ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a318fed43e20f30b34043d7559eb04c92481caa
import logging from typing import Any, MutableMapping, Optional from cloudformation_cli_python_lib import ( Action, HandlerErrorCode, OperationStatus, ProgressEvent, Resource, SessionProxy, ) from datadog_api_client.v1 import ApiException from datadog_api_client.v1.api.monitors_api import MonitorsApi from datadog_api_client.v1.model.monitor import Monitor as ApiMonitor from datadog_api_client.v1.model.monitor_options import MonitorOptions as ApiMonitorOptions from datadog_api_client.v1.model.monitor_threshold_window_options import \ MonitorThresholdWindowOptions as ApiMonitorThresholdWindows from datadog_api_client.v1.model.monitor_thresholds import MonitorThresholds as ApiMonitorThresholds from datadog_api_client.v1.model.monitor_type import MonitorType as ApiMonitorType from datadog_api_client.v1.model.monitor_update_request import MonitorUpdateRequest as ApiMonitorUpdateRequest from datadog_cloudformation_common.api_clients import v1_client from datadog_cloudformation_common.utils import http_to_handler_error_code from .models import ( Creator, MonitorOptions, MonitorThresholdWindows, MonitorThresholds, ResourceHandlerRequest, ResourceModel, TypeConfigurationModel, ) from .version import __version__ # Use this logger to forward log messages to CloudWatch Logs. LOG = logging.getLogger(__name__) TYPE_NAME = "Datadog::Monitors::Monitor" TELEMETRY_TYPE_NAME = "monitors-monitor" resource = Resource(TYPE_NAME, ResourceModel, TypeConfigurationModel) test_entrypoint = resource.test_entrypoint @resource.handler(Action.READ) def read_handler( session: Optional[SessionProxy], request: ResourceHandlerRequest, callback_context: MutableMapping[str, Any], ) -> ProgressEvent: LOG.info("Starting %s Read Handler", TYPE_NAME) model = request.desiredResourceState type_configuration = request.typeConfiguration with v1_client( type_configuration.DatadogCredentials.ApiKey, type_configuration.DatadogCredentials.ApplicationKey, type_configuration.DatadogCredentials.ApiURL, TELEMETRY_TYPE_NAME, __version__, ) as api_client: api_instance = MonitorsApi(api_client) monitor_id = model.Id if monitor_id is None: return ProgressEvent( status=OperationStatus.FAILED, resourceModel=model, message=f"Error getting monitor: monitor does not exist", errorCode=HandlerErrorCode.NotFound, ) try: monitor = api_instance.get_monitor(monitor_id) except ApiException as e: LOG.exception("Exception when calling MonitorsApi->get_monitor: %s\n", e) return ProgressEvent( status=OperationStatus.FAILED, resourceModel=model, message=f"Error getting monitor: {e}", errorCode=http_to_handler_error_code(e.status), ) model.Created = monitor.created.isoformat() model.Modified = monitor.modified.isoformat() model.Message = monitor.message model.Name = monitor.name model.Tags = monitor.tags model.Priority = monitor.priority model.Query = monitor.query model.Multi = monitor.multi if monitor.deleted: model.Deleted = monitor.deleted.isoformat() if not ( (model.Type == "query alert" and monitor.type.value == "metric alert") or (model.Type == "metric alert" and monitor.type.value == "query alert") ): # metric alert and query alert are interchangeable, so don't update from one to the other model.Type = monitor.type.value if monitor.creator: model.Creator = Creator(Name=monitor.creator.name, Email=monitor.creator.email, Handle=monitor.creator.handle) # Add hasattr checks for options since not all of them are applicable to all monitor types, so some attributes # might not always be present options = monitor.options if hasattr(monitor, "options") else None if options: model.Options = MonitorOptions( EnableLogsSample=options.enable_logs_sample if hasattr(options, "enable_logs_sample") else None, EscalationMessage=options.escalation_message if hasattr(options, "escalation_message") else None, EvaluationDelay=options.evaluation_delay if hasattr(options, "evaluation_delay") else None, IncludeTags=options.include_tags if hasattr(options, "include_tags") else None, Locked=options.locked if hasattr(options, "locked") else None, MinLocationFailed=options.min_location_failed if hasattr(options, "min_location_failed") else None, NewHostDelay=options.new_host_delay if hasattr(options, "new_host_delay") else None, NoDataTimeframe=options.no_data_timeframe if hasattr(options, "no_data_timeframe") else None, NotifyAudit=options.notify_audit if hasattr(options, "notify_audit") else None, NotifyNoData=options.notify_no_data if hasattr(options, "notify_no_data") else None, RenotifyInterval=options.renotify_interval if hasattr(options, "renotify_interval") else None, RequireFullWindow=options.require_full_window if hasattr(options, "require_full_window") else None, SyntheticsCheckID=options.synthetics_check_id if hasattr(options, "synthetics_check_id") else None, Thresholds=None, ThresholdWindows=None, TimeoutH=options.timeout_h if hasattr(options, "timeout_h") else None, ) thresholds = options.thresholds if hasattr(options, "thresholds") else None if thresholds: model.Options.Thresholds = MonitorThresholds( Critical=thresholds.critical if hasattr(thresholds, "critical") else None, CriticalRecovery=thresholds.critical_recovery if hasattr(thresholds, "critical_recovery") else None, Warning=thresholds.warning if hasattr(thresholds, "warning") else None, WarningRecovery=thresholds.warning_recovery if hasattr(thresholds, "warning_recovery") else None, OK=thresholds.ok if hasattr(thresholds, "ok") else None, ) tw = options.threshold_windows if hasattr(options, "threshold_windows") else None if tw: model.Options.ThresholdWindows = MonitorThresholdWindows( TriggerWindow=tw.trigger_window if hasattr(tw, "trigger_window") else None, RecoveryWindow=tw.recovery_window if hasattr(tw, "recovery_window") else None, ) model.Id = monitor.id return ProgressEvent( status=OperationStatus.SUCCESS, resourceModel=model, ) @resource.handler(Action.UPDATE) def update_handler( session: Optional[SessionProxy], request: ResourceHandlerRequest, callback_context: MutableMapping[str, Any], ) -> ProgressEvent: LOG.info("Starting %s Update Handler", TYPE_NAME) model = request.desiredResourceState type_configuration = request.typeConfiguration monitor = ApiMonitorUpdateRequest() monitor.query = model.Query monitor.type = ApiMonitorType(model.Type) if model.Message is not None: monitor.message = model.Message if model.Name is not None: monitor.name = model.Name if model.Tags is not None: monitor.tags = model.Tags if model.Priority is not None: monitor.priority = model.Priority options = build_monitor_options_from_model(model) if options: monitor.options = options with v1_client( type_configuration.DatadogCredentials.ApiKey, type_configuration.DatadogCredentials.ApplicationKey, type_configuration.DatadogCredentials.ApiURL, TELEMETRY_TYPE_NAME, __version__, ) as api_client: api_instance = MonitorsApi(api_client) try: api_instance.update_monitor(model.Id, monitor) except ApiException as e: LOG.exception("Exception when calling MonitorsApi->update_monitor: %s\n", e) return ProgressEvent( status=OperationStatus.FAILED, resourceModel=model, message=f"Error updating monitor: {e}", errorCode=http_to_handler_error_code(e.status), ) return read_handler(session, request, callback_context) @resource.handler(Action.DELETE) def delete_handler( session: Optional[SessionProxy], request: ResourceHandlerRequest, callback_context: MutableMapping[str, Any], ) -> ProgressEvent: LOG.info("Starting %s Delete Handler", TYPE_NAME) model = request.desiredResourceState type_configuration = request.typeConfiguration with v1_client( type_configuration.DatadogCredentials.ApiKey, type_configuration.DatadogCredentials.ApplicationKey, type_configuration.DatadogCredentials.ApiURL, TELEMETRY_TYPE_NAME, __version__, ) as api_client: api_instance = MonitorsApi(api_client) try: api_instance.delete_monitor(model.Id) except ApiException as e: LOG.exception("Exception when calling MonitorsApi->delete_monitor: %s\n", e) return ProgressEvent( status=OperationStatus.FAILED, resourceModel=model, message=f"Error deleting monitor: {e}", errorCode=http_to_handler_error_code(e.status), ) return ProgressEvent( status=OperationStatus.SUCCESS, resourceModel=None, ) @resource.handler(Action.CREATE) def create_handler( session: Optional[SessionProxy], request: ResourceHandlerRequest, callback_context: MutableMapping[str, Any], ) -> ProgressEvent: LOG.info("Starting %s Create Handler", TYPE_NAME) model = request.desiredResourceState type_configuration = request.typeConfiguration monitor = ApiMonitor(model.Query, ApiMonitorType(model.Type)) if model.Message is not None: monitor.message = model.Message if model.Name is not None: monitor.name = model.Name if model.Tags is not None: monitor.tags = model.Tags if model.Priority is not None: monitor.priority = model.Priority options = build_monitor_options_from_model(model) if options: monitor.options = options with v1_client( type_configuration.DatadogCredentials.ApiKey, type_configuration.DatadogCredentials.ApplicationKey, type_configuration.DatadogCredentials.ApiURL, TELEMETRY_TYPE_NAME, __version__, ) as api_client: api_instance = MonitorsApi(api_client) try: monitor_resp = api_instance.create_monitor(monitor) except ApiException as e: LOG.exception("Exception when calling MonitorsApi->create_monitor: %s\n", e) return ProgressEvent( status=OperationStatus.FAILED, resourceModel=model, message=f"Error creating monitor: {e}", errorCode=http_to_handler_error_code(e.status), ) model.Id = monitor_resp.id return read_handler(session, request, callback_context) def build_monitor_options_from_model(model: ResourceModel) -> ApiMonitorOptions: options = None if model.Options: options = ApiMonitorOptions() # Nullable attributes options.evaluation_delay = model.Options.EvaluationDelay options.min_location_failed = model.Options.MinLocationFailed options.new_host_delay = model.Options.NewHostDelay options.no_data_timeframe = model.Options.NoDataTimeframe options.synthetics_check_id = model.Options.SyntheticsCheckID options.timeout_h = model.Options.TimeoutH options.renotify_interval = model.Options.RenotifyInterval # Non nullable if model.Options.EnableLogsSample is not None: options.enable_logs_sample = model.Options.EnableLogsSample if model.Options.EscalationMessage is not None: options.escalation_message = model.Options.EscalationMessage if model.Options.IncludeTags is not None: options.include_tags = model.Options.IncludeTags if model.Options.Locked is not None: options.locked = model.Options.Locked if model.Options.NotifyAudit is not None: options.notify_audit = model.Options.NotifyAudit if model.Options.NotifyNoData is not None: options.notify_no_data = model.Options.NotifyNoData if model.Options.RequireFullWindow is not None: options.require_full_window = model.Options.RequireFullWindow if model.Options.Thresholds is not None: options.thresholds = ApiMonitorThresholds() if model.Options.Thresholds.Critical is not None: options.thresholds.critical = model.Options.Thresholds.Critical if model.Options.Thresholds.CriticalRecovery is not None: options.thresholds.critical_recovery = model.Options.Thresholds.CriticalRecovery if model.Options.Thresholds.Warning is not None: options.thresholds.warning = model.Options.Thresholds.Warning if model.Options.Thresholds.WarningRecovery is not None: options.thresholds.warning_recovery = model.Options.Thresholds.WarningRecovery if model.Options.Thresholds.OK is not None: options.thresholds.ok = model.Options.Thresholds.OK if model.Options.ThresholdWindows is not None: options.threshold_windows = ApiMonitorThresholdWindows() options.threshold_windows.trigger_window = model.Options.ThresholdWindows.TriggerWindow options.threshold_windows.recovery_window = model.Options.ThresholdWindows.RecoveryWindow return options
py
1a3191e60c802a9958fde4a70b2fac7f7d64b1a7
from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy __author__ = 'Lesko' # Documentation is like sex. # When it's good, it's very good. # When it's bad, it's better than nothing. # When it lies to you, it may be a while before you realize something's wrong. app = Flask(__name__) app.config.from_object('real_config') db = SQLAlchemy(app) from app import models from app.views import views # Add custom jinja filters import custom_jinja_filters app.jinja_env.filters["format_datetime"] = custom_jinja_filters.format_datetime
py
1a319225fc16cfe2182e4d3492d53d6fd232ee54
from floodsystem.flood import stations_highest_rel_level from floodsystem.stationdata import build_station_list , update_water_levels from floodsystem.datafetcher import fetch_latest_water_level_data, fetch_station_data stations = build_station_list() N=10 update_water_levels(stations) stations_high_threat = stations_highest_rel_level(stations, N) for station in stations_high_threat: print(station[0].name, station[1]) if __name__ == "__main__": print("*** Task 2C: CUED Part IA Flood Warning System ***")
py
1a3193e4588a67b88a04b8ba863445f918df7788
# placeholder definition for an access pattern object, can be passed as input class PatternConfig: def __init__(self, exp_name="default", #name or ID benchmark_name="test", #if this is a specific benchmark, include here read_freq=-1, #number of reads/s total_reads=-1, #total number of reads, can compute either way read_size=8, #size/read in bytes write_freq=-1, #number of writes/s total_writes=-1, #total number of reads, can compute either way write_size=8, #size/write in bytes workingset=1, #total working set size in MB total_ins=-1 #total number of ins in benchmark ): #load all the parameters into the pattern class #everything that defines the access pattern should be in this class self.exp_name = exp_name self.benchmark_name = benchmark_name self.read_freq = read_freq self.total_reads = total_reads self.read_size = read_size self.write_freq = write_freq self.total_writes = total_writes self.write_size = write_size self.workingset = workingset self.total_ins = total_ins benchmarks = [ #collection of benchmarks from Tufts IISWC paper PatternConfig(benchmark_name="bzip2", total_reads=4.3e9, read_size=4, total_writes=1.47e9, write_size=4, workingset=(2505.38e3/1024./1024.), total_ins=1404973 ), PatternConfig(benchmark_name="GemsFDTD", total_reads=1.3e9, read_size=4, total_writes=0.7e9, write_size=4, workingset=(76576.59e3/1024./1024.), total_ins=475257 ), PatternConfig(benchmark_name="tonto", total_reads=1.1e9, read_size=4, total_writes=0.47e9, write_size=4, workingset=(5.59e3/1024./1024.), total_ins=490533 ), PatternConfig(benchmark_name="leela", total_reads=6.01e9, read_size=4, total_writes=2.35e9, write_size=4, workingset=(1.59e3/1024./1024.), total_ins=42211 ), PatternConfig(benchmark_name="exchange2", total_reads=62.28e9, read_size=4, total_writes=42.89e9, write_size=4, workingset=(0.64e3/1024./1024.), total_ins=417088 ), PatternConfig(benchmark_name="deepsjeng", total_reads=9.36e9, read_size=4, total_writes=4.43e9, write_size=4, workingset=(4.79e3/1024./1024.), total_ins=71720506 ), PatternConfig(benchmark_name="vips", total_reads=1.91e9, read_size=4, total_writes=0.68e9, write_size=4, workingset=(1107.19e3/1024./1024.), total_ins=3949419070 ), PatternConfig(benchmark_name="x264", total_reads=18.07e9, read_size=4, total_writes=2.84e9, write_size=4, workingset=(1585.49e3/1024./1024.), total_ins=229607 ), PatternConfig(benchmark_name="cg", total_reads=0.73e9, read_size=4, total_writes=0.04e9, write_size=4, workingset=(1015.43e3/1024./1024.), total_ins=1942892619 ), PatternConfig(benchmark_name="ep", total_reads=1.25e9, read_size=4, total_writes=0.54e9, write_size=4, workingset=(0.84e3/1024./1024.), total_ins=7051878902 ), PatternConfig(benchmark_name="ft", total_reads=0.28e9, read_size=4, total_writes=0.27e9, write_size=4, workingset=(342.64e3/1024./1024.), total_ins=1416746823 ), PatternConfig(benchmark_name="is", total_reads=0.12e9, read_size=4, total_writes=0.06e9, write_size=4, workingset=(1228.86e3/1024./1024.), total_ins=298507496 ), PatternConfig(benchmark_name="lu", total_reads=17.84e9, read_size=4, total_writes=3.99e9, write_size=4, workingset=(289.46e3/1024./1024.), total_ins=29482003362 ), PatternConfig(benchmark_name="mg", total_reads=0.76e9, read_size=4, total_writes=0.16e9, write_size=4, workingset=(4249.78e3/1024./1024.), total_ins=1308033184 ), PatternConfig(benchmark_name="sp", total_reads=9.23e9, read_size=4, total_writes=4.12e9, write_size=4, workingset=(556.75e3/1024./1024.), total_ins=30840210911 ), PatternConfig(benchmark_name="ua", total_reads=9.97e9, read_size=4, total_writes=5.85e9, write_size=4, workingset=(362.45e3/1024./1024.), total_ins=19361069980 ), ]
py
1a319489a34044ffe9e1abe1ea0f87fb5530b208
#!/usr/bin/env python # -*- coding: utf-8 -*- """ OMAS plot examples ================== This example loads some data from S3, augments the ODS with pressure information, and generates some plots """ from matplotlib import pyplot from omas import * # load some data from S3 ods = load_omas_s3('OMFITprofiles_sample', user='omas_shared') # augment ODS with pressure information ods.physics_core_profiles_pressures() # omas plot for pressures ods.plot_core_profiles_pressures() pyplot.show() # omas plot for core profiles ods.plot_core_profiles_summary() pyplot.show() # omas plot for equilibrium omas_plot.equilibrium_summary(ods, linewidth=1, label='my equilibrium') pyplot.show() # omas plot for transport fluxes ods = ODS().sample(5) ods.plot_core_transport_fluxes() pyplot.show()
py
1a3194dc7c2ad27d373926dc05ea74be8635acbd
import datetime import re from io import BytesIO from unittest.mock import create_autospec, call, Mock import pytest from sap.aibus.dar.client.base_client import BaseClient from sap.aibus.dar.client.data_manager_client import DataManagerClient from sap.aibus.dar.client.exceptions import ModelAlreadyExists, DARHTTPException from sap.aibus.dar.client.util.credentials import ( StaticCredentialsSource, CredentialsSource, ) from sap.aibus.dar.client.workflow.model import ModelCreator from sap.aibus.dar.client.model_manager_client import ModelManagerClient from tests.sap.aibus.dar.client.test_data_manager_client import ( AbstractDARClientConstruction, ) @pytest.fixture def csv_data_stream(): csv = """ manufacturer,description,category,subcategory me,"simple è test, records",A,AA me,"übrigens ein Beispiel, records",A,AA me,"un po' di testo",A,AA me,"какой-то текст",A,AA me,"du texte",A,AA me,"一些文字",A,AA me,"कुछ पाठ",A,AA me,"κάποιο κείμενο",A,AA me,"кейбір мәтін",A,AA me,"iu teksto",A,AA """ data_stream = BytesIO(csv.strip().encode("utf-8")) return data_stream @pytest.fixture() def create_model(): create_model = ModelCreator.construct_from_jwt("https://abcd/", token="54321") create_model.data_manager_client = create_autospec(DataManagerClient, instance=True) create_model.model_manager_client = create_autospec( ModelManagerClient, instance=True ) return create_model @pytest.fixture() def model_resource(): return { "jobId": "522de4e6-2609-4972-8f75-61e9262b86de", "name": "my-model", "createdAt": "2018-08-31T11:45:54+00:00", "validationResult": { "accuracy": 0.9, "f1Score": 0.9, "precision": 0.9, "recall": 0.9, }, } a_timestamp = datetime.datetime( 2011, 11, 4, 0, 5, 23, 283000, tzinfo=datetime.timezone.utc ) class TestModelCreatorClientConstruction(AbstractDARClientConstruction): # Tests are in base class clazz = ModelCreator def test_constructor(self): dar_url = "https://aiservices-dar.cfapps.xxx.hana.ondemand.com/" source = StaticCredentialsSource("1234") client = self.clazz(dar_url, source) for embedded_client in [ client.data_manager_client, client.model_manager_client, ]: assert embedded_client.credentials_source == source def test_create_from_jwt(self): # Override and change assertions to look into embedded clients. jwt = "12345" client = self.clazz.construct_from_jwt(self.dar_url, jwt) for embedded_client in [ client.data_manager_client, client.model_manager_client, ]: assert isinstance( embedded_client.credentials_source, StaticCredentialsSource ) assert embedded_client.credentials_source.token() == jwt assert embedded_client.session.base_url == self.dar_url[:-1] def _assert_fields_initialized(self, client): assert isinstance(client.data_manager_client, DataManagerClient) assert isinstance(client.model_manager_client, ModelManagerClient) for embedded_client in [ client.data_manager_client, client.model_manager_client, ]: assert ( embedded_client.session.base_url == "https://aiservices-dar.cfapps.xxx.hana.ondemand.com" ) assert isinstance(embedded_client.credentials_source, CredentialsSource) class TestModelCreator: def test_is_subclass_of_base_client(self): # Should have all the nice construction methods assert issubclass(ModelCreator, BaseClient) def test_format_dataset_name(self): formatted = ModelCreator.format_dataset_name("my-model") assert re.match(r"my-model-(\w|-)+", formatted) assert len(formatted) <= 255 # returns a different same for same input on next call formatted_2 = ModelCreator.format_dataset_name("my-model") assert formatted != formatted_2 assert len(formatted_2) <= 255 def test_format_dataset_name_excessive_length_is_truncated(self): input_str = "a" * 300 formatted = ModelCreator.format_dataset_name(input_str) assert len(formatted) == 255 uuid_len = 37 # First part is still all a's assert formatted[:-uuid_len] == input_str[0 : 255 - uuid_len] def test_create_model(self, csv_data_stream, create_model, model_resource): # inputs # model_name: str, model_template_id = "d7810207-ca31-4d4d-9b5a-841a644fd81f" dataset_schema = { "features": [ {"label": "manufacturer", "type": "CATEGORY"}, {"label": "description", "type": "TEXT"}, ], "labels": [ {"label": "category", "type": "CATEGORY"}, {"label": "subcategory", "type": "CATEGORY"}, ], "name": "test", } new_dataset_schema_id = "3689fc17-5394-46ba-8757-39a36b570e6e" dataset_schema_created = dict(dataset_schema.items()) dataset_schema_created["id"] = new_dataset_schema_id dataset_schema_created["createdAt"] = a_timestamp.isoformat() model_name = "my-model" dataset_name = model_name + "-123" new_dataset_id = "915f16d7-48b0-438b-aca8-048f855ac627" dataset_created = { "createdAt": a_timestamp.isoformat(), "id": new_dataset_id, "name": dataset_name, "status": "SUCCEEDED", "validationMessage": "", "datasetSchemaId": new_dataset_schema_id, } create_model.format_dataset_name = Mock(return_value=dataset_name) create_model.data_manager_client.create_dataset_schema.return_value = ( dataset_schema_created ) create_model.data_manager_client.create_dataset.return_value = dataset_created dm = create_model.data_manager_client mm = create_model.model_manager_client mm.read_model_by_name.side_effect = [ DARHTTPException(url="https://abcd/", response=Mock(status_code=404)), model_resource, ] # act result = create_model.create( data_stream=csv_data_stream, model_template_id=model_template_id, dataset_schema=dataset_schema, model_name=model_name, ) assert result == model_resource # Expected calls expected_create_dataset_schema = call(dataset_schema) assert dm.create_dataset_schema.call_args_list == [ expected_create_dataset_schema ] expected_dataset_name = dataset_name expected_create_dataset = call( dataset_name=expected_dataset_name, dataset_schema_id=dataset_schema_created["id"], ) assert dm.create_dataset.call_args_list == [expected_create_dataset] expected_call_to_upload_and_validate = call( dataset_id=dataset_created["id"], data_stream=csv_data_stream ) assert dm.upload_data_and_validate.call_args_list == [ expected_call_to_upload_and_validate ] expected_call_to_create_job_and_wait = call( model_name=model_name, dataset_id=new_dataset_id, model_template_id=model_template_id, ) assert mm.create_job_and_wait.call_args_list == [ expected_call_to_create_job_and_wait ] expected_call_to_read_model_by_name = call(model_name=model_name) assert mm.read_model_by_name.call_args_list == [ expected_call_to_read_model_by_name, expected_call_to_read_model_by_name, ] def test_create_model_checks_for_existing_model(self, create_model, model_resource): """ If the model already exists, this should be an error. """ model_name = "my-model" create_model.model_manager_client.read_model_by_name.return_value = ( model_resource ) with pytest.raises(ModelAlreadyExists) as context: create_model.create( data_stream=Mock(), model_template_id=Mock(), dataset_schema=Mock(), model_name=model_name, ) assert "Model 'my-model' already exists" in str(context.value) assert create_model.model_manager_client.read_model_by_name.call_args_list == [ call(model_name=model_name) ] def test_create_model_forwards_exception(self, create_model, model_resource): """ If ModelManagerClient.read_model_by_name raises a 404 in the initial check, this means that the model is not there and execution and proceed. This is tested in test_create_model above. For all other status code, the exception should be re-raised as is. This is tested here. """ model_name = "my-model" exc = DARHTTPException(url="https://abcd/", response=Mock(status_code=429)) create_model.model_manager_client.read_model_by_name.side_effect = exc with pytest.raises(DARHTTPException) as context: create_model.create( data_stream=Mock(), model_template_id=Mock(), dataset_schema=Mock(), model_name=model_name, ) assert context.value == exc assert create_model.model_manager_client.read_model_by_name.call_args_list == [ call(model_name=model_name) ]
py
1a3195ebb70311ad8e990f611c2eff64406d8a24
import os import sys THIS_FOLDER = os.path.dirname(os.path.abspath(__file__)) + "/.." sys.path.insert(1, THIS_FOLDER) from vyxal.lexer import * from vyxal.parse import * from vyxal.structure import * def fully_parse(program: str) -> list[Structure]: """ Essentially, wrap tokenise(program) in parse Parameters ---------- program : str The program to tokenise and then parse Returns ------- list[Structure] Quite literally parse(tokenise(program)) """ return parse(tokenise(program)) # see what I mean? def test_basic(): assert str(fully_parse("1 1+")) == str( [ GenericStatement([Token(TokenType.NUMBER, "1")]), GenericStatement([Token(TokenType.NUMBER, "1")]), GenericStatement([Token(TokenType.GENERAL, "+")]), ] ) assert str(fully_parse("`Hello, World!`")) == str( [GenericStatement([Token(TokenType.STRING, "Hello, World!")])] ) def test_fizzbuzz(): assert str(fully_parse("₁ƛ₍₃₅kF½*∑∴")) == str( [ GenericStatement([Token(TokenType.GENERAL, "₁")]), Lambda( "1", [ DyadicModifier( "₍", GenericStatement([Token(TokenType.GENERAL, "₃")]), GenericStatement([Token(TokenType.GENERAL, "₅")]), ), GenericStatement([Token(TokenType.GENERAL, "kF")]), GenericStatement([Token(TokenType.GENERAL, "½")]), GenericStatement([Token(TokenType.GENERAL, "*")]), GenericStatement([Token(TokenType.GENERAL, "∑")]), GenericStatement([Token(TokenType.GENERAL, "∴")]), ], ), GenericStatement([Token(TokenType.GENERAL, "M")]), ] ) def test_modifiers(): assert str(fully_parse("⁽*r")) == str( [ Lambda("1", [GenericStatement([Token(TokenType.GENERAL, "*")])]), GenericStatement([Token(TokenType.GENERAL, "r")]), ] ) assert str(fully_parse("vv+")) == str( [ MonadicModifier( "v", MonadicModifier( "v", GenericStatement([Token(TokenType.GENERAL, "+")]) ), ) ] ) assert str(fully_parse("‡₌*ġḭd†")) == str( [ Lambda( "1", [ DyadicModifier( "₌", GenericStatement([Token(TokenType.GENERAL, "*")]), GenericStatement([Token(TokenType.GENERAL, "ġ")]), ), GenericStatement([Token(TokenType.GENERAL, "ḭ")]), ], ), GenericStatement([Token(TokenType.GENERAL, "d")]), GenericStatement([Token(TokenType.GENERAL, "†")]), ] ) def test_structures(): assert str(fully_parse("[1 1+|`nice`")) == str( [ IfStatement( [ GenericStatement([Token(TokenType.NUMBER, "1")]), GenericStatement([Token(TokenType.NUMBER, "1")]), GenericStatement([Token(TokenType.GENERAL, "+")]), ], [GenericStatement([Token(TokenType.STRING, "nice")])], ) ] ) assert str(fully_parse("1 10r(i|n2*,")) == str( [ GenericStatement([Token(TokenType.NUMBER, "1")]), GenericStatement([Token(TokenType.NUMBER, "10")]), GenericStatement([Token(TokenType.GENERAL, "r")]), ForLoop( ["i"], [ GenericStatement([Token(TokenType.GENERAL, "n")]), GenericStatement([Token(TokenType.NUMBER, "2")]), GenericStatement([Token(TokenType.GENERAL, "*")]), GenericStatement([Token(TokenType.GENERAL, ",")]), ], ), ] ) assert str(fully_parse("@triple:1|3*;")) == str( [ FunctionDef( "triple", ["1"], [ GenericStatement([Token(TokenType.NUMBER, "3")]), GenericStatement([Token(TokenType.GENERAL, "*")]), ], ) ] ) assert str(fully_parse("(code‛|c")) == str( [ ForLoop( [], [ GenericStatement([Token(TokenType.GENERAL, "c")]), GenericStatement([Token(TokenType.GENERAL, "o")]), GenericStatement([Token(TokenType.GENERAL, "d")]), GenericStatement([Token(TokenType.GENERAL, "e")]), GenericStatement([Token(TokenType.STRING, "|c")]), ], ) ] )
py
1a31963f9f6d60906c4bfdcbd4a06da2fb000041
from os import getenv from dotenv import load_dotenv load_dotenv() UNSPLASH_ACCESS_KEY = getenv('UNSPLASH_ACCESS_KEY') FLICKR_KEY = getenv('FLICKR_KEY') FLICKR_SECRET = getenv('FLICKR_SECRET') ALBUM_FONTS = [ 'Comforter Brush', 'Praise', 'Dancing Script', 'Estonia', ] ARTIST_FONTS = [ 'Bebas Neue', 'Road Rage', 'Comfortaa', 'Lobster', 'Patua One', ]
py
1a3197095c402eb68659aa61c0d443e9950479e4
# -*- coding: utf-8 -*- # # Review Board Codebase documentation build configuration file, created by # sphinx-quickstart on Thu Feb 12 02:10:34 2009. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # Set this up to parse Django-driven code. sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.insert(0, os.path.dirname(__file__)) os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'reviewboard.settings') import reviewboard # If your extensions are in another directory, add it here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. #sys.path.append(os.path.abspath('.')) # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Review Board Codebase' copyright = u'2009-2010, Christian Hammond' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '.'.join([str(i) for i in reviewboard.__version_info__[:2]]) # The full version, including alpha/beta/rc tags. release = reviewboard.get_version_string() # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Options for HTML output # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'default.css' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'ReviewBoardCodebasedoc' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual]). latex_documents = [ ('index', 'ReviewBoardCodebase.tex', ur'Review Board Codebase Documentation', ur'Christian Hammond', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. #latex_preamble = '' # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/dev': None}
py
1a319a990f4b622b1f5e4180a42e428d88ba70c1
import asyncio import sys import time from datetime import datetime from decimal import Decimal from typing import Callable, List, Optional, Tuple, Dict import aiohttp from peas.cmds.units import units from peas.rpc.wallet_rpc_client import WalletRpcClient from peas.server.start_wallet import SERVICE_NAME from peas.util.bech32m import encode_puzzle_hash from peas.util.byte_types import hexstr_to_bytes from peas.util.config import load_config from peas.util.default_root import DEFAULT_ROOT_PATH from peas.util.ints import uint16, uint64 from peas.wallet.transaction_record import TransactionRecord from peas.wallet.util.wallet_types import WalletType def print_transaction(tx: TransactionRecord, verbose: bool, name) -> None: if verbose: print(tx) else: peas_amount = Decimal(int(tx.amount)) / units["peas"] to_address = encode_puzzle_hash(tx.to_puzzle_hash, name) print(f"Transaction {tx.name}") print(f"Status: {'Confirmed' if tx.confirmed else ('In mempool' if tx.is_in_mempool() else 'Pending')}") print(f"Amount: {peas_amount} {name}") print(f"To address: {to_address}") print("Created at:", datetime.fromtimestamp(tx.created_at_time).strftime("%Y-%m-%d %H:%M:%S")) print("") async def get_transaction(args: dict, wallet_client: WalletRpcClient, fingerprint: int) -> None: wallet_id = args["id"] transaction_id = hexstr_to_bytes(args["tx_id"]) config = load_config(DEFAULT_ROOT_PATH, "config.yaml", SERVICE_NAME) name = config["network_overrides"]["config"][config["selected_network"]]["address_prefix"] tx: TransactionRecord = await wallet_client.get_transaction(wallet_id, transaction_id=transaction_id) print_transaction(tx, verbose=(args["verbose"] > 0), name=name) async def get_transactions(args: dict, wallet_client: WalletRpcClient, fingerprint: int) -> None: wallet_id = args["id"] txs: List[TransactionRecord] = await wallet_client.get_transactions(wallet_id) config = load_config(DEFAULT_ROOT_PATH, "config.yaml", SERVICE_NAME) name = config["network_overrides"]["config"][config["selected_network"]]["address_prefix"] if len(txs) == 0: print("There are no transactions to this address") offset = args["offset"] num_per_screen = 5 for i in range(offset, len(txs), num_per_screen): for j in range(0, num_per_screen): if i + j >= len(txs): break print_transaction(txs[i + j], verbose=(args["verbose"] > 0), name=name) if i + num_per_screen >= len(txs): return None print("Press q to quit, or c to continue") while True: entered_key = sys.stdin.read(1) if entered_key == "q": return None elif entered_key == "c": break def check_unusual_transaction(amount: Decimal, fee: Decimal): return fee >= amount async def send(args: dict, wallet_client: WalletRpcClient, fingerprint: int) -> None: wallet_id = args["id"] amount = Decimal(args["amount"]) fee = Decimal(args["fee"]) address = args["address"] override = args["override"] if not override and check_unusual_transaction(amount, fee): print( f"A transaction of amount {amount} and fee {fee} is unusual.\n" f"Pass in --override if you are sure you mean to do this." ) return print("Submitting transaction...") final_amount = uint64(int(amount * units["peas"])) final_fee = uint64(int(fee * units["peas"])) res = await wallet_client.send_transaction(wallet_id, final_amount, address, final_fee) tx_id = res.name start = time.time() while time.time() - start < 10: await asyncio.sleep(0.1) tx = await wallet_client.get_transaction(wallet_id, tx_id) if len(tx.sent_to) > 0: print(f"Transaction submitted to nodes: {tx.sent_to}") print(f"Do peas wallet get_transaction -f {fingerprint} -tx 0x{tx_id} to get status") return None print("Transaction not yet submitted to nodes") print(f"Do 'peas wallet get_transaction -f {fingerprint} -tx 0x{tx_id}' to get status") async def get_address(args: dict, wallet_client: WalletRpcClient, fingerprint: int) -> None: wallet_id = args["id"] res = await wallet_client.get_next_address(wallet_id, False) print(res) async def delete_unconfirmed_transactions(args: dict, wallet_client: WalletRpcClient, fingerprint: int) -> None: wallet_id = args["id"] await wallet_client.delete_unconfirmed_transactions(wallet_id) print(f"Successfully deleted all unconfirmed transactions for wallet id {wallet_id} on key {fingerprint}") def wallet_coin_unit(typ: WalletType, address_prefix: str) -> Tuple[str, int]: if typ == WalletType.COLOURED_COIN: return "", units["colouredcoin"] if typ in [WalletType.STANDARD_WALLET, WalletType.POOLING_WALLET, WalletType.MULTI_SIG, WalletType.RATE_LIMITED]: return address_prefix, units["peas"] return "", units["mojo"] def print_balance(amount: int, scale: int, address_prefix: str) -> str: ret = f"{amount/scale} {address_prefix} " if scale > 1: ret += f"({amount} mojo)" return ret async def print_balances(args: dict, wallet_client: WalletRpcClient, fingerprint: int) -> None: summaries_response = await wallet_client.get_wallets() config = load_config(DEFAULT_ROOT_PATH, "config.yaml") address_prefix = config["network_overrides"]["config"][config["selected_network"]]["address_prefix"] print(f"Wallet height: {await wallet_client.get_height_info()}") print(f"Sync status: {'Synced' if (await wallet_client.get_synced()) else 'Not synced'}") print(f"Balances, fingerprint: {fingerprint}") for summary in summaries_response: wallet_id = summary["id"] balances = await wallet_client.get_wallet_balance(wallet_id) typ = WalletType(int(summary["type"])) address_prefix, scale = wallet_coin_unit(typ, address_prefix) print(f"Wallet ID {wallet_id} type {typ.name} {summary['name']}") print(f" -Total Balance: {print_balance(balances['confirmed_wallet_balance'], scale, address_prefix)}") print( f" -Pending Total Balance: {print_balance(balances['unconfirmed_wallet_balance'], scale, address_prefix)}" ) print(f" -Spendable: {print_balance(balances['spendable_balance'], scale, address_prefix)}") async def get_wallet(wallet_client: WalletRpcClient, fingerprint: int = None) -> Optional[Tuple[WalletRpcClient, int]]: if fingerprint is not None: fingerprints = [fingerprint] else: fingerprints = await wallet_client.get_public_keys() if len(fingerprints) == 0: print("No keys loaded. Run 'peas keys generate' or import a key") return None if len(fingerprints) == 1: fingerprint = fingerprints[0] if fingerprint is not None: log_in_response = await wallet_client.log_in(fingerprint) else: print("Choose wallet key:") for i, fp in enumerate(fingerprints): print(f"{i+1}) {fp}") val = None while val is None: val = input("Enter a number to pick or q to quit: ") if val == "q": return None if not val.isdigit(): val = None else: index = int(val) - 1 if index >= len(fingerprints): print("Invalid value") val = None continue else: fingerprint = fingerprints[index] assert fingerprint is not None log_in_response = await wallet_client.log_in(fingerprint) if log_in_response["success"] is False: if log_in_response["error"] == "not_initialized": use_cloud = True if "backup_path" in log_in_response: path = log_in_response["backup_path"] print(f"Backup file from backup.peas.net downloaded and written to: {path}") val = input("Do you want to use this file to restore from backup? (Y/N) ") if val.lower() == "y": log_in_response = await wallet_client.log_in_and_restore(fingerprint, path) else: use_cloud = False if "backup_path" not in log_in_response or use_cloud is False: if use_cloud is True: val = input( "No online backup file found,\n Press S to skip restore from backup" "\n Press F to use your own backup file: " ) else: val = input( "Cloud backup declined,\n Press S to skip restore from backup" "\n Press F to use your own backup file: " ) if val.lower() == "s": log_in_response = await wallet_client.log_in_and_skip(fingerprint) elif val.lower() == "f": val = input("Please provide the full path to your backup file: ") log_in_response = await wallet_client.log_in_and_restore(fingerprint, val) if "success" not in log_in_response or log_in_response["success"] is False: if "error" in log_in_response: error = log_in_response["error"] print(f"Error: {log_in_response[error]}") return None return wallet_client, fingerprint async def execute_with_wallet( wallet_rpc_port: Optional[int], fingerprint: int, extra_params: Dict, function: Callable ) -> None: try: config = load_config(DEFAULT_ROOT_PATH, "config.yaml") self_hostname = config["self_hostname"] if wallet_rpc_port is None: wallet_rpc_port = config["wallet"]["rpc_port"] wallet_client = await WalletRpcClient.create(self_hostname, uint16(wallet_rpc_port), DEFAULT_ROOT_PATH, config) wallet_client_f = await get_wallet(wallet_client, fingerprint=fingerprint) if wallet_client_f is None: wallet_client.close() await wallet_client.await_closed() return None wallet_client, fingerprint = wallet_client_f await function(extra_params, wallet_client, fingerprint) except KeyboardInterrupt: pass except Exception as e: if isinstance(e, aiohttp.ClientConnectorError): print( f"Connection error. Check if the wallet is running at {wallet_rpc_port}. " "You can run the wallet via:\n\tchia start wallet" ) else: print(f"Exception from 'wallet' {e}") wallet_client.close() await wallet_client.await_closed()
py
1a319c8c5cb08736f076ed0846fa427e7f750763
__author__ = 'marble_xu' import os import json from abc import abstractmethod import pygame as pg from . import constants as c class State(): def __init__(self): self.start_time = 0.0 self.current_time = 0.0 self.done = False self.next = None self.persist = {} @abstractmethod def startup(self, current_time, persist): '''abstract method''' def cleanup(self): self.done = False return self.persist @abstractmethod def update(self, surface, keys, current_time): '''abstract method''' class Control(): def __init__(self): self.screen = pg.display.get_surface() self.done = False self.clock = pg.time.Clock() self.fps = 60 self.keys = pg.key.get_pressed() self.mouse_pos = None self.mouse_click = [False, False] # value:[left mouse click, right mouse click] self.current_time = 0.0 self.state_dict = {} self.state_name = None self.state = None self.game_info = {c.CURRENT_TIME:0.0, c.LEVEL_NUM:c.START_LEVEL_NUM} def setup_states(self, state_dict, start_state): self.state_dict = state_dict self.state_name = start_state self.state = self.state_dict[self.state_name] self.state.startup(self.current_time, self.game_info) def update(self): self.current_time = pg.time.get_ticks() if self.state.done: self.flip_state() self.state.update(self.screen, self.current_time, self.mouse_pos, self.mouse_click) self.mouse_pos = None self.mouse_click[0] = False self.mouse_click[1] = False def flip_state(self): previous, self.state_name = self.state_name, self.state.next persist = self.state.cleanup() self.state = self.state_dict[self.state_name] self.state.startup(self.current_time, persist) def event_loop(self): for event in pg.event.get(): if event.type == pg.QUIT: self.done = True elif event.type == pg.KEYDOWN: self.keys = pg.key.get_pressed() elif event.type == pg.KEYUP: self.keys = pg.key.get_pressed() elif event.type == pg.MOUSEBUTTONDOWN: self.mouse_pos = pg.mouse.get_pos() self.mouse_click[0], _, self.mouse_click[1] = pg.mouse.get_pressed() print('pos:', self.mouse_pos, ' mouse:', self.mouse_click) def main(self): while not self.done: self.event_loop() self.update() pg.display.update() self.clock.tick(self.fps) print('game over') def get_image(sheet, x, y, width, height, colorkey=c.BLACK, scale=1): image = pg.Surface([width, height]) rect = image.get_rect() image.blit(sheet, (0, 0), (x, y, width, height)) image.set_colorkey(colorkey) image = pg.transform.scale(image, (int(rect.width*scale), int(rect.height*scale))) return image def load_image_frames(directory, image_name, colorkey, accept): frame_list = [] tmp = {} # image_name is "Peashooter", pic name is 'Peashooter_1', get the index 1 index_start = len(image_name) + 1 frame_num = 0; for pic in os.listdir(directory): name, ext = os.path.splitext(pic) if ext.lower() in accept: index = int(name[index_start:]) img = pg.image.load(os.path.join(directory, pic)) if img.get_alpha(): img = img.convert_alpha() else: img = img.convert() img.set_colorkey(colorkey) tmp[index]= img frame_num += 1 for i in range(frame_num): frame_list.append(tmp[i]) return frame_list def load_all_gfx(directory, colorkey=c.WHITE, accept=('.png', '.jpg', '.bmp', '.gif')): graphics = {} for name1 in os.listdir(directory): # subfolders under the folder resources\graphics dir1 = os.path.join(directory, name1) if os.path.isdir(dir1): for name2 in os.listdir(dir1): dir2 = os.path.join(dir1, name2) if os.path.isdir(dir2): # e.g. subfolders under the folder resources\graphics\Zombies for name3 in os.listdir(dir2): dir3 = os.path.join(dir2, name3) # e.g. subfolders or pics under the folder resources\graphics\Zombies\ConeheadZombie if os.path.isdir(dir3): # e.g. it's the folder resources\graphics\Zombies\ConeheadZombie\ConeheadZombieAttack image_name, _ = os.path.splitext(name3) graphics[image_name] = load_image_frames(dir3, image_name, colorkey, accept) else: # e.g. pics under the folder resources\graphics\Plants\Peashooter image_name, _ = os.path.splitext(name2) graphics[image_name] = load_image_frames(dir2, image_name, colorkey, accept) break else: # e.g. pics under the folder resources\graphics\Screen name, ext = os.path.splitext(name2) if ext.lower() in accept: img = pg.image.load(dir2) if img.get_alpha(): img = img.convert_alpha() else: img = img.convert() img.set_colorkey(colorkey) graphics[name] = img return graphics def loadZombieImageRect(): file_path = os.path.join('source', 'data', 'entity', 'zombie.json') f = open(file_path) data = json.load(f) f.close() return data[c.ZOMBIE_IMAGE_RECT] def loadPlantImageRect(): file_path = os.path.join('source', 'data', 'entity', 'plant.json') f = open(file_path) data = json.load(f) f.close() return data[c.PLANT_IMAGE_RECT] pg.init() pg.display.set_caption(c.ORIGINAL_CAPTION) SCREEN = pg.display.set_mode(c.SCREEN_SIZE) GFX = load_all_gfx(os.path.join("resources","graphics")) ZOMBIE_RECT = loadZombieImageRect() PLANT_RECT = loadPlantImageRect()
py
1a319e427f87af1d094eb6666894b81f7cc6f4b2
from datetime import date from silverstrike.models import Account, Split, Transaction def create_transaction(title, src, dst, amount, type, date=date.today(), category=None): t = Transaction.objects.create(title=title, date=date, transaction_type=type, src=src, dst=dst, amount=amount) Split.objects.bulk_create([ Split(title=title, account=src, opposing_account=dst, amount=-amount, transaction=t, date=date, category=category), Split(title=title, account=dst, opposing_account=src, amount=amount, transaction=t, date=date, category=category)]) return t def create_account(name, account_type=Account.AccountType.PERSONAL): return Account.objects.create(name=name, account_type=account_type)
py
1a319e8f5ba9b01bdd4c2984b082fc280e65e3b4
from PyBall.models import BaseModel class Metric(BaseModel): _fields = { 'group': {'default_value': None, 'field_type': str}, 'name': {'default_value': None, 'field_type': str}, 'unit': {'default_value': None, 'field_type': str}, 'metricId': {'default_value': None, 'field_type': int}, }
py
1a319f558ac25c16a0681e378a4b8caa7f491ed8
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Example Airflow DAG that show how to use various Dataproc operators to manage a cluster and submit jobs. """ import os from datetime import datetime from airflow import models from airflow.providers.google.cloud.operators.dataproc import ( DataprocCreateClusterOperator, DataprocCreateWorkflowTemplateOperator, DataprocDeleteClusterOperator, DataprocInstantiateWorkflowTemplateOperator, DataprocSubmitJobOperator, DataprocUpdateClusterOperator, ) from airflow.providers.google.cloud.sensors.dataproc import DataprocJobSensor PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "an-id") CLUSTER_NAME = os.environ.get("GCP_DATAPROC_CLUSTER_NAME", "example-cluster") REGION = os.environ.get("GCP_LOCATION", "europe-west1") ZONE = os.environ.get("GCP_REGION", "europe-west1-b") BUCKET = os.environ.get("GCP_DATAPROC_BUCKET", "dataproc-system-tests") OUTPUT_FOLDER = "wordcount" OUTPUT_PATH = f"gs://{BUCKET}/{OUTPUT_FOLDER}/" PYSPARK_MAIN = os.environ.get("PYSPARK_MAIN", "hello_world.py") PYSPARK_URI = f"gs://{BUCKET}/{PYSPARK_MAIN}" SPARKR_MAIN = os.environ.get("SPARKR_MAIN", "hello_world.R") SPARKR_URI = f"gs://{BUCKET}/{SPARKR_MAIN}" # Cluster definition # [START how_to_cloud_dataproc_create_cluster] CLUSTER_CONFIG = { "master_config": { "num_instances": 1, "machine_type_uri": "n1-standard-4", "disk_config": {"boot_disk_type": "pd-standard", "boot_disk_size_gb": 1024}, }, "worker_config": { "num_instances": 2, "machine_type_uri": "n1-standard-4", "disk_config": {"boot_disk_type": "pd-standard", "boot_disk_size_gb": 1024}, }, } # [END how_to_cloud_dataproc_create_cluster] # Update options # [START how_to_cloud_dataproc_updatemask_cluster_operator] CLUSTER_UPDATE = { "config": {"worker_config": {"num_instances": 3}, "secondary_worker_config": {"num_instances": 3}} } UPDATE_MASK = { "paths": ["config.worker_config.num_instances", "config.secondary_worker_config.num_instances"] } # [END how_to_cloud_dataproc_updatemask_cluster_operator] TIMEOUT = {"seconds": 1 * 24 * 60 * 60} # Jobs definitions # [START how_to_cloud_dataproc_pig_config] PIG_JOB = { "reference": {"project_id": PROJECT_ID}, "placement": {"cluster_name": CLUSTER_NAME}, "pig_job": {"query_list": {"queries": ["define sin HiveUDF('sin');"]}}, } # [END how_to_cloud_dataproc_pig_config] # [START how_to_cloud_dataproc_sparksql_config] SPARK_SQL_JOB = { "reference": {"project_id": PROJECT_ID}, "placement": {"cluster_name": CLUSTER_NAME}, "spark_sql_job": {"query_list": {"queries": ["SHOW DATABASES;"]}}, } # [END how_to_cloud_dataproc_sparksql_config] # [START how_to_cloud_dataproc_spark_config] SPARK_JOB = { "reference": {"project_id": PROJECT_ID}, "placement": {"cluster_name": CLUSTER_NAME}, "spark_job": { "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"], "main_class": "org.apache.spark.examples.SparkPi", }, } # [END how_to_cloud_dataproc_spark_config] # [START how_to_cloud_dataproc_pyspark_config] PYSPARK_JOB = { "reference": {"project_id": PROJECT_ID}, "placement": {"cluster_name": CLUSTER_NAME}, "pyspark_job": {"main_python_file_uri": PYSPARK_URI}, } # [END how_to_cloud_dataproc_pyspark_config] # [START how_to_cloud_dataproc_sparkr_config] SPARKR_JOB = { "reference": {"project_id": PROJECT_ID}, "placement": {"cluster_name": CLUSTER_NAME}, "spark_r_job": {"main_r_file_uri": SPARKR_URI}, } # [END how_to_cloud_dataproc_sparkr_config] # [START how_to_cloud_dataproc_hive_config] HIVE_JOB = { "reference": {"project_id": PROJECT_ID}, "placement": {"cluster_name": CLUSTER_NAME}, "hive_job": {"query_list": {"queries": ["SHOW DATABASES;"]}}, } # [END how_to_cloud_dataproc_hive_config] # [START how_to_cloud_dataproc_hadoop_config] HADOOP_JOB = { "reference": {"project_id": PROJECT_ID}, "placement": {"cluster_name": CLUSTER_NAME}, "hadoop_job": { "main_jar_file_uri": "file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar", "args": ["wordcount", "gs://pub/shakespeare/rose.txt", OUTPUT_PATH], }, } # [END how_to_cloud_dataproc_hadoop_config] WORKFLOW_NAME = "airflow-dataproc-test" WORKFLOW_TEMPLATE = { "id": WORKFLOW_NAME, "placement": { "managed_cluster": { "cluster_name": CLUSTER_NAME, "config": CLUSTER_CONFIG, } }, "jobs": [{"step_id": "pig_job_1", "pig_job": PIG_JOB["pig_job"]}], } with models.DAG( "example_gcp_dataproc", schedule_interval='@once', start_date=datetime(2021, 1, 1), catchup=False, ) as dag: # [START how_to_cloud_dataproc_create_cluster_operator] create_cluster = DataprocCreateClusterOperator( task_id="create_cluster", project_id=PROJECT_ID, cluster_config=CLUSTER_CONFIG, region=REGION, cluster_name=CLUSTER_NAME, ) # [END how_to_cloud_dataproc_create_cluster_operator] # [START how_to_cloud_dataproc_update_cluster_operator] scale_cluster = DataprocUpdateClusterOperator( task_id="scale_cluster", cluster_name=CLUSTER_NAME, cluster=CLUSTER_UPDATE, update_mask=UPDATE_MASK, graceful_decommission_timeout=TIMEOUT, project_id=PROJECT_ID, region=REGION, ) # [END how_to_cloud_dataproc_update_cluster_operator] # [START how_to_cloud_dataproc_create_workflow_template] create_workflow_template = DataprocCreateWorkflowTemplateOperator( task_id="create_workflow_template", template=WORKFLOW_TEMPLATE, project_id=PROJECT_ID, region=REGION, ) # [END how_to_cloud_dataproc_create_workflow_template] # [START how_to_cloud_dataproc_trigger_workflow_template] trigger_workflow = DataprocInstantiateWorkflowTemplateOperator( task_id="trigger_workflow", region=REGION, project_id=PROJECT_ID, template_id=WORKFLOW_NAME ) # [END how_to_cloud_dataproc_trigger_workflow_template] pig_task = DataprocSubmitJobOperator( task_id="pig_task", job=PIG_JOB, region=REGION, project_id=PROJECT_ID ) spark_sql_task = DataprocSubmitJobOperator( task_id="spark_sql_task", job=SPARK_SQL_JOB, region=REGION, project_id=PROJECT_ID ) spark_task = DataprocSubmitJobOperator( task_id="spark_task", job=SPARK_JOB, region=REGION, project_id=PROJECT_ID ) # [START cloud_dataproc_async_submit_sensor] spark_task_async = DataprocSubmitJobOperator( task_id="spark_task_async", job=SPARK_JOB, region=REGION, project_id=PROJECT_ID, asynchronous=True ) spark_task_async_sensor = DataprocJobSensor( task_id='spark_task_async_sensor_task', region=REGION, project_id=PROJECT_ID, dataproc_job_id=spark_task_async.output, poke_interval=10, ) # [END cloud_dataproc_async_submit_sensor] # [START how_to_cloud_dataproc_submit_job_to_cluster_operator] pyspark_task = DataprocSubmitJobOperator( task_id="pyspark_task", job=PYSPARK_JOB, region=REGION, project_id=PROJECT_ID ) # [END how_to_cloud_dataproc_submit_job_to_cluster_operator] sparkr_task = DataprocSubmitJobOperator( task_id="sparkr_task", job=SPARKR_JOB, region=REGION, project_id=PROJECT_ID ) hive_task = DataprocSubmitJobOperator( task_id="hive_task", job=HIVE_JOB, region=REGION, project_id=PROJECT_ID ) hadoop_task = DataprocSubmitJobOperator( task_id="hadoop_task", job=HADOOP_JOB, region=REGION, project_id=PROJECT_ID ) # [START how_to_cloud_dataproc_delete_cluster_operator] delete_cluster = DataprocDeleteClusterOperator( task_id="delete_cluster", project_id=PROJECT_ID, cluster_name=CLUSTER_NAME, region=REGION ) # [END how_to_cloud_dataproc_delete_cluster_operator] create_cluster >> scale_cluster scale_cluster >> create_workflow_template >> trigger_workflow >> delete_cluster scale_cluster >> hive_task >> delete_cluster scale_cluster >> pig_task >> delete_cluster scale_cluster >> spark_sql_task >> delete_cluster scale_cluster >> spark_task >> delete_cluster scale_cluster >> spark_task_async spark_task_async_sensor >> delete_cluster scale_cluster >> pyspark_task >> delete_cluster scale_cluster >> sparkr_task >> delete_cluster scale_cluster >> hadoop_task >> delete_cluster # Task dependency created via `XComArgs`: # spark_task_async >> spark_task_async_sensor
py
1a31a12c44deccc0f336d6af44167a1c6d9a6790
# Generated by Django 3.2.12 on 2022-04-27 20:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0007_StudentProxyModel'), ] operations = [ migrations.AddField( model_name='user', name='github_username', field=models.CharField(blank=True, db_index=True, default='', max_length=256), ), migrations.AddField( model_name='user', name='linkedin_username', field=models.CharField(blank=True, db_index=True, default='', max_length=256), ), migrations.AddConstraint( model_name='user', constraint=models.UniqueConstraint(condition=models.Q(('github_username', ''), _negated=True), fields=('github_username',), name='unique_github_username'), ), migrations.AddConstraint( model_name='user', constraint=models.UniqueConstraint(condition=models.Q(('linkedin_username', ''), _negated=True), fields=('linkedin_username',), name='unique_linkedin_username'), ), ]
py
1a31a1fa6617e041b3f4e1eaa1cb5f9af9335108
# -*- coding: utf-8 -*- ''' Provide external pillar data from RethinkDB .. versionadded:: 2018.3.0 :depends: rethinkdb (on the salt-master) salt master rethinkdb configuration =================================== These variables must be configured in your master configuration file. * ``rethinkdb.host`` - The RethinkDB server. Defaults to ``'salt'`` * ``rethinkdb.port`` - The port the RethinkDB server listens on. Defaults to ``'28015'`` * ``rethinkdb.database`` - The database to connect to. Defaults to ``'salt'`` * ``rethinkdb.username`` - The username for connecting to RethinkDB. Defaults to ``''`` * ``rethinkdb.password`` - The password for connecting to RethinkDB. Defaults to ``''`` salt-master ext_pillar configuration ==================================== The ext_pillar function arguments are given in single line dictionary notation. .. code-block:: yaml ext_pillar: - rethinkdb: {table: ext_pillar, id_field: minion_id, field: pillar_root, pillar_key: external_pillar} In the example above the following happens. * The salt-master will look for external pillars in the 'ext_pillar' table on the RethinkDB host * The minion id will be matched against the 'minion_id' field * Pillars will be retrieved from the nested field 'pillar_root' * Found pillars will be merged inside a key called 'external_pillar' Module Documentation ==================== ''' from __future__ import absolute_import, print_function, unicode_literals # Import python libraries import logging # Import 3rd party libraries try: import rethinkdb HAS_RETHINKDB = True except ImportError: HAS_RETHINKDB = False __virtualname__ = 'rethinkdb' __opts__ = { 'rethinkdb.host': 'salt', 'rethinkdb.port': '28015', 'rethinkdb.database': 'salt', 'rethinkdb.username': None, 'rethinkdb.password': None } def __virtual__(): if not HAS_RETHINKDB: return False return True # Configure logging log = logging.getLogger(__name__) def ext_pillar(minion_id, pillar, table='pillar', id_field=None, field=None, pillar_key=None): ''' Collect minion external pillars from a RethinkDB database Arguments: * `table`: The RethinkDB table containing external pillar information. Defaults to ``'pillar'`` * `id_field`: Field in document containing the minion id. If blank then we assume the table index matches minion ids * `field`: Specific field in the document used for pillar data, if blank then the entire document will be used * `pillar_key`: The salt-master will nest found external pillars under this key before merging into the minion pillars. If blank, external pillars will be merged at top level ''' host = __opts__['rethinkdb.host'] port = __opts__['rethinkdb.port'] database = __opts__['rethinkdb.database'] username = __opts__['rethinkdb.username'] password = __opts__['rethinkdb.password'] log.debug('Connecting to %s:%s as user \'%s\' for RethinkDB ext_pillar', host, port, username) # Connect to the database conn = rethinkdb.connect(host=host, port=port, db=database, user=username, password=password) data = None try: if id_field: log.debug('ext_pillar.rethinkdb: looking up pillar. ' 'table: %s, field: %s, minion: %s', table, id_field, minion_id) if field: data = rethinkdb.table(table).filter( {id_field: minion_id}).pluck(field).run(conn) else: data = rethinkdb.table(table).filter( {id_field: minion_id}).run(conn) else: log.debug('ext_pillar.rethinkdb: looking up pillar. ' 'table: %s, field: id, minion: %s', table, minion_id) if field: data = rethinkdb.table(table).get(minion_id).pluck(field).run( conn) else: data = rethinkdb.table(table).get(minion_id).run(conn) finally: if conn.is_open(): conn.close() if data.items: # Return nothing if multiple documents are found for a minion if len(data.items) > 1: log.error('ext_pillar.rethinkdb: ambiguous documents found for ' 'minion %s', minion_id) return {} else: result = data.items.pop() if pillar_key: return {pillar_key: result} return result else: # No document found in the database log.debug('ext_pillar.rethinkdb: no document found') return {}
py
1a31a23f86a579c13b6439bbb8164dd5f5021b3e
# Copyright 2013 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from oslo_config import cfg CONF = cfg.CONF class FilterTests(object): # Provide support for checking if a batch of list items all # exist within a contiguous range in a total list def _match_with_list(self, this_batch, total_list, batch_size=None, list_start=None, list_end=None): if batch_size is None: batch_size = len(this_batch) if list_start is None: list_start = 0 if list_end is None: list_end = len(total_list) for batch_item in range(0, batch_size): found = False for list_item in range(list_start, list_end): if this_batch[batch_item]['id'] == total_list[list_item]['id']: found = True self.assertTrue(found) def _create_entity(self, entity_type): f = getattr(self.identity_api, 'create_%s' % entity_type, None) if f is None: f = getattr(self.assignment_api, 'create_%s' % entity_type) return f def _delete_entity(self, entity_type): f = getattr(self.identity_api, 'delete_%s' % entity_type, None) if f is None: f = getattr(self.assignment_api, 'delete_%s' % entity_type) return f def _list_entities(self, entity_type): f = getattr(self.identity_api, 'list_%ss' % entity_type, None) if f is None: f = getattr(self.assignment_api, 'list_%ss' % entity_type) return f def _create_one_entity(self, entity_type, domain_id, name): new_entity = {'name': name, 'domain_id': domain_id} if entity_type in ['user', 'group']: # The manager layer creates the ID for users and groups new_entity = self._create_entity(entity_type)(new_entity) else: new_entity['id'] = '0000' + uuid.uuid4().hex self._create_entity(entity_type)(new_entity['id'], new_entity) return new_entity def _create_test_data(self, entity_type, number, domain_id=None, name_dict=None): """Create entity test data :param entity_type: type of entity to create, e.g. 'user', group' etc. :param number: number of entities to create, :param domain_id: if not defined, all users will be created in the default domain. :param name_dict: optional dict containing entity number and name pairs """ entity_list = [] if domain_id is None: domain_id = CONF.identity.default_domain_id name_dict = name_dict or {} for x in range(number): # If this index has a name defined in the name_dict, then use it name = name_dict.get(x, uuid.uuid4().hex) new_entity = self._create_one_entity(entity_type, domain_id, name) entity_list.append(new_entity) return entity_list def _delete_test_data(self, entity_type, entity_list): for entity in entity_list: self._delete_entity(entity_type)(entity['id'])
py
1a31a34a3be78c220b0ec87af77ced209111f14e
import numpy as np import pickle import os import time import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms from PIL import Image class ImageWriter(object): def __init__(self, data_dir, dataset, unnormalizer): self.data_dir = data_dir self.dataset = dataset self.unnormalizer = unnormalizer self.init_data() def init_data(self): if not os.path.exists(self.data_dir): os.mkdir(self.data_dir) self.output_dir = os.path.join(self.data_dir, "{}_by_id".format(self.dataset)) print(self.output_dir) if not os.path.exists(self.output_dir): os.mkdir(self.output_dir) def write_partition(self, partition): to_pil = torchvision.transforms.ToPILImage() for elem in partition: img_tensor = elem[0].cpu() unnormalized = self.unnormalizer(img_tensor) img = to_pil(unnormalized) img_id = elem[2] img_file = os.path.join(self.output_dir, "image-{}.png".format(img_id)) img.save(img_file, 'PNG') class ProbabilityByImageLogger(object): def __init__(self, pickle_dir, pickle_prefix, max_num_images=None): self.pickle_dir = pickle_dir self.pickle_prefix = pickle_prefix self.init_data() self.max_num_images = max_num_images self.probabilities = {} self.backward_selects = {} self.forward_selects = {} self.losses = {} def next_epoch(self): self.write() def init_data(self): # Store frequency of each image getting backpropped data_pickle_dir = os.path.join(self.pickle_dir, "probabilities_by_image") self.probabilities_pickle_file = os.path.join(data_pickle_dir, "{}_probabilities".format(self.pickle_prefix)) self.backward_selects_pickle_file = os.path.join(data_pickle_dir, "{}_selects".format(self.pickle_prefix)) self.forward_selects_pickle_file = os.path.join(data_pickle_dir, "{}_forwardselects".format(self.pickle_prefix)) self.losses_pickle_file = os.path.join(data_pickle_dir, "{}_losses".format(self.pickle_prefix)) # Make images hist pickle path if not os.path.exists(data_pickle_dir): os.mkdir(data_pickle_dir) def update_data(self, image_ids, probabilities, backward_selects, forward_selects, losses): for image_id, probability in zip(image_ids, probabilities): if image_id not in self.probabilities.keys(): if self.max_num_images: if image_id >= self.max_num_images: continue self.probabilities[image_id] = [] self.probabilities[image_id].append(probability) for image_id, is_selected in zip(image_ids, backward_selects): if image_id not in self.backward_selects.keys(): if self.max_num_images: if image_id >= self.max_num_images: continue self.backward_selects[image_id] = [] self.backward_selects[image_id].append(int(is_selected)) for image_id, is_selected in zip(image_ids, forward_selects): if image_id not in self.forward_selects.keys(): if self.max_num_images: if image_id >= self.max_num_images: continue self.forward_selects[image_id] = [] self.forward_selects[image_id].append(int(is_selected)) for image_id, loss in zip(image_ids, losses): if image_id not in self.losses.keys(): if self.max_num_images: if image_id >= self.max_num_images: continue self.losses[image_id] = [] self.losses[image_id].append(loss) def handle_backward_batch(self, batch): ids = [em.example.image_id for em in batch] probabilities = [em.example.get_sp(False) for em in batch] backward_selects = [em.example.get_select(False) for em in batch] forward_selects = [em.example.get_select(True) for em in batch] losses = [em.example.loss for em in batch] self.update_data(ids, probabilities, backward_selects, forward_selects, losses) def write(self): latest_file = "{}.pickle".format(self.probabilities_pickle_file) with open(latest_file, "wb") as handle: print(latest_file) pickle.dump(self.probabilities, handle, protocol=pickle.HIGHEST_PROTOCOL) latest_file = "{}.pickle".format(self.backward_selects_pickle_file) with open(latest_file, "wb") as handle: print(latest_file) pickle.dump(self.backward_selects, handle, protocol=pickle.HIGHEST_PROTOCOL) latest_file = "{}.pickle".format(self.forward_selects_pickle_file) with open(latest_file, "wb") as handle: print(latest_file) pickle.dump(self.forward_selects, handle, protocol=pickle.HIGHEST_PROTOCOL) class ImageIdHistLogger(object): def __init__(self, pickle_dir, pickle_prefix, num_images, log_interval): self.current_epoch = 0 self.pickle_dir = pickle_dir self.pickle_prefix = pickle_prefix self.log_interval = log_interval self.init_data(num_images) def next_epoch(self): self.write() self.current_epoch += 1 def init_data(self, num_images): # Store frequency of each image getting backpropped keys = range(num_images) self.data = dict(zip(keys, [0] * len(keys))) data_pickle_dir = os.path.join(self.pickle_dir, "image_id_hist") self.data_pickle_file = os.path.join(data_pickle_dir, "{}_images_hist".format(self.pickle_prefix)) # Make images hist pickle path if not os.path.exists(data_pickle_dir): os.mkdir(data_pickle_dir) def update_data(self, image_ids): for chosen_id in image_ids: self.data[chosen_id] += 1 def handle_backward_batch(self, batch): ids = [em.example.image_id.item() for em in batch if em.example.select] self.update_data(ids) def write(self): latest_file = "{}.pickle".format(self.data_pickle_file) with open(latest_file, "wb") as handle: print(latest_file) pickle.dump(self.data, handle, protocol=pickle.HIGHEST_PROTOCOL) epoch_file = "{}.epoch_{}.pickle".format(self.data_pickle_file, self.current_epoch) if self.current_epoch % self.log_interval == 0: with open(epoch_file, "wb") as handle: print(epoch_file) pickle.dump(self.data, handle, protocol=pickle.HIGHEST_PROTOCOL) class LossesByEpochLogger(object): def __init__(self, pickle_dir, pickle_prefix, log_frequency): self.current_epoch = 0 self.pickle_dir = pickle_dir self.log_frequency = log_frequency self.pickle_prefix = pickle_prefix self.init_data() def next_epoch(self): self.write() self.current_epoch += 1 self.data = [] def init_data(self): # Store frequency of each image getting backpropped self.data = [] data_pickle_dir = os.path.join(self.pickle_dir, "losses") self.data_pickle_file = os.path.join(data_pickle_dir, "{}_losses".format(self.pickle_prefix)) # Make images hist pickle path if not os.path.exists(data_pickle_dir): os.mkdir(data_pickle_dir) def update_data(self, losses): self.data += losses def handle_backward_batch(self, batch): losses = [em.example.loss.item() for em in batch] self.update_data(losses) def write(self): epoch_file = "{}.epoch_{}.pickle".format(self.data_pickle_file, self.current_epoch) if self.current_epoch % self.log_frequency == 0: with open(epoch_file, "wb") as handle: print(epoch_file) pickle.dump(self.data, handle, protocol=pickle.HIGHEST_PROTOCOL) class LossesByImageLogger(object): def __init__(self, pickle_dir, pickle_prefix, max_num_images=None): self.pickle_dir = pickle_dir self.pickle_prefix = pickle_prefix self.init_data() self.max_num_images = max_num_images self.data = {} def next_epoch(self): self.write() def init_data(self): # Store frequency of each image getting backpropped data_pickle_dir = os.path.join(self.pickle_dir, "losses_by_image") self.data_pickle_file = os.path.join(data_pickle_dir, "{}_losses".format(self.pickle_prefix)) # Make images hist pickle path if not os.path.exists(data_pickle_dir): os.mkdir(data_pickle_dir) def update_data(self, image_ids, losses): for image_id, loss in zip(image_ids, losses): if image_id not in self.data.keys(): if self.max_num_images: if image_id >= self.max_num_images: continue self.data[image_id] = [] self.data[image_id].append(loss) def handle_backward_batch(self, batch): ids = [em.example.image_id for em in batch] losses = [em.example.loss for em in batch] self.update_data(ids, losses) def write(self): latest_file = "{}.pickle".format(self.data_pickle_file) with open(latest_file, "wb") as handle: print(latest_file) pickle.dump(self.data, handle, protocol=pickle.HIGHEST_PROTOCOL) class VariancesByImageLogger(object): def __init__(self, pickle_dir, pickle_prefix, max_num_images=None): self.pickle_dir = pickle_dir self.pickle_prefix = pickle_prefix self.init_data() self.max_num_images = max_num_images self.data = {} def next_epoch(self): self.write() def init_data(self): # Store frequency of each image getting backpropped data_pickle_dir = os.path.join(self.pickle_dir, "variance_by_image") self.data_pickle_file = os.path.join(data_pickle_dir, "{}_variances".format(self.pickle_prefix)) # Make images hist pickle path if not os.path.exists(data_pickle_dir): os.mkdir(data_pickle_dir) def update_data(self, image_ids, losses): for image_id, loss in zip(image_ids, losses): if image_id not in self.data.keys(): if self.max_num_images: if image_id >= self.max_num_images: continue self.data[image_id] = [] self.data[image_id].append(loss) def handle_backward_batch(self, batch): ids = [em.example.image_id for em in batch] losses = [em.example.loss for em in batch] self.update_data(ids, losses) def write(self): variance = {} for image_id in self.data.keys(): variance[image_id] = np.var(self.data[image_id]) latest_file = "{}.pickle".format(self.data_pickle_file) with open(latest_file, "wb") as handle: print(latest_file) pickle.dump(variance, handle, protocol=pickle.HIGHEST_PROTOCOL) class VariancesByEpochLogger(object): def __init__(self, pickle_dir, pickle_prefix, log_frequency): self.current_epoch = 0 self.pickle_dir = pickle_dir self.log_frequency = log_frequency self.pickle_prefix = pickle_prefix self.init_data() def next_epoch(self): self.write() self.current_epoch += 1 self.data = [] def init_data(self): # Store frequency of each image getting backpropped self.data = [] data_pickle_dir = os.path.join(self.pickle_dir, "variance_by_epoch") self.data_pickle_file = os.path.join(data_pickle_dir, "{}_variances".format(self.pickle_prefix)) # Make images hist pickle path if not os.path.exists(data_pickle_dir): os.mkdir(data_pickle_dir) def update_data(self, variance): self.data += [variance] def handle_backward_batch(self, batch): losses = [em.example.loss.item() for em in batch] variance = np.var(losses) self.update_data(variance) def write(self): epoch_file = "{}.epoch_{}.pickle".format(self.data_pickle_file, self.current_epoch) if self.current_epoch % self.log_frequency == 0: with open(epoch_file, "wb") as handle: print(epoch_file) pickle.dump(self.data, handle, protocol=pickle.HIGHEST_PROTOCOL) class VariancesByAverageProbabilityByImageLogger(object): def __init__(self, pickle_dir, pickle_prefix, max_num_images=None): self.pickle_dir = pickle_dir self.pickle_prefix = pickle_prefix self.init_data() self.max_num_images = max_num_images self.data = {"losses": {}, "probabilities": {}} def next_epoch(self): self.write() def init_data(self): # Store frequency of each image getting backpropped data_pickle_dir = os.path.join(self.pickle_dir, "variance_by_avg_prob") self.data_pickle_file = os.path.join(data_pickle_dir, "{}_variances".format(self.pickle_prefix)) # Make images hist pickle path if not os.path.exists(data_pickle_dir): os.mkdir(data_pickle_dir) def update_data(self, image_ids, probabilities, losses): for image_id, prob, loss in zip(image_ids, probabilities, losses): if image_id not in self.data["losses"].keys(): if self.max_num_images: if image_id >= self.max_num_images: continue self.data["losses"][image_id] = [] self.data["probabilities"][image_id] = [] self.data["losses"][image_id].append(loss) self.data["probabilities"][image_id].append(prob) def handle_backward_batch(self, batch): ids = [em.example.image_id for em in batch] losses = [em.example.loss for em in batch] probabilities = [em.example.select_probability for em in batch] self.update_data(ids, probabilities, losses) def write(self): out = {} for image_id in self.data["losses"].keys(): var = np.var(self.data["losses"][image_id]) avg_prob = np.average(self.data["probabilities"][image_id]) out[image_id] = (avg_prob, var) latest_file = "{}.pickle".format(self.data_pickle_file) with open(latest_file, "wb") as handle: print(latest_file) pickle.dump(out, handle, protocol=pickle.HIGHEST_PROTOCOL) class Logger(object): def __init__(self, log_interval=1, epoch=0, num_backpropped=0, num_skipped=0, num_skipped_fp=0, num_forwards=0, start_time_seconds=None): self.current_epoch = epoch self.current_batch = 0 self.log_interval = log_interval self.global_num_backpropped = num_backpropped self.global_num_skipped = num_skipped self.global_num_skipped_fp = num_skipped_fp self.global_num_forwards= num_forwards self.partition_loss = 0 self.partition_backpropped_loss = 0 self.partition_num_backpropped = 0 self.partition_num_skipped = 0 self.partition_num_correct = 0 self.debug = False if start_time_seconds is None: self.start_time_seconds = time.time() else: self.start_time_seconds = start_time_seconds def next_epoch(self): self.current_epoch += 1 @property def partition_seen(self): return self.partition_num_backpropped + self.partition_num_skipped @property def average_partition_loss(self): return self.partition_loss / float(self.partition_seen) @property def average_partition_backpropped_loss(self): return self.partition_backpropped_loss / float(self.partition_num_backpropped) @property def partition_accuracy(self): return 100. * self.partition_num_correct / self.partition_seen @property def train_debug(self): return 'train_debug,{},{},{},{},{:.6f},{},{:.6f},{:4f}'.format( self.current_epoch, self.global_num_backpropped, self.global_num_skipped, self.global_num_skipped_fp, self.average_partition_backpropped_loss, self.global_num_forwards, self.partition_accuracy, time.time() - self.start_time_seconds) def next_partition(self): self.partition_loss = 0 self.partition_backpropped_loss = 0 self.partition_num_backpropped = 0 self.partition_num_skipped = 0 self.partition_num_correct = 0 def handle_forward_batch(self, batch): # Populate batch_stats # self.partition_loss += sum([example.loss for em in batch]) num_skipped_fp = sum([int(not em.example.forward_select) for em in batch]) self.global_num_skipped_fp += num_skipped_fp self.global_num_forwards += sum([int(em.example.forward_select) for em in batch]) def handle_backward_batch(self, batch): self.current_batch += 1 num_backpropped = sum([int(em.example.select) for em in batch]) num_skipped = sum([int(not em.example.select) for em in batch]) self.global_num_backpropped += num_backpropped self.global_num_skipped += num_skipped if self.debug: self.partition_num_backpropped += num_backpropped self.partition_num_skipped += num_skipped self.partition_backpropped_loss += sum([em.example.backpropped_loss for em in batch if em.example.backpropped_loss]) chosen = [em for em in batch if em.example.select] self.partition_num_correct += sum([1 for em in chosen if em.example.correct]) self.write() def write(self): if self.current_batch % self.log_interval == 0: print(self.train_debug)
py
1a31a43149f6200eacb469f6da5159ed00aa95a2
from bolinette import types, data from bolinette.data import ext, mapping from bolinette.data.defaults.entities import Role @ext.model("role") class RoleModel(data.Model[Role]): id = types.defs.Column(types.db.Integer, primary_key=True) name = types.defs.Column( types.db.String, unique=True, nullable=False, entity_key=True ) def payloads(self): yield [mapping.Column(self.name, required=True)] def responses(self): yield [mapping.Column(self.name)] yield "complete", [ mapping.Column(self.name), mapping.List(mapping.Definition("user"), key="users"), ]
py
1a31a535e1341605c1e381ab96a134023e21db77
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class FetchOptions(Package): """Mock package with fetch_options.""" homepage = "http://www.fetch-options-example.com" url = 'https://example.com/some/tarball-1.0.tar.gz' fetch_options = {'timeout': 42, 'cookie': 'foobar'} timeout = {'timeout': 65} cookie = {'cookie': 'baz'} version('1.2', 'abc12', fetch_options=cookie) version('1.1', 'abc11', fetch_options=timeout) version('1.0', 'abc10')
py
1a31a6eebd02a1e312035417b22205fd65a4de08
import Doberman class ValveControlNode(Doberman.ControlNode): """ A logic node to control a nitrogen level valve, based on a levelmeter and a control valve, with optional inhibits from a vacuum or a scale """ def process(self, package): liquid_level = package['liquid_level'] fill_rate = package['liquid_level_rate'] valve_status = package['valve_state'] low_level = self.config['liquid_level_low'] high_level = self.config['liquid_level_high'] min_fill_rate = self.config['min_fill_rate'] max_fill_time = self.config['max_fill_time'] max_iso_vac = self.config.get('max_iso_vac', -1) min_scale = self.config.get('min_scale', -1) vac_is_good = max_iso_vac == -1 or package.get('iso_vac_pressure', 0) < max_iso_vac scale_is_good = min_scale == -1 or package.get('scale_weight', 0) < min_scale some_value = 10000 # FIXME if liquid_level < low_level: if valve_status == 0: # valve is closed, level is too low if vac_is_good and scale_is_good: # open the valve self.set_output(1) self.valve_opened = package['time'] self.logger.info('Scheduling valve opening') else: self.logger.info('Would love to open the valve but either the scale or vac is out of range') else: # valve is open, check to see for how long if hasattr(self, 'valve_opened'): if (dt := (package['time']-self.valve_opened)) > some_value: # filling too slowly! Something fishy # TODO something reasonable pass else: # probably still waiting for the pipes to chill pass else: # we don't have a self.valve_opened, valve was probably opened by something else # TODO how to handle? pass elif low_level < liquid_level < high_level: if valve_status == 1: if hasattr(self, 'valve_opened'): if (dt := (package['time']-self.valve_opened)) > max_fill_time: # filling too long! # TODO something reasonable self.logger.critical(f'Valve has been open for {dt/60:.1f} minutes without reaching full, something wrong?') else: if fill_rate < min_fill_rate and dt > some_value: # filling too slowly! Something fishy # TODO something reasonable pass else: fill_pct = (liquid_level - low_level)/(high_level - low_level) self.logger.debug(f'Valve has been open for {int(dt//60)}m{int(dt%60)}s, filling at {fill_rate:.1f} ({fill_pct:.1f}%)') else: # we don't have a self.valve_opened, valve was probably opened by something else # TODO how to handle? pass else: # valve is closed, we're in "normal" conditions pass else: # liquid level > high if valve_status == 1: # reached FULL self.set_output(0) self.logger.info('Scheduling valve closing') else: # valve is closed pass
py
1a31a8f5863a86eb8d319300f7a27f54d199a016
# # Copyright (c) 2018 nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import OrderedDict from functools import partial import attr from plugincode.scan import ScanPlugin from plugincode.scan import scan_impl from scancode import CommandLineOption from scancode import MISC_GROUP from scancode import SCAN_OPTIONS_GROUP from scancode import SCAN_GROUP from scancode.api import DEJACODE_LICENSE_URL def reindex_licenses(ctx, param, value): if not value or ctx.resilient_parsing: return # TODO: check for temp file configuration and use that for the cache!!! from licensedcode.cache import get_cached_index import click click.echo('Checking and rebuilding the license index...') get_cached_index(check_consistency=True,) click.echo('Done.') ctx.exit(0) @scan_impl class LicenseScanner(ScanPlugin): """ Scan a Resource for licenses. """ resource_attributes = OrderedDict([ ('licenses', attr.ib(default=attr.Factory(list))), ('license_expressions', attr.ib(default=attr.Factory(list))), ]) sort_order = 2 options = [ CommandLineOption(('-l', '--license'), is_flag=True, help='Scan <input> for licenses.', help_group=SCAN_GROUP, sort_order=10), CommandLineOption(('--license-score',), type=int, default=0, show_default=True, required_options=['license'], help='Do not return license matches with a score lower than this score. ' 'A number between 0 and 100.', help_group=SCAN_OPTIONS_GROUP), CommandLineOption(('--license-text',), is_flag=True, required_options=['license'], help='Include the detected licenses matched text.', help_group=SCAN_OPTIONS_GROUP), CommandLineOption(('--license-text-diagnostics',), is_flag=True, required_options=['license_text'], help='In the matched license text, include diagnostic highlights ' 'surrounding with square brackets [] words that are not matched.', help_group=SCAN_OPTIONS_GROUP), CommandLineOption(('--license-url-template',), default=DEJACODE_LICENSE_URL, show_default=True, required_options=['license'], help='Set the template URL used for the license reference URLs. ' 'Curly braces ({}) are replaced by the license key.', help_group=SCAN_OPTIONS_GROUP), CommandLineOption(('--license-diag',), # not yet supported in Click 6.7 but added in CommandLineOption hidden=True, is_flag=True, required_options=['license'], help='(DEPRECATED: this is always included by default now). ' 'Include diagnostic information in license scan results.', help_group=SCAN_OPTIONS_GROUP), CommandLineOption( ('--reindex-licenses',), is_flag=True, is_eager=True, callback=reindex_licenses, help='Check the license index cache and reindex if needed and exit.', help_group=MISC_GROUP) ] def is_enabled(self, license, **kwargs): # NOQA return license def setup(self, **kwargs): """ This is a cache warmup such that child process inherit from this. """ from licensedcode.cache import get_index get_index(return_value=False) def get_scanner(self, license_score=0, license_text=False, license_text_diagnostics=False, license_url_template=DEJACODE_LICENSE_URL, **kwargs): from scancode.api import get_licenses return partial(get_licenses, min_score=license_score, include_text=license_text, license_text_diagnostics=license_text_diagnostics, license_url_template=license_url_template )
py
1a31a9b32e0cb4abac221f438542a0fd55e55081
import os import sys # Try to mute and then load TensorFlow and Keras # Muting seems to not work lately on Linux in any way os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' stdin = sys.stdin sys.stdin = open(os.devnull, 'w') stderr = sys.stderr sys.stderr = open(os.devnull, 'w') import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) from keras.callbacks import Callback sys.stdin = stdin sys.stderr = stderr # Own Tensorboard class giving ability to use single writer across multiple .fit() calls # Allows us also to easily log additional data # Dramatically decreases amount of data being saved into Tensorboard logs and write time (as appends to one file) class TensorBoard(Callback): # Set initial step and writer (we want one log file for all .fit() calls) def __init__(self, log_dir): self.step = 1 self.log_dir = log_dir self.writer = tf.summary.FileWriter(self.log_dir) # Saves logs with our step number (otherwise every .fit() will start writing from 0th step) def on_epoch_end(self, epoch, logs=None): self.update_stats(self.step, **logs) # Custom method for saving own (and also internal) metrics (can be called externally) def update_stats(self, step, **stats): self._write_logs(stats, step) # More or less the same writer as in Keras' Tensorboard callback # Physically writes to the log files def _write_logs(self, logs, index): for name, value in logs.items(): if name in ['batch', 'size']: continue summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name self.writer.add_summary(summary, index) self.writer.flush()
py
1a31a9d946b5cb3f9d1ec0a83e14532bcc908c0d
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async.base.exchange import Exchange from ccxt.base.errors import ExchangeError from ccxt.base.errors import OrderNotFound class bitflyer (Exchange): def describe(self): return self.deep_extend(super(bitflyer, self).describe(), { 'id': 'bitflyer', 'name': 'bitFlyer', 'countries': 'JP', 'version': 'v1', 'rateLimit': 1000, # their nonce-timestamp is in seconds... 'has': { 'CORS': False, 'withdraw': True, 'fetchMyTrades': True, 'fetchOrders': True, 'fetchOrder': True, 'fetchOpenOrders': 'emulated', 'fetchClosedOrders': 'emulated', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/28051642-56154182-660e-11e7-9b0d-6042d1e6edd8.jpg', 'api': 'https://api.bitflyer.jp', 'www': 'https://bitflyer.jp', 'doc': 'https://bitflyer.jp/API', }, 'api': { 'public': { 'get': [ 'getmarkets/usa', # new(wip) 'getmarkets/eu', # new(wip) 'getmarkets', # or 'markets' 'getboard', # ... 'getticker', 'getexecutions', 'gethealth', 'getchats', ], }, 'private': { 'get': [ 'getpermissions', 'getbalance', 'getcollateral', 'getcollateralaccounts', 'getaddresses', 'getcoinins', 'getcoinouts', 'getbankaccounts', 'getdeposits', 'getwithdrawals', 'getchildorders', 'getparentorders', 'getparentorder', 'getexecutions', 'getpositions', 'gettradingcommission', ], 'post': [ 'sendcoin', 'withdraw', 'sendchildorder', 'cancelchildorder', 'sendparentorder', 'cancelparentorder', 'cancelallchildorders', ], }, }, 'fees': { 'trading': { 'maker': 0.25 / 100, 'taker': 0.25 / 100, }, }, }) async def fetch_markets(self): jp_markets = await self.publicGetGetmarkets() us_markets = await self.publicGetGetmarketsUsa() eu_markets = await self.publicGetGetmarketsEu() markets = self.array_concat(jp_markets, us_markets) markets = self.array_concat(markets, eu_markets) result = [] for p in range(0, len(markets)): market = markets[p] id = market['product_code'] currencies = id.split('_') base = None quote = None symbol = id numCurrencies = len(currencies) if numCurrencies == 1: base = symbol[0:3] quote = symbol[3:6] elif numCurrencies == 2: base = currencies[0] quote = currencies[1] symbol = base + '/' + quote else: base = currencies[1] quote = currencies[2] result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'info': market, }) return result async def fetch_balance(self, params={}): await self.load_markets() response = await self.privateGetGetbalance() balances = {} for b in range(0, len(response)): account = response[b] currency = account['currency_code'] balances[currency] = account result = {'info': response} currencies = list(self.currencies.keys()) for i in range(0, len(currencies)): currency = currencies[i] account = self.account() if currency in balances: account['total'] = balances[currency]['amount'] account['free'] = balances[currency]['available'] account['used'] = account['total'] - account['free'] result[currency] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() orderbook = await self.publicGetGetboard(self.extend({ 'product_code': self.market_id(symbol), }, params)) return self.parse_order_book(orderbook, None, 'bids', 'asks', 'price', 'size') async def fetch_ticker(self, symbol, params={}): await self.load_markets() ticker = await self.publicGetGetticker(self.extend({ 'product_code': self.market_id(symbol), }, params)) timestamp = self.parse8601(ticker['timestamp']) last = float(ticker['ltp']) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': None, 'low': None, 'bid': float(ticker['best_bid']), 'bidVolume': None, 'ask': float(ticker['best_ask']), 'askVolume': None, 'vwap': None, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': float(ticker['volume_by_product']), 'quoteVolume': None, 'info': ticker, } def parse_trade(self, trade, market=None): side = None order = None if 'side' in trade: if trade['side']: side = trade['side'].lower() id = side + '_child_order_acceptance_id' if id in trade: order = trade[id] timestamp = self.parse8601(trade['exec_date']) return { 'id': str(trade['id']), 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': market['symbol'], 'order': order, 'type': None, 'side': side, 'price': trade['price'], 'amount': trade['size'], } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) response = await self.publicGetGetexecutions(self.extend({ 'product_code': market['id'], }, params)) return self.parse_trades(response, market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() order = { 'product_code': self.market_id(symbol), 'child_order_type': type.upper(), 'side': side.upper(), 'price': price, 'size': amount, } result = await self.privatePostSendchildorder(self.extend(order, params)) # {"status": - 200, "error_message": "Insufficient funds", "data": null} return { 'info': result, 'id': result['child_order_acceptance_id'], } async def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ExchangeError(self.id + ' cancelOrder() requires a symbol argument') await self.load_markets() return await self.privatePostCancelchildorder(self.extend({ 'product_code': self.market_id(symbol), 'child_order_acceptance_id': id, }, params)) def parse_order_status(self, status): statuses = { 'ACTIVE': 'open', 'COMPLETED': 'closed', 'CANCELED': 'canceled', 'EXPIRED': 'canceled', 'REJECTED': 'canceled', } if status in statuses: return statuses[status] return status.lower() def parse_order(self, order, market=None): timestamp = self.parse8601(order['child_order_date']) amount = self.safe_float(order, 'size') remaining = self.safe_float(order, 'outstanding_size') filled = self.safe_float(order, 'executed_size') price = self.safe_float(order, 'price') cost = price * filled status = self.parse_order_status(order['child_order_state']) type = order['child_order_type'].lower() side = order['side'].lower() symbol = None if market is None: marketId = self.safe_string(order, 'product_code') if marketId is not None: if marketId in self.markets_by_id: market = self.markets_by_id[marketId] if market is not None: symbol = market['symbol'] fee = None feeCost = self.safe_float(order, 'total_commission') if feeCost is not None: fee = { 'cost': feeCost, 'currency': None, 'rate': None, } return { 'id': order['child_order_acceptance_id'], 'info': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'cost': cost, 'amount': amount, 'filled': filled, 'remaining': remaining, 'fee': fee, } async def fetch_orders(self, symbol=None, since=None, limit=100, params={}): if symbol is None: raise ExchangeError(self.id + ' fetchOrders() requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'product_code': market['id'], 'count': limit, } response = await self.privateGetGetchildorders(self.extend(request, params)) orders = self.parse_orders(response, market, since, limit) if symbol: orders = self.filter_by(orders, 'symbol', symbol) return orders async def fetch_open_orders(self, symbol=None, since=None, limit=100, params={}): params['child_order_state'] = 'ACTIVE' return self.fetch_orders(symbol, since, limit, params) async def fetch_closed_orders(self, symbol=None, since=None, limit=100, params={}): params['child_order_state'] = 'COMPLETED' return self.fetch_orders(symbol, since, limit, params) async def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ExchangeError(self.id + ' fetchOrder() requires a symbol argument') orders = await self.fetch_orders(symbol) ordersById = self.index_by(orders, 'id') if id in ordersById: return ordersById[id] raise OrderNotFound(self.id + ' No order found with id ' + id) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): if symbol is None: raise ExchangeError(self.id + ' fetchMyTrades requires a symbol argument') await self.load_markets() market = self.market(symbol) request = { 'product_code': market['id'], } if limit: request['count'] = limit response = await self.privateGetGetexecutions(self.extend(request, params)) return self.parse_trades(response, market, since, limit) async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() if code != 'JPY' and code != 'USD' and code != 'EUR': raise ExchangeError(self.id + ' allows withdrawing JPY, USD, EUR only, ' + code + ' is not supported') currency = self.currency(code) response = await self.privatePostWithdraw(self.extend({ 'currency_code': currency['id'], 'amount': amount, # 'bank_account_id': 1234, }, params)) return { 'info': response, 'id': response['message_id'], } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): request = '/' + self.version + '/' if api == 'private': request += 'me/' request += path if method == 'GET': if params: request += '?' + self.urlencode(params) url = self.urls['api'] + request if api == 'private': self.check_required_credentials() nonce = str(self.nonce()) auth = ''.join([nonce, method, request]) if params: if method != 'GET': body = self.json(params) auth += body headers = { 'ACCESS-KEY': self.apiKey, 'ACCESS-TIMESTAMP': nonce, 'ACCESS-SIGN': self.hmac(self.encode(auth), self.encode(self.secret)), 'Content-Type': 'application/json', } return {'url': url, 'method': method, 'body': body, 'headers': headers}
py
1a31a9e8940eb34657c13f5375fb8bf54e7feb35
def longestPalindrome(s: str) -> str: max_length = 0 start = 0 for i in range(len(s)): for j in range(i + max_length, len(s)): length = j - i + 1 if i + length > len(s): break if length > max_length and isPalin(s, i, j + 1): start = i max_length = length return s[start:start+max_length] if max_length < len(s) else s def isPalin(s: str, start: int, end: int) -> bool: for i in range(int((end - start) / 2)): if s[start + i] != s[end-i-1]: return False return True
py
1a31ab3b885b75aac7644ba03fc82b4ef1ffca1c
# Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=unused-import from unittest import TestCase class TestImport(TestCase): def test_import_init(self): """ Test that the metrics root module has the right symbols """ try: from opentelemetry.sdk._metrics import ( # noqa: F401 Counter, Histogram, Meter, MeterProvider, ObservableCounter, ObservableGauge, ObservableUpDownCounter, UpDownCounter, ) except Exception as error: self.fail(f"Unexpected error {error} was raised") def test_import_export(self): """ Test that the metrics export module has the right symbols """ try: from opentelemetry.sdk._metrics.export import ( # noqa: F401 AggregationTemporality, ConsoleMetricExporter, Gauge, Histogram, InMemoryMetricReader, Metric, MetricExporter, MetricExportResult, MetricReader, PeriodicExportingMetricReader, PointT, Sum, ) except Exception as error: self.fail(f"Unexpected error {error} was raised") def test_import_view(self): """ Test that the metrics view module has the right symbols """ try: from opentelemetry.sdk._metrics.view import ( # noqa: F401 Aggregation, DefaultAggregation, DropAggregation, ExplicitBucketHistogramAggregation, LastValueAggregation, SumAggregation, View, ) except Exception as error: self.fail(f"Unexpected error {error} was raised")
py
1a31ac36c4315bafda84635c0d40733b3653e435
"""\ Lisp generator functions for wxCheckBox objects @copyright: 2002-2004 D. H. aka crazyinsomniac on sourceforge @copyright: 2014-2016 Carsten Grohmann @license: MIT (see LICENSE.txt) - THIS PROGRAM COMES WITH NO WARRANTY """ from . import checkbox_base import common import wcodegen class LispCheckBoxGenerator(wcodegen.LispWidgetCodeWriter, checkbox_base.CheckBoxMixin): tmpl = '(setf %(name)s (%(klass)s_Create %(parent)s %(id)s %(label)s -1 -1 -1 -1 %(style)s))\n' tmpl_set3statevalue = '(%(klass)s_Set3StateValue %(name)s %(value_3state)s)\n' def _prepare_tmpl_content(self, obj): super(LispCheckBoxGenerator, self)._prepare_tmpl_content(obj) self._prepare_checkbox_content(obj) def get_code(self, obj): init_lines, prop_lines, layout_lines = \ super(LispCheckBoxGenerator, self).get_code(obj) self._get_checkbox_code(prop_lines) return init_lines, prop_lines, layout_lines def initialize(): klass = 'wxCheckBox' common.class_names['EditCheckBox'] = klass common.register('lisp', klass, LispCheckBoxGenerator(klass))
py
1a31ac600fb9beab9128ff9bfe927647712167c8
from south.db import db from django.db import models from apps.feed_import.models import * class Migration: def forwards(self, orm): "Write your forwards migration here" def backwards(self, orm): "Write your backwards migration here" models = { } complete_apps = ['feed_import']
py
1a31ac9293aba43a3465b09260ebc81b6d7dc1df
from setuptools import setup, find_packages from os import path here = path.abspath(path.dirname(__file__)) setup( name='monitor', version='0.1.0', description='Monitor component of BIGSEA Asperathos framework', url='', author='Igor Natanael, Roberto Nascimento Jr.', author_email='', license='Apache 2.0', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: Apache 2.0', 'Programming Language :: Python :: 2.7', ], keywords='webservice monitoring monasca asperathos bigsea', packages=find_packages(exclude=['contrib', 'docs', 'tests*']), install_requires=['flask'], entry_points={ 'console_scripts': [ 'monitor=monitor.cli.main:main', ], }, )
py
1a31ad8689536b3767bb3196f3a59baea10b39f3
from app.deckbuilder_app import run if __name__ == "__main__": run()
py
1a31ad936898c95d031774017397df80fd0dd673
import unittest import os, sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../..'))) import autosar ### BEGIN TEST DATA def apply_test_data(ws): package=ws.createPackage("DataType", role="DataType") package.createSubPackage("DataTypeSemantics", role="CompuMethod") package.createSubPackage("DataTypeUnits", role="Unit") package.createBooleanDataType('Boolean') package.createIntegerDataType('SInt8', -128, 127) package.createIntegerDataType('SInt16', -32768, 32767) package.createIntegerDataType('SInt32', -2147483648, 2147483647) package.createIntegerDataType('UInt8', 0, 255) package.createIntegerDataType('UInt16', 0, 65535) package.createIntegerDataType('UInt32', 0, 4294967295) package.createRealDataType('Float', None, None, minValType='INFINITE', maxValType='INFINITE') package.createRealDataType('Double', None, None, minValType='INFINITE', maxValType='INFINITE', hasNaN=True, encoding='DOUBLE') package.createIntegerDataType('ButtonStatus_T', valueTable=['ButtonStatus_Released','ButtonStatus_Pressed','ButtonStatus_Error','ButtonStatus_NotAvailable']) valueTableList = [ 'VehicleModeInternal_Off', 'VehicleModeInternal_Accessory', 'VehicleModeInternal_Run', 'VehicleModeInternal_Crank', 'VehicleModeInternal_Spare1', 'VehicleModeInternal_Spare2', 'VehicleModeInternal_Error', 'VehicleModeInternal_NotAvailable' ] package.createIntegerDataType('VehicleModeInternal_T', valueTable=valueTableList) package.createIntegerDataType('BspApi_DigitalId_T', 0, 255, offset=0, scaling=1/1, forceFloatScaling=True, unit='Id') package.createIntegerDataType('BspApi_DigitalState_T', valueTable=['BspApi_DigitalState_Inactive','BspApi_DigitalState_Active','BspApi_DigitalState_Error','BspApi_DigitalState_NotAvailable']) package=ws.createPackage("Constant", role="Constant") package.createConstant('ButtonStatus_IV', 'ButtonStatus_T', 3) package.createConstant('VehicleModeInternal_IV', 'VehicleModeInternal_T', 7) package=ws.createPackage("PortInterface", role="PortInterface") package.createSenderReceiverInterface("EcuM_CurrentMode", modeGroups=autosar.ModeGroup("currentMode", "/ModeDclrGroup/EcuM_Mode"), isService=True, adminData={"SDG_GID": "edve:BSWM", "SD": "EcuM"}) package.createSenderReceiverInterface("ButtonStatus_I", autosar.DataElement('ButtonStatus', 'ButtonStatus_T')) package.createSenderReceiverInterface("VehicleModeInternal_I", autosar.DataElement('VehicleModeInternal', 'VehicleModeInternal_T')) portInterface=package.createClientServerInterface("BspApi_I", ["GetDiscreteInput", "SetDiscreteOutput"], autosar.ApplicationError("E_NOT_OK", 1), isService=True) portInterface["GetDiscreteInput"].createInArgument("inputId", "BspApi_DigitalId_T") portInterface["GetDiscreteInput"].createOutArgument("inputValue", "BspApi_DigitalState_T") portInterface["SetDiscreteOutput"].createInArgument("outputId", "BspApi_DigitalId_T") portInterface["SetDiscreteOutput"].createInArgument("outputValue", "BspApi_DigitalState_T") portInterface["SetDiscreteOutput"].possibleErrors = "E_NOT_OK" package=ws.createPackage("ModeDclrGroup", role="ModeDclrGroup") package.createModeDeclarationGroup("EcuM_Mode", ["POST_RUN", "RUN", "SHUTDOWN", "SLEEP", "STARTUP", "WAKE_SLEEP"], "STARTUP", adminData={"SDG_GID": "edve:BSWM", "SD": "EcuM"}) package=ws.createPackage("ComponentType", role="ComponentType") swc = package.createApplicationSoftwareComponent('SteeringWheelButtonReader') swc.createProvidePort('SWS_PushButtonStatus_Back', 'ButtonStatus_I', initValueRef='ButtonStatus_IV') swc.createProvidePort('SWS_PushButtonStatus_Down', 'ButtonStatus_I', initValueRef='ButtonStatus_IV') swc.createProvidePort('SWS_PushButtonStatus_Enter', 'ButtonStatus_I', initValueRef='ButtonStatus_IV') swc.createProvidePort('SWS_PushButtonStatus_Home', 'ButtonStatus_I', initValueRef='ButtonStatus_IV') swc.createProvidePort('SWS_PushButtonStatus_Left', 'ButtonStatus_I', initValueRef='ButtonStatus_IV') swc.createProvidePort('SWS_PushButtonStatus_Right', 'ButtonStatus_I', initValueRef='ButtonStatus_IV') swc.createProvidePort('SWS_PushButtonStatus_Up', 'ButtonStatus_I', initValueRef='ButtonStatus_IV') swc.createRequirePort('EcuM_CurrentMode', 'EcuM_CurrentMode') swc.createRequirePort('VehicleModeInternal', 'VehicleModeInternal_I', initValueRef='VehicleModeInternal_IV') swc.createRequirePort('BspApi', 'BspApi_I') portAccessList = [ 'SWS_PushButtonStatus_Back', 'SWS_PushButtonStatus_Down', 'SWS_PushButtonStatus_Enter', 'SWS_PushButtonStatus_Home', 'SWS_PushButtonStatus_Left', 'SWS_PushButtonStatus_Right', 'SWS_PushButtonStatus_Up' ] swc.behavior.createRunnable('SteeringWheelButtonReader_Init', portAccess=portAccessList) portAccessList = [ 'SWS_PushButtonStatus_Back', 'SWS_PushButtonStatus_Down', 'SWS_PushButtonStatus_Enter', 'SWS_PushButtonStatus_Home', 'SWS_PushButtonStatus_Left', 'SWS_PushButtonStatus_Right', 'SWS_PushButtonStatus_Up' ] swc.behavior.createRunnable('SteeringWheelButtonReader_Exit', portAccess=portAccessList) portAccessList = [ 'VehicleModeInternal', 'SWS_PushButtonStatus_Back', 'SWS_PushButtonStatus_Down', 'SWS_PushButtonStatus_Enter', 'SWS_PushButtonStatus_Home', 'SWS_PushButtonStatus_Left', 'SWS_PushButtonStatus_Right', 'SWS_PushButtonStatus_Up', 'BspApi/GetDiscreteInput' ] swc.behavior.createRunnable('SteeringWheelButtonReader_Run', portAccess=portAccessList) swc.behavior.createTimingEvent('SteeringWheelButtonReader_Run', period=10) swc.behavior.createModeSwitchEvent('SteeringWheelButtonReader_Init', 'EcuM_CurrentMode/RUN') ### END TEST DATA class TestPartition(unittest.TestCase): def test_addComponent(self): ws = autosar.workspace() apply_test_data(ws) partition = autosar.rte.Partition() partition.addComponent(ws.find('/ComponentType/SteeringWheelButtonReader')) self.assertEqual(len(partition.components), 1) def test_unconnected(self): ws = autosar.workspace() apply_test_data(ws) partition = autosar.rte.Partition() partition.addComponent(ws.find('/ComponentType/SteeringWheelButtonReader')) self.assertEqual(len(partition.components), 1) unconnected = list(partition.unconnectedPorts()) self.assertEqual(len(unconnected), 10) if __name__ == '__main__': unittest.main()
py
1a31ae591c565203a8dbd9b0de816b698e7d114f
# API v1 import logging from django.conf import settings from django.contrib import auth, messages from django.contrib.auth.decorators import login_required from django.shortcuts import get_object_or_404 from django.urls import reverse, reverse_lazy from django.utils.decorators import method_decorator from django.views.generic import FormView from oauth2_provider.contrib.rest_framework import OAuth2Authentication, TokenHasScope from rest_framework import mixins, status, viewsets from rest_framework.decorators import action from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from apps.authentication.models import Email from apps.authentication.models import OnlineUser as User from apps.inventory.models import Item from apps.payment.models import PaymentTransaction from apps.payment.transaction_constants import TransactionSource from apps.shop.forms import SetRFIDForm from apps.shop.models import MagicToken, OrderLine from apps.shop.serializers import ( ItemSerializer, OrderLineSerializer, TransactionSerializer, UserOrderLineSerializer, UserSerializer, ) from apps.shop.utils import create_magic_token class OrderLineViewSet(viewsets.GenericViewSet, mixins.CreateModelMixin): queryset = OrderLine.objects.all() serializer_class = OrderLineSerializer authentication_classes = [OAuth2Authentication] permission_classes = [TokenHasScope] required_scopes = ["shop.readwrite"] @action(detail=False, url_path="userorders") def user_orders(self, request): """ Endpoint for fetching a users orders history Intended for the nibble kiosk """ pk = self.request.query_params.get("pk") if not pk: return Response( "Request must include a 'pk' query parameter where 'pk' is the users user id", status=status.HTTP_400_BAD_REQUEST, ) user = get_object_or_404(User, pk=pk) # Only include the latest purchases amount = 50 orders = OrderLine.objects.filter(user=user).order_by("-datetime")[:amount] serializer = UserOrderLineSerializer(orders, many=True) return Response(serializer.data, status=status.HTTP_200_OK) class TransactionViewSet(viewsets.GenericViewSet, mixins.CreateModelMixin): queryset = PaymentTransaction.objects.all() serializer_class = TransactionSerializer authentication_classes = [OAuth2Authentication] permission_classes = [TokenHasScope] required_scopes = ["shop.readwrite"] def perform_create(self, serializer): """ Transactions created by this view are strictly allowed to handle cash additions. """ serializer.save(source=TransactionSource.CASH) class UserOrderViewSet( viewsets.GenericViewSet, mixins.ListModelMixin, mixins.RetrieveModelMixin ): serializer_class = UserOrderLineSerializer permission_classes = (IsAuthenticated,) def get_queryset(self): return OrderLine.objects.filter(user=self.request.user) class UserViewSet( viewsets.GenericViewSet, mixins.RetrieveModelMixin, mixins.ListModelMixin, APIView ): queryset = User.objects.all() serializer_class = UserSerializer authentication_classes = [OAuth2Authentication] permission_classes = [TokenHasScope] required_scopes = ["shop.readwrite"] filterset_fields = ("rfid",) class InventoryViewSet( viewsets.GenericViewSet, mixins.RetrieveModelMixin, mixins.ListModelMixin ): queryset = Item.objects.filter(available=True).order_by("pk") serializer_class = ItemSerializer permission_classes = (AllowAny,) pagination_class = None class SetRFIDView(APIView): authentication_classes = [OAuth2Authentication] permission_classes = [TokenHasScope] required_scopes = ["shop.readwrite"] def post(self, request): username = request.data.get("username", "").lower() password = request.data.get("password", "") request_magic_link = request.data.get("magic_link", False) send_magic_link_email = request.data.get("send_email", True) if not username: return Response( "Missing authentication details", status=status.HTTP_400_BAD_REQUEST ) if "@" in username: email = Email.objects.filter(email=username) if email: username = email[0].user.username user = auth.authenticate(username=username, password=password) rfid = request.data.get("rfid", "") if not rfid: return Response( "Missing RFID from request payload", status=status.HTTP_400_BAD_REQUEST ) if user and rfid: if user.rfid == rfid: return Response("OK", status=status.HTTP_200_OK) user.rfid = rfid user.save() return Response("OK", status=status.HTTP_200_OK) if not user and username and rfid and request_magic_link: onlineuser = None try: onlineuser = User.objects.get(username=username) except User.DoesNotExist: return Response( "User does not exist", status=status.HTTP_400_BAD_REQUEST ) magic_token = create_magic_token( onlineuser, rfid, send_token_by_email=send_magic_link_email ) data = { "token": str(magic_token.token), "url": "{}{}".format( settings.BASE_URL, reverse("shop_set_rfid", args=[str(magic_token.token)]), ), } return Response(data=data, status=status.HTTP_201_CREATED) return Response("Invalid user credentials", status=status.HTTP_400_BAD_REQUEST) @method_decorator(login_required, name="dispatch") class SetRFIDWebView(FormView): form_class = SetRFIDForm template_name = "shop/set_rfid.html" success_url = reverse_lazy("home") def get(self, request, token="", *args, **kwargs): get_object_or_404(MagicToken, token=token) return super().get(request, token, *args, **kwargs) def get_context_data(self, **kwargs): kwargs["current_rfid"] = self.request.user.rfid kwargs["token"] = self.kwargs.get("token") return super().get_context_data(**kwargs) def get_initial(self): initial = super().get_initial() initial["rfid"] = MagicToken.objects.get(token=self.kwargs.get("token")).data return initial def post(self, request, token="", *args, **kwargs): logger = logging.getLogger(__name__) form = self.get_form() if not form.is_valid(): return self.form_invalid(form) if not token: form.add_error("Det finnes ingen token i denne forespørselen.") return self.form_invalid(form) magictoken = None try: magictoken = MagicToken.objects.get(token=token) except MagicToken.DoesNotExist: form.add_error("Tokenet du prøver å bruke eksisterer ikke.") return self.form_invalid(form) old_rfid = magictoken.user.rfid magictoken.user.rfid = magictoken.data magictoken.user.save() logger.debug( '{authed_user} updated RFID for {user} (from "{old}" to "{new}").'.format( authed_user=self.request.user, user=magictoken.user, old=old_rfid, new=magictoken.data, ) ) magictoken.delete() messages.success(request, "Oppdaterte RFID for {}".format(magictoken.user)) return self.form_valid(form)
py
1a31af198fd0b5c175f1e035b96011beb1af43e7
import sys import os sys.path.append('/spug/spug_api') import random import string from public import db from config import BASE_DIR from apps.account.models import User import apps.configuration.models import apps.deploy.models import apps.assets.models import apps.schedule.models import apps.setting.models # init database db.drop_all() db.create_all() with open(os.path.join(BASE_DIR, 'libs', 'sql', 'permissions.sql'), 'r') as f: line = f.readline() while line: if line.startswith('INSERT INTO'): db.engine.execute(line.strip()) line = f.readline() # create default admin username = 'admin' password = 'spug' User(username=username, password=password, nickname='Administrator', is_supper=True).save() print('*' * 80) print('Database name: ' + (os.getenv('MYSQL_DATABASE') or 'spug')) print('Database username: ' + (os.getenv('MYSQL_USER') or 'spuguser')) print('Database password: ' + (os.getenv('MYSQL_PASSWORD') or 'spugpwd')) print('Login web site account: %s %s' % (username, password)) print('*' * 80)
py
1a31b0dede10b517f37e0c7c06459a528cae967d
# from https://github.com/ajbrock/BigGAN-PyTorch (MIT license) # some modifications in class Generator and G_D # new class "Unet_Discriminator" based on original class "Discriminator" import numpy as np import math import functools import torch import torch.nn as nn from torch.nn import init import torch.optim as optim import torch.nn.functional as F from torch.nn import Parameter as P from unetgan import layers from unetgan import utils import copy from matplotlib import pyplot as plt # Architectures for G # Attention is passed in in the format '32_64' to mean applying an attention # block at both resolution 32x32 and 64x64. def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'): arch = {} arch[256] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2]], 'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1]], 'upsample': [True] * 6, 'resolution': [8, 16, 32, 64, 128, 256], 'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) for i in range(3, 9)}} arch[128] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]], 'out_channels': [ch * item for item in [16, 8, 4, 2, 1]], 'upsample': [True] * 5, 'resolution': [8, 16, 32, 64, 128], 'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')]) for i in range(3, 8)}} return arch class Generator(nn.Module): def __init__(self, G_ch=64, dim_z=128, bottom_width=4, resolution=128, G_kernel_size=3, G_attn='64', n_classes=1000, num_G_SVs=1, num_G_SV_itrs=1, G_shared=True, shared_dim=0, hier=False, cross_replica=False, mybn=False, G_activation=nn.ReLU(inplace=False), G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8, BN_eps=1e-5, SN_eps=1e-12, G_mixed_precision=False, G_fp16=False, G_init='ortho', skip_init=False, no_optim=False, G_param='SN', norm_style='bn', **kwargs): super(Generator, self).__init__() # Channel width mulitplier self.ch = G_ch # Dimensionality of the latent space self.dim_z = dim_z # The initial spatial dimensions self.bottom_width = bottom_width # Resolution of the output self.resolution = resolution # Kernel size? self.kernel_size = G_kernel_size # Attention? self.attention = G_attn # number of classes, for use in categorical conditional generation self.n_classes = n_classes # Use shared embeddings? self.G_shared = G_shared # Dimensionality of the shared embedding? Unused if not using G_shared self.shared_dim = shared_dim if shared_dim > 0 else dim_z # Hierarchical latent space? self.hier = hier # Cross replica batchnorm? self.cross_replica = cross_replica # Use my batchnorm? self.mybn = mybn # nonlinearity for residual blocks self.activation = G_activation # Initialization style self.init = G_init # Parameterization style self.G_param = G_param # Normalization style self.norm_style = norm_style # Epsilon for BatchNorm? self.BN_eps = BN_eps # Epsilon for Spectral Norm? self.SN_eps = SN_eps # fp16? self.fp16 = G_fp16 # Architecture dict self.arch = G_arch(self.ch, self.attention)[resolution] self.unconditional = kwargs["unconditional"] # If using hierarchical latents, adjust z if self.hier: # Number of places z slots into self.num_slots = len(self.arch['in_channels']) + 1 self.z_chunk_size = (self.dim_z // self.num_slots) if not self.unconditional: self.dim_z = self.z_chunk_size * self.num_slots else: self.num_slots = 1 self.z_chunk_size = 0 # Which convs, batchnorms, and linear layers to use if self.G_param == 'SN': self.which_conv = functools.partial(layers.SNConv2d, kernel_size=3, padding=1, num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, eps=self.SN_eps) self.which_linear = functools.partial(layers.SNLinear, num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, eps=self.SN_eps) else: self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1) self.which_linear = nn.Linear # We use a non-spectral-normed embedding here regardless; # For some reason applying SN to G's embedding seems to randomly cripple G self.which_embedding = nn.Embedding if self.unconditional: bn_linear = nn.Linear input_size = self.dim_z + (self.shared_dim if self.G_shared else 0) else: bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared else self.which_embedding) input_size = (self.shared_dim + self.z_chunk_size if self.G_shared else self.n_classes) self.which_bn = functools.partial(layers.ccbn, which_linear=bn_linear, cross_replica=self.cross_replica, mybn=self.mybn, input_size=input_size, norm_style=self.norm_style, eps=self.BN_eps, self_modulation=self.unconditional) # Prepare model # If not using shared embeddings, self.shared is just a passthrough self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared else layers.identity()) # First linear layer if self.unconditional: self.linear = self.which_linear(self.dim_z, self.arch['in_channels'][0] * (self.bottom_width ** 2)) else: self.linear = self.which_linear(self.dim_z // self.num_slots, self.arch['in_channels'][0] * (self.bottom_width ** 2)) # self.blocks is a doubly-nested list of modules, the outer loop intended # to be over blocks at a given resolution (resblocks and/or self-attention) # while the inner loop is over a given block self.blocks = [] for index in range(len(self.arch['out_channels'])): self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index], out_channels=self.arch['out_channels'][index], which_conv=self.which_conv, which_bn=self.which_bn, activation=self.activation, upsample=(functools.partial(F.interpolate, scale_factor=2) if self.arch['upsample'][index] else None))]] # If attention on this block, attach it to the end if self.arch['attention'][self.arch['resolution'][index]]: print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index]) self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)] # Turn self.blocks into a ModuleList so that it's all properly registered. self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) # output layer: batchnorm-relu-conv. # Consider using a non-spectral conv here self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1], cross_replica=self.cross_replica, mybn=self.mybn), self.activation, self.which_conv(self.arch['out_channels'][-1], 3)) # Initialize weights. Optionally skip init for testing. if not skip_init: self.init_weights() # Set up optimizer # If this is an EMA copy, no need for an optim, so just return now if no_optim: return self.lr, self.B1, self.B2, self.adam_eps = G_lr, G_B1, G_B2, adam_eps if G_mixed_precision: print('Using fp16 adam in G...') import utils self.optim = utils.Adam16(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) else: self.optim = optim.Adam(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) # LR scheduling, left here for forward compatibility # self.lr_sched = {'itr' : 0}# if self.progressive else {} # self.j = 0 # Initialize def init_weights(self): self.param_count = 0 for module in self.modules(): if (isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear) or isinstance(module, nn.Embedding)): if self.init == 'ortho': init.orthogonal_(module.weight) elif self.init == 'N02': init.normal_(module.weight, 0, 0.02) elif self.init in ['glorot', 'xavier']: init.xavier_uniform_(module.weight) else: print('Init style not recognized...') self.param_count += sum([p.data.nelement() for p in module.parameters()]) print('Param count for G''s initialized parameters: %d' % self.param_count) # Note on this forward function: we pass in a y vector which has # already been passed through G.shared to enable easy class-wise # interpolation later. If we passed in the one-hot and then ran it through # G.shared in this forward function, it would be harder to handle. def forward(self, z, y): # If hierarchical, concatenate zs and ys if self.hier: # faces if self.unconditional: ys = [z for _ in range(self.num_slots)] else: zs = torch.split(z, self.z_chunk_size, 1) z = zs[0] ys = [torch.cat([y, item], 1) for item in zs[1:]] else: if self.unconditional: ys = [None] * len(self.blocks) else: ys = [y] * len(self.blocks) # First linear layer h = self.linear(z) # Reshape h = h.view(h.size(0), -1, self.bottom_width, self.bottom_width) # Loop over blocks for index, blocklist in enumerate(self.blocks): # Second inner loop in case block has multiple layers for block in blocklist: h = block(h, ys[index]) # Apply batchnorm-relu-conv-tanh at output return torch.tanh(self.output_layer(h)) # Discriminator architecture, same paradigm as G's above def D_arch(ch=64, attention='64', ksize='333333', dilation='111111'): arch = {} arch[256] = {'in_channels': [3] + [ch * item for item in [1, 2, 4, 8, 8, 16]], 'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]], 'downsample': [True] * 6 + [False], 'resolution': [128, 64, 32, 16, 8, 4, 4], 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] for i in range(2, 8)}} arch[128] = {'in_channels': [3] + [ch * item for item in [1, 2, 4, 8, 16]], 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]], 'downsample': [True] * 5 + [False], 'resolution': [64, 32, 16, 8, 4, 4], 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] for i in range(2, 8)}} return arch def D_unet_arch(ch=64, attention='64', ksize='333333', dilation='111111', out_channel_multiplier=1): arch = {} n = 2 ocm = out_channel_multiplier # covers bigger perceptual fields arch[128] = {'in_channels': [3] + [ch * item for item in [1, 2, 4, 8, 16, 8 * n, 4 * 2, 2 * 2, 1 * 2, 1]], 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 8, 4, 2, 1, 1]], 'downsample': [True] * 5 + [False] * 5, 'upsample': [False] * 5 + [True] * 5, 'resolution': [64, 32, 16, 8, 4, 8, 16, 32, 64, 128], 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] for i in range(2, 11)}} arch[256] = {'in_channels': [3] + [ch * item for item in [1, 2, 4, 8, 8, 16, 8 * 2, 8 * 2, 4 * 2, 2 * 2, 1 * 2, 1]], 'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 8, 8, 4, 2, 1, 1]], 'downsample': [True] * 6 + [False] * 6, 'upsample': [False] * 6 + [True] * 6, 'resolution': [128, 64, 32, 16, 8, 4, 8, 16, 32, 64, 128, 256], 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')] for i in range(2, 13)}} return arch class Unet_Discriminator(nn.Module): def __init__(self, D_ch=64, D_wide=True, resolution=128, D_kernel_size=3, D_attn='64', n_classes=1000, num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False), D_lr=2e-4, D_B1=0.0, D_B2=0.999, adam_eps=1e-8, SN_eps=1e-12, output_dim=1, D_mixed_precision=False, D_fp16=False, D_init='ortho', skip_init=False, D_param='SN', decoder_skip_connection=True, **kwargs): super(Unet_Discriminator, self).__init__() # Width multiplier self.ch = D_ch # Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN? self.D_wide = D_wide # Resolution self.resolution = resolution # Kernel size self.kernel_size = D_kernel_size # Attention? self.attention = D_attn # Number of classes self.n_classes = n_classes # Activation self.activation = D_activation # Initialization style self.init = D_init # Parameterization style self.D_param = D_param # Epsilon for Spectral Norm? self.SN_eps = SN_eps # Fp16? self.fp16 = D_fp16 if self.resolution == 128: self.save_features = [0, 1, 2, 3, 4] elif self.resolution == 256: self.save_features = [0, 1, 2, 3, 4, 5] self.out_channel_multiplier = 1 # 4 # Architecture self.arch = D_unet_arch(self.ch, self.attention, out_channel_multiplier=self.out_channel_multiplier)[resolution] self.unconditional = kwargs["unconditional"] # Which convs, batchnorms, and linear layers to use # No option to turn off SN in D right now if self.D_param == 'SN': self.which_conv = functools.partial(layers.SNConv2d, kernel_size=3, padding=1, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) self.which_linear = functools.partial(layers.SNLinear, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) self.which_embedding = functools.partial(layers.SNEmbedding, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) # Prepare model # self.blocks is a doubly-nested list of modules, the outer loop intended # to be over blocks at a given resolution (resblocks and/or self-attention) self.blocks = [] for index in range(len(self.arch['out_channels'])): if self.arch["downsample"][index]: self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index], out_channels=self.arch['out_channels'][index], which_conv=self.which_conv, wide=self.D_wide, activation=self.activation, preactivation=(index > 0), downsample=( nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]] elif self.arch["upsample"][index]: upsample_function = ( functools.partial(F.interpolate, scale_factor=2, mode="nearest") # mode=nearest is default if self.arch['upsample'][index] else None) self.blocks += [[layers.GBlock2(in_channels=self.arch['in_channels'][index], out_channels=self.arch['out_channels'][index], which_conv=self.which_conv, # which_bn=self.which_bn, activation=self.activation, upsample=upsample_function, skip_connection=True)]] # If attention on this block, attach it to the end attention_condition = index < 5 if self.arch['attention'][self.arch['resolution'][index]] and attention_condition: # index < 5 print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index]) print("index = ", index) self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)] # Turn self.blocks into a ModuleList so that it's all properly registered. self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) last_layer = nn.Conv2d(self.ch * self.out_channel_multiplier, 1, kernel_size=1) self.blocks.append(last_layer) # # Linear output layer. The output dimension is typically 1, but may be # larger if we're e.g. turning this into a VAE with an inference output self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim) self.linear_middle = self.which_linear(16 * self.ch, output_dim) # Embedding for projection discrimination # if not kwargs["agnostic_unet"] and not kwargs["unconditional"]: # self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1]+extra) if not kwargs["unconditional"]: self.embed_middle = self.which_embedding(self.n_classes, 16 * self.ch) self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1]) # Initialize weights if not skip_init: self.init_weights() ### print("_____params______") for name, param in self.named_parameters(): print(name, param.size()) # Set up optimizer self.lr, self.B1, self.B2, self.adam_eps = D_lr, D_B1, D_B2, adam_eps if D_mixed_precision: print('Using fp16 adam in D...') import utils self.optim = utils.Adam16(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) else: self.optim = optim.Adam(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) # LR scheduling, left here for forward compatibility # self.lr_sched = {'itr' : 0}# if self.progressive else {} # self.j = 0 # Initialize def init_weights(self): self.param_count = 0 for module in self.modules(): if (isinstance(module, nn.Conv2d) or isinstance(module, nn.Linear) or isinstance(module, nn.Embedding)): if self.init == 'ortho': init.orthogonal_(module.weight) elif self.init == 'N02': init.normal_(module.weight, 0, 0.02) elif self.init in ['glorot', 'xavier']: init.xavier_uniform_(module.weight) else: print('Init style not recognized...') self.param_count += sum([p.data.nelement() for p in module.parameters()]) print('Param count for D''s initialized parameters: %d' % self.param_count) def forward(self, x, y=None): # Stick x into h for cleaner for loops without flow control h = x residual_features = [] residual_features.append(x) # Loop over blocks for index, blocklist in enumerate(self.blocks[:-1]): if self.resolution == 128: if index == 6: h = torch.cat((h, residual_features[4]), dim=1) elif index == 7: h = torch.cat((h, residual_features[3]), dim=1) elif index == 8: # h = torch.cat((h, residual_features[2]), dim=1) elif index == 9: # h = torch.cat((h, residual_features[1]), dim=1) if self.resolution == 256: if index == 7: h = torch.cat((h, residual_features[5]), dim=1) elif index == 8: h = torch.cat((h, residual_features[4]), dim=1) elif index == 9: # h = torch.cat((h, residual_features[3]), dim=1) elif index == 10: # h = torch.cat((h, residual_features[2]), dim=1) elif index == 11: h = torch.cat((h, residual_features[1]), dim=1) for block in blocklist: h = block(h) if index in self.save_features[:-1]: residual_features.append(h) if index == self.save_features[-1]: # Apply global sum pooling as in SN-GAN h_ = torch.sum(self.activation(h), [2, 3]) # Get initial class-unconditional output bottleneck_out = self.linear_middle(h_) # Get projection of final featureset onto class vectors and add to evidence if self.unconditional: projection = 0 else: # this is the bottleneck classifier c emb_mid = self.embed_middle(y) projection = torch.sum(emb_mid * h_, 1, keepdim=True) bottleneck_out = bottleneck_out + projection out = self.blocks[-1](h) if self.unconditional: proj = 0 else: emb = self.embed(y) emb = emb.view(emb.size(0), emb.size(1), 1, 1).expand_as(h) proj = torch.sum(emb * h, 1, keepdim=True) ################ out = out + proj out = out.view(out.size(0), 1, self.resolution, self.resolution) return out, bottleneck_out # Parallelized G_D to minimize cross-gpu communication # Without this, Generator outputs would get all-gathered and then rebroadcast. class G_D(nn.Module): def __init__(self, G, D, config): super(G_D, self).__init__() self.G = G self.D = D self.config = config def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False, split_D=False, dw1=[], dw2=[], reference_x=None, mixup=False, mixup_only=False, target_map=None): if mixup: gy = dy # why? so the mixup samples consist of same class # If training G, enable grad tape with torch.set_grad_enabled(train_G): G_z = self.G(z, self.G.shared(gy)) # Cast as necessary if self.G.fp16 and not self.D.fp16: G_z = G_z.float() if self.D.fp16 and not self.G.fp16: G_z = G_z.half() if mixup: initial_x_size = x.size(0) mixed = target_map * x + (1 - target_map) * G_z mixed_y = dy if not mixup_only: # we get here in the cutmix cons extra case D_input = torch.cat([G_z, x], 0) if x is not None else G_z D_class = torch.cat([gy, dy], 0) if dy is not None else gy dmap = torch.tensor([]) if mixup: # we get here in the cutmix "consistency loss and augmentation" case, if "mixup" is true for the current round (depends on p mixup) D_input = torch.cat([D_input, mixed], 0) if self.config["dataset"] != "coco_animals": D_class = torch.cat([D_class.float(), mixed_y.float()], 0) else: D_class = torch.cat([D_class.long(), mixed_y.long()], 0) else: # not reached in cutmix "consistency loss and augmentation" D_input = mixed D_class = mixed_y dmap = torch.tensor([]) del G_z del x G_z = None x = None D_out, D_middle = self.D(D_input, D_class) del D_input del D_class if x is not None: if not mixup: out = torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real else: out = torch.split(D_out, [G_z.shape[0], x.shape[0], mixed.shape[0]]) # D_fake, D_real, D_mixed out = out + (G_z,) if mixup: out = out + (mixed,) if not mixup: D_middle = torch.split(D_middle, [G_z.shape[0], x.shape[0]]) # D_middle_fake, D_middle_real else: D_middle = torch.split(D_middle, [G_z.shape[0], x.shape[0], mixed.shape[0]]) out = out + D_middle ###return target map as well if mixup: out = out + (target_map,) return out else: # in mixup# you arrive here out = (D_out,) if return_G_z: out = out + (G_z,) if mixup_only: out = out + (mixed,) out = out + (D_middle,) ##return target map as well if mixup: out = out + (target_map,) return out
py
1a31b133a67385896713aeeccba70e05424bea00
import factory from factory import Faker, fuzzy from users.models import Profile, User CONTACT_LANGUAGE_CHOICES = ["fi", "sv", "en"] class UserFactory(factory.django.DjangoModelFactory): class Meta: model = User first_name = Faker("first_name") last_name = Faker("last_name") email = Faker("email") class ProfileFactory(factory.django.DjangoModelFactory): class Meta: model = Profile id = factory.Faker("uuid4") first_name = Faker("first_name") last_name = Faker("last_name") email = Faker("email") phone_number = Faker("phone_number") street_address = Faker("street_address") city = Faker("city") postal_code = Faker("postcode") date_of_birth = Faker("date_of_birth", minimum_age=17, maximum_age=99) contact_language = fuzzy.FuzzyChoice(list(CONTACT_LANGUAGE_CHOICES)) user = factory.SubFactory(UserFactory)
py
1a31b2b99e9c980a24e47becfb9860295751e8c0
import agate import decimal import unittest from unittest import mock import dbt.flags as flags from dbt.task.debug import DebugTask from dbt.adapters.base.query_headers import MacroQueryStringSetter from dbt.adapters.postgres import PostgresAdapter from dbt.adapters.postgres import Plugin as PostgresPlugin from dbt.contracts.files import FileHash from dbt.contracts.graph.manifest import ManifestStateCheck from dbt.clients import agate_helper from dbt.exceptions import ValidationException, DbtConfigError from dbt.logger import GLOBAL_LOGGER as logger # noqa from psycopg2 import extensions as psycopg2_extensions from psycopg2 import DatabaseError from .utils import config_from_parts_or_dicts, inject_adapter, mock_connection, TestAdapterConversions, load_internal_manifest_macros, clear_plugin class TestPostgresAdapter(unittest.TestCase): def setUp(self): project_cfg = { 'name': 'X', 'version': '0.1', 'profile': 'test', 'project-root': '/tmp/dbt/does-not-exist', 'config-version': 2, } profile_cfg = { 'outputs': { 'test': { 'type': 'postgres', 'dbname': 'postgres', 'user': 'root', 'host': 'thishostshouldnotexist', 'pass': 'password', 'port': 5432, 'schema': 'public', } }, 'target': 'test' } self.config = config_from_parts_or_dicts(project_cfg, profile_cfg) self._adapter = None @property def adapter(self): if self._adapter is None: self._adapter = PostgresAdapter(self.config) inject_adapter(self._adapter, PostgresPlugin) return self._adapter @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_acquire_connection_validations(self, psycopg2): try: connection = self.adapter.acquire_connection('dummy') except ValidationException as e: self.fail('got ValidationException: {}'.format(str(e))) except BaseException as e: self.fail('acquiring connection failed with unknown exception: {}' .format(str(e))) self.assertEqual(connection.type, 'postgres') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once() @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_acquire_connection(self, psycopg2): connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle self.assertEqual(connection.state, 'open') self.assertNotEqual(connection.handle, None) psycopg2.connect.assert_called_once() def test_cancel_open_connections_empty(self): self.assertEqual(len(list(self.adapter.cancel_open_connections())), 0) def test_cancel_open_connections_master(self): key = self.adapter.connections.get_thread_identifier() self.adapter.connections.thread_connections[key] = mock_connection('master') self.assertEqual(len(list(self.adapter.cancel_open_connections())), 0) def test_cancel_open_connections_single(self): master = mock_connection('master') model = mock_connection('model') key = self.adapter.connections.get_thread_identifier() model.handle.get_backend_pid.return_value = 42 self.adapter.connections.thread_connections.update({ key: master, 1: model, }) with mock.patch.object(self.adapter.connections, 'add_query') as add_query: query_result = mock.MagicMock() add_query.return_value = (None, query_result) self.assertEqual(len(list(self.adapter.cancel_open_connections())), 1) add_query.assert_called_once_with('select pg_terminate_backend(42)') master.handle.get_backend_pid.assert_not_called() @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_default_connect_timeout(self, psycopg2): connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, application_name='dbt') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_changed_connect_timeout(self, psycopg2): self.config.credentials = self.config.credentials.replace(connect_timeout=30) connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=30, application_name='dbt') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_default_keepalive(self, psycopg2): connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, application_name='dbt') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_changed_keepalive(self, psycopg2): self.config.credentials = self.config.credentials.replace(keepalives_idle=256) connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, keepalives_idle=256, application_name='dbt') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_default_application_name(self, psycopg2): connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, application_name='dbt') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_changed_application_name(self, psycopg2): self.config.credentials = self.config.credentials.replace(application_name='myapp') connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, application_name='myapp') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_role(self, psycopg2): self.config.credentials = self.config.credentials.replace(role='somerole') connection = self.adapter.acquire_connection('dummy') cursor = connection.handle.cursor() cursor.execute.assert_called_once_with('set role somerole') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_search_path(self, psycopg2): self.config.credentials = self.config.credentials.replace(search_path="test") connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, application_name='dbt', options="-c search_path=test") @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_sslmode(self, psycopg2): self.config.credentials = self.config.credentials.replace(sslmode="require") connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, sslmode="require", application_name='dbt') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_ssl_parameters(self, psycopg2): self.config.credentials = self.config.credentials.replace(sslmode="verify-ca") self.config.credentials = self.config.credentials.replace(sslcert="service.crt") self.config.credentials = self.config.credentials.replace(sslkey="service.key") self.config.credentials = self.config.credentials.replace(sslrootcert="ca.crt") connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, sslmode="verify-ca", sslcert="service.crt", sslkey="service.key", sslrootcert="ca.crt", application_name='dbt') @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_schema_with_space(self, psycopg2): self.config.credentials = self.config.credentials.replace(search_path="test test") connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, application_name='dbt', options="-c search_path=test\ test") @mock.patch('dbt.adapters.postgres.connections.psycopg2') def test_set_zero_keepalive(self, psycopg2): self.config.credentials = self.config.credentials.replace(keepalives_idle=0) connection = self.adapter.acquire_connection('dummy') psycopg2.connect.assert_not_called() connection.handle psycopg2.connect.assert_called_once_with( dbname='postgres', user='root', host='thishostshouldnotexist', password='password', port=5432, connect_timeout=10, application_name='dbt') @mock.patch.object(PostgresAdapter, 'execute_macro') @mock.patch.object(PostgresAdapter, '_get_catalog_schemas') def test_get_catalog_various_schemas(self, mock_get_schemas, mock_execute): column_names = ['table_database', 'table_schema', 'table_name'] rows = [ ('dbt', 'foo', 'bar'), ('dbt', 'FOO', 'baz'), ('dbt', None, 'bar'), ('dbt', 'quux', 'bar'), ('dbt', 'skip', 'bar'), ] mock_execute.return_value = agate.Table(rows=rows, column_names=column_names) mock_get_schemas.return_value.items.return_value = [(mock.MagicMock(database='dbt'), {'foo', 'FOO', 'quux'})] mock_manifest = mock.MagicMock() mock_manifest.get_used_schemas.return_value = {('dbt', 'foo'), ('dbt', 'quux')} catalog, exceptions = self.adapter.get_catalog(mock_manifest) self.assertEqual( set(map(tuple, catalog)), {('dbt', 'foo', 'bar'), ('dbt', 'FOO', 'baz'), ('dbt', 'quux', 'bar')} ) self.assertEqual(exceptions, []) class TestConnectingPostgresAdapter(unittest.TestCase): def setUp(self): self.target_dict = { 'type': 'postgres', 'dbname': 'postgres', 'user': 'root', 'host': 'thishostshouldnotexist', 'pass': 'password', 'port': 5432, 'schema': 'public' } profile_cfg = { 'outputs': { 'test': self.target_dict, }, 'target': 'test' } project_cfg = { 'name': 'X', 'version': '0.1', 'profile': 'test', 'project-root': '/tmp/dbt/does-not-exist', 'quoting': { 'identifier': False, 'schema': True, }, 'config-version': 2, } self.config = config_from_parts_or_dicts(project_cfg, profile_cfg) self.handle = mock.MagicMock(spec=psycopg2_extensions.connection) self.cursor = self.handle.cursor.return_value self.mock_execute = self.cursor.execute self.patcher = mock.patch('dbt.adapters.postgres.connections.psycopg2') self.psycopg2 = self.patcher.start() # Create the Manifest.state_check patcher @mock.patch('dbt.parser.manifest.ManifestLoader.build_manifest_state_check') def _mock_state_check(self): config = self.root_project all_projects = self.all_projects return ManifestStateCheck( vars_hash=FileHash.from_contents('vars'), project_hashes={name: FileHash.from_contents(name) for name in all_projects}, profile_hash=FileHash.from_contents('profile'), ) self.load_state_check = mock.patch('dbt.parser.manifest.ManifestLoader.build_manifest_state_check') self.mock_state_check = self.load_state_check.start() self.mock_state_check.side_effect = _mock_state_check self.psycopg2.connect.return_value = self.handle self.adapter = PostgresAdapter(self.config) self.adapter._macro_manifest_lazy = load_internal_manifest_macros(self.config) self.adapter.connections.query_header = MacroQueryStringSetter(self.config, self.adapter._macro_manifest_lazy) self.qh_patch = mock.patch.object(self.adapter.connections.query_header, 'add') self.mock_query_header_add = self.qh_patch.start() self.mock_query_header_add.side_effect = lambda q: '/* dbt */\n{}'.format(q) self.adapter.acquire_connection() inject_adapter(self.adapter, PostgresPlugin) def tearDown(self): # we want a unique self.handle every time. self.adapter.cleanup_connections() self.qh_patch.stop() self.patcher.stop() self.load_state_check.stop() clear_plugin(PostgresPlugin) def test_quoting_on_drop_schema(self): relation = self.adapter.Relation.create( database='postgres', schema='test_schema', quote_policy=self.adapter.config.quoting, ) self.adapter.drop_schema(relation) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\ndrop schema if exists "test_schema" cascade', None) ]) def test_quoting_on_drop(self): relation = self.adapter.Relation.create( database='postgres', schema='test_schema', identifier='test_table', type='table', quote_policy=self.adapter.config.quoting, ) self.adapter.drop_relation(relation) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\ndrop table if exists "postgres"."test_schema".test_table cascade', None) ]) def test_quoting_on_truncate(self): relation = self.adapter.Relation.create( database='postgres', schema='test_schema', identifier='test_table', type='table', quote_policy=self.adapter.config.quoting, ) self.adapter.truncate_relation(relation) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\ntruncate table "postgres"."test_schema".test_table', None) ]) def test_quoting_on_rename(self): from_relation = self.adapter.Relation.create( database='postgres', schema='test_schema', identifier='table_a', type='table', quote_policy=self.adapter.config.quoting, ) to_relation = self.adapter.Relation.create( database='postgres', schema='test_schema', identifier='table_b', type='table', quote_policy=self.adapter.config.quoting, ) self.adapter.rename_relation( from_relation=from_relation, to_relation=to_relation ) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\nalter table "postgres"."test_schema".table_a rename to table_b', None) ]) def test_debug_connection_ok(self): DebugTask.validate_connection(self.target_dict) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\nselect 1 as id', None) ]) def test_debug_connection_fail_nopass(self): del self.target_dict['pass'] with self.assertRaises(DbtConfigError): DebugTask.validate_connection(self.target_dict) def test_connection_fail_select(self): self.mock_execute.side_effect = DatabaseError() with self.assertRaises(DbtConfigError): DebugTask.validate_connection(self.target_dict) self.mock_execute.assert_has_calls([ mock.call('/* dbt */\nselect 1 as id', None) ]) def test_dbname_verification_is_case_insensitive(self): # Override adapter settings from setUp() self.target_dict['dbname'] = 'Postgres' profile_cfg = { 'outputs': { 'test': self.target_dict, }, 'target': 'test' } project_cfg = { 'name': 'X', 'version': '0.1', 'profile': 'test', 'project-root': '/tmp/dbt/does-not-exist', 'quoting': { 'identifier': False, 'schema': True, }, 'config-version': 2, } self.config = config_from_parts_or_dicts(project_cfg, profile_cfg) self.adapter.cleanup_connections() self._adapter = PostgresAdapter(self.config) self.adapter.verify_database('postgres') class TestPostgresFilterCatalog(unittest.TestCase): def test__catalog_filter_table(self): manifest = mock.MagicMock() manifest.get_used_schemas.return_value = [['a', 'B'], ['a', '1234']] column_names = ['table_name', 'table_database', 'table_schema', 'something'] rows = [ ['foo', 'a', 'b', '1234'], # include ['foo', 'a', '1234', '1234'], # include, w/ table schema as str ['foo', 'c', 'B', '1234'], # skip ['1234', 'A', 'B', '1234'], # include, w/ table name as str ] table = agate.Table( rows, column_names, agate_helper.DEFAULT_TYPE_TESTER ) result = PostgresAdapter._catalog_filter_table(table, manifest) assert len(result) == 3 for row in result.rows: assert isinstance(row['table_schema'], str) assert isinstance(row['table_database'], str) assert isinstance(row['table_name'], str) assert isinstance(row['something'], decimal.Decimal) class TestPostgresAdapterConversions(TestAdapterConversions): def test_convert_text_type(self): rows = [ ['', 'a1', 'stringval1'], ['', 'a2', 'stringvalasdfasdfasdfa'], ['', 'a3', 'stringval3'], ] agate_table = self._make_table_of(rows, agate.Text) expected = ['text', 'text', 'text'] for col_idx, expect in enumerate(expected): assert PostgresAdapter.convert_text_type(agate_table, col_idx) == expect def test_convert_number_type(self): rows = [ ['', '23.98', '-1'], ['', '12.78', '-2'], ['', '79.41', '-3'], ] agate_table = self._make_table_of(rows, agate.Number) expected = ['integer', 'float8', 'integer'] for col_idx, expect in enumerate(expected): assert PostgresAdapter.convert_number_type(agate_table, col_idx) == expect def test_convert_boolean_type(self): rows = [ ['', 'false', 'true'], ['', 'false', 'false'], ['', 'false', 'true'], ] agate_table = self._make_table_of(rows, agate.Boolean) expected = ['boolean', 'boolean', 'boolean'] for col_idx, expect in enumerate(expected): assert PostgresAdapter.convert_boolean_type(agate_table, col_idx) == expect def test_convert_datetime_type(self): rows = [ ['', '20190101T01:01:01Z', '2019-01-01 01:01:01'], ['', '20190102T01:01:01Z', '2019-01-01 01:01:01'], ['', '20190103T01:01:01Z', '2019-01-01 01:01:01'], ] agate_table = self._make_table_of(rows, [agate.DateTime, agate_helper.ISODateTime, agate.DateTime]) expected = ['timestamp without time zone', 'timestamp without time zone', 'timestamp without time zone'] for col_idx, expect in enumerate(expected): assert PostgresAdapter.convert_datetime_type(agate_table, col_idx) == expect def test_convert_date_type(self): rows = [ ['', '2019-01-01', '2019-01-04'], ['', '2019-01-02', '2019-01-04'], ['', '2019-01-03', '2019-01-04'], ] agate_table = self._make_table_of(rows, agate.Date) expected = ['date', 'date', 'date'] for col_idx, expect in enumerate(expected): assert PostgresAdapter.convert_date_type(agate_table, col_idx) == expect def test_convert_time_type(self): # dbt's default type testers actually don't have a TimeDelta at all. agate.TimeDelta rows = [ ['', '120s', '10s'], ['', '3m', '11s'], ['', '1h', '12s'], ] agate_table = self._make_table_of(rows, agate.TimeDelta) expected = ['time', 'time', 'time'] for col_idx, expect in enumerate(expected): assert PostgresAdapter.convert_time_type(agate_table, col_idx) == expect
py
1a31b3538bdc37601f647927e4d5b5a74f168edd
""" Authentication library ====================== A base authentication & authorization module. Includes the base class BaseAuth. Authentication and authorization in NIPAP ----------------------------------------- NIPAP offers basic authentication with two different backends, a simple two-level authorization model and a trust-system for simplifying system integration. Readonly users are only authorized to run queries which do not modify any data in the database. No further granularity of access control is offered at this point. Trusted users can perform operations which will be logged as performed by another user. This feature is meant for system integration, for example to be used by a NIPAP client which have its own means of authentication users; say for example a web application supporting the NTLM single sign-on feature. By letting the web application use a trusted account to authenticate against the NIPAP service, it can specify the username of the end-user, so that audit logs will be written with the correct information. Without the trusted-bit, all queries performed by end-users through this system would look like they were performed by the system itself. The NIPAP auth system also has a concept of authoritative source. The authoritative source is a string which simply defines what system is the authoritative source of data for a prefix. Well-behaved clients SHOULD present a warning to the user when trying to alter a prefix with an authoritative source different than the system itself, as other system might depend on the information being unchanged. This is however, by no means enforced by the NIPAP service. Authentication backends ----------------------- Two authentication backends are shipped with NIPAP: * LdapAuth - authenticates users against an LDAP server * SqliteAuth - authenticates users against a local SQLite-database The authentication classes presented here are used both in the NIPAP web UI and in the XML-RPC backend. So far only the SqliteAuth backend supports trusted and readonly users. What authentication backend to use can be specified by suffixing the username with @`backend`, where `backend` is set in the configuration file. If not defined, a (configurable) default backend is used. Authentication options ---------------------- With each NIPAP query authentication options can be specified. The authentication options are passed as a dict with the following keys taken into account: * :attr:`authoritative_source` - Authoritative source for the query. * :attr:`username` - Username to impersonate, requires authentication as \ trusted user. * :attr:`full_name` - Full name of impersonated user. * :attr:`readonly` - True for read-only users Classes ------- """ import logging from datetime import datetime, timedelta import hashlib from nipapconfig import NipapConfig # Used by auth modules import sqlite3 import ldap import string import random class AuthFactory: """ An factory for authentication backends. """ _logger = None _config = None _auth_cache = {} _backends = {} def __init__(self): """ Constructor. """ # Initialize stuff. self._config = NipapConfig() self._logger = logging.getLogger(self.__class__.__name__) self._init_backends() def _init_backends(self): """ Initialize auth backends. """ # fetch auth backends from config file self._backends = {} for section in self._config.sections(): # does the section define an auth backend? section_components = section.rsplit('.', 1) if section_components[0] == 'auth.backends': auth_backend = section_components[1] self._backends[auth_backend] = eval(self._config.get(section, 'type')) self._logger.debug("Registered auth backends %s" % str(self._backends)) def reload(self): """ Reload AuthFactory. """ self._auth_cache = {} self._init_backends() def get_auth(self, username, password, authoritative_source, auth_options={}): """ Returns an authentication object. Examines the auth backend given after the '@' in the username and returns a suitable instance of a subclass of the BaseAuth class. * `username` [string] Username to authenticate as. * `password` [string] Password to authenticate with. * `authoritative_source` [string] Authoritative source of the query. * `auth_options` [dict] A dict which, if authenticated as a trusted user, can override `username` and `authoritative_source`. """ # validate arguments if (authoritative_source is None): raise AuthError("Missing authoritative_source.") # remove invalid cache entries rem = list() for key in self._auth_cache: if self._auth_cache[key]['valid_until'] < datetime.utcnow(): rem.append(key) for key in rem: del(self._auth_cache[key]) user_authbackend = username.rsplit('@', 1) # Find out what auth backend to use. # If no auth backend was specified in username, use default backend = "" if len(user_authbackend) == 1: backend = self._config.get('auth', 'default_backend') self._logger.debug("Using default auth backend %s" % backend) else: backend = user_authbackend[1] # do we have a cached instance? auth_str = ( str(username) + str(password) + str(authoritative_source) + str(auth_options) ) if auth_str in self._auth_cache: self._logger.debug('found cached auth object for user %s' % username) return self._auth_cache[auth_str]['auth_object'] # Create auth object try: auth = self._backends[backend](backend, user_authbackend[0], password, authoritative_source, auth_options) except KeyError: raise AuthError("Invalid auth backend '%s' specified" % str(backend)) # save auth object to cache self._auth_cache[auth_str] = { 'valid_until': datetime.utcnow() + timedelta(seconds=self._config.getint('auth', 'auth_cache_timeout')), 'auth_object': auth } return auth class BaseAuth: """ A base authentication class. All authentication modules should extend this class. """ username = None password = None authenticated_as = None full_name = None authoritative_source = None auth_backend = None trusted = None readonly = None _logger = None _auth_options = None _cfg = None def __init__(self, username, password, authoritative_source, auth_backend, auth_options={}): """ Constructor. Note that the instance variables not are set by the constructor but by the :func:`authenticate` method. Therefore, run the :func:`authenticate`-method before trying to access those variables! * `username` [string] Username to authenticate as. * `password` [string] Password to authenticate with. * `authoritative_source` [string] Authoritative source of the query. * `auth_backend` [string] Name of authentication backend. * `auth_options` [dict] A dict which, if authenticated as a trusted user, can override `username` and `authoritative_source`. """ self._logger = logging.getLogger(self.__class__.__name__) self._cfg = NipapConfig() self.username = username self.password = password self.auth_backend = auth_backend self.authoritative_source = authoritative_source self._auth_options = auth_options def authenticate(self): """ Verify authentication. Returns True/False dependant on whether the authentication succeeded or not. """ return False def authorize(self): """ Verify authorization. Check if a user is authorized to perform a specific operation. """ return False class LdapAuth(BaseAuth): """ An authentication and authorization class for LDAP auth. """ _ldap_uri = None _ldap_basedn = None _ldap_conn = None _authenticated = None def __init__(self, name, username, password, authoritative_source, auth_options={}): """ Constructor. Note that the instance variables not are set by the constructor but by the :func:`authenticate` method. Therefore, run the :func:`authenticate`-method before trying to access those variables! * `name` [string] Name of auth backend. * `username` [string] Username to authenticate as. * `password` [string] Password to authenticate with. * `authoritative_source` [string] Authoritative source of the query. * `auth_options` [dict] A dict which, if authenticated as a trusted user, can override `username` and `authoritative_source`. """ BaseAuth.__init__(self, username, password, authoritative_source, name, auth_options) self._ldap_uri = self._cfg.get('auth.backends.' + self.auth_backend, 'uri') self._ldap_basedn = self._cfg.get('auth.backends.' + self.auth_backend, 'basedn') self._logger.debug('Creating LdapAuth instance') self._logger.debug('LDAP URI: ' + self._ldap_uri) self._ldap_conn = ldap.initialize(self._ldap_uri) def authenticate(self): """ Verify authentication. Returns True/False dependant on whether the authentication succeeded or not. """ # if authentication has been performed, return last result if self._authenticated is not None: return self._authenticated try: self._ldap_conn.simple_bind_s('uid=' + self.username + ',' + self._ldap_basedn, self.password) except ldap.SERVER_DOWN as exc: raise AuthError('Could not connect to LDAP server') except (ldap.INVALID_CREDENTIALS, ldap.INVALID_DN_SYNTAX, ldap.UNWILLING_TO_PERFORM) as exc: # Auth failed self._logger.debug('erroneous password for user %s' % self.username) self._authenticated = False return self._authenticated # auth succeeded self.authenticated_as = self.username self._authenticated = True self.trusted = False self.readonly = False try: res = self._ldap_conn.search_s(self._ldap_basedn, ldap.SCOPE_SUBTREE, 'uid=' + self.username, ['cn']) self.full_name = res[0][1]['cn'][0] except: self.full_name = '' self._logger.debug('successfully authenticated as %s, username %s' % (self.authenticated_as, self.username)) return self._authenticated class SqliteAuth(BaseAuth): """ An authentication and authorization class for local auth. """ _db_conn = None _db_curs = None _authenticated = None def __init__(self, name, username, password, authoritative_source, auth_options={}): """ Constructor. Note that the instance variables not are set by the constructor but by the :func:`authenticate` method. Therefore, run the :func:`authenticate`-method before trying to access those variables! * `name` [string] Name of auth backend. * `username` [string] Username to authenticate as. * `password` [string] Password to authenticate with. * `authoritative_source` [string] Authoritative source of the query. * `auth_options` [dict] A dict which, if authenticated as a trusted user, can override `username` and `authoritative_source`. If the user database and tables are not found, they are created. """ BaseAuth.__init__(self, username, password, authoritative_source, name, auth_options) self._logger.debug('Creating SqliteAuth instance') # connect to database try: self._db_conn = sqlite3.connect(self._cfg.get('auth.backends.' + self.auth_backend, 'db_path'), check_same_thread = False) self._db_conn.row_factory = sqlite3.Row self._db_curs = self._db_conn.cursor() except sqlite3.Error as exc: self._logger.error('Could not open user database: %s' % str(exc)) raise AuthError(str(exc)) def _latest_db_version(self): """ Check if database is of the latest version Fairly stupid functions that simply checks for existence of columns. """ # make sure that user table exists sql_verify_table = '''SELECT * FROM sqlite_master WHERE type = 'table' AND name = 'user' ''' self._db_curs.execute(sql_verify_table) if len(self._db_curs.fetchall()) < 1: raise AuthSqliteError("No 'user' table.") for column in ('username', 'pwd_salt', 'pwd_hash', 'full_name', 'trusted', 'readonly'): sql = "SELECT %s FROM user" % column try: self._db_curs.execute(sql) except: return False return True def _create_database(self): """ Set up database Creates tables required for the authentication module. """ self._logger.info('creating user database') sql = '''CREATE TABLE IF NOT EXISTS user ( username NOT NULL PRIMARY KEY, pwd_salt NOT NULL, pwd_hash NOT NULL, full_name, trusted NOT NULL DEFAULT 0, readonly NOT NULL DEFAULT 0 )''' self._db_curs.execute(sql) self._db_conn.commit() def _upgrade_database(self): """ Upgrade database to latest version This is a fairly primitive function that won't look at how the database looks like but just blindly run commands. """ self._logger.info('upgrading user database') # add readonly column try: sql = '''ALTER TABLE user ADD COLUMN readonly NOT NULL DEFAULT 0''' self._db_curs.execute(sql) except: pass self._db_conn.commit() def authenticate(self): """ Verify authentication. Returns True/False dependant on whether the authentication succeeded or not. """ # if authentication has been performed, return last result if self._authenticated is not None: return self._authenticated self._logger.debug('Trying to authenticate as user \'%s\'' % self.username) user = self.get_user(self.username) # Was user found? if user is None: self._logger.debug('unknown user %s' % self.username) self._authenticated = False return self._authenticated # verify password if self._gen_hash(self.password, user['pwd_salt']) != user['pwd_hash']: # Auth failed self._logger.debug('erroneous password for user %s' % self.username) self._authenticated = False return self._authenticated # auth succeeded self.authenticated_as = self.username self._authenticated = True self.trusted = bool(user['trusted']) self.readonly = bool(user['readonly']) if self.trusted: # user can impersonate other users # this also means that a system and full_name can be specified if 'username' in self._auth_options: self.username = self._auth_options['username'] # TODO: b0rk out if full_name is supplied and username not? if 'full_name' in self._auth_options: self.full_name = self._auth_options['full_name'] if 'authoritative_source' in self._auth_options: self.authoritative_source = self._auth_options['authoritative_source'] if 'readonly' in self._auth_options: self.readonly = self._auth_options['readonly'] else: self.full_name = user['full_name'] self._logger.debug('successfully authenticated as %s, username %s, full_name %s, readonly %s' % (self.authenticated_as, self.username, self.full_name, str(self.readonly))) return self._authenticated def get_user(self, username): """ Fetch the user from the database The function will return None if the user is not found """ sql = '''SELECT * FROM user WHERE username = ?''' self._db_curs.execute(sql, (username, )) user = self._db_curs.fetchone() return user def add_user(self, username, password, full_name=None, trusted=False, readonly=False): """ Add user to SQLite database. * `username` [string] Username of new user. * `password` [string] Password of new user. * `full_name` [string] Full name of new user. * `trusted` [boolean] Whether the new user should be trusted or not. * `readonly` [boolean] Whether the new user can only read or not """ # generate salt char_set = string.ascii_letters + string.digits salt = ''.join(random.choice(char_set) for x in range(8)) sql = '''INSERT INTO user (username, pwd_salt, pwd_hash, full_name, trusted, readonly) VALUES (?, ?, ?, ?, ?, ?)''' try: self._db_curs.execute(sql, (username, salt, self._gen_hash(password, salt), full_name, trusted, readonly)) self._db_conn.commit() except (sqlite3.OperationalError, sqlite3.IntegrityError) as error: raise AuthError(error) def remove_user(self, username): """ Remove user from the SQLite database. * `username` [string] Username of user to remove. """ sql = '''DELETE FROM user WHERE username = ?''' try: self._db_curs.execute(sql, (username, )) self._db_conn.commit() except (sqlite3.OperationalError, sqlite3.IntegrityError) as error: raise AuthError(error) return self._db_curs.rowcount def list_users(self): """ List all users. """ sql = "SELECT * FROM user ORDER BY username" self._db_curs.execute(sql) users = list() for row in self._db_curs: users.append(dict(row)) return users def _gen_hash(self, password, salt): """ Generate password hash. """ # generate hash h = hashlib.sha1() h.update(salt) h.update(password) return h.hexdigest() class AuthError(Exception): """ General auth exception. """ error_code = 1500 class AuthenticationFailed(AuthError): """ Authentication failed. """ error_code = 1510 class AuthorizationFailed(AuthError): """ Authorization failed. """ error_code = 1520 class AuthSqliteError(AuthError): """ Problem with the Sqlite database """
py
1a31b35d015607bd7e72a873fbe1f425857d5178
# Attributes vocab http://linked.data.gov.au/def/tern-cv/dd085299-ae86-4371-ae15-61dfa432f924 ATTRIBUTE_TYPES = [ "http://linked.data.gov.au/def/tern-cv/a7609534-b988-43ba-940c-c216d9c05f59", "http://linked.data.gov.au/def/tern-cv/02dde7af-0ec4-46b0-9c48-ffd26736ac9e", "http://linked.data.gov.au/def/tern-cv/039f87e5-ffd9-4676-b126-c74844d2e095", "http://linked.data.gov.au/def/tern-cv/06265baf-9125-4bd1-9aca-1ee94395de52", "http://linked.data.gov.au/def/tern-cv/08035bb8-d972-4110-b3e9-1939bc972ace", "http://linked.data.gov.au/def/tern-cv/082c84fe-d923-4162-9b73-294b7a8a2dda", "http://linked.data.gov.au/def/tern-cv/0ed27ce3-1fa4-477f-b36c-5cd64d8b6ed0", "http://linked.data.gov.au/def/tern-cv/11f6e3d7-78e4-4665-9b84-a93b56f12fab", "http://linked.data.gov.au/def/tern-cv/15fdb5ff-f316-4c4f-a438-eb2854479a4c", "http://linked.data.gov.au/def/tern-cv/1a283759-58e3-45bb-ab70-6f0bd82038fc", "http://linked.data.gov.au/def/tern-cv/1c15747b-aec7-41e1-a490-c0b317ae441a", "http://linked.data.gov.au/def/tern-cv/1cf8e48e-266d-4431-a778-9b80347c40f6", "http://linked.data.gov.au/def/tern-cv/20049a27-4f90-45ee-8708-4b9457ccf7b3", "http://linked.data.gov.au/def/tern-cv/20d4e292-adc1-4585-8f81-c2a0e92eacab", "http://linked.data.gov.au/def/tern-cv/226e3bbe-7640-4bc6-872f-0542802880a1", "http://linked.data.gov.au/def/tern-cv/263d7143-e88d-4105-83e7-00d75035a2b3", "http://linked.data.gov.au/def/tern-cv/2ad7e552-5bca-45cf-805a-10ba5a98862a", "http://linked.data.gov.au/def/tern-cv/2f9cdbf8-7973-45f7-9a31-1a53017b67a3", "http://linked.data.gov.au/def/tern-cv/360063cc-4bff-455e-8c8e-9562ff57994f", "http://linked.data.gov.au/def/tern-cv/37012c72-03e1-4e3f-af80-9594aade1f3d", "http://linked.data.gov.au/def/tern-cv/376efe60-0550-42b4-b90b-110015806dc7", "http://linked.data.gov.au/def/tern-cv/3d64b224-02d5-48d4-bdf5-6caba81cfc64", "http://linked.data.gov.au/def/tern-cv/3e1eaba4-c58e-42cf-b75a-8124a0bc2e9b", "http://linked.data.gov.au/def/tern-cv/3f7355ff-03cb-4fc7-81db-219ddfba14f5", "http://linked.data.gov.au/def/tern-cv/3f92e928-d5ba-43bf-84ac-a45e678e694f", "http://linked.data.gov.au/def/tern-cv/43ed01cc-0089-4a6b-8754-0990dd0f697b", "http://linked.data.gov.au/def/tern-cv/45a86abc-43c7-4a30-ac73-fc8d62538140", "http://linked.data.gov.au/def/tern-cv/46d2e568-72cd-4df3-b0ed-4ebdaf771e4c", "http://linked.data.gov.au/def/tern-cv/54e40f12-8c13-495a-9f8d-838d78faa5a7", "http://linked.data.gov.au/def/tern-cv/56195246-ec5d-4050-a1c6-af786fbec715", "http://linked.data.gov.au/def/tern-cv/5968433f-6748-40ff-9cdb-6a138cb0378d", "http://linked.data.gov.au/def/tern-cv/5acbfe4f-19e0-456c-89db-961013e6cd7c", "http://linked.data.gov.au/def/tern-cv/5fb736ae-63ff-4943-bad7-cbf292e70b1b", "http://linked.data.gov.au/def/tern-cv/61311a0e-5b09-406c-9f64-b0637271ecf2", "http://linked.data.gov.au/def/tern-cv/6882ac67-b3e5-4195-a0c9-330c7bf14625", "http://linked.data.gov.au/def/tern-cv/6bd73c25-98f6-4227-ab5d-a3bab18b7a8d", "http://linked.data.gov.au/def/tern-cv/6d351831-45da-403c-919b-1cee41950488", "http://linked.data.gov.au/def/tern-cv/70aa04d4-1bd2-479f-b430-925e5bc07aad", "http://linked.data.gov.au/def/tern-cv/73241f84-d579-4193-a57f-4776dabf96c0", "http://linked.data.gov.au/def/tern-cv/7455b778-fe96-4d3a-906f-3ed1faae8055", "http://linked.data.gov.au/def/tern-cv/755b1456-b76f-4d54-8690-10e41e25c5a7", "http://linked.data.gov.au/def/tern-cv/76806e0f-61a2-447c-8177-7e666637e23a", "http://linked.data.gov.au/def/tern-cv/800c04ac-9406-4655-92cd-5142764948bc", "http://linked.data.gov.au/def/tern-cv/8080742b-6855-4e27-812b-671d4dfe7e0f", "http://linked.data.gov.au/def/tern-cv/889dfc31-5b1c-48c0-8bc7-e12f13d63891", "http://linked.data.gov.au/def/tern-cv/8afbe0ce-7f7c-4a2f-bdfe-e78fe8b2dd72", "http://linked.data.gov.au/def/tern-cv/8b57540f-e050-4aec-9d05-46ab64c69c37", "http://linked.data.gov.au/def/tern-cv/8b7b7346-4317-4bcc-9ff9-24dbf8e9c637", "http://linked.data.gov.au/def/tern-cv/8e7dfefe-e3ee-40ac-9024-ede48922bee6", "http://linked.data.gov.au/def/tern-cv/95a8a081-abed-4932-83de-47e0b2bea0cc", "http://linked.data.gov.au/def/tern-cv/98d2cc31-354d-4e95-a7cd-218040188023", "http://linked.data.gov.au/def/tern-cv/9b2ab960-da97-473a-81af-d50ab6041739", "http://linked.data.gov.au/def/tern-cv/9f8cc716-bc8c-40c4-be6b-6270813e94f3", "http://linked.data.gov.au/def/tern-cv/a37fd6b6-d041-451a-8ac6-4083a1be26c5", "http://linked.data.gov.au/def/tern-cv/a4132e35-686a-4dc3-9a77-b9a00b3753f9", "http://linked.data.gov.au/def/tern-cv/a421a75f-c695-4d7f-b361-335b86b15201", "http://linked.data.gov.au/def/tern-cv/a685171d-2f9d-45b6-b870-1d918ea45148", "http://linked.data.gov.au/def/tern-cv/ac9570b4-3aaa-4a4f-b9b9-770cb0ef8c2e", "http://linked.data.gov.au/def/tern-cv/acc89d4d-cbcf-48a6-9de5-54c33eb7d140", "http://linked.data.gov.au/def/tern-cv/aeb3149f-9354-4a0b-829a-acbaaa416a1f", "http://linked.data.gov.au/def/tern-cv/b15c4b8e-208e-4ab0-b470-0aa56b72ab38", "http://linked.data.gov.au/def/tern-cv/b564f403-1b7d-4c54-b0c3-ca3fbabeed89", "http://linked.data.gov.au/def/tern-cv/b736e783-39b6-4408-9561-91561aa53a1d", "http://linked.data.gov.au/def/tern-cv/ba619127-7393-4d55-a025-3d94a844d419", "http://linked.data.gov.au/def/tern-cv/ba9c2502-5d10-4fb9-8c6b-9f654a3dc46d", "http://linked.data.gov.au/def/tern-cv/bb61ac09-00de-493d-9ef8-eb81fad72724", "http://linked.data.gov.au/def/tern-cv/c230dd97-3af1-43cf-bd27-ffcf4979d3a1", "http://linked.data.gov.au/def/tern-cv/c5b8b894-b5ee-49bf-be93-52491afe73a9", "http://linked.data.gov.au/def/tern-cv/c60e774a-8cb7-4002-b3f1-abb1a47369bb", "http://linked.data.gov.au/def/tern-cv/c6bd6ddd-77d8-4693-b528-67e8893dbeb7", "http://linked.data.gov.au/def/tern-cv/cc229ff9-8cca-4ddd-8f01-e1e3fb5892af", "http://linked.data.gov.au/def/tern-cv/ccba73b3-0527-4a56-a711-e5628a7d0dbd", "http://linked.data.gov.au/def/tern-cv/d0580fd1-848b-4cc8-92fb-8d455e4fe083", "http://linked.data.gov.au/def/tern-cv/d1092494-ca45-41de-8f08-9fb9d2142fb9", "http://linked.data.gov.au/def/tern-cv/d82a71d7-677a-45fe-968f-6dad4b8e8488", "http://linked.data.gov.au/def/tern-cv/da5ef737-f328-404b-8cc8-2fad54cac397", "http://linked.data.gov.au/def/tern-cv/dbf4aae7-4179-486b-b181-4f7942f657db", "http://linked.data.gov.au/def/tern-cv/dbff3449-2ec9-4722-a953-87c78da86f74", "http://linked.data.gov.au/def/tern-cv/dd34fc05-012d-4092-9324-a4cbcf29bf0a", "http://linked.data.gov.au/def/tern-cv/e1021d25-7d76-4faa-bfcc-fb6d225eb3ec", "http://linked.data.gov.au/def/tern-cv/e4109f0f-4129-480d-a99a-21c9cbb88e13", "http://linked.data.gov.au/def/tern-cv/e66d3943-4d28-4125-a1f0-fb5b1d72171d", "http://linked.data.gov.au/def/tern-cv/e926b2ca-2688-486c-aa28-435f91c3c110", "http://linked.data.gov.au/def/tern-cv/ebe5f483-e279-4153-a6d9-2a0dd82e6ea2", "http://linked.data.gov.au/def/tern-cv/f23851f3-4eac-43ec-b9ce-f40cc9df9a74", "http://linked.data.gov.au/def/tern-cv/f5a2a443-c78f-410d-a794-16ca1e23d0ad", "http://linked.data.gov.au/def/tern-cv/f5b14209-f890-4d6e-a10f-fee5b1688ed6", "http://linked.data.gov.au/def/tern-cv/f5c125b1-81c2-448c-81e6-7ff6a2facd07", "http://linked.data.gov.au/def/tern-cv/f81aa91e-5f57-4e49-bc6e-4d821d1f9de2", "http://linked.data.gov.au/def/tern-cv/f82d406b-96ee-41d4-8f84-18e3e52fe530", "http://linked.data.gov.au/def/tern-cv/335a84cd-01af-49cb-8532-acf71dc1d980", "http://linked.data.gov.au/def/tern-cv/e5953626-5c62-4baa-b8e5-36a7e6660611", "http://linked.data.gov.au/def/tern-cv/5a13a61f-a43f-40cf-bc3f-3e0cc2e64ce1", ]
py
1a31b3cbf78f07dd9cca6b20f9cdf08f6b6868bc
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.layers import MixtureDensityLayer from neuralnilm.objectives import (scaled_cost, mdn_nll, scaled_cost_ignore_inactive, ignore_inactive, scaled_cost3) from neuralnilm.plot import MDNPlotter from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum, momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 5000 GRADIENT_STEPS = 100 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=512, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, one_target_per_seq=False, n_seq_per_batch=16, subsample_target=2, include_diff=False, clip_appliance_power=True, target_is_prediction=False, # independently_center_inputs = True, standardise_input=True, unit_variance_targets=True, input_padding=8, lag=0, reshape_target_to_2D=True # input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), # 'std': np.array([ 0.12636775], dtype=np.float32)}, # target_stats={ # 'mean': np.array([ 0.04066789, 0.01881946, # 0.24639061, 0.17608672, 0.10273963], # dtype=np.float32), # 'std': np.array([ 0.11449792, 0.07338708, # 0.26608968, 0.33463112, 0.21250485], # dtype=np.float32)} ) N = 50 net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, # loss_function=partial(ignore_inactive, loss_func=mdn_nll, seq_length=SEQ_LENGTH), # loss_function=lambda x, t: mdn_nll(x, t).mean(), # loss_function=lambda x, t: mse(x, t).mean(), # loss_function=partial(scaled_cost, loss_func=mse), # loss_function=ignore_inactive, loss_function=partial(scaled_cost3, ignore_inactive=False, loss_func=mdn_nll), updates_func=momentum, learning_rate=5e-3, learning_rate_changes_by_iteration={ 50: 1e-3, 200: 5e-4, 400: 1e-4 # 500: 1e-3 # 4000: 1e-03, # 6000: 5e-06, # 7000: 1e-06 # 2000: 5e-06 # 3000: 1e-05 # 7000: 5e-06, # 10000: 1e-06, # 15000: 5e-07, # 50000: 1e-07 }, do_save_activations=True, auto_reshape=False, plotter=MDNPlotter ) """ |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| |||||||||| 12345678901234567890 """ def exp_a(name): global source # source_dict_copy = deepcopy(source_dict) # source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 1024 NUM_FILTERS = 50 net_dict_copy['layers_config'] = [ { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': NUM_FILTERS, 'filter_length': 10, 'stride': 2, 'nonlinearity': rectify, 'W': Normal(std=1/sqrt(source.seq_length)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': DenseLayer, 'num_units': N, 'W': Normal(std=1/sqrt(N * NUM_FILTERS)), 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': N, 'W': Normal(std=1/sqrt(N)), 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': source.output_shape()[1] * source.output_shape()[2], 'W': Normal(std=1/sqrt(N)), 'nonlinearity': rectify }, { 'type': ReshapeLayer, 'shape': (16 * 256, 5) }, # { # 'type': DenseLayer, # 'num_units': source.output_shape()[1] * source.output_shape()[2], # 'W': Normal(std=1/sqrt(N)), # 'nonlinearity': T.nnet.softplus # } { 'type': MixtureDensityLayer, 'num_units': source.n_outputs, 'num_components': 1, 'nonlinearity_mu': T.nnet.softplus } ] net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('a') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=None) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") raise finally: logging.shutdown() if __name__ == "__main__": main()
py
1a31b3e01f8b6e2855e59fe2bc51da8af57b31c3
from setuptools import setup setup( name='git-lint-branch', version='0.0', py_modules=['git_lint_branch'], install_requires=[ 'typer', 'pygit2', 'spacy', 'colorama', ], entry_points=''' [console_scripts] git-lint-branch=git_lint_branch.main:app ''', )
py
1a31b57844690dc8df93f50ec2a42c28eacef564
# -*- coding: utf-8 -*- # Copyright 2021, CS GROUP - France, https://www.csgroup.eu/ # # This file is part of EODAG project # https://www.github.com/CS-SI/EODAG # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Explicitly import here everything you want to use from the eodag package isort:skip_file """ import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", ".."))) from eodag import EODataAccessGateway, api, config, setup_logging from eodag.api.core import DEFAULT_ITEMS_PER_PAGE, DEFAULT_MAX_ITEMS_PER_PAGE from eodag.api.product import EOProduct from eodag.api.product.drivers import DRIVERS from eodag.api.product.drivers.base import NoDriver from eodag.api.product.metadata_mapping import format_metadata from eodag.api.search_result import SearchResult from eodag.cli import download, eodag, list_pt, search_crunch from eodag.config import load_default_config, merge_configs from eodag.plugins.authentication.base import Authentication from eodag.plugins.crunch.filter_date import FilterDate from eodag.plugins.crunch.filter_latest_tpl_name import FilterLatestByName from eodag.plugins.crunch.filter_property import FilterProperty from eodag.plugins.crunch.filter_overlap import FilterOverlap from eodag.plugins.download.aws import AwsDownload from eodag.plugins.download.base import Download from eodag.plugins.download.http import HTTPDownload from eodag.plugins.manager import PluginManager from eodag.plugins.search.base import Search from eodag.rest import server as eodag_http_server from eodag.rest.utils import eodag_api, get_date from eodag.utils import ( get_geometry_from_various, get_timestamp, makedirs, merge_mappings, path_to_uri, ProgressCallback, uri_to_path, DownloadedCallback, ) from eodag.utils.exceptions import ( AddressNotFound, AuthenticationError, DownloadError, MisconfiguredError, NoMatchingProductType, PluginImplementationError, UnsupportedDatasetAddressScheme, UnsupportedProvider, ValidationError, ) from eodag.utils.stac_reader import fetch_stac_items from tests import TESTS_DOWNLOAD_PATH, TEST_RESOURCES_PATH
py
1a31b62c79343fef5bb65bb0ed067320f4bfd2a7
# -*- coding:utf-8 -*- import logging from os.path import dirname as pdir from os.path import join as pjoin from pony.orm import Database ROOT_PATH = pdir(pdir(__file__)) DB_PATH = pjoin(ROOT_PATH, 'db', 'project.db') logging.basicConfig( filename=pjoin(ROOT_PATH, 'db', 'project.log'), format='[%(asctime)-15s] [%(processName)s:%(process)d] %(name)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', level=logging.INFO ) db = Database('sqlite', DB_PATH, create_db=True) protocols = pjoin(ROOT_PATH, 'protocols')
py
1a31b6e4817c4ee0307800ca57755dd9718af791
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import re import numbers from botocore.utils import parse_timestamp from botocore.docs.utils import escape_controls from botocore.compat import six class SharedExampleDocumenter(object): def document_shared_example(self, example, prefix, section, operation_model): """Documents a single shared example based on its definition. :param example: The model of the example :param prefix: The prefix to use in the method example. :param section: The section to write to. :param operation_model: The model of the operation used in the example """ section.style.new_paragraph() section.write(example.get('description')) section.style.new_line() self.document_input(section, example, prefix, operation_model.input_shape) self.document_output(section, example, operation_model.output_shape) def document_input(self, section, example, prefix, shape): input_section = section.add_new_section('input') input_section.style.start_codeblock() if prefix is not None: input_section.write(prefix) params = example.get('input', {}) comments = example.get('comments') if comments: comments = comments.get('input') param_section = input_section.add_new_section('parameters') self._document_params(param_section, params, comments, [], shape) closing_section = input_section.add_new_section('input-close') closing_section.style.new_line() closing_section.style.new_line() closing_section.write('print(response)') closing_section.style.end_codeblock() def document_output(self, section, example, shape): output_section = section.add_new_section('output') output_section.style.new_line() output_section.write('Expected Output:') output_section.style.new_line() output_section.style.start_codeblock() params = example.get('output', {}) # There might not be an output, but we will return metadata anyway params['ResponseMetadata'] = {"...": "..."} comments = example.get('comments') if comments: comments = comments.get('output') self._document_dict(output_section, params, comments, [], shape, True) closing_section = output_section.add_new_section('output-close') closing_section.style.end_codeblock() def _document(self, section, value, comments, path, shape): """ :param section: The section to add the docs to. :param value: The input / output values representing the parameters that are included in the example. :param comments: The dictionary containing all the comments to be applied to the example. :param path: A list describing where the documenter is in traversing the parameters. This is used to find the equivalent location in the comments dictionary. """ if isinstance(value, dict): self._document_dict(section, value, comments, path, shape) elif isinstance(value, list): self._document_list(section, value, comments, path, shape) elif isinstance(value, numbers.Number): self._document_number(section, value, path) elif shape and shape.type_name == 'timestamp': self._document_datetime(section, value, path) else: self._document_str(section, value, path) def _document_dict(self, section, value, comments, path, shape, top_level=False): dict_section = section.add_new_section('dict-value') self._start_nested_value(dict_section, '{') for key, val in value.items(): path.append('.%s' % key) item_section = dict_section.add_new_section(key) item_section.style.new_line() item_comment = self._get_comment(path, comments) if item_comment: item_section.write(item_comment) item_section.style.new_line() item_section.write("'%s': " % key) # Shape could be none if there is no output besides ResponseMetadata item_shape = None if shape: if shape.type_name == 'structure': item_shape = shape.members.get(key) elif shape.type_name == 'map': item_shape = shape.value self._document(item_section, val, comments, path, item_shape) path.pop() dict_section_end = dict_section.add_new_section('ending-brace') self._end_nested_value(dict_section_end, '}') if not top_level: dict_section_end.write(',') def _document_params(self, section, value, comments, path, shape): param_section = section.add_new_section('param-values') self._start_nested_value(param_section, '(') for key, val in value.items(): path.append('.%s' % key) item_section = param_section.add_new_section(key) item_section.style.new_line() item_comment = self._get_comment(path, comments) if item_comment: item_section.write(item_comment) item_section.style.new_line() item_section.write(key + '=') # Shape could be none if there are no input parameters item_shape = None if shape: item_shape = shape.members.get(key) self._document(item_section, val, comments, path, item_shape) path.pop() param_section_end = param_section.add_new_section('ending-parenthesis') self._end_nested_value(param_section_end, ')') def _document_list(self, section, value, comments, path, shape): list_section = section.add_new_section('list-section') self._start_nested_value(list_section, '[') item_shape = shape.member for index, val in enumerate(value): item_section = list_section.add_new_section(index) item_section.style.new_line() path.append('[%s]' % index) item_comment = self._get_comment(path, comments) if item_comment: item_section.write(item_comment) item_section.style.new_line() self._document(item_section, val, comments, path, item_shape) path.pop() list_section_end = list_section.add_new_section('ending-bracket') self._end_nested_value(list_section_end, '],') def _document_str(self, section, value, path): # We do the string conversion because this might accept a type that # we don't specifically address. safe_value = escape_controls(value) section.write(u"'%s'," % six.text_type(safe_value)) def _document_number(self, section, value, path): section.write("%s," % str(value)) def _document_datetime(self, section, value, path): datetime_tuple = parse_timestamp(value).timetuple() datetime_str = str(datetime_tuple[0]) for i in range(1, len(datetime_tuple)): datetime_str += ", " + str(datetime_tuple[i]) section.write("datetime(%s)," % datetime_str) def _get_comment(self, path, comments): key = re.sub(r'^\.', '', ''.join(path)) if comments and key in comments: return '# ' + comments[key] else: return '' def _start_nested_value(self, section, start): section.write(start) section.style.indent() section.style.indent() def _end_nested_value(self, section, end): section.style.dedent() section.style.dedent() section.style.new_line() section.write(end) def document_shared_examples(section, operation_model, example_prefix, shared_examples): """Documents the shared examples :param section: The section to write to. :param operation_model: The model of the operation. :param example_prefix: The prefix to use in the method example. :param shared_examples: The shared JSON examples from the model. """ container_section = section.add_new_section('shared-examples') container_section.style.new_paragraph() container_section.style.bold('Examples') documenter = SharedExampleDocumenter() for example in shared_examples: documenter.document_shared_example( example=example, section=container_section.add_new_section(example['id']), prefix=example_prefix, operation_model=operation_model )
py
1a31b76bf722b967f4deeecd3e141170fb49bd06
# coding: utf-8 """ CRM cards Allows an app to extend the CRM UI by surfacing custom cards in the sidebar of record pages. These cards are defined up-front as part of app configuration, then populated by external data fetch requests when the record page is accessed by a user. # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from hubspot.crm.extensions.cards.configuration import Configuration class ObjectToken(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = {"name": "str", "label": "str", "data_type": "str", "value": "str"} attribute_map = {"name": "name", "label": "label", "data_type": "dataType", "value": "value"} def __init__(self, name=None, label=None, data_type=None, value=None, local_vars_configuration=None): # noqa: E501 """ObjectToken - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._name = None self._label = None self._data_type = None self._value = None self.discriminator = None if name is not None: self.name = name if label is not None: self.label = label if data_type is not None: self.data_type = data_type self.value = value @property def name(self): """Gets the name of this ObjectToken. # noqa: E501 :return: The name of this ObjectToken. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this ObjectToken. :param name: The name of this ObjectToken. # noqa: E501 :type: str """ self._name = name @property def label(self): """Gets the label of this ObjectToken. # noqa: E501 :return: The label of this ObjectToken. # noqa: E501 :rtype: str """ return self._label @label.setter def label(self, label): """Sets the label of this ObjectToken. :param label: The label of this ObjectToken. # noqa: E501 :type: str """ self._label = label @property def data_type(self): """Gets the data_type of this ObjectToken. # noqa: E501 :return: The data_type of this ObjectToken. # noqa: E501 :rtype: str """ return self._data_type @data_type.setter def data_type(self, data_type): """Sets the data_type of this ObjectToken. :param data_type: The data_type of this ObjectToken. # noqa: E501 :type: str """ allowed_values = ["BOOLEAN", "CURRENCY", "DATE", "DATETIME", "EMAIL", "LINK", "NUMERIC", "STRING", "STATUS"] # noqa: E501 if self.local_vars_configuration.client_side_validation and data_type not in allowed_values: # noqa: E501 raise ValueError("Invalid value for `data_type` ({0}), must be one of {1}".format(data_type, allowed_values)) # noqa: E501 self._data_type = data_type @property def value(self): """Gets the value of this ObjectToken. # noqa: E501 :return: The value of this ObjectToken. # noqa: E501 :rtype: str """ return self._value @value.setter def value(self, value): """Sets the value of this ObjectToken. :param value: The value of this ObjectToken. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and value is None: # noqa: E501 raise ValueError("Invalid value for `value`, must not be `None`") # noqa: E501 self._value = value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map(lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value)) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map(lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items())) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ObjectToken): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ObjectToken): return True return self.to_dict() != other.to_dict()
py
1a31b7e50f0900047074d1e1b0c12bd777939494
"""Utilities for including Python state in TensorFlow checkpoints.""" # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy from tensorflow.python.training.tracking import base from tensorflow.python.training.tracking import python_state as core_python_state # pylint: disable=g-import-not-at-top try: # In Python 2.x, use the faster string buffering option. from cStringIO import StringIO as BytesIO except ImportError: from io import BytesIO # pylint: enable=g-import-not-at-top class NumpyState(base.Trackable): """A trackable object whose NumPy array attributes are saved/restored. Example usage: ```python arrays = tf.contrib.checkpoint.NumpyState() checkpoint = tf.train.Checkpoint(numpy_arrays=arrays) arrays.x = numpy.zeros([3, 4]) save_path = checkpoint.save("/tmp/ckpt") arrays.x[1, 1] = 4. checkpoint.restore(save_path) assert (arrays.x == numpy.zeros([3, 4])).all() second_checkpoint = tf.train.Checkpoint( numpy_arrays=tf.contrib.checkpoint.NumpyState()) # Attributes of NumpyState objects are created automatically by restore() second_checkpoint.restore(save_path) assert (second_checkpoint.numpy_arrays.x == numpy.zeros([3, 4])).all() ``` Note that `NumpyState` objects re-create the attributes of the previously saved object on `restore()`. This is in contrast to TensorFlow variables, for which a `Variable` object must be created and assigned to an attribute. This snippet works both when graph building and when executing eagerly. On save, the NumPy array(s) are fed as strings to be saved in the checkpoint (via a placeholder when graph building, or as a string constant when executing eagerly). When restoring they skip the TensorFlow graph entirely, and so no restore ops need be run. This means that restoration always happens eagerly, rather than waiting for `checkpoint.restore(...).run_restore_ops()` like TensorFlow variables when graph building. """ def _lookup_dependency(self, name): """Create placeholder NumPy arrays for to-be-restored attributes. Typically `_lookup_dependency` is used to check by name whether a dependency exists. We cheat slightly by creating a trackable object for `name` if we don't already have one, giving us attribute re-creation behavior when loading a checkpoint. Args: name: The name of the dependency being checked. Returns: An existing dependency if one exists, or a new `_NumpyWrapper` placeholder dependency (which will generally be restored immediately). """ value = super(NumpyState, self)._lookup_dependency(name) if value is None: value = _NumpyWrapper(numpy.array([])) new_reference = base.TrackableReference(name=name, ref=value) self._unconditional_checkpoint_dependencies.append(new_reference) self._unconditional_dependency_names[name] = value super(NumpyState, self).__setattr__(name, value) return value def __getattribute__(self, name): """Un-wrap `_NumpyWrapper` objects when accessing attributes.""" value = super(NumpyState, self).__getattribute__(name) if isinstance(value, _NumpyWrapper): return value.array return value def __setattr__(self, name, value): """Automatically wrap NumPy arrays assigned to attributes.""" # TODO(allenl): Consider supporting lists/tuples, either ad-hoc or by making # ndarrays trackable natively and using standard trackable list # tracking. if isinstance(value, (numpy.ndarray, numpy.generic)): try: existing = super(NumpyState, self).__getattribute__(name) existing.array = value return except AttributeError: value = _NumpyWrapper(value) self._track_trackable(value, name=name, overwrite=True) elif (name not in ("_self_setattr_tracking", "_self_update_uid") and getattr(self, "_self_setattr_tracking", True)): # Mixing restore()-created attributes with user-added trackable # objects is tricky, since we can't use the `_lookup_dependency` trick to # re-create attributes (we might accidentally steal the restoration for # another trackable object). For now `NumpyState` objects must be # leaf nodes. Theoretically we could add some extra arguments to # `_lookup_dependency` to figure out whether we should create a NumPy # array for the attribute or not. raise NotImplementedError( ("Assigned %s to the %s property of %s, which is not a NumPy array. " "Currently mixing NumPy arrays and other trackable objects is " "not supported. File a feature request if this limitation bothers " "you.") % (value, name, self)) super(NumpyState, self).__setattr__(name, value) class _NumpyWrapper(core_python_state.PythonState): """Wraps a NumPy array for storage in an object-based checkpoint.""" def __init__(self, array): """Specify a NumPy array to wrap. Args: array: The NumPy array to save and restore (may be overwritten). """ self.array = array def serialize(self): """Callback to serialize the array.""" string_file = BytesIO() try: numpy.save(string_file, self.array, allow_pickle=False) serialized = string_file.getvalue() finally: string_file.close() return serialized def deserialize(self, string_value): """Callback to deserialize the array.""" string_file = BytesIO(string_value) try: self.array = numpy.load(string_file, allow_pickle=False) finally: string_file.close()
py
1a31b8ce7720217c468173fe78a2a4191284c045
from typing import List, Optional import aiosqlite from chiadoge.types.blockchain_format.coin import Coin from chiadoge.types.blockchain_format.sized_bytes import bytes32 from chiadoge.types.coin_record import CoinRecord from chiadoge.types.full_block import FullBlock from chiadoge.util.db_wrapper import DBWrapper from chiadoge.util.ints import uint32, uint64 from chiadoge.util.lru_cache import LRUCache class CoinStore: """ This object handles CoinRecords in DB. A cache is maintained for quicker access to recent coins. """ coin_record_db: aiosqlite.Connection coin_record_cache: LRUCache cache_size: uint32 db_wrapper: DBWrapper @classmethod async def create(cls, db_wrapper: DBWrapper, cache_size: uint32 = uint32(60000)): self = cls() self.cache_size = cache_size self.db_wrapper = db_wrapper self.coin_record_db = db_wrapper.db await self.coin_record_db.execute("pragma journal_mode=wal") await self.coin_record_db.execute("pragma synchronous=2") await self.coin_record_db.execute( ( "CREATE TABLE IF NOT EXISTS coin_record(" "coin_name text PRIMARY KEY," " confirmed_index bigint," " spent_index bigint," " spent int," " coinbase int," " puzzle_hash text," " coin_parent text," " amount blob," " timestamp bigint)" ) ) # Useful for reorg lookups await self.coin_record_db.execute( "CREATE INDEX IF NOT EXISTS coin_confirmed_index on coin_record(confirmed_index)" ) await self.coin_record_db.execute("CREATE INDEX IF NOT EXISTS coin_spent_index on coin_record(spent_index)") await self.coin_record_db.execute("CREATE INDEX IF NOT EXISTS coin_spent on coin_record(spent)") await self.coin_record_db.execute("CREATE INDEX IF NOT EXISTS coin_puzzle_hash on coin_record(puzzle_hash)") await self.coin_record_db.commit() self.coin_record_cache = LRUCache(cache_size) return self async def new_block(self, block: FullBlock, tx_additions: List[Coin], tx_removals: List[bytes32]): """ Only called for blocks which are blocks (and thus have rewards and transactions) """ if block.is_transaction_block() is False: return None assert block.foliage_transaction_block is not None for coin in tx_additions: record: CoinRecord = CoinRecord( coin, block.height, uint32(0), False, False, block.foliage_transaction_block.timestamp, ) await self._add_coin_record(record, False) included_reward_coins = block.get_included_reward_coins() if block.height == 0: assert len(included_reward_coins) == 0 else: assert len(included_reward_coins) >= 2 for coin in included_reward_coins: reward_coin_r: CoinRecord = CoinRecord( coin, block.height, uint32(0), False, True, block.foliage_transaction_block.timestamp, ) await self._add_coin_record(reward_coin_r, False) total_amount_spent: int = 0 for coin_name in tx_removals: total_amount_spent += await self._set_spent(coin_name, block.height) # Sanity check, already checked in block_body_validation assert sum([a.amount for a in tx_additions]) <= total_amount_spent # Checks DB and DiffStores for CoinRecord with coin_name and returns it async def get_coin_record(self, coin_name: bytes32) -> Optional[CoinRecord]: cached = self.coin_record_cache.get(coin_name) if cached is not None: return cached cursor = await self.coin_record_db.execute("SELECT * from coin_record WHERE coin_name=?", (coin_name.hex(),)) row = await cursor.fetchone() await cursor.close() if row is not None: coin = Coin(bytes32(bytes.fromhex(row[6])), bytes32(bytes.fromhex(row[5])), uint64.from_bytes(row[7])) record = CoinRecord(coin, row[1], row[2], row[3], row[4], row[8]) self.coin_record_cache.put(record.coin.name(), record) return record return None async def get_coins_added_at_height(self, height: uint32) -> List[CoinRecord]: cursor = await self.coin_record_db.execute("SELECT * from coin_record WHERE confirmed_index=?", (height,)) rows = await cursor.fetchall() await cursor.close() coins = [] for row in rows: coin = Coin(bytes32(bytes.fromhex(row[6])), bytes32(bytes.fromhex(row[5])), uint64.from_bytes(row[7])) coins.append(CoinRecord(coin, row[1], row[2], row[3], row[4], row[8])) return coins async def get_coins_removed_at_height(self, height: uint32) -> List[CoinRecord]: cursor = await self.coin_record_db.execute("SELECT * from coin_record WHERE spent_index=?", (height,)) rows = await cursor.fetchall() await cursor.close() coins = [] for row in rows: spent: bool = bool(row[3]) if spent: coin = Coin(bytes32(bytes.fromhex(row[6])), bytes32(bytes.fromhex(row[5])), uint64.from_bytes(row[7])) coin_record = CoinRecord(coin, row[1], row[2], spent, row[4], row[8]) coins.append(coin_record) return coins # Checks DB and DiffStores for CoinRecords with puzzle_hash and returns them async def get_coin_records_by_puzzle_hash( self, include_spent_coins: bool, puzzle_hash: bytes32, start_height: uint32 = uint32(0), end_height: uint32 = uint32((2 ** 32) - 1), ) -> List[CoinRecord]: coins = set() cursor = await self.coin_record_db.execute( f"SELECT * from coin_record WHERE puzzle_hash=? AND confirmed_index>=? AND confirmed_index<? " f"{'' if include_spent_coins else 'AND spent=0'}", (puzzle_hash.hex(), start_height, end_height), ) rows = await cursor.fetchall() await cursor.close() for row in rows: coin = Coin(bytes32(bytes.fromhex(row[6])), bytes32(bytes.fromhex(row[5])), uint64.from_bytes(row[7])) coins.add(CoinRecord(coin, row[1], row[2], row[3], row[4], row[8])) return list(coins) async def get_coin_records_by_puzzle_hashes( self, include_spent_coins: bool, puzzle_hashes: List[bytes32], start_height: uint32 = uint32(0), end_height: uint32 = uint32((2 ** 32) - 1), ) -> List[CoinRecord]: if len(puzzle_hashes) == 0: return [] coins = set() puzzle_hashes_db = tuple([ph.hex() for ph in puzzle_hashes]) cursor = await self.coin_record_db.execute( f'SELECT * from coin_record WHERE puzzle_hash in ({"?," * (len(puzzle_hashes_db) - 1)}?) ' f"AND confirmed_index>=? AND confirmed_index<? " f"{'' if include_spent_coins else 'AND spent=0'}", puzzle_hashes_db + (start_height, end_height), ) rows = await cursor.fetchall() await cursor.close() for row in rows: coin = Coin(bytes32(bytes.fromhex(row[6])), bytes32(bytes.fromhex(row[5])), uint64.from_bytes(row[7])) coins.add(CoinRecord(coin, row[1], row[2], row[3], row[4], row[8])) return list(coins) async def rollback_to_block(self, block_index: int): """ Note that block_index can be negative, in which case everything is rolled back """ # Update memory cache delete_queue: bytes32 = [] for coin_name, coin_record in list(self.coin_record_cache.cache.items()): if int(coin_record.spent_block_index) > block_index: new_record = CoinRecord( coin_record.coin, coin_record.confirmed_block_index, uint32(0), False, coin_record.coinbase, coin_record.timestamp, ) self.coin_record_cache.put(coin_record.coin.name(), new_record) if int(coin_record.confirmed_block_index) > block_index: delete_queue.append(coin_name) for coin_name in delete_queue: self.coin_record_cache.remove(coin_name) # Delete from storage c1 = await self.coin_record_db.execute("DELETE FROM coin_record WHERE confirmed_index>?", (block_index,)) await c1.close() c2 = await self.coin_record_db.execute( "UPDATE coin_record SET spent_index = 0, spent = 0 WHERE spent_index>?", (block_index,), ) await c2.close() # Store CoinRecord in DB and ram cache async def _add_coin_record(self, record: CoinRecord, allow_replace: bool) -> None: if self.coin_record_cache.get(record.coin.name()) is not None: self.coin_record_cache.remove(record.coin.name()) cursor = await self.coin_record_db.execute( f"INSERT {'OR REPLACE ' if allow_replace else ''}INTO coin_record VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?)", ( record.coin.name().hex(), record.confirmed_block_index, record.spent_block_index, int(record.spent), int(record.coinbase), str(record.coin.puzzle_hash.hex()), str(record.coin.parent_coin_info.hex()), bytes(record.coin.amount), record.timestamp, ), ) await cursor.close() # Update coin_record to be spent in DB async def _set_spent(self, coin_name: bytes32, index: uint32) -> uint64: current: Optional[CoinRecord] = await self.get_coin_record(coin_name) if current is None: raise ValueError(f"Cannot spend a coin that does not exist in db: {coin_name}") assert not current.spent # Redundant sanity check, already checked in block_body_validation spent: CoinRecord = CoinRecord( current.coin, current.confirmed_block_index, index, True, current.coinbase, current.timestamp, ) # type: ignore # noqa await self._add_coin_record(spent, True) return current.coin.amount
py
1a31b9e5f10ea987feb8ecf3c21a3f4b24de5e1a
from django.db import models from django import forms from django.contrib.admin import widgets import datetime # Create your models here. class Proje(models.Model): proje_id = models.AutoField(primary_key = True) proje_adi = models.CharField(max_length = 50) proje_baslama_tarih = models.DateField('Başlangıç Tarihi') proje_teslim_tarih = models.DateField('Bitiş Tarihi') class Calisan(models.Model): calisan_id = models.AutoField(primary_key = True) calisan_adi = models.CharField(max_length = 10) calisan_soyadi = models.CharField(max_length = 10) calisan_yetki = models.CharField(max_length = 5) calisan_sifre = models.CharField(max_length = 10) calisan_email = models.CharField(max_length = 30) class Gorev(models.Model): gorev_id = models.AutoField(primary_key = True) gorev_adi = models.CharField(max_length = 10) gorev_alan = models.ForeignKey(Calisan, on_delete = models.CASCADE, related_name = 'gorev_alan') gorev_veren = models.ForeignKey(Calisan, on_delete = models.CASCADE, related_name = 'gorev_veren') gorev_teslim_tarih = models.DateField('Son Teslim Tarihi') proje = models.ForeignKey(Proje, on_delete = models.CASCADE) gorev_durum = models.BooleanField(default=False) class ProjeForm(forms.ModelForm): class Meta: model = Proje fields = ['proje_adi','proje_baslama_tarih', 'proje_teslim_tarih'] def __init__(self, *args, **kwargs): super(ProjeForm, self).__init__(*args, **kwargs) self.fields['proje_adi'].widget = widgets.AdminTextInputWidget() self.fields['proje_baslama_tarih'].widget = widgets.AdminDateWidget() self.fields['proje_teslim_tarih'].widget = widgets.AdminDateWidget() class CalisanForm(forms.ModelForm): class Meta: model = Calisan fields = ['calisan_adi','calisan_soyadi','calisan_email'] def __init__(self, *args, **kwargs): super(CalisanForm, self).__init__(*args, **kwargs) self.fields['calisan_adi'].widget = widgets.AdminTextInputWidget() self.fields['calisan_soyadi'].widget = widgets.AdminTextInputWidget() self.fields['calisan_email'].widget = widgets.AdminEmailInputWidget() class GorevForm(forms.Form): gorev_alan = forms.ModelChoiceField(queryset = Calisan.objects.all().values_list('calisan_adi',flat = True)) gorev_veren = forms.ModelChoiceField(queryset = Calisan.objects.filter(calisan_yetki = 'admin').values_list('calisan_adi',flat = True)) proje = forms.ModelChoiceField(queryset = Proje.objects.all().values_list('proje_adi',flat = True)) class LoginForm(forms.Form): email = forms.CharField(label = "Email") password = forms.CharField(label = "Şifre", widget = forms.PasswordInput)
py
1a31baedd5d4874e35f81e2c7f027abde7c835a9
# coding: utf-8 """ Swaggy Jenkins Jenkins API clients generated from Swagger / Open API specification # noqa: E501 The version of the OpenAPI document: 1.1.2-pre.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import unittest import openapi_client from openapi_client.model.string_parameter_definition import StringParameterDefinition class TestStringParameterDefinition(unittest.TestCase): """StringParameterDefinition unit test stubs""" def setUp(self): pass def tearDown(self): pass def test_StringParameterDefinition(self): """Test StringParameterDefinition""" # FIXME: construct object with mandatory attributes with example values # model = StringParameterDefinition() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a31bb6294818851d643aa63fe3cae2579282484
from __future__ import absolute_import import os, itertools, json, numpy, pickle from ann_benchmarks.plotting.metrics import all_metrics as metrics import matplotlib.pyplot as plt def create_pointset(data, xn, yn): xm, ym = (metrics[xn], metrics[yn]) rev = ym["worst"] < 0 data.sort(key=lambda t: t[-1], reverse=rev) # sort by y coordinate axs, ays, als = [], [], [] # Generate Pareto frontier xs, ys, ls = [], [], [] last_x = xm["worst"] comparator = \ (lambda xv, lx: xv > lx) if last_x < 0 else (lambda xv, lx: xv < lx) for algo, algo_name, xv, yv in data: if not xv or not yv: continue axs.append(xv) ays.append(yv) als.append(algo_name) if comparator(xv, last_x): last_x = xv xs.append(xv) ys.append(yv) ls.append(algo_name) return xs, ys, ls, axs, ays, als def compute_metrics(true_nn_distances, res, metric_1, metric_2): all_results = {} for i, (definition, run) in enumerate(res): algo = definition.algorithm algo_name = run.attrs['name'] # cache distances to avoid access to hdf5 file run_distances = list(run['distances']) metric_1_value = metrics[metric_1]['function'](true_nn_distances, run_distances, run.attrs) metric_2_value = metrics[metric_2]['function'](true_nn_distances, run_distances, run.attrs) print('%3d: %80s %12.3f %12.3f' % (i, algo_name, metric_1_value, metric_2_value)) all_results.setdefault(algo, []).append((algo, algo_name, metric_1_value, metric_2_value)) return all_results def compute_all_metrics(true_nn_distances, run, algo): algo_name = run.attrs["name"] print('--') print(algo_name) results = {} # cache distances to avoid access to hdf5 file run_distances = list(run["distances"]) run_attrs = dict(run.attrs) for name, metric in metrics.items(): v = metric["function"](true_nn_distances, run_distances, run_attrs) results[name] = v if v: print('%s: %g' % (name, v)) return (algo, algo_name, results) def generate_n_colors(n): vs = numpy.linspace(0.4, 1.0, 7) colors = [(.9, .4, .4, 1.)] def euclidean(a, b): return sum((x-y)**2 for x, y in zip(a, b)) while len(colors) < n: new_color = max(itertools.product(vs, vs, vs), key=lambda a: min(euclidean(a, b) for b in colors)) colors.append(new_color + (1.,)) return colors def create_linestyles(unique_algorithms): colors = dict(zip(unique_algorithms, generate_n_colors(len(unique_algorithms)))) linestyles = dict((algo, ['--', '-.', '-', ':'][i%4]) for i, algo in enumerate(unique_algorithms)) markerstyles = dict((algo, ['+', '<', 'o', '*', 'x'][i%5]) for i, algo in enumerate(unique_algorithms)) faded = dict((algo, (r, g, b, 0.3)) for algo, (r, g, b, a) in colors.items()) return dict((algo, (colors[algo], faded[algo], linestyles[algo], markerstyles[algo])) for algo in unique_algorithms) def get_up_down(metric): if metric["worst"] == float("inf"): return "down" return "up" def get_left_right(metric): if metric["worst"] == float("inf"): return "left" return "right" def get_plot_label(xm, ym): return "%(xlabel)s-%(ylabel)s tradeoff - %(updown)s and to the %(leftright)s is better" % { "xlabel" : xm["description"], "ylabel" : ym["description"], "updown" : get_up_down(ym), "leftright" : get_left_right(xm) }
py
1a31bbabc94bc3a2fddab00d2fe4daa1895e53eb
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: ydb/public/api/grpc/ydb_coordination_v1.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from ydb.public.api.protos import ydb_coordination_pb2 as ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='ydb/public/api/grpc/ydb_coordination_v1.proto', package='Ydb.Coordination.V1', syntax='proto3', serialized_options=b'\n\036com.yandex.ydb.coordination.v1B\020CoordinationGrpcP\001', create_key=_descriptor._internal_create_key, serialized_pb=b'\n-ydb/public/api/grpc/ydb_coordination_v1.proto\x12\x13Ydb.Coordination.V1\x1a,ydb/public/api/protos/ydb_coordination.proto2\xca\x03\n\x13\x43oordinationService\x12R\n\x07Session\x12 .Ydb.Coordination.SessionRequest\x1a!.Ydb.Coordination.SessionResponse(\x01\x30\x01\x12W\n\nCreateNode\x12#.Ydb.Coordination.CreateNodeRequest\x1a$.Ydb.Coordination.CreateNodeResponse\x12T\n\tAlterNode\x12\".Ydb.Coordination.AlterNodeRequest\x1a#.Ydb.Coordination.AlterNodeResponse\x12Q\n\x08\x44ropNode\x12!.Ydb.Coordination.DropNodeRequest\x1a\".Ydb.Coordination.DropNodeResponse\x12]\n\x0c\x44\x65scribeNode\x12%.Ydb.Coordination.DescribeNodeRequest\x1a&.Ydb.Coordination.DescribeNodeResponseB4\n\x1e\x63om.yandex.ydb.coordination.v1B\x10\x43oordinationGrpcP\x01\x62\x06proto3' , dependencies=[ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2.DESCRIPTOR,]) _sym_db.RegisterFileDescriptor(DESCRIPTOR) DESCRIPTOR._options = None _COORDINATIONSERVICE = _descriptor.ServiceDescriptor( name='CoordinationService', full_name='Ydb.Coordination.V1.CoordinationService', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=117, serialized_end=575, methods=[ _descriptor.MethodDescriptor( name='Session', full_name='Ydb.Coordination.V1.CoordinationService.Session', index=0, containing_service=None, input_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._SESSIONREQUEST, output_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._SESSIONRESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='CreateNode', full_name='Ydb.Coordination.V1.CoordinationService.CreateNode', index=1, containing_service=None, input_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._CREATENODEREQUEST, output_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._CREATENODERESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='AlterNode', full_name='Ydb.Coordination.V1.CoordinationService.AlterNode', index=2, containing_service=None, input_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._ALTERNODEREQUEST, output_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._ALTERNODERESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='DropNode', full_name='Ydb.Coordination.V1.CoordinationService.DropNode', index=3, containing_service=None, input_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._DROPNODEREQUEST, output_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._DROPNODERESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='DescribeNode', full_name='Ydb.Coordination.V1.CoordinationService.DescribeNode', index=4, containing_service=None, input_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._DESCRIBENODEREQUEST, output_type=ydb_dot_public_dot_api_dot_protos_dot_ydb__coordination__pb2._DESCRIBENODERESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_COORDINATIONSERVICE) DESCRIPTOR.services_by_name['CoordinationService'] = _COORDINATIONSERVICE # @@protoc_insertion_point(module_scope)
py
1a31bc5394b6f37482463e581c96f41107bd034f
import unittest import tohil class TestMethods(unittest.TestCase): def test_convert1(self): """exercise tohil.convert with no to= and with to=str""" self.assertEqual(tohil.convert(10), "10") self.assertEqual(tohil.convert(10, to=str), "10") self.assertEqual(tohil.convert("10"), "10") self.assertEqual(tohil.convert("10", to=str), "10") def test_convert2(self): """exercise tohil.convert and to=int and to=float""" self.assertEqual(tohil.convert("10", to=int), 10) self.assertEqual(tohil.convert("10", to=float), 10.0) def test_convert3(self): """exercise tohil.convert to=bool""" self.assertEqual(tohil.convert(True, to=bool), True) self.assertEqual(tohil.convert("t", to=bool), True) self.assertEqual(tohil.convert("1", to=bool), True) self.assertEqual(tohil.convert(1, to=bool), True) self.assertEqual(tohil.convert(False, to=bool), False) self.assertEqual(tohil.convert("f", to=bool), False) self.assertEqual(tohil.convert("0", to=bool), False) self.assertEqual(tohil.convert(0, to=bool), False) def test_convert4(self): """exercise tohil.convert to=list""" self.assertEqual(tohil.convert("1 2 3 4 5", to=list), ["1", "2", "3", "4", "5"]) def test_convert5(self): """exercise tohil.convert and to=dict""" self.assertEqual( tohil.convert("a 1 b 2 c 3 d 4", to=dict), {"a": "1", "b": "2", "c": "3", "d": "4"}, ) def test_convert6(self): """exercise tohil.convert and to=tuple""" self.assertEqual( tohil.convert("a 1 b 2 c 3 d 4", to=tuple), ("a", "1", "b", "2", "c", "3", "d", "4"), ) def test_convert7(self): """exercise tohil.convert and to=set""" self.assertEqual( sorted(tohil.convert("1 2 3 4 5 6 6", to=set)), ["1", "2", "3", "4", "5", "6"], ) def test_convert8(self): """exercise tohil.convert and to=tohil.tclobj""" self.assertEqual( repr(tohil.convert("1 2 3", to=tohil.tclobj)), "<tohil.tclobj: '1 2 3'>" ) if __name__ == "__main__": unittest.main()
py
1a31bc78de1a8e4a503b150313310e5726cfad7f
from starflyer import Handler, redirect, asjson, AttributeMapper from camper import BaseForm, db, BaseHandler, is_admin, logged_in, ensure_barcamp from wtforms import * from sfext.babel import T from .base import BarcampBaseHandler, LocationNotFound import uuid class ParticipantDataEditForm(BaseForm): """form for defining a pareticipant data form""" # base data title = TextField(T("Name of field"), [validators.Length(max=50), validators.Required()], description = T('the name of the field to be shown in the form, e.g. "t-shirt size"'), ) description = TextAreaField(T("Description"), description = T('please describe what the user should enter in this field.'), ) fieldtype = RadioField(T("field type"), [validators.Required()], choices=[ ('checkbox',T('a yes/no field')), ('textfield',T('1 line of text')), ('textarea',T('multiple lines of text')), ('select',T('select one choice out of many'))], description = T('please chose between a one-line text field or multi-line text area'), ) choices = TextAreaField(T("Choices"), description = T('please put each choice on a separate line.'), ) required = BooleanField(T("field required?"), description = T('If you enable this then the user cannot register before this field has been filled in.'), ) class ParticipantsDataEditView(BarcampBaseHandler): """let the user define the participant data form fields""" template = "admin/participants_data_edit.html" @ensure_barcamp() @logged_in() @is_admin() def get(self, slug = None): """render the view""" form = ParticipantDataEditForm(self.request.form, config = self.config) registration_form = self.barcamp.registration_form if self.request.method == 'POST' and form.validate(): f = form.data f['name'] = unicode(uuid.uuid4()) # clean up choices new_choices = [] for c in f['choices'].split("\n"): choice = c.strip() if choice: new_choices.append((choice, choice)) # value and name are the same f['choices'] = new_choices self.barcamp.registration_form.append(f) self.barcamp.save() return redirect(self.url_for("barcamps.registration_form_editor", slug = self.barcamp.slug)) return self.render( view = self.barcamp_view, barcamp = self.barcamp, title = self.barcamp.name, form = form, fields = self.barcamp.registration_form, **self.barcamp ) post = get @ensure_barcamp() @logged_in() @is_admin() def delete(self, slug = None): """delete a form entry""" idx = self.request.args.get("idx", None) rf = self.barcamp.registration_form if idx is not None and int(idx) < len(rf) and int(idx) >= 0: del self.barcamp.registration_form[int(idx)] self.barcamp.save() return redirect(self.url_for("barcamps.registration_form_editor", slug = self.barcamp.slug))
py
1a31bddf9178b9adce8d22d44e502379135bb23d
# -*- coding: utf-8 -*- """Compound ZIP file plugin related functions and classes for testing.""" import zipfile from plaso.containers import sessions from plaso.storage.fake import writer as fake_writer from tests.parsers import test_lib class CompoundZIPPluginTestCase(test_lib.ParserTestCase): """Compound ZIP file plugin test case.""" def _ParseZIPFileWithPlugin( self, path_segments, plugin, knowledge_base_values=None): """Parses a file as a ZIP file and returns an event generator. This method will first test if a ZIP file contains the required paths using plugin.CheckRequiredPaths() and then extracts events using plugin.Process(). Args: path_segments (list[str]): path segments inside the test data directory. plugin (CompoundZIPPlugin): compound ZIP file plugin. knowledge_base_values (Optional[dict[str, object]]): knowledge base values. Returns: FakeStorageWriter: storage writer. """ session = sessions.Session() storage_writer = fake_writer.FakeStorageWriter(session) storage_writer.Open() file_entry = self._GetTestFileEntry(path_segments) parser_mediator = self._CreateParserMediator( storage_writer, file_entry=file_entry, knowledge_base_values=knowledge_base_values) file_object = file_entry.GetFileObject() try: zip_file = zipfile.ZipFile(file_object, 'r', allowZip64=True) required_paths_exist = plugin.CheckRequiredPaths(zip_file) self.assertTrue(required_paths_exist) plugin.Process(parser_mediator, zip_file=zip_file) zip_file.close() finally: file_object.close() return storage_writer
py
1a31bf34db44bf2fe72a65cea1c1cfa060df18d4
#predicting-house-prices.py #Day 6: Multiple Linear Regression: Predicting House Prices #Intro to Statistics #By derekhh #Apr 2, 2016 from sklearn import linear_model f, n = input().split() f = int(f) n = int(n) clf = linear_model.LinearRegression() x_train = [] y_train = [] for i in range(n): tmp = [float(n) for n in input().split()] x_train.append(tmp[0: len(tmp) - 1]) y_train.append(tmp[len(tmp) - 1]) clf.fit(x_train, y_train) x_test = [] n = int(input()) for i in range(n): tmp = [float(n) for n in input().split()] x_test.append(tmp) y_test = clf.predict(x_test) for y in y_test: print(y)
py
1a31bf5ad3819a451fa858838d6d4cdd866ca7eb
""" Django settings for backend project. Generated by 'django-admin startproject' using Django 1.10.3. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ["SECRET_KEY"] # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ["*",] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'corsheaders', 'core', 'posts', 'categories', 'tags', 'profiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'backend.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'backend.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME':os.environ["POSTGRES_DB"], 'USER':os.environ["POSTGRES_USER"], 'PASSWORD':os.environ["POSTGRES_PASSWORD"], 'HOST': 'postgres', 'PORT': '', } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static"), ) STATIC_ROOT = os.path.join(BASE_DIR, "static_serve/") # REST Framework REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES':( 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PERMISSION_CLASSES':( 'rest_framework.permissions.IsAuthenticatedOrReadOnly', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination', 'PAGE_SIZE': 12 } CORS_ORIGIN_ALLOW_ALL = True # CORS_ALLOW_CREDENTIALS = True # CORS_ORIGIN_WHITELIST = [ # '*', # ]
py
1a31c076aba6e6aabae06381fd0d774ce6e9537e
""" Apicurio Registry API [v2] Apicurio Registry is a datastore for standard event schemas and API designs. Apicurio Registry enables developers to manage and share the structure of their data using a REST interface. For example, client applications can dynamically push or pull the latest updates to or from the registry without needing to redeploy. Apicurio Registry also enables developers to create rules that govern how registry content can evolve over time. For example, this includes rules for content validation and version compatibility. The Apicurio Registry REST API enables client applications to manage the artifacts in the registry. This API provides create, read, update, and delete operations for schema and API artifacts, rules, versions, and metadata. The supported artifact types include: - Apache Avro schema - AsyncAPI specification - Google protocol buffers - GraphQL schema - JSON Schema - Kafka Connect schema - OpenAPI specification - Web Services Description Language - XML Schema Definition **Important**: The Apicurio Registry REST API is available from `https://MY-REGISTRY-URL/apis/registry/v2` by default. Therefore you must prefix all API operation paths with `../apis/registry/v2` in this case. For example: `../apis/registry/v2/ids/globalIds/{globalId}`. # noqa: E501 The version of the OpenAPI document: 2.2.0.Final Contact: [email protected] Generated by: https://openapi-generator.tech """ import copy import logging import multiprocessing import sys import urllib3 from http import client as http_client from apicurioregistryclient.exceptions import ApiValueError JSON_SCHEMA_VALIDATION_KEYWORDS = { 'multipleOf', 'maximum', 'exclusiveMaximum', 'minimum', 'exclusiveMinimum', 'maxLength', 'minLength', 'pattern', 'maxItems', 'minItems' } class Configuration(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. :param host: Base url :param api_key: Dict to store API key(s). Each entry in the dict specifies an API key. The dict key is the name of the security scheme in the OAS specification. The dict value is the API key secret. :param api_key_prefix: Dict to store API prefix (e.g. Bearer) The dict key is the name of the security scheme in the OAS specification. The dict value is an API key prefix when generating the auth data. :param username: Username for HTTP basic authentication :param password: Password for HTTP basic authentication :param discard_unknown_keys: Boolean value indicating whether to discard unknown properties. A server may send a response that includes additional properties that are not known by the client in the following scenarios: 1. The OpenAPI document is incomplete, i.e. it does not match the server implementation. 2. The client was generated using an older version of the OpenAPI document and the server has been upgraded since then. If a schema in the OpenAPI document defines the additionalProperties attribute, then all undeclared properties received by the server are injected into the additional properties map. In that case, there are undeclared properties, and nothing to discard. :param disabled_client_side_validations (string): Comma-separated list of JSON schema validation keywords to disable JSON schema structural validation rules. The following keywords may be specified: multipleOf, maximum, exclusiveMaximum, minimum, exclusiveMinimum, maxLength, minLength, pattern, maxItems, minItems. By default, the validation is performed for data generated locally by the client and data received from the server, independent of any validation performed by the server side. If the input data does not satisfy the JSON schema validation rules specified in the OpenAPI document, an exception is raised. If disabled_client_side_validations is set, structural validation is disabled. This can be useful to troubleshoot data validation problem, such as when the OpenAPI document validation rules do not match the actual API data received by the server. :param server_index: Index to servers configuration. :param server_variables: Mapping with string values to replace variables in templated server configuration. The validation of enums is performed for variables with defined enum values before. :param server_operation_index: Mapping from operation ID to an index to server configuration. :param server_operation_variables: Mapping from operation ID to a mapping with string values to replace variables in templated server configuration. The validation of enums is performed for variables with defined enum values before. :param ssl_ca_cert: str - the path to a file of concatenated CA certificates in PEM format """ _default = None def __init__(self, host=None, api_key=None, api_key_prefix=None, access_token=None, username=None, password=None, discard_unknown_keys=False, disabled_client_side_validations="", server_index=None, server_variables=None, server_operation_index=None, server_operation_variables=None, ssl_ca_cert=None, ): """Constructor """ self._base_path = "http://localhost" if host is None else host """Default Base url """ self.server_index = 0 if server_index is None and host is None else server_index self.server_operation_index = server_operation_index or {} """Default server index """ self.server_variables = server_variables or {} self.server_operation_variables = server_operation_variables or {} """Default server variables """ self.temp_folder_path = None """Temp file folder for downloading files """ # Authentication Settings self.access_token = access_token self.api_key = {} if api_key: self.api_key = api_key """dict to store API key(s) """ self.api_key_prefix = {} if api_key_prefix: self.api_key_prefix = api_key_prefix """dict to store API prefix (e.g. Bearer) """ self.refresh_api_key_hook = None """function hook to refresh API key if expired """ self.username = username """Username for HTTP basic authentication """ self.password = password """Password for HTTP basic authentication """ self.discard_unknown_keys = discard_unknown_keys self.disabled_client_side_validations = disabled_client_side_validations self.logger = {} """Logging Settings """ self.logger["package_logger"] = logging.getLogger("apicurioregistryclient") self.logger["urllib3_logger"] = logging.getLogger("urllib3") self.logger_format = '%(asctime)s %(levelname)s %(message)s' """Log format """ self.logger_stream_handler = None """Log stream handler """ self.logger_file_handler = None """Log file handler """ self.logger_file = None """Debug file location """ self.debug = False """Debug switch """ self.verify_ssl = True """SSL/TLS verification Set this to false to skip verifying SSL certificate when calling API from https server. """ self.ssl_ca_cert = ssl_ca_cert """Set this to customize the certificate file to verify the peer. """ self.cert_file = None """client certificate file """ self.key_file = None """client key file """ self.assert_hostname = None """Set this to True/False to enable/disable SSL hostname verification. """ self.connection_pool_maxsize = multiprocessing.cpu_count() * 5 """urllib3 connection pool's maximum number of connections saved per pool. urllib3 uses 1 connection as default value, but this is not the best value when you are making a lot of possibly parallel requests to the same host, which is often the case here. cpu_count * 5 is used as default value to increase performance. """ self.proxy = None """Proxy URL """ self.no_proxy = None """bypass proxy for host in the no_proxy list. """ self.proxy_headers = None """Proxy headers """ self.safe_chars_for_path_param = '' """Safe chars for path_param """ self.retries = None """Adding retries to override urllib3 default value 3 """ # Enable client side validation self.client_side_validation = True # Options to pass down to the underlying urllib3 socket self.socket_options = None def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): if k not in ('logger', 'logger_file_handler'): setattr(result, k, copy.deepcopy(v, memo)) # shallow copy of loggers result.logger = copy.copy(self.logger) # use setters to configure loggers result.logger_file = self.logger_file result.debug = self.debug return result def __setattr__(self, name, value): object.__setattr__(self, name, value) if name == 'disabled_client_side_validations': s = set(filter(None, value.split(','))) for v in s: if v not in JSON_SCHEMA_VALIDATION_KEYWORDS: raise ApiValueError( "Invalid keyword: '{0}''".format(v)) self._disabled_client_side_validations = s @classmethod def set_default(cls, default): """Set default instance of configuration. It stores default configuration, which can be returned by get_default_copy method. :param default: object of Configuration """ cls._default = copy.deepcopy(default) @classmethod def get_default_copy(cls): """Return new instance of configuration. This method returns newly created, based on default constructor, object of Configuration class or returns a copy of default configuration passed by the set_default method. :return: The configuration object. """ if cls._default is not None: return copy.deepcopy(cls._default) return Configuration() @property def logger_file(self): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ return self.__logger_file @logger_file.setter def logger_file(self, value): """The logger file. If the logger_file is None, then add stream handler and remove file handler. Otherwise, add file handler and remove stream handler. :param value: The logger_file path. :type: str """ self.__logger_file = value if self.__logger_file: # If set logging file, # then add file handler and remove stream handler. self.logger_file_handler = logging.FileHandler(self.__logger_file) self.logger_file_handler.setFormatter(self.logger_formatter) for _, logger in self.logger.items(): logger.addHandler(self.logger_file_handler) @property def debug(self): """Debug status :param value: The debug status, True or False. :type: bool """ return self.__debug @debug.setter def debug(self, value): """Debug status :param value: The debug status, True or False. :type: bool """ self.__debug = value if self.__debug: # if debug status is True, turn on debug logging for _, logger in self.logger.items(): logger.setLevel(logging.DEBUG) # turn on http_client debug http_client.HTTPConnection.debuglevel = 1 else: # if debug status is False, turn off debug logging, # setting log level to default `logging.WARNING` for _, logger in self.logger.items(): logger.setLevel(logging.WARNING) # turn off http_client debug http_client.HTTPConnection.debuglevel = 0 @property def logger_format(self): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ return self.__logger_format @logger_format.setter def logger_format(self, value): """The logger format. The logger_formatter will be updated when sets logger_format. :param value: The format string. :type: str """ self.__logger_format = value self.logger_formatter = logging.Formatter(self.__logger_format) def get_api_key_with_prefix(self, identifier, alias=None): """Gets API key (with prefix if set). :param identifier: The identifier of apiKey. :param alias: The alternative identifier of apiKey. :return: The token for api key authentication. """ if self.refresh_api_key_hook is not None: self.refresh_api_key_hook(self) key = self.api_key.get(identifier, self.api_key.get(alias) if alias is not None else None) if key: prefix = self.api_key_prefix.get(identifier) if prefix: return "%s %s" % (prefix, key) else: return key def get_basic_auth_token(self): """Gets HTTP basic authentication header (string). :return: The token for basic HTTP authentication. """ username = "" if self.username is not None: username = self.username password = "" if self.password is not None: password = self.password return urllib3.util.make_headers( basic_auth=username + ':' + password ).get('authorization') def auth_settings(self): """Gets Auth Settings dict for api client. :return: The Auth Settings information dict. """ auth = {} return auth def to_debug_report(self): """Gets the essential information for debugging. :return: The report for debugging. """ return "Python SDK Debug Report:\n"\ "OS: {env}\n"\ "Python Version: {pyversion}\n"\ "Version of the API: 2.2.0.Final\n"\ "SDK Package Version: 1.0.0".\ format(env=sys.platform, pyversion=sys.version) def get_host_settings(self): """Gets an array of host settings :return: An array of host settings """ return [ { 'url': "", 'description': "No description provided", } ] def get_host_from_settings(self, index, variables=None, servers=None): """Gets host URL based on the index and variables :param index: array index of the host settings :param variables: hash of variable and the corresponding value :param servers: an array of host settings or None :return: URL based on host settings """ if index is None: return self._base_path variables = {} if variables is None else variables servers = self.get_host_settings() if servers is None else servers try: server = servers[index] except IndexError: raise ValueError( "Invalid index {0} when selecting the host settings. " "Must be less than {1}".format(index, len(servers))) url = server['url'] # go through variables and replace placeholders for variable_name, variable in server.get('variables', {}).items(): used_value = variables.get( variable_name, variable['default_value']) if 'enum_values' in variable \ and used_value not in variable['enum_values']: raise ValueError( "The variable `{0}` in the host URL has invalid value " "{1}. Must be {2}.".format( variable_name, variables[variable_name], variable['enum_values'])) url = url.replace("{" + variable_name + "}", used_value) return url @property def host(self): """Return generated host.""" return self.get_host_from_settings(self.server_index, variables=self.server_variables) @host.setter def host(self, value): """Fix base path.""" self._base_path = value self.server_index = None
py
1a31c08ad8f0247c55b05b8cdfb1a02708b11743
n = 5 # size for x in range(1, n + 1): for y in range(1, x + 1): if (x % 2 != 0): print(chr(y + 64), end="") # for char else: print(y, end="") print()
py
1a31c229d3317c906eaa2726d4e1dec64221ddb9
address_resolver_abi = [ { "inputs": [ { "internalType": "address", "name": "_owner", "type": "address" } ], "payable": False, "stateMutability": "nonpayable", "type": "constructor", "signature": "constructor" }, { "anonymous": False, "inputs": [ { "indexed": False, "internalType": "address", "name": "oldOwner", "type": "address" }, { "indexed": False, "internalType": "address", "name": "newOwner", "type": "address" } ], "name": "OwnerChanged", "type": "event", "signature": "0xb532073b38c83145e3e5135377a08bf9aab55bc0fd7c1179cd4fb995d2a5159c" }, { "anonymous": False, "inputs": [ { "indexed": False, "internalType": "address", "name": "newOwner", "type": "address" } ], "name": "OwnerNominated", "type": "event", "signature": "0x906a1c6bd7e3091ea86693dd029a831c19049ce77f1dce2ce0bab1cacbabce22" }, { "constant": False, "inputs": [], "name": "acceptOwnership", "outputs": [], "payable": False, "stateMutability": "nonpayable", "type": "function", "signature": "0x79ba5097" }, { "constant": True, "inputs": [ { "internalType": "bytes32", "name": "name", "type": "bytes32" } ], "name": "getAddress", "outputs": [ { "internalType": "address", "name": "", "type": "address" } ], "payable": False, "stateMutability": "view", "type": "function", "signature": "0x21f8a721" }, { "constant": True, "inputs": [ { "internalType": "bytes32", "name": "key", "type": "bytes32" } ], "name": "getSynth", "outputs": [ { "internalType": "address", "name": "", "type": "address" } ], "payable": False, "stateMutability": "view", "type": "function", "signature": "0x51456061" }, { "constant": False, "inputs": [ { "internalType": "bytes32[]", "name": "names", "type": "bytes32[]" }, { "internalType": "address[]", "name": "destinations", "type": "address[]" } ], "name": "importAddresses", "outputs": [], "payable": False, "stateMutability": "nonpayable", "type": "function", "signature": "0xab0b8f77" }, { "constant": False, "inputs": [ { "internalType": "address", "name": "_owner", "type": "address" } ], "name": "nominateNewOwner", "outputs": [], "payable": False, "stateMutability": "nonpayable", "type": "function", "signature": "0x1627540c" }, { "constant": True, "inputs": [], "name": "nominatedOwner", "outputs": [ { "internalType": "address", "name": "", "type": "address" } ], "payable": False, "stateMutability": "view", "type": "function", "signature": "0x53a47bb7" }, { "constant": True, "inputs": [], "name": "owner", "outputs": [ { "internalType": "address", "name": "", "type": "address" } ], "payable": False, "stateMutability": "view", "type": "function", "signature": "0x8da5cb5b" }, { "constant": True, "inputs": [ { "internalType": "bytes32", "name": "", "type": "bytes32" } ], "name": "repository", "outputs": [ { "internalType": "address", "name": "", "type": "address" } ], "payable": False, "stateMutability": "view", "type": "function", "signature": "0x187f7935" }, { "constant": True, "inputs": [ { "internalType": "bytes32", "name": "name", "type": "bytes32" }, { "internalType": "string", "name": "reason", "type": "string" } ], "name": "requireAndGetAddress", "outputs": [ { "internalType": "address", "name": "", "type": "address" } ], "payable": False, "stateMutability": "view", "type": "function", "signature": "0xdacb2d01" } ]
py
1a31c28e496c6080a3bb16d64a464a0d513d6b00
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin from django.conf import settings class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): '''creates and saves a new user''' if not email: raise ValueError('Users must have an email address') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): '''Create and saves a new super user''' user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): '''custom user model that supports using email instead of username''' email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email' class Tag(models.Model): '''Tag to be used for a recipe''' name = models.CharField(max_length=255) user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) def __str__(self): return self.name
py
1a31c2aa3d7097c3344ff3ee6a88381b316e28dc
"""Time series estimator that predicts using the naive forecasting approach.""" import numpy as np from rayml.model_family import ModelFamily from rayml.pipelines.components.estimators import Estimator from rayml.pipelines.components.transformers import TimeSeriesFeaturizer from rayml.problem_types import ProblemTypes from rayml.utils import infer_feature_types class TimeSeriesBaselineEstimator(Estimator): """Time series estimator that predicts using the naive forecasting approach. This is useful as a simple baseline estimator for time series problems. Args: gap (int): Gap between prediction date and target date and must be a positive integer. If gap is 0, target date will be shifted ahead by 1 time period. Defaults to 1. forecast_horizon (int): Number of time steps the model is expected to predict. random_seed (int): Seed for the random number generator. Defaults to 0. """ name = "Time Series Baseline Estimator" hyperparameter_ranges = {} """{}""" model_family = ModelFamily.BASELINE """ModelFamily.BASELINE""" supported_problem_types = [ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ] """[ ProblemTypes.TIME_SERIES_REGRESSION, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS, ]""" def __init__(self, gap=1, forecast_horizon=1, random_seed=0, **kwargs): self._prediction_value = None self.start_delay = forecast_horizon + gap self._classes = None self._num_features = None self._delay_index = None if gap < 0: raise ValueError( f"gap value must be a positive integer. {gap} was provided." ) parameters = {"gap": gap, "forecast_horizon": forecast_horizon} parameters.update(kwargs) super().__init__( parameters=parameters, component_obj=None, random_seed=random_seed ) def fit(self, X, y=None): """Fits time series baseline estimator to data. Args: X (pd.DataFrame): The input training data of shape [n_samples, n_features]. y (pd.Series): The target training data of length [n_samples]. Returns: self Raises: ValueError: If input y is None. """ X = infer_feature_types(X) if y is None: raise ValueError("Cannot fit Time Series Baseline Classifier if y is None") vals, _ = np.unique(y, return_counts=True) self._classes = list(vals) return self def predict(self, X): """Make predictions using fitted time series baseline estimator. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.Series: Predicted values. Raises: ValueError: If input y is None. """ X = infer_feature_types(X) feature_name = TimeSeriesFeaturizer.target_colname_prefix.format( self.start_delay ) if feature_name not in X.columns: raise ValueError( "Time Series Baseline Estimator is meant to be used in a pipeline with " "a Time Series Featurizer" ) self._num_features = X.shape[1] self._delay_index = X.columns.tolist().index(feature_name) return X.ww[feature_name] def predict_proba(self, X): """Make prediction probabilities using fitted time series baseline estimator. Args: X (pd.DataFrame): Data of shape [n_samples, n_features]. Returns: pd.DataFrame: Predicted probability values. Raises: ValueError: If input y is None. """ preds = self.predict(X).astype("int") proba_arr = np.zeros((len(preds), len(self._classes))) proba_arr[np.arange(len(preds)), preds] = 1 return infer_feature_types(proba_arr) @property def feature_importance(self): """Returns importance associated with each feature. Since baseline estimators do not use input features to calculate predictions, returns an array of zeroes. Returns: np.ndarray (float): An array of zeroes. """ importance = np.array([0] * self._num_features) importance[self._delay_index] = 1 return importance
py
1a31c2eafe6119e256d21e9ccbdf0218fed77602
# Copyright (c) 2016 EMC Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import threading import oslo_serialization from cinder.i18n import _ from cinder.volume.drivers.coprhd.helpers import commoncoprhdapi as common from cinder.volume.drivers.coprhd.helpers import consistencygroup from cinder.volume.drivers.coprhd.helpers import volume class Snapshot(common.CoprHDResource): # Commonly used URIs for the 'Snapshot' module URI_SNAPSHOTS = '/{0}/snapshots/{1}' URI_BLOCK_SNAPSHOTS = '/block/snapshots/{0}' URI_SEARCH_SNAPSHOT_BY_TAG = '/block/snapshots/search?tag={0}' URI_SNAPSHOT_LIST = '/{0}/{1}/{2}/protection/snapshots' URI_SNAPSHOT_TASKS_BY_OPID = '/vdc/tasks/{0}' URI_RESOURCE_DEACTIVATE = '{0}/deactivate' URI_CONSISTENCY_GROUP = "/block/consistency-groups" URI_CONSISTENCY_GROUPS_SNAPSHOT_INSTANCE = ( URI_CONSISTENCY_GROUP + "/{0}/protection/snapshots/{1}") URI_CONSISTENCY_GROUPS_SNAPSHOT_DEACTIVATE = ( URI_CONSISTENCY_GROUPS_SNAPSHOT_INSTANCE + "/deactivate") URI_BLOCK_SNAPSHOTS_TAG = URI_BLOCK_SNAPSHOTS + '/tags' VOLUMES = 'volumes' CG = 'consistency-groups' BLOCK = 'block' is_timeout = False timeout = 300 def snapshot_list_uri(self, otype, otypename, ouri): """Makes REST API call to list snapshots under a volume. :param otype : block :param otypename : either volume or consistency-group should be provided :param ouri : uri of volume or consistency-group :returns: list of snapshots """ (s, h) = common.service_json_request( self.ipaddr, self.port, "GET", Snapshot.URI_SNAPSHOT_LIST.format(otype, otypename, ouri), None) o = common.json_decode(s) return o['snapshot'] def snapshot_show_uri(self, otype, resource_uri, suri): """Retrieves snapshot details based on snapshot Name or Label. :param otype : block :param suri : uri of the Snapshot. :param resource_uri: uri of the source resource :returns: Snapshot details in JSON response payload """ if(resource_uri is not None and resource_uri.find('BlockConsistencyGroup') > 0): (s, h) = common.service_json_request( self.ipaddr, self.port, "GET", Snapshot.URI_CONSISTENCY_GROUPS_SNAPSHOT_INSTANCE.format( resource_uri, suri), None) else: (s, h) = common.service_json_request( self.ipaddr, self.port, "GET", Snapshot.URI_SNAPSHOTS.format(otype, suri), None) return common.json_decode(s) def snapshot_query(self, storageres_type, storageres_typename, resuri, snapshot_name): if resuri is not None: uris = self.snapshot_list_uri( storageres_type, storageres_typename, resuri) for uri in uris: snapshot = self.snapshot_show_uri( storageres_type, resuri, uri['id']) if (False == common.get_node_value(snapshot, 'inactive') and snapshot['name'] == snapshot_name): return snapshot['id'] raise common.CoprHdError( common.CoprHdError.SOS_FAILURE_ERR, (_("snapshot with the name: " "%s Not Found") % snapshot_name)) def snapshot_show_task_opid(self, otype, snap, taskid): (s, h) = common.service_json_request( self.ipaddr, self.port, "GET", Snapshot.URI_SNAPSHOT_TASKS_BY_OPID.format(taskid), None) if (not s): return None o = common.json_decode(s) return o # Blocks the operation until the task is complete/error out/timeout def block_until_complete(self, storageres_type, resuri, task_id, synctimeout=0): if synctimeout: t = threading.Timer(synctimeout, common.timeout_handler) else: synctimeout = self.timeout t = threading.Timer(synctimeout, common.timeout_handler) t.start() while True: out = self.snapshot_show_task_opid( storageres_type, resuri, task_id) if out: if out["state"] == "ready": # cancel the timer and return t.cancel() break # if the status of the task is 'error' then cancel the timer # and raise exception if out["state"] == "error": # cancel the timer t.cancel() error_message = "Please see logs for more details" if("service_error" in out and "details" in out["service_error"]): error_message = out["service_error"]["details"] raise common.CoprHdError( common.CoprHdError.VALUE_ERR, (_("Task: %(task_id)s is failed with error: " "%(error_message)s") % {'task_id': task_id, 'error_message': error_message})) if self.is_timeout: self.is_timeout = False raise common.CoprHdError(common.CoprHdError.TIME_OUT, (_("Task did not complete in %d secs." " Operation timed out. Task in" " CoprHD will continue") % synctimeout)) return def storage_resource_query(self, storageres_type, volume_name, cg_name, project, tenant): resourcepath = "/" + project if tenant is not None: resourcepath = tenant + resourcepath resUri = None resourceObj = None if Snapshot.BLOCK == storageres_type and volume_name is not None: resourceObj = volume.Volume(self.ipaddr, self.port) resUri = resourceObj.volume_query(resourcepath, volume_name) elif Snapshot.BLOCK == storageres_type and cg_name is not None: resourceObj = consistencygroup.ConsistencyGroup( self.ipaddr, self.port) resUri = resourceObj.consistencygroup_query( cg_name, project, tenant) else: resourceObj = None return resUri def snapshot_create(self, otype, typename, ouri, snaplabel, inactive, sync, readonly=False, synctimeout=0): """New snapshot is created, for a given volume. :param otype : block type should be provided :param typename : either volume or consistency-groups should be provided :param ouri : uri of volume :param snaplabel : name of the snapshot :param inactive : if true, the snapshot will not activate the synchronization between source and target volumes :param sync : synchronous request :param synctimeout : Query for task status for "synctimeout" secs. If the task doesn't complete in synctimeout secs, an exception is thrown """ # check snapshot is already exist is_snapshot_exist = True try: self.snapshot_query(otype, typename, ouri, snaplabel) except common.CoprHdError as e: if e.err_code == common.CoprHdError.NOT_FOUND_ERR: is_snapshot_exist = False else: raise if is_snapshot_exist: raise common.CoprHdError( common.CoprHdError.ENTRY_ALREADY_EXISTS_ERR, (_("Snapshot with name %(snaplabel)s" " already exists under %(typename)s") % {'snaplabel': snaplabel, 'typename': typename })) parms = { 'name': snaplabel, # if true, the snapshot will not activate the synchronization # between source and target volumes 'create_inactive': inactive } if readonly is True: parms['read_only'] = readonly body = oslo_serialization.jsonutils.dumps(parms) # REST api call (s, h) = common.service_json_request( self.ipaddr, self.port, "POST", Snapshot.URI_SNAPSHOT_LIST.format(otype, typename, ouri), body) o = common.json_decode(s) task = o["task"][0] if sync: return ( self.block_until_complete( otype, task['resource']['id'], task["id"], synctimeout) ) else: return o def snapshot_delete_uri(self, otype, resource_uri, suri, sync, synctimeout=0): """Delete a snapshot by uri. :param otype : block :param resource_uri: uri of the source resource :param suri : Uri of the Snapshot :param sync : To perform operation synchronously :param synctimeout : Query for task status for "synctimeout" secs. If the task doesn't complete in synctimeout secs, an exception is thrown """ s = None if resource_uri.find("Volume") > 0: (s, h) = common.service_json_request( self.ipaddr, self.port, "POST", Snapshot.URI_RESOURCE_DEACTIVATE.format( Snapshot.URI_BLOCK_SNAPSHOTS.format(suri)), None) elif resource_uri.find("BlockConsistencyGroup") > 0: (s, h) = common.service_json_request( self.ipaddr, self.port, "POST", Snapshot.URI_CONSISTENCY_GROUPS_SNAPSHOT_DEACTIVATE.format( resource_uri, suri), None) o = common.json_decode(s) task = o["task"][0] if sync: return ( self.block_until_complete( otype, task['resource']['id'], task["id"], synctimeout) ) else: return o def snapshot_delete(self, storageres_type, storageres_typename, resource_uri, name, sync, synctimeout=0): snapshotUri = self.snapshot_query( storageres_type, storageres_typename, resource_uri, name) self.snapshot_delete_uri( storageres_type, resource_uri, snapshotUri, sync, synctimeout)
py
1a31c35d127c7436b80836822499cc12e6d33fec
import random import string import cherrypy @cherrypy.expose class StringGeneratorWebService(object): @cherrypy.tools.accept(media='text/plain') def GET(self): return cherrypy.session['mystring'] def POST(self, length=8): some_string = ''.join(random.sample(string.hexdigits, int(length))) cherrypy.session['mystring'] = some_string return some_string def PUT(self, another_string): cherrypy.session['mystring'] = another_string def DELETE(self): cherrypy.session.pop('mystring', None) if __name__ == '__main__': conf = { '/': { 'request.dispatch': cherrypy.dispatch.MethodDispatcher(), 'tools.sessions.on': True, 'tools.response_headers.on': True, 'tools.response_headers.headers': [('Content-Type', 'text/plain')], } } cherrypy.quickstart(StringGeneratorWebService(), '/', conf)
py
1a31c432f32fcf130a588a9644d23ad798c430c7
""" Question 74 : Write a program to generate a list 5 random numbers between 100 and 200 inclusive, Hints : Use random.random() to generate a list of random values. """ # Solution : import random print(random.sample(range(100), 5)) # Note : Evey time when you run the program the random output is generated. """ sample() : The sample() method return a list with a randomly selection of a specified number of items from a sequence, NOte : This method does not change the original sequence. """ """ Output : [58, 72, 48, 19, 33] """
py
1a31c451a554f2872d3008f66c51e2abbdc6c1f7
from unittest import TestCase from tests import get_data from pytezos.michelson.converter import build_schema, decode_micheline, encode_micheline, micheline_to_michelson class StorageTestKT1MqrUiQg3GyZ3wTEGJ3LqFn5Xz4jy4bLZU(TestCase): @classmethod def setUpClass(cls): cls.maxDiff = None cls.contract = get_data('storage/zeronet/KT1MqrUiQg3GyZ3wTEGJ3LqFn5Xz4jy4bLZU.json') def test_storage_encoding_KT1MqrUiQg3GyZ3wTEGJ3LqFn5Xz4jy4bLZU(self): type_expr = self.contract['script']['code'][1] val_expr = self.contract['script']['storage'] schema = build_schema(type_expr) decoded = decode_micheline(val_expr, type_expr, schema) actual = encode_micheline(decoded, schema) self.assertEqual(val_expr, actual) def test_storage_schema_KT1MqrUiQg3GyZ3wTEGJ3LqFn5Xz4jy4bLZU(self): _ = build_schema(self.contract['script']['code'][0]) def test_storage_format_KT1MqrUiQg3GyZ3wTEGJ3LqFn5Xz4jy4bLZU(self): _ = micheline_to_michelson(self.contract['script']['code']) _ = micheline_to_michelson(self.contract['script']['storage'])
py
1a31c4f4453e79728bc0151a44da8e6eeb86a966
# Time: O(n) # Space: O(1) # inplace solution class Solution(object): def addSpaces(self, s, spaces): """ :type s: str :type spaces: List[int] :rtype: str """ prev = len(s) s = list(s) s.extend([None]*len(spaces)) for i in reversed(xrange(len(spaces))): for j in reversed(xrange(spaces[i], prev)): s[j+1+i] = s[j] s[spaces[i]+i] = ' ' prev = spaces[i] return "".join(s)
py
1a31c5de49e7d666354ffed29546b434c15731f3
#!/usr/bin/env python3 # Copyright (c) 2013-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from Pieter's DNS seeder # import re import sys import dns.resolver import collections NSEEDS=512 MAX_SEEDS_PER_ASN=4 MIN_BLOCKS = 1530000 # These are hosts that have been observed to be behaving strangely (e.g. # aggressively connecting to every node). with open("suspicious_hosts.txt", mode="r", encoding="utf-8") as f: SUSPICIOUS_HOSTS = {s.strip() for s in f if s.strip()} PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") PATTERN_AGENT = re.compile( r"^/DeviantCore:(" r"4.0.(0|1|2|99|99.1|99.2)|" r"4.1.(0|99)" r")") def parseline(line): sline = line.split() if len(sline) < 11: return None m = PATTERN_IPV4.match(sline[0]) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(sline[0]) if m is None: m = PATTERN_ONION.match(sline[0]) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) # Skip bad results. if sline[1] == 0: return None # Extract uptime %. uptime30 = float(sline[7][:-1]) # Extract Unix timestamp of last success. lastsuccess = int(sline[2]) # Extract protocol version. version = int(sline[10]) # Extract user agent. if len(sline) > 11: agent = sline[11][1:] + sline[12][:-1] else: agent = sline[11][1:-1] # Extract service flags. service = int(sline[9], 16) # Extract blocks. blocks = int(sline[8]) # Construct result. return { 'net': net, 'ip': ipstr, 'port': port, 'ipnum': ip, 'uptime': uptime30, 'lastsuccess': lastsuccess, 'version': version, 'agent': agent, 'service': service, 'blocks': blocks, 'sortkey': sortkey, } def dedup(ips): '''deduplicate by address,port''' d = {} for ip in ips: d[ip['ip'],ip['port']] = ip return list(d.values()) def filtermultiport(ips): '''Filter out hosts with more nodes per IP''' hist = collections.defaultdict(list) for ip in ips: hist[ip['sortkey']].append(ip) return [value[0] for (key,value) in list(hist.items()) if len(value)==1] def lookup_asn(net, ip): ''' Look up the asn for an IP (4 or 6) address by querying cymru.com, or None if it could not be found. ''' try: if net == 'ipv4': ipaddr = ip prefix = '.origin' else: # http://www.team-cymru.com/IP-ASN-mapping.html res = str() # 2001:4860:b002:23::68 for nb in ip.split(':')[:4]: # pick the first 4 nibbles for c in nb.zfill(4): # right padded with '0' res += c + '.' # 2001 4860 b002 0023 ipaddr = res.rstrip('.') # 2.0.0.1.4.8.6.0.b.0.0.2.0.0.2.3 prefix = '.origin6' asn = int([x.to_text() for x in dns.resolver.query('.'.join( reversed(ipaddr.split('.'))) + prefix + '.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) return asn except Exception: sys.stderr.write('ERR: Could not resolve ASN for "' + ip + '"\n') return None # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_per_net): # Sift out ips by type ips_ipv46 = [ip for ip in ips if ip['net'] in ['ipv4', 'ipv6']] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] # Filter IPv46 by ASN, and limit to max_per_net per network result = [] net_count = collections.defaultdict(int) asn_count = collections.defaultdict(int) for ip in ips_ipv46: if net_count[ip['net']] == max_per_net: continue asn = lookup_asn(ip['net'], ip['ip']) if asn is None or asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 net_count[ip['net']] += 1 result.append(ip) # Add back Onions (up to max_per_net) result.extend(ips_onion[0:max_per_net]) return result def ip_stats(ips): hist = collections.defaultdict(int) for ip in ips: if ip is not None: hist[ip['net']] += 1 return '%6d %6d %6d' % (hist['ipv4'], hist['ipv6'], hist['onion']) def main(): lines = sys.stdin.readlines() ips = [parseline(line) for line in lines] print('\x1b[7m IPv4 IPv6 Onion Pass \x1b[0m', file=sys.stderr) print('%s Initial' % (ip_stats(ips)), file=sys.stderr) # Skip entries with invalid address. ips = [ip for ip in ips if ip is not None] print('%s Skip entries with invalid address' % (ip_stats(ips)), file=sys.stderr) # Skip duplicates (in case multiple seeds files were concatenated) ips = dedup(ips) print('%s After removing duplicates' % (ip_stats(ips)), file=sys.stderr) # Skip entries from suspicious hosts. ips = [ip for ip in ips if ip['ip'] not in SUSPICIOUS_HOSTS] print('%s Skip entries from suspicious hosts' % (ip_stats(ips)), file=sys.stderr) # Enforce minimal number of blocks. ips = [ip for ip in ips if ip['blocks'] >= MIN_BLOCKS] print('%s Enforce minimal number of blocks' % (ip_stats(ips)), file=sys.stderr) # Require service bit 1. ips = [ip for ip in ips if (ip['service'] & 1) == 1] print('%s Require service bit 1' % (ip_stats(ips)), file=sys.stderr) # Require at least 50% 30-day uptime for clearnet, 10% for onion. req_uptime = { 'ipv4': 50, 'ipv6': 50, 'onion': 10, } ips = [ip for ip in ips if ip['uptime'] > req_uptime[ip['net']]] print('%s Require minimum uptime' % (ip_stats(ips)), file=sys.stderr) # Require a known and recent user agent. ips = [ip for ip in ips if PATTERN_AGENT.match(ip['agent'])] print('%s Require a known and recent user agent' % (ip_stats(ips)), file=sys.stderr) # Sort by availability (and use last success as tie breaker) ips.sort(key=lambda x: (x['uptime'], x['lastsuccess'], x['ip']), reverse=True) # Filter out hosts with multiple deviant ports, these are likely abusive ips = filtermultiport(ips) print('%s Filter out hosts with multiple deviant ports' % (ip_stats(ips)), file=sys.stderr) # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) print('%s Look up ASNs and limit results per ASN and per net' % (ip_stats(ips)), file=sys.stderr) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print('[%s]:%i' % (ip['ip'], ip['port'])) else: print('%s:%i' % (ip['ip'], ip['port'])) if __name__ == '__main__': main()
py
1a31c5f31533312a5fb5f6a52af855c0bcd1a27e
# -*- coding: utf-8 -*- # File: parallel.py import atexit import pickle import errno import traceback import itertools import multiprocessing as mp import os import sys import uuid import weakref from contextlib import contextmanager import zmq from six.moves import queue, range from ..utils import logger from ..utils.concurrency import ( StoppableThread, enable_death_signal, ensure_proc_terminate, start_proc_mask_signal) from ..utils.serialize import dumps_once as dumps, loads_once as loads from .base import DataFlow, DataFlowReentrantGuard, DataFlowTerminated, ProxyDataFlow __all__ = ['PrefetchData', 'MultiProcessPrefetchData', 'MultiProcessRunner', 'MultiProcessRunnerZMQ', 'MultiThreadRunner', 'PrefetchDataZMQ', 'MultiThreadPrefetchData'] # from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/__init__.py class _ExceptionWrapper: MAGIC = b"EXC_MAGIC" """Wraps an exception plus traceback to communicate across threads""" def __init__(self, exc_info): # It is important that we don't store exc_info, see # NOTE [ Python Traceback Reference Cycle Problem ] self.exc_type = exc_info[0] self.exc_msg = "".join(traceback.format_exception(*exc_info)) def pack(self): return self.MAGIC + pickle.dumps(self) @staticmethod def unpack(dp): if isinstance(dp, bytes) and dp.startswith(_ExceptionWrapper.MAGIC): return pickle.loads(dp[len(_ExceptionWrapper.MAGIC):]) def _repeat_iter(get_itr): while True: yield from get_itr() def _bind_guard(sock, name): try: sock.bind(name) except zmq.ZMQError: logger.error( "ZMQError in socket.bind('{}'). Perhaps you're \ using pipes on a non-local file system. See documentation of MultiProcessRunnerZMQ \ for more information.".format(name)) raise def _get_pipe_name(name): if sys.platform.startswith('linux'): # linux supports abstract sockets: http://api.zeromq.org/4-1:zmq-ipc pipename = "ipc://@{}-pipe-{}".format(name, str(uuid.uuid1())[:8]) pipedir = os.environ.get('TENSORPACK_PIPEDIR', None) if pipedir is not None: logger.warn("TENSORPACK_PIPEDIR is not used on Linux any more! Abstract sockets will be used.") else: pipedir = os.environ.get('TENSORPACK_PIPEDIR', None) if pipedir is not None: logger.info("ZMQ uses TENSORPACK_PIPEDIR={}".format(pipedir)) else: pipedir = '.' assert os.path.isdir(pipedir), pipedir filename = '{}/{}-pipe-{}'.format(pipedir.rstrip('/'), name, str(uuid.uuid1())[:6]) assert not os.path.exists(filename), "Pipe {} exists! You may be unlucky.".format(filename) pipename = "ipc://{}".format(filename) return pipename def del_weakref(x): o = x() if o is not None: o.__del__() @contextmanager def _zmq_catch_error(name): try: yield except zmq.ContextTerminated: logger.info("[{}] Context terminated.".format(name)) raise DataFlowTerminated() except zmq.ZMQError as e: if e.errno == errno.ENOTSOCK: # socket closed logger.info("[{}] Socket closed.".format(name)) raise DataFlowTerminated() else: raise except Exception: raise class _MultiProcessZMQDataFlow(DataFlow): def __init__(self): assert os.name != 'nt', "ZMQ IPC doesn't support windows!" self._reset_done = False self._procs = [] def reset_state(self): """ All forked dataflows should only be reset **once and only once** in spawned processes. Subclasses should call this method with super. """ assert not self._reset_done, "reset_state() was called twice! This violates the API of DataFlow!" self._reset_done = True # __del__ not guaranteed to get called at exit atexit.register(del_weakref, weakref.ref(self)) def _start_processes(self): start_proc_mask_signal(self._procs) def __del__(self): try: if not self._reset_done: return if not self.context.closed: self.socket.close(0) self.context.destroy(0) for x in self._procs: x.terminate() x.join(5) print("{} successfully cleaned-up.".format(type(self).__name__)) except Exception: pass class MultiProcessRunner(ProxyDataFlow): """ Running a DataFlow in >=1 processes using Python multiprocessing utilities. It will fork the process that calls :meth:`__init__`, collect datapoints from `ds` in each process by a Python :class:`multiprocessing.Queue`. Note: 1. (Data integrity) An iterator cannot run faster automatically -- what's happening is that the process will be forked ``num_proc`` times. There will be ``num_proc`` dataflow running in parallel and **independently**. As a result, we have the following guarantee on the dataflow correctness: a. When ``num_proc=1``, this dataflow produces the same data as the given dataflow in the same order. b. When ``num_proc>1``, if each sample from the given dataflow is i.i.d., then this dataflow produces the **same distribution** of data as the given dataflow. This implies that there will be duplication, reordering, etc. You probably only want to use it for training. For example, if your original dataflow contains no randomness and produces the same first datapoint, then after parallel prefetching, the datapoint will be produced ``num_proc`` times at the beginning. Even when your original dataflow is fully shuffled, you still need to be aware of the `Birthday Paradox <https://en.wikipedia.org/wiki/Birthday_problem>`_ and know that you'll likely see duplicates. To utilize parallelism with more strict data integrity, you can use the parallel versions of :class:`MapData`: :class:`MultiThreadMapData`, :class:`MultiProcessMapData`. 2. This has more serialization overhead than :class:`MultiProcessRunnerZMQ` when data is large. 3. You can nest like this: ``MultiProcessRunnerZMQ(MultiProcessRunner(df, num_proc=a), num_proc=b)``. A total of ``a`` instances of ``df`` worker processes will be created. 4. Fork happens in `__init__`. `reset_state()` is a no-op. DataFlow in the worker processes will be reset at the time of fork. 5. This DataFlow does support windows. However, Windows requires more strict picklability on processes, which means that some code that's forkable on Linux may not be forkable on Windows. If that happens you'll need to re-organize some part of code that's not forkable. """ class _Worker(mp.Process): def __init__(self, ds, queue, idx): super(MultiProcessRunner._Worker, self).__init__() self.ds = ds self.queue = queue self.idx = idx def run(self): enable_death_signal(_warn=self.idx == 0) # reset all ds so each process will produce different data self.ds.reset_state() while True: for dp in self.ds: self.queue.put(dp) def __init__(self, ds, num_prefetch, num_proc): """ Args: ds (DataFlow): input DataFlow. num_prefetch (int): size of the queue to hold prefetched datapoints. Required. num_proc (int): number of processes to use. Required. """ # https://docs.python.org/3.6/library/multiprocessing.html?highlight=process#the-spawn-and-forkserver-start-methods if os.name == 'nt': logger.warn("MultiProcessRunner does support Windows. \ However, Windows requires more strict picklability on processes, which may \ lead of failure on some of the code.") super(MultiProcessRunner, self).__init__(ds) try: self._size = len(ds) except NotImplementedError: self._size = -1 assert num_proc > 0, num_proc assert num_prefetch > 0, num_prefetch self.num_proc = num_proc self.num_prefetch = num_prefetch if num_proc > 1: logger.info("[MultiProcessRunner] Will fork a dataflow more than one times. " "This assumes the datapoints are i.i.d.") self.queue = mp.Queue(self.num_prefetch) self.procs = [MultiProcessRunner._Worker(self.ds, self.queue, idx) for idx in range(self.num_proc)] ensure_proc_terminate(self.procs) self._reset_done = False def __iter__(self): for k in itertools.count(): if self._size > 0 and k >= self._size: break dp = self.queue.get() yield dp def reset_state(self): assert not self._reset_done, "reset_state() was called twice! This violates the API of DataFlow!" self._reset_done = True start_proc_mask_signal(self.procs) class MultiProcessRunnerZMQ(_MultiProcessZMQDataFlow): """ Run a DataFlow in >=1 processes, with ZeroMQ for communication. It will fork the calling process of :meth:`reset_state()`, and collect datapoints from the given dataflow in each process by ZeroMQ IPC pipe. This is typically faster than :class:`MultiProcessRunner`. Note: 1. (Data integrity) An iterator cannot run faster automatically -- what's happening is that the process will be forked ``num_proc`` times. There will be ``num_proc`` dataflow running in parallel and **independently**. As a result, we have the following guarantee on the dataflow correctness: a. When ``num_proc=1``, this dataflow produces the same data as the given dataflow in the same order. b. When ``num_proc>1``, if each sample from the given dataflow is i.i.d., then this dataflow produces the **same distribution** of data as the given dataflow. This implies that there will be duplication, reordering, etc. You probably only want to use it for training. For example, if your original dataflow contains no randomness and produces the same first datapoint, then after parallel prefetching, the datapoint will be produced ``num_proc`` times at the beginning. Even when your original dataflow is fully shuffled, you still need to be aware of the `Birthday Paradox <https://en.wikipedia.org/wiki/Birthday_problem>`_ and know that you'll likely see duplicates. To utilize parallelism with more strict data integrity, you can use the parallel versions of :class:`MapData`: :class:`MultiThreadMapData`, :class:`MultiProcessMapData`. 2. `reset_state()` of the given dataflow will be called **once and only once** in the worker processes. 3. The fork of processes happened in this dataflow's `reset_state()` method. Please note that forking a TensorFlow GPU session may be unsafe. If you're managing this dataflow on your own, it's better to fork before creating the session. 4. (Fork-safety) After the fork has happened, this dataflow becomes not fork-safe. i.e., if you fork an already reset instance of this dataflow, it won't be usable in the forked process. Therefore, do not nest two `MultiProcessRunnerZMQ`. 5. (Thread-safety) ZMQ is not thread safe. Therefore, do not call :meth:`get_data` of the same dataflow in more than 1 threads. 6. This dataflow does not support windows. Use `MultiProcessRunner` which works on windows. 7. (For Mac only) A UNIX named pipe will be created in the current directory. However, certain non-local filesystem such as NFS/GlusterFS/AFS doesn't always support pipes. You can change the directory by ``export TENSORPACK_PIPEDIR=/other/dir``. In particular, you can use somewhere under '/tmp' which is usually local. Note that some non-local FS may appear to support pipes and code may appear to run but crash with bizarre error. Also note that ZMQ limits the maximum length of pipe path. If you hit the limit, you can set the directory to a softlink which points to a local directory. """ class _Worker(mp.Process): def __init__(self, ds, conn_name, hwm, idx): super(MultiProcessRunnerZMQ._Worker, self).__init__() self.ds = ds self.conn_name = conn_name self.hwm = hwm self.idx = idx def run(self): enable_death_signal(_warn=self.idx == 0) self.ds.reset_state() itr = _repeat_iter(lambda: self.ds) context = zmq.Context() socket = context.socket(zmq.PUSH) socket.set_hwm(self.hwm) socket.connect(self.conn_name) try: while True: try: dp = next(itr) socket.send(dumps(dp), copy=False) except Exception: dp = _ExceptionWrapper(sys.exc_info()).pack() socket.send(dumps(dp), copy=False) raise # sigint could still propagate here, e.g. when nested except KeyboardInterrupt: pass finally: socket.close(0) context.destroy(0) def __init__(self, ds, num_proc=1, hwm=50): """ Args: ds (DataFlow): input DataFlow. num_proc (int): number of processes to use. hwm (int): the zmq "high-water mark" (queue size) for both sender and receiver. """ super(MultiProcessRunnerZMQ, self).__init__() self.ds = ds self.num_proc = num_proc self._hwm = hwm if num_proc > 1: logger.info("[MultiProcessRunnerZMQ] Will fork a dataflow more than one times. " "This assumes the datapoints are i.i.d.") try: self._size = ds.__len__() except NotImplementedError: self._size = -1 def _recv(self): ret = loads(self.socket.recv(copy=False)) exc = _ExceptionWrapper.unpack(ret) if exc is not None: logger.error("Exception '{}' in worker:".format(str(exc.exc_type))) raise exc.exc_type(exc.exc_msg) return ret def __len__(self): return self.ds.__len__() def __iter__(self): with self._guard, _zmq_catch_error('MultiProcessRunnerZMQ'): for k in itertools.count(): if self._size > 0 and k >= self._size: break yield self._recv() def reset_state(self): super(MultiProcessRunnerZMQ, self).reset_state() self._guard = DataFlowReentrantGuard() self.context = zmq.Context() self.socket = self.context.socket(zmq.PULL) self.socket.set_hwm(self._hwm) pipename = _get_pipe_name('dataflow') _bind_guard(self.socket, pipename) self._procs = [MultiProcessRunnerZMQ._Worker(self.ds, pipename, self._hwm, idx) for idx in range(self.num_proc)] self._start_processes() class MultiThreadRunner(DataFlow): """ Create multiple dataflow instances and run them each in one thread. Collect outputs from them with a queue. Note: 1. (Data integrity) An iterator cannot run faster automatically -- what's happening is that each thread will create a dataflow iterator. There will be ``num_thread`` dataflow running in parallel and **independently**. As a result, we have the following guarantee on the dataflow correctness: a. When ``num_thread=1``, this dataflow produces the same data as the given dataflow in the same order. b. When ``num_thread>1``, if each sample from the given dataflow is i.i.d., then this dataflow produces the **same distribution** of data as the given dataflow. This implies that there will be duplication, reordering, etc. You probably only want to use it for training. For example, if your original dataflow contains no randomness and produces the same first datapoint, then after parallel prefetching, the datapoint will be produced ``num_thread`` times at the beginning. Even when your original dataflow is fully shuffled, you still need to be aware of the `Birthday Paradox <https://en.wikipedia.org/wiki/Birthday_problem>`_ and know that you'll likely see duplicates. To utilize parallelism with more strict data integrity, you can use the parallel versions of :class:`MapData`: :class:`MultiThreadMapData`, :class:`MultiProcessMapData`. """ class _Worker(StoppableThread): def __init__(self, get_df, queue): super(MultiThreadRunner._Worker, self).__init__() self.df = get_df() assert isinstance(self.df, DataFlow), self.df self.queue = queue self.daemon = True def run(self): self.df.reset_state() try: while True: for dp in self.df: if self.stopped(): return self.queue_put_stoppable(self.queue, dp) except Exception: if self.stopped(): pass # skip duplicated error messages else: raise finally: self.stop() def __init__(self, get_df, num_prefetch, num_thread): """ Args: get_df ( -> DataFlow): a callable which returns a DataFlow. Each thread will call this function to get the DataFlow to use. Therefore do not return the same DataFlow object for each call, unless your dataflow is stateless. num_prefetch (int): size of the queue num_thread (int): number of threads """ assert num_thread > 0, num_thread assert num_prefetch > 0, num_prefetch self.num_thread = num_thread self.queue = queue.Queue(maxsize=num_prefetch) self.threads = [ MultiThreadRunner._Worker(get_df, self.queue) for _ in range(num_thread)] try: self._size = self.__len__() except NotImplementedError: self._size = -1 def reset_state(self): for th in self.threads: th.df.reset_state() th.start() def __len__(self): return self.threads[0].df.__len__() def __iter__(self): for k in itertools.count(): if self._size > 0 and k >= self._size: break yield self.queue.get() def __del__(self): for p in self.threads: if p.is_alive(): p.stop() p.join() class PlasmaPutData(ProxyDataFlow): """ Put each data point to plasma shared memory object store, and yield the object id instead. Experimental. """ def __init__(self, ds, socket="/tmp/plasma"): self._socket = socket super(PlasmaPutData, self).__init__(ds) def reset_state(self): super(PlasmaPutData, self).reset_state() self.client = plasma.connect(self._socket, "", 0) def __iter__(self): for dp in self.ds: oid = self.client.put(dp) yield [oid.binary()] class PlasmaGetData(ProxyDataFlow): """ Take plasma object id from a DataFlow, and retrieve it from plasma shared memory object store. Experimental. """ def __init__(self, ds, socket="/tmp/plasma"): self._socket = socket super(PlasmaGetData, self).__init__(ds) def reset_state(self): super(PlasmaGetData, self).reset_state() self.client = plasma.connect(self._socket, "", 0) def __iter__(self): for dp in self.ds: oid = plasma.ObjectID(dp[0]) dp = self.client.get(oid) yield dp plasma = None # These plasma code is only experimental # try: # import pyarrow.plasma as plasma # except ImportError: # from ..utils.develop import create_dummy_class # PlasmaPutData = create_dummy_class('PlasmaPutData', 'pyarrow') # noqa # PlasmaGetData = create_dummy_class('PlasmaGetData', 'pyarrow') # noqa # The old inappropriate names: PrefetchData = MultiProcessRunner MultiProcessPrefetchData = MultiProcessRunner PrefetchDataZMQ = MultiProcessRunnerZMQ MultiThreadPrefetchData = MultiThreadRunner if __name__ == '__main__': import time from .raw import DataFromGenerator from .common import FixedSizeData x = DataFromGenerator(itertools.count()) x = FixedSizeData(x, 100) x = MultiProcessRunnerZMQ(x, 2) x.reset_state() for idx, dp in enumerate(x): print(dp) time.sleep(0.1)
py
1a31c6724d9b574aa4ee0297cb1e5b05d82ac0e9
from core.himesis import Himesis import uuid class HSon2Man(Himesis): def __init__(self): """ Creates the himesis graph representing the DSLTrans rule Son2Man. """ # Flag this instance as compiled now self.is_compiled = True super(HSon2Man, self).__init__(name='HSon2Man', num_nodes=0, edges=[]) # Set the graph attributes self["mm__"] = ['HimesisMM'] self["name"] = """Son2Man""" self["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'Son2Man') # match model. We only support one match model self.add_node() self.vs[0]["mm__"] = """MatchModel""" # apply model node self.add_node() self.vs[1]["mm__"] = """ApplyModel""" # paired with relation between match and apply models self.add_node() self.vs[2]["mm__"] = """paired_with""" self.vs[2]["attr1"] = """Son2Man""" # match class Child() node self.add_node() self.vs[3]["mm__"] = """Child""" self.vs[3]["attr1"] = """+""" # match class Family() node self.add_node() self.vs[4]["mm__"] = """Family""" self.vs[4]["attr1"] = """1""" # apply class Man() node self.add_node() self.vs[5]["mm__"] = """Man""" self.vs[5]["attr1"] = """1""" # match association Child--family-->Family node self.add_node() self.vs[6]["attr1"] = """family""" self.vs[6]["mm__"] = """directLink_S""" # match association Family--sons-->Child node self.add_node() self.vs[7]["attr1"] = """sons""" self.vs[7]["mm__"] = """directLink_S""" # Add the edges self.add_edges([ (0,3), # matchmodel -> match_class Child() (0,4), # matchmodel -> match_class Family() (1,5), # applymodel -> -> apply_class Man() (3,6), # match_class Child() -> association family (6,4), # association family -> match_class Family() (4,7), # match_class Family() -> association sons (7,3), # association sons -> match_class Child() (0,2), # matchmodel -> pairedwith (2,1) # pairedwith -> applyModel ]) # Add the attribute equations self["equations"] = [((5,'fullName'),('concat',((3,'firstName'),(4,'lastName')))), ]
py
1a31c74c365dd57a475f319d394c97cdc307d096
""" This module lets you practice one form of the ACCUMULATOR pattern, namely, the "IN GRAPHICS" form which features: -- DRAWING OBJECTS via ACCUMULATING positions and/or sizes, as in: x = x + pixels Additionally, it emphasizes that you must ** DO A CONCRETE EXAMPLE BY HAND ** before you can implement a solution to the problem in Python. Authors: David Mutchler, Dave Fisher, Valerie Galluzzi, Amanda Stouder, their colleagues and Mitch Lugsch. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. import rosegraphics as rg # ---------------------------------------------------------------------- # Students: As you work each of these problems, ask yourself: # 1. Do I need a loop? # If so, HOW MANY LOOPS? # # 2. Where I need a loop, what needs to happen: # -- BEFORE the loop? # -- IN the loop? # -- AFTER the loop? # ---------------------------------------------------------------------- def main(): """ Calls the TEST functions in this module. """ run_test_draw_squares_from_circle() run_test_draw_circles_from_rectangle() run_test_draw_lines_from_rectangles() def run_test_draw_squares_from_circle(): """ Tests the draw_squares_from_circle function. """ print() print('--------------------------------------------------') print('Testing the draw_squares_from_circle function:') print(' See the graphics windows that pop up.') print('--------------------------------------------------') # ------------------------------------------------------------------ # TWO tests on ONE window. # ------------------------------------------------------------------ title = 'Tests 1 and 2 of DRAW_SQUARES_FROM_CIRCLE: ' title = title + ' 7 little squares from green circle, 4 big squares' window1 = rg.RoseWindow(650, 350, title) # Test 1: circle = rg.Circle(rg.Point(100, 100), 20) circle.fill_color = 'green' draw_squares_from_circle(7, circle, window1) # Test 2: circle = rg.Circle(rg.Point(350, 70), 50) draw_squares_from_circle(4, circle, window1) window1.close_on_mouse_click() # ------------------------------------------------------------------ # A third test on ANOTHER window. # ------------------------------------------------------------------ title = 'Test 3 of DRAW_SQUARES_FROM_CIRCLE: ' title += ' 20 teeny squares from blue circle!' window2 = rg.RoseWindow(525, 300, title) # Test 3: circle = rg.Circle(rg.Point(50, 50), 10) circle.fill_color = 'blue' draw_squares_from_circle(20, circle, window2) window2.close_on_mouse_click() def draw_squares_from_circle(n, circle, window): """ What comes in: Three arguments: -- A positive integer n. -- An rg.Circle. -- An rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: See draw_squares_from_circle.pdf in this project for pictures that may help you better understand the following specification: First draws the given rg.Circle on the given rg.RoseWindow. Then draws n rg.Squares on the given rg.RoseWindow, such that: -- The first rg.Square circumscribes the given rg.Circle. -- Each subsequent rg.Square has its upper-left quarter on top of the lower-right quarter of the previous rg.Square, so that the squares form an overlapping sequence that goes down and to the right. Must ** render ** but ** NOT close ** the window. Type hints: :type n: int :type circle: rg.Circle :type window: rg.RoseWindow """ # ------------------------------------------------------------------ # DONE: 2. Implement and test this function. # Tests have been written for you (above). # # CONSIDER using the ACCUMULATOR IN GRAPHICS pattern, # as in draw_row_of_circles in m1e, # instead of directly using the loop variable. # #################################################################### # HINT: To figure out the code that computes the necessary # positions of each square, # ** FIRST DO A CONCRETE EXAMPLE BY HAND! ** #################################################################### # ------------------------------------------------------------------ point = circle.center x = point.x y = point.y circle.attach_to(window) for _ in range(n): # Loop that does NOT use its index variable point = rg.Point(x, y) square = rg.Square(point, circle.radius * 2) # Attach the object(s) to the window. square.attach_to(window) # Increment x and y x = x + (circle.radius) y = y + (circle.radius) window.render() def run_test_draw_circles_from_rectangle(): """ Tests the draw_circles_from_rectangle function. """ print() print('--------------------------------------------------') print('Testing the draw_circles_from_rectangle function:') print(' See the graphics windows that pop up.') print('--------------------------------------------------') # ------------------------------------------------------------------ # DONE: 3. Implement this TEST function. # It TESTS the draw_circles_from_rectangle function # defined below. Include at least ** 3 ** tests, of which # *** at least TWO tests are on ONE window and # *** at least ONE test is on a DIFFERENT window. # #################################################################### # HINT: Consider using the same test cases as suggested by the # pictures in draw_circles_from_rectangle.pdf in this project. # Follow the same form as the example in a previous problem. #################################################################### # ------------------------------------------------------------------ title = 'Tests 1 and 2 of DRAW_CIRCLES_FROM_RECTANGLE: ' window1 = rg.RoseWindow(720, 500, title) # Test 1: rectangle = rg.Rectangle(rg.Point(400, 250), rg.Point(440, 325)) rectangle.fill_color = 'green' rectangle.outline_color = 'black' rectangle.outline_thickness = 5 draw_circles_from_rectangle(4, 5, rectangle, window1) # Test 2: rectangle = rg.Rectangle(rg.Point(600, 400), rg.Point(500, 450)) rectangle.fill_color = 'blue' rectangle.outline_color = 'red' rectangle.outline_thickness = 3 draw_circles_from_rectangle(8, 3, rectangle, window1) window1.close_on_mouse_click() title = 'Test 3 of DRAW_CIRCLES_FROM_RECTANGLE: ' window2 = rg.RoseWindow(620, 380, title) # Test 3: rectangle = rg.Rectangle(rg.Point(350, 280), rg.Point(375, 330)) rectangle.fill_color = 'yellow' rectangle.outline_color = 'brown' rectangle.outline_thickness = 5 draw_circles_from_rectangle(6, 10, rectangle, window2) window2.close_on_mouse_click() def draw_circles_from_rectangle(m, n, rectangle, window): """ What comes in: Four arguments: -- Positive integers m and n. -- An rg.Rectangle. -- An rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: See draw_circles_from_rectangle.pdf in this project for pictures that may help you better understand the following specification: First draws the given rg.Rectangle on the given rg.RoseWindow. Then draws m rg.Circles on the given rg.RoseWindow, such that: -- The diameter of each rg.Circle is the same as the height of the given rg.Rectangle. -- The first rg.Circle is immediately to the left of the given rg.Rectangle -- Each subsequent rg.Circle is immediately to the left of the previous rg.Circle, so that the circles form a row that goes to the left. -- Each rg. Circle has the same fill_color as the given rg.Rectangle (and has no outline_color). Then draws n rg.Circles on the given RoseWindow, such that: -- The diameter of each rg.Circle is the same as the width of the given rg.Rectangle. -- The first rg.Circle is immediately above the given rg.Rectangle -- Each subsequent rg.Circle is immediately above the previous rg.Circle, so that the circles form a column that goes up. -- Each rg.Circle has the same outline_color as the given rg.Rectangle (and has no fill_color). Must ** render ** but ** NOT close ** the window. Type hints: :type m: int :type n: int :type rectangle: rg.Rectangle :type window: rg.RoseWindow """ # ------------------------------------------------------------------ # DONE: 4. Implement and test this function. # Tests have been written for you (above). # # CONSIDER using the ACCUMULATOR IN GRAPHICS pattern, # as in draw_row_of_circles in m1e, # instead of directly using the loop variable. # #################################################################### # HINT: To figure out the code that computes the necessary # positions of each circle, # ** FIRST DO A CONCRETE EXAMPLE BY HAND! ** #################################################################### # ------------------------------------------------------------------ rectangle_center = rectangle.get_center() x = rectangle_center.x y = rectangle_center.y width = rectangle.get_width() height = rectangle.get_height() rectangle.attach_to(window) for _ in range(m): # Loop that does NOT use its index variable center1 = rg.Point(x - ((width / 2) + (height / 2)), rectangle_center.y) circle1 = rg.Circle(center1, height / 2) circle1.fill_color = rectangle.fill_color # Attach the object(s) to the window. circle1.attach_to(window) # Increment x x = x - height for _ in range(n): center2 = rg.Point(rectangle_center.x, y - ((height / 2) + (width / 2))) circle2 = rg.Circle(center2, width / 2) circle2.outline_color = rectangle.outline_color # Attach the object(s) to the window. circle2.attach_to(window) # Increment y y = y - width window.render() def run_test_draw_lines_from_rectangles(): """ Tests the draw_lines_from_rectangles function. """ print() print('--------------------------------------------------') print('Testing the draw_lines_from_rectangles function:') print(' See the graphics windows that pop up.') print('--------------------------------------------------') # TWO tests on ONE window. title = 'Tests 1 & 2 of DRAW_LINES_FROM_RECTANGLES:' title += ' 5 lines, 8 lines!' window1 = rg.RoseWindow(900, 400, title) rectangle1 = rg.Rectangle(rg.Point(100, 25), rg.Point(150, 125)) rectangle2 = rg.Rectangle(rg.Point(300, 150), rg.Point(400, 175)) rectangle1.outline_color = 'red' rectangle2.outline_color = 'blue' draw_lines_from_rectangles(rectangle1, rectangle2, 5, window1) rectangle1 = rg.Rectangle(rg.Point(870, 30), rg.Point(750, 100)) rectangle2 = rg.Rectangle(rg.Point(700, 90), rg.Point(650, 60)) rectangle2.outline_color = 'green' draw_lines_from_rectangles(rectangle1, rectangle2, 8, window1) window1.close_on_mouse_click() # A third test on ANOTHER window. title = 'Test 3 of DRAW_LINES_FROM_RECTANGLES: 11 lines!' window2 = rg.RoseWindow(700, 700, title) rectangle1 = rg.Rectangle(rg.Point(550, 200), rg.Point(650, 100)) rectangle2 = rg.Rectangle(rg.Point(600, 50), rg.Point(650, 75)) rectangle1.outline_color = 'brown' rectangle2.outline_color = 'cyan' rectangle2.outline_thickness = 10 draw_lines_from_rectangles(rectangle1, rectangle2, 11, window2) window2.close_on_mouse_click() def draw_lines_from_rectangles(rectangle1, rectangle2, n, window): """ What comes in: Four arguments: -- Two rg.Rectangles. -- A positive integer n. -- An rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: See draw_lines_from_rectangles.pdf in this project for pictures that may help you better understand the following specification: First draws the given rg.Rectangles on the given rg.RoseWindow. Then draws n rg.Lines on the given rg.RoseWindow, such that: -- The 1st rg.Line goes from the center of one of the 1st rg.Rectangle to the center of the 2nd rg.Rectangle. -- The 2nd rg.Line goes from the lower-left corner of the 1st rg.Rectangle and is parallel to the 1st rg.Line, with the same length and direction as the 1st rg.Line. -- Subsequent rg.Lines are shifted from the previous rg.Line in the same way that the 2nd rg.Line is shifted from the 1st. -- Each of the rg.Lines has thickness 5. -- The colors of the rg.Lines alternate, as follows: - The 1st, 3rd, 5th, ... rg.Line has color R1_color - The 2nd, 4th, 6th, ... rg.Line has color R2_color where - R1_color is the outline color of the 1st rg.Rectangle - R2_color is the outline color of the 2nd rg.Rectangle Must ** render ** but ** NOT close ** the window. Type hints: :type rectangle1: rg.Rectangle :type rectangle2: rg.Rectangle :type n: int :type window: rg.RoseWindow """ # ------------------------------------------------------------------ # DONE: 5. Implement and test this function. # Tests have been written for you (above). # # CONSIDER using the ACCUMULATOR IN GRAPHICS pattern, # as in draw_row_of_circles in m1e, # instead of directly using the loop variable. # #################################################################### # HINT: To figure out the code that computes the necessary # endpoints for each line, # ** FIRST DO A CONCRETE EXAMPLE BY HAND! ** #################################################################### # ------------------------------------------------------------------ center_R1 = rectangle1.get_center() center_R2 = rectangle2.get_center() width_R1 = rectangle1.get_width() height_R1 = rectangle1.get_height() x1 = center_R1.x y1 = center_R1.y x2 = center_R2.x y2 = center_R2.y rectangle1.attach_to(window) rectangle2.attach_to(window) for k in range(n): if (k + 1) % 2 == 0: start = rg.Point(x1, y1) end = rg.Point(x2, y2) line = rg.Line(start, end) line.thickness = 5 line.color = rectangle2.outline_color # Attach the object(s) to the window. line.attach_to(window) # Increment variables x1 = x1 - (width_R1 / 2) y1 = y1 + (height_R1 / 2) x2 = x2 - (width_R1 / 2) y2 = y2 + (height_R1 / 2) else: start = rg.Point(x1, y1) end = rg.Point(x2, y2) line = rg.Line(start, end) line.thickness = 5 line.color = rectangle1.outline_color # Attach the object(s) to the window. line.attach_to(window) # Increment variables x1 = x1 - (width_R1 / 2) y1 = y1 + (height_R1 / 2) x2 = x2 - (width_R1 / 2) y2 = y2 + (height_R1 / 2) window.render() # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
py
1a31c8d225cb281739a14a9a643d3ce33103fb97
# -*- coding: utf-8 -*- import datetime import os from pyvirtualdisplay import Display from selenium import webdriver import constants # Choose and configure the browser of your choice def get_browser(): # # These work on Mac # return webdriver.Chrome() # return webdriver.Firefox() # On Linux you need to initialize a display global display display = Display(visible=0, size=(1024, 768)) display.start() options = webdriver.ChromeOptions() options.add_argument("--no-sandbox") options.add_argument("--disable-dev-shm-usage") options.add_argument("--ignore-certificate-errors") options.add_experimental_option("useAutomationExtension", False); return webdriver.Chrome(options=options) # If present and callable, it will be called at the end of the whole test suite def teardown(): global display try: display.stop() except NameError: pass # A failed login by a provider will be retried so many times as set here MAX_LOGIN_ATTEMPTS = 3 # Multiplies the wait times set in expected values WAIT_MULTIPLIER = 1 # Minimum wait time MIN_WAIT = 0 # The host and port where the tested ap should listen. HOST = '127.0.0.1' PORT = 443 # The host alias set in the /etc/hosts file. # The actual tests will navigate selenium browser to this host. # This is necessary because some providers don't support localhost as the # callback url. HOST_ALIAS = 'authomatic.org' # Only frameworks included here will be tested. INCLUDE_FRAMEWORKS = [ # 'django', 'flask', # Runs with https 'pyramid', # Runs with https ] # Only providers included here will be tested. # Leave commented-out entries (with explanation) to prevent trying to re-add tests for services # Which aren't testable in an automated environment. INCLUDE_PROVIDERS = [ # OAuth 1.0a - This mostly deprecated as a service 'in the wild' - we should drop support. # 'bitbucket', # 'flickr', # 'plurk', 'twitter', # 'tumblr', # 'ubuntuone', # UbuntuOne service is no longer available # 'vimeo', # Xero requires creation of a new trial project every month which makes # the setup of the automated test too laborious to support it. # 'xero', # 'xing', # 'yahoo', # OAuth 2.0 # 'amazon', # Asks for a captcha (cannot be automated) # 'behance', # doesn't support third party authorization anymore. # 'bitly', # deprecated for test suite refactoring - consider re-enabling # 'deviantart', # deprecated for test suite refactoring - consider re-enabling 'facebook', # 'foursquare', # deprecated for test suite refactoring - consider re-enabling # 'google', # deprecated for test suite refactoring - consider re-enabling # 'github', # Asks for 2FA/one-time-pass verification in Travis CI environment. # 'linkedin', # # Asks for verification (captcha) in the login form in Travis CI environment. # 'paypal', # deprecated for test suite refactoring - consider re-enabling # 'reddit', # deprecated for test suite refactoring - consider re-enabling # 'vk', # deprecated for test suite refactoring - consider re-enabling # 'windowslive', # Asks for verification (captcha) in the login form in Travis CI environment. # 'yammer', # deprecated for test suite refactoring - consider re-enabling # 'yandex', # deprecated for test suite refactoring - consider re-enabling # OpenID # 'openid_livejournal', # Login and password elements are not visible. # 'openid_verisignlabs', # deprecated for test suite refactoring - consider re-enabling # 'openid_wordpress', # deprecated for test suite refactoring - consider re-enabling # 'openid_yahoo', # deprecated for test suite refactoring - consider re-enabling ] # Recommended setup for Travis CI environment. if os.environ.get('TRAVIS'): MAX_LOGIN_ATTEMPTS = 20 WAIT_MULTIPLIER = 2 MIN_WAIT = 2 # Use these constants if you have the same user info by all tested providers. EMAIL = '[email protected]' FIRST_NAME = 'Authomatic' LAST_NAME = 'Testuser' NAME = FIRST_NAME + ' ' + LAST_NAME USERNAME = 'authomaticproject' USERNAME_REVERSE = 'projectauthomatic' NICKNAME = 'Mr. AP' BIRTH_YEAR = 2000 BIRTH_MONTH = 5 BIRTH_DAY = 5 BIRTH_DATE = datetime.datetime(BIRTH_YEAR, BIRTH_MONTH, BIRTH_DAY) CITY = 'London' COUNTRY = 'Great Britain' COUNTRY_ISO2 = 'gb' POSTAL_CODE = 'EC1A1DH' PHONE = '??????????' PHONE_INTERNATIONAL = '0044??????????' GENDER = constants.GENDER_MALE LOCALE = 'en_UK' LOCATION = CITY + ', ' + COUNTRY # Common values for all providers COMMON = { # Could be same if the user sets it so 'user_birth_date': BIRTH_DATE, 'user_birth_day': BIRTH_DAY, 'user_birth_month': BIRTH_MONTH, 'user_birth_year': BIRTH_YEAR, 'user_login': EMAIL, 'user_email': EMAIL, 'user_first_name': FIRST_NAME, 'user_last_name': LAST_NAME, 'user_name': NAME, 'user_username': USERNAME, 'user_username_reverse': USERNAME_REVERSE, 'user_nickname': NICKNAME, 'user_birth_year': BIRTH_YEAR, 'user_city': CITY, 'user_country': COUNTRY, 'user_gender': GENDER, 'user_phone': PHONE, 'user_postal_code': POSTAL_CODE, 'user_locale': LOCALE, 'user_location': LOCATION, # It is not a good idea to have the same password for all providers # 'user_password': '##########', # Provider and user specific value # 'user_id': '', # 'user_locale': None, # 'user_timezone': None, # Provider specific format # 'user_picture': '', # 'user_link': '', # Provider specific value # 'consumer_key': '', # 'consumer_secret': '', } # Values from COMMON will be overridden by values from PROVIDERS[provider_name] # if set. # Since this file is public, only put providers in here if they aren't secret. # Otherwise, secret providers should be added to config_secret.py[.enc] PROVIDERS = { # # OAuth 2.0 # 'facebook': { # 'consumer_key': '##########', # 'consumer_secret': '##########', # 'user_password': '##########', # 'user_id': '??????????', # }, }
py
1a31c911d1151e0d5b62a79d859e88200ace4f18
from typing import Any, Dict LOGGING: Dict[str, Any] = { "version": 1, "disable_existing_loggers": False, "formatters": { "colored": { "style": "{", "()": "colorlog.ColoredFormatter", "format": "{asctime:<15} {name:<18}:{lineno:<3} {log_color}{levelname:<7} {message}", }, "colored_dev": { "style": "{", "()": "colorlog.ColoredFormatter", "format": "{asctime:<15} {relative_path_and_lineno:<35} {log_color}{levelname:<7} {message}", }, "verbose": { "style": "{", "format": "{asctime:<15} {name:<18}:{lineno:<3} {levelname:<7} {message}", }, }, "filters": { "package_path": { "()": "baracoda.utils.PackagePathFilter", } }, "handlers": { "colored_stream": { "level": "DEBUG", "class": "colorlog.StreamHandler", "formatter": "colored", }, "colored_stream_dev": { "level": "DEBUG", "class": "colorlog.StreamHandler", "formatter": "colored_dev", "filters": ["package_path"], }, "console": { "level": "INFO", "class": "logging.StreamHandler", "formatter": "verbose", }, "slack": { "level": "ERROR", "class": "baracoda.utils.SlackHandler", "formatter": "verbose", }, }, "loggers": { "baracoda": { "handlers": ["console", "slack"], "level": "INFO", "propagate": True, }, }, }
py
1a31c992ebe1b9a348ec1c6743ff6998ddaad3d0
from enum import Enum from typing import TYPE_CHECKING, Callable, Dict, Optional from prompt_toolkit.clipboard import ClipboardData if TYPE_CHECKING: from .key_processor import KeyPressEvent from .key_bindings.vi import TextObject __all__ = [ 'InputMode', 'CharacterFind', 'ViState', ] class InputMode(str, Enum): value: str INSERT = 'vi-insert' INSERT_MULTIPLE = 'vi-insert-multiple' NAVIGATION = 'vi-navigation' # Normal mode. REPLACE = 'vi-replace' class CharacterFind: def __init__(self, character: str, backwards: bool = False) -> None: self.character = character self.backwards = backwards class ViState: """ Mutable class to hold the state of the Vi navigation. """ def __init__(self) -> None: #: None or CharacterFind instance. (This is used to repeat the last #: search in Vi mode, by pressing the 'n' or 'N' in navigation mode.) self.last_character_find = None # When an operator is given and we are waiting for text object, # -- e.g. in the case of 'dw', after the 'd' --, an operator callback # is set here. self.operator_func: Optional[Callable[['KeyPressEvent', 'TextObject'], None]] = None self.operator_arg: Optional[int] = None #: Named registers. Maps register name (e.g. 'a') to #: :class:`ClipboardData` instances. self.named_registers: Dict[str, ClipboardData] = {} #: The Vi mode we're currently in to. self.__input_mode = InputMode.INSERT #: Waiting for digraph. self.waiting_for_digraph = False self.digraph_symbol1: Optional[str] = None # (None or a symbol.) #: When true, make ~ act as an operator. self.tilde_operator = False #: Register in which we are recording a macro. #: `None` when not recording anything. # Note that the recording is only stored in the register after the # recording is stopped. So we record in a separate `current_recording` # variable. self.recording_register: Optional[str] = None self.current_recording = '' # Temporary navigation (normal) mode. # This happens when control-o has been pressed in insert or replace # mode. The user can now do one navigation action and we'll return back # to insert/replace. self.temporary_navigation_mode = False @property def input_mode(self) -> InputMode: " Get `InputMode`. " return self.__input_mode @input_mode.setter def input_mode(self, value: InputMode) -> None: " Set `InputMode`. " if value == InputMode.NAVIGATION: self.waiting_for_digraph = False self.operator_func = None self.operator_arg = None self.__input_mode = value def reset(self) -> None: """ Reset state, go back to the given mode. INSERT by default. """ # Go back to insert mode. self.input_mode = InputMode.INSERT self.waiting_for_digraph = False self.operator_func = None self.operator_arg = None # Reset recording state. self.recording_register = None self.current_recording = ''
py
1a31c9c2726bfba526a1c4af2d684674cd3cde50
# Generated by Django 3.0.5 on 2020-05-16 12:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0003_auto_20200422_1538'), ] operations = [ migrations.AddField( model_name='user', name='facebook', field=models.CharField(blank=True, max_length=128), ), migrations.AddField( model_name='user', name='instagram', field=models.CharField(blank=True, max_length=128), ), migrations.AddField( model_name='user', name='linkedin', field=models.CharField(blank=True, max_length=128), ), migrations.AddField( model_name='user', name='twitter', field=models.CharField(blank=True, max_length=128), ), ]
py
1a31ca061c3be6f29d480fbd96e04e634604e3ba
# Copyright 2013 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Impala exception classes. Also implements PEP 249.""" from __future__ import absolute_import class Error(Exception): pass class Warning(Exception): pass # DB API (PEP 249) exceptions class InterfaceError(Error): pass class DatabaseError(Error): pass class InternalError(DatabaseError): pass class OperationalError(DatabaseError): pass class ProgrammingError(DatabaseError): pass class IntegrityError(DatabaseError): pass class DataError(DatabaseError): pass class NotSupportedError(DatabaseError): pass # RPC errors class RPCError(Error): pass class HiveServer2Error(RPCError): pass class HttpError(RPCError): """An error containing an http response code""" def __init__(self, code, message, body, http_headers): self.code = code self.message = message self.body = body self.http_headers = http_headers def __str__(self): # Don't try to print the body as we don't know what format it is. return "HTTP code {}: {}".format(self.code, self.message) class BeeswaxError(RPCError): pass class QueryStateError(BeeswaxError): pass class DisconnectedError(BeeswaxError): pass
py
1a31cb076904c0f742e55e64010490b56bdaa00b
# Copyright (c) 2015-2018 Cisco Systems, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from __future__ import absolute_import import os from molecule import logger from molecule.api import Driver from molecule.util import lru_cache log = logger.get_logger(__name__) class Podman(Driver): """ The class responsible for managing `Podman`_ containers. `Podman`_ is not default driver used in Molecule. Molecule uses Podman ansible connector and podman CLI while mapping variables from ``molecule.yml`` into ``create.yml`` and ``destroy.yml``. .. _`podman connection`: https://docs.ansible.com/ansible/latest/plugins/connection/podman.html .. code-block:: yaml driver: name: podman platforms: - name: instance hostname: instance image: image_name:tag dockerfile: Dockerfile.j2 pull: True|False pre_build_image: True|False registry: url: registry.example.com credentials: username: $USERNAME password: $PASSWORD override_command: True|False command: sleep infinity tty: True|False pid_mode: host privileged: True|False security_opts: - seccomp=unconfined volumes: - /sys/fs/cgroup:/sys/fs/cgroup:ro tmpfs: - /tmp - /run capabilities: - SYS_ADMIN exposed_ports: - 53/udp - 53/tcp published_ports: - 0.0.0.0:8053:53/udp - 0.0.0.0:8053:53/tcp ulimits: - nofile=1024:1028 dns_servers: - 8.8.8.8 network: host etc_hosts: {'host1.example.com': '10.3.1.5'} cert_path: /foo/bar/cert.pem tls_verify: true env: FOO: bar restart_policy: on-failure restart_retries: 1 buildargs: http_proxy: http://proxy.example.com:8080/ If specifying the `CMD`_ directive in your ``Dockerfile.j2`` or consuming a built image which declares a ``CMD`` directive, then you must set ``override_command: False``. Otherwise, Molecule takes care to honour the value of the ``command`` key or uses the default of ``bash -c "while true; do sleep 10000; done"`` to run the container until it is provisioned. When attempting to utilize a container image with `systemd`_ as your init system inside the container to simulate a real machine, make sure to set the ``privileged``, ``volumes``, ``command``, and ``environment`` values. An example using the ``centos:7`` image is below: .. note:: Do note that running containers in privileged mode is considerably less secure. .. code-block:: yaml platforms: - name: instance image: centos:7 privileged: true volumes: - "/sys/fs/cgroup:/sys/fs/cgroup:rw" command: "/usr/sbin/init" tty: True .. code-block:: bash $ pip install molecule[podman] When pulling from a private registry, it is the user's discretion to decide whether to use hard-code strings or environment variables for passing credentials to molecule. .. important:: Hard-coded credentials in ``molecule.yml`` should be avoided, instead use `variable substitution`_. Provide a list of files Molecule will preserve, relative to the scenario ephemeral directory, after any ``destroy`` subcommand execution. .. code-block:: yaml driver: name: podman safe_files: - foo .. _`Podman`: https://podman.io/ .. _`systemd`: https://www.freedesktop.org/wiki/Software/systemd/ .. _`CMD`: https://docs.docker.com/engine/reference/builder/#cmd """ # noqa def __init__(self, config=None): super(Podman, self).__init__(config) self._name = 'podman' @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def login_cmd_template(self): return ( 'podman exec ' '-e COLUMNS={columns} ' '-e LINES={lines} ' '-e TERM=bash ' '-e TERM=xterm ' '-ti {instance} bash' ) @property def default_safe_files(self): return [os.path.join(self._config.scenario.ephemeral_directory, 'Dockerfile')] @property def default_ssh_connection_options(self): return [] def login_options(self, instance_name): return {'instance': instance_name} def ansible_connection_options(self, instance_name): return {'ansible_connection': 'podman'} @lru_cache() def sanity_checks(self): """Implement Podman driver sanity checks.""" log.info("Sanity checks: '{}'".format(self._name))
py
1a31cb5eeda4736094255147ec14dd4714968cbe
stack = [9, 2, 3, 1, 4] size = 0 def push(x): global size stack[size] = x size += 1 def pop(): global size size -= 1 return stack[size] push(5) push(6) push(1) print(stack) print(pop()) print(stack) print(pop()) print(stack)
py
1a31cb62fad46dca8bdd5cb3fac154991298fa14
#!/usr/bin/env python3 #-*- coding: utf-8 -*- #pylint: disable-msg=W0122,R0914,R0912 """ File : pkg.py Author : Valentin Kuznetsov <[email protected]> Description: AbstractGenerator class provides basic functionality to generate CMSSW class from given template """ from __future__ import print_function # system modules import os import sys import time import pprint # package modules from FWCore.Skeletons.utils import parse_word, functor, user_info, tree, template_directory class AbstractPkg(object): """ AbstractPkg takes care how to generate code from template/PKG package area. The PKG can be any directory which may include any types of files, e.g. C++ (.cc), python (.py), etc. This class relies on specific logic which we outline here: - each template may use tags defined with double underscores enclosure, e.g. __class__, __record__, etc. - each template may have example tags, such tags should start with @example_. While processing template user may choose to strip them off or keep the code behind those tags - in addition user may specify pure python code which can operate with user defined tags. This code snipped should be enclosed with #python_begin and #python_end lines which declares start and end of python block """ def __init__(self, config=None): super(AbstractPkg, self).__init__() if not config: self.config = {} else: self.config = config self.pname = self.config.get('pname', None) self.tmpl = self.config.get('tmpl', None) self.debug = self.config.get('debug', 0) self.tdir = template_directory() self.author = user_info(self.config.get('author', None)) self.date = time.strftime("%a, %d %b %Y %H:%M:%S GMT", time.gmtime()) self.not_in_dir = self.config.get('not_in_dir', []) self.working_dir = self.config.get('working_dir') def tmpl_etags(self): "Scan template files and return example tags" keys = [] sdir = '%s/%s' % (self.tdir, self.tmpl) for name in os.listdir(sdir): if name[-1] == '~': continue if name == 'CVS': continue fname = os.path.join(sdir, name) with open(fname, 'r') as stream: for line in stream.readlines(): if line.find('@example_') != -1: # possible tag keys += [k for k in line.split() if \ k.find('@example_') != -1] return set(keys) def print_etags(self): "Print out template example tags" for key in self.tmpl_etags(): print(key) def tmpl_tags(self): "Scan template files and return template tags" keys = [] sdir = '%s/%s' % (self.tdir, self.tmpl) for name in os.listdir(sdir): if name[-1] == '~': continue if name == 'CVS': continue fname = os.path.join(sdir, name) with open(fname, 'r') as stream: for line in stream.readlines(): if line.find('__') != -1: # possible key keys += [k for k in parse_word(line)] return set(keys) def print_tags(self): "Print out template keys" for key in self.tmpl_tags(): print(key) def parse_etags(self, line): """ Determine either skip or keep given line based on class tags meta-strings """ tmpl_etags = self.tmpl_etags() keep_etags = self.config.get('tmpl_etags', []) for tag in tmpl_etags: for valid_tag in keep_etags: if line.find(valid_tag) != -1: line = line.replace(valid_tag, '') return line if line.find(tag) != -1: line = '' return line if len(keep_etags) == 0: return line.replace('@default', '') if '@default' in line: return '' return line def write(self, fname, tmpl_name, kwds): "Create new file from given template name and set of arguments" code = "" read_code = False if os.path.exists(fname): return with open(fname, 'w') as stream: for line in open(tmpl_name, 'r').readlines(): line = self.parse_etags(line) if not line: continue if line.find('#python_begin') != -1: read_code = True continue if line.find('#python_end') != -1: read_code = False if read_code: code += line if code and not read_code: res = functor(code, kwds, self.debug) stream.write(res) code = "" continue if not read_code: for key, val in kwds.items(): if isinstance(val, str): line = line.replace(key, val) stream.write(line) def get_kwds(self): "Return keyword arguments to be used in methods" kwds = {'__pkgname__': self.config.get('pkgname', 'Package'), '__author__': self.author, '__date__': self.date, '__class__': self.pname, '__class_lowercase__': self.pname.lower(), '__class_space__': " "*len(self.pname), '__name__': self.pname, '__subsys__': self.config.get('subsystem', 'Subsystem')} args = self.config.get('args', None) kwds.update(args) if self.debug: print("Template tags:") pprint.pprint(kwds) return kwds def generate(self): "Generate package templates in a given directory" # keep current location, since generate will switch directories cdir = os.getcwd() # read from configutation which template files to create tmpl_files = self.config.get('tmpl_files', 'all') # setup keyword arguments which we'll pass to write method kwds = self.get_kwds() # create template package dir and cd into it if tmpl_files == 'all' and self.tmpl not in self.not_in_dir: if os.path.isdir(self.pname): msg = "Can't create package '%s'\n" % self.pname msg += "Directory %s is already exists" % self.pname print(msg) sys.exit(1) os.makedirs(self.pname) os.chdir(self.pname) # read directory driver information and create file list to generate sdir = os.path.join(self.tdir, self.tmpl) sources = [s for s in os.listdir(sdir) \ if s != 'Driver.dir' and s.find('~') == -1] driver = os.path.join(sdir, 'Driver.dir') if os.path.isfile(driver): sources = [s.replace('\n', '') for s in open(driver, 'r').readlines()] if 'CVS' in sources: sources.remove('CVS') # special case of Skeleton, which requires to generate only given # file type if self.pname has extension of that type names = set([s.split('.')[0] for s in sources]) if names == set(['Skeleton']): if self.pname.find('.') != -1: _, ext = os.path.splitext(self.pname) sources = [s for s in sources if s.rfind(ext) != -1] self.pname = self.pname.replace(ext, '') kwds = self.get_kwds() if not sources: msg = 'Unable to find skeleton for extension "%s"' % ext print(msg) sys.exit(1) bdir = os.environ.get('CMSSW_BASE', '') dirs = os.getcwd().replace(bdir, '').split('/') ldir = os.getcwd().split('/')[-1] idir = '' subsys = kwds['__subsys__'] pkgname = kwds['__pkgname__'] if sources == ['Skeleton.cc', 'Skeleton.h']: if ldir == 'interface' and os.getcwd().find(bdir) != -1: idir = '%s/%s/interface/' % (subsys, pkgname) # run within some directory of the Sybsystem/Pkg area # and only for mkskel <file>.cc elif sources == ['Skeleton.cc'] and \ len(dirs) == 5 and dirs[0] == '' and dirs[1] == 'src': idir = '%s/%s/interface/' % (subsys, pkgname) elif sources == ['Skeleton.h'] and ldir == 'interface' and \ len(dirs) == 5 and dirs[0] == '' and dirs[1] == 'src': idir = '%s/%s/interface/' % (subsys, pkgname) kwds.update({'__incdir__': idir}) # loop over source files, create dirs as necessary and generate files # names for writing templates gen_files = [] for src in sources: if tmpl_files != 'all': fname, ext = os.path.splitext(src) if tmpl_files != ext: continue #also reject if this is the wrong directory if self.working_dir and src.split('/')[-2] != self.working_dir: continue src = src.split('/')[-1] if self.debug: print("Read", src) items = src.split('/') if items[-1] == '/': items = items[:-1] tname = items[-1] # template file name tmpl_name = os.path.join(sdir, items[-1]) # full tmpl file name if os.path.isfile(tmpl_name): ftype = 'file' else: ftype = 'dir' name2gen = src # new file we'll create if items[-1] == 'testBuildFile.xml': name2gen = '/'.join(src.split('/')[:-1])+'/BuildFile.xml' if -1 !=tname.split('.')[0].find(self.tmpl): # need to substitute name2gen = name2gen.replace(self.tmpl, self.pname) name2gen = os.path.join(os.getcwd(), name2gen) if self.debug: print("Create", name2gen) if ftype == 'dir': if not os.path.isdir(name2gen): os.makedirs(name2gen) continue # we're done with dir fdir = os.path.dirname(name2gen) if not os.path.isdir(fdir): os.makedirs(fdir) self.write(name2gen, tmpl_name, kwds) gen_files.append(name2gen.split('/')[-1]) if tmpl_files == 'all' and self.tmpl not in self.not_in_dir: msg = 'New package "%s" of %s type is successfully generated' \ % (self.pname, self.tmpl) else: msg = 'Generated %s file' % ', '.join(gen_files) if len(gen_files) > 1: msg += 's' print(msg) # return back where we started os.chdir(cdir) if msg.find('New package') != -1: tree(self.pname)
py
1a31cbe01406213bfcaaf90c2882397642fc68d4
# vim: set fenc=utf8 ts=4 sw=4 et : import os import io import json import unittest from shlex import split from .testcase import TestCase from pdml2flow.conf import Conf import pdml2flow TEST_DIR_PDML2FLOW="test/pdml2flow_tests/" TEST_DIR_PDML2FRAME="test/pdml2frame_tests/" class TestSystem(TestCase): def read_json(self, f): objs = [] data = '' for line in f: data += line try: objs.append(json.loads(data)) data = '' except ValueError: # Not yet a complete JSON value pass return objs def get_test(run, directory, test): def system_test(self): if os.path.isfile('{}/{}/skip'.format(directory, test)): self.skipTest('Skipfile found') with open('{}/{}/stdin'.format(directory, test)) as f_stdin, \ io.StringIO() as f_stdout, \ io.StringIO() as f_stderr: # wire up io Conf.IN = f_stdin Conf.OUT = f_stdout Conf.OUT_DEBUG = f_stderr Conf.OUT_WARNING = f_stderr Conf.OUT_ERROR = f_stderr try: # try to load arguments with open('{}/{}/args'.format(directory, test)) as f: Conf.ARGS = split(f.read()) except FileNotFoundError: Conf.ARGS = '' # run run() # compare stdout stdout_raw = f_stdout.getvalue() stderr_raw = f_stderr.getvalue() with open('{}/{}/stdout'.format(directory, test)) as f: expected_raw = f.read() # Try parsing as json, and compare objects run_objs = self.read_json(stdout_raw) expected_objs = self.read_json(expected_raw) self.assertEqual( len(run_objs), len(expected_objs) ) for e in expected_objs: self.assertIn( e, expected_objs ) for o in run_objs: self.assertIn( o, expected_objs ) # if no object loaded: do a raw comparison, line by line if len(run_objs) == 0 or len(expected_objs) == 0: self.assertEqual( sorted( stdout_raw.splitlines() ), sorted( expected_raw.splitlines() ) ) try: # try compare stderr with open('{}/{}/stderr'.format(directory, test)) as f: expected_raw = f.read() self.assertEqual( expected_raw, stderr_raw ) except FileNotFoundError: self.assertEqual( '', stderr_raw ) return system_test def add_tests(run, directory): for test in os.listdir(directory): # append test setattr( TestSystem, 'test_{}_{}'.format(run.__name__, test), get_test(run, directory, test) ) # Add tests add_tests(pdml2flow.pdml2flow, TEST_DIR_PDML2FLOW) add_tests(pdml2flow.pdml2frame, TEST_DIR_PDML2FRAME)
py
1a31ccb0e17c08f0f3f6b0e3910e2d208f66cdaa
from models.image_classification import alexnet, vgg16, resnet class ModelSelector: @staticmethod def get_model(model_name): model_mux = { "alexnet": alexnet.AlexNet, "vgg16": vgg16.VGG16, "resnet": resnet.ResNet, } return model_mux.get(model_name, "Invalid model name")
py
1a31ccb3f1245b30ad2d213301d9f68b761e7368
#!/usr/bin/env python # _*_ coding:utf-8 _*_ # auth: clsn # by: covid-19 # date 20200328 #********************** import requests import json import pymysql import datetime import sys # 解决 python2 中文报错 reload(sys) sys.setdefaultencoding('utf8') now_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') # 数据库配置 db_config = { 'host': '61.149.146.136', 'port': 63306, 'user': 'clsn', 'password': '123456', 'db': 'clsn', 'charset': 'utf8' } def to_dingtalk(): # 请求的URL,WebHook地址 webhook = "https://oapi.dingtalk.com/robot/send?access_token=9f54eaaa734cdab863149bfff2b2fa1be86ea2ec5eb89cad6bf93e7c6b771066" #构建请求头部 header = { "Content-Type": "application/json", "Charset": "UTF-8" } #构建请求数据 message = { "actionCard": { "title": title, "text": text, "hideAvatar": "0", "btnOrientation": "0" }, "msgtype": "actionCard" } #对请求的数据进行json封装 message_json = json.dumps(message) # print message_json #发送请求 info = requests.post(url=webhook,data=message_json,headers=header) #打印返回的结果 print(info.text) def get_now_info(): with pymysql.connect(**db_config) as curr: sql1 = "select max(monitor_time) from covid_19_overseas" curr.execute(sql1) date_time = list(curr.fetchone()) # print date_time[0] img = "![screenshot](https://cdn.nlark.com/yuque/0/2020/png/206952/1585575860917-569c54c2-84db-4c45-ad35" \ "-0a96455a90bc.png)\n" head = "## <font color=#FFBF00>[风险提示]</font> <font color=#000000>全球新型冠状病毒肺炎疫情</font>\n" msg_from = '\n >数据更新至 {}'.format(date_time[0]) sql2 = "select sum(confirm) as '累计确诊',sum(heal) as '治愈',sum(confirmCompare) as '新增确诊',sum(dead) as '死亡' from " \ "covid_19_overseas where monitor_time = '{}' ".format(date_time[0]) curr.execute(sql2) data = list(curr.fetchone()) bf_dead = round(data[3]/data[0]*100,2) bf_heal = round(data[1]/data[0]*100,2) info = """\n ## **确诊病例:** <font color=#FF0000>{}</font> \n ## **死亡病例:** <font color=#404040>{} ({}%)</font> \n ## **治愈病例:** <font color=#9DEA15> {} ({}%)</font> \n ## **新增病例:** <font color=#FFBF00> {}</font>\n""" .format(format(data[0],','), format(data[3],','),bf_dead, format(data[1],','),bf_heal, format(data[2],',')) sql3 = "select confirm as '累计确诊', heal as '治愈',confirmCompare as '新增确诊',dead as '死亡',country as '国家' from " \ "covid_19_overseas where monitor_time = '{}' limit 5;".format(date_time[0]) curr.execute(sql3) top_data = list(curr.fetchall()) country_info = '' for data in top_data: # print data info_ = """ \n -国家:{} \n ## **确诊病例:** <font color=#FF0000>{}</font> \n ## **死亡病例:** <font color=#404040>{}</font> \n ## **治愈病例:** <font color=#9DEA15> {}</font> \n ## **新增病例:** <font color=#FFBF00> {}</font>\n *** \n """.format(data[4], format(data[0], ','), format(data[3], ','), format(data[1], ','), format(data[2], ',')) country_info = country_info + info_ talk_all = '\n# *风险等级TOP5*\n' to_dingtalk_data = img + head + "***" + info + "***" + talk_all + "***" + country_info + msg_from return to_dingtalk_data if __name__=="__main__": title = "新型冠状病毒疫情(国际)实时追踪" text = get_now_info() to_dingtalk()
py
1a31cce74f4cb9372a48b42abce3732a14243062
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from builtins import __test_sink, __test_source class Test1_C: attribute = ... def __init__(self): self.instance = ... class Test1_C1(Test1_C): attribute = ... def __init__(self): self.instance = ... class Test1_C2(Test1_C1): attribute = ... def __init__(self): self.instance = ... class Test1_D: attribute = ... def __init__(self): self.instance = ... class Test2_C: def foo(self, attribute): ... class Test2_C1(Test2_C): def foo(self, attribute): ... class Test2_C2(Test2_C1): def foo(self, attribute): ... class Test2_D: def foo(self, attribute): ... class UnrelatedClass: attribute = ... def __init__(self): self.instance = ... def foo(self, x): ... def test1_alarm1(c: Test1_C1): __test_sink(c.attribute) def test1_alarm2(c: Test1_C1): __test_sink(c.instance) def test1_alarm3(c: Test1_C2): __test_sink(c.attribute) def test1_alarm4(c: Test1_C2): __test_sink(c.instance) def test1_alarm5(c: Test1_C): __test_sink(c.attribute) def test1_alarm6(c: Test1_C): __test_sink(c.instance) def test1_noalarm1(c: Test1_D): __test_sink(c.attribute) def test1_noalarm2(c: Test1_D): __test_sink(c.instance) def test2_alarm1(c: Test2_D): c.foo(__test_source()) def test2_noalarm1(c: Test2_C1): c.foo(__test_source()) def test2_noalarm2(c: Test2_C2): c.foo(__test_source()) def test2_noalarm3(c: Test2_C): c.foo(__test_source()) def misc_noalarm1(c: UnrelatedClass): __test_sink(c.attribute) def misc_noalarm2(c: UnrelatedClass): __test_sink(c.instance) def misc_noalarm3(c: UnrelatedClass): c.foo(__test_source())
py
1a31cf3e21e344c7267d7d1151404ffe294f1b9f
def encrypt(text,key): output = "" for i in range(len(text)): char = text[i] if (char.isupper()): output += chr((ord(char) + key - 65) % 26 + 65) elif (char.islower()): output += chr((ord(char) + key - 97) % 26 + 97) else: output += char return output def decrypt(text,key): output = "" for i in range(len(text)): char = text[i] if (char.isupper()): output += chr((ord(char) - 65 - key) % 26 + 65) elif (char.islower()): output += chr((ord(char) - 97 - key) % 26 + 97) else: output += char return output message = input('Enter your message:') choice = input('What do you want to do?\nType 1 for encrypt:\nType 2 for decrypt:\n') if (int(choice) == 1): shift = input('Enter your key to encrypt (numbers to be shift):') message = encrypt(message, int(shift)) print('Your encrypt message is: ', message) exit() elif (int(choice) == 2): key = input('Enter your key for decryping (number that has been shifted):') message = decrypt(message, int(key)) print('Your decrypt message is:', message) exit() else: print('Error, Terminated.') exit()
py
1a31cf6c6396f4488def4ae46b562b4dadf6c9d7
import json from base64 import b64decode, b64encode import numpy as np from numpy.lib.format import dtype_to_descr, descr_to_dtype def default(obj): if isinstance(obj, (np.ndarray, np.generic)): return { '__numpy__': b64encode(obj.data if obj.flags.c_contiguous else obj.tobytes()).decode('ascii'), 'dtype': dtype_to_descr(obj.dtype), 'shape': obj.shape } raise TypeError(f'Object of type {type(obj)} is not JSON serializable') def object_hook(dct): if '__numpy__' in dct: np_obj = np.frombuffer(b64decode(dct['__numpy__']), descr_to_dtype(dct['dtype'])) shape = dct['shape'] return np_obj.reshape(shape) if shape else np_obj[0] # Scalar test return dct _dumps = json.dumps _loads = json.loads _dump = json.dump _load = json.load def dumps(*args, **kwargs): kwargs.setdefault('default', default) return _dumps(*args, **kwargs) def loads(*args, **kwargs): kwargs.setdefault('object_hook', object_hook) return _loads(*args, **kwargs) def dump(*args, **kwargs): kwargs.setdefault('default', default) return _dump(*args, **kwargs) def load(*args, **kwargs): kwargs.setdefault('object_hook', object_hook) return _load(*args, **kwargs) def patch(): """Monkey patches the json module in order to support serialization/deserialization of Numpy arrays and scalars.""" json.dumps = dumps json.loads = loads json.dump = dump json.load = load
py
1a31d010dcc4efe0a8a567323ce0788046d32432
from django.core.management import BaseCommand from wagtail.images import get_image_model from cms.tagging import TAG_ENRICHMENT, I18N_TAGS from core.utils import overwrite_media_domain class Command(BaseCommand): def handle(self, *args, **options): get_image_model().objects.filter(tags__name='delete', collection__name='services').delete() for k, v in TAG_ENRICHMENT.items(): for v1 in v: for i in get_image_model().objects.filter(tags__name=k).exclude(tags__name=v1): i.tags.add(v1) for tid, text in I18N_TAGS: for i in get_image_model().objects.filter(tags__id=tid).exclude(tags__name=text): i.tags.add(text) for image in get_image_model().objects.all().order_by('id'): if image.collection.name == 'services': image.make_semantic_tags() if image.all_tags_str: image.title = image.all_tags_str[:254] image.url_800x800 = overwrite_media_domain(image.get_rendition('max-800x800|format-jpeg').url) image.url_400x400 = overwrite_media_domain(image.get_rendition('max-400x400|format-jpeg').url) image.url_200x200 = overwrite_media_domain(image.get_rendition('max-200x200|format-jpeg').url) # wagtail admin interface image.get_rendition('max-165x165|format-jpeg') image.save()
py
1a31d038cdf7e5e3147ffdc08260375a4725a244
import json from datacite import schema40 from osf.metadata import utils from website.settings import DOMAIN serializer_registry = {} def register(schema_id): """Register classes into serializer_registry""" def decorator(cls): serializer_registry[schema_id] = cls return cls return decorator class MetadataRecordSerializer(object): def serialize_json(self, metadata_record): raise NotImplementedError def serialize_xml(self, metadata_record): raise NotImplementedError @classmethod def serialize(cls, metadata_record, format='json'): if format == 'json': return cls.serialize_json(metadata_record) if format == 'xml': return cls.serialize_xml(metadata_record) raise ValueError('Format "{}" is not supported.'.format(format)) @register(schema_id='datacite') class DataciteMetadataRecordSerializer(MetadataRecordSerializer): osf_schema = 'osf_datacite.json' @classmethod def serialize_json(cls, record): osfstorage_file = record.file target = osfstorage_file.target doc = { 'creators': utils.datacite_format_creators(target.visible_contributors), 'titles': [ { 'title': osfstorage_file.name }, { 'title': target.title, 'titleType': 'AlternativeTitle' } ], 'publisher': 'Open Science Framework', 'dates': [ { 'date': str(osfstorage_file.created), 'dateType': 'Created' }, { 'date': str(osfstorage_file.modified), 'dateType': 'Updated' } ], } file_description = record.metadata.get('file_description') if file_description: doc['descriptions'] = [ { 'description': file_description, 'descriptionType': 'Abstract' } ] subject_list = [] if target.subjects.all().exists(): subject_list = utils.datacite_format_subjects(target) tags_on_file = osfstorage_file.tags.values_list('name', flat=True) for tag_name in tags_on_file: subject_list.append({'subject': tag_name}) if subject_list: doc['subjects'] = subject_list resource_type = record.metadata.get('resource_type', '(:unas)') doc['resourceType'] = { 'resourceType': resource_type, 'resourceTypeGeneral': utils.DATACITE_RESOURCE_TYPE_MAP.get(resource_type) } doc['publicationYear'] = str(osfstorage_file.created.year) related_publication_doi = record.metadata.get('related_publication_doi') if related_publication_doi: doc['relatedIdentifiers'] = [ { 'relatedIdentifier': related_publication_doi, 'relatedIdentifierType': 'DOI', 'relationType': 'IsSupplementTo' } ] if osfstorage_file.guids.exists(): doc['alternateIdentifiers'] = [ { 'alternateIdentifier': DOMAIN + osfstorage_file.guids.first()._id, 'alternateIdentifierType': 'URL' } ] funders = record.metadata.get('funders') if funders: doc['fundingReferences'] = [] for funder in funders: funder_info = {} if funder.get('funding_agency'): funder_info['funderName'] = funder['funding_agency'] if funder.get('grant_number'): funder_info['awardNumber'] = {'awardNumber': funder['grant_number']} doc['fundingReferences'].append(funder_info) if getattr(target, 'node_license', None): doc['rightsList'] = [utils.datacite_format_rights(target.node_license)] latest_version_identifier = osfstorage_file.versions.all().order_by('-created').values_list('identifier', flat=True) if latest_version_identifier: doc['version'] = latest_version_identifier[0] return json.dumps(doc) @classmethod def serialize_xml(cls, record): data = json.loads(cls.serialize_json(record)) return schema40.tostring(data)
py
1a31d07fd4e46201d6a0217fc89fd73d5a24df6e
# -*- coding: utf-8 -*- """ Data conversion utility for numpy ===================================== Convert cytoscape.js style graphs from numpy object. http://www.numpy.org """ import numpy as np def from_ndarray(data, name=None, labels=None, directed=False, weighted=False): """ This method is converter to change ndarray to cytoscape.js style JSON. :param data: ndarray object. :param name: This is the network name. :param labels: This is the list of nodes' names :param directed: If this parapeter is True, the graph will be directed. On the other hand, the graph will be undirected. :param weighted: If this parapeter is True, the graph will have weighted edges. On the other hand, the graph will have unweighted edges. :return : The cytoscape.js object. """ mat_dim = data.shape if mat_dim[0] != mat_dim[1]: raise ValueError('Data should be square matrix.') data_size = mat_dim[0] if labels is not None: label_len = len(labels) if label_len != data_size: raise ValueError('Label length is not equal to the size of data.') network_name = name if network_name is None: network_name = 'from ndarray' g = { 'data': { 'name': network_name }, 'elements': { 'nodes': [], 'edges': [] } } g['elements']['nodes'] = __get_nodes(labels, data_size) if weighted: g['elements']['edges'] = __get_weighted_edges(matrix=data) else: g['elements']['edges'] = __get_unweighted_edges(matrix=data) return g def __get_nodes(labels, size): nodes = [] if labels is None: node_labels = np.arange(size) else: node_labels = labels for idx, label in enumerate(node_labels): nodes.append(__get_node(idx, label)) return nodes def __get_node(node_id, name): n = { 'data': { 'id': str(node_id), 'name': str(name) } } return n def __get_egdes(matrix, labels): pass def __get_edge(source, target, weight=None): e = { 'data': { 'id': source + '-' + target, 'source': source, 'target': target } } if weight is not None: e['data']['weight'] = weight return e def __get_unweighted_edges(matrix): size = matrix.shape[0] edges = [] row_idx = 0 for row in matrix: idx = row_idx while idx < size: if row[idx] == 1: e = __get_edge(str(row_idx), str(idx)) edges.append(e) idx += 1 row_idx += 1 return edges def __get_weighted_edges(matrix): size = matrix.shape[0] edges = [] row_idx = 0 for row in matrix: idx = row_idx while idx < size: if not np.isnan(row[idx]): e = __get_edge(str(row_idx), str(idx), weight=row[idx]) edges.append(e) idx += 1 row_idx += 1 return edges pass
py
1a31d0d6f8e846b61189219d3929f3c10631eeac
""" CLI command for "deploy" command """ import logging import os import click from samcli.cli.cli_config_file import TomlProvider, configuration_option from samcli.cli.main import aws_creds_options, common_options, pass_context, print_cmdline_args from samcli.commands._utils.cdk_support_decorators import unsupported_command_cdk from samcli.commands._utils.options import ( capabilities_option, guided_deploy_stack_name, metadata_option, notification_arns_option, parameter_override_option, no_progressbar_option, tags_option, template_click_option, signing_profiles_option, stack_name_option, s3_bucket_option, image_repository_option, image_repositories_option, s3_prefix_option, kms_key_id_option, use_json_option, force_upload_option, resolve_s3_option, role_arn_option, resolve_image_repos_option, ) from samcli.commands.deploy.utils import sanitize_parameter_overrides from samcli.lib.telemetry.metric import track_command from samcli.lib.cli_validation.image_repository_validation import image_repository_validation from samcli.lib.utils import osutils from samcli.lib.bootstrap.bootstrap import manage_stack from samcli.lib.utils.version_checker import check_newer_version from samcli.lib.bootstrap.companion_stack.companion_stack_manager import sync_ecr_stack SHORT_HELP = "Deploy an AWS SAM application." HELP_TEXT = """The sam deploy command creates a Cloudformation Stack and deploys your resources. \b Set SAM_CLI_POLL_DELAY Environment Vairable with a value of seconds in your shell to configure how often SAM CLI checks the Stack state, which is useful when seeing throttling from CloudFormation. \b e.g. sam deploy --template-file packaged.yaml --stack-name sam-app --capabilities CAPABILITY_IAM \b """ CONFIG_SECTION = "parameters" LOG = logging.getLogger(__name__) @click.command( "deploy", short_help=SHORT_HELP, context_settings={"ignore_unknown_options": False, "allow_interspersed_args": True, "allow_extra_args": True}, help=HELP_TEXT, ) @configuration_option(provider=TomlProvider(section=CONFIG_SECTION)) @click.option( "--guided", "-g", required=False, is_flag=True, is_eager=True, help="Specify this flag to allow SAM CLI to guide you through the deployment using guided prompts.", ) @template_click_option(include_build=True) @click.option( "--no-execute-changeset", required=False, is_flag=True, help="Indicates whether to execute the change set. " "Specify this flag if you want to view your stack changes " "before executing the change set. The command creates an AWS CloudFormation " "change set and then exits without executing the change set. if " "the changeset looks satisfactory, the stack changes can be made by " "running the same command without specifying `--no-execute-changeset`", ) @click.option( "--fail-on-empty-changeset/--no-fail-on-empty-changeset", default=True, required=False, is_flag=True, help="Specify if the CLI should return a non-zero exit code if there are no " "changes to be made to the stack. The default behavior is to return a " "non-zero exit code.", ) @click.option( "--confirm-changeset/--no-confirm-changeset", default=False, required=False, is_flag=True, help="Prompt to confirm if the computed changeset is to be deployed by SAM CLI.", ) @click.option( "--disable-rollback/--no-disable-rollback", default=False, required=False, is_flag=True, help="Preserves the state of previously provisioned resources when an operation fails.", ) @stack_name_option(callback=guided_deploy_stack_name) # pylint: disable=E1120 @s3_bucket_option(guided=True) # pylint: disable=E1120 @image_repository_option @image_repositories_option @force_upload_option @s3_prefix_option @kms_key_id_option @role_arn_option @use_json_option @resolve_s3_option(guided=True) # pylint: disable=E1120 @resolve_image_repos_option @metadata_option @notification_arns_option @tags_option @parameter_override_option @signing_profiles_option @no_progressbar_option @capabilities_option @aws_creds_options @common_options @image_repository_validation @pass_context @track_command @check_newer_version @print_cmdline_args @unsupported_command_cdk(alternative_command="cdk deploy") def cli( ctx, template_file, stack_name, s3_bucket, image_repository, image_repositories, force_upload, no_progressbar, s3_prefix, kms_key_id, parameter_overrides, capabilities, no_execute_changeset, role_arn, notification_arns, fail_on_empty_changeset, use_json, tags, metadata, guided, confirm_changeset, signing_profiles, resolve_s3, resolve_image_repos, config_file, config_env, disable_rollback, ): """ `sam deploy` command entry point """ # All logic must be implemented in the ``do_cli`` method. This helps with easy unit testing do_cli( template_file, stack_name, s3_bucket, image_repository, image_repositories, force_upload, no_progressbar, s3_prefix, kms_key_id, parameter_overrides, capabilities, no_execute_changeset, role_arn, notification_arns, fail_on_empty_changeset, use_json, tags, metadata, guided, confirm_changeset, ctx.region, ctx.profile, signing_profiles, resolve_s3, config_file, config_env, resolve_image_repos, disable_rollback, ) # pragma: no cover def do_cli( template_file, stack_name, s3_bucket, image_repository, image_repositories, force_upload, no_progressbar, s3_prefix, kms_key_id, parameter_overrides, capabilities, no_execute_changeset, role_arn, notification_arns, fail_on_empty_changeset, use_json, tags, metadata, guided, confirm_changeset, region, profile, signing_profiles, resolve_s3, config_file, config_env, resolve_image_repos, disable_rollback, ): """ Implementation of the ``cli`` method """ from samcli.commands.package.package_context import PackageContext from samcli.commands.deploy.deploy_context import DeployContext from samcli.commands.deploy.guided_context import GuidedContext from samcli.commands.deploy.exceptions import DeployResolveS3AndS3SetError if guided: # Allow for a guided deploy to prompt and save those details. guided_context = GuidedContext( template_file=template_file, stack_name=stack_name, s3_bucket=s3_bucket, image_repository=image_repository, image_repositories=image_repositories, s3_prefix=s3_prefix, region=region, profile=profile, confirm_changeset=confirm_changeset, capabilities=capabilities, signing_profiles=signing_profiles, parameter_overrides=parameter_overrides, config_section=CONFIG_SECTION, config_env=config_env, config_file=config_file, disable_rollback=disable_rollback, ) guided_context.run() else: if resolve_s3: if bool(s3_bucket): raise DeployResolveS3AndS3SetError() s3_bucket = manage_stack(profile=profile, region=region) click.echo(f"\n\t\tManaged S3 bucket: {s3_bucket}") click.echo("\t\tA different default S3 bucket can be set in samconfig.toml") click.echo("\t\tOr by specifying --s3-bucket explicitly.") # TODO Refactor resolve-s3 and resolve-image-repos into one place # after we figure out how to enable resolve-images-repos in package if resolve_image_repos: image_repositories = sync_ecr_stack( template_file, stack_name, region, s3_bucket, s3_prefix, image_repositories ) with osutils.tempfile_platform_independent() as output_template_file: with PackageContext( template_file=template_file, s3_bucket=guided_context.guided_s3_bucket if guided else s3_bucket, s3_prefix=guided_context.guided_s3_prefix if guided else s3_prefix, image_repository=guided_context.guided_image_repository if guided else image_repository, image_repositories=guided_context.guided_image_repositories if guided else image_repositories, output_template_file=output_template_file.name, kms_key_id=kms_key_id, use_json=use_json, force_upload=force_upload, no_progressbar=no_progressbar, metadata=metadata, on_deploy=True, region=guided_context.guided_region if guided else region, profile=profile, signing_profiles=guided_context.signing_profiles if guided else signing_profiles, ) as package_context: package_context.run() # 500ms of sleep time between stack checks and describe stack events. DEFAULT_POLL_DELAY = 0.5 try: poll_delay = float(os.getenv("SAM_CLI_POLL_DELAY", str(DEFAULT_POLL_DELAY))) except ValueError: poll_delay = DEFAULT_POLL_DELAY if poll_delay <= 0: poll_delay = DEFAULT_POLL_DELAY with DeployContext( template_file=output_template_file.name, stack_name=guided_context.guided_stack_name if guided else stack_name, s3_bucket=guided_context.guided_s3_bucket if guided else s3_bucket, image_repository=guided_context.guided_image_repository if guided else image_repository, image_repositories=guided_context.guided_image_repositories if guided else image_repositories, force_upload=force_upload, no_progressbar=no_progressbar, s3_prefix=guided_context.guided_s3_prefix if guided else s3_prefix, kms_key_id=kms_key_id, parameter_overrides=sanitize_parameter_overrides(guided_context.guided_parameter_overrides) if guided else parameter_overrides, capabilities=guided_context.guided_capabilities if guided else capabilities, no_execute_changeset=no_execute_changeset, role_arn=role_arn, notification_arns=notification_arns, fail_on_empty_changeset=fail_on_empty_changeset, tags=tags, region=guided_context.guided_region if guided else region, profile=profile, confirm_changeset=guided_context.confirm_changeset if guided else confirm_changeset, signing_profiles=guided_context.signing_profiles if guided else signing_profiles, use_changeset=True, disable_rollback=guided_context.disable_rollback if guided else disable_rollback, poll_delay=poll_delay, ) as deploy_context: deploy_context.run()
py
1a31d1b1f617458bd575295ecb5ad49c25b6a0f2
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ServiceAssociationLinksOperations(object): """ServiceAssociationLinksOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str virtual_network_name, # type: str subnet_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.ServiceAssociationLinksListResult" """Gets a list of service association links for a subnet. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param virtual_network_name: The name of the virtual network. :type virtual_network_name: str :param subnet_name: The name of the subnet. :type subnet_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ServiceAssociationLinksListResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_03_01.models.ServiceAssociationLinksListResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceAssociationLinksListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01" accept = "application/json" # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkName': self._serialize.url("virtual_network_name", virtual_network_name, 'str'), 'subnetName': self._serialize.url("subnet_name", subnet_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceAssociationLinksListResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualNetworks/{virtualNetworkName}/subnets/{subnetName}/ServiceAssociationLinks'} # type: ignore
py
1a31d285e29dd85d201bcaa5408cd210f6e039c7
import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.activation import LeakyReLU from utils import initialize_weights_he # The MNIST datasets are hosted on yann.lecun.com that has moved under CloudFlare protection # Run this script to enable the datasets download # Reference: https://github.com/pytorch/vision/issues/1938 from six.moves import urllib opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) from Networks import ResNetBlock import torch import numpy as np from torchvision import datasets import torchvision.transforms as transforms import cv2 from zu_resnet import ResNetEncoder # define the NN architecture class ConvAutoencoder_NAV2(nn.Module): def __init__(self, imgChannels=1, zDim=512,featureDim=12*10*10, fix_params=False): super(ConvAutoencoder_NAV2, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = nn.Sequential( nn.Conv2d(imgChannels, 32, 5, padding=2) , nn.BatchNorm2d(32), nn.ReLU(), ResNetBlock(32,64,3), ResNetBlock(64,128,3), ResNetBlock(128,256,3), ResNetBlock(256,128,3), # 64x5x5 = 3200 feature vector ).apply(initialize_weights_he) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(128, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, imgChannels, 2, stride=2), ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) # print(x.shape) # x = x.reshape(64,5,5) x = self.decode(x) x = torch.sigmoid(x) return x # define the NN architecture class ConvAutoencoder_NAV3(nn.Module): def __init__(self, imgChannels=1, zDim=512,featureDim=12*10*10, fix_params=False): super(ConvAutoencoder_NAV3, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = ResNetEncoder(12,blocks_sizes=[64,128,256,384],deepths=[2,2,2,2]) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(384, 512, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(512, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, imgChannels, 2, stride=2) ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) # print(x.shape) # x = x.reshape(64,5,5) x = self.decode(x) x = torch.sigmoid(x) return x # define the NN architecture class ConvAutoencoder_NAV4(nn.Module): def __init__(self, imgChannels=1, zDim=512,featureDim=12*10*10, fix_params=False): super(ConvAutoencoder_NAV4, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = nn.Sequential( ResNetBlock(imgChannels,64,3), ResNetBlock(64,128,3), ResNetBlock(128,256,3), ResNetBlock(256,128,3), # 64x5x5 = 3200 feature vector ).apply(initialize_weights_he) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(128, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, imgChannels, 2, stride=2), ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) # print(x.shape) # x = x.reshape(64,5,5) x = self.decode(x) x = torch.sigmoid(x) return x # define the NN architecture class ConvAutoencoder_NAV6(nn.Module): def __init__(self, imgChannels=1, zDim=1024,featureDim=64*5*5, fix_params=False): super(ConvAutoencoder_NAV6, self).__init__() self.featureDim = featureDim ## encoder layers ## # https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout self.encode = nn.Sequential( ResNetBlock(imgChannels,64,3), ResNetBlock(64,128,3), ResNetBlock(128,256,3), ResNetBlock(256,64,3), # 64x5x5 = 3200 feature vector, nn.Flatten(), nn.Linear(featureDim,zDim) ).apply(initialize_weights_he) self. FC_1 = nn.Linear(zDim,featureDim) ## decoder layers ## ## a kernel of 2 and a stride of 2 will increase the spatial dims by 2 self.decode = nn.Sequential( nn.ConvTranspose2d(64, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 256, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(256, 128, 2, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 2, stride=2), ).apply(initialize_weights_he) def fix_params(self): for param in self.encode.parameters(): param.requires_grad = False for param in self.decode.parameters(): param.requires_grad = False def encode_(self, x): return self.encode(x) def forward(self, x): x = self.encode(x) x = x.view(-1, self.fedim) x = self.decode(x) x = torch.sigmoid(x) return x if __name__ == '__main__': GPU = True device_idx = 0 if GPU: device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu") else: device = torch.device("cpu") # convert data to torch.FloatTensor transform = transforms.ToTensor() channels = 3 n_s_f = 4 inputshape = (80,80,channels) cv2_resz = (80,80) imshape = (channels,*cv2_resz) show_shape = (*cv2_resz,channels) model = ConvAutoencoder_NAV4(imgChannels=channels*n_s_f) # model.load_state_dict(torch.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/final/Models/1/VAE_20")) model.load_state_dict(torch.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/hoffentlich/VAE_80803_615")) model.eval() model.to(device) train_images = [] test_images = [] moving_database = np.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/hoffentlich/VAE_dtb_12_8080_final_hoffentlich.npy") # moving_database = np.load("/home/developer/VAE_dtb_12_128128_final.npy") # moving_database = np.load("/home/developer/Training_results/Qricculum_Learning/big_and_small/3/VAE_dtb_3_8080.npy") print(moving_database.shape) print(moving_database[0]) stacked_images = [] train_data = (moving_database[0:45000]/ 2**8).astype(np.float32) test_data = (moving_database[45000:] / 2**8).astype(np.float32) print(train_data.shape) print(test_data.shape) # Create training and test dataloaders num_workers = 10 # how many samples per batch to load batch_size = 32 # prepare data loaders train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers,shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers,shuffle=True) import matplotlib.pyplot as plt infostring = "net: \n" + str(model) + " \n \n \n" print(infostring) filename = "/home/developer/Training_results/VA/"+"Infofile.txt" text_file = open(filename, "w") n = text_file.write(infostring) text_file.close() learning_rate = 0.01 # specify loss function criterion = nn.MSELoss() # specify loss function # torch.optim.Adam optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # from torch.optim.lr_scheduler import ExponentialLR from torch.optim.lr_scheduler import MultiStepLR # scheduler1 = ExponentialLR(optimizer, gamma=0.90) scheduler2 = MultiStepLR(optimizer, milestones=[30,50,70,90], gamma=0.25) # number of epochs to train the model n_epochs = 100 # for epoch in range(1, n_epochs+1): # # monitor training loss # train_loss = 0.0 # test_loss = 0.0 # ################## # # train the model # # ################## # for data in train_loader: # # _ stands in for labels, here # # no need to flatten images # images = data # images = images.to(device) # # clear the gradients of all optimized variables # optimizer.zero_grad() # # forward pass: compute predicted outputs by passing inputs to the model # outputs = model(images).to(device) # # output_decoder = decoder(images) # # print(output_decoder) # # print(output_decoder.shape) # # calculate the loss # loss = criterion(outputs, images) # # backward pass: compute gradient of the loss with respect to model parameters # loss.backward() # # perform a single optimization step (parameter update) # optimizer.step() # # update running training loss # train_loss += loss.item()*images.size(0) # # print avg training statistics # train_loss = train_loss/len(train_loader) # print('Epoch: {} \tTraining Loss: {:.6f}'.format( # epoch, # train_loss # )) # for test_i_data in test_loader: # # _ stands in for labels, here # # no need to flatten images # test_images = test_i_data # test_images = test_images.to(device) # # clear the gradients of all optimized variables # with torch.no_grad(): # # forward pass: compute predicted outputs by passing inputs to the model # outputs = model(test_images).to(device) # loss = criterion(outputs, test_images) # test_loss += loss.item()*test_images.size(0) # print('Epoch: {} \tTesting Loss: {:.6f}'.format( # epoch, # test_loss # )) # torch.save(model.state_dict(), "/home/developer/Training_results/VA/VAE_RESNET18"+str(epoch)) # # scheduler1.step() # scheduler2.step() # obtain one batch of test images dataiter = iter(test_loader) while True: show_images = dataiter.next() show_images = show_images.to(device) # get sample outputs output = model(show_images) # prep images for display show_images = show_images.detach().cpu().numpy() # output is resized into a batch of iages output = output.view(batch_size,n_s_f*channels,*cv2_resz) # use detach when it's an output that requires_grad output = output.detach().cpu().numpy() print(output.shape) print(show_images.shape) # torch.save(model.state_dict(), "/home/developer/Training_results/VAE") # plot the first ten input images and then reconstructed images fig, axes = plt.subplots(nrows=2, ncols=4, sharex=True, sharey=True, figsize=(20,20)) axes[0][0].imshow(show_images[0][0:3].reshape(show_shape)) axes[0][0].get_xaxis().set_visible(False) axes[0][0].get_yaxis().set_visible(False) axes[0][1].imshow(show_images[0][3:6].reshape(show_shape)) axes[0][1].get_xaxis().set_visible(False) axes[0][1].get_yaxis().set_visible(False) axes[0][2].imshow(show_images[0][6:9].reshape(show_shape)) axes[0][2].get_xaxis().set_visible(False) axes[0][2].get_yaxis().set_visible(False) axes[0][3].imshow(show_images[0][9:12].reshape(show_shape)) axes[0][3].get_xaxis().set_visible(False) axes[0][3].get_yaxis().set_visible(False) axes[1][0].imshow(output[0][0:3].reshape(show_shape)) axes[1][0].get_xaxis().set_visible(False) axes[1][0].get_yaxis().set_visible(False) axes[1][1].imshow(output[0][3:6].reshape(show_shape)) axes[1][1].get_xaxis().set_visible(False) axes[1][1].get_yaxis().set_visible(False) axes[1][2].imshow(output[0][6:9].reshape(show_shape)) axes[1][2].get_xaxis().set_visible(False) axes[1][2].get_yaxis().set_visible(False) axes[1][3].imshow(output[0][9:12].reshape(show_shape)) axes[1][3].get_xaxis().set_visible(False) axes[1][3].get_yaxis().set_visible(False) # input images on top row, reconstructions on bottom # for show_images, row in zip([show_images, output], axes): # for img, ax in zip(show_images, row): # ax.imshow(img[0:3].reshape(show_shape)) # ax.get_xaxis().set_visible(False) # ax.get_yaxis().set_visible(False) plt.show()
py
1a31d353dcf6f7bcbd7ba2f1cf6e4169e4e26155
""" Parsed Config File Produces Expected Behaviors - fixed parameters """ import inspect import os import deeplenstronomy.deeplenstronomy as dl doc = """ \tRunning tests from test_expected_behaviors_fixed.py \tThe tests included in this module demonstrate that the values of fixed parameters \tin the main configuration file are accurately utilized in the simulation and \tappear as expected in the simulation metadata. The functions are: \t\t- test_dataset_section \t\t\tTesting that NAME, OUTDIR, and SEED properties from the DATASET section of \t\t\tthe main config file were properly interpretted and utilized as properties \t\t\tof the generated dataset \t\t- test_cosmology_section \t\t\tTesting that the cosmological parameters from the COSMOLOGY section appear \t\t\tas expected in the simulation metadata \t\t- test_image_size \t\t\tTesting that the IMAGE.numPix keyword produced simulated images with the \t\t\texpected size. \t\t- test_bands \t\t\tTesting that the BANDS argument was interpretted properly and produced an \t\t\tarray of simulated images with the expected number of bands """ print(doc) # Below are all of the possible operation modes kwargs_sets = {0: {}, # default arguments 1: {'save_to_disk': True}, 2: {'save_to_disk': True, 'image_file_format': 'h5'}, 3: {'save_to_disk': True, 'skip_image_generation': True}, 4: {'store_in_memory': False}, 5: {'store_sample': True}, 6: {'skip_image_generation': True, 'survey': 'des'}, 7: {'solve_lens_equation': True}, 8: {'return_planes': True} } f = open('status.txt', 'r') current_test = int(f.read().strip()) f.close() # Generate the dataset kwargs_set = kwargs_sets[current_test] config_filename = 'config.yaml' dataset = dl.make_dataset(config_filename, **kwargs_set) has_images = [hasattr(dataset, x + '_images') for x in dataset.configurations] has_metadata = [hasattr(dataset, x + '_metadata') for x in dataset.configurations] has_planes = [hasattr(dataset, x + '_planes') for x in dataset.configurations] images_exist = [os.path.exists(dataset.outdir +'/' + x + '_images.' + dataset.arguments['image_file_format']) for x in dataset.configurations] metadata_exist = [os.path.exists(dataset.outdir +'/' + x + '_metadata.csv') for x in dataset.configurations] planes_exist = [os.path.exists(dataset.outdir +'/' + x + '_planes.' + dataset.arguments['image_file_format']) for x in dataset.configurations] # Begin test functions def test_dataset_section(): section = dataset.config_dict['DATASET']['PARAMETERS'] assert dataset.size == section['SIZE'] assert dataset.outdir == section['OUTDIR'] if 'SEED' in section.keys(): assert dataset.seed == section['SEED'] def test_cosmology_section(): if all(has_metadata): section = dataset.config_dict['COSMOLOGY']['PARAMETERS'] for conf in dataset.configurations: for band in dataset.bands: for param, value in section.items(): md = eval(f'dataset.{conf}_metadata["{param}-{band}"]') assert all(md.values == value) def test_image_size(): if all(has_images): for conf in dataset.configurations: x = eval(f'dataset.{conf}_images').shape[-2] y = eval(f'dataset.{conf}_images').shape[-1] assert dataset.config_dict['IMAGE']['PARAMETERS']['numPix'] == x assert dataset.config_dict['IMAGE']['PARAMETERS']['numPix'] == y def test_bands(): config_bands = dataset.config_dict['SURVEY']['PARAMETERS']['BANDS'].split(',') assert config_bands == dataset.bands if all(has_images): for conf in dataset.configurations: b = eval(f'dataset.{conf}_images').shape[-3] assert len(config_bands) == b if all(has_metadata): get_band = lambda col: col.split('-')[-1] for conf in dataset.configurations: md = eval(f'dataset.{conf}_metadata').columns assert all([band in config_bands for band in [get_band(c) for c in md]])
py
1a31d4da1d3c402dc70b70953617423690745724
from argparse import ArgumentParser from mmdet.apis import inference_detector, init_detector, show_result_pyplot def main(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='bbox score threshold') args = parser.parse_args() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # test a single image result = inference_detector(model, args.img) # show the results show_result_pyplot(model, args.img, result, score_thr=args.score_thr) if __name__ == '__main__': main()
py
1a31d509e9f6211b533947cb53a6557f8f5fb0c2
from django.urls import path from . import views app_name = 'matcher' urlpatterns = [ path('', views.roulette_list_active, name='list_active'), path('archive', views.roulette_list_archive, name='list_archive'), path('all', views.roulette_list_all, name='list_all'), path('roulette/<int:roulette_id>/', views.roulette, name='roulette'), path('roulette/<int:roulette_id>/run/', views.run_roulette, name='run'), path('roulette/<int:roulette_id>/submit/', views.submit_roulette, name='submit'), ]
py
1a31d565b82e1840f039185bdf2cf317d4532815
import datetime import json from itertools import chain from io import BytesIO from django.template.loader import get_template from xlsxwriter.workbook import Workbook from xhtml2pdf import pisa import xlrd import logging from django.db import transaction from django.contrib import messages from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.db.models import Max from django.http import HttpResponse, HttpResponseRedirect from django.http import JsonResponse from django.shortcuts import get_object_or_404, render, redirect from django.template.loader import render_to_string from django.core.exceptions import ObjectDoesNotExist from django.utils import timezone from notification.views import AssistantshipClaim_notify,AssistantshipClaim_acad_notify,AssistantshipClaim_account_notify,AssistantshipClaim_faculty_notify from applications.academic_information.models import (Calendar, Course, Student,Curriculum_Instructor, Curriculum, Student_attendance) from applications.central_mess.models import(Monthly_bill, Payments) from applications.programme_curriculum.models import (CourseSlot, Course as Courses, Batch, Semester) from applications.globals.models import (DepartmentInfo, Designation, ExtraInfo, Faculty, HoldsDesignation) from .models import (BranchChange, CoursesMtech, InitialRegistration, StudentRegistrationChecks, MinimumCredits, Register, Thesis, FinalRegistration, ThesisTopicProcess, Constants, FeePayments, TeachingCreditRegistration, SemesterMarks, MarkSubmissionCheck, Dues,AssistantshipClaim, MTechGraduateSeminarReport, PhDProgressExamination,CourseRequested, course_registration, MessDue, Assistantship_status) from notification.views import academics_module_notif from .forms import BranchChangeForm demo_date = timezone.now() # demo_date = demo_date - datetime.timedelta(days = 180) # demo_date = demo_date + datetime.timedelta(days = 180) # demo_date = demo_date + datetime.timedelta(days = 3) # demo_date = demo_date - datetime.timedelta(days = 5) student_status = None hod_status = None account_status = None available_cse_seats = 100 available_ece_seats = 100 available_me_seats = 100 # assistantship_status = Assistantship_status.objects.all() # for obj in assistantship_status: # student_status = obj.student_status # hod_status = obj.hod_status # account_status = obj.account_status @login_required(login_url='/accounts/login') def academic_procedures_redirect(request): return HttpResponseRedirect('/academic-procedures/main/') @login_required(login_url='/accounts/login') def main(request): return HttpResponseRedirect('/academic-procedures/main/') @login_required(login_url='/accounts/login') def academic_procedures(request): current_user = get_object_or_404(User, username=request.user.username) #extra info details , user id used as main id user_details = ExtraInfo.objects.select_related('user','department').get(user = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() if str(des.designation) == "student": obj = Student.objects.select_related('id','id__user','id__department').get(id = user_details.id) return HttpResponseRedirect('/academic-procedures/stu/') # return HttpResponseRedirect('/logout/') elif str(des.designation) == "Associate Professor" or str(des.designation) == "Professor" or str(des.designation) == "Assistant Professor" : return HttpResponseRedirect('/academic-procedures/fac/') # return HttpResponseRedirect('/logout/') elif str(request.user) == "acadadmin" : return HttpResponseRedirect('/aims/') elif str(request.user) == "rizwan": return HttpResponseRedirect('/academic-procedures/account/') elif str(request.user) == "talib": Messdue = MessDue.objects.all() dues = Dues.objects.all() return render(request, '../templates/academic_procedures/messdueassistant.html' , { 'Mess_due' : Messdue, 'dues' : dues, }) else: return HttpResponse('person not found') # # # # # # @login_required(login_url='/accounts/login') def academic_procedures_faculty(request): current_user = get_object_or_404(User, username=request.user.username) #extra info details , user id used as main id user_details = ExtraInfo.objects.select_related('user','department').get(user = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() fac_id = user_details fac_name = user_details.user.first_name + " " + user_details.user.last_name if str(des.designation) == "student": return HttpResponseRedirect('/academic-procedures/main/') elif str(request.user) == "acadadmin": return HttpResponseRedirect('/academic-procedures/main/') elif str(des.designation) == "Associate Professor" or str(des.designation) == "Professor" or str(des.designation) == "Assistant Professor": object_faculty = Faculty.objects.select_related('id','id__user','id__department').get(id = user_details) month = int(demo_date.month) sem = [] if month>=7 and month<=12: sem = [1,3,5,7] else: sem = [2,4,6,8] student_flag = False fac_flag = True Faculty_department =user_details.department # temp = Curriculum.objects.all().filter(course_code = "CS315L").first() # Curriculum_Instructor.objects.create(curriculum_id = temp, instructor_id = user_details) #thesis_supervision_request_list = ThesisTopicProcess.objects.all() thesis_supervision_request_list = ThesisTopicProcess.objects.all().select_related().filter(supervisor_id = object_faculty) approved_thesis_request_list = thesis_supervision_request_list.filter(approval_supervisor = True) pending_thesis_request_list = thesis_supervision_request_list.filter(pending_supervisor = True) faculty_list = get_faculty_list() assistantship_request_list = AssistantshipClaim.objects.all() hod_assistantship_request_list = assistantship_request_list.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(hod_approval = False) hod_approved_assistantship = assistantship_request_list.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(acad_approval = False) ta_approved_assistantship_request_list = AssistantshipClaim.objects.all().filter(ta_supervisor_remark=True) thesis_approved_assistantship_request_list = AssistantshipClaim.objects.all().filter(thesis_supervisor_remark=True) approved_assistantship_request_list = ta_approved_assistantship_request_list | thesis_approved_assistantship_request_list mtechseminar_request_list = MTechGraduateSeminarReport.objects.all().filter(Overall_grade = '') phdprogress_request_list = PhDProgressExamination.objects.all().filter(Overall_grade = '') courses_list = Curriculum_Instructor.objects.select_related('curriculum_id','instructor_id','curriculum_id__course_id','instructor_id__department','instructor_id__user').filter(instructor_id=user_details).filter(curriculum_id__sem__in = sem) r = range(4) return render( request, '../templates/academic_procedures/academicfac.html' , { 'student_flag' : student_flag, 'fac_flag' : fac_flag, 'hod_flag' : hod_status, 'thesis_supervision_request_list' : thesis_supervision_request_list, 'pending_thesis_request_list' : pending_thesis_request_list, 'approved_thesis_request_list' : approved_thesis_request_list, 'faculty_list' : faculty_list, 'courses_list' : courses_list, 'fac_id': fac_id, 'fac_name' : fac_name, 'department' : Faculty_department, 'assistantship_request_list' : assistantship_request_list, 'approved_assistantship_request_list' : approved_assistantship_request_list, 'hod_assistantship_request_list' : hod_assistantship_request_list, 'hod_approved_assistantship' : hod_approved_assistantship, 'mtechseminar_request_list' : mtechseminar_request_list, 'phdprogress_request_list' : phdprogress_request_list, 'r' : r, }) else: HttpResponse("user not found") @login_required(login_url='/accounts/login') def account(request): assistant_account_list = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True) assistant_pen_list = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(acad_approval = True).filter(account_approval = False) assistant_account_length = len(assistant_account_list.filter(acad_approval = True).filter(account_approval = False)) return render(request, '../templates/ais/account.html' , { 'assistant_account_length' : assistant_account_length, 'assistant_account_list' : assistant_account_list , 'assistant_pen_list' : assistant_pen_list, 'account_flag' : account_status, }) @login_required(login_url='/accounts/login') def academic_procedures_student(request): current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.select_related('user','department').get(id = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() if str(des.designation) == "student": obj = Student.objects.select_related('id','id__user','id__department').get(id = user_details.id) if obj.programme.upper() == "PHD" : student_flag = True ug_flag = False masters_flag = False phd_flag = True fac_flag = False des_flag = False elif obj.programme.upper() == "M.DES" : student_flag = True ug_flag = False masters_flag = True phd_flag = False fac_flag = False des_flag = True elif obj.programme.upper() == "B.DES" : student_flag = True ug_flag = True masters_flag = False phd_flag = False fac_flag = False des_flag = True elif obj.programme.upper() == "M.TECH" : student_flag = True ug_flag = False masters_flag = True phd_flag = False fac_flag = False des_flag = False elif obj.programme.upper() == "B.TECH" : student_flag = True ug_flag = True masters_flag = False phd_flag = False fac_flag = False des_flag = False else : return HttpResponse("Student has no record") # masters_flag=True current_date = demo_date.date() year = demo_date.year registers = get_student_register(user_details.id) user_sem = get_user_semester(request.user, ug_flag, masters_flag, phd_flag) user_branch = get_user_branch(user_details) batch = obj.batch_id curr_id = batch.curriculum curr_sem_id = Semester.objects.get(curriculum = curr_id, semester_no = obj.curr_semester_no) try: next_sem_id = Semester.objects.get(curriculum = curr_id, semester_no = obj.curr_semester_no+1) except Exception as e: next_sem_id = curr_sem_id student_registration_check_pre = get_student_registrtion_check(obj,next_sem_id) student_registration_check_final = get_student_registrtion_check(obj,next_sem_id) cpi = get_cpi(user_details.id) # branch change flag branchchange_flag=True # True for testing, to be initialised as False if user_sem==2: branchchange_flag=True pre_registration_date_flag = get_pre_registration_eligibility(current_date) final_registration_date_flag = get_final_registration_eligibility(current_date) add_or_drop_course_date_flag = get_add_or_drop_course_date_eligibility(current_date) pre_registration_flag = False final_registration_flag = False if(student_registration_check_pre): pre_registration_flag = student_registration_check_pre.pre_registration_flag if(student_registration_check_final): final_registration_flag = student_registration_check_final.final_registration_flag acad_year = get_acad_year(user_sem, year) currently_registered_courses = get_currently_registered_courses(user_details.id, user_sem) next_sem_branch_course = get_sem_courses(next_sem_id, batch) current_sem_branch_course = get_sem_courses(curr_sem_id, batch) next_sem_registration_courses = get_sem_courses(next_sem_id, batch) final_registration_choice, unavailable_courses_nextsem = get_final_registration_choices(next_sem_registration_courses,batch.year) currently_registered_course = get_currently_registered_course(obj,obj.curr_semester_no) current_credits = get_current_credits(currently_registered_course) cur_cpi=0.0 details = { 'current_user': current_user, 'year': acad_year, 'user_sem': user_sem, 'user_branch' : str(user_branch), 'cpi' : cpi, } cur_cpi=details['cpi'] try: pre_registered_course = InitialRegistration.objects.all().filter(student_id = user_details.id,semester_id = next_sem_id) pre_registered_course_show = pre_registered_course except Exception as e: pre_registered_course = None pre_registered_course_show = None try: final_registered_course = FinalRegistration.objects.all().filter(student_id = user_details.id,semester_id = next_sem_id) add_courses_options = get_add_course_options(current_sem_branch_course, currently_registered_course, batch.year) drop_courses_options = get_drop_course_options(currently_registered_course) except Exception as e: final_registered_course = None drop_courses_options = None add_courses_options = None fee_payment_mode_list = dict(Constants.PaymentMode) performance_list = [] result_announced = False for i in currently_registered_courses: try: performance_obj = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = obj, curr_id = i).first() except Exception as e: performance_obj = None performance_list.append(performance_obj) for i in currently_registered_courses: try: result_announced_obj = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if result_announced_obj: if result_announced_obj.announced == True: result_announced = result_announced_obj.announced else: continue except Exception as e: continue faculty_list = None thesis_request_list = None assistantship_list = None pre_existing_thesis_flag = False teaching_credit_registration_course = None if masters_flag: faculty_list = get_faculty_list() thesis_request_list = ThesisTopicProcess.objects.all().filter(student_id = obj) assistantship_list = AssistantshipClaim.objects.all().filter(student = obj) pre_existing_thesis_flag = get_thesis_flag(obj) if phd_flag: pre_existing_thesis_flag = get_thesis_flag(obj) teaching_credit_registration_course = Curriculum.objects.all().select_related().filter(batch = 2016, sem =6) # Dues Check #Initializing all due with -1 value , since generating no due certificate requires total due=0 lib_d, pc_d, hos_d, mess_d, acad_d = -1, -1, -1, -1, -1 if student_flag: try: obj = Dues.objects.select_related().get(student_id=Student.objects.select_related('id','id__user','id__department').get(id=request.user.username)) lib_d = obj.library_due pc_d = obj.placement_cell_due hos_d = obj.hostel_due mess_d = obj.mess_due acad_d = obj.academic_due except ObjectDoesNotExist: logging.warning("entry in DB not found for student") tot_d = lib_d + acad_d + pc_d + hos_d + mess_d obj = Student.objects.select_related('id','id__user','id__department').get(id=request.user.username) course_list = [] for i in registers: course_list.append(i.curr_id) attendence = [] for i in course_list: instructors = Curriculum_Instructor.objects.select_related('curriculum_id','instructor_id','curriculum_id__course_id','instructor_id__department','instructor_id__user').filter(curriculum_id=i) pr,ab=0,0 for j in list(instructors): presents = Student_attendance.objects.select_related('student_id','student_id__id','student_id__id__user','student_id__id__department','instructor_id','instructor_id__curriculum_id','instructor_id__curriculum_id__course_id','instructor_id__instructor_id','instructor_id__instructor_id__user','instructor_id__instructor_id__department').filter(student_id=obj,instructor_id=j, present=True) absents = Student_attendance.objects.select_related('student_id','student_id__id','student_id__id__user','student_id__id__department','instructor_id','instructor_id__curriculum_id','instructor_id__curriculum_id__course_id','instructor_id__instructor_id','instructor_id__instructor_id__user','instructor_id__instructor_id__department').filter(student_id=obj,instructor_id=j, present=False) pr += len(presents) ab += len(absents) attendence.append((i,pr,pr+ab)) cur_spi='Sem results not available' # To be fetched from db if result uploaded Mess_bill = Monthly_bill.objects.filter(student_id = obj) Mess_pay = Payments.objects.filter(student_id = obj) # Branch Change Form save if request.method=='POST': if True: # Processing Branch Change form objb = BranchChange() objb.branches=request.POST['branches'] objb.save() return render( request, '../templates/academic_procedures/academic.html', {'details': details, # 'calendar': calendar, 'currently_registered': currently_registered_course, 'pre_registered_course' : pre_registered_course, 'pre_registered_course_show' : pre_registered_course_show, 'final_registered_course' : final_registered_course, 'current_credits' : current_credits, 'courses_list': next_sem_branch_course, 'fee_payment_mode_list' : fee_payment_mode_list, 'next_sem_registration_courses': next_sem_registration_courses, 'final_registration_choice' : final_registration_choice, 'unavailable_courses_nextsem' : unavailable_courses_nextsem, 'performance_list' : performance_list, 'faculty_list' : faculty_list, 'thesis_request_list' : thesis_request_list, 'assistantship_list' : assistantship_list, 'next_sem': next_sem_id, 'curr_sem': curr_sem_id, # 'final_register': final_register, 'student_flag' : student_flag, 'ug_flag' : ug_flag, 'masters_flag' : masters_flag, 'phd_flag' : phd_flag, 'fac_flag' : fac_flag, 'des_flag' : des_flag, 'result_announced' : result_announced, 'thesis_flag' : pre_existing_thesis_flag, # 'change_branch': change_branch, # 'add_course': add_course, 'add_courses_options': add_courses_options, 'drop_courses_options' : drop_courses_options, # 'pre_register': pre_register, 'prd': pre_registration_date_flag, 'frd': final_registration_date_flag, 'adc_date_flag': add_or_drop_course_date_flag, 'pre_registration_flag' : pre_registration_flag, 'final_registration_flag': final_registration_flag, # 'final_r': final_register_1, 'teaching_credit_registration_course' : teaching_credit_registration_course, 'cur_cpi': cur_cpi, 'cur_spi': cur_spi, # 'mincr': minimum_credit, 'Mess_bill' : Mess_bill, 'Mess_pay' : Mess_pay, 'lib_d':lib_d, 'acad_d':acad_d, 'mess_d':mess_d, 'pc_d':pc_d, 'hos_d':hos_d, 'tot_d':tot_d, 'attendence':attendence, 'BranchChangeForm': BranchChangeForm(), 'BranchFlag':branchchange_flag, 'assistantship_flag' : student_status, } ) elif str(des.designation) == "Associate Professor" : return HttpResponseRedirect('/academic-procedures/main/') elif str(request.user) == "acadadmin" : return HttpResponseRedirect('/academic-procedures/main/') else: return HttpResponse('user not found') def dues_pdf(request): template = get_template('academic_procedures/dues_pdf.html') current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.get(id = request.user) des = HoldsDesignation.objects.all().filter(user = request.user).first() name = ExtraInfo.objects.all().filter(id=request.user.username)[0].user if str(des.designation) == "student": obj = Student.objects.get(id = user_details.id) context = { 'student_id' : request.user.username, 'degree' : obj.programme.upper(), 'name' : name.first_name +" "+ name.last_name, 'branch' : get_user_branch(user_details), } pdf = render_to_pdf('academic_procedures/dues_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename=Bonafide.pdf' return response return HttpResponse("PDF could not be generated") def facultyData(request): current_value = request.POST['current_value'] try: # students =ExtraInfo.objects.all().filter(user_type = "student") faculty = ExtraInfo.objects.all().filter(user_type = "faculty") facultyNames = [] for i in faculty: name = i.user.first_name + " " + i.user.last_name if current_value != "": Lowname = name.lower() Lowcurrent_value = current_value.lower() if Lowcurrent_value in Lowname: facultyNames.append(name) else: facultyNames.append(name) faculty = json.dumps(facultyNames) return HttpResponse(faculty) except Exception as e: return HttpResponse("error") def get_course_to_show_pg(initial_courses, final_register): ''' This function fetches the PG courses from the database and store them into list x. @param: initial_courses - The courses that the registered PG student has already selected. final_register - Finally registered courses of the user. @variables: x - The courses that are not being finally registered. ''' x = [] for i in initial_courses: flag = 0 for j in final_register: if(str(i.course_name) == str(j.course_id)): flag = 1 if(flag == 0): x.append(i) return x def get_pg_course(usersem, specialization): ''' This function fetches the PG Spcialization courses from the database and store them into list result. @param: usersem - Current semester of the user. specialization - has the specialization of the logged in PG student. @variables: result - The selected Specialization courses. ''' usersem = 2 obj = CoursesMtech.objects.select_related().filter(specialization=specialization) obj3 = CoursesMtech.objects.select_related().filter(specialization="all") obj2 = Course.objects.filter(sem=usersem) result = [] for i in obj: p = i.c_id for j in obj2: if(str(j.course_name) == str(p)): result.append(j) for i in obj3: p = i.c_id for j in obj2: if(str(j.course_name) == str(p)): result.append(j) return result def get_add_course(branch, final): ''' This function shows the courses that were added after pre-registration. @param: branch - Branch of the Logged in student. final - all the added courses after pre-registration. @variables: x - all the added courses after pre-registration. total_course - al the remaining courses that were not added. ''' x = [] for i in final: x.append(i.course_id) total_course = [] for i in branch: if i not in x: total_course.append(i) return total_course @login_required(login_url='/accounts/login') def apply_branch_change(request): ''' This function is used to verify the details to apply for the branch change. It checks the requirement and tells the user if he/she can change the branch or not. @param: request - trivial @variables: branches - selected branches by the user. student - details of the logged in user. extraInfo_user - gets the user details from the extrainfo model. cpi_data - cpi of the logged in user. semester - user's semester. label_for_change - boolean variable to check the eligibility. ''' # Get all the departments # branch_list = DepartmentInfo.objects.all() branches = ['CSE', 'ME', 'ECE'] # Get the current logged in user student = User.objects.all().filter(username=request.user).first() # Get the current logged in user's cpi extraInfo_user = ExtraInfo.objects.all().select_related('user','department').filter(user=student).first() cpi_data = Student.objects.all().select_related('id','id__user','id__department').filter(id=extraInfo_user.id).first() # for i in range(len(branch_list)): # branch_cut = branch_list[i].name # branches.append(branch_cut) label_for_change = False semester = get_user_semester(extraInfo_user.id, ug_flag, masters_flag, phd_flag) # semester = 2 if cpi_data.cpi >= 8 and semester >= 1 and semester <= 2: label_for_change = True context = { 'branches': branches, 'student': student, 'cpi_data': cpi_data, 'label_for_change': label_for_change, } return context def branch_change_request(request): ''' This function is used to apply the branch change request. @param: request - trivial @variables: current_user - details of the current user. student - details of the logged in student. extraInfo_user - gets the user details from the extrainfo model. department - user's applied brach. ''' if request.method == 'POST': current_user = get_object_or_404(User, username=request.user.username) extraInfo_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() student = Student.objects.all().select_related('id','id__user','id__department').filter(id=extraInfo_user.id).first() department = DepartmentInfo.objects.all().filter(id=int(request.POST['branches'])).first() change_save = BranchChange( branches=department, user=student ) change_save.save() return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') @login_required(login_url='/acounts/login') def approve_branch_change(request): ''' This function is used to approve the branch change requests from acad admin's frame. @param: request - trivial @variables: choices - list of students who applied for the branch change. branches - selected brances by the student. get_student - updating the student's branch after approval. branch - branch of the current user. ''' if request.method == 'POST': values_length = len(request.POST.getlist('choice')) choices = [] branches = [] for i in range(values_length): for key, values in request.POST.lists(): if key == 'branch': branches.append(values[i]) if key == 'choice': choices.append(values[i]) else: continue changed_branch = [] for i in range(len(branches)): get_student = ExtraInfo.objects.all().select_related('user','department').filter(id=choices[i][:7]) get_student = get_student[0] branch = DepartmentInfo.objects.all().filter(name=branches[i]) get_student.department = branch[0] changed_branch.append(get_student) student = Student.objects.all().select_related('id','id__user','id__department').filter(id=choices[i][:7]).first() change = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all().filter(user=student) change = change[0] change.delete() try: ExtraInfo.objects.bulk_update(changed_branch,['department']) messages.info(request, 'Apply for branch change successfull') except: messages.info(request, 'Unable to proceed, we will get back to you very soon') return HttpResponseRedirect('/academic-procedures/main') else: messages.info(request, 'Unable to proceed') return HttpResponseRedirect('/academic-procedures/main') # Function returning Branch , Banch data which was required many times def get_batch_query_detail(month, year): ''' This function is used to get the batch's detail simply return branch which is required often. @param: month - current month year - current year. @variables: stream1 - string BTech. stream2 - string MTech. query_option1 - year to be shown on students course sho page acad admin ''' stream1 = "B.Tech " stream2 = "M.Tech " query_option1 = {} if(month >= 7): query_option1 = { stream1+str(year): stream1+str(year), stream1+str(year-1): stream1+str(year-1), stream1+str(year-2): stream1+str(year-2), stream1+str(year-3): stream1+str(year-3), stream1+str(year-4): stream1+str(year-4), stream2+str(year): stream2+str(year), stream2+str(year-1): stream2+str(year)} else: query_option1 = { stream1+str(year-1): stream1+str(year-1), stream1+str(year-2): stream1+str(year-2), stream1+str(year-3): stream1+str(year-3), stream1+str(year-4): stream1+str(year-4), stream1+str(year-5): stream1+str(year-5), stream2+str(year-1): stream2+str(year-1), stream2+str(year-2): stream2+str(year-2), } return query_option1 # view when Admin drops a user course @login_required(login_url='/accounts/login') def dropcourseadmin(request): ''' This function is used to get the view when Acad Admin drops any course of any student. @param: request - trivial @variables: data - user's id. rid - Registration ID of Registers table response_data - data to be responded. ''' data = request.GET.get('id') data = data.split(" - ") course_code = data[1] # need to add batch and programme curriculum_object = Curriculum.objects.all().filter(course_code = course_code) try: Register.objects.filter(curr_id = curriculum_object.first(),student_id=int(data[0])).delete() except: print("hello ") response_data = {} return HttpResponse(json.dumps(response_data), content_type="application/json") @login_required(login_url='/accounts/login') def gen_course_list(request): if(request.POST): try: batch = request.POST['batch'] course_id = request.POST['course'] course = Courses.objects.get(id = course_id) obj = course_registration.objects.all().filter(course_id = course) except Exception as e: batch="" course="" obj="" students = [] for i in obj: if i.student_id.batch_id.year == int(batch): students.append(i.student_id) html = render_to_string('academic_procedures/gen_course_list.html', {'students': students, 'batch':batch, 'course':course_id}, request) maindict = {'html': html} obj = json.dumps(maindict) return HttpResponse(obj, content_type='application/json') # view where Admin verifies the registered courses of every student @login_required(login_url='/accounts/login') def verify_course(request): ''' This function is used to get the view when Acad Admin verifies the registered courses of every student. @param: request - trivial @variables: current_user - details of current user. desig_id - Finds the Acad admin whose designation is "Upper Division Clerk". acadadmin - details of the acad person(logged in). roll_no - roll number of all the students. firstname - firstname of the students. year - current year. month - current month. date - current date. ''' if(request.POST): current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() desig_id = Designation.objects.all().filter(name='adminstrator').first() temp = HoldsDesignation.objects.all().select_related().filter(designation = desig_id).first() acadadmin = temp.working k = str(user_details).split() final_user = k[2] if (str(acadadmin) != str(final_user)): return HttpResponseRedirect('/academic-procedures/') roll_no = request.POST["rollNo"] obj = ExtraInfo.objects.all().select_related('user','department').filter(id=roll_no).first() firstname = obj.user.first_name lastname = obj.user.last_name dict2 = {'roll_no': roll_no, 'firstname': firstname, 'lastname': lastname} obj2 = Student.objects.all().select_related('id','id__user','id__department').filter(id=roll_no).first() obj = Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = obj2) curr_sem_id = obj2.curr_semester_no details = [] current_sem_courses = get_currently_registered_course(roll_no,curr_sem_id) idd = obj2 for z in current_sem_courses: z=z[1] course_code,course_name= str(z).split(" - ") k = {} # reg_ig has course registration id appended with the the roll number # so that when we have removed the registration we can be redirected to this view k['reg_id'] = roll_no+" - "+course_code k['rid'] = roll_no+" - "+course_code # Name ID Confusion here , be carefull courseobj2 = Courses.objects.all().filter(code = course_code) # if(str(z.student_id) == str(idd)): for p in courseobj2: k['course_id'] = course_code k['course_name'] = course_name k['sem'] = curr_sem_id k['credits'] = p.credit details.append(k) year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 if(month >= 7): semflag = 1 else: semflag = 2 # TO DO Bdes date = {'year': yearr, 'semflag': semflag} html = render_to_string('academic_procedures/studentCourses.html', {'details': details, 'dict2': dict2, 'date': date}, request) maindict = {'html': html} obj = json.dumps(maindict) return HttpResponse(obj, content_type='application/json') # view to generate all list of students def acad_branch_change(request): ''' This function is used to approve the branch changes requested by the students. @param: request - trivial @variables: current_user - logged in user desig_id - Finds the Acad admin whose designation is "Upper Division Clerk". acadadmin - details of the logged in acad admin. user_details - details of the logged in user. change_queries - gets all the details of branch changes from the database. year - current year. month - current month date - current date. total_cse_seats - total availbale CSE seats. total_ece_seats - total availbale ECE seats. total_me_seats - total availbale ME seats. available_cse_seats - availbale CSE seats. available_ece_seats - available ECE seats. available_me_seats - available ME seats. ''' current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() desig_id = Designation.objects.all().filter(name='Upper Division Clerk') temp = HoldsDesignation.objects.all().select_related().filter(designation = desig_id).first() acadadmin = temp.working k = str(user_details).split() final_user = k[2] if (str(acadadmin) != str(final_user)): return HttpResponseRedirect('/academic-procedures/') # year = datetime.datetime.now().year # month = datetime.datetime.now().month year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 0 query_option1 = get_batch_query_detail(month, year) query_option2 = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} if(month >= 7): semflag = 1 else: semflag = 2 # TO DO Bdes date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} change_queries = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all() # Total seats taken as some random value total_cse_seats = 100 total_ece_seats = 100 total_me_seats = 100 total_cse_filled_seats = 98 total_ece_filled_seats = 98 total_me_filled_seats = 98 available_cse_seats = total_cse_seats - total_cse_filled_seats available_ece_seats = total_ece_seats - total_ece_filled_seats available_me_seats = total_me_seats - total_me_filled_seats initial_branch = [] change_branch = [] available_seats = [] applied_by = [] cpi = [] for i in change_queries: applied_by.append(i.user.id) change_branch.append(i.branches.name) students = Student.objects.all().select_related('id','id__user','id__department').filter(id=i.user.id).first() user_branch = ExtraInfo.objects.all().select_related('user','department').filter(id=students.id.id).first() initial_branch.append(user_branch.department.name) cpi.append(students.cpi) if i.branches.name == 'CSE': available_seats.append(available_cse_seats) elif i.branches.name == 'ECE': available_seats.append(available_ece_seats) elif i.branches.name == 'ME': available_seats.append(available_me_seats) else: available_seats.append(0) lists = zip(applied_by, change_branch, initial_branch, available_seats, cpi) tag = False if len(initial_branch) > 0: tag = True context = { 'list': lists, 'total': len(initial_branch), 'tag': tag } return render( request, '../templates/academic_procedures/academicadminforbranch.html', { 'context': context, 'lists': lists, 'date': date, 'query_option1': query_option1, 'query_option2': query_option2, 'result_year' : result_year } ) @login_required(login_url='/accounts/login') def phd_details(request): ''' This function is used to extract the details of the PHD details. @param: request - trivial @variables: current_user - logged in user student - details of the logged in student. thesis - gets the thesis details of the PhD student. faculty - gets the chosen faculty's details. user_details - details of the logged in user. total_thesis - total number of applied thesis. ''' current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() student = Student.objects.all().select_related('id','id__user','id__department').filter(id=user_details.id).first() thesis = Thesis.objects.all().filter(student_id=student).first() #Professor = Designation.objects.all().filter(name='Professor') #faculty = ExtraInfo.objects.all().filter(department=user_details.department, # designation='Professor') f1 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Assistant Professor")) f2 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Professor")) f3 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Associate Professor")) faculty = list(chain(f1,f2,f3)) faculties_list = [] for i in faculty: faculties_list.append(str(i.user.first_name)+" "+str(i.user.last_name)) total_thesis = True if(thesis is None): total_thesis = False context = { 'total_thesis': total_thesis, 'thesis': thesis, } return render( request, '../templates/academic_procedures/phdregistration.html', {'context': context, 'faculty': faculties_list, 'student': student} ) # # # # # # ## # # # # ## # # # # # # ### # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def get_student_register(id): return Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = id) def get_pre_registration_eligibility(current_date): try: pre_registration_date = Calendar.objects.all().filter(description="Pre Registration").first() prd_start_date = pre_registration_date.from_date prd_end_date = pre_registration_date.to_date if current_date>=prd_start_date and current_date<=prd_end_date: return True else : return False except Exception as e: return False def get_final_registration_eligibility(current_date): try: frd = Calendar.objects.all().filter(description="Physical Reporting at the Institute").first() frd_start_date = frd.from_date frd_end_date = frd.to_date if current_date>=frd_start_date and current_date<=frd_end_date: return True else : return False except Exception as e: return False def get_add_or_drop_course_date_eligibility(current_date): try: add_drop_course_date = Calendar.objects.all().filter(description="Last Date for Adding/Dropping of course").first() adc_start_date = add_drop_course_date.from_date adc_end_date = add_drop_course_date.to_date if current_date>=adc_start_date and current_date<=adc_end_date: return True else : return False except Exception as e: return False def get_course_verification_date_eligibilty(current_date): try: course_verification_date = Calendar.objects.all().filter(description="course verification date").first() verif_start_date = course_verification_date.from_date verif_end_date = course_verification_date.to_date if current_date>=verif_start_date and current_date<=verif_end_date: return True else : return False except Exception as e: return False def get_user_branch(user_details): return user_details.department.name def get_acad_year(user_sem, year): if user_sem%2 == 1: acad_year = str(year) + "-" + str(year+1) elif user_sem%2 == 0: acad_year = str(year-1) + "-" + str(year) return acad_year def pre_registration(request): if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) count = request.POST.get('ct') count = int(count) reg_curr=[] for i in range(1, count+1): i = str(i) choice = "choice["+i+"]" slot = "slot["+i+"]" if request.POST.get(choice)!='0': course_id = Courses.objects.get(id = request.POST.get(choice)) courseslot_id = CourseSlot.objects.get(id = request.POST.get(slot)) p = InitialRegistration( course_id = course_id, semester_id = sem_id, student_id = current_user, course_slot_id = courseslot_id ) else: continue reg_curr.append(p) InitialRegistration.objects.bulk_create(reg_curr) try: check = StudentRegistrationChecks( student_id = current_user, pre_registration_flag = True, final_registration_flag = False, semester_id = sem_id ) check.save() messages.info(request, 'Pre-Registration Successful') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def get_student_registrtion_check(obj, sem): return StudentRegistrationChecks.objects.all().filter(student_id = obj, semester_id = sem).first() def final_registration(request): if request.method == 'POST': if request.POST.get('type_reg') == "register" : try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) choice = request.POST.getlist('choice') slot = request.POST.getlist('slot') values_length = 0 values_length = len(choice) mode = str(request.POST.get('mode')) transaction_id = str(request.POST.get('transaction_id')) f_reg = [] for x in range(values_length): if choice[x] != '0': course_id = Courses.objects.get(id = choice[x]) courseslot_id = CourseSlot.objects.get(id = slot[x]) if FinalRegistration .objects.filter(student_id__batch_id__year = current_user.batch_id.year, course_id = course_id).count() < courseslot_id.max_registration_limit: p = FinalRegistration( course_id = course_id, semester_id=sem_id, student_id= current_user, course_slot_id = courseslot_id, verified = False ) f_reg.append(p) else: messages.info(request, 'Final-Registration Falied\n'+course_id.code+'-'+course_id.name+' registration limit reached.') return HttpResponseRedirect('/academic-procedures/main') FinalRegistration.objects.bulk_create(f_reg) obj = FeePayments( student_id = current_user, semester_id = sem_id, mode = mode, transaction_id = transaction_id ) obj.save() try: StudentRegistrationChecks.objects.filter(student_id = current_user, semester_id = sem_id).update(final_registration_flag = True) messages.info(request, 'Final-Registration Successful') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') elif request.POST.get('type_reg') == "change_register" : try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) FinalRegistration.objects.filter(student_id = current_user, semester_id = sem_id).delete() count = request.POST.get('ct') count = int(count) mode = str(request.POST.get('mode')) transaction_id = str(request.POST.get('transaction_id')) f_reg=[] for i in range(1, count+1): i = str(i) choice = "choice["+i+"]" slot = "slot["+i+"]" if request.POST.get(choice) != '0': try: course_id = Courses.objects.get(id = request.POST.get(choice)) courseslot_id = CourseSlot.objects.get(id = request.POST.get(slot)) if FinalRegistration .objects.filter(student_id__batch_id__year = current_user.batch_id.year, course_id = course_id).count() < courseslot_id.max_registration_limit: p = FinalRegistration( course_id = course_id, semester_id=sem_id, student_id= current_user, course_slot_id = courseslot_id, verified = False ) f_reg.append(p) else: messages.info(request, 'Final-Registration Falied\n'+course_id.code+'-'+course_id.name+' registration limit reached.') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') FinalRegistration.objects.bulk_create(f_reg) obj = FeePayments( student_id = current_user, semester_id = sem_id, mode = mode, transaction_id = transaction_id ) obj.save() try: StudentRegistrationChecks.objects.filter(student_id = current_user, semester_id = sem_id).update(final_registration_flag = True) messages.info(request, 'registered course change Successful') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def get_cpi(id): obj = Student.objects.select_related('id','id__user','id__department').get(id = id) return obj.cpi def register(request): if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().select_related('id','id__user','id__department').filter(id=current_user.id).first() values_length = 0 values_length = len(request.POST.getlist('choice')) sem = request.POST.get('semester') for x in range(values_length): reg_curr=[] for key, values in request.POST.lists(): if (key == 'choice'): try: last_id = Register.objects.all().aggregate(Max('r_id')) last_id = last_id['r_id__max']+1 except Exception as e: last_id = 1 curr_id = get_object_or_404(Curriculum, curriculum_id=values[x]) p = Register( r_id=last_id, curr_id=curr_id, year=current_user.batch, student_id=current_user, semester=sem ) reg_curr.append(p) else: continue Register.objects.bulk_create(reg_curr) messages.info(request, 'Pre-Registration Successful') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def add_courses(request): """ This function is used to add courses for currernt semester @param: request - contains metadata about the requested page @variables: current_user - contains current logged in user sem_id - contains current semester id count - no of courses to be added course_id - contains course id for a particular course course_slot_id - contains course slot id for a particular course reg_curr - list of registered courses object choice - contains choice of a particular course slot - contains slot of a particular course # gg and cs """ if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().filter(user=current_user).first() current_user = Student.objects.all().filter(id=current_user.id).first() sem_id = Semester.objects.get(id = request.POST.get('semester')) count = request.POST.get('ct') count = int(count) reg_curr=[] for i in range(1, count+1): choice = "choice["+str(i)+"]" slot = "slot["+str(i)+"]" try: course_id = Courses.objects.get(id = request.POST.get(choice)) courseslot_id = CourseSlot.objects.get(id = request.POST.get(slot)) # Check if maximum course registration limit has not reached and student has not already registered for that course if course_registration.objects.filter(student_id__batch_id__year = current_user.batch_id.year, course_id = course_id).count() < courseslot_id.max_registration_limit and (course_registration.objects.filter(course_id=course_id, student_id=current_user).count() == 0): p = course_registration( course_id = course_id, student_id=current_user, course_slot_id = courseslot_id, semester_id=sem_id ) if p not in reg_curr: reg_curr.append(p) except Exception as e: continue course_registration.objects.bulk_create(reg_curr) return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def drop_course(request): if request.method == 'POST': try: current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().get(id=current_user.id) values_length = 0 values_length = len(request.POST.getlist('choice')) sem_id = request.POST.get('semester') sem = Semester.objects.get(id = sem_id) for x in range(values_length): for key, values in request.POST.lists(): if (key == 'choice'): course_id = get_object_or_404(Courses, id=values[x]) course_registration.objects.filter(course_id = course_id, student_id = current_user).delete() else: continue messages.info(request, 'Course Successfully Dropped') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def add_thesis(request): if request.method == 'POST': try: if(str(request.POST.get('by'))=="st"): thesis_topic = request.POST.get('thesis_topic') research_area = request.POST.get('research_area') supervisor_faculty = get_object_or_404(User, username = request.POST.get('supervisor')) supervisor_faculty = ExtraInfo.objects.select_related('user','department').get(user = supervisor_faculty) supervisor_faculty = Faculty.objects.select_related('id','id__user','id__department').get(id = supervisor_faculty) try: co_supervisor_faculty = get_object_or_404(User, username = request.POST.get('co_supervisor')) co_supervisor_faculty = ExtraInfo.objects.select_related('user','department').get(user = co_supervisor_faculty) co_supervisor_faculty = Faculty.objects.select_related('id','id__user','id__department').get(id = co_supervisor_faculty) except Exception as e: co_supervisor_faculty = None current_user = get_object_or_404(User, username=request.POST.get('user')) current_user = ExtraInfo.objects.all().select_related('user','department').filter(user=current_user).first() current_user = Student.objects.all().select_related('id','id__user','id__department').filter(id=current_user.id).first() try: curr_id = request.POST.get('curr_id') curr_id = Curriculum.objects.select_related().get(curriculum_id = curr_id) except Exception as e: curr_id = None p = ThesisTopicProcess( student_id = current_user, research_area = research_area, thesis_topic = thesis_topic, curr_id = curr_id, supervisor_id = supervisor_faculty, co_supervisor_id = co_supervisor_faculty, submission_by_student = True, pending_supervisor = True, ) p.save() messages.info(request, 'Thesis Successfully Added') return HttpResponseRedirect('/academic-procedures/main/') elif(str(request.POST.get('by'))=="fac"): obj = request.POST.get('obj_id') obj = ThesisTopicProcess.objects.get(id = obj) member1 = get_object_or_404(User, username = request.POST.get('member1')) member1 = ExtraInfo.objects.select_related('user','department').get(user = member1) member1 = Faculty.objects.select_related('id','id__user','id__department').get(id = member1) member2 = get_object_or_404(User, username = request.POST.get('member2')) member2 = ExtraInfo.objects.select_related('user','department').get(user = member2) member2 = Faculty.objects.select_related('id','id__user','id__department').get(id = member2) try: member3 = get_object_or_404(User, username = request.POST.get('member3')) member3 = ExtraInfo.objects.select_related('user','department').get(user = member3) member3 = Faculty.objects.select_related('id','id__user','id__department').get(id = member3) except Exception as e: member3 = None if(str(request.POST.get('approval'))=="yes"): obj.pending_supervisor = False obj.member1 = member1 obj.member2 = member2 obj.member3 = member3 obj.approval_supervisor = True obj.forwarded_to_hod = True obj.pending_hod = True obj.save() elif(request.POST.get('approval')=="no"): obj.pending_supervisor = False obj.member1 = member1 obj.member2 = member2 obj.member3 = member3 obj.approval_supervisor = False obj.forwarded_to_hod = False obj.pending_hod = False obj.save() else: logging.warning("Not approved till now") return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main/') return HttpResponseRedirect('/academic-procedures/main/') def get_final_registration_choices(branch_courses,batch): course_option = [] unavailable_courses = [] for courseslot in branch_courses: max_limit = courseslot.max_registration_limit lis = [] for course in courseslot.courses.all(): if FinalRegistration .objects.filter(student_id__batch_id__year = batch, course_id = course).count() < max_limit: lis.append(course) else: unavailable_courses.append(course) course_option.append((courseslot, lis)) return course_option, unavailable_courses def get_add_course_options(branch_courses, current_register, batch): course_option = [] courses = current_register slots = [] for c in current_register: slots.append(c[0]) for courseslot in branch_courses: max_limit = courseslot.max_registration_limit if courseslot not in slots: lis = [] for course in courseslot.courses.all(): if course_registration.objects.filter(student_id__batch_id__year = batch, course_id = course).count() < max_limit: lis.append(course) course_option.append((courseslot, lis)) return course_option def get_drop_course_options(current_register): courses = [] for item in current_register: if item[0].type != "Professional Core": courses.append(item[1]) return courses def get_user_semester(roll_no, ug_flag, masters_flag, phd_flag): roll = str(roll_no) now = demo_date year, month = now.year, int(now.month) y = str(year) if(ug_flag): if(roll[2].isdigit()): roll = int(roll[:4]) else: roll = int("20"+roll[:2]) user_year = year - roll elif(masters_flag or phd_flag): roll = int(roll[:2]) user_year = int(y[-2:]) - roll sem = 'odd' if month >= 7 and month<=12: sem = 'odd' else: sem = 'even' if sem == 'odd': return user_year * 2 + 1 else: return user_year * 2 def get_branch_courses(roll_no, user_sem, branch): roll = str(roll_no) year = int(roll[:4]) courses = Curriculum.objects.all().select_related().filter(batch=(year)) courses = courses.filter(sem = user_sem) courses = courses.filter(floated = True) course_list = [] for course in courses: if branch.lower() == course.branch.lower() : course_list.append(course) elif course.branch.lower() == 'common': course_list.append(course) return course_list def get_sem_courses(sem_id, batch): courses = [] course_slots = CourseSlot.objects.all().filter(semester_id = sem_id) for slot in course_slots: courses.append(slot) return courses def get_currently_registered_courses(id, user_sem): obj = Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id=id, semester=user_sem) ans = [] for i in obj: course = Curriculum.objects.select_related().get(curriculum_id=i.curr_id.curriculum_id) ans.append(course) return ans def get_currently_registered_course(id, sem_id): obj = course_registration.objects.all().filter(student_id = id, semester_id=sem_id) courses = [] for i in obj: courses.append((i.course_slot_id,i.course_id)) return courses def get_current_credits(obj): credits = 0 for i in obj: credits = credits + i[1].credit return credits def get_faculty_list(): f1 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Assistant Professor")) f2 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Professor")) f3 = HoldsDesignation.objects.select_related().filter(designation=Designation.objects.get(name = "Associate Professor")) faculty = list(chain(f1,f2,f3)) faculty_list = [] for i in faculty: faculty_list.append(i) return faculty_list def get_thesis_flag(student): obj = ThesisTopicProcess.objects.all().select_related().filter(student_id = student) if(obj): return True else: return False @login_required(login_url='/accounts/login') def acad_person(request): current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.select_related('user','department').get(user = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() if str(des.designation) == "student": return HttpResponseRedirect('/academic-procedures/main/') elif str(des.designation) == "Associate Professor" : return HttpResponseRedirect('/academic-procedures/main/') elif str(request.user) == "acadadmin" : # year = datetime.datetime.now().year # month = datetime.datetime.now().month year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 0 query_option1 = get_batch_query_detail(month, year) query_option2 = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} if(month >= 7): semflag = 1 else: semflag = 2 date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} result_year = [] result_year = get_batch_all() # result_year = [1,2] change_queries = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all() course_verification_date = get_course_verification_date_eligibilty(demo_date.date()) initial_branch = [] change_branch = [] available_seats = [] applied_by = [] cpi = [] for i in change_queries: applied_by.append(i.user.id) change_branch.append(i.branches.name) students = Student.objects.all().select_related('id','id__user','id__department').filter(id=i.user.id).first() user_branch = ExtraInfo.objects.all().select_related('user','department').filter(id=students.id.id).first() initial_branch.append(user_branch.department.name) cpi.append(students.cpi) if i.branches.name == 'CSE': available_seats.append(available_cse_seats) elif i.branches.name == 'ECE': available_seats.append(available_ece_seats) elif i.branches.name == 'ME': available_seats.append(available_me_seats) lists = zip(applied_by, change_branch, initial_branch, available_seats, cpi) tag = False if len(initial_branch) > 0: tag = True context = { 'list': lists, 'total': len(initial_branch), 'tag': tag } submitted_course_list = [] obj_list = MarkSubmissionCheck.objects.all().select_related().filter(verified= False,submitted = True) for i in obj_list: if int(i.curr_id.batch)+int(i.curr_id.sem)/2 == int(demo_date.year): submitted_course_list.append(i.curr_id) else: continue # submitted_course_list = SemesterMarks.objects.all().filter(curr_id__in = submitted_course_list) batch_grade_data = get_batch_grade_verification_data(result_year) return HttpResponseRedirect('/aims/') else: return HttpResponse('user not found') def acad_proced_global_context(): year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 0 query_option1 = get_batch_query_detail(month, year) query_option2 = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} if(month >= 7): semflag = 1 else: semflag = 2 date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} result_year = [] result_year = get_batch_all() # result_year = [1,2] change_queries = BranchChange.objects.select_related('branches','user','user__id','user__id__user','user__id__department').all() course_verification_date = get_course_verification_date_eligibilty(demo_date.date()) initial_branch = [] change_branch = [] available_seats = [] applied_by = [] cpi = [] for i in change_queries: applied_by.append(i.user.id) change_branch.append(i.branches.name) students = Student.objects.all().select_related('id','id__user','id__department').filter(id=i.user.id).first() user_branch = ExtraInfo.objects.all().select_related('user','department').filter(id=students.id.id).first() initial_branch.append(user_branch.department.name) cpi.append(students.cpi) if i.branches.name == 'CSE': available_seats.append(available_cse_seats) elif i.branches.name == 'ECE': available_seats.append(available_ece_seats) elif i.branches.name == 'ME': available_seats.append(available_me_seats) lists = zip(applied_by, change_branch, initial_branch, available_seats, cpi) tag = False if len(initial_branch) > 0: tag = True context = { 'list': lists, 'total': len(initial_branch), 'tag': tag } submitted_course_list = [] obj_list = MarkSubmissionCheck.objects.all().select_related().filter(verified= False,submitted = True) for i in obj_list: if int(i.curr_id.batch)+int(i.curr_id.sem)/2 == int(demo_date.year): submitted_course_list.append(i.curr_id) else: submitted_course_list.append(i.curr_id) #continue # submitted_course_list = SemesterMarks.objects.all().filter(curr_id__in = submitted_course_list) batch_grade_data = get_batch_grade_verification_data(result_year) batch_branch_data = get_batch_branch_data(result_year) return { 'context': context, 'lists': lists, 'date': date, 'query_option1': query_option1, 'query_option2': query_option2, 'course_verification_date' : course_verification_date, 'submitted_course_list' : submitted_course_list, 'result_year' : result_year, 'batch_grade_data' : batch_grade_data, 'batch_branch_data': batch_branch_data } def get_batch_all(): result_year = [] if demo_date.month >=7: result_year = [demo_date.year, demo_date.year-1, demo_date.year-2, demo_date.year-3] # result_year = [1,2] else : result_year = [demo_date.year-1,demo_date.year-2, demo_date.year-3, demo_date.year-4] return result_year def announce_results(request): i = int(request.POST.get('id')) year = get_batch_all() acad = get_object_or_404(User, username="acadadmin") student_list = Student.objects.all().select_related('id','id__user','id__department').filter(batch = year[i-1]) # for obj in student_list: # academics_module_notif(acad, obj.id.user, 'result_announced') courses_list = Curriculum.objects.all().select_related().filter(batch = year[i-1]) rsl = [] for obj in courses_list: try : o = MarkSubmissionCheck.objects.select_related().get(curr_id = obj) o.announced = True rsl.append(o) except Exception as e: continue MarkSubmissionCheck.objects.bulk_update(rsl,['announced']) return JsonResponse({'status': 'success', 'message': 'Successfully Accepted'}) def get_batch_grade_verification_data(list): semester_marks = [] batch_1_list_CSE = [] batch_2_list_CSE = [] batch_3_list_CSE = [] batch_4_list_CSE = [] batch_1_list_ECE = [] batch_2_list_ECE = [] batch_3_list_ECE = [] batch_4_list_ECE = [] batch_1_list_ME = [] batch_2_list_ME = [] batch_3_list_ME = [] batch_4_list_ME = [] c = Curriculum.objects.all().select_related().filter(batch = list[0]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_1_list_CSE.append(i) for i in c_me: batch_1_list_ME.append(i) for i in c_ece: batch_1_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue c = Curriculum.objects.all().select_related().filter(batch = list[1]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_2_list_CSE.append(i) for i in c_me: batch_2_list_ME.append(i) for i in c_ece: batch_2_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue c = Curriculum.objects.all().select_related().filter(batch = list[2]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_3_list_CSE.append(i) for i in c_me: batch_3_list_ME.append(i) for i in c_ece: batch_3_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue c = Curriculum.objects.all().select_related().filter(batch = list[3]).filter(floated = True) c_cse = c.filter(branch = 'CSE') c_me = c.filter(branch = 'ME') c_ece = c.filter(branch = 'ECE') for i in c_cse: batch_4_list_CSE.append(i) for i in c_me: batch_4_list_ME.append(i) for i in c_ece: batch_4_list_ECE.append(i) for i in c: try: obj_sem = MarkSubmissionCheck.objects.select_related().get(curr_id = i) if obj_sem: semester_marks.append(obj_sem) else: continue except Exception as e: continue batch_1_list = { 'batch_list_year' : list[0], 'batch_list_ME' : batch_1_list_ME, 'batch_list_ECE' : batch_1_list_ECE, 'batch_list_CSE' : batch_1_list_CSE } batch_2_list = { 'batch_list_year' : list[1], 'batch_list_ME' : batch_2_list_ME, 'batch_list_ECE' : batch_2_list_ECE, 'batch_list_CSE' : batch_2_list_CSE } batch_3_list = { 'batch_list_year' : list[2], 'batch_list_ME' : batch_3_list_ME, 'batch_list_ECE' : batch_3_list_ECE, 'batch_list_CSE' : batch_3_list_CSE } batch_4_list = { 'batch_list_year' : list[3], 'batch_list_ME' : batch_4_list_ME, 'batch_list_ECE' : batch_4_list_ECE, 'batch_list_CSE' : batch_4_list_CSE } batch_grade_data_set = {'batch_grade_data' : [batch_1_list, batch_2_list, batch_3_list, batch_4_list], 'batch_sub_check' : semester_marks} return batch_grade_data_set def get_batch_branch_data(result_year): batches = [] for batch in Batch.objects.all(): if batch.year in result_year: batches.append(batch) return batches @login_required(login_url='/accounts/login') def student_list(request): if(request.POST): batch = request.POST["batch"] year = demo_date.year month = demo_date.month yearr = str(year) + "-" + str(year+1) semflag = 0 queryflag = 1 if(month >= 7): semflag = 1 else: semflag = 2 batch_year_option = get_batch_query_detail(month, year) branch_option = {"CSE": "CSE", "ECE": "ECE", "ME": "ME"} date = {'year': yearr, 'month': month, 'semflag': semflag, 'queryflag': queryflag} batch_id = Batch.objects.get(id = batch) student_obj = Student.objects.all().filter(batch_id = batch_id) student = [] for obj in student_obj: curr_id = batch_id.curriculum sem_id = Semester.objects.get(curriculum = curr_id, semester_no = obj.curr_semester_no + 1) try: reg = StudentRegistrationChecks.objects.all().filter(student_id = obj, semester_id = sem_id).first() pay = FeePayments.objects.all().filter(student_id = obj, semester_id = sem_id).first() final = FinalRegistration.objects.all().filter(student_id = obj, semester_id = sem_id,verified = False) except Exception as e: reg = None pay = None final = None if reg: if reg.final_registration_flag == True and final: student.append((obj,pay,final)) else: continue else: continue html = render_to_string('academic_procedures/student_table.html', {'student': student}, request) maindict = {'date': date, 'query_option1': batch_year_option, 'query_option2': branch_option, 'html': html, 'queryflag': queryflag} obj = json.dumps(maindict) return HttpResponse(obj, content_type='application/json') def process_verification_request(request): if request.is_ajax(): return verify_registration(request) return JsonResponse({'status': 'Failed'}, status=400) @transaction.atomic def verify_registration(request): if request.POST.get('status_req') == "accept" : student_id = request.POST.get('student_id') student = Student.objects.get(id = student_id) batch = student.batch_id curr_id = batch.curriculum sem_id = Semester.objects.get(curriculum = curr_id, semester_no = student.curr_semester_no+1) final_register_list = FinalRegistration.objects.all().filter(student_id = student, verified = False, semester_id = sem_id) sem_no = student.curr_semester_no + 1 with transaction.atomic(): ver_reg = [] for obj in final_register_list: p = course_registration( course_id=obj.course_id, student_id=student, semester_id=obj.semester_id, course_slot_id = obj.course_slot_id ) ver_reg.append(p) o = FinalRegistration.objects.filter(id= obj.id).update(verified = True) course_registration.objects.bulk_create(ver_reg) academics_module_notif(request.user, student.id.user, 'registration_approved') Student.objects.filter(id = student_id).update(curr_semester_no = sem_no) return JsonResponse({'status': 'success', 'message': 'Successfully Accepted'}) elif request.POST.get('status_req') == "reject" : reject_reason = request.POST.get('reason') student_id = request.POST.get('student_id') student_id = Student.objects.get(id = student_id) batch = student_id.batch_id curr_id = batch.curriculum sem_id = Semester.objects.get(curriculum = curr_id, semester_no = student_id.curr_semester_no + 1) with transaction.atomic(): academicadmin = get_object_or_404(User, username = "acadadmin") FinalRegistration.objects.filter(student_id = student_id, verified = False, semester_id = sem_id).delete() StudentRegistrationChecks.objects.filter(student_id = student_id, semester_id = sem_id).update(final_registration_flag = False) FeePayments.objects.filter(student_id = student_id, semester_id = sem_id).delete() academics_module_notif(academicadmin, student_id.id.user, 'Registration Declined - '+reject_reason) return JsonResponse({'status': 'success', 'message': 'Successfully Rejected'}) def get_registration_courses(courses): x = [[]] for temp in courses: flag = False i = str(temp.course_code) i = i[:5] for j in x: if j: name = j[0] name = str(name.course_code) name = name[:5] if i.upper() == name.upper(): j.append(temp) flag = True else : continue if not flag: x.append([temp]) return x def teaching_credit_register(request) : if request.method == 'POST': try: roll = request.POST.get('roll') course1 = request.POST.get('course1') roll = str(roll) student_id = get_object_or_404(User, username=request.POST.get('roll')) student_id = ExtraInfo.objects.all().select_related('user','department').filter(user=student_id).first() student_id = Student.objects.all().select_related('id','id__user','id__department').filter(id=student_id.id).first() course1 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course1')) course2 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course2')) course3 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course3')) course4 = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('course4')) p = TeachingCreditRegistration( student_id = student_id, curr_1 = course1, curr_2 = course2, curr_3 = course3, curr_4 = course4 ) p.save() messages.info(request, ' Successful') return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') else: return HttpResponseRedirect('/academic-procedures/main') def course_marks_data(request): try: curriculum_id = request.POST.get('curriculum_id') course = Curriculum.objects.select_related().get(curriculum_id = curriculum_id) student_list = Register.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = course) mrks = [] for obj in student_list: o = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = obj.student_id).filter(curr_id = course).first() if o : continue else : p = SemesterMarks( student_id = obj.student_id, q1 = 0, mid_term = 0, q2 = 0, end_term = 0, other = 0, grade = None, curr_id = course ) mrks.append(p) SemesterMarks.objects.bulk_create(mrks) enrolled_student_list = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = course) grade_submission_date_eligibility = False try : d = Calendar.objects.get(description = "grade submission date") if demo_date.date() >= d.from_date and demo_date.date() <= d.to_date : grade_submission_date_eligibility = True except Exception as e: grade_submission_date_eligibility = False data = render_to_string('academic_procedures/course_marks_data.html', {'enrolled_student_list' : enrolled_student_list, 'course' : course, 'grade_submission_date_eligibility' : grade_submission_date_eligibility}, request) obj = json.dumps({'data' : data}) return HttpResponse(obj, content_type = 'application/json') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') def submit_marks(request): try: user = request.POST.getlist('user') q1 = request.POST.getlist('q1_marks') mid = request.POST.getlist('mid_marks') q2 = request.POST.getlist('q2_marks') end = request.POST.getlist('end_marks') other = request.POST.getlist('other_marks') try: grade = request.POST.getlist('grade') except Exception as e: grade = None messages.info(request, ' Successful') values_length = len(request.POST.getlist('user')) curr_id = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('curriculum_id')) for x in range(values_length): student_id = get_object_or_404(User, username = user[x]) student_id = ExtraInfo.objects.select_related('user','department').get(id = student_id) student_id = Student.objects.select_related('id','id__user','id__department').get(id = student_id) if grade: g = grade[x] else : g = None st_existing = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = student_id).filter(curr_id = curr_id).first() if st_existing : st_existing.q1 = q1[x] st_existing.mid_term = mid[x] st_existing.q2 = q2[x] st_existing.end_term = end[x] st_existing.other = other[x] st_existing.grade = g st_existing.save() else : p = SemesterMarks( student_id = student_id, q1 = q1[x], mid_term = mid[x], q2 = q2[x], end_term = end[x], other = other[x], grade = g, curr_id = curr_id ) p.save() if request.POST.get('final_submit') == "True": try: o_sub = MarkSubmissionCheck.objects.select_related().get(curr_id = curr_id) except Exception as e: o_sub = None if o_sub: o_sub.submitted = True o_sub.save() else: o_sub_create = MarkSubmissionCheck( curr_id = curr_id, verified = False, submitted =True, announced = False,) o_sub_create.save() if request.POST.get('final_submit') == "False": try: sub_obj = MarkSubmissionCheck.objects.select_related().get(curr_id = curr_id) except Exception as e: sub_obj = None if sub_obj: continue else : sub_obj_create = MarkSubmissionCheck( curr_id = curr_id, verified = False, submitted =False, announced = False) sub_obj_create.save() return HttpResponseRedirect('/academic-procedures/main') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') def verify_course_marks_data(request): try: curriculum_id = request.POST.get('curriculum_id') course = Curriculum.objects.select_related().get(curriculum_id = curriculum_id) enrolled_student_list = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = course) grade_verification_date_eligibility = False try : d = Calendar.objects.get(description = "grade verification date") if demo_date.date() >= d.from_date and demo_date.date() <= d.to_date : grade_verification_date_eligibility = True except Exception as e: grade_verification_date_eligibility = False data = render_to_string('academic_procedures/verify_course_marks_data.html', {'enrolled_student_list' : enrolled_student_list, 'course' : course, 'grade_verification_date_eligibility' : grade_verification_date_eligibility}, request) obj = json.dumps({'data' : data}) return HttpResponse(obj, content_type = 'application/json') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') ######################################## ##########GLOBAL VARIABLE############### ######################################## verified_marks_students = [[]] verified_marks_students_curr = None ######################################## ##########GLOBAL VARIABLE############### ######################################## def verify_marks(request): try: global verified_marks_students global verified_marks_students_curr verified_marks_students = [[]] verified_marks_students_curr = None user = request.POST.getlist('user') curr_id = Curriculum.objects.select_related().get(curriculum_id = request.POST.get('curriculum_id')) grade = request.POST.getlist('grade') values_length = len(request.POST.getlist('user')) ver_gr = [] for x in range(values_length): student_id = get_object_or_404(User, username = user[x]) student_id = ExtraInfo.objects.select_related('user','department').get(id = student_id) student_id = Student.objects.select_related('id','id__user','id__department').get(id = student_id) if grade: g = grade[x] else : g = None st_existing = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = student_id).filter(curr_id = curr_id).first() st_existing.grade = g ver_gr.append(st_existing) verified_marks_students.append([student_id,g]) SemesterMarks.objects.bulk_update(ver_gr,['grade']) verified_marks_students_curr = curr_id obj = MarkSubmissionCheck.objects.select_related().get(curr_id = curr_id) obj.verified = True obj.save() return HttpResponseRedirect('/aims/') except Exception as e: return HttpResponseRedirect('/aims/') def render_to_pdf(template_src, context_dict): template = get_template(template_src) html = template.render(context_dict) result = BytesIO() pdf = pisa.pisaDocument(BytesIO(html.encode("ISO-8859-1")), result) if not pdf.err: return HttpResponse(result.getvalue(), content_type='application/pdf') return None def generate_grade_pdf(request): instructor = Curriculum_Instructor.objects.all().select_related('curriculum_id','instructor_id','curriculum_id__course_id','instructor_id__department','instructor_id__user').filter(curriculum_id = verified_marks_students_curr).first() context = {'verified_marks_students' : verified_marks_students, 'verified_marks_students_curr' : verified_marks_students_curr, 'instructor' : instructor} pdf = render_to_pdf('academic_procedures/generate_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s.pdf"' %(verified_marks_students_curr.course_code) return response return HttpResponse("PDF could not be generated") def generate_result_pdf(request): batch = request.POST.get('batch') branch = request.POST.get('branch') programme = request.POST.get('programme') student_list = [] branch_list = [] result_list = [[]] curriculum_list = [] if programme == "": return HttpResponse("please insert programme") student_obj = Student.objects.all().select_related('id','id__user','id__department').filter(programme = programme) if batch == "": return HttpResponse("please insert batch") else: student_obj = student_obj.filter(batch = int(batch)) if branch == "" : return HttpResponse("please insert branch") else : dep_objects = DepartmentInfo.objects.get(name = str(branch)) branch_objects = ExtraInfo.objects.all().select_related('user','department').filter(department = dep_objects) for i in branch_objects: branch_list.append(i) for i in student_obj: if i.id in branch_list: student_list.append(i) else: continue curriculum_obj = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = str(branch)).filter(programme = programme) curriculum_obj_common = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = 'Common').filter(programme = programme) for i in curriculum_obj: curriculum_list.append(i) for i in curriculum_obj_common: curriculum_list.append(i) for i in student_list : x = [] x.append(i.id.user.username) x.append(i.id.user.first_name+" "+i.id.user.last_name) for j in curriculum_list : grade_obj = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = j).filter(student_id = i).first() if grade_obj : x.append(grade_obj.grade) else : x.append("-") spi = get_spi(curriculum_list ,x) x.append(spi) result_list.append(x) context = {'batch' : batch, 'branch' : branch, 'programme' : programme, 'course_list' : curriculum_list, 'result_list' : result_list} pdf = render_to_pdf('academic_procedures/generate_result_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s.pdf"' %(programme + batch + branch) return response return HttpResponse("PDF could not be generated") def generate_grade_sheet_pdf(request): batch = request.POST.get('batch') branch = request.POST.get('branch') programme = request.POST.get('programme') student_list = [] branch_list = [] result_list = [[]] curriculum_list = [] if programme == "": return HttpResponse("please insert programme") student_obj = Student.objects.all().select_related('id','id__user','id__department').filter(programme = programme) if batch == "": return HttpResponse("please insert batch") else: student_obj = student_obj.filter(batch = int(batch)) if branch == "" : return HttpResponse("please insert branch") else : dep_objects = DepartmentInfo.objects.get(name = str(branch)) branch_objects = ExtraInfo.objects.all().select_related('user','department').filter(department = dep_objects) for i in branch_objects: branch_list.append(i) for i in student_obj: if i.id in branch_list: student_list.append(i) else: continue curriculum_obj = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = str(branch)).filter(programme = programme) curriculum_obj_common = Curriculum.objects.all().select_related().filter(batch = int(batch)).filter(branch = 'Common').filter(programme = programme) for i in curriculum_obj: curriculum_list.append(i) for i in curriculum_obj_common: curriculum_list.append(i) for i in student_list : x = [] x.append(i.id.user.username) x.append(i.id.user.first_name+" "+i.id.user.last_name) for j in curriculum_list : grade_obj = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(curr_id = j).filter(student_id = i).first() if grade_obj : x.append(grade_obj.grade) else : x.append("-") spi = get_spi(curriculum_list ,x) x.append(spi) result_list.append(x) context = {'batch' : batch, 'branch' : branch, 'programme' : programme, 'course_list' : curriculum_list, 'result_list' : result_list} pdf = render_to_pdf('academic_procedures/generate_sheet.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename="%s.pdf"' %(programme + batch + branch) return response return HttpResponse("PDF could not be generated") def get_spi(course_list,grade_list): spi = 0.0 credits = 0 total = 0 earned = 0 y = [] for i in range(2,len(grade_list)) : x = { 'grade' : grade_list[i], 'credits' : None } y.append(x) for i in range(0,len(course_list)): y[i]['credits'] = course_list[i].credits for obj in y: if obj['grade'] == 'O': total = total + 10*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'A+': total = total + 10*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'A': total = total + 9*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'B+': total = total + 8*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'B': total = total + 7*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'C+': total = total + 6*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'C': total = total + 5*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'D+': total = total + 4*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'D': total = total + 3*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'F': total = total + 2*obj['credits'] credits = credits+ obj['credits'] earned = earned + obj['credits'] elif obj['grade'] == 'S': total = total credits = credits earned = earned + obj['credits'] elif obj['grade'] == 'X': total = total credits = credits earned = earned elif obj['grade'] == '-': total = total credits = credits earned = earned if credits == 0: return 0.0 spi = total/credits return spi def manual_grade_submission(request): if request.method == 'POST' and request.FILES: manual_grade_xsl=request.FILES['manual_grade_xsl'] excel = xlrd.open_workbook(file_contents=manual_grade_xsl.read()) sheet=excel.sheet_by_index(0) course_code = str(sheet.cell(0,1).value) course_name = str(sheet.cell(1,1).value) instructor = str(sheet.cell(2,1).value) batch = int(sheet.cell(3,1).value) sem = int(sheet.cell(4,1).value) branch = str(sheet.cell(5,1).value) programme = str(sheet.cell(6,1).value) credits = int(sheet.cell(7,1).value) curriculum_obj = Curriculum.objects.all().select_related().filter(course_code = course_code).filter(batch = batch).filter(programme = programme).first() if not curriculum_obj: course_obj = Course.objects.all().filter(course_name = course_name).first() if not course_obj : course_obj_create = Course( course_name = course_name, course_details = instructor) course_obj_create.save() course_obj = Course.objects.all().filter(course_name = course_name).first() curriculum_obj_create = Curriculum( course_code = course_code, course_id = course_obj, credits = credits, course_type = 'Professional Core', programme = programme, branch = branch, batch = batch, sem = sem, floated = True) curriculum_obj_create.save() curriculum_obj = Curriculum.objects.all().select_related().filter(course_code = course_code).filter(batch = batch).filter(programme = programme).first() marks_check_obj = MarkSubmissionCheck.objects.select_related().all().filter(curr_id = curriculum_obj).first() if marks_check_obj : marks_check_obj.submitted = True marks_check_obj.verified = True marks_check_obj.save() elif not marks_check_obj : marks_check_obj_create = MarkSubmissionCheck( curr_id = curriculum_obj, submitted = True, verified = False, announced = False) marks_check_obj_create.save() for i in range(11,sheet.nrows): roll = str(int(sheet.cell(i,0).value)) q1 = float(sheet.cell(i,2).value) mid = float(sheet.cell(i,3).value) q2 = float(sheet.cell(i,4).value) end = float(sheet.cell(i,5).value) others = float(sheet.cell(i,6).value) grade = str(sheet.cell(i,8).value).strip() user = get_object_or_404(User, username = roll) extrainfo = ExtraInfo.objects.select_related('user','department').get(user = user) dep_objects = DepartmentInfo.objects.get(name = str(branch)) extrainfo.department = dep_objects extrainfo.save() extrainfo = ExtraInfo.objects.select_related('user','department').get(user = user) student_obj = Student.objects.select_related('id','id__user','id__department').get(id = extrainfo) student_obj.programme = programme student_obj.batch = batch student_obj.category = 'GEN' student_obj.save() student_obj = Student.objects.select_related('id','id__user','id__department').get(id = extrainfo) register_obj = Register.objects.all().filter(curr_id = curriculum_obj, student_id = student_obj).first() if not register_obj: register_obj_create = Register( curr_id = curriculum_obj, year = batch, student_id = student_obj, semester = sem) register_obj_create.save() register_obj = Register.objects.all().filter(curr_id = curriculum_obj, student_id = student_obj).first() st_existing = SemesterMarks.objects.all().select_related('curr_id','student_id','curr_id__course_id','student_id__id','student_id__id__user','student_id__id__department').filter(student_id = student_obj).filter(curr_id = curriculum_obj).first() if st_existing : st_existing.grade = str(sheet.cell(i,8).value) st_existing.save() else : p = SemesterMarks( student_id = student_obj, q1 = q1, mid_term = mid, q2 = q2, end_term = end, other = others, grade = grade, curr_id = curriculum_obj ) p.save() return HttpResponseRedirect('/academic-procedures/') # # # # # # # # # # # # # # # # # # # # # # ## def test(request): br_up = [] st_list = Student.objects.select_related('id','id__user','id__department').all() for i in st_list : roll = i.id.user.username roll = str(roll) if i.programme.upper() == "B.DES" or i.programme.upper() == "B.TECH": batch = int(roll[:4]) i.batch = batch elif i.programme.upper() == "M.DES" or i.programme.upper() == "M.TECH" or i.programme.upper() == "PH.D": batch = int('20'+roll[:2]) i.batch = batch br_up.append(i) Student.objects.bulk_update(br_up,['batch']) return render(request,'../templates/academic_procedures/test.html',{}) def test_ret(request): try: data = render_to_string('academic_procedures/test_render.html', {}, request) obj = json.dumps({'d' : data}) return HttpResponse(obj, content_type = 'application/json') except Exception as e: return HttpResponseRedirect('/academic-procedures/main') def Bonafide_form(request): template = get_template('academic_procedures/bonafide_pdf.html') current_user = get_object_or_404(User, username=request.user.username) user_details = ExtraInfo.objects.select_related('user','department').get(id = request.user) des = HoldsDesignation.objects.all().select_related().filter(user = request.user).first() name = ExtraInfo.objects.all().select_related('user','department').filter(id=request.user.username)[0].user if str(des.designation) == "student": obj = Student.objects.select_related('id','id__user','id__department').get(id = user_details.id) context = { 'student_id' : request.user.username, 'degree' : obj.programme.upper(), 'name' : name.first_name +" "+ name.last_name, 'branch' : get_user_branch(user_details), 'purpose' : request.POST['purpose'] } pdf = render_to_pdf('academic_procedures/bonafide_pdf.html',context) if pdf: response = HttpResponse(pdf, content_type='application/pdf') response['Content-Disposition'] = 'attachment; filename=Bonafide.pdf' return response return HttpResponse("PDF could not be generated") # def bonafide(request): # # if this is a POST request we need to process the form data # if request.method == 'POST': # # create a form instance and populate it with data from the request: # form = BonafideForm(request.POST) # # check whether it's valid: # if form.is_valid(): # # process the data in form.cleaned_data as required # # ... # # redirect to a new URL: # print("vaild") # # if a GET (or any other method) we'll create a blank form # else: # form = BonafideForm() # return render(request, 'bonafide.html', {'form': form}) @login_required def ACF(request): stu = Student.objects.get(id=request.user.username) month = request.POST.get('month') year= request.POST.get('year') account = request.POST.get('bank_account') thesis = request.POST.get('thesis_supervisor') ta = request.POST.get('ta_supervisor') appli = request.POST.get('applicability') FACUL1 = None FACUL2 = None message = "" faculties = ExtraInfo.objects.all().filter(user_type = "faculty") res = "error" for j in range(2): for i in faculties: checkName = i.user.first_name + " " + i.user.last_name if j==0 and ta == checkName: res = "success" FACUL1 = i elif j==1 and thesis == checkName: res = "success" FACUL2 = i if (res == "error"): message = message + "The entered faculty incharge does not exist" content = { 'status' : res, 'message' : message } content = json.dumps(content) return HttpResponse(content) faculty_inc1 = get_object_or_404(Faculty, id = FACUL1) faculty_inc2 = get_object_or_404(Faculty, id = FACUL2) acf = AssistantshipClaim(student=stu,month=month, year=year, bank_account=account, thesis_supervisor=faculty_inc2, ta_supervisor=faculty_inc1, applicability= appli) acf.save() message= message + "Form submitted succesfully" content = { 'status' : res, 'message' : message } sender1 = ExtraInfo.objects.get(id = str(FACUL1)[:4]).user sender2 = ExtraInfo.objects.get(id = str(FACUL2)[:4]).user content = json.dumps(content) AssistantshipClaim_faculty_notify(request.user,sender1) AssistantshipClaim_faculty_notify(request.user,sender2) return HttpResponse(content) def update_assistantship(request): if request.method == 'POST': r = request.POST.get('remark') i = request.POST.get('obj_id') user = ExtraInfo.objects.get(user = request.user) recipient = User.objects.get(username = "acadadmin") assistantship_object = AssistantshipClaim.objects.get(id = i) sender = User.objects.get(username = assistantship_object.student) if user == assistantship_object.ta_supervisor.id and r == "Satisfactory": assistantship_object.ta_supervisor_remark=True elif user == assistantship_object.ta_supervisor.id and r == "Unsatisfactory": assistantship_object.ta_supervisor_remark=False if user == assistantship_object.thesis_supervisor.id and r == "Satisfactory": assistantship_object.thesis_supervisor_remark=True elif r == "Unsatisfactory" : assistantship_object.thesis_supervisor_remark=False assistantship_object.save() if assistantship_object.thesis_supervisor_remark == True and assistantship_object.ta_supervisor_remark == True : AssistantshipClaim_acad_notify(sender,recipient) return HttpResponseRedirect('/academic-procedures/main/') def update_hod_assistantship(request): if request.method == 'POST': d = request.POST.get('dict') dic = json.loads(d) assisobj = AssistantshipClaim.objects.filter(ta_supervisor_remark = True).filter(thesis_supervisor_remark = True).filter(hod_approval = False) for obj in assisobj: if str(obj.student) in dic.keys(): obj.hod_approval =True obj.save() return HttpResponse('success') def update_acad_assis(request): if request.method == 'POST': d = request.POST.get('dict') dic = json.loads(d) aobj= AssistantshipClaim.objects.all() for obj in aobj: if obj.acad_approval == False and str(obj.student) in dic.keys(): obj.stipend = dic[str(obj.student)] obj.acad_approval=True obj.save() return HttpResponse('success') def update_account_assistantship(request): if request.method == 'POST': di = request.POST.get('dict') dic = json.loads(di) acobj= AssistantshipClaim.objects.all() for obj in acobj: if obj.account_approval == False and str(obj.student) in dic.keys(): obj.account_approval = True obj.save() recipient = User.objects.get(username = obj.student) AssistantshipClaim_notify(request.user,recipient,obj.month,obj.year) return HttpResponse('success') def assis_stat(request): if request.method == 'POST': flag= request.POST.get('flag') assis_status = Assistantship_status.objects.all() for obj in assis_status: if flag == "studenttrue" : obj.student_status= True elif flag == "studentfalse": obj.student_status = False elif flag == "hodtrue" : obj.hod_status= True elif flag == "hodfalse": obj.hod_status = False elif flag == "accounttrue" : obj.account_status= True elif flag == "accountfalse": obj.account_status = False obj.save() return HttpResponse('success') @login_required def MTSGF(request): if request.method == 'POST': stu= Student.objects.get(id=request.user.username) theme = request.POST.get('theme_of_work') date = request.POST.get('date') place = request.POST.get('place') time = request.POST.get('time') work = request.POST.get('workdone') contribution = request.POST.get('specificcontri') future = request.POST.get('futureplan') report = request.POST.get('briefreport') publication_submitted = request.POST.get('publicationsubmitted') publication_accepted = request.POST.get('publicationaccepted') paper_presented = request.POST.get('paperpresented') paper_under_review = request.POST.get('paperunderreview') form=MTechGraduateSeminarReport(student=stu, theme_of_work=theme, date=date, place=place, time=time, work_done_till_previous_sem=work, specific_contri_in_cur_sem=contribution, future_plan=future, brief_report=report, publication_submitted=publication_submitted, publication_accepted=publication_accepted, paper_presented=paper_presented, papers_under_review=paper_under_review) form.save() message= "Form submitted succesfully" res="success" content = { 'status' : res, 'message' : message } content = json.dumps(content) return HttpResponse(content) @login_required def PHDPE(request): if request.method == 'POST': stu= Student.objects.get(id=request.user.username) theme = request.POST.get('theme_of_work') dateandtime = request.POST.get('date') place = request.POST.get('place') work = request.POST.get('workdone') contribution = request.POST.get('specificcontri') future = request.POST.get('futureplan') uploadfile = request.POST.get('Attachments') paper_submitted = request.POST.get('papersubmitted') paper_published = request.POST.get('paperaccepted') paper_presented = request.POST.get('paperpresented') form=PhDProgressExamination(student=stu, theme=theme, seminar_date_time=dateandtime, place=place, work_done=work, specific_contri_curr_semester=contribution, future_plan=future,details=uploadfile, papers_published=paper_published, presented_papers=paper_presented,papers_submitted=paper_submitted) form.save() message= "Form submitted succesfully" res="success" content = { 'status' : res, 'message' : message } content = json.dumps(content) return HttpResponse(content) def update_mtechsg(request): if request.method == 'POST': i = request.POST.get('obj_id') ql=request.POST.get('quality') qn=request.POST.get('quantity') gr=request.POST.get('grade') pr=request.POST.get('panel_report') sg=request.POST.get('suggestion') mtech_object=MTechGraduateSeminarReport.objects.get(id = i) mtech_object.quality_of_work=ql mtech_object.quantity_of_work=qn mtech_object.Overall_grade=gr mtech_object.panel_report=pr mtech_object.suggestion=sg mtech_object.save() return HttpResponseRedirect('/academic-procedures/main/') def update_phdform(request): if request.method == 'POST': i = request.POST.get('obj_id') ql = request.POST.get('quality') qn = request.POST.get('quantity') gr = request.POST.get('grade') continuationa = request.POST.get('continuationa') enhancementa = request.POST.get('enhancementa') completionperiod = request.POST.get('completionperiod') pr = request.POST.get('pr') annualp = request.POST.get('annualp') sugg = request.POST.get('sugg') phd_object = PhDProgressExamination.objects.get(id = i) phd_object.quality_of_work=ql phd_object.quantity_of_work=qn phd_object.Overall_grade=gr phd_object.continuation_enhancement_assistantship=continuationa phd_object.enhancement_assistantship=enhancementa phd_object.completion_period=completionperiod phd_object.panel_report=pr phd_object.annual_progress_seminar=annualp phd_object.commments=sugg phd_object.save() content="success" content = json.dumps(content) return HttpResponse(content) def update_dues(request): if request.method == "POST": i = request.POST.get('obj_id') md =int(request.POST.get('md')) hd = int(request.POST.get('hd')) ld = int(request.POST.get('ld')) pd = int(request.POST.get('pd')) ad = int(request.POST.get('ad')) dues_object = Dues.objects.get(id = i) message = "" if md < 0 and -1*md > dues_object.mess_due : message = message + "Subtracting more value than existing mess due<br>" if hd < 0 and -1*hd > dues_object.hostel_due : message = message + "Subtracting more value than existing hostel due<br>" if ld < 0 and -1*ld > dues_object.library_due : message = message + "Subtracting more value than existing library due<br>" if pd < 0 and -1*pd > dues_object.placement_cell_due : message = message + "Subtracting more value than existing placement cell due<br>" if ad < 0 and -1*ad > dues_object.academic_due : message = message + "Subtracting more value than existing academic due<br>" if (not message): message = "success" if message != "success": content = json.dumps(message) return HttpResponse(content) md += dues_object.mess_due hd += dues_object.hostel_due ld += dues_object.library_due pd += dues_object.placement_cell_due ad += dues_object.academic_due dues_object.mess_due = md dues_object.hostel_due = hd dues_object.library_due = ld dues_object.placement_cell_due = pd dues_object.academic_due = ad dues_object.save() content = json.dumps(message) return HttpResponse(content) def mdue(request): if request.method == 'POST': rollno = request.POST.get('rollno') year = request.POST.get('year') month = request.POST.get('month') amount = int(request.POST.get('amount')) desc = request.POST.get('desc') amount1 = amount if desc == "due": amount1 = -1*amount Dues_mess = amount student = Student.objects.get(id = rollno) messdue_list=MessDue.objects.all().filter(student = student) duesobj = Dues.objects.get(student_id = student) if(messdue_list): new_remaining = messdue_list[len(messdue_list)-1].remaining_amount + amount1 Dues_mess = new_remaining messdueobj = MessDue(student = student, month = month, year = year,description = desc, amount = amount, remaining_amount = new_remaining) else: messdueobj=MessDue(student = student, month = month, year = year,description = desc, amount = amount, remaining_amount = amount1) messdueobj.save() if Dues_mess >= 0 : duesobj.mess_due = 0 else : duesobj.mess_due = -1*Dues_mess duesobj.save() content = json.dumps("success") return HttpResponse(content)
py
1a31d66708a083e387501e9401a47fe362871938
from typing import Literal, List, Tuple, Union, Optional, Dict import numpy as np import scipy.linalg as la from scipy import stats Indices = Union[str, List[str]] def std_basis_vector(size: int, index: int, shape: Literal["row", "col", "flat"] = "col"): """Create a vector of {size} values where all values are zero except at position {index} which is one. The shape can be specified as 'row', 'col', or 'flat' to generate vectors of shape (1, {size}), ({size}, 1), or ({size}, ) respectively. The default shape is 'col'.""" e = np.zeros(size) e[index] = 1 if shape.lower() == "col": e = np.reshape(e, (size, 1)) elif shape.lower() == "row": e = np.reshape(e, (1, size)) elif shape.lower() == "flat": pass else: raise ValueError(f"Cannot understand vector shape: '{shape}', use " f"'row', 'col', or 'flat'") return(e) class GenericDiagnosisMethod: def __init__(self) -> None: self.sample_size = 0 def contribution(self, sample: np.ndarray, variable_index: int) -> float: """Return the error contribution of a variable in a sample""" raise NotImplementedError def expectation(self, variable_index: int) -> float: """Return the expected error contribution of a variable""" raise NotImplementedError def limits(self, variable_index: int, alpha: float) -> Tuple[float, float]: """Return the lower and upper limits of a variable at a given alpha""" e_contrib = self.expectation(variable_index) lower = stats.chi2.ppf(alpha, 1) * e_contrib upper = stats.chi2.ppf(1 - alpha, 1) * e_contrib return(lower, upper) def rel_contribution(self, sample: np.ndarray, variable_index: int) -> float: """Return the relative error contribution of a variable in a sample""" c = self.contribution(sample, variable_index) E_c = self.expectation(variable_index) return(c / E_c) def all_contributions(self, sample: np.ndarray) -> np.ndarray: """Return the error contributions for all variables in a sample""" contribs = np.zeros(self.sample_size) for i in range(self.sample_size): contribs[i] = self.contribution(sample, i) return(contribs) def all_rel_contributions(self, sample: np.ndarray) -> np.ndarray: """Return the relative error contributions for all variables in a sample""" rel_contribs = np.zeros(self.sample_size) for i in range(self.sample_size): rel_contribs[i] = self.rel_contribution(sample, i) return(rel_contribs) def all_expectations(self) -> np.ndarray: """Return the expected error contribution for all variables""" e_contribs = np.zeros(self.sample_size) for i in range(self.sample_size): e_contribs[i] = self.expectation(i) return(e_contribs) def all_limits(self, alpha: float) -> np.ndarray: """Return the lower and upper limits for all variables at a given alpha""" lower_upper_limits = np.zeros((self.sample_size, 2)) for i in range(self.sample_size): lower_upper_limits[i] = self.limits(i, alpha) return(lower_upper_limits) class CDC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Complete Decomposition Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sqrt_M = np.real(la.fractional_matrix_power(M, 0.5)) self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(self.sample_size, variable_index, 'col') contrib = (e_i.T @ self.sqrt_M @ sample) ** 2 return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.sample_size, variable_index, 'col') e_contrib = e_i.T @ self.S @ self.M @ e_i return(e_contrib) class PDC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Partial Decomposition Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(sample.size, variable_index, 'col') contrib = sample.T @ self.M @ e_i @ e_i.T @ sample return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.sample_size, variable_index, 'col') e_contrib = e_i.T @ self.S @ self.M @ e_i return(e_contrib) def limits(self, variable_index: int, alpha: float) -> Tuple[float, float]: e_contrib = self.expectation(variable_index) e_i = std_basis_vector(self.sample_size, variable_index, 'col') stdv_contrib = ((e_contrib) ** 2 + e_i.T @ self.S @ self.M @ self.M @ e_i @ e_i.T @ self.S @ e_i) ** 0.5 # Assumes n>=30 to use normal distribution rather than t distribution lower, upper = stats.norm.interval(alpha, e_contrib, stdv_contrib) return(lower, upper) class DC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Diagonal Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(self.sample_size, variable_index, 'col') contrib = sample.T @ e_i @ e_i.T @ self.M @ e_i @ e_i.T @ sample return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.M.shape[1], variable_index, 'col') e_contrib = e_i.T @ self.S @ e_i @ e_i.T @ self.M @ e_i return(e_contrib) class RBC(GenericDiagnosisMethod): def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Reconstruction Based Contributions Diagnosis Method""" super().__init__() self.M = M self.S = S self.sample_size = M.shape[0] def contribution(self, sample: np.ndarray, variable_index: int) -> float: e_i = std_basis_vector(self.sample_size, variable_index, 'col') contrib = (e_i.T @ self.M @ sample) ** 2 / (e_i.T @ self.M @ e_i) return(contrib) def expectation(self, variable_index: int) -> float: if self.S is None: raise RuntimeError("S matrix must be set to use this function") e_i = std_basis_vector(self.sample_size, variable_index, 'col') e_contrib = (e_i.T @ self.M @ self.S @ self.M @ e_i / (e_i.T @ self.M @ e_i)) return(e_contrib) class GenericFaultDiagnosisModel: def __init__(self, M: np.ndarray, S: Optional[np.ndarray]) -> None: """Generic Fault Diagnosis Model for any test statistic""" if S is not None: if not (M.shape[0] == M.shape[1] == S.shape[0] == S.shape[1]): raise ValueError("M and S need to be [n x n] matrices") else: if not (M.shape[0] == M.shape[1]): raise ValueError("M needs to be an [n x n] matrix") self.diagnosis_methods = { "CDC": CDC(M, S), "PDC": PDC(M, S), "DC": DC(M, S), "RBC": RBC(M, S) } self.sample_size = M.shape[0] indices = list(self.diagnosis_methods.keys()) rel_indices = [f"r{i}" for i in indices] self.valid_indices = indices + rel_indices def validate_indices(self, indices: Indices) -> List[str]: """Validate list of requested indices""" if type(indices) == str: indices = [indices] for ind in indices: if ind not in self.valid_indices: raise ValueError(f"No contribution index {ind} exists") return(indices) def validate_sample(self, sample: np.ndarray) -> np.ndarray: """Validate passed sample""" if not isinstance(sample, np.ndarray): raise TypeError("Expected numpy array inputs for sample") if not (self.sample_size == sample.size): raise ValueError("M needs to be an [n x n] matrix and x needs to " "be an [n x 1] vector") sample = np.reshape(sample, (-1, 1)) # Makes sure it's a column vector return(sample) def get_contributions(self, sample: np.ndarray, indices: Indices = ['CDC']) -> Dict[str, np.ndarray]: """Get the fault contributions for the sample for each index passed""" indices = self.validate_indices(indices) sample = self.validate_sample(sample) index_values = dict() for ind in indices: if ind[0] == 'r': fd_method = self.diagnosis_methods[ind[1:]] index_values[ind] = fd_method.all_rel_contributions(sample) else: fd_method = self.diagnosis_methods[ind] index_values[ind] = fd_method.all_contributions(sample) return(index_values) def get_limits(self, alpha: float = 0.05, indices: Indices = ['CDC']) -> Dict[str, np.ndarray]: """Get the lower and upper control limits for any non-relative contribution indices""" indices = self.validate_indices(indices) limits = dict() for ind in indices: if ind[0] == 'r': raise ValueError("Control limits are not defined for relative " "contribution indices") else: fd_method = self.diagnosis_methods[ind] limits[ind] = fd_method.all_limits(alpha) return(limits) if __name__ == "__main__": import random print("Module ran as script: Running example fault diagnosis with PCA") def example_process_model(num_samples): A = [ [-0.3441, 0.4815, 0.6637], [-0.2313, -0.5936, 0.3545], [-0.5060, 0.2495, 0.0739], [-0.5552, -0.2405, -0.1123], [-0.3371, 0.3822, -0.6115], [-0.3877, -0.3868, -0.2045] ] A = np.asarray(A) num_vars = 6 # Generate inputs t t1 = 2.0 * stats.uniform.rvs(size=num_samples) t2 = 1.6 * stats.uniform.rvs(size=num_samples) t3 = 1.2 * stats.uniform.rvs(size=num_samples) t = np.asarray([t1, t2, t3]) # Generate noise noise = [None] * num_vars for i in range(num_vars): noise[i] = stats.norm.rvs(size=num_samples, scale=0.2) noise = np.asarray(noise) # Create samples X = A @ t + noise return(X) num_samples = 3000 num_faults = 2000 num_vars = 6 X = example_process_model(num_samples) """ PCA Model """ # Shift to 0 mean xmean = np.mean(X, 1).reshape((-1, 1)) X = X - xmean # Scale to unit variance xstd = np.std(X, 1).reshape((-1, 1)) X = X / xstd assert np.allclose(np.mean(X, 1), 0) assert np.allclose(np.std(X, 1), 1) S = np.cov(X) Lam, P = la.eig(S) Lam = np.real_if_close(Lam) order = np.argsort(-1 * Lam) Lam = Lam[order] P = P[:, order] # Plot cumulative variance of eigenvectors # cum_eig = np.cumsum(Lam) / np.sum(Lam) # plt.plot(cum_eig) # plt.show() principal_vectors = 3 alpha = 0.01 # Confidence = (1 - alpha) x 100% P_resid = P[:, principal_vectors:] Lam_resid = Lam[principal_vectors:] P = P[:, :principal_vectors] Lam = Lam[:principal_vectors] D = P @ np.diag(Lam ** -1) @ P.T # Generate faults faults = np.zeros((num_vars, num_faults)) for fault_sample in range(num_faults): fault_var = random.sample(range(num_vars), 1)[0] faults[fault_var, fault_sample] = 5.0 * stats.uniform.rvs() X_faulty = example_process_model(num_faults) + faults X_faulty = (X_faulty - xmean) / xstd T_sqr = [0] * num_faults for i in range(num_faults): T_sqr[i] = X_faulty[:, i].T @ D @ X_faulty[:, i] T_sqr_limit = [stats.chi2.ppf(1 - alpha, principal_vectors)] * num_faults detected_faults = [] for i in range(num_faults): if T_sqr[i] > T_sqr_limit[i]: detected_faults.append(i) fault_detect_rate = len(detected_faults) / num_faults * 100 print(f"T^2 Detected Faults: {fault_detect_rate:.2f} %") # plt.plot(T_sqr, label="\$T^2\$") # plt.plot(T_sqr_limit, label="Limit") # plt.legend() # plt.show() all_indices = ['CDC', 'rCDC', 'PDC', 'rPDC', 'DC', 'rDC', 'RBC', 'rRBC'] FDModel = GenericFaultDiagnosisModel(D, S) cont_rates = dict() for ind in all_indices: # Tracks number of correct diagnoses and false diagnoses cont_rates[ind] = [0, 0, 0] for i in detected_faults: # Get index and limit for each fault sample cont = FDModel.get_contributions(X_faulty[:, i], all_indices) for ind in all_indices: highest_contrib = np.argmax(cont[ind]) if highest_contrib == np.argmax(faults[:, i]): cont_rates[ind][0] += 1 else: cont_rates[ind][1] += 1 for ind in all_indices: diag_rate = cont_rates[ind][0] / len(detected_faults) * 100 false_diag_rate = cont_rates[ind][1] / len(detected_faults) * 100 # missed_rate = cont_rates[ind][2] / len(detected_faults) * 100 print("--------------------------------") print(f"{ind} correct diagnosis: {diag_rate:.2f} %") print(f"{ind} false diagnosis: {false_diag_rate:.2f} %") # print(f"{ind} missed diagnosis: {missed_rate:.2f} %")
py
1a31d714eb662ad45dfd4571298909b5979cd098
import sys if (sys.version_info[0] == 2 and sys.version_info[:2] >= (2,7)) or \ (sys.version_info[0] == 3 and sys.version_info[:2] >= (3,2)): import unittest else: import unittest2 as unittest import subprocess import shutil import time import os import signal from distutils.sysconfig import get_config_var import py2app import platform DIR_NAME=os.path.dirname(os.path.abspath(__file__)) class TestBasicPlugin (unittest.TestCase): plugin_dir = os.path.join(DIR_NAME, 'plugin_with_scripts') py2app_args = [] # Basic setup code # # The code in this block needs to be moved to # a base-class. @classmethod def setUpClass(cls): try: if os.path.exists(os.path.join(cls.plugin_dir, 'build')): shutil.rmtree(os.path.join(cls.plugin_dir, 'build')) if os.path.exists(os.path.join(cls.plugin_dir, 'dist')): shutil.rmtree(os.path.join(cls.plugin_dir, 'dist')) cmd = [ sys.executable, 'setup.py', 'py2app'] + cls.py2app_args env=os.environ.copy() pp = os.path.dirname(os.path.dirname(py2app.__file__)) if 'PYTHONPATH' in env: env['PYTHONPATH'] = pp + ':' + env['PYTHONPATH'] else: env['PYTHONPATH'] = pp if 'LANG' not in env: env['LANG'] = 'en_US.UTF-8' p = subprocess.Popen( cmd, cwd = cls.plugin_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True, env=env) lines = p.communicate()[0] if p.wait() != 0: print (lines) raise AssertionError("Creating basic_plugin bundle failed") p = subprocess.Popen([ 'xcode-select', '-print-path' ], stdout = subprocess.PIPE) lines = p.communicate()[0] xit = p.wait() if p.wait() != 0: raise AssertionError("Fetching Xcode root failed") root = lines.strip() if sys.version_info[0] != 2: root = root.decode('utf-8') if platform.mac_ver()[0] < '10.7.': cc = [get_config_var('CC')] env = dict(os.environ) env['MACOSX_DEPLOYMENT_TARGET'] = get_config_var('MACOSX_DEPLOYMENT_TARGET') else: cc = ['xcrun', 'clang'] env = dict(os.environ) p = subprocess.Popen(cc + get_config_var('LDFLAGS').split() + get_config_var('CFLAGS').split() + [ '-o', 'bundle_loader', os.path.join(DIR_NAME, 'bundle_loader.m'), '-framework', 'Foundation'], env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) lines = p.communicate()[0] if p.wait() != 0: print (lines) raise AssertionError("Creating bundle_loader failed") except: cls.tearDownClass() raise @classmethod def tearDownClass(cls): if os.path.exists('bundle_loader'): os.unlink('bundle_loader') if os.path.exists(os.path.join(cls.plugin_dir, 'build')): shutil.rmtree(os.path.join(cls.plugin_dir, 'build')) if os.path.exists(os.path.join(cls.plugin_dir, 'dist')): shutil.rmtree(os.path.join(cls.plugin_dir, 'dist')) def start_app(self): # Start the test app, return a subprocess object where # stdin and stdout are connected to pipes. cmd = ['./bundle_loader', os.path.join(self.plugin_dir, 'dist/BasicPlugin.bundle'), ] p = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True, ) #stderr=subprocess.STDOUT) return p def wait_with_timeout(self, proc, timeout=10): for i in range(timeout): x = proc.poll() if x is None: time.sleep(1) else: return x os.kill(proc.pid, signal.SIGKILL) return proc.wait() def run_script(self, name): path = os.path.join( self.plugin_dir, 'dist/BasicPlugin.bundle/Contents/MacOS/%s'%(name,)) p = subprocess.Popen([path], stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True, ) #stderr=subprocess.STDOUT) return p # # End of setup code # def test_helper1(self): p = self.run_script('helper1') lines = p.communicate()[0] p.wait() self.assertEqual(lines, b'Helper 1\n') def test_helper2(self): p = self.run_script('helper2') lines = p.communicate()[0] p.wait() self.assertEqual(lines, b'Helper 2\n') def test_basic_start(self): p = self.start_app() v = p.stdout.readline() self.assertFalse(v.startswith(b'** Cannot load bundle')) p.stdin.write('BasicPlugin.bundle:test startup\n'.encode('latin1')) p.stdin.flush() v = p.stdout.readline() self.assertEqual(v.strip(), b'+ test startup') p.stdin.close() p.stdout.close() exit = self.wait_with_timeout(p) self.assertEqual(exit, 0) class TestBasicAliasPlugin (TestBasicPlugin): py2app_args = [ '--alias' ] class TestBasicSemiStandalonePlugin (TestBasicPlugin): py2app_args = [ '--semi-standalone' ] class TestBasicPluginUnicodePath (TestBasicPlugin): if sys.version_info[0] == 2: plugin_dir = os.path.join(DIR_NAME, 'basic_plugin ' + unichr(2744).encode('utf-8')) else: plugin_dir = os.path.join(DIR_NAME, 'basic_plugin ' + chr(2744)) @classmethod def setUpClass(cls): try: if os.path.exists(cls.plugin_dir): shutil.rmtree(cls.plugin_dir) assert not os.path.exists(cls.plugin_dir) shutil.copytree(TestBasicPlugin.plugin_dir, cls.plugin_dir) super(TestBasicPluginUnicodePath, cls).setUpClass() except: if os.path.exists(cls.plugin_dir): shutil.rmtree(cls.plugin_dir) raise @classmethod def tearDownClass(cls): if os.path.exists(cls.plugin_dir): shutil.rmtree(cls.plugin_dir) super(TestBasicPluginUnicodePath, cls).tearDownClass() class TestBasicAliasPluginUnicodePath (TestBasicPluginUnicodePath): py2app_args = [ '--alias' ] class TestBasicSemiStandalonePluginUnicodePath (TestBasicPluginUnicodePath): py2app_args = [ '--semi-standalone' ] if __name__ == "__main__": unittest.main()
py
1a31d745e98a28c68a0006b34c3c5dd7b9d07814
# -*- coding: utf-8 -*- """ Created on Mon Aug 5 15:59:51 2019 @author: 939035 Classifiers """ # %% 1)Importing packages import seaborn as sns import pandas as pd import numpy as np # Handling SSL error when trying to connect from the office! import ssl ssl._create_default_https_context = ssl._create_unverified_context # Handing sns not showing plot error import matplotlib.pyplot as plt # ML models # kernal SVM from sklearn.svm import SVC # RandomForrestModel from sklearn.ensemble import RandomForestClassifier # MLPClassifier (neural_network) from sklearn.neural_network import MLPClassifier # Gradient Boosting Tree from sklearn.ensemble import GradientBoostingClassifier # Training the model (speed) # Decision Tree Classificr from sklearn.tree import DecisionTreeClassifier # Logisitc Regression from sklearn.linear_model import LogisticRegression # Data Is too Large ##Import Gaussian Naive Bayes model from sklearn.naive_bayes import GaussianNB # other random ones # KNN from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report class machine_learning_classifier(): ''' A class that contains a classifier loop ''' def __init__(self): # Variables to alter self.df = sns.load_dataset('iris') # Give the string of the y variable self.y_var = 'species' # Do not alter self.df_feat = pd.DataFrame() self.dummies = pd.DataFrame def inital_variable_removal(self, inital_vars_to_drop): # Dropping duplicate variable e.g qualitative variable Class and quantitative equivalent pclass self.df = self.df.drop(inital_vars_to_drop, axis=1) return self.df def remove_na(self): # Dropping nan or na rows self.df = self.df.dropna().reset_index().drop('index', axis=1) return self.df def exploring_data(self, y_var_category, var1, var2): # ## Basic Pairplot pp = sns.pairplot(self.df, hue=self.y_var) plt.show() # creating kde plot of sepal_lenght vs sepal width for setosa species of flower kde = self.df[self.df[self.y_var] == y_var_category] kdeplot = sns.kdeplot(kde[var1], kde[var2], cmap='plasma', shade='true' , shade_lowest=False) plt.show() return pp, kdeplot def creating_dummies(self): # 4)Creating Dummys from qualitative variables (optional) self.dummies = pd.get_dummies(self.df[self.qualitative_vars]) ### dropping qualitative variables before standardising self.df = self.df.drop(self.qualitative_vars, axis=1) return self.df def standardising(self): # Splitting the DataFrame into the dummies and then the standard varibales from sklearn.preprocessing import StandardScaler # standardising the data to the same scale # why - larger scale data will have a greater effect on the results scaler = StandardScaler() # fitting the data minus the dependent variable scaler.fit(self.df.drop(self.y_var, axis=1)) # creating the variable scaled featers (returns a array) scaled_features = scaler.transform(self.df.drop(self.y_var, axis=1)) # Creating a df of the array'd scaled features self.df_feat = pd.DataFrame(scaled_features, columns=self.df.drop(self.y_var, axis=1).columns) return self.df_feat def readding_dummies(self): # %% 6) Re adding dummies after standardising ## adding dummies back on after standaridiation of the rest of the data self.df_feat = pd.concat([self.df_feat, self.dummies], axis=1) return self.df_feat def correlations(self): # %% 7) Find correlation among variables. # after standardising correlation_matrix = self.df_feat.corr() return correlation_matrix def dropping_highly_correlated_variables(self, list_of_vars_to_drop): self.df_feat = self.df_feat.drop(list_of_vars_to_drop, axis=1) return self.df_feat def setting_y(self): # Setting X and y self.y = self.df[self.y_var] return self.y def feature_selection(self): # https://scikit-learn.org/stable/modules/feature_selection.html import sklearn.feature_selection def model_loop(self): # model selection by cross validation. from sklearn.model_selection import cross_val_score models = [SVC(), RandomForestClassifier(), MLPClassifier(), GradientBoostingClassifier(), DecisionTreeClassifier(), LogisticRegression(), GaussianNB(), KNeighborsClassifier()] classification_results = pd.DataFrame(columns=['model', 'corss_val_scores', 'cvs_mean' ]) for m in models: model = m cvs = cross_val_score(model, self.df_feat, self.y, cv=10, scoring='accuracy') cvsm = cvs.mean() classification_results = classification_results.append({'model': m, 'corss_val_scores': cvs, 'cvs_mean': cvsm, } , ignore_index=True) return classification_results def model_tuning(self): param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001]} grid = GridSearchCV(SVC(), param_grid, verbose=2) grid.fit(self.df_feat, self.y) grid_predictions = grid.predict(self.df_feat) cm = (confusion_matrix(self.y, grid_predictions)) cr = (classification_report(self.y, grid_predictions)) return cm, cr def main(): mlc = machine_learning_classifier() # mlc.inital_variable_removal(inital_vars_to_drop = ['']) mlc.remove_na() mlc.exploring_data(y_var_category = 'setosa', var1 = 'sepal_width', var2 = 'sepal_length') mlc.standardising() correlation_matrix = mlc.correlations() # mlc.dropping_highly_correlated_variables(list_of_vars_to_drop=['who_man']) mlc.setting_y() classification_results = mlc.model_loop() confusion_matrix, classification_report = mlc.model_tuning()
py
1a31d78fb8c41e5be5f43b4dfb0834668daface0
from .denoising import DenoisingTask from .multilingual_denoising import MultilingualDenoisingTask from .summarization_from_pretrained_bart import SummarizationFromPretrainedBARTTask
py
1a31d7fb65367c3b68c5967c0de4f8ccc6447d13
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import deque from typing import Dict, Iterable, Optional, Set, TypeVar import numpy as np from compiler_gym.datasets.benchmark import Benchmark from compiler_gym.datasets.dataset import Dataset from compiler_gym.datasets.uri import BENCHMARK_URI_RE, resolve_uri_protocol T = TypeVar("T") def round_robin_iterables(iters: Iterable[Iterable[T]]) -> Iterable[T]: """Yield from the given iterators in round robin order.""" # Use a queue of iterators to iterate over. Repeatedly pop an iterator from # the queue, yield the next value from it, then put it at the back of the # queue. The iterator is discarded once exhausted. iters = deque(iters) while len(iters) > 1: it = iters.popleft() try: yield next(it) iters.append(it) except StopIteration: pass # Once we have only a single iterator left, return it directly rather # continuing with the round robin. if len(iters) == 1: yield from iters.popleft() class Datasets: """A collection of datasets. This class provides a dictionary-like interface for indexing and iterating over multiple :class:`Dataset <compiler_gym.datasets.Dataset>` objects. Select a dataset by URI using: >>> env.datasets["benchmark://cbench-v1"] Check whether a dataset exists using: >>> "benchmark://cbench-v1" in env.datasets True Or iterate over the datasets using: >>> for dataset in env.datasets: ... print(dataset.name) benchmark://cbench-v1 benchmark://github-v0 benchmark://npb-v0 To select a benchmark from the datasets, use :meth:`benchmark()`: >>> env.datasets.benchmark("benchmark://a-v0/a") Use the :meth:`benchmarks()` method to iterate over every benchmark in the datasets in a stable round robin order: >>> for benchmark in env.datasets.benchmarks(): ... print(benchmark) benchmark://cbench-v1/1 benchmark://github-v0/1 benchmark://npb-v0/1 benchmark://cbench-v1/2 ... If you want to exclude a dataset, delete it: >>> del env.datasets["benchmark://b-v0"] """ def __init__( self, datasets: Iterable[Dataset], ): self._datasets: Dict[str, Dataset] = {d.name: d for d in datasets} self._visible_datasets: Set[str] = set( name for name, dataset in self._datasets.items() if not dataset.deprecated ) def datasets(self, with_deprecated: bool = False) -> Iterable[Dataset]: """Enumerate the datasets. Dataset order is consistent across runs. :param with_deprecated: If :code:`True`, include datasets that have been marked as deprecated. :return: An iterable sequence of :meth:`Dataset <compiler_gym.datasets.Dataset>` instances. """ datasets = self._datasets.values() if not with_deprecated: datasets = (d for d in datasets if not d.deprecated) yield from sorted(datasets, key=lambda d: (d.sort_order, d.name)) def __iter__(self) -> Iterable[Dataset]: """Iterate over the datasets. Dataset order is consistent across runs. Equivalent to :meth:`datasets.datasets() <compiler_gym.datasets.Dataset.datasets>`, but without the ability to iterate over the deprecated datasets. If the number of benchmarks in any of the datasets is infinite (:code:`len(dataset) == math.inf`), the iterable returned by this method will continue indefinitely. :return: An iterable sequence of :meth:`Dataset <compiler_gym.datasets.Dataset>` instances. """ return self.datasets() def dataset(self, dataset: str) -> Dataset: """Get a dataset. Return the corresponding :meth:`Dataset <compiler_gym.datasets.Dataset>`. Name lookup will succeed whether or not the dataset is deprecated. :param dataset: A dataset name. :return: A :meth:`Dataset <compiler_gym.datasets.Dataset>` instance. :raises LookupError: If :code:`dataset` is not found. """ dataset_name = resolve_uri_protocol(dataset) if dataset_name not in self._datasets: raise LookupError(f"Dataset not found: {dataset_name}") return self._datasets[dataset_name] def __getitem__(self, dataset: str) -> Dataset: """Lookup a dataset. :param dataset: A dataset name. :return: A :meth:`Dataset <compiler_gym.datasets.Dataset>` instance. :raises LookupError: If :code:`dataset` is not found. """ return self.dataset(dataset) def __setitem__(self, key: str, dataset: Dataset): """Add a dataset to the collection. :param key: The name of the dataset. :param dataset: The dataset to add. """ dataset_name = resolve_uri_protocol(key) self._datasets[dataset_name] = dataset if not dataset.deprecated: self._visible_datasets.add(dataset_name) def __delitem__(self, dataset: str): """Remove a dataset from the collection. This does not affect any underlying storage used by dataset. See :meth:`uninstall() <compiler_gym.datasets.Datasets.uninstall>` to clean up. :param dataset: The name of a dataset. :return: :code:`True` if the dataset was removed, :code:`False` if it was already removed. """ dataset_name = resolve_uri_protocol(dataset) if dataset_name in self._visible_datasets: self._visible_datasets.remove(dataset_name) del self._datasets[dataset_name] def __contains__(self, dataset: str) -> bool: """Returns whether the dataset is contained.""" try: self.dataset(dataset) return True except LookupError: return False def benchmarks(self, with_deprecated: bool = False) -> Iterable[Benchmark]: """Enumerate the (possibly infinite) benchmarks lazily. Benchmarks order is consistent across runs. One benchmark from each dataset is returned in round robin order until all datasets have been fully enumerated. The order of :meth:`benchmarks() <compiler_gym.datasets.Datasets.benchmarks>` and :meth:`benchmark_uris() <compiler_gym.datasets.Datasets.benchmark_uris>` is the same. If the number of benchmarks in any of the datasets is infinite (:code:`len(dataset) == math.inf`), the iterable returned by this method will continue indefinitely. :param with_deprecated: If :code:`True`, include benchmarks from datasets that have been marked deprecated. :return: An iterable sequence of :class:`Benchmark <compiler_gym.datasets.Benchmark>` instances. """ return round_robin_iterables( (d.benchmarks() for d in self.datasets(with_deprecated=with_deprecated)) ) def benchmark_uris(self, with_deprecated: bool = False) -> Iterable[str]: """Enumerate the (possibly infinite) benchmark URIs. Benchmark URI order is consistent across runs. URIs from datasets are returned in round robin order. The order of :meth:`benchmarks() <compiler_gym.datasets.Datasets.benchmarks>` and :meth:`benchmark_uris() <compiler_gym.datasets.Datasets.benchmark_uris>` is the same. If the number of benchmarks in any of the datasets is infinite (:code:`len(dataset) == math.inf`), the iterable returned by this method will continue indefinitely. :param with_deprecated: If :code:`True`, include benchmarks from datasets that have been marked deprecated. :return: An iterable sequence of benchmark URI strings. """ return round_robin_iterables( (d.benchmark_uris() for d in self.datasets(with_deprecated=with_deprecated)) ) def benchmark(self, uri: str) -> Benchmark: """Select a benchmark. Returns the corresponding :class:`Benchmark <compiler_gym.datasets.Benchmark>`, regardless of whether the containing dataset is installed or deprecated. :param uri: The URI of the benchmark to return. :return: A :class:`Benchmark <compiler_gym.datasets.Benchmark>` instance. """ uri = resolve_uri_protocol(uri) match = BENCHMARK_URI_RE.match(uri) if not match: raise ValueError(f"Invalid benchmark URI: '{uri}'") dataset_name = match.group("dataset") dataset = self._datasets[dataset_name] return dataset.benchmark(uri) def random_benchmark( self, random_state: Optional[np.random.Generator] = None ) -> Benchmark: """Select a benchmark randomly. First, a dataset is selected uniformly randomly using :code:`random_state.choice(list(datasets))`. The :meth:`random_benchmark() <compiler_gym.datasets.Dataset.random_benchmark>` method of that dataset is then called to select a benchmark. Note that the distribution of benchmarks selected by this method is not biased by the size of each dataset, since datasets are selected uniformly. This means that datasets with a small number of benchmarks will be overrepresented compared to datasets with many benchmarks. To correct for this bias, use the number of benchmarks in each dataset as a weight for the random selection: >>> rng = np.random.default_rng() >>> finite_datasets = [d for d in env.datasets if len(d) != math.inf] >>> dataset = rng.choice( finite_datasets, p=[len(d) for d in finite_datasets] ) >>> dataset.random_benchmark(random_state=rng) :param random_state: A random number generator. If not provided, a default :code:`np.random.default_rng()` is used. :return: A :class:`Benchmark <compiler_gym.datasets.Benchmark>` instance. """ random_state = random_state or np.random.default_rng() dataset = random_state.choice(list(self._visible_datasets)) return self[dataset].random_benchmark(random_state=random_state) @property def size(self) -> int: return len(self._visible_datasets) def __len__(self) -> int: """The number of datasets in the collection.""" return self.size
py
1a31d81fbb0a60ca7f07803d50c5c234f8172fe8
from dataclasses import dataclass from final_class import final __all__ = ['Part'] @final @dataclass(frozen=True) class Part: type_: int λ: float
py
1a31d838226141e926a70d5d4bed70235151cfe8
#!/usr/bin/env python # coding: utf-8 import argparse import os import ray from dotenv import load_dotenv from tqdm import tqdm from birdfsd_yolov5.label_studio_helpers.utils import get_all_projects_tasks from birdfsd_yolov5.model_utils.handlers import catch_keyboard_interrupt from birdfsd_yolov5.model_utils.utils import api_request @ray.remote def patch_anno(task, _from, to): for _entry in task['annotations']: entry_id = _entry['id'] for entry in _entry['result']: value = entry['value'] if not _from == value['rectanglelabels'][0]: print(f'Could not find the label `{_from}` in task ' f'`{task["id"]}`! Skipping...') return entry['value']['rectanglelabels'] = [to] url = f'{os.environ["LS_HOST"]}/api/annotations/{entry_id}/' api_request(url, method='patch', data=_entry) return @ray.remote def patch_pred(pred, _from, to): for result in pred['result']: label = result['value']['rectanglelabels'] if not _from == label[0]: print(f'Could not find the label `{_from}` in pred ' f'`{pred["id"]}`! Skipping...') return result['value']['rectanglelabels'] = [to] url = f'{os.environ["LS_HOST"]}/api/predictions/{pred["id"]}/' api_request(url, method='patch', data=pred) return def check_if_label_exists_in_task_annotations(task, label): labels = [] if not task.get('annotations'): return results = sum([x['result'] for x in task['annotations']], []) for result in results: labels.append(result['value']['rectanglelabels']) labels = sum(labels, []) if label in labels: return task return def opts() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('-f', '--from-label', help='Label to find and change (i.e., old label)', type=str, required=True) parser.add_argument( '-t', '--to-label', help='Label to use instead of the old label (i.e., new label)', type=str, required=True) return parser.parse_args() def patch(from_label, to_label): catch_keyboard_interrupt() # -------------------------------------------------------------- tasks = get_all_projects_tasks() tasks_with_label = [] for task in tqdm(tasks, desc='Scan tasks'): task = check_if_label_exists_in_task_annotations(task, label=from_label) if task: tasks_with_label.append(task) futures = [] for task in tasks_with_label: futures.append(patch_anno.remote(task, from_label, to_label)) for future in tqdm(futures, desc='Futures'): ray.get(future) # -------------------------------------------------------------- preds = get_all_projects_tasks(get_predictions_instead=True) preds_with_label = [] for pred in tqdm(preds, desc='Scan preds'): for result in pred['result']: label = result['value']['rectanglelabels'] if from_label in label: preds_with_label.append(pred) futures = [] for pred in preds_with_label: futures.append(patch_pred.remote(pred, from_label, to_label)) for future in tqdm(futures, desc='Futures'): ray.get(future) # -------------------------------------------------------------- ray.shutdown() if __name__ == '__main__': load_dotenv() args = opts() patch(from_label=args.from_label, to_label=args.to_label)