ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4af7f110daed6d72d5c17f1efcce538aa035bc
# -*- coding: utf-8 -*- """ Created on Wed Jan 24 22:53:59 2018 @authors: a.pakbin, T.J. Ashby """ from sklearn.model_selection import StratifiedKFold from auxiliary import grid_search,ICD9_categorizer, save_fold_data, convert_numbers_to_names, min_max_mean_auc_for_labels, train_test_one_hot_encoder, possible_values_finder,train_test_normalizer, train_test_imputer, feature_importance_saver, feature_importance_updator, save_roc_curve, data_reader, vectors_to_csv, create_subfolder_if_not_existing, feature_rankings_among_all_labels_saver import numpy as np import pandas as pd from fmeasure import roc, maximize_roc from xgboost.sklearn import XGBClassifier import random as rnd from sklearn.metrics import roc_auc_score import pickle import gc import sys import logging as lg # # NB: the original code base contains code that will trigger # "pandas.core.common.SettingWithCopyError: A value is trying to be set on a # copy of a slice from a DataFrame" errors if the code is run with # pd.set_option('mode.chained_assignment', 'raise'). Hence I'm not using it. # def main(file_name, data_address, writing_address): lg.basicConfig(stream=sys.stderr, level=lg.DEBUG) mpl_logger = lg.getLogger('matplotlib') mpl_logger.setLevel(lg.WARNING) pd.set_option('display.max_colwidth', None) pd.set_option('display.max_columns', 20) data_address = str(data_address) writing_address = str(writing_address) #the address where MIMIC III tables are in .csv.gz format. The tables are: D_ICD_PROCEDURES.csv.gz, D_ITEMS.csv.gz and D_LABITEMS.csv.gz #conversion_tables_address='../data' conversion_tables_address = data_address #outcome labels can contain: '24hrs' ,'48hrs','72hrs', '24hrs~72hrs','7days','30days', 'Bounceback' outcome_labels=['24hrs' ,'48hrs','72hrs', '24hrs~72hrs','7days','30days', 'Bounceback'] normalize_data=False save_folds_data=True values_for_grid_search=[np.linspace(start=1, stop=6, num=6),[50,100,200,1000,1500],[0.1]] num_of_folds=5 ################################# categorical_column_names=['ADMISSION_TYPE', 'INSURANCE', 'LANGUAGE', 'RELIGION', 'MARITAL_STATUS', 'ETHNICITY','FIRST_CAREUNIT', 'GENDER'] # Read the CSV file # - The form of the CSV file is: # - data=data_reader(data_address, file_name) # Returns a dictionary where each column name is a key, and the result is the # set of values that can appear (with NaN etc removed) possible_values=possible_values_finder(data, categorical_column_names) # Fill in the target data column data['IsReadmitted_24hrs~72hrs']=[1 if x>0 else 0 for x in (data['IsReadmitted_72hrs']-data['IsReadmitted_24hrs'])] # List of non-feature column names non_attribute_column_names=['HADM_ID', 'ICUSTAY_ID', 'INTIME', 'OUTTIME', 'SUBJECT_ID', 'IsReadmitted_24hrs','IsReadmitted_Bounceback','IsReadmitted_24hrs~72hrs' ,'IsReadmitted_48hrs','IsReadmitted_72hrs','IsReadmitted_7days','IsReadmitted_30days', 'Time_To_readmission', 'hospital_expire_flag'] if 'Subset' in data.columns: # # NB: If doing subsetting, you should NOT add the test fold from subset A to # the real test data from subset B, otherwise you'll get better results than # you should (as the model is trained on subset A and so will do well on the # slice of subset A included in the test set). # testOnSubsetA = False else: # # However, if there is no subsetting (everything is subset A), then you need # to use the test data from subset A, otherwise there is no test data. Hence # the flag. # lg.info("No subsetting in input data") data.loc[:, 'Subset'] = 'A' testOnSubsetA = True non_attribute_column_names.append('Subset') #TODO: for excludig insurance, language, religion, marital status and ethnicity from the data, uncomment the following line #non_attribute_column_names += ['INSURANCE', 'LANGUAGE', 'RELIGION', 'MARITAL_STATUS', 'ETHNICITY'] # # The function ICD9_categorizer() coarsens the ICD codes to a higher level # by dropping the last code digit - but, it looks like there may be some # issues with the original code as it treats the ICD codes as numbers rather # than strings and so doesn't take into account the semantically meaningful # leading and trailing zeros. # data=ICD9_categorizer(data) model_type='XGB' PREDICTIONS=list() current_folder=writing_address # # Loop over target labels to predict # for idx, label_column_name in enumerate(['IsReadmitted_'+outcome_label for outcome_label in outcome_labels]): # # Original code (replaced because we need to handle subsets for the # experiments): # icu_stays=data['ICUSTAY_ID'].values # y=data[label_column_name].values # X=data.drop(non_attribute_column_names, axis=1) # # # Subsetting # # Labels to predict (sklearn format) y=data.loc[data['Subset'] == "A", label_column_name].values y_testB = data.loc[data['Subset'] == "B", label_column_name].values # Input features X = data.loc[data['Subset'] == "A", :].drop(non_attribute_column_names, axis=1) X_testB = data.loc[data['Subset'] == "B", :].drop(non_attribute_column_names, axis=1) # Output folder current_subfolder=current_folder+'/'+outcome_labels[idx] create_subfolder_if_not_existing(current_subfolder) auc_list=list() ICUstayID=list() Prediction=list() accumulative_feature_importance=None print ('\n',model_type, ' '*5,'LABEL: ', outcome_labels[idx]) skf=StratifiedKFold(n_splits=num_of_folds, shuffle=True, random_state=rnd.randint(1,1e6)) # # Loop over folds # - Each fold is a train/test split, with the test being used for the final score # fold_number=0 for train_index, test_index in skf.split(X, y): fold_number+=1 print ('\n fold',fold_number) # # Original code (replaced because we need to handle subsets for the # experiments): # X_train, X_test = X.iloc[train_index], X.iloc[test_index] # y_train, y_test = y[train_index], y[test_index] # icustay_id_train, icustay_id_test=icu_stays[train_index],icu_stays[test_index] # X_train = X.iloc[train_index] y_train = y[train_index] if testOnSubsetA == True: X_test = pd.concat([X_testB, X.iloc[test_index]]) y_test = np.concatenate((y_testB, y[test_index])) else: X_test = X_testB y_test = y_testB lg.debug("len X_test: {}, len y_test: {}".format(len(X_test), len(y_test))) # # Original code (replaced because we need to handle subsets for the # experiments): # icustay_id_train, icustay_id_test=icu_stays[train_index],icu_stays[test_index] # icustay_id_train = (data.loc[data['Subset'] == "A", 'ICUSTAY_ID'].values)[train_index] testB = data.loc[data['Subset'] == "B", 'ICUSTAY_ID'].values if testOnSubsetA == True: testA = (data.loc[data['Subset'] == "A", 'ICUSTAY_ID'].values)[test_index] icustay_id_test = np.concatenate((testB, testA)) else: icustay_id_test = testB lg.debug("len icustay_id_test: {}".format(len(icustay_id_test))) # Fill in missing values in train and test sets [X_TRAIN_IMPUTED, X_TEST_IMPUTED]=train_test_imputer(X_train, X_test, categorical_column_names) if normalize_data: [X_TRAIN_NORMALIZED, X_TEST_NORMALIZED]=train_test_normalizer(X_TRAIN_IMPUTED, X_TEST_IMPUTED, categorical_column_names) else: [X_TRAIN_NORMALIZED, X_TEST_NORMALIZED]=[X_TRAIN_IMPUTED, X_TEST_IMPUTED] # Do one-hot encoding for categorical variables [X_TRAIN_NORMALIZED, X_TEST_NORMALIZED]=train_test_one_hot_encoder(X_TRAIN_NORMALIZED, X_TEST_NORMALIZED, categorical_column_names, possible_values) if save_folds_data: # Save the train and test inputs for this fold save_fold_data(current_subfolder, fold_number, icustay_id_train, X_TRAIN_NORMALIZED, y_train, icustay_id_test, X_TEST_NORMALIZED, y_test, convert_names=True, conversion_tables_address=conversion_tables_address) [max_depths, n_estimators, learning_rates]=values_for_grid_search # # Grid search to find best hyperparams # - Hyper params picked per fold (?) # - Hyper params picked using nested k-fold with 2 folds (?) # best_settings=grid_search(X=X_TRAIN_NORMALIZED, y=y_train, num_of_folds=2, verbose=True, return_auc_values=False, first_dim=max_depths, second_dim=n_estimators, third_dim=learning_rates) print ('{:<4s}{:<16s}: max_depth: {:<1s}, n_estimators: {:<2s}, learning_rate: {:<2s}'.format('','best hyperparameters', str(best_settings[0]), str(best_settings[1]), str(best_settings[2]))) model=XGBClassifier(max_depth=int(best_settings[0]), n_estimators=int(best_settings[1]), learning_rate=best_settings[2]) # # Do the actual training (with the best hyperparams) # model.fit(X_TRAIN_NORMALIZED, y_train) feature_importance=model.feature_importances_ accumulative_feature_importance=feature_importance_updator(accumulative_feature_importance, feature_importance) # Dump the feature importances to file pd.DataFrame(data={'FEATURE_NAME': convert_numbers_to_names(X_TRAIN_NORMALIZED.columns, conversion_tables_address), 'IMPORTANCE': feature_importance}).sort_values(by='IMPORTANCE', ascending=False).reset_index(drop=True).to_csv(current_subfolder+'/'+'fold_'+str(fold_number)+'_ranked_feature_importances.csv') # # Make the predictions on the test set # predictions=model.predict_proba(X_TEST_NORMALIZED)[:,1] # Append results to an array (?) # These variables seem to be only assigned to, never used ICUstayID=np.append(ICUstayID,icustay_id_test) Prediction=np.append(Prediction,predictions) # Write stuff out... lg.debug("Vector lengths: 1 icustay_id_test: {}, 2 predictions: {}, 3 y_test: {}".format(len(icustay_id_test), len(predictions), len(y_test))) vectors_to_csv(current_subfolder, file_name='fold_'+str(fold_number), vector_one=icustay_id_test, label_one='ICUSTAY_ID', vector_two=predictions, label_two='PREDICTION', vector_three=y_test, label_three='LABEL') auc=roc_auc_score(y_true=y_test, y_score=predictions) auc_list.append(auc) ROC=roc(predicted=predictions, labels=y_test) ROC.to_csv(current_subfolder+'/'+'fold_'+str(fold_number)+'_roc.csv') maximum=maximize_roc(ROC, maximization_criteria='fscore') maximum.to_csv(current_subfolder+'/'+'fold_'+str(fold_number)+'_optimum_point.csv') TPR, FPR = ROC['recall'].values, 1-ROC['specificity'] # Minor change here to allow different figure formats figtype = 'png' save_roc_curve(current_subfolder+'/'+'fold_'+str(fold_number)+'_roc_curve.'+figtype, TPR, FPR, auc) pickle.dump(model, open(current_subfolder+'/'+'fold_'+str(fold_number)+'.model','wb')) print (' '+'-'*30) feature_importance_saver(address=current_subfolder, col_names=convert_numbers_to_names(X_TRAIN_NORMALIZED.columns, conversion_tables_address), accumulative_feature_importance=accumulative_feature_importance, num_of_folds=num_of_folds) # Minor change here to avoid complications with python generator functions vectors_to_csv(current_subfolder, file_name='folds_AUC', vector_one=auc_list, label_one='AUC', vector_two=list(range(1,num_of_folds+1)), label_two='FOLD_NUMBER') gc.collect() current_folder=writing_address min_max_mean_auc_for_labels(current_folder, outcome_labels) feature_rankings_among_all_labels_saver(current_folder,outcome_labels, conversion_tables_address) if __name__=='__main__': file_name = sys.argv[1] data_address = sys.argv[2] writing_address = sys.argv[3] main(file_name, data_address, writing_address)
py
1a4af9893054a47d662c85341d5f4a57cc99ed17
from acmacs_py import * from .. import utils from .log import Log import acmacs # ---------------------------------------------------------------------- class MapMaker: def __init__(self, chain_setup, minimum_column_basis, log :Log): self.chain_setup = chain_setup self.minimum_column_basis = minimum_column_basis self.log = log def individual_map_directory_name(self): return f"i-{self.minimum_column_basis}" def command(self, source :Path, target :Path): """returns command (list) or None if making is not necessary (already made)""" target.parent.mkdir(parents=True, exist_ok=True) if utils.older_than(target, source): if self.process(source): return [self.command_name(), *self.command_args(), "--grid-json", target.with_suffix(".grid.json"), self.preprocess(source, target.parent), target] else: self.log.info(f"{target} ignored") return None else: # self.log.info(f"{target} up to date") return None def command_name(self): return "chart-relax-grid" def command_args(self): return [ "-n", self.chain_setup.number_of_optimizations(), "-d", self.chain_setup.number_of_dimensions(), "-m", self.minimum_column_basis, *self.args_keep_projections(), *self.args_reorient(), *self.args_disconnect() ] def args_keep_projections(self): return ["--keep-projections", self.chain_setup.projections_to_keep()] def args_reorient(self): reorient_to = self.chain_setup.reorient_to() if reorient_to: return ["--reorient", reorient_to] else: return [] def args_disconnect(self): if not self.chain_setup.disconnect_having_few_titers(): return ["--no-disconnect-having-few-titers"] else: return [] def process(self, source): return True def preprocess(self, source :Path, output_directory :Path): return source @classmethod def add_threads_to_commands(cls, threads :int, commands :list): """Modifies commands to make it limit threads number. Returns modified command""" return [command + ["--threads", threads] for command in commands] # ---------------------------------------------------------------------- class MapMakerInSteps (MapMaker): """ 1. multiple chart-relax (without grid) to run on multiple machines (nodes) 2. combine results 3. muiltipe chart-grid-test for the best result of 2, for different sets of antigens and sera to run on multiple nodes 4. combine results, move trapped points, relax, then repeat 3 """ # ---------------------------------------------------------------------- class IndividualMapMaker (MapMaker): def __init__(self, *args, ignore_tables_with_too_few_sera, **kwargs): super().__init__(*args, **kwargs) self.ignore_tables_with_too_few_sera = ignore_tables_with_too_few_sera def process(self, source): return not self.ignore(source) def preprocess(self, source :Path, output_directory :Path): return self.chain_setup.individual_table_preprocess(source, output_directory=output_directory) def ignore(self, source): if self.ignore_tables_with_too_few_sera: if isinstance(source, acmacs.Chart): chart = source chart_name = chart.make_name() else: chart = acmacs.Chart(source) chart_name = source if chart.number_of_antigens() < 3 or chart.number_of_sera() < 3: self.log.info(f"chart has too few antigens ({chart.number_of_antigens()}) or sera ({chart.number_of_sera()}), ignored ({chart_name})") return True return False # ---------------------------------------------------------------------- class IndividualMapWithMergeColumnBasesMaker (IndividualMapMaker): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # self.output_dir_name = output_dir_name self.source = None # nothing to do self.target = None # nothing to do def prepare(self, source :Path, merge_column_bases :dict, merge_path :Path, output_dir :Path, output_prefix :str): self.log.info(f"Individual table map ({source.name}) with column bases from the merge ({merge_path.name})") chart = acmacs.Chart(self.preprocess(source, output_directory=output_dir)) mcb_source = output_dir.joinpath(f"{output_prefix}{chart.date()}.mcb-table{source.suffix}") mcb_target = output_dir.joinpath(f"{output_prefix}{chart.date()}.mcb{source.suffix}") if utils.older_than(mcb_target, source): if not self.ignore(chart): cb = chart.column_bases(self.minimum_column_basis) orig_cb = str(cb) updated = False for sr_no, serum in chart.select_all_sera(): mcb = merge_column_bases.get(serum.name_full()) if mcb is None: message = f"No column basis for {serum.name_full()} in the merge column bases (source: {source.name}:\n{pprint.pformat(merge_column_bases, width=200)}" self.log.info(f"ERROR {message}") raise RuntimeError(message) if mcb != cb[sr_no]: if mcb < cb[sr_no]: self.log.info(f"Column basis for {serum.name_full()} in the merge ({mcb}) is less than in the individual table ({cb[sr_no]})") cb[sr_no] = mcb updated = True if updated: chart.column_bases(cb) self.log.info(f"{mcb_source} <-- {source}: column basis updated from merge:\n orig: {orig_cb}\n new: {cb}") self.source = mcb_source self.target = mcb_target chart.export(self.source, program_name=sys.argv[0]) else: self.log.info("column basis in the merge are the same as in the original individual table") # else: # self.log.info(f"{mcb_source} up to date") self.log.separator(newlines_before=1) # ---------------------------------------------------------------------- class IncrementalMapMaker (MapMaker): def command_name(self): return "chart-relax-incremental" def command_args(self): return [ "-n", self.chain_setup.number_of_optimizations(), "--grid-test", "--remove-source-projection", *self.args_keep_projections(), # *self.args_reorient(), *self.args_disconnect() ] # ---------------------------------------------------------------------- def extract_column_bases(chart): return {serum.name_full(): chart.column_basis(sr_no) for sr_no, serum in chart.select_all_sera()} # ====================================================================== ### Local Variables: ### eval: (if (fboundp 'eu-rename-buffer) (eu-rename-buffer)) ### End:
py
1a4afa39ed689f62142ac81ee23f44cc9d39ce2a
import json import os from flask import Flask, render_template, redirect, request import tv import logging log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) app = Flask(__name__) BUTTONS = {} @app.route('/') def index(): return render_template('index.html', tv_state=tv.get_state(), buttons=BUTTONS.values()) @app.route('/off') def hello_world(): tv.off() return redirect("/", code=302) @app.route('/button/<btn>') def button(btn): b = BUTTONS.get(btn) if b: tv.do_script(b['script']) return redirect("/", code=302) @app.route('/shutdown') def shutdown(): func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('Not running with the Werkzeug Server') func() return 'Server shutting down...' def load_buttons(): dir, file = os.path.split(os.path.abspath(__file__)) with open(os.path.join(dir, 'buttons.json')) as json_data: btns = json.load(json_data) for btn in btns: BUTTONS[btn["id"]] = btn if __name__ == "__main__": load_buttons() try: app.run(host='0.0.0.0', port=5000) finally: tv.cleanup()
py
1a4afa5ace8551380689ac00050663854528ee5b
# -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# import sys from env import gidgetConfigVars import miscClin import miscTCGA import path import tsvIO # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# NA_VALUE = -999999 # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def getFeatList(fName): fList = [] fh = file(fName) for aLine in fh: aLine = aLine.strip() # print aLine if aLine not in fList: fList += [aLine] fList.sort() return (fList) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def findKey ( allClinDict, keyStr ): for aKey in allClinDict.keys(): if ( aKey == keyStr ): return ( aKey ) tmpStr = ":" + keyStr + ":" if ( aKey.find(tmpStr) >= 0 ): return ( aKey ) print " NOT found ? ", keyStr keyStr = keyStr.lower() for aKey in allClinDict.keys(): bKey = aKey.lower() if ( bKey.find(keyStr) >= 0 ): print " possible match: ", aKey print " WARNING !!! failed to findKey in reParseClin_CESC " sys.exit(-1) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def assignBMIcategory ( bmi ): if ( bmi < 18.5 ): return ( "underweight" ) if ( bmi < 25 ): return ( "normal" ) if ( bmi < 30 ): return ( "overweight" ) return ( "obese" ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def addBMI ( allClinDict ): bmiVec = [] catVec = [] weightKey = findKey ( allClinDict, "weight" ) heightKey = findKey ( allClinDict, "height" ) for ii in range(len(allClinDict[weightKey])): w = allClinDict[weightKey][ii] h = allClinDict[heightKey][ii] try: bmi = float(w) / ( float(h/100.) * float(h/100.) ) bmiCat = assignBMIcategory ( bmi ) ## print w, h, bmi, bmiCat catVec += [ bmiCat ] bmiVec += [ bmi ] except: ## print w, h, "NA" ## if ( w != "NA" ): print " weight is not NA ??? " ## if ( h != "NA" ): print " height is not NA ??? " bmiVec += [ "NA" ] catVec += [ "NA" ] allClinDict["N:CLIN:BMI:::::"] = bmiVec allClinDict["C:CLIN:BMIcat:::::"] = catVec ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict["N:CLIN:BMI:::::"] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict["C:CLIN:BMIcat:::::"] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def checkMenopause ( allClinDict ): print " in checkMenopause ... " print " " newVec = [] menopauseKey = findKey ( allClinDict, "menopause_status" ) ageKey = findKey ( allClinDict, "age_at_initial_pathologic_diagnosis" ) for ii in range(len(allClinDict[ageKey])): m = allClinDict[menopauseKey][ii] a = allClinDict[ageKey][ii] if ( m.startswith("Pre_") ): newVec += [ "Pre" ] elif ( m.startswith("Post_") ): newVec += [ "Post" ] elif ( a >= 50 ): newVec += [ "Post" ] else: newVec += [ "Pre" ] allClinDict["C:CLIN:menopause50:::::"] = newVec ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict["C:CLIN:menopause50:::::"] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def addAgeSplits ( allClinDict ): print " in addAgeSplits ... " print " " ageKey = findKey ( allClinDict, "age_at_initial_pathologic_diagnosis" ) numP = len(allClinDict[ageKey]) youngMax = [ 30, 35, 40, 45, 50, 40, 40, 35 ] oldMin = [ 30, 35, 40, 45, 50, 45, 50, 55 ] numC = len(youngMax) newVecs = [0] * numC for iC in range(numC): newVecs[iC] = ["NA"] * numP for ii in range(numP): a = allClinDict[ageKey][ii] if ( a != "NA" ): for iC in range(numC): if ( a <= youngMax[iC] ): newVecs[iC][ii] = "young" elif ( a > oldMin[iC] ): newVecs[iC][ii] = "old" for iC in range(numC): if ( youngMax[iC] == oldMin[iC] ): keyString = "B:CLIN:ageSplit_%d:::::" % ( youngMax[iC] ) else: keyString = "B:CLIN:ageSplit_%d_%d:::::" % ( youngMax[iC], oldMin[iC] ) print keyString allClinDict[keyString] = newVecs[iC] ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def checkCancerStatus ( allClinDict ): print " in checkCancerStatus ... " print " " newSite = [] nteKey = findKey ( allClinDict, "new_tumor_event_after_initial_treatment" ) siteKey = findKey ( allClinDict, "new_neoplasm_event_occurrence_anatomic_site" ) typeKey = findKey ( allClinDict, "new_neoplasm_event_type" ) textKey = findKey ( allClinDict, "new_neoplasm_occurrence_anatomic_site_text" ) days2nteKey = findKey ( allClinDict, "days_to_new_tumor_event_after_initial_treatment" ) numP = len(allClinDict[nteKey]) for ii in range(numP): if ( allClinDict[nteKey][ii] == "YES" ): siteStr = allClinDict[siteKey][ii] if ( 1 ): if ( siteStr == "Other_specify" ): siteStr = allClinDict[textKey][ii] elif ( siteStr == "NA" ): siteStr = allClinDict[textKey][ii] if ( siteStr != "NA" ): siteStr = siteStr.lower() newSite += [ siteStr ] if ( 0 ): print " " print ii ## print " site : ", allClinDict[siteKey][ii] print " type : ", allClinDict[typeKey][ii] ## print " text : ", allClinDict[textKey][ii] print " siteStr : ", siteStr print " days : ", allClinDict[days2nteKey][ii] else: newSite += [ "NA" ] ## the types of things I'm seeing are: ## type: Distant_Metastasis ## --> then 'site' sometimes gives the location, or else says "Other_specify" ## in which case the 'text' might give the location ## also note that the "days_to_nte" ranges from 62 to 2893 (the lowest numbers are 62, 77, 93, 94, 153, 178...) keyString = "C:CLIN:nte_site:::::" allClinDict[keyString] = newSite ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def checkTumorStatus ( allClinDict ): print " in checkTumorStatus ... " print " " newStatus1 = [] newStatus2 = [] statusKey = findKey ( allClinDict, "person_neoplasm_cancer_status" ) days2fupKey = findKey ( allClinDict, "days_to_last_followup" ) vitalKey = findKey ( allClinDict, "vital_status" ) days2deathKey = findKey ( allClinDict, "days_to_death" ) numP = len(allClinDict[statusKey]) for ii in range(numP): days2last = -1 if ( allClinDict[days2fupKey][ii] != "NA" ): days2last = allClinDict[days2fupKey][ii] if ( allClinDict[days2deathKey][ii] != "NA" ): days2last = max ( allClinDict[days2deathKey][ii], days2last ) if ( 0 ): print " " print " " print ii print " status : ", allClinDict[statusKey][ii] print " vital : ", allClinDict[vitalKey][ii] ## print " days2fup : ", allClinDict[days2fupKey][ii] ## print " days2death : ", allClinDict[days2deathKey][ii] print " days2last : ", days2last if ( allClinDict[vitalKey][ii] == "Alive" ): if ( days2last < 90 ): print " Alive and less than 90 days ", allClinDict[statusKey][ii] newStatus1 += [ "NA" ] if ( allClinDict[statusKey][ii] == "TUMOR_FREE" and days2last >= 90 ): newStatus1[-1] = "TUMOR_FREE" elif ( allClinDict[statusKey][ii] == "WITH_TUMOR" and days2last >= 90 ): newStatus1[-1] = "WITH_TUMOR" newStatus2 += [ "NA" ] if ( allClinDict[statusKey][ii] == "TUMOR_FREE" and allClinDict[vitalKey][ii] == "Alive" ): newStatus2[-1] = "Alive_woTumor" elif ( allClinDict[statusKey][ii] == "WITH_TUMOR" and allClinDict[vitalKey][ii] == "Dead" ): newStatus2[-1] = "Dead_wTumor" ## as of 13aug ... there are 57 patients who are alive and have less than 90 days of follow-up ## of these: 24 are "tumor_free" ## 17 are "NA" ## 16 are "with_tumor" keyString = "C:CLIN:tumorStatus1:::::" allClinDict[keyString] = newStatus1 ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList keyString = "C:CLIN:tumorStatus2:::::" allClinDict[keyString] = newStatus2 ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def checkHistologicGrade ( allClinDict ): print " in checkHistologicGrade ... " print " " gradeKey = findKey ( allClinDict, "neoplasm_histologic_grade" ) numP = len(allClinDict[gradeKey]) for ii in range(numP): if ( allClinDict[gradeKey][ii] == "G4" ): print " changing to G3 ... ", ii, gradeKey, allClinDict[gradeKey][ii] allClinDict[gradeKey][ii] = "G3" return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def checkClinicalStage ( allClinDict ): print " in checkClinicalStage ... " print " " newStage = [] stageKey = findKey ( allClinDict, "clinical_stage" ) TstageKey = findKey ( allClinDict, "pathologic_T" ) barcodeKey = findKey ( allClinDict, "bcr_patient_barcode" ) numP = len(allClinDict[stageKey]) for ii in range(numP): if ( allClinDict[TstageKey][ii].startswith("T1a") ): allClinDict[TstageKey][ii] = "T1b1" curStage = allClinDict[stageKey][ii] if ( curStage.startswith("IV") ): newStage += [ "III,IV" ] elif ( curStage.startswith("III") ): newStage += [ "III,IV" ] elif ( curStage.startswith("II") ): newStage += [ "II" ] elif ( curStage.startswith("I") ): newStage += [ "I" ] else: newStage += [ "NA" ] if ( 0 ): print " " print " " print ii, allClinDict[barcodeKey][ii], allClinDict[stageKey][ii], allClinDict[TstageKey][ii] ## as of 22sep ... there is stage info for 240 patients, and the counts ## look like this: ## 70 IB1 ## 35 IB ## 34 IB2 ## 33 IIIB ## 26 IIB ## 7 IIA2 ## 7 IIA ## 5 IVB ## etc ## after grouping, we get 147 stage I (61%), 49 stage II (20%), and 44 stage III,IV (18%) keyString = "C:CLIN:clinStage:::::" allClinDict[keyString] = newStage ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# # this started out as a function to deal with lymph-node features but then # was augmented to handle hysterectomy- and diagnosis-related features ... def checkLymphNodes_HystDx ( allClinDict ): print " in checkLymphNodes_HystDx ... " print " " newHyst = [] newDxM = [] numLNpos = [] tfLNpos = [] ## here we have 138 'radical', 6 'simple', and 5 'other' hysTypeKey = findKey ( allClinDict, "hysterectomy_performed_type" ) hysTextKey = findKey ( allClinDict, "hysterectomy_performed_text" ) dxMeth1Key = findKey ( allClinDict, "initial_pathologic_diagnosis_method" ) dxMeth2Key = findKey ( allClinDict, "init_pathology_dx_method_other" ) barKey = findKey ( allClinDict, "bcr_patient_barcode" ) LNEcountKey = findKey ( allClinDict, "lymph_node_examined_count" ) LNEposHEkey = findKey ( allClinDict, "number_of_lymphnodes_positive_by_he" ) LNEposIHCkey = findKey ( allClinDict, "number_of_lymphnodes_positive_by_ihc" ) numP = len(allClinDict[hysTypeKey]) for ii in range(numP): if ( 0 ): print " " print " " print " patient index ", ii, allClinDict[barKey][ii] if ( allClinDict[hysTypeKey][ii] == "NA" and allClinDict[hysTextKey][ii] == "NA" ): newHyst += [ "NO_or_NA" ] else: newHyst += [ "YES" ] ## here we want to figure out what method was used for diagnosis ... newDxM += [ "NA" ] dxMethod = "NA" if ( allClinDict[hysTypeKey][ii].lower().find("hysterect") >= 0 ): if ( allClinDict[hysTypeKey][ii].lower().find("radical") >= 0 ): dxMethod = "radical_hysterectomy" elif ( allClinDict[hysTypeKey][ii].lower().find("simple") >= 0 ): dxMethod = "simple_hysterectomy" elif ( allClinDict[hysTypeKey][ii].lower().find("total_abd") >= 0 ): dxMethod = "total_abdominal_hysterectomy" if ( allClinDict[hysTextKey][ii].lower().find("hysterect") >= 0 ): if ( allClinDict[hysTextKey][ii].lower().find("radical") >= 0 ): dxMethod = "radical_hysterectomy" elif ( allClinDict[hysTextKey][ii].lower().find("simple") >= 0 ): dxMethod = "simple_hysterectomy" elif ( allClinDict[hysTextKey][ii].lower().find("total_abd") >= 0 ): dxMethod = "total_abdominal_hysterectomy" if ( dxMethod == "NA" ): if ( allClinDict[dxMeth1Key][ii].lower().find("cone") >= 0 ): dxMethod = "cone_biopsy" if ( dxMethod == "NA" ): if ( allClinDict[dxMeth2Key][ii].lower().find("cone") >= 0 ): dxMethod = "cone_biopsy" if ( dxMethod == "NA" ): if ( allClinDict[dxMeth1Key][ii].lower().find("biops") >= 0 ): dxMethod = "biopsy" if ( dxMethod == "NA" ): if ( allClinDict[dxMeth2Key][ii].lower().find("biops") >= 0 ): dxMethod = "biopsy" if ( dxMethod == "NA" ): if ( allClinDict[hysTypeKey][ii] != "NA" ): dxMethod = "other" if ( allClinDict[hysTextKey][ii] != "NA" ): dxMethod = "other" if ( allClinDict[dxMeth1Key][ii] != "NA" ): dxMethod = "other" if ( allClinDict[dxMeth2Key][ii] != "NA" ): dxMethod = "other" if ( dxMethod == "other" ): print " setting dxMethod to OTHER ", ii, \ allClinDict[hysTypeKey][ii], allClinDict[hysTextKey][ii], \ allClinDict[dxMeth1Key][ii], allClinDict[dxMeth2Key][ii] newDxM[-1] = dxMethod numPos = 0 if ( allClinDict[LNEposHEkey][ii] != "NA" ): numPos += allClinDict[LNEposHEkey][ii] if ( allClinDict[LNEposIHCkey][ii] != "NA" ): numPos += allClinDict[LNEposIHCkey][ii] if ( (allClinDict[LNEposHEkey][ii] == "NA") and (allClinDict[LNEposIHCkey][ii] == "NA") ): numLNpos += [ "NA" ] tfLNpos += [ "NA" ] else: numLNpos += [ numPos ] if ( numPos == 0 ): tfLNpos += [ "FALSE" ] else: tfLNpos += [ "TRUE" ] if ( 0 ): if ( allClinDict[hysTypeKey][ii] == "NA" ): if ( allClinDict[hysTextKey][ii] != "NA" ): print " text filled out but not type " if ( allClinDict[hysTextKey][ii] == "NA" ): if ( allClinDict[hysTypeKey][ii] != "NA" ): print " type filled out but not text " print " hysTypeKey : ", allClinDict[hysTypeKey][ii] print " hysTextKey : ", allClinDict[hysTextKey][ii] print " lymph nodes : ", allClinDict[LNEcountKey][ii], \ allClinDict[LNEposHEkey][ii], \ allClinDict[LNEposIHCkey][ii] print " done working through each patient ... " print len(newHyst), len(newDxM), len(tfLNpos), len(numLNpos) print " " keyString = "C:CLIN:hysterectomy:::::" allClinDict[keyString] = newHyst print " (a) ", keyString, newHyst ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList keyString = "C:CLIN:dx_method:::::" allClinDict[keyString] = newDxM print " (b) ", keyString, newDxM ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList keyString = "C:CLIN:LNposTF:::::" allClinDict[keyString] = tfLNpos print " (c) ", keyString, tfLNpos ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList keyString = "N:CLIN:numLNpos:::::" allClinDict[keyString] = numLNpos print " (3) ", keyString, numLNpos ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print " DONE DONE DONE " return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# def makeMergedDx ( allClinDict ): print " in makeMergedDx ... " print " " mergeDx = [] epcReview = [] histTypeKey = findKey ( allClinDict, "histological_type" ) epcDxKey = findKey ( allClinDict, "C:CLIN:Dx_EPC" ) barKey = findKey ( allClinDict, "bcr_patient_barcode" ) numP = len(allClinDict[histTypeKey]) for ii in range(numP): if ( 1 ): print " " print " " print " patient index ", ii, allClinDict[barKey][ii], allClinDict[histTypeKey][ii], allClinDict[epcDxKey][ii] ## expected possible values for the histological_type field: ## 206 Cervical_Squamous_Cell_Carcinoma ## 23 Endocervical_Type_of_Adenocarcinoma ## 6 Mucinous_Adenocarcinoma_of_Endocervical_Type ## 5 Adenosquamous ## 4 Endometrioid_Adenocarcinoma_of_Endocervix ## 4 Endocervical_Adenocarcinoma_of_the_Usual_Type ## 70 NA ## expected values for Dx_EPC field: ## 4 Adenosquamous ## 27 Endocervical_Adeno ## 123 NA ## 99 Squamous if ( allClinDict[epcDxKey][ii] != "NA" ): epcReview += [ "TRUE" ] else: epcReview += [ "FALSE" ] if ( allClinDict[epcDxKey][ii] != "NA" ): mergeDx += [ allClinDict[epcDxKey][ii] ] else: if ( allClinDict[histTypeKey][ii] == "Cervical_Squamous_Cell_Carcinoma" ): mergeDx += [ "Squamous" ] elif ( allClinDict[histTypeKey][ii] == "Endocervical_Type_of_Adenocarcinoma" ): mergeDx += [ "Adenocarcinoma" ] elif ( allClinDict[histTypeKey][ii] == "Mucinous_Adenocarcinoma_of_Endocervical_Type" ): mergeDx += [ "Adenocarcinoma" ] elif ( allClinDict[histTypeKey][ii] == "Adenosquamous" ): mergeDx += [ "Adenosquamous" ] elif ( allClinDict[histTypeKey][ii] == "Endometrioid_Adenocarcinoma_of_Endocervix" ): mergeDx += [ "Adenocarcinoma" ] elif ( allClinDict[histTypeKey][ii] == "Endocervical_Adenocarcinoma_of_the_Usual_Type" ): mergeDx += [ "Adenocarcinoma" ] elif ( allClinDict[histTypeKey][ii] == "NA" ): mergeDx += [ "NA" ] else: print " ERROR ??? we should not be here ... ", ii, allClinDict[barKey][ii], \ allClinDict[histTypeKey][ii], allClinDict[epcDxKey][ii] ## just double-checking terminology one more time ... if ( mergeDx[-1] == "Endocervical_Adeno" ): mergeDx[-1] = "Adenocarcinoma" keyString = "C:CLIN:Dx_merged:::::" allClinDict[keyString] = mergeDx ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList keyString = "C:CLIN:EPC_review:::::" allClinDict[keyString] = epcReview ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[keyString] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount print labelList return ( allClinDict ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-# if __name__ == "__main__": if (1): if ( (len(sys.argv)==3) or (len(sys.argv)==4) ): tumorString = sys.argv[1] dateString = sys.argv[2] featureList = sys.argv[3] else: print " " print " Usage: %s <tumor-type> <run-id> <feature-list> " print " " print " ERROR -- bad command line arguments " sys.exit(-1) print " " print " Running : %s %s %s %s " % (sys.argv[0], sys.argv[1], sys.argv[2], sys.argv[3]) print " " print " " listDict = {} # read in the current clinical file ... topDir = "%s/%s/%s" % (gidgetConfigVars['TCGAFMP_DATA_DIR'], tumorString, dateString) clin1name = topDir + "/" + "%s.clinical.%s.tsv" % ( tumorString, dateString ) print clin1name allClinDict = tsvIO.readTSV ( clin1name ) # find out which features are interesting ... # BUT IS THIS REALLY COMPLETELY NOT NECESSARY ??? # was this just for debugging purposes ??? fList = getFeatList ( featureList ) for aF in fList: print aF for aKey in allClinDict.keys(): if ( aKey[1] == ":" ): aTokens = aKey.split(':') tKey = aTokens[2] else: tKey = aKey if ( aF == tKey ): ( keyType, nCount, naCount, cardCount, labelList, labelCount ) = miscClin.lookAtKey ( allClinDict[aKey] ) print " %s N=%d NA=%d not-NA=%d card=%d " % ( keyType, nCount, naCount, (nCount-naCount), cardCount ), labelCount if ( keyType != "NUMERIC" ): print labelList print " " print " " # now we need to do some massaging and computing ... try: allClinDict = addBMI ( allClinDict ) except: print " addBMI function failed " try: allClinDict = checkMenopause ( allClinDict ) except: print " checkMenopause function failed " try: allClinDict = addAgeSplits ( allClinDict ) except: print " addAgeSplits function failed " try: allClinDict = checkCancerStatus ( allClinDict ) except: print " checkCancerStatus function failed " try: allClinDict = checkTumorStatus ( allClinDict ) except: print " checkTumorStatus function failed " try: allClinDict = checkHistologicGrade ( allClinDict ) except: print " checkHistologicGrade function failed " try: allClinDict = checkClinicalStage ( allClinDict ) except: print " checkClinicalStage function failed " try: allClinDict = checkLymphNodes_HystDx ( allClinDict ) except: print " checkLymphNodes_HystDx function failed " try: allClinDict = makeMergedDx ( allClinDict ) except: print " makeMergedDx function failed " print " FINISHED creating and modifying CESC features ... " # now we're ready to re-write this ... (naCounts, otherCounts) = miscClin.lookAtClinDict(allClinDict) print " --> getting bestKeyOrder ... " bestKeyOrder = miscClin.getBestKeyOrder(allClinDict, naCounts) outName = topDir + "/" + "%s.clinical.%s.cesc.tsv" % ( tumorString, dateString ) print " --> writing output to ", outName tsvIO.writeTSV_clinical ( allClinDict, bestKeyOrder, outName ) # -#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#-#
py
1a4afc3fb9c1e6a81a9799dcf2a4545a681dd712
import numpy as np import random import copy from collections import namedtuple, deque from ddpg_models import Actor, Critic from ou_noise import OUNoise from replay_buffer import ReplayBuffer import torch import torch.nn.functional as F import torch.optim as optim BUFFER_SIZE = int(1e6) # replay buffer size BATCH_SIZE = 1024 # minibatch size GAMMA = 0.99 # discount factor TAU = 1e-3 # for soft update of target parameters LR_ACTOR = 1e-4 # learning rate of the actor LR_CRITIC = 1e-3 # learning rate of the critic WEIGHT_DECAY = 0 # L2 weight decay device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, random_seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed) def step(self, states, actions, rewards, next_states, dones): """Save experience in replay memory, and use random sample from buffer to learn.""" # Save experience / reward for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones): self.memory.add(state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local(state).cpu().data.numpy() self.actor_local.train() if add_noise: action += self.noise.sample() return np.clip(action, -1, 1) def reset(self): """reset the noise function values""" self.noise.reset() def learn(self, experiences, gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic_local(states, actions) critic_loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # ---------------------------- update actor ---------------------------- # # Compute actor loss actions_pred = self.actor_local(states) actor_loss = -self.critic_local(states, actions_pred).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
py
1a4afc8f03ebbb61336dd27db756f51e395a344c
""" Post Cookie Generation script(s) These scripts are executed from the output folder. If any error is raised, the cookie cutter creation fails and crashes """ import os import subprocess as sp cpp_driver = """#include <iostream> #include <mpi.h> #include <stdexcept> #include <string.h> #include "mdi.h" using namespace std; int main(int argc, char **argv) { // Initialize the MPI environment MPI_Comm world_comm; MPI_Init(&argc, &argv); // Initialize MDI if ( MDI_Init(&argc, &argv) ) { throw std::runtime_error("The MDI library was not initialized correctly."); } // Confirm that MDI was initialized successfully int initialized_mdi; if ( MDI_Initialized(&initialized_mdi) ) { throw std::runtime_error("MDI_Initialized failed."); } if ( ! initialized_mdi ) { throw std::runtime_error("MDI not initialized: did you provide the -mdi option?."); } // Get the correct MPI intra-communicator for this code if ( MDI_MPI_get_world_comm(&world_comm) ) { throw std::runtime_error("MDI_MPI_get_world_comm failed."); } // Connect to the engines // <YOUR CODE GOES HERE> // Perform the simulation // <YOUR CODE GOES HERE> // Send the "EXIT" command to each of the engines // <YOUR CODE GOES HERE> // Finalize MPI MPI_Barrier(world_comm); MPI_Finalize(); return 0; } """ py_driver = """ import sys # Import the MDI Library try: import mdi except: raise Exception("Unable to import the MDI Library") # Import MPI Library try: from mpi4py import MPI use_mpi4py = True mpi_comm_world = MPI.COMM_WORLD except ImportError: use_mpi4py = False mpi_comm_world = None if __name__ == "__main__": # Read the command-line options iarg = 1 mdi_options = None while iarg < len(sys.argv): arg = sys.argv[iarg] if arg == "-mdi": mdi_options = sys.argv[iarg + 1] iarg += 1 else: raise Exception("Unrecognized command-line option") iarg += 1 # Confirm that the MDI options were provided if mdi_options is None: raise Exception("-mdi command-line option was not provided") # Initialize the MDI Library mdi.MDI_Init(mdi_options) # Get the correct MPI intra-communicator for this code mpi_comm_world = mdi.MDI_MPI_get_world_comm() # Connect to the engines # Perform the simulation # Send the "EXIT" command to each of the engines """ cpp_cmake = """# Compile MDI add_subdirectory(mdi) # Macro to convert strings to lists macro(string_to_list _VAR _STR) STRING(REPLACE " " " " ${_VAR} "${_STR}") STRING(REPLACE " " ";" ${_VAR} "${_STR}") endmacro(string_to_list _VAR _STR) # Check for MPI if ( NOT ( mpi STREQUAL "OFF") ) find_package(MPI) endif() if( NOT MPI_FOUND ) if( mpi STREQUAL "ON" ) message( WARNING "Could not find MPI. Compiling without MPI support." ) endif() set(mpi "OFF") endif() # Add MPI stubs, if needed if( mpi STREQUAL "OFF" ) list(APPEND sources "${CMAKE_CURRENT_SOURCE_DIR}/STUBS_MPI/mpi.h") endif() # Locate MPI find_package(MPI) if(MPI_FOUND) include_directories(${MPI_INCLUDE_PATH}) else() configure_file(${CMAKE_CURRENT_SOURCE_DIR}/STUBS_MPI/mpi.h ${CMAKE_CURRENT_BINARY_DIR}/STUBS_MPI/mpi.h COPYONLY) endif() # Link to MDI #set( MDI_LOCATION ${CMAKE_BINARY_DIR}/lib/mdi/MDI_Library/ ) set( MDI_LOCATION ${CMAKE_CURRENT_BINARY_DIR}/mdi/MDI_Library/ ) link_directories( ${MDI_LOCATION} ) include_directories(${MDI_LOCATION}) # Add the driver as a compile target add_executable({{ cookiecutter.repo_name }} {{ cookiecutter.repo_name }}.cpp) # Link to the MDI Library target_link_libraries({{ cookiecutter.repo_name }} mdi) # Include and link to MPI if( mpi STREQUAL "ON" ) #include MPI string_to_list(MPI_C_COMPILE_OPTIONS "${MPI_C_COMPILE_FLAGS}") string_to_list(MPI_C_LINK_OPTIONS "${MPI_C_LINK_FLAGS}") target_include_directories({{ cookiecutter.repo_name }} PRIVATE ${MPI_C_INCLUDE_PATH}) target_compile_options({{ cookiecutter.repo_name }} PRIVATE ${MPI_C_COMPILE_OPTIONS}) target_link_libraries({{ cookiecutter.repo_name }} ${MPI_C_LIBRARIES} ${MPI_C_LINK_OPTIONS}) elseif( mpi STREQUAL "OFF" ) message( "Compiling without MPI." ) target_include_directories({{ cookiecutter.repo_name }} PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/STUBS_MPI/) else() message( FATAL_ERROR "Value of mpi not recognized. Accepted values are: ON; OFF." ) endif() """ py_cmake = """# Compile MDI add_subdirectory(mdi) # Add an __init__.py to the MDI directory, so that it can be used as a package file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/mdi/__init__.py "") # Copy the driver file into the compile directory configure_file(${CMAKE_CURRENT_SOURCE_DIR}/{{ cookiecutter.repo_name }}.py ${CMAKE_CURRENT_BINARY_DIR}/{{ cookiecutter.repo_name }}.py COPYONLY) """ def decode_string(string): """Helper function to covert byte-string to string, but allows normal strings""" try: return string.decode() except AttributeError: return string def invoke_shell(command): try: output = sp.check_output(command, shell=True, stderr=sp.STDOUT) except sp.CalledProcessError as e: # Trap and print the output in a helpful way print(decode_string(e.output), decode_string(e.returncode)) print(e.output) raise e print(decode_string(output)) def write_driver_file(): # Write a langauge-specific driver file if "{{ cookiecutter.language }}" == "C++": with open("{{ cookiecutter.repo_name }}/{{ cookiecutter.repo_name }}.cpp","w") as f: f.write(cpp_driver) elif "{{ cookiecutter.language }}" =="Python": with open("{{ cookiecutter.repo_name }}/{{ cookiecutter.repo_name }}.py","w") as f: f.write(py_driver) else: raise Exception("Unsupported language") def write_cmake_file(): with open("{{ cookiecutter.repo_name }}/CMakeLists.txt","w") as f: # Write a langauge-specific CMakeLists.txt file if "{{ cookiecutter.language }}" == "C++": f.write(cpp_cmake) elif "{{ cookiecutter.language }}" =="Python": f.write(py_cmake) else: raise Exception("Unsupported language") def git_init_and_tag(): """Invoke the initial git and tag with 0.0.0 to make an initial version for Versioneer to ID""" # Write the language-specific files write_driver_file() write_cmake_file() # Initialize git invoke_shell("git init") # Add files invoke_shell("git add .") invoke_shell( "git commit -m \"Initial commit after CMS Cookiecutter creation, version {}\"".format( '{{ cookiecutter._mdi_driver_cc_version }}')) # Add MDI as a subtree invoke_shell("git subtree add --prefix={{ cookiecutter.repo_name }}/mdi https://github.com/MolSSI/MDI_Library master --squash") # Set the 0.0.0 tag invoke_shell("git tag 0.0.0") git_init_and_tag()
py
1a4afd40837f534c58abeacec2c9f32406f0513e
import warnings import rdflib from rdflib import OWL, RDF, RDFS, BNode from ..exceptions import NeuroLangNotImplementedError from ..expressions import Constant, Symbol from ..logic import Conjunction, Implication, Union from .constraints_representation import RightImplication class OntologyParser: """ This class is in charge of generating the rules that can be derived from an ontology, both at entity and constraint levels. """ def __init__(self, paths, load_format="xml"): self.namespaces_dic = None self.owl_dic = None if isinstance(paths, list): self._load_ontology(paths, load_format) else: self._load_ontology([paths], [load_format]) self._triple = Symbol.fresh() self._pointer = Symbol.fresh() self._dom = Symbol.fresh() self.parsed_restrictions = [ OWL.allValuesFrom, OWL.hasValue, OWL.minCardinality, OWL.maxCardinality, OWL.cardinality, OWL.someValuesFrom, ] def _load_ontology(self, paths, load_format): g = rdflib.Graph() for counter, path in enumerate(paths): g.load(path, format=load_format[counter]) self.graph = g def parse_ontology(self): extensional_predicate_tuples, union_of_constraints_dom = ( self._load_domain() ) union_of_constraints_prop = self._load_properties() union_of_constraints = self._load_constraints() union_of_constraints = Union( union_of_constraints_dom.formulas + union_of_constraints_prop.formulas + union_of_constraints.formulas ) return extensional_predicate_tuples, union_of_constraints def get_triples_symbol(self): return self._triple def get_pointers_symbol(self): return self._pointer def get_domain_symbol(self): return self._dom def _load_domain(self): pointers = frozenset( (str(x),) for x in self.graph.subjects() if isinstance(x, BNode) ) triples = frozenset( (str(x[0]), str(x[1]), str(x[2])) for x in self.get_triples() ) x = Symbol.fresh() y = Symbol.fresh() z = Symbol.fresh() dom1 = RightImplication(self._triple(x, y, z), self._dom(x)) dom2 = RightImplication(self._triple(x, y, z), self._dom(y)) dom3 = RightImplication(self._triple(x, y, z), self._dom(z)) extensional_predicate_tuples = {} extensional_predicate_tuples[self._triple] = triples extensional_predicate_tuples[self._pointer] = pointers union_of_constraints = Union((dom1, dom2, dom3)) return extensional_predicate_tuples, union_of_constraints def _load_properties(self): """ Function that parse all the properties defined in the ontology. """ x = Symbol.fresh() z = Symbol.fresh() constraints = () for pred in set(self.graph.predicates()): symbol_name = str(pred) symbol = Symbol(symbol_name) const = Constant(symbol_name) constraints += ( RightImplication(self._triple(x, const, z), symbol(x, z)), ) return Union(constraints) def _load_constraints(self): """ Function in charge of parsing the ontology's restrictions. It needs a function "_process_X", where X is the name of the restriction to be processed, to be defined. """ restriction_ids = [ s for s, _, _ in self.graph.triples((None, None, OWL.Restriction)) ] union_of_constraints = Union(()) for rest in restriction_ids: cut_graph = list(self.graph.triples((rest, None, None))) res_type = self._identify_restriction_type(cut_graph) try: process_restriction_method = getattr( self, f"_process_{res_type}" ) constraints = process_restriction_method(cut_graph) union_of_constraints = Union( union_of_constraints.formulas + constraints.formulas ) except AttributeError as err: raise NeuroLangNotImplementedError( f"""Ontology parser doesn\'t handle restrictions of type {res_type}""" ) return union_of_constraints def _identify_restriction_type(self, list_of_triples): """ Given a list of nodes associated to a restriction, this function returns the name of the restriction to be applied (hasValue, minCardinality, etc). Parameters ---------- list_of_triples : list List of nodes associated to a restriction. Returns ------- str the name of the restriction or an empty string if the name cannot be identified. """ for triple in list_of_triples: if triple[1] == OWL.onProperty or triple[1] == RDF.type: continue else: return triple[1].rsplit("#")[-1] return "" def _process_hasValue(self, cut_graph): """ A restriction containing a owl:hasValue constraint describes a class of all individuals for which the property concerned has at least one value semantically equal to V (it may have other values as well) The following example describes the class of individuals who have the individual referred to as Clinton as their parent: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:hasValue rdf:resource="#Clinton" /> </owl:Restriction> """ parsed_prop, restricted_node, value = self._parse_restriction_nodes( cut_graph ) rdfs_type = Constant(str(RDF.type)) property_symbol = Symbol(str(parsed_prop)) x = Symbol.fresh() constraint = Union( ( RightImplication( self._triple(x, rdfs_type, Constant(str(restricted_node))), property_symbol(x, Constant(str(value))), ), ) ) return constraint def _process_minCardinality(self, cut_graph): """ A restriction containing an owl:minCardinality constraint describes a class of all individuals that have at least N semantically distinct values (individuals or data values) for the property concerned, where N is the value of the cardinality constraint. The following example describes a class of individuals that have at least two parents: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger"> 2 </owl:minCardinality> </owl:Restriction> Note that an owl:minCardinality of one or more means that all instances of the class must have a value for the property. """ _, restricted_node, _ = self._parse_restriction_nodes( cut_graph ) warnings.warn( f"""The restriction minCardinality cannot be parsed for {restricted_node}.""" ) return Union(()) def _process_maxCardinality(self, cut_graph): """ A restriction containing an owl:maxCardinality constraint describes a class of all individuals that have at most N semantically distinct values (individuals or data values) for the property concerned, where N is the value of the cardinality constraint. The following example describes a class of individuals that have at most two parents: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger"> 2 </owl:maxCardinality> </owl:Restriction> """ _, restricted_node, _ = self._parse_restriction_nodes( cut_graph ) warnings.warn( f"""The restriction maxCardinality cannot be parsed for {restricted_node}""" ) return Union(()) def _process_cardinality(self, cut_graph): """ A restriction containing an owl:cardinality constraint describes a class of all individuals that have exactly N semantically distinct values (individuals or data values) for the property concerned, where N is the value of the cardinality constraint. This construct is in fact redundant as it can always be replaced by a pair of matching owl:minCardinality and owl:maxCardinality constraints with the same value. It is included as a convenient shorthand for the user. The following example describes a class of individuals that have exactly two parents: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 2 </owl:cardinality> </owl:Restriction> """ _, restricted_node, _ = self._parse_restriction_nodes( cut_graph ) warnings.warn( f"""The restriction cardinality cannot be parsed for {restricted_node}""" ) return Union(()) def _process_someValuesFrom(self, cut_graph): """ It defines a class of individuals x for which there is at least one y (either an instance of the class description or value of the data range) such that the pair (x,y) is an instance of P. This does not exclude that there are other instances (x,y') of P for which y' does not belong to the class description or data range. The following example defines a class of individuals which have at least one parent who is a physician: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:someValuesFrom rdf:resource="#Physician" /> </owl:Restriction> """ parsed_prop, restricted_node, values = self._parse_restriction_nodes( cut_graph ) nodes_someValuesFrom = self._parse_list(values) constraints = Union(()) property_symbol = Symbol(str(parsed_prop)) rdfs_type = Constant(str(RDF.type)) y = Symbol.fresh() for value in nodes_someValuesFrom: constraints = Union( constraints.formulas + ( RightImplication( self._triple( y, rdfs_type, Constant(str(restricted_node)) ), property_symbol(y, Constant(str(value))), ), ) ) return constraints def _process_allValuesFrom(self, cut_graph): """ AllValuesFrom defines a class of individuals x for which holds that if the pair (x,y) is an instance of P (the property concerned), then y should be an instance of the class description. <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:allValuesFrom rdf:resource="#Human" /> </owl:Restriction> This example describes an anonymous OWL class of all individuals for which the hasParent property only has values of class Human """ parsed_prop, restricted_node, values = self._parse_restriction_nodes( cut_graph ) allValuesFrom = self._parse_list(values) constraints = Union(()) property_symbol = Symbol(str(parsed_prop)) rdf_type = Constant(str(RDF.type)) rdf_symbol = Symbol(str(RDF.type)) y = Symbol.fresh() x = Symbol.fresh() for value in allValuesFrom: constraints = Union( constraints.formulas + ( RightImplication( Conjunction( ( self._triple( y, rdf_type, Constant(str(restricted_node)) ), property_symbol(y, x), ) ), rdf_symbol(x, Constant(str(value))), ), ) ) return constraints def _parse_restriction_nodes(self, cut_graph): """ Given the list of nodes associated with a restriction, this function returns: The restricted node, the property that restricts it and the value associated to it. Parameters ---------- cut_graph : list List of nodes associated to a restriction. Returns ------- parsed_property : URIRef The node of the property. restricted_node : URIRef The node restricted by the property. value : URIRef The value of the property """ restricted_node = list( self.graph.triples((None, None, cut_graph[0][0])) )[0][0] for triple in cut_graph: if OWL.onProperty == triple[1]: parsed_property = triple[2] elif triple[1] in self.parsed_restrictions: value = triple[2] return parsed_property, restricted_node, value def _parse_list(self, initial_node): """ This function receives an initial BNode from a list of nodes and goes through the list collecting the values from it and returns them as an array Parameters ---------- initial_node : BNode Initial node of the list that you want to go through. Returns ------- values : list Array of nodes that are part of the list. """ if not isinstance(initial_node, BNode): return [initial_node] list_node = RDF.nil values = [] for node_triples in self.graph.triples((initial_node, None, None)): if OWL.unionOf == node_triples[1]: list_node = node_triples[2] else: values.append(node_triples[0]) while list_node != RDF.nil and list_node is not None: list_iter = self.graph.triples((list_node, None, None)) values.append(self._get_list_first_value(list_iter)) list_node = self._get_list_rest_value(list_iter) return values def _get_list_first_value(self, list_iter): """ Given a list of triples, as a result of the iteration of a list, this function returns the node associated to the rdf:first property. Parameters ---------- list_iter : generator Generator that represents the list of nodes that form a position in a list. Returns ------- URIRef Node associated to the rdf:first property. """ for triple in list_iter: if RDF.first == triple[1]: return triple[2] def _get_list_rest_value(self, list_iter): """ Given a list of triples, as a result of the iteration of a list, this function returns the node associated to the rdf:rest property. Parameters ---------- list_iter : generator Generator that represents the list of nodes that form a position in a list. Returns ------- URIRef Node associated to the rdf:rest property. """ for triple in list_iter: if RDF.rest == triple[1]: return triple[2] def get_triples(self): return self.graph.triples((None, None, None))
py
1a4afdbce60aefc0a3befdbcea0625c954912c12
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.2.11. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-p_q$=$qcpwvdd1hvxq^a!9(oe@41+d%(14aa0kxg#0a2zb-z4)' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'website.apps.WebsiteConfig' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = BASE_DIR/'static' MEDIA_URL = '/media/' MEDIA_ROOT = BASE_DIR/'media' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field STATICFILES_DIRS = [ BASE_DIR / "statics" ] DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
py
1a4afdcf846ced4aa8ec560838edc9b08e8de1be
import os import json import numpy as np from pychemia.crystal import KPoints from ...tasks import Task from ..abinit import AbinitJob __author__ = 'Guillermo Avendano-Franco' class StaticCalculation(Task): def __init__(self, structure, workdir='.', binary='abinit', ecut=50, kpoints=None, kp_density=1E4): self.ecut = ecut if kpoints is None: kp = KPoints.optimized_grid(structure.lattice, kp_density=kp_density, force_odd=True) self.kpoints = kp else: self.kpoints = kpoints self.task_params = {'ecut': self.ecut, 'kpoints': self.kpoints.to_dict} Task.__init__(self, structure=structure, task_params=self.task_params, workdir=workdir, binary=binary) self.abinitjob = AbinitJob() self.abinitjob.initialize(workdir=workdir, structure=structure, binary=binary) def run(self, nparal=1): self.abinitjob.set_kpoints(kpoints=self.kpoints) self.abinitjob.job_static() self.abinitjob.set_ecut(self.ecut) self.abinitjob.set_psps() self.abinitjob.write_all() self.abinitjob.run(use_mpi=True, omp_max_threads=nparal, mpi_num_procs=nparal) def plot(self, figname='static_calculation.pdf'): if not self.finished: print('The task is not finished') return import matplotlib.pyplot as plt plt.switch_backend('agg') plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=0.09, bottom=0.08, right=0.95, top=0.95, wspace=None, hspace=None) data = np.array(self.output['energies']) plt.plot(data[:, 1], data[:, 2], 'b.-') plt.xlabel('SCF cycle') plt.ylabel('Energy [eV]') a = plt.axes([.6, .6, .3, .3], axisbg='0.9') a.semilogy(data[:, 1], data[:, 2] - np.min(data[:, 2])) a.set_title('min energy %7.3f eV' % np.min(data[:, 2])) if figname is not None: plt.savefig(figname) return plt.gcf() def load(self, filename=None): if filename is None: filename = self.workdir + os.sep + 'task.json' rf = open(filename) data = json.load(rf) rf.close() self.task_params = data['task_params'] self.output = data['output'] self.ecut = self.task_params['ecut'] self.kpoints = KPoints.from_dict(self.task_params['kpoints']) def report(self, file_format='html'): from lxml.builder import ElementMaker, E self.plot(figname=self.report_dir + os.sep + 'static.jpg') element_maker = ElementMaker(namespace=None, nsmap={None: "http://www.w3.org/1999/xhtml"}) html = element_maker.html(E.head(E.title("ABINIT Static Calculation")), E.body(E.h1("ABINIT Static Calculation"), E.h2('Structure'), E.pre(str(self.structure)), E.h2('Self Consistent Field Convergence'), E.p(E.img(src='static.jpg', width="800", height="600", alt="Static Calculation")) )) return self.report_end(html, file_format)
py
1a4afe044eff981c63079c9be04b6643970ff191
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== r"""Script for training model. Simple command to get up and running: python train.py --memory_size=8192 \ --batch_size=16 --validation_length=50 \ --episode_width=5 --episode_length=30 """ import logging import os import random import numpy as np import tensorflow as tf import data_utils import model FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer('rep_dim', 128, 'dimension of keys to use in memory') tf.flags.DEFINE_integer('episode_length', 100, 'length of episode') tf.flags.DEFINE_integer('episode_width', 5, 'number of distinct labels in a single episode') tf.flags.DEFINE_integer('memory_size', None, 'number of slots in memory. ' 'Leave as None to default to episode length') tf.flags.DEFINE_integer('batch_size', 16, 'batch size') tf.flags.DEFINE_integer('num_episodes', 100000, 'number of training episodes') tf.flags.DEFINE_integer('validation_frequency', 20, 'every so many training episodes, ' 'assess validation accuracy') tf.flags.DEFINE_integer('validation_length', 10, 'number of episodes to use to compute ' 'validation accuracy') tf.flags.DEFINE_integer('seed', 888, 'random seed for training sampling') tf.flags.DEFINE_string('save_dir', '', 'directory to save model to') tf.flags.DEFINE_bool('use_lsh', False, 'use locality-sensitive hashing ' '(NOTE: not fully tested)') class Trainer(object): """Class that takes care of training, validating, and checkpointing model.""" def __init__(self, train_data, valid_data, input_dim, output_dim=None): self.train_data = train_data self.valid_data = valid_data self.input_dim = input_dim self.rep_dim = FLAGS.rep_dim self.episode_length = FLAGS.episode_length self.episode_width = FLAGS.episode_width self.batch_size = FLAGS.batch_size self.memory_size = (self.episode_length * self.batch_size if FLAGS.memory_size is None else FLAGS.memory_size) self.use_lsh = FLAGS.use_lsh self.output_dim = (output_dim if output_dim is not None else self.episode_width) def get_model(self): # vocab size is the number of distinct values that # could go into the memory key-value storage vocab_size = self.episode_width * self.batch_size return model.Model( self.input_dim, self.output_dim, self.rep_dim, self.memory_size, vocab_size, use_lsh=self.use_lsh) def sample_episode_batch(self, data, episode_length, episode_width, batch_size): """Generates a random batch for training or validation. Structures each element of the batch as an 'episode'. Each episode contains episode_length examples and episode_width distinct labels. Args: data: A dictionary mapping label to list of examples. episode_length: Number of examples in each episode. episode_width: Distinct number of labels in each episode. batch_size: Batch size (number of episodes). Returns: A tuple (x, y) where x is a list of batches of examples with size episode_length and y is a list of batches of labels. """ episodes_x = [[] for _ in xrange(episode_length)] episodes_y = [[] for _ in xrange(episode_length)] assert len(data) >= episode_width keys = data.keys() for b in xrange(batch_size): episode_labels = random.sample(keys, episode_width) remainder = episode_length % episode_width remainders = [0] * (episode_width - remainder) + [1] * remainder episode_x = [ random.sample(data[lab], r + (episode_length - remainder) / episode_width) for lab, r in zip(episode_labels, remainders)] episode = sum([[(x, i, ii) for ii, x in enumerate(xx)] for i, xx in enumerate(episode_x)], []) random.shuffle(episode) # Arrange episode so that each distinct label is seen before moving to # 2nd showing episode.sort(key=lambda elem: elem[2]) assert len(episode) == episode_length for i in xrange(episode_length): episodes_x[i].append(episode[i][0]) episodes_y[i].append(episode[i][1] + b * episode_width) return ([np.array(xx).astype('float32') for xx in episodes_x], [np.array(yy).astype('int32') for yy in episodes_y]) def compute_correct(self, ys, y_preds): return np.mean(np.equal(y_preds, np.array(ys))) def individual_compute_correct(self, y, y_pred): return y_pred == y def run(self): """Performs training. Trains a model using episodic training. Every so often, runs some evaluations on validation data. """ train_data, valid_data = self.train_data, self.valid_data input_dim, output_dim = self.input_dim, self.output_dim rep_dim, episode_length = self.rep_dim, self.episode_length episode_width, memory_size = self.episode_width, self.memory_size batch_size = self.batch_size train_size = len(train_data) valid_size = len(valid_data) logging.info('train_size (number of labels) %d', train_size) logging.info('valid_size (number of labels) %d', valid_size) logging.info('input_dim %d', input_dim) logging.info('output_dim %d', output_dim) logging.info('rep_dim %d', rep_dim) logging.info('episode_length %d', episode_length) logging.info('episode_width %d', episode_width) logging.info('memory_size %d', memory_size) logging.info('batch_size %d', batch_size) assert all(len(v) >= float(episode_length) / episode_width for v in train_data.itervalues()) assert all(len(v) >= float(episode_length) / episode_width for v in valid_data.itervalues()) output_dim = episode_width self.model = self.get_model() self.model.setup() sess = tf.Session() sess.run(tf.initialize_all_variables()) saver = tf.train.Saver(max_to_keep=10) ckpt = None if FLAGS.save_dir: ckpt = tf.train.get_checkpoint_state(FLAGS.save_dir) if ckpt and ckpt.model_checkpoint_path: logging.info('restoring from %s', ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) logging.info('starting now') losses = [] random.seed(FLAGS.seed) np.random.seed(FLAGS.seed) for i in xrange(FLAGS.num_episodes): x, y = self.sample_episode_batch( train_data, episode_length, episode_width, batch_size) outputs = self.model.episode_step(sess, x, y, clear_memory=True) loss = outputs losses.append(loss) if i % FLAGS.validation_frequency == 0: logging.info('episode batch %d, avg train loss %f', i, np.mean(losses)) losses = [] # validation correct = [] correct_by_shot = dict((k, []) for k in xrange(self.episode_width + 1)) for _ in xrange(FLAGS.validation_length): x, y = self.sample_episode_batch( valid_data, episode_length, episode_width, 1) outputs = self.model.episode_predict( sess, x, y, clear_memory=True) y_preds = outputs correct.append(self.compute_correct(np.array(y), y_preds)) # compute per-shot accuracies seen_counts = [[0] * episode_width for _ in xrange(batch_size)] # loop over episode steps for yy, yy_preds in zip(y, y_preds): # loop over batch examples for k, (yyy, yyy_preds) in enumerate(zip(yy, yy_preds)): yyy, yyy_preds = int(yyy), int(yyy_preds) count = seen_counts[k][yyy % self.episode_width] if count in correct_by_shot: correct_by_shot[count].append( self.individual_compute_correct(yyy, yyy_preds)) seen_counts[k][yyy % self.episode_width] = count + 1 logging.info('validation overall accuracy %f', np.mean(correct)) logging.info('%d-shot: %.3f, ' * (self.episode_width + 1), *sum([[k, np.mean(correct_by_shot[k])] for k in xrange(self.episode_width + 1)], [])) if saver and FLAGS.save_dir: saved_file = saver.save(sess, os.path.join(FLAGS.save_dir, 'model.ckpt'), global_step=self.model.global_step) logging.info('saved model to %s', saved_file) def main(unused_argv): train_data, valid_data = data_utils.get_data() trainer = Trainer(train_data, valid_data, data_utils.IMAGE_NEW_SIZE ** 2) trainer.run() if __name__ == '__main__': logging.basicConfig(level=logging.INFO) tf.app.run()
py
1a4afeb9829d7316e288f1b8f76bf4cbada8b7d9
""" Copyright (c) 2015 SONATA-NFV, 2017 5GTANGO ALL RIGHTS RESERVED. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Neither the name of the SONATA-NFV, 5GTANGO nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. This work has been performed in the framework of the SONATA project, funded by the European Commission under Grant number 671517 through the Horizon 2020 and 5G-PPP programmes. The authors would like to acknowledge the contributions of their colleagues of the SONATA partner consortium (www.sonata-nfv.eu). This work has been performed in the framework of the 5GTANGO project, funded by the European Commission under Grant number 761493 through the Horizon 2020 and 5G-PPP programmes. The authors would like to acknowledge the contributions of their colleagues of the 5GTANGO partner consortium (www.5gtango.eu). """ import logging import yaml import time from smbase.smbase import smbase try: from ds import ssh except: import ssh logging.basicConfig(level=logging.INFO) LOG = logging.getLogger("fsm-ds") LOG.setLevel(logging.DEBUG) logging.getLogger("son-mano-base:messaging").setLevel(logging.INFO) class dsFSM(smbase): def __init__(self, connect_to_broker=True): """ :param specific_manager_type: specifies the type of specific manager that could be either fsm or ssm. :param service_name: the name of the service that this specific manager belongs to. :param function_name: the name of the function that this specific manager belongs to, will be null in SSM case :param specific_manager_name: the actual name of specific manager (e.g., scaling, placement) :param id_number: the specific manager id number which is used to distinguish between multiple SSM/FSM that are created for the same objective (e.g., scaling with algorithm 1 and 2) :param version: version :param description: description """ self.sm_id = "sonfsmcommunication-pilotds-vnfcss1" self.sm_version = "0.1" super(self.__class__, self).__init__(sm_id=self.sm_id, sm_version=self.sm_version, connect_to_broker=connect_to_broker) def on_registration_ok(self): # The fsm registration was successful LOG.debug("Received registration ok event.") # send the status to the SMR status = 'Subscribed, waiting for alert message' message = {'name': self.sm_id, 'status': status} self.manoconn.publish(topic='specific.manager.registry.ssm.status', message=yaml.dump(message)) # Subscribing to the topics that the fsm needs to listen on topic = "generic.fsm." + str(self.sfuuid) self.manoconn.subscribe(self.message_received, topic) LOG.info("Subscribed to " + topic + " topic.") def message_received(self, ch, method, props, payload): """ This method handles received messages """ # Decode the content of the message request = yaml.load(payload) # Don't trigger on non-request messages if "fsm_type" not in request.keys(): LOG.info("Received a non-request message, ignoring...") return # Create the response response = None # the 'fsm_type' field in the content indicates for which type of # fsm this message is intended. if str(request["fsm_type"]) == "start": LOG.info("Start event received: " + str(request["content"])) response = self.start_event(request["content"]) if str(request["fsm_type"]) == "stop": LOG.info("Stop event received: " + str(request["content"])) response = self.stop_event(request["content"]) if str(request["fsm_type"]) == "configure": LOG.info("Config event received: " + str(request["content"])) response = self.configure_event(request["content"]) # If a response message was generated, send it back to the FLM LOG.info("Response to request generated:" + str(response)) topic = "generic.fsm." + str(self.sfuuid) corr_id = props.correlation_id self.manoconn.notify(topic, yaml.dump(response), correlation_id=corr_id) return def start_event(self, content): """ This method handles a start event. """ # Dummy content response = {'status': 'completed'} return response def stop_event(self, content): """ This method handles a stop event. """ # Dummy content response = {'status': 'completed'} return response def configure_event(self, content): """ This method handles a configure event. The configure event changes the configuration of the Dispatcher. """ # Extract VNF-DS management IP and VNF-BS internal IP ds_ip = '' bs_ip = '' for vnfr in content['vnfrs']: if vnfr['virtual_deployment_units'][0]['vdu_reference'][:2] == 'bs': for cp in vnfr['virtual_deployment_units'][0]['vnfc_instance'][0]['connection_points']: if cp['id'] == 'internal': bs_ip = cp['interface']['address'] break if vnfr['virtual_deployment_units'][0]['vdu_reference'][:2] == 'ds': for cp in vnfr['virtual_deployment_units'][0]['vnfc_instance'][0]['connection_points']: if cp['id'] == 'mgmt': ds_ip = cp['interface']['address'] break LOG.info('ds ip: ' + ds_ip) LOG.info('bs ip: ' + bs_ip) # Initiate SSH connection with the VM ssh_client = ssh.Client(ds_ip, username='ubuntu', logger=LOG, key_filename='/root/ds/sandbox.pem', retries=40) # Enable user ubuntu in tmp folder ssh_client.sendCommand("sudo chown -R ubuntu:ubuntu /tmp/") # Change qss config ssh_client.sendCommand("sudo sed -r -i '/mongodbUrl: .*$/c\ mongodbUrl: \"mongodb:\/\/" + bs_ip + "/dispatcher\",' /opt/sippo/janus-dispatcher/janus-dispatcher-current/quobis-dispatcher-config.js") # Restart the services ssh_client.sendCommand( "pm2 restart /opt/sippo/janus-dispatcher/janus-dispatcher-current/process.json") if ssh_client.connected: response = {'status': 'COMPLETED', 'error': 'None'} else: response = {'status': 'FAILED', 'error': 'FSM SSH connection failed'} return response def main(): dsFSM() if __name__ == '__main__': main()
py
1a4aff2b660bee00b83b70e4e90cfe157244ff31
"""Synchronous msgpack-rpc session layer.""" import logging from collections import deque from traceback import format_exc import greenlet logger = logging.getLogger(__name__) error, debug, info, warn = (logger.error, logger.debug, logger.info, logger.warning,) class Session(object): """Msgpack-rpc session layer that uses coroutines for a synchronous API. This class provides the public msgpack-rpc API required by this library. It uses the greenlet module to handle requests and notifications coming from Nvim with a synchronous API. """ def __init__(self, async_session): """Wrap `async_session` on a synchronous msgpack-rpc interface.""" self._async_session = async_session self._request_cb = self._notification_cb = None self._pending_messages = deque() self._is_running = False self._setup_exception = None self.loop = async_session.loop def threadsafe_call(self, fn, *args, **kwargs): """Wrapper around `AsyncSession.threadsafe_call`.""" def handler(): try: fn(*args, **kwargs) except Exception: warn("error caught while excecuting async callback\n%s\n", format_exc()) def greenlet_wrapper(): gr = greenlet.greenlet(handler) gr.switch() self._async_session.threadsafe_call(greenlet_wrapper) def next_message(self): """Block until a message(request or notification) is available. If any messages were previously enqueued, return the first in queue. If not, run the event loop until one is received. """ if self._is_running: raise Exception('Event loop already running') if self._pending_messages: return self._pending_messages.popleft() self._async_session.run(self._enqueue_request_and_stop, self._enqueue_notification_and_stop) if self._pending_messages: return self._pending_messages.popleft() def request(self, method, *args, **kwargs): """Send a msgpack-rpc request and block until as response is received. If the event loop is running, this method must have been called by a request or notification handler running on a greenlet. In that case, send the quest and yield to the parent greenlet until a response is available. When the event loop is not running, it will perform a blocking request like this: - Send the request - Run the loop until the response is available - Put requests/notifications received while waiting into a queue If the `async` flag is present and True, a asynchronous notification is sent instead. This will never block, and the return value or error is ignored. """ async = kwargs.pop('async', False) if async: self._async_session.notify(method, args) return if kwargs: raise ValueError("request got unsupported keyword argument(s): {}" .format(', '.join(kwargs.keys()))) if self._is_running: v = self._yielding_request(method, args) else: v = self._blocking_request(method, args) if not v: # EOF raise IOError('EOF') err, rv = v if err: info("'Received error: %s", err) raise self.error_wrapper(err) return rv def run(self, request_cb, notification_cb, setup_cb=None): """Run the event loop to receive requests and notifications from Nvim. Like `AsyncSession.run()`, but `request_cb` and `notification_cb` are inside greenlets. """ self._request_cb = request_cb self._notification_cb = notification_cb self._is_running = True self._setup_exception = None def on_setup(): try: setup_cb() except Exception as e: self._setup_exception = e self.stop() if setup_cb: # Create a new greenlet to handle the setup function gr = greenlet.greenlet(on_setup) gr.switch() if self._setup_exception: error('Setup error: {}'.format(self._setup_exception)) raise self._setup_exception # Process all pending requests and notifications while self._pending_messages: msg = self._pending_messages.popleft() getattr(self, '_on_{}'.format(msg[0]))(*msg[1:]) self._async_session.run(self._on_request, self._on_notification) self._is_running = False self._request_cb = None self._notification_cb = None if self._setup_exception: raise self._setup_exception def stop(self): """Stop the event loop.""" self._async_session.stop() def close(self): """Close the event loop.""" self._async_session.close() def _yielding_request(self, method, args): gr = greenlet.getcurrent() parent = gr.parent def response_cb(err, rv): debug('response is available for greenlet %s, switching back', gr) gr.switch(err, rv) self._async_session.request(method, args, response_cb) debug('yielding from greenlet %s to wait for response', gr) return parent.switch() def _blocking_request(self, method, args): result = [] def response_cb(err, rv): result.extend([err, rv]) self.stop() self._async_session.request(method, args, response_cb) self._async_session.run(self._enqueue_request, self._enqueue_notification) return result def _enqueue_request_and_stop(self, name, args, response): self._enqueue_request(name, args, response) self.stop() def _enqueue_notification_and_stop(self, name, args): self._enqueue_notification(name, args) self.stop() def _enqueue_request(self, name, args, response): self._pending_messages.append(('request', name, args, response,)) def _enqueue_notification(self, name, args): self._pending_messages.append(('notification', name, args,)) def _on_request(self, name, args, response): def handler(): try: rv = self._request_cb(name, args) debug('greenlet %s finished executing, ' + 'sending %s as response', gr, rv) response.send(rv) except ErrorResponse as err: warn("error response from request '%s %s': %s", name, args, format_exc()) response.send(err.args[0], error=True) except Exception as err: warn("error caught while processing request '%s %s': %s", name, args, format_exc()) response.send(repr(err) + "\n" + format_exc(5), error=True) debug('greenlet %s is now dying...', gr) # Create a new greenlet to handle the request gr = greenlet.greenlet(handler) debug('received rpc request, greenlet %s will handle it', gr) gr.switch() def _on_notification(self, name, args): def handler(): try: self._notification_cb(name, args) debug('greenlet %s finished executing', gr) except Exception: warn("error caught while processing notification '%s %s': %s", name, args, format_exc()) debug('greenlet %s is now dying...', gr) gr = greenlet.greenlet(handler) debug('received rpc notification, greenlet %s will handle it', gr) gr.switch() class ErrorResponse(BaseException): """Raise this in a request handler to respond with a given error message. Unlike when other exceptions are caught, this gives full control off the error response sent. When "ErrorResponse(msg)" is caught "msg" will be sent verbatim as the error response.No traceback will be appended. """ pass
py
1a4aff49a098b6bed511d8f8a6e4a2ea2a010385
# -*- coding: utf-8 -*- import re import tempfile from collections import Counter from urllib.parse import urlparse import django from django.contrib.auth import get_user_model from django.contrib.auth.models import AnonymousUser, User from django.test import Client, RequestFactory, TestCase from django.test.utils import override_settings from booru.utils import space_splitter from booru.utils import space_joiner from booru.utils import compare_strings class UtilitiesTests(TestCase): fixtures = [] @classmethod def setUpClass(cls): super().setUpClass() @classmethod def tearDownClass(cls): super().tearDownClass() def test_space_splitter_generates_tags_from_string(self): tag_string = "test1 test2 test:test_3 test_4" generated_tags = space_splitter(tag_string) expected_generated_tags = ["test1", "test2", "test:test_3", "test_4"] self.assertEqual(generated_tags, expected_generated_tags) def test_history_diff(self): old_string = "test1 test2 test3" new_string = "test2 test3 test4" expected = {"added": ["test4"], "removed": ["test1"], "equal": ["test2", "test3"]} result = compare_strings(old_string, new_string) self.assertEqual(sorted(result["added"]), sorted(expected["added"])) self.assertEqual(sorted(result["removed"]), sorted(expected["removed"])) self.assertEqual(sorted(result["equal"]), sorted(expected["equal"]))
py
1a4affa978732fb158c1a83516e3a31c472084ef
from django.test.testcases import TestCase from mock import patch from robber import expect from data import cache_managers class CacheManagersTestCase(TestCase): @patch('data.cache_managers.allegation_cache_manager.cache_data') @patch('data.cache_managers.officer_cache_manager.cache_data') @patch('data.cache_managers.salary_cache_manager.cache_data') @patch('activity_grid.cache_managers.activity_pair_card_cache_manager.cache_data') def test_cache_all( self, salary_cache_mock, officer_cache_mock, allegation_cache_mock, activity_pair_card_cache_mock ): cache_managers.cache_all() expect(salary_cache_mock).to.be.called_once() expect(officer_cache_mock).to.be.called_once() expect(allegation_cache_mock).to.be.called_once() expect(activity_pair_card_cache_mock).to.be.called_once() expect(len(cache_managers.managers)).to.eq(4)
py
1a4affbd4af66c0b2b0a81c21bba7962b0e357c2
#!/usr/bin/python3 import argparse import itertools import os import pprint import sys import yaml from PIL import Image, ImageDraw import bs4 THUMB_MARGIN = 10 def get_polys(html): with open(html) as f: soup = bs4.BeautifulSoup(f.read(), features="html5lib") out = {} for a in soup.find_all("area"): assert a["shape"] == "poly" name = a["href"] coords = a["coords"] coords = [int(i) for i in coords.split(",")] coords = list(zip(coords[::2], coords[1::2])) out[name] = coords return out class Patch: MARGIN = 5 def __init__(self, image, coords): mask = Image.new("L", image.size, 0) d = ImageDraw.Draw(mask) d.polygon(coords, 255) masked = Image.new("RGBA", image.size, (0,0,0,0)) masked.paste(image, (0,0), mask) min_x = min(p[0] for p in coords) - self.MARGIN max_x = max(p[0] for p in coords) + self.MARGIN min_y = min(p[1] for p in coords) - self.MARGIN max_y = max(p[1] for p in coords) + self.MARGIN if min_x < 0: min_x = 0 if min_y < 0: min_y = 0 if max_x > image.size[0]: max_x = image.size[0] if max_y > image.size[1]: max_y = image.size[1] self.origin = [min_x, min_y] self.size = [max_x - min_x, max_y - min_y] self.image = masked.crop((min_x, min_y, max_x, max_y)) t = [] for x, y in coords: t.append(str(x)) t.append(str(y)) self.coords_str = ",".join(t) self.highlight = Image.new("RGBA", self.image.size, (255,255,255,0)) for ox in range(-2, 3): for oy in range(-2, 3): if ox in (-2,2) and oy in (-2,2): continue self.highlight.paste((255,255,255,255), (ox,oy), self.image) pixels = set() for j in range(self.size[1]): for i in range(self.size[0]): if self.image.getpixel((i,j))[3]: pixels.add((i,j)) elif self.highlight.getpixel((i,j))[3]: pixels.add((i,j)) if not pixels: self.image = None self.highlight = None return min_x = min(p[0] for p in pixels) max_x = max(p[0] for p in pixels) min_y = min(p[1] for p in pixels) max_y = max(p[1] for p in pixels) w = max_x + 1 - min_x h = max_y + 1 - min_y self.image = self.image.crop((min_x, min_y, max_x, max_y)) self.highlight = self.highlight.crop((min_x, min_y, max_x, max_y)) self.origin = [self.origin[0] + min_x, self.origin[1] + min_y] self.size = [w, h] def main(): parser = argparse.ArgumentParser( description="Extract icons from images and a map.") parser.add_argument("--output_dir", default=".", help="Directory for output icons") parser.add_argument("--max_thumb_height", type=int, default=260, help="Max height of thumb images") parser.add_argument("--background_color", default="#f8f8f8", help="Background color for map") parser.add_argument("--output_yaml", default="land.yaml", help="File for yaml data output") parser.add_argument("html", help="Image map HTML") parser.add_argument("source_image") parser.add_argument("--under_image", default=None) parser.add_argument("--under_html", default=None) options = parser.parse_args() assert options.background_color[0] == "#" and len(options.background_color) == 7 options.background_color = tuple(int(options.background_color[i*2+1:i*2+3], 16) for i in range(3)) html_map = get_polys(options.html) if options.under_html: under_map = get_polys(options.under_html) else: under_map = html_map source_image = Image.open(options.source_image).convert("RGBA") if options.under_image: under_image = Image.open(options.under_image).convert("RGBA") assert under_image.size == source_image.size else: under_image = None size = source_image.size icons = {} for name, coords in html_map.items(): out = {} icons[name] = out patch = Patch(source_image, coords) if patch.image: od = {} out["image"] = od od["pos"] = patch.origin od["poly"] = patch.coords_str od["size"] = patch.size patch.image.save(os.path.join(options.output_dir, f"image_{name}.png")) if patch.highlight: od = {} out["mask"] = od od["pos"] = patch.origin[:] od["size"] = patch.size[:] patch.highlight.save(os.path.join(options.output_dir, f"mask_{name}.png")) if under_image: under_coords = under_map.get(name) if under_coords: under_patch = Patch(under_image, under_coords) if under_patch.image: od = {} out["under"] = od od["pos"] = under_patch.origin od["poly"] = under_patch.coords_str od["size"] = under_patch.size under_patch.image.save(os.path.join(options.output_dir, f"under_{name}.png")) y = { "icons": icons } with open(os.path.join(options.output_dir, options.output_yaml), "w") as f: f.write(yaml.dump(y)) if __name__ == "__main__": main()
py
1a4b0013261062ff07dacc7231993dc6cba27c21
""" Frequency-split parameters ========================== Split spectra and plot parameters """ import matplotlib.pyplot as plt from wavespectra import read_ww3 dset = read_ww3("../_static/ww3file.nc") fcut = 1 / 8 sea = dset.spec.split(fmin=fcut) swell = dset.spec.split(fmax=fcut) plt.figure(figsize=(8, 4.5)) p1 = dset.spec.hs().isel(site=0).plot(label="Full spectrum", marker="o") p2 = sea.spec.hs().isel(site=0).plot(label="Sea", marker="o") p3 = swell.spec.hs().isel(site=0).plot(label="Swell", marker="o") l = plt.legend(loc=0, fontsize=8) plt.title("") plt.ylabel("$Hs$ (m)") plt.xlabel("")
py
1a4b03cdebe09cf31d9883a15002a3227868cdc5
# coded by: salism3 # 23 - 05 - 2020 23:18 (Malam Takbir) from .checker import check_login from .output import Output, People, Group from . import parsing import re @check_login def msgUrl(ses, next = None): html = ses.session.get("https://mbasic.facebook.com/messages" if not next else next).text data = parsing.parsing_href(html, "/read/") next = parsing.parsing_href_regex(html, r"[?]pageNum.*selectable", one = True) return Output(ses, msgUrl, items = data, next = next, html = html) @check_login def myGroup(ses): html = ses.session.get("https://mbasic.facebook.com/groups/?seemore&refid=27").text data = parsing.parsing_href_regex(html, r"/groups/\d+\W", bs4_class = True) data = [(x.text, re.search(r"/(\d+)\W", x["href"]).group(1)) for x in data] return Output(ses, myGroup, items = data, html = html) def find_people(ses, name): html = ses.session.get("https://mbasic.facebook.com/search/people/?q={}&source=filter&isTrending=0".format(name)).text url = parsing.parsing_href(html, "__xts__", one = True) try: html = ses.session.get(url).text return People(ses, html) except: return def find_group(ses, name): html = ses.session.get("https://mbasic.facebook.com/search/groups/?q={}&source=filter&isTrending=0".format(name)).text url = parsing.parsing_href(html, "__xts__", one = True) try: # print("in try") id_ = re.search(r"/(\d+)\Wrefid", url).group(1) html = ses.session.get("https://mbasic.facebook.com/groups/{}?view=info".format(id_)).text return Group(ses, html) except: return
py
1a4b03edfafb63b72f5a04238f0ee69a6a0948f0
#unfinished - small tool to automatically notify you of the latest manga releases # from pynotifier import Notification # import json # import api # from config_path import ConfigPath # conf_path = ConfigPath('alisw','pymanga','.json') # path = conf_path.readFolderPath() # path.mkdir(parents=True,exist_ok=True) # config_path = path.joinpath('config.json') # # if not config_path.exists(): # with open(config_path,'w') as f: # f.write(json.dumps({ # 'ids': [], # 'date_limit': 7 # })) # # config = {} # with open(config_path,'r') as f: # config = json.loads(f.read()) # # for id in config['ids']: # series = api.series(id) # latest = series['latest_releases'][0] # if int(latest['date'].replace(' days ago','')) < config['date_limit']: # Notification( # title='New ' + series['title'] + ' Chapter!', # description='Chapter ' + latest['chapter'] + ' released.', # duration=15, # urgency=Notification.URGENCY_NORMAL # ).send()
py
1a4b0436baa5ad98d1b7ad3c7383f24714641da4
# # Script to generate json of email events for testing from enron email corpus. # To reproduce, download the mongoDb dump from # http://mongodb-enron-email.s3-website-us-east-1.amazonaws.com/ # and export the messages collection to a csv # import csv import json from dateutil.parser import parse def employees(filename='./employees.txt'): with open(filename, 'r') as intext: with open(filename.replace('txt', 'json'), 'w') as outjson: out = [] for line in intext: out.append(line.split("\t")[0].strip() + "@enron.com") json.dump(out, outjson) def mongoClean(filename='./mongo-enron.csv'): with open(filename, "r") as csv_file: csv_iterator = csv.DictReader(csv_file) out = [] with open('./mongo-enron.json', 'w') as outjson: for row in csv_iterator: getSet = lambda x : set(x.strip() for x in row['headers.' + x].split(',')) record = { "to" : [x for x in (getSet('To') | getSet('Bcc') | getSet('Cc')) if x], "from" : row['headers.From'], "time" : int(parse(row['headers.Date']).strftime('%s')) } out.append(record) json.dump(sorted(out, lambda x, y: x['time'] - y['time']), outjson) if __name__ == '__main__': #mongoClean() employees()
py
1a4b04498298b288ad6c951aba60b2532179ca10
from listen_ins import Client from simple_ctl import sctl from voice_ctl import vctl class Controller: def __init__(self,sctl:sctl,vctl:vctl): self.mode = '' self.sctl = sctl self.vctl = vctl def start(self): thread = Client(1, 'Thread-1',self) thread.start() thread.join() def voice_ctl(self, data): self.vctl.get_data(data) def auto_slam(self): pass def simple_ctl(self,data): self.sctl.get_data(data) def set_mode(self, mode): self.mode = mode def process(self, data): if data == 'voice_ctl': self.set_mode('voice_ctl') elif data == 'auto_slam': self.set_mode('auto_slam') elif data == 'simple_ctl': self.set_mode('simple_ctl') elif data == 'main': self.set_mode('main') elif self.mode == 'voice_ctl': self.voice_ctl(data) elif self.mode == 'simple_ctl': self.simple_ctl(data) if __name__ == '__main__': pass
py
1a4b047282235ec7f14f5f340b9bf983ffec7148
from django.db import connection from django.urls import resolve class QueryCountDebugMiddleware: """ This middleware will log the number of queries run and the total time taken for each request (with a status code of 200). It does not currently support multi-db setups. """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request): current_url = resolve(request.path_info).url_name response = self.get_response(request) total_time = 0 for index, query in enumerate(connection.queries, 1): query_time = query.get('time') sql_query = query.get('sql') if query_time is None: query_time = query.get('duration', 0) / 1000 total_time += float(query_time) print(f"\n{index}: ({query_time}) {sql_query}") print(f"{current_url}: {request.get_raw_uri()}") print(f"{len(connection.queries)} queries run, total {total_time} seconds\n", "-" * 100) return response
py
1a4b04798454da503864a64b0371ecf2ba967480
from django import forms from django.contrib.auth.forms import AuthenticationForm class CustomAuthenticationForm(AuthenticationForm): def confirm_login_allowed(self, user): if not user.is_active or not user.is_validated: raise forms.ValidationError('There was a problem with your login.', code='invalid_login')
py
1a4b049557c9deddf0a8fb2d0b80ab7acfac52b2
#!/usr/bin/python import sys import usb.core import usb.util import uinput import time from array import array try: # hexadecimal vendor and product values dev = usb.core.find(idVendor=0x084f, idProduct=0xee05) if dev == None: print("Could not detect Brigthsign Tochboard") raise SystemExit # first endpoint interface = 0 endpoint = dev[0][(0,0)][0] # if the OS kernel already claimed the device, which is most likely true # thanks to http://stackoverflow.com/questions/8218683/pyusb-cannot-set-configuration if dev.is_kernel_driver_active(interface) is True: # tell the kernel to detach dev.detach_kernel_driver(interface) # claim the device usb.util.claim_interface(dev, interface) keys = { 'KEY_UP': array('B', [ 2, 0, 85, 92]), 'KEY_RIGHT': array('B', [ 32, 0, 85, 92]), 'KEY_DOWN': array('B', [ 128, 0, 85, 92]), 'KEY_LEFT': array('B', [ 8, 0, 85, 92]), 'KEY_ENTER': array('B', [ 16, 0, 85, 92]), 'KEY_ESC': array('B', [ 1, 0, 85, 92]), 'KEY_VOLUMEUP': array('B', [ 0, 2, 85, 92]), 'KEY_VOLUMEDOWN': array('B', [ 0, 4, 85, 92]), 'KEY_RELEASE': array('B', [ 0, 0, 85, 92]) } brightsign_keys = [ uinput.KEY_UP, uinput.KEY_RIGHT, uinput.KEY_DOWN, uinput.KEY_LEFT, uinput.KEY_ENTER, uinput.KEY_ESC, uinput.KEY_VOLUMEUP, uinput.KEY_VOLUMEDOWN ] key_pressed = False last_key = "KEY_ESC" touchboard = uinput.Device( brightsign_keys ) while True: try: data = dev.read(endpoint.bEndpointAddress,endpoint.wMaxPacketSize) for key, code in keys.items(): if code == data[0:4]: if 'KEY_RELEASE' != key: touchboard.emit(eval('uinput.'+key), value=1) # press key last_key = key else: touchboard.emit(eval('uinput.'+last_key), value=0) except usb.core.USBError as e: data = None if e.args == ('Operation timed out',): continue finally: # release the device usb.util.release_interface(dev, interface) touchboard.destroy() # reattach the device to the OS kernel dev.attach_kernel_driver(interface)
py
1a4b059c046ac37f6ed213df8d895bcc626ca0e5
# Задача: От A до Z ''' Напишите функцию, которая будет принимать строку — диапазон букв английского алфавита. Функция должна возвращать строку из всех букв этого диапазона. Если в диапазоне заданы заглавные буквы, в результирующей строке тоже должны быть заглавные. Примечания Диапазон будет задаваться двумя буквами с дефисом между ними. Обрабатывать ошибки не нужно (при указании диапазона обе буквы будут в одинаковом регистре и располагаться будут в алфавитном порядке). Примеры gimme_the_letters("a-z") ➞ "abcdefghijklmnopqrstuvwxyz" gimme_the_letters("h-o") ➞ "hijklmno" gimme_the_letters("Q-Z") ➞ "QRSTUVWXYZ" gimme_the_letters("J-J") ➞ J" ''' # Первый Вариант: Успех def gimme_the_letters1(sp): return "".join(chr(n) for n in range(ord(sp[0]), ord(sp[-1])+1)) gtl1 = gimme_the_letters1("a-z"), gimme_the_letters1("h-o"), gimme_the_letters1("Q-Z"), gimme_the_letters1("J-J") print(gtl1) # Второй Вариант: Успех def gimme_the_letters2(spectrum1): a = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" x, y = spectrum1.split('-') return a[a.index(x):a.index(y) + 1] gtl2 = gimme_the_letters2("a-z"), gimme_the_letters2("h-o"), gimme_the_letters2("Q-Z"), gimme_the_letters2("J-J") print(gtl2) # Трейти Вариант: Успех def gimme_the_letters3(spectrum2): start, end = [ord(i) for i in spectrum2.split('-')] return ''.join(chr(i) for i in range(start, end+1)) gtl3 = gimme_the_letters3("a-z"), gimme_the_letters3("h-o"), gimme_the_letters3("Q-Z"), gimme_the_letters3("J-J") print(gtl3)
py
1a4b069ade3ed45afde910ed91e95756b9cd0188
""" ``fish_http_status`` 包含最通用的一些网络状态码 https://github.com/openstack/swift/blob/master/swift/common/http.py """ def is_informational(status): """ 检查状态码是否信息提示 :param: * status: http 状态码 :return: * result: True or False """ return 100 <= status <= 199 def is_success(status): """ 检查状态码是否成功 :param: * status: http 状态码 :return: * result: True or False """ return 200 <= status <= 299 def is_redirection(status): """ 检查状态码是否重定向 :param: * status: http 状态码 :return: * result: True or False """ return 300 <= status <= 399 def is_client_error(status): """ 检查状态码是否客户端错误 :param: * status: http 状态码 :return: * result: True or False """ return 400 <= status <= 499 def is_server_error(status): """ 检查状态码是否服务端错误 :param: * status: http 状态码 :return: * result: True or False """ return 500 <= status <= 599 # List of HTTP status codes ############################################################################### # 1xx Informational ############################################################################### HTTP_CONTINUE = 100 HTTP_SWITCHING_PROTOCOLS = 101 HTTP_PROCESSING = 102 # WebDAV HTTP_CHECKPOINT = 103 HTTP_REQUEST_URI_TOO_LONG = 122 ############################################################################### # 2xx Success ############################################################################### HTTP_OK = 200 HTTP_CREATED = 201 HTTP_ACCEPTED = 202 HTTP_NON_AUTHORITATIVE_INFORMATION = 203 HTTP_NO_CONTENT = 204 HTTP_RESET_CONTENT = 205 HTTP_PARTIAL_CONTENT = 206 HTTP_MULTI_STATUS = 207 # WebDAV HTTP_IM_USED = 226 ############################################################################### # 3xx Redirection ############################################################################### HTTP_MULTIPLE_CHOICES = 300 HTTP_MOVED_PERMANENTLY = 301 HTTP_FOUND = 302 HTTP_SEE_OTHER = 303 HTTP_NOT_MODIFIED = 304 HTTP_USE_PROXY = 305 HTTP_SWITCH_PROXY = 306 HTTP_TEMPORARY_REDIRECT = 307 HTTP_RESUME_INCOMPLETE = 308 ############################################################################### # 4xx Client Error ############################################################################### HTTP_BAD_REQUEST = 400 HTTP_UNAUTHORIZED = 401 HTTP_PAYMENT_REQUIRED = 402 HTTP_FORBIDDEN = 403 HTTP_NOT_FOUND = 404 HTTP_METHOD_NOT_ALLOWED = 405 HTTP_NOT_ACCEPTABLE = 406 HTTP_PROXY_AUTHENTICATION_REQUIRED = 407 HTTP_REQUEST_TIMEOUT = 408 HTTP_CONFLICT = 409 HTTP_GONE = 410 HTTP_LENGTH_REQUIRED = 411 HTTP_PRECONDITION_FAILED = 412 HTTP_REQUEST_ENTITY_TOO_LARGE = 413 HTTP_REQUEST_URI_TOO_LONG = 414 HTTP_UNSUPPORTED_MEDIA_TYPE = 415 HTTP_REQUESTED_RANGE_NOT_SATISFIABLE = 416 HTTP_EXPECTATION_FAILED = 417 HTTP_IM_A_TEAPOT = 418 HTTP_UNPROCESSABLE_ENTITY = 422 # WebDAV HTTP_LOCKED = 423 # WebDAV HTTP_FAILED_DEPENDENCY = 424 # WebDAV HTTP_UNORDERED_COLLECTION = 425 HTTP_UPGRADE_REQUIED = 426 HTTP_PRECONDITION_REQUIRED = 428 HTTP_TOO_MANY_REQUESTS = 429 HTTP_REQUEST_HEADER_FIELDS_TOO_LARGE = 431 HTTP_NO_RESPONSE = 444 HTTP_RETRY_WITH = 449 HTTP_BLOCKED_BY_WINDOWS_PARENTAL_CONTROLS = 450 HTTP_CLIENT_CLOSED_REQUEST = 499 ############################################################################### # 5xx Server Error ############################################################################### HTTP_INTERNAL_SERVER_ERROR = 500 HTTP_NOT_IMPLEMENTED = 501 HTTP_BAD_GATEWAY = 502 HTTP_SERVICE_UNAVAILABLE = 503 HTTP_GATEWAY_TIMEOUT = 504 HTTP_VERSION_NOT_SUPPORTED = 505 HTTP_VARIANT_ALSO_NEGOTIATES = 506 HTTP_INSUFFICIENT_STORAGE = 507 # WebDAV HTTP_BANDWIDTH_LIMIT_EXCEEDED = 509 HTTP_NOT_EXTENDED = 510 HTTP_NETWORK_AUTHENTICATION_REQUIRED = 511 HTTP_NETWORK_READ_TIMEOUT_ERROR = 598 # not used in RFC HTTP_NETWORK_CONNECT_TIMEOUT_ERROR = 599 # not used in RFC
py
1a4b0765cb88fb2519ad3ca957091fcf15d87626
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import sys import argparse import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Adam from mindspore.ops import operations as P from mindspore.common.initializer import TruncatedNormal from mindspore.parallel._ps_context import _is_role_pserver, _is_role_worker parser = argparse.ArgumentParser(description="test_sparse_embedding") parser.add_argument("--device_target", type=str, default="Ascend") args, _ = parser.parse_known_args() device_target = args.device_target context.set_context( mode=context.GRAPH_MODE, device_target=device_target, enable_sparse=True ) context.set_ps_context(enable_ps=True) def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): def __init__(self, num_class=10): super(LeNet5, self).__init__() self.cast = P.Cast() self.flatten = nn.Flatten() self.embedding = nn.EmbeddingLookup(16, 4) self.relu = nn.ReLU() self.fc = fc_with_initialize(12, num_class) def construct(self, x): x = self.cast(x, mstype.int32) x = self.embedding(x) x = self.flatten(x) x = self.fc(x) return x def do_sparse_embedding(ps=False): epoch = 10 net = LeNet5(10) if ps: net.embedding.embedding_table.set_param_ps() optimizer = Adam(filter(lambda x: x.requires_grad, net.get_parameters())) optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU") criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) train_network.set_train() losses = [] for _ in range(epoch): data = Tensor(np.random.randint(0, 15, (32, 3), np.int32)) label = Tensor(np.random.randint(0, 9, (32), np.int32)) if _is_role_pserver(): train_network(data, label) sys.exit() else: loss = train_network(data, label).asnumpy() losses.append(loss) print(losses) return losses envs = os.environ if __name__ == "__main__": np.random.seed(0) ps_loss = do_sparse_embedding(True) if _is_role_worker(): context.reset_ps_context() np.random.seed(0) no_ps_loss = do_sparse_embedding() context.set_ps_context(enable_ps=True) assert np.allclose(ps_loss, no_ps_loss, rtol=1.0e-6, atol=1.0e-6)
py
1a4b08feff9989b24cc95f9fd22b67faa971d5c5
"""write log to file.""" import logging import os ROOT_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def get_logger(filename, logger_name=None, on_screen=False, level=None): """Return logger.""" if not logger_name: logger_name = filename logger = logging.getLogger(logger_name) formatter = logging.Formatter( '[%(asctime)s] %(levelname)s - %(filename)s:%(lineno)d - %(message)s', '%Y-%m-%d %X') if level is None or level == "info": level = logging.INFO elif level == "debug": level = logging.DEBUG elif level == "warning": level = logging.WARN elif level == "error": level = logging.ERROR elif level == "critical": level = logging.CRITICAL stream_handler = logging.StreamHandler() stream_handler.setLevel(level) file_handler = logging.FileHandler('%s/logs/%s.log' % (ROOT_PATH, filename)) file_handler.setLevel(level) file_handler.setFormatter(formatter) stream_handler.setFormatter(formatter) logger.addHandler(file_handler) if on_screen: logger.addHandler(stream_handler) logger.setLevel(level) return logger
py
1a4b097edad557cc98353d4f98e1902b2a56c4ba
# # This file made available under CC0 1.0 Universal (https://creativecommons.org/publicdomain/zero/1.0/legalcode) # # Created with the Rule Development Kit: https://github.com/awslabs/aws-config-rdk # Can be used stand-alone or with the Rule Compliance Engine: https://github.com/awslabs/aws-config-engine-for-compliance-as-code # import sys import unittest try: from unittest.mock import MagicMock, patch, ANY except ImportError: import mock from mock import MagicMock, patch, ANY import botocore from botocore.exceptions import ClientError ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::ApiGateway::RestApi' ############# # Main Code # ############# config_client_mock = MagicMock() sts_client_mock = MagicMock() apigw_client_mock = MagicMock() class Boto3Mock(): def client(self, client_name, *args, **kwargs): if client_name == 'config': return config_client_mock elif client_name == 'sts': return sts_client_mock elif client_name == 'apigateway': return apigw_client_mock else: raise Exception("Attempting to create an unknown client") sys.modules['boto3'] = Boto3Mock() rule = __import__('API_GW_NOT_EDGE_OPTIMISED') class ParameterTest(unittest.TestCase): get_rest_apis_private = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['PRIVATE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['PRIVATE']}}] } invalid_rule_parameters = '{"ExceptionList":"apiid-1"}' def test_api_invalid_parameter(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_private) response = rule.lambda_handler(build_lambda_scheduled_event(rule_parameters=self.invalid_rule_parameters), {}) assert_customer_error_response( self, response, 'InvalidParameterValueException', 'Invalid value in the ExceptionList: apiid-1') class ComplianceTest(unittest.TestCase): rule_parameters = '{"ExceptionList":"apiid1,apiid2"}' invoking_event_iam_role_sample = '{"configurationItem":{"relatedEvents":[],"relationships":[],"configuration":{},"tags":{},"configurationItemCaptureTime":"2018-07-02T03:37:52.418Z","awsAccountId":"123456789012","configurationItemStatus":"ResourceDiscovered","resourceType":"AWS::IAM::Role","resourceId":"some-resource-id","resourceName":"some-resource-name","ARN":"some-arn"},"notificationCreationTime":"2018-07-02T23:05:34.445Z","messageType":"ConfigurationItemChangeNotification"}' get_rest_apis_private = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['PRIVATE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['PRIVATE']}}] } get_rest_apis_regional = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['REGIONAL']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['REGIONAL']}}] } get_rest_apis_edge = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['EDGE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['EDGE']}}] } get_rest_apis_mix_compliant_only = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['REGIONAL']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['PRIVATE']}}] } get_rest_apis_mix = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['EDGE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['REGIONAL']}}, {'id': 'apiid3', 'endpointConfiguration': {'types': ['PRIVATE']}}] } get_rest_apis_multi_type = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['EDGE', 'PRIVATE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['REGIONAL']}}] } def test_no_gw(self): apigw_client_mock.get_rest_apis = MagicMock(return_value={"items": []}) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NOT_APPLICABLE', '123456789012', 'AWS::::Account')) assert_successful_evaluation(self, response, resp_expected) def test_private_only_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_private) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) def test_regional_only_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_regional) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) def test_edge_only_NON_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_edge) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid1', annotation="EDGE OPTIMIZED API Gateway is present.")) resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid2', annotation="EDGE OPTIMIZED API Gateway is present.")) assert_successful_evaluation(self, response, resp_expected, 2) def test_mix_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_mix_compliant_only) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) def test_mix(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_mix) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid1', annotation="EDGE OPTIMIZED API Gateway is present.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid3')) assert_successful_evaluation(self, response, resp_expected, 3) def test_edge_exception_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_edge) response = rule.lambda_handler(build_lambda_scheduled_event(rule_parameters=self.rule_parameters), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1', annotation="API is part of exception list.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2', annotation="API is part of exception list.")) assert_successful_evaluation(self, response, resp_expected, 2) def test_mix_with_exceptions(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_mix) response = rule.lambda_handler(build_lambda_scheduled_event(rule_parameters=self.rule_parameters), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1', annotation="API is part of exception list.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2', annotation="API is part of exception list.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid3')) assert_successful_evaluation(self, response, resp_expected, 3) def test_multi_type(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_multi_type) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid1', annotation="EDGE OPTIMIZED API Gateway is present.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) #################### # Helper Functions # #################### def build_lambda_configurationchange_event(invoking_event, rule_parameters=None): event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_lambda_scheduled_event(rule_parameters=None): invoking_event = '{"messageType":"ScheduledNotification","notificationCreationTime":"2017-12-23T22:11:18.158Z"}' event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_expected_response(compliance_type, compliance_resource_id, compliance_resource_type=DEFAULT_RESOURCE_TYPE, annotation=None): if not annotation: return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type } return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type, 'Annotation': annotation } def assert_successful_evaluation(testClass, response, resp_expected, evaluations_count=1): if isinstance(response, dict): testClass.assertEquals(resp_expected['ComplianceType'], response['ComplianceType']) testClass.assertEquals(resp_expected['ComplianceResourceType'], response['ComplianceResourceType']) testClass.assertEquals(resp_expected['ComplianceResourceId'], response['ComplianceResourceId']) testClass.assertTrue(response['OrderingTimestamp']) if 'Annotation' in resp_expected or 'Annotation' in response: testClass.assertEquals(resp_expected['Annotation'], response['Annotation']) elif isinstance(response, list): testClass.assertEquals(evaluations_count, len(response)) for i, response_expected in enumerate(resp_expected): testClass.assertEquals(response_expected['ComplianceType'], response[i]['ComplianceType']) testClass.assertEquals(response_expected['ComplianceResourceType'], response[i]['ComplianceResourceType']) testClass.assertEquals(response_expected['ComplianceResourceId'], response[i]['ComplianceResourceId']) testClass.assertTrue(response[i]['OrderingTimestamp']) if 'Annotation' in response_expected or 'Annotation' in response[i]: testClass.assertEquals(response_expected['Annotation'], response[i]['Annotation']) def assert_customer_error_response(testClass, response, customerErrorCode=None, customerErrorMessage=None): if customerErrorCode: testClass.assertEqual(customerErrorCode, response['customerErrorCode']) if customerErrorMessage: testClass.assertEqual(customerErrorMessage, response['customerErrorMessage']) testClass.assertTrue(response['customerErrorCode']) testClass.assertTrue(response['customerErrorMessage']) if "internalErrorMessage" in response: testClass.assertTrue(response['internalErrorMessage']) if "internalErrorDetails" in response: testClass.assertTrue(response['internalErrorDetails']) def sts_mock(): assume_role_response = { "Credentials": { "AccessKeyId": "string", "SecretAccessKey": "string", "SessionToken": "string"}} sts_client_mock.reset_mock(return_value=True) sts_client_mock.assume_role = MagicMock(return_value=assume_role_response) ################## # Common Testing # ################## class TestStsErrors(unittest.TestCase): def test_sts_unknown_error(self): rule.ASSUME_ROLE_MODE = True sts_client_mock.assume_role = MagicMock(side_effect=botocore.exceptions.ClientError( {'Error': {'Code': 'unknown-code', 'Message': 'unknown-message'}}, 'operation')) response = rule.lambda_handler(build_lambda_configurationchange_event('{}'), {}) assert_customer_error_response( self, response, 'InternalError', 'InternalError') def test_sts_access_denied(self): rule.ASSUME_ROLE_MODE = True sts_client_mock.assume_role = MagicMock(side_effect=botocore.exceptions.ClientError( {'Error': {'Code': 'AccessDenied', 'Message': 'access-denied'}}, 'operation')) response = rule.lambda_handler(build_lambda_configurationchange_event('{}'), {}) assert_customer_error_response( self, response, 'AccessDenied', 'AWS Config does not have permission to assume the IAM role.')
py
1a4b0a7eadc86d58a88bfd094baae6bf98463be0
from django.db import models from .Activite import Activite from .Detail_Competence import Detail_Competence class Question(models.Model): num_question = models.CharField(max_length = 8) point = models.IntegerField(default = 0) activite = models.ForeignKey(Activite, on_delete = models.CASCADE) detail_competence = models.ForeignKey(Detail_Competence, on_delete = models.CASCADE) def __str__(self): libelle = self.num_question + " " + self.detail_competence.code return libelle
py
1a4b0bb1abc80571e06c7e580d655c519d1dc6a4
from setuptools import setup from setuptools import find_packages setup( name='tgen', version='0.3.0', description='Sequence-to-sequence natural language generator', author='Ondrej Dusek', author_email='[email protected]', url='https://github.com/UFAL-DSG/tgen', download_url='https://github.com/UFAL-DSG/tgen.git', license='Apache 2.0', install_requires=['regex', 'unicodecsv', 'enum34', 'numpy', 'rpyc', 'pudb', 'recordclass', 'tensorflow==1.13.1', 'kenlm', 'pytreex==0.1dev'], dependency_links=['https://github.com/kpu/kenlm/archive/master.zip#egg=kenlm', 'https://github.com/ufal/pytreex/tarball/master#egg=pytreex-0.1dev'], packages=find_packages() )
py
1a4b0c5b622365529ba8aace0deedec817dcf059
# -*- coding: utf-8 -*- # (c) 2009-2018 Martin Wendt and contributors; see WsgiDAV https://github.com/mar10/wsgidav # Original PyFileServer (c) 2005 Ho Chun Wei. # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license.php """ WSGI middleware used for debugging (optional). This module dumps request and response information to the console, depending on current debug configuration. On init: Define HTTP methods and litmus tests, that should turn on the verbose mode (currently hard coded). For every request: Increase value of ``environ['verbose']``, if the request should be debugged. Also dump request and response headers and body. Then pass the request to the next middleware. These configuration settings are evaluated: *verbose* This is also used by other modules. This filter adds additional information depending on the value. ======= =================================================================== verbose Effect ======= =================================================================== <= 3 No additional output (only standard request logging). 4 Dump headers of all requests and responses. 5 Dump headers and bodies of all requests and responses. ======= =================================================================== *debug_methods* Boost verbosity to 3 while processing certain request methods. This option is ignored, when ``verbose < 2``. Configured like:: debug_methods = ["PROPPATCH", "PROPFIND", "GET", "HEAD", "DELET E", "PUT", "COPY", "MOVE", "LOCK", "UNLOCK", ] *debug_litmus* Boost verbosity to 3 while processing litmus tests that contain certain substrings. This option is ignored, when ``verbose < 2``. Configured like:: debug_litmus = ["notowner_modify", "props: 16", ] """ import sys import threading from wsgidav import compat, util from wsgidav.middleware import BaseMiddleware from wsgidav.util import safe_re_encode __docformat__ = "reStructuredText" _logger = util.get_module_logger(__name__) class WsgiDavDebugFilter(BaseMiddleware): def __init__(self, wsgidav_app, next_app, config): super(WsgiDavDebugFilter, self).__init__(wsgidav_app, next_app, config) self._config = config # self.out = sys.stdout self.passedLitmus = {} # These methods boost verbose=2 to verbose=3 self.debug_methods = config.get("debug_methods", []) # Litmus tests containing these string boost verbose=2 to verbose=3 self.debug_litmus = config.get("debug_litmus", []) # Exit server, as soon as this litmus test has finished self.break_after_litmus = [ # "locks: 15", ] def __call__(self, environ, start_response): """""" # srvcfg = environ["wsgidav.config"] verbose = self._config.get("verbose", 3) method = environ["REQUEST_METHOD"] debugBreak = False dumpRequest = False dumpResponse = False if verbose >= 5: dumpRequest = dumpResponse = True # Process URL commands if "dump_storage" in environ.get("QUERY_STRING", ""): dav = environ.get("wsgidav.provider") if dav.lockManager: dav.lockManager._dump() if dav.propManager: dav.propManager._dump() # Turn on max. debugging for selected litmus tests litmusTag = environ.get("HTTP_X_LITMUS", environ.get("HTTP_X_LITMUS_SECOND")) if litmusTag and verbose >= 3: _logger.info("----\nRunning litmus test '{}'...".format(litmusTag)) for litmusSubstring in self.debug_litmus: if litmusSubstring in litmusTag: verbose = 5 debugBreak = True dumpRequest = True dumpResponse = True break for litmusSubstring in self.break_after_litmus: if ( litmusSubstring in self.passedLitmus and litmusSubstring not in litmusTag ): _logger.info(" *** break after litmus {}".format(litmusTag)) sys.exit(-1) if litmusSubstring in litmusTag: self.passedLitmus[litmusSubstring] = True # Turn on max. debugging for selected request methods if verbose >= 3 and method in self.debug_methods: verbose = 5 debugBreak = True dumpRequest = True dumpResponse = True # Set debug options to environment environ["wsgidav.verbose"] = verbose # environ["wsgidav.debug_methods"] = self.debug_methods environ["wsgidav.debug_break"] = debugBreak environ["wsgidav.dump_request_body"] = dumpRequest environ["wsgidav.dump_response_body"] = dumpResponse # Dump request headers if dumpRequest: _logger.info("{} Request ---".format(method)) # _logger.info("<{}> --- {} Request ---".format( # threading.currentThread().ident, method)) for k, v in environ.items(): if k == k.upper(): _logger.info("{:<20}: '{}'".format(k, safe_re_encode(v, "utf8"))) _logger.info("\n") # Intercept start_response # sub_app_start_response = util.SubAppStartResponse() nbytes = 0 first_yield = True app_iter = self.next_app(environ, sub_app_start_response) for v in app_iter: # Start response (the first time) if first_yield: # Success! start_response( sub_app_start_response.status, sub_app_start_response.response_headers, sub_app_start_response.exc_info, ) # Dump response headers if first_yield and dumpResponse: _logger.info( "<{}> ---{} Response({}): ---".format( threading.currentThread().ident, method, sub_app_start_response.status, ) ) headersdict = dict(sub_app_start_response.response_headers) for envitem in headersdict.keys(): _logger.info("{}: {}".format(envitem, repr(headersdict[envitem]))) _logger.info("") # Check, if response is a binary string, otherwise we probably have # calculated a wrong content-length assert compat.is_bytes(v), v # Dump response body drb = environ.get("wsgidav.dump_response_body") if compat.is_basestring(drb): # Middleware provided a formatted body representation _logger.info(drb) drb = environ["wsgidav.dump_response_body"] = None elif drb is True: # Else dump what we get, (except for long GET responses) if method == "GET": if first_yield: _logger.info("{}...".format(v[:50])) elif len(v) > 0: _logger.info(v) nbytes += len(v) first_yield = False yield v if hasattr(app_iter, "close"): app_iter.close() # Start response (if it hasn't been done yet) if first_yield: # Success! start_response( sub_app_start_response.status, sub_app_start_response.response_headers, sub_app_start_response.exc_info, ) if dumpResponse: _logger.info( "<{}> --- End of {} Response ({:d} bytes) ---".format( threading.currentThread().ident, method, nbytes ) ) return
py
1a4b0c5fc00e7000b1f9092d0ffd4ff5ec601d4c
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes and methods related to model_fn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import six from tensorflow.python.estimator.export.export_output import ExportOutput from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import monitored_session from tensorflow.python.training import session_run_hook from tensorflow.python.util import nest class ModeKeys(object): """Standard names for model modes. The following standard keys are defined: * `TRAIN`: training mode. * `EVAL`: evaluation mode. * `PREDICT`: inference mode. """ TRAIN = 'train' EVAL = 'eval' PREDICT = 'infer' LOSS_METRIC_KEY = 'loss' AVERAGE_LOSS_METRIC_KEY = 'average_loss' class EstimatorSpec( collections.namedtuple('EstimatorSpec', [ 'predictions', 'loss', 'train_op', 'eval_metric_ops', 'export_outputs', 'training_chief_hooks', 'training_hooks', 'scaffold', 'evaluation_hooks' ])): """Ops and objects returned from a `model_fn` and passed to an `Estimator`. `EstimatorSpec` fully defines the model to be run by an `Estimator`. """ def __new__(cls, mode, predictions=None, loss=None, train_op=None, eval_metric_ops=None, export_outputs=None, training_chief_hooks=None, training_hooks=None, scaffold=None, evaluation_hooks=None): """Creates a validated `EstimatorSpec` instance. Depending on the value of `mode`, different arguments are required. Namely * For `mode == ModeKeys.TRAIN`: required fields are `loss` and `train_op`. * For `mode == ModeKeys.EVAL`: required field is `loss`. * For `mode == ModeKeys.PREDICT`: required fields are `predictions`. model_fn can populate all arguments independent of mode. In this case, some arguments will be ignored by an `Estimator`. E.g. `train_op` will be ignored in eval and infer modes. Example: ```python def my_model_fn(mode, features, labels): predictions = ... loss = ... train_op = ... return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op) ``` Alternatively, model_fn can just populate the arguments appropriate to the given mode. Example: ```python def my_model_fn(mode, features, labels): if (mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL): loss = ... else: loss = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = ... else: train_op = None if mode == tf.estimator.ModeKeys.PREDICT: predictions = ... else: predictions = None return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op) ``` Args: mode: A `ModeKeys`. Specifies if this is training, evaluation or prediction. predictions: Predictions `Tensor` or dict of `Tensor`. loss: Training loss `Tensor`. Must be either scalar, or with shape `[1]`. train_op: Op for the training step. eval_metric_ops: Dict of metric results keyed by name. The values of the dict are the results of calling a metric function, namely a `(metric_tensor, update_op)` tuple. export_outputs: Describes the output signatures to be exported to `SavedModel` and used during serving. A dict `{name: output}` where: * name: An arbitrary name for this output. * output: an `ExportOutput` object such as `ClassificationOutput`, `RegressionOutput`, or `PredictOutput`. Single-headed models only need to specify one entry in this dictionary. Multi-headed models should specify one entry for each head, one of which must be named using signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY. training_chief_hooks: Iterable of `tf.train.SessionRunHook` objects to run on the chief worker during training. training_hooks: Iterable of `tf.train.SessionRunHook` objects to run on all workers during training. scaffold: A `tf.train.Scaffold` object that can be used to set initialization, saver, and more to be used in training. evaluation_hooks: Iterable of `tf.train.SessionRunHook` objects to run during evaluation. Returns: A validated `EstimatorSpec` object. Raises: ValueError: If validation fails. TypeError: If any of the arguments is not the expected type. """ # Validate train_op. if train_op is None: if mode == ModeKeys.TRAIN: raise ValueError('Missing train_op.') else: _check_is_tensor_or_operation(train_op, 'train_op') # Validate loss. if loss is None: if mode in (ModeKeys.TRAIN, ModeKeys.EVAL): raise ValueError('Missing loss.') else: loss = _check_is_tensor(loss, 'loss') loss_shape = loss.get_shape() if loss_shape.num_elements() not in (None, 1): raise ValueError('Loss must be scalar, given: {}'.format(loss)) if not loss_shape.is_compatible_with(tensor_shape.scalar()): loss = array_ops.reshape(loss, []) # Validate predictions. if predictions is None: if mode == ModeKeys.PREDICT: raise ValueError('Missing predictions.') predictions = {} else: if isinstance(predictions, dict): predictions = { k: _check_is_tensor(v, 'predictions[{}]'.format(k)) for k, v in six.iteritems(predictions) } else: predictions = _check_is_tensor(predictions, 'predictions') # Validate eval_metric_ops. if eval_metric_ops is None: eval_metric_ops = {} else: if not isinstance(eval_metric_ops, dict): raise TypeError( 'eval_metric_ops must be a dict, given: {}'.format(eval_metric_ops)) for key, metric_value_and_update in six.iteritems(eval_metric_ops): if (not isinstance(metric_value_and_update, tuple) or len(metric_value_and_update) != 2): raise TypeError( 'Values of eval_metric_ops must be (metric_value, update_op) ' 'tuples, given: {} for key: {}'.format( metric_value_and_update, key)) metric_value, metric_update = metric_value_and_update for metric_value_member in nest.flatten(metric_value): # Allow (possibly nested) tuples for metric values, but require that # each of them be Tensors or Operations. _check_is_tensor_or_operation(metric_value_member, 'eval_metric_ops[{}]'.format(key)) _check_is_tensor_or_operation(metric_update, 'eval_metric_ops[{}]'.format(key)) # Validate export_outputs. if export_outputs is not None: if not isinstance(export_outputs, dict): raise TypeError('export_outputs must be dict, given: {}'.format( export_outputs)) for v in six.itervalues(export_outputs): if not isinstance(v, ExportOutput): raise TypeError( 'Values in export_outputs must be ExportOutput objects. ' 'Given: {}'.format(export_outputs)) # Note export_outputs is allowed to be empty. if len(export_outputs) == 1: (key, value), = export_outputs.items() if key != signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: export_outputs[ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = value if len(export_outputs) > 1: if (signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY not in export_outputs): raise ValueError( 'Multiple export_outputs were provided, but none of them is ' 'specified as the default. Do this by naming one of them with ' 'signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.') # Validate that all tensors and ops are from the default graph. default_graph = ops.get_default_graph() # We enumerate possible error causes here to aid in debugging. error_message_template = ( '{0} with "{1}" must be from the default graph. ' 'Possible causes of this error include: \n\n' '1) {0} was created outside the context of the default graph.' '\n\n' '2) The object passed through to EstimatorSpec was not created ' 'in the most recent call to "model_fn".') if isinstance(predictions, dict): for key, value in six.iteritems(predictions): if value.graph is not default_graph: raise ValueError(error_message_template.format( 'prediction values', '{0}: {1}'.format(key, value.name))) elif predictions is not None: # 'predictions' must be a single Tensor. if predictions.graph is not default_graph: raise ValueError(error_message_template.format( 'prediction values', predictions.name)) if loss is not None and loss.graph is not default_graph: raise ValueError(error_message_template.format('loss', loss.name)) if train_op is not None and train_op.graph is not default_graph: raise ValueError(error_message_template.format('train_op', train_op.name)) for key, value in list(six.iteritems(eval_metric_ops)): values = nest.flatten(value) for value in values: if value.graph is not default_graph: raise ValueError(error_message_template.format( 'eval_metric_ops', '{0}: {1}'.format(key, value.name))) # Validate hooks. training_chief_hooks = tuple(training_chief_hooks or []) training_hooks = tuple(training_hooks or []) evaluation_hooks = tuple(evaluation_hooks or []) for hook in training_hooks + training_chief_hooks + evaluation_hooks: if not isinstance(hook, session_run_hook.SessionRunHook): raise TypeError( 'All hooks must be SessionRunHook instances, given: {}'.format( hook)) scaffold = scaffold or monitored_session.Scaffold() # Validate scaffold. if not isinstance(scaffold, monitored_session.Scaffold): raise TypeError( 'scaffold must be tf.train.Scaffold. Given: {}'.format(scaffold)) return super(EstimatorSpec, cls).__new__( cls, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs=export_outputs, training_chief_hooks=training_chief_hooks, training_hooks=training_hooks, scaffold=scaffold, evaluation_hooks=evaluation_hooks) def _check_is_tensor_or_operation(x, name): if not (isinstance(x, ops.Operation) or isinstance(x, ops.Tensor)): raise TypeError('{} must be Operation or Tensor, given: {}'.format(name, x)) def _check_is_tensor(x, tensor_name): """Returns `x` if it is a `Tensor`, raises TypeError otherwise.""" if not isinstance(x, ops.Tensor): raise TypeError('{} must be Tensor, given: {}'.format(tensor_name, x)) return x
py
1a4b0d349b5d7e70d58ad19783e865747b2a82a9
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None def delete(start,root,sec_node,k): if(root==None): return start.next if(k==0 and sec_node==None): sec_node=root return delete(start.next,root,sec_node.next,k) if(k==0 and sec_node.next==None): start.next=start.next.next return elif(k!=0): return delete(start,root.next,sec_node,k-1) return delete(start.next,root,sec_node.next,k) class Solution: # @param A : head node of linked list # @param B : integer # @return the head node in the linked list def removeNthFromEnd(self, root, k): if(root==None or (root.next==None and k==1)): return None # ans=delete(root,root,None,k) # return root if ans==None else ans sec_node=root top=root while(sec_node.next!=None): if(k!=0): sec_node=sec_node.next k-=1 else: sec_node=sec_node.next top=top.next if(k!=0): return root.next top.next=top.next.next return root """ Remove Nth Node from List End Problem Description Given a linked list A, remove the B-th node from the end of list and return its head. For example, Given linked list: 1->2->3->4->5, and B = 2. After removing the second node from the end, the linked list becomes 1->2->3->5. NOTE: If B is greater than the size of the list, remove the first node of the list. NOTE: Try doing it using constant additional space. Problem Constraints 1 <= |A| <= 106 Input Format The first argument of input contains a pointer to the head of the linked list. The second argument of input contains the integer B. Output Format Return the head of the linked list after deleting the B-th element from the end. Example Input Input 1: A = [1, 2, 3, 4, 5] B = 2 Input 2: A = [1] B = 1 Example Output Output 1: [1, 2, 3, 5] Output 2: [] Example Explanation Explanation 1: In the first example, 4 is the second last element. Explanation 2: In the second example, 1 is the first and the last element. """
py
1a4b0d6d0fa0ed0984530b650aaa64c84a0eb128
import numpy as np import random import milk.supervised.svm import milk.supervised.multi from milk.supervised.classifier import ctransforms from .fast_classifier import fast_classifier import milksets.wine features,labels = milksets.wine.load() A = np.arange(len(features)) random.seed(9876543210) random.shuffle(A) features = features[A] labels = labels[A] labelset = set(labels) base = ctransforms(milk.supervised.svm.svm_raw(C=2.,kernel=milk.supervised.svm.rbf_kernel(2.**-3)),milk.supervised.svm.svm_binary()) def test_one_against_rest(): M = milk.supervised.multi.one_against_rest(base) M = M.train(features[:100,:],labels[:100]) tlabels = [M.apply(f) for f in features[100:]] for tl in tlabels: assert tl in labelset def test_one_against_one(): M = milk.supervised.multi.one_against_one(base) M = M.train(features[:100,:],labels[:100]) tlabels = [M.apply(f) for f in features[100:]] for tl in tlabels: assert tl in labelset tlabels_many = M.apply_many(features[100:]) assert np.all(tlabels == tlabels_many) def test_two_thirds(): np.random.seed(2345) C = milk.supervised.defaultclassifier('fast') X = np.random.rand(120,4) X[:40] += np.random.rand(40,4) X[:40] += np.random.rand(40,4) X[40:80] -= np.random.rand(40,4) X[40:80] -= np.random.rand(40,4) Y = np.repeat(np.arange(3), 40) model = C.train(X,Y) Y_ = np.array([model.apply(x) for x in X]) assert (Y_ == Y).mean() * 3 > 2 def test_multi_labels(): clabels = [[lab, lab+7] for lab in labels] multi_label = milk.supervised.multi.one_against_rest_multi(base) model = multi_label.train(features[::2], clabels[::2]) test_vals = [model.apply(f) for f in features[1::2]] for ts in test_vals: if 0.0 in ts: assert 7.0 in ts if 1.0 in ts: assert 8.0 in ts if 2.0 in ts: assert 9.0 in ts def test_classifier_no_set_options(): # Basically these should not raise an exception milk.supervised.multi.one_against_rest_multi(fast_classifier()) milk.supervised.multi.one_against_rest(fast_classifier()) milk.supervised.multi.one_against_one(fast_classifier()) def test_tree(): mtree = milk.supervised.multi.multi_tree_learner(fast_classifier()) labels = [0,1,2,2,3,3,3,3] features = np.random.random_sample((len(labels), 8)) model = mtree.train(features, labels) counts = np.zeros(4) for ell in labels: counts[ell] += 1 g0,g1 = milk.supervised.multi.split(counts) assert np.all(g0 == [3]) or np.all(g1 == [3]) def list_to_zero(v): if isinstance(v, list): return 1000 return v def r(m): if len(m) == 1: return int(m[0]) else: return sorted([r(m[1]), r(m[2])], key=list_to_zero) assert r(model.model) == [3,[2,[0,1]]]
py
1a4b0ddb9174810cb770c375a06ec9f259125ee2
#!/usr/bin/env python import math import os import sys from PIL import Image from escpos.printer import Serial STRIP_WIDTH = 8 MAX_WIDTH = 540 if len(sys.argv) != 2: print("\033[1;31;40musage: {} imagefile.png\033[0m".format(sys.argv[0]), file=sys.stderr) sys.exit(1) image = Image.open(sys.argv[1]) print("Loaded image: {}".format(sys.argv[1])) print("Size: {}".format(image.size)) # Resize picture if too wide (img_w, img_h) = image.size if img_w > MAX_WIDTH: img_h = int(MAX_WIDTH * img_h / float(img_w)) img_w = MAX_WIDTH image = image.resize((img_w, img_h), Image.ANTIALIAS) print("Too large, resizing to: {}".format((img_w, img_h))) image = image.convert('L') num_strips = math.ceil(img_h / STRIP_WIDTH) print("Total Strips: {}".format(num_strips)) print("Strip size: {}".format((img_w, STRIP_WIDTH))) strips = [None] * num_strips for i in range(num_strips): area = (0, STRIP_WIDTH * i, img_w, STRIP_WIDTH * (i + 1)) strips[i] = image.crop(area) if img_h % STRIP_WIDTH != 0: strips[-1] = strips[-1].crop((0, 0, img_w, img_h % STRIP_WIDTH)) # Dump strips into a temporary directory if not os.path.exists('.temp'): os.mkdir('.temp') for i in range(num_strips): strips[i].save(os.path.join('.temp', "strip{0:03}.png".format(i))) # Do the printing p = Serial(devfile='COM5', baudrate=9600, parity='N', stopbits=1, timeout=1.00, dsrdtr=True) p.text("\033@") # Reset p.text("\033C\20") # Set sheet eject length p.text("\0331") # Select 1/8-inch line spacing p.text("\033$\000\000") # Set left margin p.text("\033a\001") # Center align for i in range(num_strips): p.image(os.path.join('.temp', "strip{0:03}.png".format(i))) p.text("\033a\000") # Left align #p.cut()
py
1a4b110af335e04dce1f21a8128b8de9970ac090
import json from flask import render_template, url_for, redirect, request, send_from_directory, g, flash from flask_login import current_user, login_user, logout_user, login_required from flask_babel import _, get_locale from flask_babel import lazy_gettext as _l from wtforms import RadioField, TextAreaField from wtforms.validators import DataRequired, Length from app import app, db, moment from app.models import Class, User, Group, Test, Result, TestResume, LogRequest, LogClick from app.forms import EmptyForm, LoginForm, RegisterForm, AddGroupForm, UpdateGroupForm, AddTestForm, UpdateTestForm, UpdateProfileForm from app.spec_checks import check_test_9 from datetime import datetime # ------------------------ main pages ------------------------ # @app.route('/') @app.route('/index') def index(): groups = Group.query.all() return render_template( "index.html", title = _("All tests"), menu = _("Test by groups"), groups = groups ) @app.route('/group/<int:id>') def group(id): group = Group.query.get(id) link = url_for( 'index' ) path = f"<a href='{link}'>{_('All tests')}</a> / {group.title}" return render_template( "group.html", title = f"{group.title}", path = path, menu = "Тесты в группе", group = group ) @app.route('/test/<int:id>') def test(id): test = Test.query.get(id) group = Group.query.get(test.id_group) link0 = url_for( 'index' ) link1 = url_for( 'group', id = group.id ) path = f"<a href={link0}>{_('All tests')}</a> / <a href={link1}>{group.title}</a> / {test.name}" return render_template( "test-base.html", title = test.name + " / " + _("Info"), path = path, test = test ) @app.route('/testing/<int:id>', methods = [ 'GET', 'POST' ]) def testing(id): test = Test.query.get(id) group = Group.query.get(test.id_group) link0 = url_for( 'index' ) link1 = url_for( 'group', id = group.id ) path = f"<a href={link0}>{_('All tests')}</a> / <a href={link1}>{group.title}</a> / {test.name}" class TestingForm(EmptyForm): pass for question in test.questions: setattr( TestingForm, str(question.id), RadioField( question.text, choices = [ ( a.id, a.text ) for a in question.answers ] , validators = [ DataRequired() ] ) ) form = TestingForm() if form.validate_on_submit(): arr = form.data score = -1 mark = 0 quests = test.questions.count() percent = -1 if current_user.is_authenticated: id_user = current_user.id else: id_user = None if id != 9: # Checks usual tests score = 0 for question in test.questions: if arr[ str(question.id) ] == str( question.true_answer() ): score += 1 percent = round( ( score / quests ) * 100, 1 ) if percent >= 90: mark = 5 elif 75 < percent < 90: mark = 4 elif 50 < percent <= 75: mark = 3 elif percent <= 50: mark = 2 elif id == 9: # Check test 9 mark = check_test_9( arr ) print( mark ) result = Result( id_test = test.id, id_user = id_user, mark = mark, score = score, quests = quests, percent = percent ) db.session.add( result ) db.session.commit() last_insert_id = result.id return redirect( url_for( "result", id = last_insert_id ) ) return render_template( "test.html", title = test.name + " / " + _("Testing"), path = path, form = form, test = test ) @app.route('/result/<int:id>') def result(id): result = Result.query.get( id ) test = Test.query.get( result.id_test ) group = Group.query.get( test.id_group ) if result.id_user is None: user = "None" else: user = User.query.get( result.id_user ) link0 = url_for( 'index' ) link1 = url_for( 'group', id = group.id ) path = f"<a href={link0}>{_('All tests')}</a> / <a href={link1}>{group.title}</a> / {test.name}" return render_template( "test-result.html", title = test.name + " / " + _("Result"), path = path, result = result, test = test, user = user ) @app.route('/edit_profile', methods = [ 'GET', 'POST' ]) # @login_required def profile(): form = UpdateProfileForm(current_user.username) classes = Class.query.all() classes_list = [(c.id, c.abbr) for c in classes] form.id_class.choices = classes_list if form.validate_on_submit(): current_user.username = form.username.data current_user.name = form.name.data current_user.lastname = form.lastname.data current_user.description = form.description.data current_user.id_class = form.id_class.data current_user.role = form.role.data current_user.sex = form.sex.data db.session.commit() return redirect( url_for( 'profile' ) ) elif request.method == 'GET': form.username.data = current_user.username form.name.data = current_user.name form.lastname.data = current_user.lastname form.description.data = current_user.description form.id_class.data = current_user.id_class form.role.data = current_user.role form.sex.data = current_user.sex return render_template( "forms/profile.html", title = _( 'Profile' ), form = form ) # ------------------------ login system ------------------------ # @app.route('/login', methods = [ 'GET', 'POST' ]) def login(): if current_user.is_authenticated: return redirect( url_for( "index" ) ) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by( username = form.username.data ).first() if user is None or not user.check_password( form.password.data ): return redirect( url_for( "login" ) ) login_user( user, remember = form.remember_me.data ) return redirect( url_for( "index" ) ) return render_template( "login.html", title = _("Sign in"), form = form ) @app.route('/register', methods = [ 'GET', 'POST' ]) def register(): if current_user.is_authenticated: return redirect( url_for("index") ) classes = Class.query.all() classes_list = [ ( c.id, c.abbr ) for c in classes ] form = RegisterForm() form.id_class.choices = classes_list if form.validate_on_submit(): user = User( username = form.username.data, name = form.name.data, lastname = form.lastname.data, email = form.email.data, id_class = form.id_class.data, role = form.role.data ) user.set_password( password = form.password.data ) db.session.add( user ) db.session.commit() return redirect( url_for( "login" ) ) return render_template( "register.html", title = _( "Register" ), form = form ) @app.route('/logout') def logout(): logout_user() return redirect( url_for( "index" ) ) # ------------------------ forms pages ------------------------ # @app.route('/add_group', methods = [ 'GET', 'POST' ]) @login_required def add_group(): form = AddGroupForm() if form.validate_on_submit(): group = Group( title = form.title.data, description = form.description.data ) db.session.add( group ) db.session.commit() last_insert_id = group.id return redirect( url_for( "group", id = last_insert_id ) ) return render_template( "forms/group-add.html", title = _( "Add group" ), form = form ) @app.route('/update_group/<int:id>', methods = [ 'GET', 'POST' ]) def update_group(id): form = UpdateGroupForm() group = Group.query.get( id ) if form.validate_on_submit(): group.title = form.title.data group.description = form.description.data db.session.commit() return redirect( url_for( "group", id = id ) ) elif request.method == 'GET': form.title.data = group.title form.description.data = group.description return render_template( "forms/group-update.html", title = _('Change of group'), form = form ) @app.route('/add_test', methods = [ 'GET', 'POST' ]) @login_required def add_test(): groups = Group.query.all() groups_list = [ ( g.id, g.title ) for g in groups ] form = AddTestForm() form.id_group.choices = groups_list if form.validate_on_submit(): test = Test( id_group = form.id_group.data, name = form.name.data, annotation = form.annotation.data, description = form.description.data ) db.session.add( test ) db.session.commit() last_insert_id = test.id return redirect( url_for( "test", id = last_insert_id ) ) return render_template( "forms/test-add.html", title = _( "Add test" ), form = form ) @app.route('/update_test/<int:id>', methods = ['GET', 'POST']) @login_required def update_test(id): groups = Group.query.all() groups_list = [(g.id, g.title) for g in groups] test = Test.query.get( id ) class UpdateSpecTestForm(UpdateTestForm): pass min_key = 0 max_key = 0 name_key = "" if test.is_usual(): min_key = 2 max_key = 6 name_key = _l( "Test resume for mark " ) else: if id == 9: min_key = -1 max_key = 11 name_key = _l( "Test resume for key " ) for i in range( min_key, max_key ): setattr( UpdateSpecTestForm, f'test_resume_{i}', TextAreaField( "{}'{}'".format( name_key, i ), validators = [DataRequired(), Length( min = 32, max = 512 )] ) ) form = UpdateSpecTestForm() form.id_group.choices = groups_list if form.validate_on_submit(): test.id_group = form.id_group.data test.name = form.name.data test.difficult = form.difficult.data test.annotation = form.annotation.data test.description = form.description.data for i in range(min_key, max_key): test.set_description_mark( i, form[ f'test_resume_{i}' ].data ) db.session.commit() return redirect( url_for( "test", id = id ) ) elif request.method == 'GET': form.id_group.data = test.id_group form.name.data = test.name form.difficult.data = test.difficult form.annotation.data = test.annotation form.description.data = test.description for i in range( min_key, max_key ): form[ f'test_resume_{i}' ].data = test.get_description_mark(i) return render_template( "forms/test-update.html", title = _('Change of test'), form = form, min_key = min_key, max_key = max_key ) # ------------------------ admin pages ------------------------ # @app.route('/admin/tables') def admin_tables(): user = User class_ = Class group = Group test = Test result = Result return render_template( "admin/tables.html", title = _('Admin-panel') + ' / ' + _('Tables'), user = user, group = group, test = test, result = result, class_ = class_ ) @app.route('/admin/table/users') def admin_table_classes(): classes = Class.query.all() title = f"{_( 'Admin-panel' )} / {_( 'Tables' )} / {_( 'Classes' )}" link0 = url_for( 'admin_tables' ) path = f"{_('Admin-panel')} / <a href='{link0}'>{_('Tables')}</a> / {_('Classes')}" return render_template( "admin/table-classes.html", title = title, path = path, classes = classes, wide = True ) @app.route('/admin/table/users') def admin_table_users(): users = User.query.all() title = f"{_( 'Admin-panel' )} / {_( 'Tables' )} / {_( 'Users' )}" link0 = url_for( 'admin_tables' ) path = f"{_('Admin-panel')} / <a href='{link0}'>{_('Tables')}</a> / {_('Users')}" return render_template( "admin/table-users.html", title = title, path = path, users = users, wide = True ) @app.route('/admin/table/groups') def admin_table_groups(): groups = Group.query.all() title = f"{_( 'Admin-panel' )} / {_( 'Tables' )} / {_( 'Groups' )}" link0 = url_for( 'admin_tables' ) path = f"{_( 'Admin-panel' )} / <a href='{link0}'>{_( 'Tables' )}</a> / {_( 'Groups' )}" return render_template( "admin/table-groups.html", title = title, path = path, groups = groups, wide = True ) @app.route('/admin/table/tests') def admin_table_tests(): tests = Test.query.all() title = _( 'Admin-panel' ) + ' / ' + _( 'Tables' ) + ' / ' + _( 'Tests' ) link0 = url_for( 'admin_tables' ) path = f"{_( 'Admin-panel' )} / <a href='{link0}'>{_( 'Tables' )}</a> / {_( 'Tests' )}" return render_template( "admin/table-tests.html", title = title, path = path, tests = tests, wide = True ) @app.route('/admin/table/results') def admin_table_results(): results = Result.query.all() title = _( 'Admin-panel' ) + ' / ' + _( 'Tables' ) + ' / ' + _( 'Results' ) link0 = url_for( 'admin_tables' ) path = f"{_( 'Admin-panel' )} / <a href='{link0}'>{_( 'Tables' )}</a> / {_( 'Results' )}" return render_template( "admin/table-results.html", title = title, path = path, results = results, wide = True ) @app.route('/admin/statistic') def admin_statistic(): clicks = LogClick.query requests = LogRequest.query return render_template( "admin/statistic.html", title = _('Admin-panel') + ' / ' + _('Statistic'), clicks = clicks, requests = requests ) # ------------------------ API pages ------------------------ # @app.route('/api') def api(): return render_template("api.html", title = _('API methods list')) # --- users --- @app.route('/api/get_users_count') def api_get_users_count(): count = User.query.count() return str( count ) # --- groups --- @app.route('/api/get_groups_count') def api_get_groups_count(): count = Group.query.count() return str( count ) @app.route('/api/get_groups_list') def api_get_groups_list(): list = Group.query.all() arr = [] for item in list: arr.append( { 'id': item.id, 'title': item.title } ) return json.dumps(arr) # --- tests --- @app.route('/api/get_tests_count') def api_get_tests_count(): count = Test.query.count() return str( count ) @app.route('/api/get_tests_list') def api_get_tests_list(): list = Test.query.all() arr = [] for item in list: arr.append( { 'id': item.id, 'id_group': item.id_group, 'name': item.name } ) return json.dumps( arr ) @app.route('/api/get_tests_count_by_group/<int:id>') def api_get_tests_count_by_group(id): if Group.query.get( id ): count = Test.query.filter( Test.id_group == id ).count() else: count = 'null' return str( count ) @app.route('/api/get_tests_list_by_group/<int:id>') def api_get_tests_list_by_group(id): if Group.query.get( id ): list = Test.query.filter( Test.id_group == id ).all() arr = [] for item in list: arr.append( { 'id': item.id, 'id_group': item.id_group, 'name': item.name } ) return json.dumps( arr ) else: response = 'null' return str( response ) # --- results --- @app.route('/api/get_results_count') def api_get_results_count(): count = Result.query.count() return str( count ) @app.route('/api/get_results_list') def api_get_results_list(): list = Result.query.all() arr = [] for item in list: arr.append( { 'id': item.id, 'id_test': item.id_test, 'id_user': item.id_user, 'mark': item.mark } ) return json.dumps( arr ) @app.route('/api/get_results_count_by_test/<int:id>') def api_get_results_count_by_test(id): if Test.query.get( id ): count = Result.query.filter( Result.id_test == id ).count() else: count = 'null' return str( count ) # ------------------------ system pages ------------------------ # @app.route('/about_system') def about_system(): return render_template( "about-system.html", title = _('About TeSi') ) @app.route('/about_us') def about_us(): return render_template( "about-us.html", title = _('About us') ) # ------------------------ technical pages ------------------------ # @app.route('/null') def null(): return "null" @app.route('/favicon.ico') @app.route('/robots.txt') @app.route('/sitemap.xml') def static_from_root(): return send_from_directory(app.static_folder, request.path[1:]) @app.errorhandler(404) def error_404(e): path = _('Errors') + " / 400 / " + _('Error 404') return render_template( "errors/404.html", title = _( 'Error 404' ), path = path ), 404 @app.errorhandler(405) def error_405(e): path = _('Errors') + " / 400 / " + _('Error 405') return render_template( "errors/405.html", title = _( 'Error 405' ), path = path ), 405 @app.errorhandler(500) def error_500(e): path = _('Errors') + " / 500 / " + _('Error 500') return render_template( "errors/500.html", title = _( 'Error 500' ), path = path ), 500 @app.before_request def before_request(): if current_user.is_authenticated: current_user.datetime_last = datetime.utcnow() db.session.commit() g.locale = str( get_locale() ) g.theme = 'dark'
py
1a4b113ee9c121f14a808f8cdf350c4033a133c7
from dagster import Field, RepositoryDefinition, Shape, composite_solid, pipeline, seven, solid @solid( config={ 'cluster_cfg': Shape( { 'num_mappers': Field(int), 'num_reducers': Field(int), 'master_heap_size_mb': Field(int), 'worker_heap_size_mb': Field(int), } ), 'name': Field(str), } ) def hello(context): context.log.info(seven.json.dumps(context.solid_config['cluster_cfg'])) return 'Hello, %s!' % context.solid_config['name'] def config_mapping_fn(cfg): return { 'hello': { 'config': { 'cluster_cfg': { 'num_mappers': 100, 'num_reducers': 20, 'master_heap_size_mb': 1024, 'worker_heap_size_mb': 8192, }, 'name': cfg['name'], } } } @composite_solid( config_fn=config_mapping_fn, config={'name': Field(str, is_required=False, default_value='Sam')}, ) def hello_external(): return hello() @pipeline def my_pipeline(): hello_external() def define_repository(): return RepositoryDefinition('config_mapping', pipeline_defs=[my_pipeline])
py
1a4b1171602687c7e03d70affdf777d210cb3a11
#!/usr/bin/env python3.7 # coding: utf-8 from .field_rename import FieldRename
py
1a4b13d2fc65c9d8faeb2ea5e39280f8d515b220
import glob import importlib import itertools import json import logging from io import StringIO from os import path from pprint import pprint import click import conllu import mlflow import pandas as pd import spacy from gensim.models.keyedvectors import KeyedVectors from lemmy import Lemmatizer from sklearn.model_selection import train_test_split from spacy.gold import GoldParse from spacy.scorer import Scorer from tqdm import tqdm import conll17_ud_eval from model_builder.eval import lemmy_accuracy from model_builder.io import ( parse_szk_morph, parse_szk_dep, sentence_repr, read_conllu_data_for_lemmy, RESOURCES_ROOT, format_as_conllu, ) from model_builder.ner import SpacyNerTrainer, DataIterator, sentence_to_str logging.basicConfig(level=logging.INFO) @click.group() def cli(): pass @cli.command() @click.argument("from_path") @click.argument("to_path") def convert_vectors_to_txt(from_path, to_path): model = KeyedVectors.load_word2vec_format( from_path, binary=True, unicode_errors="replace" ) model.save_word2vec_format(to_path, binary=False) @cli.command() @click.argument("vectors_path") def eval_vectors(vectors_path): model = KeyedVectors.load_word2vec_format( vectors_path, binary=False, unicode_errors="replace" ) analogies_result = model.wv.evaluate_word_analogies( path.join(RESOURCES_ROOT, "questions-words-hu.txt"), dummy4unknown=True, restrict_vocab=None, case_insensitive=False, ) pprint(analogies_result[0]) @cli.command() @click.argument("model_name") def smoke_test(model_name): nlp = spacy.load(model_name) doc = nlp( "Csiribiri csiribiri zabszalma - négy csillag közt alszom ma. " "Csiribiri csiribiri bojtorján lélek lép a lajtorján." ) print(nlp) print(doc, type(doc)) pprint( [ dict( text=t.text, lemma=t.lemma_, pos=t.pos_, tag=t.tag_, dep=t.dep_, head=t.head, is_stop=t.is_stop, has_vector=t.has_vector, brown_cluser=t.cluster, prob=t.prob, ) for t in doc ] ) @cli.command() @click.argument("input_file") @click.argument("output_file") def normalize_ud_corpus(input_file, output_file): with open(input_file) as f, open(output_file, "w") as of: for line in tqdm(f): stripped_line = line.strip() if len(stripped_line) == 0 or stripped_line[0] == "#": of.write(line) else: parts = stripped_line.split("\t") dep_label = parts[7] dep_label = dep_label.split(":")[0] parts[7] = dep_label of.write("\t".join(parts) + "\n") @cli.command() @click.argument("from_glob") @click.argument("to_path") @click.argument("dev_path") @click.argument("test_path") @click.option("--morph/--dep", default=False) def convert_szk_to_conllu(from_glob, to_path, dev_path, test_path, morph): ignored = [] for fpath in [dev_path, test_path]: with open(fpath) as f: ignored.extend(map(sentence_repr, conllu.parse(f.read()))) parser = parse_szk_morph if morph else parse_szk_dep ignored = set(ignored) parsed = [] for fpath in glob.glob(from_glob): for sent in conllu.parse("\n\n".join(parser(fpath))): if sentence_repr(sent) not in ignored: parsed.append(sent) logging.info("Read {} sentences".format(len(parsed))) with open(to_path, "w") as outf: out = "".join(sent.serialize() for sent in parsed) outf.write(out) @cli.command() @click.argument("train_path") @click.argument("test_path") @click.argument("model_path") def train_lemmy(train_path, test_path, model_path): X_train, y_train = read_conllu_data_for_lemmy(train_path) X_test, y_test = read_conllu_data_for_lemmy(test_path) lemmatizer = Lemmatizer() lemmatizer.fit(X_train, y_train) lemmy_accuracy(lemmatizer, X_test, y_test) with open(model_path, "w") as f: json.dump(lemmatizer.rules, f) @cli.command() @click.argument("model_name") @click.argument("test_data_path") @click.argument("ner_test_data") def benchmark_model(model_name, test_data_path, ner_test_data): with open(test_data_path) as f: data = conllu.parse(f.read()) text = " ".join(d.metadata["text"] for d in data) load_model = getattr(importlib.import_module(model_name), "load") nlp = load_model() _parsed = StringIO(format_as_conllu(nlp(text), 1)) parsed = conll17_ud_eval.load_conllu(_parsed) gold = conll17_ud_eval.load_conllu_file(test_data_path) results = pd.DataFrame( {k: v.__dict__ for k, v in conll17_ud_eval.evaluate(gold, parsed).items()} ).T print(results) diterator = DataIterator() test_sents = list(itertools.islice(diterator.tagged_sentences(ner_test_data), None)) scorer = Scorer() for sentence, annot in test_sents: doc_gold_text = nlp.make_doc(sentence) gold = GoldParse(doc_gold_text, entities=annot) predicted = nlp(sentence) scorer.score(predicted, gold) print(scorer.scores) @cli.command() @click.argument("model_name") @click.argument("output_path") @click.argument("train_data") @click.argument("dev_data") @click.argument("test_data") @click.argument("dropout") @click.argument("n_iter") @click.argument("patience") def train_ner(model_name, output_path, train_data, dev_data, test_data, dropout, n_iter, patience): mlflow.set_tracking_uri("./mlruns") mlflow.set_experiment("Spacy NER") mlflow.start_run(run_name="Using all") if model_name in ["None", "False", "", "blank"]: model_name = None trainer = SpacyNerTrainer(model_name, output_path) logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") logging.info("Reading train data") diterator = DataIterator() train_sentences = list(tqdm(itertools.islice(diterator.tagged_sentences(train_data), None))) logging.info("Got {} sentences with at least one entity".format(len(train_sentences))) logging.info("Reading test data") test_sentences = list(tqdm(diterator.tagged_sentences(test_data))) logging.info("Got {} sentences with at least one entity".format(len(test_sentences))) logging.info("Reading dev data") dev_sentences = list(tqdm(diterator.tagged_sentences(dev_data))) logging.info("Got {} sentences with at least one entity".format(len(dev_sentences))) trainer(train_sentences, dev_sentences, test_sentences, int(n_iter), float(dropout), int(patience)) mlflow.end_run() @cli.command() @click.argument("szegedner_data") @click.argument("train_data") @click.argument("dev_data") @click.argument("test_data") def split_ner_data(szegedner_data, train_data, dev_data, test_data): diterator = DataIterator() logging.info("Reading gold data") gold_sents = list(tqdm(itertools.islice(diterator.sentences_with_tags(szegedner_data), None))) train_sents, all_test_sents = train_test_split(gold_sents, test_size=.2, random_state=42) dev_sents, test_sents = train_test_split(all_test_sents, test_size=.5, random_state=42) logging.info("Storing training data") with open(train_data, "w") as f: for i, s in tqdm(enumerate(train_sents)): f.write(sentence_to_str(s)) f.write("\n") f.write("\n") logging.info("Storing test data") with open(dev_data, "w") as f: for i, s in tqdm(enumerate(dev_sents)): f.write(sentence_to_str(s)) f.write("\n") f.write("\n") logging.info("Storing test data") with open(test_data, "w") as f: for i, s in tqdm(enumerate(test_sents)): f.write(sentence_to_str(s)) f.write("\n") f.write("\n") if __name__ == "__main__": cli()
py
1a4b1402b46c21de8ae7513374edeecd7af57c2e
import psyco; psyco.full() from fltk import * import copy import numpy as np import sys #if '../PyCommon/modules' not in sys.path: # sys.path.append('../PyCommon/modules') if './modules' not in sys.path: sys.path.append('./modules') import Math.mmMath as mm import Resource.ysMotionLoader as yf import Renderer.ysRenderer as yr import Renderer.csVpRenderer as cvr import Simulator.csVpWorld as cvw import Simulator.csVpModel as cvm import GUI.ysSimpleViewer as ysv import Optimization.ysAnalyticConstrainedOpt as yac import ArticulatedBody.ysJacobian as yjc import Util.ysPythonEx as ype import ArticulatedBody.ysReferencePoints as yrp import ArticulatedBody.ysMomentum as ymt import ArticulatedBody.ysControl as yct import Motion.ysHierarchyEdit as yme import Simulator.ysPhysConfig as ypc import numpy.linalg as npl import mtOptimize as mot import mtInitialize_005 as mit contactState = 0 g_applyForce = False g_initFlag = 0 softConstPoint = [0, 0, 0] forceShowFrame = 0 forceApplyFrame = 0 JsysPre = 0 JsupPreL = 0 JsupPreR = 0 JsupPre = 0 stage = 0 ## Constant STATIC_BALANCING = 0 MOTION_TRACKING = 1 DYNAMIC_BALANCING = 2 POWERFUL_BALANCING = 3 POWERFUL_MOTION_TRACKING = 4 FLYING = 5 def checkAll(list, value) : for i in range(len(list)) : if list[i] != value : return 0 return 1 def getDesFootLinearAcc(refModel, controlModel, footIndex, ModelOffset, CM_ref, CM, Kk, Dk) : desLinearAcc = [0,0,0] refPos = refModel.getBodyPositionGlobal(footIndex) curPos = controlModel.getBodyPositionGlobal(footIndex) refVecL = refPos - CM_ref if stage == MOTION_TRACKING: refPos = CM + refVecL #refPos[1] += 0.05 #refPos[0] -= 0.05 elif stage == POWERFUL_BALANCING: refPos = copy.copy(curPos) refPos[1] = 0 elif stage == DYNAMIC_BALANCING: refPos = CM + refVecL else: refPos[0] += ModelOffset[0] refVel = refModel.getBodyVelocityGlobal(footIndex) curVel = controlModel.getBodyVelocityGlobal(footIndex) #refAcc = (0,0,0) refAcc = refModel.getBodyAccelerationGlobal(footIndex) if stage != MOTION_TRACKING: refPos[1] = 0.032 #refPos[1] = 0.0416 if refPos[1] < 0.0 : refPos[1] = 0.032 #refPos[1] = 0.0416 desLinearAcc = yct.getDesiredAcceleration(refPos, curPos, refVel, curVel, refAcc, Kk, Dk) return desLinearAcc, refPos def getDesFootAngularAcc(refModel, controlModel, footIndex, Kk, Dk) : desAngularAcc = [0,0,0] curAng = [controlModel.getBodyOrientationGlobal(footIndex)] refAngVel = refModel.getBodyAngVelocityGlobal(footIndex) curAngVel = controlModel.getBodyAngVelocityGlobal(footIndex) refAngAcc = (0,0,0) curAngY = np.dot(curAng, np.array([0,1,0])) refAngY = np.array([0,1,0]) if stage == MOTION_TRACKING+10: refAng = [refModel.getBodyOrientationGlobal(footIndex)] refAngY2 = np.dot(refAng, np.array([0,1,0])) refAngY = refAngY2[0] aL = mm.logSO3(mm.getSO3FromVectors(curAngY[0], refAngY)) desAngularAcc = Kk*aL + Dk*(refAngVel-curAngVel) return desAngularAcc def main(): np.set_printoptions(precision=4, linewidth=200) # motion, mcfg, wcfg, stepsPerFrame, config = mit.create_vchain_5() motion, mcfg, wcfg, stepsPerFrame, config = mit.create_biped() vpWorld = cvw.VpWorld(wcfg) motionModel = cvm.VpMotionModel(vpWorld, motion[0], mcfg) motionModel.recordVelByFiniteDiff() controlModel = cvm.VpControlModel(vpWorld, motion[0], mcfg) vpWorld.initialize() controlModel.initializeHybridDynamics() #ModelOffset = (1.5, -0.01, 0) ModelOffset = (1.5, 0.0, 0) controlModel.translateByOffset(ModelOffset) totalDOF = controlModel.getTotalDOF() DOFs = controlModel.getDOFs() # parameter Kt = config['Kt']; Dt = config['Dt'] # tracking gain Kl = config['Kl']; Dl = config['Dl'] # linear balance gain Kh = config['Kh']; Dh = config['Dh'] # angular balance gain Ks = config['Ks']; Ds = config['Ds'] # penalty force spring gain Bt = config['Bt'] Bl = config['Bl'] Bh = config['Bh'] w = mot.getTrackingWeight(DOFs, motion[0].skeleton, config['weightMap']) w2 = mot.getTrackingWeight(DOFs, motion[0].skeleton, config['weightMap2']) #w_IK = mot.getTrackingWeight(DOFs, motion[0].skeleton, config['IKweightMap']) supL = motion[0].skeleton.getJointIndex(config['supLink']) supR = motion[0].skeleton.getJointIndex(config['supLink2']) rootB = motion[0].skeleton.getJointIndex(config['root']) selectedBody = motion[0].skeleton.getJointIndex(config['end']) #constBody = motion[0].skeleton.getJointIndex('LeftForeArm') constBody = motion[0].skeleton.getJointIndex(config['const']) # jacobian Jsup = yjc.makeEmptyJacobian(DOFs, 1) dJsup = Jsup.copy() JsupPre = Jsup.copy() Jsys = yjc.makeEmptyJacobian(DOFs, controlModel.getBodyNum()) dJsys = Jsys.copy() JsysPre = Jsys.copy() Jconst = yjc.makeEmptyJacobian(DOFs, 1) dJconst = Jconst.copy() ############### footPartNum = config['FootPartNum'] indexFootL = [None]*footPartNum indexFootR = [None]*footPartNum jFootL = [None]*footPartNum dJFootL = [None]*footPartNum jFootR = [None]*footPartNum dJFootR = [None]*footPartNum jointMasksFootL = [None]*footPartNum jointMasksFootR = [None]*footPartNum jAngFootL = [None]*footPartNum dJAngFootL = [None]*footPartNum jAngFootR = [None]*footPartNum dJAngFootR = [None]*footPartNum for i in range(footPartNum) : jFootL[i] = yjc.makeEmptyJacobian(DOFs, 1) dJFootL[i] = jFootL[i].copy() jFootR[i] = yjc.makeEmptyJacobian(DOFs, 1) dJFootR[i] = jFootR[i].copy() jAngFootL[i] = yjc.makeEmptyJacobian(DOFs, 1, False) dJAngFootL[i] = jAngFootL[i].copy() jAngFootR[i] = yjc.makeEmptyJacobian(DOFs, 1, False) dJAngFootR[i] = jAngFootR[i].copy() indexFootL[i] = motion[0].skeleton.getJointIndex(config['FootLPart'][i]) indexFootR[i] = motion[0].skeleton.getJointIndex(config['FootRPart'][i]) jointMasksFootL[i] = [yjc.getLinkJointMask(motion[0].skeleton, indexFootL[i])] jointMasksFootR[i] = [yjc.getLinkJointMask(motion[0].skeleton, indexFootR[i])] constJointMasks = [yjc.getLinkJointMask(motion[0].skeleton, constBody)] allLinkJointMasks = yjc.getAllLinkJointMasks(motion[0].skeleton) ''' maskArray = [foreSupLJointMasks, foreSupRJointMasks, rearSupLJointMasks, rearSupRJointMasks] parentArray = [supL, supR, supL, supR] effectorArray = [foreSupL, foreSupR, rearSupL, rearSupR] for j in range(4) : for i in range(len(foreSupLJointMasks)) : if i == parentArray[j] or i == effectorArray[j] : maskArray[j][0][i] = 1 else : maskArray[j][0][i] = 0 ''' # momentum matrix linkMasses = controlModel.getBodyMasses() totalMass = controlModel.getTotalMass() TO = ymt.make_TO(linkMasses) dTO = ymt.make_dTO(len(linkMasses)) # optimization problem = yac.LSE(totalDOF, 6) a_sup = (0,0,0, 0,0,0) #L #a_sup2 = (0,0,0, 0,0,0)#R a_sup2 = [0,0,0, 0,0,0]#R a_sup_2 = [0,0,0, 0,0,0, 0,0,0, 0,0,0] CP_old = [mm.v3(0.,0.,0.)] # penalty method bodyIDsToCheck = range(vpWorld.getBodyNum()) mus = [1.]*len(bodyIDsToCheck) # flat data structure ddth_des_flat = ype.makeFlatList(totalDOF) dth_flat = ype.makeFlatList(totalDOF) ddth_sol = ype.makeNestedList(DOFs) d_th_IK = ype.makeNestedList(DOFs) d_th_IK_L = ype.makeNestedList(DOFs) d_th_IK_R = ype.makeNestedList(DOFs) dd_th_IK = ype.makeNestedList(DOFs) dd_th_IK_flat = ype.makeFlatList(totalDOF) d_th_IK_flat = ype.makeFlatList(totalDOF) ddth_c_flat = ype.makeFlatList(totalDOF) # viewer rd_footCenter = [None] rd_footCenter_ref = [None] rd_footCenterL = [None] rd_footCenterR = [None] rd_CM_plane = [None] rd_CM_plane_ref = [None] rd_CM_ref = [None] rd_CM = [None] rd_CM_vec = [None] rd_CM_ref_vec = [None] rd_CP = [None] rd_CP_des = [None] rd_dL_des_plane = [None] rd_dH_des = [None] rd_grf_des = [None] rd_exf_des = [None] rd_root_des = [None] rd_soft_const_vec = [None] rd_root = [None] rd_footL_vec = [None] rd_footR_vec = [None] rd_CMP = [None] rd_DesPosL = [None] rd_DesPosR = [None] rd_DesForePosL = [None] rd_DesForePosR = [None] rd_DesRearPosL = [None] rd_DesRearPosR = [None] rootPos = [None] selectedBodyId = [selectedBody] extraForce = [None] applyedExtraForce = [None] applyedExtraForce[0] = [0,0,0] normalVector = [[0,2,0]] viewer = ysv.SimpleViewer() # viewer.record(False) # viewer.doc.addRenderer('motion', yr.JointMotionRenderer(motion, (0,255,255), yr.LINK_BONE)) viewer.doc.addObject('motion', motion) viewer.doc.addRenderer('motionModel', cvr.VpModelRenderer(motionModel, (150,150,255), yr.POLYGON_FILL)) viewer.doc.addRenderer('controlModel', cvr.VpModelRenderer(controlModel, (255,240,255), yr.POLYGON_FILL)) viewer.doc.addRenderer('rd_footCenter', yr.PointsRenderer(rd_footCenter)) #viewer.doc.addRenderer('rd_footCenterL', yr.PointsRenderer(rd_footCenterL)) #viewer.doc.addRenderer('rd_footCenterR', yr.PointsRenderer(rd_footCenterR)) #viewer.doc.addRenderer('rd_CM_plane', yr.PointsRenderer(rd_CM_plane, (255,255,0))) viewer.doc.addRenderer('rd_CM', yr.PointsRenderer(rd_CM, (255,255,0))) viewer.doc.addRenderer('rd_CP_des', yr.PointsRenderer(rd_CP_des, (0,255,0))) #viewer.doc.addRenderer('rd_CP_des', yr.PointsRenderer(rd_CP_des, (255,0,255))) # viewer.doc.addRenderer('rd_dL_des_plane', yr.VectorsRenderer(rd_dL_des_plane, rd_CM, (255,255,0))) # viewer.doc.addRenderer('rd_dH_des', yr.VectorsRenderer(rd_dH_des, rd_CM, (0,255,0))) viewer.doc.addRenderer('rd_grf_des', yr.ForcesRenderer(rd_grf_des, rd_CP, (0,255,255), .001)) viewer.doc.addRenderer('rd_exf_des', yr.ForcesRenderer(rd_exf_des, rd_root_des, (0,255,0), .009, 0.05)) #viewer.doc.addRenderer('rd_CMP', yr.PointsRenderer(rd_CMP, (0,0,255))) viewer.doc.addRenderer('rd_DesPosL', yr.PointsRenderer(rd_DesPosL, (0,0,255))) viewer.doc.addRenderer('rd_DesPosR', yr.PointsRenderer(rd_DesPosR, (0,100,255))) viewer.doc.addRenderer('rd_DesForePosL', yr.PointsRenderer(rd_DesForePosL, (150,0,200))) viewer.doc.addRenderer('rd_DesForePosR', yr.PointsRenderer(rd_DesForePosR, (150,0,250))) viewer.doc.addRenderer('rd_DesRearPosL', yr.PointsRenderer(rd_DesRearPosL, (0,150,200))) viewer.doc.addRenderer('rd_DesRearPosR', yr.PointsRenderer(rd_DesRearPosR, (0,150,250))) #viewer.doc.addRenderer('softConstraint', yr.VectorsRenderer(rd_soft_const_vec, rd_CMP, (255,0,0), 3)) viewer.doc.addRenderer('rd_footLVec', yr.VectorsRenderer(rd_footL_vec, rd_footCenterL, (255,0,0), 3)) viewer.doc.addRenderer('rd_footRVec', yr.VectorsRenderer(rd_footR_vec, rd_footCenterL, (255,255,0), 3)) #viewer.doc.addRenderer('rd_footCenter_ref', yr.PointsRenderer(rd_footCenter_ref)) viewer.doc.addRenderer('rd_CM_plane_ref', yr.PointsRenderer(rd_CM_plane_ref, (255,255,0))) viewer.doc.addRenderer('rd_refNormalVec', yr.VectorsRenderer(normalVector, rd_footCenter_ref, (255,0,0), 3)) viewer.doc.addRenderer('rd_refCMVec', yr.VectorsRenderer(rd_CM_ref_vec, rd_footCenter_ref, (255,0,255), 3)) viewer.doc.addRenderer('rd_curNormalVec', yr.VectorsRenderer(normalVector, rd_footCenter, (255,0,0), 3)) viewer.doc.addRenderer('rd_CMVec', yr.VectorsRenderer(rd_CM_vec, rd_footCenter, (255,0,255), 3)) stage = STATIC_BALANCING def simulateCallback(frame): global g_initFlag global forceShowFrame global forceApplyFrame global JsysPre global JsupPreL global JsupPreR global JsupPre global softConstPoint global stage motionModel.update(motion[frame]) Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, Bsc = viewer.GetParam() Dt = 2*(Kt**.5) Dk = 2*(Kk**.5) Dl = 2*(Kl**.5) Dh = 2*(Kh**.5) Dsc = 2*(Ksc**.5) if Bsc == 0.0 : viewer.doc.showRenderer('softConstraint', False) viewer.motionViewWnd.update(1, viewer.doc) else: viewer.doc.showRenderer('softConstraint', True) renderer1 = viewer.doc.getRenderer('softConstraint') renderer1.rc.setLineWidth(0.1+Bsc*3) viewer.motionViewWnd.update(1, viewer.doc) # tracking th_r = motion.getDOFPositions(frame) th = controlModel.getDOFPositions() dth_r = motion.getDOFVelocities(frame) dth = controlModel.getDOFVelocities() ddth_r = motion.getDOFAccelerations(frame) ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, Kt, Dt) ddth_c = controlModel.getDOFAccelerations() ype.flatten(ddth_des, ddth_des_flat) ype.flatten(dth, dth_flat) ype.flatten(ddth_c, ddth_c_flat) # jacobian refFootL = motionModel.getBodyPositionGlobal(supL) refFootR = motionModel.getBodyPositionGlobal(supR) positionFootL = [None]*footPartNum positionFootR = [None]*footPartNum for i in range(footPartNum): positionFootL[i] = controlModel.getBodyPositionGlobal(indexFootL[i]) positionFootR[i] = controlModel.getBodyPositionGlobal(indexFootR[i]) linkPositions = controlModel.getBodyPositionsGlobal() linkVelocities = controlModel.getBodyVelocitiesGlobal() linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal() linkInertias = controlModel.getBodyInertiasGlobal() jointPositions = controlModel.getJointPositionsGlobal() jointAxeses = controlModel.getDOFAxeses() CM = yrp.getCM(linkPositions, linkMasses, totalMass) dCM = yrp.getCM(linkVelocities, linkMasses, totalMass) CM_plane = copy.copy(CM); CM_plane[1]=0. dCM_plane = copy.copy(dCM); dCM_plane[1]=0. linkPositions_ref = motionModel.getBodyPositionsGlobal() CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass) CM_plane_ref = copy.copy(CM_ref) CM_plane_ref[1] = 0. P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM, linkInertias) dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses, linkVelocities, dCM, linkAngVelocities, linkInertias) yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses, linkPositions, allLinkJointMasks) yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks) if g_initFlag == 0: softConstPoint = controlModel.getBodyPositionGlobal(constBody) softConstPoint[1] -= .3 g_initFlag = 1 yjc.computeJacobian2(jFootL[0], DOFs, jointPositions, jointAxeses, [positionFootL[0]], jointMasksFootL[0]) yjc.computeJacobianDerivative2(dJFootL[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[0]], jointMasksFootL[0], False) yjc.computeJacobian2(jFootR[0], DOFs, jointPositions, jointAxeses, [positionFootR[0]], jointMasksFootR[0]) yjc.computeJacobianDerivative2(dJFootR[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[0]], jointMasksFootR[0], False) yjc.computeAngJacobian2(jAngFootL[0], DOFs, jointPositions, jointAxeses, [positionFootL[0]], jointMasksFootL[0]) yjc.computeAngJacobianDerivative2(dJAngFootL[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[0]], jointMasksFootL[0], False) yjc.computeAngJacobian2(jAngFootR[0], DOFs, jointPositions, jointAxeses, [positionFootR[0]], jointMasksFootR[0]) yjc.computeAngJacobianDerivative2(dJAngFootR[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[0]], jointMasksFootR[0], False) bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds) CP = yrp.getCP(contactPositions, contactForces) for i in range(len(bodyIDsToCheck)) : controlModel.SetBodyColor(bodyIDsToCheck[i], 0, 0, 0) contactFlagFootL = [0]*footPartNum contactFlagFootR = [0]*footPartNum for i in range(len(bodyIDs)) : controlModel.SetBodyColor(bodyIDs[i], 255, 105, 105) index = controlModel.id2index(bodyIDs[i]) for j in range(len(indexFootL)): if index == indexFootL[j]: contactFlagFootL[j] = 1 if j != 0: yjc.computeJacobian2(jFootL[j], DOFs, jointPositions, jointAxeses, [positionFootL[j]], jointMasksFootL[j]) yjc.computeJacobianDerivative2(dJFootL[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[j]], jointMasksFootL[j], False) break for j in range(len(indexFootR)): if index == indexFootR[j]: contactFlagFootR[j] = 1 if j != 0: yjc.computeJacobian2(jFootR[j], DOFs, jointPositions, jointAxeses, [positionFootR[j]], jointMasksFootR[j]) yjc.computeJacobianDerivative2(dJFootR[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[j]], jointMasksFootR[j], False) break for j in range(len(indexFootL)): yjc.computeAngJacobian2(jAngFootL[j], DOFs, jointPositions, jointAxeses, [positionFootL[j]], jointMasksFootL[j]) yjc.computeAngJacobianDerivative2(dJAngFootL[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[j]], jointMasksFootL[j], False) yjc.computeAngJacobian2(jAngFootR[j], DOFs, jointPositions, jointAxeses, [positionFootR[j]], jointMasksFootR[j]) yjc.computeAngJacobianDerivative2(dJAngFootR[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[j]], jointMasksFootR[j], False) ''' if frame < 100 : if stage == POWERFUL_BALANCING: #if stage != MOTION_TRACKING: footCenterL = controlModel.getBodyPositionGlobal(supL) footCenterR = controlModel.getBodyPositionGlobal(supR) else: footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1]) footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1]) else: ''' if footPartNum == 1: footCenterL = controlModel.getBodyPositionGlobal(supL) footCenterR = controlModel.getBodyPositionGlobal(supR) else: if ((contactFlagFootL[3] == 1 or contactFlagFootL[4] == 1) and contactFlagFootL[0] == 0) or ((contactFlagFootR[3] == 1 or contactFlagFootR[4] == 1) and contactFlagFootR[0] == 0): footCenterL = (controlModel.getBodyPositionGlobal(supL) + controlModel.getBodyPositionGlobal(indexFootL[1]))/2.0 footCenterR = (controlModel.getBodyPositionGlobal(supR) + controlModel.getBodyPositionGlobal(indexFootR[1]))/2.0 #footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1]) #footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1]) else : footCenterL = (controlModel.getBodyPositionGlobal(supL) + controlModel.getBodyPositionGlobal(indexFootL[1]))/2.0 footCenterR = (controlModel.getBodyPositionGlobal(supR) + controlModel.getBodyPositionGlobal(indexFootR[1]))/2.0 #footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1]) #footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1]) footCenter = footCenterL + (footCenterR - footCenterL)/2.0 footCenter[1] = 0. footCenter_ref = refFootL + (refFootR - refFootL)/2.0 #footCenter_ref[1] = 0. # if checkAll(contactFlagFootL, 0) == 1 and checkAll(contactFlagFootR, 0) == 1: footCenter = footCenter elif checkAll(contactFlagFootL, 0) == 1 : footCenter = footCenterR elif checkAll(contactFlagFootR, 0) == 1 : footCenter = footCenterL footCenter[1] = 0. desForeSupLAcc = [0,0,0] desForeSupRAcc = [0,0,0] totalNormalForce = [0,0,0] for i in range(len(contactForces)): totalNormalForce[0] += contactForces[i][0] totalNormalForce[1] += contactForces[i][1] totalNormalForce[2] += contactForces[i][2] # linear momentum CM_ref_plane = footCenter dL_des_plane = Kl*totalMass*(CM_ref_plane - CM_plane) - Dl*totalMass*dCM_plane # angular momentum CP_ref = footCenter timeStep = 30. if CP_old[0]==None or CP==None: dCP = None else: dCP = (CP - CP_old[0])/(1/timeStep) CP_old[0] = CP if CP!=None and dCP!=None: ddCP_des = Kh*(CP_ref - CP) - Dh*(dCP) CP_des = CP + dCP*(1/timeStep) + .5*ddCP_des*((1/timeStep)**2) dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity))) #dH_des = np.cross((CP_des - CM_plane), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity))) else: dH_des = None # momentum matrix RS = np.dot(P, Jsys) R, S = np.vsplit(RS, 2) rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat) r_bias, s_bias = np.hsplit(rs, 2) ############################## # soft point constraint P_des = softConstPoint P_cur = controlModel.getBodyPositionGlobal(constBody) dP_des = [0, 0, 0] dP_cur = controlModel.getBodyVelocityGlobal(constBody) ddP_des1 = Ksc*(P_des - P_cur) - Dsc*(dP_cur - dP_des) r = P_des - P_cur I = np.vstack(([1,0,0],[0,1,0],[0,0,1])) Z = np.hstack((I, mm.getCrossMatrixForm(-r))) yjc.computeJacobian2(Jconst, DOFs, jointPositions, jointAxeses, [softConstPoint], constJointMasks) JL, JA = np.vsplit(Jconst, 2) Q1 = np.dot(Z, Jconst) q1 = np.dot(JA, dth_flat) q2 = np.dot(mm.getCrossMatrixForm(q1), np.dot(mm.getCrossMatrixForm(q1), r)) yjc.computeJacobianDerivative2(dJconst, DOFs, jointPositions, jointAxeses, linkAngVelocities, [softConstPoint], constJointMasks, False) q_bias1 = np.dot(np.dot(Z, dJconst), dth_flat) + q2 ############################## flagContact = True if dH_des==None or np.any(np.isnan(dH_des)) == True: flagContact = False viewer.doc.showRenderer('rd_grf_des', False) viewer.motionViewWnd.update(1, viewer.doc) else: viewer.doc.showRenderer('rd_grf_des', True) viewer.motionViewWnd.update(1, viewer.doc) ''' 0 : initial 1 : contact 2 : fly 3 : landing ''' #MOTION = FORWARD_JUMP if mit.MOTION == mit.FORWARD_JUMP : frame_index = [136, 100] #frame_index = [100000, 100000] elif mit.MOTION == mit.TAEKWONDO: frame_index = [130, 100] #frame_index = [100000, 100000] elif mit.MOTION == mit.TAEKWONDO2: frame_index = [130+40, 100] else : frame_index = [1000000, 1000000] #MOTION = TAEKWONDO #frame_index = [135, 100] ''' if frame > 300 : if stage != DYNAMIC_BALANCING: print("#", frame,"-DYNAMIC_BALANCING") stage = DYNAMIC_BALANCING Kk = Kk*1 Dk = 2*(Kk**.5) ''' if frame > frame_index[0] : if stage != POWERFUL_BALANCING: print("#", frame,"-POWERFUL_BALANCING") stage = POWERFUL_BALANCING Kk = Kk*2 Dk = 2*(Kk**.5) elif frame > frame_index[1]: if stage != MOTION_TRACKING: print("#", frame,"-MOTION_TRACKING") stage = MOTION_TRACKING trackingW = w if stage == MOTION_TRACKING: trackingW = w2 Bt = Bt*2 # optimization mot.addTrackingTerms(problem, totalDOF, Bt, trackingW, ddth_des_flat) mot.addSoftPointConstraintTerms(problem, totalDOF, Bsc, ddP_des1, Q1, q_bias1) if flagContact == True: if stage != MOTION_TRACKING+10: mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R, r_bias) mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias) a_sup_2 = [None] Jsup_2 = [None] dJsup_2 = [None] ############################## # Hard constraint if stage != MOTION_TRACKING: Kk2 = Kk * 2.0 else : Kk2 = Kk * 1.5 Dk2 = 2*(Kk2**.5) ''' desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, supL, ModelOffset, CM_ref, CM, Kk2, Dk2) desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, supR, ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, supL, Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, supR, Kk2, Dk2) ''' if stage != MOTION_TRACKING: idx = 0 #LEFT/RIGHT_TOES desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[idx], ModelOffset, CM_ref, CM, Kk2, Dk2) desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[idx], ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2) a_sup_2 = np.hstack(( np.hstack((desLinearAccL, desAngularAccL)), np.hstack((desLinearAccR, desAngularAccR)) )) Jsup_2 = np.vstack((jFootL[idx], jFootR[idx])) dJsup_2 = np.vstack((dJFootL[idx], dJFootR[idx])) rd_DesPosL[0] = desPosL.copy() rd_DesPosR[0] = desPosR.copy() else: if footPartNum == 5: idx = 3 desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2) a_sup_2 = np.hstack(( desAngularAccL, desAngularAccR )) Jsup_2 = np.vstack((jAngFootL[idx], jAngFootR[idx])) dJsup_2 = np.vstack((dJAngFootL[idx], dJAngFootR[idx])) else: idx = 1 desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2) a_sup_2 = np.hstack(( desAngularAccL, desAngularAccR )) Jsup_2 = np.vstack((jAngFootL[idx], jAngFootR[idx])) dJsup_2 = np.vstack((dJAngFootL[idx], dJAngFootR[idx])) ############################## ############################## # Additional constraint if stage != MOTION_TRACKING: #Kk2 = Kk * 2.5 Kk2 = Kk * 2.5 Dk2 = 2*(Kk2**.5) desForePosL = [0,0,0] desForePosR = [0,0,0] desRearPosL = [0,0,0] desRearPosR = [0,0,0] for i in range(1, footPartNum) : if contactFlagFootL[i] == 1: desLinearAccL, desForePosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[i], ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[i], Kk2, Dk2) a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccL, desAngularAccL)) )) Jsup_2 = np.vstack(( Jsup_2, jFootL[i] )) dJsup_2 = np.vstack(( dJsup_2, dJFootL[i] )) if contactFlagFootR[i] == 1: desLinearAccR, desForePosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[i], ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[i], Kk2, Dk2) a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccR, desAngularAccR)) )) Jsup_2 = np.vstack(( Jsup_2, jFootR[i] )) dJsup_2 = np.vstack(( dJsup_2, dJFootR[i] )) rd_DesForePosL[0] = desForePosL rd_DesForePosR[0] = desForePosR rd_DesRearPosL[0] = desRearPosL rd_DesRearPosR[0] = desRearPosR ############################## mot.setConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2) r = problem.solve() problem.clear() ype.nested(r['x'], ddth_sol) rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody) localPos = [[0, 0, 0]] for i in range(stepsPerFrame): # apply penalty force bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds) vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals, contactForces) extraForce[0] = viewer.GetForce() if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) : forceApplyFrame += 1 #vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce) controlModel.applyBodyForceGlobal(selectedBody, extraForce[0]) applyedExtraForce[0] = extraForce[0] if forceApplyFrame*wcfg.timeStep > 0.1: viewer.ResetForce() forceApplyFrame = 0 controlModel.setDOFAccelerations(ddth_sol) controlModel.solveHybridDynamics() ''' extraForce[0] = viewer.GetForce() if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) : forceApplyFrame += 1 vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce) applyedExtraForce[0] = extraForce[0] if forceApplyFrame*wcfg.timeStep > 0.1: viewer.ResetForce() forceApplyFrame = 0 ''' vpWorld.step() # rendering rd_footCenter[0] = footCenter rd_CM[0] = CM.copy() rd_CM_plane[0] = CM_plane.copy() rd_footCenter_ref[0] = footCenter_ref rd_CM_plane_ref[0] = CM_ref.copy() rd_CM_ref[0] = CM_ref.copy() rd_CM_ref_vec[0] = (CM_ref - footCenter_ref)*3. rd_CM_vec[0] = (CM - footCenter)*3 #rd_CM_plane[0][1] = 0. if CP!=None and dCP!=None: rd_CP[0] = CP rd_CP_des[0] = CP_des rd_dL_des_plane[0] = dL_des_plane rd_dH_des[0] = dH_des rd_grf_des[0] = totalNormalForce - totalMass*mm.s2v(wcfg.gravity)#dL_des_plane - totalMass*mm.s2v(wcfg.gravity) rd_exf_des[0] = applyedExtraForce[0] rd_root_des[0] = rootPos[0] rd_CMP[0] = softConstPoint rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(constBody)-softConstPoint if (forceApplyFrame == 0) : applyedExtraForce[0] = [0, 0, 0] viewer.setSimulateCallback(simulateCallback) viewer.startTimer(1/60.) viewer.show() Fl.run() main()
py
1a4b14d360745395bb9240691022b554e331bb6a
# SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2021 Vít Labuda. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Class diagram: # A A # / \ | # / \ | # B C B # \ / | # \ / | # D1 D2 class A: def __init__(self): print("A") # In the case of the D1 class, this method gets called twice (because both B and C call A's __init__). class B(A): def __init__(self, x): print("B ({})".format(x)) A.__init__(self) class C(A): def __init__(self, x): print("C ({})".format(x)) A.__init__(self) class D1(B, C): def __init__(self, x): print("D1 ({})".format(x)) B.__init__(self, x) C.__init__(self, x) class D2(B): def __init__(self, x): print("D2 ({})".format(x)) B.__init__(self, x) if __name__ == '__main__': print(D1.__mro__) D1("x") print() print(D2.__mro__) D2("x") # Output: # (<class '__main__.D1'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>) # D1 (x) # B (x) # A # C (x) # A # # (<class '__main__.D2'>, <class '__main__.B'>, <class '__main__.A'>, <class 'object'>) # D2 (x) # B (x) # A
py
1a4b151f2b4099c594567aab99433c1c9358ebf2
import unittest from django.contrib.gis.gdal import HAS_GDAL from django.contrib.gis.tests.utils import ( SpatialRefSys, oracle, postgis, spatialite, ) from django.db import connection from django.test import skipUnlessDBFeature from django.utils import six test_srs = ({ 'srid': 4326, 'auth_name': ('EPSG', True), 'auth_srid': 4326, # Only the beginning, because there are differences depending on installed libs 'srtext': 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84"', # +ellps=WGS84 has been removed in the 4326 proj string in proj-4.8 'proj4_re': r'\+proj=longlat (\+ellps=WGS84 )?(\+datum=WGS84 |\+towgs84=0,0,0,0,0,0,0 )\+no_defs ', 'spheroid': 'WGS 84', 'name': 'WGS 84', 'geographic': True, 'projected': False, 'spatialite': True, # From proj's "cs2cs -le" and Wikipedia (semi-minor only) 'ellipsoid': (6378137.0, 6356752.3, 298.257223563), 'eprec': (1, 1, 9), }, { 'srid': 32140, 'auth_name': ('EPSG', False), 'auth_srid': 32140, 'srtext': ( 'PROJCS["NAD83 / Texas South Central",GEOGCS["NAD83",' 'DATUM["North_American_Datum_1983",SPHEROID["GRS 1980"' ), 'proj4_re': r'\+proj=lcc \+lat_1=30.28333333333333 \+lat_2=28.38333333333333 \+lat_0=27.83333333333333 ' r'\+lon_0=-99 \+x_0=600000 \+y_0=4000000 (\+ellps=GRS80 )?' r'(\+datum=NAD83 |\+towgs84=0,0,0,0,0,0,0 )?\+units=m \+no_defs ', 'spheroid': 'GRS 1980', 'name': 'NAD83 / Texas South Central', 'geographic': False, 'projected': True, 'spatialite': False, # From proj's "cs2cs -le" and Wikipedia (semi-minor only) 'ellipsoid': (6378137.0, 6356752.31414, 298.257222101), 'eprec': (1, 5, 10), }) @unittest.skipUnless(HAS_GDAL, "SpatialRefSysTest needs gdal support") @skipUnlessDBFeature("has_spatialrefsys_table") class SpatialRefSysTest(unittest.TestCase): def test_retrieve(self): """ Test retrieval of SpatialRefSys model objects. """ for sd in test_srs: srs = SpatialRefSys.objects.get(srid=sd['srid']) self.assertEqual(sd['srid'], srs.srid) # Some of the authority names are borked on Oracle, e.g., SRID=32140. # also, Oracle Spatial seems to add extraneous info to fields, hence the # the testing with the 'startswith' flag. auth_name, oracle_flag = sd['auth_name'] if postgis or (oracle and oracle_flag): self.assertEqual(True, srs.auth_name.startswith(auth_name)) self.assertEqual(sd['auth_srid'], srs.auth_srid) # No proj.4 and different srtext on oracle backends :( if postgis: self.assertTrue(srs.wkt.startswith(sd['srtext'])) six.assertRegex(self, srs.proj4text, sd['proj4_re']) def test_osr(self): """ Test getting OSR objects from SpatialRefSys model objects. """ for sd in test_srs: sr = SpatialRefSys.objects.get(srid=sd['srid']) self.assertEqual(True, sr.spheroid.startswith(sd['spheroid'])) self.assertEqual(sd['geographic'], sr.geographic) self.assertEqual(sd['projected'], sr.projected) if not (spatialite and not sd['spatialite']): # Can't get 'NAD83 / Texas South Central' from PROJ.4 string # on SpatiaLite self.assertEqual(True, sr.name.startswith(sd['name'])) # Testing the SpatialReference object directly. if postgis or spatialite: srs = sr.srs six.assertRegex(self, srs.proj4, sd['proj4_re']) # No `srtext` field in the `spatial_ref_sys` table in SpatiaLite < 4 if not spatialite or connection.ops.spatial_version[0] >= 4: self.assertTrue(srs.wkt.startswith(sd['srtext'])) def test_ellipsoid(self): """ Test the ellipsoid property. """ for sd in test_srs: # Getting the ellipsoid and precision parameters. ellps1 = sd['ellipsoid'] prec = sd['eprec'] # Getting our spatial reference and its ellipsoid srs = SpatialRefSys.objects.get(srid=sd['srid']) ellps2 = srs.ellipsoid for i in range(3): self.assertAlmostEqual(ellps1[i], ellps2[i], prec[i]) @skipUnlessDBFeature('supports_add_srs_entry') def test_add_entry(self): """ Test adding a new entry in the SpatialRefSys model using the add_srs_entry utility. """ from django.contrib.gis.utils import add_srs_entry add_srs_entry(3857) self.assertTrue( SpatialRefSys.objects.filter(srid=3857).exists() ) srs = SpatialRefSys.objects.get(srid=3857) self.assertTrue( SpatialRefSys.get_spheroid(srs.wkt).startswith('SPHEROID[') )
py
1a4b16ef9b032c1470c034ef4393bbdc745bb489
from typing import Any, Type def subclasses_of(klass: Type[Any]): subclasses = [] stack = [klass] while stack: parent = stack.pop() for subclass in parent.__subclasses__(): if subclass not in subclasses: stack.append(subclass) subclasses.append(subclass) return subclasses
py
1a4b17c11d81f583aef77264eaac0e9de73fdc19
# Copyright 2018 Google. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides utilities to preprocess images for the Inception networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import random_ops flags.DEFINE_float( 'cb_distortion_range', 0.1, 'Cb distortion range +/-') flags.DEFINE_float( 'cr_distortion_range', 0.1, 'Cr distortion range +/-') flags.DEFINE_boolean( 'use_fast_color_distort', True, 'apply fast color/chroma distortion if True, else apply' 'brightness/saturation/hue/contrast distortion') FLAGS = flags.FLAGS def apply_with_random_selector(x, func, num_cases): """Computes func(x, sel), with sel sampled from [0...num_cases-1]. Args: x: input Tensor. func: Python function to apply. num_cases: Python int32, number of cases to sample sel from. Returns: The result of func(x, sel), where func receives the value of the selector as a python integer, but sel is sampled dynamically. """ sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32) # Pass the real x only to one of the func calls. return control_flow_ops.merge([ func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) for case in range(num_cases)])[0] def distort_color(image, color_ordering=0, fast_mode=True, scope=None): """Distort the color of a Tensor image. Each color distortion is non-commutative and thus ordering of the color ops matters. Ideally we would randomly permute the ordering of the color ops. Rather then adding that level of complication, we select a distinct ordering of color ops for each preprocessing thread. Args: image: 3-D Tensor containing single image in [0, 1]. color_ordering: Python int, a type of distortion (valid values: 0-3). fast_mode: Avoids slower ops (random_hue and random_contrast) scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] Raises: ValueError: if color_ordering not in [0, 3] """ with tf.name_scope(scope, 'distort_color', [image]): if fast_mode: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) else: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) elif color_ordering == 2: image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) elif color_ordering == 3: image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: raise ValueError('color_ordering must be in [0, 3]') # The random_* ops do not necessarily clamp. return tf.minimum(tf.maximum(image, 0.0), 1.0) def distort_color_fast(image, scope=None): """Distort the color of a Tensor image. Distort brightness and chroma values of input image Args: image: 3-D Tensor containing single image in [0, 1]. scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] """ with tf.name_scope(scope, 'distort_color', [image]): br_delta = random_ops.random_uniform([], -32./255., 32./255., seed=None) cb_factor = random_ops.random_uniform( [], -FLAGS.cb_distortion_range, FLAGS.cb_distortion_range, seed=None) cr_factor = random_ops.random_uniform( [], -FLAGS.cr_distortion_range, FLAGS.cr_distortion_range, seed=None) channels = tf.split(axis=2, num_or_size_splits=3, value=image) red_offset = 1.402 * cr_factor + br_delta green_offset = -0.344136 * cb_factor - 0.714136 * cr_factor + br_delta blue_offset = 1.772 * cb_factor + br_delta channels[0] += red_offset channels[1] += green_offset channels[2] += blue_offset image = tf.concat(axis=2, values=channels) image = tf.minimum(tf.maximum(image, 0.), 1.) return image def distorted_bounding_box_crop(image, bbox, min_object_covered=0.1, aspect_ratio_range=(3./4., 4./3.), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using a one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image: 3-D Tensor of image (it will be converted to floats in [0, 1]). bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `floats`. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `floats`. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional scope for name_scope. Returns: A tuple, a 3-D Tensor cropped_image and the distorted bbox """ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bbox]): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an # allowed range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box # Crop the image to the specified bounding box. cropped_image = tf.slice(image, bbox_begin, bbox_size) return cropped_image, distort_bbox def preprocess_for_train(image, height, width, bbox, fast_mode=True, scope=None, add_image_summaries=True): """Distort one image for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Additionally it would create image_summaries to display the different transformations applied to the image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations (i.e. bi-cubic resizing, random_hue or random_contrast). scope: Optional scope for name_scope. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor of distorted image used for training with range [-1, 1]. """ with tf.name_scope(scope, 'distort_image', [image, height, width, bbox]): if bbox is None: bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) if add_image_summaries: # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox) tf.summary.image('image_with_bounding_boxes', image_with_box) distorted_image, distorted_bbox = distorted_bounding_box_crop(image, bbox) # Restore the shape since the dynamic slice based upon the bbox_size loses # the third dimension. distorted_image.set_shape([None, None, 3]) if add_image_summaries: image_with_distorted_box = tf.image.draw_bounding_boxes( tf.expand_dims(image, 0), distorted_bbox) tf.summary.image('images_with_distorted_bounding_box', image_with_distorted_box) # This resizing operation may distort the images because the aspect # ratio is not respected. We select a resize method in a round robin # fashion based on the thread number. # Note that ResizeMethod contains 4 enumerated resizing methods. # We select only 1 case for fast_mode bilinear. num_resize_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, method: tf.image.resize_images(x, [height, width], method), num_cases=num_resize_cases) if add_image_summaries: tf.summary.image('cropped_resized_image', tf.expand_dims(distorted_image, 0)) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Randomly distort the colors. There are 1 or 4 ways to do it. if FLAGS.use_fast_color_distort: distorted_image = distort_color_fast(distorted_image) else: num_distort_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, ordering: distort_color(x, ordering, fast_mode), num_cases=num_distort_cases) if add_image_summaries: tf.summary.image('final_distorted_image', tf.expand_dims(distorted_image, 0)) return distorted_image def preprocess_for_eval(image, height, width, central_fraction=0.875, scope=None): """Prepare one image for evaluation. If height and width are specified it would output an image with that size by applying resize_bilinear. If central_fraction is specified it would crop the central fraction of the input image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer central_fraction: Optional Float, fraction of the image to crop. scope: Optional scope for name_scope. Returns: 3-D float Tensor of prepared image. """ with tf.name_scope(scope, 'eval_image', [image, height, width]): if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # Crop the central region of the image with an area containing 87.5% of # the original image. if central_fraction: image = tf.image.central_crop(image, central_fraction=central_fraction) if height and width: # Resize the image to the specified height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) image.set_shape([height, width, 3]) return image def preprocess_image(image, output_height, output_width, is_training=False, scaled_images=True, bbox=None, fast_mode=True, add_image_summaries=False): """Pre-process one image for training or evaluation. Args: image: 3-D Tensor [height, width, channels] with the image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). output_height: integer, image expected height. output_width: integer, image expected width. is_training: Boolean. If true it would transform an image for train, otherwise it would transform it for evaluation. scaled_images: Whether to scale pixel values to the range [-1, 1]. If set to false, pixel values are in the range [0, 1]. bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box """ if is_training: image = preprocess_for_train( image, output_height, output_width, bbox, fast_mode, add_image_summaries=add_image_summaries) else: image = preprocess_for_eval(image, output_height, output_width) if scaled_images: image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image
py
1a4b19a05e56869b42761fcd2ca329ea17634c3c
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.contrib.python.checks.checker.pyflakes import PyflakesChecker from pants.contrib.python.checks.tasks.checkstyle.plugin_subsystem_base import PluginSubsystemBase class FlakeCheckSubsystem(PluginSubsystemBase): options_scope = 'pycheck-pyflakes' @classmethod def register_plugin_options(cls, register): register('--ignore', fingerprint=True, type=list, default=[], help='List of warning codes to ignore.') @classmethod def plugin_type(cls): return PyflakesChecker
py
1a4b1c6cfc234a56db2c08874e8120eb12aa50a2
import sys sys.path.append('../lib') sys.path.append('../') import gridgenerator def test_grid(): g = gridgenerator.define_clfs_params('tiny') skmodels, params = g for k,v in params.items(): print(k,v) def main(inpath, outpath, models=None, params_size="test"): if models is not None and isinstance(models, list): models_to_run = models else: models_to_run=['RF','LR','DT', 'KNN'] df = pd.read_csv(inpath) print(df.columns) if __name__ == '__main__': if len(sys.argv) < 3: print('Missing parameters, pass inpath and outpath') pass elif len(sys.argv) == 5: main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4]) elif len(sys.argv) == 4: main(sys.argv[1], sys.argv[2], sys.argv[3]) elif len(sys.argv) == 3: main(sys.argv[1], sys.argv[2])
py
1a4b1ce38a6c352941f171d9add0089dfbac48d3
#! /usr/bin/env python ''' This script calculates average values per sliding window. #Example input: CHROM POS sample1 sample2 sample3 sample4 sample5 chr1 2923 0 16 13 24 27 chr1 4696 1 3 5 13 6 chr1 6240 5 10 5 15 19 chr1 6244 5 10 5 16 20 chr1 6527 9 20 12 20 36 chr1 6544 NA 21 16 20 36 chr1 6665 5 17 12 15 32 chr1 6676 5 22 14 18 31 chr1 6677 5 22 14 18 31 chr1 8017 14 19 9 20 33 chr1 8374 12 5 16 13 24 chr1 8618 7 13 10 25 21 chr1 8986 16 19 10 34 20 chr1 9185 15 31 18 42 44 chr1 9218 15 30 21 45 45 chr1 9374 16 28 18 45 43 chr1 9378 16 27 19 43 42 chr1 9411 18 24 NA 50 42 chr1 10743 10 17 16 34 28 chr1 11105 47 36 46 66 69 chr1 11162 14 24 32 43 55 chr1 11331 45 34 82 41 87 chr1 11368 51 41 107 57 101 chr1 13956 17 15 33 38 32 chr1 14548 5 4 10 9 8 chr1 14670 22 16 51 NA 22 chr1 14686 22 35 57 63 42 chr1 19796 54 32 43 57 49 chr1 19798 54 32 45 56 48 #Example output: CHROM POS sample1 sample2 sample3 sample4 sample5 chr1 2500 0.5 9.5 9.0 18.5 16.5 chr1 7500 12.0 20.5 14.0 20.0 32.5 chr1 12500 22.0 24.0 46.0 42.0 42.0 chr1 17500 54.0 32.0 44.0 56.5 48.5 #command: $ python calculate_MedianPerWindow.py -i input.tab -o output.tab -w 5000 #contact: Dmytro Kryvokhyzha [email protected] ''' ############################# modules ############################# import calls # my custom module from numpy import median ############################# options ############################# parser = calls.CommandLineParser() parser.add_argument( '-i', '--input', help='name of the input file', type=str, required=True) parser.add_argument( '-o', '--output', help='name of the output file', type=str, required=True) parser.add_argument( '-w', '--window', help='sliding window size', type=int, required=True) args = parser.parse_args() ############################# functions ############################# def meanWindow(dictList): ''' calculates median of a window''' for k in dictList: values = [] for val in dictList[k]: if val != 'NA': values.append(float(val)) if len(values) > 0: medianValue = median(values) dictList[k] = medianValue else: dictList[k] = 'NA' return dictList def createNewDict(NamesList): ''' creates a new empty dictionary with sample names as keys''' newDict = {} for k in NamesList: newDict[k] = [] return newDict def printWindow(inputDict, orderedNames): ''' creates print string from a dictionary with mean values''' newList = [] for n in orderedNames: newList.append(inputDict[n]) newListP = '\t'.join(str(el) for el in newList) return newListP ############################# program ############################# print('Opening the file...') windSize = args.window windPosEnd = windSize counter = 0 with open(args.input) as datafile: header_line = datafile.readline() # make output header outputFile = open(args.output, 'w') outputFile.write(header_line) # make samples dict header_words = header_line.split() sampleNames = header_words[2:] windowDict = createNewDict(sampleNames) print('Processing the data ...') ChrPrevious = '' posS = '' posE = '' for line in datafile: words = line.split() Chr = words[0] pos = int(words[1]) indVal = words[2:] # to store the values of a previous line if not ChrPrevious: ChrPrevious = Chr if not posS: posS = windPosEnd - windSize if not posE: posE = windPosEnd # if window size is reached output the results if Chr != ChrPrevious: # if end of a chromosome meanValWindow = meanWindow(windowDict) meanValWindowP = printWindow(meanValWindow, sampleNames) calls.processWindow(ChrPrevious, posS, posE, meanValWindowP, outputFile) windPosEnd = windSize windowDict = createNewDict(sampleNames) posS = windPosEnd - windSize elif pos > windPosEnd: # if end of a window meanValWindow = meanWindow(windowDict) meanValWindowP = printWindow(meanValWindow, sampleNames) calls.processWindow(Chr, posS, posE, meanValWindowP, outputFile) windPosEnd = windPosEnd + windSize windowDict = createNewDict(sampleNames) posS = windPosEnd - windSize while pos > windPosEnd: # gap is larger than window size windPosEnd = windPosEnd + windSize ChrPrevious = Chr posE = windPosEnd # append values for s in xrange(len(sampleNames)): windowDict[sampleNames[s]].append(indVal[s]) # track progress counter += 1 if counter % 1000000 == 0: print str(counter), "lines processed" # process the last window meanValWindow = meanWindow(windowDict) meanValWindowP = printWindow(meanValWindow, sampleNames) calls.processWindow(Chr, posS, windPosEnd, meanValWindowP, outputFile) datafile.close() outputFile.close() print('Done!')
py
1a4b1e659e8bc569aed071179cf4d8c7adbbbd3b
from cereal import car from opendbc.can.parser import CANParser from opendbc.can.can_define import CANDefine from selfdrive.config import Conversions as CV from selfdrive.car.interfaces import CarStateBase from selfdrive.car.chrysler.values import DBC, STEER_THRESHOLD class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) can_define = CANDefine(DBC[CP.carFingerprint]['pt']) self.shifter_values = can_define.dv["GEAR"]['PRNDL'] def update(self, cp, cp_cam): ret = car.CarState.new_message() self.frame = int(cp.vl["EPS_STATUS"]['COUNTER']) ret.doorOpen = any([cp.vl["DOORS"]['DOOR_OPEN_FL'], cp.vl["DOORS"]['DOOR_OPEN_FR'], cp.vl["DOORS"]['DOOR_OPEN_RL'], cp.vl["DOORS"]['DOOR_OPEN_RR']]) ret.seatbeltUnlatched = cp.vl["SEATBELT_STATUS"]['SEATBELT_DRIVER_UNLATCHED'] == 1 ret.brakePressed = cp.vl["BRAKE_2"]['BRAKE_PRESSED_2'] == 5 # human-only ret.brake = 0 ret.brakeLights = ret.brakePressed ret.gas = cp.vl["ACCEL_GAS_134"]['ACCEL_134'] ret.gasPressed = ret.gas > 1e-5 ret.espDisabled = (cp.vl["TRACTION_BUTTON"]['TRACTION_OFF'] == 1) ret.wheelSpeeds.fl = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_FL'] ret.wheelSpeeds.rr = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_RR'] ret.wheelSpeeds.rl = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_RL'] ret.wheelSpeeds.fr = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_FR'] ret.vEgoRaw = (cp.vl['SPEED_1']['SPEED_LEFT'] + cp.vl['SPEED_1']['SPEED_RIGHT']) / 2. ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = not ret.vEgoRaw > 0.001 ret.leftBlinker = cp.vl["STEERING_LEVERS"]['TURN_SIGNALS'] == 1 ret.rightBlinker = cp.vl["STEERING_LEVERS"]['TURN_SIGNALS'] == 2 ret.steeringAngle = cp.vl["STEERING"]['STEER_ANGLE'] ret.steeringRate = cp.vl["STEERING"]['STEERING_RATE'] ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(cp.vl['GEAR']['PRNDL'], None)) ret.cruiseState.enabled = cp.vl["ACC_2"]['ACC_STATUS_2'] == 7 # ACC is green. ret.cruiseState.available = ret.cruiseState.enabled # FIXME: for now same as enabled ret.cruiseState.speed = cp.vl["DASHBOARD"]['ACC_SPEED_CONFIG_KPH'] * CV.KPH_TO_MS ret.steeringTorque = cp.vl["EPS_STATUS"]["TORQUE_DRIVER"] ret.steeringTorqueEps = cp.vl["EPS_STATUS"]["TORQUE_MOTOR"] ret.steeringPressed = abs(ret.steeringTorque) > STEER_THRESHOLD steer_state = cp.vl["EPS_STATUS"]["LKAS_STATE"] ret.steerError = steer_state == 4 or (steer_state == 0 and ret.vEgo > self.CP.minSteerSpeed) ret.genericToggle = bool(cp.vl["STEERING_LEVERS"]['HIGH_BEAM_FLASH']) self.lkas_counter = cp_cam.vl["LKAS_COMMAND"]['COUNTER'] self.lkas_car_model = cp_cam.vl["LKAS_HUD"]['CAR_MODEL'] self.lkas_status_ok = cp_cam.vl["LKAS_HEARTBIT"]['LKAS_STATUS_OK'] return ret @staticmethod def get_can_parser(CP): signals = [ # sig_name, sig_address, default ("PRNDL", "GEAR", 0), ("DOOR_OPEN_FL", "DOORS", 0), ("DOOR_OPEN_FR", "DOORS", 0), ("DOOR_OPEN_RL", "DOORS", 0), ("DOOR_OPEN_RR", "DOORS", 0), ("BRAKE_PRESSED_2", "BRAKE_2", 0), ("ACCEL_134", "ACCEL_GAS_134", 0), ("SPEED_LEFT", "SPEED_1", 0), ("SPEED_RIGHT", "SPEED_1", 0), ("WHEEL_SPEED_FL", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_RR", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_RL", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_FR", "WHEEL_SPEEDS", 0), ("STEER_ANGLE", "STEERING", 0), ("STEERING_RATE", "STEERING", 0), ("TURN_SIGNALS", "STEERING_LEVERS", 0), ("ACC_STATUS_2", "ACC_2", 0), ("HIGH_BEAM_FLASH", "STEERING_LEVERS", 0), ("ACC_SPEED_CONFIG_KPH", "DASHBOARD", 0), ("TORQUE_DRIVER", "EPS_STATUS", 0), ("TORQUE_MOTOR", "EPS_STATUS", 0), ("LKAS_STATE", "EPS_STATUS", 1), ("COUNTER", "EPS_STATUS", -1), ("TRACTION_OFF", "TRACTION_BUTTON", 0), ("SEATBELT_DRIVER_UNLATCHED", "SEATBELT_STATUS", 0), ] checks = [ # sig_address, frequency ("BRAKE_2", 50), ("EPS_STATUS", 100), ("SPEED_1", 100), ("WHEEL_SPEEDS", 50), ("STEERING", 100), ("ACC_2", 50), ] return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, 0) @staticmethod def get_cam_can_parser(CP): signals = [ # sig_name, sig_address, default ("COUNTER", "LKAS_COMMAND", -1), ("CAR_MODEL", "LKAS_HUD", -1), ("LKAS_STATUS_OK", "LKAS_HEARTBIT", -1) ] checks = [] return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, 2)
py
1a4b1e9736dc83c812ca0da0e250fe9b97612bcd
from random import randint from typing import Dict from uuid import uuid4 import pytest from pydantic import BaseModel, ValidationError from geojson_pydantic.features import Feature, FeatureCollection from geojson_pydantic.geometries import Geometry, MultiPolygon, Polygon class GenericProperties(BaseModel): id: str description: str size: int properties = { "id": str(uuid4()), "description": str(uuid4()), "size": randint(0, 1000), } polygon = { "type": "Polygon", "coordinates": [ [ [13.38272, 52.46385], [13.42786, 52.46385], [13.42786, 52.48445], [13.38272, 52.48445], [13.38272, 52.46385], ] ], } test_feature = { "type": "Feature", "geometry": polygon, "properties": properties, } def test_geometry_collection_iteration(): """test if feature collection is iterable""" gc = FeatureCollection(features=[test_feature, test_feature]) iter(gc) def test_generic_properties_is_dict(): feature = Feature(**test_feature) assert feature.properties["id"] == test_feature["properties"]["id"] assert type(feature.properties) == dict assert not hasattr(feature.properties, "id") def test_generic_properties_is_object(): feature = Feature[Geometry, GenericProperties](**test_feature) assert feature.properties.id == test_feature["properties"]["id"] assert type(feature.properties) == GenericProperties assert hasattr(feature.properties, "id") def test_generic_geometry(): feature = Feature[Polygon, GenericProperties](**test_feature) assert feature.properties.id == test_feature["properties"]["id"] assert type(feature.geometry) == Polygon assert type(feature.properties) == GenericProperties assert hasattr(feature.properties, "id") feature = Feature[Polygon, Dict](**test_feature) assert type(feature.geometry) == Polygon assert feature.properties["id"] == test_feature["properties"]["id"] assert type(feature.properties) == dict assert not hasattr(feature.properties, "id") with pytest.raises(ValidationError): Feature[MultiPolygon, Dict](**({"type": "Feature", "geometry": polygon})) def test_generic_properties_should_raise_for_string(): with pytest.raises(ValidationError): Feature( **({"type": "Feature", "geometry": polygon, "properties": "should raise"}) ) def test_feature_collection_generic(): fc = FeatureCollection[Polygon, GenericProperties]( features=[test_feature, test_feature] ) assert len(fc) == 2 assert type(fc[0].properties) == GenericProperties assert type(fc[0].geometry) == Polygon def test_geo_interface_protocol(): class Pointy: __geo_interface__ = {"type": "Point", "coordinates": (0.0, 0.0)} feat = Feature(geometry=Pointy()) assert feat.geometry.dict() == Pointy.__geo_interface__
py
1a4b1f90f5e284578dd1a477868d0fb5fdefbb74
import torch import torch.nn as nn import torch.nn.functional as F def kl_loss(x, mu, logsigma, beta): kl = -0.5 * torch.sum(1 + logsigma - mu.pow(2) - logsigma.exp()) return beta * (kl / torch.numel(x)) def vae_loss(x, mu, logsigma, recon_x, beta=1): recon_loss = F.mse_loss(x, recon_x, reduction='mean') kl = kl_loss(x, mu, logsigma, beta) return recon_loss + kl def reparameterize(mu, logsigma): std = torch.exp(0.5*logsigma) eps = torch.randn_like(std) return mu + eps*std def carracing_encoder(input_channel): return nn.Sequential( nn.Conv2d(input_channel, 32, 4, stride=2), nn.ReLU(), nn.Conv2d(32, 64, 4, stride=2), nn.ReLU(), nn.Conv2d(64, 128, 4, stride=2), nn.ReLU(), nn.Conv2d(128, 256, 4, stride=2), nn.ReLU() ) def carracing_decoder(flatten_size): return nn.Sequential( nn.ConvTranspose2d(flatten_size, 128, 5, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 5, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, 32, 6, stride=2), nn.ReLU(), nn.ConvTranspose2d(32, 3, 6, stride=2), nn.Sigmoid() )
py
1a4b1fa2a88c6d3f4f11f66beb64bdb562d95994
from collections import namedtuple, deque import difflib import pygments.formatters import pygments.lexers import pygments.token import re from typing import List, Tuple, Optional, Iterator, Iterable from literate.annot import Span, Annot, SpanMerger, \ cut_annot, merge_annot, sub_annot, fill_annot from literate.file import File, Line, Diff, DiffBlock, Hunk, OutputLine from literate.points import Point, cut_annot_at_points # Regex for finding runs of identical non-space characters RUN_RE = re.compile(r'([^ \n])\1*') def parse_intra_annot(s: str) -> Annot[str]: '''Parse an `ndiff` detail (`?`) line and convert it to an annotation indicating intraline edits in the text of the preceding line. The annotation labels inserted, deleted, and changed characters with `'ins'`, `'del'`, and `'chg'` respectively.''' spans = [] for m in RUN_RE.finditer(s): c = m.group(1) # Map the symbols used by `ndiff` to something more meaningful. label = { '+': 'ins', '-': 'del', '^': 'chg', }[c] spans.append(Span(m.start(), m.end(), label)) return spans DiffLine = Tuple[bool, bool, Optional[Annot[str]], Optional[Annot[str]]] def diff_lines(old_lines: List[str], new_lines: List[str]) -> Iterator[DiffLine]: '''Compute a diff of `old` and `new`, and yield a sequence of (old_line, new_line, old_detail, new_detail). Each `line` is a boolean indicating whether there is a line present in the old/new file, and each `detail` is an intraline edit annotation (see `parse_intra_annot`). Possible outputs: - (True, True, None, None): Unmodified/context line - (True, False, None, None): Deletion of a line from the old text. - (False, True, None, None): Insertion of a line in the new text. - (True, True, [...], [...]): Changed line, modified via the indicated intraline insertions and deletions. ''' # We buffer up to two previous result tuples. This lets us handle # intraline change markers, and in particular, the nasty '-+?' case, where # we don't find out that we're in an intraline change ('?') until we've # seen both the '-' and '+' lines. buf = deque() for dl in difflib.ndiff(old_lines, new_lines): prefix = dl[0:2] if prefix == ' ': # Context line. Flush the whole buffer. while buf: yield buf.popleft() yield (True, True, None, None) elif prefix == '- ': while buf: yield buf.popleft() buf.append((True, False, None, None)) elif prefix == '+ ': # Try to fold into a previous intraline edit quad, if one exists. if len(buf) > 0: old_line, new_line, old_detail, new_detail = buf[-1] if not new_line and old_detail is not None: # Previously saw a '-' and a '?'. Fold in this '+'. assert not new_line buf[-1] = (old_line, True, old_detail, None) continue # If there's no old_detail ('?'), then we aren't in an # intraline edit. If there's a new_line, then the intraline # edit is already finished. In either case, we want to do the # default action of just adding the '+' on its own. while len(buf) > 2: yield buf.popleft() buf.append((False, True, None, None)) elif prefix == '? ': detail = parse_intra_annot(dl[2:]) # Add this detail to the previous buffered line. We may also need # to merge a pair of previous '-' and '+' lines, if we didn't # previously know that they were part of an intraline change quad. assert len(buf) > 0 old_line, new_line, old_detail, new_detail = buf.pop() if new_line: if old_line: # The previous line is a rollup of a '-' and a '+'. # (Context lines are not included in the buffer.) assert old_detail is not None buf.append((True, True, old_detail, detail)) else: # The previous line is just a '+'. There must be a '-' # before it, so roll up both of those together with the new # detail. old_line2, new_line2, old_detail2, new_detail2 = buf.pop() assert old_line2 assert not new_line2 assert old_detail2 is None assert new_detail2 is None buf.append((True, True, None, detail)) else: # The previous line is just a '-'. Roll this detail into it. # Next we should see a '+', which will get rolled in, so this # bogus (True, False, [...], None) entry will never be yielded. buf.append((True, False, detail, None)) # Flush any remaining buffered entries. while buf: yield buf.popleft() def adjust_closing_brace(old_lines: List[str], new_lines: List[str], diff: Iterable[DiffLine]) -> Iterator[DiffLine]: '''Adjust the output of `diff_lines` to turn this: fn f() { ... +} +fn g() { + ... } into this: fn f() { ... } +fn g() { + ... +} ''' # Specifically: at the end of every run of insertions or deletions, if the # first context line after the run consists of solely a '}' character (with # whitespace), then we scan from the top of the run for an identical # inserted line. If found, we change the earlier line from an insertion to # context, and change the context line to an insertion. mode = None buf = [] buf_start = None old_i = -1 new_i = -1 for dl in diff: old_line, new_line, old_detail, new_detail = dl if old_line and not new_line: new_mode = 'del' old_i += 1 elif not old_line and new_line: new_mode = 'ins' new_i += 1 else: new_mode = None old_i += 1 new_i += 1 if new_mode != mode: if new_mode is None: # Switching from ins or del mode to context mode. If the # current line is a '}', we try to do the block adjustment. check_lines = new_lines if mode == 'ins' else old_lines i = new_i if mode == 'ins' else old_i if check_lines[i].strip() == '}': # Yield everything from buf, while scanning for an earlier # matching line. found_dl = None for j, buf_dl in enumerate(buf): if check_lines[buf_start + j] == check_lines[i]: found_dl = buf_dl yield (True, True, None, None) # We're stopping early, so yield the remaining # elements. yield from buf[j + 1:] break else: yield buf_dl if found_dl: yield found_dl else: yield (True, True, None, None) else: yield from buf yield dl mode = None buf = [] buf_start = None # We already yielded the correct info, so don't fall through to # the default logic. continue else: if mode is not None: yield from buf mode = new_mode buf = [] buf_start = new_i if mode == 'ins' else old_i if mode is None: yield dl else: buf.append(dl) # There are no more lines, so there can't be a `}` line following `buf` to # trigger our heuristic. That means we can blindly dump everything in # `buf`. yield from buf WORD_BREAK_RE = re.compile(r'\b') def token_annot(line: Line) -> Annot[None]: '''Annotate the tokens of `l`. Each token (and some sub-token strings) gets a separate span. This is a helper function for `calc_tokenized_intra`.''' annot = fill_annot(line.highlight, len(line.text)) # Special cases: treat word boundaries inside strings and comments as token # breaks. This essentially gives us the behavior of `git`'s `--word-diff` # feature. extra_cuts = [] for span in annot: # We don't handle String subtypes (only String itself) because we don't # want to break up `\x00` and similar escapes. if span.label == pygments.token.String or \ span.label in pygments.token.Comment: text = line.text[span.start : span.end] for m in WORD_BREAK_RE.finditer(text): extra_cuts.append(Point(span.start + m.start())) return cut_annot_at_points(annot, extra_cuts) def calc_tokenized_intra(l1: Line, l2: Line) -> Tuple[Annot[str], Annot[str]]: '''Calculate token-based intraline edit annotations for `l1` and `l2`. `difflib.ndiff` does a pretty good job of matching up similar lines, but it computes intraline changes character-by-character, which often produces bad results. For example, it might turn `unsafe` into `malloc` by replacing `uns` -> `m` and `fe` -> `lloc`, instead of doing `unsafe` -> `malloc` in one go. Here we calculate some intraline edits that are easier to read, using the tokenization provided by `pygments` to align edit boundaries to the boundaries of source tokens.''' annot1 = token_annot(l1) annot2 = token_annot(l2) tokens1 = [l1.text[s.start : s.end] for s in annot1] tokens2 = [l2.text[s.start : s.end] for s in annot2] intra1 = [] intra2 = [] sm = difflib.SequenceMatcher(a=tokens1, b=tokens2) for tag, i1, i2, j1, j2 in sm.get_opcodes(): if tag == 'equal': continue while i1 < i2 and tokens1[i1].isspace(): i1 += 1 while i2 > i1 and tokens1[i2 - 1].isspace(): i2 -= 1 while j1 < j2 and tokens2[j1].isspace(): j1 += 1 while j2 > j1 and tokens2[j2 - 1].isspace(): j2 -= 1 if i1 != i2: intra1.append(Span(annot1[i1].start, annot1[i2 - 1].end, 'chg' if tag == 'replace' else 'del')) if j1 != j2: intra2.append(Span(annot2[j1].start, annot2[j2 - 1].end, 'chg' if tag == 'replace' else 'ins')) return (intra1, intra2) def diff_files(f1: File, f2: File) -> Diff: '''Diff two files, returning a `Diff` between them and also setting the `intra` annotation on the lines of both files.''' dls = diff_lines(f1.line_text, f2.line_text) dls = adjust_closing_brace(f1.line_text, f2.line_text, dls) # Accumulator for diff blocks. diff_blocks = [] # Start and current position of the current block. old_start = 0 old_cur = 0 new_start = 0 new_cur = 0 # Is the current block a change? (If not, it's context.) changed = True def flush(): nonlocal old_start, new_start # This check means we can blindly call `flush()` without worrying about # cluttering the output with zero-length blocks. if old_cur - old_start > 0 or new_cur - new_start > 0: diff_blocks.append(DiffBlock(changed, Span(old_start, old_cur), Span(new_start, new_cur))) old_start = old_cur new_start = new_cur for old_line, new_line, old_detail, new_detail in dls: next_changed = not (old_line and new_line and old_detail is None and new_detail is None) has_intra = old_detail is not None or new_detail is not None if next_changed != changed: flush() if has_intra: # Emit each `intra` line as its own block, to ensure they're # aligned in the output. flush() intra1, intra2 = calc_tokenized_intra( f1.lines[old_cur], f2.lines[new_cur]) if len(intra1) > 0: f1.lines[old_cur].set_intra(intra1) if len(intra2) > 0: f2.lines[new_cur].set_intra(intra2) flush() if old_line: old_cur += 1 if new_line: new_cur += 1 changed = next_changed flush() return Diff(f1, f2, diff_blocks) def context_annot(blocks: List[DiffBlock], new: bool, context_lines: int) -> Annot[None]: '''Generate an annotation of the old or new file's lines, indicating which lines are changes or context for changes (within `context_lines` distance).''' result = SpanMerger() for (changed, old_span, new_span) in blocks: if not changed: continue span = new_span if new else old_span result.add(Span( span.start - context_lines, span.end + context_lines)) return result.finish() def split_hunks(blocks: List[DiffBlock]) -> List[Hunk]: '''Split the output of `filter_unchanged` into hunks, anywhere there's a gap in the old or new line numbers.''' last_old = 0 last_new = 0 cur = [] hunks = [] def flush(): nonlocal cur if len(cur) > 0: hunks.append(Hunk(cur)) cur = [] for b in blocks: changed, old_span, new_span = b if old_span.start != last_old or new_span.start != last_new: flush() cur.append(b) last_old = old_span.end last_new = new_span.end flush() return hunks def annotate_blocks(blocks: List[DiffBlock]) \ -> Tuple[Annot[Span[None]], Annot[Span[None]]]: '''Return annotations on the old and new files, labeling each line with the block that contains it.''' old = [] new = [] for b in blocks: old.append(Span(b.old_span.start, b.old_span.end, b)) new.append(Span(b.new_span.start, b.new_span.end, b)) return old, new def build_diff_hunks(d: Diff, context_diff: bool=True): '''Build a list of output hunks, and assign it to `d.hunks`. If `d.old_file` or `d.new_file` has a `keep_mark_lines` annotation, all annotated lines will be kept as additional context.''' # Find the set of lines each file wants to keep. def calc_file_keep(f, is_new): if context_diff: keep = context_annot(d.blocks, is_new, 5) if f.keep_mark_lines is not None: keep = merge_annot(keep, f.keep_mark_lines) else: if len(f.line_annot) > 0: keep = [Span(0, f.line_annot[-1].end)] else: keep = [] if f.drop_irrelevant_lines is not None: keep = sub_annot(keep, f.drop_irrelevant_lines) return keep keep_old = calc_file_keep(d.old_file, False) keep_new = calc_file_keep(d.new_file, True) # In unchanged blocks, add each file's keep lines to the other file's set. # This works because unchanged blocks have the same number of lines on each # side. old_blocks, new_blocks = annotate_blocks(d.blocks) extra_keep_old = [] extra_keep_new = [] for block_span, keep_spans in cut_annot(keep_old, old_blocks): if block_span.label.changed: continue base = block_span.label.new_span.start extra_keep_new.extend(s + base for s in keep_spans) for block_span, keep_spans in cut_annot(keep_new, new_blocks): if block_span.label.changed: continue base = block_span.label.old_span.start extra_keep_old.extend(s + base for s in keep_spans) keep_old = merge_annot(keep_old, extra_keep_old) keep_new = merge_annot(keep_new, extra_keep_new) # For changed blocks, we can't match up lines from different files, so we # just hope for the best. (Normally all changed lines are kept, so there's # no need to match - the only exception is when the `irrelevant_*_regex` # options are set.) # Build the filtered list of blocks. There can be different numbers of # blocks on the old and new sides. We use a fairly naive strategy to match # them up, but it generally seems to work okay. blocks = [] for (old_block, old_keeps), (new_block, new_keeps) in zip( cut_annot(keep_old, old_blocks), cut_annot(keep_new, new_blocks)): # `old_blocks` and `new_blocks` have corresponding entries (based on # the same block) at corresponding positions. assert old_block.label is new_block.label block = old_block.label # Match up `old_keeps` and `new_keeps` entries by position. In most # cases, the two lists will have the same length. for old_keep, new_keep in zip(old_keeps, new_keeps): blocks.append(DiffBlock(block.changed, old_keep + block.old_span.start, new_keep + block.new_span.start)) for old_keep in old_keeps[len(new_keeps):]: blocks.append(DiffBlock(block.changed, old_keep + block.old_span.start, Span(block.new_span.end, block.new_span.end))) for new_keep in new_keeps[len(old_keeps):]: blocks.append(DiffBlock(block.changed, Span(block.old_span.end, block.old_span.end), new_keep + block.new_span.start)) # Split the new blocks into hunks, and save them in the `Diff`. hunks = split_hunks(blocks) d.set_hunks(hunks) def hunk_output_lines(h: Hunk) -> List[OutputLine]: result = [] for changed, old_span, new_span in h.blocks: common_lines = min(len(old_span), len(new_span)) for i in range(0, common_lines): result.append(OutputLine(changed, old_span.start + i, new_span.start + i)) for i in range(common_lines, len(old_span)): result.append(OutputLine(changed, old_span.start + i, None)) for i in range(common_lines, len(new_span)): result.append(OutputLine(changed, None, new_span.start + i)) return result def build_output_lines(d: Diff): '''Build a list of two-column output lines for each hunk of `d`, and set the `Hunk.output_lines` fields.''' for h in d.hunks: output_lines = hunk_output_lines(h) h.set_output_lines(output_lines)
py
1a4b1fbf8bab0282ff9c4fbb73ddb3a04c7c192c
"""Validate coverage files.""" from __future__ import annotations from pathlib import Path from .model import Config, Integration DONT_IGNORE = ( "config_flow.py", "device_action.py", "device_condition.py", "device_trigger.py", "group.py", "intent.py", "logbook.py", "media_source.py", "scene.py", ) # They were violating when we introduced this check # Need to be fixed in a future PR. ALLOWED_IGNORE_VIOLATIONS = { ("ambient_station", "config_flow.py"), ("cast", "config_flow.py"), ("daikin", "config_flow.py"), ("doorbird", "config_flow.py"), ("doorbird", "logbook.py"), ("elkm1", "config_flow.py"), ("elkm1", "scene.py"), ("fibaro", "scene.py"), ("flume", "config_flow.py"), ("hangouts", "config_flow.py"), ("harmony", "config_flow.py"), ("hisense_aehw4a1", "config_flow.py"), ("home_connect", "config_flow.py"), ("huawei_lte", "config_flow.py"), ("ifttt", "config_flow.py"), ("ios", "config_flow.py"), ("iqvia", "config_flow.py"), ("knx", "scene.py"), ("konnected", "config_flow.py"), ("lcn", "scene.py"), ("life360", "config_flow.py"), ("lifx", "config_flow.py"), ("lutron", "scene.py"), ("mobile_app", "config_flow.py"), ("nest", "config_flow.py"), ("plaato", "config_flow.py"), ("point", "config_flow.py"), ("rachio", "config_flow.py"), ("sense", "config_flow.py"), ("sms", "config_flow.py"), ("solarlog", "config_flow.py"), ("sonos", "config_flow.py"), ("speedtestdotnet", "config_flow.py"), ("spider", "config_flow.py"), ("starline", "config_flow.py"), ("tado", "config_flow.py"), ("tahoma", "scene.py"), ("totalconnect", "config_flow.py"), ("tradfri", "config_flow.py"), ("tuya", "config_flow.py"), ("tuya", "scene.py"), ("upnp", "config_flow.py"), ("velux", "scene.py"), ("wemo", "config_flow.py"), ("wiffi", "config_flow.py"), ("wink", "scene.py"), } def validate(integrations: dict[str, Integration], config: Config): """Validate coverage.""" coverage_path = config.root / ".coveragerc" not_found = [] checking = False with coverage_path.open("rt") as fp: for line in fp: line = line.strip() if not line or line.startswith("#"): continue if not checking: if line == "omit =": checking = True continue # Finished if line == "[report]": break path = Path(line) # Discard wildcard path_exists = path while "*" in path_exists.name: path_exists = path_exists.parent if not path_exists.exists(): not_found.append(line) continue if ( not line.startswith("homeassistant/components/") or len(path.parts) != 4 or path.parts[-1] != "*" ): continue integration_path = path.parent integration = integrations[integration_path.name] for check in DONT_IGNORE: if (integration_path.name, check) in ALLOWED_IGNORE_VIOLATIONS: continue if (integration_path / check).exists(): integration.add_error( "coverage", f"{check} must not be ignored by the .coveragerc file", ) if not not_found: return errors = [] if not_found: errors.append( f".coveragerc references files that don't exist: {', '.join(not_found)}." ) raise RuntimeError(" ".join(errors))
py
1a4b1ff4651ae31c18788bf61ec897881f8e70e7
# -*- coding: utf-8 -*- ############################ Copyrights and license ############################ # # # Copyright 2012 Steve English <[email protected]> # # Copyright 2012 Vincent Jacques <[email protected]> # # Copyright 2012 Zearin <[email protected]> # # Copyright 2013 AKFish <[email protected]> # # Copyright 2013 Cameron White <[email protected]> # # Copyright 2013 Vincent Jacques <[email protected]> # # Copyright 2013 poulp <[email protected]> # # Copyright 2014 Tomas Radej <[email protected]> # # Copyright 2014 Vincent Jacques <[email protected]> # # Copyright 2016 E. Dunham <[email protected]> # # Copyright 2016 Jannis Gebauer <[email protected]> # # Copyright 2016 Peter Buckley <[email protected]> # # Copyright 2017 Balázs Rostás <[email protected]> # # Copyright 2017 Jannis Gebauer <[email protected]> # # Copyright 2017 Simon <[email protected]> # # Copyright 2018 Wan Liuyang <[email protected]> # # Copyright 2018 bryanhuntesl <[email protected]> # # Copyright 2018 sfdye <[email protected]> # # Copyright 2018 itsbruce <[email protected]> # # # # This file is part of PyGithub. # # http://pygithub.readthedocs.io/ # # # # PyGithub is free software: you can redistribute it and/or modify it under # # the terms of the GNU Lesser General Public License as published by the Free # # Software Foundation, either version 3 of the License, or (at your option) # # any later version. # # # # PyGithub is distributed in the hope that it will be useful, but WITHOUT ANY # # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # # details. # # # # You should have received a copy of the GNU Lesser General Public License # # along with PyGithub. If not, see <http://www.gnu.org/licenses/>. # # # ################################################################################ import datetime import github.GithubObject import github.PaginatedList import github.Gist import github.Repository import github.NamedUser import github.Plan import github.Organization import github.UserKey import github.Issue import github.Event import github.Authorization import github.Notification import github.Migration from . import Consts class AuthenticatedUser(github.GithubObject.CompletableGithubObject): """ This class represents AuthenticatedUsers as returned by https://developer.github.com/v3/users/#get-the-authenticated-user An AuthenticatedUser object can be created by calling ``get_user()`` on a Github object. """ def __repr__(self): return self.get__repr__({"login": self._login.value}) @property def avatar_url(self): """ :type: string """ self._completeIfNotSet(self._avatar_url) return self._avatar_url.value @property def bio(self): """ :type: string """ self._completeIfNotSet(self._bio) return self._bio.value @property def blog(self): """ :type: string """ self._completeIfNotSet(self._blog) return self._blog.value @property def collaborators(self): """ :type: integer """ self._completeIfNotSet(self._collaborators) return self._collaborators.value @property def company(self): """ :type: string """ self._completeIfNotSet(self._company) return self._company.value @property def created_at(self): """ :type: datetime.datetime """ self._completeIfNotSet(self._created_at) return self._created_at.value @property def disk_usage(self): """ :type: integer """ self._completeIfNotSet(self._disk_usage) return self._disk_usage.value @property def email(self): """ :type: string """ self._completeIfNotSet(self._email) return self._email.value @property def events_url(self): """ :type: string """ self._completeIfNotSet(self._events_url) return self._events_url.value @property def followers(self): """ :type: integer """ self._completeIfNotSet(self._followers) return self._followers.value @property def followers_url(self): """ :type: string """ self._completeIfNotSet(self._followers_url) return self._followers_url.value @property def following(self): """ :type: integer """ self._completeIfNotSet(self._following) return self._following.value @property def following_url(self): """ :type: string """ self._completeIfNotSet(self._following_url) return self._following_url.value @property def gists_url(self): """ :type: string """ self._completeIfNotSet(self._gists_url) return self._gists_url.value @property def gravatar_id(self): """ :type: string """ self._completeIfNotSet(self._gravatar_id) return self._gravatar_id.value @property def hireable(self): """ :type: bool """ self._completeIfNotSet(self._hireable) return self._hireable.value @property def html_url(self): """ :type: string """ self._completeIfNotSet(self._html_url) return self._html_url.value @property def id(self): """ :type: integer """ self._completeIfNotSet(self._id) return self._id.value @property def location(self): """ :type: string """ self._completeIfNotSet(self._location) return self._location.value @property def login(self): """ :type: string """ self._completeIfNotSet(self._login) return self._login.value @property def name(self): """ :type: string """ self._completeIfNotSet(self._name) return self._name.value @property def organizations_url(self): """ :type: string """ self._completeIfNotSet(self._organizations_url) return self._organizations_url.value @property def owned_private_repos(self): """ :type: integer """ self._completeIfNotSet(self._owned_private_repos) return self._owned_private_repos.value @property def plan(self): """ :type: :class:`github.Plan.Plan` """ self._completeIfNotSet(self._plan) return self._plan.value @property def private_gists(self): """ :type: integer """ self._completeIfNotSet(self._private_gists) return self._private_gists.value @property def public_gists(self): """ :type: integer """ self._completeIfNotSet(self._public_gists) return self._public_gists.value @property def public_repos(self): """ :type: integer """ self._completeIfNotSet(self._public_repos) return self._public_repos.value @property def received_events_url(self): """ :type: string """ self._completeIfNotSet(self._received_events_url) return self._received_events_url.value @property def repos_url(self): """ :type: string """ self._completeIfNotSet(self._repos_url) return self._repos_url.value @property def site_admin(self): """ :type: bool """ self._completeIfNotSet(self._site_admin) return self._site_admin.value @property def starred_url(self): """ :type: string """ self._completeIfNotSet(self._starred_url) return self._starred_url.value @property def subscriptions_url(self): """ :type: string """ self._completeIfNotSet(self._subscriptions_url) return self._subscriptions_url.value @property def total_private_repos(self): """ :type: integer """ self._completeIfNotSet(self._total_private_repos) return self._total_private_repos.value @property def type(self): """ :type: string """ self._completeIfNotSet(self._type) return self._type.value @property def updated_at(self): """ :type: datetime.datetime """ self._completeIfNotSet(self._updated_at) return self._updated_at.value @property def url(self): """ :type: string """ self._completeIfNotSet(self._url) return self._url.value def add_to_emails(self, *emails): """ :calls: `POST /user/emails <http://developer.github.com/v3/users/emails>`_ :param email: string :rtype: None """ assert all(isinstance(element, str) for element in emails), emails post_parameters = emails headers, data = self._requester.requestJsonAndCheck( "POST", "/user/emails", input=post_parameters ) def add_to_following(self, following): """ :calls: `PUT /user/following/:user <http://developer.github.com/v3/users/followers>`_ :param following: :class:`github.NamedUser.NamedUser` :rtype: None """ assert isinstance(following, github.NamedUser.NamedUser), following headers, data = self._requester.requestJsonAndCheck( "PUT", "/user/following/" + following._identity ) def add_to_starred(self, starred): """ :calls: `PUT /user/starred/:owner/:repo <http://developer.github.com/v3/activity/starring>`_ :param starred: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(starred, github.Repository.Repository), starred headers, data = self._requester.requestJsonAndCheck( "PUT", "/user/starred/" + starred._identity ) def add_to_subscriptions(self, subscription): """ :calls: `PUT /user/subscriptions/:owner/:repo <http://developer.github.com/v3/activity/watching>`_ :param subscription: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(subscription, github.Repository.Repository), subscription headers, data = self._requester.requestJsonAndCheck( "PUT", "/user/subscriptions/" + subscription._identity ) def add_to_watched(self, watched): """ :calls: `PUT /repos/:owner/:repo/subscription <http://developer.github.com/v3/activity/watching>`_ :param watched: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(watched, github.Repository.Repository), watched headers, data = self._requester.requestJsonAndCheck( "PUT", "/repos/" + watched._identity + "/subscription", input={"subscribed": True} ) def create_authorization(self, scopes=github.GithubObject.NotSet, note=github.GithubObject.NotSet, note_url=github.GithubObject.NotSet, client_id=github.GithubObject.NotSet, client_secret=github.GithubObject.NotSet, onetime_password=None): """ :calls: `POST /authorizations <http://developer.github.com/v3/oauth>`_ :param scopes: list of string :param note: string :param note_url: string :param client_id: string :param client_secret: string :param onetime_password: string :rtype: :class:`github.Authorization.Authorization` """ assert scopes is github.GithubObject.NotSet or all(isinstance(element, str) for element in scopes), scopes assert note is github.GithubObject.NotSet or isinstance(note, str), note assert note_url is github.GithubObject.NotSet or isinstance(note_url, str), note_url assert client_id is github.GithubObject.NotSet or isinstance(client_id, str), client_id assert client_secret is github.GithubObject.NotSet or isinstance(client_secret, str), client_secret assert onetime_password is None or isinstance(onetime_password, str), onetime_password post_parameters = dict() if scopes is not github.GithubObject.NotSet: post_parameters["scopes"] = scopes if note is not github.GithubObject.NotSet: post_parameters["note"] = note if note_url is not github.GithubObject.NotSet: post_parameters["note_url"] = note_url if client_id is not github.GithubObject.NotSet: post_parameters["client_id"] = client_id if client_secret is not github.GithubObject.NotSet: post_parameters["client_secret"] = client_secret if onetime_password is not None: request_header = {Consts.headerOTP: onetime_password} # pragma no cover (Should be covered) else: request_header = None headers, data = self._requester.requestJsonAndCheck( "POST", "/authorizations", input=post_parameters, headers=request_header, ) return github.Authorization.Authorization(self._requester, headers, data, completed=True) def create_fork(self, repo): """ :calls: `POST /repos/:owner/:repo/forks <http://developer.github.com/v3/repos/forks>`_ :param repo: :class:`github.Repository.Repository` :rtype: :class:`github.Repository.Repository` """ assert isinstance(repo, github.Repository.Repository), repo headers, data = self._requester.requestJsonAndCheck( "POST", "/repos/" + repo.owner.login + "/" + repo.name + "/forks" ) return github.Repository.Repository(self._requester, headers, data, completed=True) def create_gist(self, public, files, description=github.GithubObject.NotSet): """ :calls: `POST /gists <http://developer.github.com/v3/gists>`_ :param public: bool :param files: dict of string to :class:`github.InputFileContent.InputFileContent` :param description: string :rtype: :class:`github.Gist.Gist` """ assert isinstance(public, bool), public assert all(isinstance(element, github.InputFileContent) for element in files.values()), files assert description is github.GithubObject.NotSet or isinstance(description, str), description post_parameters = { "public": public, "files": dict((key, value._identity) for key, value in files.items()), } if description is not github.GithubObject.NotSet: post_parameters["description"] = description headers, data = self._requester.requestJsonAndCheck( "POST", "/gists", input=post_parameters ) return github.Gist.Gist(self._requester, headers, data, completed=True) def create_key(self, title, key): """ :calls: `POST /user/keys <http://developer.github.com/v3/users/keys>`_ :param title: string :param key: string :rtype: :class:`github.UserKey.UserKey` """ assert isinstance(title, str), title assert isinstance(key, str), key post_parameters = { "title": title, "key": key, } headers, data = self._requester.requestJsonAndCheck( "POST", "/user/keys", input=post_parameters ) return github.UserKey.UserKey(self._requester, headers, data, completed=True) def create_repo(self, name, description=github.GithubObject.NotSet, homepage=github.GithubObject.NotSet, private=github.GithubObject.NotSet, has_issues=github.GithubObject.NotSet, has_wiki=github.GithubObject.NotSet, has_downloads=github.GithubObject.NotSet, has_projects=github.GithubObject.NotSet, auto_init=github.GithubObject.NotSet, license_template=github.GithubObject.NotSet, gitignore_template=github.GithubObject.NotSet, allow_squash_merge=github.GithubObject.NotSet, allow_merge_commit=github.GithubObject.NotSet, allow_rebase_merge=github.GithubObject.NotSet): """ :calls: `POST /user/repos <http://developer.github.com/v3/repos>`_ :param name: string :param description: string :param homepage: string :param private: bool :param has_issues: bool :param has_wiki: bool :param has_downloads: bool :param has_projects: bool :param auto_init: bool :param license_template: string :param gitignore_template: string :param allow_squash_merge: bool :param allow_merge_commit: bool :param allow_rebase_merge: bool :rtype: :class:`github.Repository.Repository` """ assert isinstance(name, str), name assert description is github.GithubObject.NotSet or isinstance(description, str), description assert homepage is github.GithubObject.NotSet or isinstance(homepage, str), homepage assert private is github.GithubObject.NotSet or isinstance(private, bool), private assert has_issues is github.GithubObject.NotSet or isinstance(has_issues, bool), has_issues assert has_wiki is github.GithubObject.NotSet or isinstance(has_wiki, bool), has_wiki assert has_downloads is github.GithubObject.NotSet or isinstance(has_downloads, bool), has_downloads assert has_projects is github.GithubObject.NotSet or isinstance(has_projects, bool), has_projects assert auto_init is github.GithubObject.NotSet or isinstance(auto_init, bool), auto_init assert license_template is github.GithubObject.NotSet or isinstance(license_template, str), license_template assert gitignore_template is github.GithubObject.NotSet or isinstance(gitignore_template, str), gitignore_template assert allow_squash_merge is github.GithubObject.NotSet or isinstance(allow_squash_merge, bool), allow_squash_merge assert allow_merge_commit is github.GithubObject.NotSet or isinstance(allow_merge_commit, bool), allow_merge_commit assert allow_rebase_merge is github.GithubObject.NotSet or isinstance(allow_rebase_merge, bool), allow_rebase_merge post_parameters = { "name": name, } if description is not github.GithubObject.NotSet: post_parameters["description"] = description if homepage is not github.GithubObject.NotSet: post_parameters["homepage"] = homepage if private is not github.GithubObject.NotSet: post_parameters["private"] = private if has_issues is not github.GithubObject.NotSet: post_parameters["has_issues"] = has_issues if has_wiki is not github.GithubObject.NotSet: post_parameters["has_wiki"] = has_wiki if has_downloads is not github.GithubObject.NotSet: post_parameters["has_downloads"] = has_downloads if has_projects is not github.GithubObject.NotSet: post_parameters["has_projects"] = has_projects if auto_init is not github.GithubObject.NotSet: post_parameters["auto_init"] = auto_init if license_template is not github.GithubObject.NotSet: post_parameters["license_template"] = license_template if gitignore_template is not github.GithubObject.NotSet: post_parameters["gitignore_template"] = gitignore_template if allow_squash_merge is not github.GithubObject.NotSet: post_parameters["allow_squash_merge"] = allow_squash_merge if allow_merge_commit is not github.GithubObject.NotSet: post_parameters["allow_merge_commit"] = allow_merge_commit if allow_rebase_merge is not github.GithubObject.NotSet: post_parameters["allow_rebase_merge"] = allow_rebase_merge headers, data = self._requester.requestJsonAndCheck( "POST", "/user/repos", input=post_parameters ) return github.Repository.Repository(self._requester, headers, data, completed=True) def edit(self, name=github.GithubObject.NotSet, email=github.GithubObject.NotSet, blog=github.GithubObject.NotSet, company=github.GithubObject.NotSet, location=github.GithubObject.NotSet, hireable=github.GithubObject.NotSet, bio=github.GithubObject.NotSet): """ :calls: `PATCH /user <http://developer.github.com/v3/users>`_ :param name: string :param email: string :param blog: string :param company: string :param location: string :param hireable: bool :param bio: string :rtype: None """ assert name is github.GithubObject.NotSet or isinstance(name, str), name assert email is github.GithubObject.NotSet or isinstance(email, str), email assert blog is github.GithubObject.NotSet or isinstance(blog, str), blog assert company is github.GithubObject.NotSet or isinstance(company, str), company assert location is github.GithubObject.NotSet or isinstance(location, str), location assert hireable is github.GithubObject.NotSet or isinstance(hireable, bool), hireable assert bio is github.GithubObject.NotSet or isinstance(bio, str), bio post_parameters = dict() if name is not github.GithubObject.NotSet: post_parameters["name"] = name if email is not github.GithubObject.NotSet: post_parameters["email"] = email if blog is not github.GithubObject.NotSet: post_parameters["blog"] = blog if company is not github.GithubObject.NotSet: post_parameters["company"] = company if location is not github.GithubObject.NotSet: post_parameters["location"] = location if hireable is not github.GithubObject.NotSet: post_parameters["hireable"] = hireable if bio is not github.GithubObject.NotSet: post_parameters["bio"] = bio headers, data = self._requester.requestJsonAndCheck( "PATCH", "/user", input=post_parameters ) self._useAttributes(data) def get_authorization(self, id): """ :calls: `GET /authorizations/:id <http://developer.github.com/v3/oauth>`_ :param id: integer :rtype: :class:`github.Authorization.Authorization` """ assert isinstance(id, int), id headers, data = self._requester.requestJsonAndCheck( "GET", "/authorizations/" + str(id) ) return github.Authorization.Authorization(self._requester, headers, data, completed=True) def get_authorizations(self): """ :calls: `GET /authorizations <http://developer.github.com/v3/oauth>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Authorization.Authorization` """ return github.PaginatedList.PaginatedList( github.Authorization.Authorization, self._requester, "/authorizations", None ) def get_emails(self): """ :calls: `GET /user/emails <http://developer.github.com/v3/users/emails>`_ :rtype: list of string """ headers, data = self._requester.requestJsonAndCheck( "GET", "/user/emails" ) return data def get_events(self): """ :calls: `GET /events <http://developer.github.com/v3/activity/events>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Event.Event` """ return github.PaginatedList.PaginatedList( github.Event.Event, self._requester, "/events", None ) def get_followers(self): """ :calls: `GET /user/followers <http://developer.github.com/v3/users/followers>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.NamedUser.NamedUser` """ return github.PaginatedList.PaginatedList( github.NamedUser.NamedUser, self._requester, "/user/followers", None ) def get_following(self): """ :calls: `GET /user/following <http://developer.github.com/v3/users/followers>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.NamedUser.NamedUser` """ return github.PaginatedList.PaginatedList( github.NamedUser.NamedUser, self._requester, "/user/following", None ) def get_gists(self, since=github.GithubObject.NotSet): """ :calls: `GET /gists <http://developer.github.com/v3/gists>`_ :param since: datetime.datetime format YYYY-MM-DDTHH:MM:SSZ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Gist.Gist` """ assert since is github.GithubObject.NotSet or isinstance(since, datetime.datetime), since url_parameters = dict() if since is not github.GithubObject.NotSet: url_parameters["since"] = since.strftime("%Y-%m-%dT%H:%M:%SZ") return github.PaginatedList.PaginatedList( github.Gist.Gist, self._requester, "/gists", url_parameters ) def get_issues(self, filter=github.GithubObject.NotSet, state=github.GithubObject.NotSet, labels=github.GithubObject.NotSet, sort=github.GithubObject.NotSet, direction=github.GithubObject.NotSet, since=github.GithubObject.NotSet): """ :calls: `GET /issues <http://developer.github.com/v3/issues>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` :param filter: string :param state: string :param labels: list of :class:`github.Label.Label` :param sort: string :param direction: string :param since: datetime.datetime :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` """ assert filter is github.GithubObject.NotSet or isinstance(filter, str), filter assert state is github.GithubObject.NotSet or isinstance(state, str), state assert labels is github.GithubObject.NotSet or all(isinstance(element, github.Label.Label) for element in labels), labels assert sort is github.GithubObject.NotSet or isinstance(sort, str), sort assert direction is github.GithubObject.NotSet or isinstance(direction, str), direction assert since is github.GithubObject.NotSet or isinstance(since, datetime.datetime), since url_parameters = dict() if filter is not github.GithubObject.NotSet: url_parameters["filter"] = filter if state is not github.GithubObject.NotSet: url_parameters["state"] = state if labels is not github.GithubObject.NotSet: url_parameters["labels"] = ",".join(label.name for label in labels) if sort is not github.GithubObject.NotSet: url_parameters["sort"] = sort if direction is not github.GithubObject.NotSet: url_parameters["direction"] = direction if since is not github.GithubObject.NotSet: url_parameters["since"] = since.strftime("%Y-%m-%dT%H:%M:%SZ") return github.PaginatedList.PaginatedList( github.Issue.Issue, self._requester, "/issues", url_parameters ) def get_user_issues(self, filter=github.GithubObject.NotSet, state=github.GithubObject.NotSet, labels=github.GithubObject.NotSet, sort=github.GithubObject.NotSet, direction=github.GithubObject.NotSet, since=github.GithubObject.NotSet): """ :calls: `GET /user/issues <http://developer.github.com/v3/issues>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` :param filter: string :param state: string :param labels: list of :class:`github.Label.Label` :param sort: string :param direction: string :param since: datetime.datetime :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` """ assert filter is github.GithubObject.NotSet or isinstance(filter, str), filter assert state is github.GithubObject.NotSet or isinstance(state, str), state assert labels is github.GithubObject.NotSet or all(isinstance(element, github.Label.Label) for element in labels), labels assert sort is github.GithubObject.NotSet or isinstance(sort, str), sort assert direction is github.GithubObject.NotSet or isinstance(direction, str), direction assert since is github.GithubObject.NotSet or isinstance(since, datetime.datetime), since url_parameters = dict() if filter is not github.GithubObject.NotSet: url_parameters["filter"] = filter if state is not github.GithubObject.NotSet: url_parameters["state"] = state if labels is not github.GithubObject.NotSet: url_parameters["labels"] = ",".join(label.name for label in labels) if sort is not github.GithubObject.NotSet: url_parameters["sort"] = sort if direction is not github.GithubObject.NotSet: url_parameters["direction"] = direction if since is not github.GithubObject.NotSet: url_parameters["since"] = since.strftime("%Y-%m-%dT%H:%M:%SZ") return github.PaginatedList.PaginatedList( github.Issue.Issue, self._requester, "/issues", url_parameters ) def get_key(self, id): """ :calls: `GET /user/keys/:id <http://developer.github.com/v3/users/keys>`_ :param id: integer :rtype: :class:`github.UserKey.UserKey` """ assert isinstance(id, int), id headers, data = self._requester.requestJsonAndCheck( "GET", "/user/keys/" + str(id) ) return github.UserKey.UserKey(self._requester, headers, data, completed=True) def get_keys(self): """ :calls: `GET /user/keys <http://developer.github.com/v3/users/keys>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.UserKey.UserKey` """ return github.PaginatedList.PaginatedList( github.UserKey.UserKey, self._requester, "/user/keys", None ) def get_notification(self, id): """ :calls: `GET /notifications/threads/:id <http://developer.github.com/v3/activity/notifications>`_ :rtype: :class:`github.Notification.Notification` """ assert isinstance(id, str), id headers, data = self._requester.requestJsonAndCheck( "GET", "/notifications/threads/" + id ) return github.Notification.Notification(self._requester, headers, data, completed=True) def get_notifications(self, all=github.GithubObject.NotSet, participating=github.GithubObject.NotSet): """ :calls: `GET /notifications <http://developer.github.com/v3/activity/notifications>`_ :param all: bool :param participating: bool :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Notification.Notification` """ assert all is github.GithubObject.NotSet or isinstance(all, bool), all assert participating is github.GithubObject.NotSet or isinstance(participating, bool), participating params = dict() if all is not github.GithubObject.NotSet: params["all"] = all if participating is not github.GithubObject.NotSet: params["participating"] = participating # TODO: implement parameter "since" return github.PaginatedList.PaginatedList( github.Notification.Notification, self._requester, "/notifications", params ) def get_organization_events(self, org): """ :calls: `GET /users/:user/events/orgs/:org <http://developer.github.com/v3/activity/events>`_ :param org: :class:`github.Organization.Organization` :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Event.Event` """ assert isinstance(org, github.Organization.Organization), org return github.PaginatedList.PaginatedList( github.Event.Event, self._requester, "/users/" + self.login + "/events/orgs/" + org.login, None ) def get_orgs(self): """ :calls: `GET /user/orgs <http://developer.github.com/v3/orgs>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Organization.Organization` """ return github.PaginatedList.PaginatedList( github.Organization.Organization, self._requester, "/user/orgs", None ) def get_repo(self, name): """ :calls: `GET /repos/:owner/:repo <http://developer.github.com/v3/repos>`_ :param name: string :rtype: :class:`github.Repository.Repository` """ assert isinstance(name, str), name headers, data = self._requester.requestJsonAndCheck( "GET", "/repos/" + self.login + "/" + name ) return github.Repository.Repository(self._requester, headers, data, completed=True) def get_repos(self, visibility=github.GithubObject.NotSet, affiliation=github.GithubObject.NotSet, type=github.GithubObject.NotSet, sort=github.GithubObject.NotSet, direction=github.GithubObject.NotSet): """ :calls: `GET /user/repos <http://developer.github.com/v3/repos>` :param visibility: string :param affiliation: string :param type: string :param sort: string :param direction: string :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ assert visibility is github.GithubObject.NotSet or isinstance(visibility, str), visibility assert affiliation is github.GithubObject.NotSet or isinstance(affiliation, str), affiliation assert type is github.GithubObject.NotSet or isinstance(type, str), type assert sort is github.GithubObject.NotSet or isinstance(sort, str), sort assert direction is github.GithubObject.NotSet or isinstance(direction, str), direction url_parameters = dict() if visibility is not github.GithubObject.NotSet: url_parameters["visibility"] = visibility if affiliation is not github.GithubObject.NotSet: url_parameters["affiliation"] = affiliation if type is not github.GithubObject.NotSet: url_parameters["type"] = type if sort is not github.GithubObject.NotSet: url_parameters["sort"] = sort if direction is not github.GithubObject.NotSet: url_parameters["direction"] = direction return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/repos", url_parameters ) def get_starred(self): """ :calls: `GET /user/starred <http://developer.github.com/v3/activity/starring>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/starred", None ) def get_starred_gists(self): """ :calls: `GET /gists/starred <http://developer.github.com/v3/gists>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Gist.Gist` """ return github.PaginatedList.PaginatedList( github.Gist.Gist, self._requester, "/gists/starred", None ) def get_subscriptions(self): """ :calls: `GET /user/subscriptions <http://developer.github.com/v3/activity/watching>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/subscriptions", None ) def get_teams(self): """ :calls: `GET /user/teams <http://developer.github.com/v3/orgs/teams>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Team.Team` """ return github.PaginatedList.PaginatedList( github.Team.Team, self._requester, "/user/teams", None ) def get_watched(self): """ :calls: `GET /user/subscriptions <http://developer.github.com/v3/activity/watching>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/subscriptions", None ) def has_in_following(self, following): """ :calls: `GET /user/following/:user <http://developer.github.com/v3/users/followers>`_ :param following: :class:`github.NamedUser.NamedUser` :rtype: bool """ assert isinstance(following, github.NamedUser.NamedUser), following status, headers, data = self._requester.requestJson( "GET", "/user/following/" + following._identity ) return status == 204 def has_in_starred(self, starred): """ :calls: `GET /user/starred/:owner/:repo <http://developer.github.com/v3/activity/starring>`_ :param starred: :class:`github.Repository.Repository` :rtype: bool """ assert isinstance(starred, github.Repository.Repository), starred status, headers, data = self._requester.requestJson( "GET", "/user/starred/" + starred._identity ) return status == 204 def has_in_subscriptions(self, subscription): """ :calls: `GET /user/subscriptions/:owner/:repo <http://developer.github.com/v3/activity/watching>`_ :param subscription: :class:`github.Repository.Repository` :rtype: bool """ assert isinstance(subscription, github.Repository.Repository), subscription status, headers, data = self._requester.requestJson( "GET", "/user/subscriptions/" + subscription._identity ) return status == 204 def has_in_watched(self, watched): """ :calls: `GET /repos/:owner/:repo/subscription <http://developer.github.com/v3/activity/watching>`_ :param watched: :class:`github.Repository.Repository` :rtype: bool """ assert isinstance(watched, github.Repository.Repository), watched status, headers, data = self._requester.requestJson( "GET", "/repos/" + watched._identity + "/subscription" ) return status == 200 def mark_notifications_as_read(self, last_read_at=datetime.datetime.utcnow()): """ :calls: `PUT /notifications <https://developer.github.com/v3/activity/notifications>`_ :param last_read_at: datetime """ assert isinstance(last_read_at, datetime.datetime) put_parameters = { "last_read_at": last_read_at.strftime('%Y-%m-%dT%H:%M:%SZ') } headers, data = self._requester.requestJsonAndCheck( "PUT", "/notifications", input=put_parameters ) def remove_from_emails(self, *emails): """ :calls: `DELETE /user/emails <http://developer.github.com/v3/users/emails>`_ :param email: string :rtype: None """ assert all(isinstance(element, str) for element in emails), emails post_parameters = emails headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/emails", input=post_parameters ) def remove_from_following(self, following): """ :calls: `DELETE /user/following/:user <http://developer.github.com/v3/users/followers>`_ :param following: :class:`github.NamedUser.NamedUser` :rtype: None """ assert isinstance(following, github.NamedUser.NamedUser), following headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/following/" + following._identity ) def remove_from_starred(self, starred): """ :calls: `DELETE /user/starred/:owner/:repo <http://developer.github.com/v3/activity/starring>`_ :param starred: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(starred, github.Repository.Repository), starred headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/starred/" + starred._identity ) def remove_from_subscriptions(self, subscription): """ :calls: `DELETE /user/subscriptions/:owner/:repo <http://developer.github.com/v3/activity/watching>`_ :param subscription: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(subscription, github.Repository.Repository), subscription headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/subscriptions/" + subscription._identity ) def remove_from_watched(self, watched): """ :calls: `DELETE /repos/:owner/:repo/subscription <http://developer.github.com/v3/activity/watching>`_ :param watched: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(watched, github.Repository.Repository), watched headers, data = self._requester.requestJsonAndCheck( "DELETE", "/repos/" + watched._identity + "/subscription" ) def accept_invitation(self, invitation): """ :calls: `PATCH /user/repository_invitations/:invitation_id <https://developer.github.com/v3/repos/invitations/>` :param invitation: :class:`github.Invitation.Invitation` or int :rtype: None """ assert isinstance(invitation, github.Invitation.Invitation) or isinstance(invitation, int) if isinstance(invitation, github.Invitation.Invitation): invitation = invitation.id headers, data = self._requester.requestJsonAndCheck( "PATCH", "/user/repository_invitations/" + str(invitation), input={} ) def create_migration(self, repos, lock_repositories=github.GithubObject.NotSet, exclude_attachments=github.GithubObject.NotSet): """ :calls: `POST /user/migrations`_ :param repos: list or tuple of str :param lock_repositories: bool :param exclude_attachments: bool :rtype: :class:`github.Migration.Migration` """ assert isinstance(repos, (list, tuple)), repos assert all(isinstance(repo, str) for repo in repos), repos assert lock_repositories is github.GithubObject.NotSet or isinstance(lock_repositories, bool), lock_repositories assert exclude_attachments is github.GithubObject.NotSet or isinstance(exclude_attachments, bool), exclude_attachments post_parameters = { "repositories": repos } if lock_repositories is not github.GithubObject.NotSet: post_parameters["lock_repositories"] = lock_repositories if exclude_attachments is not github.GithubObject.NotSet: post_parameters["exclude_attachments"] = exclude_attachments headers, data = self._requester.requestJsonAndCheck( "POST", "/user/migrations", input=post_parameters, headers={ "Accept": Consts.mediaTypeMigrationPreview } ) return github.Migration.Migration(self._requester, headers, data, completed=True) def get_migrations(self): """ :calls: `GET /user/migrations`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Migration.Migration` """ return github.PaginatedList.PaginatedList( github.Migration.Migration, self._requester, "/user/migrations", None, headers={ "Accept": Consts.mediaTypeMigrationPreview } ) def _initAttributes(self): self._avatar_url = github.GithubObject.NotSet self._bio = github.GithubObject.NotSet self._blog = github.GithubObject.NotSet self._collaborators = github.GithubObject.NotSet self._company = github.GithubObject.NotSet self._created_at = github.GithubObject.NotSet self._disk_usage = github.GithubObject.NotSet self._email = github.GithubObject.NotSet self._events_url = github.GithubObject.NotSet self._followers = github.GithubObject.NotSet self._followers_url = github.GithubObject.NotSet self._following = github.GithubObject.NotSet self._following_url = github.GithubObject.NotSet self._gists_url = github.GithubObject.NotSet self._gravatar_id = github.GithubObject.NotSet self._hireable = github.GithubObject.NotSet self._html_url = github.GithubObject.NotSet self._id = github.GithubObject.NotSet self._location = github.GithubObject.NotSet self._login = github.GithubObject.NotSet self._name = github.GithubObject.NotSet self._organizations_url = github.GithubObject.NotSet self._owned_private_repos = github.GithubObject.NotSet self._plan = github.GithubObject.NotSet self._private_gists = github.GithubObject.NotSet self._public_gists = github.GithubObject.NotSet self._public_repos = github.GithubObject.NotSet self._received_events_url = github.GithubObject.NotSet self._repos_url = github.GithubObject.NotSet self._site_admin = github.GithubObject.NotSet self._starred_url = github.GithubObject.NotSet self._subscriptions_url = github.GithubObject.NotSet self._total_private_repos = github.GithubObject.NotSet self._type = github.GithubObject.NotSet self._updated_at = github.GithubObject.NotSet self._url = github.GithubObject.NotSet def _useAttributes(self, attributes): if "avatar_url" in attributes: # pragma no branch self._avatar_url = self._makeStringAttribute(attributes["avatar_url"]) if "bio" in attributes: # pragma no branch self._bio = self._makeStringAttribute(attributes["bio"]) if "blog" in attributes: # pragma no branch self._blog = self._makeStringAttribute(attributes["blog"]) if "collaborators" in attributes: # pragma no branch self._collaborators = self._makeIntAttribute(attributes["collaborators"]) if "company" in attributes: # pragma no branch self._company = self._makeStringAttribute(attributes["company"]) if "created_at" in attributes: # pragma no branch self._created_at = self._makeDatetimeAttribute(attributes["created_at"]) if "disk_usage" in attributes: # pragma no branch self._disk_usage = self._makeIntAttribute(attributes["disk_usage"]) if "email" in attributes: # pragma no branch self._email = self._makeStringAttribute(attributes["email"]) if "events_url" in attributes: # pragma no branch self._events_url = self._makeStringAttribute(attributes["events_url"]) if "followers" in attributes: # pragma no branch self._followers = self._makeIntAttribute(attributes["followers"]) if "followers_url" in attributes: # pragma no branch self._followers_url = self._makeStringAttribute(attributes["followers_url"]) if "following" in attributes: # pragma no branch self._following = self._makeIntAttribute(attributes["following"]) if "following_url" in attributes: # pragma no branch self._following_url = self._makeStringAttribute(attributes["following_url"]) if "gists_url" in attributes: # pragma no branch self._gists_url = self._makeStringAttribute(attributes["gists_url"]) if "gravatar_id" in attributes: # pragma no branch self._gravatar_id = self._makeStringAttribute(attributes["gravatar_id"]) if "hireable" in attributes: # pragma no branch self._hireable = self._makeBoolAttribute(attributes["hireable"]) if "html_url" in attributes: # pragma no branch self._html_url = self._makeStringAttribute(attributes["html_url"]) if "id" in attributes: # pragma no branch self._id = self._makeIntAttribute(attributes["id"]) if "location" in attributes: # pragma no branch self._location = self._makeStringAttribute(attributes["location"]) if "login" in attributes: # pragma no branch self._login = self._makeStringAttribute(attributes["login"]) if "name" in attributes: # pragma no branch self._name = self._makeStringAttribute(attributes["name"]) if "organizations_url" in attributes: # pragma no branch self._organizations_url = self._makeStringAttribute(attributes["organizations_url"]) if "owned_private_repos" in attributes: # pragma no branch self._owned_private_repos = self._makeIntAttribute(attributes["owned_private_repos"]) if "plan" in attributes: # pragma no branch self._plan = self._makeClassAttribute(github.Plan.Plan, attributes["plan"]) if "private_gists" in attributes: # pragma no branch self._private_gists = self._makeIntAttribute(attributes["private_gists"]) if "public_gists" in attributes: # pragma no branch self._public_gists = self._makeIntAttribute(attributes["public_gists"]) if "public_repos" in attributes: # pragma no branch self._public_repos = self._makeIntAttribute(attributes["public_repos"]) if "received_events_url" in attributes: # pragma no branch self._received_events_url = self._makeStringAttribute(attributes["received_events_url"]) if "repos_url" in attributes: # pragma no branch self._repos_url = self._makeStringAttribute(attributes["repos_url"]) if "site_admin" in attributes: # pragma no branch self._site_admin = self._makeBoolAttribute(attributes["site_admin"]) if "starred_url" in attributes: # pragma no branch self._starred_url = self._makeStringAttribute(attributes["starred_url"]) if "subscriptions_url" in attributes: # pragma no branch self._subscriptions_url = self._makeStringAttribute(attributes["subscriptions_url"]) if "total_private_repos" in attributes: # pragma no branch self._total_private_repos = self._makeIntAttribute(attributes["total_private_repos"]) if "type" in attributes: # pragma no branch self._type = self._makeStringAttribute(attributes["type"]) if "updated_at" in attributes: # pragma no branch self._updated_at = self._makeDatetimeAttribute(attributes["updated_at"]) if "url" in attributes: # pragma no branch self._url = self._makeStringAttribute(attributes["url"])
py
1a4b204cd4c0936c02ef671851f86c1376ffb0f5
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf layers = tf.keras.layers def resnetv1_bottleneck(bottom, filters, strides, kernel_size=3, conv_shortcut=False, name=None, conv_trainable=True, bn_trainable=True): if conv_shortcut == True: shortcut = layers.Conv2D(4*filters, 1, strides, 'same', name=name+'_0_conv', trainable=conv_trainable)(bottom) shortcut = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_0_bn', trainable=bn_trainable)(shortcut) else: shortcut = bottom conv = layers.Conv2D(filters, 1, strides, 'same', name=name+'_1_conv', trainable=conv_trainable)(bottom) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name=name+'_1_relu')(conv) conv = layers.Conv2D(filters, kernel_size, 1, 'same', name=name+'_2_conv', trainable=conv_trainable)(conv) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_2_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name=name+'_2_relu')(conv) conv = layers.Conv2D(4*filters, 1, 1, 'same', name=name+'_3_conv', trainable=conv_trainable)(conv) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_3_bn', trainable=bn_trainable)(conv) add = layers.Add(name=name+'_add')([shortcut, conv]) relu = layers.Activation('relu', name=name+'_out')(add) return relu def stack_resnetv1_bottleneck(bottom, filters, num_blocks, strides, kernel_size=3, name=None, conv_trainable=True, bn_trainable=True): block = resnetv1_bottleneck(bottom, filters, strides, kernel_size, conv_shortcut=True, name=name+'_block1', conv_trainable=conv_trainable, bn_trainable=bn_trainable) for i in range(2, num_blocks+1): block = resnetv1_bottleneck(block, filters, 1, kernel_size, name=name+'_block'+str(i), conv_trainable=conv_trainable, bn_trainable=bn_trainable) return block def resnetv2_bottleneck(bottom, filters, strides, kernel_size=3, conv_shortcut=False, name=None, conv_trainable=True, bn_trainable=True): preact = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_preact_bn', trainable=bn_trainable)(bottom) preact = layers.Activation('relu', name=name+'_preact_relu')(preact) if conv_shortcut is True: shortcut = layers.Conv2D(4*filters, 1, strides, 'same', name=name+'_0_conv', trainable=conv_trainable)(preact) else: shortcut = bottom conv = layers.Conv2D(filters, 1, strides, 'same', use_bias=False, name=name+'_1_conv', trainable=conv_trainable)(preact) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name=name+'_1_relu')(conv) conv = layers.Conv2D(filters, kernel_size, 1, 'same', use_bias=False, name=name+'_2_conv', trainable=conv_trainable)(conv) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_2_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name=name+'_2_relu')(conv) conv = layers.Conv2D(4*filters, 1, 1, 'same', name=name+'_3_conv', trainable=conv_trainable)(conv) conv = layers.Add(name=name+'_out')([shortcut, conv]) return conv def stack_resnetv2_bottleneck(bottom, filters, num_blocks, stride, name=None, conv_trainable=True, bn_trainable=True): block = resnetv2_bottleneck(bottom, filters, stride, conv_shortcut=True, name=name+'_block1', conv_trainable=conv_trainable, bn_trainable=bn_trainable) for i in range(2, num_blocks+1): block = resnetv2_bottleneck(block, filters, 1, name=name+'_block'+str(i), conv_trainable=conv_trainable, bn_trainable=bn_trainable) return block def resnext_bottlebeck(bottom, filters, strides, kernel_size=3, groups=32, conv_shortcut=False, name=None, conv_trainable=True, bn_trainable=True): assert filters % groups == 0 if conv_shortcut: shortcut = layers.Conv2D((64//groups)*filters, 1, strides, 'same', use_bias=False, name=name+'_0_conv', trainable=conv_trainable)(bottom) shortcut = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_0_bn', trainable=bn_trainable)(shortcut) else: shortcut = bottom conv = layers.Conv2D(filters, 1, strides, 'same', use_bias=False, name=name+'_1_conv', trainable=conv_trainable)(bottom) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name=name+'_1_relu')(conv) c = filters // groups dwconv = layers.DepthwiseConv2D(kernel_size, 1, 'same', depth_multiplier=c, use_bias=False, name=name+'_2_conv', trainable=conv_trainable)(conv) dwconv_shape = tf.shape(dwconv) dwconv = tf.reshape(dwconv, [dwconv_shape[0], dwconv_shape[1], dwconv_shape[2], c, filters]) dwconv = tf.reshape(dwconv, [dwconv_shape[0], dwconv_shape[1], dwconv_shape[2], c, groups, c]) dwconv = tf.reduce_sum(dwconv, axis=-1) dwconv = tf.reshape(dwconv, [dwconv_shape[0], dwconv_shape[1], dwconv_shape[2], filters]) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_2_bn', trainable=bn_trainable)(dwconv) conv = layers.Activation('relu', name=name+'_2_relu')(conv) conv = layers.Conv2D((64//groups)*filters, 1, 1, 'same', use_bias=False, name=name+'_3_conv', trainable=conv_trainable)(conv) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name=name+'_3_bn', trainable=bn_trainable)(conv) add = layers.Add(name=name+'_add')([shortcut, conv]) relu = layers.Activation('relu', name=name+'_out')(add) return relu def stack_resnext_bottleneck(bottom, filters, num_blocks, stride, kernel_size=3, groups=32, name=None, conv_trainable=True, bn_trainable=True): block = resnext_bottlebeck(bottom, filters, stride, kernel_size, groups, conv_shortcut=True, name=name+'_block1', conv_trainable=conv_trainable, bn_trainable=bn_trainable) for i in range(2, num_blocks+1): block = resnext_bottlebeck(block, filters, 1, kernel_size, groups, name=name+'_block'+str(i), conv_trainable=conv_trainable, bn_trainable=bn_trainable) return block def resnetv1_50(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', trainable=conv_trainable)(input) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='conv1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='conv1_relu')(conv) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 64, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnetv1_bottleneck(conv, 128, 4, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 256, 6, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 512, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnetv1_50') if weight is not None: model.load_weights(weight) return model def resnetv1_101(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', trainable=conv_trainable)(input) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='conv1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='conv1_relu')(conv) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 64, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnetv1_bottleneck(conv, 128, 4, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 256, 23, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 512, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnetv1_101') if weight is not None: model.load_weights(weight) return model def resnetv1_152(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', trainable=conv_trainable)(input) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='conv1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='conv1_relu')(conv) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 64, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnetv1_bottleneck(conv, 128, 8, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 256, 36, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv1_bottleneck(conv, 512, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnetv1_152') if weight is not None: model.load_weights(weight) return model def resnetv2_50(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', trainable=conv_trainable)(input) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 64, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnetv2_bottleneck(conv, 128, 4, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 256, 6, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 512, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='post_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='post_relu')(conv) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnetv2_50') if weight is not None: model.load_weights(weight) return model def resnetv2_101(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', trainable=conv_trainable)(input) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 64, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnetv2_bottleneck(conv, 128, 4, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 256, 23, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 512, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='post_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='post_relu')(conv) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnetv2_101') if weight is not None: model.load_weights(weight) return model def resnetv2_152(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', trainable=conv_trainable)(input) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 64, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnetv2_bottleneck(conv, 128, 8, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 256, 36, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnetv2_bottleneck(conv, 512, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='post_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='post_relu')(conv) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnetv2_152') if weight is not None: model.load_weights(weight) return model def resnext_50(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', use_bias=False, trainable=conv_trainable)(input) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='conv1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='conv1_relu')(conv) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnext_bottleneck(conv, 128, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnext_bottleneck(conv, 256, 4, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnext_bottleneck(conv, 512, 6, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnext_bottleneck(conv, 1024, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnext_50') if weight is not None: model.load_weights(weight) return model def resnext_101(input,conv_trainable=True, bn_trainable=True, weight=None): """ :param input: tensor of 'nhwc' :param conv_trainable: whether the conv layers in net could trainable :param bn_trainable: whether the bn layers in net could trainable :param weight: if not None, the weight will load in net :return: [features maps stride 8, stride 16, stride 32] """ endpoints = [] conv = layers.Conv2D(64, 7, 2, 'same', name='conv1_conv', use_bias=False, trainable=conv_trainable)(input) conv = layers.BatchNormalization(3, epsilon=1.001e-5, name='conv1_bn', trainable=bn_trainable)(conv) conv = layers.Activation('relu', name='conv1_relu')(conv) conv = layers.MaxPool2D(3, 2, 'same', name='pool1_pool')(conv) endpoints.append(conv) conv = stack_resnext_bottleneck(conv, 128, 3, 1, name='conv2', conv_trainable=conv_trainable, bn_trainable=bn_trainable) conv = stack_resnext_bottleneck(conv, 256, 4, 2, name='conv3', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnext_bottleneck(conv, 512, 23, 2, name='conv4', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) conv = stack_resnext_bottleneck(conv, 1024, 3, 2, name='conv5', conv_trainable=conv_trainable, bn_trainable=bn_trainable) endpoints.append(conv) model = tf.keras.Model(inputs=input, outputs=endpoints, name='resnext_101') if weight is not None: model.load_weights(weight) return model
py
1a4b207e0102c8c54ba32295d5e618d6a737ae2a
# -*- coding: utf-8 -*- # Resource object code # # Created: Mon Aug 12 09:45:02 2019 # by: The Resource Compiler for PySide2 (Qt v5.12.3) # # WARNING! All changes made in this file will be lost! from PySide2 import QtGui, QtCore, QtWidgets qt_resource_data = "\ \x00\x00\x00\xb7\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x00\x07\x00\x00\x00\x05\x08\x04\x00\x00\x00#\x93>S\ \x00\x00\x00 cHRM\x00\x00z%\x00\x00\x80\x83\ \x00\x00\xf9\xff\x00\x00\x80\xe9\x00\x00u0\x00\x00\xea`\ \x00\x00:\x98\x00\x00\x17o\x92_\xc5F\x00\x00\x00R\ IDATx\xdabX\xf5\xe9\xca?\x18\x5c\xfe\x9e\ !\xd3\xff\xc4\x8f\xab\xbf\xaf\xfe\xbe\xfa\xfb\xd0\x97hc\ \x86\xff\x0c\x85k\xf7~\xdc\xfbq\xf3\x87\xcc\xbc\xff\x0c\ \x0c\xff\x19\x18\x98s\xce\xce\xbd\x1f9\xff?\xc3\x7f\x06\ \x86\xff\x0c\xff\x19\x14\xdd,\xb6\xfeg\xf8\xcf\xf0\x9f\x01\ 0\x00j_,gt\xda\xec\xfb\x00\x00\x00\x00IE\ ND\xaeB`\x82\ \x00\x00\x00\xb9\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x00\x07\x00\x00\x00\x05\x08\x06\x00\x00\x00\x89\x9a\xf6\xd8\ \x00\x00\x00\x04gAMA\x00\x00\xe0\xfcaP-\x96\ \x00\x00\x00pIDAT\x18Wc\xf8\xff\xff?\x1c\ [XXlUTTt\x83\xf1\x99\x18\xa0 **\ j~jj\xaa\x96\xb7\xb7w;###3H\x8c\ \x05Ddee\xe5\x01%\x03\xb9\xb8\xb8\x18\x15\x14\x14\ \x84XYYW\x01\x85\x83\x19\xa3\xa3\xa3\x8d\xd3\xd3\xd3\ \x0f\x0a\x0b\x0b\xb3\x83\x14\x82\xc0\xe7\xcf\x9f\xff.\x5c\xb8\ 0\x9cq\xf9\xf2\xe5\xefuuu\xf9\xa1\xe2pp\xed\ \xda\xb5/\x00\xbdl*\x96St\x81\x19\x00\x00\x00\x00\ IEND\xaeB`\x82\ \x00\x00\x01B\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x00\x09\x00\x00\x00\x09\x08\x06\x00\x00\x00\xe0\x91\x06\x10\ \x00\x00\x00 cHRM\x00\x00z%\x00\x00\x80\x83\ \x00\x00\xf9\xff\x00\x00\x80\xe9\x00\x00u0\x00\x00\xea`\ \x00\x00:\x98\x00\x00\x17o\x92_\xc5F\x00\x00\x00\xdd\ IDATx\xda\x5c\x8e\xb1N\x84@\x18\x84g\xef\ L,\xc8\xd9,\x0dXP\x1b\x0b\xc3\xfa$w\xbd\x0d\ \x85O@\x0b\xbb\xcb;\xd0hAr\xc5\xd2(O\x02\ \xcf\xb1\x97@a\xd4\xc2\xc4b,\xbcM\xd0I\xfe\xbf\ \xf82\xff?#H\xc2Z;\x00\x80\xd6\xfa\x80\xb3\xac\ \xb5\x03I\x18c\x0e[!\xc4\x90\xe7\xf9>I\x92\x9b\ \xbe\xef\xef\xca\xb2|\xf5\xde\xbf\x04\xe6\x9c\xbb\xbd \xf9\ \x19\xae\x95R\xfb,\xcb\xbe\xa5\x94\x01\x81\xe4\x9b8\xbf\ <*\xa5\x1e\xf0O\xe38>7M\xf3(H\x02\x00\ \xba\xae{\x97R\xee\x82aY\x96\x8f\xa2(\xae\x00`\ \x03\x00\xc6\x98\xe3\xda\x00\x00q\x1c\xef\xb4\xd6O\x00\xb0\ \x05\xf0'j\x9egDQ\x04\x00H\xd3\xf4\xde9w\ \xbd!\xf9\xb5\xeapj\xdb\xf6r\x9a\xa6\xd3\xaa\xf8\xef\ \xaa\xeb\xdaWU\xe5I\x22\xcc\x9a\xfd\x0c\x00$\xabn\ \xfa\x96!\xfc\xb8\x00\x00\x00\x00IEND\xaeB`\ \x82\ \x00\x00\x00\xa5\ \x89\ PNG\x0d\x0a\x1a\x0a\x00\x00\x00\x0dIHDR\x00\ \x00\x00\x06\x00\x00\x00\x06\x08\x06\x00\x00\x00\xe0\xcc\xefH\ \x00\x00\x00 cHRM\x00\x00z%\x00\x00\x80\x83\ \x00\x00\xf9\xff\x00\x00\x80\xe9\x00\x00u0\x00\x00\xea`\ \x00\x00:\x98\x00\x00\x17o\x92_\xc5F\x00\x00\x00@\ IDATx\xda\x5c\x8c1\x11\x000\x08\xc4B-\ \x03\xfc+aE\x02\x1a\xe8T\xaem\xc6\xcf}\xc4\ \xcc\x1a \x22\x84\x8b\x05\x90\x99\xa8j\xdfB\xba{\xc6\ \xaa\x92G\x1c\xdc}\xb2\x8b\x8f\x93}\x1e\xc0d\xf7\x00\ \xf5\x9f\x1d\xd3\x02\x88\xef\xaf\x00\x00\x00\x00IEND\ \xaeB`\x82\ " qt_resource_name = "\ \x00\x0e\ \x04\xa2\xfc\xa7\ \x00d\ \x00o\x00w\x00n\x00_\x00a\x00r\x00r\x00o\x00w\x00.\x00p\x00n\x00g\ \x00\x0c\ \x06\xe6\xe6g\ \x00u\ \x00p\x00_\x00a\x00r\x00r\x00o\x00w\x00.\x00p\x00n\x00g\ \x00\x0c\ \x04V#g\ \x00c\ \x00h\x00e\x00c\x00k\x00b\x00o\x00x\x00.\x00p\x00n\x00g\ \x00\x0a\ \x0b-\x87\xc7\ \x00h\ \x00a\x00n\x00d\x00l\x00e\x00.\x00p\x00n\x00g\ " qt_resource_struct = "\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x04\x00\x00\x00\x01\ \x00\x00\x00@\x00\x00\x00\x00\x00\x01\x00\x00\x01x\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x00\x22\x00\x00\x00\x00\x00\x01\x00\x00\x00\xbb\ \x00\x00\x00^\x00\x00\x00\x00\x00\x01\x00\x00\x02\xbe\ " def qInitResources(): QtCore.qRegisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
py
1a4b20efa6a22abe1e9a35eb008341421b09f338
import unittest from ultrasonic.driver import UltrasonicDriver class UltrasonicSensorTest(unittest.TestCase): def test_parse_data(self): test_data = "SensorA: 34\nSensorB: 0\nSensorC: 0\nSensorA: 40\nSensorD: 0" parsed_data = [] for line in test_data.split("\n"): parsed_data.append(UltrasonicDriver.parse_data(line)) self.assertIn(("A", 0.34), parsed_data) if __name__ == '__main__': unittest.main()
py
1a4b2153c81d4814c1a72e613f4b48b077d4ea28
import os import re from poetry.semver import Version from poetry.version.requirements import Requirement from .dependency import Dependency from .dependency_package import DependencyPackage from .directory_dependency import DirectoryDependency from .file_dependency import FileDependency from .locker import Locker from .package import Package from .package_collection import PackageCollection from .project_package import ProjectPackage from .utils.link import Link from .utils.utils import convert_markers from .utils.utils import group_markers from .utils.utils import is_archive_file from .utils.utils import is_installable_dir from .utils.utils import is_url from .utils.utils import path_to_url from .utils.utils import strip_extras from .vcs_dependency import VCSDependency def dependency_from_pep_508(name): # Removing comments parts = name.split("#", 1) name = parts[0].strip() if len(parts) > 1: rest = parts[1] if ";" in rest: name += ";" + rest.split(";", 1)[1] req = Requirement(name) if req.marker: markers = convert_markers(req.marker) else: markers = {} name = req.name path = os.path.normpath(os.path.abspath(name)) link = None if is_url(name): link = Link(name) else: p, extras = strip_extras(path) if os.path.isdir(p) and (os.path.sep in name or name.startswith(".")): if not is_installable_dir(p): raise ValueError( "Directory {!r} is not installable. File 'setup.py' " "not found.".format(name) ) link = Link(path_to_url(p)) elif is_archive_file(p): link = Link(path_to_url(p)) # it's a local file, dir, or url if link: # Handle relative file URLs if link.scheme == "file" and re.search(r"\.\./", link.url): link = Link(path_to_url(os.path.normpath(os.path.abspath(link.path)))) # wheel file if link.is_wheel: m = re.match(r"^(?P<namever>(?P<name>.+?)-(?P<ver>\d.*?))", link.filename) if not m: raise ValueError("Invalid wheel name: {}".format(link.filename)) name = m.group("name") version = m.group("ver") dep = Dependency(name, version) else: name = link.egg_fragment if link.scheme == "git": dep = VCSDependency(name, "git", link.url_without_fragment) else: dep = Dependency(name, "*") else: if req.pretty_constraint: constraint = req.constraint else: constraint = "*" dep = Dependency(name, constraint) if "extra" in markers: # If we have extras, the dependency is optional dep.deactivate() for or_ in markers["extra"]: for _, extra in or_: dep.in_extras.append(extra) if "python_version" in markers: ors = [] for or_ in markers["python_version"]: ands = [] for op, version in or_: # Expand python version if op == "==": version = "~" + version op = "" elif op == "!=": version += ".*" elif op in ("<=", ">"): parsed_version = Version.parse(version) if parsed_version.precision == 1: if op == "<=": op = "<" version = parsed_version.next_major.text elif op == ">": op = ">=" version = parsed_version.next_major.text elif parsed_version.precision == 2: if op == "<=": op = "<" version = parsed_version.next_minor.text elif op == ">": op = ">=" version = parsed_version.next_minor.text elif op in ("in", "not in"): versions = [] for v in re.split("[ ,]+", version): split = v.split(".") if len(split) in [1, 2]: split.append("*") op_ = "" if op == "in" else "!=" else: op_ = "==" if op == "in" else "!=" versions.append(op_ + ".".join(split)) glue = " || " if op == "in" else ", " if versions: ands.append(glue.join(versions)) continue ands.append("{}{}".format(op, version)) ors.append(" ".join(ands)) dep.python_versions = " || ".join(ors) if req.marker: dep.marker = req.marker # Extras for extra in req.extras: dep.extras.append(extra) return dep
py
1a4b2332e01c34edb48deb036b93f04f162ea00f
""" - intial setup: - ask for home dir (default to ``` from pathlib import Path HOME_DIR = str(Path.home()) ``` ) - ask for output dir for gh_releases - commands - add - remove - update """ from util import getConfigPath if __name__ == "__main__": if not getConfigPath().exists(): from commands.initial_setup import init_setup init_setup() else: from commands import cli cli()
py
1a4b248cf2e0cabf69f7c48dd56aab4659fabffb
""" Message delivery Various interfaces to messaging services. Currently: - ``pushover`` - a platform for sending and receiving push notifications is supported. AUTHORS: - Martin Albrecht (2012) - initial implementation """ import http.client as httplib from urllib.parse import urlencode from ssl import SSLContext pushover_defaults = {"token": "Eql67F14ohOZJ0AtEBJJU7FiLAk8wK"} def pushover(message, **kwds): """ Send a push notification with ``message`` to ``user`` using https://pushover.net/. Pushover is a platform for sending and receiving push notifications. On the server side, it provides an HTTP API for queueing messages to deliver to devices. On the device side, iOS and Android clients receive those push notifications, show them to the user, and store them for offline viewing. An account on https://pushover.net is required and the Pushover app must be installed on your phone for this function to be able to deliver messages to you. INPUT: - ``message`` - your message - ``user`` - the user key (not e-mail address) of your user (or you), viewable when logged into the Pushover dashboard. (default: ``None``) - ``device`` - your user's device identifier to send the message directly to that device, rather than all of the user's devices (default: ``None``) - ``title`` - your message's title, otherwise uses your app's name (default: ``None``) - ``url`` - a supplementary URL to show with your message (default: ``None``) - ``url_title`` - a title for your supplementary URL (default: ``None``) - ``priority`` - set to 1 to display as high-priority and bypass quiet hours, or -1 to always send as a quiet notification (default: ``0``) - ``timestamp`` - set to a unix timestamp to have your message show with a particular time, rather than now (default: ``None``) - ``sound`` - set to the name of one of the sounds supported by device clients to override the user's default sound choice (default: ``None``) - ``token`` - your application's API token (default: Sage's default App token) EXAMPLES:: sage: import sage.misc.messaging sage: sage.misc.messaging.pushover("Hi, how are you?", user="XXX") # not tested To set default values populate ``pushover_defaults``:: sage: sage.misc.messaging.pushover_defaults["user"] = "USER_TOKEN" sage: sage.misc.messaging.pushover("Hi, how are you?") # not tested .. note:: You may want to populate ``sage.misc.messaging.pushover_defaults`` with default values such as the default user in ``$HOME/.sage/init.sage``. """ request = {"message": message} request.update(pushover_defaults) request.update(kwds) conn = httplib.HTTPSConnection("api.pushover.net:443", context=SSLContext()) conn.request("POST", "/1/messages.json", urlencode(request), {"Content-type": "application/x-www-form-urlencoded"}) return conn.getresponse().status == 200
py
1a4b24d1ddde2048f46015eb0572e83359cca733
try: from setuptools import setup except ImportError: from distutils.core import setup setup(name='GradespeedScraper', version='0.1-dev', description='Scrapes Gradespeed', author='Davis Robertson', author_email='[email protected]', license='MIT', url='https://github.com/epicdavi/GradespeedScraper/', install_requires=['mechanize>=0.2.5', 'beautifulsoup4>=4.3.x,<4.4'], )
py
1a4b272d0cfc420b75357f12bb6515126cf0ec7a
""" @file @brief Helpers to run examples created with function @see fn export2tf2onnx. """ import collections import inspect import numpy from onnx.numpy_helper import from_array from onnx.helper import ( make_node, make_graph, make_model, set_model_props, make_tensor) from onnx import AttributeProto from ..onnx2py_helper import guess_dtype, guess_proto_dtype from ..onnx_tools import ensure_topological_order _make_name_id = 0 def make_name(name): "Creates a unique name." global _make_name_id # pylint: disable=W0603 name = "%s_%d" % (name, _make_name_id) _make_name_id += 1 return name def make_sure(cond, msg, *args): "Raises an exception if cond is not verified." if not cond: raise RuntimeError(msg % tuple(args)) def map_onnx_to_numpy_type(onnx_dtype): "Converts ONNX type into numpy type." return guess_dtype(onnx_dtype) class tf_op: """ Decorator to register any new converter. :param name: type of the operator to rewrite :param domain: domain """ _OPSETS = collections.OrderedDict() def __init__(self, name, domain='', **kwargs): if not isinstance(name, list): name = [name] self.names = name self.domain = domain self.kwargs = kwargs def __call__(self, func): for ke, va in inspect.getmembers(func, inspect.ismethod): if ke.startswith("version_"): version = int(ke.replace("version_", "")) self._register_handler( va, version, self.names, self.domain, self.kwargs) return func def _register_handler(self, func, version, names, domain, kwargs): opset = tf_op._OPSETS.get(domain) if not opset: opset = [] tf_op._OPSETS[domain] = opset while version >= len(opset): opset.append({}) opset_dict = opset[version] for name in names: opset_dict[name] = (func, kwargs) class Tf2OnnxConvert: """ Applies the converter on an ONNX graph. :param onnx_model: ONNX graph :param tf_op: class which register :param verbose: verbosity :param target_opset: targetted opsets """ def __init__(self, onnx_model, _tf_op=None, verbose=None, target_opset=None): self._onnx_model = onnx_model self._tf_op = _tf_op or tf_op self.verbose = verbose if isinstance(target_opset, int): self.target_opsets = {'': target_opset} elif isinstance(target_opset, dict): self.target_opsets = target_opset elif target_opset is None: opsets = {} for oimp in onnx_model.opset_import: if oimp.domain == '': opsets[oimp.domain] = oimp.version opset = oimp.version else: opsets[oimp.domain] = opset self.target_opsets = opsets else: raise ValueError( # pragma: no cover "Unexepected value for target_opset=%r." % target_opset) self._names = {} for node in onnx_model.graph.node: self._names[node.name] = node for init in onnx_model.graph.initializer: self._names[init.name] = init # _forbidden_new_names contains current names and deleted names. self._forbidden_new_names = set(self._names) if '' in self.target_opsets: self.opset = self.target_opsets[''] if not hasattr(self, 'opset'): raise RuntimeError( # pragma: no cover "Attribute opset is missing, target_opset=%r." % target_opset) def get_node_by_name(self, name): """ Retrieves a node by its name. :param name: node name :return: node name """ if name not in self._names: raise RuntimeError( "Unable to find node name %r among %r." % ( name, ", ".join(sorted(self._names)))) return self._names[name] def _add_node_name(self, obj): """ Registers an object in in the graph by its name. :param name: node or initializer """ if obj.name in self._forbidden_new_names: raise RuntimeError( "Name %r is already registered." % obj.name) self._names[obj.name] = obj self._forbidden_new_names.add(obj.name) def make_node(self, op_type, inputs, attr=None, outputs=None, name=None, domain='', output_count=1): """ Adds a node to the list of nodes. :param op_type: operator type :param inputs: list of strings :param attr: dictionary of attributes :param outputs: None or list of strings :param output_count: used if outputs is None to guess the number of outputs of this node :param name: name of the node :param domain: domain :return: created node """ if self.verbose: print("[Tf2OnnxConvert.make_node] op_type=%r inputs=%r" % ( op_type, inputs)) if attr is None: attr = {} if name is None: name = make_name(op_type) if name in self._names: raise RuntimeError( "Node name %r already exists in %r." % ( name, ", ".join(sorted(self._names)))) if outputs is None: outputs = [(name + ":" + str(i)) for i in range(output_count)] output_count = len(outputs) raw_attr = {} onnx_attrs = [] for a, v in attr.items(): if isinstance(v, AttributeProto): onnx_attrs.append(v) else: raw_attr[a] = v onnx_node = make_node( op_type, inputs, outputs, name=name, domain=domain, **raw_attr) self._add_node_name(onnx_node) return onnx_node def make_const(self, name, np_val, skip_conversion=False, raw=True): """ Make a new constants in the graph. :param name: const node name, must be unique. :param np_val: value of type numpy ndarray. :param skip_conversion: bool, indicate whether this created node would be mapped during conversion :param raw: whether to store data at field of raw_data or the specific field according to its dtype :return: create initializer """ if name in self._names: raise RuntimeError( "Initializer name %r already exists in %r." % ( name, ", ".join(sorted(self._names)))) np_val_flat = np_val.flatten() is_bytes = (np_val.dtype == numpy.object and len(np_val_flat) > 0 and isinstance(np_val_flat[0], bytes)) if raw and not is_bytes: onnx_tensor = from_array(np_val, name) else: onnx_tensor = make_tensor( name, guess_proto_dtype(np_val.dtype), np_val.shape, np_val_flat, raw=False) self._add_node_name(onnx_tensor) return onnx_tensor def get_dtype(self, input_name): """ Returns the type of one node or None if unknown. :param input_name: result name :return: numpy dtype """ inputs = self._onnx_model.graph.input names = [_.name for _ in inputs] if input_name not in names: return None # pragma: no cover ind = names.index(input_name) return inputs[ind].type.tensor_type.elem_type def replace_all_inputs(self, old_name, new_name): """ Every taking *old_name* as inputs will take *new_name* instead. Looks in the output as well but in that case, it creates an identity node to avoid changing an output name. :param old_name: name to replace :param new_name: new name :return: list of impacted nodes """ res = [] for node in self._names.values(): if not hasattr(node, 'input'): continue if old_name not in node.input: continue new_inputs = [new_name if i.name == old_name else i.name for i in node.input] node.input[:] = new_inputs[:] res.append(node) if self.verbose: print("[Tf2OnnxConvert.replace_all_inputs] replace %r by %r in node %r" % ( old_name, new_name, node.name)) for o in self._onnx_model.graph.output: if o.name != old_name: continue n = self.make_node("Identity", [new_name], outputs=[old_name], name=make_name("IdOutputReplaced")) res.append(n) if self.verbose: print("[Tf2OnnxConvert.replace_all_inputs] add id node from %r to %r " "with node %r." % ( old_name, new_name, n.name)) # pylint: disable=E1101 return res def remove_node(self, name): """ Removes a node name from the list. """ if name not in self._names: raise RuntimeError( "Unable to delete name %r because it does not exists." % name) del self._names[name] if self.verbose: print("[Tf2OnnxConvert.remove_node] delete name %r" % name) def get_shape(self, input_name): """ Returns the type of one node or None if unknown. :param input_name: result name :return: numpy dtype """ inputs = self._onnx_model.graph.input names = [_.name for _ in inputs] if input_name not in names: return None # pragma: no cover ind = names.index(input_name) dims = inputs[ind].type.tensor_type.shape.dim return tuple(dims) def run(self): """ Calls the registered converters on the graph held by this instance. Returns the new onnx graph. :return: ONNX graph """ if len(self._tf_op._OPSETS) == 0: raise RuntimeError( # pragma: no cover "No converter was registered.") if self.verbose: print("[Tf2OnnxConvert.run]") done = {} modif = 1 while modif > 0: modif = 0 # The converter may alter the current list of nodes, we freeze it. current_values = list(self._names.values()) for node in current_values: if not hasattr(node, 'domain'): # initializer continue if done.get(node.name, False): continue domain = node.domain if domain not in self._tf_op._OPSETS: continue # look for a converter rews = self._tf_op._OPSETS[domain] target = min(self.target_opsets[domain], len(rews)) conv = None for i in range(len(rews) - 1, -1, -1): if node.op_type in rews[i]: conv = rews[i][node.op_type] break if conv is None: continue # applies the converter if self.verbose: print("[Tf2OnnxConvert.run] convert node type=%r opset=%r name=%r" "" % (node.op_type, target, node.name)) fct, kwargs = conv fct(self, node, target_opset=target, **kwargs) modif += 1 return self.make_model() def make_model(self): """ Produces the new ONNX graph with the updated sets of nodes. """ inputs = self._onnx_model.graph.input outputs = self._onnx_model.graph.output inits = [init[1] for init in sorted(self._names.items()) if not hasattr(init[1], 'domain')] nodes = [node[1] for node in sorted(self._names.items()) if hasattr(node[1], 'domain')] nodes = ensure_topological_order(inputs, inits, nodes) if self.verbose: print( "[Tf2OnnxConvert.make_node] %d nodes %d inputs %d " "outputs %d initializers" "" % (len(nodes), len(inputs), len(outputs), len(inits))) graph = make_graph(nodes, self._onnx_model.graph.name, inputs, outputs, inits) onnx_model = make_model(graph) onnx_model.ir_version = self._onnx_model.ir_version onnx_model.producer_name = self._onnx_model.producer_name + "-mlprodict" onnx_model.producer_version = self._onnx_model.producer_version onnx_model.domain = self._onnx_model.domain onnx_model.model_version = self._onnx_model.model_version onnx_model.doc_string = self._onnx_model.doc_string metadata = {p.key: p.value for p in self._onnx_model.metadata_props} set_model_props(onnx_model, metadata) # opsets del onnx_model.opset_import[:] # pylint: disable=E1101 for dom, value in self.target_opsets.items(): op_set = onnx_model.opset_import.add() # pylint: disable=E1101 op_set.domain = dom op_set.version = value return onnx_model class GraphBuilder: """ Helpers to build graph. :param graph! """ def __init__(self, graph): self._g = graph @property def graph(self): "Returns the graph." return self._g def make_slice(self, kwargs, name=None, shapes=None, dtypes=None, return_node=False): """ slice changes its schema at opset 10: it treats some attributes as dynamic input so this function has to process inputs according to graph's opset version to get "inputs" and "attr" to feed "make_node" kwargs: key could be ["data", "starts", "ends", "axes", "steps", "outputs"]. """ outputs = kwargs.pop("outputs", None) if self.graph.opset < 10: # "data" is string # "starts", "ends" and "axes" are attributes, and "axes" is optional. data = kwargs.pop("data") starts = self._convert_to_attribute(kwargs.pop("starts")) ends = self._convert_to_attribute(kwargs.pop("ends")) axes = self._convert_to_attribute( kwargs.pop("axes", None), is_optional=True) attr = {"starts": starts, "ends": ends, "axes": axes} inputs = [data] else: # slice-10 has 3 required inputs "data", "starts", "ends"l # and 2 optional inputs "axes", "steps" # input sequence should be "data", "starts", "ends", "axes", "steps" attr = {} data = kwargs.pop("data") starts = self._convert_to_input(kwargs.pop( "starts"), "const_starts", dtype=numpy.int64) ends = self._convert_to_input(kwargs.pop( "ends"), "const_ends", dtype=numpy.int64) axes = self._convert_to_input(kwargs.pop( "axes", None), "const_axes", is_optional=True, dtype=numpy.int64) steps = self._convert_to_input(kwargs.pop( "steps", None), "const_steps", is_optional=True, dtype=numpy.int64) inputs = [data, starts.name, ends.name, axes.name, steps.name] # pro-process inputs and attr make_sure(not kwargs, "kwargs contains un-used key") new_attr = {} for key, val in attr.items(): if val is not None: new_attr[key] = val attr = new_attr for ind, val in enumerate(inputs): if val is None: inputs[ind] = "" # empty string means no connection in ONNX # remove tailing "" while inputs[-1] == "": inputs = inputs[:-1] if self.graph.opset >= 10: dtype = self.graph.get_dtype(inputs[1]) for input_data in inputs[1:]: if input_data != "": make_sure(dtype == self.graph.get_dtype( input_data), "dtype should be same") node = self.graph.make_node(op_type="Slice", inputs=inputs, attr=attr, name=name, outputs=outputs, shapes=shapes, dtypes=dtypes) if return_node: return node raise NotImplementedError("return_node must be True") def make_squeeze(self, kwargs, name=None, shapes=None, dtypes=None, return_node=False, op_name_scope=None): """ Squeeze changes its schema at opset 13: it treats axes as a dynamic input kwargs: key could be ["data", "axes"]. """ outputs = kwargs.pop("outputs", None) if self.graph.opset < 13: data = kwargs.pop("data") axes = self._convert_to_attribute( kwargs.pop("axes", None), is_optional=True) attr = {"axes": axes} inputs = [data] else: data = kwargs.pop("data") axes = self._convert_to_input(kwargs.pop( "axes", None), "const_axes", is_optional=True, dtype=numpy.int64) attr = {} inputs = [data, axes.name] make_sure(not kwargs, "kwargs contains un-used key") new_attr = {} for key, val in attr.items(): if val is not None: new_attr[key] = val attr = new_attr for ind, val in enumerate(inputs): if val is None: inputs[ind] = "" # empty string means no connection in ONNX # remove tailing "" while inputs[-1] == "": inputs = inputs[:-1] node = self.graph.make_node(op_type="Squeeze", inputs=inputs, attr=attr, name=name, outputs=outputs) if return_node: return node raise NotImplementedError("return_node must be True") def make_unsqueeze(self, kwargs, name=None, shapes=None, dtypes=None, return_node=False, op_name_scope=None): """ Unsqueeze changes its schema at opset 13: it treats axes as a dynamic input kwargs: key could be ["data", "axes"]. """ outputs = kwargs.pop("outputs", None) if self.graph.opset < 13: data = kwargs.pop("data") axes = self._convert_to_attribute( kwargs.pop("axes", None), is_optional=True) attr = {"axes": axes} inputs = [data] else: data = kwargs.pop("data") axes = self._convert_to_input(kwargs.pop( "axes", None), "const_axes", is_optional=True, dtype=numpy.int64) attr = {} inputs = [data, axes.name] make_sure(not kwargs, "kwargs contains un-used key") new_attr = {} for key, val in attr.items(): if val is not None: new_attr[key] = val attr = new_attr for ind, val in enumerate(inputs): if val is None: inputs[ind] = "" # empty string means no connection in ONNX # remove tailing "" while inputs[-1] == "": inputs = inputs[:-1] node = self.graph.make_node(op_type="Unsqueeze", inputs=inputs, attr=attr, name=name, outputs=outputs) if return_node: return node raise NotImplementedError("return_node must be True") def _convert_to_input(self, tensor, const_name, is_optional=False, dtype=None): """in ONNX, input shold come from node, so it must be a string""" if is_optional and tensor is None: return None make_sure(tensor is not None, "input is required so it couldn't be None") res = tensor if isinstance(tensor, list): res = self.graph.make_const( make_name(const_name), numpy.array(tensor, dtype)) return res def _convert_to_attribute(self, tensor, is_optional=False): if is_optional and tensor is None: return None make_sure(tensor is not None, "input is required so it couldn't be None") res = tensor if isinstance(tensor, str): const_node = self.graph.get_node_by_output(tensor) res = const_node.get_tensor_value(as_list=True) make_sure(isinstance(res, list), "input is an attr, so a list is needed") return res
py
1a4b27322d4f9290feec43bbe6e91b42aff857cf
from lbry.testcase import CommandTestCase class AddressManagement(CommandTestCase): async def test_address_list(self): addresses = await self.out(self.daemon.jsonrpc_address_list()) self.assertEqual(27, len(addresses)) single = await self.out(self.daemon.jsonrpc_address_list(addresses[11]['address'])) self.assertEqual(1, len(single)) self.assertEqual(single[0], addresses[11])
py
1a4b282b49de9a38d9c3f3b091630a0e74fa7af6
#!/usr/bin/env python """ ZetCode wxPython tutorial In this example, we create a wx.ListBox widget. author: Jan Bodnar website: www.zetcode.com last modified: July 2020 """ import wx class Example(wx.Frame): def __init__(self, *args, **kw): super(Example, self).__init__(*args, **kw) self.InitUI() def InitUI(self): panel = wx.Panel(self) hbox = wx.BoxSizer(wx.HORIZONTAL) self.listbox = wx.ListBox(panel) hbox.Add(self.listbox, wx.ID_ANY, wx.EXPAND | wx.ALL, 20) btnPanel = wx.Panel(panel) vbox = wx.BoxSizer(wx.VERTICAL) newBtn = wx.Button(btnPanel, wx.ID_ANY, 'New', size=(90, 30)) renBtn = wx.Button(btnPanel, wx.ID_ANY, 'Rename', size=(90, 30)) delBtn = wx.Button(btnPanel, wx.ID_ANY, 'Delete', size=(90, 30)) clrBtn = wx.Button(btnPanel, wx.ID_ANY, 'Clear', size=(90, 30)) self.Bind(wx.EVT_BUTTON, self.NewItem, id=newBtn.GetId()) self.Bind(wx.EVT_BUTTON, self.OnRename, id=renBtn.GetId()) self.Bind(wx.EVT_BUTTON, self.OnDelete, id=delBtn.GetId()) self.Bind(wx.EVT_BUTTON, self.OnClear, id=clrBtn.GetId()) self.Bind(wx.EVT_LISTBOX_DCLICK, self.OnRename) vbox.Add((-1, 20)) vbox.Add(newBtn) vbox.Add(renBtn, 0, wx.TOP, 5) vbox.Add(delBtn, 0, wx.TOP, 5) vbox.Add(clrBtn, 0, wx.TOP, 5) btnPanel.SetSizer(vbox) hbox.Add(btnPanel, 0.6, wx.EXPAND | wx.RIGHT, 20) panel.SetSizer(hbox) self.SetTitle('wx.ListBox') self.Centre() def NewItem(self, event): text = wx.GetTextFromUser('Enter a new item', 'Insert dialog') if text != '': self.listbox.Append(text) def OnRename(self, event): sel = self.listbox.GetSelection() text = self.listbox.GetString(sel) renamed = wx.GetTextFromUser('Rename item', 'Rename dialog', text) if renamed != '': self.listbox.Delete(sel) item_id = self.listbox.Insert(renamed, sel) self.listbox.SetSelection(item_id) def OnDelete(self, event): sel = self.listbox.GetSelection() if sel != -1: self.listbox.Delete(sel) def OnClear(self, event): self.listbox.Clear() def main(): app = wx.App() ex = Example(None) ex.Show() app.MainLoop() if __name__ == '__main__': main()
py
1a4b28e673fa5dadcd8265b55cd7e25dc40fad14
import sys, time import time from collections import namedtuple import mxnet as mx import numpy as np def evaluate_model(cnn_model, batch_size, max_grad_norm, learning_rate, epoch, x_train, y_train, x_dev, y_dev): ''' Train the cnn_model using back prop. ''' optimizer='rmsprop' print 'optimizer', optimizer print 'maximum gradient', max_grad_norm print 'learning rate (step size)', learning_rate print 'epochs to train for', epoch # create optimizer opt = mx.optimizer.create(optimizer) opt.lr = learning_rate updater = mx.optimizer.get_updater(opt) # create logging output logs = sys.stderr # For each training epoch for iteration in range(epoch): tic = time.time() num_correct = 0 num_total = 0 # Over each batch of training data for begin in range(0, x_train.shape[0], batch_size): batchX = x_train[begin:begin+batch_size] batchY = y_train[begin:begin+batch_size] if batchX.shape[0] != batch_size: continue cnn_model.data[:] = batchX cnn_model.label[:] = batchY # forward cnn_model.cnn_exec.forward(is_train=True) # backward cnn_model.cnn_exec.backward() # eval on training data num_correct += sum(batchY == np.argmax(cnn_model.cnn_exec.outputs[0].asnumpy(), axis=1)) num_total += len(batchY) # update weights norm = 0 for idx, weight, grad, name in cnn_model.param_blocks: grad /= batch_size l2_norm = mx.nd.norm(grad).asscalar() norm += l2_norm * l2_norm norm = np.sqrt(norm) for idx, weight, grad, name in cnn_model.param_blocks: if norm > max_grad_norm: grad *= (max_grad_norm / norm) updater(idx, grad, weight) # reset gradient to zero grad[:] = 0.0 # Decay learning rate for this epoch to ensure we are not "overshooting" optima if iteration % 50 == 0 and iteration > 0: opt.lr *= 0.5 print >> logs, 'reset learning rate to %g' % opt.lr # End of training loop for this epoch toc = time.time() train_time = toc - tic train_acc = num_correct * 100 / float(num_total) # Evaluate model after this epoch on dev (test) set num_correct = 0 num_total = 0 # For each test batch for begin in range(0, x_dev.shape[0], batch_size): batchX = x_dev[begin:begin+batch_size] batchY = y_dev[begin:begin+batch_size] if batchX.shape[0] != batch_size: continue cnn_model.data[:] = batchX cnn_model.cnn_exec.forward(is_train=False) num_correct += sum(batchY == np.argmax(cnn_model.cnn_exec.outputs[0].asnumpy(), axis=1)) num_total += len(batchY) dev_acc = num_correct * 100 / float(num_total) print >> logs, 'Iter [%d] Train: Time: %.3fs, Training Accuracy: %.3f \ --- Dev Accuracy thus far: %.3f' % (iteration, train_time, train_acc, dev_acc) return dev_acc
py
1a4b2904cfeeed6ffbccda8d3feaab2a932aba32
from abc import ( ABC, abstractmethod ) from argparse import ( ArgumentParser, Namespace, _SubParsersAction, ) import asyncio from enum import ( auto, Enum, ) import logging from multiprocessing import ( Process ) from typing import ( Any, Dict, NamedTuple, ) from lahja import ( BaseEvent, ) from trinity.config import ( TrinityConfig ) from trinity.endpoint import ( TrinityEventBusEndpoint, ) from trinity.extensibility.events import ( PluginStartedEvent, ) from trinity.extensibility.exceptions import ( InvalidPluginStatus, ) from trinity._utils.mp import ( ctx, ) from trinity._utils.logging import ( setup_log_levels, setup_queue_logging, ) from trinity._utils.os import ( friendly_filename_or_url, ) class PluginStatus(Enum): NOT_READY = auto() READY = auto() STARTED = auto() STOPPED = auto() INVALID_START_STATUS = (PluginStatus.NOT_READY, PluginStatus.STARTED,) class TrinityBootInfo(NamedTuple): args: Namespace trinity_config: TrinityConfig boot_kwargs: Dict[str, Any] = None class BasePlugin(ABC): _status: PluginStatus = PluginStatus.NOT_READY def __init__(self, boot_info: TrinityBootInfo) -> None: self.boot_info = boot_info @property @abstractmethod def event_bus(self) -> TrinityEventBusEndpoint: pass @property @abstractmethod def name(self) -> str: """ Describe the name of the plugin. """ pass @property def normalized_name(self) -> str: """ The normalized (computer readable) name of the plugin """ return friendly_filename_or_url(self.name) @classmethod def get_logger(cls) -> logging.Logger: return logging.getLogger(f'trinity.extensibility.plugin(#{cls.__name__})') @property def logger(self) -> logging.Logger: return self.get_logger() @property def running(self) -> bool: """ Return ``True`` if the ``status`` is ``PluginStatus.STARTED``, otherwise return ``False``. """ return self._status is PluginStatus.STARTED @property def status(self) -> PluginStatus: """ Return the current :class:`~trinity.extensibility.plugin.PluginStatus` of the plugin. """ return self._status def ready(self, manager_eventbus: TrinityEventBusEndpoint) -> None: """ Set the ``status`` to ``PluginStatus.READY`` and delegate to :meth:`~trinity.extensibility.plugin.BasePlugin.on_ready` """ self._status = PluginStatus.READY self.on_ready(manager_eventbus) def on_ready(self, manager_eventbus: TrinityEventBusEndpoint) -> None: """ Notify the plugin that it is ready to bootstrap itself. The ``manager_eventbus`` refers to the instance of the :class:`~lahja.endpoint.Endpoint` that the :class:`~trinity.extensibility.plugin_manager.PluginManager` uses which may or may not be the same :class:`~lahja.endpoint.Endpoint` as the plugin uses depending on the type of the plugin. The plugin should use this :class:`~lahja.endpoint.Endpoint` instance to listen for events *before* the plugin has started. """ pass @classmethod def configure_parser(cls, arg_parser: ArgumentParser, subparser: _SubParsersAction) -> None: """ Give the plugin a chance to amend the Trinity CLI argument parser. This hook is called before :meth:`~trinity.extensibility.plugin.BasePlugin.on_ready` """ pass def start(self) -> None: """ Delegate to :meth:`~trinity.extensibility.plugin.BasePlugin.do_start` and set ``running`` to ``True``. Broadcast a :class:`~trinity.extensibility.events.PluginStartedEvent` on the event bus and hence allow other plugins to act accordingly. """ if self._status in INVALID_START_STATUS: raise InvalidPluginStatus( f"Can not start plugin when the plugin status is {self.status}" ) self._status = PluginStatus.STARTED self.do_start() self.event_bus.broadcast_nowait( PluginStartedEvent(type(self)) ) self.logger.info("Plugin started: %s", self.name) def do_start(self) -> None: """ Perform the actual plugin start routine. In the case of a `BaseIsolatedPlugin` this method will be called in a separate process. This method should usually be overwritten by subclasses with the exception of plugins that set ``func`` on the ``ArgumentParser`` to redefine the entire host program. """ pass class BaseAsyncStopPlugin(BasePlugin): """ A :class:`~trinity.extensibility.plugin.BaseAsyncStopPlugin` unwinds asynchronoulsy, hence needs to be awaited. """ def __init__(self, boot_info: TrinityBootInfo, event_bus: TrinityEventBusEndpoint) -> None: super().__init__(boot_info) self._event_bus = event_bus @property def event_bus(self) -> TrinityEventBusEndpoint: return self._event_bus async def do_stop(self) -> None: """ Asynchronously stop the plugin. Should be overwritten by subclasses. """ pass async def stop(self) -> None: """ Delegate to :meth:`~trinity.extensibility.plugin.BaseAsyncStopPlugin.do_stop` causing the plugin to stop asynchronously and setting ``running`` to ``False``. """ await self.do_stop() self._status = PluginStatus.STOPPED class BaseMainProcessPlugin(BasePlugin): """ A :class:`~trinity.extensibility.plugin.BaseMainProcessPlugin` overtakes the whole main process early before any of the subsystems started. In that sense it redefines the whole meaning of the ``trinity`` command. """ @property def event_bus(self) -> TrinityEventBusEndpoint: raise NotImplementedError('BaseMainProcessPlugins do not have event busses') class BaseIsolatedPlugin(BasePlugin): """ A :class:`~trinity.extensibility.plugin.BaseIsolatedPlugin` runs in an isolated process and hence provides security and flexibility by not making assumptions about its internal operations. Such plugins are free to use non-blocking asyncio as well as synchronous calls. When an isolated plugin is stopped it does first receive a SIGINT followed by a SIGTERM soon after. It is up to the plugin to handle these signals accordingly. """ _process: Process = None _event_bus: TrinityEventBusEndpoint = None @property def process(self) -> Process: """ Return the ``Process`` created by the isolated plugin. """ return self._process def start(self) -> None: """ Prepare the plugin to get started and eventually call ``do_start`` in a separate process. """ self._status = PluginStatus.STARTED self._process = ctx.Process( target=self._spawn_start, ) self._process.start() self.logger.info("Plugin started: %s (pid=%d)", self.name, self._process.pid) @abstractmethod def _spawn_start(self) -> None: pass def stop(self) -> None: """ Set the ``status`` to `STOPPED`` but rely on the :class:`~trinity.extensibility.plugin_manager.PluginManager` to tear down the process. This allows isolated plugins to be taken down concurrently without depending on a running event loop. """ self._status = PluginStatus.STOPPED def _setup_logging(self) -> None: log_queue = self.boot_info.boot_kwargs['log_queue'] level = self.boot_info.boot_kwargs.get('log_level', logging.INFO) setup_queue_logging(log_queue, level) if self.boot_info.args.log_levels: setup_log_levels(self.boot_info.args.log_levels) class DebugPlugin(BaseAsyncStopPlugin): """ This is a dummy plugin useful for demonstration and debugging purposes """ @property def name(self) -> str: return "Debug Plugin" @classmethod def configure_parser(cls, arg_parser: ArgumentParser, subparser: _SubParsersAction) -> None: arg_parser.add_argument("--debug-plugin", type=bool, required=False) def handle_event(self, activation_event: BaseEvent) -> None: self.logger.info("Debug plugin: handle_event called: %s", activation_event) def do_start(self) -> None: self.logger.info("Debug plugin: start called") asyncio.ensure_future(self.count_forever()) async def count_forever(self) -> None: i = 0 while True: self.logger.info(i) i += 1 await asyncio.sleep(1) async def do_stop(self) -> None: self.logger.info("Debug plugin: stop called")
py
1a4b2974f24d5d729f45112823a5666d9687cf49
from datetime import datetime as dt from common.logger import get_logger from orchestrator.config import ORDER_EXPIRATION_THRESHOLD_IN_MINUTES from orchestrator.order_status import OrderStatus logger = get_logger(__name__) class TransactionHistoryDAO: def __init__(self, repo): self.__repo = repo def insert_transaction_history(self, obj_transaction_history): transaction_history = obj_transaction_history.get_transaction_history() query_response = self.__repo.execute( "INSERT INTO transaction_history (username, order_id, order_type, status, payment_id, payment_method, " "raw_payment_data, transaction_hash, row_created, row_updated)" "VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) " "ON DUPLICATE KEY UPDATE payment_id = %s, payment_method = %s, raw_payment_data = %s, transaction_hash = %s, row_updated = %s", [ transaction_history["username"], transaction_history["order_id"], transaction_history["order_type"], transaction_history["status"], transaction_history["payment_id"], transaction_history["payment_method"], transaction_history["raw_payment_data"], transaction_history["transaction_hash"], dt.utcnow(), dt.utcnow(), transaction_history["payment_id"], transaction_history["payment_method"], transaction_history["raw_payment_data"], transaction_history["transaction_hash"], dt.utcnow() ] ) if query_response[0] == 1: return True return False def get_order_id_for_expired_transaction(self): params = [OrderStatus.PAYMENT_INITIATED.value, OrderStatus.PAYMENT_INITIATION_FAILED.value, OrderStatus.PAYMENT_EXECUTION_FAILED.value, ORDER_EXPIRATION_THRESHOLD_IN_MINUTES] order_id_raw_data = self.__repo.execute( "SELECT order_id FROM transaction_history WHERE status IN (%s, %s, %s) AND " "TIMESTAMPDIFF(MINUTE, row_created, NOW()) > %s ", [OrderStatus.PAYMENT_INITIATED.value, OrderStatus.PAYMENT_INITIATION_FAILED.value, OrderStatus.PAYMENT_EXECUTION_FAILED.value, ORDER_EXPIRATION_THRESHOLD_IN_MINUTES]) list_of_order_id = [rec["order_id"] for rec in order_id_raw_data] return list_of_order_id def update_transaction_status(self, list_of_order_id, status): if len(list_of_order_id) == 0: return "No order id found" temp_holder = ("%s, " * len(list_of_order_id))[:-2] params = [status] + list_of_order_id + [OrderStatus.PAYMENT_INITIATED.value, OrderStatus.PAYMENT_INITIATION_FAILED.value, OrderStatus.PAYMENT_EXECUTION_FAILED.value] update_transaction_status_response = self.__repo.execute( "UPDATE transaction_history SET status = %s WHERE order_id IN (" + temp_holder + ") AND status IN (%s, %s, %s)", params) logger.info(f"update_transaction_status: {update_transaction_status_response}") return update_transaction_status_response def get_transaction_details_for_given_order_id(self, order_id): transaction_data = self.__repo.execute( "SELECT username, order_id, order_type, status, payment_id, payment_type, payment_method, raw_payment_data, " "transaction_hash FROM transaction_history WHERE order_id = %s", [order_id]) if len(transaction_data) == 0: raise Exception("Order Id does not exist.") return transaction_data[0]
py
1a4b299a335dffd04973301324200f878cfc5ee8
""" This file offers the methods to automatically retrieve the graph Marinobacter salinus. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def MarinobacterSalinus( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Marinobacter salinus graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Marinobacter salinus graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="MarinobacterSalinus", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
py
1a4b2a34f75d2c4c3d181d418c9949f0ee4c39e9
import abc import numpy as np import math import random import itertools as it from hklearn_genetic.board_conflicts import conflict from deap import tools, gp class ProblemInterface(metaclass=abc.ABCMeta): @classmethod def __subclasshook__(cls, subclass): return (hasattr(subclass, 'evaluate') and callable(subclass.evaluate) and hasattr(subclass, 'stop_criteria') and callable(subclass.stop_criteria) and hasattr(subclass, 'populate') and callable(subclass.populate) and hasattr(subclass, 'decode') and callable(subclass.decode) and hasattr(subclass, 'crossover') and callable(subclass.crossover) and hasattr(subclass, 'mutate') and callable(subclass.mutate)) @ProblemInterface.register class IProblem: """Evalua las soluciones potenciales del problema""" def evaluate(self, X): pass """Regresa si la población ha llegado al criterio de paro""" def stop_criteria(self, X_eval): pass """Crea una poblacion inicial de posibles soluciones""" def populate(self, n_individuals): pass """Pasa a la población del genotipo al fenotipo""" def decode(self, X_encoded): pass """Efectúa la cruza con los elementos de la población""" def crossover(self, X, pc, elitism): pass """Efectúa la mutación con los elementos de la población""" def mutate(self, X, pm, elitism): pass class BaseProblem(IProblem): def get_crossover_probs(self, n_cross): return np.random.rand(1 , n_cross)[0,:] def get_crossover_points(self, length): return np.random.randint(0, length) @abc.abstractmethod def a_eval(self, X_decoded): pass def evaluate(self, X): decoded_rep = self.decode(X) X_eval = self.a_eval(decoded_rep, X) return X_eval def crossover(self, X, pc, elitism): if not elitism: n_cross = X.shape[0] // 2 elitism_num = 0 else: elitism_num = math.floor(elitism * X.shape[0]) n_cross = (X.shape[0] - elitism_num) // 2 prob_cross = self.get_crossover_probs(n_cross) for i, p in enumerate(prob_cross): if p <= pc: cross_point = self.get_crossover_points(X.shape[1] - 1) son1 = X[2*i + elitism_num,:].copy() son2 = X[2*i + 1 + elitism_num, :].copy() son1[cross_point : X.shape[1]] = X[2*i + 1 + elitism_num, cross_point : X.shape[1]].copy() son2[cross_point : X.shape[1]] = X[2*i + elitism_num, cross_point : X.shape[1]].copy() X[2*i + elitism_num,:] = son1 X[2*i + 1 + elitism_num,:] = son2 return X class _BaseGeneticProgrammingProblem(BaseProblem): def __init__(self, mutation_type = "Branch"): self.avg_lengths = [] self.mutation_type = mutation_type def populate(self, n_individuals): return tools.initRepeat(list, lambda: gp.genHalfAndHalf(self.pset, min_=1, max_=2), n_individuals) def decode(self, X_encoded): X_decoded = [] length_sum = 0 for x_i in X_encoded: tree = gp.PrimitiveTree(x_i) length_sum += len(tree) X_decoded += [gp.compile(tree, self.pset)] self.avg_lengths += [length_sum/len(X_decoded)] return X_decoded def crossover(self, X, pc, elitism): if not elitism: n_cross = len(X) // 2 elitism_num = 0 else: elitism_num = math.floor(elitism * len(X)) n_cross = (len(X) - elitism_num) // 2 prob_cross = self.get_crossover_probs(n_cross) for i, p in enumerate(prob_cross): if p <= pc: parent1 = gp.PrimitiveTree(X[2*i + elitism_num]) parent2 = gp.PrimitiveTree(X[2*i + 1 + elitism_num]) offspring = gp.cxOnePoint(parent1, parent2) if offspring[0].height < self.height_limit: X[2*i + elitism_num] = offspring[0] else: r = random.uniform(0, 1) X[2*i + elitism_num] = X[2*i + 1 + elitism_num].copy() if r >= 0.5 else X[2*i + elitism_num] if offspring[1].height < self.height_limit: X[2*i + 1 + elitism_num] = offspring[1] else: r = random.uniform(0, 1) X[2*i + 1 + elitism_num] = X[2*i + elitism_num].copy() if r >= 0.5 else X[2*i + 1 + elitism_num] return X def mutate(self, X, pm, elitism): if pm > 0: mutate_m = np.random.uniform(size = (len(X), 1)) mutate_m = mutate_m <= pm func = lambda pset, type_ : gp.genFull(pset, min_=0, max_=2) if not elitism: for i, m in enumerate(mutate_m): #if m <= 1./len(X[i]): if m: if self.mutation_type == "Branch": offspring = gp.mutUniform(gp.PrimitiveTree(X[i]), func, self.pset) elif self.mutation_type == "Node": offspring = gp.mutNodeReplacement(gp.PrimitiveTree(X[i]), self.pset) if offspring[0].height <= self.height_limit: X[i] = offspring[0] else: elitism_num = math.floor(elitism * len(X)) for i in range(elitism_num, len(X)): #if mutate_m[i] <= 1./len(X[i]): if mutate_m[i]: if self.mutation_type == "Branch": offspring = gp.mutUniform(gp.PrimitiveTree(X[i]), func, self.pset) elif self.mutation_type == "Node": offspring = gp.mutNodeReplacement(gp.PrimitiveTree(X[i]), self.pset) if offspring[0].height <= self.height_limit: X[i] = offspring[0] return X class SymbolicRegressionProblem(_BaseGeneticProgrammingProblem): def __init__(self, bounds, pset, real_values, height_limit, stop_thresh = 0.2, mutation_type = "Branch"): super().__init__(mutation_type) self.bounds = bounds self.height_limit = height_limit self.pset = pset self.real_values = real_values self.stop_thresh = stop_thresh param_values = [] for param_bound in self.bounds: param_values += [list(np.linspace(param_bound[0], param_bound[1], num = len(real_values)))] self.points = list(it.product(*param_values)) def a_eval(self, X_decoded, X_encoded): m = len(self.points) X_fitness = [] for j, func in enumerate(X_decoded): try: s = 0 for i in range(m): s += (func(*self.points[i]) - self.real_values[i])**2 X_fitness += [- (1./m)*s] except Exception as e: print(e) x_encoded = X_encoded[j] print(gp.PrimitiveTree(x_encoded)) return np.array(list(zip(X_fitness, list(range(len(X_fitness))))), dtype = [('fitness', float),('index', int)]) def stop_criteria(self, X_eval): return list(np.where(X_eval >= - self.stop_thresh)[0]) class BitParityCheck(_BaseGeneticProgrammingProblem): def __init__(self, pset, real_values, height_limit, mutation_type = "Branch"): super().__init__(mutation_type) self.height_limit = height_limit self.pset = pset self.real_values = real_values self.points = list(map(list, it.product([False, True], repeat=int(math.log2(len(self.real_values)))))) def stop_criteria(self, X_eval): return list(np.where(X_eval >= 0)[0]) def a_eval(self, X_decoded, X_encoded): m = len(self.points) X_fitness = [] for j, func in enumerate(X_decoded): try: X_fitness += [-sum(func(*in_) == out for in_, out in zip(self.points, self.real_values))] except Exception as e: print(e) print(gp.PrimitiveTree(X_encoded[j])) return X_fitness class NeutralityProblem(_BaseGeneticProgrammingProblem): def __init__(self, pset, T, height_limit, terminals, mutation_type = "Branch"): super().__init__(mutation_type) self.height_limit = height_limit self.pset = pset self.T = T self.str_terminals = [str(t) for t in terminals] for t in terminals: self.pset.addTerminal(t) self.gene_counts = {t : [] for t in self.str_terminals} def stop_criteria(self, X_eval): return [] def a_eval(self, X_decoded, X_encoded): X_fitness = [] for j, x_i in enumerate(X_decoded): try: X_fitness += [-abs(self.T - x_i)] except Exception as e: print(e) print(gp.PrimitiveTree(X_encoded[j])) for gene in self.gene_counts.keys(): self.gene_counts[gene]+=[0] for x in X_encoded: x_tree = gp.PrimitiveTree(x) x_tree_str = str(x_tree) for s in x_tree_str: if s in self.str_terminals: self.gene_counts[s][-1] += 1 return X_fitness class _BaseBinaryProblem(BaseProblem): def __init__(self, thresh, bounds, n_dim = 2, n_prec = 4): self.bounds = bounds self.n_dim = n_dim self.gene_length = math.ceil(math.log2((self.bounds[1] - self.bounds[0])*10**n_prec)) self.thresh = thresh def stop_criteria(self, X_eval): return list(np.where(X_eval >= self.thresh)[0]) def populate(self, n_individuals): return np.random.randint(2, size = (n_individuals, self.gene_length*self.n_dim)) def decode(self, X_encoded): decoded_rep = np.zeros((X_encoded.shape[0], self.n_dim)) for i in range(self.n_dim): decoded_rep[:,i] = (X_encoded[:, i*self.gene_length : (i + 1)*self.gene_length]@(2**np.arange(X_encoded[:, i*self.gene_length : (i + 1)*self.gene_length].shape[1], dtype = np.float64)[::-1][:, np.newaxis])).T return self.bounds[0] + decoded_rep*(self.bounds[1] - self.bounds[0])/(2**self.gene_length - 1) def get_mutation(self, shape): return np.random.uniform(size = shape) def mutate(self, X, pm, elitism): mutate_m = self.get_mutation((X.shape[0], X.shape[1])) mutate_m = mutate_m <= pm X_bit = X == 1 if not elitism: X = np.logical_xor(X_bit, mutate_m) else: elitism_num = math.floor(elitism * X.shape[0]) X[elitism_num : X.shape[0], :] = np.logical_xor(X_bit, mutate_m)[elitism_num : X.shape[0], :] X = X.astype(int) return X class _BaseIntegerProblem(BaseProblem): def __init__(self, thresh, n_dim = 2): self.n_dim = n_dim self.thresh = thresh def stop_criteria(self, X_eval): return list(np.where(X_eval >= self.thresh)[0]) def populate(self, n_individuals): return np.random.randint(self.n_dim, size = (n_individuals, self.n_dim)) def decode(self, X_encoded): return X_encoded def get_mutation(self, shape): return np.random.uniform(size = shape) def mutate(self, X, pm, elitism): mutate_m = self.get_mutation((X.shape[0], 1)) mutate_m = mutate_m <= pm if not elitism: for i, m in enumerate(mutate_m): if m: indices = np.random.permutation(X.shape[1])[0 : 2] X[i,indices[0]], X[i, indices[1]] = X[i, indices[1]], X[i, indices[0]] else: elitism_num = math.floor(elitism * X.shape[0]) for i in range(elitism_num, X.shape[0]): if mutate_m[i]: indices = np.random.permutation(X.shape[1])[0 : 2] X[i,indices[0]], X[i, indices[1]] = X[i, indices[1]], X[i, indices[0]] return X class _BaseRealProblem(BaseProblem): def __init__(self, thresh, bounds, rang_param = 0.1, n_dim = 2): self.n_dim = n_dim self.thresh = thresh self.bounds = bounds self.rang_param = rang_param def stop_criteria(self, X_eval): return list(np.where(X_eval >= self.thresh)[0]) def populate(self, n_individuals): return np.random.uniform(self.bounds[0], self.bounds[1] + 0.1, size = (n_individuals, self.n_dim)) def decode(self, X_encoded): return X_encoded def get_crossover_points(self, length): return np.random.uniform(low = -.25 , high = 1.25, size = length) def crossover(self, X, pc, elitism): if not elitism: n_cross = X.shape[0] // 2 elitism_num = 0 else: elitism_num = math.floor(elitism * X.shape[0]) n_cross = (X.shape[0] - elitism_num) // 2 prob_cross = self.get_crossover_probs(n_cross) for i, p in enumerate(prob_cross): if p <= pc: alphas = self.get_crossover_points(X.shape[1]) X[2*i + elitism_num,:] += alphas * (X[2*i + 1 + elitism_num, :] - X[2*i + elitism_num,:]) X[2*i + 1 + elitism_num,:] += alphas * (X[2*i + elitism_num,:] - X[2*i + 1 + elitism_num, :]) X[2*i + elitism_num,:] = np.clip(X[2*i + elitism_num,:], self.bounds[0], self.bounds[1]) X[2*i + 1 + elitism_num,:] = np.clip(X[2*i + 1 + elitism_num,:], self.bounds[0], self.bounds[1]) return X def get_mutation(self, shape): return np.random.uniform(size = shape) def mutate(self, X, pm, elitism): if not elitism: elitism = 0 rang = (self.bounds[1] - self.bounds[0])*self.rang_param mutate_m = self.get_mutation((X.shape[0], X.shape[1])) mutate_plus_minus = self.get_mutation((X.shape[0], X.shape[1])) mutate_m[mutate_m <= pm] = 1. mutate_m[mutate_m < 1.] = 0. mutate_plus_minus[mutate_plus_minus <= .5] = 1.0 mutate_plus_minus[mutate_plus_minus > .5] = -1.0 elitism_num = math.floor(elitism * X.shape[0]) for i in range(elitism_num, X.shape[0]): mutate_delta = self.get_mutation((X.shape[1], X.shape[1])) mutate_delta[mutate_delta <= 1./self.n_dim] = 1. mutate_delta[mutate_delta < 1.] = 0. deltas = (mutate_delta @ (2**-np.arange(self.n_dim, dtype = np.float64)[:, np.newaxis])).T X[i, :] = X[i, :] + mutate_m[i, :] * mutate_plus_minus[i, :] * rang * deltas X[i, :] = np.clip(X[i, :], self.bounds[0], self.bounds[1]) return X class BaseNQueen(BaseProblem): def a_eval(self, X_decoded): X_fitness = np.zeros(X_decoded.shape[0]) for i, x in enumerate(X_decoded): X_fitness[i] = -conflict(x) #print(X_fitness) return np.array(list(zip(X_fitness, list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class IntegerNQueen(_BaseIntegerProblem, BaseNQueen): def __init__(self, n_dim = 2): super().__init__(0, n_dim = n_dim) class RealNQueen(_BaseRealProblem, BaseNQueen): def __init__(self, n_dim = 2): super().__init__(0, (0, 5.), n_dim = n_dim) def decode(self, X_encoded): X_decoded = np.zeros(X_encoded.shape, dtype=np.int64) for i, x in enumerate(X_encoded): indexed = np.array(list(zip(x, list(range(X_decoded.shape[1])))), dtype = [('real_rep', float),('index', int)]) indexed = np.sort(indexed, order=["real_rep"]) X_decoded[i, :] = indexed["index"] return X_decoded class BinaryNQueen(_BaseBinaryProblem, BaseNQueen): def __init__(self, n_dim = 2, n_prec = 4): super().__init__(0, (0.01, n_dim), n_dim = n_dim, n_prec=n_prec) def decode(self, X_encoded): return np.ceil(super().decode(X_encoded)).astype(int) - 1 class BaseRastrigin(BaseProblem): def __init__(self): self.rank = 100. def a_eval(self, X_decoded): return np.array(list(zip(self.rank - (10.*self.n_dim + np.sum(X_decoded**2 - 10.*np.cos(2.*np.pi*X_decoded), axis = 1)), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BaseBeale(BaseProblem): def __init__(self): self.rank = 150000. def a_eval(self, X_decoded): first_term = (1.5 - X_decoded[:, 0] + X_decoded[:, 0]*X_decoded[:, 1])**2 second_term = (2.25 - X_decoded[:, 0] + X_decoded[:, 0]*(X_decoded[:, 1]**2))**2 third_term = (2.625 - X_decoded[:, 0] + X_decoded[:, 0]*(X_decoded[:, 1]**3))**2 return np.array(list(zip(self.rank - (first_term + second_term + third_term), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BaseHimmelblau(BaseProblem): def __init__(self): self.rank = 2200. def a_eval(self, X_decoded): first_term = (X_decoded[:, 0]**2 + X_decoded[:, 1] - 11.)**2 second_term = (X_decoded[:, 0] + X_decoded[:, 1]**2 - 7.)**2 return np.array(list(zip(self.rank - (first_term + second_term), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BaseEggholder(BaseProblem): def __init__(self): self.rank = 1200. def a_eval(self, X_decoded): first_term = - (X_decoded[:, 1] + 47)*np.sin(np.sqrt(np.abs(X_decoded[:, 0]/2. + (X_decoded[:, 1] + 47)))) second_term = - X_decoded[:, 0]*np.sin(np.sqrt(np.abs(X_decoded[:, 0] - (X_decoded[:, 1] + 47)))) return np.array(list(zip(self.rank - (first_term + second_term), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BinaryRastrigin(_BaseBinaryProblem, BaseRastrigin): def __init__(self, n_dim = 2, n_prec = 4): super().__init__(99.99, (-5.12, 5.12), n_dim=n_dim, n_prec=n_prec) BaseRastrigin.__init__(self) class BinaryBeale(_BaseBinaryProblem, BaseBeale): def __init__(self, n_prec = 4): super().__init__(149999.99, (-4.5, 4.5), n_dim=2, n_prec=n_prec) BaseBeale.__init__(self) class BinaryHimmelblau(_BaseBinaryProblem, BaseHimmelblau): def __init__(self, n_prec = 4): super().__init__(2199.99, (-5., 5.), n_dim=2, n_prec=n_prec) BaseHimmelblau.__init__(self) class BinaryEggholder(_BaseBinaryProblem, BaseEggholder): def __init__(self, n_prec = 4): super().__init__(2157., (-512., 512.), n_dim=2, n_prec=n_prec) BaseEggholder.__init__(self) class RealRastrigin(_BaseRealProblem, BaseRastrigin): def __init__(self, rang_param = .0001, n_dim = 2): super().__init__(99.99, (-5.12, 5.12), rang_param, n_dim=n_dim) BaseRastrigin.__init__(self) class RealBeale(_BaseRealProblem, BaseBeale): def __init__(self, rang_param = .0001): super().__init__(149999.99, (-4.5, 4.5), rang_param, n_dim=2) BaseBeale.__init__(self) class RealHimmelblau(_BaseRealProblem, BaseHimmelblau): def __init__(self, rang_param = .001): super().__init__(2199.99, (-5., 5.), rang_param, n_dim=2) BaseHimmelblau.__init__(self) class RealEggholder(_BaseRealProblem, BaseEggholder): def __init__(self, rang_param = .001): super().__init__(2157., (-512., 512.), rang_param, n_dim=2) BaseEggholder.__init__(self) class RealRastriginPSO(_BaseRealProblem): def __init__(self, n_dim = 2): super().__init__(99.99, (-5.12, 5.12), n_dim=n_dim) class RealBealePSO(_BaseRealProblem): def __init__(self): super().__init__(149999.99, (-4.5, 4.5), n_dim=2) class RealHimmelblauPSO(_BaseRealProblem): def __init__(self): super().__init__(2199.99, (-5., 5.), n_dim=2) class RealEggholderPSO(_BaseRealProblem): def __init__(self): super().__init__(2157., (-512., 512.), n_dim=2)
py
1a4b2c6136103c7b2cf7cc9c354dbe22de6da61a
import re import subprocess import pygit2 tag_ref = re.compile('^refs/tags/') committer = pygit2.Signature('Git Worker', '[email protected]') def git_show(path, commitish, obj): repo = pygit2.Repository(path) commit, _ = repo.resolve_refish(commitish) data = (commit.tree / obj).read_raw().decode() return data def delete_tag(path, tag): repo = pygit2.Repository(path) repo.references.delete(f'refs/tags/{tag}') def git_tag(repo): return [repo.references[r] for r in repo.references if tag_ref.match(r)] def git_commit(repo, file_paths, author=None, message="[OpenNeuro] Recorded changes", parents=None): """Commit array of paths at HEAD.""" # Refresh index with git-annex specific handling annex_command = ["git-annex", "add"] + file_paths subprocess.run(annex_command, check=True, cwd=repo.workdir) repo.index.add_all(file_paths) repo.index.write() return git_commit_index(repo, author, message, parents) def git_commit_index(repo, author=None, message="[OpenNeuro] Recorded changes", parents=None): """Commit any existing index changes.""" if not author: author = committer if parents is None: parent_commits = [repo.head.target.hex] else: parent_commits = parents tree = repo.index.write_tree() commit = repo.create_commit( 'refs/heads/master', author, committer, message, tree, parent_commits) repo.head.set_target(commit) return commit
py
1a4b2dd5ec4c14cc270b8fea09eb81c72805e907
import pdb import pickle import pandas as pd import os import numpy as np import sys sys.path.insert(1,"../") sys.path.insert(1,"../../") sys.path.insert(1,"../../../") from config_u import base project_base_path = base current_path = "scripts/cpmg/automated_metabolite_quantification/" sys.path.insert(1, os.path.join(project_base_path, current_path)) from data_utils import split_to_kfold, spectrum2ppm, spectrum_peak_unit_quantification # load fully quantified samples datapath_base = os.path.join(project_base_path, "data/raw_data_cpmg/") with open(os.path.join(datapath_base, "fully_quantified_samples_spectra"), "rb") as f: c_spectra = pickle.load(f) with open(os.path.join(datapath_base, "fully_quantified_samples_quantification"), "rb") as f: c_quantification = pickle.load(f) with open(os.path.join(project_base_path, "data/raw_data_cpmg/metabolite_names"), "rb") as f: metabolite_names = pickle.load(f) c_statistics = pd.read_pickle(os.path.join(datapath_base, "fully_quantified_samples_statistics")) # find samples with invalid pathologic classification (i.e. "*") index = c_statistics.index condition = c_statistics["Pathologic Classification"] == "*" invalid_pc_idx = index[condition].tolist() statistics = c_statistics.iloc[invalid_pc_idx, :].reset_index(drop=True) spectra = c_spectra[invalid_pc_idx, :] quant = c_quantification[invalid_pc_idx, :] # scale CPMG spectra with respect to reference Acetate and sample mass mass = np.array(statistics["Mass"].tolist()).astype(float) mass_factor = np.repeat(mass.reshape(-1,1), spectra.shape[1], axis=1) normalized_spectra = np.divide(spectra, mass_factor) scaled_spectra = normalized_spectra * spectrum_peak_unit_quantification # calculate ppm spectra ppm_spectra = spectrum2ppm(scaled_spectra) # rename variables to be accessed from other scripts fq_i_ppm_spectra = ppm_spectra fq_i_spectra = scaled_spectra fq_i_statistics = statistics fq_i_quant = quant
py
1a4b2f7ee7520f9f4b2f79c841cc939c3d55b0ea
import os from pywps import Process from pywps import LiteralInput from pywps import ComplexOutput from pywps import FORMATS, Format from pywps import configuration from pywps.app.Common import Metadata # from c4cds.regridder import Regridder, REGIONAL from c4cds.subsetter import Subsetter from c4cds.plotter import Plotter from c4cds.search import Search from c4cds.ncdump import ncdump from c4cds import util CORDEX_DOMAIN_MAP = { 'Egypt': 'AFR-44i', 'UK': 'EUR-44i', 'France': 'EUR-44i', 'Germany': 'EUR-44i', } class CordexSubsetter(Process): def __init__(self): inputs = [ LiteralInput('country', 'Country', abstract='Choose a Country like UK.', data_type='string', allowed_values=['UK', 'France', 'Germany', 'Egypt'], default='UK'), LiteralInput('model', 'Model', abstract='Choose a model like MOHC-HadRM3P.', data_type='string', allowed_values=['MOHC-HadRM3P'], default='MOHC-HadRM3P'), LiteralInput('experiment', 'Experiment', abstract='Choose an experiment like evaluation.', data_type='string', allowed_values=['evaluation'], default='evaluation'), LiteralInput('variable', 'Variable', abstract='Choose a variable like tas.', data_type='string', allowed_values=['tas', 'tasmax', 'tasmin'], default='tas'), LiteralInput('year', 'Match year', data_type='integer', abstract='File should match this year.', allowed_values=[1990, 2000, 2010], default="1990"), ] outputs = [ ComplexOutput('output', 'Subsetted Dataset', abstract='Subsetted Dataset.', as_reference=True, supported_formats=[FORMATS.NETCDF]), ComplexOutput('ncdump', 'Metadata', abstract='ncdump of subsetted Dataset.', as_reference=True, supported_formats=[FORMATS.TEXT]), ComplexOutput('preview', 'Preview', abstract='Preview of subsetted Dataset.', as_reference=True, supported_formats=[Format('image/png')]), ] super(CordexSubsetter, self).__init__( self._handler, identifier='cordex_subsetter', version='1.0', title='CORDEX Subsetter', abstract='CORDEX Subsetter working on the Copernicus C3S CORDEX archive. ' 'The selected CORDEX file is subsetted by the bounding-box of a Country ' 'using the CDO "sellonlatbox" operator.', metadata=[ Metadata('CP4CDS Portal', 'https://cp4cds.github.io/'), Metadata('Documentation', 'https://c4cds-wps.readthedocs.io/en/latest/processes.html#cordex_subsetter', role=util.WPS_ROLE_DOC), Metadata('Media', 'https://c4cds-wps.readthedocs.io/en/latest/_static/media/cordex_subsetter_thumbnail.png', role=util.WPS_ROLE_MEDIA), ], inputs=inputs, outputs=outputs, store_supported=True, status_supported=True ) def _handler(self, request, response): search = Search(configuration.get_config_value("data", "cordex_archive_root")) nc_file = search.search_cordex( model=request.inputs['model'][0].data, experiment=request.inputs['experiment'][0].data, variable=request.inputs['variable'][0].data, domain=CORDEX_DOMAIN_MAP[request.inputs['country'][0].data], start_year=request.inputs['year'][0].data, end_year=request.inputs['year'][0].data, ) if not nc_file: raise Exception("Could not find CORDEX file.") response.update_status('search done.', 10) # regridding # regridder = Regridder( # archive_base=configuration.get_config_value("data", "cordex_archive_root"), # output_dir=os.path.join(self.workdir, 'out_regrid') # ) # regridded_file = regridder.regrid(input_file=nc_file, domain_type=REGIONAL) # response.update_status('regridding done.', 60) # subset by country subsetter = Subsetter( output_dir=os.path.join(self.workdir, 'out_subset') ) subsetted_file = subsetter.subset_by_country( nc_file, country=request.inputs['country'][0].data) response.outputs['output'].file = subsetted_file response.update_status('subsetting done.', 70) # plot preview title = "{} {} {} {} {}".format( request.inputs['country'][0].data, request.inputs['model'][0].data, request.inputs['experiment'][0].data, request.inputs['variable'][0].data, request.inputs['year'][0].data, ) plotter = Plotter( output_dir=os.path.join(self.workdir, 'out_plot') ) preview_file = plotter.plot_preview(subsetted_file, title) response.outputs['preview'].file = preview_file response.update_status('plot done.', 80) # run ncdump with open(os.path.join(self.workdir, "nc_dump.txt"), 'w') as fp: response.outputs['ncdump'].file = fp.name fp.writelines(ncdump(subsetted_file)) response.update_status('ncdump done.', 90) # done response.update_status("done.", 100) return response
py
1a4b301c186cbbc8974ebc338325fbbbe1ba3a83
import argparse import logging import time import ast from tf_pose import common import cv2 import numpy as np from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import get_graph_path, model_wh from tf_pose.lifting.prob_model import Prob3dPose from tf_pose.lifting.draw import plot_pose logger = logging.getLogger('TfPoseEstimator') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) if __name__ == '__main__': parser = argparse.ArgumentParser(description='tf-pose-estimation run') parser.add_argument('--image', type=str, default='./images/p1.jpg') parser.add_argument('--model', type=str, default='cmu', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small') parser.add_argument('--resize', type=str, default='0x0', help='if provided, resize images before they are processed. ' 'default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ') parser.add_argument('--resize-out-ratio', type=float, default=4.0, help='if provided, resize heatmaps before they are post-processed. default=1.0') args = parser.parse_args() w, h = model_wh(args.resize) if w == 0 or h == 0: e = TfPoseEstimator(get_graph_path(args.model), target_size=(432, 368)) else: e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h)) # estimate human poses from a single image ! image = common.read_imgfile(args.image, None, None) # image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) if image is None: logger.error('Image can not be read, path=%s' % args.image) sys.exit(-1) t = time.time() humans = e.inference(image, resize_to_default=(w > 0 and h > 0), upsample_size=args.resize_out_ratio) elapsed = time.time() - t logger.info('inference image: %s in %.4f seconds.' % (args.image, elapsed)) image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # cv2.imshow('tf-pose-estimation result', image) # cv2.waitKey() import matplotlib.pyplot as plt fig = plt.figure() a = fig.add_subplot(2, 2, 1) a.set_title('Result') plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) bgimg = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2RGB) bgimg = cv2.resize(bgimg, (e.heatMat.shape[1], e.heatMat.shape[0]), interpolation=cv2.INTER_AREA) # show network output a = fig.add_subplot(2, 2, 2) plt.imshow(bgimg, alpha=0.5) tmp = np.amax(e.heatMat[:, :, :-1], axis=2) plt.imshow(tmp, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() tmp2 = e.pafMat.transpose((2, 0, 1)) tmp2_odd = np.amax(np.absolute(tmp2[::2, :, :]), axis=0) tmp2_even = np.amax(np.absolute(tmp2[1::2, :, :]), axis=0) a = fig.add_subplot(2, 2, 3) a.set_title('Vectormap-x') # plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_odd, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() a = fig.add_subplot(2, 2, 4) a.set_title('Vectormap-y') # plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_even, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() plt.show() #import sys #actisys.exit(0) logger.info('3d lifting initialization.') poseLifting = Prob3dPose('./tf_pose/lifting/models/prob_model_params.mat') image_h, image_w = image.shape[:2] standard_w = 640 standard_h = 480 pose_2d_mpiis = [] visibilities = [] for human in humans: pose_2d_mpii, visibility = common.MPIIPart.from_coco(human) pose_2d_mpiis.append([(int(x * standard_w + 0.5), int(y * standard_h + 0.5)) for x, y in pose_2d_mpii]) visibilities.append(visibility) pose_2d_mpiis = np.array(pose_2d_mpiis) visibilities = np.array(visibilities) transformed_pose2d, weights = poseLifting.transform_joints(pose_2d_mpiis, visibilities) pose_3d = poseLifting.compute_3d(transformed_pose2d, weights) for i, single_3d in enumerate(pose_3d): plot_pose(single_3d) plt.show() pass
py
1a4b303f959f5337c93643da14f25d5434239866
# Copyright 2015 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from neutron_lib import constants def check_subnet_ip(cidr, ip_address, port_owner=''): """Validate that the IP address is on the subnet.""" ip = netaddr.IPAddress(ip_address) net = netaddr.IPNetwork(cidr) # Check that the IP is valid on subnet. In IPv4 this cannot be the # network or the broadcast address if net.version == constants.IP_VERSION_6: # NOTE(njohnston): In some cases the code cannot know the owner of the # port. In these cases port_owner should an empty string, and we pass # it through here. return ((port_owner in (constants.ROUTER_PORT_OWNERS + ('', )) or ip != net.network) and ip in net) else: return ip != net.network and ip != net.broadcast and ip in net def check_gateway_invalid_in_subnet(cidr, gateway): """Check whether the gw IP address is invalid on the subnet.""" ip = netaddr.IPAddress(gateway) net = netaddr.IPNetwork(cidr) # Check whether the gw IP is in-valid on subnet. # If gateway is in the subnet, it cannot be the # 'network' or the 'broadcast address (only in IPv4)'. # If gateway is out of subnet, there is no way to # check since we don't have gateway's subnet cidr. return (ip in net and (net.version == constants.IP_VERSION_4 and ip in (net.network, net[-1]))) def generate_pools(cidr, gateway_ip): """Create IP allocation pools for a specified subnet The Neutron API defines a subnet's allocation pools as a list of IPRange objects for defining the pool range. """ # Auto allocate the pool around gateway_ip net = netaddr.IPNetwork(cidr) ip_version = net.version first = netaddr.IPAddress(net.first, ip_version) last = netaddr.IPAddress(net.last, ip_version) if first == last: # handle single address subnet case return [netaddr.IPRange(first, last)] first_ip = first + 1 # last address is broadcast in v4 last_ip = last - (ip_version == 4) if first_ip >= last_ip: # /31 lands here return [] ipset = netaddr.IPSet(netaddr.IPRange(first_ip, last_ip)) if gateway_ip: ipset.remove(netaddr.IPAddress(gateway_ip, ip_version)) return list(ipset.iter_ipranges())
py
1a4b3048bc3bd3dad34953a803474740b100745a
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from sedona.core.SpatialRDD import CircleRDD from sedona.core.enums import GridType, IndexType from sedona.core.formatMapper import WktReader from sedona.core.spatialOperator.join_params import JoinParams from sedona.core.spatialOperator.join_query_raw import JoinQueryRaw from sedona.core.spatialOperator.range_query_raw import RangeQueryRaw from tests.test_base import TestBase import os from tests.tools import tests_resource from shapely.wkt import loads bank_csv_path = os.path.join(tests_resource, "small/points.csv") areas_csv_path = os.path.join(tests_resource, "small/areas.csv") class TestOmitPythonJvmSerdeToRDD(TestBase): expected_pois_within_areas_ids = [['4', '4'], ['1', '6'], ['2', '1'], ['3', '3'], ['3', '7']] def test_spatial_join_to_spatial_rdd(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) areas_polygon_rdd = WktReader.readToGeometryRDD(self.sc, areas_csv_path, 1, False, False) poi_point_rdd.analyze() areas_polygon_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) areas_polygon_rdd.spatialPartitioning(poi_point_rdd.getPartitioner()) jvm_sedona_rdd = JoinQueryRaw.spatialJoin(poi_point_rdd, areas_polygon_rdd, JoinParams()) sedona_rdd = jvm_sedona_rdd.to_rdd().collect() assert sedona_rdd.__len__() == 5 def test_distance_join_query_flat_to_df(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) circle_rdd = CircleRDD(poi_point_rdd, 2.0) circle_rdd.analyze() poi_point_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) circle_rdd.spatialPartitioning(poi_point_rdd.getPartitioner()) jvm_sedona_rdd = JoinQueryRaw.DistanceJoinQueryFlat(poi_point_rdd, circle_rdd, False, True) assert jvm_sedona_rdd.to_rdd().collect().__len__() == 10 def test_spatial_join_query_flat_to_df(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) areas_polygon_rdd = WktReader.readToGeometryRDD(self.sc, areas_csv_path, 1, False, False) poi_point_rdd.analyze() areas_polygon_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) areas_polygon_rdd.spatialPartitioning(poi_point_rdd.getPartitioner()) jvm_sedona_rdd = JoinQueryRaw.SpatialJoinQueryFlat( poi_point_rdd, areas_polygon_rdd, False, True) assert jvm_sedona_rdd.to_rdd().collect().__len__() == 5 def test_range_query_flat_to_df(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) poi_point_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) poi_point_rdd.buildIndex(IndexType.QUADTREE, False) result = RangeQueryRaw.SpatialRangeQuery( poi_point_rdd, loads("POLYGON((0 0, 0 20, 20 20, 20 0, 0 0))"), True, True ) rdd = result.to_rdd() assert rdd.collect().__len__() == 4
py
1a4b309f80b4d78887bda8de3f1527ae055ac5f6
import torch import torch.nn as nn import sys sys.path.insert(0, '../../../../..') import libs_layers class Model(torch.nn.Module): def __init__(self, input_shape, outputs_count, hidden_count = 512): super(Model, self).__init__() self.device = "cpu" self.layers = [ nn.Linear(input_shape[0], hidden_count), nn.ReLU(), libs_layers.NoisyLinearFull(hidden_count, hidden_count//2), nn.ReLU(), libs_layers.NoisyLinearFull(hidden_count//2, outputs_count), nn.Tanh() ] torch.nn.init.xavier_uniform_(self.layers[0].weight) torch.nn.init.xavier_uniform_(self.layers[2].weight) torch.nn.init.uniform_(self.layers[4].weight, -0.3, 0.3) self.model = nn.Sequential(*self.layers) self.model.to(self.device) print("model_actor") print(self.model) print("\n\n") def forward(self, state): return self.model(state) def save(self, path): torch.save(self.model.state_dict(), path + "trained/model_actor.pt") def load(self, path): self.model.load_state_dict(torch.load(path + "trained/model_actor.pt", map_location = self.device)) self.model.eval()
py
1a4b31f1738cd8decc9061e9050ddaf9c3c0d91a
from labels import LabelsPlugin from electrum.plugins import hook class Plugin(LabelsPlugin): @hook def load_wallet(self, wallet, window): self.window = window self.start_wallet(wallet) def on_pulled(self, wallet): self.print_error('on pulled') self.window._trigger_update_history()
py
1a4b320e34bbb170d966eb85ee277e53716f5f5b
# -*- coding: utf-8 -*- # # Copyright © 2009-2010 CEA # Pierre Raybaut # Licensed under the terms of the CECILL License # (see guidata/__init__.py for details) """ All guidata DataItem objects demo A DataSet object is a set of parameters of various types (integer, float, boolean, string, etc.) which may be edited in a dialog box thanks to the 'edit' method. Parameters are defined by assigning DataItem objects to a DataSet class definition: each parameter type has its own DataItem class (IntItem for integers, FloatItem for floats, StringItem for strings, etc.) """ from __future__ import print_function SHOW = True # Show test in GUI-based test launcher import tempfile, atexit, shutil, datetime, numpy as np from guidata.dataset.datatypes import DataSet, BeginGroup, EndGroup from guidata.dataset.dataitems import (FloatItem, IntItem, BoolItem, ChoiceItem, MultipleChoiceItem, ImageChoiceItem, FilesOpenItem, StringItem, TextItem, ColorItem, FileSaveItem, FileOpenItem, DirectoryItem, FloatArrayItem, DateItem, DateTimeItem) # Creating temporary files and registering cleanup functions TEMPDIR = tempfile.mkdtemp(prefix="test_") atexit.register(shutil.rmtree, TEMPDIR) FILE_ETA = tempfile.NamedTemporaryFile(suffix=".eta", dir=TEMPDIR) atexit.register(FILE_ETA.close) FILE_CSV = tempfile.NamedTemporaryFile(suffix=".csv", dir=TEMPDIR) atexit.register(FILE_CSV.close) class TestParameters(DataSet): """ DataSet test The following text is the DataSet 'comment': <br>Plain text or <b>rich text<sup>2</sup></b> are both supported, as well as special characters (α, β, γ, δ, ...) """ dir = DirectoryItem("Directory", TEMPDIR) fname = FileOpenItem("Open file", ("csv", "eta"), FILE_CSV.name) fnames = FilesOpenItem("Open files", "csv", FILE_CSV.name) fname_s = FileSaveItem("Save file", "eta", FILE_ETA.name) string = StringItem("String") text = TextItem("Text") float_slider = FloatItem("Float (with slider)", default=0.5, min=0, max=1, step=0.01, slider=True) integer = IntItem("Integer", default=5, min=3, max=16, slider=True ).set_pos(col=1) dtime = DateTimeItem("Date/time", default=datetime.datetime(2010, 10, 10)) date = DateItem("Date", default=datetime.date(2010, 10, 10)).set_pos(col=1) bool1 = BoolItem("Boolean option without label") bool2 = BoolItem("Boolean option with label", "Label") _bg = BeginGroup("A sub group") color = ColorItem("Color", default="red") choice = ChoiceItem("Single choice 1", [('16', "first choice"), ('32', "second choice"), ('64', "third choice")]) mchoice2 = ImageChoiceItem("Single choice 2", [("rect", "first choice", "gif.png" ), ("ell", "second choice", "txt.png" ), ("qcq", "third choice", "file.png" )] ) _eg = EndGroup("A sub group") floatarray = FloatArrayItem("Float array", default=np.ones( (50, 5), float), format=" %.2e ").set_pos(col=1) mchoice3 = MultipleChoiceItem("MC type 1", [ str(i) for i in range(12)] ).horizontal(4) mchoice1 = MultipleChoiceItem("MC type 2", ["first choice", "second choice", "third choice"]).vertical(1).set_pos(col=1) if __name__ == "__main__": # Create QApplication import guidata _app = guidata.qapplication() e = TestParameters() e.floatarray[:, 0] = np.linspace( -5, 5, 50) print(e) if e.edit(): print(e) e.view()
py
1a4b3288f13e95b037d8ec4988f07395f199a3ba
from django.contrib import admin from django.urls import path, include from .views import * urlpatterns = [ path('staff/all', StaffListView.as_view()), path('staff/<int:pk>', StaffRetrieveView.as_view()), path('staff/update/<int:pk>', StaffUpdateView.as_view()), path('staff/new', StaffCreateView.as_view()), path('staff/delete/<int:pk>', StaffRetrieveView.as_view()), path('room/all', RoomListView.as_view()), path('room/<int:pk>', RoomRetrieveView.as_view()), path('room/update/<int:pk>', RoomUpdateView.as_view()), path('room/new', RoomCreateView.as_view()), path('room/delete/<int:pk>', RoomRetrieveView.as_view()), path('guest/all', GuestListView.as_view()), path('guest/<int:pk>', GuestRetrieveView.as_view()), path('guest/update/<int:pk>', GuestUpdateView.as_view()), path('guest/new', GuestCreateView.as_view()), path('guest/delete/<int:pk>', GuestRetrieveView.as_view()), path('schedule/all', ScheduleListView.as_view()), path('schedule/<int:pk>', ScheduleRetrieveView.as_view()), path('schedule/update/<int:pk>', ScheduleUpdateView.as_view()), path('schedule/new', ScheduleCreateView.as_view()), path('schedule/delete/<int:pk>', ScheduleRetrieveView.as_view()), ]
py
1a4b32ba5ec74a9c126bbe4a07517ac28c48573d
import logging import os from quasimodo.parts_of_facts import PartsOfFacts from quasimodo.data_structures.submodule_interface import SubmoduleInterface from quasimodo.assertion_fusion.trainer import Trainer from quasimodo.parameters_reader import ParametersReader save_weights = True parameters_reader = ParametersReader() annotations_file = parameters_reader.get_parameter("annotations-file") or "data/training_active_learning.tsv" save_file = parameters_reader.get_parameter("weights-file") or os.path.dirname(__file__) + "/../temp/weights.tsv" def _save_weights(parts_of_facts): annotations = get_annotated_data() header = parts_of_facts.get_header() header.append("label") save = ["\t".join(header)] for fact in parts_of_facts.get_all_facts(): row = parts_of_facts.get_fact_row(fact) row.append(annotations.get((fact.get_subject().get(), fact.get_predicate().get(), fact.get_object().get(), str(int(fact.is_negative()))), -1)) row = [str(x) for x in row] save.append("\t".join(row)) with open(save_file, "w") as f: for element in save: f.write(element + "\n") class LinearCombinationWeightedSubmodule(SubmoduleInterface): def __init__(self, module_reference): super().__init__() self._module_reference = module_reference self._name = "Linear Combination Per Module Submodule" def process(self, input_interface): logging.info("Start linear combining per module submodule") logging.info("Grouping facts") parts_of_facts = PartsOfFacts.from_generated_facts(input_interface.get_generated_facts()) if save_weights: logging.info("Saving weights facts") _save_weights(parts_of_facts) logging.info("Training the model...") trainer = Trainer(save_file) trainer.train() logging.info("Generating new facts") new_generated_facts = [] for fact in parts_of_facts.get_all_facts(): new_generated_facts.append(parts_of_facts.get_generated_fact_with_score_from_classifier(fact, trainer)) new_generated_facts = sorted(new_generated_facts, key=lambda x: -sum([score[0] for score in x.get_score().scores])) return input_interface.replace_generated_facts(new_generated_facts) def get_annotated_data(): annotations = dict() with open(annotations_file) as f: for line in f: line = line.strip().split("\t") annotations[(line[0], line[1], line[2], line[3])] = line[4] return annotations
py
1a4b3330fd6bb82e01a1c00233cf85dfc2ccfcb1
import sys, os import numpy as np import time import gym import tensorflow as tf from spinup.utils.logx import EpochLogger from common_utils import * from core import * # configure gpu use and supress tensorflow warnings gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6) tf_config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) tf_config.gpu_options.allow_growth = True os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) """ Soft Actor-Critic (With slight variations that bring it closer to TD3) """ def sac(env_fn, logger_kwargs=dict(), network_params=dict(), rl_params=dict()): # env params thresh = rl_params['thresh'] # control params seed = rl_params['seed'] epochs = rl_params['epochs'] steps_per_epoch = rl_params['steps_per_epoch'] replay_size = rl_params['replay_size'] batch_size = rl_params['batch_size'] start_steps = rl_params['start_steps'] max_ep_len = rl_params['max_ep_len'] save_freq = rl_params['save_freq'] render = rl_params['render'] # rl params gamma = rl_params['gamma'] polyak = rl_params['polyak'] lr = rl_params['lr'] grad_clip_val = rl_params['grad_clip_val'] # entropy params alpha = rl_params['alpha'] target_entropy = rl_params['target_entropy'] logger = EpochLogger(**logger_kwargs) if save_freq is not None: logger.save_config(locals()) train_env, test_env = env_fn(), env_fn() obs = train_env.observation_space act = train_env.action_space tf.set_random_seed(seed) np.random.seed(seed) train_env.seed(seed) train_env.action_space.np_random.seed(seed) test_env.seed(seed) test_env.action_space.np_random.seed(seed) # get the size after resize obs_dim = network_params['input_dims'] act_dim = act.shape[0] # init a state buffer for storing last m states train_state_buffer = StateBuffer(m=obs_dim[2]) test_state_buffer = StateBuffer(m=obs_dim[2]) # Experience buffer replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size) # Inputs to computation graph x_ph, a_ph, x2_ph, r_ph, d_ph = placeholders(obs_dim, act_dim, obs_dim, None, None) # Main outputs from computation graph with tf.variable_scope('main'): mu, pi, logp_pi, q1_a, q2_a = build_models(x_ph, a_ph, act, act_dim, network_params) with tf.variable_scope('main', reuse=True): # compose q with pi, for pi-learning _, _, _, q1_pi, q2_pi = build_models(x_ph, pi, act, act_dim, network_params) # get actions and log probs of actions for next states, for Q-learning _, pi_next, logp_pi_next, _, _ = build_models(x2_ph, a_ph, act, act_dim, network_params) # Target value network with tf.variable_scope('target'): _, _, _, q1_pi_targ, q2_pi_targ = build_models(x2_ph, pi_next, act, act_dim, network_params) # alpha Params if target_entropy == 'auto': target_entropy = tf.cast(-act_dim, tf.float32) else: target_entropy = tf.cast(target_entropy, tf.float32) log_alpha = tf.get_variable('log_alpha', dtype=tf.float32, initializer=0.0) if alpha == 'auto': # auto tune alpha alpha = tf.exp(log_alpha) else: # fixed alpha alpha = tf.get_variable('alpha', dtype=tf.float32, initializer=alpha) # Count variables var_counts = tuple(count_vars(scope) for scope in ['log_alpha', 'main/pi', 'main/q1', 'main/q2', 'main']) print("""\nNumber of other parameters: alpha: %d, pi: %d, q1: %d, q2: %d, total: %d\n"""%var_counts) # Min Double-Q: min_q_pi = tf.minimum(q1_pi, q2_pi) min_q_pi_targ = tf.minimum(q1_pi_targ, q2_pi_targ) # Targets for Q and V regression q_backup = tf.stop_gradient(r_ph + gamma*(1-d_ph)*(min_q_pi_targ - alpha*logp_pi_next)) # critic losses q1_loss = 0.5 * tf.reduce_mean((q_backup - q1_a)**2) q2_loss = 0.5 * tf.reduce_mean((q_backup - q2_a)**2) value_loss = q1_loss + q2_loss # Soft actor losses pi_loss = tf.reduce_mean(alpha * logp_pi - min_q_pi) # alpha loss for temperature parameter alpha_backup = tf.stop_gradient(logp_pi + target_entropy) alpha_loss = -tf.reduce_mean(log_alpha * alpha_backup) # Policy train op pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04) if grad_clip_val is not None: gvs = pi_optimizer.compute_gradients(pi_loss, var_list=get_vars('main/pi')) capped_gvs = [(ClipIfNotNone(grad, grad_clip_val), var) for grad, var in gvs] train_pi_op = pi_optimizer.apply_gradients(capped_gvs) else: train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi')) # Value train op value_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04) with tf.control_dependencies([train_pi_op]): if grad_clip_val is not None: gvs = value_optimizer.compute_gradients(value_loss, var_list=get_vars('main/q')) capped_gvs = [(ClipIfNotNone(grad, grad_clip_val), var) for grad, var in gvs] train_value_op = value_optimizer.apply_gradients(capped_gvs) else: train_value_op = value_optimizer.minimize(value_loss, var_list=get_vars('main/q')) alpha_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04) with tf.control_dependencies([train_value_op]): train_alpha_op = alpha_optimizer.minimize(alpha_loss, var_list=get_vars('log_alpha')) # Polyak averaging for target variables # (control flow because sess.run otherwise evaluates in nondeterministic order) with tf.control_dependencies([train_value_op]): target_update = tf.group([tf.assign(v_targ, polyak*v_targ + (1-polyak)*v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) # All ops to call during one training step step_ops = [pi_loss, q1_loss, q2_loss, q1_a, q2_a, logp_pi, target_entropy, alpha_loss, alpha, train_pi_op, train_value_op, train_alpha_op, target_update] # Initializing targets to match main variables target_init = tf.group([tf.assign(v_targ, v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) sess = tf.Session(config=tf_config) sess.run(tf.global_variables_initializer()) sess.run(target_init) # Setup model saving if save_freq is not None: logger.setup_tf_saver(sess, inputs={'x_ph': x_ph, 'a_ph': a_ph}, outputs={'mu': mu, 'pi': pi, 'q1_a': q1_a, 'q2_a': q2_a}) def get_action(state, deterministic=False): state = state.astype('float32') / 255. act_op = mu if deterministic else pi return sess.run(act_op, feed_dict={x_ph: [state]})[0] def reset(env, state_buffer): o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 o = process_image_observation(o, obs_dim, thresh) state = state_buffer.init_state(init_obs=o) return o, r, d, ep_ret, ep_len, state def test_agent(n=10, render=True): for j in range(n): o, r, d, ep_ret, ep_len, test_state = reset(test_env, test_state_buffer) if render: test_env.render() while not(d or (ep_len == max_ep_len)): # Take deterministic actions at test time o, r, d, _ = test_env.step(get_action(test_state, True)) o = process_image_observation(o, obs_dim, thresh) test_state = test_state_buffer.append_state(o) ep_ret += r ep_len += 1 if render: test_env.render() if render: test_env.close() logger.store(TestEpRet=ep_ret, TestEpLen=ep_len) start_time = time.time() o, r, d, ep_ret, ep_len, state = reset(train_env, train_state_buffer) total_steps = steps_per_epoch * epochs save_iter = 0 # Main loop: collect experience in env and update/log each epoch for t in range(total_steps): """ Until start_steps have elapsed, randomly sample actions from a uniform distribution for better exploration. Afterwards, use the learned policy. """ if t > start_steps: a = get_action(state) else: a = train_env.action_space.sample() # Step the env o2, r, d, _ = train_env.step(a) o2 = process_image_observation(o2, obs_dim, thresh) next_state = train_state_buffer.append_state(o2) ep_ret += r ep_len += 1 # Ignore the "done" signal if it comes from hitting the time # horizon (that is, when it's an artificial terminal signal # that isn't based on the agent's state) d = False if ep_len==max_ep_len else d # Store experience to replay buffer replay_buffer.store(state, a, r, next_state, d) # Super critical, easy to overlook step: make sure to update # most recent observation! o = o2 state = next_state if d or (ep_len == max_ep_len): """ Perform all SAC updates at the end of the trajectory. This is a slight difference from the SAC specified in the original paper. """ for j in range(ep_len): batch = replay_buffer.sample_batch(batch_size) feed_dict = {x_ph: batch['obs1'], x2_ph: batch['obs2'], a_ph: batch['acts'], r_ph: batch['rews'], d_ph: batch['done'], } outs = sess.run(step_ops, feed_dict) logger.store(LossPi=outs[0], LossQ1=outs[1], LossQ2=outs[2], Q1Vals=outs[3], Q2Vals=outs[4], LogPi=outs[5], TargEntropy=outs[6], LossAlpha=outs[7], Alpha=outs[8]) logger.store(EpRet=ep_ret, EpLen=ep_len) o, r, d, ep_ret, ep_len, state = reset(train_env, train_state_buffer) # End of epoch wrap-up if t > 0 and t % steps_per_epoch == 0: epoch = t // steps_per_epoch # Save model if save_freq is not None: if (epoch % save_freq == 0) or (epoch == epochs-1): logger.save_state({'env': train_env}, itr=save_iter) save_iter+=1 # Test the performance of the deterministic version of the agent. test_agent(n=2, render=render) # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('TestEpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TestEpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', t) logger.log_tabular('Q1Vals', with_min_and_max=True) logger.log_tabular('Q2Vals', with_min_and_max=True) logger.log_tabular('LogPi', average_only=True) logger.log_tabular('TargEntropy', average_only=True) logger.log_tabular('Alpha', average_only=True) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossQ1', average_only=True) logger.log_tabular('LossQ2', average_only=True) logger.log_tabular('LossAlpha', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() if __name__ == '__main__': from spinup.utils.run_utils import setup_logger_kwargs network_params = { 'input_dims':[96,96,4], 'conv_filters':(16, 32), 'kernel_width':(8,4), 'strides':(4,2), 'pooling':'none', 'pooling_width':2, 'pooling_strides':1, 'dense_units':(512,), 'hidden_activation':'relu', 'output_activation':'linear', 'batch_norm':False, 'dropout':0.0 } rl_params = { # env params 'env_name':'CarRacing-v0', 'thresh':False, # control params 'seed':int(0), 'epochs':int(50), 'steps_per_epoch':5000, 'replay_size':int(1e5), 'batch_size':64, 'start_steps':4000, 'max_ep_len':1000, 'save_freq':5, 'render':True, # rl params 'gamma':0.99, 'polyak':0.995, 'lr':0.001, 'grad_clip_val':None, # entropy params 'alpha': 'auto', # fixed or auto balance 'target_entropy':'auto', # fixed or auto define with act_dim } saved_model_dir = '../../saved_models' logger_kwargs = setup_logger_kwargs(exp_name='sac_cont_image_' + rl_params['env_name'], seed=rl_params['seed'], data_dir=saved_model_dir, datestamp=False) env = gym.make(rl_params['env_name']) sac(lambda:env, logger_kwargs=logger_kwargs, network_params=network_params, rl_params=rl_params)
py
1a4b335787454d91fe1f98cb839c89a2cc78594e
#!/usr/bin/env python """ _Template_ Template class for all Step Template implementations to inherit and implement the API """ import os from WMCore.WMSpec.WMStep import WMStepHelper from WMCore.WMSpec.ConfigSectionTree import nodeName class CoreHelper(WMStepHelper): """ _CoreHelper_ Helper API for core settings """ def stepName(self): """ _stepName_ Get the name of the step """ return nodeName(self.data) def addEnvironmentVariable(self, varname, setting): """ _addEnvironmentVariable_ add a key = value style setting to the environment for this step """ setattr(self.data.environment.variables, varname, setting) return def addEnvironmentPath(self, pathname, setting): """ _addEnvironmentPath_ add a key = value1:value2:value3 environment setting to this step """ if getattr(self.data.environment.paths, pathname, None) == None: setattr(self.data.environment.paths, pathname, []) pathentry = getattr(self.data.environment.paths, pathname) pathentry.append(setting) return def environment(self): """ _environment_ Get the environment settings for this step """ return self.data.environment def addDirectory(self, dirName): """ _addDirectory_ Add a subdirectory structure to the template that will be built by the builder """ split = dirName.split("/") split = [ x for x in split if x.strip() != "" ] dirs = getattr(self.data.build.directories, self.stepName()) for subdir in split: exists = getattr(dirs, subdir, None) if exists == None: dirs.section_(subdir) dirs = getattr(dirs, subdir) return dirs def addFile(self, fileName, newLocation = None): """ _addFile_ Add a file to the job at build time. This file must be a local filesystem file available at fileName. An optional location within the step can be specified which may include a path structure that gets translated into calls to addDirectory """ dirs = getattr(self.data.build.directories, self.stepName()) if newLocation != None: filename = os.path.basename(newLocation) dirname = os.path.dirname(newLocation) dirs = self.addDirectory(dirname) setattr(dirs, filename, { "Source" : fileName, "Target" : filename}) else: filename = os.path.basename(fileName) setattr(dirs, filename, {"Target" : filename, "Source" : fileName }) return def directoryStructure(self): """ _directoryStructure_ Util to retrieve the directory structure """ return self.data.build.directories class Template: """ _Template_ Base interface definition for any WMStep Template """ def __init__(self): pass def __call__(self, step): """ _operator(step)_ Install the template on the step instance provided """ self.coreInstall(step) self.install(step) def coreInstall(self, step): """ _coreInstall_ Install attributes common to all steps """ # Environment settings to pass to the step step.section_("environment") step.environment.section_("variables") step.environment.section_("paths") # Directory structure and files to be included in the job # beyond those that would be added by a Step Specific builder # Step Specific subclasses can simply append to these to get files # and dirs into the job step.section_("build") step.build.section_("directories") step.build.directories.section_(nodeName(step)) def install(self, step): """ _install_ Override this method to install the required attributes in the step Instance provided """ msg = "WMSpec.Steps.Template.install method not overridden in " msg += "implementation: %s\n" % self.__class__.__name__ raise NotImplementedError(msg) def helper(self, step): """ _helper_ Wrap the step instance in a helper class tailored to this particular step type """ msg = "WMSpec.Steps.Template.helper method not overridden in " msg += "implementation: %s\n" % self.__class__.__name__ raise NotImplementedError(msg)
py
1a4b340280d823bd2a33bfac0889edfce12298de
from typing import List from cynergy import container class Example(object): pass class Example1(object): pass class Example2(object): pass class Example3(object): pass class Example4(object): pass class Main(object): def __init__(self, examples: List[Example], examples1: List[Example1]): self.examples1 = examples1 self.examples = examples class Main2(object): def __init__(self, examples: List[Example]): self.examples = examples def test_register_multiple(): container.register_many(Example, [Example1, Example2]) instance = container.get(List[Example]) assert type(instance) is list assert len(instance) == 2 assert type(instance[0]) is Example1 assert type(instance[1]) is Example2 def test_multiple_list_arguments(): container._clear_all() container.register_many(Example, [Example2, Example3]) container.register_many(Example1, [Example3, Example4]) instance = container.get(Main) assert type(instance) is Main assert len(instance.examples) == 2 assert len(instance.examples1) == 2 assert type(instance.examples[0]) is Example2 assert type(instance.examples[1]) is Example3 assert type(instance.examples1[0]) is Example3 assert type(instance.examples1[1]) is Example4 class MainWrapper(object): def __init__(self, main: Main): self.main = main def test_multiple_list_arguments_with_wrap(): container._clear_all() container.register_many(Example, [Example2, Example3]) container.register_many(Example1, [Example3, Example4]) instance = container.get(MainWrapper) assert type(instance) is MainWrapper assert len(instance.main.examples) == 2 assert len(instance.main.examples1) == 2 assert type(instance.main.examples[0]) is Example2 assert type(instance.main.examples[1]) is Example3 assert type(instance.main.examples1[0]) is Example3 assert type(instance.main.examples1[1]) is Example4 def test_register_multiple_when_onc_instance_is_already_registered(): container._clear_all() ex1 = Example2() container.register(Example1, ex1) container.register_many(Example, [Example1, Example3]) instance = container.get(Main2) assert type(instance) is Main2 assert len(instance.examples) == 2 assert instance.examples[0] == ex1 assert type(instance.examples[1]) is Example3
py
1a4b34894044272ceb52139557e8efab3c9b2aa9
# coding: utf-8 """ Feedback Submissions No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from hubspot.crm.objects.feedback_submissions.api_client import ApiClient from hubspot.crm.objects.feedback_submissions.exceptions import ApiTypeError, ApiValueError # noqa: F401 class AssociationsApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_all(self, feedback_submission_id, to_object_type, **kwargs): # noqa: E501 """List associations of a feedback submission by type # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_all(feedback_submission_id, to_object_type, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str feedback_submission_id: (required) :param str to_object_type: (required) :param str after: The paging cursor token of the last successfully read resource will be returned as the `paging.next.after` JSON property of a paged response containing more results. :param int limit: The maximum number of results to display per page. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: CollectionResponseAssociatedIdForwardPaging If the method is called asynchronously, returns the request thread. """ kwargs["_return_http_data_only"] = True return self.get_all_with_http_info(feedback_submission_id, to_object_type, **kwargs) # noqa: E501 def get_all_with_http_info(self, feedback_submission_id, to_object_type, **kwargs): # noqa: E501 """List associations of a feedback submission by type # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_all_with_http_info(feedback_submission_id, to_object_type, async_req=True) >>> result = thread.get() :param async_req bool: execute request asynchronously :param str feedback_submission_id: (required) :param str to_object_type: (required) :param str after: The paging cursor token of the last successfully read resource will be returned as the `paging.next.after` JSON property of a paged response containing more results. :param int limit: The maximum number of results to display per page. :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: tuple(CollectionResponseAssociatedIdForwardPaging, status_code(int), headers(HTTPHeaderDict)) If the method is called asynchronously, returns the request thread. """ local_var_params = locals() all_params = ["feedback_submission_id", "to_object_type", "after", "limit"] all_params.extend(["async_req", "_return_http_data_only", "_preload_content", "_request_timeout"]) for key, val in six.iteritems(local_var_params["kwargs"]): if key not in all_params: raise ApiTypeError("Got an unexpected keyword argument '%s'" " to method get_all" % key) local_var_params[key] = val del local_var_params["kwargs"] # verify the required parameter 'feedback_submission_id' is set if self.api_client.client_side_validation and ("feedback_submission_id" not in local_var_params or local_var_params["feedback_submission_id"] is None): # noqa: E501 # noqa: E501 raise ApiValueError("Missing the required parameter `feedback_submission_id` when calling `get_all`") # noqa: E501 # verify the required parameter 'to_object_type' is set if self.api_client.client_side_validation and ("to_object_type" not in local_var_params or local_var_params["to_object_type"] is None): # noqa: E501 # noqa: E501 raise ApiValueError("Missing the required parameter `to_object_type` when calling `get_all`") # noqa: E501 collection_formats = {} path_params = {} if "feedback_submission_id" in local_var_params: path_params["feedbackSubmissionId"] = local_var_params["feedback_submission_id"] # noqa: E501 if "to_object_type" in local_var_params: path_params["toObjectType"] = local_var_params["to_object_type"] # noqa: E501 query_params = [] if "after" in local_var_params and local_var_params["after"] is not None: # noqa: E501 query_params.append(("after", local_var_params["after"])) # noqa: E501 if "limit" in local_var_params and local_var_params["limit"] is not None: # noqa: E501 query_params.append(("limit", local_var_params["limit"])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params["Accept"] = self.api_client.select_header_accept(["application/json", "*/*"]) # noqa: E501 # Authentication setting auth_settings = ["hapikey"] # noqa: E501 return self.api_client.call_api( "/crm/v3/objects/feedback_submissions/{feedbackSubmissionId}/associations/{toObjectType}", "GET", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="CollectionResponseAssociatedIdForwardPaging", # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get("_return_http_data_only"), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
py
1a4b35060fe1a85d1ab99897188727bd4c7c7d46
""" Usage: # From tensorflow/models/ # Create train data: python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=data/train.record # Create test data: python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=data/test.record """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import pandas as pd import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple, OrderedDict flags = tf.app.flags flags.DEFINE_string('csv_input', '', 'Path to the CSV input') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') FLAGS = flags.FLAGS # TO-DO replace this with label map def class_text_to_int(row_label): if row_label == 'ship': return 1 else: None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(_): writer = tf.python_io.TFRecordWriter(FLAGS.output_path) path = os.path.join(os.getcwd(), 'images') examples = pd.read_csv(FLAGS.csv_input) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() output_path = os.path.join(os.getcwd(), FLAGS.output_path) print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__': tf.app.run()
py
1a4b3560585e9045ec536b70de51ea7d38b4491b
import enum from ipaddress import IPv4Address import yaml from CybORG import CybORG from CybORG.Emulator.AWS import AWSConfig def enum_representer(dumper, data): return dumper.represent_scalar(u'tag:yaml.org,2002:str', f'{str(data.name)}') def ipv4_representer(dumper, data): return dumper.represent_scalar(u'tag:yaml.org,2002:str', f'{str(data)}') yaml.add_multi_representer(enum.Enum, enum_representer) yaml.add_representer(IPv4Address, ipv4_representer) scenario = '/home/max/PycharmProjects/Autonomous-Cyber-Ops/CybORG/Shared/Scenarios/SingleHostScenario.yaml' image = "Velociraptor_Server" sm = {'Hosts': {'Test_Host': {'image': image}}} cyborg = CybORG(scenario, environment='aws', env_config={ "config": AWSConfig.load_and_setup_logger(test=True), "create_tunnel": False }) #This checks to see that the data given has all the required information and prints #that the state is true as it dumps the data into the outfile. try: info_required = {'Test_Host': {'User_info': 'All', 'System_info': 'All', 'Processes': 'All', 'Files': ['/root', '/bin', '/sbin', '/etc', '/home', '/usr/sbin/', '/usr/bin/']}} true_state = cyborg.get_true_state(info_required) true_state.data.pop('success') assert true_state.data != {} for key, data in true_state.data.items(): if "Interface" in data: data.pop("Interface") if 'Processes' in data: for proc in data['Processes']: if 'Known Process' in proc: proc.pop('Known Process') if 'Known Path' in proc: proc.pop('Known Path') if 'System info' in data and 'Hostname' in data['System info']: data['System info'].pop('Hostname') if 'User Info' in data: for user in data['User Info']: if 'Groups' in user: for group in user['Groups']: if 'Builtin Group' in group: group.pop('Builtin Group') print(true_state) with open(f'{image}_image.yaml', 'w') as outfile: yaml.dump(true_state.data, outfile, default_flow_style=False) finally: cyborg.shutdown(teardown=True)
py
1a4b35639ee9c442b7fcf9d0460c93bf0225f075
# MIT License # # Copyright (c) 2018 Michal Czyz # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #!/usr/bin/env python3 import logging import ply.yacc as yacc import EvalLexer # As defined in yacc.py # p[0] === self.slice[n].value # There is no type getter # So use self.slice[n].type parsed_digits = [] all_digits = [] rule_a = [] rule_b = [] class MadeUpClass: def __init__(self, data): self.data = data def __str__(self): return str(self.data) def __repr__(self): return '__str__:MadeUpClass.data = ' + str(self) def p_error(p): if not p: print("SYNTAX ERROR AT EOF.") def main(grammar_num): if grammar_num == 0: def p_A(t): '''A : B''' def p_B(t): '''B : symbol''' elif grammar_num == 1: def p_A(t): '''A : B''' def p_B(t): '''B : digit''' elif grammar_num == 2: def p_A(p): '''A : B | A B''' # To append B in both alts if len(p) == 2: p[0] = p[1] all_digits.append(p[1]) elif len(p) == 3: p[0] = p[1] all_digits.append(p[1]) p[0] = p[2] all_digits.append(p[2]) else: pass def p_B(p): '''B : digit''' p[0] = p[1] # To propagate value parsed_digits.append(p[0]) def p_C(p): '''C : symbol | empty''' p[0] = p[1] # This is optional arg, but it becomes always optional, which is not that great. def p_empty(p): '''empty : ''' pass elif grammar_num == 3: def p_A(p): ''' A : B | A B''' # To append B in both alts if len(p) == 2: p[0] = p[1] rule_a.append(p[1]) elif len(p) == 3: p[0] = p[1],p[2] #p[0] = p[2] #rule_a.append( (p[1],p[2]) ) def p_B(p): ''' B : id | number''' data = (p.slice[1].value, p.slice[1].type) made_up_object = MadeUpClass(data) print(made_up_object) #p[0] = (p[1],'B rule hit',p) p[0] = made_up_object print('This is a very special print, look at it!' + str(p.slice[0].value)) print('This is a very special print, look at it!' + str(p.slice[1].value)) print('This is a very special print, look at it!' + str(p.slice[1].type)) rule_b.append(p[0]) else: def p_A(t): '''A : B''' def p_B(t): '''B : symbol''' tokens = EvalLexer.tokens eval_parser = yacc.yacc() return eval_parser def parse(data, debug=0): eval_parser.error = 0 t = eval_parser.parsedebug(data, debug=debug) if eval_parser.error: return None return t
py
1a4b36b9afdd47c972f2a64d89b433b1bfc54636
import hashlib import requests from datetime import datetime, timedelta from .filter import McDailyFilter class McDailyAccount: def __init__(self): """ User info """ self.username = '' # Username self.password = '' # Password self.access_token = '' # Token self.param_string = '' # username + password self.card_no = '' # Card no """ System info """ self.str1 = datetime.strftime(datetime.now(), '%Y/%m/%d %H:%M:%S') # Device Time self.str2 = '2.2.0' # App Version self.str3 = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S') # Call time self.model_id = 'Pixel XL' # Model ID self.os_version = '9' # Android OS Version self.platform = 'Android' # platform self.device_uuid = 'device_uuid' # Device Uuid self.order_no = self.device_uuid + self.str3 # Order No """ Request json data """ self.json = { "access_token" : self.access_token, "source_info" : { "app_version" : self.str2, "device_time" : self.str1, "device_uuid" : self.device_uuid, "model_id" : self.model_id, "os_version" : self.os_version, "platform" : self.platform, } } def login(self, username, password): self.username = username self.password = password self.param_string = username + password """ Mask = md5('Mc' + order_no + platform + os_version + model_id + device_uuid + str1 + str2 + param_string + 'Donalds') """ data = 'Mc%s%s%s%s%s%s%s%sDonalds' % ( self.order_no, self.platform, self.os_version, self.model_id, self.device_uuid, self.str1, self.str2, self.param_string ) hash = hashlib.md5() hash.update(data.encode('utf-8')) json = { "account" : self.username, "password" : self.password, "OrderNo" : self.order_no, "mask" : hash.hexdigest(), "source_info" : { "app_version" : self.str2, "device_time" : self.str1, "device_uuid" : self.device_uuid, "model_id" : self.model_id, "os_version" : self.os_version, "Platform" : self.platform, } } response = requests.post('https://api.mcddaily.com.tw/login_by_mobile', json = json, headers = {'user-agent' : 'okhttp/3.10.0'}) self.set_token(response.json()['results']['member_info']['access_token']) return response def set_token(self, access_token): self.access_token = access_token self.json['access_token'] = access_token def get_card_query(self, card_no): self.card_no = card_no """ Mask = md5('Mc' + order_no + access_token + card_no + callTime + 'Donalds') """ data = 'Mc%s%s%s%sDonalds' % ( self.order_no, self.access_token, self.card_no, self.str3, ) hash = hashlib.md5() hash.update(data.encode('utf-8')) json = { "OrderNo" : self.order_no, "access_token" : self.access_token, "callTime" : self.str3, "cardNo" : self.card_no, "mask" : mask.hexdigest(), } respones = requests.post('https://api.mcddaily.com.tw/queryBonus', json = json, headers = {'user-agent' : 'okhttp/3.10.0'}) return respones def lottery_get_item(self): respones = requests.post('https://api1.mcddailyapp.com/lottery/get_item', json = self.json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object() def coupon_get_list(self): respones = requests.post('https://api1.mcddailyapp.com/coupon/get_list', json = self.json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object() def sticker_get_list(self): respones = requests.post('https://api1.mcddailyapp.com/sticker/get_list', json = self.json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object() def sticker_redeem(self): sticker_list = self.sticker_get_list() if len(sticker_list) < 6: return 'Just %d stickers' % len(sticker_list) sticker_id_list = [] for i in range(6): sticker_id_list.append(sticker_list[i].sticker_id) json = self.json json['sticker_ids'] = sticker_id_list respones = requests.post('https://api1.mcddailyapp.com/sticker/redeem', json = json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object()
py
1a4b37cdea06f3fc420974f2732f22edd4f03771
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest.mock import patch from main import app class TestStaticPages(unittest.TestCase): def test_homepage(self): response = app.test_client().get('/') assert response.status_code == 200 assert b"Data Commons aggregates data" in response.data assert not b"Sustainability Data Commons" in response.data def test_homepage_i18n(self): response = app.test_client().get('/?hl=es') assert response.status_code == 200 # TODO: add i18n assert b"Data Commons aggregates data" in response.data def test_about(self): response = app.test_client().get('/about') assert response.status_code == 200 assert b"About Data Commons" in response.data def test_faq(self): response = app.test_client().get('/faq') assert response.status_code == 200 assert b"Frequently Asked Questions" in response.data def test_disclaimers(self): response = app.test_client().get('/disclaimers') assert response.status_code == 200 assert b"Disclaimers" in response.data def test_datasets(self): response = app.test_client().get('/datasets') assert response.status_code == 200 assert b"Datasets" in response.data def test_feedback(self): response = app.test_client().get('/feedback') assert response.status_code == 200 assert b"We would love to get your feedback!" in response.data @patch('routes.static.list_blobs') def test_special_announcement(self, mock_list_blobs): mock_list_blobs.side_effect = (lambda bucket, max_blobs: []) response = app.test_client().get('/special_announcement') assert response.status_code == 200 assert b"COVID-19 Special Announcements" in response.data def test_special_announcement_faq(self): response = app.test_client().get('/special_announcement/faq') assert response.status_code == 200 assert b"COVID-19 Data Feed FAQ" in response.data
py
1a4b38388c8e48fcb1a305e49714dfcf10cb335d
#Calculadora ''' Dados dos numeros generar operaciones basicas''' #INPUTS n1=5 n2=6 suma=0 resta=0 multiplicacion=0 division=0 #PROCESS suma=n1+n2 resta=n2-n1 multiplicacion=n1*n2 division=n1/n2 #OUTPUT print ("El resultado de la suma es: ", suma) print ("El resultado de la resta es: ", resta) print ("El resultado de la multiplicacion es: ", multiplicacion) print ("El resultado de la división es: ", division)
py
1a4b39f804e69a9424316a97e3557d1ec68d65e0
import _plotly_utils.basevalidators class TextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="textsrc", parent_name="violin", **kwargs): super(TextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
py
1a4b3b17bbedf1078cb97f043e286abe7c57d9f1
#!/usr/bin/python3 import binascii import json import logging import re import sys from collections import defaultdict MASK_MAGIC_REGEX = re.compile(r'[*?!@$]') def to_unixnano(timestamp): return int(timestamp) * (10**9) # include/atheme/channels.h CMODE_FLAG_TO_MODE = { 0x001: 'i', # CMODE_INVITE 0x010: 'n', # CMODE_NOEXT 0x080: 's', # CMODE_SEC 0x100: 't', # CMODE_TOPIC } # attempt to interpret certfp as a hex-encoded SHA-256 fingerprint def validate_certfp(certfp): try: dec = binascii.unhexlify(certfp) except: return False return len(dec) == 32 def convert(infile): out = { 'version': 1, 'source': 'atheme', 'users': defaultdict(dict), 'channels': defaultdict(dict), } group_to_founders = defaultdict(list) channel_to_founder = defaultdict(lambda: (None, None)) while True: line = infile.readline() if not line: break line = line.rstrip(b'\r\n') try: line = line.decode('utf-8') except UnicodeDecodeError: line = line.decode('utf-8', 'replace') logging.warning("line contained invalid utf8 data " + line) parts = line.split(' ') category = parts[0] if category == 'GACL': # Note: all group definitions precede channel access entries (token CA) by design, so it # should be safe to read this in using one pass. groupname = parts[1] user = parts[2] flags = parts[3] if 'F' in flags: group_to_founders[groupname].append(user) elif category == 'MU': # user account # MU AAAAAAAAB shivaram $1$hcspif$nCm4r3S14Me9ifsOPGuJT. [email protected] 1600134392 1600467343 +sC default name = parts[2] user = {'name': name, 'hash': parts[3], 'email': parts[4], 'registeredAt': to_unixnano(parts[5])} out['users'][name].update(user) pass elif category == 'MN': # grouped nick # MN shivaram slingamn 1600218831 1600467343 username, groupednick = parts[1], parts[2] if username != groupednick: user = out['users'][username] user.setdefault('additionalnicks', []).append(groupednick) elif category == 'MDU': if parts[2] == 'private:usercloak': username = parts[1] out['users'][username]['vhost'] = parts[3] elif category == 'MCFP': username, certfp = parts[1], parts[2] if validate_certfp(certfp): user = out['users'][username] user.setdefault('certfps', []).append(certfp.lower()) elif category == 'MC': # channel registration # MC #mychannel 1600134478 1600467343 +v 272 0 0 # MC #NEWCHANNELTEST 1602270889 1602270974 +vg 1 0 0 jaeger4 chname = parts[1] chdata = out['channels'][chname] # XXX just give everyone +nt, regardless of lock status; they can fix it later chdata.update({'name': chname, 'registeredAt': to_unixnano(parts[2])}) if parts[8] != '': chdata['key'] = parts[8] modes = {'n', 't'} mlock_on, mlock_off = int(parts[5]), int(parts[6]) for flag, mode in CMODE_FLAG_TO_MODE.items(): if flag & mlock_on != 0: modes.add(mode) elif flag & mlock_off != 0 and mode in modes: modes.remove(mode) chdata['modes'] = ''.join(sorted(modes)) chdata['limit'] = int(parts[7]) elif category == 'MDC': # auxiliary data for a channel registration # MDC #mychannel private:topic:setter s # MDC #mychannel private:topic:text hi again # MDC #mychannel private:topic:ts 1600135864 chname = parts[1] category = parts[2] if category == 'private:topic:text': out['channels'][chname]['topic'] = line.split(maxsplit=3)[3] elif category == 'private:topic:setter': out['channels'][chname]['topicSetBy'] = parts[3] elif category == 'private:topic:ts': out['channels'][chname]['topicSetAt'] = to_unixnano(parts[3]) elif category == 'private:mlockext': # the channel forward mode is +L on insp/unreal, +f on charybdis # charybdis has a +L ("large banlist") taking no argument # and unreal has a +f ("flood limit") taking two colon-delimited numbers, # so check for an argument that starts with a # if parts[3].startswith('L#') or parts[3].startswith('f#'): out['channels'][chname]['forward'] = parts[3][1:] elif category == 'CA': # channel access lists # CA #mychannel shivaram +AFORafhioqrstv 1600134478 shivaram chname, username, flags, set_at = parts[1], parts[2], parts[3], int(parts[4]) chname = parts[1] chdata = out['channels'][chname] flags = parts[3] set_at = int(parts[4]) if 'amode' not in chdata: chdata['amode'] = {} # see libathemecore/flags.c: +o is op, +O is autoop, etc. if 'F' in flags: # If the username starts with "!", it's actually a GroupServ group. if username.startswith('!'): group_founders = group_to_founders.get(username) if not group_founders: # skip this and warn about it later continue # attempt to promote the first group founder to channel founder username = group_founders[0] # but everyone gets the +q flag for founder in group_founders: chdata['amode'][founder] = 'q' # there can only be one founder preexisting_founder, preexisting_set_at = channel_to_founder[chname] if preexisting_founder is None or set_at < preexisting_set_at: chdata['founder'] = username channel_to_founder[chname] = (username, set_at) # but multiple people can receive the 'q' amode chdata['amode'][username] = 'q' continue if MASK_MAGIC_REGEX.search(username): # ignore groups, masks, etc. for any field other than founder continue # record the first appearing successor, if necessary if 'S' in flags: if not chdata.get('successor'): chdata['successor'] = username # finally, handle amodes if 'q' in flags: chdata['amode'][username] = 'q' elif 'a' in flags: chdata['amode'][username] = 'a' elif 'o' in flags or 'O' in flags: chdata['amode'][username] = 'o' elif 'h' in flags or 'H' in flags: chdata['amode'][username] = 'h' elif 'v' in flags or 'V' in flags: chdata['amode'][username] = 'v' else: pass # do some basic integrity checks def validate_user(name): if not name: return False return bool(out['users'].get(name)) invalid_channels = [] for chname, chdata in out['channels'].items(): if not validate_user(chdata.get('founder')): if validate_user(chdata.get('successor')): chdata['founder'] = chdata['successor'] else: invalid_channels.append(chname) for chname in invalid_channels: logging.warning("Unable to find a valid founder for channel %s, discarding it", chname) del out['channels'][chname] return out def main(): if len(sys.argv) != 3: raise Exception("Usage: atheme2json.py atheme_db output.json") with open(sys.argv[1], 'rb') as infile: output = convert(infile) with open(sys.argv[2], 'w') as outfile: json.dump(output, outfile) if __name__ == '__main__': logging.basicConfig() sys.exit(main())
py
1a4b3d0da1aa8c3f545f11ad9bb252e2202541c4
# # Python Macro Language for Dragon NaturallySpeaking # (c) Copyright 1999 by Joel Gould # Portions (c) Copyright 1999 by Dragon Systems, Inc. # # _mouse.py # Sample macro file which implements mouse and keyboard movement modes # similar to DragonDictate for Windows # # April 1, 2000 # Updates from Jonathan Epstein # - cancel arrow movement when the active window changes # - add support for tray icon during arrow movement # # In the grammar we map some keywords into pixel counts according to the # following dictionary. These numbers can be safely changed within reason. amountDict = { 'little':3, # as in 'move a little left' 'lot':10 } # as in 'move left a lot' # For caret movement, this represents the default speed in milliseconds # between arrow keys defaultMoveSpeed = 250 # For caret movement, this is the rate change applied when you make it # faster. For example, 1.5 is a 50% speed increase. moveRateChange = 2.0 # For mouse movement, this represents the default speed in milliseconds # between pixel movements and the default number of pixels per move. We # do not want the update rate to be less than 50 milliseconds so if it # gets faster than that, we adjust the mouse pixels instead. defaultMouseSpeed = 100 defaultMousePixels = 1 # For mouse movement, this is the rate change applied when you make it # faster. For example, 1.5 is a 50% speed increase. mouseRateChange = 3.0 ############################################################################ # # Here are some of our instance variables # # self.haveCallback set when the timer callback in installed # self.curMode 1 for caret movement, 2 for mouse movement, or None # self.curSpeed current movement speed (milliseconds for timer) # self.curPixels for mouse movement, pixels per move # self.lastClock time of last timer callback or 0 # self.curDirection direction of movement as string # import string # for atoi import time # for clock import natlink from natlinkutils import * class ThisGrammar(GrammarBase): # when we unload the grammar, we must make sure we clear the timer # callback so we keep a variable which is set when we currently own # the timer callback def __init__(self): self.haveCallback = 0 self.curMode = None self.iconState = 0 GrammarBase.__init__(self) def unload(self): if self.haveCallback: natlink.setTimerCallback(None,0) self.haveCallback = 0 GrammarBase.unload(self) # This is our grammar. The rule 'start' is what is normally active. The # rules 'nowMoving' and 'nowMousing' are used when we are in caret or # mouse movement mode. gramDefn = """ # this is the rule which is normally active <start> exported = <startMoving> | <startMousing> | <nudgeMouse> | <mouseButton>; # this rule is active when we are moving the caret <nowMoving> exported = [ move ] ( {direction} | [much] faster | [much] slower ) | stop [ moving ]; # this rule is active when we are moving the mouse <nowMousing> exported = [ move ] ( {direction} | faster | slower ) | stop [ moving ] | <mouseButton> | <mouseButton>; # here are the subrules which deal with caret movement <startMoving> = move {direction} | start moving {direction}; # here are the subrules which deal with mouse movement <startMousing> = [ start moving ] mouse {direction}; <nudgeMouse> = nudge mouse {direction} | [ move ] mouse {direction} ( a little | a lot | {count} pixels ) | [ move ] mouse ( a little | a lot | {count} pixels ) {direction}; <mouseButton> = [ mouse ] [ left | middle | right ] [ single | double ] click; """ # These are the lists which we use in our grammar. The directions and # counts are implemented as lists to make parsing easier (words from # lists are referenced as part of the rule which includes the list). listDefn = { 'direction' : ['up','down','left','right'], 'count' : ['1','2','3','4','5','6','7','8','9','10','11','12','13', '14','15','16','17','18','19','20','25','30','35','40','45','50'] } # Load the grammar, build the direction and count lists and activate the # main rule ('start') def initialize(self): self.load(self.gramDefn) for listName in self.listDefn.keys(): self.setList(listName,self.listDefn[listName]) self.activateSet(['start'],exclusive=0) # This subroutine moves the mouse cursor in an indicated direction # by an indicated number of pixels def moveMouse(self,direction,count): xPos,yPos = natlink.getCursorPos() if direction == 'up': yPos = yPos - count elif direction == 'down': yPos = yPos + count elif direction == 'left': xPos = xPos - count elif direction == 'right': xPos = xPos + count xSize,ySize = natlink.getScreenSize() if xPos < 0: xPos = 0 if xPos >= xSize: xPos = xSize - 1 if yPos < 0: yPos = 0 if yPos >= ySize: yPos = ySize - 1 natlink.playEvents([(wm_mousemove,xPos,yPos)]) # This subroutine cancels any active movement mode def cancelMode(self): self.curMode = None if self.haveCallback: natlink.setTimerCallback(None,0) self.haveCallback = 0 self.activateSet(['start'],exclusive=0) natlink.setTrayIcon() # This function is called on a timer event. If we are in a movement # mode then we move the mouse or caret by the indicated amount. # # The apparent speed for mouse movement is the speed divided by the # number of pixels per move. We calculate the number of pixels per # move to ensure that the speed is never faster than 50 milliseconds. def onTimer(self): if self.lastClock: diff = int( (time.clock() - self.lastClock) * 1000 ) self.lastClock = time.clock() if self.curMode == 1: moduleInfo = natlink.getCurrentModule() if natlink.getMicState() == 'on' and moduleInfo == self.moduleInfo: self.setTrayIcon(1) # Note: it is often during a playString operation that the # "stop moving" command occurs natlink.playString('{'+self.curDirection+'}') else: self.cancelMode() elif self.curMode == 2: self.moveMouse(self.curDirection,self.curPixels) # This handles the nudgeMouse rule. We want to extract the direction # and the count or amount. def gotResults_nudgeMouse(self,words,fullResults): self.cancelMode() direction = findKeyWord(words,self.listDefn['direction']) count = findKeyWord(words,self.listDefn['count']) amount = findKeyWord(words,amountDict.keys()) if count: count = string.atoi(count) elif amount: count = amountDict[amount] self.moveMouse(direction,count) # This handles the mouseButton rule. We want to extract the button # name (if specified) and whether this is a single or double click. def gotResults_mouseButton(self,words,fullResults): self.cancelMode() which = findKeyWord(words,['left','right','middle']) if not which: which = 'left' if 'double' in words: count = 2 else: count = 1 buttonClick(which,count) # This handles the startMoving rule. We only need to extract the # direction. To turn on cursor movement mode we need to install a # timer callback (warning: this is global) and set the recognition # state to be exclusively from the rule <nowMoving>. The cursor only # moves in the timer callback itself. def gotResults_startMoving(self,words,fullResults): self.cancelMode() direction = findKeyWord(words,self.listDefn['direction']) self.curMode = 1 self.curDirection = direction self.setTrayIcon(0) self.moduleInfo = natlink.getCurrentModule() self.curSpeed = defaultMoveSpeed self.lastClock = time.clock() natlink.setTimerCallback(self.onTimer,defaultMoveSpeed) self.haveCallback = 1 self.activateSet(['nowMoving'],exclusive=1) # This handles the nowMoving rule. We want to extract the keyword which # tells us what to do. def gotResults_nowMoving(self,words,fullResults): direction = findKeyWord(words,self.listDefn['direction']) if direction: self.curDirection = direction self.setTrayIcon(0) elif 'stop' in words: self.cancelMode() elif 'faster' in words: speed = int(self.curSpeed / moveRateChange) if 'much' in words: speed = int(speed / (moveRateChange*moveRateChange)) if speed < 50: speed = 50 self.curSpeed = speed natlink.setTimerCallback(self.onTimer,speed) elif 'slower' in words: speed = int(self.curSpeed * moveRateChange) if 'much' in words: speed = int(speed * (moveRateChange*moveRateChange)) if speed > 4000: speed = 4000 self.curSpeed = speed natlink.setTimerCallback(self.onTimer,speed) # This handles the startMousing rule. We only need to extract the # direction. To turn on cursor movement mode we need to install a # timer callback (warning: this is global) and set the recognition # state to be exclusively from the rule <nowMoving>. The cursor only # moves in the timer callback itself. def gotResults_startMousing(self,words,fullResults): self.cancelMode() direction = findKeyWord(words,self.listDefn['direction']) self.curMode = 2 self.curDirection = direction self.curSpeed = defaultMouseSpeed self.curPixels = defaultMousePixels self.lastClock = time.clock() natlink.setTimerCallback(self.onTimer,defaultMouseSpeed) self.haveCallback = 1 self.activateSet(['nowMousing'],exclusive=1) # This handles the nowMousing rule. We want to extract the keyword which # tells us what to do. def gotResults_nowMousing(self,words,fullResults): direction = findKeyWord(words,self.listDefn['direction']) if direction: self.curDirection = direction elif 'stop' in words: self.cancelMode() elif 'faster' in words: speed = int(self.curSpeed / moveRateChange) pixels = self.curPixels while speed < 50: speed = speed * 2 pixels = pixels * 2 if pixels > 10: pixels = 10 self.curSpeed = speed self.curPixels = pixels natlink.setTimerCallback(self.onTimer,speed) elif 'slower' in words: speed = int(self.curSpeed * moveRateChange) pixels = self.curPixels while pixels > defaultMousePixels and speed >= 2*50: speed = speed / 2 pixels = pixels / 2 if speed > 2000: speed = 2000 self.curSpeed = speed self.curPixels = pixels natlink.setTimerCallback(self.onTimer,speed) # This turns on the tray icon depending on the movement direction. # self.iconState is used to toggle the image to animate the icon. def setTrayIcon(self,toggleIcon): iconName = self.curDirection toolTip = 'moving '+self.curDirection if not toggleIcon or self.iconState: self.iconState = 0 else: self.iconState = 1 iconName = iconName + '2' natlink.setTrayIcon(iconName,toolTip,self.onTrayIcon) # This is called if the user clicks on the tray icon. We simply cancel # movement in all cases. def onTrayIcon(self,message): self.cancelMode() # This is a simple utility subroutine. It takes two lists of words and # returns the first word it finds which is in both lists. We use this to # extract special words (like the direction) from recognition results. def findKeyWord(list1,list2): for word in list1: if word in list2: return word return None # # Here is the initialization and termination code. See wordpad.py for more # comments. # thisGrammar = ThisGrammar() thisGrammar.initialize() def unload(): global thisGrammar if thisGrammar: thisGrammar.unload() thisGrammar = None
py
1a4b3d1b5312bd3abcb9a1d83c4484c2b041038d
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' log.py ''' import logging import logging.handlers # Create the logger Log = logging.getLogger('heron-state') def configure(level, logfile=None): """ configure logging """ log_format = "%(asctime)s-%(levelname)s: %(message)s" date_format = '%a, %d %b %Y %H:%M:%S' logging.basicConfig(format=log_format, datefmt=date_format) Log.setLevel(level) if logfile is not None: fh = logging.FileHandler(logfile) fh.setFormatter(logging.Formatter(log_format)) Log.addHandler(fh)
py
1a4b3d267e114415fe57216a462d897407c429a5
from typing import Optional from pydantic import BaseModel # Shared properties class UserBase(BaseModel): username: Optional[str] = None # Properties to receive via API on creation class UserCreate(UserBase): username: str password: str # Properties to receive via API on update class UserUpdate(UserBase): password: Optional[str] = None class UserInDBBase(UserBase): id: Optional[int] = None class Config: orm_mode = True # Additional properties to return via API class User(UserInDBBase): pass # Additional properties stored in DB class UserInDB(UserInDBBase): hashed_password: str
py
1a4b3d955f5c04fe3e8e5455b052102e456b4574
from django.db import models from django.utils import timezone # Create your models here. class Feedback(models.Model): data = models.DateTimeField(blank = True) result = models.CharField(max_length = 3, null=True) def store(self): self.data = timezone.now() self.save() class Document(models.Model): upload = models.FileField()
py
1a4b3da83dc6b2ffbdfc2ac063781ac406e95ddd
# Copyright (c) 2016-2017, Neil Booth # Copyright (c) 2017, the ElectrumX authors # # All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. '''Module providing coin abstraction. Anything coin-specific should go in this file and be subclassed where necessary for appropriate handling. ''' from collections import namedtuple import re import struct from decimal import Decimal from hashlib import sha256 from functools import partial import electrumx.lib.util as util from electrumx.lib.hash import Base58, hash160, double_sha256, hash_to_hex_str from electrumx.lib.hash import HASHX_LEN, hex_str_to_hash from electrumx.lib.script import (_match_ops, Script, ScriptError, ScriptPubKey, OpCodes) import electrumx.lib.tx as lib_tx import electrumx.lib.tx_dash as lib_tx_dash import electrumx.lib.tx_axe as lib_tx_axe import electrumx.server.block_processor as block_proc import electrumx.server.daemon as daemon from electrumx.server.session import (ElectrumX, DashElectrumX, SmartCashElectrumX, AuxPoWElectrumX) Block = namedtuple("Block", "raw header transactions") class CoinError(Exception): '''Exception raised for coin-related errors.''' class Coin(object): '''Base class of coin hierarchy.''' REORG_LIMIT = 200 # Not sure if these are coin-specific RPC_URL_REGEX = re.compile('.+@(\\[[0-9a-fA-F:]+\\]|[^:]+)(:[0-9]+)?') VALUE_PER_COIN = 100000000 CHUNK_SIZE = 2016 BASIC_HEADER_SIZE = 80 STATIC_BLOCK_HEADERS = True SESSIONCLS = ElectrumX DEFAULT_MAX_SEND = 1000000 DESERIALIZER = lib_tx.Deserializer DAEMON = daemon.Daemon BLOCK_PROCESSOR = block_proc.BlockProcessor HEADER_VALUES = ('version', 'prev_block_hash', 'merkle_root', 'timestamp', 'bits', 'nonce') HEADER_UNPACK = struct.Struct('< I 32s 32s I I I').unpack_from MEMPOOL_HISTOGRAM_REFRESH_SECS = 500 P2PKH_VERBYTE = bytes.fromhex("00") P2SH_VERBYTES = [bytes.fromhex("05")] XPUB_VERBYTES = bytes('????', 'utf-8') XPRV_VERBYTES = bytes('????', 'utf-8') WIF_BYTE = bytes.fromhex("80") ENCODE_CHECK = Base58.encode_check DECODE_CHECK = Base58.decode_check GENESIS_HASH = ('000000000019d6689c085ae165831e93' '4ff763ae46a2a6c172b3f1b60a8ce26f') GENESIS_ACTIVATION = 100_000_000 # Peer discovery PEER_DEFAULT_PORTS = {'t': '50001', 's': '50002'} PEERS = [] CRASH_CLIENT_VER = None BLACKLIST_URL = None @classmethod def lookup_coin_class(cls, name, net): '''Return a coin class given name and network. Raise an exception if unrecognised.''' req_attrs = ['TX_COUNT', 'TX_COUNT_HEIGHT', 'TX_PER_BLOCK'] for coin in util.subclasses(Coin): if (coin.NAME.lower() == name.lower() and coin.NET.lower() == net.lower()): coin_req_attrs = req_attrs.copy() missing = [attr for attr in coin_req_attrs if not hasattr(coin, attr)] if missing: raise CoinError('coin {} missing {} attributes' .format(name, missing)) return coin raise CoinError('unknown coin {} and network {} combination' .format(name, net)) @classmethod def sanitize_url(cls, url): # Remove surrounding ws and trailing /s url = url.strip().rstrip('/') match = cls.RPC_URL_REGEX.match(url) if not match: raise CoinError('invalid daemon URL: "{}"'.format(url)) if match.groups()[1] is None: url += ':{:d}'.format(cls.RPC_PORT) if not url.startswith('http://') and not url.startswith('https://'): url = 'http://' + url return url + '/' @classmethod def max_fetch_blocks(cls, height): if height < 130000: return 1000 return 100 @classmethod def genesis_block(cls, block): '''Check the Genesis block is the right one for this coin. Return the block less its unspendable coinbase. ''' header = cls.block_header(block, 0) header_hex_hash = hash_to_hex_str(cls.header_hash(header)) if header_hex_hash != cls.GENESIS_HASH: raise CoinError('genesis block has hash {} expected {}' .format(header_hex_hash, cls.GENESIS_HASH)) return header + bytes(1) @classmethod def hashX_from_script(cls, script): '''Returns a hashX from a script.''' return sha256(script).digest()[:HASHX_LEN] @staticmethod def lookup_xverbytes(verbytes): '''Return a (is_xpub, coin_class) pair given xpub/xprv verbytes.''' # Order means BTC testnet will override NMC testnet for coin in util.subclasses(Coin): if verbytes == coin.XPUB_VERBYTES: return True, coin if verbytes == coin.XPRV_VERBYTES: return False, coin raise CoinError('version bytes unrecognised') @classmethod def address_to_hashX(cls, address): '''Return a hashX given a coin address.''' return cls.hashX_from_script(cls.pay_to_address_script(address)) @classmethod def P2PKH_address_from_hash160(cls, hash160): '''Return a P2PKH address given a public key.''' assert len(hash160) == 20 return cls.ENCODE_CHECK(cls.P2PKH_VERBYTE + hash160) @classmethod def P2PKH_address_from_pubkey(cls, pubkey): '''Return a coin address given a public key.''' return cls.P2PKH_address_from_hash160(hash160(pubkey)) @classmethod def P2SH_address_from_hash160(cls, hash160): '''Return a coin address given a hash160.''' assert len(hash160) == 20 return cls.ENCODE_CHECK(cls.P2SH_VERBYTES[0] + hash160) @classmethod def hash160_to_P2PKH_script(cls, hash160): return ScriptPubKey.P2PKH_script(hash160) @classmethod def hash160_to_P2PKH_hashX(cls, hash160): return cls.hashX_from_script(cls.hash160_to_P2PKH_script(hash160)) @classmethod def pay_to_address_script(cls, address): '''Return a pubkey script that pays to a pubkey hash. Pass the address (either P2PKH or P2SH) in base58 form. ''' raw = cls.DECODE_CHECK(address) # Require version byte(s) plus hash160. verbyte = -1 verlen = len(raw) - 20 if verlen > 0: verbyte, hash160 = raw[:verlen], raw[verlen:] if verbyte == cls.P2PKH_VERBYTE: return cls.hash160_to_P2PKH_script(hash160) if verbyte in cls.P2SH_VERBYTES: return ScriptPubKey.P2SH_script(hash160) raise CoinError('invalid address: {}'.format(address)) @classmethod def privkey_WIF(cls, privkey_bytes, compressed): '''Return the private key encoded in Wallet Import Format.''' payload = bytearray(cls.WIF_BYTE) + privkey_bytes if compressed: payload.append(0x01) return cls.ENCODE_CHECK(payload) @classmethod def header_hash(cls, header): '''Given a header return hash''' return double_sha256(header) @classmethod def header_prevhash(cls, header): '''Given a header return previous hash''' return header[4:36] @classmethod def static_header_offset(cls, height): '''Given a header height return its offset in the headers file. If header sizes change at some point, this is the only code that needs updating.''' assert cls.STATIC_BLOCK_HEADERS return height * cls.BASIC_HEADER_SIZE @classmethod def static_header_len(cls, height): '''Given a header height return its length.''' return (cls.static_header_offset(height + 1) - cls.static_header_offset(height)) @classmethod def block_header(cls, block, height): '''Returns the block header given a block and its height.''' return block[:cls.static_header_len(height)] @classmethod def block(cls, raw_block, height): '''Return a Block namedtuple given a raw block and its height.''' header = cls.block_header(raw_block, height) txs = cls.DESERIALIZER(raw_block, start=len(header)).read_tx_block() return Block(raw_block, header, txs) @classmethod def decimal_value(cls, value): '''Return the number of standard coin units as a Decimal given a quantity of smallest units. For example 1 BTC is returned for 100 million satoshis. ''' return Decimal(value) / cls.VALUE_PER_COIN @classmethod def warn_old_client_on_tx_broadcast(cls, _client_ver): return False class AuxPowMixin(object): STATIC_BLOCK_HEADERS = False DESERIALIZER = lib_tx.DeserializerAuxPow SESSIONCLS = AuxPoWElectrumX TRUNCATED_HEADER_SIZE = 80 # AuxPoW headers are significantly larger, so the DEFAULT_MAX_SEND from # Bitcoin is insufficient. In Namecoin mainnet, 5 MB wasn't enough to # sync, while 10 MB worked fine. DEFAULT_MAX_SEND = 10000000 @classmethod def header_hash(cls, header): '''Given a header return hash''' return double_sha256(header[:cls.BASIC_HEADER_SIZE]) @classmethod def block_header(cls, block, height): '''Return the AuxPow block header bytes''' deserializer = cls.DESERIALIZER(block) return deserializer.read_header(cls.BASIC_HEADER_SIZE) class EquihashMixin(object): STATIC_BLOCK_HEADERS = False BASIC_HEADER_SIZE = 140 # Excluding Equihash solution DESERIALIZER = lib_tx.DeserializerEquihash HEADER_VALUES = ('version', 'prev_block_hash', 'merkle_root', 'reserved', 'timestamp', 'bits', 'nonce') HEADER_UNPACK = struct.Struct('< I 32s 32s 32s I I 32s').unpack_from @classmethod def block_header(cls, block, height): '''Return the block header bytes''' deserializer = cls.DESERIALIZER(block) return deserializer.read_header(cls.BASIC_HEADER_SIZE) class ScryptMixin(object): DESERIALIZER = lib_tx.DeserializerTxTime HEADER_HASH = None @classmethod def header_hash(cls, header): '''Given a header return the hash.''' if cls.HEADER_HASH is None: import scrypt cls.HEADER_HASH = lambda x: scrypt.hash(x, x, 1024, 1, 1, 32) version, = util.unpack_le_uint32_from(header) if version > 6: return super().header_hash(header) else: return cls.HEADER_HASH(header) class KomodoMixin(object): P2PKH_VERBYTE = bytes.fromhex("3C") P2SH_VERBYTES = [bytes.fromhex("55")] WIF_BYTE = bytes.fromhex("BC") GENESIS_HASH = ('027e3758c3a65b12aa1046462b486d0a' '63bfa1beae327897f56c5cfb7daaae71') DESERIALIZER = lib_tx.DeserializerZcash class BitcoinMixin(object): SHORTNAME = "BTC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") RPC_PORT = 8332 class NameMixin(object): DATA_PUSH_MULTIPLE = -2 @classmethod def interpret_name_prefix(cls, script, possible_ops): """Interprets a potential name prefix Checks if the given script has a name prefix. If it has, the name prefix is split off the actual address script, and its parsed fields (e.g. the name) returned. possible_ops must be an array of arrays, defining the structures of name prefixes to look out for. Each array can consist of actual opcodes, -1 for ignored data placeholders, -2 for multiple ignored data placeholders and strings for named placeholders. Whenever a data push matches a named placeholder, the corresponding value is put into a dictionary the placeholder name as key, and the dictionary of matches is returned.""" try: ops = Script.get_ops(script) except ScriptError: return None, script name_op_count = None for pops in possible_ops: # Start by translating named placeholders to -1 values, and # keeping track of which op they corresponded to. template = [] named_index = {} n = len(pops) offset = 0 for i, op in enumerate(pops): if op == cls.DATA_PUSH_MULTIPLE: # Emercoin stores value in multiple placeholders # Script structure: https://git.io/fjuRu added, template = cls._add_data_placeholders_to_template(ops[i:], template) offset += added - 1 # subtract the "DATA_PUSH_MULTIPLE" opcode elif type(op) == str: template.append(-1) named_index[op] = i + offset else: template.append(op) n += offset if not _match_ops(ops[:n], template): continue name_op_count = n named_values = {key: ops[named_index[key]] for key in named_index} break if name_op_count is None: return None, script name_end_pos = cls.find_end_position_of_name(script, name_op_count) address_script = script[name_end_pos:] return named_values, address_script @classmethod def _add_data_placeholders_to_template(cls, opcodes, template): num_dp = cls._read_data_placeholders_count(opcodes) num_2drop = num_dp // 2 num_drop = num_dp % 2 two_drops = [OpCodes.OP_2DROP for _ in range(num_2drop)] one_drops = [OpCodes.OP_DROP for _ in range(num_drop)] elements_added = num_dp + num_2drop + num_drop placeholders = [-1 for _ in range(num_dp)] drops = two_drops + one_drops return elements_added, template + placeholders + drops @classmethod def _read_data_placeholders_count(cls, opcodes): data_placeholders = 0 for opcode in opcodes: if type(opcode) == tuple: data_placeholders += 1 else: break return data_placeholders @staticmethod def find_end_position_of_name(script, length): """Finds the end position of the name data Given the number of opcodes in the name prefix (length), returns the index into the byte array of where the name prefix ends.""" n = 0 for _i in range(length): # Content of this loop is copied from Script.get_ops's loop op = script[n] n += 1 if op <= OpCodes.OP_PUSHDATA4: # Raw bytes follow if op < OpCodes.OP_PUSHDATA1: dlen = op elif op == OpCodes.OP_PUSHDATA1: dlen = script[n] n += 1 elif op == OpCodes.OP_PUSHDATA2: dlen, = struct.unpack('<H', script[n: n + 2]) n += 2 else: dlen, = struct.unpack('<I', script[n: n + 4]) n += 4 if n + dlen > len(script): raise IndexError n += dlen return n class NameIndexMixin(NameMixin): """Shared definitions for coins that have a name index This class defines common functions and logic for coins that have a name index in addition to the index by address / script.""" BLOCK_PROCESSOR = block_proc.NameIndexBlockProcessor @classmethod def build_name_index_script(cls, name): """Returns the script by which names are indexed""" from electrumx.lib.script import Script res = bytearray() res.append(cls.OP_NAME_UPDATE) res.extend(Script.push_data(name)) res.extend(Script.push_data(bytes([]))) res.append(OpCodes.OP_2DROP) res.append(OpCodes.OP_DROP) res.append(OpCodes.OP_RETURN) return bytes(res) @classmethod def split_name_script(cls, script): named_values, address_script = cls.interpret_name_prefix(script, cls.NAME_OPERATIONS) if named_values is None or "name" not in named_values: return None, address_script name_index_script = cls.build_name_index_script(named_values["name"][1]) return name_index_script, address_script @classmethod def hashX_from_script(cls, script): _, address_script = cls.split_name_script(script) return super().hashX_from_script(address_script) @classmethod def address_from_script(cls, script): _, address_script = cls.split_name_script(script) return super().address_from_script(address_script) @classmethod def name_hashX_from_script(cls, script): name_index_script, _ = cls.split_name_script(script) if name_index_script is None: return None return super().hashX_from_script(name_index_script) class PrimeChainPowMixin(object): STATIC_BLOCK_HEADERS = False DESERIALIZER = lib_tx.DeserializerPrimecoin @classmethod def block_header(cls, block, height): '''Return the block header bytes''' deserializer = cls.DESERIALIZER(block) return deserializer.read_header(cls.BASIC_HEADER_SIZE) class HOdlcoin(Coin): NAME = "HOdlcoin" SHORTNAME = "HODLC" NET = "mainnet" BASIC_HEADER_SIZE = 88 P2PKH_VERBYTE = bytes.fromhex("28") WIF_BYTE = bytes.fromhex("a8") GENESIS_HASH = ('008872e5582924544e5c707ee4b839bb' '82c28a9e94e917c94b40538d5658c04b') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 258858 TX_COUNT_HEIGHT = 382138 TX_PER_BLOCK = 5 class BitcoinSV(BitcoinMixin, Coin): NAME = "BitcoinSV" SHORTNAME = "BSV" TX_COUNT = 267318795 TX_COUNT_HEIGHT = 557037 TX_PER_BLOCK = 400 PEERS = [ 'electrumx.bitcoinsv.io s', 'satoshi.vision.cash s', 'sv.usebsv.com s t', 'sv.jochen-hoenicke.de s t', 'sv.satoshi.io s t', ] GENESIS_ACTIVATION = 620_538 class BitcoinCash(BitcoinMixin, Coin): NAME = "BitcoinCashABC" # Some releases later remove the ABC suffix SHORTNAME = "BCH" TX_COUNT = 265479628 TX_COUNT_HEIGHT = 556592 TX_PER_BLOCK = 400 PEERS = [ 'bch.imaginary.cash s t', 'electroncash.dk s t', 'wallet.satoshiscoffeehouse.com s t', ] BLOCK_PROCESSOR = block_proc.LTORBlockProcessor @classmethod def warn_old_client_on_tx_broadcast(cls, client_ver): if client_ver < (3, 3, 4): return ('<br/><br/>' 'Your transaction was successfully broadcast.<br/><br/>' 'However, you are using a VULNERABLE version of Electron Cash.<br/>' 'Download the latest version from this web site ONLY:<br/>' 'https://electroncash.org/' '<br/><br/>') return False class BitcoinSegwit(BitcoinMixin, Coin): NAME = "BitcoinSegwit" DESERIALIZER = lib_tx.DeserializerSegWit MEMPOOL_HISTOGRAM_REFRESH_SECS = 120 TX_COUNT = 318337769 TX_COUNT_HEIGHT = 524213 TX_PER_BLOCK = 1400 CRASH_CLIENT_VER = (3, 2, 3) BLACKLIST_URL = 'https://electrum.org/blacklist.json' PEERS = [ 'E-X.not.fyi s t', 'electrum.vom-stausee.de s t', 'electrum.hsmiths.com s t', 'helicarrier.bauerj.eu s t', 'hsmiths4fyqlw5xw.onion s t', 'ozahtqwp25chjdjd.onion s t', 'electrum.hodlister.co s', 'electrum3.hodlister.co s', 'btc.usebsv.com s50006', 'fortress.qtornado.com s443 t', 'ecdsa.net s110 t', 'e2.keff.org s t', 'currentlane.lovebitco.in s t', 'electrum.jochen-hoenicke.de s50005 t50003', 'vps5.hsmiths.com s', ] @classmethod def warn_old_client_on_tx_broadcast(cls, client_ver): if client_ver < (3, 3, 3): return ('<br/><br/>' 'Your transaction was successfully broadcast.<br/><br/>' 'However, you are using a VULNERABLE version of Electrum.<br/>' 'Download the new version from the usual place:<br/>' 'https://electrum.org/' '<br/><br/>') return False class BitcoinGold(EquihashMixin, BitcoinMixin, Coin): CHUNK_SIZE = 252 NAME = "BitcoinGold" SHORTNAME = "BTG" FORK_HEIGHT = 491407 P2PKH_VERBYTE = bytes.fromhex("26") P2SH_VERBYTES = [bytes.fromhex("17")] DESERIALIZER = lib_tx.DeserializerEquihashSegWit TX_COUNT = 265026255 TX_COUNT_HEIGHT = 499923 TX_PER_BLOCK = 50 REORG_LIMIT = 1000 RPC_PORT = 8332 PEERS = [ 'electrumx-eu.bitcoingold.org s50002 t50001', 'electrumx-us.bitcoingold.org s50002 t50001' ] @classmethod def header_hash(cls, header): '''Given a header return hash''' height, = util.unpack_le_uint32_from(header, 68) if height >= cls.FORK_HEIGHT: return double_sha256(header) else: return double_sha256(header[:68] + header[100:112]) class BitcoinGoldTestnet(BitcoinGold): FORK_HEIGHT = 1 SHORTNAME = "TBTG" XPUB_VERBYTES = bytes.fromhex("043587CF") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("6F") P2SH_VERBYTES = [bytes.fromhex("C4")] WIF_BYTE = bytes.fromhex("EF") TX_COUNT = 0 TX_COUNT_HEIGHT = 1 NET = 'testnet' RPC_PORT = 18332 GENESIS_HASH = ('00000000e0781ebe24b91eedc293adfe' 'a2f557b53ec379e78959de3853e6f9f6') PEERS = [ 'test-node1.bitcoingold.org s50002', 'test-node2.bitcoingold.org s50002', 'test-node3.bitcoingold.org s50002' ] class BitcoinGoldRegtest(BitcoinGold): FORK_HEIGHT = 2000 SHORTNAME = "TBTG" XPUB_VERBYTES = bytes.fromhex("043587CF") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("6F") P2SH_VERBYTES = [bytes.fromhex("C4")] WIF_BYTE = bytes.fromhex("EF") TX_COUNT = 0 TX_COUNT_HEIGHT = 1 NET = 'regtest' RPC_PORT = 18444 GENESIS_HASH = ('0f9188f13cb7b2c71f2a335e3a4fc328' 'bf5beb436012afca590b1a11466e2206') PEERS = [] class BitcoinDiamond(BitcoinSegwit, Coin): NAME = "BitcoinDiamond" SHORTNAME = "BCD" TX_VERSION = 12 TX_COUNT = 274277819 TX_COUNT_HEIGHT = 498678 TX_PER_BLOCK = 50 REORG_LIMIT = 1000 PEERS = [] VALUE_PER_COIN = 10000000 DESERIALIZER = lib_tx.DeserializerBitcoinDiamondSegWit class Emercoin(NameMixin, Coin): NAME = "Emercoin" SHORTNAME = "EMC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("21") P2SH_VERBYTES = [bytes.fromhex("5c")] GENESIS_HASH = ('00000000bcccd459d036a588d1008fce' '8da3754b205736f32ddfd35350e84c2d') TX_COUNT = 217380620 TX_COUNT_HEIGHT = 464000 TX_PER_BLOCK = 1700 VALUE_PER_COIN = 1000000 RPC_PORT = 6662 DESERIALIZER = lib_tx.DeserializerEmercoin PEERS = [] # Name opcodes OP_NAME_NEW = OpCodes.OP_1 OP_NAME_UPDATE = OpCodes.OP_2 OP_NAME_DELETE = OpCodes.OP_3 # Valid name prefixes. NAME_NEW_OPS = [OP_NAME_NEW, OpCodes.OP_DROP, "name", "days", OpCodes.OP_2DROP, NameMixin.DATA_PUSH_MULTIPLE] NAME_UPDATE_OPS = [OP_NAME_UPDATE, OpCodes.OP_DROP, "name", "days", OpCodes.OP_2DROP, NameMixin.DATA_PUSH_MULTIPLE] NAME_DELETE_OPS = [OP_NAME_DELETE, OpCodes.OP_DROP, "name", OpCodes.OP_DROP] NAME_OPERATIONS = [ NAME_NEW_OPS, NAME_UPDATE_OPS, NAME_DELETE_OPS, ] @classmethod def block_header(cls, block, height): '''Returns the block header given a block and its height.''' deserializer = cls.DESERIALIZER(block) if deserializer.is_merged_block(): return deserializer.read_header(cls.BASIC_HEADER_SIZE) return block[:cls.static_header_len(height)] @classmethod def header_hash(cls, header): '''Given a header return hash''' return double_sha256(header[:cls.BASIC_HEADER_SIZE]) @classmethod def hashX_from_script(cls, script): _, address_script = cls.interpret_name_prefix(script, cls.NAME_OPERATIONS) return super().hashX_from_script(address_script) class BitcoinTestnetMixin(object): SHORTNAME = "XTN" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('000000000933ea01ad0ee984209779ba' 'aec3ced90fa3f408719526f8d77f4943') REORG_LIMIT = 8000 TX_COUNT = 12242438 TX_COUNT_HEIGHT = 1035428 TX_PER_BLOCK = 21 RPC_PORT = 18332 PEER_DEFAULT_PORTS = {'t': '51001', 's': '51002'} class BitcoinSVTestnet(BitcoinTestnetMixin, Coin): '''Bitcoin Testnet for Bitcoin SV daemons.''' NAME = "BitcoinSV" PEERS = [ 'electrontest.cascharia.com t51001 s51002', ] GENESIS_ACTIVATION = 1_344_302 class BitcoinSVScalingTestnet(BitcoinSVTestnet): NET = "scalingtest" PEERS = [ 'stn-server.electrumsv.io t51001 s51002', ] TX_COUNT = 2015 TX_COUNT_HEIGHT = 5711 TX_PER_BLOCK = 5000 GENESIS_ACTIVATION = 14_896 @classmethod def max_fetch_blocks(cls, height): if height <= 10: return 100 return 3 class BitcoinCashTestnet(BitcoinTestnetMixin, Coin): '''Bitcoin Testnet for Bitcoin Cash daemons.''' NAME = "BitcoinCashABC" PEERS = [ 'bch0.kister.net t s', 'testnet.imaginary.cash t50001 s50002', 'blackie.c3-soft.com t60001 s60002', ] BLOCK_PROCESSOR = block_proc.LTORBlockProcessor @classmethod def warn_old_client_on_tx_broadcast(cls, client_ver): if client_ver < (3, 3, 4): return ('<br/><br/>' 'Your transaction was successfully broadcast.<br/><br/>' 'However, you are using a VULNERABLE version of Electron Cash.<br/>' 'Download the latest version from this web site ONLY:<br/>' 'https://electroncash.org/' '<br/><br/>') return False class BitcoinSVRegtest(BitcoinSVTestnet): NET = "regtest" GENESIS_HASH = ('0f9188f13cb7b2c71f2a335e3a4fc328' 'bf5beb436012afca590b1a11466e2206') PEERS = [] TX_COUNT = 1 TX_COUNT_HEIGHT = 1 GENESIS_ACTIVATION = 10_000 class BitcoinSegwitTestnet(BitcoinTestnetMixin, Coin): '''Bitcoin Testnet for Core bitcoind >= 0.13.1.''' NAME = "BitcoinSegwit" DESERIALIZER = lib_tx.DeserializerSegWit CRASH_CLIENT_VER = (3, 2, 3) PEERS = [ 'testnet.hsmiths.com t53011 s53012', 'hsmithsxurybd7uh.onion t53011 s53012', 'testnet.qtornado.com s t', 'testnet1.bauerj.eu t50001 s50002', 'tn.not.fyi t55001 s55002', 'bitcoin.cluelessperson.com s t', ] @classmethod def warn_old_client_on_tx_broadcast(cls, client_ver): if client_ver < (3, 3, 3): return ('<br/><br/>' 'Your transaction was successfully broadcast.<br/><br/>' 'However, you are using a VULNERABLE version of Electrum.<br/>' 'Download the new version from the usual place:<br/>' 'https://electrum.org/' '<br/><br/>') return False class BitcoinSegwitRegtest(BitcoinSegwitTestnet): NAME = "BitcoinSegwit" NET = "regtest" GENESIS_HASH = ('0f9188f13cb7b2c71f2a335e3a4fc328' 'bf5beb436012afca590b1a11466e2206') PEERS = [] TX_COUNT = 1 TX_COUNT_HEIGHT = 1 class BitcoinNolnet(BitcoinCash): '''Bitcoin Unlimited nolimit testnet.''' NET = "nolnet" GENESIS_HASH = ('0000000057e31bd2066c939a63b7b862' '3bd0f10d8c001304bdfc1a7902ae6d35') PEERS = [] REORG_LIMIT = 8000 TX_COUNT = 583589 TX_COUNT_HEIGHT = 8617 TX_PER_BLOCK = 50 RPC_PORT = 28332 PEER_DEFAULT_PORTS = {'t': '52001', 's': '52002'} # Source: https://github.com/sumcoinlabs/sumcoin class Sumcoin(Coin): NAME = "Sumcoin" SHORTNAME = "SUM" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b41c") XPRV_VERBYTES = bytes.fromhex("0488abe6") P2PKH_VERBYTE = bytes.fromhex("3f") P2SH_VERBYTES = [bytes.fromhex("c8"), bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("bf") GENESIS_HASH = ('37d4696c5072cd012f3b7c651e5ce56a' '1383577e4edacc2d289ec9b25eebfd5e') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 976394 TX_COUNT_HEIGHT = 659520 TX_PER_BLOCK = 2 REORG_LIMIT = 800 RPC_PORT = 3332 PEER_DEFAULT_PORTS = {'t': '53332', 's': '53333'} PEERS = [] class Litecoin(Coin): NAME = "Litecoin" SHORTNAME = "LTC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("30") P2SH_VERBYTES = [bytes.fromhex("32"), bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("b0") GENESIS_HASH = ('12a765e31ffd4059bada1e25190f6e98' 'c99d9714d334efa41a195a7e7e04bfe2') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 8908766 TX_COUNT_HEIGHT = 1105256 TX_PER_BLOCK = 10 RPC_PORT = 9332 REORG_LIMIT = 800 PEERS = [ 'ex.lug.gs s444', 'electrum-ltc.bysh.me s t', 'electrum-ltc.ddns.net s t', 'electrum-ltc.wilv.in s t', 'electrum.cryptomachine.com p1000 s t', 'electrum.ltc.xurious.com s t', 'eywr5eubdbbe2laq.onion s50008 t50007', ] class LitecoinTestnet(Litecoin): SHORTNAME = "XLT" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("3a"), bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('4966625a4b2851d9fdee139e56211a0d' '88575f59ed816ff5e6a63deb4e3e29a0') TX_COUNT = 21772 TX_COUNT_HEIGHT = 20800 TX_PER_BLOCK = 2 RPC_PORT = 19332 REORG_LIMIT = 4000 PEER_DEFAULT_PORTS = {'t': '51001', 's': '51002'} PEERS = [ 'electrum-ltc.bysh.me s t', 'electrum.ltc.xurious.com s t', ] class LitecoinRegtest(LitecoinTestnet): NET = "regtest" GENESIS_HASH = ('530827f38f93b43ed12af0b3ad25a288' 'dc02ed74d6d7857862df51fc56c416f9') PEERS = [] TX_COUNT = 1 TX_COUNT_HEIGHT = 1 class BitcoinCashRegtest(BitcoinTestnetMixin, Coin): NAME = "BitcoinCashABC" # Some releases later remove the ABC suffix NET = "regtest" PEERS = [] GENESIS_HASH = ('0f9188f13cb7b2c71f2a335e3a4fc328' 'bf5beb436012afca590b1a11466e2206') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 BLOCK_PROCESSOR = block_proc.LTORBlockProcessor class Viacoin(AuxPowMixin, Coin): NAME = "Viacoin" SHORTNAME = "VIA" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("47") P2SH_VERBYTES = [bytes.fromhex("21")] WIF_BYTE = bytes.fromhex("c7") GENESIS_HASH = ('4e9b54001f9976049830128ec0331515' 'eaabe35a70970d79971da1539a400ba1') TX_COUNT = 113638 TX_COUNT_HEIGHT = 3473674 TX_PER_BLOCK = 30 RPC_PORT = 5222 REORG_LIMIT = 5000 DESERIALIZER = lib_tx.DeserializerAuxPowSegWit PEERS = [ 'vialectrum.bitops.me s t', 'server.vialectrum.org s t', 'vialectrum.viacoin.net s t', 'viax1.bitops.me s t', ] class ViacoinTestnet(Viacoin): SHORTNAME = "TVI" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("7f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ff") GENESIS_HASH = ('00000007199508e34a9ff81e6ec0c477' 'a4cccff2a4767a8eee39c11db367b008') RPC_PORT = 25222 REORG_LIMIT = 2500 PEER_DEFAULT_PORTS = {'t': '51001', 's': '51002'} PEERS = [ 'vialectrum.bysh.me s t', ] class ViacoinTestnetSegWit(ViacoinTestnet): NET = "testnet-segwit" DESERIALIZER = lib_tx.DeserializerSegWit # Source: https://github.com/GravityCoinOfficial/GravityCoin/ class GravityCoin(Coin): NAME = "GravityCoin" SHORTNAME = "GXX" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("28") P2SH_VERBYTES = [bytes.fromhex("0a")] WIF_BYTE = bytes.fromhex("d2") GENESIS_HASH = ('322bad477efb4b33fa4b1f0b2861eaf543c61068da9898a95062fdb02ada486f') TX_COUNT = 446050 TX_COUNT_HEIGHT = 547346 TX_PER_BLOCK = 2 PEER_DEFAULT_PORTS = {'t': '50001', 's': '50002'} RPC_PORT = 29200 REORG_LIMIT = 5000 PEERS = [] # Source: https://github.com/BitcoinZeroOfficial/bitcoinzero class Bitcoinzero(Coin): NAME = "Bitcoinzero" SHORTNAME = "BZX" TX_COUNT = 43798 TX_COUNT_HEIGHT = 44 TX_PER_BLOCK = 576 NET = "mainnet" GENESIS_HASH = '322bad477efb4b33fa4b1f0b2861eaf543c61068da9898a95062fdb02ada486f' XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("4b") P2SH_VERBYTES = [bytes.fromhex("22")] WIF_BYTE = bytes.fromhex("d2") RPC_PORT = 29202 REORG_LIMIT = 5000 PEERS = [] class Unitus(Coin): NAME = "Unitus" SHORTNAME = "UIS" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("44") P2SH_VERBYTES = [bytes.fromhex("0A")] WIF_BYTE = bytes.fromhex("84") GENESIS_HASH = ('d8a2b2439d013a59f3bfc626a33487a3' 'd7d27e42a3c9e0b81af814cd8e592f31') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 3484561 TX_COUNT_HEIGHT = 1697605 TX_PER_BLOCK = 3 RPC_PORT = 50604 REORG_LIMIT = 2000 PEERS = [ 'electrumx.unituscurrency.com s t', ] # Source: namecoin.org class Namecoin(NameIndexMixin, AuxPowMixin, Coin): NAME = "Namecoin" SHORTNAME = "NMC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("d7dd6370") XPRV_VERBYTES = bytes.fromhex("d7dc6e31") P2PKH_VERBYTE = bytes.fromhex("34") P2SH_VERBYTES = [bytes.fromhex("0d")] WIF_BYTE = bytes.fromhex("e4") GENESIS_HASH = ('000000000062b72c5e2ceb45fbc8587e' '807c155b0da735e6483dfba2f0a9c770') DESERIALIZER = lib_tx.DeserializerAuxPowSegWit TX_COUNT = 4415768 TX_COUNT_HEIGHT = 329065 TX_PER_BLOCK = 10 RPC_PORT = 8336 PEERS = [ 'electrum-nmc.le-space.de s50002', 'ex.lug.gs s446', 'luggscoqbymhvnkp.onion t82', 'nmc.bitcoins.sk s50002', 'ulrichard.ch s50006 t50005', ] BLOCK_PROCESSOR = block_proc.NameIndexBlockProcessor # Name opcodes OP_NAME_NEW = OpCodes.OP_1 OP_NAME_FIRSTUPDATE = OpCodes.OP_2 OP_NAME_UPDATE = OpCodes.OP_3 # Valid name prefixes. NAME_NEW_OPS = [OP_NAME_NEW, -1, OpCodes.OP_2DROP] NAME_FIRSTUPDATE_OPS = [OP_NAME_FIRSTUPDATE, "name", -1, -1, OpCodes.OP_2DROP, OpCodes.OP_2DROP] NAME_UPDATE_OPS = [OP_NAME_UPDATE, "name", -1, OpCodes.OP_2DROP, OpCodes.OP_DROP] NAME_OPERATIONS = [ NAME_NEW_OPS, NAME_FIRSTUPDATE_OPS, NAME_UPDATE_OPS, ] class NamecoinTestnet(Namecoin): NAME = "Namecoin" SHORTNAME = "XNM" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('00000007199508e34a9ff81e6ec0c477' 'a4cccff2a4767a8eee39c11db367b008') class NamecoinRegtest(NamecoinTestnet): NAME = "Namecoin" NET = "regtest" GENESIS_HASH = ('0f9188f13cb7b2c71f2a335e3a4fc328' 'bf5beb436012afca590b1a11466e2206') PEERS = [] TX_COUNT = 1 TX_COUNT_HEIGHT = 1 class Dogecoin(AuxPowMixin, Coin): NAME = "Dogecoin" SHORTNAME = "DOGE" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("02facafd") XPRV_VERBYTES = bytes.fromhex("02fac398") P2PKH_VERBYTE = bytes.fromhex("1e") P2SH_VERBYTES = [bytes.fromhex("16")] WIF_BYTE = bytes.fromhex("9e") GENESIS_HASH = ('1a91e3dace36e2be3bf030a65679fe82' '1aa1d6ef92e7c9902eb318182c355691') TX_COUNT = 27583427 TX_COUNT_HEIGHT = 1604979 TX_PER_BLOCK = 20 REORG_LIMIT = 2000 class DogecoinTestnet(Dogecoin): NAME = "Dogecoin" SHORTNAME = "XDT" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("71") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("f1") GENESIS_HASH = ('bb0a78264637406b6360aad926284d54' '4d7049f45189db5664f3c4d07350559e') # Source: https://github.com/motioncrypto/motion class Motion(Coin): NAME = "Motion" SHORTNAME = "XMN" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") GENESIS_HASH = ('000001e9dc60dd2618e91f7b90141349' '22c374496b61c1a272519b1c39979d78') P2PKH_VERBYTE = bytes.fromhex("32") P2SH_VERBYTES = [bytes.fromhex("12")] TX_COUNT_HEIGHT = 54353 TX_COUNT = 92701 TX_PER_BLOCK = 4 RPC_PORT = 3385 SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x16r_hash return x16r_hash.getPoWHash(header) # Source: https://github.com/dashpay/dash class Dash(Coin): NAME = "Dash" SHORTNAME = "DASH" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("02fe52cc") XPRV_VERBYTES = bytes.fromhex("02fe52f8") GENESIS_HASH = ('00000ffd590b1485b3caadc19b22e637' '9c733355108f107a430458cdf3407ab6') P2PKH_VERBYTE = bytes.fromhex("4c") P2SH_VERBYTES = [bytes.fromhex("10")] WIF_BYTE = bytes.fromhex("cc") TX_COUNT_HEIGHT = 569399 TX_COUNT = 2157510 TX_PER_BLOCK = 4 RPC_PORT = 9998 PEERS = [ 'electrum.dash.org s t', 'electrum.masternode.io s t', 'electrum-drk.club s t', 'dashcrypto.space s t', 'electrum.dash.siampm.com s t', 'wl4sfwq2hwxnodof.onion s t', ] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon DESERIALIZER = lib_tx_dash.DeserializerDash @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x11_hash return x11_hash.getPoWHash(header) class DashTestnet(Dash): SHORTNAME = "tDASH" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("3a805837") XPRV_VERBYTES = bytes.fromhex("3a8061a0") GENESIS_HASH = ('00000bafbc94add76cb75e2ec9289483' '7288a481e5c005f6563d91623bf8bc2c') P2PKH_VERBYTE = bytes.fromhex("8c") P2SH_VERBYTES = [bytes.fromhex("13")] WIF_BYTE = bytes.fromhex("ef") TX_COUNT_HEIGHT = 101619 TX_COUNT = 132681 TX_PER_BLOCK = 1 RPC_PORT = 19998 PEER_DEFAULT_PORTS = {'t': '51001', 's': '51002'} PEERS = [ 'electrum.dash.siampm.com s t', 'dasht.random.re s54002 t54001', ] class DashRegtest(DashTestnet): NET = "regtest" GENESIS_HASH = ('000008ca1832a4baf228eb1553c03d3a' '2c8e02399550dd6ea8d65cec3ef23d2e') PEERS = [] TX_COUNT_HEIGHT = 1 TX_COUNT = 1 class Argentum(AuxPowMixin, Coin): NAME = "Argentum" SHORTNAME = "ARG" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("17") WIF_BYTE = bytes.fromhex("97") GENESIS_HASH = ('88c667bc63167685e4e4da058fffdfe8' 'e007e5abffd6855de52ad59df7bb0bb2') TX_COUNT = 2263089 TX_COUNT_HEIGHT = 2050260 TX_PER_BLOCK = 2000 RPC_PORT = 13581 class ArgentumTestnet(Argentum): SHORTNAME = "XRG" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") REORG_LIMIT = 2000 class DigiByte(Coin): NAME = "DigiByte" SHORTNAME = "DGB" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1E") GENESIS_HASH = ('7497ea1b465eb39f1c8f507bc877078f' 'e016d6fcb6dfad3a64c98dcc6e1e8496') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1046018 TX_COUNT_HEIGHT = 1435000 TX_PER_BLOCK = 1000 RPC_PORT = 12022 class DigiByteTestnet(DigiByte): NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('b5dca8039e300198e5fe7cd23bdd1728' 'e2a444af34c447dbd0916fa3430a68c2') RPC_PORT = 15022 REORG_LIMIT = 2000 class FairCoin(Coin): NAME = "FairCoin" SHORTNAME = "FAIR" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("5f") P2SH_VERBYTES = [bytes.fromhex("24")] WIF_BYTE = bytes.fromhex("df") GENESIS_HASH = ('beed44fa5e96150d95d56ebd5d262578' '1825a9407a5215dd7eda723373a0a1d7') BASIC_HEADER_SIZE = 108 HEADER_VALUES = ('version', 'prev_block_hash', 'merkle_root', 'payload_hash', 'timestamp', 'creatorId') HEADER_UNPACK = struct.Struct('< I 32s 32s 32s I I').unpack_from TX_COUNT = 505 TX_COUNT_HEIGHT = 470 TX_PER_BLOCK = 1 RPC_PORT = 40405 PEER_DEFAULT_PORTS = {'t': '51811', 's': '51812'} PEERS = [ 'electrum.faircoin.world s', 'electrumfair.punto0.org s', ] @classmethod def block(cls, raw_block, height): '''Return a Block namedtuple given a raw block and its height.''' if height > 0: return super().block(raw_block, height) else: return Block(raw_block, cls.block_header(raw_block, height), []) class Zcash(EquihashMixin, Coin): NAME = "Zcash" SHORTNAME = "ZEC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1CB8") P2SH_VERBYTES = [bytes.fromhex("1CBD")] GENESIS_HASH = ('00040fe8ec8471911baa1db1266ea15d' 'd06b4a8a5c453883c000b031973dce08') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 329196 TX_COUNT_HEIGHT = 68379 TX_PER_BLOCK = 5 RPC_PORT = 8232 REORG_LIMIT = 800 class ZcashTestnet(Zcash): SHORTNAME = "TAZ" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("1D25") P2SH_VERBYTES = [bytes.fromhex("1CBA")] WIF_BYTE = bytes.fromhex("EF") GENESIS_HASH = ('05a60a92d99d85997cce3b87616c089f' '6124d7342af37106edc76126334a2c38') TX_COUNT = 242312 TX_COUNT_HEIGHT = 321685 TX_PER_BLOCK = 2 RPC_PORT = 18232 class SnowGem(EquihashMixin, Coin): NAME = "SnowGem" SHORTNAME = "XSG" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1C28") P2SH_VERBYTES = [bytes.fromhex("1C2D")] GENESIS_HASH = ('00068b35729d9d2b0c294ff1fe9af009' '4740524311a131de40e7f705e4c29a5b') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 1680878 TX_COUNT_HEIGHT = 627250 TX_PER_BLOCK = 2 RPC_PORT = 16112 REORG_LIMIT = 800 CHUNK_SIZE = 200 class Zero(EquihashMixin, Coin): NAME = "Zero" SHORTNAME = "ZER" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1CB8") P2SH_VERBYTES = [bytes.fromhex("1CBD")] GENESIS_HASH = ('068cbb5db6bc11be5b93479ea4df41fa' '7e012e92ca8603c315f9b1a2202205c6') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 329998 TX_COUNT_HEIGHT = 847425 TX_PER_BLOCK = 2 RPC_PORT = 23811 REORG_LIMIT = 800 class BitcoinZ(EquihashMixin, Coin): NAME = "BitcoinZ" SHORTNAME = "BTCZ" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1CB8") P2SH_VERBYTES = [bytes.fromhex("1CBD")] GENESIS_HASH = ('f499ee3d498b4298ac6a64205b8addb7' 'c43197e2a660229be65db8a4534d75c1') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 171976 TX_COUNT_HEIGHT = 81323 TX_PER_BLOCK = 3 RPC_PORT = 1979 REORG_LIMIT = 800 class ZelCash(EquihashMixin, Coin): NAME = "ZelCash" SHORTNAME = "ZEL" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1CB8") P2SH_VERBYTES = [bytes.fromhex("1CBD")] GENESIS_HASH = ('00052461a5006c2e3b74ce48992a0869' '5607912d5604c3eb8da25749b0900444') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 450539 TX_COUNT_HEIGHT = 167114 TX_PER_BLOCK = 3 RPC_PORT = 16124 REORG_LIMIT = 800 class Zclassic(EquihashMixin, Coin): NAME = "Zclassic" SHORTNAME = "ZCL" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1CB8") P2SH_VERBYTES = [bytes.fromhex("1CBD")] GENESIS_HASH = ('0007104ccda289427919efc39dc9e4d4' '99804b7bebc22df55f8b834301260602') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 329196 TX_COUNT_HEIGHT = 68379 TX_PER_BLOCK = 5 RPC_PORT = 8023 REORG_LIMIT = 800 class Koto(Coin): NAME = "Koto" SHORTNAME = "KOTO" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1836") P2SH_VERBYTES = [bytes.fromhex("183B")] GENESIS_HASH = ('6d424c350729ae633275d51dc3496e16' 'cd1b1d195c164da00f39c499a2e9959e') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 158914 TX_COUNT_HEIGHT = 67574 TX_PER_BLOCK = 3 RPC_PORT = 8432 REORG_LIMIT = 800 PEERS = [ 'fr.kotocoin.info s t', 'electrum.kotocoin.info s t', ] class KotoTestnet(Koto): SHORTNAME = "TOKO" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("18A4") P2SH_VERBYTES = [bytes.fromhex("1839")] WIF_BYTE = bytes.fromhex("EF") GENESIS_HASH = ('bf84afbde20c2d213b68b231ddb585ab' '616ef7567226820f00d9b397d774d2f0') TX_COUNT = 91144 TX_COUNT_HEIGHT = 89662 TX_PER_BLOCK = 1 RPC_PORT = 18432 PEER_DEFAULT_PORTS = {'t': '51001', 's': '51002'} PEERS = [ 'testnet.kotocoin.info s t', ] class Komodo(KomodoMixin, EquihashMixin, Coin): NAME = "Komodo" SHORTNAME = "KMD" NET = "mainnet" TX_COUNT = 693629 TX_COUNT_HEIGHT = 491777 TX_PER_BLOCK = 2 RPC_PORT = 7771 REORG_LIMIT = 800 PEERS = [] class Hush(KomodoMixin, EquihashMixin, Coin): NAME = "Hush" SHORTNAME = "HUSH" NET = "mainnet" TX_COUNT = 111317 TX_COUNT_HEIGHT = 169280 TX_PER_BLOCK = 2 RPC_PORT = 18031 REORG_LIMIT = 800 class Monaize(KomodoMixin, EquihashMixin, Coin): NAME = "Monaize" SHORTNAME = "MNZ" NET = "mainnet" TX_COUNT = 256 TX_COUNT_HEIGHT = 128 TX_PER_BLOCK = 2 RPC_PORT = 14337 REORG_LIMIT = 800 PEERS = [] class Verus(KomodoMixin, EquihashMixin, Coin): NAME = "Verus" SHORTNAME = "VRSC" NET = "mainnet" TX_COUNT = 55000 TX_COUNT_HEIGHT = 42000 TX_PER_BLOCK = 2 RPC_PORT = 27486 REORG_LIMIT = 800 PEERS = [] @classmethod def header_hash(cls, header): '''Given a header return hash''' import verushash # if this may be the genesis block, use sha256, otherwise, VerusHash if cls.header_prevhash(header) == bytes([0] * 32): return double_sha256(header) else: if (header[0] == 4 and header[2] >= 1): if (len(header) < 144 or header[143] < 3): return verushash.verushash_v2b(header) else: return verushash.verushash_v2b1(header) else: return verushash.verushash(header) class Einsteinium(Coin): NAME = "Einsteinium" SHORTNAME = "EMC2" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("21") WIF_BYTE = bytes.fromhex("b0") GENESIS_HASH = ('4e56204bb7b8ac06f860ff1c845f03f9' '84303b5b97eb7b42868f714611aed94b') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 2087559 TX_COUNT_HEIGHT = 1358517 TX_PER_BLOCK = 2 RPC_PORT = 41879 REORG_LIMIT = 2000 class Blackcoin(ScryptMixin, Coin): NAME = "Blackcoin" SHORTNAME = "BLK" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("19") P2SH_VERBYTES = [bytes.fromhex("55")] WIF_BYTE = bytes.fromhex("99") GENESIS_HASH = ('000001faef25dec4fbcf906e6242621d' 'f2c183bf232f263d0ba5b101911e4563') DAEMON = daemon.LegacyRPCDaemon TX_COUNT = 4594999 TX_COUNT_HEIGHT = 1667070 TX_PER_BLOCK = 3 RPC_PORT = 15715 REORG_LIMIT = 5000 class Bitbay(ScryptMixin, Coin): NAME = "Bitbay" SHORTNAME = "BAY" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("19") P2SH_VERBYTES = [bytes.fromhex("55")] WIF_BYTE = bytes.fromhex("99") GENESIS_HASH = ('0000075685d3be1f253ce777174b1594' '354e79954d2a32a6f77fe9cba00e6467') TX_COUNT = 4594999 TX_COUNT_HEIGHT = 1667070 TX_PER_BLOCK = 3 RPC_PORT = 19914 REORG_LIMIT = 5000 class DeepOnion(Coin): NAME = "DeepOnion" SHORTNAME = "ONION" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1F") P2SH_VERBYTES = [bytes.fromhex("4E")] WIF_BYTE = bytes.fromhex("9f") GENESIS_HASH = ('000004e29458ef4f2e0abab544737b07' '344e6ff13718f7c2d12926166db07b5e') DESERIALIZER = lib_tx.DeserializerTxTime DAEMON = daemon.LegacyRPCDaemon TX_COUNT = 1194707 TX_COUNT_HEIGHT = 530000 TX_PER_BLOCK = 2 RPC_PORT = 18580 REORG_LIMIT = 200 XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") PEERS = [] @classmethod def header_hash(cls, header): ''' Given a header return the hash for DeepOnion. Need to download `x13_hash` module Source code: https://github.com/MaruCoinOfficial/x13-hash ''' import x13_hash return x13_hash.getPoWHash(header) class Peercoin(Coin): NAME = "Peercoin" SHORTNAME = "PPC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("37") P2SH_VERBYTES = [bytes.fromhex("75")] WIF_BYTE = bytes.fromhex("b7") GENESIS_HASH = ('0000000032fe677166d54963b62a4677' 'd8957e87c508eaa4fd7eb1c880cd27e3') DESERIALIZER = lib_tx.DeserializerTxTimeSegWit DAEMON = daemon.FakeEstimateFeeDaemon ESTIMATE_FEE = 0.001 RELAY_FEE = 0.01 TX_COUNT = 1691771 TX_COUNT_HEIGHT = 455409 TX_PER_BLOCK = 4 RPC_PORT = 9902 REORG_LIMIT = 5000 PEERS = [ "electrum.peercoinexplorer.net s" ] VALUE_PER_COIN = 1000000 class PeercoinTestnet(Peercoin): NAME = "PeercoinTestnet" SHORTNAME = "tPPC" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('00000001f757bb737f6596503e17cd17' 'b0658ce630cc727c0cca81aec47c9f06') ESTIMATE_FEE = 0.001 class Trezarcoin(Coin): NAME = "Trezarcoin" SHORTNAME = "TZC" NET = "mainnet" VALUE_PER_COIN = 1000000 XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("42") P2SH_VERBYTES = [bytes.fromhex("08")] WIF_BYTE = bytes.fromhex("c2") GENESIS_HASH = ('24502ba55d673d2ee9170d83dae2d1ad' 'b3bfb4718e4f200db9951382cc4f6ee6') DESERIALIZER = lib_tx.DeserializerTrezarcoin HEADER_HASH = lib_tx.DeserializerTrezarcoin.blake2s HEADER_HASH_GEN = lib_tx.DeserializerTrezarcoin.blake2s_gen BASIC_HEADER_SIZE = 80 TX_COUNT = 742886 TX_COUNT_HEIGHT = 643128 TX_PER_BLOCK = 2 RPC_PORT = 17299 REORG_LIMIT = 2000 PEERS = [ 'electrumx1.trezarcoin.com s t', ] @classmethod def genesis_block(cls, block): '''Check the Genesis block is the right one for this coin. Return the block less its unspendable coinbase. ''' header = cls.block_header(block, 0) header_hex_hash = cls.HEADER_HASH_GEN(header) if header_hex_hash != cls.GENESIS_HASH: raise CoinError('genesis block has hash {} expected {}' .format(header_hex_hash, cls.GENESIS_HASH)) return header + bytes(1) @classmethod def header_hash(cls, header): '''Given a header return the hash.''' return cls.HEADER_HASH(header) class Reddcoin(Coin): NAME = "Reddcoin" SHORTNAME = "RDD" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("3d") WIF_BYTE = bytes.fromhex("bd") GENESIS_HASH = ('b868e0d95a3c3c0e0dadc67ee587aaf9' 'dc8acbf99e3b4b3110fad4eb74c1decc') DESERIALIZER = lib_tx.DeserializerReddcoin TX_COUNT = 5413508 TX_COUNT_HEIGHT = 1717382 TX_PER_BLOCK = 3 RPC_PORT = 45443 class TokenPay(ScryptMixin, Coin): NAME = "TokenPay" SHORTNAME = "TPAY" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("41") P2SH_VERBYTES = [bytes.fromhex("7e")] WIF_BYTE = bytes.fromhex("b3") GENESIS_HASH = ('000008b71ab32e585a23f0de642dc113' '740144e94c0ece047751e9781f953ae9') DESERIALIZER = lib_tx.DeserializerTokenPay DAEMON = daemon.LegacyRPCDaemon TX_COUNT = 147934 TX_COUNT_HEIGHT = 73967 TX_PER_BLOCK = 100 RPC_PORT = 8800 REORG_LIMIT = 500 XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") PEERS = [ "electrum-us.tpay.ai s", "electrum-eu.tpay.ai s", ] class Vertcoin(Coin): NAME = "Vertcoin" SHORTNAME = "VTC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("47") GENESIS_HASH = ('4d96a915f49d40b1e5c2844d1ee2dccb' '90013a990ccea12c492d22110489f0c4') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 2383423 TX_COUNT_HEIGHT = 759076 TX_PER_BLOCK = 3 RPC_PORT = 5888 REORG_LIMIT = 1000 class Monacoin(Coin): NAME = "Monacoin" SHORTNAME = "MONA" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("32") P2SH_VERBYTES = [bytes.fromhex("37"), bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("B0") GENESIS_HASH = ('ff9f1c0116d19de7c9963845e129f9ed' '1bfc0b376eb54fd7afa42e0d418c8bb6') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 2568580 TX_COUNT_HEIGHT = 1029766 TX_PER_BLOCK = 2 RPC_PORT = 9402 REORG_LIMIT = 1000 BLACKLIST_URL = 'https://electrum-mona.org/blacklist.json' PEERS = [ 'electrumx.tamami-foundation.org s t', 'electrumx3.monacoin.nl s t', 'electrumx1.monacoin.ninja s t', 'electrumx2.movsign.info s t', 'electrum-mona.bitbank.cc s t', 'ri7rzlmdaf4eqbza.onion s t', ] class MonacoinTestnet(Monacoin): SHORTNAME = "XMN" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587CF") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("6F") P2SH_VERBYTES = [bytes.fromhex("75"), bytes.fromhex("C4")] WIF_BYTE = bytes.fromhex("EF") GENESIS_HASH = ('a2b106ceba3be0c6d097b2a6a6aacf9d' '638ba8258ae478158f449c321061e0b2') TX_COUNT = 83602 TX_COUNT_HEIGHT = 83252 TX_PER_BLOCK = 1 RPC_PORT = 19402 REORG_LIMIT = 1000 PEER_DEFAULT_PORTS = {'t': '51001', 's': '51002'} PEERS = [ 'electrumx1.testnet.monacoin.ninja s t', 'electrumx1.testnet.monacoin.nl s t', ] class MonacoinRegtest(MonacoinTestnet): NET = "regtest" GENESIS_HASH = ('7543a69d7c2fcdb29a5ebec2fc064c07' '4a35253b6f3072c8a749473aa590a29c') PEERS = [] TX_COUNT = 1 TX_COUNT_HEIGHT = 1 class Crown(AuxPowMixin, Coin): NAME = "Crown" SHORTNAME = "CRW" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2SH_VERBYTES = [bytes.fromhex("1c")] GENESIS_HASH = ('0000000085370d5e122f64f4ab19c686' '14ff3df78c8d13cb814fd7e69a1dc6da') TX_COUNT = 13336629 TX_COUNT_HEIGHT = 1268206 TX_PER_BLOCK = 10 RPC_PORT = 9341 REORG_LIMIT = 1000 PEERS = [ 'sgp-crwseed.crowndns.info s t', 'blr-crwseed.crowndns.info s t', 'sfo-crwseed.crowndns.info s t', 'nyc-crwseed.crowndns.info s t', 'ams-crwseed.crowndns.info s t', 'tor-crwseed.crowndns.info s t', 'lon-crwseed.crowndns.info s t', 'fra-crwseed.crowndns.info s t', ] class Fujicoin(Coin): NAME = "Fujicoin" SHORTNAME = "FJC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("24") P2SH_VERBYTES = [bytes.fromhex("10")] WIF_BYTE = bytes.fromhex("a4") GENESIS_HASH = ('adb6d9cfd74075e7f91608add4bd2a2e' 'a636f70856183086842667a1597714a0') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 170478 TX_COUNT_HEIGHT = 1521676 TX_PER_BLOCK = 1 RPC_PORT = 3776 REORG_LIMIT = 1000 class Neblio(ScryptMixin, Coin): NAME = "Neblio" SHORTNAME = "NEBL" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("35") P2SH_VERBYTES = [bytes.fromhex("70")] GENESIS_HASH = ('7286972be4dbc1463d256049b7471c25' '2e6557e222cab9be73181d359cd28bcc') TX_COUNT = 23675 TX_COUNT_HEIGHT = 22785 TX_PER_BLOCK = 1 RPC_PORT = 6326 REORG_LIMIT = 1000 class Bitzeny(Coin): NAME = "Bitzeny" SHORTNAME = "ZNY" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("51") GENESIS_HASH = ('000009f7e55e9e3b4781e22bd87a7cfa' '4acada9e4340d43ca738bf4e9fb8f5ce') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1408733 TX_COUNT_HEIGHT = 1015115 TX_PER_BLOCK = 1 RPC_PORT = 9252 REORG_LIMIT = 1000 @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import zny_yespower_0_5 return zny_yespower_0_5.getPoWHash(header) class CanadaeCoin(AuxPowMixin, Coin): NAME = "CanadaeCoin" SHORTNAME = "CDN" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("1C") WIF_BYTE = bytes.fromhex("9c") GENESIS_HASH = ('863626dadaef221e2e2f30ff3dacae44' 'cabdae9e0028058072181b3fb675d94a') ESTIMATE_FEE = 0.0001 RELAY_FEE = 0.0001 DAEMON = daemon.FakeEstimateFeeDaemon TX_COUNT = 3455905 TX_COUNT_HEIGHT = 3645419 TX_PER_BLOCK = 1 RPC_PORT = 34330 REORG_LIMIT = 1000 class Denarius(Coin): NAME = "Denarius" SHORTNAME = "D" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("1E") # Address starts with a D P2SH_VERBYTES = [bytes.fromhex("5A")] WIF_BYTE = bytes.fromhex("9E") # WIF starts with a 6 GENESIS_HASH = ('00000d5dbbda01621cfc16bbc1f9bf32' '64d641a5dbf0de89fd0182c2c4828fcd') DESERIALIZER = lib_tx.DeserializerTxTime TX_COUNT = 4230 RPC_PORT = 32339 ESTIMATE_FEE = 0.00001 RELAY_FEE = 0.00001 DAEMON = daemon.FakeEstimateFeeDaemon TX_COUNT_HEIGHT = 306187 TX_PER_BLOCK = 4000 @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import tribushashm return tribushashm.getPoWHash(header) class DenariusTestnet(Denarius): NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("12") P2SH_VERBYTES = [bytes.fromhex("74")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('000086bfe8264d241f7f8e5393f74778' '4b8ca2aa98bdd066278d590462a4fdb4') RPC_PORT = 32338 REORG_LIMIT = 2000 class Sibcoin(Dash): NAME = "Sibcoin" SHORTNAME = "SIB" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("3F") P2SH_VERBYTES = [bytes.fromhex("28")] WIF_BYTE = bytes.fromhex("80") GENESIS_HASH = ('00000c492bf73490420868bc577680bf' 'c4c60116e7e85343bc624787c21efa4c') DAEMON = daemon.DashDaemon TX_COUNT = 1000 TX_COUNT_HEIGHT = 10000 TX_PER_BLOCK = 1 RPC_PORT = 1944 REORG_LIMIT = 1000 PEERS = [] @classmethod def header_hash(cls, header): ''' Given a header return the hash for sibcoin. Need to download `x11_gost_hash` module Source code: https://github.com/ivansib/x11_gost_hash ''' import x11_gost_hash return x11_gost_hash.getPoWHash(header) class SibcoinTestnet(Sibcoin): SHORTNAME = "tSIB" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") GENESIS_HASH = ('00000617791d0e19f524387f67e558b2' 'a928b670b9a3b387ae003ad7f9093017') RPC_PORT = 11944 class Chips(Coin): NAME = "Chips" SHORTNAME = "CHIPS" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("3c") P2SH_VERBYTES = [bytes.fromhex("55")] WIF_BYTE = bytes.fromhex("bc") GENESIS_HASH = ('0000006e75f6aa0efdbf7db03132aa4e' '4d0c84951537a6f5a7c39a0a9d30e1e7') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 145290 TX_COUNT_HEIGHT = 318637 TX_PER_BLOCK = 2 RPC_PORT = 57776 REORG_LIMIT = 800 class Feathercoin(Coin): NAME = "Feathercoin" SHORTNAME = "FTC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488BC26") XPRV_VERBYTES = bytes.fromhex("0488DAEE") P2PKH_VERBYTE = bytes.fromhex("0E") WIF_BYTE = bytes.fromhex("8E") GENESIS_HASH = ('12a765e31ffd4059bada1e25190f6e98' 'c99d9714d334efa41a195a7e7e04bfe2') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 3170843 TX_COUNT_HEIGHT = 1981777 TX_PER_BLOCK = 2 RPC_PORT = 9337 REORG_LIMIT = 2000 PEERS = [ 'electrumx-gb-1.feathercoin.network s t', 'electrumx-gb-2.feathercoin.network s t', 'electrumx-de-1.feathercoin.network s t', ] class UFO(Coin): NAME = "UniformFiscalObject" SHORTNAME = "UFO" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("1B") P2SH_VERBYTES = [bytes.fromhex("44")] WIF_BYTE = bytes.fromhex("9B") GENESIS_HASH = ('ba1d39b4928ab03d813d952daf65fb77' '97fcf538a9c1b8274f4edc8557722d13') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1608926 TX_COUNT_HEIGHT = 1300154 TX_PER_BLOCK = 2 RPC_PORT = 9888 REORG_LIMIT = 2000 PEERS = [ 'electrumx1.ufobject.com s t', ] class Newyorkcoin(AuxPowMixin, Coin): NAME = "Newyorkcoin" SHORTNAME = "NYC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("3c") P2SH_VERBYTES = [bytes.fromhex("16")] WIF_BYTE = bytes.fromhex("bc") GENESIS_HASH = ('5597f25c062a3038c7fd815fe46c67de' 'dfcb3c839fbc8e01ed4044540d08fe48') TX_COUNT = 5161944 TX_COUNT_HEIGHT = 3948743 TX_PER_BLOCK = 2 REORG_LIMIT = 2000 class NewyorkcoinTestnet(Newyorkcoin): SHORTNAME = "tNYC" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("71") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("f1") GENESIS_HASH = ('24463e4d3c625b0a9059f309044c2cf0' 'd7e196cf2a6ecce901f24f681be33c8f') TX_COUNT = 5161944 TX_COUNT_HEIGHT = 3948743 TX_PER_BLOCK = 2 REORG_LIMIT = 2000 class Bitcore(BitcoinMixin, Coin): NAME = "Bitcore" SHORTNAME = "BTX" P2PKH_VERBYTE = bytes.fromhex("03") P2SH_VERBYTES = [bytes.fromhex("7D")] DESERIALIZER = lib_tx.DeserializerSegWit GENESIS_HASH = ('604148281e5c4b7f2487e5d03cd60d8e' '6f69411d613f6448034508cea52e9574') TX_COUNT = 126979 TX_COUNT_HEIGHT = 126946 TX_PER_BLOCK = 2 RPC_PORT = 8556 PEERS = [ 'ele1.bitcore.cc s t', 'ele2.bitcore.cc s t', 'ele3.bitcore.cc s t', 'ele4.bitcore.cc s t' ] class GameCredits(Coin): NAME = "GameCredits" SHORTNAME = "GAME" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("26") WIF_BYTE = bytes.fromhex("a6") GENESIS_HASH = ('91ec5f25ee9a0ffa1af7d4da4db9a552' '228dd2dc77cdb15b738be4e1f55f30ee') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 316796 TX_COUNT_HEIGHT = 2040250 TX_PER_BLOCK = 2 RPC_PORT = 40001 REORG_LIMIT = 1000 class Machinecoin(Coin): NAME = "Machinecoin" SHORTNAME = "MAC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("32") P2SH_VERBYTES = [bytes.fromhex("26"), bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("b2") GENESIS_HASH = ('6a1f879bcea5471cbfdee1fd0cb2ddcc' '4fed569a500e352d41de967703e83172') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 137641 TX_COUNT_HEIGHT = 513020 TX_PER_BLOCK = 2 RPC_PORT = 40332 REORG_LIMIT = 800 class BitcoinAtom(Coin): NAME = "BitcoinAtom" SHORTNAME = "BCA" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("17") P2SH_VERBYTES = [bytes.fromhex("0a")] STATIC_BLOCK_HEADERS = False DESERIALIZER = lib_tx.DeserializerBitcoinAtom HEADER_SIZE_POST_FORK = 84 BLOCK_PROOF_OF_STAKE = 0x01 BLOCK_PROOF_OF_STAKE_FLAGS = b'\x01\x00\x00\x00' TX_COUNT = 295158744 TX_COUNT_HEIGHT = 589197 TX_PER_BLOCK = 10 RPC_PORT = 9136 REORG_LIMIT = 5000 @classmethod def header_hash(cls, header): '''Given a header return hash''' header_to_be_hashed = header[:cls.BASIC_HEADER_SIZE] # New block header format has some extra flags in the end if len(header) == cls.HEADER_SIZE_POST_FORK: flags, = util.unpack_le_uint32_from(header, len(header) - 4) # Proof of work blocks have special serialization if flags & cls.BLOCK_PROOF_OF_STAKE != 0: header_to_be_hashed += cls.BLOCK_PROOF_OF_STAKE_FLAGS return double_sha256(header_to_be_hashed) @classmethod def block_header(cls, block, height): '''Return the block header bytes''' deserializer = cls.DESERIALIZER(block) return deserializer.read_header(height, cls.BASIC_HEADER_SIZE) class Decred(Coin): NAME = "Decred" SHORTNAME = "DCR" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("02fda926") XPRV_VERBYTES = bytes.fromhex("02fda4e8") P2PKH_VERBYTE = bytes.fromhex("073f") P2SH_VERBYTES = [bytes.fromhex("071a")] WIF_BYTE = bytes.fromhex("22de") GENESIS_HASH = ('298e5cc3d985bfe7f81dc135f360abe0' '89edd4396b86d2de66b0cef42b21d980') BASIC_HEADER_SIZE = 180 HEADER_HASH = lib_tx.DeserializerDecred.blake256 DESERIALIZER = lib_tx.DeserializerDecred DAEMON = daemon.DecredDaemon BLOCK_PROCESSOR = block_proc.DecredBlockProcessor ENCODE_CHECK = partial(Base58.encode_check, hash_fn=lib_tx.DeserializerDecred.blake256d) DECODE_CHECK = partial(Base58.decode_check, hash_fn=lib_tx.DeserializerDecred.blake256d) HEADER_VALUES = ('version', 'prev_block_hash', 'merkle_root', 'stake_root', 'vote_bits', 'final_state', 'voters', 'fresh_stake', 'revocations', 'pool_size', 'bits', 'sbits', 'block_height', 'size', 'timestamp', 'nonce', 'extra_data', 'stake_version') HEADER_UNPACK = struct.Struct( '< i 32s 32s 32s H 6s H B B I I Q I I I I 32s I').unpack_from TX_COUNT = 4629388 TX_COUNT_HEIGHT = 260628 TX_PER_BLOCK = 17 REORG_LIMIT = 1000 RPC_PORT = 9109 @classmethod def header_hash(cls, header): '''Given a header return the hash.''' return cls.HEADER_HASH(header) @classmethod def block(cls, raw_block, height): '''Return a Block namedtuple given a raw block and its height.''' if height > 0: return super().block(raw_block, height) else: return Block(raw_block, cls.block_header(raw_block, height), []) class DecredTestnet(Decred): SHORTNAME = "tDCR" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587d1") XPRV_VERBYTES = bytes.fromhex("04358397") P2PKH_VERBYTE = bytes.fromhex("0f21") P2SH_VERBYTES = [bytes.fromhex("0efc")] WIF_BYTE = bytes.fromhex("230e") GENESIS_HASH = ( 'a649dce53918caf422e9c711c858837e08d626ecfcd198969b24f7b634a49bac') BASIC_HEADER_SIZE = 180 ALLOW_ADVANCING_ERRORS = True TX_COUNT = 217380620 TX_COUNT_HEIGHT = 464000 TX_PER_BLOCK = 1800 REORG_LIMIT = 1000 RPC_PORT = 19109 class Axe(Dash): NAME = "Axe" SHORTNAME = "AXE" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("02fe52cc") XPRV_VERBYTES = bytes.fromhex("02fe52f8") P2PKH_VERBYTE = bytes.fromhex("37") P2SH_VERBYTES = [bytes.fromhex("10")] WIF_BYTE = bytes.fromhex("cc") GENESIS_HASH = ('00000c33631ca6f2f61368991ce2dc03' '306b5bb50bf7cede5cfbba6db38e52e6') SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon DESERIALIZER = lib_tx_axe.DeserializerAxe TX_COUNT = 18405 TX_COUNT_HEIGHT = 30237 TX_PER_BLOCK = 1 RPC_PORT = 9337 REORG_LIMIT = 1000 PEERS = [] @classmethod def header_hash(cls, header): ''' Given a header return the hash for AXE. Need to download `axe_hash` module Source code: https://github.com/AXErunners/axe_hash ''' import x11_hash return x11_hash.getPoWHash(header) class AxeTestnet(Axe): SHORTNAME = "tAxe" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("3a805837") XPRV_VERBYTES = bytes.fromhex("3a8061a0") GENESIS_HASH = ('000005b709662e7bc5e89c71d3aba6c9' 'd4623b4bbf44ac205caec55f4cefb483') P2PKH_VERBYTE = bytes.fromhex("8c") P2SH_VERBYTES = [bytes.fromhex("13")] WIF_BYTE = bytes.fromhex("ef") TX_COUNT_HEIGHT = 101619 TX_COUNT = 132681 TX_PER_BLOCK = 1 RPC_PORT = 19937 PEER_DEFAULT_PORTS = {'t': '51001', 's': '51002'} PEERS = [] class AxeRegtest(AxeTestnet): NET = "regtest" GENESIS_HASH = ('2026b8850f3774a0536152ba868c4dcb' 'de9aef5ffc28a5d23f76f80e9b46e565') PEERS = [] TX_COUNT_HEIGHT = 1 RPC_PORT = 19869 TX_COUNT = 1 class Xuez(Coin): NAME = "Xuez" SHORTNAME = "XUEZ" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("022d2533") XPRV_VERBYTES = bytes.fromhex("0221312b") P2PKH_VERBYTE = bytes.fromhex("48") P2SH_VERBYTES = [bytes.fromhex("12")] WIF_BYTE = bytes.fromhex("d4") GENESIS_HASH = ('000000e1febc39965b055e8e0117179a' '4d18e24e7aaa0c69864c4054b4f29445') TX_COUNT = 30000 TX_COUNT_HEIGHT = 15000 TX_PER_BLOCK = 1 RPC_PORT = 41799 REORG_LIMIT = 1000 BASIC_HEADER_SIZE = 112 PEERS = [] @classmethod def header_hash(cls, header): ''' Given a header return the hash for Xuez. Need to download `xevan_hash` module Source code: https://github.com/xuez/xuez ''' version, = util.unpack_le_uint32_from(header) import xevan_hash if version == 1: return xevan_hash.getPoWHash(header[:80]) else: return xevan_hash.getPoWHash(header) # Source: https://github.com/odinblockchain/odin class Odin(Coin): NAME = "ODIN" SHORTNAME = "ODIN" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("27561872") XPRV_VERBYTES = bytes.fromhex("27256746") P2PKH_VERBYTE = bytes.fromhex("73") P2SH_VERBYTES = [bytes.fromhex("39")] WIF_BYTE = bytes.fromhex("8a") GENESIS_HASH = ('31ca29566549e444cf227a0e2e067aed' '847c2acc541d3bbf9ca1ae89f4fd57d7') TX_COUNT = 340000 TX_COUNT_HEIGHT = 340000 TX_PER_BLOCK = 2 RPC_PORT = 22101 REORG_LIMIT = 100 BASIC_HEADER_SIZE = 80 HDR_V4_SIZE = 112 HDR_V4_HEIGHT = 143447 HDR_V4_START_OFFSET = HDR_V4_HEIGHT * BASIC_HEADER_SIZE SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon DESERIALIZER = lib_tx.DeserializerSegWit @classmethod def static_header_offset(cls, height): assert cls.STATIC_BLOCK_HEADERS if height >= cls.HDR_V4_HEIGHT: relative_v4_offset = (height - cls.HDR_V4_HEIGHT) * cls.HDR_V4_SIZE return cls.HDR_V4_START_OFFSET + relative_v4_offset else: return height * cls.BASIC_HEADER_SIZE @classmethod def header_hash(cls, header): version, = util.unpack_le_uint32_from(header) if version >= 4: return super().header_hash(header) else: import quark_hash return quark_hash.getPoWHash(header) class Pac(Coin): NAME = "PAC" SHORTNAME = "PAC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") GENESIS_HASH = ('00000354655ff039a51273fe61d3b493' 'bd2897fe6c16f732dbc4ae19f04b789e') P2PKH_VERBYTE = bytes.fromhex("37") P2SH_VERBYTES = [bytes.fromhex("0A")] WIF_BYTE = bytes.fromhex("CC") TX_COUNT_HEIGHT = 14939 TX_COUNT = 23708 TX_PER_BLOCK = 2 RPC_PORT = 7111 PEERS = [ 'electrum.paccoin.io s t', 'electro-pac.paccoin.io s t' ] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon ESTIMATE_FEE = 0.00001 RELAY_FEE = 0.00001 @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x11_hash return x11_hash.getPoWHash(header) class PacTestnet(Pac): SHORTNAME = "tPAC" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587CF") XPRV_VERBYTES = bytes.fromhex("04358394") GENESIS_HASH = ('00000da63bd9478b655ef6bf1bf76cd9' 'af05202ab68643f9091e049b2b5280ed') P2PKH_VERBYTE = bytes.fromhex("78") P2SH_VERBYTES = [bytes.fromhex("0E")] WIF_BYTE = bytes.fromhex("EF") TX_COUNT_HEIGHT = 16275 TX_COUNT = 16275 TX_PER_BLOCK = 1 RPC_PORT = 17111 class Zcoin(Coin): NAME = "Zcoin" SHORTNAME = "XZC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("52") P2SH_VERBYTES = [bytes.fromhex("07")] WIF_BYTE = bytes.fromhex("d2") GENESIS_HASH = ('4381deb85b1b2c9843c222944b616d99' '7516dcbd6a964e1eaf0def0830695233') TX_COUNT = 667154 TX_COUNT_HEIGHT = 100266 TX_PER_BLOCK = 4000 # 2000 for 1MB block IRC_PREFIX = None RPC_PORT = 8888 REORG_LIMIT = 5000 PEER_DEFAULT_PORTS = {'t': '50001', 's': '50002'} MTP_HEADER_EXTRA_SIZE = 100 MTP_HEADER_DATA_SIZE = 198864 MTP_HEADER_DATA_START = Coin.BASIC_HEADER_SIZE + MTP_HEADER_EXTRA_SIZE MTP_HEADER_DATA_END = MTP_HEADER_DATA_START + MTP_HEADER_DATA_SIZE STATIC_BLOCK_HEADERS = False SESSIONCLS = DashElectrumX DAEMON = daemon.ZcoinMtpDaemon DESERIALIZER = lib_tx.DeserializerZcoin PEERS = [ 'electrum.polispay.com' ] @classmethod def is_mtp(cls, header): from electrumx.lib.util import unpack_le_uint32_from, hex_to_bytes if isinstance(header, str): nVersion, = unpack_le_uint32_from(hex_to_bytes(header[0:4*2])) elif isinstance(header, bytes): nVersion, = unpack_le_uint32_from(header[0:4]) else: raise "Cannot handle the passed type" return nVersion & 0x1000 @classmethod def block_header(cls, block, height): sz = cls.BASIC_HEADER_SIZE if cls.is_mtp(block): sz += cls.MTP_HEADER_EXTRA_SIZE return block[:sz] @classmethod def header_hash(cls, header): sz = cls.BASIC_HEADER_SIZE if cls.is_mtp(header): sz += cls.MTP_HEADER_EXTRA_SIZE return double_sha256(header[:sz]) class ZcoinTestnet(Zcoin): SHORTNAME = "tXZC" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("41") P2SH_VERBYTES = [bytes.fromhex("b2")] WIF_BYTE = bytes.fromhex("b9") GENESIS_HASH = '1e3487fdb1a7d46dac3e8f3e58339c6e' \ 'ff54abf6aef353485f3ed64250a35e89' REORG_LIMIT = 8000 RPC_PORT = 18888 class GINCoin(Coin): NAME = "GINCoin" SHORTNAME = "GIN" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") GENESIS_HASH = ('00000cd6bde619b2c3b23ad2e384328a' '450a37fa28731debf748c3b17f91f97d') P2PKH_VERBYTE = bytes.fromhex("37") P2SH_VERBYTES = [bytes.fromhex("38")] WIF_BYTE = bytes.fromhex("3c") TX_COUNT_HEIGHT = 225000 TX_COUNT = 470784 TX_PER_BLOCK = 4 RPC_PORT = 10211 PEERS = [ 'electrum.polispay.com' ] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon # Seems that the main lyra2z_hash python package doesn't works. # Tested and working with: https://github.com/LapoLab/lyra2z-py @classmethod def header_hash(cls, header): timestamp = util.unpack_le_uint32_from(header, 68)[0] if timestamp > 1550246400: import x16rt_hash return x16rt_hash.getPoWHash(header) elif timestamp > 1525651200: import lyra2z_hash return lyra2z_hash.getPoWHash(header) import neoscrypt return neoscrypt.getPoWHash(header) class Polis(Coin): NAME = "Polis" SHORTNAME = "POLIS" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("03E25D7E") XPRV_VERBYTES = bytes.fromhex("03E25945") GENESIS_HASH = ('000009701eb781a8113b1af1d814e2f0' '60f6408a2c990db291bc5108a1345c1e') P2PKH_VERBYTE = bytes.fromhex("37") P2SH_VERBYTES = [bytes.fromhex("38")] WIF_BYTE = bytes.fromhex("3c") TX_COUNT_HEIGHT = 280600 TX_COUNT = 635415 TX_PER_BLOCK = 4 RPC_PORT = 24127 PEERS = [ 'electrum.polispay.com' ] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x11_hash return x11_hash.getPoWHash(header) class MNPCoin(Coin): NAME = "MNPCoin" SHORTNAME = "MNP" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") GENESIS_HASH = ('00000924036c67d803ce606ded814312' '7e62fa2111dd3b063880a1067c69ccb1') P2PKH_VERBYTE = bytes.fromhex("32") P2SH_VERBYTES = [bytes.fromhex("35")] WIF_BYTE = bytes.fromhex("37") TX_COUNT_HEIGHT = 248000 TX_COUNT = 506447 TX_PER_BLOCK = 4 RPC_PORT = 13373 PEERS = [ 'electrum.polispay.com' ] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import quark_hash return quark_hash.getPoWHash(header) class ColossusXT(Coin): NAME = "ColossusXT" SHORTNAME = "COLX" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") GENESIS_HASH = ('a0ce8206c908357008c1b9a8ba2813af' 'f0989ca7f72d62b14e652c55f02b4f5c') P2PKH_VERBYTE = bytes.fromhex("1E") P2SH_VERBYTES = [bytes.fromhex("0D")] WIF_BYTE = bytes.fromhex("D4") TX_COUNT_HEIGHT = 356500 BASIC_HEADER_SIZE = 80 HDR_V5_HEIGHT = 500000 HDR_V5_SIZE = 112 HDR_V5_START_OFFSET = HDR_V5_HEIGHT * BASIC_HEADER_SIZE TX_COUNT = 761041 TX_PER_BLOCK = 4 RPC_PORT = 51473 PEERS = [ 'electrum.polispay.com' ] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def static_header_offset(cls, height): assert cls.STATIC_BLOCK_HEADERS if height >= cls.HDR_V5_HEIGHT: relative_v4_offset = (height - cls.HDR_V5_HEIGHT) * cls.HDR_V5_SIZE return cls.HDR_V5_START_OFFSET + relative_v4_offset else: return height * cls.BASIC_HEADER_SIZE @classmethod def header_hash(cls, header): version, = util.unpack_le_uint32_from(header) if version >= 5: return super().header_hash(header) else: import quark_hash return quark_hash.getPoWHash(header) class Minexcoin(EquihashMixin, Coin): NAME = "Minexcoin" SHORTNAME = "MNX" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("4b") GENESIS_HASH = ('490a36d9451a55ed197e34aca7414b35' 'd775baa4a8e896f1c577f65ce2d214cb') STATIC_BLOCK_HEADERS = True BASIC_HEADER_SIZE = 209 HEADER_SIZE_NO_SOLUTION = 140 TX_COUNT = 327963 TX_COUNT_HEIGHT = 74495 TX_PER_BLOCK = 5 RPC_PORT = 8022 CHUNK_SIZE = 960 PEERS = [ 'electrumx.xpresit.net s t', 'elex01-ams.turinex.eu s t', 'eu.minexpool.nl s t' ] @classmethod def block_header(cls, block, height): '''Return the block header bytes''' deserializer = cls.DESERIALIZER(block) return deserializer.read_header(cls.HEADER_SIZE_NO_SOLUTION) class Groestlcoin(Coin): NAME = "Groestlcoin" SHORTNAME = "GRS" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("24") GENESIS_HASH = ('00000ac5927c594d49cc0bdb81759d0d' 'a8297eb614683d3acb62f0703b639023') DESERIALIZER = lib_tx.DeserializerGroestlcoin TX_COUNT = 115900 TX_COUNT_HEIGHT = 1601528 TX_PER_BLOCK = 5 RPC_PORT = 1441 BLACKLIST_URL = 'https://groestlcoin.org/blacklist.json' PEERS = [ 'electrum1.groestlcoin.org s t', 'electrum2.groestlcoin.org s t', '6brsrbiinpc32tfc.onion t', 'xkj42efxrcy6vbfw.onion t', ] def grshash(data): import groestlcoin_hash return groestlcoin_hash.getHash(data, len(data)) @classmethod def header_hash(cls, header): '''Given a header return the hash.''' return cls.grshash(header) ENCODE_CHECK = partial(Base58.encode_check, hash_fn=grshash) DECODE_CHECK = partial(Base58.decode_check, hash_fn=grshash) class GroestlcoinTestnet(Groestlcoin): SHORTNAME = "TGRS" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('000000ffbb50fc9898cdd36ec163e6ba' '23230164c0052a28876255b7dcf2cd36') RPC_PORT = 17766 PEERS = [ 'electrum-test1.groestlcoin.org s t', 'electrum-test2.groestlcoin.org s t', '7frvhgofuf522b5i.onion t', 'aocojvqcybdoxekv.onion t', ] class Pivx(Coin): NAME = "PIVX" SHORTNAME = "PIVX" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("022D2533") XPRV_VERBYTES = bytes.fromhex("0221312B") GENESIS_HASH = ('0000041e482b9b9691d98eefb48473405c0b8ec31b76df3797c74a78680ef818') P2PKH_VERBYTE = bytes.fromhex("1e") P2SH_VERBYTE = bytes.fromhex("0d") WIF_BYTE = bytes.fromhex("d4") TX_COUNT_HEIGHT = 569399 TX_COUNT = 2157510 TX_PER_BLOCK = 1 STATIC_BLOCK_HEADERS = False RPC_PORT = 51470 ZEROCOIN_HEADER = 112 ZEROCOIN_START_HEIGHT = 863787 ZEROCOIN_BLOCK_VERSION = 4 @classmethod def static_header_len(cls, height): '''Given a header height return its length.''' if (height >= cls.ZEROCOIN_START_HEIGHT): return cls.ZEROCOIN_HEADER else: return cls.BASIC_HEADER_SIZE @classmethod def header_hash(cls, header): '''Given a header return the hash.''' version, = struct.unpack('<I', header[:4]) if version >= cls.ZEROCOIN_BLOCK_VERSION: return super().header_hash(header) else: import quark_hash return quark_hash.getPoWHash(header) class PivxTestnet(Pivx): NET = "testnet" XPUB_VERBYTES = bytes.fromhex("3a8061a0") XPRV_VERBYTES = bytes.fromhex("3a805837") GENESIS_HASH = ('0000041e482b9b9691d98eefb48473405c0b8ec31b76df3797c74a78680ef818') P2PKH_VERBYTE = bytes.fromhex("8B") P2SH_VERBYTE = bytes.fromhex("13") WIF_BYTE = bytes.fromhex("EF") TX_PER_BLOCK = 4 RPC_PORT = 51472 ZEROCOIN_START_HEIGHT = 201564 class Bitg(Coin): NAME = "BitcoinGreen" SHORTNAME = "BITG" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("26") P2SH_VERBYTES = [bytes.fromhex("06")] WIF_BYTE = bytes.fromhex("2e") GENESIS_HASH = ( '000008467c3a9c587533dea06ad9380cded3ed32f9742a6c0c1aebc21bf2bc9b') DAEMON = daemon.DashDaemon TX_COUNT = 1000 TX_COUNT_HEIGHT = 10000 TX_PER_BLOCK = 1 RPC_PORT = 9332 REORG_LIMIT = 1000 SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import quark_hash return quark_hash.getPoWHash(header) class tBitg(Bitg): SHORTNAME = "tBITG" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("62") P2SH_VERBYTES = [bytes.fromhex("0c")] WIF_BYTE = bytes.fromhex("6c") GENESIS_HASH = ( '000008467c3a9c587533dea06ad9380cded3ed32f9742a6c0c1aebc21bf2bc9b') RPC_PORT = 19332 class EXOS(Coin): NAME = "EXOS" SHORTNAME = "EXOS" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") GENESIS_HASH = ('00000036090a68c523471da7a4f0f958' 'c1b4403fef74a003be7f71877699cab7') P2PKH_VERBYTE = bytes.fromhex("1C") P2SH_VERBYTE = [bytes.fromhex("57")] WIF_BYTE = bytes.fromhex("9C") RPC_PORT = 4561 TX_COUNT = 1000 TX_COUNT_HEIGHT = 10000 TX_PER_BLOCK = 4 DAEMON = daemon.PreLegacyRPCDaemon DESERIALIZER = lib_tx.DeserializerTxTime @classmethod def header_hash(cls, header): version, = util.unpack_le_uint32_from(header) if version > 2: return double_sha256(header) else: return hex_str_to_hash(EXOS.GENESIS_HASH) class EXOSTestnet(EXOS): SHORTNAME = "tEXOS" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") GENESIS_HASH = ('0000059bb2c2048493efcb0f1a034972' 'b3ce4089d54c93b69aaab212fb369887') P2PKH_VERBYTE = bytes.fromhex("4B") P2SH_VERBYTE = [bytes.fromhex("CE")] WIF_BYTE = bytes.fromhex("CB") RPC_PORT = 14561 @classmethod def header_hash(cls, header): version, = util.unpack_le_uint32_from(header) if version > 2: return double_sha256(header) else: return hex_str_to_hash(EXOSTestnet.GENESIS_HASH) class SmartCash(Coin): NAME = "SmartCash" SHORTNAME = "SMART" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("3f") P2SH_VERBYTES = [bytes.fromhex("12")] WIF_BYTE = bytes.fromhex("bf") GENESIS_HASH = ('000007acc6970b812948d14ea5a0a13d' 'b0fdd07d5047c7e69101fa8b361e05a4') DESERIALIZER = lib_tx.DeserializerSmartCash RPC_PORT = 9679 REORG_LIMIT = 5000 TX_COUNT = 1115016 TX_COUNT_HEIGHT = 541656 TX_PER_BLOCK = 1 ENCODE_CHECK = partial(Base58.encode_check, hash_fn=lib_tx.DeserializerSmartCash.keccak) DECODE_CHECK = partial(Base58.decode_check, hash_fn=lib_tx.DeserializerSmartCash.keccak) HEADER_HASH = lib_tx.DeserializerSmartCash.keccak DAEMON = daemon.SmartCashDaemon SESSIONCLS = SmartCashElectrumX @classmethod def header_hash(cls, header): '''Given a header return the hash.''' return cls.HEADER_HASH(header) class NIX(Coin): NAME = "NIX" SHORTNAME = "NIX" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("26") P2SH_VERBYTES = [bytes.fromhex("35")] GENESIS_HASH = ('dd28ad86def767c3cfc34267a950d871' 'fc7462bc57ea4a929fc3596d9b598e41') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 114240 TX_COUNT_HEIGHT = 87846 TX_PER_BLOCK = 3 RPC_PORT = 6215 REORG_LIMIT = 1000 class NIXTestnet(NIX): SHORTNAME = "tNIX" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") GENESIS_HASH = ('dd28ad86def767c3cfc34267a950d871' 'fc7462bc57ea4a929fc3596d9b598e41') P2PKH_VERBYTE = bytes.fromhex("01") P2SH_VERBYTE = [bytes.fromhex("03")] RPC_PORT = 16215 DESERIALIZER = lib_tx.DeserializerSegWit class Noir(Coin): NAME = "Noir" SHORTNAME = "NOR" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2SH_VERBYTES = [bytes.fromhex("07")] WIF_BYTE = bytes.fromhex("D0") GENESIS_HASH = ('23911212a525e3d149fcad6c559c8b17' 'f1e8326a272a75ff9bb315c8d96433ef') RPC_PORT = 8825 TX_COUNT = 586369 TX_COUNT_HEIGHT = 379290 TX_PER_BLOCK = 5 class BitcoinPlus(Coin): NAME = "BitcoinPlus" SHORTNAME = "XBC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("19") P2SH_VERBYTES = [bytes.fromhex("55")] WIF_BYTE = bytes.fromhex("99") GENESIS_HASH = ('0000005f6a28e686f641c616e56182d1' 'b43afbe08a223f23bda23cdf9d55b882') DESERIALIZER = lib_tx.DeserializerTxTime DAEMON = daemon.LegacyRPCDaemon TX_COUNT = 1479247 TX_COUNT_HEIGHT = 749740 TX_PER_BLOCK = 2 RPC_PORT = 8885 REORG_LIMIT = 2000 @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x13_hash return x13_hash.getPoWHash(header) class Myriadcoin(AuxPowMixin, Coin): NAME = "Myriadcoin" SHORTNAME = "XMY" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("32") P2SH_VERBYTES = [bytes.fromhex("09")] WIF_BYTE = bytes.fromhex("b2") GENESIS_HASH = ('00000ffde4c020b5938441a0ea3d314b' 'f619eff0b38f32f78f7583cffa1ea485') DESERIALIZER = lib_tx.DeserializerAuxPowSegWit TX_COUNT = 1976629 TX_COUNT_HEIGHT = 2580356 TX_PER_BLOCK = 20 REORG_LIMIT = 2000 RPC_PORT = 10889 class MyriadcoinTestnet(Myriadcoin): NAME = "Myriadcoin" SHORTNAME = "XMT" NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587cf") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("58") P2SH_VERBYTES = [bytes.fromhex("bc")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('0000017ce2a79c8bddafbbe47c004aa9' '2b20678c354b34085f62b762084b9788') class Sparks(Coin): NAME = "Sparks" SHORTNAME = "SPK" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") GENESIS_HASH = ('00000a5c6ddfaac5097218560d5b92d4' '16931cfeba1abf10c81d1d6a232fc8ea') P2PKH_VERBYTE = bytes.fromhex("26") P2SH_VERBYTES = [bytes.fromhex("0A")] WIF_BYTE = bytes.fromhex("C6") TX_COUNT_HEIGHT = 117400 TX_COUNT = 162310 TX_PER_BLOCK = 4 RPC_PORT = 8818 SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): import neoscrypt return neoscrypt.getPoWHash(header) # Source: https://github.com/LIMXTEC/BitSend class Bitsend(Coin): NAME = "Bitsend" SHORTNAME = "BSD" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("66") WIF_BYTE = bytes.fromhex("cc") GENESIS_HASH = ('0000012e1b8843ac9ce8c18603658eaf' '8895f99d3f5e7e1b7b1686f35e3c087a') TX_COUNT = 974672 TX_COUNT_HEIGHT = 586022 TX_PER_BLOCK = 2 RPC_PORT = 8800 REORG_LIMIT = 1000 DESERIALIZER = lib_tx.DeserializerSegWit XEVAN_TIMESTAMP = 1477958400 PEERS = [ 'ele1.bitsend.cc s t', '51.15.121.233 s t' ] @classmethod def header_hash(cls, header): timestamp, = util.unpack_le_uint32_from(header, 68) if timestamp > cls.XEVAN_TIMESTAMP: import xevan_hash return xevan_hash.getPoWHash(header) else: import x11_hash return x11_hash.getPoWHash(header) @classmethod def genesis_block(cls, block): header = cls.block_header(block, 0) header_hex_hash = hash_to_hex_str(cls.header_hash(header)) if header_hex_hash != cls.GENESIS_HASH: raise CoinError('genesis block has hash {} expected {}' .format(header_hex_hash, cls.GENESIS_HASH)) return header + bytes(1) class Ritocoin(Coin): NAME = "Ritocoin" SHORTNAME = "RITO" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0534E7CA") XPRV_VERBYTES = bytes.fromhex("05347EAC") P2PKH_VERBYTE = bytes.fromhex("19") P2SH_VERBYTES = [bytes.fromhex("69")] GENESIS_HASH = ('00000075e344bdf1c0e433f453764b18' '30a7aa19b2a5213e707502a22b779c1b') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1188090 TX_COUNT_HEIGHT = 296030 TX_PER_BLOCK = 3 RPC_PORT = 8766 REORG_LIMIT = 55 PEERS = [ 'electrum-rito.minermore.com s t' ] @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x21s_hash return x21s_hash.getPoWHash(header) class Ravencoin(Coin): NAME = "Ravencoin" SHORTNAME = "RVN" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("3C") P2SH_VERBYTES = [bytes.fromhex("7A")] GENESIS_HASH = ('0000006b444bc2f2ffe627be9d9e7e7a' '0730000870ef6eb6da46c8eae389df90') DESERIALIZER = lib_tx.DeserializerSegWit X16RV2_ACTIVATION_TIME = 1569945600 # algo switch to x16rv2 at this timestamp KAWPOW_ACTIVATION_TIME = 1588788000 # kawpow algo activation time KAWPOW_ACTIVATION_HEIGHT = 1219736 KAWPOW_HEADER_SIZE = 120 TX_COUNT = 5626682 TX_COUNT_HEIGHT = 887000 TX_PER_BLOCK = 6 RPC_PORT = 8766 REORG_LIMIT = 100 PEERS = [ ] @classmethod def static_header_offset(cls, height): '''Given a header height return its offset in the headers file.''' if cls.KAWPOW_ACTIVATION_HEIGHT < 0 or height <= cls.KAWPOW_ACTIVATION_HEIGHT: result = height * cls.BASIC_HEADER_SIZE else: # RVN block header size increased with kawpow fork baseoffset = cls.KAWPOW_ACTIVATION_HEIGHT * cls.BASIC_HEADER_SIZE result = baseoffset + ((height-cls.KAWPOW_ACTIVATION_HEIGHT) * cls.KAWPOW_HEADER_SIZE) return result @classmethod def header_hash(cls, header): '''Given a header return the hash.''' timestamp = util.unpack_le_uint32_from(header, 68)[0] assert cls.KAWPOW_ACTIVATION_TIME > 0 def reverse_bytes(data): b = bytearray(data) b.reverse() return bytes(b) if timestamp >= cls.KAWPOW_ACTIVATION_TIME: import kawpow nNonce64 = util.unpack_le_uint64_from(header, 80)[0] # uint64_t mix_hash = reverse_bytes(header[88:120]) # uint256 header_hash = reverse_bytes(double_sha256(header[:80])) final_hash = reverse_bytes(kawpow.light_verify(header_hash, mix_hash, nNonce64)) return final_hash elif timestamp >= cls.X16RV2_ACTIVATION_TIME: import x16rv2_hash return x16rv2_hash.getPoWHash(header) else: import x16r_hash return x16r_hash.getPoWHash(header) class RavencoinTestnet(Ravencoin): NET = "testnet" XPUB_VERBYTES = bytes.fromhex("043587CF") XPRV_VERBYTES = bytes.fromhex("04358394") P2PKH_VERBYTE = bytes.fromhex("6F") P2SH_VERBYTES = [bytes.fromhex("C4")] WIF_BYTE = bytes.fromhex("EF") GENESIS_HASH = ('000000ecfc5e6324a079542221d00e10' '362bdc894d56500c414060eea8a3ad5a') X16RV2_ACTIVATION_TIME = 1567533600 KAWPOW_ACTIVATION_HEIGHT = 231544 KAWPOW_ACTIVATION_TIME = 1585159200 TX_COUNT = 496158 TX_COUNT_HEIGHT = 420500 TX_PER_BLOCK = 1 RPC_PORT = 18766 PEER_DEFAULT_PORTS = {'t': '50003', 's': '50004'} REORG_LIMIT = 100 PEERS = [ ] class Bolivarcoin(Coin): NAME = "Bolivarcoin" SHORTNAME = "BOLI" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("55") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("D5") GENESIS_HASH = ('00000e4fc293a1912b9d73cbb8d8f727' '0007a7d84382f1370661e65d5d57b1f6') TX_COUNT = 1082515 TX_COUNT_HEIGHT = 540410 TX_PER_BLOCK = 10 RPC_PORT = 3563 REORG_LIMIT = 800 PEERS = [] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x11_hash return x11_hash.getPoWHash(header) class Onixcoin(Coin): NAME = "Onixcoin" SHORTNAME = "ONX" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("4B") GENESIS_HASH = ('000007140b7a6ca0b64965824f5731f6' 'e86daadf19eb299033530b1e61236e43') TX_COUNT = 431808 TX_COUNT_HEIGHT = 321132 TX_PER_BLOCK = 10 RPC_PORT = 41019 REORG_LIMIT = 800 PEERS = [] SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import x11_hash return x11_hash.getPoWHash(header) class Electra(Coin): NAME = "Electra" SHORTNAME = "ECA" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("21") P2SH_VERBYTES = [bytes.fromhex("28")] WIF_BYTE = bytes.fromhex("A1") GENESIS_HASH = ('00000f98da995de0ef1665c7d3338687' '923c1199230a44ecbdb5cec9306e4f4e') RPC_PORT = 5788 TX_COUNT = 615729 TX_COUNT_HEIGHT = 205243 TX_PER_BLOCK = 3 REORG_LIMIT = 100 DESERIALIZER = lib_tx.DeserializerElectra @classmethod def header_hash(cls, header): '''Given a header return the hash.''' version, = util.unpack_le_uint32_from(header) import nist5_hash if version != 8: return nist5_hash.getPoWHash(header) else: return double_sha256(header) class ECCoin(Coin): NAME = "ECCoin" SHORTNAME = "ECC" NET = "mainnet" DESERIALIZER = lib_tx.DeserializerECCoin XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("21") P2SH_VERBYTES = [bytes.fromhex("08")] GENESIS_HASH = ('a60ac43c88dbc44b826cf315352a8a7b373d2af8b6e1c4c4a0638859c5e9ecd1') TX_COUNT = 4661197 TX_COUNT_HEIGHT = 2114846 TX_PER_BLOCK = 10 VALUE_PER_COIN = 1000000 RPC_PORT = 19119 @classmethod def header_hash(cls, header): # you have to install scryp python module (pip install scrypt) import scrypt return scrypt.hash(header, header, 1024, 1, 1, 32) class Bellcoin(Coin): NAME = "Bellcoin" SHORTNAME = "BELL" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("19") P2SH_VERBYTES = [bytes.fromhex("55")] WIF_BYTE = bytes.fromhex("80") GENESIS_HASH = ('000008f3b6bd10c2d03b06674a006b8d' '9731f6cb58179ef1eee008cee2209603') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 264129 TX_COUNT_HEIGHT = 219574 TX_PER_BLOCK = 5 RPC_PORT = 25252 REORG_LIMIT = 1000 PEERS = [ 'bell.electrumx.japanesecoin-pool.work s t', 'bell.streetcrypto7.com s t', ] @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import bell_yespower return bell_yespower.getPoWHash(header) class CPUchain(Coin): NAME = "CPUchain" SHORTNAME = "CPU" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1C") P2SH_VERBYTES = [bytes.fromhex("1E")] GENESIS_HASH = ('000024d8766043ea0e1c9ad42e7ea4b5' 'fdb459887bd80b8f9756f3d87e128f12') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 4471 TX_COUNT_HEIGHT = 3491 TX_PER_BLOCK = 2 RPC_PORT = 19707 REORG_LIMIT = 1000 PEERS = [ 'electrumx.cpuchain.org s t', ] @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import cpupower return cpupower.getPoWHash(header) class Xaya(NameIndexMixin, AuxPowMixin, Coin): NAME = "Xaya" SHORTNAME = "CHI" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("1c") P2SH_VERBYTES = [bytes.fromhex("1e")] WIF_BYTE = bytes.fromhex("82") GENESIS_HASH = ('e5062d76e5f50c42f493826ac9920b63' 'a8def2626fd70a5cec707ec47a4c4651') TX_COUNT = 1147749 TX_COUNT_HEIGHT = 1030000 TX_PER_BLOCK = 2 DESERIALIZER = lib_tx.DeserializerXaya TRUNCATED_HEADER_SIZE = 80 + 5 RPC_PORT = 8396 PEERS = [ 'seeder.xaya.io s50002', 'xaya.domob.eu s50002', ] # Op-codes for name operations OP_NAME_REGISTER = OpCodes.OP_1 OP_NAME_UPDATE = OpCodes.OP_2 # Valid name prefixes. NAME_REGISTER_OPS = [OP_NAME_REGISTER, "name", -1, OpCodes.OP_2DROP, OpCodes.OP_DROP] NAME_UPDATE_OPS = [OP_NAME_UPDATE, "name", -1, OpCodes.OP_2DROP, OpCodes.OP_DROP] NAME_OPERATIONS = [ NAME_REGISTER_OPS, NAME_UPDATE_OPS, ] @classmethod def genesis_block(cls, block): super().genesis_block(block) # In Xaya, the genesis block's coinbase is spendable. Thus unlike # the generic genesis_block() method, we return the full block here. return block class XayaTestnet(Xaya): SHORTNAME = "XCH" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("58") P2SH_VERBYTES = [bytes.fromhex("5a")] WIF_BYTE = bytes.fromhex("e6") GENESIS_HASH = ('5195fc01d0e23d70d1f929f21ec55f47' 'e1c6ea1e66fae98ee44cbbc994509bba') TX_COUNT = 51557 TX_COUNT_HEIGHT = 49000 TX_PER_BLOCK = 1 RPC_PORT = 18396 PEERS = [] class XayaRegtest(XayaTestnet): NET = "regtest" GENESIS_HASH = ('6f750b36d22f1dc3d0a6e483af453010' '22646dfc3b3ba2187865f5a7d6d83ab1') RPC_PORT = 18493 # Source: https://github.com/GZR0/GRZ0 class GravityZeroCoin(ScryptMixin, Coin): NAME = "GravityZeroCoin" SHORTNAME = "GZRO" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("26") WIF_BYTE = bytes.fromhex("26") GENESIS_HASH = ('0000028bfbf9ccaed8f28b3ca6b3ffe6b65e29490ab0e4430679bf41cc7c164f') DAEMON = daemon.FakeEstimateLegacyRPCDaemon TX_COUNT = 100 TX_COUNT_HEIGHT = 747635 TX_PER_BLOCK = 2 RPC_PORT = 36442 ESTIMATE_FEE = 0.01 RELAY_FEE = 0.01 class Simplicity(Coin): NAME = "Simplicity" SHORTNAME = "SPL" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0444d5bc") XPRV_VERBYTES = bytes.fromhex("0444f0a3") P2PKH_VERBYTE = bytes.fromhex("12") P2SH_VERBYTE = bytes.fromhex("3b") WIF_BYTE = bytes.fromhex("5d") GENESIS_HASH = ('f4bbfc518aa3622dbeb8d2818a606b82c2b8b1ac2f28553ebdb6fc04d7abaccf') RPC_PORT = 11958 TX_COUNT = 1726548 TX_COUNT_HEIGHT = 1040000 TX_PER_BLOCK = 5 REORG_LIMIT = 100 DESERIALIZER = lib_tx.DeserializerSimplicity @classmethod def header_hash(cls, header): '''Given a header return the hash.''' version, = util.unpack_le_uint32_from(header) if version < 2: import quark_hash return quark_hash.getPoWHash(header) else: return double_sha256(header) class Myce(Coin): NAME = "Myce" SHORTNAME = "YCE" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("32") P2SH_VERBYTE = bytes.fromhex("55") WIF_BYTE = bytes.fromhex("99") GENESIS_HASH = ('0000c74cc66c72cb1a327c5c1d4893ae5276aa50be49fb23cec21df1a2f20d87') RPC_PORT = 23512 TX_COUNT = 1568977 TX_COUNT_HEIGHT = 774450 TX_PER_BLOCK = 3 REORG_LIMIT = 100 DESERIALIZER = lib_tx.DeserializerSimplicity @classmethod def header_hash(cls, header): '''Given a header return the hash.''' version, = util.unpack_le_uint32_from(header) if version < 7: import scrypt return scrypt.hash(header, header, 1024, 1, 1, 32) else: return double_sha256(header) class Navcoin(Coin): NAME = "Navcoin" SHORTNAME = "NAV" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("35") P2SH_VERBYTES = [bytes.fromhex("55")] WIF_BYTE = bytes.fromhex("96") GENESIS_HASH = ('00006a4e3e18c71c6d48ad6c261e2254' 'fa764cf29607a4357c99b712dfbb8e6a') DESERIALIZER = lib_tx.DeserializerTxTimeSegWitNavCoin TX_COUNT = 137641 TX_COUNT_HEIGHT = 3649662 TX_PER_BLOCK = 2 RPC_PORT = 44444 REORG_LIMIT = 1000 @classmethod def header_hash(cls, header): if int.from_bytes(header[:4], "little") > 6: return double_sha256(header) else: import x13_hash return x13_hash.getPoWHash(header) class Primecoin(PrimeChainPowMixin, Coin): NAME = "Primecoin" SHORTNAME = "XPM" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("17") P2SH_VERBYTES = [bytes.fromhex("53")] WIF_BYTE = bytes.fromhex("97") GENESIS_HASH = ('963d17ba4dc753138078a2f56afb3af9' '674e2546822badff26837db9a0152106') DAEMON = daemon.FakeEstimateFeeDaemon ESTIMATE_FEE = 1.024 TX_COUNT = 7138730 TX_COUNT_HEIGHT = 3639500 TX_PER_BLOCK = 2 RPC_PORT = 9912 REORG_LIMIT = 5000 PEERS = [ 'electrumx.primecoin.org s t', ] class PrimecoinTestnet(Primecoin): NAME = "PrimecoinTestnet" SHORTNAME = "tXPM" NET = "testnet" P2PKH_VERBYTE = bytes.fromhex("6f") P2SH_VERBYTES = [bytes.fromhex("c4")] WIF_BYTE = bytes.fromhex("ef") GENESIS_HASH = ('221156cf301bc3585e72de34fe1efdb6' 'fbd703bc27cfc468faa1cdd889d0efa0') RPC_PORT = 9914 PEERS = [ 'electrumx.testnet.primecoin.org t', ] class Unobtanium(AuxPowMixin, Coin): NAME = "Unobtanium" SHORTNAME = "UNO" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") P2PKH_VERBYTE = bytes.fromhex("82") P2SH_VERBYTES = [bytes.fromhex("1e")] WIF_BYTE = bytes.fromhex("e0") GENESIS_HASH = ('000004c2fc5fffb810dccc197d603690' '099a68305232e552d96ccbe8e2c52b75') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 65535 REORG_LIMIT = 5000 class Linx(Coin): NAME = "Linx" SHORTNAME = "LINX" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("4b") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("cb") GENESIS_HASH = ('3bafea350a70f75e7a1cd279999faed7' '1a51852aae88fed3c38553cecc810a92') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9381 REORG_LIMIT = 5000 class Flashcoin(Coin): NAME = "Flashcoin" SHORTNAME = "FLASH" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("44") P2SH_VERBYTES = [bytes.fromhex("82")] WIF_BYTE = bytes.fromhex("c4") GENESIS_HASH = ('aa0cf4f5ce0a3c550ce5674c1e808c41' '7cf5077b4e95bda1d6fbaeaf4258972b') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9385 REORG_LIMIT = 5000 class Defcoin(Coin): NAME = "Defcoin" SHORTNAME = "DEFC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1e") P2SH_VERBYTES = bytes.fromhex("05") WIF_BYTE = bytes.fromhex("9e") GENESIS_HASH = ('192047379f33ffd2bbbab3d53b9c4b9e' '9b72e48f888eadb3dcf57de95a6038ad') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9386 REORG_LIMIT = 5000 class Smileycoin(Coin): NAME = "Smileycoin" SHORTNAME = "SMLY" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("19") P2SH_VERBYTES = bytes.fromhex("05") WIF_BYTE = bytes.fromhex("b0") GENESIS_HASH = ('660f734cf6c6d16111bde201bbd21228' '73f2f2c078b969779b9d4c99732354fd') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9388 REORG_LIMIT = 5000 class Iop(Coin): NAME = "Iop" SHORTNAME = "IOP" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("75") P2SH_VERBYTES = [bytes.fromhex("AE")] WIF_BYTE = bytes.fromhex("31") GENESIS_HASH = ('00000000bf5f2ee556cb9be8be64e077' '6af14933438dbb1af72c41bfb6c82db3') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 8337 REORG_LIMIT = 5000 class Egulden(Coin): NAME = "Egulden" SHORTNAME = "EFL" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("30") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("b0") GENESIS_HASH = ('6d39f28ad01a7edd3e2374b355cf8c7f' '8dbc1c5e4596ad3642fa6d10c2599217') TX_COUNT = 13336629 TX_COUNT_HEIGHT = 1268206 TX_PER_BLOCK = 10 RPC_PORT = 9402 REORG_LIMIT = 5000 class Ixcoin(AuxPowMixin, Coin): NAME = "ixcoin" SHORTNAME = "IXC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("8a") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("80") GENESIS_HASH = ('0000000001534ef8893b025b9c1da672' '50285e35c9f76cae36a4904fdf72c591') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9406 REORG_LIMIT = 5000 class Batacoin(Coin): NAME = "bata" SHORTNAME = "BTA" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("19") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("99") GENESIS_HASH = ('b4bee36fd54a6176fd832f462641415c' '142d50e4b378f71c041870c2b1186bc8') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9412 REORG_LIMIT = 5000 class Digitalcoin(Coin): NAME = "digitalcoin" SHORTNAME = "DGC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1e") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("9e") GENESIS_HASH = ('5e039e1ca1dbf128973bf6cff98169e4' '0a1b194c3b91463ab74956f413b2f9c8') TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9413 REORG_LIMIT = 5000 class Cannacoin(Coin): NAME = "cannacoin" SHORTNAME = "CCN" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1C") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("bd") GENESIS_HASH = ('f1b4cdf03c86099a0758f1c018d1a10b' 'f05afab436c92b93b42bb88970de9821') DESERIALIZER = lib_tx.DeserializerReddcoin TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 1234 REORG_LIMIT = 5000 class Europecoin(Coin): NAME = "europecoin" SHORTNAME = "ERC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("21") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("a8") GENESIS_HASH = ('000d0da26987ead011c5d568e627f7e3' 'd4a4f83a0b280b1134d8e7e366377f9a') BASIC_HEADER_SIZE = 88 TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9412 REORG_LIMIT = 5000 class Adcoin(Coin): NAME = "Adcoin" SHORTNAME = "ACC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1e") P2SH_VERBYTES = [bytes.fromhex("0d")] WIF_BYTE = bytes.fromhex("97") GENESIS_HASH = ('000000fc5276647fd959f718c9526f87' 'f4858c4ef62f2e29d3772e4e37040a25') BASIC_HEADER_SIZE = 112 TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9416 REORG_LIMIT = 5000 class Lynx(Coin): NAME = "Lynx" SHORTNAME = "LYNX" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("2d") P2SH_VERBYTES = [bytes.fromhex("16")] WIF_BYTE = bytes.fromhex("ad") GENESIS_HASH = ('984b30fc9bb5e5ff424ad7f4ec193053' '8a7b14a2d93e58ad7976c23154ea4a76') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9139 REORG_LIMIT = 5000 class LitecoinCash(Coin): NAME = "LitecoinCash" SHORTNAME = "LCC" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1c") P2SH_VERBYTES = [bytes.fromhex("32"), bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("b0") GENESIS_HASH = ('12a765e31ffd4059bada1e25190f6e98' 'c99d9714d334efa41a195a7e7e04bfe2') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 1 RPC_PORT = 9140 REORG_LIMIT = 5000 class BitcoinPrivate(EquihashMixin, Coin): NAME = "BitcoinPrivate" SHORTNAME = "BTCP" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("1325") P2SH_VERBYTES = [bytes.fromhex("13AF")] WIF_BYTE = bytes.fromhex("80") GENESIS_HASH = ('0007104ccda289427919efc39dc9e4d4' '99804b7bebc22df55f8b834301260602') DESERIALIZER = lib_tx.DeserializerZcash TX_COUNT = 329196 TX_COUNT_HEIGHT = 68379 TX_PER_BLOCK = 5 RPC_PORT = 9335 REORG_LIMIT = 5000 class Aryacoin(Coin): NAME = "aryacoin" SHORTNAME = "AYA" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("019d9cfe") XPRV_VERBYTES = bytes.fromhex("019da462") P2PKH_VERBYTE = bytes.fromhex("17") P2SH_VERBYTES = [bytes.fromhex("6f")] WIF_BYTE = bytes.fromhex("b0") GENESIS_HASH = ('b553727635006d7faade229d152482df' 'b9da7822d41cf0cad9ffa82a54f67803') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 10 RPC_PORT = 9151 REORG_LIMIT = 800 class Donu(Coin): NAME = "donu" SHORTNAME = "DONU" NET = "mainnet" P2PKH_VERBYTE = bytes.fromhex("35") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("b1") XPUB_VERBYTES = bytes.fromhex("0488B21E") XPRV_VERBYTES = bytes.fromhex("0488ADE4") GENESIS_HASH = ('5f7f26e24291f5be2351e1dcdab18bf9' '4cee718940e6b9f2fbb46227434c3f12') DESERIALIZER = lib_tx.DeserializerSegWit TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 10 RPC_PORT = 26381 REORG_LIMIT = 800 class Quebecoin(AuxPowMixin, Coin): NAME = "Quebecoin" SHORTNAME = "QBC" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("0488b21e") XPRV_VERBYTES = bytes.fromhex("0488ade4") P2PKH_VERBYTE = bytes.fromhex("3a") P2SH_VERBYTES = [bytes.fromhex("05")] WIF_BYTE = bytes.fromhex("ba") GENESIS_HASH = ('000008c2d57759af6462352ee9f4923d' '97401cb599a9318e6595a2a74c26ea74') DESERIALIZER = lib_tx.DeserializerAuxPowSegWit TX_COUNT = 1 TX_COUNT_HEIGHT = 1 TX_PER_BLOCK = 20 REORG_LIMIT = 2000 RPC_PORT = 10890 class CARI(coin): NAME = "CARI" SHORTNAME = "CARI" NET = "mainnet" XPUB_VERBYTES = bytes.fromhex("042F2736") XPRV_VERBYTES = bytes.fromhex("041F352E") GENESIS_HASH = ('000005bd970b7d83eb879472fb48b2c01ed8155d7126ac3e0c201755c0c85c23') P2PKH_VERBYTE = bytes.fromhex("D") P2SH_VERBYTES = [bytes.fromhex("D")] WIF_BYTE = bytes.fromhex("2B") TX_COUNT_HEIGHT = 336846 TX_COUNT = 670075 TX_PER_BLOCK = 1 STATIC_BLOCK_HEADERS = False RPC_PORT = 31814 REORG_LIMIT = 100 SESSIONCLS = DashElectrumX DAEMON = daemon.DashDaemon @classmethod def header_hash(cls, header): '''Given a header return the hash.''' import quark_hash return quark_hash.getPoWHash(header)
py
1a4b3ee80fb62a55d7edc2030fb8d63840a56e77
import argparse import logging import numpy as np import os import random from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score import sys from baselines.vectorizers import build_vectorizer_from_df, load_vectorized_data from baselines.avg_fasttext import build_avg_fasttext_from_df, load_avg_fasttext from baselines.doc2vec import build_doc2vec_from_df, load_doc2vec from shared.global_constants import RES_DIR from shared.loaders import load_train_val_nodes from shared.utils import save_cli_options, save_dict_to_json logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) def parse_arguments(args_to_parse): """ Parse CLI arguments """ descr = 'Train a baseline model' parser = argparse.ArgumentParser(description=descr) general = parser.add_argument_group('General settings') general.add_argument('name', type=str, help="The name of the experimental directory - used for saving and loading.") general.add_argument( '--input-data-dir', type=str, required=True, help="The name of the directory from which to load the pre-processed data", ) general.add_argument( "--stemmer-path", type=str, required=True, help="Path to the SALAMA stemming dictionary", ) general.add_argument( '--model', type=str, default='tf-idf', choices=['tf-idf', 'count', 'doc2vec', 'fasttext'], help='Select the model type to use before feeding into a logistic regression layer', ) general.add_argument("--seed", type=int, default=12321, help='Random seed for reproducability') training = parser.add_argument_group('Training settings') training.add_argument( '--train-set-label-proportion', type=float, default=0.2, choices=[0.01, 0.05, 0.1, 0.2], help='Ratio of nodes in the training set which we keep labelled', ) # CLI options of the form `--doc2vec-XXXX` pertain to doc2vec training.add_argument( '--doc2vec-epochs', type=int, default=10, help="The number of epochs to run when training Doc2Vec", ) training.add_argument( '--doc2vec-feature-dims', type=int, default=300, help="The Doc2vec feature vector size", ) training.add_argument( '--doc2vec-dm', type=int, choices=[0, 1], default=1, help="The training regime to use for Doc2Vec: Distributed Memory (1) or Distributed Bag of Words (0)", ) return parser.parse_args(args_to_parse) def main(args): """ Entry point for training a doc2vec model """ random.seed(args.seed) np.random.seed(args.seed) results_dir = os.path.join(RES_DIR, args.name) os.makedirs(results_dir, exist_ok=True) save_cli_options(args, results_dir) preproc_dir = os.path.join(results_dir, 'preproc') if args.model == 'tf-idf' or args.model == 'count': if not os.path.isdir(preproc_dir): os.makedirs(preproc_dir, exist_ok=True) build_vectorizer_from_df( vectorizer_name=args.model, save_dir=preproc_dir, df_path=os.path.join(RES_DIR, args.input_data_dir, 'dataset.csv'), stemming_map_path=os.path.join(RES_DIR, args.stemmer_path), text_column='document_content', label_column='document_type', ) print(f'Load {args.model} data...') input_features, labels = load_vectorized_data(preproc_dir, args.model) elif args.model == 'fasttext': if not os.path.isdir(preproc_dir): os.makedirs(preproc_dir, exist_ok=True) build_avg_fasttext_from_df( save_dir=preproc_dir, df_path=os.path.join(RES_DIR, args.input_data_dir, 'dataset.csv'), stemming_map_path=os.path.join(RES_DIR, args.stemmer_path), text_column='document_content', label_column='document_type', ) print('Load average FastText data...') input_features, labels = load_avg_fasttext(preproc_dir) elif args.model == 'doc2vec': if not os.path.isdir(preproc_dir): os.makedirs(preproc_dir, exist_ok=True) build_doc2vec_from_df( save_dir=preproc_dir, df_path=os.path.join(RES_DIR, args.input_data_dir, 'dataset.csv'), stemming_map_path=os.path.join(RES_DIR, args.stemmer_path), text_column='document_content', label_column='document_type', training_regime=args.doc2vec_dm, embedding_dimension=args.doc2vec_feature_dims, num_epochs=args.doc2vec_epochs, ) print('Load Doc2vec data...') input_features, labels = load_doc2vec(preproc_dir) else: raise Exception(f'Unrecognised model type: {args.model}') train_nodes, val_nodes, test_nodes = load_train_val_nodes( preproc_dir=os.path.join(RES_DIR, args.input_data_dir), train_set_label_proportion=args.train_set_label_proportion, as_numpy=True, ) print('Train classifier ...') classifier = LogisticRegression(random_state=args.seed).fit(input_features[train_nodes, :], labels[train_nodes]) print('Get accuracies...') train_predictions = classifier.predict(input_features[train_nodes, :]) val_predictions = classifier.predict(input_features[val_nodes, :]) test_predictions = classifier.predict(input_features[test_nodes, :]) train_accuracy = sum(train_predictions == labels[train_nodes]) / len(train_predictions) val_accuracy = sum(val_predictions == labels[val_nodes]) / len(val_predictions) test_accuracy = sum(test_predictions == labels[test_nodes]) / len(test_predictions) test_micro_f1 = f1_score(labels[test_nodes], test_predictions, average='micro') test_macro_f1 = f1_score(labels[test_nodes], test_predictions, average='macro') print(f'Train Accuracy: {train_accuracy}') print(f'Validation Accuracy: {val_accuracy}') print(f'Test Accuracy: {test_accuracy}') print(f'Test Micro F1: {test_micro_f1}') print(f'Test Macro F1: {test_macro_f1}') output_save_dir = os.path.join(results_dir, f'model_{args.train_set_label_proportion}') os.makedirs(output_save_dir, exist_ok=True) save_dict_to_json( { 'train_accuracy': train_accuracy, 'val_accuracy': val_accuracy, 'test_accuracy': test_accuracy, 'test_micro_f1': test_micro_f1, 'test_macro_f1': test_macro_f1, }, os.path.join(output_save_dir, 'metric.json'), ) # from sklearn.model_selection import learning_curve # train_sizes, train_scores, test_scores = learning_curve( # classifier, input_features[train_nodes, :], labels[train_nodes] # ) # print(train_scores) if __name__ == '__main__': args = parse_arguments(sys.argv[1:]) main(args)
py
1a4b402abc81938f7a43136c079ac1bba69c686e
"""Unit tests for movescu.py""" import logging import os import shutil import subprocess import sys import time import pytest from pydicom import dcmread from pydicom.dataset import Dataset from pydicom.uid import ( ExplicitVRLittleEndian, ImplicitVRLittleEndian, DeflatedExplicitVRLittleEndian, ExplicitVRBigEndian ) from pynetdicom import ( AE, evt, debug_logger, DEFAULT_TRANSFER_SYNTAXES, QueryRetrievePresentationContexts, StoragePresentationContexts ) from pynetdicom.sop_class import ( VerificationSOPClass, CTImageStorage, PatientRootQueryRetrieveInformationModelMove, StudyRootQueryRetrieveInformationModelMove, PatientStudyOnlyQueryRetrieveInformationModelMove, ) #debug_logger() APP_DIR = os.path.join(os.path.dirname(__file__), '../') APP_FILE = os.path.join(APP_DIR, 'movescu', 'movescu.py') LOG_CONFIG = os.path.join(APP_DIR, 'echoscu', 'logging.cfg') DATA_DIR = os.path.join(APP_DIR, '../', 'tests', 'dicom_files') DATASET_FILE = os.path.join(DATA_DIR, 'CTImageStorage.dcm') def which(program): # Determine if a given program is installed on PATH def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file def start_movescu(args): """Start the movescu.py app and return the process.""" pargs = [which('python'), APP_FILE, 'localhost', '11112'] + [*args] return subprocess.Popen(pargs) class TestMoveSCU(object): """Tests for findscu.py""" def setup(self): """Run prior to each test""" self.ae = None self.response = ds = Dataset() ds.file_meta = Dataset() ds.file_meta.TransferSyntaxUID = ImplicitVRLittleEndian ds.SOPClassUID = CTImageStorage ds.SOPInstanceUID = '1.2.3.4' ds.PatientName = 'Citizen^Jan' def teardown(self): """Clear any active threads""" if self.ae: self.ae.shutdown() def test_default(self): """Test default settings.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None def handle_release(event): events.append(event) def handle_store(event): return 0x0000 handlers = [ (evt.EVT_C_MOVE, handle_move), (evt.EVT_RELEASED, handle_release) ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.supported_contexts = QueryRetrievePresentationContexts ae.requested_contexts = StoragePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) store_scp = ae.start_server( ('', 11113), block=False, evt_handlers=[(evt.EVT_C_STORE, handle_store)] ) p = start_movescu(['-k', "PatientName="]) p.wait() assert p.returncode == 0 store_scp.shutdown() scp.shutdown() assert events[0].event == evt.EVT_C_MOVE assert events[0].identifier.PatientName == "" assert events[1].event == evt.EVT_RELEASED requestor = events[1].assoc.requestor assert b'MOVESCU ' == requestor.ae_title assert 16382 == requestor.maximum_length assert b'ANY-SCP ' == requestor.primitive.called_ae_title assert 0 == len(requestor.extended_negotiation) assert (1, 1) == requestor.asynchronous_operations assert {} == requestor.sop_class_common_extended assert {} == requestor.sop_class_extended assert requestor.role_selection == {} assert requestor.user_identity == None cxs = requestor.primitive.presentation_context_definition_list assert len(cxs) == 12 cxs = {cx.abstract_syntax: cx for cx in cxs} assert PatientRootQueryRetrieveInformationModelMove in cxs cx = cxs[PatientRootQueryRetrieveInformationModelMove] assert cx.transfer_syntax == DEFAULT_TRANSFER_SYNTAXES def test_no_peer(self, capfd): """Test trying to connect to non-existent host.""" p = start_movescu(['-k', "PatientName="]) p.wait() assert p.returncode == 1 out, err = capfd.readouterr() assert "Association request failed: unable to connect to remote" in err assert "TCP Initialisation Error: Connection refused" in err assert "Association Aborted" in err def test_bad_input(self, capfd): """Test being unable to read the input file.""" p = start_movescu(['-f', 'no-such-file.dcm']) p.wait() assert p.returncode == 1 out, err = capfd.readouterr() assert 'Cannot read input file no-such-file.dcm' in err def test_flag_version(self, capfd): """Test --version flag.""" p = start_movescu(['--version']) p.wait() assert p.returncode == 0 out, err = capfd.readouterr() assert 'movescu.py v' in out def test_flag_quiet(self, capfd): """Test --quiet flag.""" self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.add_supported_context(VerificationSOPClass) scp = ae.start_server(('', 11112), block=False) p = start_movescu(['-q', '-k', 'PatientName=']) p.wait() assert p.returncode == 1 out, err = capfd.readouterr() assert out == err == '' scp.shutdown() def test_flag_verbose(self, capfd): """Test --verbose flag.""" def handle_store(event): return 0x0000 def handle_move(event): yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) ae.supported_contexts = StoragePresentationContexts store_scp = ae.start_server( ('', 11113), block=False, evt_handlers=[(evt.EVT_C_STORE, handle_store)] ) p = start_movescu(['-v', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 out, err = capfd.readouterr() assert "Requesting Association" in err assert "Association Accepted" in err assert "Sending Move Request" in err assert "Move SCP Result" in err assert "Releasing Association" in err assert "Accept Parameters" not in err store_scp.shutdown() scp.shutdown() def test_flag_debug(self, capfd): """Test --debug flag.""" def handle_store(event): return 0x0000 def handle_move(event): yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) ae.supported_contexts = StoragePresentationContexts store_scp = ae.start_server( ('', 11113), block=False, evt_handlers=[(evt.EVT_C_STORE, handle_store)] ) p = start_movescu(['-d', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 out, err = capfd.readouterr() assert "Releasing Association" in err assert "Accept Parameters" in err store_scp.shutdown() scp.shutdown() def test_flag_log_collision(self): """Test error with -q -v and -d flag.""" p = start_movescu(['-v', '-d']) p.wait() assert p.returncode != 0 @pytest.mark.skip("No way to test comprehensively") def test_flag_log_level(self): """Test --log-level flag.""" pass def test_flag_aet(self): """Test --calling-aet flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) ae.supported_contexts = StoragePresentationContexts p = start_movescu(['-aet', 'MYSCU', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert events[0].event == evt.EVT_C_MOVE requestor = events[0].assoc.requestor assert b'MYSCU ' == requestor.ae_title def test_flag_aec(self): """Test --called-aet flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['-aec', 'YOURSCP', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert events[0].event == evt.EVT_C_MOVE requestor = events[0].assoc.requestor assert b'YOURSCP ' == requestor.primitive.called_ae_title def test_flag_aem(self): """Test --called-aem flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) ae.supported_contexts = StoragePresentationContexts p = start_movescu(['-aem', 'SOMESCP', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert events[0].event == evt.EVT_C_MOVE assert b'SOMESCP' == events[0].move_destination.strip() def test_flag_ta(self, capfd): """Test --acse-timeout flag.""" events = [] def handle_requested(event): events.append(event) time.sleep(0.1) def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None def handle_abort(event): events.append(event) handlers = [ (evt.EVT_C_MOVE, handle_move), (evt.EVT_ABORTED, handle_abort), (evt.EVT_REQUESTED, handle_requested), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['-ta', '0.05', '-d', '-k', 'PatientName=']) p.wait() assert p.returncode == 1 time.sleep(0.1) scp.shutdown() out, err = capfd.readouterr() assert "ACSE timeout reached while waiting for response" in err assert events[0].event == evt.EVT_REQUESTED assert events[1].event == evt.EVT_ABORTED def test_flag_td(self, capfd): """Test --dimse-timeout flag.""" events = [] def handle_move(event): events.append(event) time.sleep(0.1) yield 'localhost', 11113 yield 0 yield 0x0000, None def handle_abort(event): events.append(event) handlers = [ (evt.EVT_C_MOVE, handle_move), (evt.EVT_ABORTED, handle_abort), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['-td', '0.05', '-d', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 time.sleep(0.1) scp.shutdown() out, err = capfd.readouterr() assert "DIMSE timeout reached while waiting for message" in err assert events[0].event == evt.EVT_C_MOVE assert events[1].event == evt.EVT_ABORTED @pytest.mark.skip("Don't think this can be tested") def test_flag_tn(self, capfd): """Test --network-timeout flag.""" pass def test_flag_max_pdu(self): """Test --max-pdu flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None def handle_release(event): events.append(event) handlers = [ (evt.EVT_C_MOVE, handle_move), (evt.EVT_RELEASED, handle_release) ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['--max-pdu', '123456', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert events[0].event == evt.EVT_C_MOVE assert events[1].event == evt.EVT_RELEASED requestor = events[1].assoc.requestor assert 123456 == requestor.maximum_length def test_flag_patient(self): """Test the -P flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['-P', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert events[0].event == evt.EVT_C_MOVE cx = events[0].context assert cx.abstract_syntax == ( PatientRootQueryRetrieveInformationModelMove ) def test_flag_study(self): """Test the -S flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['-S', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert events[0].event == evt.EVT_C_MOVE cx = events[0].context assert cx.abstract_syntax == StudyRootQueryRetrieveInformationModelMove def test_flag_patient_study(self): """Test the -O flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 0 yield 0x0000, None handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['-O', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert events[0].event == evt.EVT_C_MOVE cx = events[0].context assert cx.abstract_syntax == ( PatientStudyOnlyQueryRetrieveInformationModelMove ) def test_flag_store(self): """Test the --store flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 1 yield 0xFF00, self.response handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['--store', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert 'CT.1.2.3.4' in os.listdir() os.remove('CT.1.2.3.4') assert 'CT.1.2.3.4' not in os.listdir() def test_flag_store_port(self): """Test the --store-port flag.""" events = [] def handle_move(event): events.append(event) yield 'localhost', 11114 yield 1 yield 0xFF00, self.response handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu( ['--store', '--store-port', '11114', '-k', 'PatientName='] ) p.wait() assert p.returncode == 0 scp.shutdown() assert 'CT.1.2.3.4' in os.listdir() os.remove('CT.1.2.3.4') assert 'CT.1.2.3.4' not in os.listdir() def test_flag_store_aet(self): """Test the --store-aet flag.""" # Value not actually checked events = [] def handle_move(event): events.append(event) yield 'localhost', 11113 yield 1 yield 0xFF00, self.response def handle_accepted(event): events.append(event) handlers = [ (evt.EVT_ACCEPTED, handle_accepted), (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu( ['--store', '--store-aet', 'SOMESCP', '-k', 'PatientName='] ) p.wait() assert p.returncode == 0 scp.shutdown() assert 'CT.1.2.3.4' in os.listdir() os.remove('CT.1.2.3.4') assert 'CT.1.2.3.4' not in os.listdir() def test_flag_output(self): """Test the -od --output-directory flag.""" def handle_move(event): yield 'localhost', 11113 yield 1 yield 0xFF00, self.response handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) assert 'test_dir' not in os.listdir() p = start_movescu(['--store', '-od', 'test_dir', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert 'CT.1.2.3.4' in os.listdir('test_dir') shutil.rmtree('test_dir') assert 'test_dir' not in os.listdir() def test_flag_ignore(self): """Test the --ignore flag.""" def handle_move(event): yield 'localhost', 11113 yield 1 yield 0xFF00, self.response handlers = [ (evt.EVT_C_MOVE, handle_move), ] self.ae = ae = AE() ae.acse_timeout = 5 ae.dimse_timeout = 5 ae.network_timeout = 5 ae.requested_contexts = StoragePresentationContexts ae.supported_contexts = QueryRetrievePresentationContexts scp = ae.start_server(('', 11112), block=False, evt_handlers=handlers) p = start_movescu(['--store', '--ignore', '-k', 'PatientName=']) p.wait() assert p.returncode == 0 scp.shutdown() assert 'CT.1.2.3.4' not in os.listdir()
py
1a4b4090dcfafb8d8c61202fc36d1a58e22d8109
# Copyright 2015 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import testtools from neutron.callbacks import events from neutron.callbacks import exceptions from neutron.callbacks import manager from neutron.callbacks import resources from neutron.tests import base def callback_1(*args, **kwargs): callback_1.counter += 1 callback_id_1 = manager._get_id(callback_1) def callback_2(*args, **kwargs): callback_2.counter += 1 callback_id_2 = manager._get_id(callback_2) def callback_raise(*args, **kwargs): raise Exception() class CallBacksManagerTestCase(base.BaseTestCase): def setUp(self): super(CallBacksManagerTestCase, self).setUp() self.manager = manager.CallbacksManager() callback_1.counter = 0 callback_2.counter = 0 def test_subscribe_invalid_resource_raise(self): with testtools.ExpectedException(exceptions.Invalid): self.manager.subscribe(mock.ANY, 'foo_resource', mock.ANY) def test_subscribe_invalid_event_raise(self): self.assertRaises(exceptions.Invalid, self.manager.subscribe, mock.ANY, mock.ANY, 'foo_event') def test_subscribe(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.assertIsNotNone( self.manager._callbacks[resources.PORT][events.BEFORE_CREATE]) self.assertIn(callback_id_1, self.manager._index) def test_subscribe_is_idempotent(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.assertEqual( 1, len(self.manager._callbacks[resources.PORT][events.BEFORE_CREATE])) callbacks = self.manager._index[callback_id_1][resources.PORT] self.assertEqual(1, len(callbacks)) def test_subscribe_multiple_callbacks(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.subscribe( callback_2, resources.PORT, events.BEFORE_CREATE) self.assertEqual(2, len(self.manager._index)) self.assertEqual( 2, len(self.manager._callbacks[resources.PORT][events.BEFORE_CREATE])) def test_unsubscribe(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.unsubscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.assertNotIn( callback_id_1, self.manager._callbacks[resources.PORT][events.BEFORE_CREATE]) self.assertNotIn(callback_id_1, self.manager._index) def test_unsubscribe_unknown_callback(self): self.manager.subscribe( callback_2, resources.PORT, events.BEFORE_CREATE) self.manager.unsubscribe(callback_1, mock.ANY, mock.ANY) self.assertEqual(1, len(self.manager._index)) def test_unsubscribe_is_idempotent(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.unsubscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.unsubscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.assertNotIn(callback_id_1, self.manager._index) self.assertNotIn(callback_id_1, self.manager._callbacks[resources.PORT][events.BEFORE_CREATE]) def test_unsubscribe_by_resource(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_DELETE) self.manager.subscribe( callback_2, resources.PORT, events.BEFORE_DELETE) self.manager.unsubscribe_by_resource(callback_1, resources.PORT) self.assertNotIn( callback_id_1, self.manager._callbacks[resources.PORT][events.BEFORE_CREATE]) self.assertIn( callback_id_2, self.manager._callbacks[resources.PORT][events.BEFORE_DELETE]) self.assertNotIn(callback_id_1, self.manager._index) def test_unsubscribe_all(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_DELETE) self.manager.subscribe( callback_1, resources.ROUTER, events.BEFORE_CREATE) self.manager.unsubscribe_all(callback_1) self.assertNotIn( callback_id_1, self.manager._callbacks[resources.PORT][events.BEFORE_CREATE]) self.assertNotIn(callback_id_1, self.manager._index) def test_notify_none(self): self.manager.notify(resources.PORT, events.BEFORE_CREATE, mock.ANY) self.assertEqual(0, callback_1.counter) self.assertEqual(0, callback_2.counter) def test_notify_with_exception(self): with mock.patch.object(self.manager, '_notify_loop') as n: n.return_value = ['error'] self.assertRaises(exceptions.CallbackFailure, self.manager.notify, mock.ANY, events.BEFORE_CREATE, mock.ANY) expected_calls = [ mock.call(mock.ANY, 'before_create', mock.ANY), mock.call(mock.ANY, 'abort_create', mock.ANY) ] n.assert_has_calls(expected_calls) def test_notify_handle_exception(self): self.manager.subscribe( callback_raise, resources.PORT, events.BEFORE_CREATE) e = self.assertRaises(exceptions.CallbackFailure, self.manager.notify, resources.PORT, events.BEFORE_CREATE, self) self.assertIsInstance(e.errors[0], exceptions.NotificationError) def test_notify_called_once_with_no_failures(self): with mock.patch.object(self.manager, '_notify_loop') as n: n.return_value = False self.manager.notify(resources.PORT, events.BEFORE_CREATE, mock.ANY) n.assert_called_once_with( resources.PORT, events.BEFORE_CREATE, mock.ANY) def test__notify_loop_single_event(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.subscribe( callback_2, resources.PORT, events.BEFORE_CREATE) self.manager._notify_loop( resources.PORT, events.BEFORE_CREATE, mock.ANY) self.assertEqual(1, callback_1.counter) self.assertEqual(1, callback_2.counter) def test__notify_loop_multiple_events(self): self.manager.subscribe( callback_1, resources.PORT, events.BEFORE_CREATE) self.manager.subscribe( callback_1, resources.ROUTER, events.BEFORE_DELETE) self.manager.subscribe( callback_2, resources.PORT, events.BEFORE_CREATE) self.manager._notify_loop( resources.PORT, events.BEFORE_CREATE, mock.ANY) self.manager._notify_loop( resources.ROUTER, events.BEFORE_DELETE, mock.ANY) self.assertEqual(2, callback_1.counter) self.assertEqual(1, callback_2.counter)
py
1a4b40e995798afada83e6b9c288cfeced1bce08
from functools import lru_cache from pytezos.rpc.contract import Contract from pytezos.rpc.node import RpcQuery class Context(RpcQuery): def __init__(self, *args, **kwargs): super(Context, self).__init__(*args, **kwargs) def __call__(self, *args, **kwargs): return self._node.get(f'{self._path}/raw/json?depth=1', cache=self._cache) @property @lru_cache(maxsize=None) def contracts(self): """ Attention: very slow method :return: list of Contracts """ return RpcQuery( path=f'{self._path}/contracts', node=self._node, child_class=Contract, **self._kwargs )