]] # Otherwise, assume we're referencing a module under modeling module_name = 'detectron.modeling.' + '.'.join(parts[:-1]) module = importlib.import_module(module_name) return getattr(module, parts[-1]) except Exception: logger.error('Failed to find function: {}'.format(func_name)) raise def body_uv_rcnn_heads_add_roi_body_uv_head_v1convX(model, blob_in, dim_in, spatial_scale): """v1convX design: X * (conv).""" hidden_dim = cfg.BODY_UV_RCNN.CONV_HEAD_DIM kernel_size = cfg.BODY_UV_RCNN.CONV_HEAD_KERNEL pad_size = kernel_size // 2 current = model.RoIFeatureTransform( blob_in, '_[body_uv]_roi_feat', blob_rois='body_uv_rois', method=cfg.BODY_UV_RCNN.ROI_XFORM_METHOD, resolution=cfg.BODY_UV_RCNN.ROI_XFORM_RESOLUTION, sampling_ratio=cfg.BODY_UV_RCNN.ROI_XFORM_SAMPLING_RATIO, spatial_scale=spatial_scale ) for i in range(cfg.BODY_UV_RCNN.NUM_STACKED_CONVS): current = model.Conv( current, 'body_conv_fcn' + str(i + 1), dim_in, hidden_dim, kernel_size, stride=1, pad=pad_size, weight_init=(cfg.BODY_UV_RCNN.CONV_INIT, {'std': 0.01}), bias_init=('ConstantFill', {'value': 0.}) ) current = model.Relu(current, current) dim_in = hidden_dim return current, hidden_dim def generalized_rcnn(model): """This model type handles: - Fast R-CNN - RPN only (not integrated with Fast R-CNN) - Faster R-CNN (stagewise training from NIPS paper) - Faster R-CNN (end-to-end joint training) - Mask R-CNN (stagewise training from NIPS paper) - Mask R-CNN (end-to-end joint training) """ return build_generic_detection_model( model, eval(str(cfg.MODEL.CONV_BODY).replace(".","_")), add_roi_box_head_func=[None if cfg.FAST_RCNN.ROI_BOX_HEAD == "" else eval(str(cfg.FAST_RCNN.ROI_BOX_HEAD).replace(".","_"))][0], add_roi_mask_head_func=[None if cfg.MRCNN.ROI_MASK_HEAD == "" else eval(str(cfg.MRCNN.ROI_MASK_HEAD).replace(".","_"))][0], add_roi_keypoint_head_func=[None if cfg.KRCNN.ROI_KEYPOINTS_HEAD == "" else eval(str(cfg.KRCNN.ROI_KEYPOINTS_HEAD).replace(".","_"))][0], add_roi_body_uv_head_func=[None if cfg.BODY_UV_RCNN.ROI_HEAD == "" else eval(str(cfg.BODY_UV_RCNN.ROI_HEAD).replace(".","_"))][0], freeze_conv_body=cfg.TRAIN.FREEZE_CONV_BODY ) def fast_rcnn_heads_add_roi_2mlp_head(model, blob_in, dim_in, spatial_scale): """Add a ReLU MLP with two hidden layers.""" hidden_dim = cfg.FAST_RCNN.MLP_HEAD_DIM roi_size = cfg.FAST_RCNN.ROI_XFORM_RESOLUTION roi_feat = model.RoIFeatureTransform( blob_in, 'roi_feat', blob_rois='rois', method=cfg.FAST_RCNN.ROI_XFORM_METHOD, resolution=roi_size, sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO, spatial_scale=spatial_scale ) model.FC(roi_feat, 'fc6', dim_in * roi_size * roi_size, hidden_dim) model.Relu('fc6', 'fc6') model.FC('fc6', 'fc7', hidden_dim, hidden_dim) model.Relu('fc7', 'fc7') return 'fc7', hidden_dim def model_builder_create(model_type_func, train=False, gpu_id=0): """Generic model creation function that dispatches to specific model building functions. By default, this function will generate a data parallel model configured to run on cfg.NUM_GPUS devices. However, you can restrict it to build a model targeted to a specific GPU by specifying gpu_id. This is used by optimizer.build_data_parallel_model() during test time. """ model = DetectionModelHelper( name=model_type_func, train=train, num_classes=cfg.MODEL.NUM_CLASSES, init_params=train ) model.only_build_forward_pass = False model.target_gpu_id = gpu_id return eval(str(model_type_func).replace(".","_"))(model) def configure_bbox_reg_weights(model, saved_cfg): """Compatibility for old models trained with bounding box regression mean/std normalization (instead of fixed weights). """ if 'MODEL' not in saved_cfg or 'BBOX_REG_WEIGHTS' not in saved_cfg.MODEL: logger.warning('Model from weights file was trained before config key ' 'MODEL.BBOX_REG_WEIGHTS was added. Forcing ' 'MODEL.BBOX_REG_WEIGHTS = (1., 1., 1., 1.) to ensure ' 'correct **inference** behavior.') # Generally we don't allow modifying the config, but this is a one-off # hack to support some very old models is_immutable = cfg.is_immutable() cfg.immutable(False) cfg.MODEL.BBOX_REG_WEIGHTS = (1., 1., 1., 1.) cfg.immutable(is_immutable) #logger.info('New config:') #logger.info(pprint.pformat(cfg)) assert not model.train, ( 'This model was trained with an older version of the code that ' 'used bounding box regression mean/std normalization. It can no ' 'longer be used for training. To upgrade it to a trainable model ' 'please use fb/compat/convert_bbox_reg_normalized_model.py.' ) def load_object(file_name): with open(file_name, 'rb') as f: # The default encoding used while unpickling is 7-bit (ASCII.) However, # the blobs are arbitrary 8-bit bytes which don't agree. The absolute # correct way to do this is to use `encoding="bytes"` and then interpret # the blob names either as ASCII, or better, as unicode utf-8. A # reasonable fix, however, is to treat it the encoding as 8-bit latin1 # (which agrees with the first 256 characters of Unicode anyway.) if six.PY2: return pickle.load(f) else: return pickle.load(f, encoding='latin1') def net_utils_initialize_gpu_from_weights_file(model, weights_file, gpu_id=0): """Initialize a network with ops on a specific GPU. If you use CUDA_VISIBLE_DEVICES to target specific GPUs, Caffe2 will automatically map logical GPU ids (starting from 0) to the physical GPUs specified in CUDA_VISIBLE_DEVICES. """ #logger.info('Loading weights from: {}'.format(weights_file)) ws_blobs = workspace.Blobs() src_blobs = load_object(weights_file) if 'cfg' in src_blobs: saved_cfg = load_cfg(src_blobs['cfg']) configure_bbox_reg_weights(model, saved_cfg) if 'blobs' in src_blobs: # Backwards compat--dictionary used to be only blobs, now they are # stored under the 'blobs' key src_blobs = src_blobs['blobs'] # with open(weights_file, 'r') as f: # src_blobs = pickle.load(f) # if 'cfg' in src_blobs: # saved_cfg = load_cfg(src_blobs['cfg']) # configure_bbox_reg_weights(model, saved_cfg) # if 'blobs' in src_blobs: # # Backwards compat--dictionary used to be only blobs, now they are # # stored under the 'blobs' key # src_blobs = src_blobs['blobs'] # Initialize weights on GPU gpu_id only unscoped_param_names = OrderedDict() # Print these out in model order for blob in model.params: unscoped_param_names[c2_utils_UnscopeName(str(blob))] = True with c2_utils_NamedCudaScope(gpu_id): for unscoped_param_name in unscoped_param_names.keys(): if (unscoped_param_name.find(']_') >= 0 and unscoped_param_name not in src_blobs): # Special case for sharing initialization from a pretrained # model: # If a blob named '_[xyz]_foo' is in model.params and not in # the initialization blob dictionary, then load source blob # 'foo' into destination blob '_[xyz]_foo' src_name = unscoped_param_name[ unscoped_param_name.find(']_') + 2:] else: src_name = unscoped_param_name if src_name not in src_blobs: #logger.info('{:s} not found'.format(src_name)) continue dst_name = core.ScopedName(unscoped_param_name) has_momentum = src_name + '_momentum' in src_blobs has_momentum_str = ' [+ momentum]' if has_momentum else '' logger.debug( '{:s}{:} loaded from weights file into {:s}: {}'.format( src_name, has_momentum_str, dst_name, src_blobs[src_name] .shape ) ) if dst_name in ws_blobs: # If the blob is already in the workspace, make sure that it # matches the shape of the loaded blob ws_blob = workspace.FetchBlob(dst_name) assert ws_blob.shape == src_blobs[src_name].shape, \ ('Workspace blob {} with shape {} does not match ' 'weights file shape {}').format( src_name, ws_blob.shape, src_blobs[src_name].shape) workspace.FeedBlob( dst_name, src_blobs[src_name].astype(np.float32, copy=False)) if has_momentum: workspace.FeedBlob( dst_name + '_momentum', src_blobs[src_name + '_momentum'].astype( np.float32, copy=False)) # We preserve blobs that are in the weights file but not used by the current # model. We load these into CPU memory under the '__preserve__/' namescope. # These blobs will be stored when saving a model to a weights file. This # feature allows for alternating optimization of Faster R-CNN in which blobs # unused by one step can still be preserved forward and used to initialize # another step. for src_name in src_blobs.keys(): if (src_name not in unscoped_param_names and not src_name.endswith('_momentum') and src_blobs[src_name] is not None): with c2_utils_CpuScope(): workspace.FeedBlob( '__preserve__/{:s}'.format(src_name), src_blobs[src_name]) logger.debug( '{:s} preserved in workspace (unused)'.format(src_name)) def infer_engine_initialize_model_from_cfg(weights_file, gpu_id=0): """Initialize a model from the global cfg. Loads test-time weights and creates the networks in the Caffe2 workspace. """ model = model_builder_create(cfg.MODEL.TYPE, train=False, gpu_id=gpu_id) net_utils_initialize_gpu_from_weights_file( model, weights_file, gpu_id=gpu_id, ) model_builder_add_inference_inputs(model) workspace.CreateNet(model.net) workspace.CreateNet(model.conv_body_net) if cfg.MODEL.MASK_ON: workspace.CreateNet(model.mask_net) if cfg.MODEL.KEYPOINTS_ON: workspace.CreateNet(model.keypoint_net) if cfg.MODEL.BODY_UV_ON: workspace.CreateNet(model.body_uv_net) return model def setup_logging(name): FORMAT = '%(levelname)s %(filename)s:%(lineno)4d: %(message)s' # Manually clear root loggers to prevent any module that may have called # logging.basicConfig() from blocking our logging setup logging.root.handlers = [] logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(name) return logger def cache_url(url_or_file, cache_dir): """Download the file specified by the URL to the cache_dir and return the path to the cached file. If the argument is not a URL, simply return it as is. """ is_url = re.match(r'^(?:http)s?://', url_or_file, re.IGNORECASE) is not None if not is_url: return url_or_file # url = url_or_file # Len_filename = len( url.split('/')[-1] ) BASE_URL = url[0:-Len_filename-1] # cache_file_path = url.replace(BASE_URL, cache_dir) if os.path.exists(cache_file_path): #assert_cache_file_is_ok(url, cache_file_path) return cache_file_path cache_file_dir = os.path.dirname(cache_file_path) if not os.path.exists(cache_file_dir): os.makedirs(cache_file_dir) #logger.info('Downloading remote file {} to {}'.format(url, cache_file_path)) download_url(url, cache_file_path) #assert_cache_file_is_ok(url, cache_file_path) return cache_file_path def c2_utils_UnscopeName(possibly_scoped_name): """Remove any name scoping from a (possibly) scoped name. For example, convert the name 'gpu_0/foo' to 'foo'.""" assert isinstance(possibly_scoped_name, string_types) return possibly_scoped_name[ possibly_scoped_name.rfind(scope._NAMESCOPE_SEPARATOR) + 1:] def _get_lr_change_ratio(cur_lr, new_lr): eps = 1e-10 ratio = np.max( (new_lr / np.max((cur_lr, eps)), cur_lr / np.max((new_lr, eps))) ) return ratio def _filter_boxes(boxes, min_size, im_info): """Only keep boxes with both sides >= min_size and center within the image. """ # Compute the width and height of the proposal boxes as measured in the original # image coordinate system (this is required to avoid "Negative Areas Found" # assertions in other parts of the code that measure). im_scale = im_info[2] ws_orig_scale = (boxes[:, 2] - boxes[:, 0]) / im_scale + 1 hs_orig_scale = (boxes[:, 3] - boxes[:, 1]) / im_scale + 1 # To avoid numerical issues we require the min_size to be at least 1 pixel in the # original image min_size = np.maximum(min_size, 1) # Proposal center is computed relative to the scaled input image ws = boxes[:, 2] - boxes[:, 0] + 1 hs = boxes[:, 3] - boxes[:, 1] + 1 x_ctr = boxes[:, 0] + ws / 2. y_ctr = boxes[:, 1] + hs / 2. keep = np.where( (ws_orig_scale >= min_size) & (hs_orig_scale >= min_size) & (x_ctr < im_info[1]) & (y_ctr < im_info[0]) )[0] return keep def box_utils_clip_tiled_boxes(boxes, im_shape): """Clip boxes to image boundaries. im_shape is [height, width] and boxes has shape (N, 4 * num_tiled_boxes).""" assert boxes.shape[1] % 4 == 0, \ 'boxes.shape[1] is {:d}, but must be divisible by 4.'.format( boxes.shape[1] ) # x1 >= 0 boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0) # y1 >= 0 boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0) # x2 < im_shape[1] boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0) # y2 < im_shape[0] boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0) return boxes def box_utils_nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return [] return cython_nms.nms(dets, thresh) def fast_rcnn_roi_data_get_fast_rcnn_blob_names(is_training=True): """Fast R-CNN blob names.""" # rois blob: holds R regions of interest, each is a 5-tuple # (batch_idx, x1, y1, x2, y2) specifying an image batch index and a # rectangle (x1, y1, x2, y2) blob_names = ['rois'] if is_training: # labels_int32 blob: R categorical labels in [0, ..., K] for K # foreground classes plus background blob_names += ['labels_int32'] if is_training: # bbox_targets blob: R bounding-box regression targets with 4 # targets per class blob_names += ['bbox_targets'] # bbox_inside_weights blob: At most 4 targets per roi are active # this binary vector sepcifies the subset of active targets blob_names += ['bbox_inside_weights'] blob_names += ['bbox_outside_weights'] if is_training and cfg.MODEL.MASK_ON: # 'mask_rois': RoIs sampled for training the mask prediction branch. # Shape is (#masks, 5) in format (batch_idx, x1, y1, x2, y2). blob_names += ['mask_rois'] # 'roi_has_mask': binary labels for the RoIs specified in 'rois' # indicating if each RoI has a mask or not. Note that in some cases # a *bg* RoI will have an all -1 (ignore) mask associated with it in # the case that no fg RoIs can be sampled. Shape is (batchsize). blob_names += ['roi_has_mask_int32'] # 'masks_int32' holds binary masks for the RoIs specified in # 'mask_rois'. Shape is (#fg, M * M) where M is the ground truth # mask size. blob_names += ['masks_int32'] if is_training and cfg.MODEL.KEYPOINTS_ON: # 'keypoint_rois': RoIs sampled for training the keypoint prediction # branch. Shape is (#instances, 5) in format (batch_idx, x1, y1, x2, # y2). blob_names += ['keypoint_rois'] # 'keypoint_locations_int32': index of keypoint in # KRCNN.HEATMAP_SIZE**2 sized array. Shape is (#instances). Used in # SoftmaxWithLoss. blob_names += ['keypoint_locations_int32'] # 'keypoint_weights': weight assigned to each target in # 'keypoint_locations_int32'. Shape is (#instances). Used in # SoftmaxWithLoss. blob_names += ['keypoint_weights'] # 'keypoint_loss_normalizer': optional normalization factor to use if # cfg.KRCNN.NORMALIZE_BY_VISIBLE_KEYPOINTS is False. blob_names += ['keypoint_loss_normalizer'] ######################## if is_training and cfg.MODEL.BODY_UV_ON: blob_names += ['body_uv_rois'] blob_names += ['roi_has_body_uv_int32'] ######### # ################################################### blob_names += ['body_uv_ann_labels'] blob_names += ['body_uv_ann_weights'] # ################################################# blob_names += ['body_uv_X_points'] blob_names += ['body_uv_Y_points'] blob_names += ['body_uv_Ind_points'] blob_names += ['body_uv_I_points'] blob_names += ['body_uv_U_points'] blob_names += ['body_uv_V_points'] blob_names += ['body_uv_point_weights'] if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_ROIS: # Support for FPN multi-level rois without bbox reg isn't # implemented (... and may never be implemented) k_max = cfg.FPN.ROI_MAX_LEVEL k_min = cfg.FPN.ROI_MIN_LEVEL # Same format as rois blob, but one per FPN level for lvl in range(k_min, k_max + 1): blob_names += ['rois_fpn' + str(lvl)] blob_names += ['rois_idx_restore_int32'] if is_training: if cfg.MODEL.MASK_ON: for lvl in range(k_min, k_max + 1): blob_names += ['mask_rois_fpn' + str(lvl)] blob_names += ['mask_rois_idx_restore_int32'] if cfg.MODEL.KEYPOINTS_ON: for lvl in range(k_min, k_max + 1): blob_names += ['keypoint_rois_fpn' + str(lvl)] blob_names += ['keypoint_rois_idx_restore_int32'] if cfg.MODEL.BODY_UV_ON: for lvl in range(k_min, k_max + 1): blob_names += ['body_uv_rois_fpn' + str(lvl)] blob_names += ['body_uv_rois_idx_restore_int32'] return blob_names def blob_utils_py_op_copy_blob(blob_in, blob_out): """Copy a numpy ndarray given as blob_in into the Caffe2 CPUTensor blob given as blob_out. Supports float32 and int32 blob data types. This function is intended for copying numpy data into a Caffe2 blob in PythonOps. """ # Some awkward voodoo required by Caffe2 to support int32 blobs needs_int32_init = False try: _ = blob.data.dtype # noqa except Exception: needs_int32_init = blob_in.dtype == np.int32 if needs_int32_init: # init can only take a list (failed on tuple) blob_out.init(list(blob_in.shape), caffe2_pb2.TensorProto.INT32) else: blob_out.reshape(blob_in.shape) blob_out.data[...] = blob_in def keypoint_rcnn_roi_data_finalize_keypoint_minibatch(blobs, valid): """Finalize the minibatch after blobs for all minibatch images have been collated. """ min_count = cfg.KRCNN.MIN_KEYPOINT_COUNT_FOR_VALID_MINIBATCH num_visible_keypoints = np.sum(blobs['keypoint_weights']) valid = ( valid and len(blobs['keypoint_weights']) > 0 and num_visible_keypoints > min_count ) # Normalizer to use if cfg.KRCNN.NORMALIZE_BY_VISIBLE_KEYPOINTS is False. # See modeling.model_builder.add_keypoint_losses norm = num_visible_keypoints / ( cfg.TRAIN.IMS_PER_BATCH * cfg.TRAIN.BATCH_SIZE_PER_IM * cfg.TRAIN.FG_FRACTION * cfg.KRCNN.NUM_KEYPOINTS ) blobs['keypoint_loss_normalizer'] = np.array(norm, dtype=np.float32) return valid def fpn_add_multilevel_roi_blobs( blobs, blob_prefix, rois, target_lvls, lvl_min, lvl_max ): """Add RoI blobs for multiple FPN levels to the blobs dict. blobs: a dict mapping from blob name to numpy ndarray blob_prefix: name prefix to use for the FPN blobs rois: the source rois as a 2D numpy array of shape (N, 5) where each row is an roi and the columns encode (batch_idx, x1, y1, x2, y2) target_lvls: numpy array of shape (N, ) indicating which FPN level each roi in rois should be assigned to lvl_min: the finest (highest resolution) FPN level (e.g., 2) lvl_max: the coarest (lowest resolution) FPN level (e.g., 6) """ rois_idx_order = np.empty((0, )) rois_stacked = np.zeros((0, 5), dtype=np.float32) # for assert for lvl in range(lvl_min, lvl_max + 1): idx_lvl = np.where(target_lvls == lvl)[0] blobs[blob_prefix + '_fpn' + str(lvl)] = rois[idx_lvl, :] rois_idx_order = np.concatenate((rois_idx_order, idx_lvl)) rois_stacked = np.vstack( [rois_stacked, blobs[blob_prefix + '_fpn' + str(lvl)]] ) rois_idx_restore = np.argsort(rois_idx_order).astype(np.int32, copy=False) blobs[blob_prefix + '_idx_restore_int32'] = rois_idx_restore # Sanity check that restore order is correct assert (rois_stacked[rois_idx_restore] == rois).all() def _add_multilevel_rois(blobs): """By default training RoIs are added for a single feature map level only. When using FPN, the RoIs must be distributed over different FPN levels according the level assignment heuristic (see: modeling.FPN. map_rois_to_fpn_levels). """ lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL def _distribute_rois_over_fpn_levels(rois_blob_name): """Distribute rois over the different FPN levels.""" # Get target level for each roi # Recall blob rois are in (batch_idx, x1, y1, x2, y2) format, hence take # the box coordinates from columns 1:5 target_lvls = fpn_map_rois_to_fpn_levels( blobs[rois_blob_name][:, 1:5], lvl_min, lvl_max ) # Add per FPN level roi blobs named like: <rois_blob_name>_fpn<lvl> fpn_add_multilevel_roi_blobs( blobs, rois_blob_name, blobs[rois_blob_name], target_lvls, lvl_min, lvl_max ) _distribute_rois_over_fpn_levels('rois') if cfg.MODEL.MASK_ON: _distribute_rois_over_fpn_levels('mask_rois') if cfg.MODEL.KEYPOINTS_ON: _distribute_rois_over_fpn_levels('keypoint_rois') if cfg.MODEL.BODY_UV_ON: _distribute_rois_over_fpn_levels('body_uv_rois') def segm_utils_GetDensePoseMask(Polys): MaskGen = np.zeros([256,256]) for i in range(1,15): if(Polys[i-1]): current_mask = mask_util.decode(Polys[i-1]) MaskGen[current_mask>0] = i return MaskGen def body_uv_rcnn_roi_data_add_body_uv_rcnn_blobs(blobs, sampled_boxes, roidb, im_scale, batch_idx): IsFlipped = roidb['flipped'] M = cfg.BODY_UV_RCNN.HEATMAP_SIZE # polys_gt_inds = np.where(roidb['ignore_UV_body'] == 0)[0] boxes_from_polys = [roidb['boxes'][i,:] for i in polys_gt_inds] if not(boxes_from_polys): pass else: boxes_from_polys = np.vstack(boxes_from_polys) boxes_from_polys = np.array(boxes_from_polys) fg_inds = np.where(blobs['labels_int32'] > 0)[0] roi_has_mask = np.zeros( blobs['labels_int32'].shape ) if (bool(boxes_from_polys.any()) & (fg_inds.shape[0] > 0) ): rois_fg = sampled_boxes[fg_inds] # rois_fg.astype(np.float32, copy=False) boxes_from_polys.astype(np.float32, copy=False) # overlaps_bbfg_bbpolys = box_utils_bbox_overlaps( rois_fg.astype(np.float32, copy=False), boxes_from_polys.astype(np.float32, copy=False)) fg_polys_value = np.max(overlaps_bbfg_bbpolys, axis=1) fg_inds = fg_inds[fg_polys_value>0.7] if (bool(boxes_from_polys.any()) & (fg_inds.shape[0] > 0) ): for jj in fg_inds: roi_has_mask[jj] = 1 # Create blobs for densepose supervision. ################################################## The mask All_labels = blob_utils_zeros((fg_inds.shape[0], M ** 2), int32=True) All_Weights = blob_utils_zeros((fg_inds.shape[0], M ** 2), int32=True) ################################################# The points X_points = blob_utils_zeros((fg_inds.shape[0], 196), int32=False) Y_points = blob_utils_zeros((fg_inds.shape[0], 196), int32=False) Ind_points = blob_utils_zeros((fg_inds.shape[0], 196), int32=True) I_points = blob_utils_zeros((fg_inds.shape[0], 196), int32=True) U_points = blob_utils_zeros((fg_inds.shape[0], 196), int32=False) V_points = blob_utils_zeros((fg_inds.shape[0], 196), int32=False) Uv_point_weights = blob_utils_zeros((fg_inds.shape[0], 196), int32=False) ################################################# rois_fg = sampled_boxes[fg_inds] overlaps_bbfg_bbpolys = box_utils_bbox_overlaps( rois_fg.astype(np.float32, copy=False), boxes_from_polys.astype(np.float32, copy=False)) fg_polys_inds = np.argmax(overlaps_bbfg_bbpolys, axis=1) for i in range(rois_fg.shape[0]): # fg_polys_ind = polys_gt_inds[ fg_polys_inds[i] ] # Ilabel = segm_utils_GetDensePoseMask( roidb['dp_masks'][ fg_polys_ind ] ) # GT_I = np.array(roidb['dp_I'][ fg_polys_ind ]) GT_U = np.array(roidb['dp_U'][ fg_polys_ind ]) GT_V = np.array(roidb['dp_V'][ fg_polys_ind ]) GT_x = np.array(roidb['dp_x'][ fg_polys_ind ]) GT_y = np.array(roidb['dp_y'][ fg_polys_ind ]) GT_weights = np.ones(GT_I.shape).astype(np.float32) # ## Do the flipping of the densepose annotation ! if(IsFlipped): GT_I,GT_U,GT_V,GT_x,GT_y,Ilabel = DP.get_symmetric_densepose(GT_I,GT_U,GT_V,GT_x,GT_y,Ilabel) # roi_fg = rois_fg[i] roi_gt = boxes_from_polys[fg_polys_inds[i],:] # x1 = roi_fg[0] ; x2 = roi_fg[2] y1 = roi_fg[1] ; y2 = roi_fg[3] # x1_source = roi_gt[0]; x2_source = roi_gt[2] y1_source = roi_gt[1]; y2_source = roi_gt[3] # x_targets = ( np.arange(x1,x2, (x2 - x1)/M ) - x1_source ) * ( 256. / (x2_source-x1_source) ) y_targets = ( np.arange(y1,y2, (y2 - y1)/M ) - y1_source ) * ( 256. / (y2_source-y1_source) ) # x_targets = x_targets[0:M] ## Strangely sometimes it can be M+1, so make sure size is OK! y_targets = y_targets[0:M] # [X_targets,Y_targets] = np.meshgrid( x_targets, y_targets ) New_Index = cv2.remap(Ilabel,X_targets.astype(np.float32), Y_targets.astype(np.float32), interpolation=cv2.INTER_NEAREST, borderMode= cv2.BORDER_CONSTANT, borderValue=(0)) # All_L = np.zeros(New_Index.shape) All_W = np.ones(New_Index.shape) # All_L = New_Index # gt_length_x = x2_source - x1_source gt_length_y = y2_source - y1_source # GT_y = (( GT_y / 256. * gt_length_y ) + y1_source - y1 ) * ( M / ( y2 - y1 ) ) GT_x = (( GT_x / 256. * gt_length_x ) + x1_source - x1 ) * ( M / ( x2 - x1 ) ) # GT_I[GT_y<0] = 0 GT_I[GT_y>(M-1)] = 0 GT_I[GT_x<0] = 0 GT_I[GT_x>(M-1)] = 0 # points_inside = GT_I>0 GT_U = GT_U[points_inside] GT_V = GT_V[points_inside] GT_x = GT_x[points_inside] GT_y = GT_y[points_inside] GT_weights = GT_weights[points_inside] GT_I = GT_I[points_inside] # X_points[i, 0:len(GT_x)] = GT_x Y_points[i, 0:len(GT_y)] = GT_y Ind_points[i, 0:len(GT_I)] = i I_points[i, 0:len(GT_I)] = GT_I U_points[i, 0:len(GT_U)] = GT_U V_points[i, 0:len(GT_V)] = GT_V Uv_point_weights[i, 0:len(GT_weights)] = GT_weights # All_labels[i, :] = np.reshape(All_L.astype(np.int32), M ** 2) All_Weights[i, :] = np.reshape(All_W.astype(np.int32), M ** 2) ## else: bg_inds = np.where(blobs['labels_int32'] == 0)[0] # if(len(bg_inds)==0): rois_fg = sampled_boxes[0].reshape((1, -1)) else: rois_fg = sampled_boxes[bg_inds[0]].reshape((1, -1)) roi_has_mask[0] = 1 # X_points = blob_utils_zeros((1, 196), int32=False) Y_points = blob_utils_zeros((1, 196), int32=False) Ind_points = blob_utils_zeros((1, 196), int32=True) I_points = blob_utils_zeros((1,196), int32=True) U_points = blob_utils_zeros((1, 196), int32=False) V_points = blob_utils_zeros((1, 196), int32=False) Uv_point_weights = blob_utils_zeros((1, 196), int32=False) # All_labels = -blob_utils_ones((1, M ** 2), int32=True) * 0 ## zeros All_Weights = -blob_utils_ones((1, M ** 2), int32=True) * 0 ## zeros # rois_fg *= im_scale repeated_batch_idx = batch_idx * blob_utils_ones((rois_fg.shape[0], 1)) rois_fg = np.hstack((repeated_batch_idx, rois_fg)) # K = cfg.BODY_UV_RCNN.NUM_PATCHES # U_points = np.tile( U_points , [1,K+1] ) V_points = np.tile( V_points , [1,K+1] ) Uv_Weight_Points = np.zeros(U_points.shape) # for jjj in range(1,K+1): Uv_Weight_Points[ : , jjj * I_points.shape[1] : (jjj+1) * I_points.shape[1] ] = ( I_points == jjj ).astype(np.float32) # ################ # Update blobs dict with Mask R-CNN blobs ############### # blobs['body_uv_rois'] = np.array(rois_fg) blobs['roi_has_body_uv_int32'] = np.array(roi_has_mask).astype(np.int32) ## blobs['body_uv_ann_labels'] = np.array(All_labels).astype(np.int32) blobs['body_uv_ann_weights'] = np.array(All_Weights).astype(np.float32) # ########################## blobs['body_uv_X_points'] = X_points.astype(np.float32) blobs['body_uv_Y_points'] = Y_points.astype(np.float32) blobs['body_uv_Ind_points'] = Ind_points.astype(np.float32) blobs['body_uv_I_points'] = I_points.astype(np.float32) blobs['body_uv_U_points'] = U_points.astype(np.float32) #### VERY IMPORTANT : These are switched here : blobs['body_uv_V_points'] = V_points.astype(np.float32) blobs['body_uv_point_weights'] = Uv_Weight_Points.astype(np.float32) ################### def keypoint_utils_keypoints_to_heatmap_labels(keypoints, rois): """Encode keypoint location in the target heatmap for use in SoftmaxWithLoss. """ # Maps keypoints from the half-open interval [x1, x2) on continuous image # coordinates to the closed interval [0, HEATMAP_SIZE - 1] on discrete image # coordinates. We use the continuous <-> discrete conversion from Heckbert # 1990 ("What is the coordinate of a pixel?"): d = floor(c) and c = d + 0.5, # where d is a discrete coordinate and c is a continuous coordinate. assert keypoints.shape[2] == cfg.KRCNN.NUM_KEYPOINTS shape = (len(rois), cfg.KRCNN.NUM_KEYPOINTS) heatmaps = blob_utils_zeros(shape) weights = blob_utils_zeros(shape) offset_x = rois[:, 0] offset_y = rois[:, 1] scale_x = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 2] - rois[:, 0]) scale_y = cfg.KRCNN.HEATMAP_SIZE / (rois[:, 3] - rois[:, 1]) for kp in range(keypoints.shape[2]): vis = keypoints[:, 2, kp] > 0 x = keypoints[:, 0, kp].astype(np.float32) y = keypoints[:, 1, kp].astype(np.float32) # Since we use floor below, if a keypoint is exactly on the roi's right # or bottom boundary, we shift it in by eps (conceptually) to keep it in # the ground truth heatmap. x_boundary_inds = np.where(x == rois[:, 2])[0] y_boundary_inds = np.where(y == rois[:, 3])[0] x = (x - offset_x) * scale_x x = np.floor(x) if len(x_boundary_inds) > 0: x[x_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1 y = (y - offset_y) * scale_y y = np.floor(y) if len(y_boundary_inds) > 0: y[y_boundary_inds] = cfg.KRCNN.HEATMAP_SIZE - 1 valid_loc = np.logical_and( np.logical_and(x >= 0, y >= 0), np.logical_and( x < cfg.KRCNN.HEATMAP_SIZE, y < cfg.KRCNN.HEATMAP_SIZE)) valid = np.logical_and(valid_loc, vis) valid = valid.astype(np.int32) lin_ind = y * cfg.KRCNN.HEATMAP_SIZE + x heatmaps[:, kp] = lin_ind * valid weights[:, kp] = valid return heatmaps, weights def _within_box(points, boxes): """Validate which keypoints are contained inside a given box. points: Nx2xK boxes: Nx4 output: NxK """ x_within = np.logical_and( points[:, 0, :] >= np.expand_dims(boxes[:, 0], axis=1), points[:, 0, :] <= np.expand_dims(boxes[:, 2], axis=1) ) y_within = np.logical_and( points[:, 1, :] >= np.expand_dims(boxes[:, 1], axis=1), points[:, 1, :] <= np.expand_dims(boxes[:, 3], axis=1) ) return np.logical_and(x_within, y_within) def keypoint_rcnn_roi_data_add_keypoint_rcnn_blobs( blobs, roidb, fg_rois_per_image, fg_inds, im_scale, batch_idx ): """Add Mask R-CNN keypoint specific blobs to the given blobs dictionary.""" # Note: gt_inds must match how they're computed in # datasets.json_dataset._merge_proposal_boxes_into_roidb gt_inds = np.where(roidb['gt_classes'] > 0)[0] max_overlaps = roidb['max_overlaps'] gt_keypoints = roidb['gt_keypoints'] ind_kp = gt_inds[roidb['box_to_gt_ind_map']] within_box = _within_box(gt_keypoints[ind_kp, :, :], roidb['boxes']) vis_kp = gt_keypoints[ind_kp, 2, :] > 0 is_visible = np.sum(np.logical_and(vis_kp, within_box), axis=1) > 0 kp_fg_inds = np.where( np.logical_and(max_overlaps >= cfg.TRAIN.FG_THRESH, is_visible) )[0] kp_fg_rois_per_this_image = np.minimum(fg_rois_per_image, kp_fg_inds.size) if kp_fg_inds.size > kp_fg_rois_per_this_image: kp_fg_inds = np.random.choice( kp_fg_inds, size=kp_fg_rois_per_this_image, replace=False ) sampled_fg_rois = roidb['boxes'][kp_fg_inds] box_to_gt_ind_map = roidb['box_to_gt_ind_map'][kp_fg_inds] num_keypoints = gt_keypoints.shape[2] sampled_keypoints = -np.ones( (len(sampled_fg_rois), gt_keypoints.shape[1], num_keypoints), dtype=gt_keypoints.dtype ) for ii in range(len(sampled_fg_rois)): ind = box_to_gt_ind_map[ii] if ind >= 0: sampled_keypoints[ii, :, :] = gt_keypoints[gt_inds[ind], :, :] assert np.sum(sampled_keypoints[ii, 2, :]) > 0 heats, weights = keypoint_utils_keypoints_to_heatmap_labels( sampled_keypoints, sampled_fg_rois ) shape = (sampled_fg_rois.shape[0] * cfg.KRCNN.NUM_KEYPOINTS, 1) heats = heats.reshape(shape) weights = weights.reshape(shape) sampled_fg_rois *= im_scale repeated_batch_idx = batch_idx * blob_utils_ones( (sampled_fg_rois.shape[0], 1) ) sampled_fg_rois = np.hstack((repeated_batch_idx, sampled_fg_rois)) blobs['keypoint_rois'] = sampled_fg_rois blobs['keypoint_locations_int32'] = heats.astype(np.int32, copy=False) blobs['keypoint_weights'] = weights def _expand_to_class_specific_mask_targets(masks, mask_class_labels): """Expand masks from shape (#masks, M ** 2) to (#masks, #classes * M ** 2) to encode class specific mask targets. """ assert masks.shape[0] == mask_class_labels.shape[0] M = cfg.MRCNN.RESOLUTION # Target values of -1 are "don't care" / ignore labels mask_targets = -blob_utils_ones( (masks.shape[0], cfg.MODEL.NUM_CLASSES * M**2), int32=True ) for i in range(masks.shape[0]): cls = int(mask_class_labels[i]) start = M**2 * cls end = start + M**2 # Ignore background instance # (only happens when there is no fg samples in an image) if cls > 0: mask_targets[i, start:end] = masks[i, :] return mask_targets def segm_utils_polys_to_mask_wrt_box(polygons, box, M): """Convert from the COCO polygon segmentation format to a binary mask encoded as a 2D array of data type numpy.float32. The polygon segmentation is understood to be enclosed in the given box and rasterized to an M x M mask. The resulting mask is therefore of shape (M, M). """ w = box[2] - box[0] h = box[3] - box[1] w = np.maximum(w, 1) h = np.maximum(h, 1) polygons_norm = [] for poly in polygons: p = np.array(poly, dtype=np.float32) p[0::2] = (p[0::2] - box[0]) * M / w p[1::2] = (p[1::2] - box[1]) * M / h polygons_norm.append(p) rle = mask_util.frPyObjects(polygons_norm, M, M) mask = np.array(mask_util.decode(rle), dtype=np.float32) # Flatten in case polygons was a list mask = np.sum(mask, axis=2) mask = np.array(mask > 0, dtype=np.float32) return mask def segm_utils_polys_to_boxes(polys): """Convert a list of polygons into an array of tight bounding boxes.""" boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32) for i in range(len(polys)): poly = polys[i] x0 = min(min(p[::2]) for p in poly) x1 = max(max(p[::2]) for p in poly) y0 = min(min(p[1::2]) for p in poly) y1 = max(max(p[1::2]) for p in poly) boxes_from_polys[i, :] = [x0, y0, x1, y1] return boxes_from_polys def mask_rcnn_roi_data_add_mask_rcnn_blobs(blobs, sampled_boxes, roidb, im_scale, batch_idx): """Add Mask R-CNN specific blobs to the input blob dictionary.""" # Prepare the mask targets by associating one gt mask to each training roi # that has a fg (non-bg) class label. M = cfg.MRCNN.RESOLUTION polys_gt_inds = np.where( (roidb['gt_classes'] > 0) & (roidb['is_crowd'] == 0) )[0] polys_gt = [roidb['segms'][i] for i in polys_gt_inds] boxes_from_polys = segm_utils_polys_to_boxes(polys_gt) fg_inds = np.where(blobs['labels_int32'] > 0)[0] roi_has_mask = blobs['labels_int32'].copy() roi_has_mask[roi_has_mask > 0] = 1 if fg_inds.shape[0] > 0: # Class labels for the foreground rois mask_class_labels = blobs['labels_int32'][fg_inds] masks = blob_utils_zeros((fg_inds.shape[0], M**2), int32=True) # Find overlap between all foreground rois and the bounding boxes # enclosing each segmentation rois_fg = sampled_boxes[fg_inds] overlaps_bbfg_bbpolys = box_utils_bbox_overlaps( rois_fg.astype(np.float32, copy=False), boxes_from_polys.astype(np.float32, copy=False) ) # Map from each fg rois to the index of the mask with highest overlap # (measured by bbox overlap) fg_polys_inds = np.argmax(overlaps_bbfg_bbpolys, axis=1) # add fg targets for i in range(rois_fg.shape[0]): fg_polys_ind = fg_polys_inds[i] poly_gt = polys_gt[fg_polys_ind] roi_fg = rois_fg[i] # Rasterize the portion of the polygon mask within the given fg roi # to an M x M binary image mask = segm_utils_polys_to_mask_wrt_box(poly_gt, roi_fg, M) mask = np.array(mask > 0, dtype=np.int32) # Ensure it's binary masks[i, :] = np.reshape(mask, M**2) else: # If there are no fg masks (it does happen) # The network cannot handle empty blobs, so we must provide a mask # We simply take the first bg roi, given it an all -1's mask (ignore # label), and label it with class zero (bg). bg_inds = np.where(blobs['labels_int32'] == 0)[0] # rois_fg is actually one background roi, but that's ok because ... rois_fg = sampled_boxes[bg_inds[0]].reshape((1, -1)) # We give it an -1's blob (ignore label) masks = -blob_utils_ones((1, M**2), int32=True) # We label it with class = 0 (background) mask_class_labels = blob_utils_zeros((1, )) # Mark that the first roi has a mask roi_has_mask[0] = 1 if cfg.MRCNN.CLS_SPECIFIC_MASK: masks = _expand_to_class_specific_mask_targets(masks, mask_class_labels) # Scale rois_fg and format as (batch_idx, x1, y1, x2, y2) rois_fg *= im_scale repeated_batch_idx = batch_idx * blob_utils_ones((rois_fg.shape[0], 1)) rois_fg = np.hstack((repeated_batch_idx, rois_fg)) # Update blobs dict with Mask R-CNN blobs blobs['mask_rois'] = rois_fg blobs['roi_has_mask_int32'] = roi_has_mask blobs['masks_int32'] = masks def blob_utils_ones(shape, int32=False): """Return a blob of all ones of the given shape with the correct float or int data type. """ return np.ones(shape, dtype=np.int32 if int32 else np.float32) def blob_utils_zeros(shape, int32=False): """Return a blob of all zeros of the given shape with the correct float or int data type. """ return np.zeros(shape, dtype=np.int32 if int32 else np.float32) def _expand_bbox_targets(bbox_target_data): """Bounding-box regression targets are stored in a compact form in the roidb. This function expands those targets into the 4-of-4*K representation used by the network (i.e. only one class has non-zero targets). The loss weights are similarly expanded. Returns: bbox_target_data (ndarray): N x 4K blob of regression targets bbox_inside_weights (ndarray): N x 4K blob of loss weights """ num_bbox_reg_classes = cfg.MODEL.NUM_CLASSES if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: num_bbox_reg_classes = 2 # bg and fg clss = bbox_target_data[:, 0] bbox_targets = blob_utils_zeros((clss.size, 4 * num_bbox_reg_classes)) bbox_inside_weights = blob_utils_zeros(bbox_targets.shape) inds = np.where(clss > 0)[0] for ind in inds: cls = int(clss[ind]) start = 4 * cls end = start + 4 bbox_targets[ind, start:end] = bbox_target_data[ind, 1:] bbox_inside_weights[ind, start:end] = (1.0, 1.0, 1.0, 1.0) return bbox_targets, bbox_inside_weights def _sample_rois(roidb, im_scale, batch_idx): """Generate a random sample of RoIs comprising foreground and background examples. """ rois_per_image = int(cfg.TRAIN.BATCH_SIZE_PER_IM) fg_rois_per_image = int(np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)) max_overlaps = roidb['max_overlaps'] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = np.where(max_overlaps >= cfg.TRAIN.FG_THRESH)[0] # Guard against the case when an image has fewer than fg_rois_per_image # foreground RoIs fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_inds.size) # Sample foreground regions without replacement if fg_inds.size > 0: fg_inds = npr.choice( fg_inds, size=fg_rois_per_this_image, replace=False ) # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = np.where( (max_overlaps < cfg.TRAIN.BG_THRESH_HI) & (max_overlaps >= cfg.TRAIN.BG_THRESH_LO) )[0] # Compute number of background RoIs to take from this image (guarding # against there being fewer than desired) bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_inds.size) # Sample foreground regions without replacement if bg_inds.size > 0: bg_inds = npr.choice( bg_inds, size=bg_rois_per_this_image, replace=False ) # The indices that we're selecting (both fg and bg) keep_inds = np.append(fg_inds, bg_inds) # Label is the class each RoI has max overlap with sampled_labels = roidb['max_classes'][keep_inds] sampled_labels[fg_rois_per_this_image:] = 0 # Label bg RoIs with class 0 sampled_boxes = roidb['boxes'][keep_inds] bbox_targets, bbox_inside_weights = _expand_bbox_targets( roidb['bbox_targets'][keep_inds, :] ) bbox_outside_weights = np.array( bbox_inside_weights > 0, dtype=bbox_inside_weights.dtype ) # Scale rois and format as (batch_idx, x1, y1, x2, y2) sampled_rois = sampled_boxes * im_scale repeated_batch_idx = batch_idx * blob_utils_ones((sampled_rois.shape[0], 1)) sampled_rois = np.hstack((repeated_batch_idx, sampled_rois)) # Base Fast R-CNN blobs blob_dict = dict( labels_int32=sampled_labels.astype(np.int32, copy=False), rois=sampled_rois, bbox_targets=bbox_targets, bbox_inside_weights=bbox_inside_weights, bbox_outside_weights=bbox_outside_weights ) # Optionally add Mask R-CNN blobs if cfg.MODEL.MASK_ON: mask_rcnn_roi_data_add_mask_rcnn_blobs( blob_dict, sampled_boxes, roidb, im_scale, batch_idx ) # Optionally add Keypoint R-CNN blobs if cfg.MODEL.KEYPOINTS_ON: keypoint_rcnn_roi_data_add_keypoint_rcnn_blobs( blob_dict, roidb, fg_rois_per_image, fg_inds, im_scale, batch_idx ) # Optionally body UV R-CNN blobs if cfg.MODEL.BODY_UV_ON: body_uv_rcnn_roi_data_add_body_uv_rcnn_blobs( blob_dict, sampled_boxes, roidb, im_scale, batch_idx ) return blob_dict def fast_rcnn_roi_data_add_fast_rcnn_blobs(blobs, im_scales, roidb): """Add blobs needed for training Fast R-CNN style models.""" # Sample training RoIs from each image and append them to the blob lists for im_i, entry in enumerate(roidb): frcn_blobs = _sample_rois(entry, im_scales[im_i], im_i) for k, v in frcn_blobs.items(): blobs[k].append(v) # Concat the training blob lists into tensors for k, v in blobs.items(): if isinstance(v, list) and len(v) > 0: blobs[k] = np.concatenate(v) # Add FPN multilevel training RoIs, if configured if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois(blobs) # Perform any final work and validity checks after the collating blobs for # all minibatch images valid = True if cfg.MODEL.KEYPOINTS_ON: valid = keypoint_rcnn_roi_data_finalize_keypoint_minibatch(blobs, valid) return valid def box_utils_bbox_transform_inv(boxes, gt_boxes, weights=(1.0, 1.0, 1.0, 1.0)): """Inverse transform that computes target bounding-box regression deltas given proposal boxes and ground-truth boxes. The weights argument should be a 4-tuple of multiplicative weights that are applied to the regression target. In older versions of this code (and in py-faster-rcnn), the weights were set such that the regression deltas would have unit standard deviation on the training dataset. Presently, rather than computing these statistics exactly, we use a fixed set of weights (10., 10., 5., 5.) by default. These are approximately the weights one would get from COCO using the previous unit stdev heuristic. """ ex_widths = boxes[:, 2] - boxes[:, 0] + 1.0 ex_heights = boxes[:, 3] - boxes[:, 1] + 1.0 ex_ctr_x = boxes[:, 0] + 0.5 * ex_widths ex_ctr_y = boxes[:, 1] + 0.5 * ex_heights gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + 1.0 gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + 1.0 gt_ctr_x = gt_boxes[:, 0] + 0.5 * gt_widths gt_ctr_y = gt_boxes[:, 1] + 0.5 * gt_heights wx, wy, ww, wh = weights targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = ww * np.log(gt_widths / ex_widths) targets_dh = wh * np.log(gt_heights / ex_heights) targets = np.vstack((targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets def compute_bbox_regression_targets(entry): """Compute bounding-box regression targets for an image.""" # Indices of ground-truth ROIs rois = entry['boxes'] overlaps = entry['max_overlaps'] labels = entry['max_classes'] gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0] # Targets has format (class, tx, ty, tw, th) targets = np.zeros((rois.shape[0], 5), dtype=np.float32) if len(gt_inds) == 0: # Bail if the image has no ground-truth ROIs return targets # Indices of examples for which we try to make predictions ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI ex_gt_overlaps = box_utils_bbox_overlaps( rois[ex_inds, :].astype(dtype=np.float32, copy=False), rois[gt_inds, :].astype(dtype=np.float32, copy=False)) # Find which gt ROI each ex ROI has max overlap with: # this will be the ex ROI's gt target gt_assignment = ex_gt_overlaps.argmax(axis=1) gt_rois = rois[gt_inds[gt_assignment], :] ex_rois = rois[ex_inds, :] # Use class "1" for all boxes if using class_agnostic_bbox_reg targets[ex_inds, 0] = ( 1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds]) targets[ex_inds, 1:] = box_utils_bbox_transform_inv( ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS) return targets def roidb_utils_add_bbox_regression_targets(roidb): """Add information needed to train bounding-box regressors.""" for entry in roidb: entry['bbox_targets'] = compute_bbox_regression_targets(entry) def _add_class_assignments(roidb): """Compute object category assignment for each box associated with each roidb entry. """ for entry in roidb: gt_overlaps = entry['gt_overlaps'].toarray() # max overlap with gt over classes (columns) max_overlaps = gt_overlaps.max(axis=1) # gt class that had the max overlap max_classes = gt_overlaps.argmax(axis=1) entry['max_classes'] = max_classes entry['max_overlaps'] = max_overlaps # sanity checks # if max overlap is 0, the class must be background (class 0) zero_inds = np.where(max_overlaps == 0)[0] assert all(max_classes[zero_inds] == 0) # if max overlap > 0, the class must be a fg class (not class 0) nonzero_inds = np.where(max_overlaps > 0)[0] assert all(max_classes[nonzero_inds] != 0) def box_utils_xyxy_to_xywh(xyxy): """Convert [x1 y1 x2 y2] box format to [x1 y1 w h] format.""" if isinstance(xyxy, (list, tuple)): # Single box given as a list of coordinates assert len(xyxy) == 4 x1, y1 = xyxy[0], xyxy[1] w = xyxy[2] - x1 + 1 h = xyxy[3] - y1 + 1 return (x1, y1, w, h) elif isinstance(xyxy, np.ndarray): # Multiple boxes given as a 2D ndarray return np.hstack((xyxy[:, 0:2], xyxy[:, 2:4] - xyxy[:, 0:2] + 1)) else: raise TypeError('Argument xyxy must be a list, tuple, or numpy array.') def _filter_crowd_proposals(roidb, crowd_thresh): """Finds proposals that are inside crowd regions and marks them as overlap = -1 with each ground-truth rois, which means they will be excluded from training. """ for entry in roidb: gt_overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(entry['is_crowd'] == 1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue crowd_boxes = box_utils_xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = box_utils_xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) iscrowd_flags = [int(True)] * len(crowd_inds) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd_flags) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] gt_overlaps[non_gt_inds[bad_inds], :] = -1 entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps) def _merge_proposal_boxes_into_roidb(roidb, box_list): """Add proposal boxes to each roidb entry.""" assert len(box_list) == len(roidb) for i, entry in enumerate(roidb): boxes = box_list[i] num_boxes = boxes.shape[0] gt_overlaps = np.zeros( (num_boxes, entry['gt_overlaps'].shape[1]), dtype=entry['gt_overlaps'].dtype ) box_to_gt_ind_map = -np.ones( (num_boxes), dtype=entry['box_to_gt_ind_map'].dtype ) # Note: unlike in other places, here we intentionally include all gt # rois, even ones marked as crowd. Boxes that overlap with crowds will # be filtered out later (see: _filter_crowd_proposals). gt_inds = np.where(entry['gt_classes'] > 0)[0] if len(gt_inds) > 0: gt_boxes = entry['boxes'][gt_inds, :] gt_classes = entry['gt_classes'][gt_inds] proposal_to_gt_overlaps = box_utils_bbox_overlaps( boxes.astype(dtype=np.float32, copy=False), gt_boxes.astype(dtype=np.float32, copy=False) ) # Gt box that overlaps each input box the most # (ties are broken arbitrarily by class order) argmaxes = proposal_to_gt_overlaps.argmax(axis=1) # Amount of that overlap maxes = proposal_to_gt_overlaps.max(axis=1) # Those boxes with non-zero overlap with gt boxes I = np.where(maxes > 0)[0] # Record max overlaps with the class of the appropriate gt box gt_overlaps[I, gt_classes[argmaxes[I]]] = maxes[I] box_to_gt_ind_map[I] = gt_inds[argmaxes[I]] entry['boxes'] = np.append( entry['boxes'], boxes.astype(entry['boxes'].dtype, copy=False), axis=0 ) entry['gt_classes'] = np.append( entry['gt_classes'], np.zeros((num_boxes), dtype=entry['gt_classes'].dtype) ) entry['seg_areas'] = np.append( entry['seg_areas'], np.zeros((num_boxes), dtype=entry['seg_areas'].dtype) ) entry['gt_overlaps'] = np.append( entry['gt_overlaps'].toarray(), gt_overlaps, axis=0 ) entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps']) entry['is_crowd'] = np.append( entry['is_crowd'], np.zeros((num_boxes), dtype=entry['is_crowd'].dtype) ) entry['box_to_gt_ind_map'] = np.append( entry['box_to_gt_ind_map'], box_to_gt_ind_map.astype( entry['box_to_gt_ind_map'].dtype, copy=False ) ) def json_dataset_add_proposals(roidb, rois, scales, crowd_thresh): """Add proposal boxes (rois) to an roidb that has ground-truth annotations but no proposals. If the proposals are not at the original image scale, specify the scale factor that separate them in scales. """ box_list = [] for i in range(len(roidb)): inv_im_scale = 1. / scales[i] idx = np.where(rois[:, 0] == i)[0] box_list.append(rois[idx, 1:] * inv_im_scale) _merge_proposal_boxes_into_roidb(roidb, box_list) if crowd_thresh > 0: _filter_crowd_proposals(roidb, crowd_thresh) _add_class_assignments(roidb) def blob_utils_deserialize(arr): """Unserialize a Python object from an array of float32 values fetched from a workspace. See serialize(). """ return pickle.loads(arr.astype(np.uint8).tobytes()) def box_utils_boxes_area(boxes): """Compute the area of an array of boxes.""" w = (boxes[:, 2] - boxes[:, 0] + 1) h = (boxes[:, 3] - boxes[:, 1] + 1) areas = w * h assert np.all(areas >= 0), 'Negative areas founds' return areas def fpn_map_rois_to_fpn_levels(rois, k_min, k_max): """Determine which FPN level each RoI in a set of RoIs should map to based on the heuristic in the FPN paper. """ # Compute level ids s = np.sqrt(box_utils_boxes_area(rois)) s0 = cfg.FPN.ROI_CANONICAL_SCALE # default: 224 lvl0 = cfg.FPN.ROI_CANONICAL_LEVEL # default: 4 # Eqn.(1) in FPN paper target_lvls = np.floor(lvl0 + np.log2(s / s0 + 1e-6)) target_lvls = np.clip(target_lvls, k_min, k_max) return target_lvls def distribute(rois, label_blobs, outputs, train): """To understand the output blob order see return value of detectron.roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False) """ lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL lvls = fpn_map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max) outputs[0].reshape(rois.shape) outputs[0].data[...] = rois # Create new roi blobs for each FPN level # (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying # to generalize to support this particular case.) rois_idx_order = np.empty((0, )) for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)): idx_lvl = np.where(lvls == lvl)[0] blob_roi_level = rois[idx_lvl, :] outputs[output_idx + 1].reshape(blob_roi_level.shape) outputs[output_idx + 1].data[...] = blob_roi_level rois_idx_order = np.concatenate((rois_idx_order, idx_lvl)) rois_idx_restore = np.argsort(rois_idx_order) blob_utils_py_op_copy_blob(rois_idx_restore.astype(np.int32), outputs[-1]) def collect(inputs, is_training): cfg_key = 'TRAIN' if is_training else 'TEST' post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N k_max = cfg.FPN.RPN_MAX_LEVEL k_min = cfg.FPN.RPN_MIN_LEVEL num_lvls = k_max - k_min + 1 roi_inputs = inputs[:num_lvls] score_inputs = inputs[num_lvls:] if is_training: score_inputs = score_inputs[:-2] # rois are in [[batch_idx, x0, y0, x1, y2], ...] format # Combine predictions across all levels and retain the top scoring rois = np.concatenate([blob.data for blob in roi_inputs]) scores = np.concatenate([blob.data for blob in score_inputs]).squeeze() inds = np.argsort(-scores)[:post_nms_topN] rois = rois[inds, :] return rois def box_utils_bbox_transform(boxes, deltas, weights=(1.0, 1.0, 1.0, 1.0)): """Forward transform that maps proposal boxes to predicted ground-truth boxes using bounding-box regression deltas. See bbox_transform_inv for a description of the weights argument. """ if boxes.shape[0] == 0: return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype) boxes = boxes.astype(deltas.dtype, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into np.exp() dw = np.minimum(dw, cfg.BBOX_XFORM_CLIP) dh = np.minimum(dh, cfg.BBOX_XFORM_CLIP) pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype) # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1 # y2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1 return pred_boxes def c2_utils_CudaDevice(gpu_id): """Create a Cuda device.""" return core.DeviceOption(caffe2_pb2.CUDA, gpu_id) @contextlib.contextmanager def c2_utils_CudaScope(gpu_id): """Create a CUDA device scope for GPU device `gpu_id`.""" gpu_dev = c2_utils_CudaDevice(gpu_id) with core.DeviceScope(gpu_dev): yield @contextlib.contextmanager def c2_utils_GpuNameScope(gpu_id): """Create a name scope for GPU device `gpu_id`.""" with core.NameScope('gpu_{:d}'.format(gpu_id)): yield @contextlib.contextmanager def c2_utils_NamedCudaScope(gpu_id): """Creates a GPU name scope and CUDA device scope. This function is provided to reduce `with ...` nesting levels.""" with c2_utils_GpuNameScope(gpu_id): with c2_utils_CudaScope(gpu_id): yield @contextlib.contextmanager def c2_utils_CpuScope(): """Create a CPU device scope.""" cpu_dev = core.DeviceOption(caffe2_pb2.CPU) with core.DeviceScope(cpu_dev): yield class DensePoseMethods: def __init__(self): # ALP_UV = loadmat( os.path.join(os.path.dirname(__file__), 'assets/UV_Processed.mat') ) self.FaceIndices = np.array( ALP_UV['All_FaceIndices']).squeeze() self.FacesDensePose = ALP_UV['All_Faces']-1 self.U_norm = ALP_UV['All_U_norm'].squeeze() self.V_norm = ALP_UV['All_V_norm'].squeeze() self.All_vertices = ALP_UV['All_vertices'][0] ## Info to compute symmetries. self.SemanticMaskSymmetries = [0,1,3,2,5,4,7,6,9,8,11,10,13,12,14] self.Index_Symmetry_List = [1,2,4,3,6,5,8,7,10,9,12,11,14,13,16,15,18,17,20,19,22,21,24,23]; UV_symmetry_filename = os.path.join(os.path.dirname(__file__), 'assets/UV_symmetry_transforms.mat') self.UV_symmetry_transformations = loadmat( UV_symmetry_filename ) def get_symmetric_densepose(self,I,U,V,x,y,Mask): ### This is a function to get the mirror symmetric UV labels. Labels_sym= np.zeros(I.shape) U_sym= np.zeros(U.shape) V_sym= np.zeros(V.shape) ### for i in ( range(24)): if i+1 in I: Labels_sym[I == (i+1)] = self.Index_Symmetry_List[i] jj = np.where(I == (i+1)) ### U_loc = (U[jj]*255).astype(np.int64) V_loc = (V[jj]*255).astype(np.int64) ### V_sym[jj] = self.UV_symmetry_transformations['V_transforms'][0,i][V_loc,U_loc] U_sym[jj] = self.UV_symmetry_transformations['U_transforms'][0,i][V_loc,U_loc] ## Mask_flip = np.fliplr(Mask) Mask_flipped = np.zeros(Mask.shape) # for i in ( range(14)): Mask_flipped[Mask_flip == (i+1)] = self.SemanticMaskSymmetries[i+1] # [y_max , x_max ] = Mask_flip.shape y_sym = y x_sym = x_max-x # return Labels_sym , U_sym , V_sym , x_sym , y_sym , Mask_flipped def barycentric_coordinates_exists(self,P0, P1, P2, P): u = P1 - P0 v = P2 - P0 w = P - P0 # vCrossW = np.cross(v,w) vCrossU = np.cross(v, u) if (np.dot(vCrossW, vCrossU) < 0): return False; # uCrossW = np.cross(u, w) uCrossV = np.cross(u, v) # if (np.dot(uCrossW, uCrossV) < 0): return False; # denom = np.sqrt((uCrossV**2).sum()) r = np.sqrt((vCrossW**2).sum())/denom t = np.sqrt((uCrossW**2).sum())/denom # return((r <=1) & (t <= 1) & (r + t <= 1)) def barycentric_coordinates(self,P0, P1, P2, P): u = P1 - P0 v = P2 - P0 w = P - P0 # vCrossW = np.cross(v,w) vCrossU = np.cross(v, u) # uCrossW = np.cross(u, w) uCrossV = np.cross(u, v) # denom = np.sqrt((uCrossV**2).sum()) r = np.sqrt((vCrossW**2).sum())/denom t = np.sqrt((uCrossW**2).sum())/denom # return(1-(r+t),r,t) def IUV2FBC( self, I_point , U_point, V_point): P = [ U_point , V_point , 0 ] FaceIndicesNow = np.where( self.FaceIndices == I_point ) FacesNow = self.FacesDensePose[FaceIndicesNow] # P_0 = np.vstack( (self.U_norm[FacesNow][:,0], self.V_norm[FacesNow][:,0], np.zeros(self.U_norm[FacesNow][:,0].shape))).transpose() P_1 = np.vstack( (self.U_norm[FacesNow][:,1], self.V_norm[FacesNow][:,1], np.zeros(self.U_norm[FacesNow][:,1].shape))).transpose() P_2 = np.vstack( (self.U_norm[FacesNow][:,2], self.V_norm[FacesNow][:,2], np.zeros(self.U_norm[FacesNow][:,2].shape))).transpose() # for i, [P0,P1,P2] in enumerate( zip(P_0,P_1,P_2)) : if(self.barycentric_coordinates_exists(P0, P1, P2, P)): [bc1,bc2,bc3] = self.barycentric_coordinates(P0, P1, P2, P) return(FaceIndicesNow[0][i],bc1,bc2,bc3) # # If the found UV is not inside any faces, select the vertex that is closest! # D1 = scipy.spatial.distance.cdist( np.array( [U_point,V_point])[np.newaxis,:] , P_0[:,0:2]).squeeze() D2 = scipy.spatial.distance.cdist( np.array( [U_point,V_point])[np.newaxis,:] , P_1[:,0:2]).squeeze() D3 = scipy.spatial.distance.cdist( np.array( [U_point,V_point])[np.newaxis,:] , P_2[:,0:2]).squeeze() # minD1 = D1.min() minD2 = D2.min() minD3 = D3.min() # if((minD1< minD2) & (minD1< minD3)): return( FaceIndicesNow[0][np.argmin(D1)] , 1.,0.,0. ) elif((minD2< minD1) & (minD2< minD3)): return( FaceIndicesNow[0][np.argmin(D2)] , 0.,1.,0. ) else: return( FaceIndicesNow[0][np.argmin(D3)] , 0.,0.,1. ) def FBC2PointOnSurface( self, FaceIndex, bc1,bc2,bc3,Vertices ): ## Vert_indices = self.All_vertices[self.FacesDensePose[FaceIndex]]-1 ## p = Vertices[Vert_indices[0],:] * bc1 + \ Vertices[Vert_indices[1],:] * bc2 + \ Vertices[Vert_indices[2],:] * bc3 ## return(p) class CollectAndDistributeFpnRpnProposalsOp(object): def __init__(self, train): self._train = train def forward(self, inputs, outputs): """See modeling.detector.CollectAndDistributeFpnRpnProposals for inputs/outputs documentation. """ # inputs is # [rpn_rois_fpn2, ..., rpn_rois_fpn6, # rpn_roi_probs_fpn2, ..., rpn_roi_probs_fpn6] # If training with Faster R-CNN, then inputs will additionally include # + [roidb, im_info] rois = collect(inputs, self._train) if self._train: # During training we reuse the data loader code. We populate roidb # entries on the fly using the rois generated by RPN. # im_info: [[im_height, im_width, im_scale], ...] im_info = inputs[-1].data im_scales = im_info[:, 2] roidb = blob_utils_deserialize(inputs[-2].data) # For historical consistency with the original Faster R-CNN # implementation we are *not* filtering crowd proposals. # This choice should be investigated in the future (it likely does # not matter). json_dataset_add_proposals(roidb, rois, im_scales, crowd_thresh=0) roidb_utils_add_bbox_regression_targets(roidb) # Compute training labels for the RPN proposals; also handles # distributing the proposals over FPN levels output_blob_names = fast_rcnn_roi_data_get_fast_rcnn_blob_names() blobs = {k: [] for k in output_blob_names} fast_rcnn_roi_data_add_fast_rcnn_blobs(blobs, im_scales, roidb) for i, k in enumerate(output_blob_names): blob_utils_py_op_copy_blob(blobs[k], outputs[i]) else: # For inference we have a special code path that avoids some data # loader overhead distribute(rois, None, outputs, self._train) class GenerateProposalLabelsOp(object): def forward(self, inputs, outputs): """See modeling.detector.GenerateProposalLabels for inputs/outputs documentation. """ # During training we reuse the data loader code. We populate roidb # entries on the fly using the rois generated by RPN. # im_info: [[im_height, im_width, im_scale], ...] rois = inputs[0].data roidb = blob_utils_deserialize(inputs[1].data) im_info = inputs[2].data im_scales = im_info[:, 2] output_blob_names = fast_rcnn_roi_data_get_fast_rcnn_blob_names() # For historical consistency with the original Faster R-CNN # implementation we are *not* filtering crowd proposals. # This choice should be investigated in the future (it likely does # not matter). json_dataset_add_proposals(roidb, rois, im_scales, crowd_thresh=0) roidb_utils_add_bbox_regression_targets(roidb) blobs = {k: [] for k in output_blob_names} fast_rcnn_roi_data_add_fast_rcnn_blobs(blobs, im_scales, roidb) for i, k in enumerate(output_blob_names): blob_utils_py_op_copy_blob(blobs[k], outputs[i]) class GenerateProposalsOp(object): """Output object detection proposals by applying estimated bounding-box transformations to a set of regular boxes (called "anchors"). """ def __init__(self, anchors, spatial_scale, train): self._anchors = anchors self._num_anchors = self._anchors.shape[0] self._feat_stride = 1. / spatial_scale self._train = train def forward(self, inputs, outputs): """See modeling.detector.GenerateProposals for inputs/outputs documentation. """ # 1. for each location i in a (H, W) grid: # generate A anchor boxes centered on cell i # apply predicted bbox deltas to each of the A anchors at cell i # 2. clip predicted boxes to image # 3. remove predicted boxes with either height or width < threshold # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take the top pre_nms_topN proposals before NMS # 6. apply NMS with a loose threshold (0.7) to the remaining proposals # 7. take after_nms_topN proposals after NMS # 8. return the top proposals # predicted probability of fg object for each RPN anchor scores = inputs[0].data # predicted achors transformations bbox_deltas = inputs[1].data # input image (height, width, scale), in which scale is the scale factor # applied to the original dataset image to get the network input image im_info = inputs[2].data # 1. Generate proposals from bbox deltas and shifted anchors height, width = scores.shape[-2:] # Enumerate all shifted positions on the (H, W) grid shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y, copy=False) # Convert to (K, 4), K=H*W, where the columns are (dx, dy, dx, dy) # shift pointing to each grid location shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # Broacast anchors over shifts to enumerate all anchors at all positions # in the (H, W) grid: # - add A anchors of shape (1, A, 4) to # - K shifts of shape (K, 1, 4) to get # - all shifted anchors of shape (K, A, 4) # - reshape to (K*A, 4) shifted anchors num_images = inputs[0].shape[0] A = self._num_anchors K = shifts.shape[0] all_anchors = self._anchors[np.newaxis, :, :] + shifts[:, np.newaxis, :] all_anchors = all_anchors.reshape((K * A, 4)) rois = np.empty((0, 5), dtype=np.float32) roi_probs = np.empty((0, 1), dtype=np.float32) for im_i in range(num_images): im_i_boxes, im_i_probs = self.proposals_for_one_image( im_info[im_i, :], all_anchors, bbox_deltas[im_i, :, :, :], scores[im_i, :, :, :] ) batch_inds = im_i * np.ones( (im_i_boxes.shape[0], 1), dtype=np.float32 ) im_i_rois = np.hstack((batch_inds, im_i_boxes)) rois = np.append(rois, im_i_rois, axis=0) roi_probs = np.append(roi_probs, im_i_probs, axis=0) outputs[0].reshape(rois.shape) outputs[0].data[...] = rois if len(outputs) > 1: outputs[1].reshape(roi_probs.shape) outputs[1].data[...] = roi_probs def proposals_for_one_image( self, im_info, all_anchors, bbox_deltas, scores ): # Get mode-dependent configuration cfg_key = 'TRAIN' if self._train else 'TEST' pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N nms_thresh = cfg[cfg_key].RPN_NMS_THRESH min_size = cfg[cfg_key].RPN_MIN_SIZE # Transpose and reshape predicted bbox transformations to get them # into the same order as the anchors: # - bbox deltas will be (4 * A, H, W) format from conv output # - transpose to (H, W, 4 * A) # - reshape to (H * W * A, 4) where rows are ordered by (H, W, A) # in slowest to fastest order to match the enumerated anchors bbox_deltas = bbox_deltas.transpose((1, 2, 0)).reshape((-1, 4)) # Same story for the scores: # - scores are (A, H, W) format from conv output # - transpose to (H, W, A) # - reshape to (H * W * A, 1) where rows are ordered by (H, W, A) # to match the order of anchors and bbox_deltas scores = scores.transpose((1, 2, 0)).reshape((-1, 1)) # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take top pre_nms_topN (e.g. 6000) if pre_nms_topN <= 0 or pre_nms_topN >= len(scores): order = np.argsort(-scores.squeeze()) else: # Avoid sorting possibly large arrays; First partition to get top K # unsorted and then sort just those (~20x faster for 200k scores) inds = np.argpartition( -scores.squeeze(), pre_nms_topN )[:pre_nms_topN] order = np.argsort(-scores[inds].squeeze()) order = inds[order] bbox_deltas = bbox_deltas[order, :] all_anchors = all_anchors[order, :] scores = scores[order] # Transform anchors into proposals via bbox transformations proposals = box_utils_bbox_transform( all_anchors, bbox_deltas, (1.0, 1.0, 1.0, 1.0)) # 2. clip proposals to image (may result in proposals with zero area # that will be removed in the next step) proposals = box_utils_clip_tiled_boxes(proposals, im_info[:2]) # 3. remove predicted boxes with either height or width < min_size keep = _filter_boxes(proposals, min_size, im_info) proposals = proposals[keep, :] scores = scores[keep] # 6. apply loose nms (e.g. threshold = 0.7) # 7. take after_nms_topN (e.g. 300) # 8. return the top proposals (-> RoIs top) if nms_thresh > 0: keep = box_utils_nms(np.hstack((proposals, scores)), nms_thresh) if post_nms_topN > 0: keep = keep[:post_nms_topN] proposals = proposals[keep, :] scores = scores[keep] return proposals, scores class DetectionModelHelper(cnn.CNNModelHelper): def __init__(self, **kwargs): # Handle args specific to the DetectionModelHelper, others pass through # to CNNModelHelper self.train = kwargs.get('train', False) self.num_classes = kwargs.get('num_classes', -1) assert self.num_classes > 0, 'num_classes must be > 0' for k in ('train', 'num_classes'): if k in kwargs: del kwargs[k] kwargs['order'] = 'NCHW' # Defensively set cudnn_exhaustive_search to False in case the default # changes in CNNModelHelper. The detection code uses variable size # inputs that might not play nicely with cudnn_exhaustive_search. kwargs['cudnn_exhaustive_search'] = False super(DetectionModelHelper, self).__init__(**kwargs) self.roi_data_loader = None self.losses = [] self.metrics = [] self.do_not_update_params = [] # Param on this list are not updated self.net.Proto().type = cfg.MODEL.EXECUTION_TYPE self.net.Proto().num_workers = cfg.NUM_GPUS * 4 self.prev_use_cudnn = self.use_cudnn self.gn_params = [] # Param on this list are GroupNorm parameters def TrainableParams(self, gpu_id=-1): """Get the blob names for all trainable parameters, possibly filtered by GPU id. """ return [ p for p in self.params if ( p in self.param_to_grad and # p has a gradient p not in self.do_not_update_params and # not on the blacklist (gpu_id == -1 or # filter for gpu assignment, if gpu_id set str(p).find('gpu_{}'.format(gpu_id)) == 0) )] def AffineChannel(self, blob_in, blob_out, dim, inplace=False): """Affine transformation to replace BN in networks where BN cannot be used (e.g., because the minibatch size is too small). The operations can be done in place to save memory. """ blob_out = blob_out or self.net.NextName() param_prefix = blob_out scale = self.create_param( param_name=param_prefix + '_s', initializer=initializers.Initializer("ConstantFill", value=1.), tags=ParameterTags.WEIGHT, shape=[dim, ], ) bias = self.create_param( param_name=param_prefix + '_b', initializer=initializers.Initializer("ConstantFill", value=0.), tags=ParameterTags.BIAS, shape=[dim, ], ) if inplace: return self.net.AffineChannel([blob_in, scale, bias], blob_in) else: return self.net.AffineChannel([blob_in, scale, bias], blob_out) def GenerateProposals(self, blobs_in, blobs_out, anchors, spatial_scale): """Op for generating RPN porposals. blobs_in: - 'rpn_cls_probs': 4D tensor of shape (N, A, H, W), where N is the number of minibatch images, A is the number of anchors per locations, and (H, W) is the spatial size of the prediction grid. Each value represents a "probability of object" rating in [0, 1]. - 'rpn_bbox_pred': 4D tensor of shape (N, 4 * A, H, W) of predicted deltas for transformation anchor boxes into RPN proposals. - 'im_info': 2D tensor of shape (N, 3) where the three columns encode the input image's [height, width, scale]. Height and width are for the input to the network, not the original image; scale is the scale factor used to scale the original image to the network input size. blobs_out: - 'rpn_rois': 2D tensor of shape (R, 5), for R RPN proposals where the five columns encode [batch ind, x1, y1, x2, y2]. The boxes are w.r.t. the network input, which is a *scaled* version of the original image; these proposals must be scaled by 1 / scale (where scale comes from im_info; see above) to transform it back to the original input image coordinate system. - 'rpn_roi_probs': 1D tensor of objectness probability scores (extracted from rpn_cls_probs; see above). """ name = 'GenerateProposalsOp:' + ','.join([str(b) for b in blobs_in]) # spatial_scale passed to the Python op is only used in convert_pkl_to_pb self.net.Python( GenerateProposalsOp(anchors, spatial_scale, self.train).forward )(blobs_in, blobs_out, name=name, spatial_scale=spatial_scale) return blobs_out def GenerateProposalLabels(self, blobs_in): """Op for generating training labels for RPN proposals. This is used when training RPN jointly with Fast/Mask R-CNN (as in end-to-end Faster R-CNN training). blobs_in: - 'rpn_rois': 2D tensor of RPN proposals output by GenerateProposals - 'roidb': roidb entries that will be labeled - 'im_info': See GenerateProposals doc. blobs_out: - (variable set of blobs): returns whatever blobs are required for training the model. It does this by querying the data loader for the list of blobs that are needed. """ name = 'GenerateProposalLabelsOp:' + ','.join( [str(b) for b in blobs_in] ) # The list of blobs is not known before run-time because it depends on # the specific model being trained. Query the data loader to get the # list of output blob names. blobs_out = fast_rcnn_roi_data_get_fast_rcnn_blob_names( is_training=self.train ) blobs_out = [core.ScopedBlobReference(b) for b in blobs_out] self.net.Python(GenerateProposalLabelsOp().forward)( blobs_in, blobs_out, name=name ) return blobs_out def CollectAndDistributeFpnRpnProposals(self): """Merge RPN proposals generated at multiple FPN levels and then distribute those proposals to their appropriate FPN levels. An anchor at one FPN level may predict an RoI that will map to another level, hence the need to redistribute the proposals. This function assumes standard blob names for input and output blobs. Input blobs: [rpn_rois_fpn<min>, ..., rpn_rois_fpn<max>, rpn_roi_probs_fpn<min>, ..., rpn_roi_probs_fpn<max>] - rpn_rois_fpn<i> are the RPN proposals for FPN level i; see rpn_rois documentation from GenerateProposals. - rpn_roi_probs_fpn<i> are the RPN objectness probabilities for FPN level i; see rpn_roi_probs documentation from GenerateProposals. If used during training, then the input blobs will also include: [roidb, im_info] (see GenerateProposalLabels). Output blobs: [rois_fpn<min>, ..., rois_rpn<max>, rois, rois_idx_restore] - rois_fpn<i> are the RPN proposals for FPN level i - rois_idx_restore is a permutation on the concatenation of all rois_fpn<i>, i=min...max, such that when applied the RPN RoIs are restored to their original order in the input blobs. If used during training, then the output blobs will also include: [labels, bbox_targets, bbox_inside_weights, bbox_outside_weights]. """ k_max = cfg.FPN.RPN_MAX_LEVEL k_min = cfg.FPN.RPN_MIN_LEVEL # Prepare input blobs rois_names = ['rpn_rois_fpn' + str(l) for l in range(k_min, k_max + 1)] score_names = [ 'rpn_roi_probs_fpn' + str(l) for l in range(k_min, k_max + 1) ] blobs_in = rois_names + score_names if self.train: blobs_in += ['roidb', 'im_info'] blobs_in = [core.ScopedBlobReference(b) for b in blobs_in] name = 'CollectAndDistributeFpnRpnProposalsOp:' + ','.join( [str(b) for b in blobs_in] ) # Prepare output blobs blobs_out = fast_rcnn_roi_data_get_fast_rcnn_blob_names( is_training=self.train ) blobs_out = [core.ScopedBlobReference(b) for b in blobs_out] outputs = self.net.Python( CollectAndDistributeFpnRpnProposalsOp(self.train).forward )(blobs_in, blobs_out, name=name) return outputs def DropoutIfTraining(self, blob_in, dropout_rate): """Add dropout to blob_in if the model is in training mode and dropout_rate is > 0.""" blob_out = blob_in if self.train and dropout_rate > 0: blob_out = self.Dropout( blob_in, blob_in, ratio=dropout_rate, is_test=False ) return blob_out def RoIFeatureTransform( self, blobs_in, blob_out, blob_rois='rois', method='RoIPoolF', resolution=7, spatial_scale=1. / 16., sampling_ratio=0 ): """Add the specified RoI pooling method. The sampling_ratio argument is supported for some, but not all, RoI transform methods. RoIFeatureTransform abstracts away: - Use of FPN or not - Specifics of the transform method """ assert method in {'RoIPoolF', 'RoIAlign'}, \ 'Unknown pooling method: {}'.format(method) has_argmax = (method == 'RoIPoolF') if isinstance(blobs_in, list): # FPN case: add RoIFeatureTransform to each FPN level k_max = cfg.FPN.ROI_MAX_LEVEL # coarsest level of pyramid k_min = cfg.FPN.ROI_MIN_LEVEL # finest level of pyramid assert len(blobs_in) == k_max - k_min + 1 bl_out_list = [] for lvl in range(k_min, k_max + 1): bl_in = blobs_in[k_max - lvl] # blobs_in is in reversed order sc = spatial_scale[k_max - lvl] # in reversed order bl_rois = blob_rois + '_fpn' + str(lvl) bl_out = blob_out + '_fpn' + str(lvl) bl_out_list.append(bl_out) bl_argmax = ['_argmax_' + bl_out] if has_argmax else [] self.net.__getattr__(method)( [bl_in, bl_rois], [bl_out] + bl_argmax, pooled_w=resolution, pooled_h=resolution, spatial_scale=sc, sampling_ratio=sampling_ratio ) # The pooled features from all levels are concatenated along the # batch dimension into a single 4D tensor. xform_shuffled, _ = self.net.Concat( bl_out_list, [blob_out + '_shuffled', '_concat_' + blob_out], axis=0 ) # Unshuffle to match rois from dataloader restore_bl = blob_rois + '_idx_restore_int32' xform_out = self.net.BatchPermutation( [xform_shuffled, restore_bl], blob_out ) else: # Single feature level bl_argmax = ['_argmax_' + blob_out] if has_argmax else [] # sampling_ratio is ignored for RoIPoolF xform_out = self.net.__getattr__(method)( [blobs_in, blob_rois], [blob_out] + bl_argmax, pooled_w=resolution, pooled_h=resolution, spatial_scale=spatial_scale, sampling_ratio=sampling_ratio ) # Only return the first blob (the transformed features) return xform_out[0] if isinstance(xform_out, tuple) else xform_out def ConvShared( self, blob_in, blob_out, dim_in, dim_out, kernel, weight=None, bias=None, **kwargs ): """Add conv op that shares weights and/or biases with another conv op. """ use_bias = ( False if ('no_bias' in kwargs and kwargs['no_bias']) else True ) if self.use_cudnn: kwargs['engine'] = 'CUDNN' kwargs['exhaustive_search'] = self.cudnn_exhaustive_search if self.ws_nbytes_limit: kwargs['ws_nbytes_limit'] = self.ws_nbytes_limit if use_bias: blobs_in = [blob_in, weight, bias] else: blobs_in = [blob_in, weight] if 'no_bias' in kwargs: del kwargs['no_bias'] return self.net.Conv( blobs_in, blob_out, kernel=kernel, order=self.order, **kwargs ) def BilinearInterpolation( self, blob_in, blob_out, dim_in, dim_out, up_scale ): """Bilinear interpolation in space of scale. Takes input of NxKxHxW and outputs NxKx(sH)x(sW), where s:= up_scale Adapted from the CVPR'15 FCN code. See: https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/surgery.py """ assert dim_in == dim_out assert up_scale % 2 == 0, 'Scale should be even' def upsample_filt(size): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] return ((1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)) kernel_size = up_scale * 2 bil_filt = upsample_filt(kernel_size) kernel = np.zeros( (dim_in, dim_out, kernel_size, kernel_size), dtype=np.float32 ) kernel[range(dim_out), range(dim_in), :, :] = bil_filt blob = self.ConvTranspose( blob_in, blob_out, dim_in, dim_out, kernel_size, stride=int(up_scale), pad=int(up_scale / 2), weight_init=('GivenTensorFill', {'values': kernel}), bias_init=('ConstantFill', {'value': 0.}) ) self.do_not_update_params.append(self.weights[-1]) self.do_not_update_params.append(self.biases[-1]) return blob def ConvAffine( # args in the same order of Conv() self, blob_in, prefix, dim_in, dim_out, kernel, stride, pad, group=1, dilation=1, weight_init=None, bias_init=None, suffix='_bn', inplace=False ): """ConvAffine adds a Conv op followed by a AffineChannel op (which replaces BN during fine tuning). """ conv_blob = self.Conv( blob_in, prefix, dim_in, dim_out, kernel, stride=stride, pad=pad, group=group, dilation=dilation, weight_init=weight_init, bias_init=bias_init, no_bias=1 ) blob_out = self.AffineChannel( conv_blob, prefix + suffix, dim=dim_out, inplace=inplace ) return blob_out def ConvGN( # args in the same order of Conv() self, blob_in, prefix, dim_in, dim_out, kernel, stride, pad, group_gn, # num of groups in gn group=1, dilation=1, weight_init=None, bias_init=None, suffix='_gn', no_conv_bias=1, ): """ConvGN adds a Conv op followed by a GroupNorm op, including learnable scale/bias (gamma/beta) """ conv_blob = self.Conv( blob_in, prefix, dim_in, dim_out, kernel, stride=stride, pad=pad, group=group, dilation=dilation, weight_init=weight_init, bias_init=bias_init, no_bias=no_conv_bias) if group_gn < 1: logger.warning( 'Layer: {} (dim {}): ' 'group_gn < 1; reset to 1.'.format(prefix, dim_in) ) group_gn = 1 blob_out = self.SpatialGN( conv_blob, prefix + suffix, dim_out, num_groups=group_gn, epsilon=cfg.GROUP_NORM.EPSILON,) self.gn_params.append(self.params[-1]) # add gn's bias to list self.gn_params.append(self.params[-2]) # add gn's scale to list return blob_out def DisableCudnn(self): self.prev_use_cudnn = self.use_cudnn self.use_cudnn = False def RestorePreviousUseCudnn(self): prev_use_cudnn = self.use_cudnn self.use_cudnn = self.prev_use_cudnn self.prev_use_cudnn = prev_use_cudnn def UpdateWorkspaceLr(self, cur_iter, new_lr): """Updates the model's current learning rate and the workspace (learning rate and update history/momentum blobs). """ # The workspace is the one source of truth for the lr # The lr is always the same on all GPUs cur_lr = workspace.FetchBlob('gpu_0/lr')[0] # There are no type conversions between the lr in Python and the lr in # the GPU (both are float32), so exact comparision is ok if cur_lr != new_lr: ratio = _get_lr_change_ratio(cur_lr, new_lr) self._SetNewLr(cur_lr, new_lr) return new_lr def _SetNewLr(self, cur_lr, new_lr): """Do the actual work of updating the model and workspace blobs. """ for i in range(cfg.NUM_GPUS): with c2_utils_CudaScope(i): workspace.FeedBlob( 'gpu_{}/lr'.format(i), np.array([new_lr], dtype=np.float32)) ratio = _get_lr_change_ratio(cur_lr, new_lr) if cfg.SOLVER.SCALE_MOMENTUM and cur_lr > 1e-7 and \ ratio > cfg.SOLVER.SCALE_MOMENTUM_THRESHOLD: self._CorrectMomentum(new_lr / cur_lr) def _CorrectMomentum(self, correction): """The MomentumSGDUpdate op implements the update V as V := mu * V + lr * grad, where mu is the momentum factor, lr is the learning rate, and grad is the stochastic gradient. Since V is not defined independently of the learning rate (as it should ideally be), when the learning rate is changed we should scale the update history V in order to make it compatible in scale with lr * grad. """ for i in range(cfg.NUM_GPUS): with c2_utils_CudaScope(i): for param in self.TrainableParams(gpu_id=i): op = core.CreateOperator( 'Scale', [param + '_momentum'], [param + '_momentum'], scale=correction) workspace.RunOperatorOnce(op) def GetLossScale(self): """Allow a way to configure the loss scale dynamically. This may be used in a distributed data parallel setting. """ return 1.0 / cfg.NUM_GPUS def AddLosses(self, losses): if not isinstance(losses, list): losses = [losses] # Conversion to str allows losses to include BlobReferences losses = [c2_utils_UnscopeName(str(l)) for l in losses] self.losses = list(set(self.losses + losses)) def AddMetrics(self, metrics): if not isinstance(metrics, list): metrics = [metrics] self.metrics = list(set(self.metrics + metrics)) class Timer(object): """A simple timer.""" def __init__(self): self.reset() def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.average_time = self.total_time / self.calls if average: return self.average_time else: return self.diff def reset(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. class AttrDict(dict): IMMUTABLE = '__immutable__' def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__[AttrDict.IMMUTABLE] = False def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] elif name in self: return self[name] else: raise AttributeError(name) def __setattr__(self, name, value): if not self.__dict__[AttrDict.IMMUTABLE]: if name in self.__dict__: self.__dict__[name] = value else: self[name] = value else: raise AttributeError( 'Attempted to set "{}" to "{}", but AttrDict is immutable'. format(name, value) ) def immutable(self, is_immutable): """Set immutability to is_immutable and recursively apply the setting to all nested AttrDicts. """ self.__dict__[AttrDict.IMMUTABLE] = is_immutable # Recursively set immutable state for v in self.__dict__.values(): if isinstance(v, AttrDict): v.immutable(is_immutable) for v in self.values(): if isinstance(v, AttrDict): v.immutable(is_immutable) def is_immutable(self): return self.__dict__[AttrDict.IMMUTABLE] c2_utils_import_detectron_ops() cv2.ocl.setUseOpenCL(False) DP = DensePoseMethods() def main(args_im_or_folder, args_cfg, args_output_dir, args_image_ext, args_weights): logger = logging.getLogger(__name__) merge_cfg_from_file(args_cfg) cfg.NUM_GPUS = 1 args_weights = cache_url(args_weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) model = infer_engine_initialize_model_from_cfg(args_weights) dummy_coco_dataset = dummy_datasets_get_coco_dataset() if os.path.isdir(args_im_or_folder): im_list = glob.iglob(args_im_or_folder + '/*.' + args_image_ext) else: im_list = [args_im_or_folder] for i, im_name in enumerate(im_list): out_name = os.path.join( args_output_dir, '{}'.format(os.path.basename(im_name) + '.pdf') ) #logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils_NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps, cls_bodys = infer_engine_im_detect_all( model, im, None, timers=timers ) vis_utils_vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args_output_dir, cls_boxes, cls_segms, cls_keyps, cls_bodys, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=0.7, kp_thresh=2 ) if __name__ == '__main__': workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) main('data/', 'assets/config.yaml', 'output/', 'jpg', 'https://dl.fbaipublicfiles.com/densepose/DensePose_ResNet101_FPN_s1x-e2e.pkl')
the-stack_0_16545
import komand from .schema import UpdateSiteIncludedTargetsInput, UpdateSiteIncludedTargetsOutput, Input # Custom imports below from komand_rapid7_insightvm.util import endpoints from komand_rapid7_insightvm.util.resource_requests import ResourceRequests import json class UpdateSiteIncludedTargets(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='update_site_included_targets', description='Update an existing site scope of included ip address and hostname targets', input=UpdateSiteIncludedTargetsInput(), output=UpdateSiteIncludedTargetsOutput()) def run(self, params={}): scope = params.get(Input.INCLUDED_TARGETS) resource_helper = ResourceRequests(self.connection.session, self.logger) endpoint = endpoints.Site.site_included_targets(self.connection.console_url, params.get(Input.ID)) # Pull current site scope in order to append to list instead of overwriting if not params.get(Input.OVERWRITE): current_scope = resource_helper.resource_request(endpoint=endpoint, method='get') self.logger.info(f"Appending to current list of included targets") scope.extend(current_scope['addresses']) self.logger.info(f"Using {endpoint} ...") payload = {"rawbody": scope} response = resource_helper.resource_request(endpoint=endpoint, method='put', payload=payload) return { "id": params.get(Input.ID), "links": response['links'] }
the-stack_0_16549
#!/usr/bin/env python3 import os import sys import urllib.request import tarfile import zipfile import shutil from typing import List, Optional PLATFORM_WINDOWS = "windows" PLATFORM_LINUX = "linux" PLATFORM_MACOS = "mac" DOTNET_RUNTIME_VERSION = "6.0.0" DOTNET_RUNTIME_DOWNLOADS = { PLATFORM_LINUX: "https://download.visualstudio.microsoft.com/download/pr/0ce1c34f-0d9e-4d9b-964e-da676c8e605a/7a6c353b36477fa84f85b2821f2350c2/dotnet-runtime-6.0.0-linux-x64.tar.gz", PLATFORM_WINDOWS: "https://download.visualstudio.microsoft.com/download/pr/6b96c97d-9b8c-4141-a32a-5848d3369dbf/9972321cb7af5938fecdee2d8ebd72bb/dotnet-runtime-6.0.0-win-x64.zip", PLATFORM_MACOS: "https://download.visualstudio.microsoft.com/download/pr/d88f74a5-05d2-46cb-886a-a62fd698009d/67f5f05e9c029d284c309f0f712fc99f/dotnet-runtime-6.0.0-osx-x64.tar.gz" } p = os.path.join def main() -> None: update_netcore_runtime(sys.argv[1:]) def update_netcore_runtime(platforms: List[str]) -> None: runtime_cache = p("Dependencies/dotnet") version_file_path = p(runtime_cache, "VERSION") # Check if current version is fine. current_version: Optional[str] try: with open(version_file_path, "r") as f: current_version = f.read().strip() except FileNotFoundError: current_version = None if current_version != DOTNET_RUNTIME_VERSION and os.path.exists(runtime_cache): print("Cached Release .NET Core Runtime out of date/nonexistant, downloading new one..") shutil.rmtree(runtime_cache) os.makedirs(runtime_cache, exist_ok=True) with open(version_file_path, "w") as f: f.write(DOTNET_RUNTIME_VERSION) # Download missing runtimes if necessary. for platform in platforms: platform_runtime_cache = p(runtime_cache, platform) if not os.path.exists(platform_runtime_cache): os.mkdir(platform_runtime_cache) download_platform_runtime(platform_runtime_cache, platform) def download_platform_runtime(dir: str, platform: str) -> None: print(f"Downloading .NET Core Runtime for platform {platform}.") download_file = p(dir, "download.tmp") download_url = DOTNET_RUNTIME_DOWNLOADS[platform] urllib.request.urlretrieve(download_url, download_file) if download_url.endswith(".tar.gz"): # this is a tar gz. with tarfile.open(download_file, "r:gz") as tar: tar.extractall(dir) elif download_url.endswith(".zip"): with zipfile.ZipFile(download_file) as zipF: zipF.extractall(dir) os.remove(download_file) if __name__ == "__main__": main()
the-stack_0_16550
import yaml import json from os import listdir from os.path import isfile, join """ { name, kingdom, imageUrl} """ path = "./data/raw/image-url.yml" stream = open(path, "r") data = yaml.load_all(stream, yaml.Loader) data_dicts = [ { "name": datum["name"].lower(), "kingdom": datum["kingdom"], "imageUrl": datum["imageUrl"], } for datum in data ] json_data = {"data": data_dicts} with open("./data/generated/json/image-urls.json", "w") as fout: json_dumps_str = json.dumps(json_data, indent=4) print(json_dumps_str, file=fout)
the-stack_0_16551
from PyQt5 import QtGui, QtCore, QtWidgets from PyQt5.QtWidgets import * from tools.modeltool import * from tools.tool import * from tools.modeltool import * from tools.tool import * from tools.pathtool import * from tools.milltask import * from guifw.gui_elements import * import sys, os, os.path from solids import * from objectviewer import * class ModelDialog(QtGui.QWidget): def __init__(self, viewer): QtGui.QWidget.__init__(self) mlayout = QtGui.QGridLayout() self.setLayout(mlayout) loadbutton = QtGui.QPushButton("Load") loadbutton.clicked.connect(self.showDialog) mlayout.addWidget(loadbutton, 0, 0) self.modelTool = ModelTool(name="Model", object=None, viewUpdater=self.updateView) self.toolWidget = ToolPropertyWidget(parent=self, tool=self.modelTool) mlayout.addWidget(self.toolWidget, 1, 0) self.viewer = viewer self.object = Solid() if len(sys.argv) > 1: self.loadObject(sys.argv[1]) def updateView(self, mode='mesh'): if mode == 'mesh': self.viewer.showFacets(self.modelTool.object) if mode == 'heightmap': self.viewer.showHeightMap(self.modelTool.object) if mode == 'slice': self.viewer.showFacets(self.modelTool.object) def showDialog(self): filename = QtGui.QFileDialog.getOpenFileName(self, 'Open file', '', "STL files (*.stl)")[0] self.loadObject(filename) def loadObject(self, filename): if not os.path.isfile(filename): return self.object = Solid() self.object.load(filename) self.object.__class__ = CAM_Solid self.modelTool.object = self.object self.updateView()
the-stack_0_16554
# model settings temperature = 0.01 with_norm = True query_dim = 128 model = dict( type='UVCNeckMoCoTrackerV2', queue_dim=query_dim, patch_queue_size=256 * 144 * 5, backbone=dict( type='ResNet', pretrained=None, depth=18, out_indices=(0, 1, 2, 3), # strides=(1, 2, 1, 1), norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False, zero_init_residual=True), neck=dict( type='FPN', in_channels=[64, 128, 256, 512], out_channels=256, norm_cfg=dict(type='SyncBN', requires_grad=True), num_outs=4, out_index=1), cls_head=dict( type='UVCHead', loss_feat=None, loss_aff=dict( type='ConcentrateLoss', win_len=8, stride=8, temperature=temperature, with_norm=with_norm, loss_weight=1.), loss_bbox=dict(type='L1Loss', loss_weight=10.), in_channels=256, channels=128, temperature=temperature, with_norm=with_norm, init_std=0.01, track_type='coord'), patch_head=dict( type='MoCoHead', loss_feat=dict(type='MultiPairNCE', loss_weight=1.), in_channels=512, # num_convs=2, # kernel_size=3, # norm_cfg=dict(type='BN'), # act_cfg=dict(type='ReLU'), channels=query_dim, temperature=0.2, with_norm=with_norm)) # model training and testing settings train_cfg = dict( patch_size=96, img_as_ref=True, img_as_tar=False, img_as_embed=True, patch_geo_aug=True, patch_color_aug=True, diff_crop=True, skip_cycle=True, center_ratio=0., shuffle_bn=True) test_cfg = dict( precede_frames=7, topk=5, temperature=temperature, # strides=(1, 2, 1, 1), out_indices=(0, ), neighbor_range=40, with_norm=with_norm, output_dir='eval_results') # dataset settings dataset_type = 'VideoDataset' dataset_type_val = 'DavisDataset' data_prefix = 'data/kinetics400/videos_train' ann_file_train = 'data/kinetics400/kinetics400_train_list_videos.txt' data_prefix_val = 'data/davis/DAVIS/JPEGImages/480p' anno_prefix_val = 'data/davis/DAVIS/Annotations/480p' data_root_val = 'data/davis/DAVIS' ann_file_val = 'data/davis/DAVIS/ImageSets/davis2017_val_list_rawframes.txt' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False) train_pipeline = [ dict(type='DecordInit'), dict(type='SampleFrames', clip_len=2, frame_interval=8, num_clips=1), dict(type='DuplicateFrames', times=2), dict(type='DecordDecode'), # dict(type='Resize', scale=(-1, 256)), # dict(type='RandomResizedCrop', area_range=(0.2, 1.)), dict(type='Resize', scale=(256, 256), keep_ratio=False), dict(type='Flip', flip_ratio=0.5), # dict( # type='ColorJitter', # brightness=0.4, # contrast=0.4, # saturation=0.4, # hue=0.1, # p=0.8, # same_across_clip=False), # dict(type='RandomGrayScale', p=0.2, same_across_clip=False), # dict(type='RandomGaussianBlur', p=0.5, same_across_clip=False), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict(type='Collect', keys=['imgs', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['imgs', 'label']) ] val_pipeline = [ dict(type='SequentialSampleFrames', frame_interval=1), dict(type='RawFrameDecode'), dict(type='Resize', scale=(-1, 480), keep_ratio=True), dict(type='Flip', flip_ratio=0), dict(type='Normalize', **img_norm_cfg), dict(type='FormatShape', input_format='NCTHW'), dict( type='Collect', keys=['imgs', 'ref_seg_map'], meta_keys=('frame_dir', 'frame_inds', 'original_shape', 'seg_map')), dict(type='ToTensor', keys=['imgs', 'ref_seg_map']) ] data = dict( videos_per_gpu=48, workers_per_gpu=16, val_workers_per_gpu=1, train=dict( type=dataset_type, ann_file=ann_file_train, data_prefix=data_prefix, pipeline=train_pipeline), val=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True), test=dict( type=dataset_type_val, ann_file=ann_file_val, data_prefix=data_prefix_val, data_root=data_root_val, anno_prefix=anno_prefix_val, pipeline=val_pipeline, test_mode=True)) # optimizer # optimizer = dict(type='Adam', lr=1e-4) optimizer = dict(type='SGD', lr=1e-1, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False) # lr_config = dict(policy='Fixed') # lr_config = dict( # policy='step', # warmup='linear', # warmup_iters=100, # warmup_ratio=0.001, # step=[1, 2]) total_epochs = 50 checkpoint_config = dict(interval=1) evaluation = dict( interval=1, metrics='davis', key_indicator='J&F-Mean', rule='greater') log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), dict( type='WandbLoggerHook', init_kwargs=dict( project='mmaction2', name='{{fileBasenameNoExtension}}', resume=True, tags=['uvc-fpn-moco2'], dir='wandb/{{fileBasenameNoExtension}}', config=dict( model=model, train_cfg=train_cfg, test_cfg=test_cfg, data=data))), ]) # runtime settings dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] find_unused_parameters = False
the-stack_0_16555
# container-service-extension # Copyright (c) 2017 VMware, Inc. All Rights Reserved. # SPDX-License-Identifier: BSD-2-Clause """Basic utility methods to perform data transformation and file operations.""" import hashlib import os import pathlib import platform import stat import sys from typing import List import urllib import click import pkg_resources from pyvcloud.vcd.vcd_api_version import VCDApiVersion import requests import semantic_version from container_service_extension.logging.logger import NULL_LOGGER # chunk size in bytes for file reading BUF_SIZE = 65536 # chunk size for downloading files SIZE_1MB = 1024 * 1024 _type_to_string = { str: 'string', int: 'number', bool: 'true/false', dict: 'mapping', list: 'sequence', } class NullPrinter: """Callback object which does nothing.""" def general_no_color(self, msg): pass def general(self, msg): pass def info(self, msg): pass def error(self, msg): pass class ConsoleMessagePrinter(NullPrinter): """Callback object to print color coded message on console.""" def general_no_color(self, msg): click.secho(msg) def general(self, msg): click.secho(msg, fg='green') def info(self, msg): click.secho(msg, fg='yellow') def error(self, msg): click.secho(msg, fg='red') def get_cse_version(): return pkg_resources.require('container-service-extension')[0].version def get_cse_info(): return { 'product': 'CSE', 'description': 'Container Service Extension for VMware vCloud Director', # noqa: E501 'version': get_cse_version(), 'python': platform.python_version() } def get_installed_cse_version() -> semantic_version.Version: """.""" cse_version_raw = get_cse_info()['version'] # Cleanup version string. Strip dev version string segment. # e.g. convert '2.6.0.0b2.dev5' to '2.6.0' tokens = cse_version_raw.split('.')[:3] return semantic_version.Version('.'.join(tokens)) def prompt_text(text, color='black', hide_input=False, type=str): click_text = click.style(str(text), fg=color) return click.prompt(click_text, hide_input=hide_input, type=type) def is_environment_variable_enabled(env_var_name): """Check if the environment variable is set. :param str env_var_name: Name of the environment variable :rtype: bool """ return str_to_bool(os.getenv(env_var_name)) def get_duplicate_items_in_list(items): """Find duplicate entries in a list. :param list items: list of items with possible duplicates. :return: the items that occur more than once in input list. Each duplicated item will be mentioned only once in the returned list. :rtype: list """ seen = set() duplicates = set() if items: for item in items: if item in seen: duplicates.add(item) else: seen.add(item) return list(duplicates) def check_keys_and_value_types(dikt, ref_dict, location='dictionary', excluded_keys=None, msg_update_callback=NullPrinter()): """Compare a dictionary with a reference dictionary. The method ensures that all keys and value types are the same in the dictionaries. :param dict dikt: the dictionary to check for validity :param dict ref_dict: the dictionary to check against :param str location: where this check is taking place, so error messages can be more descriptive. :param list excluded_keys: list of str, representing the list of key which if missing won't raise an exception. :param utils.ConsoleMessagePrinter msg_update_callback: Callback object. :raises KeyError: if @dikt has missing or invalid keys :raises TypeError: if the value of a property in @dikt does not match with the value of the same property in @ref_dict """ if excluded_keys is None: excluded_keys = [] ref_keys = set(ref_dict.keys()) keys = set(dikt.keys()) missing_keys = ref_keys - keys - set(excluded_keys) if missing_keys: msg_update_callback.error( f"Missing keys in {location}: {missing_keys}") bad_value = False for k in ref_keys: if k not in keys: continue value_type = type(ref_dict[k]) if not isinstance(dikt[k], value_type): msg_update_callback.error( f"{location} key '{k}': value type should be " f"'{_type_to_string[value_type]}'") bad_value = True if missing_keys: raise KeyError(f"Missing and/or invalid key in {location}") if bad_value: raise TypeError(f"Incorrect type for property value(s) in {location}") def check_python_version(msg_update_callback=NullPrinter()): """Ensure that user's Python version >= 3.7.3. If the check fails, will exit the python interpreter with error status. :param utils.ConsoleMessagePrinter msg_update_callback: Callback object. """ try: msg_update_callback.general_no_color( "Required Python version: >= 3.7.3\n" f"Installed Python version: {sys.version}") if sys.version_info < (3, 7, 3): raise Exception("Python version should be 3.7.3 or greater") except Exception as err: msg_update_callback.error(str(err)) sys.exit(1) def str_to_bool(s): """Convert string boolean values to bool. The conversion is case insensitive. :param s: input string :return: True if val is ['true' or 'yes' or 'y'] otherwise False """ return str(s).lower() in ('true', 'yes', 'y') def get_sha256(filepath): """Get sha256 hash of file as a string. :param str filepath: path to file. :return: sha256 string for the file. :rtype: str """ sha256 = hashlib.sha256() with open(filepath, 'rb') as f: while True: data = f.read(BUF_SIZE) if not data: break sha256.update(data) return sha256.hexdigest() def check_file_permissions(filename, msg_update_callback=NullPrinter()): """Ensure that the file has correct permissions. Unix based system: Owner - r/w permission Other - No access Windows: No check :param str filename: path to file. :param utils.ConsoleMessagePrinter msg_update_callback: Callback object. :raises Exception: if file has 'x' permissions for Owner or 'rwx' permissions for 'Others' or 'Group'. """ if os.name == 'nt': return err_msgs = [] file_mode = os.stat(filename).st_mode if file_mode & stat.S_IXUSR: msg = f"Remove execute permission of the Owner for the file {filename}" msg_update_callback.error(msg) err_msgs.append(msg) if file_mode & stat.S_IROTH or file_mode & stat.S_IWOTH \ or file_mode & stat.S_IXOTH: msg = f"Remove read, write and execute permissions of Others for " \ f"the file {filename}" msg_update_callback.error(msg) err_msgs.append(msg) if file_mode & stat.S_IRGRP or file_mode & stat.S_IWGRP \ or file_mode & stat.S_IXGRP: msg = f"Remove read, write and execute permissions of Group for the " \ f"file {filename}" msg_update_callback.error(msg) err_msgs.append(msg) if err_msgs: raise IOError(err_msgs) def download_file(url, filepath, sha256=None, force_overwrite=False, logger=NULL_LOGGER, msg_update_callback=NullPrinter()): """Download a file from a url to local filepath. Will not overwrite files unless @sha256 is given. Recursively creates specified directories in @filepath. :param str url: source url. :param str filepath: destination filepath. :param str sha256: without this argument, if a file already exists at @filepath, download will be skipped. If @sha256 matches the file's sha256, download will be skipped. :param bool force_overwrite: if True, will download the file even if it already exists or its SHA hasn't changed. :param logging.Logger logger: logger to log with. :param utils.ConsoleMessagePrinter msg_update_callback: Callback object. :raises HTTPError: if the response has an error status code """ path = pathlib.Path(filepath) if not force_overwrite and path.is_file() and \ (sha256 is None or get_sha256(filepath) == sha256): msg = f"Skipping download to '{filepath}' (file already exists)" logger.info(msg) msg_update_callback.general(msg) return path.parent.mkdir(parents=True, exist_ok=True) msg = f"Downloading file from '{url}' to '{filepath}'..." logger.info(msg) msg_update_callback.info(msg) response = requests.get(url, stream=True, headers={'Cache-Control': 'no-cache'}) response.raise_for_status() with path.open(mode='wb') as f: for chunk in response.iter_content(chunk_size=SIZE_1MB): f.write(chunk) msg = "Download complete" logger.info(msg) msg_update_callback.general(msg) def read_data_file(filepath, logger=NULL_LOGGER, msg_update_callback=NullPrinter()): """Retrieve file content from local disk as a string. :param str filepath: absolute filepath of the file, whose content we want to read. :param logging.Logger logger: logger to log with. :param utils.ConsoleMessagePrinter msg_update_callback: Callback object. :return: the contents of the file. :rtype: str :raises FileNotFoundError: if requested data file cannot be found. """ path = pathlib.Path(filepath) try: contents = path.read_text() except FileNotFoundError as err: msg_update_callback.error(f"{err}") logger.error(f"{err}", exc_info=True) raise msg = f"Found data file: {path}" msg_update_callback.general(msg) logger.debug(msg) return contents def flatten_dictionary(input_dict, parent_key='', separator='.'): """Flatten a given dictionary with nested dictionaries if any. Example: { 'a' : {'b':'c', 'd': {'e' : 'f'}}, 'g' : 'h'} will be flattened to {'a.b': 'c', 'a.d.e': 'f', 'g': 'h'} This will flatten only the values of dict type. :param dict input_dict: :param str parent_key: parent key that gets prefixed while forming flattened key # noqa: E501 :param str separator: use the separator to form flattened key :return: flattened dictionary :rtype: dict """ flattened_dict = {} for k in input_dict.keys(): val = input_dict.get(k) key_prefix = f"{parent_key}{k}" if isinstance(val, dict): flattened_dict.update(flatten_dictionary(val, f"{key_prefix}{separator}")) # noqa: E501 else: flattened_dict.update({key_prefix: val}) return flattened_dict def escape_query_filter_expression_value(value): value_str = str(value) value_str = value_str.replace('(', "\\(") value_str = value_str.replace(')', "\\)") value_str = value_str.replace(';', "\\;") value_str = value_str.replace(',', "\\,") return value_str def construct_filter_string(filters: dict): """Construct &-ed filter string from the dict. :param dict filters: dictionary containing key and values for the filters """ filter_string = "" if filters: filter_expressions = [] for (key, value) in filters.items(): if key and value: filter_exp = f"{key}=={urllib.parse.quote(escape_query_filter_expression_value(value))}" # noqa: E501 filter_expressions.append(filter_exp) filter_string = ";".join(filter_expressions) return filter_string def extract_id_from_href(href): """Extract id from an href. 'https://vmware.com/api/admin/user/123456' will return 123456 :param str href: an href :return: id """ if not href: return None if '/' in href: return href.split('/')[-1] return href # ToDo: Device a better way to find the max api version # without converting the strings to float. # e.g. 5.20 will be smaller than 5.8 if compared as float, which is wrong def get_max_api_version(api_versions: List[str]) -> str: return str(max(VCDApiVersion(x) for x in api_versions))
the-stack_0_16557
import pandas as pd # Lists are enclosed in brackets: # l = [1, 2, "a"] # Tuples are enclosed in parentheses: # Tuples are faster and consume less memory # t = (1, 2, "a") # Dictionaries are built with curly brackets: # d = {"a":1, "b":2} # Sets are made using the set() builtin function # Python List vs. Tuples (Key points to remember) # The literal syntax of tuples is shown by parentheses () # whereas the literal syntax of lists is shown by square brackets [] # Lists has variable length, tuple has fixed length. # List has mutable nature, tuple has immutable nature. # List has more functionality than the tuple. # Basics of creating Pandas DataFrames from Lists and Dictionaries # http://pbpython.com/pandas-list-dict.html # https://www.datacamp.com/community/tutorials/pandas-read-csv def csv_2sql( csv_file_name, table_name ): data = pd.read_csv( csv_file_name ) # Get the first 5 rows # print( data.head() ) rows, c_count = data.shape print( "# Number of rows={} and columns={}".format(rows, c_count ) ) p = ' ' print( "sql = '''") print( "CREATE TABLE {} ( ".format(table_name) ) i = 0 for col in data.columns: i = i+1 t = data[col].dtype if t == 'int64': t = "INTEGER" else: t = "LVARCHAR" if i == c_count: print( p, col, t, " ); " ) else : print( p, col, t, "," ) print( "'''") print( ) print( "sql = '''") print( "INSERT INTO {} ( ".format(table_name) ) i = 0 for col in data.columns: i = i+1 if i == c_count: print( p, col, " ) " ) else : print( p, col, "," ) # Python 3 specific ( end = ''), to print on same line print( p, "VALUES ( ", end = '' ) i = 0 while i < c_count: i = i+1 if i == c_count: print( " ? ); " ) else : # Python 3 specific print( "?, ", end = '' ) print( "'''") print( "stmt = IfxPy.prepare(conn, sql)" ) i = 0 for col in data.columns: i = i+1 t = data[col].dtype if t == 'int64': t = "INTEGER" else: t = "LVARCHAR" print() print( "c{} = None".format(i) ) print( "IfxPy.bind_param(stmt, {}, c{}, IfxPy.SQL_PARAM_INPUT, IfxPy.{})".format(i, i, t ) ) ####### Run the sample function ###### if __name__ == "__main__": csv_2sql('sample.csv', 'tab1')
the-stack_0_16560
# Copyright 2021 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Autoregressive State Space Model Tests.""" # Dependency imports import numpy as np import tensorflow.compat.v1 as tf1 import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import tensorshape_util from tensorflow_probability.python.internal import test_util from tensorflow_probability.python.sts import AutoregressiveMovingAverageStateSpaceModel from tensorflow_probability.python.sts import AutoregressiveStateSpaceModel tfd = tfp.distributions def arma_explicit_logp(y, ar_coefs, ma_coefs, level_scale): """Manual log-prob computation for arma(p, q) process.""" # Source: page 132 of # http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/504_02_Hamilton_Time-Series-Analysis.pdf p = len(ar_coefs) q = len(ma_coefs) t = len(y) # For the first few steps of y, where previous values # are not available, we model them as zero-mean with # stddev `prior_scale`. e = np.zeros([t]) for i in range(p): zero_padded_y = np.zeros([p]) zero_padded_y[p - i:p] = y[:i] pred_y = np.dot(zero_padded_y, ar_coefs[::-1]) e[i] = y[i] - pred_y for i in range(p, len(y)): pred_y = (np.dot(y[i - p:i], ar_coefs[::-1]) + np.dot(e[i - q:i], ma_coefs[::-1])) e[i] = y[i] - pred_y lp = (-((t - p) / 2) * np.log(2 * np.pi) - ((t - p) / 2) * np.log(level_scale ** 2) - np.sum(e ** 2 / (2 * level_scale ** 2))) return lp class _AutoregressiveMovingAverageStateSpaceModelTest(test_util.TestCase): def testEqualsAutoregressive(self): # An ARMA(p, 0) process is just an AR(p) processes num_timesteps = 10 observed_time_series = self._build_placeholder( np.random.randn(num_timesteps, 1)) level_scale = self._build_placeholder(0.1) # We'll test an AR1 process, and also (just for kicks) that the trivial # embedding as an AR2 process gives the same model. coefficients_order1 = np.array([1.]).astype(self.dtype) coefficients_order2 = np.array([1., 1.]).astype(self.dtype) ar1_ssm = AutoregressiveStateSpaceModel( num_timesteps=num_timesteps, coefficients=coefficients_order1, level_scale=level_scale, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=[level_scale])) ar2_ssm = AutoregressiveStateSpaceModel( num_timesteps=num_timesteps, coefficients=coefficients_order2, level_scale=level_scale, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=[level_scale, 1.])) arma1_ssm = AutoregressiveMovingAverageStateSpaceModel( num_timesteps=num_timesteps, ar_coefficients=coefficients_order1, ma_coefficients=np.array([0.]).astype(self.dtype), level_scale=level_scale, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=[level_scale, 1.])) arma2_ssm = AutoregressiveMovingAverageStateSpaceModel( num_timesteps=num_timesteps, ar_coefficients=coefficients_order2, ma_coefficients=np.array([0.]).astype(self.dtype), level_scale=level_scale, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=[level_scale, 1.])) ar1_lp, arma1_lp, ar2_lp, arma2_lp = ( ar1_ssm.log_prob(observed_time_series), arma1_ssm.log_prob(observed_time_series), ar2_ssm.log_prob(observed_time_series), arma2_ssm.log_prob(observed_time_series) ) self.assertAllClose(ar1_lp, arma1_lp) self.assertAllClose(ar2_lp, arma2_lp) def testLogprobCorrectness(self): # Compare the state-space model's log-prob to an explicit implementation. num_timesteps = 10 observed_time_series_ = np.random.randn(num_timesteps) ar_coefficients_ = np.array([.7, -.1]).astype(self.dtype) ma_coefficients_ = np.array([0.5, -0.4]).astype(self.dtype) level_scale_ = 1.0 observed_time_series = self._build_placeholder(observed_time_series_) level_scale = self._build_placeholder(level_scale_) expected_logp = arma_explicit_logp( observed_time_series_, ar_coefficients_, ma_coefficients_, level_scale_) ssm = AutoregressiveMovingAverageStateSpaceModel( num_timesteps=num_timesteps, ar_coefficients=ar_coefficients_, ma_coefficients=ma_coefficients_, level_scale=level_scale, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=[level_scale, 0., 0.])) lp = ssm.log_prob(observed_time_series[..., tf.newaxis]) self.assertAllClose(lp, expected_logp, rtol=5e-2) def testBatchShape(self): # Check that the model builds with batches of parameters. order = 3 batch_shape = [4, 2] # No `_build_placeholder`, because coefficients must have static shape. coefficients = np.random.randn(*(batch_shape + [order])).astype(self.dtype) order = max(order, order + 1) # shape of initial_state_prior, scale_diag level_scale = self._build_placeholder( np.exp(np.random.randn(*batch_shape))) ssm = AutoregressiveMovingAverageStateSpaceModel( num_timesteps=10, ar_coefficients=coefficients, ma_coefficients=coefficients, level_scale=level_scale, initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=self._build_placeholder(np.ones([order])))) if self.use_static_shape: self.assertAllEqual(tensorshape_util.as_list(ssm.batch_shape), batch_shape) else: self.assertAllEqual(ssm.batch_shape_tensor(), batch_shape) y = ssm.sample(seed=test_util.test_seed(sampler_type='stateless')) if self.use_static_shape: self.assertAllEqual(tensorshape_util.as_list(y.shape)[:-2], batch_shape) else: self.assertAllEqual(tf.shape(y)[:-2], batch_shape) def _build_placeholder(self, ndarray): """Convert a numpy array to a TF placeholder. Args: ndarray: any object convertible to a numpy array via `np.asarray()`. Returns: placeholder: a TensorFlow `placeholder` with default value given by the provided `ndarray`, dtype given by `self.dtype`, and shape specified statically only if `self.use_static_shape` is `True`. """ ndarray = np.asarray(ndarray).astype(self.dtype) return tf1.placeholder_with_default( ndarray, shape=ndarray.shape if self.use_static_shape else None) @test_util.test_all_tf_execution_regimes class AutoregressiveMovingAverageStateSpaceModelTestStaticShape32( _AutoregressiveMovingAverageStateSpaceModelTest): dtype = np.float32 use_static_shape = True @test_util.test_all_tf_execution_regimes class AutoregressiveMovingAverageStateSpaceModelTestDynamicShape32( _AutoregressiveMovingAverageStateSpaceModelTest): dtype = np.float32 use_static_shape = False @test_util.test_all_tf_execution_regimes class AutoregressiveMovingAverageStateSpaceModelTestStaticShape64( _AutoregressiveMovingAverageStateSpaceModelTest): dtype = np.float64 use_static_shape = True # Don't run tests for the base class. del _AutoregressiveMovingAverageStateSpaceModelTest if __name__ == '__main__': test_util.main()
the-stack_0_16561
from ..layout import Channel, Layout, load_speakers, load_real_layout, Speaker, RealLayout from ..geom import cart, PolarPosition, CartesianPosition from ...common import PolarScreen, CartesianScreen from attr import evolve import pytest import numpy as np import numpy.testing as npt @pytest.fixture def layout(): # odd nominal positions, for testing return Layout(name="test", channels=[ Channel(name="M+030", polar_position=(30, 0.0, 2.0), polar_nominal_position=(25, 0.0, 1.5), az_range=(25, 30), el_range=(0, 0), is_lfe=False), Channel(name="M-030", polar_position=PolarPosition(-30, 0.0, 2.0), polar_nominal_position=PolarPosition(-25, 0.0, 1.5), az_range=(-30, -25)), ]) def test_positions(layout): npt.assert_allclose(layout.positions, [cart(30, 0, 2), cart(-30, 0, 2)]) def test_norm_positions(layout): npt.assert_allclose(layout.norm_positions, [cart(30, 0, 1), cart(-30, 0, 1)]) def test_nominal_positions(layout): npt.assert_allclose(layout.nominal_positions, [cart(25, 0, 1.5), cart(-25, 0, 1.5)]) def test_without_lfe(layout): lfe_channel = Channel(name="LFE", polar_position=(30, -20, 2), is_lfe=True) layout_lfe = evolve(layout, channels=layout.channels + [lfe_channel]) assert len(layout_lfe.channels) == 3 assert len(layout_lfe.without_lfe.channels) == 2 def test_channel_names(layout): assert layout.channel_names == ["M+030", "M-030"] def test_channels_by_name(layout): assert layout.channels_by_name == { "M+030": layout.channels[0], "M-030": layout.channels[1], } def test_default_nominal_range(): # defaulted nominal position and ranges should be kept when the position is modified default_channel = Channel(name="name", polar_position=(10, 20, 1)) modified_channel = evolve(default_channel, polar_position=PolarPosition(30, 40, 1)) for channel in [default_channel, modified_channel]: assert channel.polar_nominal_position == PolarPosition(10, 20, 1) assert channel.az_range == (10, 10) assert channel.el_range == (20, 20) def test_Channel_check_position(): errors = [] Channel(name="name", polar_position=(10, 20, 1)).check_position(callback=errors.append) Channel(name="name", polar_position=(180, 20, 1), az_range=(175, -175)).check_position(callback=errors.append) Channel(name="name", polar_position=(180, 20, 1), az_range=(180, 180)).check_position(callback=errors.append) assert not errors errors = [] Channel(name="name", polar_position=(10, 20, 1), az_range=(-5, 5)).check_position(callback=errors.append) assert errors == ["name: azimuth 10.0 out of range (-5, 5)."] errors = [] Channel(name="name", polar_position=(10, 20, 1), el_range=(0, 15)).check_position(callback=errors.append) assert errors == ["name: elevation 20.0 out of range (0, 15)."] def test_Layout_check_position(layout): errors = [] layout.check_positions(callback=errors.append) assert errors == [] layout_err = evolve(layout, channels=[ (evolve(channel, polar_position=PolarPosition(30, 10, 1)) if channel.name == "M+030" else channel) for channel in layout.channels]) errors = [] layout_err.check_positions(callback=errors.append) assert errors == ["M+030: elevation 10.0 out of range (0, 0)."] def test_Layout_with_speakers_real_layout(layout): speakers = [Speaker(channel=1, names=["M+030"], polar_position=PolarPosition(25, 0, 1.5)), Speaker(channel=2, names=["M-030"]), Speaker(channel=3, names=["M-110"])] screen = PolarScreen(aspectRatio=1.5, centrePosition=PolarPosition(10.0, 20.0, 2.0), widthAzimuth=30.0) new_layout, upmix = layout.with_speakers(speakers) npt.assert_allclose(new_layout.positions, [cart(25, 0, 1.5), cart(-30, 0, 2)]) npt.assert_allclose(upmix, [[0, 0], [1, 0], [0, 1], [0, 0]]) new_layout, upmix = layout.with_real_layout(RealLayout(speakers=speakers, screen=screen)) npt.assert_allclose(new_layout.positions, [cart(25, 0, 1.5), cart(-30, 0, 2)]) npt.assert_allclose(upmix, [[0, 0], [1, 0], [0, 1], [0, 0]]) assert new_layout.screen == screen def test_Layout_check_upmix_matrix(layout): errors = [] upmix = np.array([[0, 0], [1, 0], [0, 0.5], [0, 0]]) layout.check_upmix_matrix(upmix, callback=errors.append) assert errors == [] errors = [] upmix = np.array([[0, 0], [1, 0], [0, 0], [0, 0]]) layout.check_upmix_matrix(upmix, callback=errors.append) assert errors == ["Channel M-030 not mapped to any output."] errors = [] upmix = np.array([[0, 0], [1, 0], [0, 1], [0, 1]]) layout.check_upmix_matrix(upmix, callback=errors.append) assert errors == ["Channel M-030 mapped to multiple outputs: [2, 3]."] errors = [] upmix = np.array([[0, 0], [1, 1], [0, 0], [0, 0]]) layout.check_upmix_matrix(upmix, callback=errors.append) assert errors == ["Speaker idx 1 used by multiple channels: ['M+030', 'M-030']"] def test_load_layout_info(): def run_test(yaml_obj, expected, func=load_real_layout): from ruamel import yaml from six import StringIO yaml_str = yaml.dump(yaml_obj) result = func(StringIO(yaml_str)) assert expected == result run_test(dict(speakers=[dict(channel=0, names="M+000")]), RealLayout(speakers=[Speaker(0, ["M+000"])])) run_test(dict(speakers=[dict(channel=0, names=["M+000"])]), RealLayout(speakers=[Speaker(0, ["M+000"])])) run_test(dict(speakers=[dict(channel=0, names=["M+000"], position=dict(az=10, el=5, r=1))]), RealLayout(speakers=[Speaker(0, ["M+000"], PolarPosition(10, 5, 1))])) run_test(dict(speakers=[dict(channel=0, names=["M+000"], gain_linear=0.5)]), RealLayout(speakers=[Speaker(0, ["M+000"], gain_linear=0.5)])) with pytest.raises(Exception) as excinfo: run_test(dict(speakers=[dict(channel=0, names=["M+000"], position=dict(az=10, el=5))]), RealLayout(speakers=[Speaker(0, ["M+000"], PolarPosition(10, 5, 1))])) assert "Unknown position format" in str(excinfo.value) # old style with speakers at the top level run_test([dict(channel=0, names="M+000")], RealLayout(speakers=[Speaker(0, ["M+000"])])) # polar screen run_test(dict(screen=dict(type="polar", aspectRatio=1.5, centrePosition=dict(az=10, el=20, r=2), widthAzimuth=30)), RealLayout(screen=PolarScreen(aspectRatio=1.5, centrePosition=PolarPosition(10.0, 20.0, 2.0), widthAzimuth=30.0))) # Cartesian screen run_test(dict(screen=dict(type="cart", aspectRatio=1.5, centrePosition=dict(X=0.1, Y=0.9, Z=0.2), widthX=0.3)), RealLayout(screen=CartesianScreen(aspectRatio=1.5, centrePosition=CartesianPosition(0.1, 0.9, 0.2), widthX=0.3))) # passes through null screens run_test(dict(screen=None), RealLayout(screen=None)) # legacy speakers wrapper run_test(dict(speakers=[dict(channel=0, names="M+000")]), [Speaker(0, ["M+000"])], func=load_speakers)
the-stack_0_16562
import collections import logging from typing import Dict, List, Optional, Set, Tuple, Union, Callable from blspy import AugSchemeMPL, G1Element from chiabip158 import PyBIP158 from clvm.casts import int_from_bytes from chia.consensus.block_record import BlockRecord from chia.consensus.block_rewards import ( calculate_base_farmer_reward, calculate_pool_reward, ) from chia.consensus.block_root_validation import validate_block_merkle_roots from chia.full_node.mempool_check_conditions import mempool_check_conditions_dict from chia.consensus.blockchain_interface import BlockchainInterface from chia.consensus.coinbase import create_farmer_coin, create_pool_coin from chia.consensus.constants import ConsensusConstants from chia.consensus.cost_calculator import NPCResult, calculate_cost_of_program from chia.consensus.find_fork_point import find_fork_point_in_chain from chia.full_node.block_store import BlockStore from chia.full_node.coin_store import CoinStore from chia.full_node.mempool_check_conditions import get_name_puzzle_conditions from chia.types.blockchain_format.coin import Coin from chia.types.blockchain_format.sized_bytes import bytes32 from chia.types.coin_record import CoinRecord from chia.types.condition_opcodes import ConditionOpcode from chia.types.condition_with_args import ConditionWithArgs from chia.types.full_block import FullBlock from chia.types.generator_types import BlockGenerator from chia.types.name_puzzle_condition import NPC from chia.types.unfinished_block import UnfinishedBlock from chia.util.condition_tools import ( pkm_pairs_for_conditions_dict, coin_announcements_names_for_npc, puzzle_announcements_names_for_npc, ) from chia.util.errors import Err from chia.util.generator_tools import ( additions_for_npc, tx_removals_and_additions, ) from chia.util.hash import std_hash from chia.util.ints import uint32, uint64, uint128 log = logging.getLogger(__name__) async def validate_block_body( constants: ConsensusConstants, blocks: BlockchainInterface, block_store: BlockStore, coin_store: CoinStore, peak: Optional[BlockRecord], block: Union[FullBlock, UnfinishedBlock], height: uint32, npc_result: Optional[NPCResult], fork_point_with_peak: Optional[uint32], get_block_generator: Callable, ) -> Tuple[Optional[Err], Optional[NPCResult]]: """ This assumes the header block has been completely validated. Validates the transactions and body of the block. Returns None for the first value if everything validates correctly, or an Err if something does not validate. For the second value, returns a CostResult only if validation succeeded, and there are transactions. In other cases it returns None. The NPC result is the result of running the generator with the previous generators refs. It is only present for transaction blocks which have spent coins. """ if isinstance(block, FullBlock): assert height == block.height prev_transaction_block_height: uint32 = uint32(0) # 1. For non transaction-blocs: foliage block, transaction filter, transactions info, and generator must # be empty. If it is a block but not a transaction block, there is no body to validate. Check that all fields are # None if block.foliage.foliage_transaction_block_hash is None: if ( block.foliage_transaction_block is not None or block.transactions_info is not None or block.transactions_generator is not None ): return Err.NOT_BLOCK_BUT_HAS_DATA, None prev_tb: BlockRecord = blocks.block_record(block.prev_header_hash) while not prev_tb.is_transaction_block: prev_tb = blocks.block_record(prev_tb.prev_hash) assert prev_tb.timestamp is not None if ( prev_tb.timestamp > constants.INITIAL_FREEZE_END_TIMESTAMP and len(block.transactions_generator_ref_list) > 0 ): return Err.NOT_BLOCK_BUT_HAS_DATA, None return None, None # This means the block is valid # All checks below this point correspond to transaction blocks # 2. For blocks, foliage block, transactions info must not be empty if block.foliage_transaction_block is None or block.transactions_info is None: return Err.IS_TRANSACTION_BLOCK_BUT_NO_DATA, None assert block.foliage_transaction_block is not None # keeps track of the reward coins that need to be incorporated expected_reward_coins: Set[Coin] = set() # 3. The transaction info hash in the Foliage block must match the transaction info if block.foliage_transaction_block.transactions_info_hash != std_hash(block.transactions_info): return Err.INVALID_TRANSACTIONS_INFO_HASH, None # 4. The foliage block hash in the foliage block must match the foliage block if block.foliage.foliage_transaction_block_hash != std_hash(block.foliage_transaction_block): return Err.INVALID_FOLIAGE_BLOCK_HASH, None # 5. The reward claims must be valid for the previous blocks, and current block fees # If height == 0, expected_reward_coins will be left empty if height > 0: # Add reward claims for all blocks from the prev prev block, until the prev block (including the latter) prev_transaction_block = blocks.block_record(block.foliage_transaction_block.prev_transaction_block_hash) prev_transaction_block_height = prev_transaction_block.height assert prev_transaction_block.fees is not None pool_coin = create_pool_coin( prev_transaction_block_height, prev_transaction_block.pool_puzzle_hash, calculate_pool_reward(prev_transaction_block.height), constants.GENESIS_CHALLENGE, ) farmer_coin = create_farmer_coin( prev_transaction_block_height, prev_transaction_block.farmer_puzzle_hash, uint64(calculate_base_farmer_reward(prev_transaction_block.height) + prev_transaction_block.fees), constants.GENESIS_CHALLENGE, ) # Adds the previous block expected_reward_coins.add(pool_coin) expected_reward_coins.add(farmer_coin) # For the second block in the chain, don't go back further if prev_transaction_block.height > 0: curr_b = blocks.block_record(prev_transaction_block.prev_hash) while not curr_b.is_transaction_block: expected_reward_coins.add( create_pool_coin( curr_b.height, curr_b.pool_puzzle_hash, calculate_pool_reward(curr_b.height), constants.GENESIS_CHALLENGE, ) ) expected_reward_coins.add( create_farmer_coin( curr_b.height, curr_b.farmer_puzzle_hash, calculate_base_farmer_reward(curr_b.height), constants.GENESIS_CHALLENGE, ) ) curr_b = blocks.block_record(curr_b.prev_hash) if set(block.transactions_info.reward_claims_incorporated) != expected_reward_coins: return Err.INVALID_REWARD_COINS, None if block.foliage_transaction_block.timestamp > constants.INITIAL_FREEZE_END_TIMESTAMP: if len(block.transactions_info.reward_claims_incorporated) != len(expected_reward_coins): # No duplicates, after transaction freeze period. Duplicates cause no issues because we filter them out # anyway. return Err.INVALID_REWARD_COINS, None removals: List[bytes32] = [] coinbase_additions: List[Coin] = list(expected_reward_coins) additions: List[Coin] = [] coin_announcement_names: Set[bytes32] = set() puzzle_announcement_names: Set[bytes32] = set() npc_list: List[NPC] = [] removals_puzzle_dic: Dict[bytes32, bytes32] = {} cost: uint64 = uint64(0) # We check in header validation that timestamp is not more that 10 minutes into the future if ( block.foliage_transaction_block.timestamp <= constants.INITIAL_FREEZE_END_TIMESTAMP and block.transactions_generator is not None ): # 6. No transactions before INITIAL_TRANSACTION_FREEZE timestamp return Err.INITIAL_TRANSACTION_FREEZE, None else: # 7a. The generator root must be the hash of the serialized bytes of # the generator for this block (or zeroes if no generator) if block.transactions_generator is not None: if std_hash(bytes(block.transactions_generator)) != block.transactions_info.generator_root: return Err.INVALID_TRANSACTIONS_GENERATOR_HASH, None else: if block.transactions_info.generator_root != bytes([0] * 32): return Err.INVALID_TRANSACTIONS_GENERATOR_HASH, None # 8a. The generator_ref_list must be the hash of the serialized bytes of # the generator ref list for this block (or 'one' bytes [0x01] if no generator) # 8b. The generator ref list length must be less than or equal to MAX_GENERATOR_REF_LIST_SIZE entries # 8c. The generator ref list must not point to a height >= this block's height if block.transactions_generator_ref_list in (None, []): if block.transactions_info.generator_refs_root != bytes([1] * 32): return Err.INVALID_TRANSACTIONS_GENERATOR_REFS_ROOT, None else: # If we have a generator reference list, we must have a generator if block.transactions_generator is None: return Err.INVALID_TRANSACTIONS_GENERATOR_REFS_ROOT, None # The generator_refs_root must be the hash of the concatenation of the List[uint32] generator_refs_hash = std_hash(b"".join([bytes(i) for i in block.transactions_generator_ref_list])) if block.transactions_info.generator_refs_root != generator_refs_hash: return Err.INVALID_TRANSACTIONS_GENERATOR_REFS_ROOT, None if len(block.transactions_generator_ref_list) > constants.MAX_GENERATOR_REF_LIST_SIZE: return Err.TOO_MANY_GENERATOR_REFS, None if any([index >= height for index in block.transactions_generator_ref_list]): return Err.FUTURE_GENERATOR_REFS, None if block.transactions_generator is not None: # Get List of names removed, puzzles hashes for removed coins and conditions created assert npc_result is not None cost = calculate_cost_of_program(block.transactions_generator, npc_result, constants.COST_PER_BYTE) npc_list = npc_result.npc_list # 7. Check that cost <= MAX_BLOCK_COST_CLVM log.debug( f"Cost: {cost} max: {constants.MAX_BLOCK_COST_CLVM} " f"percent full: {round(100 * (cost / constants.MAX_BLOCK_COST_CLVM), 2)}%" ) if cost > constants.MAX_BLOCK_COST_CLVM: return Err.BLOCK_COST_EXCEEDS_MAX, None # 8. The CLVM program must not return any errors if npc_result.error is not None: return Err(npc_result.error), None for npc in npc_list: removals.append(npc.coin_name) removals_puzzle_dic[npc.coin_name] = npc.puzzle_hash additions = additions_for_npc(npc_list) coin_announcement_names = coin_announcements_names_for_npc(npc_list) puzzle_announcement_names = puzzle_announcements_names_for_npc(npc_list) else: assert npc_result is None # 9. Check that the correct cost is in the transactions info if block.transactions_info.cost != cost: return Err.INVALID_BLOCK_COST, None additions_dic: Dict[bytes32, Coin] = {} # 10. Check additions for max coin amount # Be careful to check for 64 bit overflows in other languages. This is the max 64 bit unsigned integer # We will not even reach here because Coins do type checking (uint64) for coin in additions + coinbase_additions: additions_dic[coin.name()] = coin if coin.amount > constants.MAX_COIN_AMOUNT: return Err.COIN_AMOUNT_EXCEEDS_MAXIMUM, None # 11. Validate addition and removal roots root_error = validate_block_merkle_roots( block.foliage_transaction_block.additions_root, block.foliage_transaction_block.removals_root, additions + coinbase_additions, removals, ) if root_error: return root_error, None # 12. The additions and removals must result in the correct filter byte_array_tx: List[bytes32] = [] for coin in additions + coinbase_additions: byte_array_tx.append(bytearray(coin.puzzle_hash)) for coin_name in removals: byte_array_tx.append(bytearray(coin_name)) bip158: PyBIP158 = PyBIP158(byte_array_tx) encoded_filter = bytes(bip158.GetEncoded()) filter_hash = std_hash(encoded_filter) if filter_hash != block.foliage_transaction_block.filter_hash: return Err.INVALID_TRANSACTIONS_FILTER_HASH, None # 13. Check for duplicate outputs in additions addition_counter = collections.Counter(_.name() for _ in additions + coinbase_additions) for k, v in addition_counter.items(): if v > 1: return Err.DUPLICATE_OUTPUT, None # 14. Check for duplicate spends inside block removal_counter = collections.Counter(removals) for k, v in removal_counter.items(): if v > 1: return Err.DOUBLE_SPEND, None # 15. Check if removals exist and were not previously spent. (unspent_db + diff_store + this_block) # The fork point is the last block in common between the peak chain and the chain of `block` if peak is None or height == 0: fork_h: int = -1 elif fork_point_with_peak is not None: fork_h = fork_point_with_peak else: fork_h = find_fork_point_in_chain(blocks, peak, blocks.block_record(block.prev_header_hash)) # Get additions and removals since (after) fork_h but not including this block # The values include: the coin that was added, the height of the block in which it was confirmed, and the # timestamp of the block in which it was confirmed additions_since_fork: Dict[bytes32, Tuple[Coin, uint32, uint64]] = {} # This includes coinbase additions removals_since_fork: Set[bytes32] = set() # For height 0, there are no additions and removals before this block, so we can skip if height > 0: # First, get all the blocks in the fork > fork_h, < block.height prev_block: Optional[FullBlock] = await block_store.get_full_block(block.prev_header_hash) reorg_blocks: Dict[uint32, FullBlock] = {} curr: Optional[FullBlock] = prev_block assert curr is not None while curr.height > fork_h: if curr.height == 0: break curr = await block_store.get_full_block(curr.prev_header_hash) assert curr is not None reorg_blocks[curr.height] = curr if fork_h != -1: assert len(reorg_blocks) == height - fork_h - 1 curr = prev_block assert curr is not None while curr.height > fork_h: # Coin store doesn't contain coins from fork, we have to run generator for each block in fork if curr.transactions_generator is not None: # These blocks are in the past and therefore assumed to be valid, so get_block_generator won't raise curr_block_generator: Optional[BlockGenerator] = await get_block_generator(curr) assert curr_block_generator is not None and curr.transactions_info is not None curr_npc_result = get_name_puzzle_conditions( curr_block_generator, min(constants.MAX_BLOCK_COST_CLVM, curr.transactions_info.cost), False, ) removals_in_curr, additions_in_curr = tx_removals_and_additions(curr_npc_result.npc_list) else: removals_in_curr = [] additions_in_curr = [] for c_name in removals_in_curr: assert c_name not in removals_since_fork removals_since_fork.add(c_name) for c in additions_in_curr: assert c.name() not in additions_since_fork assert curr.foliage_transaction_block is not None additions_since_fork[c.name()] = ( c, curr.height, curr.foliage_transaction_block.timestamp, ) for coinbase_coin in curr.get_included_reward_coins(): assert coinbase_coin.name() not in additions_since_fork assert curr.foliage_transaction_block is not None additions_since_fork[coinbase_coin.name()] = ( coinbase_coin, curr.height, curr.foliage_transaction_block.timestamp, ) if curr.height == 0: break curr = reorg_blocks[curr.height - 1] assert curr is not None removal_coin_records: Dict[bytes32, CoinRecord] = {} for rem in removals: if rem in additions_dic: # Ephemeral coin rem_coin: Coin = additions_dic[rem] new_unspent: CoinRecord = CoinRecord( rem_coin, height, height, True, False, block.foliage_transaction_block.timestamp, ) removal_coin_records[new_unspent.name] = new_unspent else: unspent = await coin_store.get_coin_record(rem) if unspent is not None and unspent.confirmed_block_index <= fork_h: # Spending something in the current chain, confirmed before fork # (We ignore all coins confirmed after fork) if unspent.spent == 1 and unspent.spent_block_index <= fork_h: # Check for coins spent in an ancestor block return Err.DOUBLE_SPEND, None removal_coin_records[unspent.name] = unspent else: # This coin is not in the current heaviest chain, so it must be in the fork if rem not in additions_since_fork: # Check for spending a coin that does not exist in this fork return Err.UNKNOWN_UNSPENT, None ( new_coin, confirmed_height, confirmed_timestamp, ) = additions_since_fork[rem] new_coin_record: CoinRecord = CoinRecord( new_coin, confirmed_height, uint32(0), False, False, confirmed_timestamp, ) removal_coin_records[new_coin_record.name] = new_coin_record # This check applies to both coins created before fork (pulled from coin_store), # and coins created after fork (additions_since_fork) if rem in removals_since_fork: # This coin was spent in the fork return Err.DOUBLE_SPEND_IN_FORK, None removed = 0 for unspent in removal_coin_records.values(): removed += unspent.coin.amount added = 0 for coin in additions: added += coin.amount # 16. Check that the total coin amount for added is <= removed if removed < added: return Err.MINTING_COIN, None fees = removed - added assert fees >= 0 assert_fee_sum: uint128 = uint128(0) for npc in npc_list: if ConditionOpcode.RESERVE_FEE in npc.condition_dict: fee_list: List[ConditionWithArgs] = npc.condition_dict[ConditionOpcode.RESERVE_FEE] for cvp in fee_list: fee = int_from_bytes(cvp.vars[0]) if fee < 0: return Err.RESERVE_FEE_CONDITION_FAILED, None assert_fee_sum = uint128(assert_fee_sum + fee) # 17. Check that the assert fee sum <= fees, and that each reserved fee is non-negative if fees < assert_fee_sum: return Err.RESERVE_FEE_CONDITION_FAILED, None # 18. Check that the fee amount + farmer reward < maximum coin amount if fees + calculate_base_farmer_reward(height) > constants.MAX_COIN_AMOUNT: return Err.COIN_AMOUNT_EXCEEDS_MAXIMUM, None # 19. Check that the computed fees are equal to the fees in the block header if block.transactions_info.fees != fees: return Err.INVALID_BLOCK_FEE_AMOUNT, None # 20. Verify that removed coin puzzle_hashes match with calculated puzzle_hashes for unspent in removal_coin_records.values(): if unspent.coin.puzzle_hash != removals_puzzle_dic[unspent.name]: return Err.WRONG_PUZZLE_HASH, None # 21. Verify conditions # create hash_key list for aggsig check pairs_pks: List[G1Element] = [] pairs_msgs: List[bytes] = [] for npc in npc_list: assert height is not None unspent = removal_coin_records[npc.coin_name] error = mempool_check_conditions_dict( unspent, coin_announcement_names, puzzle_announcement_names, npc.condition_dict, prev_transaction_block_height, block.foliage_transaction_block.timestamp, ) if error: return error, None for pk, m in pkm_pairs_for_conditions_dict( npc.condition_dict, npc.coin_name, constants.AGG_SIG_ME_ADDITIONAL_DATA ): pairs_pks.append(pk) pairs_msgs.append(m) # 22. Verify aggregated signature # TODO: move this to pre_validate_blocks_multiprocessing so we can sync faster if not block.transactions_info.aggregated_signature: return Err.BAD_AGGREGATE_SIGNATURE, None # noinspection PyTypeChecker if not AugSchemeMPL.aggregate_verify(pairs_pks, pairs_msgs, block.transactions_info.aggregated_signature): return Err.BAD_AGGREGATE_SIGNATURE, None return None, npc_result
the-stack_0_16563
#!/usr/bin/env python3 import sys import torch import logging import speechbrain as sb import torchaudio from hyperpyyaml import load_hyperpyyaml from speechbrain.tokenizers.SentencePiece import SentencePiece from speechbrain.utils.data_utils import undo_padding from speechbrain.utils.distributed import run_on_main """Recipe for training a sequence-to-sequence ASR system with CommonVoice. The system employs an encoder, a decoder, and an attention mechanism between them. Decoding is performed with beamsearch. To run this recipe, do the following: > python train.py hparams/train.yaml With the default hyperparameters, the system employs a CRDNN encoder. The decoder is based on a standard GRU and BeamSearch (no LM). The neural network is trained on both CTC and negative-log likelihood targets and sub-word units estimated with Byte Pairwise Encoding (BPE). The experiment file is flexible enough to support a large variety of different systems. By properly changing the parameter files, you can try different encoders, decoders, tokens (e.g, characters instead of BPE), training languages (all CommonVoice languages), and many other possible variations. Authors * Titouan Parcollet 2020 """ logger = logging.getLogger(__name__) # Define training procedure class ASR(sb.core.Brain): def compute_forward(self, batch, stage): """Forward computations from the waveform batches to the output probabilities.""" batch = batch.to(self.device) wavs, wav_lens = batch.sig tokens_bos, _ = batch.tokens_bos wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) # Forward pass feats = self.hparams.compute_features(wavs) feats = self.modules.normalize(feats, wav_lens) ## Add augmentation if specified if stage == sb.Stage.TRAIN: if hasattr(self.hparams, "augmentation"): feats = self.hparams.augmentation(feats) x = self.modules.enc(feats.detach()) e_in = self.modules.emb(tokens_bos) # y_in bos + tokens h, _ = self.modules.dec(e_in, x, wav_lens) # Output layer for seq2seq log-probabilities logits = self.modules.seq_lin(h) p_seq = self.hparams.log_softmax(logits) # Compute outputs if stage == sb.Stage.TRAIN: current_epoch = self.hparams.epoch_counter.current if current_epoch <= self.hparams.number_of_ctc_epochs: # Output layer for ctc log-probabilities logits = self.modules.ctc_lin(x) p_ctc = self.hparams.log_softmax(logits) return p_ctc, p_seq, wav_lens else: return p_seq, wav_lens else: p_tokens, scores = self.hparams.beam_searcher(x, wav_lens) return p_seq, wav_lens, p_tokens def compute_objectives(self, predictions, batch, stage): """Computes the loss (CTC+NLL) given predictions and targets.""" current_epoch = self.hparams.epoch_counter.current if stage == sb.Stage.TRAIN: if current_epoch <= self.hparams.number_of_ctc_epochs: p_ctc, p_seq, wav_lens = predictions else: p_seq, wav_lens = predictions else: p_seq, wav_lens, predicted_tokens = predictions ids = batch.id tokens_eos, tokens_eos_lens = batch.tokens_eos tokens, tokens_lens = batch.tokens loss_seq = self.hparams.seq_cost( p_seq, tokens_eos, length=tokens_eos_lens ) # Add ctc loss if necessary if ( stage == sb.Stage.TRAIN and current_epoch <= self.hparams.number_of_ctc_epochs ): loss_ctc = self.hparams.ctc_cost( p_ctc, tokens, wav_lens, tokens_lens ) loss = self.hparams.ctc_weight * loss_ctc loss += (1 - self.hparams.ctc_weight) * loss_seq else: loss = loss_seq if stage != sb.Stage.TRAIN: # Decode token terms to words predicted_words = self.tokenizer( predicted_tokens, task="decode_from_list" ) # Convert indices to words target_words = undo_padding(tokens, tokens_lens) target_words = self.tokenizer(target_words, task="decode_from_list") self.wer_metric.append(ids, predicted_words, target_words) self.cer_metric.append(ids, predicted_words, target_words) return loss def fit_batch(self, batch): """Train the parameters given a single batch in input""" predictions = self.compute_forward(batch, sb.Stage.TRAIN) loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN) loss.backward() if self.check_gradients(loss): self.optimizer.step() self.optimizer.zero_grad() return loss.detach() def evaluate_batch(self, batch, stage): """Computations needed for validation/test batches""" predictions = self.compute_forward(batch, stage=stage) with torch.no_grad(): loss = self.compute_objectives(predictions, batch, stage=stage) return loss.detach() def on_stage_start(self, stage, epoch): """Gets called at the beginning of each epoch""" if stage != sb.Stage.TRAIN: self.cer_metric = self.hparams.cer_computer() self.wer_metric = self.hparams.error_rate_computer() def on_stage_end(self, stage, stage_loss, epoch): """Gets called at the end of an epoch.""" # Compute/store important stats stage_stats = {"loss": stage_loss} if stage == sb.Stage.TRAIN: self.train_stats = stage_stats else: stage_stats["CER"] = self.cer_metric.summarize("error_rate") stage_stats["WER"] = self.wer_metric.summarize("error_rate") # Perform end-of-iteration things, like annealing, logging, etc. if stage == sb.Stage.VALID: old_lr, new_lr = self.hparams.lr_annealing(stage_stats["loss"]) sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr) self.hparams.train_logger.log_stats( stats_meta={"epoch": epoch, "lr": old_lr}, train_stats=self.train_stats, valid_stats=stage_stats, ) self.checkpointer.save_and_keep_only( meta={"WER": stage_stats["WER"]}, min_keys=["WER"], ) elif stage == sb.Stage.TEST: self.hparams.train_logger.log_stats( stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, test_stats=stage_stats, ) with open(self.hparams.wer_file, "w") as w: self.wer_metric.write_stats(w) # Define custom data procedure def dataio_prepare(hparams): # 1. Define datasets data_folder = hparams["data_folder"] train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, ) if hparams["sorting"] == "ascending": # we sort training data to speed up training and get better results. train_data = train_data.filtered_sorted( sort_key="duration", key_max_value={"duration": hparams["avoid_if_longer_than"]}, key_min_value={"duration": hparams["avoid_if_smaller_than"]}, ) # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["dataloader_options"]["shuffle"] = False elif hparams["sorting"] == "descending": train_data = train_data.filtered_sorted( sort_key="duration", reverse=True, key_max_value={"duration": hparams["avoid_if_longer_than"]}, key_min_value={"duration": hparams["avoid_if_smaller_than"]}, ) # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["dataloader_options"]["shuffle"] = False elif hparams["sorting"] == "random": pass else: raise NotImplementedError( "sorting must be random, ascending or descending" ) valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, ) # We also sort the validation data so it is faster to validate # valid_data = valid_data.filtered_sorted(sort_key="duration") valid_data = valid_data.filtered_sorted( sort_key="duration", reverse=True, key_max_value={"duration": hparams["avoid_if_longer_than"]}, key_min_value={"duration": hparams["avoid_if_smaller_than"]}, ) test_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["test_csv"], replacements={"data_root": data_folder}, ) # We also sort the test data so it is faster to validate test_data = test_data.filtered_sorted( sort_key="duration", reverse=True, key_max_value={"duration": hparams["avoid_if_longer_than"]}, key_min_value={"duration": hparams["avoid_if_smaller_than"]}, ) datasets = [train_data, valid_data, test_data] # defining tokenizer and loading it tokenizer = SentencePiece( model_dir=hparams["save_folder"], vocab_size=hparams["output_neurons"], annotation_train=hparams["train_csv"], annotation_read="wrd", model_type=hparams["token_type"], character_coverage=hparams["character_coverage"], bos_id=hparams["bos_index"], eos_id=hparams["eos_index"] ) # 2. Define audio pipeline: @sb.utils.data_pipeline.takes("wav", "start_seg", "end_seg") @sb.utils.data_pipeline.provides("sig") def audio_pipeline(wav, start_seg, end_seg): # info = torchaudio.info(wav) start = int(float(start_seg) * hparams["sample_rate"]) stop = int(float(end_seg) * hparams["sample_rate"]) speech_segment = {"file" : wav, "start" : start, "stop" : stop} sig = sb.dataio.dataio.read_audio(speech_segment) return sig # resampled = torchaudio.transforms.Resample( # info.sample_rate, hparams["sample_rate"], # )(sig) # return resampled sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) # 3. Define text pipeline: @sb.utils.data_pipeline.takes("wrd") @sb.utils.data_pipeline.provides( "tokens_list", "tokens_bos", "tokens_eos", "tokens" ) def text_pipeline(wrd): tokens_list = tokenizer.sp.encode_as_ids(wrd) yield tokens_list tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list)) yield tokens_bos tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]]) yield tokens_eos tokens = torch.LongTensor(tokens_list) yield tokens sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) # 4. Set output: sb.dataio.dataset.set_output_keys( datasets, ["id", "sig", "tokens_bos", "tokens_eos", "tokens"], ) return train_data, valid_data, test_data, tokenizer if __name__ == "__main__": # Load hyperparameters file with command-line overrides hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:]) with open(hparams_file) as fin: hparams = load_hyperpyyaml(fin, overrides) # If distributed_launch=True then # create ddp_group with the right communication protocol sb.utils.distributed.ddp_init_group(run_opts) # Dataset preparation (parsing CommonVoice) # from common_voice_prepare import prepare_common_voice # noqa # Create experiment directory sb.create_experiment_directory( experiment_directory=hparams["output_folder"], hyperparams_to_save=hparams_file, overrides=overrides, ) # Due to DDP, we do the preparation ONLY on the main python process # run_on_main( # prepare_common_voice, # kwargs={ # "data_folder": hparams["data_folder"], # "save_folder": hparams["save_folder"], # "train_tsv_file": hparams["train_tsv_file"], # "dev_tsv_file": hparams["dev_tsv_file"], # "test_tsv_file": hparams["test_tsv_file"], # "accented_letters": hparams["accented_letters"], # "language": hparams["language"], # }, # ) # Create the datasets objects as well as tokenization and encoding :-D train_data, valid_data, test_set, tokenizer = dataio_prepare(hparams) # Trainer initialization asr_brain = ASR( modules=hparams["modules"], hparams=hparams, run_opts=run_opts, opt_class=hparams["opt_class"], checkpointer=hparams["checkpointer"], ) # Adding objects to trainer. asr_brain.tokenizer = tokenizer # Training # with torch.autograd.detect_anomaly(): asr_brain.fit( asr_brain.hparams.epoch_counter, train_data, valid_data, train_loader_kwargs=hparams["dataloader_options"], valid_loader_kwargs=hparams["test_dataloader_options"], ) # Test asr_brain.hparams.wer_file = hparams["output_folder"] + "/wer_test.txt" asr_brain.evaluate( test_set, min_key="WER", test_loader_kwargs=hparams["test_dataloader_options"], )
the-stack_0_16564
# Test functionality of sellers side from emarket.client_seller import ClientSeller from emarket.emarket import Item import time from os import environ as env from dotenv import load_dotenv, find_dotenv ENV_FILE = find_dotenv() if ENV_FILE: load_dotenv(ENV_FILE) else: raise FileNotFoundError("Could not locate .env file") #load the env vars FRONT_SELLER_A_IP = env.get("FRONT_SELLER_A_IP") FRONT_SELLER_B_IP = env.get("FRONT_SELLER_B_IP") cs = ClientSeller([FRONT_SELLER_A_IP, FRONT_SELLER_B_IP]) print("####################### CREATE USER") start_time = time.time() csid = cs.create_user("Luke","flamma7", "enterprise") print("--- %s seconds ---" % (time.time() - start_time)) print("KILL NOT A LEADER") time.sleep(10) ## TEST LOGIN print("####################### LOG IN") start_time = time.time() cs.login("flamma7", "enterprise") print("--- %s seconds ---" % (time.time() - start_time)) print("####################### LOG OUT") start_time = time.time() cs.logout() print("--- %s seconds ---" % (time.time() - start_time)) cs.login("flamma7", "enterprise") ## TEST ITEM FOR SALE print("####################### PUT ITEM FOR SALE") i1 = Item("ether", 0, 0, ["crypto", "smart", "blockchain"], True, 1300, csid) i2 = Item("bitcoin", 0, 1, ["crypto", "blockchain", "standard"], True, 33000, csid) i3 = Item("dogecoin", 0, 2, ["crypto", "meme", "blockchain", "elon"], False, 0.03, csid) i4 = Item("cardano", 0, 3, ["crypto", "blockchain", "smart", "nextgen"], True, 0.3, csid) status, i1_id = cs.put_item_for_sale(i1, 500) status, i2_id = cs.put_item_for_sale(i2, 100) status, i3_id = cs.put_item_for_sale(i3, 300000) start_time = time.time() status, i4_id = cs.put_item_for_sale(i4, 300000) print("--- %s seconds ---" % (time.time() - start_time)) print("####################### CHANGE SALE PRICE") start_time = time.time() cs.change_sale_price_item(i3_id, 0.07) print("--- %s seconds ---" % (time.time() - start_time)) print("####################### REMOVE ITEM FROM SALE") start_time = time.time() cs.remove_item_from_sale(i2_id, 100) print("--- %s seconds ---" % (time.time() - start_time)) print("####################### DISPLAY ACTIVE ITEMS") start_time = time.time() cs.display_active_seller_items() print("--- %s seconds ---" % (time.time() - start_time)) print("####################### GET RATING") start_time = time.time() cs.get_rating() print("--- %s seconds ---" % (time.time() - start_time)) # Create 2nd Seller # Create 3rd Seller
the-stack_0_16565
try: from setuptools import setup except ImportError: from distutils.core import setup long_description = """ branching_process """ config = dict( description='hawkes process fitting', author='Dan MacKinlay', url='URL to get it at.', download_url='Where to download it.', author_email='My email.', version='0.1', install_requires=[ 'nose', 'scipy', 'numpy', 'seaborn', 'pandas', ], packages=['branching_process'], scripts=[], name='branching_process', # # see https://python-packaging.readthedocs.io/en/latest/non-code-files.html # package_data=dict( # branching_process= ['datasets'], # ), # include_package_data=True ) setup(**config)