ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a54798bd704630fe7d0cf297c01f35d9e9b9b13
frase = str(input('Digite uma Frase: ')).strip().upper() palavras = frase.split() junto = ''.join(palavras) inverso = '' #para cada letra no Range, a gente ta pegando o valor total menos 1 pra corrigir; invertido; fazendo vir no caminho oposto. for letra in range(len(junto) - 1, -1, -1): inverso += junto[letra] print(f'O inverso de {junto} é {inverso}! ') if inverso == junto: print('Temos um palindromo! ') else: print('A frase digitada não é um palindromo ')
py
1a547b89d355e3e9f312b0bd9c97de4e62f29487
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """## Functions for working with arbitrarily nested sequences of elements. This module can perform operations on nested structures. A nested structure is a Python collection that can contain further collections as well as other objects called atoms. Note that numpy arrays are considered atoms. nest recognizes the following types of collections: 1.tuple 2.namedtuple 3.dict 4.orderedDict 5.MutableMapping 6.attr.s attr.s decorated classes (http://www.attrs.org) are also supported, in the same way as `namedtuple`. The utilities here assume (and do not check) that the nested structures form a 'tree', i.e., no references in the structure of the input of these functions should be recursive. Example structures: `((3, 4), 5, (6, 7, (9, 10), 8))`, `(np.array(0), (np.array([3, 4]), tf.constant([3, 4])))` """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections as _collections import six as _six import wrapt as _wrapt from tensorflow.python import _pywrap_utils from tensorflow.python.util.compat import collections_abc as _collections_abc from tensorflow.python.util.tf_export import tf_export from tensorflow.python.platform import tf_logging _SHALLOW_TREE_HAS_INVALID_KEYS = ( "The shallow_tree's keys are not a subset of the input_tree's keys. The " "shallow_tree has the following keys that are not in the input_tree: {}.") _STRUCTURES_HAVE_MISMATCHING_TYPES = ( "The two structures don't have the same sequence type. Input structure has " "type {input_type}, while shallow structure has type {shallow_type}.") _STRUCTURES_HAVE_MISMATCHING_LENGTHS = ( "The two structures don't have the same sequence length. Input " "structure has length {input_length}, while shallow structure has length " "{shallow_length}." ) _INPUT_TREE_SMALLER_THAN_SHALLOW_TREE = ( "The input_tree has fewer elements than the shallow_tree. Input structure " "has length {input_size}, while shallow structure has length " "{shallow_size}.") _IF_SHALLOW_IS_SEQ_INPUT_MUST_BE_SEQ = ( "If shallow structure is a sequence, input must also be a sequence. " "Input has type: {}.") def _get_attrs_items(obj): """Returns a list of (name, value) pairs from an attrs instance. The list will be sorted by name. Args: obj: an object. Returns: A list of (attr_name, attr_value) pairs, sorted by attr_name. """ attrs = getattr(obj.__class__, "__attrs_attrs__") attr_names = (a.name for a in attrs) return [(attr_name, getattr(obj, attr_name)) for attr_name in attr_names] def _sorted(dict_): """Returns a sorted list of the dict keys, with error if keys not sortable.""" try: return sorted(dict_.keys()) except TypeError: raise TypeError("nest only supports dicts with sortable keys.") def _is_namedtuple(instance, strict=False): """Returns True iff `instance` is a `namedtuple`. Args: instance: An instance of a Python object. strict: If True, `instance` is considered to be a `namedtuple` only if it is a "plain" namedtuple. For instance, a class inheriting from a `namedtuple` will be considered to be a `namedtuple` iff `strict=False`. Returns: True if `instance` is a `namedtuple`. """ return _pywrap_utils.IsNamedtuple(instance, strict) # See the swig file (util.i) for documentation. _is_mapping_view = _pywrap_utils.IsMappingView _is_attrs = _pywrap_utils.IsAttrs _is_composite_tensor = _pywrap_utils.IsCompositeTensor _is_type_spec = _pywrap_utils.IsTypeSpec _is_mutable_mapping = _pywrap_utils.IsMutableMapping _is_mapping = _pywrap_utils.IsMapping def _sequence_like(instance, args): """Converts the sequence `args` to the same type as `instance`. Args: instance: an instance of `tuple`, `list`, `namedtuple`, `dict`, `collections.OrderedDict`, or `composite_tensor.Composite_Tensor` or `type_spec.TypeSpec`. args: elements to be converted to the `instance` type. Returns: `args` with the type of `instance`. """ if _is_mutable_mapping(instance): # Pack dictionaries in a deterministic order by sorting the keys. # Notice this means that we ignore the original order of `OrderedDict` # instances. This is intentional, to avoid potential bugs caused by mixing # ordered and plain dicts (e.g., flattening a dict but using a # corresponding `OrderedDict` to pack it back). result = dict(zip(_sorted(instance), args)) instance_type = type(instance) if instance_type == _collections.defaultdict: d = _collections.defaultdict(instance.default_factory) else: d = instance_type() for key in instance: d[key] = result[key] return d elif _is_mapping(instance): result = dict(zip(_sorted(instance), args)) instance_type = type(instance) tf_logging.log_first_n( tf_logging.WARN, "Mapping types may not work well with tf.nest. Prefer" " using MutableMapping for {}".format(instance_type), 1) try: return instance_type((key, result[key]) for key in instance) except TypeError as err: raise TypeError("Error creating an object of type {} like {}. Note that " "it must accept a single positional argument " "representing an iterable of key-value pairs, in " "addition to self. Cause: {}".format( type(instance), instance, err)) elif _is_mapping_view(instance): # We can't directly construct mapping views, so we create a list instead return list(args) elif _is_namedtuple(instance) or _is_attrs(instance): if isinstance(instance, _wrapt.ObjectProxy): instance_type = type(instance.__wrapped__) else: instance_type = type(instance) return instance_type(*args) elif _is_composite_tensor(instance): assert len(args) == 1 spec = instance._type_spec # pylint: disable=protected-access return spec._from_components(args[0]) # pylint: disable=protected-access elif _is_type_spec(instance): # Pack a CompositeTensor's components according to a TypeSpec. assert len(args) == 1 return instance._from_components(args[0]) # pylint: disable=protected-access elif isinstance(instance, _six.moves.range): return _sequence_like(list(instance), args) elif isinstance(instance, _wrapt.ObjectProxy): # For object proxies, first create the underlying type and then re-wrap it # in the proxy type. return type(instance)(_sequence_like(instance.__wrapped__, args)) else: # Not a namedtuple return type(instance)(args) def _yield_value(iterable): for _, v in _yield_sorted_items(iterable): yield v def _yield_sorted_items(iterable): """Yield (key, value) pairs for `iterable` in a deterministic order. For Sequences, the key will be an int, the array index of a value. For Mappings, the key will be the dictionary key. For objects (e.g. namedtuples), the key will be the attribute name. In all cases, the keys will be iterated in sorted order. Args: iterable: an iterable. Yields: The iterable's (key, value) pairs, in order of sorted keys. """ # Ordered to check common structure types (list, tuple, dict) first. if isinstance(iterable, list): for item in enumerate(iterable): yield item # namedtuples handled separately to avoid expensive namedtuple check. elif type(iterable) == tuple: # pylint: disable=unidiomatic-typecheck for item in enumerate(iterable): yield item elif isinstance(iterable, (dict, _collections_abc.Mapping)): # Iterate through dictionaries in a deterministic order by sorting the # keys. Notice this means that we ignore the original order of `OrderedDict` # instances. This is intentional, to avoid potential bugs caused by mixing # ordered and plain dicts (e.g., flattening a dict but using a # corresponding `OrderedDict` to pack it back). for key in _sorted(iterable): yield key, iterable[key] elif _is_attrs(iterable): for item in _get_attrs_items(iterable): yield item elif _is_namedtuple(iterable): for field in iterable._fields: yield field, getattr(iterable, field) elif _is_composite_tensor(iterable): type_spec = iterable._type_spec # pylint: disable=protected-access yield type_spec.value_type.__name__, type_spec._to_components(iterable) # pylint: disable=protected-access elif _is_type_spec(iterable): # Note: to allow CompositeTensors and their TypeSpecs to have matching # structures, we need to use the same key string here. yield iterable.value_type.__name__, iterable._component_specs # pylint: disable=protected-access else: for item in enumerate(iterable): yield item # See the swig file (util.i) for documentation. is_sequence = _pywrap_utils.IsSequence # See the swig file (util.i) for documentation. is_sequence_or_composite = _pywrap_utils.IsSequenceOrComposite @tf_export("nest.is_nested") def is_nested(seq): """Returns true if its input is a collections.abc.Sequence (except strings). Args: seq: an input sequence. Returns: True if the sequence is a not a string and is a collections.abc.Sequence or a dict. """ return is_sequence(seq) @tf_export("nest.flatten") def flatten(structure, expand_composites=False): """Returns a flat list from a given nested structure. If nest is not a structure , tuple (or a namedtuple), dict, or an attrs class, then returns a single-element list: [nest]. In the case of dict instances, the sequence consists of the values, sorted by key to ensure deterministic behavior. This is true also for OrderedDict instances: their sequence order is ignored, the sorting order of keys is used instead. The same convention is followed in pack_sequence_as. This correctly repacks dicts and OrderedDicts after they have been flattened, and also allows flattening an OrderedDict and then repacking it back using a corresponding plain dict, or vice-versa. Dictionaries with non-sortable keys cannot be flattened. Users must not modify any collections used in nest while this function is running. Examples: 1. Python dict (ordered by key): >>> dict = { "key3": "value3", "key1": "value1", "key2": "value2" } >>> tf.nest.flatten(dict) ['value1', 'value2', 'value3'] 2. For a nested python tuple: >>> tuple = ((1.0, 2.0), (3.0, 4.0, 5.0), (6.0)) >>> tf.nest.flatten(tuple) [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] 3. Numpy array (will not flatten): >>> array = np.array([[1, 2], [3, 4]]) >>> tf.nest.flatten(array) [array([[1, 2], [3, 4]])] 4. `tf.Tensor` (will not flatten): >>> tensor = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) >>> tf.nest.flatten(tensor) [<tf.Tensor: shape=(3, 3), dtype=float32, numpy= array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], dtype=float32)>] Args: structure: an arbitrarily nested structure. Note, numpy arrays are considered atoms and are not flattened. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A Python list, the flattened version of the input. Raises: TypeError: The nest is or contains a dict with non-sortable keys. """ if structure is None: return [None] expand_composites = bool(expand_composites) return _pywrap_utils.Flatten(structure, expand_composites) # See the swig file (util.i) for documentation. _same_namedtuples = _pywrap_utils.SameNamedtuples class _DotString(object): __slots__ = [] def __str__(self): return "." def __repr__(self): return "." _DOT = _DotString() @tf_export("nest.assert_same_structure") def assert_same_structure(nest1, nest2, check_types=True, expand_composites=False): """Asserts that two structures are nested in the same way. Note that namedtuples with identical name and fields are always considered to have the same shallow structure (even with `check_types=True`). For instance, this code will print `True`: ```python def nt(a, b): return collections.namedtuple('foo', 'a b')(a, b) print(assert_same_structure(nt(0, 1), nt(2, 3))) ``` Args: nest1: an arbitrarily nested structure. nest2: an arbitrarily nested structure. check_types: if `True` (default) types of sequences are checked as well, including the keys of dictionaries. If set to `False`, for example a list and a tuple of objects will look the same if they have the same size. Note that namedtuples with identical name and fields are always considered to have the same shallow structure. Two types will also be considered the same if they are both list subtypes (which allows "list" and "_ListWrapper" from trackable dependency tracking to compare equal). expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Raises: ValueError: If the two structures do not have the same number of elements or if the two structures are not nested in the same way. TypeError: If the two structures differ in the type of sequence in any of their substructures. Only possible if `check_types` is `True`. """ # Convert to bool explicitly as otherwise pybind will not be able# to handle # type mismatch message correctly. See GitHub issue 42329 for details. check_types = bool(check_types) expand_composites = bool(expand_composites) try: _pywrap_utils.AssertSameStructure(nest1, nest2, check_types, expand_composites) except (ValueError, TypeError) as e: str1 = str(map_structure(lambda _: _DOT, nest1)) str2 = str(map_structure(lambda _: _DOT, nest2)) raise type(e)("%s\n" "Entire first structure:\n%s\n" "Entire second structure:\n%s" % (str(e), str1, str2)) def flatten_dict_items(dictionary): """Returns a dictionary with flattened keys and values. This function flattens the keys and values of a dictionary, which can be arbitrarily nested structures, and returns the flattened version of such structures: ```python example_dictionary = {(4, 5, (6, 8)): ("a", "b", ("c", "d"))} result = {4: "a", 5: "b", 6: "c", 8: "d"} flatten_dict_items(example_dictionary) == result ``` The input dictionary must satisfy two properties: 1. Its keys and values should have the same exact nested structure. 2. The set of all flattened keys of the dictionary must not contain repeated keys. Args: dictionary: the dictionary to zip Returns: The zipped dictionary. Raises: TypeError: If the input is not a dictionary. ValueError: If any key and value do not have the same structure layout, or if keys are not unique. """ if not isinstance(dictionary, (dict, _collections_abc.Mapping)): raise TypeError("input must be a dictionary") flat_dictionary = {} for i, v in _six.iteritems(dictionary): if not is_sequence(i): if i in flat_dictionary: raise ValueError( "Could not flatten dictionary: key %s is not unique." % i) flat_dictionary[i] = v else: flat_i = flatten(i) flat_v = flatten(v) if len(flat_i) != len(flat_v): raise ValueError( "Could not flatten dictionary. Key had %d elements, but value had " "%d elements. Key: %s, value: %s." % (len(flat_i), len(flat_v), flat_i, flat_v)) for new_i, new_v in zip(flat_i, flat_v): if new_i in flat_dictionary: raise ValueError( "Could not flatten dictionary: key %s is not unique." % (new_i)) flat_dictionary[new_i] = new_v return flat_dictionary def _packed_nest_with_indices(structure, flat, index, is_seq, sequence_fn=None): """Helper function for pack_sequence_as. Args: structure: Substructure (list / tuple / dict) to mimic. flat: Flattened values to output substructure for. index: Index at which to start reading from flat. is_seq: Function used to test if a value should be treated as a sequence. sequence_fn: Function used to generate a new sequence instance. Returns: The tuple (new_index, child), where: * new_index - the updated index into `flat` having processed `structure`. * packed - the subset of `flat` corresponding to `structure`, having started at `index`, and packed into the same nested format. Raises: ValueError: if `structure` contains more elements than `flat` (assuming indexing starts from `index`). """ packed = [] sequence_fn = sequence_fn or _sequence_like for s in _yield_value(structure): if is_seq(s): new_index, child = _packed_nest_with_indices(s, flat, index, is_seq, sequence_fn) packed.append(sequence_fn(s, child)) index = new_index else: packed.append(flat[index]) index += 1 return index, packed def _pack_sequence_as(structure, flat_sequence, expand_composites, sequence_fn=None): """Implements sequence packing, with the option to alter the structure.""" is_seq = is_sequence_or_composite if expand_composites else is_sequence sequence_fn = sequence_fn or _sequence_like def truncate(value, length): value_str = str(value) return value_str[:length] + (value_str[length:] and "...") if not is_seq(flat_sequence): raise TypeError( "Attempted to pack value:\n {}\ninto a sequence, but found " "incompatible type `{}` instead." .format(truncate(flat_sequence, 100), type(flat_sequence))) if not is_seq(structure): if len(flat_sequence) != 1: raise ValueError( "The target structure is of type `{}`\n {}\nHowever the input " "structure is a sequence ({}) of length {}.\n {}\nnest cannot " "guarantee that it is safe to map one to the other.".format( type(structure), truncate(structure, 100), type(flat_sequence), len(flat_sequence), truncate(flat_sequence, 100))) return flat_sequence[0] try: final_index, packed = _packed_nest_with_indices(structure, flat_sequence, 0, is_seq, sequence_fn) if final_index < len(flat_sequence): raise IndexError except IndexError: flat_structure = flatten(structure) if len(flat_structure) != len(flat_sequence): raise ValueError( "Could not pack sequence. Structure had %d elements, but " "flat_sequence had %d elements. Structure: %s, flat_sequence: %s." % (len(flat_structure), len(flat_sequence), structure, flat_sequence)) return sequence_fn(structure, packed) @tf_export("nest.pack_sequence_as") def pack_sequence_as(structure, flat_sequence, expand_composites=False): """Returns a given flattened sequence packed into a given structure. If `structure` is a scalar, `flat_sequence` must be a single-element list; in this case the return value is `flat_sequence[0]`. If `structure` is or contains a dict instance, the keys will be sorted to pack the flat sequence in deterministic order. This is true also for `OrderedDict` instances: their sequence order is ignored, the sorting order of keys is used instead. The same convention is followed in `flatten`. This correctly repacks dicts and `OrderedDict`s after they have been flattened, and also allows flattening an `OrderedDict` and then repacking it back using a corresponding plain dict, or vice-versa. Dictionaries with non-sortable keys cannot be flattened. Args: structure: Nested structure, whose structure is given by nested lists, tuples, and dicts. Note: numpy arrays and strings are considered scalars. flat_sequence: flat sequence to pack. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: packed: `flat_sequence` converted to have the same recursive structure as `structure`. Raises: ValueError: If `flat_sequence` and `structure` have different element counts. TypeError: `structure` is or contains a dict with non-sortable keys. """ return _pack_sequence_as(structure, flat_sequence, expand_composites) @tf_export("nest.map_structure") def map_structure(func, *structure, **kwargs): """Applies `func` to each entry in `structure` and returns a new structure. Applies `func(x[0], x[1], ...)` where x[i] is an entry in `structure[i]`. All structures in `structure` must have the same arity, and the return value will contain results with the same structure layout. Examples: 1. A single Python dict: >>> a = {"hello": 24, "world": 76} >>> tf.nest.map_structure(lambda p: p * 2, a) {'hello': 48, 'world': 152} 2. Multiple Python dictionaries: >>> d1 = {"hello": 24, "world": 76} >>> d2 = {"hello": 36, "world": 14} >>> tf.nest.map_structure(lambda p1, p2: p1 + p2, d1, d2) {'hello': 60, 'world': 90} Args: func: A callable that accepts as many arguments as there are structures. *structure: scalar, or tuple or dict or list of constructed scalars and/or other tuples/lists, or scalars. Note: numpy arrays are considered as scalars. **kwargs: Valid keyword args are: * `check_types`: If set to `True` (default) the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. Note that namedtuples with identical name and fields are always considered to have the same shallow structure. * `expand_composites`: If set to `True`, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. If `False` (the default), then composite tensors are not expanded. Returns: A new structure with the same arity as `structure`, whose values correspond to `func(x[0], x[1], ...)` where `x[i]` is a value in the corresponding location in `structure[i]`. If there are different sequence types and `check_types` is `False` the sequence types of the first structure will be used. Raises: TypeError: If `func` is not callable or if the structures do not match each other by depth tree. ValueError: If no structure is provided or if the structures do not match each other by type. ValueError: If wrong keyword arguments are provided. """ if not callable(func): raise TypeError("func must be callable, got: %s" % func) if not structure: raise ValueError("Must provide at least one structure") check_types = kwargs.pop("check_types", True) expand_composites = kwargs.pop("expand_composites", False) if kwargs: raise ValueError( "Only valid keyword arguments are `check_types` and " "`expand_composites`, not: `%s`" % ("`, `".join(kwargs.keys()))) for other in structure[1:]: assert_same_structure(structure[0], other, check_types=check_types, expand_composites=expand_composites) flat_structure = (flatten(s, expand_composites) for s in structure) entries = zip(*flat_structure) return pack_sequence_as( structure[0], [func(*x) for x in entries], expand_composites=expand_composites) def map_structure_with_paths(func, *structure, **kwargs): """Applies `func` to each entry in `structure` and returns a new structure. Applies `func(path, x[0], x[1], ..., **kwargs)` where x[i] is an entry in `structure[i]` and `path` is the common path to x[i] in the structures. All structures in `structure` must have the same arity, and the return value will contain the results with the same structure layout. Special kwarg `check_types` determines whether the types of iterables within the structure must be the same-- see **kwargs definition below. Args: func: A callable with the signature func(path, *values, **kwargs) that is evaluated on the leaves of the structure. *structure: A variable number of compatible structures to process. **kwargs: Optional kwargs to be passed through to func. Special kwarg `check_types` is not passed to func, but instead determines whether the types of iterables within the structures have to be same (e.g., `map_structure(func, [1], (1,))` raises a `TypeError` exception). By default, the types must match. To allow iteration over structures of different types (but common arity), set this kwarg to `False`. Returns: A structure of the same form as the input structures whose leaves are the result of evaluating func on corresponding leaves of the input structures. Raises: TypeError: If `func` is not callable or if the structures do not match each other by depth tree. TypeError: If `check_types` is not `False` and the two structures differ in the type of sequence in any of their substructures. ValueError: If no structures are provided. """ def wrapper_func(tuple_path, *inputs, **kwargs): string_path = "/".join(str(s) for s in tuple_path) return func(string_path, *inputs, **kwargs) return map_structure_with_tuple_paths_up_to(structure[0], wrapper_func, *structure, **kwargs) def map_structure_with_tuple_paths(func, *structure, **kwargs): """Applies `func` to each entry in `structure` and returns a new structure. Applies `func(tuple_path, x[0], x[1], ..., **kwargs)` where `x[i]` is an entry in `structure[i]` and `tuple_path` is a tuple of indices and/or dictionary keys (as returned by `nest.yield_flat_paths`), which uniquely specifies the common path to x[i] in the structures. All structures in `structure` must have the same arity, and the return value will contain the results in the same structure. Special kwarg `check_types` determines whether the types of iterables within the structure must be the same-- see **kwargs definition below. Args: func: A callable with the signature `func(tuple_path, *values, **kwargs)` that is evaluated on the leaves of the structure. *structure: A variable number of compatible structures to process. **kwargs: Optional kwargs to be passed through to func. Special kwarg `check_types` is not passed to func, but instead determines whether the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. Returns: A structure of the same form as the input structures whose leaves are the result of evaluating func on corresponding leaves of the input structures. Raises: TypeError: If `func` is not callable or if the structures do not match each other by depth tree. TypeError: If `check_types` is not `False` and the two structures differ in the type of sequence in any of their substructures. ValueError: If no structures are provided. """ return map_structure_with_tuple_paths_up_to(structure[0], func, *structure, **kwargs) def _yield_flat_up_to(shallow_tree, input_tree, is_seq, path=()): """Yields (path, value) pairs of input_tree flattened up to shallow_tree. Args: shallow_tree: Nested structure. Traverse no further than its leaf nodes. input_tree: Nested structure. Return the paths and values from this tree. Must have the same upper structure as shallow_tree. is_seq: Function used to test if a value should be treated as a sequence. path: Tuple. Optional argument, only used when recursing. The path from the root of the original shallow_tree, down to the root of the shallow_tree arg of this recursive call. Yields: Pairs of (path, value), where path the tuple path of a leaf node in shallow_tree, and value is the value of the corresponding node in input_tree. """ if not is_seq(shallow_tree): yield (path, input_tree) else: input_tree = dict(_yield_sorted_items(input_tree)) for shallow_key, shallow_subtree in _yield_sorted_items(shallow_tree): subpath = path + (shallow_key,) input_subtree = input_tree[shallow_key] for leaf_path, leaf_value in _yield_flat_up_to(shallow_subtree, input_subtree, is_seq, path=subpath): yield (leaf_path, leaf_value) def assert_shallow_structure(shallow_tree, input_tree, check_types=True, expand_composites=False): """Asserts that `shallow_tree` is a shallow structure of `input_tree`. That is, this function tests if the `input_tree` structure can be created from the `shallow_tree` structure by replacing its leaf nodes with deeper tree structures. Examples: The following code will raise an exception: ```python shallow_tree = {"a": "A", "b": "B"} input_tree = {"a": 1, "c": 2} assert_shallow_structure(shallow_tree, input_tree) ``` The following code will raise an exception: ```python shallow_tree = ["a", "b"] input_tree = ["c", ["d", "e"], "f"] assert_shallow_structure(shallow_tree, input_tree) ``` Args: shallow_tree: an arbitrarily nested structure. input_tree: an arbitrarily nested structure. check_types: if `True` (default) the sequence types of `shallow_tree` and `input_tree` have to be the same. Note that even with check_types==True, this function will consider two different namedtuple classes with the same name and _fields attribute to be the same class. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. Only raised if `check_types` is `True`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. """ is_seq = is_sequence_or_composite if expand_composites else is_sequence if is_seq(shallow_tree): if not is_seq(input_tree): raise TypeError( "If shallow structure is a sequence, input must also be a sequence. " "Input has type: %s." % type(input_tree)) if isinstance(shallow_tree, _wrapt.ObjectProxy): shallow_type = type(shallow_tree.__wrapped__) else: shallow_type = type(shallow_tree) if check_types and not isinstance(input_tree, shallow_type): # Duck-typing means that nest should be fine with two different # namedtuples with identical name and fields. shallow_is_namedtuple = _is_namedtuple(shallow_tree, False) input_is_namedtuple = _is_namedtuple(input_tree, False) if shallow_is_namedtuple and input_is_namedtuple: if not _same_namedtuples(shallow_tree, input_tree): raise TypeError(_STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=type(shallow_tree))) elif ((_is_composite_tensor(shallow_tree) or _is_composite_tensor(input_tree)) and (_is_type_spec(shallow_tree) or _is_type_spec(input_tree))): pass # Compatibility will be checked below. elif not (isinstance(shallow_tree, _collections_abc.Mapping) and isinstance(input_tree, _collections_abc.Mapping)): raise TypeError(_STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=type(shallow_tree))) if _is_composite_tensor(shallow_tree) or _is_composite_tensor(input_tree): if not ( (_is_composite_tensor(input_tree) or _is_type_spec(input_tree)) and (_is_composite_tensor(shallow_tree) or _is_type_spec(shallow_tree))): raise TypeError(_STRUCTURES_HAVE_MISMATCHING_TYPES.format( input_type=type(input_tree), shallow_type=type(shallow_tree))) type_spec_1 = (shallow_tree if _is_type_spec(shallow_tree) else shallow_tree._type_spec) # pylint: disable=protected-access type_spec_2 = (input_tree if _is_type_spec(input_tree) else input_tree._type_spec) # pylint: disable=protected-access try: _ = type_spec_1.most_specific_compatible_type(type_spec_2) except (TypeError, ValueError) as e: raise ValueError( "Incompatible CompositeTensor TypeSpecs: %s vs. %s -- %s" % (type_spec_1, type_spec_2, e)) elif _is_type_spec(shallow_tree): if not _is_type_spec(input_tree): raise TypeError("If shallow structure is a TypeSpec, input must also " "be a TypeSpec. Input has type: %s." % type(input_tree)) else: if len(input_tree) != len(shallow_tree): raise ValueError( _STRUCTURES_HAVE_MISMATCHING_LENGTHS.format( input_length=len(input_tree), shallow_length=len(shallow_tree))) elif len(input_tree) < len(shallow_tree): raise ValueError( _INPUT_TREE_SMALLER_THAN_SHALLOW_TREE.format( input_size=len(input_tree), shallow_size=len(shallow_tree))) if isinstance(shallow_tree, _collections_abc.Mapping): absent_keys = set(shallow_tree) - set(input_tree) if absent_keys: raise ValueError(_SHALLOW_TREE_HAS_INVALID_KEYS .format(sorted(absent_keys))) for shallow_branch, input_branch in zip(_yield_value(shallow_tree), _yield_value(input_tree)): assert_shallow_structure(shallow_branch, input_branch, check_types=check_types, expand_composites=expand_composites) def flatten_up_to(shallow_tree, input_tree, check_types=True, expand_composites=False): """Flattens `input_tree` up to `shallow_tree`. Any further depth in structure in `input_tree` is retained as elements in the partially flatten output. If `shallow_tree` and `input_tree` are not sequences, this returns a single-element list: `[input_tree]`. Use Case: Sometimes we may wish to partially flatten a nested sequence, retaining some of the nested structure. We achieve this by specifying a shallow structure, `shallow_tree`, we wish to flatten up to. The input, `input_tree`, can be thought of as having the same structure layout as `shallow_tree`, but with leaf nodes that are themselves tree structures. Examples: ```python input_tree = [[[2, 2], [3, 3]], [[4, 9], [5, 5]]] shallow_tree = [[True, True], [False, True]] flattened_input_tree = flatten_up_to(shallow_tree, input_tree) flattened_shallow_tree = flatten_up_to(shallow_tree, shallow_tree) # Output is: # [[2, 2], [3, 3], [4, 9], [5, 5]] # [True, True, False, True] ``` ```python input_tree = [[('a', 1), [('b', 2), [('c', 3), [('d', 4)]]]]] shallow_tree = [['level_1', ['level_2', ['level_3', ['level_4']]]]] input_tree_flattened_as_shallow_tree = flatten_up_to(shallow_tree, input_tree) input_tree_flattened = flatten(input_tree) # Output is: # [('a', 1), ('b', 2), ('c', 3), ('d', 4)] # ['a', 1, 'b', 2, 'c', 3, 'd', 4] ``` Non-Sequence Edge Cases: ```python flatten_up_to(0, 0) # Output: [0] flatten_up_to(0, [0, 1, 2]) # Output: [[0, 1, 2]] flatten_up_to([0, 1, 2], 0) # Output: TypeError flatten_up_to([0, 1, 2], [0, 1, 2]) # Output: [0, 1, 2] ``` Args: shallow_tree: a possibly pruned structure of input_tree. input_tree: an arbitrarily nested structure or a scalar object. Note, numpy arrays are considered scalars. check_types: bool. If True, check that each node in shallow_tree has the same type as the corresponding node in input_tree. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A Python list, the partially flattened version of `input_tree` according to the structure of `shallow_tree`. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. """ is_seq = is_sequence_or_composite if expand_composites else is_sequence assert_shallow_structure(shallow_tree, input_tree, check_types=check_types, expand_composites=expand_composites) # Discard paths returned by _yield_flat_up_to. return [v for _, v in _yield_flat_up_to(shallow_tree, input_tree, is_seq)] def flatten_with_tuple_paths_up_to(shallow_tree, input_tree, check_types=True, expand_composites=False): """Flattens `input_tree` up to `shallow_tree`. Any further depth in structure in `input_tree` is retained as elements in the partially flattened output. Returns a list of (path, value) pairs, where value a leaf node in the flattened tree, and path is the tuple path of that leaf in input_tree. If `shallow_tree` and `input_tree` are not sequences, this returns a single-element list: `[((), input_tree)]`. Use Case: Sometimes we may wish to partially flatten a nested sequence, retaining some of the nested structure. We achieve this by specifying a shallow structure, `shallow_tree`, we wish to flatten up to. The input, `input_tree`, can be thought of as having the same structure layout as `shallow_tree`, but with leaf nodes that are themselves tree structures. Examples: ```python input_tree = [[[2, 2], [3, 3]], [[4, 9], [5, 5]]] shallow_tree = [[True, True], [False, True]] flattened_input_tree = flatten_with_tuple_paths_up_to(shallow_tree, input_tree) flattened_shallow_tree = flatten_with_tuple_paths_up_to(shallow_tree, shallow_tree) # Output is: # [((0, 0), [2, 2]), # ((0, 1), [3, 3]), # ((1, 0), [4, 9]), # ((1, 1), [5, 5])] # # [((0, 0), True), # ((0, 1), True), # ((1, 0), False), # ((1, 1), True)] ``` ```python input_tree = [[('a', 1), [('b', 2), [('c', 3), [('d', 4)]]]]] shallow_tree = [['level_1', ['level_2', ['level_3', ['level_4']]]]] input_tree_flattened_as_shallow_tree = flatten_up_to(shallow_tree, input_tree) input_tree_flattened = flatten(input_tree) # Output is: # [((0, 0), ('a', 1)), # ((0, 1, 0), ('b', 2)), # ((0, 1, 1, 0), ('c', 3)), # ((0, 1, 1, 1), ('d', 4))] # ['a', 1, 'b', 2, 'c', 3, 'd', 4] ``` Non-Sequence Edge Cases: ```python flatten_with_tuple_paths_up_to(0, 0) # Output: [(), 0] flatten_with_tuple_paths_up_to(0, [0, 1, 2]) # Output: [(), [0, 1, 2]] flatten_with_tuple_paths_up_to([0, 1, 2], 0) # Output: TypeError flatten_with_tuple_paths_up_to([0, 1, 2], [0, 1, 2]) # Output: [((0,) 0), ((1,), 1), ((2,), 2)] ``` Args: shallow_tree: a possibly pruned structure of input_tree. input_tree: an arbitrarily nested structure or a scalar object. Note, numpy arrays are considered scalars. check_types: bool. If True, check that each node in shallow_tree has the same type as the corresponding node in input_tree. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A Python list, the partially flattened version of `input_tree` according to the structure of `shallow_tree`. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. """ is_seq = is_sequence_or_composite if expand_composites else is_sequence assert_shallow_structure(shallow_tree, input_tree, check_types=check_types, expand_composites=expand_composites) return list(_yield_flat_up_to(shallow_tree, input_tree, is_seq)) def map_structure_up_to(shallow_tree, func, *inputs, **kwargs): """Applies a function or op to a number of partially flattened inputs. The `inputs` are flattened up to `shallow_tree` before being mapped. Use Case: Sometimes we wish to apply a function to a partially flattened sequence (for example when the function itself takes sequence inputs). We achieve this by specifying a shallow structure, `shallow_tree` we wish to flatten up to. The `inputs`, can be thought of as having the same structure layout as `shallow_tree`, but with leaf nodes that are themselves tree structures. This function therefore will return something with the same base structure as `shallow_tree`. Examples: ```python shallow_tree = [None, None] inp_val = [1, 2, 3] out = map_structure_up_to(shallow_tree, lambda x: 2 * x, inp_val) # Output is: [2, 4] ``` ```python ab_tuple = collections.namedtuple("ab_tuple", "a, b") op_tuple = collections.namedtuple("op_tuple", "add, mul") inp_val = ab_tuple(a=2, b=3) inp_ops = ab_tuple(a=op_tuple(add=1, mul=2), b=op_tuple(add=2, mul=3)) out = map_structure_up_to(inp_val, lambda val, ops: (val + ops.add) * ops.mul, inp_val, inp_ops) # Output is: ab_tuple(a=6, b=15) ``` ```python data_list = [[2, 4, 6, 8], [[1, 3, 5, 7, 9], [3, 5, 7]]] name_list = ['evens', ['odds', 'primes']] out = map_structure_up_to( name_list, lambda name, sec: "first_{}_{}".format(len(sec), name), name_list, data_list) # Output is: ['first_4_evens', ['first_5_odds', 'first_3_primes']] ``` Args: shallow_tree: a shallow tree, common to all the inputs. func: callable which will be applied to each input individually. *inputs: arbitrarily nested combination of objects that are compatible with shallow_tree. The function `func` is applied to corresponding partially flattened elements of each input, so the function must support arity of `len(inputs)`. **kwargs: kwargs to feed to func(). Special kwarg `check_types` is not passed to func, but instead determines whether the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. Raises: TypeError: If `shallow_tree` is a sequence but `input_tree` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. Returns: result of repeatedly applying `func`, with the same structure layout as `shallow_tree`. """ return map_structure_with_tuple_paths_up_to( shallow_tree, lambda _, *values: func(*values), # Discards the path arg. *inputs, **kwargs) def map_structure_with_tuple_paths_up_to(shallow_tree, func, *inputs, **kwargs): """Applies a function or op to a number of partially flattened inputs. Like map_structure_up_to(), except that the 'func' argument takes a path tuple as its first argument, followed by the corresponding values from *inputs. Example: ```python lowercase = {'a': 'a', 'b': ('b0', 'b1')} uppercase = {'a': 'A', 'b': ('B0', 'B1')} def print_path_and_values(path, *values): print("path: {}, values: {}".format(path, values)) shallow_tree = {'a': None} map_structure_with_tuple_paths_up_to(shallow_tree, print_path_and_values, lowercase, uppercase) path: ('a',), values: ('a', 'A') path: ('b', 0), values: ('b0', 'B0') path: ('b', 1), values: ('b1', 'B1') shallow_tree = {'b': None} map_structure_with_tuple_paths_up_to(shallow_tree, print_path_and_values, lowercase, uppercase, check_types=False) path: ('b', 1), values: (('bo', 'b1'), ('B0', 'B1')) shallow_tree = {'a': None, 'b': {1: None}} map_structure_with_tuple_paths_up_to(shallow_tree, print_path_and_values, lowercase, uppercase, check_types=False) path: ('a',), values: ('a', 'A') path: ('b', 1), values: ('b1', B1') ``` Args: shallow_tree: a shallow tree, common to all the inputs. func: callable that takes args (path, inputs_0_value, ... , inputs_N_value), where path is a tuple path to a leaf node in shallow_tree, and inputs_i_value is the corresponding value from inputs[i]. *inputs: nested structures that are all structurally compatible with shallow_tree. **kwargs: kwargs to feed to func(). Special kwarg `check_types` is not passed to func, but instead determines whether the types of iterables within the structures have to be same (e.g. `map_structure(func, [1], (1,))` raises a `TypeError` exception). To allow this set this argument to `False`. Raises: TypeError: If `shallow_tree` is a sequence but one of `*inputs` is not. TypeError: If the sequence types of `shallow_tree` are different from `input_tree`. ValueError: If the sequence lengths of `shallow_tree` are different from `input_tree`. Returns: Result of repeatedly applying `func`. Has the same structure layout as `shallow_tree`. """ if not inputs: raise ValueError("Cannot map over no sequences") check_types = kwargs.pop("check_types", True) expand_composites = kwargs.pop("expand_composites", False) is_seq = is_sequence_or_composite if expand_composites else is_sequence for input_tree in inputs: assert_shallow_structure( shallow_tree, input_tree, check_types=check_types, expand_composites=expand_composites) # Flatten each input separately, apply the function to corresponding elements, # then repack based on the structure of the first input. flat_value_gen = ( flatten_up_to( # pylint: disable=g-complex-comprehension shallow_tree, input_tree, check_types, expand_composites=expand_composites) for input_tree in inputs) flat_path_gen = ( path for path, _ in _yield_flat_up_to(shallow_tree, inputs[0], is_seq)) results = [ func(*args, **kwargs) for args in zip(flat_path_gen, *flat_value_gen) ] return pack_sequence_as(structure=shallow_tree, flat_sequence=results, expand_composites=expand_composites) def get_traverse_shallow_structure(traverse_fn, structure, expand_composites=False): """Generates a shallow structure from a `traverse_fn` and `structure`. `traverse_fn` must accept any possible subtree of `structure` and return a depth=1 structure containing `True` or `False` values, describing which of the top-level subtrees may be traversed. It may also return scalar `True` or `False` "traversal is OK / not OK for all subtrees." Examples are available in the unit tests (nest_test.py). Args: traverse_fn: Function taking a substructure and returning either a scalar `bool` (whether to traverse that substructure or not) or a depth=1 shallow structure of the same type, describing which parts of the substructure to traverse. structure: The structure to traverse. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A shallow structure containing python bools, which can be passed to `map_structure_up_to` and `flatten_up_to`. Raises: TypeError: if `traverse_fn` returns a sequence for a non-sequence input, or a structure with depth higher than 1 for a sequence input, or if any leaf values in the returned structure or scalar are not type `bool`. """ is_seq = is_sequence_or_composite if expand_composites else is_sequence to_traverse = traverse_fn(structure) if not is_seq(structure): if not isinstance(to_traverse, bool): raise TypeError("traverse_fn returned structure: %s for non-structure: %s" % (to_traverse, structure)) return to_traverse level_traverse = [] if isinstance(to_traverse, bool): if not to_traverse: # Do not traverse this substructure at all. Exit early. return False else: # Traverse the entire substructure. for branch in _yield_value(structure): level_traverse.append( get_traverse_shallow_structure(traverse_fn, branch, expand_composites=expand_composites)) elif not is_seq(to_traverse): raise TypeError("traverse_fn returned a non-bool scalar: %s for input: %s" % (to_traverse, structure)) else: # Traverse some subset of this substructure. assert_shallow_structure(to_traverse, structure, expand_composites=expand_composites) for t, branch in zip(_yield_value(to_traverse), _yield_value(structure)): if not isinstance(t, bool): raise TypeError( "traverse_fn didn't return a depth=1 structure of bools. saw: %s " " for structure: %s" % (to_traverse, structure)) if t: level_traverse.append( get_traverse_shallow_structure(traverse_fn, branch)) else: level_traverse.append(False) return _sequence_like(structure, level_traverse) def yield_flat_paths(nest, expand_composites=False): """Yields paths for some nested structure. Paths are lists of objects which can be str-converted, which may include integers or other types which are used as indices in a dict. The flat list will be in the corresponding order as if you called `nest.flatten` on the structure. This is handy for naming Tensors such the TF scope structure matches the tuple structure. E.g. if we have a tuple `value = Foo(a=3, b=Bar(c=23, d=42))` ```shell nest.flatten(value) [3, 23, 42] list(nest.yield_flat_paths(value)) [('a',), ('b', 'c'), ('b', 'd')] ``` ```shell list(nest.yield_flat_paths({'a': [3]})) [('a', 0)] list(nest.yield_flat_paths({'a': 3})) [('a',)] ``` Args: nest: the value to produce a flattened paths list for. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Yields: Tuples containing index or key values which form the path to a specific leaf value in the nested structure. """ is_seq = is_sequence_or_composite if expand_composites else is_sequence for k, _ in _yield_flat_up_to(nest, nest, is_seq): yield k def flatten_with_joined_string_paths(structure, separator="/", expand_composites=False): """Returns a list of (string path, data element) tuples. The order of tuples produced matches that of `nest.flatten`. This allows you to flatten a nested structure while keeping information about where in the structure each data element was located. See `nest.yield_flat_paths` for more information. Args: structure: the nested structure to flatten. separator: string to separate levels of hierarchy in the results, defaults to '/'. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A list of (string, data element) tuples. """ flat_paths = yield_flat_paths(structure, expand_composites=expand_composites) def stringify_and_join(path_elements): return separator.join(str(path_element) for path_element in path_elements) flat_string_paths = (stringify_and_join(path) for path in flat_paths) return list(zip(flat_string_paths, flatten(structure, expand_composites=expand_composites))) def flatten_with_tuple_paths(structure, expand_composites=False): """Returns a list of `(tuple_path, leaf_element)` tuples. The order of pairs produced matches that of `nest.flatten`. This allows you to flatten a nested structure while keeping information about where in the structure each data element was located. See `nest.yield_flat_paths` for more information about tuple paths. Args: structure: the nested structure to flatten. expand_composites: If true, then composite tensors such as `tf.sparse.SparseTensor` and `tf.RaggedTensor` are expanded into their component tensors. Returns: A list of `(tuple_path, leaf_element)` tuples. Each `tuple_path` is a tuple of indices and/or dictionary keys that uniquely specify the path to `leaf_element` within `structure`. """ return list(zip(yield_flat_paths(structure, expand_composites=expand_composites), flatten(structure, expand_composites=expand_composites))) def list_to_tuple(structure): """Replace all lists with tuples. The fork of nest that tf.data uses treats lists as single elements, while tf.nest treats them as structures to recurse into. Keras has chosen to adopt the latter convention, and must therefore deeply replace all lists with tuples before passing structures to Dataset.from_generator. Args: structure: A nested structure to be remapped. Returns: structure mapped to replace all lists with tuples. """ def sequence_fn(instance, args): if isinstance(instance, list): return tuple(args) return _sequence_like(instance, args) return _pack_sequence_as(structure, flatten(structure), False, sequence_fn=sequence_fn) _pywrap_utils.RegisterType("Mapping", _collections_abc.Mapping) _pywrap_utils.RegisterType("MutableMapping", _collections_abc.MutableMapping) _pywrap_utils.RegisterType("Sequence", _collections_abc.Sequence) _pywrap_utils.RegisterType("MappingView", _collections_abc.MappingView) _pywrap_utils.RegisterType("ObjectProxy", _wrapt.ObjectProxy)
py
1a547c2cea76e8e33e387193a42ee4376f481ea0
class Pedido: def __init__(self, cliente, observacoes, data_pedido, valor, status, produtos): self.__cliente = cliente self.__observacoes = observacoes self.__data_pedido = data_pedido self.__valor = valor self.__status = status self.__produtos = produtos @property def cliente(self): return self.__cliente @cliente.setter def cliente(self, cliente): self.__cliente = cliente @property def observacoes(self): return self.__observacoes @observacoes.setter def observacoes(self, observacoes): self.__observacoes = observacoes @property def data_pedido(self): return self.__data_pedido @data_pedido.setter def data_pedido(self, data_pedido): self.__data_pedido = data_pedido @property def valor(self): return self.__valor @valor.setter def valor(self, valor): self.__valor = valor @property def status(self): return self.__status @status.setter def status(self, status): self.__status = status @property def produtos(self): return self.__produtos @produtos.setter def produtos(self, produtos): self.__produtos = produtos
py
1a547dc3677e7cbaa930c0540ad6d3beb36b1735
AP_LOCATION = None '''constant value 3 ''' AP_ORIENTATION = None '''constant value 4 ''' AP_PANNING = None '''constant value 1 ''' AP_PITCH = None '''constant value 2 ''' AP_VOLUME = None '''constant value 0 ''' CHANNELS_INVALID = None '''constant value 0 ''' CHANNELS_MONO = None '''constant value 1 ''' CHANNELS_STEREO = None '''constant value 2 ''' CHANNELS_STEREO_LFE = None '''constant value 3 ''' CHANNELS_SURROUND4 = None '''constant value 4 ''' CHANNELS_SURROUND5 = None '''constant value 5 ''' CHANNELS_SURROUND51 = None '''constant value 6 ''' CHANNELS_SURROUND61 = None '''constant value 7 ''' CHANNELS_SURROUND71 = None '''constant value 8 ''' CODEC_AAC = None '''constant value 1 ''' CODEC_AC3 = None '''constant value 2 ''' CODEC_FLAC = None '''constant value 3 ''' CODEC_INVALID = None '''constant value 0 ''' CODEC_MP2 = None '''constant value 4 ''' CODEC_MP3 = None '''constant value 5 ''' CODEC_OPUS = None '''constant value 8 ''' CODEC_PCM = None '''constant value 6 ''' CODEC_VORBIS = None '''constant value 7 ''' CONTAINER_AC3 = None '''constant value 1 ''' CONTAINER_FLAC = None '''constant value 2 ''' CONTAINER_INVALID = None '''constant value 0 ''' CONTAINER_MATROSKA = None '''constant value 3 ''' CONTAINER_MP2 = None '''constant value 4 ''' CONTAINER_MP3 = None '''constant value 5 ''' CONTAINER_OGG = None '''constant value 6 ''' CONTAINER_WAV = None '''constant value 7 ''' DISTANCE_MODEL_EXPONENT = None '''constant value 5 ''' DISTANCE_MODEL_EXPONENT_CLAMPED = None '''constant value 6 ''' DISTANCE_MODEL_INVALID = None '''constant value 0 ''' DISTANCE_MODEL_INVERSE = None '''constant value 1 ''' DISTANCE_MODEL_INVERSE_CLAMPED = None '''constant value 2 ''' DISTANCE_MODEL_LINEAR = None '''constant value 3 ''' DISTANCE_MODEL_LINEAR_CLAMPED = None '''constant value 4 ''' FORMAT_FLOAT32 = None '''constant value 36 ''' FORMAT_FLOAT64 = None '''constant value 40 ''' FORMAT_INVALID = None '''constant value 0 ''' FORMAT_S16 = None '''constant value 18 ''' FORMAT_S24 = None '''constant value 19 ''' FORMAT_S32 = None '''constant value 20 ''' FORMAT_U8 = None '''constant value 1 ''' RATE_11025 = None '''constant value 11025 ''' RATE_16000 = None '''constant value 16000 ''' RATE_192000 = None '''constant value 192000 ''' RATE_22050 = None '''constant value 22050 ''' RATE_32000 = None '''constant value 32000 ''' RATE_44100 = None '''constant value 44100 ''' RATE_48000 = None '''constant value 48000 ''' RATE_8000 = None '''constant value 8000 ''' RATE_88200 = None '''constant value 88200 ''' RATE_96000 = None '''constant value 96000 ''' RATE_INVALID = None '''constant value 0 ''' STATUS_INVALID = None '''constant value 0 ''' STATUS_PAUSED = None '''constant value 2 ''' STATUS_PLAYING = None '''constant value 1 ''' STATUS_STOPPED = None '''constant value 3 ''' class Device: '''Unlocks the device after a lock call, see lock() for details. ''' channels = None '''The channel count of the device. ''' distance_model = None '''The distance model of the device. ''' doppler_factor = None '''The doppler factor of the device. This factor is a scaling factor for the velocity vectors in doppler calculation. So a value bigger than 1 will exaggerate the effect as it raises the velocity. ''' format = None '''The native sample format of the device. ''' listener_location = None '''The listeners’s location in 3D space, a 3D tuple of floats. ''' listener_orientation = None '''The listener’s orientation in 3D space as quaternion, a 4 float tuple. ''' listener_velocity = None '''The listener’s velocity in 3D space, a 3D tuple of floats. ''' rate = None '''The sampling rate of the device in Hz. ''' speed_of_sound = None '''The speed of sound of the device. The speed of sound in air is typically 343.3 m/s. ''' volume = None '''The overall volume of the device. ''' class DynamicMusic: '''Stops playback of the scene. ''' fadeTime = None '''The length in seconds of the crossfade transition ''' position = None '''The playback position of the scene in seconds. ''' scene = None '''The current scene ''' status = None '''Whether the scene is playing, paused or stopped (=invalid). ''' volume = None '''The volume of the scene. ''' class Handle: '''Stops playback. ''' attenuation = None '''This factor is used for distance based attenuation of the source. ''' cone_angle_inner = None '''The opening angle of the inner cone of the source. If the cone values of a source are set there are two (audible) cones with the apex at the location of the source and with infinite height, heading in the direction of the source’s orientation. In the inner cone the volume is normal. Outside the outer cone the volume will be cone_volume_outer and in the area between the volume will be interpolated linearly. ''' cone_angle_outer = None '''The opening angle of the outer cone of the source. ''' cone_volume_outer = None '''The volume outside the outer cone of the source. ''' distance_maximum = None '''The maximum distance of the source. If the listener is further away the source volume will be 0. ''' distance_reference = None '''The reference distance of the source. At this distance the volume will be exactly volume. ''' keep = None '''Whether the sound should be kept paused in the device when its end is reached. This can be used to seek the sound to some position and start playback again. ''' location = None '''The source’s location in 3D space, a 3D tuple of floats. ''' loop_count = None '''The (remaining) loop count of the sound. A negative value indicates infinity. ''' orientation = None '''The source’s orientation in 3D space as quaternion, a 4 float tuple. ''' pitch = None '''The pitch of the sound. ''' position = None '''The playback position of the sound in seconds. ''' relative = None '''Whether the source’s location, velocity and orientation is relative or absolute to the listener. ''' status = None '''Whether the sound is playing, paused or stopped (=invalid). ''' velocity = None '''The source’s velocity in 3D space, a 3D tuple of floats. ''' volume = None '''The volume of the sound. ''' volume_maximum = None '''The maximum volume of the source. ''' volume_minimum = None '''The minimum volume of the source. ''' class PlaybackManager: '''Stops playback of the category. ''' pass class Sequence: '''Writes animation data to a sequence. ''' channels = None '''The channel count of the sequence. ''' distance_model = None '''The distance model of the sequence. ''' doppler_factor = None '''The doppler factor of the sequence. This factor is a scaling factor for the velocity vectors in doppler calculation. So a value bigger than 1 will exaggerate the effect as it raises the velocity. ''' fps = None '''The listeners’s location in 3D space, a 3D tuple of floats. ''' muted = None '''Whether the whole sequence is muted. ''' rate = None '''The sampling rate of the sequence in Hz. ''' speed_of_sound = None '''The speed of sound of the sequence. The speed of sound in air is typically 343.3 m/s. ''' class SequenceEntry: '''Writes animation data to a sequenced entry. ''' attenuation = None '''This factor is used for distance based attenuation of the source. ''' cone_angle_inner = None '''The opening angle of the inner cone of the source. If the cone values of a source are set there are two (audible) cones with the apex at the location of the source and with infinite height, heading in the direction of the source’s orientation. In the inner cone the volume is normal. Outside the outer cone the volume will be cone_volume_outer and in the area between the volume will be interpolated linearly. ''' cone_angle_outer = None '''The opening angle of the outer cone of the source. ''' cone_volume_outer = None '''The volume outside the outer cone of the source. ''' distance_maximum = None '''The maximum distance of the source. If the listener is further away the source volume will be 0. ''' distance_reference = None '''The reference distance of the source. At this distance the volume will be exactly volume. ''' muted = None '''Whether the entry is muted. ''' relative = None '''Whether the source’s location, velocity and orientation is relative or absolute to the listener. ''' sound = None '''The sound the entry is representing and will be played in the sequence. ''' volume_maximum = None '''The maximum volume of the source. ''' volume_minimum = None '''The minimum volume of the source. ''' class Sound: '''Writes the sound to a file. ''' length = None '''The sample specification of the sound as a tuple with rate and channel count. ''' specs = None '''The sample specification of the sound as a tuple with rate and channel count. ''' class Source: '''The source object represents the source position of a binaural sound. ''' azimuth = None '''The azimuth angle. ''' distance = None '''The distance value. 0 is min, 1 is max. ''' elevation = None '''The elevation angle. ''' class ThreadPool: '''A ThreadPool is used to parallelize convolution efficiently. ''' pass class error: pass
py
1a547e6ac6eb0a6bf0d2c786ebf2912bd10c0580
import os print("Starting Capsian Setup Tool...") print("This script will install all the dependencies you need") input("Press enter to continue or close to terminate ") _pip_type = "pip" if os.name == "posix": _pip_type = "pip3" os.system(_pip_type + " install pyglet==1.5.6") os.system(_pip_type + " install PyOpenGL") os.system(_pip_type + " install pyinstaller") input("Installation complete!\nPress enter to exit ")
py
1a547fc2d2ee953271a6491f6718bd3196777344
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import datetime import functools import importlib import json import operator import os import queue import sys import tempfile import time import traceback import unittest import warnings from contextlib import contextmanager from functools import partial, reduce from subprocess import PIPE, Popen from typing import Callable, Optional, Tuple from urllib.error import ContentTooShortError, HTTPError import numpy as np import torch import torch.distributed as dist from monai.apps.utils import download_url from monai.config import NdarrayTensor from monai.config.deviceconfig import USE_COMPILED from monai.config.type_definitions import NdarrayOrTensor from monai.data import create_test_image_2d, create_test_image_3d from monai.networks import convert_to_torchscript from monai.utils import optional_import from monai.utils.module import pytorch_after, version_leq from monai.utils.type_conversion import convert_data_type nib, _ = optional_import("nibabel") quick_test_var = "QUICKTEST" _tf32_enabled = None _test_data_config: dict = {} def testing_data_config(*keys): """get _test_data_config[keys0][keys1]...[keysN]""" if not _test_data_config: with open(os.path.join(os.path.dirname(__file__), "testing_data", "data_config.json")) as c: _config = json.load(c) for k, v in _config.items(): _test_data_config[k] = v return reduce(operator.getitem, keys, _test_data_config) def clone(data: NdarrayTensor) -> NdarrayTensor: """ Clone data independent of type. Args: data (NdarrayTensor): This can be a Pytorch Tensor or numpy array. Returns: Any: Cloned data object """ return copy.deepcopy(data) def assert_allclose( actual: NdarrayOrTensor, desired: NdarrayOrTensor, type_test: bool = True, device_test: bool = False, *args, **kwargs, ): """ Assert that types and all values of two data objects are close. Args: actual: Pytorch Tensor or numpy array for comparison. desired: Pytorch Tensor or numpy array to compare against. type_test: whether to test that `actual` and `desired` are both numpy arrays or torch tensors. device_test: whether to test the device property. args: extra arguments to pass on to `np.testing.assert_allclose`. kwargs: extra arguments to pass on to `np.testing.assert_allclose`. """ if type_test: # check both actual and desired are of the same type np.testing.assert_equal(isinstance(actual, np.ndarray), isinstance(desired, np.ndarray), "numpy type") np.testing.assert_equal(isinstance(actual, torch.Tensor), isinstance(desired, torch.Tensor), "torch type") if isinstance(desired, torch.Tensor) or isinstance(actual, torch.Tensor): if device_test: np.testing.assert_equal(str(actual.device), str(desired.device), "torch device check") # type: ignore actual = actual.detach().cpu().numpy() if isinstance(actual, torch.Tensor) else actual desired = desired.detach().cpu().numpy() if isinstance(desired, torch.Tensor) else desired np.testing.assert_allclose(actual, desired, *args, **kwargs) @contextmanager def skip_if_downloading_fails(): try: yield except (ContentTooShortError, HTTPError, ConnectionError) as e: raise unittest.SkipTest(f"error while downloading: {e}") from e except RuntimeError as rt_e: if "unexpected EOF" in str(rt_e): raise unittest.SkipTest(f"error while downloading: {rt_e}") from rt_e # incomplete download if "network issue" in str(rt_e): raise unittest.SkipTest(f"error while downloading: {rt_e}") from rt_e if "gdown dependency" in str(rt_e): # no gdown installed raise unittest.SkipTest(f"error while downloading: {rt_e}") from rt_e if "md5 check" in str(rt_e): raise unittest.SkipTest(f"error while downloading: {rt_e}") from rt_e raise rt_e def test_pretrained_networks(network, input_param, device): with skip_if_downloading_fails(): return network(**input_param).to(device) def test_is_quick(): return os.environ.get(quick_test_var, "").lower() == "true" def is_tf32_env(): """ The environment variable NVIDIA_TF32_OVERRIDE=0 will override any defaults or programmatic configuration of NVIDIA libraries, and consequently, cuBLAS will not accelerate FP32 computations with TF32 tensor cores. """ global _tf32_enabled if _tf32_enabled is None: _tf32_enabled = False if ( torch.cuda.is_available() and not version_leq(f"{torch.version.cuda}", "10.100") and os.environ.get("NVIDIA_TF32_OVERRIDE", "1") != "0" and torch.cuda.device_count() > 0 # at least 11.0 ): try: # with TF32 enabled, the speed is ~8x faster, but the precision has ~2 digits less in the result g_gpu = torch.Generator(device="cuda") g_gpu.manual_seed(2147483647) a_full = torch.randn(1024, 1024, dtype=torch.double, device="cuda", generator=g_gpu) b_full = torch.randn(1024, 1024, dtype=torch.double, device="cuda", generator=g_gpu) _tf32_enabled = (a_full.float() @ b_full.float() - a_full @ b_full).abs().max().item() > 0.001 # 0.1713 except BaseException: pass print(f"tf32 enabled: {_tf32_enabled}") return _tf32_enabled def skip_if_quick(obj): """ Skip the unit tests if environment variable `quick_test_var=true`. For example, the user can skip the relevant tests by setting ``export QUICKTEST=true``. """ is_quick = test_is_quick() return unittest.skipIf(is_quick, "Skipping slow tests")(obj) class SkipIfNoModule: """Decorator to be used if test should be skipped when optional module is not present.""" def __init__(self, module_name): self.module_name = module_name self.module_missing = not optional_import(self.module_name)[1] def __call__(self, obj): return unittest.skipIf(self.module_missing, f"optional module not present: {self.module_name}")(obj) class SkipIfModule: """Decorator to be used if test should be skipped when optional module is present.""" def __init__(self, module_name): self.module_name = module_name self.module_avail = optional_import(self.module_name)[1] def __call__(self, obj): return unittest.skipIf(self.module_avail, f"Skipping because optional module present: {self.module_name}")(obj) def skip_if_no_cpp_extension(obj): """ Skip the unit tests if the cpp extension is not available """ return unittest.skipUnless(USE_COMPILED, "Skipping cpp extension tests")(obj) def skip_if_no_cuda(obj): """ Skip the unit tests if torch.cuda.is_available is False """ return unittest.skipUnless(torch.cuda.is_available(), "Skipping CUDA-based tests")(obj) def skip_if_windows(obj): """ Skip the unit tests if platform is win32 """ return unittest.skipIf(sys.platform == "win32", "Skipping tests on Windows")(obj) class SkipIfBeforePyTorchVersion: """Decorator to be used if test should be skipped with PyTorch versions older than that given.""" def __init__(self, pytorch_version_tuple): self.min_version = pytorch_version_tuple self.version_too_old = not pytorch_after(*pytorch_version_tuple) def __call__(self, obj): return unittest.skipIf( self.version_too_old, f"Skipping tests that fail on PyTorch versions before: {self.min_version}" )(obj) class SkipIfAtLeastPyTorchVersion: """Decorator to be used if test should be skipped with PyTorch versions newer than or equal to that given.""" def __init__(self, pytorch_version_tuple): self.max_version = pytorch_version_tuple self.version_too_new = pytorch_after(*pytorch_version_tuple) def __call__(self, obj): return unittest.skipIf( self.version_too_new, f"Skipping tests that fail on PyTorch versions at least: {self.max_version}" )(obj) def is_main_test_process(): ps = torch.multiprocessing.current_process() if not ps or not hasattr(ps, "name"): return False return ps.name.startswith("Main") def has_cupy(): """ Returns True if the user has installed a version of cupy. """ cp, has_cp = optional_import("cupy") if not is_main_test_process(): return has_cp # skip the check if we are running in subprocess if not has_cp: return False try: # test cupy installation with a basic example x = cp.arange(6, dtype="f").reshape(2, 3) y = cp.arange(3, dtype="f") kernel = cp.ElementwiseKernel( "float32 x, float32 y", "float32 z", """ if (x - 2 > y) { z = x * y; } else { z = x + y; } """, "my_kernel" ) flag = kernel(x, y)[0, 0] == 0 del x, y, kernel cp.get_default_memory_pool().free_all_blocks() return flag except Exception: return False HAS_CUPY = has_cupy() def make_nifti_image(array: NdarrayOrTensor, affine=None, dir=None, fname=None, suffix=".nii.gz", verbose=False): """ Create a temporary nifti image on the disk and return the image name. User is responsible for deleting the temporary file when done with it. """ if isinstance(array, torch.Tensor): array, *_ = convert_data_type(array, np.ndarray) if isinstance(affine, torch.Tensor): affine, *_ = convert_data_type(affine, np.ndarray) if affine is None: affine = np.eye(4) test_image = nib.Nifti1Image(array, affine) # if dir not given, create random. Else, make sure it exists. if dir is None: dir = tempfile.mkdtemp() else: os.makedirs(dir, exist_ok=True) # If fname not given, get random one. Else, concat dir, fname and suffix. if fname is None: temp_f, fname = tempfile.mkstemp(suffix=suffix, dir=dir) os.close(temp_f) else: fname = os.path.join(dir, fname + suffix) nib.save(test_image, fname) if verbose: print(f"File written: {fname}.") return fname def make_rand_affine(ndim: int = 3, random_state: Optional[np.random.RandomState] = None): """Create random affine transformation (with values == -1, 0 or 1).""" rs = np.random.random.__self__ if random_state is None else random_state # type: ignore vals = rs.choice([-1, 1], size=ndim) positions = rs.choice(range(ndim), size=ndim, replace=False) af = np.zeros([ndim + 1, ndim + 1]) af[ndim, ndim] = 1 for i, (v, p) in enumerate(zip(vals, positions)): af[i, p] = v return af class DistTestCase(unittest.TestCase): """ testcase without _outcome, so that it's picklable. """ def __getstate__(self): self_dict = self.__dict__.copy() del self_dict["_outcome"] return self_dict def __setstate__(self, data_dict): self.__dict__.update(data_dict) class DistCall: """ Wrap a test case so that it will run in multiple processes on a single machine using `torch.distributed`. It is designed to be used with `tests.utils.DistTestCase`. Usage: decorate a unittest testcase method with a `DistCall` instance:: class MyTests(unittest.TestCase): @DistCall(nnodes=1, nproc_per_node=3, master_addr="localhost") def test_compute(self): ... the `test_compute` method should trigger different worker logic according to `dist.get_rank()`. Multi-node tests require a fixed master_addr:master_port, with node_rank set manually in multiple scripts or from environment variable "NODE_RANK". """ def __init__( self, nnodes: int = 1, nproc_per_node: int = 1, master_addr: str = "localhost", master_port: Optional[int] = None, node_rank: Optional[int] = None, timeout=60, init_method=None, backend: Optional[str] = None, daemon: Optional[bool] = None, method: Optional[str] = "spawn", verbose: bool = False, ): """ Args: nnodes: The number of nodes to use for distributed call. nproc_per_node: The number of processes to call on each node. master_addr: Master node (rank 0)'s address, should be either the IP address or the hostname of node 0. master_port: Master node (rank 0)'s free port. node_rank: The rank of the node, this could be set via environment variable "NODE_RANK". timeout: Timeout for operations executed against the process group. init_method: URL specifying how to initialize the process group. Default is "env://" or "file:///d:/a_temp" (windows) if unspecified. backend: The backend to use. Depending on build-time configurations, valid values include ``mpi``, ``gloo``, and ``nccl``. daemon: the process’s daemon flag. When daemon=None, the initial value is inherited from the creating process. method: set the method which should be used to start a child process. method can be 'fork', 'spawn' or 'forkserver'. verbose: whether to print NCCL debug info. """ self.nnodes = int(nnodes) self.nproc_per_node = int(nproc_per_node) if self.nnodes < 1 or self.nproc_per_node < 1: raise ValueError( f"number of nodes and processes per node must be >= 1, got {self.nnodes} and {self.nproc_per_node}" ) self.node_rank = int(os.environ.get("NODE_RANK", "0")) if node_rank is None else int(node_rank) self.master_addr = master_addr self.master_port = np.random.randint(10000, 20000) if master_port is None else master_port if backend is None: self.backend = "nccl" if torch.distributed.is_nccl_available() and torch.cuda.is_available() else "gloo" else: self.backend = backend self.init_method = init_method if self.init_method is None and sys.platform == "win32": self.init_method = "file:///d:/a_temp" self.timeout = datetime.timedelta(0, timeout) self.daemon = daemon self.method = method self.verbose = verbose def run_process(self, func, local_rank, args, kwargs, results): _env = os.environ.copy() # keep the original system env try: os.environ["MASTER_ADDR"] = self.master_addr os.environ["MASTER_PORT"] = str(self.master_port) os.environ["LOCAL_RANK"] = str(local_rank) if self.verbose: os.environ["NCCL_DEBUG"] = "INFO" os.environ["NCCL_DEBUG_SUBSYS"] = "ALL" os.environ["NCCL_BLOCKING_WAIT"] = str(1) os.environ["OMP_NUM_THREADS"] = str(1) os.environ["WORLD_SIZE"] = str(self.nproc_per_node * self.nnodes) os.environ["RANK"] = str(self.nproc_per_node * self.node_rank + local_rank) if torch.cuda.is_available(): torch.cuda.set_device(int(local_rank)) # using device ids from CUDA_VISIBILE_DEVICES dist.init_process_group( backend=self.backend, init_method=self.init_method, timeout=self.timeout, world_size=int(os.environ["WORLD_SIZE"]), rank=int(os.environ["RANK"]), ) func(*args, **kwargs) # the primary node lives longer to # avoid _store_based_barrier, RuntimeError: Broken pipe # as the TCP store daemon is on the rank 0 if int(os.environ["RANK"]) == 0: time.sleep(0.1) results.put(True) except Exception as e: results.put(False) raise e finally: os.environ.clear() os.environ.update(_env) try: dist.destroy_process_group() except RuntimeError as e: warnings.warn(f"While closing process group: {e}.") def __call__(self, obj): if not torch.distributed.is_available(): return unittest.skipIf(True, "Skipping distributed tests because not torch.distributed.is_available()")(obj) if torch.cuda.is_available() and torch.cuda.device_count() < self.nproc_per_node: return unittest.skipIf( True, f"Skipping distributed tests because it requires {self.nnodes} devices " f"but got {torch.cuda.device_count()}", )(obj) _cache_original_func(obj) @functools.wraps(obj) def _wrapper(*args, **kwargs): tmp = torch.multiprocessing.get_context(self.method) processes = [] results = tmp.Queue() func = _call_original_func args = [obj.__name__, obj.__module__] + list(args) for proc_rank in range(self.nproc_per_node): p = tmp.Process( target=self.run_process, args=(func, proc_rank, args, kwargs, results), daemon=self.daemon ) p.start() processes.append(p) for p in processes: p.join() assert results.get(), "Distributed call failed." _del_original_func(obj) return _wrapper class TimedCall: """ Wrap a test case so that it will run in a new process, raises a TimeoutError if the decorated method takes more than `seconds` to finish. It is designed to be used with `tests.utils.DistTestCase`. """ def __init__( self, seconds: float = 60.0, daemon: Optional[bool] = None, method: Optional[str] = "spawn", force_quit: bool = True, skip_timing=False, ): """ Args: seconds: timeout seconds. daemon: the process’s daemon flag. When daemon=None, the initial value is inherited from the creating process. method: set the method which should be used to start a child process. method can be 'fork', 'spawn' or 'forkserver'. force_quit: whether to terminate the child process when `seconds` elapsed. skip_timing: whether to skip the timing constraint. this is useful to include some system conditions such as `torch.cuda.is_available()`. """ self.timeout_seconds = seconds self.daemon = daemon self.force_quit = force_quit self.skip_timing = skip_timing self.method = method @staticmethod def run_process(func, args, kwargs, results): try: output = func(*args, **kwargs) results.put(output) except Exception as e: e.traceback = traceback.format_exc() results.put(e) def __call__(self, obj): if self.skip_timing: return obj _cache_original_func(obj) @functools.wraps(obj) def _wrapper(*args, **kwargs): tmp = torch.multiprocessing.get_context(self.method) func = _call_original_func args = [obj.__name__, obj.__module__] + list(args) results = tmp.Queue() p = tmp.Process(target=TimedCall.run_process, args=(func, args, kwargs, results), daemon=self.daemon) p.start() p.join(timeout=self.timeout_seconds) timeout_error = None try: if p.is_alive(): # create an Exception timeout_error = torch.multiprocessing.TimeoutError( f"'{obj.__name__}' in '{obj.__module__}' did not finish in {self.timeout_seconds}s." ) if self.force_quit: p.terminate() else: warnings.warn( f"TimedCall: deadline ({self.timeout_seconds}s) " f"reached but waiting for {obj.__name__} to finish." ) finally: p.join() _del_original_func(obj) res = None try: res = results.get(block=False) except queue.Empty: # no result returned, took too long pass if isinstance(res, Exception): # other errors from obj if hasattr(res, "traceback"): raise RuntimeError(res.traceback) from res raise res if timeout_error: # no force_quit finished raise timeout_error return res return _wrapper _original_funcs = {} def _cache_original_func(obj) -> None: """cache the original function by name, so that the decorator doesn't shadow it.""" _original_funcs[obj.__name__] = obj def _del_original_func(obj): """pop the original function from cache.""" _original_funcs.pop(obj.__name__, None) if torch.cuda.is_available(): # clean up the cached function torch.cuda.synchronize() torch.cuda.empty_cache() def _call_original_func(name, module, *args, **kwargs): if name not in _original_funcs: _original_module = importlib.import_module(module) # reimport, refresh _original_funcs if not hasattr(_original_module, name): # refresh module doesn't work raise RuntimeError(f"Could not recover the original {name} from {module}: {_original_funcs}.") f = _original_funcs[name] return f(*args, **kwargs) class NumpyImageTestCase2D(unittest.TestCase): im_shape = (128, 64) input_channels = 1 output_channels = 4 num_classes = 3 def setUp(self): im, msk = create_test_image_2d( self.im_shape[0], self.im_shape[1], num_objs=4, rad_max=20, noise_max=0.0, num_seg_classes=self.num_classes ) self.imt = im[None, None] self.seg1 = (msk[None, None] > 0).astype(np.float32) self.segn = msk[None, None] class TorchImageTestCase2D(NumpyImageTestCase2D): def setUp(self): NumpyImageTestCase2D.setUp(self) self.imt = torch.tensor(self.imt) self.seg1 = torch.tensor(self.seg1) self.segn = torch.tensor(self.segn) class NumpyImageTestCase3D(unittest.TestCase): im_shape = (64, 48, 80) input_channels = 1 output_channels = 4 num_classes = 3 def setUp(self): im, msk = create_test_image_3d( self.im_shape[0], self.im_shape[1], self.im_shape[2], num_objs=4, rad_max=20, noise_max=0.0, num_seg_classes=self.num_classes, ) self.imt = im[None, None] self.seg1 = (msk[None, None] > 0).astype(np.float32) self.segn = msk[None, None] class TorchImageTestCase3D(NumpyImageTestCase3D): def setUp(self): NumpyImageTestCase3D.setUp(self) self.imt = torch.tensor(self.imt) self.seg1 = torch.tensor(self.seg1) self.segn = torch.tensor(self.segn) def test_script_save(net, *inputs, device=None, rtol=1e-4, atol=0.0): """ Test the ability to save `net` as a Torchscript object, reload it, and apply inference. The value `inputs` is forward-passed through the original and loaded copy of the network and their results returned. The forward pass for both is done without gradient accumulation. The test will be performed with CUDA if available, else CPU. """ # TODO: would be nice to use GPU if available, but it currently causes CI failures. device = "cpu" with tempfile.TemporaryDirectory() as tempdir: convert_to_torchscript( model=net, filename_or_obj=os.path.join(tempdir, "model.ts"), verify=True, inputs=inputs, device=device, rtol=rtol, atol=atol, ) def download_url_or_skip_test(*args, **kwargs): """``download_url`` and skip the tests if any downloading error occurs.""" with skip_if_downloading_fails(): download_url(*args, **kwargs) def query_memory(n=2): """ Find best n idle devices and return a string of device ids using the `nvidia-smi` command. """ bash_string = "nvidia-smi --query-gpu=power.draw,temperature.gpu,memory.used --format=csv,noheader,nounits" try: p1 = Popen(bash_string.split(), stdout=PIPE) output, error = p1.communicate() free_memory = [x.split(",") for x in output.decode("utf-8").split("\n")[:-1]] free_memory = np.asarray(free_memory, dtype=float).T free_memory[1] += free_memory[0] # combine 0/1 column measures ids = np.lexsort(free_memory)[:n] except (TypeError, IndexError, OSError): ids = range(n) if isinstance(n, int) else [] return ",".join(f"{int(x)}" for x in ids) TEST_NDARRAYS: Tuple[Callable] = (np.array, torch.as_tensor) # type: ignore if torch.cuda.is_available(): gpu_tensor: Callable = partial(torch.as_tensor, device="cuda") TEST_NDARRAYS = TEST_NDARRAYS + (gpu_tensor,) # type: ignore TEST_DEVICES = [[torch.device("cpu")]] if torch.cuda.is_available(): TEST_DEVICES.append([torch.device("cuda")]) if __name__ == "__main__": print(query_memory())
py
1a547febdf13d97a853cee399278c409568ee0c0
''' test_dnssec_nsecx - Tests NSECx support routines. .. Copyright (c) 2015 Neustar, Inc. All rights reserved. .. See COPYRIGHT.txt for full notice. See LICENSE.txt for terms and conditions. ''' # pylint: skip-file import dns.rdatatype import dns_sprockets_lib.dnssec_nsecx as nsecx def test_encode_salt(): tests = [ (None, None), (1, None), (b'', ''), (b'1', '31'), (b'a', '61'), (b'Testing', '54657374696e67')] for test in tests: print(test) assert nsecx.encode_salt(test[0]) == test[1] def test_decode_salt(): tests = [ (None, None), (1, None), ('', b''), ('1', None), ('31', b'1'), ('54657374696e67', b'Testing'), ('54657374696E67', b'Testing')] for test in tests: print(test) assert nsecx.decode_salt(test[0]) == test[1] def test_hash_nsec3_name(): tests = [ (None, '7f1962f2', 1, 15, None), (1, '7f1962f2', 1, 15, None), ('', '7f1962f2', 1, 15, 'lsa969sfkmlb6c92ea510pohd54douqu'), ('.', '7f1962f2', 1, 15, 'lsa969sfkmlb6c92ea510pohd54douqu'), ('001.cst.net.', '7f1962f2', 1, 15, 'uqml1am96tftfmlkagtbs82isr050sh0'), ('001.cst.net.', '7F1962F2', 1, 15, 'uqml1am96tftfmlkagtbs82isr050sh0'), ('001.001.cst.net.', '7F1962F2', 1, 15, '06es9cggdrorfdd4ns9ahocaikldrrp8'), ('test.001.cst.net.', '7F1962F2', 1, 15, 'kqgpu8i0ai43nem212bd0079j5si5r3k'), ('test2.001.cst.net.', '7F1962F2', 1, 15, 'al016abkh6lvdig6503fs92kdmotqh4v'), ('example', 'aabbccdd', 1, 12, '0p9mhaveqvm6t7vbl5lop2u3t2rp3tom'), ('a.example', 'aabbccdd', 1, 12, '35mthgpgcu1qg68fab165klnsnk3dpvl'), ('ai.example', 'aabbccdd', 1, 12, 'gjeqe526plbf1g8mklp59enfd789njgi'), ('ns1.example', 'aabbccdd', 1, 12, '2t7b4g4vsa5smi47k61mv5bv1a22bojr'), ('ns2.example', 'aabbccdd', 1, 12, 'q04jkcevqvmu85r014c7dkba38o0ji5r'), ('w.example', 'aabbccdd', 1, 12, 'k8udemvp1j2f7eg6jebps17vp3n8i58h'), ('*.w.example', 'aabbccdd', 1, 12, 'r53bq7cc2uvmubfu5ocmm6pers9tk9en'), ('x.w.example', 'aabbccdd', 1, 12, 'b4um86eghhds6nea196smvmlo4ors995'), ('y.w.example', 'aabbccdd', 1, 12, 'ji6neoaepv8b5o6k4ev33abha8ht9fgc'), ('x.y.w.example', 'aabbccdd', 1, 12, '2vptu5timamqttgl4luu9kg21e0aor3s'), ('xx.example', 'aabbccdd', 1, 12, 't644ebqk9bibcna874givr6joj62mlhv'), ('2t7b4g4vsa5smi47k61mv5bv1a22bojr.example', 'aabbccdd', 1, 12, 'kohar7mbb8dc2ce8a9qvl8hon4k53uhi')] for test in tests: print(test) assert nsecx.hash_nsec3_name(test[0], test[1], test[2], test[3], False) == test[4] def test__windows_covers(): tests = [ ([(0, None)], dns.rdatatype.A, False), ([(0, bytearray(b'\x00'))], dns.rdatatype.A, False), ([(0, bytearray(b'\x40'))], dns.rdatatype.A, True), ([(0, bytearray(b'\x40'))], dns.rdatatype.NS, False), ([(1, bytearray(b'\x40'))], dns.rdatatype.A, False), ([(1, bytearray(b'\x40'))], dns.rdatatype.CAA, True), ([(0, bytearray(b'\x00\x08'))], dns.rdatatype.PTR, True), ([(0, bytearray( b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08'))], dns.rdatatype.AXFR, True)] for test in tests: print(test) assert nsecx._windows_covers(test[0], test[1]) == test[2] def test__windows_get_covered_types(): tests = [ ([(0, None)], []), ([(0, bytearray(b'\x00'))], []), ([(0, bytearray(b'\x40'))], [dns.rdatatype.A]), ([(0, bytearray(b'\x60'))], [dns.rdatatype.A, dns.rdatatype.NS]), ([(0, bytearray(b'\x64'))], [ dns.rdatatype.A, dns.rdatatype.NS, dns.rdatatype.CNAME]), ([(1, bytearray(b'\x40'))], [dns.rdatatype.CAA]), ([(0, bytearray(b'\x40')), (1, bytearray(b'\x40'))], [dns.rdatatype.A, dns.rdatatype.CAA]), ([(0, bytearray(b'\x40\x08')), (1, bytearray(b'\x40'))], [ dns.rdatatype.A, dns.rdatatype.CAA, dns.rdatatype.PTR])] for test in tests: print(test) assert sorted(nsecx._windows_get_covered_types(test[0])) == sorted(test[1]) # end of file
py
1a548015272fb5757c43d12a37d9821ab77a2ce5
from setuptools import setup version = '0.0.0' setup( name = 'grid-plot', version = version, description = 'Plots data onto a grid.', url = 'http://github.com/doggan/grid-plot', license = 'MIT', author='Shyam Guthikonda', packages = ['grid_plot'], install_requires = [ 'Pillow == 2.7.0', ], entry_points = """ [console_scripts] grid-plot = grid_plot.command_line:main """ )
py
1a5480bfa503bb3a4f3388d32e7d7f8385398b68
from datetime import datetime import numpy as np import csv from utils import total_gini import tensorflow.compat.v1 as tf import json from pgd_attack import LinfPGDAttack from utils_MLP_model import init_MLP_vars with open('config.json') as config_file: config = json.load(config_file) w_vars, b_vars, stable_var, sparse_vars = init_MLP_vars() def print_metrics(sess, model, train_dict, nat_dict, val_dict, val_dict_distil, test_dict, ii, args, summary_writer, dict_exp, experiment, global_step): print('Step {}: ({})'.format(ii, datetime.now())) try: nat_acc = sess.run(model.accuracy, feed_dict=nat_dict) print(' batch training nat accuracy {:.4}'.format(nat_acc * 100)) nat_xent = sess.run(model.xent, feed_dict=nat_dict) print(' Nat Xent {:.4}'.format(nat_xent)) stable_xent = sess.run(model.stable_xent, feed_dict=nat_dict) robust_xent = sess.run(model.robust_xent, feed_dict=nat_dict) robust_stable_xent = sess.run(model.robust_stable_xent, feed_dict=nat_dict) train_l2 = sess.run(model.l2_loss, feed_dict=nat_dict) print(' Batch Training L2 Loss {:.4}'.format(train_l2)) except: train_distil_loss = sess.run(model.distil_loss, feed_dict=nat_dict) print(' Batch Training Distillation L2 Teacher Student Loss {:.4}'.format(train_distil_loss)) train_normal_acc = sess.run(model.accuracy, feed_dict=train_dict) print(' Training accuracy {:.4}'.format(train_normal_acc * 100)) train_l2 = sess.run(model.l2_loss, feed_dict=train_dict) print(' Training L2 Loss Ground Truth {:.4}'.format(train_l2)) summary3 = tf.Summary(value=[tf.Summary.Value(tag='TrainL2', simple_value=train_l2), ]) val_l2 = sess.run(model.l2_loss, feed_dict=val_dict) print(' Val L2 Loss Ground Truth {:.4}'.format(val_l2)) test_l2 = sess.run(model.l2_loss, feed_dict=test_dict) print(' Test L2 Loss Ground Truth {:.4}'.format(test_l2)) val_acc = sess.run(model.accuracy, feed_dict=val_dict) print(' validation nat accuracy {:.4}'.format(val_acc * 100)) if args.n_distillations > 1: train_l2 = sess.run(model.distil_loss, feed_dict=nat_dict) print(' Training L2 Loss vs Teacher {:.4}'.format(train_l2)) val_distil_loss = sess.run(model.distil_loss, feed_dict=val_dict_distil) print(' Validation L2 Loss Ground Truth {:.4}'.format(val_distil_loss)) summary7 = tf.Summary(value=[tf.Summary.Value(tag='ValTeacherL2', simple_value=val_distil_loss), ]) summary_writer.add_summary(summary7, global_step.eval(sess)) # summary1 = tf.Summary(value=[tf.Summary.Value(tag='TrainAcc', simple_value=train_normal_acc),]) summary2 = tf.Summary(value=[tf.Summary.Value(tag='ValAcc', simple_value=val_acc),]) summary4 = tf.Summary(value=[tf.Summary.Value(tag='ValL2', simple_value=val_l2), ]) summary6 = tf.Summary(value=[tf.Summary.Value(tag='TrainTeacherL2', simple_value=train_l2), ]) # summary_writer.add_summary(summary1, global_step.eval(sess)) summary_writer.add_summary(summary2, global_step.eval(sess)) # summary_writer.add_summary(summary3, global_step.eval(sess)) summary_writer.add_summary(summary4, global_step.eval(sess)) summary_writer.add_summary(summary6, global_step.eval(sess)) #summary_writer.add_text('args', str(args), global_step.eval(sess)) # summary5 = sess.run(model.summary, feed_dict=test_dict) # summary_writer.add_summary(summary5, global_step.eval(sess)) test_acc = sess.run(model.accuracy, feed_dict=test_dict) print(' Test accuracy {:.4}'.format(test_acc * 100)) # summary_writer.add_summary(test_acc, global_step.eval(sess)) if args.is_stable: stable_var = sess.run(getattr(model, config['stability_variable']), feed_dict=nat_dict) print(' Stability Variable {:.4}'.format(stable_var )) print(' Stable Xent {:.4}'.format(stable_xent)) print(' Stable Xent {:.4}'.format(stable_xent)) if args.rho > 0 : print(' Robust Xent {:.4}'.format(robust_xent)) if args.is_stable: print(' Robust Stable Xent {:.4}'.format(robust_stable_xent)) for i in range(len(w_vars)): if args.l0 > 0: print(' Killed neurons - ' + w_vars[i], dict_exp[w_vars[i] + '_killed_neurons'][experiment]) print(' Killed input neurons - ' + w_vars[i], dict_exp[w_vars[i] + '_killed_input_features'][experiment]) print(' Non zero features percentage - ' + w_vars[i] , dict_exp[w_vars[i] + '_nonzero'][experiment]) regularizer = sess.run(model.regularizer, feed_dict=nat_dict) print(' Regularizer', regularizer) # try: # summary = tf.Summary(value=[ # tf.Summary.Value(tag='Train Xent', simple_value= nat_xent), # # tf.Summary.Value(tag='Val Acc', simple_value= val_acc), # tf.Summary.Value(tag='Train Acc', simple_value= nat_acc), # tf.Summary.Value(tag='Train Stable Xent', simple_value= stable_xent), # tf.Summary.Value(tag='Train Robust Stable Xent', simple_value= robust_stable_xent), # tf.Summary.Value(tag='Test Acc', simple_value= test_acc)]) # except: # pass for i in range(len(w_vars)): if args.l0 > 0: summary_sparse = tf.Summary(value=[ tf.Summary.Value(tag=w_vars[i] + '_killed_neurons', simple_value=dict_exp[w_vars[i] + '_killed_neurons'][experiment]), tf.Summary.Value(tag=w_vars[i] + '_killed_inputs', simple_value=dict_exp[w_vars[i] + '_killed_input_features'][experiment]), tf.Summary.Value(tag=w_vars[i] + '_nonzero', simple_value=dict_exp[w_vars[i] + '_nonzero'][experiment])]) summary_writer.add_summary(summary_sparse, global_step.eval(sess)) def update_dict_output(dict_exp, experiment, sess, test_acc, model, test_dict, num_iters): dict_exp['test_accs'][experiment] = test_acc*100 dict_exp['iterations'][experiment] = num_iters return dict_exp def update_adv_acc(args, best_model, x_test, y_test, experiment, dict_exp): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) clip = True if "uci" in args.data_set: clip = False for rho_test in args.robust_test: attack = LinfPGDAttack(best_model, rho_test, config['k'], config['a'], config['random_start'], config['loss_func'], clip) x_test_adv = attack.perturb(x_test, y_test, sess) adv_dict = {best_model.x_input: x_test_adv, best_model.y_input: y_test} dict_exp['adv_test_accs'][rho_test][experiment] = sess.run(best_model.accuracy, feed_dict=adv_dict) def print_stability_measures(dict_exp, args, num_experiments, batch_size, subset_ratio, tot_test_acc, tot_train_acc, max_train_steps, network_path): avg_test_acc = tot_test_acc / num_experiments avg_train_acc = tot_train_acc / num_experiments std = np.array([float(k) for k in dict_exp['test_accs']]).std() logit_stability = np.mean(np.std(dict_exp['logits_acc'], axis=0), axis=0) gini_stability = total_gini(dict_exp['preds'].transpose()) print(' Average training accuracy {:.4}'.format(avg_train_acc * 100)) print(' Average testing accuracy {:.4}'.format(avg_test_acc * 100)) print(' Individual accuracies: \n', dict_exp['test_accs']) print(' Adv testing accuracies', dict_exp['adv_test_accs']) print(' Stability values', dict_exp[stable_var]) print(' Test Accuracy std {:.2}'.format(np.array([float(k) for k in dict_exp['test_accs']]).std())) print(" Logits std", np.mean(np.mean(np.std(dict_exp['logits_acc'], axis=0), axis=0))) print(" Gini stability", gini_stability) weights_stability = print_layer_stability_ff(dict_exp, num_experiments) weights_nonzero = [np.mean(dict_exp[w_vars[i]]) for i in range(len(w_vars))] for i in range(len(w_vars)): print(w_vars[i] + ' non zero percentage', weights_nonzero[i]) file = open(str('results_' + network_path + args.data_set + '.csv'), 'a+', newline='') file_read = open(str('results_' + network_path + args.data_set + '.csv'), "r") one_char = file_read.read(1) writer = csv.writer(file) if not len(one_char): headers = [] headers += ['num_experiments', 'batch_size', 'subset_ratio', 'max_train_steps'] headers += ['test accuracy '+ str(i) for i in range(num_experiments)] for key in dict_exp: if key not in w_vars+ b_vars+ [stable_var]+ sparse_vars + ['adv_test_accs', 'preds']: headers += ['Avg '+str(key)] headers += ['Avg test adversarial acc for rho = '+ str(rho) for rho in args.robust_test] headers += ['is_stable', 'rho', 'train_size', 'l2', 'l0', 'network_size', 'learning rate'] headers += [w_vars[i] + ' Nonzero weights' for i in range(len(w_vars))] headers += [w_vars[i] + ' Stability' for i in range(len(w_vars))] headers += ['std', 'logit_stability', 'gini_stability' ] writer.writerow(headers) with file: cols = [] cols += [num_experiments, batch_size, subset_ratio, max_train_steps] cols += [dict_exp['test_accs'][i] for i in range(num_experiments)] for key in dict_exp: if key not in w_vars+ b_vars+ [stable_var]+ sparse_vars + ['adv_test_accs', 'preds']: cols += [np.mean(dict_exp[key])] cols += [np.mean(dict_exp['adv_test_accs'][rho]) for rho in args.robust_test] cols += [args.is_stable, args.rho, args.train_size, args.l2, args.l0, args.network_size, args.lr] cols += weights_nonzero cols += weights_stability cols += [std, logit_stability, gini_stability ] print(cols) writer.writerow(cols) def print_layer_stability_ff(dict_exp, num_experiments): stabilities = [] for i in range(len(w_vars)): w_i = [dict_exp[w_vars[i]][experiment].reshape(-1) for experiment in range(num_experiments)] w_stability = np.mean(np.std(w_i, axis=0), axis=0) print(w_vars[i] + " std", w_stability) stabilities = stabilities + [w_stability] return stabilities
py
1a54827c567f4e4fdca9936c7082e3e9d5fefb9e
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualApplianceSitesOperations: """VirtualApplianceSitesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2020_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, network_virtual_appliance_name: str, site_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'siteName': self._serialize.url("site_name", site_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/virtualApplianceSites/{siteName}'} # type: ignore async def begin_delete( self, resource_group_name: str, network_virtual_appliance_name: str, site_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified site from a Virtual Appliance. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_virtual_appliance_name: The name of the Network Virtual Appliance. :type network_virtual_appliance_name: str :param site_name: The name of the site. :type site_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, network_virtual_appliance_name=network_virtual_appliance_name, site_name=site_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'siteName': self._serialize.url("site_name", site_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/virtualApplianceSites/{siteName}'} # type: ignore async def get( self, resource_group_name: str, network_virtual_appliance_name: str, site_name: str, **kwargs ) -> "_models.VirtualApplianceSite": """Gets the specified Virtual Appliance Site. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_virtual_appliance_name: The name of the Network Virtual Appliance. :type network_virtual_appliance_name: str :param site_name: The name of the site. :type site_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualApplianceSite, or the result of cls(response) :rtype: ~azure.mgmt.network.v2020_11_01.models.VirtualApplianceSite :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualApplianceSite"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'siteName': self._serialize.url("site_name", site_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualApplianceSite', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/virtualApplianceSites/{siteName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, network_virtual_appliance_name: str, site_name: str, parameters: "_models.VirtualApplianceSite", **kwargs ) -> "_models.VirtualApplianceSite": cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualApplianceSite"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'siteName': self._serialize.url("site_name", site_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'VirtualApplianceSite') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualApplianceSite', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VirtualApplianceSite', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/virtualApplianceSites/{siteName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, network_virtual_appliance_name: str, site_name: str, parameters: "_models.VirtualApplianceSite", **kwargs ) -> AsyncLROPoller["_models.VirtualApplianceSite"]: """Creates or updates the specified Network Virtual Appliance Site. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_virtual_appliance_name: The name of the Network Virtual Appliance. :type network_virtual_appliance_name: str :param site_name: The name of the site. :type site_name: str :param parameters: Parameters supplied to the create or update Network Virtual Appliance Site operation. :type parameters: ~azure.mgmt.network.v2020_11_01.models.VirtualApplianceSite :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either VirtualApplianceSite or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2020_11_01.models.VirtualApplianceSite] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.VirtualApplianceSite"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, network_virtual_appliance_name=network_virtual_appliance_name, site_name=site_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualApplianceSite', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'siteName': self._serialize.url("site_name", site_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/virtualApplianceSites/{siteName}'} # type: ignore def list( self, resource_group_name: str, network_virtual_appliance_name: str, **kwargs ) -> AsyncIterable["_models.NetworkVirtualApplianceSiteListResult"]: """Lists all Network Virtual Appliance Sites in a Network Virtual Appliance resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_virtual_appliance_name: The name of the Network Virtual Appliance. :type network_virtual_appliance_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either NetworkVirtualApplianceSiteListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2020_11_01.models.NetworkVirtualApplianceSiteListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.NetworkVirtualApplianceSiteListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkVirtualApplianceName': self._serialize.url("network_virtual_appliance_name", network_virtual_appliance_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('NetworkVirtualApplianceSiteListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkVirtualAppliances/{networkVirtualApplianceName}/virtualApplianceSites'} # type: ignore
py
1a5482918627c78d2882cb032e28ed3c4a29ee9c
from django.utils.module_loading import import_string from betty.conf.app import settings def get_cache_flusher(): if settings.BETTY_CACHE_FLUSHER: if callable(settings.BETTY_CACHE_FLUSHER): return settings.BETTY_CACHE_FLUSHER else: return import_string(settings.BETTY_CACHE_FLUSHER)
py
1a54851979bb0898dda45a061220edbfb3701003
# Generated by Django 2.2.24 on 2022-02-09 20:48 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0081_embedconfig_map_style'), ] operations = [ migrations.AlterField( model_name='facilityclaim', name='facility_type', field=models.CharField(blank=True, choices=[('final product assembly', 'Final Product Assembly'), ('office hq', 'Office / HQ'), ('printing product dyeing and laundering', 'Printing, Product Dyeing and Laundering'), ('raw material processing or production', 'Raw Material Processing or Production'), ('textile or material production', 'Textile or Material Production'), ('warehousing distribution', 'Warehousing / Distribution')], help_text='The editable facility type for this claim.', max_length=300, null=True, verbose_name='facility type'), ), migrations.AlterField( model_name='historicalfacilityclaim', name='facility_type', field=models.CharField(blank=True, choices=[('final product assembly', 'Final Product Assembly'), ('office hq', 'Office / HQ'), ('printing product dyeing and laundering', 'Printing, Product Dyeing and Laundering'), ('raw material processing or production', 'Raw Material Processing or Production'), ('textile or material production', 'Textile or Material Production'), ('warehousing distribution', 'Warehousing / Distribution')], help_text='The editable facility type for this claim.', max_length=300, null=True, verbose_name='facility type'), ), ]
py
1a5487ecd891a0ea8cee78d4205f6004dc9007f2
from __future__ import print_function, absolute_import, unicode_literals, division import unittest2 as unittest import os import re from local import get_env import rds_log_dog.s3_utils class Test(unittest.TestCase): @classmethod def setUpClass(self): (self.function_stack_name, self.bucket_stack_name, self.lambda_function_name, self.bucket_name) = get_env() def test_count_s3_rds_logs_equals_rds_instances(self): folder_result = rds_log_dog.s3_utils.list_folders( self.bucket_name, 'rds_logs') # discover # of rds instances import boto3 client = boto3.client('rds') response = client.describe_db_instances() self.assertEqual(len(response['DBInstances']), len( folder_result), "number of rds instances doesn't match number of folders in rds_logs/") if __name__ == '__main__': unittest.main() pass
py
1a5487f82e23406191a15a99e3d9eda2b746d605
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from collections import OrderedDict import logging import threading from ceilometerclient import client as ceilometer_client from django.conf import settings from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon.utils.memoized import memoized # noqa from openstack_dashboard.api import base from openstack_dashboard.api import keystone from openstack_dashboard.api import nova LOG = logging.getLogger(__name__) def get_flavor_names(request): # TODO(lsmola) The flavors can be set per project, # so it should show only valid ones. try: flavors = nova.flavor_list(request, None) return [f.name for f in flavors] except Exception: return ['m1.tiny', 'm1.small', 'm1.medium', 'm1.large', 'm1.xlarge'] def is_iterable(var): """Return True if the given is list or tuple.""" return (isinstance(var, (list, tuple)) or issubclass(var.__class__, (list, tuple))) def make_query(user_id=None, tenant_id=None, resource_id=None, user_ids=None, tenant_ids=None, resource_ids=None): """Returns query built from given parameters. This query can be then used for querying resources, meters and statistics. :Parameters: - `user_id`: user_id, has a priority over list of ids - `tenant_id`: tenant_id, has a priority over list of ids - `resource_id`: resource_id, has a priority over list of ids - `user_ids`: list of user_ids - `tenant_ids`: list of tenant_ids - `resource_ids`: list of resource_ids """ user_ids = user_ids or [] tenant_ids = tenant_ids or [] resource_ids = resource_ids or [] query = [] if user_id: user_ids = [user_id] for u_id in user_ids: query.append({"field": "user_id", "op": "eq", "value": u_id}) if tenant_id: tenant_ids = [tenant_id] for t_id in tenant_ids: query.append({"field": "project_id", "op": "eq", "value": t_id}) if resource_id: resource_ids = [resource_id] for r_id in resource_ids: query.append({"field": "resource_id", "op": "eq", "value": r_id}) return query class Meter(base.APIResourceWrapper): """Represents one Ceilometer meter.""" _attrs = ['name', 'type', 'unit', 'resource_id', 'user_id', 'project_id'] def __init__(self, apiresource): super(Meter, self).__init__(apiresource) self._label = self.name self._description = "" def augment(self, label=None, description=None): if label: self._label = label if description: self._description = description @property def description(self): return self._description @property def label(self): return self._label class Resource(base.APIResourceWrapper): """Represents one Ceilometer resource.""" _attrs = ['resource_id', 'source', 'user_id', 'project_id', 'metadata', 'links'] def __init__(self, apiresource, ceilometer_usage=None): super(Resource, self).__init__(apiresource) # Save empty strings to IDs rather than None, so it gets # serialized correctly. We don't want 'None' strings. self.project_id = self.project_id or "" self.user_id = self.user_id or "" self.resource_id = self.resource_id or "" self._id = "%s__%s__%s" % (self.project_id, self.user_id, self.resource_id) # Meters with statistics data self._meters = {} # TODO(lsmola) make parallel obtaining of tenant and user # make the threading here, thread join into resource_list if ceilometer_usage and self.project_id: self._tenant = ceilometer_usage.get_tenant(self.project_id) else: self._tenant = None if ceilometer_usage and self.user_id: self._user = ceilometer_usage.get_user(self.user_id) else: self._user = None self._query = make_query(tenant_id=self.project_id, user_id=self.user_id, resource_id=self.resource_id) @property def name(self): name = self.metadata.get("name", None) display_name = self.metadata.get("display_name", None) return name or display_name or "" @property def id(self): return self._id @property def tenant(self): return self._tenant @property def user(self): return self._user @property def resource(self): return self.resource_id @property def query(self): return self._query @property def meters(self): return self._meters def get_meter(self, meter_name): return self._meters.get(meter_name, None) def set_meter(self, meter_name, value): self._meters[meter_name] = value class ResourceAggregate(Resource): """Represents aggregate of more resources together. Aggregate of resources can be obtained by specifying multiple ids in one parameter or by not specifying one parameter. It can also be specified by query directly. Example: We can obtain an aggregate of resources by specifying multiple resource_ids in resource_id parameter in init. Or we can specify only tenant_id, which will return all resources of that tenant. """ def __init__(self, tenant_id=None, user_id=None, resource_id=None, tenant_ids=None, user_ids=None, resource_ids=None, ceilometer_usage=None, query=None, identifier=None): self._id = identifier self.tenant_id = None self.user_id = None self.resource_id = None # Meters with statistics data self._meters = {} if query: self._query = query else: # TODO(lsmola) make parallel obtaining of tenant and user # make the threading here, thread join into resource_list if ceilometer_usage and tenant_id: self.tenant_id = tenant_id self._tenant = ceilometer_usage.get_tenant(tenant_id) else: self._tenant = None if ceilometer_usage and user_id: self.user_id = user_id self._user = ceilometer_usage.get_user(user_id) else: self._user = None if resource_id: self.resource_id = resource_id self._query = make_query(tenant_id=tenant_id, user_id=user_id, resource_id=resource_id, tenant_ids=tenant_ids, user_ids=user_ids, resource_ids=resource_ids) @property def id(self): return self._id class Sample(base.APIResourceWrapper): """Represents one Ceilometer sample.""" _attrs = ['counter_name', 'user_id', 'resource_id', 'timestamp', 'resource_metadata', 'source', 'counter_unit', 'counter_volume', 'project_id', 'counter_type', 'resource_metadata'] @property def instance(self): display_name = self.resource_metadata.get('display_name', None) instance_id = self.resource_metadata.get('instance_id', None) return display_name or instance_id @property def name(self): name = self.resource_metadata.get("name", None) display_name = self.resource_metadata.get("display_name", None) return name or display_name or "" class Statistic(base.APIResourceWrapper): """Represents one Ceilometer statistic.""" _attrs = ['period', 'period_start', 'period_end', 'count', 'min', 'max', 'sum', 'avg', 'duration', 'duration_start', 'duration_end'] @memoized def ceilometerclient(request): """Initialization of Ceilometer client.""" endpoint = base.url_for(request, 'metering') insecure = getattr(settings, 'OPENSTACK_SSL_NO_VERIFY', False) cacert = getattr(settings, 'OPENSTACK_SSL_CACERT', None) return ceilometer_client.Client('2', endpoint, token=(lambda: request.user.token.id), insecure=insecure, cacert=cacert) def resource_list(request, query=None, ceilometer_usage_object=None): """List the resources.""" resources = ceilometerclient(request).resources.list(q=query) return [Resource(r, ceilometer_usage_object) for r in resources] def sample_list(request, meter_name, query=None, limit=None): """List the samples for this meters.""" samples = ceilometerclient(request).samples.list(meter_name=meter_name, q=query, limit=limit) return [Sample(s) for s in samples] def meter_list(request, query=None): """List the user's meters.""" meters = ceilometerclient(request).meters.list(query) return [Meter(m) for m in meters] def statistic_list(request, meter_name, query=None, period=None): """List of statistics.""" statistics = ceilometerclient(request).\ statistics.list(meter_name=meter_name, q=query, period=period) return [Statistic(s) for s in statistics] class ThreadedUpdateResourceWithStatistics(threading.Thread): """Multithread wrapper for update_with_statistics method of resource_usage. A join logic is placed in process_list class method. All resources will have its statistics attribute filled in separate threads. The resource_usage object is shared between threads. Each thread is updating one Resource. :Parameters: - `resource`: Resource or ResourceAggregate object, that will be filled by statistic data. - `resources`: List of Resource or ResourceAggregate object, that will be filled by statistic data. - `resource_usage`: Wrapping resource usage object, that holds all statistics data. - `meter_names`: List of meter names of the statistics we want. - `period`: In seconds. If no period is given, only one aggregate statistic is returned. If given, a faceted result will be returned, divided into given periods. Periods with no data are ignored. - `stats_attr`: String representing the attribute name of the stats. E.g. (avg, max, min...) If None is given, whole statistic object is returned, - `additional_query`: Additional query for the statistics. E.g. timespan, etc. """ # TODO(lsmola) Can be removed once Ceilometer supports sample-api # and group-by, so all of this optimization will not be necessary. # It is planned somewhere to I. def __init__(self, resource_usage, resource, meter_names=None, period=None, filter_func=None, stats_attr=None, additional_query=None): super(ThreadedUpdateResourceWithStatistics, self).__init__() self.resource_usage = resource_usage self.resource = resource self.meter_names = meter_names self.period = period self.stats_attr = stats_attr self.additional_query = additional_query def run(self): # Run the job self.resource_usage.update_with_statistics( self.resource, meter_names=self.meter_names, period=self.period, stats_attr=self.stats_attr, additional_query=self.additional_query) @classmethod def process_list(cls, resource_usage, resources, meter_names=None, period=None, filter_func=None, stats_attr=None, additional_query=None): threads = [] for resource in resources: # add statistics data into resource thread = cls(resource_usage, resource, meter_names=meter_names, period=period, stats_attr=stats_attr, additional_query=additional_query) thread.start() threads.append(thread) for thread in threads: thread.join() class CeilometerUsage(object): """Represents wrapper of any Ceilometer queries. One instance of this class should be shared between resources as this class provides a place where users and tenants are cached. So there are no duplicate queries to API. This class also wraps Ceilometer API calls and provides parallel HTTP calls to API. This class should also serve as reasonable abstraction, that will cover huge amount of optimization due to optimization of Ceilometer service, without changing of the interface. """ def __init__(self, request): self._request = request # Cached users and tenants. self._users = {} self._tenants = {} def get_user(self, user_id): """Returns user fetched from API. Caching the result, so it doesn't contact API twice with the same query. """ user = self._users.get(user_id, None) if not user: user = keystone.user_get(self._request, user_id) # caching the user, for later use self._users[user_id] = user return user def preload_all_users(self): """Preloads all users into dictionary. It's more effective to preload all users, rather than fetching many users by separate API get calls. """ users = keystone.user_list(self._request) # Cache all users on right indexes, this is more effective than to # obtain large number of users one by one by keystone.user_get for u in users: self._users[u.id] = u def get_tenant(self, tenant_id): """Returns tenant fetched from API. Caching the result, so it doesn't contact API twice with the same query. """ tenant = self._tenants.get(tenant_id, None) if not tenant: tenant = keystone.tenant_get(self._request, tenant_id) # caching the tenant for later use self._tenants[tenant_id] = tenant return tenant def preload_all_tenants(self): """Preloads all tenants into dictionary. It's more effective to preload all tenants, rather than fetching each tenant by separate API get calls. """ tenants, more = keystone.tenant_list(self._request) # Cache all tenants on right indexes, this is more effective than to # obtain large number of tenants one by one by keystone.tenant_get for t in tenants: self._tenants[t.id] = t def global_data_get(self, used_cls=None, query=None, with_statistics=False, additional_query=None, with_users_and_tenants=True): """Obtaining a resources for table view. It obtains resources with statistics data according to declaration in used_cls class. :Parameters: - `user_cls`: Class wrapper for usage data. It acts as wrapper for settings needed. See the call of this method for details. - `query`: Explicit query definition for fetching the resources. If no query is provided, it takes a default_query from used_cls. If no default query is provided, it fetches all the resources and filters them by meters defined in used_cls. - `with_statistic`: Define whether statistics data from the meters defined in used_cls should be fetched. Can be used to first obtain only the pure resources, then with the statistics data by AJAX. - `additional_query`: Additional query for the statistics. E.g. timespan, etc. - `with_users_and_tenants`: If true a user and a tenant object will be added to each resource object. """ default_query = used_cls.default_query query = query or default_query filter_func = None def filter_resources(resource): """Method for filtering resources by their links.rel attr. The links.rel attributes contain all meters the resource has. """ for link in resource.links: if link['rel'] in used_cls.meters: return True return False if not query: # Not all resource types can be obtained by query, if there is not # a query, we are filtering all resources by this function. filter_func = filter_resources if with_statistics: # Will add statistic data into resources. resources = self.resources_with_statistics( query, used_cls.meters, filter_func=filter_func, stats_attr=used_cls.stats_attr, additional_query=additional_query, with_users_and_tenants=with_users_and_tenants) else: # Will load only resources without statistical data. resources = self.resources( query, filter_func=filter_func, with_users_and_tenants=with_users_and_tenants) return [used_cls(resource) for resource in resources] def query_from_object_id(self, object_id): """Obtaining a query from resource id. Query can be then used to identify a resource in resources or meters API calls. ID is being built in the Resource initializer, or returned by Datatable into UpdateRow functionality. """ try: tenant_id, user_id, resource_id = object_id.split("__") except ValueError: return [] return make_query(tenant_id=tenant_id, user_id=user_id, resource_id=resource_id) def update_with_statistics(self, resource, meter_names=None, period=None, stats_attr=None, additional_query=None): """Adding statistical data into one Resource or ResourceAggregate. It adds each statistic of each meter_names into the resource attributes. Attribute name is the meter name with replaced '.' to '_'. :Parameters: - `resource`: Resource or ResourceAggregate object, that will be filled by statistic data. - `meter_names`: List of meter names of which we want the statistics. - `period`: In seconds. If no period is given, only one aggregate statistic is returned. If given a faceted result will be returned, dividend into given periods. Periods with no data are ignored. - `stats_attr`: String representing the specific name of the stats. E.g. (avg, max, min...) If defined, meter attribute will contain just the one value. If None is given, meter attribute will contain the whole Statistic object. - `additional_query`: Additional query for the statistics. E.g. timespan, etc. """ if not meter_names: raise ValueError("meter_names and resources must be defined to be " "able to obtain the statistics.") # query for identifying one resource in meters query = resource.query if additional_query: if not is_iterable(additional_query): raise ValueError("Additional query must be list of" " conditions. See the docs for format.") query = query + additional_query # TODO(lsmola) thread for each meter will be probably overkill # but I should test lets say thread pool with 100 of threads # and apply it only to this code. # Though I do expect Ceilometer will support bulk requests, # so all of this optimization will not be necessary. for meter in meter_names: statistics = statistic_list(self._request, meter, query=query, period=period) meter = meter.replace(".", "_") if statistics: if stats_attr: # I want to load only a specific attribute resource.set_meter( meter, getattr(statistics[0], stats_attr, None)) else: # I want a dictionary of all statistics resource.set_meter(meter, statistics) else: resource.set_meter(meter, None) return resource def resources(self, query=None, filter_func=None, with_users_and_tenants=False): """Obtaining resources with the query or filter_func. Obtains resources and also fetch tenants and users associated with those resources if with_users_and_tenants flag is true. :Parameters: - `query`: Query for fetching the Ceilometer Resources. - `filter_func`: Callable for filtering of the obtained resources. - `with_users_and_tenants`: If true a user and a tenant object will be added to each resource object. """ if with_users_and_tenants: ceilometer_usage_object = self else: ceilometer_usage_object = None resources = resource_list( self._request, query=query, ceilometer_usage_object=ceilometer_usage_object) if filter_func: resources = [resource for resource in resources if filter_func(resource)] return resources def resources_with_statistics(self, query=None, meter_names=None, period=None, filter_func=None, stats_attr=None, additional_query=None, with_users_and_tenants=False): """Obtaining resources with statistics data inside. :Parameters: - `query`: Query for fetching the Ceilometer Resources. - `filter_func`: Callable for filtering of the obtained resources. - `meter_names`: List of meter names of which we want the statistics. - `period`: In seconds. If no period is given, only one aggregate statistic is returned. If given, a faceted result will be returned, divided into given periods. Periods with no data are ignored. - `stats_attr`: String representing the specific name of the stats. E.g. (avg, max, min...) If defined, meter attribute will contain just the one value. If None is given, meter attribute will contain the whole Statistic object. - `additional_query`: Additional query for the statistics. E.g. timespan, etc. - `with_users_and_tenants`: If true a user and a tenant object will be added to each resource object. """ resources = self.resources( query, filter_func=filter_func, with_users_and_tenants=with_users_and_tenants) ThreadedUpdateResourceWithStatistics.process_list( self, resources, meter_names=meter_names, period=period, stats_attr=stats_attr, additional_query=additional_query) return resources def resource_aggregates(self, queries=None): """Obtaining resource aggregates with queries. Representing a resource aggregate by query is a most general way how to obtain a resource aggregates. :Parameters: - `queries`: Dictionary of named queries that defines a bulk of resource aggregates. """ resource_aggregates = [] for identifier, query in queries.items(): resource_aggregates.append(ResourceAggregate(query=query, ceilometer_usage=None, identifier=identifier)) return resource_aggregates def resource_aggregates_with_statistics(self, queries=None, meter_names=None, period=None, filter_func=None, stats_attr=None, additional_query=None): """Obtaining resource aggregates with statistics data inside. :Parameters: - `queries`: Dictionary of named queries that defines a bulk of resource aggregates. - `meter_names`: List of meter names of which we want the statistics. - `period`: In seconds. If no period is given, only one aggregate statistic is returned. If given, a faceted result will be returned, divided into given periods. Periods with no data are ignored. - `stats_attr`: String representing the specific name of the stats. E.g. (avg, max, min...) If defined, meter attribute will contain just the one value. If None is given, meter attribute will contain the whole Statistic object. - `additional_query`: Additional query for the statistics. E.g. timespan, etc. """ resource_aggregates = self.resource_aggregates(queries) ThreadedUpdateResourceWithStatistics.process_list( self, resource_aggregates, meter_names=meter_names, period=period, stats_attr=stats_attr, additional_query=additional_query) return resource_aggregates def diff_lists(a, b): if not a: return [] elif not b: return a else: return list(set(a) - set(b)) class Meters(object): """Class for listing of available meters. It is listing meters defined in this class that are available in Ceilometer meter_list. It is storing information that is not available in Ceilometer, i.e. label, description. """ def __init__(self, request=None, ceilometer_meter_list=None): # Storing the request. self._request = request # Storing the Ceilometer meter list if ceilometer_meter_list: self._ceilometer_meter_list = ceilometer_meter_list else: try: self._ceilometer_meter_list = meter_list(request) except Exception: self._ceilometer_meter_list = [] exceptions.handle(self._request, _('Unable to retrieve Ceilometer meter ' 'list.')) # Storing the meters info categorized by their services. self._nova_meters_info = self._get_nova_meters_info() self._neutron_meters_info = self._get_neutron_meters_info() self._glance_meters_info = self._get_glance_meters_info() self._cinder_meters_info = self._get_cinder_meters_info() self._swift_meters_info = self._get_swift_meters_info() self._kwapi_meters_info = self._get_kwapi_meters_info() self._ipmi_meters_info = self._get_ipmi_meters_info() # Storing the meters info of all services together. all_services_meters = (self._nova_meters_info, self._neutron_meters_info, self._glance_meters_info, self._cinder_meters_info, self._swift_meters_info, self._kwapi_meters_info, self._ipmi_meters_info) self._all_meters_info = {} for service_meters in all_services_meters: self._all_meters_info.update(dict([(meter_name, meter_info) for meter_name, meter_info in service_meters.items()])) # Here will be the cached Meter objects, that will be reused for # repeated listing. self._cached_meters = {} def list_all(self, only_meters=None, except_meters=None): """Returns a list of meters based on the meters names. :Parameters: - `only_meters`: The list of meter names we want to show. - `except_meters`: The list of meter names we don't want to show. """ return self._list(only_meters=only_meters, except_meters=except_meters) def list_nova(self, except_meters=None): """Returns a list of meters tied to nova. :Parameters: - `except_meters`: The list of meter names we don't want to show. """ return self._list(only_meters=self._nova_meters_info.keys(), except_meters=except_meters) def list_neutron(self, except_meters=None): """Returns a list of meters tied to neutron. :Parameters: - `except_meters`: The list of meter names we don't want to show. """ return self._list(only_meters=self._neutron_meters_info.keys(), except_meters=except_meters) def list_glance(self, except_meters=None): """Returns a list of meters tied to glance. :Parameters: - `except_meters`: The list of meter names we don't want to show. """ return self._list(only_meters=self._glance_meters_info.keys(), except_meters=except_meters) def list_cinder(self, except_meters=None): """Returns a list of meters tied to cinder. :Parameters: - `except_meters`: The list of meter names we don't want to show. """ return self._list(only_meters=self._cinder_meters_info.keys(), except_meters=except_meters) def list_swift(self, except_meters=None): """Returns a list of meters tied to swift. :Parameters: - `except_meters`: The list of meter names we don't want to show. """ return self._list(only_meters=self._swift_meters_info.keys(), except_meters=except_meters) def list_kwapi(self, except_meters=None): """Returns a list of meters tied to kwapi. :Parameters: - `except_meters`: The list of meter names we don't want to show. """ return self._list(only_meters=self._kwapi_meters_info.keys(), except_meters=except_meters) def list_ipmi(self, except_meters=None): """Returns a list of meters tied to ipmi :Parameters: - `except_meters`: The list of meter names we don't want to show """ return self._list(only_meters=self._ipmi_meters_info.keys(), except_meters=except_meters) def _list(self, only_meters=None, except_meters=None): """Returns a list of meters based on the meters names. :Parameters: - `only_meters`: The list of meter names we want to show. - `except_meters`: The list of meter names we don't want to show. """ # Get all wanted meter names. if only_meters: meter_names = only_meters else: meter_names = [meter_name for meter_name in self._all_meters_info.keys()] meter_names = diff_lists(meter_names, except_meters) # Collect meters for wanted meter names. return self._get_meters(meter_names) def _get_meters(self, meter_names): """Obtain meters based on meter_names. The meters that do not exist in Ceilometer meter list are left out. :Parameters: - `meter_names`: A list of meter names we want to fetch. """ meters = [] for meter_name in meter_names: meter = self._get_meter(meter_name) if meter: meters.append(meter) return meters def _get_meter(self, meter_name): """Obtains a meter. Obtains meter either from cache or from Ceilometer meter list joined with statically defined meter info like label and description. :Parameters: - `meter_name`: A meter name we want to fetch. """ meter = self._cached_meters.get(meter_name, None) if not meter: meter_candidates = [m for m in self._ceilometer_meter_list if m.name == meter_name] if meter_candidates: meter_info = self._all_meters_info.get(meter_name, None) if meter_info: label = meter_info["label"] description = meter_info["description"] else: label = "" description = "" meter = meter_candidates[0] meter.augment(label=label, description=description) self._cached_meters[meter_name] = meter return meter def _get_nova_meters_info(self): """Returns additional info for each meter. That will be used for augmenting the Ceilometer meter. """ # TODO(lsmola) Unless the Ceilometer will provide the information # below, I need to define it as a static here. I will be joining this # to info that I am able to obtain from Ceilometer meters, hopefully # some day it will be supported all. meters_info = OrderedDict([ ("instance", { 'label': '', 'description': _("Existence of instance"), }), ("instance:<type>", { 'label': '', 'description': _("Existence of instance <type> " "(openstack types)"), }), ("memory", { 'label': '', 'description': _("Volume of RAM"), }), ("memory.usage", { 'label': '', 'description': _("Volume of RAM used"), }), ("cpu", { 'label': '', 'description': _("CPU time used"), }), ("cpu_util", { 'label': '', 'description': _("Average CPU utilization"), }), ("vcpus", { 'label': '', 'description': _("Number of VCPUs"), }), ("disk.read.requests", { 'label': '', 'description': _("Number of read requests"), }), ("disk.write.requests", { 'label': '', 'description': _("Number of write requests"), }), ("disk.read.bytes", { 'label': '', 'description': _("Volume of reads"), }), ("disk.write.bytes", { 'label': '', 'description': _("Volume of writes"), }), ("disk.read.requests.rate", { 'label': '', 'description': _("Average rate of read requests"), }), ("disk.write.requests.rate", { 'label': '', 'description': _("Average rate of write requests"), }), ("disk.read.bytes.rate", { 'label': '', 'description': _("Average rate of reads"), }), ("disk.write.bytes.rate", { 'label': '', 'description': _("Average volume of writes"), }), ("disk.root.size", { 'label': '', 'description': _("Size of root disk"), }), ("disk.ephemeral.size", { 'label': '', 'description': _("Size of ephemeral disk"), }), ("network.incoming.bytes", { 'label': '', 'description': _("Number of incoming bytes " "on the network for a VM interface"), }), ("network.outgoing.bytes", { 'label': '', 'description': _("Number of outgoing bytes " "on the network for a VM interface"), }), ("network.incoming.packets", { 'label': '', 'description': _("Number of incoming " "packets for a VM interface"), }), ("network.outgoing.packets", { 'label': '', 'description': _("Number of outgoing " "packets for a VM interface"), }), ("network.incoming.bytes.rate", { 'label': '', 'description': _("Average rate per sec of incoming " "bytes on a VM network interface"), }), ("network.outgoing.bytes.rate", { 'label': '', 'description': _("Average rate per sec of outgoing " "bytes on a VM network interface"), }), ("network.incoming.packets.rate", { 'label': '', 'description': _("Average rate per sec of incoming " "packets on a VM network interface"), }), ("network.outgoing.packets.rate", { 'label': '', 'description': _("Average rate per sec of outgoing " "packets on a VM network interface"), }), ]) # Adding flavor based meters into meters_info dict # TODO(lsmola) this kind of meter will be probably deprecated # https://bugs.launchpad.net/ceilometer/+bug/1208365 . Delete it then. for flavor in get_flavor_names(self._request): name = 'instance:%s' % flavor meters_info[name] = dict(meters_info["instance:<type>"]) meters_info[name]['description'] = ( _('Duration of instance type %s (openstack flavor)') % flavor) # TODO(lsmola) allow to set specific in local_settings. For all meters # because users can have their own agents and meters. return meters_info def _get_neutron_meters_info(self): """Returns additional info for each meter. That will be used for augmenting the Ceilometer meter. """ # TODO(lsmola) Unless the Ceilometer will provide the information # below, I need to define it as a static here. I will be joining this # to info that I am able to obtain from Ceilometer meters, hopefully # some day it will be supported all. return OrderedDict([ ('network', { 'label': '', 'description': _("Existence of network"), }), ('network.create', { 'label': '', 'description': _("Creation requests for this network"), }), ('network.update', { 'label': '', 'description': _("Update requests for this network"), }), ('subnet', { 'label': '', 'description': _("Existence of subnet"), }), ('subnet.create', { 'label': '', 'description': _("Creation requests for this subnet"), }), ('subnet.update', { 'label': '', 'description': _("Update requests for this subnet"), }), ('port', { 'label': '', 'description': _("Existence of port"), }), ('port.create', { 'label': '', 'description': _("Creation requests for this port"), }), ('port.update', { 'label': '', 'description': _("Update requests for this port"), }), ('router', { 'label': '', 'description': _("Existence of router"), }), ('router.create', { 'label': '', 'description': _("Creation requests for this router"), }), ('router.update', { 'label': '', 'description': _("Update requests for this router"), }), ('ip.floating', { 'label': '', 'description': _("Existence of floating ip"), }), ('ip.floating.create', { 'label': '', 'description': _("Creation requests for this floating ip"), }), ('ip.floating.update', { 'label': '', 'description': _("Update requests for this floating ip"), }), ]) def _get_glance_meters_info(self): """Returns additional info for each meter. That will be used for augmenting the Ceilometer meter. """ # TODO(lsmola) Unless the Ceilometer will provide the information # below, I need to define it as a static here. I will be joining this # to info that I am able to obtain from Ceilometer meters, hopefully # some day it will be supported all. return OrderedDict([ ('image', { 'label': '', 'description': _("Image existence check"), }), ('image.size', { 'label': '', 'description': _("Uploaded image size"), }), ('image.update', { 'label': '', 'description': _("Number of image updates"), }), ('image.upload', { 'label': '', 'description': _("Number of image uploads"), }), ('image.delete', { 'label': '', 'description': _("Number of image deletions"), }), ('image.download', { 'label': '', 'description': _("Image is downloaded"), }), ('image.serve', { 'label': '', 'description': _("Image is served out"), }), ]) def _get_cinder_meters_info(self): """Returns additional info for each meter. That will be used for augmenting the Ceilometer meter. """ # TODO(lsmola) Unless the Ceilometer will provide the information # below, I need to define it as a static here. I will be joining this # to info that I am able to obtain from Ceilometer meters, hopefully # some day it will be supported all. return OrderedDict([ ('volume', { 'label': '', 'description': _("Existence of volume"), }), ('volume.size', { 'label': '', 'description': _("Size of volume"), }), ]) def _get_swift_meters_info(self): """Returns additional info for each meter. That will be used for augmenting the Ceilometer meter. """ # TODO(lsmola) Unless the Ceilometer will provide the information # below, I need to define it as a static here. I will be joining this # to info that I am able to obtain from Ceilometer meters, hopefully # some day it will be supported all. return OrderedDict([ ('storage.objects', { 'label': '', 'description': _("Number of objects"), }), ('storage.objects.size', { 'label': '', 'description': _("Total size of stored objects"), }), ('storage.objects.containers', { 'label': '', 'description': _("Number of containers"), }), ('storage.objects.incoming.bytes', { 'label': '', 'description': _("Number of incoming bytes"), }), ('storage.objects.outgoing.bytes', { 'label': '', 'description': _("Number of outgoing bytes"), }), ('storage.api.request', { 'label': '', 'description': _("Number of API requests against swift"), }), ]) def _get_kwapi_meters_info(self): """Returns additional info for each meter. That will be used for augmenting the Ceilometer meter. """ # TODO(lsmola) Unless the Ceilometer will provide the information # below, I need to define it as a static here. I will be joining this # to info that I am able to obtain from Ceilometer meters, hopefully # some day it will be supported all. return OrderedDict([ ('energy', { 'label': '', 'description': _("Amount of energy"), }), ('power', { 'label': '', 'description': _("Power consumption"), }), ]) def _get_ipmi_meters_info(self): """Returns additional info for each meter That will be used for augmenting the Ceilometer meter """ # TODO(lsmola) Unless the Ceilometer will provide the information # below, I need to define it as a static here. I will be joining this # to info that I am able to obtain from Ceilometer meters, hopefully # some day it will be supported all. return OrderedDict([ ('hardware.ipmi.node.power', { 'label': '', 'description': _("System Current Power"), }), ('hardware.ipmi.fan', { 'label': '', 'description': _("Fan RPM"), }), ('hardware.ipmi.temperature', { 'label': '', 'description': _("Sensor Temperature Reading"), }), ('hardware.ipmi.current', { 'label': '', 'description': _("Sensor Current Reading"), }), ('hardware.ipmi.voltage', { 'label': '', 'description': _("Sensor Voltage Reading"), }), ('hardware.ipmi.node.temperature', { 'label': '', 'description': _("System Temperature Reading"), }), ('hardware.ipmi.node.outlet_temperature', { 'label': '', 'description': _("System Outlet Temperature Reading"), }), ('hardware.ipmi.node.airflow', { 'label': '', 'description': _("System Airflow Reading"), }), ('hardware.ipmi.node.cups', { 'label': '', 'description': _("System CUPS Reading"), }), ('hardware.ipmi.node.cpu_util', { 'label': '', 'description': _("System CPU Utility Reading"), }), ('hardware.ipmi.node.mem_util', { 'label': '', 'description': _("System Memory Utility Reading"), }), ('hardware.ipmi.node.io_util', { 'label': '', 'description': _("System IO Utility Reading"), }), ])
py
1a548854f603addbbf75efdf09fe9319d717482b
import datetime import logging import os from itertools import groupby from math import ceil from django.db.models import Max from django.db.models import Sum from le_utils.constants import content_kinds from sqlalchemy import and_ from sqlalchemy import cast from sqlalchemy import exists from sqlalchemy import false from sqlalchemy import func from sqlalchemy import Integer from sqlalchemy import or_ from sqlalchemy import select from .paths import get_content_file_name from .paths import get_content_storage_file_path from .sqlalchemybridge import Bridge from .sqlalchemybridge import filter_by_uuids from kolibri.core.content.apps import KolibriContentConfig from kolibri.core.content.errors import InvalidStorageFilenameError from kolibri.core.content.models import ChannelMetadata from kolibri.core.content.models import ContentNode from kolibri.core.content.models import File from kolibri.core.content.models import LocalFile from kolibri.core.content.utils.sqlalchemybridge import filter_by_checksums from kolibri.core.device.models import ContentCacheKey logger = logging.getLogger(__name__) CONTENT_APP_NAME = KolibriContentConfig.label CHUNKSIZE = 10000 def _generate_MPTT_descendants_statement(mptt_values, ContentNodeTable): """ This logic is modified from: https://github.com/django-mptt/django-mptt/blob/38d46c26ca362c471b097ab96a3616b9b20fb883/mptt/managers.py#L137 in order to render the result as a SQL Alchemy expression that we can use in other queries. """ queries = [] # Group the resultant mptt data by tree_id and parent_id, # this will allow us to consolidate contiguous siblings to reduce # the total number of constraints. # This logic is verbatim from Django MPTT, only the query construction # has been translated from Django Q statements to SQL Alchemy and_ statements. for group in groupby( mptt_values, key=lambda n: ( # tree id n[0], # parent id n[1], ), ): next_lft = None for node in list(group[1]): tree = node[0] lft = min_val = node[2] rght = max_val = node[3] if next_lft is None: next_lft = rght + 1 min_max = {"min": min_val, "max": max_val} elif lft == next_lft: if min_val < min_max["min"]: min_max["min"] = min_val if max_val > min_max["max"]: min_max["max"] = max_val next_lft = rght + 1 elif lft != next_lft: queries.append( and_( ContentNodeTable.c.tree_id == tree, ContentNodeTable.c.lft >= min_max["min"], ContentNodeTable.c.rght <= min_max["max"], ) ) min_max = {"min": min_val, "max": max_val} next_lft = rght + 1 queries.append( and_( ContentNodeTable.c.tree_id == tree, ContentNodeTable.c.lft >= min_max["min"], ContentNodeTable.c.rght <= min_max["max"], ) ) return queries def _MPTT_descendant_ids_statement( bridge, channel_id, node_ids, min_boundary, max_boundary ): ContentNodeTable = bridge.get_table(ContentNode) connection = bridge.get_connection() # Setup list to collect queries or_queries = [] # First we fetch a list of non-topic ids from the specified node ids # that match the specified tree boundary ranges non_topic_results = connection.execute( select([ContentNodeTable.c.id]).where( and_( ContentNodeTable.c.channel_id == channel_id, filter_by_uuids(ContentNodeTable.c.id, node_ids), # Also filter by the boundary conditions # We are only interested in non-topic nodes that # are inside the range ContentNodeTable.c.rght >= min_boundary, ContentNodeTable.c.rght <= max_boundary, # Produce an id list for non topics ContentNodeTable.c.kind != content_kinds.TOPIC, ) ) ).fetchall() non_topic_node_ids = [result[0] for result in non_topic_results] # If we have any node ids that are for non-topics, then we add an explicit query # to match against those node ids if non_topic_node_ids: or_queries.append(filter_by_uuids(ContentNodeTable.c.id, non_topic_node_ids)) # Now get the relevant MPTT values from the database for the specified node_ids # for topic nodes in the specified lft/rght range. # Query modified from: # https://github.com/django-mptt/django-mptt/blob/38d46c26ca362c471b097ab96a3616b9b20fb883/mptt/managers.py#L123 mptt_values = connection.execute( select( [ ContentNodeTable.c.tree_id, ContentNodeTable.c.parent_id, ContentNodeTable.c.lft, ContentNodeTable.c.rght, ] ) .order_by( ContentNodeTable.c.tree_id, ContentNodeTable.c.parent_id, ContentNodeTable.c.lft, ) .where( and_( ContentNodeTable.c.channel_id == channel_id, filter_by_uuids(ContentNodeTable.c.id, node_ids), # Add constraints specific to our requirements, in terms of batching: # Also filter by the boundary conditions # We are only interested in nodes that are ancestors of # the nodes in the range, but they could be ancestors of any node # in this range, so we filter the lft value by being less than # or equal to the max_boundary, and the rght value by being # greater than or equal to the min_boundary. ContentNodeTable.c.lft <= max_boundary, ContentNodeTable.c.rght >= min_boundary, # And topics: # Only select values for descendant constraints from topics ContentNodeTable.c.kind == content_kinds.TOPIC, ) ) ).fetchall() # Extend the constraints we are filtering by with ones generated from the relevant # MPTT values we have queried above. or_queries.extend( _generate_MPTT_descendants_statement(mptt_values, ContentNodeTable) ) if not or_queries: # No constraints that apply in this range, so therefore this query should always # evaluate to False, because nothing can match it. return select([ContentNodeTable.c.id]).where(false()) # Return a query that ors each of the constraints return select([ContentNodeTable.c.id]).where(or_(*or_queries)) def _create_batch_update_statement( bridge, channel_id, min_boundary, max_boundary, node_ids, exclude_node_ids ): ContentNodeTable = bridge.get_table(ContentNode) # Restrict the update statement to nodes falling within the boundaries batch_statement = ContentNodeTable.update().where( and_( # Only update leaf nodes (non topics) ContentNodeTable.c.kind != content_kinds.TOPIC, # Only update nodes in the channel we specified ContentNodeTable.c.channel_id == channel_id, # Only select nodes inside the boundary conditions ContentNodeTable.c.rght >= min_boundary, ContentNodeTable.c.rght <= max_boundary, ) ) if node_ids is not None: # Construct a statement that restricts which nodes we update # in this batch by the specified inclusion constraints node_ids_statement = _MPTT_descendant_ids_statement( bridge, channel_id, node_ids, min_boundary, max_boundary ) # Add this statement to the query batch_statement = batch_statement.where( ContentNodeTable.c.id.in_(node_ids_statement) ) if exclude_node_ids is not None: # Construct a statement that restricts nodes we update # in this batch by the specified exclusion constraints exclude_node_ids_statement = _MPTT_descendant_ids_statement( bridge, channel_id, exclude_node_ids, min_boundary, max_boundary ) # Add this statement to the query batch_statement = batch_statement.where( ~ContentNodeTable.c.id.in_(exclude_node_ids_statement) ) return batch_statement def _calculate_batch_params(bridge, channel_id, node_ids, exclude_node_ids): ContentNodeTable = bridge.get_table(ContentNode) connection = bridge.get_connection() # To chunk the tree, we first find the full extent of the tree - this gives the # highest rght value for this channel. max_rght = connection.execute( select([func.max(ContentNodeTable.c.rght)]).where( ContentNodeTable.c.channel_id == channel_id ) ).scalar() # Count the total number of constraints constraint_count = len(node_ids or []) + len(exclude_node_ids or []) # Aim for a constraint per batch count of about 250 on average # This means that there will be at most 750 parameters from the constraints # and should therefore also limit the overall SQL expression size. dynamic_chunksize = int( min(CHUNKSIZE, ceil(250 * max_rght / (constraint_count or 1))) ) return max_rght, dynamic_chunksize def set_leaf_nodes_invisible(channel_id, node_ids=None, exclude_node_ids=None): """ Set nodes in a channel as unavailable. With no additional arguments, this will hide an entire channel. With the additional nodes arguments, it will selectively flag nodes as unavailable, based on the passed in ids, setting them as unavailable if they are in node_ids, or descendants of those nodes, but not in exclude_node_ids or descendants of those nodes. """ bridge = Bridge(app_name=CONTENT_APP_NAME) connection = bridge.get_connection() # Start a counter for the while loop min_boundary = 1 # Calculate batch parameters max_rght, dynamic_chunksize = _calculate_batch_params( bridge, channel_id, node_ids, exclude_node_ids ) logger.info( "Removing availability of non-topic ContentNode objects in {} batches of {}".format( int(ceil(max_rght / dynamic_chunksize)), dynamic_chunksize ) ) while min_boundary < max_rght: batch_statement = _create_batch_update_statement( bridge, channel_id, min_boundary, min_boundary + dynamic_chunksize, node_ids, exclude_node_ids, ) # Execute the update for this batch connection.execute( batch_statement.values(available=False).execution_options(autocommit=True) ) min_boundary += dynamic_chunksize bridge.end() def set_leaf_node_availability_from_local_file_availability( channel_id, node_ids=None, exclude_node_ids=None ): """ Set nodes in a channel as available, based on their required files. With no additional arguments, this will make every node in the channel available or unavailable based on whether the files needed to render those nodes are present on disk. With the additional nodes arguments, it will selectively flag nodes based on the passed in ids, marking their availability if they are in node_ids, or descendants of those nodes, but not in exclude_node_ids or descendants of those nodes. Nodes in the channel not captured by the constraints will not have their availability changed either way. """ bridge = Bridge(app_name=CONTENT_APP_NAME) # SQL Alchemy reference to the content node table ContentNodeTable = bridge.get_table(ContentNode) # SQL Alchemy reference to the file table - a mapping from # contentnodes to the files that they use FileTable = bridge.get_table(File) # SQL Alchemy reference to the localfile table which tracks # information about the files on disk, such as availability LocalFileTable = bridge.get_table(LocalFile) connection = bridge.get_connection() # This statement defines the update condition for the contentnode # running exists on this (as it is used below) will produce either # True, in the case when the contentnode has the required files # available for rendering, or False otherwise. contentnode_statement = ( # We could select any property here, as it's the exist that matters. select([1]).select_from( # This does the first step in the many to many lookup for File # and LocalFile. FileTable.join( LocalFileTable, and_( # This does the actual correlation between file and local file FileTable.c.local_file_id == LocalFileTable.c.id, # This only joins on LocalFile objects that we know # have associated files on disk. LocalFileTable.c.available == True, # noqa ), ) ) # Only look at files that are required (not supplementary) .where(FileTable.c.supplementary == False) # Correlate between the contentnode id and the foreign key # to the content node on the file table to complete the # many to many lookup .where(ContentNodeTable.c.id == FileTable.c.contentnode_id) ) # Start a counter for the while loop min_boundary = 1 # Calculate batch parameters max_rght, dynamic_chunksize = _calculate_batch_params( bridge, channel_id, node_ids, exclude_node_ids ) logger.info( "Setting availability of non-topic ContentNode objects based on LocalFile availability in {} batches of {}".format( int(ceil(max_rght / dynamic_chunksize)), dynamic_chunksize ) ) while min_boundary < max_rght: batch_statement = _create_batch_update_statement( bridge, channel_id, min_boundary, min_boundary + dynamic_chunksize, node_ids, exclude_node_ids, ) # Execute the update for this batch connection.execute( batch_statement.values( available=exists(contentnode_statement) ).execution_options(autocommit=True) ) min_boundary += dynamic_chunksize bridge.end() def mark_local_files_as_unavailable(checksums, destination=None): mark_local_files_availability(checksums, False, destination=destination) def mark_local_files_as_available(checksums, destination=None): """ Shortcut method to update database if we are sure that the files are available. Can be used after successful downloads to flag availability without having to do expensive disk reads. """ mark_local_files_availability(checksums, True, destination=destination) def mark_local_files_availability(checksums, availability, destination=None): if checksums: bridge = Bridge(app_name=CONTENT_APP_NAME, sqlite_file_path=destination) LocalFileTable = bridge.get_table(LocalFile) logger.info( "Setting availability to {availability} of {number} LocalFile objects based on passed in checksums".format( number=len(checksums), availability=availability ) ) connection = bridge.get_connection() trans = connection.begin() for i in range(0, len(checksums), CHUNKSIZE): connection.execute( LocalFileTable.update() .where( filter_by_checksums( LocalFileTable.c.id, checksums[i : i + CHUNKSIZE] ) ) .values(available=availability) ) trans.commit() bridge.end() def _check_file_availability(files): checksums_to_set_available = [] checksums_to_set_unavailable = [] for file in files: try: # Update if the file exists, *and* the localfile is set as unavailable. if os.path.exists( get_content_storage_file_path( get_content_file_name({"id": file[0], "extension": file[2]}) ) ): if not file[1]: checksums_to_set_available.append(file[0]) # Update if the file does not exist, *and* the localfile is set as available. else: if file[1]: checksums_to_set_unavailable.append(file[0]) except InvalidStorageFilenameError: continue return checksums_to_set_available, checksums_to_set_unavailable def set_local_file_availability_from_disk(checksums=None, destination=None): if type(checksums) == list and len(checksums) > CHUNKSIZE: for i in range(0, len(checksums), CHUNKSIZE): set_local_file_availability_from_disk( checksums=checksums[i : i + CHUNKSIZE], destination=destination ) return bridge = Bridge(app_name=CONTENT_APP_NAME, sqlite_file_path=destination) LocalFileTable = bridge.get_table(LocalFile) query = select( [LocalFileTable.c.id, LocalFileTable.c.available, LocalFileTable.c.extension] ) if checksums is None: logger.info( "Setting availability of LocalFile objects based on disk availability" ) elif type(checksums) == list: logger.info( "Setting availability of {number} LocalFile objects based on disk availability".format( number=len(checksums) ) ) query = query.where(filter_by_checksums(LocalFileTable.c.id, checksums)) else: logger.info( "Setting availability of LocalFile object with checksum {checksum} based on disk availability".format( checksum=checksums ) ) query = query.where(LocalFileTable.c.id == checksums) connection = bridge.get_connection() files = connection.execute(query).fetchall() checksums_to_set_available, checksums_to_set_unavailable = _check_file_availability( files ) bridge.end() mark_local_files_as_available(checksums_to_set_available, destination=destination) mark_local_files_as_unavailable( checksums_to_set_unavailable, destination=destination ) def recurse_annotation_up_tree(channel_id): bridge = Bridge(app_name=CONTENT_APP_NAME) ContentNodeClass = bridge.get_class(ContentNode) ContentNodeTable = bridge.get_table(ContentNode) connection = bridge.get_connection() node_depth = ( bridge.session.query(func.max(ContentNodeClass.level)) .filter_by(channel_id=channel_id) .scalar() ) logger.info( "Annotating ContentNode objects with children for {levels} levels".format( levels=node_depth ) ) child = ContentNodeTable.alias() # start a transaction trans = connection.begin() start = datetime.datetime.now() # Update all leaf ContentNodes to have num_coach_content to 1 or 0 # Update all leaf ContentNodes to have on_device_resources to 1 or 0 connection.execute( ContentNodeTable.update() .where( and_( # In this channel ContentNodeTable.c.channel_id == channel_id, # That are not topics ContentNodeTable.c.kind != content_kinds.TOPIC, ) ) .values( num_coach_contents=cast(ContentNodeTable.c.coach_content, Integer()), on_device_resources=cast(ContentNodeTable.c.available, Integer()), ) ) # Before starting set availability to False on all topics. connection.execute( ContentNodeTable.update() .where( and_( # In this channel ContentNodeTable.c.channel_id == channel_id, # That are topics ContentNodeTable.c.kind == content_kinds.TOPIC, ) ) .values(available=False) ) # Expression to capture all available child nodes of a contentnode available_nodes = select([child.c.available]).where( and_( child.c.available == True, # noqa ContentNodeTable.c.id == child.c.parent_id, ) ) # Expressions for annotation of coach content # Expression that will resolve a boolean value for all the available children # of a content node, whereby if they all have coach_content flagged on them, it will be true, # but otherwise false. # Everything after the select statement should be identical to the available_nodes expression above. if bridge.engine.name == "sqlite": # Use a min function to simulate an AND. coach_content_nodes = select([func.min(child.c.coach_content)]).where( and_( child.c.available == True, # noqa ContentNodeTable.c.id == child.c.parent_id, ) ) elif bridge.engine.name == "postgresql": # Use the postgres boolean AND operator coach_content_nodes = select([func.bool_and(child.c.coach_content)]).where( and_( child.c.available == True, # noqa ContentNodeTable.c.id == child.c.parent_id, ) ) # Expression that sums the total number of coach contents for each child node # of a contentnode coach_content_num = select([func.sum(child.c.num_coach_contents)]).where( and_( child.c.available == True, # noqa ContentNodeTable.c.id == child.c.parent_id, ) ) # Expression that sums the total number of on_device_resources for each child node # of a contentnode on_device_num = select([func.sum(child.c.on_device_resources)]).where( and_( child.c.available == True, # noqa ContentNodeTable.c.id == child.c.parent_id, ) ) # Go from the deepest level to the shallowest for level in range(node_depth, 0, -1): logger.info( "Annotating ContentNode objects with children for level {level}".format( level=level ) ) # Only modify topic availability here connection.execute( ContentNodeTable.update() .where( and_( ContentNodeTable.c.level == level - 1, ContentNodeTable.c.channel_id == channel_id, ContentNodeTable.c.kind == content_kinds.TOPIC, ) ) # Because we have set availability to False on all topics as a starting point # we only need to make updates to topics with available children. .where(exists(available_nodes)) .values( available=exists(available_nodes), coach_content=coach_content_nodes, num_coach_contents=coach_content_num, on_device_resources=on_device_num, ) ) # commit the transaction trans.commit() elapsed = datetime.datetime.now() - start logger.debug( "Recursive topic tree annotation took {} seconds".format(elapsed.seconds) ) bridge.end() def calculate_dummy_progress_for_annotation(node_ids, exclude_node_ids, total_progress): num_annotation_constraints = len(node_ids or []) + len(exclude_node_ids or []) # Calculate a percentage of the total progress to denote to annotation # between 1 and 10 annotation_proportion = min(10, max(1, int(num_annotation_constraints / 500))) # Create some progress proportional to annotation task return int(annotation_proportion * total_progress / (100 - annotation_proportion)) def propagate_forced_localfile_removal(localfiles_list): files = File.objects.filter(supplementary=False, local_file__in=localfiles_list) ContentNode.objects.filter(files__in=files).update(available=False) for channel_id in ChannelMetadata.objects.all().values_list("id", flat=True): recurse_annotation_up_tree(channel_id) def update_content_metadata( channel_id, node_ids=None, exclude_node_ids=None, public=None ): set_leaf_node_availability_from_local_file_availability( channel_id, node_ids=node_ids, exclude_node_ids=exclude_node_ids ) recurse_annotation_up_tree(channel_id) set_channel_metadata_fields(channel_id, public=public) ContentCacheKey.update_cache_key() def set_content_visibility( channel_id, checksums, node_ids=None, exclude_node_ids=None, public=None ): mark_local_files_as_available(checksums) update_content_metadata( channel_id, node_ids=node_ids, exclude_node_ids=exclude_node_ids, public=public ) def set_content_visibility_from_disk(channel_id): set_local_file_availability_from_disk() update_content_metadata(channel_id) def set_content_invisible(channel_id, node_ids, exclude_node_ids): set_leaf_nodes_invisible(channel_id, node_ids, exclude_node_ids) recurse_annotation_up_tree(channel_id) set_channel_metadata_fields(channel_id) ContentCacheKey.update_cache_key() def set_channel_metadata_fields(channel_id, public=None): channel = ChannelMetadata.objects.get(id=channel_id) calculate_published_size(channel) calculate_total_resource_count(channel) calculate_included_languages(channel) calculate_next_order(channel) if public is not None: channel.public = public channel.save() def files_for_nodes(nodes): return LocalFile.objects.filter(files__contentnode__in=nodes) def total_file_size(files_or_nodes): if issubclass(files_or_nodes.model, LocalFile): localfiles = files_or_nodes elif issubclass(files_or_nodes.model, ContentNode): localfiles = files_for_nodes(files_or_nodes) else: raise TypeError("Expected queryset for LocalFile or ContentNode") return localfiles.distinct().aggregate(Sum("file_size"))["file_size__sum"] or 0 def calculate_published_size(channel): content_nodes = ContentNode.objects.filter(channel_id=channel.id) channel.published_size = total_file_size( files_for_nodes(content_nodes).filter(available=True) ) channel.save() def calculate_total_resource_count(channel): content_nodes = ContentNode.objects.filter(channel_id=channel.id) channel.total_resource_count = ( content_nodes.filter(available=True) .exclude(kind=content_kinds.TOPIC) .dedupe_by_content_id() .count() ) channel.save() def calculate_included_languages(channel): content_nodes = ContentNode.objects.filter( channel_id=channel.id, available=True ).exclude(lang=None) languages = content_nodes.order_by("lang").values_list("lang", flat=True).distinct() channel.included_languages.add(*list(languages)) def calculate_next_order(channel, model=ChannelMetadata): if channel.order is None or channel.order == 0: max_order = model.objects.aggregate(Max("order")).get("order__max", 0) if max_order is None: max_order = 0 channel.order = max_order + 1 channel.save()
py
1a54892cef65e65a93f56c76ca1afcd073fcfc83
""" Evo-LeViT in PyTorch A PyTorch implement of Evo-LeViT as described in 'Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer' The code is modified from LeViT as described in 'LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference' - https://arxiv.org/abs/2104.01136 The official code of LeViT is released and available at https://github.com/facebookresearch/LeViT """ import torch import utils import torch.nn as nn from timm.models.vision_transformer import trunc_normal_ from timm.models.registry import register_model specification = { 'EvoLeViT_128S': { 'C': '128_256_384', 'D': 16, 'N': '4_6_8', 'X': '2_3_4', 'drop_path': 0, 'weights': 'https://dl.fbaipublicfiles.com/LeViT/LeViT-128S-96703c44.pth'}, 'EvoLeViT_128': { 'C': '128_256_384', 'D': 16, 'N': '4_8_12', 'X': '4_4_4', 'drop_path': 0, 'weights': 'https://dl.fbaipublicfiles.com/LeViT/LeViT-128-b88c2750.pth'}, 'EvoLeViT_192': { 'C': '192_288_384', 'D': 32, 'N': '3_5_6', 'X': '4_4_4', 'drop_path': 0, 'weights': 'https://dl.fbaipublicfiles.com/LeViT/LeViT-192-92712e41.pth'}, 'EvoLeViT_256': { 'C': '256_384_512', 'D': 32, 'N': '4_6_8', 'X': '4_4_4', 'drop_path': 0, 'weights': 'https://dl.fbaipublicfiles.com/LeViT/LeViT-256-13b5763e.pth'}, 'EvoLeViT_384': { 'C': '384_512_768', 'D': 32, 'N': '6_9_12', 'X': '4_4_4', 'drop_path': 0.1, 'weights': 'https://dl.fbaipublicfiles.com/LeViT/LeViT-384-9bdaf2e2.pth'}, } prune_ratio_list = { 'EvoLeViT_128S': [[1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 'EvoLeViT_128': [[1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 'EvoLeViT_192': [[1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 'EvoLeViT_256': [[1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 'EvoLeViT_384': [[1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], } __all__ = [specification.keys()] @register_model def EvoLeViT_128S(num_classes=1000, distillation=True, pretrained=False, fuse=False): return model_factory(**specification['EvoLeViT_128S'], num_classes=num_classes, distillation=distillation, pretrained=pretrained, fuse=fuse, prune_ratio=prune_ratio_list['EvoLeViT_128S']) @register_model def EvoLeViT_128(num_classes=1000, distillation=True, pretrained=False, fuse=False): return model_factory(**specification['EvoLeViT_128'], num_classes=num_classes, distillation=distillation, pretrained=pretrained, fuse=fuse, prune_ratio=prune_ratio_list['EvoLeViT_128']) @register_model def EvoLeViT_192(num_classes=1000, distillation=True, pretrained=False, fuse=False): return model_factory(**specification['EvoLeViT_192'], num_classes=num_classes, distillation=distillation, pretrained=pretrained, fuse=fuse, prune_ratio=prune_ratio_list['EvoLeViT_192']) @register_model def EvoLeViT_256(num_classes=1000, distillation=True, pretrained=False, fuse=False): return model_factory(**specification['EvoLeViT_256'], num_classes=num_classes, distillation=distillation, pretrained=pretrained, fuse=fuse, prune_ratio=prune_ratio_list['EvoLeViT_256']) @register_model def EvoLeViT_384(num_classes=1000, distillation=True, pretrained=False, fuse=False): return model_factory(**specification['EvoLeViT_384'], num_classes=num_classes, distillation=distillation, pretrained=pretrained, fuse=fuse, prune_ratio=prune_ratio_list['EvoLeViT_384']) global_attn = 0 ori_indices = None learn_tradeoff_mode = True def easy_gather(x, indices): # x: B,N,C; indices: B,N B, N, C = x.shape N_new = indices.shape[1] offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N indices = indices + offset out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C) return out def merge_tokens(x_drop, score): # score B,N # scale weight = score / torch.sum(score, dim=1, keepdim=True) x_drop = weight.unsqueeze(-1) * x_drop return torch.sum(x_drop, dim=1, keepdim=True) class CatModule(torch.nn.Module): def __init__(self, m1, m2, prune_ratio, N): super().__init__() self.m1 = m1 self.m2 = m2 self.prune_ratio = prune_ratio # self.i = i if prune_ratio < 1.0: N_ = N - int(N * prune_ratio) self.drop_fc = nn.AdaptiveAvgPool1d(1) # self.recover_fc=nn.Linear(1,N_) def set_prune_ratio(self, prune_ratio): self.prune_ratio = prune_ratio def forward(self, x_): global global_attn # ga global ori_indices # oi if self.prune_ratio < 1: x = x_[:, 1:] # split out cls token N = x.shape[1] N_ = int(N * self.prune_ratio) indices = torch.argsort(global_attn, dim=1, descending=True) x_ga_oi = torch.cat((x, global_attn.unsqueeze(-1), ori_indices.unsqueeze(-1)), dim=-1) x_ga_oi = easy_gather(x_ga_oi, indices) x_sorted, global_attn, ori_indices = x_ga_oi[:, :, :-2], x_ga_oi[:, :, -2], x_ga_oi[:, :, -1] if self.training: x_ = torch.cat((x_[:, :1], x_sorted), dim=1) else: x_[:, 1:] = x_sorted x = x_[:, :N_ + 1] x_drop = x_[:, N_ + 1:] add_token = merge_tokens(x_drop, global_attn[:, N_:]) # B,1,C x = torch.cat((x, add_token), dim=1) # B,N+1,C x, raw_x1 = self.m1(x) x, raw_x2 = self.m2(x) x = x[:, :-1] # fast update via skip connection add_token1 = raw_x1[:, -1:] add_token2 = raw_x2[:, -1:] x_drop = x_drop + add_token1.expand(-1, x_drop.shape[1], -1) + add_token2.expand(-1, x_drop.shape[1], -1) x_ = torch.cat((x, x_drop), dim=1) # x_[:, N_ + 1:] = x_drop # x_[:, :N_ + 1] = x else: x_, _ = self.m1(x_) x_, _ = self.m2(x_) return x_ class StageModule(torch.nn.Module): def __init__(self, m, prune_ratio): super().__init__() self.m = m self.prune_ratio = prune_ratio def forward(self, x_): global global_attn # ga global ori_indices # oi if isinstance(x_, tuple): x_ = x_[0] if self.prune_ratio < 1: x = x_[:, 1:] # split out cls token N = x.shape[1] N_ = int(N * self.prune_ratio) indices = torch.argsort(global_attn, dim=1, descending=True) x_ga_oi = torch.cat((x, global_attn.unsqueeze(-1), ori_indices.unsqueeze(-1)), dim=-1) x_ga_oi = easy_gather(x_ga_oi, indices) x_sorted, global_attn, ori_indices = x_ga_oi[:, :, :-2], x_ga_oi[:, :, -2], x_ga_oi[:, :, -1] if self.training: x_ = torch.cat((x_[:, :1], x_sorted), dim=1) else: x_[:, 1:] = x_sorted x = x_[:, :N_ + 1] x_drop = x_[:, N_ + 1:] merge_weight = global_attn[:, N_:] add_token = merge_tokens(x_drop, merge_weight) # B,1,C x = torch.cat((x, add_token), dim=1) # B,N+1,C raw_total = 0 for blk in self.m: x, raw = blk(x) raw_total = raw_total + raw[:, -1:] x_drop = x_drop + raw_total.expand(-1, x_drop.shape[1], -1) x = x[:, :-1] if self.training: x_ = torch.cat((x, x_drop), dim=1) else: x_[:, N_ + 1:] = x_drop x_[:, :N_ + 1] = x else: x_ = self.m(x_) return x_ class Conv2d_BN(torch.nn.Sequential): def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, resolution=-10000): super().__init__() self.add_module('c', torch.nn.Conv2d( a, b, ks, stride, pad, dilation, groups, bias=False)) bn = torch.nn.BatchNorm2d(b) torch.nn.init.constant_(bn.weight, bn_weight_init) torch.nn.init.constant_(bn.bias, 0) self.add_module('bn', bn) @torch.no_grad() def fuse(self): c, bn = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / \ (bn.running_var + bn.eps) ** 0.5 m = torch.nn.Conv2d(w.size(1), w.size( 0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m class Linear_BN(torch.nn.Sequential): def __init__(self, a, b, bn_weight_init=1, resolution=-100000): super().__init__() self.add_module('c', torch.nn.Linear(a, b, bias=False)) bn = torch.nn.BatchNorm1d(b) torch.nn.init.constant_(bn.weight, bn_weight_init) torch.nn.init.constant_(bn.bias, 0) self.add_module('bn', bn) @torch.no_grad() def fuse(self): l, bn = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[:, None] b = bn.bias - bn.running_mean * bn.weight / \ (bn.running_var + bn.eps) ** 0.5 m = torch.nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def forward(self, x): l, bn = self._modules.values() x = l(x) return bn(x.flatten(0, 1)).reshape_as(x) class BN_Linear(torch.nn.Sequential): def __init__(self, a, b, bias=True, std=0.02): super().__init__() self.add_module('bn', torch.nn.BatchNorm1d(a)) l = torch.nn.Linear(a, b, bias=bias) trunc_normal_(l.weight, std=std) if bias: torch.nn.init.constant_(l.bias, 0) self.add_module('l', l) @torch.no_grad() def fuse(self): bn, l = self._modules.values() w = bn.weight / (bn.running_var + bn.eps) ** 0.5 b = bn.bias - self.bn.running_mean * \ self.bn.weight / (bn.running_var + bn.eps) ** 0.5 w = l.weight * w[None, :] if l.bias is None: b = b @ self.l.weight.T else: b = (l.weight @ b[:, None]).view(-1) + self.l.bias m = torch.nn.Linear(w.size(1), w.size(0)) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def b16(n, activation, resolution=224): return torch.nn.Sequential( Conv2d_BN(3, n // 8, 3, 2, 1, resolution=resolution), activation(), Conv2d_BN(n // 8, n // 4, 3, 2, 1, resolution=resolution // 2), activation(), Conv2d_BN(n // 4, n // 2, 3, 2, 1, resolution=resolution // 4), activation(), Conv2d_BN(n // 2, n, 3, 2, 1, resolution=resolution // 8)) class Residual(torch.nn.Module): def __init__(self, m, drop, out_raw=False): super().__init__() self.m = m self.drop = drop self.out_raw = out_raw def set_prune_ratio(self, prune_ratio): pass def forward(self, x): if isinstance(x, tuple): x = x[0] if self.training and self.drop > 0: raw = self.m(x) * torch.rand(x.size(0), 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() else: raw = self.m(x) if self.out_raw: return x + raw, raw else: return x + raw class Attention(torch.nn.Module): def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, activation=None, resolution=14, posembed=False, global_attn_tradeoff=0.5): super().__init__() self.tradeoff = global_attn_tradeoff self.learn_tradeoff = torch.nn.Parameter(torch.Tensor([0])) self.sigmoid = torch.nn.Sigmoid() self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.nh_kd = nh_kd = key_dim * num_heads self.d = int(attn_ratio * key_dim) self.dh = int(attn_ratio * key_dim) * num_heads self.attn_ratio = attn_ratio h = self.dh + nh_kd * 2 self.qkv = Linear_BN(dim, h, resolution=resolution) self.proj = torch.nn.Sequential(activation(), Linear_BN( self.dh, dim, bn_weight_init=0, resolution=resolution)) self.pos_embed = posembed @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and hasattr(self, 'ab'): del self.ab def forward(self, x): # x (B,N,C) global global_attn global learn_tradeoff_mode B, N, C = x.shape qkv = self.qkv(x) q, k, v = qkv.view(B, N, self.num_heads, - 1).split([self.key_dim, self.key_dim, self.d], dim=3) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) attn_raw = (q @ k.transpose(-2, -1)) * self.scale attn = attn_raw.softmax(dim=-1) # update global attn if learn_tradeoff_mode: tradeoff = self.sigmoid(self.learn_tradeoff) else: tradeoff = self.tradeoff if isinstance(global_attn, int): cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1) # B,N global_attn = cls_attn else: if global_attn.shape[1] - N + 2 == 1: # no additional token and no pruning cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1) global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn else: cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1) if self.training: temp_attn = (1 - tradeoff) * global_attn[:, :N - 2] + tradeoff * cls_attn global_attn = torch.cat((temp_attn, global_attn[:, N - 2:]), dim=1) else: global_attn[:, :N - 2] = (1 - tradeoff) * global_attn[:, :N - 2] + tradeoff * cls_attn x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh) x = self.proj(x) return x class Subsample(torch.nn.Module): def __init__(self, stride, resolution): super().__init__() self.stride = stride self.resolution = resolution def forward(self, x, with_cls=True): if with_cls: B, N, C = x.shape x1 = x[:, 1:, :] x1 = x1.view(B, self.resolution, self.resolution, C)[ :, ::self.stride, ::self.stride].reshape(B, -1, C) x = torch.cat((x[:, :1, :], x1), dim=1) else: B, N, C = x.shape x = x.view(B, self.resolution, self.resolution, C)[ :, ::self.stride, ::self.stride].reshape(B, -1, C) return x class AttentionSubsample(torch.nn.Module): def __init__(self, in_dim, out_dim, key_dim, num_heads=8, attn_ratio=2, activation=None, stride=2, resolution=14, resolution_=7, posembed=False, global_attn_tradeoff=0.5): super().__init__() self.tradeoff = global_attn_tradeoff self.learn_tradeoff = torch.nn.Parameter(torch.Tensor([0])) self.sigmoid = torch.nn.Sigmoid() self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.nh_kd = nh_kd = key_dim * num_heads self.d = int(attn_ratio * key_dim) self.dh = int(attn_ratio * key_dim) * self.num_heads self.attn_ratio = attn_ratio self.resolution_ = resolution_ self.resolution_2 = resolution_ ** 2 h = self.dh + nh_kd self.kv = Linear_BN(in_dim, h, resolution=resolution) self.q = torch.nn.Sequential( Subsample(stride, resolution), Linear_BN(in_dim, nh_kd, resolution=resolution_)) self.proj = torch.nn.Sequential(activation(), Linear_BN( self.dh, out_dim, resolution=resolution_)) self.pos_embed = posembed if posembed: self.poss = nn.Parameter(torch.zeros(1, resolution ** 2 + 1, in_dim)) trunc_normal_(self.poss, std=.02) self.stride = stride self.resolution = resolution @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and hasattr(self, 'ab'): del self.ab def set_prune_ratio(self, prune_ratio): pass def forward(self, x): global global_attn # ga global ori_indices # oi global learn_tradeoff_mode if isinstance(x, tuple): x = x[0] # recover sequence old_global_scale = torch.sum(global_attn, dim=1, keepdim=True) x_patch = x[:, 1:] indices = torch.argsort(ori_indices, dim=1) x_ga_oi = torch.cat((x_patch, global_attn.unsqueeze(-1), ori_indices.unsqueeze(-1)), dim=-1) x_ga_oi = easy_gather(x_ga_oi, indices) x_patch, ga_oi = x_ga_oi[:, :, :-2], x_ga_oi[:, :, -2:] # subsample global attn and ori indices ga_oi = self.q[0](ga_oi, False) global_attn, ori_indices = ga_oi[:, :, 0], ga_oi[:, :, 1] # global_attn, ori_indices = ga_oi[:, :, 0], ga_oi[:, :, 1] if self.training: x = torch.cat((x[:, :1], x_patch), dim=1) else: x[:, 1:] = x_patch x = x + self.poss B, N, C = x.shape k, v = self.kv(x).view(B, N, self.num_heads, - 1).split([self.key_dim, self.d], dim=3) k = k.permute(0, 2, 1, 3) # BHNC v = v.permute(0, 2, 1, 3) # BHNC q = self.q(x).view(B, self.resolution_2 + 1, self.num_heads, self.key_dim).permute(0, 2, 1, 3) attn_raw = (q @ k.transpose(-2, -1)) * self.scale attn = attn_raw.softmax(dim=-1) cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1) # B,N cls_attn = self.q[0](cls_attn.unsqueeze(-1), False).squeeze(-1) if learn_tradeoff_mode: tradeoff = self.sigmoid(self.learn_tradeoff) else: tradeoff = self.tradeoff global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn # normalize global attention new_global_scale = torch.sum(global_attn, dim=1, keepdim=True) scale = old_global_scale / new_global_scale global_attn = global_attn * scale x = (attn @ v).transpose(1, 2).reshape(B, -1, self.dh) x = self.proj(x) return x class LeViT(torch.nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=[192], key_dim=[64], depth=[12], num_heads=[3], attn_ratio=[2], mlp_ratio=[2], hybrid_backbone=None, down_ops=[], attention_activation=torch.nn.Hardswish, mlp_activation=torch.nn.Hardswish, distillation=True, drop_path=0, prune_ratio=None): super().__init__() self.stage_wise_prune = True self.num_classes = num_classes self.num_features = embed_dim[-1] self.embed_dim = embed_dim self.distillation = distillation self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[0])) self.patch_embed = hybrid_backbone self.pos_embed = True self.blocks = [] self.stage_blocks = [] down_ops.append(['']) resolution = img_size // patch_size if self.pos_embed: self.poss = nn.Parameter(torch.zeros(1, resolution ** 2 + 1, embed_dim[0])) trunc_normal_(self.poss, std=.02) self.prune_ratio = prune_ratio[0] self.stage_prune_ratio = prune_ratio[1] layer_index = -1 n = 14 j = 0 for i, (ed, kd, dpth, nh, ar, mr, do) in enumerate( zip(embed_dim, key_dim, depth, num_heads, attn_ratio, mlp_ratio, down_ops)): stage_subblocks = [] for _ in range(dpth): layer_index += 1 m1 = Residual(Attention( ed, kd, nh, attn_ratio=ar, activation=attention_activation, resolution=resolution, posembed=self.pos_embed ), drop_path, out_raw=True) if self.prune_ratio[layer_index] == 1: self.stage_blocks.append(m1) else: stage_subblocks.append(m1) if mr > 0: h = int(ed * mr) m2 = Residual(torch.nn.Sequential( Linear_BN(ed, h, resolution=resolution), mlp_activation(), Linear_BN(h, ed, bn_weight_init=0, resolution=resolution), ), drop_path, out_raw=True) else: m2 = torch.nn.Identity() if self.prune_ratio[layer_index] == 1: self.stage_blocks.append(m2) else: stage_subblocks.append(m2) self.blocks.append(CatModule(m1, m2, prune_ratio=self.prune_ratio[layer_index], N=n ** 2)) if self.prune_ratio[layer_index] < 1: j = j + 1 if len(stage_subblocks) != 0: stage_subblocks = torch.nn.ModuleList(stage_subblocks) self.stage_blocks.append(StageModule(stage_subblocks, prune_ratio=self.stage_prune_ratio[i])) if do[0] == 'Subsample': n = int((n + 1) / 2) # ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) resolution_ = (resolution - 1) // do[5] + 1 subsample = AttentionSubsample( *embed_dim[i:i + 2], key_dim=do[1], num_heads=do[2], attn_ratio=do[3], activation=attention_activation, stride=do[5], resolution=resolution, resolution_=resolution_, posembed=self.pos_embed) self.blocks.append(subsample) self.stage_blocks.append(subsample) resolution = resolution_ if do[4] > 0: # mlp_ratio h = int(embed_dim[i + 1] * do[4]) ffn = Residual(torch.nn.Sequential( Linear_BN(embed_dim[i + 1], h, resolution=resolution), mlp_activation(), Linear_BN( h, embed_dim[i + 1], bn_weight_init=0, resolution=resolution), ), drop_path) self.blocks.append(ffn) self.stage_blocks.append(ffn) self.blocks = torch.nn.Sequential(*self.blocks) self.stage_blocks = torch.nn.Sequential(*self.stage_blocks) # Classifier head self.head = BN_Linear( embed_dim[-1], num_classes) if num_classes > 0 else torch.nn.Identity() if distillation: self.head_dist = BN_Linear( embed_dim[-1], num_classes) if num_classes > 0 else torch.nn.Identity() self.clsc = True if self.clsc: self.head_cls = BN_Linear( embed_dim[-1], num_classes) if num_classes > 0 else torch.nn.Identity() if distillation: self.head_cls_dist = BN_Linear( embed_dim[-1], num_classes) if num_classes > 0 else torch.nn.Identity() @torch.jit.ignore def no_weight_decay(self): return {x for x in self.state_dict().keys() if 'poss' in x} def set_learn_tradeoff(self, mode): global learn_tradeoff_mode learn_tradeoff_mode = mode def set_prune_ratio(self, mode): pass def remove_cls(self): if hasattr(self, 'head_cls'): del self.head_cls if hasattr(self, 'head_cls_dist'): del self.head_cls_dist def forward(self, x): global global_attn global ori_indices global learn_tradeoff_mode global_attn = 0 x = self.patch_embed(x) x = x.flatten(2).transpose(1, 2) ori_indices = torch.arange(x.shape[1], dtype=torch.long, device=x.device).unsqueeze(0) ori_indices = ori_indices.expand(x.shape[0], -1) cls_token = self.cls_token.expand(x.shape[0], -1, -1) x = torch.cat((cls_token, x), 1) if self.pos_embed: x = x + self.poss if self.stage_wise_prune: x = self.stage_blocks(x) else: x = self.blocks(x) cls = x[:, 0, :] x = x[:, 1:, :] x = x.mean(1) if self.distillation: x = self.head(x), self.head_dist(x) if self.clsc: if self.training: xcls = self.head_cls(cls) xcls_dist = self.head_cls_dist(cls) return x[0], x[1], xcls, xcls_dist else: return (x[0] + x[1]) / 2 if not self.training: x = (x[0] + x[1]) / 2 else: x = self.head(x) return x def model_factory(C, D, X, N, drop_path, weights, num_classes, distillation, pretrained, fuse, prune_ratio): embed_dim = [int(x) for x in C.split('_')] num_heads = [int(x) for x in N.split('_')] depth = [int(x) for x in X.split('_')] act = torch.nn.Hardswish model = LeViT( patch_size=16, embed_dim=embed_dim, num_heads=num_heads, key_dim=[D] * 3, depth=depth, attn_ratio=[2, 2, 2], mlp_ratio=[2, 2, 2], down_ops=[ # ('Subsample',key_dim, num_heads, attn_ratio, mlp_ratio, stride) ['Subsample', D, embed_dim[0] // D, 4, 2, 2], ['Subsample', D, embed_dim[1] // D, 4, 2, 2], ], attention_activation=act, mlp_activation=act, hybrid_backbone=b16(embed_dim[0], activation=act), num_classes=num_classes, drop_path=drop_path, distillation=distillation, prune_ratio=prune_ratio ) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( weights, map_location='cpu') model.load_state_dict(checkpoint['model']) if fuse: utils.replace_batchnorm(model) return model if __name__ == '__main__': for name in specification: net = globals()[name](fuse=False, pretrained=False) net.eval() net.remove_cls() net(torch.randn(4, 3, 224, 224)) print(name, 'Parameters:', sum(p.numel() for p in net.parameters() if p.requires_grad))
py
1a5489ab16601f7d0665e5ad8c68e2c4e811d534
# Generated by Django 2.2 on 2020-09-12 18:44 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('account', '0003_auto_20200802_1750'), ] operations = [ migrations.RemoveField( model_name='customer', name='address', ), migrations.AddField( model_name='customer', name='address_line_1', field=models.CharField(max_length=250, null=True), ), migrations.AddField( model_name='customer', name='address_line_2', field=models.CharField(blank=True, max_length=250, null=True), ), migrations.AddField( model_name='customer', name='city', field=models.CharField(max_length=250, null=True), ), migrations.AddField( model_name='customer', name='country', field=models.CharField(default='Nigeria', max_length=250), ), migrations.AddField( model_name='customer', name='email', field=models.EmailField(blank=True, max_length=250, null=True), ), migrations.AddField( model_name='customer', name='first_name', field=models.CharField(max_length=250, null=True), ), migrations.AddField( model_name='customer', name='last_name', field=models.CharField(max_length=250, null=True), ), migrations.AddField( model_name='customer', name='postal_code', field=models.PositiveIntegerField(null=True), ), migrations.AddField( model_name='customer', name='state', field=models.CharField(max_length=250, null=True), ), migrations.CreateModel( name='DeliveryAddress', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=250, null=True)), ('last_name', models.CharField(max_length=250, null=True)), ('email', models.EmailField(blank=True, max_length=250, null=True)), ('address_line_1', models.CharField(max_length=250, null=True)), ('address_line_2', models.CharField(blank=True, max_length=250, null=True)), ('city', models.CharField(max_length=250, null=True)), ('state', models.CharField(max_length=250, null=True)), ('country', models.CharField(default='Nigeria', max_length=250)), ('postal_code', models.PositiveIntegerField(null=True)), ('phone_number', models.PositiveIntegerField(null=True)), ('customer', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='account.Customer')), ], ), migrations.CreateModel( name='DefaultAddress', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('DeliveryAddress', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='account.DeliveryAddress')), ('customer', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='account.Customer')), ], ), ]
py
1a548ae67fe9da05111ee335470e6c9cb5d41c2d
from django.contrib import admin from .models import Movie # Register your models here. admin.site.register(Movie)
py
1a548d72cf17c4853a45dff41264abc683933f12
import ssl import threading import time import websocket # pip3 install websocket_client websocket.enableTrace(True) def on_wss_msg(evt): print(evt) class SubscribeClient(websocket.WebSocketApp): def __init__(self, url, on_wss_open, on_wss_msg): self.url = url self.reconnect_intv_sec = 60 super().__init__(url=url, on_open=on_wss_open, on_message=on_wss_msg, on_error=self.on_wss_error, on_close=self.on_wss_close) def on_wss_open(self): print(self.__class__.__name__ + ': on_wss_open') def on_wss_cont_message(self, msg, cont): print(self.__class__.__name__ + ': on_wss_cont_message') def on_wss_error(self, evt): print(self.__class__.__name__ + ': on_wss_error: msg = ' + str(evt)) print(evt) def on_wss_close(self): print(self.__class__.__name__ + ': on_wss_close') def do_start(self): try: while True: print('Starting SubscribeClient url = ' + self.url) self.run_forever(ping_timeout=30, sslopt={"cert_reqs": ssl.CERT_NONE}) print(f'Sleep {self.reconnect_intv_sec} seconds and connect again....') time.sleep(self.reconnect_intv_sec) except Exception as e: print('SubscribeClient: run_forever exception ' + str(e)) def start(self): threading.Thread(target=self.do_start).start()
py
1a548d997c35d8b41d450eade72a03c464b51f34
from usaspending_api.references.models.agency import Agency from usaspending_api.references.models.cfda import Cfda from usaspending_api.references.models.cgac import CGAC from usaspending_api.references.models.city_county_state_code import CityCountyStateCode from usaspending_api.references.models.definition import Definition from usaspending_api.references.models.filter_hash import FilterHash from usaspending_api.references.models.frec import FREC from usaspending_api.references.models.frec_map import FrecMap from usaspending_api.references.models.gtas_total_obligation import GTASTotalObligation from usaspending_api.references.models.naics import NAICS from usaspending_api.references.models.object_class import ObjectClass from usaspending_api.references.models.overall_totals import OverallTotals from usaspending_api.references.models.psc import PSC from usaspending_api.references.models.ref_country_code import RefCountryCode from usaspending_api.references.models.ref_program_activity import RefProgramActivity from usaspending_api.references.models.rosetta import Rosetta from usaspending_api.references.models.subtier_agency import SubtierAgency from usaspending_api.references.models.toptier_agency import ToptierAgency __all__ = [ "Agency", "Cfda", "CGAC", "CityCountyStateCode", "Definition", "FilterHash", "FREC", "FrecMap", "GTASTotalObligation", "NAICS", "ObjectClass", "OverallTotals", "PSC", "RefCountryCode", "RefProgramActivity", "Rosetta", "SubtierAgency", "ToptierAgency", ]
py
1a548e57c3f1c07d54c1dd6a5ea48ec369ca2474
# encoding:utf-8 import sys sys.path.append("..") from mf import MF from utility.matrix import SimMatrix from utility.similarity import cosine_sp class ItemCF(MF): """ docstring for ItemCF implement the ItemCF Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001: 285-295. """ def __init__(self): super(ItemCF, self).__init__() self.config.n = 10 # self.init_model() def init_model(self, k): super(ItemCF, self).init_model(k) # def init_model(self): # self.item_sim = SimMatrix() # for i_test in self.rg.testSet_i: # for i_train in self.rg.item: # if i_test != i_train: # if self.item_sim.contains(i_test, i_train): # continue # sim = cosine_sp(self.rg.get_col(i_test), self.rg.get_col(i_train)) # self.item_sim.set(i_test, i_train, sim) def predict(self, u, i): item_sim = dict() for i_train in self.rg.item: if i != i_train: if i_train in item_sim: continue sim = cosine_sp(self.rg.get_col(i), self.rg.get_col(i_train)) item_sim[i_train] = sim matchItems = sorted(item_sim.items(), key=lambda x: x[1], reverse=True) itemCount = self.config.n if itemCount > len(matchItems): itemCount = len(matchItems) sum, denom = 0, 0 for n in range(itemCount): similarItem = matchItems[n][0] if self.rg.containsUserItem(u, similarItem): similarity = matchItems[n][1] rating = self.rg.trainSet_u[u][similarItem] sum += similarity * (rating - self.rg.itemMeans[similarItem]) denom += similarity if sum == 0: if not self.rg.containsItem(i): return self.rg.globalMean return self.rg.itemMeans[i] pred = self.rg.itemMeans[i] + sum / float(denom) # print('finished user:'+str(u)+" item:"+str(i)) return pred pass if __name__ == '__main__': ic = ItemCF() ic.init_model(0) print(ic.predict_model()) print(ic.predict_model_cold_users()) ic.init_model(1) print(ic.predict_model()) print(ic.predict_model_cold_users())
py
1a548f1837a4cd46ff57f7ea4b301628adb9f77f
#!/usr/bin/env python import json import os import requests from typing import List, Dict from typing_extensions import Final # 1 page fetches 100 proposals. Remember to increment the number below periodically # to match the number of currently open proposals on # https://github.com/godotengine/godot-proposals/issues. NUM_PAGES: Final = 15 def main() -> None: # Change to the directory where the script is located, # so that the script can be run from any location. os.chdir(os.path.dirname(os.path.realpath(__file__))) print("[*] Fetching proposal JSON pages...") all_proposals: List[Dict] = [] for page in range(1, NUM_PAGES + 1): print(f" Requesting batch of proposals {page}/{NUM_PAGES}...") request = requests.get( f"https://api.github.com/repos/godotengine/godot-proposals/issues?state=open&per_page=100&page={page}", headers={"Accept": "application/vnd.github.squirrel-girl-preview"}, ) request_dict = json.loads(request.text) for proposal in request_dict: # Only include fields we use on the frontend. all_proposals.append( { "id": proposal["id"], "number": proposal["number"], "title": proposal["title"], "created_at": proposal["created_at"], "html_url": proposal["html_url"], "user": {"login": proposal["user"]["login"]}, "comments": proposal["comments"], "reactions": { "+1": proposal["reactions"]["+1"], "-1": proposal["reactions"]["-1"], }, } ) print("[*] Saving proposals.json...") with open("proposals.json", "w") as file: json.dump(all_proposals, file) print("[*] Success!") if __name__ == "__main__": main()
py
1a548f304e062d9cb32145c503139c7d71369ca5
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class AzureWorkloadJobExtendedInfo(Model): """Azure VM workload-specific additional information for job. :param tasks_list: List of tasks for this job :type tasks_list: list[~azure.mgmt.recoveryservicesbackup.models.AzureWorkloadJobTaskDetails] :param property_bag: Job properties. :type property_bag: dict[str, str] :param dynamic_error_message: Non localized error message on job execution. :type dynamic_error_message: str """ _attribute_map = { 'tasks_list': {'key': 'tasksList', 'type': '[AzureWorkloadJobTaskDetails]'}, 'property_bag': {'key': 'propertyBag', 'type': '{str}'}, 'dynamic_error_message': {'key': 'dynamicErrorMessage', 'type': 'str'}, } def __init__(self, **kwargs): super(AzureWorkloadJobExtendedInfo, self).__init__(**kwargs) self.tasks_list = kwargs.get('tasks_list', None) self.property_bag = kwargs.get('property_bag', None) self.dynamic_error_message = kwargs.get('dynamic_error_message', None)
py
1a5492156a1dca031f7c31dfec8899f817206cbe
from django.urls import path from . import views urlpatterns = [ path('', views.WelcomeTemplateView.as_view(), name='welcome'), path('about/', views.AboutTemplateView.as_view(), name='about'), path('cookies/', views.CookiesTemplateView.as_view(), name='cookies'), ]
py
1a5493f3f4b4708fb127277985acfac72ff8b686
import cgi import datetime from paste.fixture import AppError from pylons import config from pylons import c from genshi.core import escape as genshi_escape from difflib import unified_diff from nose.plugins.skip import SkipTest from nose.tools import assert_equal from ckan.tests import * from ckan.tests.html_check import HtmlCheckMethods from ckan.tests.pylons_controller import PylonsTestCase from base import FunctionalTestCase import ckan.model as model from ckan.lib.create_test_data import CreateTestData import ckan.lib.helpers as h import ckan.lib.search as search from ckan.logic.action import get, update from ckan.controllers.package import PackageController from ckan.plugins import SingletonPlugin, implements, IPackageController from ckan import plugins from ckan.rating import set_rating from ckan.lib.search.common import SolrSettings class MockPackageControllerPlugin(SingletonPlugin): implements(IPackageController) def __init__(self): from collections import defaultdict self.calls = defaultdict(int) def read(self, entity): self.calls['read'] += 1 def create(self, entity): self.calls['create'] += 1 def edit(self, entity): self.calls['edit'] += 1 def authz_add_role(self, object_role): self.calls['authz_add_role'] += 1 def authz_remove_role(self, object_role): self.calls['authz_remove_role'] += 1 def delete(self, entity): self.calls['delete'] += 1 def before_search(self, search_params): self.calls['before_search'] += 1 return search_params def after_search(self, search_results, search_params): self.calls['after_search'] += 1 return search_results def before_index(self, data_dict): self.calls['before_index'] += 1 return data_dict def before_view(self, data_dict): self.calls['before_view'] += 1 return data_dict def after_create(self, context, data_dict): self.calls['after_create'] += 1 self.id_in_dict = 'id' in data_dict return data_dict def after_update(self, context, data_dict): self.calls['after_update'] += 1 return data_dict def after_delete(self, context, data_dict): self.calls['after_delete'] += 1 return data_dict def after_show(self, context, data_dict): self.calls['after_show'] += 1 return data_dict def update_facet_titles(self, facet_titles): return facet_titles existing_extra_html = ('<label class="field_opt" for="Package-%(package_id)s-extras-%(key)s">%(capitalized_key)s</label>', '<input id="Package-%(package_id)s-extras-%(key)s" name="Package-%(package_id)s-extras-%(key)s" size="20" type="text" value="%(value)s">') class TestPackageBase(FunctionalTestCase): key1 = u'key1 Less-than: < Umlaut: \xfc' value1 = u'value1 Less-than: < Umlaut: \xfc' # Note: Can't put a quotation mark in key1 or value1 because # paste.fixture doesn't unescape the value in an input field # on form submission. (But it works in real life.) def _assert_form_errors(self, res): self.check_tag(res, '<form', 'has-errors') assert 'field_error' in res, res def diff_responses(self, res1, res2): return self.diff_html(res1.body, res2.body) def diff_html(self, html1, html2): return '\n'.join(unified_diff(html1.split('\n'), html2.split('\n'))) class TestPackageForm(TestPackageBase): '''Inherit this in tests for these form testing methods''' def _check_package_read(self, res, **params): assert not 'Error' in res, res assert u'%s - Datasets' % params['title'] in res, res main_res = self.main_div(res) main_div = main_res main_div_str = main_div.encode('utf8') assert params['name'] in main_div, main_div_str assert params['title'] in main_div, main_div_str assert params['version'] in main_div, main_div_str self.check_named_element(main_div, 'a', 'href="%s"' % params['url']) prefix = 'Dataset-%s-' % params.get('id', '') for res_index, values in self._get_resource_values(params['resources'], by_resource=True): self.check_named_element(main_div, 'tr', *values) assert params['notes'] in main_div, main_div_str license = model.Package.get_license_register()[params['license_id']] assert license.title in main_div, (license.title, main_div_str) tag_names = list(params['tags']) self.check_named_element(main_div, 'ul', *tag_names) if params.has_key('state'): assert 'State: %s' % params['state'] in main_div.replace('</strong>', ''), main_div_str if isinstance(params['extras'], dict): extras = [] for key, value in params['extras'].items(): extras.append((key, value, False)) elif isinstance(params['extras'], (list, tuple)): extras = params['extras'] else: raise NotImplementedError for key, value, deleted in extras: if not deleted: key_in_html_body = self.escape_for_html_body(key) value_in_html_body = self.escape_for_html_body(value) self.check_named_element(main_div, 'tr', key_in_html_body, value_in_html_body) else: self.check_named_element(main_div, 'tr', '!' + key) self.check_named_element(main_div, 'tr', '!' + value) def _get_resource_values(self, resources, by_resource=False): assert isinstance(resources, (list, tuple)) for res_index, resource in enumerate(resources): if by_resource: values = [] for i, res_field in enumerate(model.Resource.get_columns(extra_columns = False)): if isinstance(resource, (str, unicode)): expected_value = resource if res_field == 'url' else '' elif hasattr(resource, res_field): expected_value = getattr(resource, res_field) elif isinstance(resource, (list, tuple)): expected_value = resource[i] elif isinstance(resource, dict): expected_value = resource.get(res_field, u'') else: raise NotImplemented if not by_resource: yield (res_index, res_field, expected_value) else: values.append(expected_value) if by_resource: yield(res_index, values) def escape_for_html_body(self, unescaped_str): # just deal with chars in tests return unescaped_str.replace('<', '&lt;') def check_form_filled_correctly(self, res, **params): if params.has_key('pkg'): for key, value in params['pkg'].as_dict().items(): if key == 'license': key = 'license_id' params[key] = value prefix = '' main_res = self.main_div(res) self.check_tag(main_res, prefix+'name', params['name']) self.check_tag(main_res, prefix+'title', params['title']) self.check_tag(main_res, prefix+'version', params['version']) self.check_tag(main_res, prefix+'url', params['url']) #for res_index, res_field, expected_value in self._get_resource_values(params['resources']): # ## only check fields that are on the form # if res_field not in ['url', 'id', 'description', 'hash']: # continue # self.check_tag(main_res, '%sresources__%i__%s' % (prefix, res_index, res_field), expected_value) self.check_tag_and_data(main_res, prefix+'notes', params['notes']) self.check_tag_and_data(main_res, 'selected', params['license_id']) if isinstance(params['tags'], (str, unicode)): tags = map(lambda s: s.strip(), params['tags'].split(',')) else: tags = params['tags'] for tag in tags: self.check_tag(main_res, prefix+'tag_string', tag) if params.has_key('state'): self.check_tag_and_data(main_res, 'selected', str(params['state'])) if isinstance(params['extras'], dict): extras = [] for key, value in params['extras'].items(): extras.append((key, value, False)) else: extras = params['extras'] for num, (key, value, deleted) in enumerate(sorted(extras)): key_in_html_body = self.escape_for_html_body(key) value_in_html_body = self.escape_for_html_body(value) key_escaped = genshi_escape(key) value_escaped = genshi_escape(value) self.check_tag(main_res, 'extras__%s__key' % num, key_in_html_body) self.check_tag(main_res, 'extras__%s__value' % num, value_escaped) if deleted: self.check_tag(main_res, 'extras__%s__deleted' % num, 'checked') assert params['log_message'] in main_res, main_res def _check_redirect(self, return_url_param, expected_redirect, pkg_name_to_edit='',extra_environ=None): ''' @param return_url_param - encoded url to be given as param - if None then assume redirect is specified in pylons config @param expected_redirect - url we expect to redirect to (but <NAME> not yet substituted) @param pkg_name_to_edit - '' means create a new dataset ''' try: new_name = u'new-name' offset_params = {'controller':'package'} if pkg_name_to_edit: pkg_name = pkg_name_to_edit pkg = model.Package.by_name(pkg_name) assert pkg pkg_id = pkg.id offset_params['action'] = 'edit' offset_params['id'] = pkg_name_to_edit else: offset_params['action'] = 'new' pkg_id = '' if return_url_param: offset_params['return_to'] = return_url_param offset = url_for(**offset_params) res = self.app.get(offset, extra_environ=extra_environ) assert 'Datasets -' in res fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name res = fv.submit('save', status=302, extra_environ=extra_environ) assert not 'Error' in res, res redirected_to = dict(res.headers).get('Location') or dict(res.headers)['location'] expected_redirect_url = expected_redirect.replace('<NAME>', new_name) assert redirected_to == expected_redirect_url, \ 'Redirected to %s but should have been %s' % \ (redirected_to, expected_redirect_url) finally: # revert name change or pkg creation pkg = model.Package.by_name(new_name) if pkg: rev = model.repo.new_revision() if pkg_name_to_edit: pkg.name = pkg_name_to_edit else: pkg.purge() model.repo.commit_and_remove() class TestReadOnly(TestPackageForm, HtmlCheckMethods, PylonsTestCase): @classmethod def setup_class(cls): PylonsTestCase.setup_class() CreateTestData.create() @classmethod def teardown_class(cls): model.repo.rebuild_db() def test_read(self): name = u'annakarenina' c.hide_welcome_message = True offset = url_for(controller='package', action='read', id=name) res = self.app.get(offset) # check you get the same html when specifying the pkg by id # instead of by name offset = url_for(controller='package', action='read', id=self.anna.id) res_by_id = self.app.get(offset) # just check the stuff in the package div pkg_by_name_main = self.named_div('dataset', res) pkg_by_id_main = self.named_div('dataset', res_by_id) # rename some things which may be in the wrong order sometimes txt_order_non_deterministic = (u'Flexible \u30a1', 'russian', 'tolstoy', 'david', 'roger') for txt in txt_order_non_deterministic: for pkg_ in (pkg_by_name_main, pkg_by_id_main): pkg_ = pkg_.replace(txt, 'placeholder') print pkg_by_name_main res_diff = self.diff_html(pkg_by_name_main, pkg_by_id_main) assert not res_diff, res_diff.encode('utf8') # not true as language selection link return url differs: #assert len(res_by_id.body) == len(res.body) # only retrieve after app has been called anna = self.anna assert name in res assert anna.version in res assert anna.url in res assert 'Some test notes' in res self.check_named_element(res, 'a', 'http://ckan.net/', 'target="_blank"', 'rel="nofollow"') assert '<strong>Some bolded text.</strong>' in res self.check_tag_and_data(res, 'left arrow', '&lt;') self.check_tag_and_data(res, 'umlaut', u'\xfc') #assert 'OKD Compliant::' in res assert u'Flexible \u30a1' in res, res assert 'russian' in res assert 'david' in res assert 'roger' in res assert 'genre' in res, res assert 'romantic novel' in res, res assert 'original media' in res, res assert 'book' in res, res assert 'This dataset satisfies the Open Definition' in res, res def test_read_war_rdf(self): name = u'warandpeace' offset = url_for(controller='package', action='read', id=name + ".rdf") res = self.app.get(offset) assert '<dct:title>A Wonderful Story</dct:title>' in res, res def test_read_war(self): name = u'warandpeace' c.hide_welcome_message = True offset = url_for(controller='package', action='read', id=name) res = self.app.get(offset) assert 'This dataset is Not Open' in res, res def test_read_nonexistentpackage(self): name = 'anonexistentpackage' offset = url_for(controller='package', action='read', id=name) res = self.app.get(offset, status=404) def test_read_internal_links(self): pkg_name = u'link-test', CreateTestData.create_arbitrary([ {'name':pkg_name, 'notes':'Decoy link here: decoy:decoy, real links here: package:pkg-1, ' \ 'tag:tag_1 group:test-group-1 and a multi-word tag: tag:"multi word with punctuation."', } ]) offset = url_for(controller='package', action='read', id=pkg_name) res = self.app.get(offset) def check_link(res, controller, id): id_in_uri = id.strip('"').replace(' ', '%20') # remove quotes and percent-encode spaces self.check_tag_and_data(res, 'a ', '/%s/%s' % (controller, id_in_uri), '%s:%s' % (controller, id)) check_link(res, 'package', 'pkg-1') check_link(res, 'tag', 'tag_1') check_link(res, 'tag', '"multi word with punctuation."') check_link(res, 'group', 'test-group-1') assert 'decoy</a>' not in res, res assert 'decoy"' not in res, res #res = self.app.get(offset) #assert 'Datasets' in res #name = u'annakarenina' #title = u'A Novel By Tolstoy' #assert title in res #res = res.click(title) #assert '%s - Datasets' % title in res, res #main_div = self.main_div(res) #assert title in main_div, main_div.encode('utf8') def test_history(self): name = 'annakarenina' offset = url_for(controller='package', action='history', id=name) res = self.app.get(offset) assert 'History' in res assert 'Revisions' in res assert name in res def test_read_plugin_hook(self): plugin = MockPackageControllerPlugin() plugins.load(plugin) name = u'annakarenina' offset = url_for(controller='package', action='read', id=name) res = self.app.get(offset) assert plugin.calls['read'] == 1, plugin.calls assert plugin.calls['after_show'] == 1, plugin.calls plugins.unload(plugin) def test_resource_list(self): # TODO restore this test. It doesn't make much sense with the # present resource list design. name = 'annakarenina' cache_url = 'http://thedatahub.org/test_cache_url.csv' # add a cache_url to the first resource in the package context = {'model': model, 'session': model.Session, 'user': 'testsysadmin'} data = {'id': 'annakarenina'} pkg = get.package_show(context, data) pkg['resources'][0]['cache_url'] = cache_url # FIXME need to pretend to be called by the api context['api_version'] = 3 update.package_update(context, pkg) # check that the cache url is included on the dataset view page offset = url_for(controller='package', action='read', id=name) res = self.app.get(offset) #assert '[cached]'in res #assert cache_url in res class TestReadAtRevision(FunctionalTestCase, HtmlCheckMethods): @classmethod def setup_class(cls): cls.before = datetime.datetime(2010, 1, 1) cls.date1 = datetime.datetime(2011, 1, 1) cls.date2 = datetime.datetime(2011, 1, 2) cls.date3 = datetime.datetime(2011, 1, 3) cls.today = datetime.datetime.now() cls.pkg_name = u'testpkg' # create dataset rev = model.repo.new_revision() rev.timestamp = cls.date1 pkg = model.Package(name=cls.pkg_name, title=u'title1') model.Session.add(pkg) model.setup_default_user_roles(pkg) model.repo.commit_and_remove() # edit dataset rev = model.repo.new_revision() rev.timestamp = cls.date2 pkg = model.Package.by_name(cls.pkg_name) pkg.title = u'title2' pkg.add_tag_by_name(u'tag 2') pkg.extras = {'key2': u'value2'} model.repo.commit_and_remove() # edit dataset again rev = model.repo.new_revision() rev.timestamp = cls.date3 pkg = model.Package.by_name(cls.pkg_name) pkg.title = u'title3' pkg.add_tag_by_name(u'tag3.') pkg.extras['key2'] = u'value3' model.repo.commit_and_remove() cls.offset = url_for(controller='package', action='read', id=cls.pkg_name) pkg = model.Package.by_name(cls.pkg_name) cls.revision_ids = [rev[0].id for rev in pkg.all_related_revisions[::-1]] # revision order is reversed to be chronological @classmethod def teardown_class(cls): model.repo.rebuild_db() def test_read_normally(self): res = self.app.get(self.offset, status=200) pkg_html = self.named_div('dataset', res) side_html = self.named_div('sidebar', res) print 'PKG', pkg_html assert 'title3' in res assert 'key2' in pkg_html assert 'value3' in pkg_html print 'SIDE', side_html assert 'tag3.' in side_html assert 'tag 2' in side_html def test_read_date1(self): offset = self.offset + self.date1.strftime('@%Y-%m-%d') res = self.app.get(offset, status=200) pkg_html = self.named_div('dataset', res) side_html = self.named_div('sidebar', res) assert 'title1' in res, res assert 'key2' not in pkg_html, pkg_html assert 'value3' not in pkg_html, pkg_html assert 'tag3.' not in side_html, side_html assert 'tag 2' not in side_html, side_html def test_read_date2(self): date2_plus_3h = self.date2 + datetime.timedelta(hours=3) offset = self.offset + date2_plus_3h.strftime('@%Y-%m-%d') res = self.app.get(offset, status=200) pkg_html = self.named_div('dataset', res) side_html = self.named_div('sidebar', res) print 'PKG', pkg_html assert 'title2' in res assert 'key2' in pkg_html assert 'value2' in pkg_html print 'SIDE', side_html assert 'tag3.' not in side_html assert 'tag 2' in side_html def test_read_date3(self): offset = self.offset + self.date3.strftime('@%Y-%m-%d-%H-%M') res = self.app.get(offset, status=200) pkg_html = self.named_div('dataset', res) side_html = self.named_div('sidebar', res) print 'PKG', pkg_html assert 'title3' in res assert 'key2' in pkg_html assert 'value3' in pkg_html print 'SIDE', side_html assert 'tag3.' in side_html assert 'tag 2' in side_html def test_read_date_before_created(self): offset = self.offset + self.before.strftime('@%Y-%m-%d') res = self.app.get(offset, status=404) def test_read_date_invalid(self): res = self.app.get(self.offset + self.date3.strftime('@%Y-%m'), status=400) res = self.app.get(self.offset + self.date3.strftime('@%Y'), status=400) res = self.app.get(self.offset + self.date3.strftime('@%Y@%m'), status=400) def test_read_revision1(self): offset = self.offset + '@%s' % self.revision_ids[0] res = self.app.get(offset, status=200) main_html = self.main_div(res) pkg_html = self.named_div('dataset', res) side_html = self.named_div('sidebar', res) print 'MAIN', main_html assert 'This is an old revision of this dataset' in main_html assert 'at Jan 01, 2011, 00:00' in main_html self.check_named_element(main_html, 'a', 'href="/dataset/%s"' % self.pkg_name) print 'PKG', pkg_html assert 'title1' in res assert 'key2' not in pkg_html assert 'value3' not in pkg_html print 'SIDE', side_html assert 'tag3.' not in side_html assert 'tag 2' not in side_html def test_read_revision2(self): offset = self.offset + '@%s' % self.revision_ids[1] res = self.app.get(offset, status=200) main_html = self.main_div(res) pkg_html = self.named_div('dataset', res) side_html = self.named_div('sidebar', res) print 'MAIN', main_html assert 'This is an old revision of this dataset' in main_html assert 'at Jan 02, 2011, 00:00' in main_html self.check_named_element(main_html, 'a', 'href="/dataset/%s"' % self.pkg_name) print 'PKG', pkg_html assert 'title2' in res assert 'key2' in pkg_html assert 'value2' in pkg_html print 'SIDE', side_html assert 'tag3.' not in side_html assert 'tag 2' in side_html def test_read_revision3(self): offset = self.offset + '@%s' % self.revision_ids[2] res = self.app.get(offset, status=200) main_html = self.main_div(res) pkg_html = self.named_div('dataset', res) side_html = self.named_div('sidebar', res) print 'MAIN', main_html assert 'This is an old revision of this dataset' not in main_html assert 'This is the current revision of this dataset' in main_html assert 'at Jan 03, 2011, 00:00' in main_html self.check_named_element(main_html, 'a', 'href="/dataset/%s"' % self.pkg_name) print 'PKG', pkg_html assert 'title3' in res assert 'key2' in pkg_html assert 'value3' in pkg_html print 'SIDE', side_html assert 'tag3.' in side_html assert 'tag 2' in side_html def test_read_bad_revision(self): # this revision doesn't exist in the db offset = self.offset + '@ccab6798-1f4b-4a22-bcf5-462703aa4594' res = self.app.get(offset, status=404) class TestEdit(TestPackageForm): editpkg_name = u'editpkgtest' @classmethod def setup_class(self): CreateTestData.create() self._reset_data() def setup(self): if not self.res: self.res = self.app.get(self.offset,extra_environ=self.extra_environ_admin) model.Session.remove() @classmethod def _reset_data(self): model.Session.remove() model.repo.rebuild_db() CreateTestData.create() CreateTestData.create_arbitrary( {'name':self.editpkg_name, 'url':u'editpkgurl.com', 'tags':[u'mytesttag'], 'resources':[{'url':u'url escape: & umlaut: \xfc quote: "', 'description':u'description escape: & umlaut: \xfc quote "', }], 'admins':[u'testadmin'], }) self.editpkg = model.Package.by_name(self.editpkg_name) self.pkgid = self.editpkg.id self.offset = url_for(controller='package', action='edit', id=self.editpkg_name) self.editpkg = model.Package.by_name(self.editpkg_name) self.admin = model.User.by_name(u'testsysadmin') self.extra_environ_admin = {'REMOTE_USER': self.admin.name.encode('utf8')} self.extra_environ_russianfan = {'REMOTE_USER': 'russianfan'} self.res = None #get's refreshed by setup model.Session.remove() @classmethod def teardown_class(self): model.repo.rebuild_db() def test_edit_basic(self): # just the absolute basics try: self.res = self.app.get(self.offset,extra_environ=self.extra_environ_admin) assert 'Edit - Datasets' in self.res, self.res new_name = u'new-name' new_title = u'New Title' fv = self.res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name fv[prefix + 'title'] = new_title res = fv.submit('save',extra_environ=self.extra_environ_admin) # get redirected ... res = res.follow() offset = url_for(controller='package', action='read', id=new_name) res = self.app.get(offset) assert '%s - Datasets' % new_title in res, res pkg = model.Package.by_name(new_name) assert pkg assert pkg.title == new_title finally: self._reset_data() def test_edit(self): # just the key fields try: self.res = self.app.get(self.offset,extra_environ=self.extra_environ_admin) assert 'Edit - Datasets' in self.res, self.res assert self.editpkg.notes in self.res new_name = u'new-name' new_title = u'A Short Description of this Dataset' newurl = u'http://www.editpkgnewurl.com' new_download_url = newurl + u'/download/' newlicense_id = u'cc-by' newversion = u'0.9b' fv = self.res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name fv[prefix + 'title'] = new_title fv[prefix + 'url'] = newurl #fv[prefix + 'resources__0__url'] = new_download_url fv[prefix + 'license_id'] = newlicense_id fv[prefix + 'version'] = newversion res = fv.submit('save',extra_environ=self.extra_environ_admin) # get redirected ... res = res.follow() model.Session.remove() offset = url_for(controller='package', action='read', id=new_name) res = self.app.get(offset) assert '%s - Datasets' % new_title in res, res pkg = model.Package.by_name(new_name) assert pkg.title == new_title assert pkg.url == newurl #assert pkg.resources[0].url == new_download_url assert pkg.version == newversion assert newlicense_id == pkg.license.id finally: self._reset_data() def test_edit_basic_pkg_by_id(self): try: pkg = model.Package.by_name(u'editpkgtest') offset = url_for(controller='package', action='edit', id=pkg.id) res = self.app.get(offset, extra_environ=self.extra_environ_admin) #assert res.body == self.res.body, self.diff_responses(res, self.res) assert 'Edit - Datasets' in res, res assert pkg.name in res new_name = u'new-name' new_title = u'A Short Description of this Dataset' fv = self.res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name fv[prefix + 'title'] = new_title res = fv.submit('save', extra_environ=self.extra_environ_admin) # get redirected ... res = res.follow() offset = url_for(controller='package', action='read', id=new_name) res = self.app.get(offset) assert '%s - Datasets' % new_title in res, res pkg = model.Package.by_name(new_name) assert pkg finally: self._reset_data() def test_edit_2_not_groups(self): # not allowed to edit groups for now prefix = 'Dataset-%s-' % self.pkgid fv = self.res.forms['dataset-edit'] assert not fv.fields.has_key(prefix + 'groups') def test_edit_2_tags_and_groups(self): # testing tag updating newtagnames = [u'russian', u'tolstoy', u'superb book'] newtags = newtagnames tagvalues = ','.join(newtags) fv = self.res.forms['dataset-edit'] prefix = '' fv[prefix + 'tag_string'] = tagvalues exp_log_message = 'test_edit_2: making some changes' fv['log_message'] = exp_log_message res = fv.submit('save', extra_environ=self.extra_environ_admin) # get redirected ... res = res.follow() assert '%s - Datasets' % self.editpkg_name in res pkg = model.Package.by_name(self.editpkg.name) assert len(pkg.get_tags()) == len(newtagnames) outtags = [ tag.name for tag in pkg.get_tags() ] for tag in newtags: assert tag in outtags rev = model.Revision.youngest(model.Session) assert rev.author == self.admin.name assert rev.message == exp_log_message def test_missing_fields(self): # User edits and a field is left out in the commit parameters. # (Spammers can cause this) fv = self.res.forms['dataset-edit'] del fv.fields['log_message'] res = fv.submit('save', status=400, extra_environ=self.extra_environ_admin) fv = self.res.forms['dataset-edit'] prefix = '' del fv.fields[prefix + 'license_id'] res = fv.submit('save', status=400, extra_environ=self.extra_environ_admin) def test_redirect_after_edit_using_param(self): return_url = 'http://random.site.com/dataset/<NAME>?test=param' # It's useful to know that this url encodes to: # 'http%3A%2F%2Frandom.site.com%2Fdataset%2F%3CNAME%3E%3Ftest%3Dparam' expected_redirect = return_url self._check_redirect(return_url, expected_redirect, pkg_name_to_edit=self.editpkg_name, extra_environ=self.extra_environ_admin) def test_redirect_after_edit_using_config(self): return_url = '' # redirect comes from test.ini setting expected_redirect = config['package_edit_return_url'] self._check_redirect(return_url, expected_redirect, pkg_name_to_edit=self.editpkg_name, extra_environ=self.extra_environ_admin) def test_edit_all_fields(self): try: # Create new item rev = model.repo.new_revision() pkg_name = u'new_editpkgtest' pkg = model.Package(name=pkg_name) pkg.title = u'This is a Test Title' pkg.url = u'editpkgurl.com' pr1 = model.Resource(url=u'editpkgurl1', format=u'plain text', description=u'Full text', hash=u'123abc',) pr2 = model.Resource(url=u'editpkgurl2', format=u'plain text2', description=u'Full text2', hash=u'456abc',) pkg.resources.append(pr1) pkg.resources.append(pr2) pkg.notes= u'this is editpkg' pkg.version = u'2.2' t1 = model.Tag(name=u'one') t2 = model.Tag(name=u'two words') pkg.add_tags([t1, t2]) pkg.state = model.State.DELETED pkg.license_id = u'other-open' extras = {'key1':'value1', 'key2':'value2', 'key3':'value3'} for key, value in extras.items(): pkg.extras[unicode(key)] = unicode(value) for obj in [pkg, t1, t2, pr1, pr2]: model.Session.add(obj) model.repo.commit_and_remove() pkg = model.Package.by_name(pkg_name) model.setup_default_user_roles(pkg, [self.admin]) model.repo.commit_and_remove() # Edit it offset = url_for(controller='package', action='edit', id=pkg.name) res = self.app.get(offset, status=200, extra_environ={'REMOTE_USER':'testsysadmin'}) assert 'Edit - Datasets' in res, res # Check form is correctly filled pkg = model.Package.by_name(pkg_name) self.check_form_filled_correctly(res, pkg=pkg, log_message='') # Amend form name = u'test_name' title = u'Test Title' version = u'1.1' url = u'http://something.com/somewhere.zip' resources = ((u'http://something.com/somewhere-else.xml', u'xml', u'Best', u'hash1', 'alt'), (u'http://something.com/somewhere-else2.xml', u'xml2', u'Best2', u'hash2', 'alt'), ) assert len(resources[0]) == 5 notes = u'Very important' license_id = u'odc-by' state = model.State.ACTIVE tags = (u'tag1', u'tag2', u'tag 3') tags_txt = u','.join(tags) extra_changed = 'key1', self.value1 + ' CHANGED', False extra_new = 'newkey', 'newvalue', False log_message = 'This is a comment' assert not model.Package.by_name(name) fv = res.forms['dataset-edit'] prefix = '' fv[prefix+'name'] = name fv[prefix+'title'] = title fv[prefix+'version'] = version fv[prefix+'url'] = url # TODO consider removing this test entirely, or hardcoding column names #for res_index, resource in enumerate(resources): # for field_index, res_field in enumerate(model.Resource.get_columns()): # fv[prefix+'resources__%s__%s' % (res_index, res_field)] = resource[field_index] fv[prefix+'notes'] = notes fv[prefix+'license_id'] = license_id fv[prefix+'tag_string'] = tags_txt fv[prefix+'state'] = state fv[prefix+'extras__0__value'] = extra_changed[1].encode('utf8') fv[prefix+'extras__3__key'] = extra_new[0].encode('utf8') fv[prefix+'extras__3__value'] = extra_new[1].encode('utf8') fv[prefix+'extras__2__deleted'] = True fv['log_message'] = log_message extras = (('key2', extras['key2'], False), extra_changed, extra_new, ('key3', extras['key3'], True)) res = fv.submit('save', extra_environ={'REMOTE_USER':'testsysadmin'}) # Check dataset page assert not 'Error' in res, res # Check dataset object pkg = model.Package.by_name(name) assert pkg.name == name assert pkg.title == title assert pkg.version == version assert pkg.url == url # TODO consider removing this test entirely, or hardcoding column names #for res_index, resource in enumerate(resources): # for field_index, res_field in enumerate(model.Resource.get_columns()): # assert getattr(pkg.resources[res_index], res_field) == resource[field_index] assert pkg.notes == notes assert pkg.license.id == license_id saved_tagnames = [str(tag.name) for tag in pkg.get_tags()] saved_tagnames.sort() expected_tagnames = list(tags) expected_tagnames.sort() assert saved_tagnames == expected_tagnames assert pkg.state == state assert len(pkg.extras) == len([extra for extra in extras if not extra[-1]]) for key, value, deleted in extras: if not deleted: assert pkg.extras[key] == value # for some reason environ['REMOTE_ADDR'] is undefined rev = model.Revision.youngest(model.Session) assert rev.author == 'testsysadmin', rev.author assert rev.message == log_message # TODO: reinstate once fixed in code exp_log_message = u'Creating dataset %s' % name #assert rev.message == exp_log_message finally: self._reset_data() # NB: Cannot test resources now because it is all javascript! ## def test_edit_invalid_resource(self): ## try: ## # Create new dataset ## pkg_name = u'test_res' ## CreateTestData.create_arbitrary({'name': pkg_name, ## 'resources': [{'url': '1.pdf'}]}) ## # Edit it ## pkg = model.Package.by_name(pkg_name) ## offset = url_for(controller='package', action='edit', id=pkg.name) ## res = self.app.get(offset, status=200, extra_environ={'REMOTE_USER':'testadmin'}) ## assert 'Edit - Datasets' in res, res ## pkg = model.Package.by_name(pkg_name) ## # Amend form ## fv = res.forms['dataset-edit'] ## fv['resources__0__size'] = 'abc' ## res = fv.submit('save', extra_environ={'REMOTE_USER':'testadmin'}) ## # Check dataset page ## assert 'Errors in form' in res, res ## assert 'Package resource(s) invalid' in res, res ## assert 'Resource 1' in res, res ## finally: ## self._reset_data() def test_edit_bad_log_message(self): fv = self.res.forms['dataset-edit'] prefix = '' fv['log_message'] = u'Free enlargements: http://drugs.com/' # spam res = fv.submit('save', extra_environ=self.extra_environ_admin) assert 'Error' in res, res self.check_tag(res, '<form', 'has-errors') assert 'No links are allowed' in res, res def test_edit_bad_name(self): fv = self.res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = u'a' # invalid name res = fv.submit('save', extra_environ=self.extra_environ_admin) assert 'Error' in res, res assert 'Name must be at least 2 characters long' in res, res # Ensure there is an error at the top of the form and by the field self._assert_form_errors(res) def test_edit_plugin_hook(self): # just the absolute basics try: plugin = MockPackageControllerPlugin() plugins.load(plugin) res = self.app.get(self.offset, extra_environ=self.extra_environ_admin) new_name = u'new-name' new_title = u'New Title' fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name fv[prefix + 'title'] = new_title res = fv.submit('save', extra_environ=self.extra_environ_admin) # get redirected ... assert plugin.calls['edit'] == 1, plugin.calls plugins.unload(plugin) finally: self._reset_data() def test_after_update_plugin_hook(self): # just the absolute basics try: plugin = MockPackageControllerPlugin() plugins.load(plugin) res = self.app.get(self.offset, extra_environ=self.extra_environ_admin) new_name = u'new-name' new_title = u'New Title' fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name fv[prefix + 'title'] = new_title res = fv.submit('save', extra_environ=self.extra_environ_admin) # get redirected ... assert plugin.calls['after_update'] == 1, plugin.calls assert plugin.calls['after_create'] == 0, plugin.calls plugins.unload(plugin) finally: self._reset_data() def test_edit_700_groups_add(self): try: pkg = model.Package.by_name(u'editpkgtest') grp = model.Group.by_name(u'roger') assert len(pkg.get_groups()) == 0 offset = url_for(controller='package', action='edit', id=pkg.name) res = self.app.get(offset, extra_environ=self.extra_environ_admin) prefix = '' field_name = prefix + "groups__0__id" assert field_name in res fv = res.forms['dataset-edit'] fv[prefix + 'groups__0__id'] = grp.id res = fv.submit('save', extra_environ=self.extra_environ_admin) res = res.follow() pkg = model.Package.by_name(u'editpkgtest') assert len(pkg.get_groups()) == 1, pkg.get_groups() assert 'roger' in res, res finally: self._reset_data() def test_edit_700_groups_remove(self): try: pkg = model.Package.by_name(u'editpkgtest') assert len(pkg.get_groups()) == 0 grp = model.Group.by_name(u'roger') model.repo.new_revision() model.Session.add(model.Member(table_id=pkg.id, table_name='package', group=grp)) model.repo.commit_and_remove() pkg = model.Package.by_name(u'editpkgtest') assert len(pkg.get_groups()) == 1 offset = url_for(controller='package', action='edit', id=pkg.name) res = self.app.get(offset, extra_environ=self.extra_environ_admin) prefix = '' field_name = prefix + "groups__0__id" fv = res.forms['dataset-edit'] print field_name fv[field_name] = False res = fv.submit('save', extra_environ=self.extra_environ_admin) model.repo.commit_and_remove() pkg = model.Package.by_name(u'editpkgtest') assert len(pkg.get_groups()) == 0 finally: self._reset_data() def test_edit_404(self): self.offset = url_for(controller='package', action='edit', id='random_name') self.res = self.app.get(self.offset, status=404) def test_edit_indexerror(self): bad_solr_url = 'http://127.0.0.1/badsolrurl' solr_url = SolrSettings.get()[0] try: SolrSettings.init(bad_solr_url) plugins.load('synchronous_search') fv = self.res.forms['dataset-edit'] prefix = '' fv['log_message'] = u'Test log message' res = fv.submit('save', status=500, extra_environ=self.extra_environ_admin) assert 'Unable to update search index' in res, res finally: plugins.unload('synchronous_search') SolrSettings.init(solr_url) def test_edit_pkg_with_relationships(self): # 1786 try: # add a relationship to a package pkg = model.Package.by_name(self.editpkg_name) anna = model.Package.by_name(u'annakarenina') model.repo.new_revision() pkg.add_relationship(u'depends_on', anna) model.repo.commit_and_remove() # check relationship before the test rels = model.Package.by_name(self.editpkg_name).get_relationships() assert_equal(str(rels), '[<*PackageRelationship editpkgtest depends_on annakarenina>]') # edit the package self.offset = url_for(controller='package', action='edit', id=self.editpkg_name) self.res = self.app.get(self.offset, extra_environ=self.extra_environ_admin) fv = self.res.forms['dataset-edit'] fv['title'] = u'New Title' res = fv.submit('save') # check relationship still exists rels = model.Package.by_name(self.editpkg_name).get_relationships() assert_equal(str(rels), '[<*PackageRelationship editpkgtest depends_on annakarenina>]') finally: self._reset_data() class TestDelete(TestPackageForm): pkg_names = [] @classmethod def setup_class(self): model.repo.init_db() CreateTestData.create() CreateTestData.create_test_user() self.admin = model.User.by_name(u'testsysadmin') self.extra_environ_admin = {'REMOTE_USER': self.admin.name.encode('utf8')} self.extra_environ_tester = {'REMOTE_USER': 'tester'} @classmethod def teardown_class(self): self.purge_packages(self.pkg_names) model.repo.rebuild_db() def test_delete(self): plugin = MockPackageControllerPlugin() plugins.load(plugin) offset = url_for(controller='package', action='delete', id='warandpeace') self.app.post(offset, extra_environ=self.extra_environ_tester, status=401) self.app.post(offset, extra_environ=self.extra_environ_admin) assert model.Package.get('warandpeace').state == u'deleted' assert plugin.calls['delete'] == 1 assert plugin.calls['after_delete'] == 1 plugins.unload(plugin) class TestNew(TestPackageForm): pkg_names = [] @classmethod def setup_class(self): model.repo.init_db() CreateTestData.create_test_user() # self.admin = model.User.by_name(u'russianfan') # self.extra_environ_admin = {'REMOTE_USER': self.admin.name.encode('utf8')} self.extra_environ_tester = {'REMOTE_USER': 'tester'} @classmethod def teardown_class(self): self.purge_packages(self.pkg_names) model.repo.rebuild_db() def test_new_with_params_1(self): offset = url_for(controller='package', action='new', url='http://xxx.org', name='xxx.org') res = self.app.get(offset, extra_environ=self.extra_environ_tester) form = res.forms['dataset-edit'] assert_equal(form['url'].value, 'http://xxx.org') assert_equal(form['name'].value, 'xxx.org') def test_new_without_resource(self): # new dataset prefix = '' name = u'test_no_res' offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) fv = res.forms['dataset-edit'] fv[prefix+'name'] = name # submit self.pkg_names.append(name) res = fv.submit('save', extra_environ=self.extra_environ_tester) # check dataset page assert not 'Error' in res, res res = res.follow() res1 = self.main_div(res).replace('</strong>', '') assert '<td><a href="">' not in res1, res1 # check object created pkg = model.Package.by_name(name) assert pkg assert pkg.name == name assert not pkg.resources, pkg.resources def test_new(self): assert not model.Package.by_name(u'annakarenina') offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = 'annakarenina' self.pkg_names.append('annakarenina') res = fv.submit('save') assert not 'Error' in res, res def test_new_bad_name(self): offset = url_for(controller='package', action='new', id=None) res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = u'a' # invalid name self.pkg_names.append('a') res = fv.submit('save', extra_environ=self.extra_environ_tester) assert 'Error' in res, res assert 'Name must be at least 2 characters long' in res, res self._assert_form_errors(res) def test_new_no_name(self): offset = url_for(controller='package', action='new', id=None) res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res fv = res.forms['dataset-edit'] prefix = '' # don't set a name res = fv.submit('save', extra_environ=self.extra_environ_tester) assert 'Error' in res, res assert 'URL: Missing value' in res, res self._assert_form_errors(res) def test_new_bad_param(self): offset = url_for(controller='package', action='new', __bad_parameter='value') res = self.app.post(offset, {'save':'1'}, status=400, extra_environ=self.extra_environ_tester) assert 'Integrity Error' in res.body def test_redirect_after_new_using_param(self): return_url = 'http://random.site.com/dataset/<NAME>?test=param' # It's useful to know that this url encodes to: # 'http%3A%2F%2Frandom.site.com%2Fdataset%2F%3CNAME%3E%3Ftest%3Dparam' expected_redirect = return_url self._check_redirect(return_url, expected_redirect, pkg_name_to_edit='', extra_environ=self.extra_environ_tester) def test_redirect_after_new_using_config(self): return_url = '' # redirect comes from test.ini setting expected_redirect = config['package_new_return_url'] self._check_redirect(return_url, expected_redirect, pkg_name_to_edit='', extra_environ=self.extra_environ_tester) def test_new_all_fields(self): name = u'test_name2' title = u'Test Title' version = u'1.1' url = u'http://something.com/somewhere.zip' download_url = u'http://something.com/somewhere-else.zip' notes = u'Very important' license_id = u'odc-by' tags = (u'tag1', u'tag2.', u'tag 3', u'SomeCaps') tags_txt = u','.join(tags) extras = {self.key1:self.value1, 'key2':'value2', 'key3':'value3'} log_message = 'This is a comment' assert not model.Package.by_name(name) offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res fv = res.forms['dataset-edit'] prefix = '' fv[prefix+'name'] = name fv[prefix+'title'] = title fv[prefix+'version'] = version fv[prefix+'url'] = url #fv[prefix+'resources__0__url'] = download_url #fv[prefix+'resources__0__description'] = u'description escape: & umlaut: \xfc quote "'.encode('utf8') fv[prefix+'notes'] = notes fv[prefix+'license_id'] = license_id fv[prefix+'tag_string'] = tags_txt for i, extra in enumerate(sorted(extras.items())): fv[prefix+'extras__%s__key' % i] = extra[0].encode('utf8') fv[prefix+'extras__%s__value' % i] = extra[1].encode('utf8') fv['log_message'] = log_message # Submit fv = res.forms['dataset-edit'] self.pkg_names.append(name) res = fv.submit('save', extra_environ=self.extra_environ_tester) # Check dataset page assert not 'Error' in res, res # Check dataset object pkg = model.Package.by_name(name) assert pkg.name == name assert pkg.title == title assert pkg.version == version assert pkg.url == url #assert pkg.resources[0].url == download_url assert pkg.notes == notes assert pkg.license.id == license_id saved_tagnames = [str(tag.name) for tag in pkg.get_tags()] saved_tagnames.sort() expected_tagnames = sorted(tags) assert saved_tagnames == expected_tagnames, '%r != %r' % (saved_tagnames, expected_tagnames) saved_groupnames = [str(group.name) for group in pkg.get_groups()] assert len(pkg.extras) == len(extras) for key, value in extras.items(): assert pkg.extras[key] == value # for some reason environ['REMOTE_ADDR'] is undefined rev = model.Revision.youngest(model.Session) assert rev.author == 'tester' assert rev.message == log_message # TODO: reinstate once fixed in code exp_log_message = u'Creating dataset %s' % name # assert rev.message == exp_log_message def test_new_existing_name(self): # test creating a dataset with an existing name results in error' # create initial dataset pkgname = u'testpkg' pkgtitle = u'mytesttitle' assert not model.Package.by_name(pkgname) offset = url_for(controller='package', action='new', id=None) res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = pkgname self.pkg_names.append(pkgname) res = fv.submit('save', extra_environ=self.extra_environ_tester) assert not 'Error' in res, res assert model.Package.by_name(pkgname) # create duplicate dataset res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res fv = res.forms['dataset-edit'] fv[prefix+'name'] = pkgname fv[prefix+'title'] = pkgtitle res = fv.submit('save', extra_environ=self.extra_environ_tester) assert 'Error' in res, res assert 'That URL is already in use.' in res, res self._assert_form_errors(res) def test_missing_fields(self): # A field is left out in the commit parameters. # (Spammers can cause this) offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res, res prefix = '' fv = res.forms['dataset-edit'] fv[prefix + 'name'] = 'anything' del fv.fields['log_message'] self.pkg_names.append('anything') res = fv.submit('save', status=400, extra_environ=self.extra_environ_tester) offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) assert 'Add - Datasets' in res fv = res.forms['dataset-edit'] fv[prefix + 'name'] = 'anything' prefix = '' del fv.fields[prefix + 'notes'] # NOTE Missing dropdowns fields don't cause KeyError in # _serialized_value so don't register as an error here like # text field tested here. res = fv.submit('save', status=400, extra_environ=self.extra_environ_tester) def test_new_plugin_hook(self): plugin = MockPackageControllerPlugin() plugins.load(plugin) offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) new_name = u'plugged' fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name res = fv.submit('save', extra_environ=self.extra_environ_tester) # get redirected ... assert plugin.calls['edit'] == 0, plugin.calls assert plugin.calls['create'] == 1, plugin.calls plugins.unload(plugin) def test_after_create_plugin_hook(self): plugin = MockPackageControllerPlugin() plugins.load(plugin) offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) new_name = u'plugged2' fv = res.forms['dataset-edit'] prefix = '' fv[prefix + 'name'] = new_name res = fv.submit('save', extra_environ=self.extra_environ_tester) # get redirected ... assert plugin.calls['after_update'] == 0, plugin.calls assert plugin.calls['after_create'] == 1, plugin.calls assert plugin.id_in_dict plugins.unload(plugin) def test_new_indexerror(self): bad_solr_url = 'http://127.0.0.1/badsolrurl' solr_url = SolrSettings.get()[0] try: SolrSettings.init(bad_solr_url) plugins.load('synchronous_search') new_package_name = u'new-package-missing-solr' offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) fv = res.forms['dataset-edit'] fv['name'] = new_package_name # this package shouldn't actually be created but # add it to the list to purge just in case self.pkg_names.append(new_package_name) res = fv.submit('save', status=500, extra_environ=self.extra_environ_tester) assert 'Unable to add package to search index' in res, res finally: plugins.unload('synchronous_search') SolrSettings.init(solr_url) def test_change_locale(self): offset = url_for(controller='package', action='new') res = self.app.get(offset, extra_environ=self.extra_environ_tester) res = self.app.get('/de/dataset/new', extra_environ=self.extra_environ_tester) try: assert 'Datensatz' in res.body, res.body finally: self.clear_language_setting() class TestSearch(TestPackageForm): pkg_names = [] @classmethod def setup_class(self): model.repo.init_db() @classmethod def teardown_class(self): self.purge_packages(self.pkg_names) model.repo.rebuild_db() def test_search_plugin_hooks(self): plugin = MockPackageControllerPlugin() plugins.load(plugin) offset = url_for(controller='package', action='search') res = self.app.get(offset) # get redirected ... assert plugin.calls['before_search'] == 1, plugin.calls assert plugin.calls['after_search'] == 1, plugin.calls plugins.unload(plugin) class TestNewPreview(TestPackageBase): pkgname = u'testpkg' pkgtitle = u'mytesttitle' @classmethod def setup_class(self): pass model.repo.init_db() @classmethod def teardown_class(self): self.purge_packages([self.pkgname]) model.repo.rebuild_db() class TestNonActivePackages(TestPackageBase): @classmethod def setup_class(self): CreateTestData.create() self.non_active_name = u'test_nonactive' pkg = model.Package(name=self.non_active_name) model.repo.new_revision() model.Session.add(pkg) model.repo.commit_and_remove() pkg = model.Session.query(model.Package).filter_by(name=self.non_active_name).one() admin = model.User.by_name(u'joeadmin') model.setup_default_user_roles(pkg, [admin]) model.repo.commit_and_remove() model.repo.new_revision() pkg = model.Session.query(model.Package).filter_by(name=self.non_active_name).one() pkg.delete() # becomes non active model.repo.commit_and_remove() @classmethod def teardown_class(self): model.repo.rebuild_db() def test_read(self): offset = url_for(controller='package', action='read', id=self.non_active_name) res = self.app.get(offset, status=[302, 401]) def test_read_as_admin(self): offset = url_for(controller='package', action='read', id=self.non_active_name) res = self.app.get(offset, status=200, extra_environ={'REMOTE_USER':'testsysadmin'}) class TestRevisions(TestPackageBase): @classmethod def setup_class(cls): model.Session.remove() model.repo.init_db() cls.name = u'revisiontest1' # create pkg cls.notes = [u'Written by Puccini', u'Written by Rossini', u'Not written at all', u'Written again', u'Written off'] rev = model.repo.new_revision() cls.pkg1 = model.Package(name=cls.name) cls.pkg1.notes = cls.notes[0] model.Session.add(cls.pkg1) model.setup_default_user_roles(cls.pkg1) model.repo.commit_and_remove() # edit pkg for i in range(5)[1:]: rev = model.repo.new_revision() pkg1 = model.Package.by_name(cls.name) pkg1.notes = cls.notes[i] model.repo.commit_and_remove() cls.pkg1 = model.Package.by_name(cls.name) cls.revision_ids = [rev[0].id for rev in cls.pkg1.all_related_revisions] # revision ids are newest first cls.revision_timestamps = [rev[0].timestamp for rev in cls.pkg1.all_related_revisions] cls.offset = url_for(controller='package', action='history', id=cls.pkg1.name) @classmethod def teardown_class(cls): model.repo.rebuild_db() def test_0_read_history(self): res = self.app.get(self.offset) main_res = self.main_div(res) assert self.pkg1.name in main_res, main_res assert 'radio' in main_res, main_res latest_rev = self.pkg1.all_revisions[0] oldest_rev = self.pkg1.all_revisions[-1] first_radio_checked_html = '<input checked="checked" id="selected1_%s"' % latest_rev.revision_id assert first_radio_checked_html in main_res, '%s %s' % (first_radio_checked_html, main_res) last_radio_checked_html = '<input checked="checked" id="selected2_%s"' % oldest_rev.revision_id assert last_radio_checked_html in main_res, '%s %s' % (last_radio_checked_html, main_res) def test_1_do_diff(self): res = self.app.get(self.offset) form = res.forms['dataset-revisions'] res = form.submit() res = res.follow() main_res = self.main_div(res) assert 'form-errors' not in main_res.lower(), main_res assert 'Revision Differences' in main_res, main_res assert self.pkg1.name in main_res, main_res assert '<tr><td>notes</td><td><pre>- Written by Puccini\n+ Written off</pre></td></tr>' in main_res, main_res def test_2_atom_feed(self): offset = "%s?format=atom" % self.offset res = self.app.get(offset) assert '<feed' in res, res assert 'xmlns="http://www.w3.org/2005/Atom"' in res, res assert '</feed>' in res, res def test_3_history_revision_link(self): res = self.app.get(self.offset) res = res.click('%s' % self.revision_ids[2][:4]) main_res = self.main_div(res) assert 'Revision: %s' % self.revision_ids[2] in main_res def test_4_history_revision_package_link(self): res = self.app.get(self.offset) url = str(self.revision_timestamps[1])[-6:] res = res.click(href=url) main_html = self.main_div(res) assert 'This is an old revision of this dataset' in main_html class TestMarkdownHtmlWhitelist(TestPackageForm): pkg_name = u'markdownhtmlwhitelisttest' pkg_notes = u''' <table width="100%" border="1"> <tr> <td rowspan="2"><b>Description</b></td> <td rowspan="2"><b>Documentation</b></td> <td colspan="2"><b><center>Data -- Pkzipped</center></b> </td> </tr> <tr> <td><b>SAS .tpt</b></td> <td><b>ASCII CSV</b> </td> </tr> <tr> <td><b>Overview</b></td> <td><A HREF="http://www.nber.org/patents/subcategories.txt">subcategory.txt</A></td> <td colspan="2"><center>--</center></td> </tr> <script><!-- alert('Hello world!'); //--> </script> ''' def setup(self): model.Session.remove() model.repo.init_db() rev = model.repo.new_revision() CreateTestData.create_arbitrary( {'name':self.pkg_name, 'notes':self.pkg_notes, 'admins':[u'testadmin']} ) self.pkg = model.Package.by_name(self.pkg_name) self.pkg_id = self.pkg.id offset = url_for(controller='package', action='read', id=self.pkg_name) self.res = self.app.get(offset) def teardown(self): model.repo.rebuild_db() def test_markdown_html_whitelist(self): self.body = str(self.res) self.assert_fragment('<table width="100%" border="1">') self.assert_fragment('<td rowspan="2"><b>Description</b></td>') self.assert_fragment('<a href="http://www.nber.org/patents/subcategories.txt" target="_blank" rel="nofollow">subcategory.txt</a>') self.assert_fragment('<td colspan="2"><center>--</center></td>') self.fail_if_fragment('<script>') def assert_fragment(self, fragment): assert fragment in self.body, (fragment, self.body) def fail_if_fragment(self, fragment): assert fragment not in self.body, (fragment, self.body) class TestAutocomplete(PylonsTestCase, TestPackageBase): @classmethod def setup_class(cls): PylonsTestCase.setup_class() CreateTestData.create() @classmethod def teardown_class(cls): model.repo.rebuild_db() def test_package_autocomplete(self): query = 'a' res = self.app.get('/dataset/autocomplete?q=%s' % query) expected = ['A Wonderful Story (warandpeace)|warandpeace','annakarenina|annakarenina'] received = sorted(res.body.split('\n')) assert expected == received
py
1a549560261a63320b9227e19aa83105f1786024
c = float(input('Temperatura em °C: ')) f = (((c*9)/5)+32) print('{:.1f}°C é igual a {:.1f}°F'.format(c,f))
py
1a5495bace1d31b8d971ae58823deccfe90bf2ed
# -*- coding: utf-8 -*- # Copyright (c) 2020, omar jaber and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class EmployeeLanguageRequirement(Document): pass
py
1a54960739a3872b2b492d79b065685890e1ab7a
__title__ = 'splitwise' __description__ = 'Splitwise Python SDK' __version__ = '2.2.0' __url__ = 'https://github.com/namaggarwal/splitwise' __download_url__ = 'https://github.com/namaggarwal/splitwise/tarball/v'+__version__ __build__ = 0x022400 __author__ = 'Naman Aggarwal' __author_email__ = '[email protected]' __license__ = 'MIT' __copyright__ = 'Copyright 2020 Naman Aggarwal'
py
1a5496163f45869e885b7e83f1abbd11d805c662
from . import config from . import tensor from . import utils from . import metrics from . import tests from . import visual from . import objectives from . import optimizers from .features import speech from .features import image from .features import text from model import model from dataset import dataset, batch from trainer import trainer from . import nnet __version__ = "0.1.0"
py
1a54971add3b19c956d634ac54d3113b0837201c
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-10-24 15:58 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('Profile', '0002_delete_user'), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, help_text='', primary_key=True, serialize=False, verbose_name='ID')), ('user', models.OneToOneField(help_text='', on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
py
1a54984607092211a8ad246b1ec96a5effbf111d
from django.apps import AppConfig from django.utils.translation import gettext_lazy as _ class SystemConfig(AppConfig): """Default app config""" name = "apps.api.system" verbose_name = _("System") def ready(self): from . import signals # noqa: F401 # pylint: disable=unused-import
py
1a5498b4c8da99c175b8dcc246e6355f5819d6d6
# Copyright 2020 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing NVIDIA Driver installation. """ import re from absl import flags from absl import logging from perfkitbenchmarker import flag_util from perfkitbenchmarker import os_types from perfkitbenchmarker import regex_util NVIDIA_DRIVER_LOCATION_BASE = 'https://us.download.nvidia.com/tesla' NVIDIA_TESLA_K80 = 'k80' NVIDIA_TESLA_P4 = 'p4' NVIDIA_TESLA_P100 = 'p100' NVIDIA_TESLA_V100 = 'v100' NVIDIA_TESLA_T4 = 't4' NVIDIA_TESLA_A100 = 'a100' """Default GPU clocks and autoboost configurations. Base_clock is the default clock speeds when setting the GPU clocks. Max_clock is currently unused. The clock speeds are in the format of [memory_clock in MHz, graphics_clock in MHz]. """ GPU_DEFAULTS = { NVIDIA_TESLA_K80: { 'base_clock': [2505, 562], 'max_clock': [2505, 875], 'autoboost_enabled': True, }, NVIDIA_TESLA_P4: { 'base_clock': [3003, 885], 'max_clock': [3003, 1531], 'autoboost_enabled': None, }, NVIDIA_TESLA_P100: { 'base_clock': [715, 1189], 'max_clock': [715, 1328], 'autoboost_enabled': None, }, NVIDIA_TESLA_V100: { 'base_clock': [877, 1312], 'max_clock': [877, 1530], 'autoboost_enabled': None, }, NVIDIA_TESLA_T4: { 'base_clock': [5001, 585], 'max_clock': [5001, 1590], 'autoboost_enabled': None, }, NVIDIA_TESLA_A100: { 'base_clock': [1215, 1410], 'max_clock': [1215, 1410], 'autoboost_enabled': None, }, } EXTRACT_CLOCK_SPEEDS_REGEX = r'(\d*).*,\s*(\d*)' flag_util.DEFINE_integerlist('gpu_clock_speeds', None, 'desired gpu clock speeds in the form ' '[memory clock, graphics clock]') flags.DEFINE_boolean('gpu_autoboost_enabled', None, 'whether gpu autoboost is enabled') flags.DEFINE_string( 'nvidia_driver_version', '495.29.05', 'The version of nvidia driver to install. ' 'For example, "418.67" or "418.87.01."') flags.DEFINE_boolean('nvidia_driver_force_install', False, 'Whether to install NVIDIA driver, even if it is already ' 'installed.') flags.DEFINE_string('nvidia_driver_x_library_path', '/usr/lib', 'X library path for nvidia driver installation') flags.DEFINE_string('nvidia_driver_x_module_path', '/usr/lib/xorg/modules', 'X module path for nvidia driver installation') flags.DEFINE_boolean('nvidia_driver_persistence_mode', None, 'whether to enable persistence mode on the NVIDIA GPU') FLAGS = flags.FLAGS class UnsupportedClockSpeedError(Exception): pass class NvidiaSmiParseOutputError(Exception): pass class HeterogeneousGpuTypesError(Exception): pass class UnsupportedGpuTypeError(Exception): pass def CheckNvidiaGpuExists(vm): """Returns whether NVIDIA GPU exists or not on the vm. Args: vm: The virtual machine to check. Returns: True or False depending on whether NVIDIA GPU exists. """ # PKB only supports NVIDIA driver on DEBIAN for now. if vm.BASE_OS_TYPE != os_types.DEBIAN: return False vm.Install('pciutils') output, _ = vm.RemoteCommand('sudo lspci', should_log=True) regex = re.compile(r'3D controller: NVIDIA Corporation') return regex.search(output) is not None def CheckNvidiaSmiExists(vm): """Returns whether nvidia-smi is installed or not on a VM. Args: vm: The virtual to check. Returns: True or False depending on whether nvidia-smi command exists. """ # PKB only supports NVIDIA driver on DEBIAN for now. if vm.BASE_OS_TYPE != os_types.DEBIAN: return False resp, _ = vm.RemoteHostCommand('command -v nvidia-smi', ignore_failure=True, suppress_warning=True) return bool(resp.rstrip()) def GetDriverVersion(vm): """Returns the NVIDIA driver version as a string. Args: vm: Virtual machine to query. Returns: String containing NVIDIA driver version installed. Raises: NvidiaSmiParseOutputError: If nvidia-smi output cannot be parsed. """ stdout, _ = vm.RemoteCommand('nvidia-smi', should_log=True) regex = r'Driver Version\:\s+(\S+)' match = re.search(regex, stdout) if match: return str(match.group(1)) raise NvidiaSmiParseOutputError('Unable to parse driver version from {}' .format(stdout)) def GetGpuType(vm): """Return the type of NVIDIA gpu(s) installed on the vm. Args: vm: Virtual machine to query. Returns: Type of gpus installed on the vm as a string. Raises: NvidiaSmiParseOutputError: If nvidia-smi output cannot be parsed. HeterogeneousGpuTypesError: If more than one gpu type is detected. UnsupportedClockSpeedError: If gpu type is not supported. Example: If 'nvidia-smi -L' returns: GPU 0: Tesla V100-SXM2-16GB (UUID: GPU-1a046bb9-e456-45d3-5a35-52da392d09a5) GPU 1: Tesla V100-SXM2-16GB (UUID: GPU-56cf4732-054c-4e40-9680-0ec27e97d21c) GPU 2: Tesla V100-SXM2-16GB (UUID: GPU-4c7685ad-4b3a-8adc-ce20-f3a945127a8a) GPU 3: Tesla V100-SXM2-16GB (UUID: GPU-0b034e63-22be-454b-b395-382e2d324728) GPU 4: Tesla V100-SXM2-16GB (UUID: GPU-b0861159-4727-ef2f-ff66-73a765f4ecb6) GPU 5: Tesla V100-SXM2-16GB (UUID: GPU-16ccaf51-1d1f-babe-9f3d-377e900bf37e) GPU 6: Tesla V100-SXM2-16GB (UUID: GPU-6eba1fa6-de10-80e9-ec5f-4b8beeff7e12) GPU 7: Tesla V100-SXM2-16GB (UUID: GPU-cba5a243-219c-df12-013e-1dbc98a8b0de) GetGpuType() will return: ['V100-SXM2-16GB', 'V100-SXM2-16GB', 'V100-SXM2-16GB', 'V100-SXM2-16GB', 'V100-SXM2-16GB', 'V100-SXM2-16GB', 'V100-SXM2-16GB', 'V100-SXM2-16GB'] """ stdout, _ = vm.RemoteCommand('nvidia-smi -L', should_log=True) try: gpu_types = [] for line in stdout.splitlines(): if not line: continue splitted = line.split() if splitted[2] in ('Tesla', 'NVIDIA'): gpu_types.append(splitted[3]) else: gpu_types.append(splitted[2]) except: raise NvidiaSmiParseOutputError('Unable to parse gpu type from {}' .format(stdout)) if any(gpu_type != gpu_types[0] for gpu_type in gpu_types): raise HeterogeneousGpuTypesError( 'PKB only supports one type of gpu per VM') if 'K80' in gpu_types[0]: return NVIDIA_TESLA_K80 if 'P4' in gpu_types[0]: return NVIDIA_TESLA_P4 if 'P100' in gpu_types[0]: return NVIDIA_TESLA_P100 if 'V100' in gpu_types[0]: return NVIDIA_TESLA_V100 if 'T4' in gpu_types[0]: return NVIDIA_TESLA_T4 if 'A100' in gpu_types[0]: return NVIDIA_TESLA_A100 raise UnsupportedClockSpeedError( 'Gpu type {0} is not supported by PKB'.format(gpu_types[0])) def QueryNumberOfGpus(vm): """Returns the number of NVIDIA GPUs on the system. Args: vm: Virtual machine to query. Returns: Integer indicating the number of NVIDIA GPUs present on the vm. """ stdout, _ = vm.RemoteCommand('sudo nvidia-smi --query-gpu=count --id=0 ' '--format=csv', should_log=True) return int(stdout.split()[1]) def GetPeerToPeerTopology(vm): """Returns a string specifying which GPUs can access each other via p2p. Args: vm: Virtual machine to operate on. Example: If p2p topology from nvidia-smi topo -p2p r looks like this: 0 1 2 3 0 X OK NS NS 1 OK X NS NS 2 NS NS X OK 3 NS NS OK X GetTopology will return 'Y Y N N;Y Y N N;N N Y Y;N N Y Y' """ stdout, _ = vm.RemoteCommand('nvidia-smi topo -p2p r', should_log=True) lines = [line.split() for line in stdout.splitlines()] num_gpus = len(lines[0]) results = [] for idx, line in enumerate(lines[1:]): if idx >= num_gpus: break results.append(' '.join(line[1:])) # Delimit each GPU result with semicolons, # and simplify the result character set to 'Y' and 'N'. return (';'.join(results) .replace('X', 'Y') # replace X (self) with Y .replace('OK', 'Y') # replace OK with Y .replace('NS', 'N')) # replace NS (not supported) with N def SetAndConfirmGpuClocks(vm): """Sets and confirms the GPU clock speed and autoboost policy. The clock values are provided either by the gpu_pcie_bandwidth_clock_speeds flags, or from gpu-specific defaults. If a device is queried and its clock speed does not align with what it was just set to, an exception will be raised. Args: vm: The virtual machine to operate on. Raises: UnsupportedClockSpeedError: If a GPU did not accept the provided clock speeds. """ gpu_type = GetGpuType(vm) gpu_clock_speeds = GPU_DEFAULTS[gpu_type]['base_clock'] autoboost_enabled = GPU_DEFAULTS[gpu_type]['autoboost_enabled'] if FLAGS.gpu_clock_speeds is not None: gpu_clock_speeds = FLAGS.gpu_clock_speeds if FLAGS.gpu_autoboost_enabled is not None: autoboost_enabled = FLAGS.gpu_autoboost_enabled desired_memory_clock = gpu_clock_speeds[0] desired_graphics_clock = gpu_clock_speeds[1] EnablePersistenceMode(vm) SetGpuClockSpeed(vm, desired_memory_clock, desired_graphics_clock) SetAutoboostDefaultPolicy(vm, autoboost_enabled) num_gpus = QueryNumberOfGpus(vm) for i in range(num_gpus): if QueryGpuClockSpeed(vm, i) != (desired_memory_clock, desired_graphics_clock): raise UnsupportedClockSpeedError( 'Unrecoverable error setting GPU #{} clock speed to {},{}'.format( i, desired_memory_clock, desired_graphics_clock)) def SetGpuClockSpeed(vm, memory_clock_speed, graphics_clock_speed): """Sets autoboost and memory and graphics clocks to the specified frequency. Args: vm: Virtual machine to operate on. memory_clock_speed: Desired speed of the memory clock, in MHz. graphics_clock_speed: Desired speed of the graphics clock, in MHz. """ num_gpus = QueryNumberOfGpus(vm) for device_id in range(num_gpus): current_clock_speeds = QueryGpuClockSpeed(vm, device_id) if current_clock_speeds != (memory_clock_speed, graphics_clock_speed): vm.RemoteCommand('sudo nvidia-smi -ac {},{} --id={}'.format( memory_clock_speed, graphics_clock_speed, device_id )) def QueryGpuClockSpeed(vm, device_id): """Returns the value of the memory and graphics clock. All clock values are in MHz. Args: vm: Virtual machine to operate on. device_id: Id of GPU device to query. Returns: Tuple of clock speeds in MHz in the form (memory clock, graphics clock). """ query = ('sudo nvidia-smi --query-gpu=clocks.applications.memory,' 'clocks.applications.graphics --format=csv --id={0}' .format(device_id)) stdout, _ = vm.RemoteCommand(query, should_log=True) clock_speeds = stdout.splitlines()[1] matches = regex_util.ExtractAllMatches(EXTRACT_CLOCK_SPEEDS_REGEX, clock_speeds)[0] return (int(matches[0]), int(matches[1])) def EnablePersistenceMode(vm): """Enables persistence mode on the NVIDIA driver. Args: vm: Virtual machine to operate on. """ vm.RemoteCommand('sudo nvidia-smi -pm 1') def SetAutoboostDefaultPolicy(vm, autoboost_enabled): """Sets the autoboost policy to the specified value. For each GPU on the VM, this function will set the autoboost policy to the value specified by autoboost_enabled. Args: vm: Virtual machine to operate on. autoboost_enabled: Bool or None. Value (if any) to set autoboost policy to """ if autoboost_enabled is None: return num_gpus = QueryNumberOfGpus(vm) for device_id in range(num_gpus): current_state = QueryAutoboostPolicy(vm, device_id) if current_state['autoboost_default'] != autoboost_enabled: vm.RemoteCommand('sudo nvidia-smi --auto-boost-default={0} --id={1}' .format(1 if autoboost_enabled else 0, device_id)) def QueryAutoboostPolicy(vm, device_id): """Returns the state of autoboost and autoboost_default. Args: vm: Virtual machine to operate on. device_id: Id of GPU device to query. Returns: Dict containing values for autoboost and autoboost_default. Values can be True (autoboost on), False (autoboost off), and None (autoboost not supported). Raises: NvidiaSmiParseOutputError: If output from nvidia-smi can not be parsed. """ autoboost_regex = r'Auto Boost\s*:\s*(\S+)' autoboost_default_regex = r'Auto Boost Default\s*:\s*(\S+)' query = 'sudo nvidia-smi -q -d CLOCK --id={0}'.format(device_id) stdout, _ = vm.RemoteCommand(query, should_log=True) autoboost_match = re.search(autoboost_regex, stdout) autoboost_default_match = re.search(autoboost_default_regex, stdout) nvidia_smi_output_string_to_value = { 'On': True, 'Off': False, 'N/A': None, } if (autoboost_match is None) or (autoboost_default_match is None): raise NvidiaSmiParseOutputError('Unable to parse Auto Boost policy from {}' .format(stdout)) return { 'autoboost': nvidia_smi_output_string_to_value[ autoboost_match.group(1)], 'autoboost_default': nvidia_smi_output_string_to_value[ autoboost_default_match.group(1)] } def GetMetadata(vm): """Returns gpu-specific metadata as a dict. Args: vm: Virtual machine to operate on. Returns: A dict of gpu-specific metadata. """ clock_speeds = QueryGpuClockSpeed(vm, 0) autoboost_policy = QueryAutoboostPolicy(vm, 0) return { 'gpu_memory_clock': clock_speeds[0], 'gpu_graphics_clock': clock_speeds[1], 'gpu_autoboost': autoboost_policy['autoboost'], 'gpu_autoboost_default': autoboost_policy['autoboost_default'], 'nvidia_driver_version': GetDriverVersion(vm), 'gpu_type': GetGpuType(vm), 'num_gpus': QueryNumberOfGpus(vm), 'peer_to_peer_gpu_topology': GetPeerToPeerTopology(vm), } def DoPostInstallActions(vm): """Perform post NVIDIA driver install action on the vm. Args: vm: The virtual machine to operate on. """ SetAndConfirmGpuClocks(vm) def Install(vm): """Install NVIDIA GPU driver on the vm. Args: vm: The virtual machine to install NVIDIA driver on. """ version_to_install = FLAGS.nvidia_driver_version if not version_to_install: logging.info('--nvidia_driver_version unset. Not installing.') return elif not FLAGS.nvidia_driver_force_install and CheckNvidiaSmiExists(vm): logging.warn('NVIDIA drivers already detected. Not installing.') return location = ('{base}/{version}/NVIDIA-Linux-x86_64-{version}.run' .format(base=NVIDIA_DRIVER_LOCATION_BASE, version=version_to_install)) vm.Install('wget') tokens = re.split('/', location) filename = tokens[-1] vm.RemoteCommand('wget {location} && chmod 755 {filename} ' .format(location=location, filename=filename), should_log=True) vm.RemoteCommand('sudo ./{filename} -q -x-module-path={x_module_path} ' '--ui=none -x-library-path={x_library_path} ' '--no-install-compat32-libs' .format(filename=filename, x_module_path=FLAGS.nvidia_driver_x_module_path, x_library_path=FLAGS.nvidia_driver_x_library_path), should_log=True) if FLAGS.nvidia_driver_persistence_mode: EnablePersistenceMode(vm)
py
1a5498f81765fb1eac207c52c6344cd3eedbeb35
import sys import typing def main() -> typing.NoReturn: n = int(input()) (*t,) = map(int, sys.stdin.read().split()) print(min(t)) main()
py
1a5499eeea88613f0a2176c3b04ded3032c268d7
#!/usr/bin/env python3 import rich.markup from pwncat.db import Fact from pwncat.modules import ModuleFailed from pwncat.platform.windows import Windows, PowershellError from pwncat.modules.enumerate import EnumerateModule class InstalledProgramData(Fact): def __init__(self, source, path: bool): super().__init__(source=source, types=["system.programs"]) self.path: bool = path def title(self, session): return f"{rich.markup.escape(repr(self.path))}" class Module(EnumerateModule): """Enumerate the current Windows Defender settings on the target""" PROVIDES = ["system.programs"] PLATFORM = [Windows] def enumerate(self, session): try: program_files = session.platform.powershell( 'Get-ChildItem "C:\\Program Files","C:\\Program Files (x86)" -ErrorAction SilentlyContinue | Select Fullname' )[0] if not isinstance(program_files, list): program_files = [program_files] for path in program_files: yield InstalledProgramData(self.name, path["FullName"]) except (PowershellError, IndexError) as exc: raise ModuleFailed( f"failed to list program file directories: {exc}" ) from exc
py
1a549a1e9c11ac0290ef46a757209c1f94fa3ed8
from keras.models import Sequential from keras.layers.core import Dense, Activation, Flatten, Dropout from keras.layers.embeddings import Embedding # from keras import optimizers from preprocess.unsw import generate_dataset from netlearner.utils import quantile_transform import numpy as np generate_dataset(one_hot_encode=False) raw_train_dataset = np.load('UNSW/train_dataset.npy') train_labels = np.load('UNSW/train_labels.npy') raw_valid_dataset = np.load('UNSW/valid_dataset.npy') valid_labels = np.load('UNSW/valid_labels.npy') raw_test_dataset = np.load('UNSW/test_dataset.npy') test_labels = np.load('UNSW/test_labels.npy') embedded_features = raw_train_dataset[:, -3:] print(embedded_features.shape) vocabulary_dim = int(np.amax(embedded_features)) + 1 embedding_dim = int(np.log2(vocabulary_dim)) + 1 num_features = embedded_features.shape[1] print("|V| =", vocabulary_dim) print("|E| =", embedding_dim) print("|F| =", num_features) model1 = Sequential() model1.add(Embedding(vocabulary_dim, embedding_dim, input_length=num_features)) model1.add(Flatten()) model1.compile('rmsprop', 'mse') train_embeddings = model1.predict(embedded_features) valid_embeddings = model1.predict(raw_valid_dataset[:, -3:]) test_embeddings = model1.predict(raw_test_dataset[:, -3:]) print(train_embeddings.shape) print(test_embeddings.shape) columns = np.array(range(1, 6) + range(8, 16) + range(17, 19) + range(23, 25) + [26]) [train_dataset, valid_dataset, test_dataset] = quantile_transform( raw_train_dataset[:, :-3], raw_valid_dataset[:, :-3], raw_test_dataset[:, :-3], columns) X_train = np.concatenate((train_dataset, train_embeddings), axis=1) X_valid = np.concatenate((valid_dataset, valid_embeddings), axis=1) X_test = np.concatenate((test_dataset, test_embeddings), axis=1) print(X_train.shape, X_test.shape) num_features = X_train.shape[1] num_classes = train_labels.shape[1] model2 = Sequential() model2.add(Dense(400, input_dim=num_features)) model2.add(Activation('relu')) model2.add(Dropout(0.8)) model2.add(Dense(512)) model2.add(Activation('relu')) model2.add(Dropout(0.8)) model2.add(Dense(640)) model2.add(Activation('relu')) model2.add(Dense(num_classes)) model2.add(Activation('softmax')) # adam = optimizers.Adam(lr=0.001, decay=0.002) model2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model2.fit(X_train, train_labels, batch_size=100, epochs=160, verbose=1, validation_data=(X_valid, valid_labels)) score = model2.evaluate(X_test, test_labels, batch_size=100, verbose=1) print('Test score:', score[0]) print('Test accuracy:', score[1])
py
1a549b6d629159ca4b12947ed942b068334cafd6
from setuptools import setup, find_packages setup( name = 'x-transformers', packages = find_packages(exclude=['examples']), version = '0.12.3', license='MIT', description = 'X-Transformers - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/x-transformers', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers' ], install_requires=[ 'torch>=1.6', 'einops>=0.3', 'entmax' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
py
1a549bb637028049432f626b882830fe8563486f
#encoding:utf-8 import datetime import csv import logging from multiprocessing import Process import time import yaml from croniter import croniter from supplier import supply logger = logging.getLogger(__name__) def read_own_cron(own_cron_filename, config): with open(own_cron_filename) as tsv_file: tsv_reader = csv.DictReader(tsv_file, delimiter='\t') for row in tsv_reader: now = datetime.datetime.now() cron = croniter(row['MASK']) # prev_run = cron.get_current(datetime.datetime) prev_run = cron.get_prev(datetime.datetime) prev_run = cron.get_next(datetime.datetime) diff = now - prev_run diff_seconds = diff.total_seconds() if diff_seconds >= 0.0 and diff_seconds <= 59.9: # print(row['submodule_name'], diff_seconds) # supply(row['submodule_name'], config) supplying_process = Process(target=supply, args=(row['submodule_name'], config)) supplying_process.start() time.sleep(2) def main(config_filename): with open(config_filename) as config_file: config = yaml.load(config_file.read()) read_own_cron(config['cron_file'], config) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--config', default='configs/prod.yml') args = parser.parse_args() main(args.config)
py
1a549d773e7ab6f3815f7a06d2bc455c25f9684e
# 基于signals自定义钩子 import django.dispatch # 1. 定义钩子函数 def func(sender, request, **kwargs): pass # 2. 定义信号 post_before = django.dispatch.Signal(providing_args=["args", "kwargs"]) # 3. 注册信号 post_before.connect(func) def func(sender, request, instance, **kwargs): pass patch_before = django.dispatch.Signal(providing_args=["args", "kwargs"]) patch_before.connect(func) valid_after = django.dispatch.Signal(providing_args=["args", "kwargs"]) valid_after.connect(func) patch_save = django.dispatch.Signal(providing_args=["args", "kwargs"]) patch_save.connect(func)
py
1a549e429eab352518d2cdf9b6a0a42259e5d58a
__author__ = 'Lambert Justo' import glob # for getting botcogs import discord from discord.ext import commands #import schmoobot.src.credentials as credentials import credentials from botcogs.utils import check #from schmoobot.src.botcogs.utils import check bot_prefix = "!" formatter = commands.HelpFormatter(show_check_failure=False) bot = commands.Bot(command_prefix=bot_prefix, formatter=formatter, description="Schmoo Bot!", pm_help=None) prev = None def list_cogs(): """ Gets all modules from [cwd]/botcogs/ and puts them in a list to return in the form of ["botcogs.module1", "botcogs.module2", "botcogs.module3", ...] :return: list of strings where each module J.py is of form "botcogs.J" """ cogs = glob.glob("botcogs/*.py") cog_list = [] for c in cogs: cog_list.append("botcogs." + c.replace("/","\\").split("\\")[1].replace(".py", "")) return cog_list # cogs_list = list_cogs() cogs_list = ["botcogs.rng", "botcogs.searches", "botcogs.misc", "botcogs.mash", "botcogs.blackjack"] # FOR NOW, KEEP A HARDCODED LIST def load_cog(cog_name : str): cog_name = cog_name.strip() if cog_name not in cogs_list: print("Couldn't find module", cog_name) return try: bot.load_extension(cog_name) except (ImportError, discord.ClientException, AttributeError) as e: print("Failed to load cog", cog_name, " due to", str(e)) return @bot.event async def on_ready(): print("Logged in as:") print("name:", bot.user.name) print("id:", bot.user.id) print("--------------------------------------------") @check.is_owner() @bot.command() async def load(extension_name : str): print("got to load function") """ attempt to load a cog - a cog is a module that has commands """ # strip any whitespace extension_name = extension_name.strip() # check if the extension is in the list of loaded botcogs if extension_name not in cogs_list: output = "Couldn't find module " + extension_name await bot.say(output) return # attempt to load the extension try: bot.load_extension(extension_name) except (ImportError, discord.ClientException, AttributeError) as e: output = "Failed to load cog " + extension_name + " due to ", str(e) await bot.say(output) return output = "Loaded " + extension_name + " successfully!" await bot.say(output) """ @bot.group(name="set", pass_context=True) async def __set__(context): if context.invoked_subcommand is None: pass """ @bot.command() @check.is_owner() async def load_all(): for elem in cogs_list: load_cog(elem) await bot.say("Loaded " + str(cogs_list) + " successfully!") await bot.say("Active commands (syntax: '![command] [extra_argument]'): " + str(list(bot.commands.keys()))) @bot.command() @check.is_owner() async def unload(extension_name : str): """attempt to load an extension (plugin""" # extension_name = botcogs.<module_name> extension_name = extension_name.strip() try: bot.unload_extension(extension_name) except Exception as e: await bot.say("Failed to unload cog " + extension_name + " due to " + str(e)) await bot.say("Unloaded " + extension_name + " successfully!") @bot.command() @check.is_owner() async def reload(extension_name : str): extension_name = "botcogs." + extension_name if extension_name not in cogs_list: await bot.say("Failed to find cog " + str(extension_name)) return try: bot.unload_extension(extension_name) load_cog(extension_name) except Exception as e: await bot.say("Failed to reload cog " + extension_name + " due to " + str(e)) return await bot.say("Reloaded " + extension_name + " successfully!") @bot.event async def on_message(message): await bot.process_commands(message) @bot.event async def on_command(command, context): # not even sure why this is here pass @bot.command() @check.is_owner() async def bye(): await bot.say("Bye-bye!") await bot.logout() bot.run(credentials.email, credentials.password)
py
1a549e52343676749e09447f148bbf8aa7f9f74a
# Generated by Django 2.2.5 on 2019-12-22 12:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ("rooms", "0001_initial"), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.AddField( model_name="room", name="host", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="rooms", to=settings.AUTH_USER_MODEL, ), ), migrations.AddField( model_name="room", name="house_rules", field=models.ManyToManyField( blank=True, related_name="rooms", to="rooms.HouseRule" ), ), migrations.AddField( model_name="room", name="room_type", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="rooms", to="rooms.RoomType", ), ), migrations.AddField( model_name="photo", name="room", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="photos", to="rooms.Room", ), ), ]
py
1a549e593dd07c11e7ab1454519d8f3cd72152f7
import re def Filter(**kargs): value = kargs['value'] def filt(data, sr, sctx, sccol, matches): for m in matches: m['dup'] = value return matches return filt
py
1a549f5a1d1f4d66244b03b7b81365c3d1dd05e3
from SeismicReduction import * set_seed(42) # set seed to standardise results ### Data loading: dataholder = DataHolder("Glitne", [1300, 1502, 2], [1500, 2002, 2]) dataholder.add_near('./data/3d_nearstack.sgy'); dataholder.add_far('./data/3d_farstack.sgy'); dataholder.add_horizon('./data/Top_Heimdal_subset.txt') ### Processing: processor = Processor(dataholder) processed_data = processor(flatten=[True, 12, 52], crop=[False, 120, 200], normalise=True) ### Model analysis: ## PCA pca = PcaModel(processed_data) pca.reduce(2) pca.to_2d() ## UMAP umap = UmapModel(processed_data) umap.reduce(umap_neighbours=50, umap_dist=0.01) ## vae vae = VaeModel(processed_data) vae.reduce(epochs=50, hidden_size=2, lr=0.0005, plot_loss=False) vae.to_2d() ## bvae bvae = BVaeModel(processed_data) bvae.reduce(epochs=50, hidden_size=2, lr=0.0005, beta=7, plot_loss=False) bvae.to_2d() ## Visualisation plot_agent(vae, attr='FF', cmap='magma', vmin=-3 ,save_path=False) plot_agent(bvae, attr='FF', cmap='hot',save_path=False) plot_agent(vae, attr='FF', cmap='magma' ,save_path=False) plot_agent(bvae, attr='FF', cmap='winter',save_path=False)
py
1a549f875d4492936edf943f4e02cca0ba48a625
import gdb.printing class SmallStringPrinter: """Print an llvm::SmallString object.""" def __init__(self, val): self.val = val def to_string(self): begin = self.val['BeginX'] end = self.val['EndX'] return begin.cast(gdb.lookup_type("char").pointer()).string(length = end - begin) def display_hint (self): return 'string' class StringRefPrinter: """Print an llvm::StringRef object.""" def __init__(self, val): self.val = val def to_string(self): return self.val['Data'].string(length = self.val['Length']) def display_hint (self): return 'string' class SmallVectorPrinter: """Print an llvm::SmallVector object.""" class _iterator: def __init__(self, begin, end): self.cur = begin self.end = end self.count = 0 def __iter__(self): return self def next(self): if self.cur == self.end: raise StopIteration count = self.count self.count = self.count + 1 cur = self.cur self.cur = self.cur + 1 return '[%d]' % count, cur.dereference() __next__ = next def __init__(self, val): self.val = val def children(self): t = self.val.type.template_argument(0).pointer() begin = self.val['BeginX'].cast(t) end = self.val['EndX'].cast(t) return self._iterator(begin, end) def to_string(self): t = self.val.type.template_argument(0).pointer() begin = self.val['BeginX'].cast(t) end = self.val['EndX'].cast(t) capacity = self.val['CapacityX'].cast(t) return 'llvm::SmallVector of length %d, capacity %d' % (end - begin, capacity - begin) def display_hint (self): return 'array' class ArrayRefPrinter: """Print an llvm::ArrayRef object.""" class _iterator: def __init__(self, begin, end): self.cur = begin self.end = end self.count = 0 def __iter__(self): return self def next(self): if self.cur == self.end: raise StopIteration count = self.count self.count = self.count + 1 cur = self.cur self.cur = self.cur + 1 return '[%d]' % count, cur.dereference() __next__ = next def __init__(self, val): self.val = val def children(self): data = self.val['Data'] return self._iterator(data, data + self.val['Length']) def to_string(self): return 'llvm::ArrayRef of length %d' % (self.val['Length']) def display_hint (self): return 'array' class OptionalPrinter: """Print an llvm::Optional object.""" def __init__(self, value): self.value = value class _iterator: def __init__(self, member, empty): self.member = member self.done = empty def __iter__(self): return self def next(self): if self.done: raise StopIteration self.done = True return ('value', self.member.dereference()) def children(self): if not self.value['hasVal']: return self._iterator('', True) return self._iterator(self.value['storage']['buffer'].address.cast(self.value.type.template_argument(0).pointer()), False) def to_string(self): return 'llvm::Optional is %sinitialized' % ('' if self.value['hasVal'] else 'not ') class DenseMapPrinter: "Print a DenseMap" class _iterator: def __init__(self, key_info_t, begin, end): self.key_info_t = key_info_t self.cur = begin self.end = end self.advancePastEmptyBuckets() self.first = True def __iter__(self): return self def advancePastEmptyBuckets(self): # disabled until the comments below can be addressed # keeping as notes/posterity/hints for future contributors return n = self.key_info_t.name is_equal = gdb.parse_and_eval(n + '::isEqual') empty = gdb.parse_and_eval(n + '::getEmptyKey()') tombstone = gdb.parse_and_eval(n + '::getTombstoneKey()') # the following is invalid, GDB fails with: # Python Exception <class 'gdb.error'> Attempt to take address of value # not located in memory. # because isEqual took parameter (for the unsigned long key I was testing) # by const ref, and GDB # It's also not entirely general - we should be accessing the "getFirst()" # member function, not the 'first' member variable, but I've yet to figure # out how to find/call member functions (especially (const) overloaded # ones) on a gdb.Value. while self.cur != self.end and (is_equal(self.cur.dereference()['first'], empty) or is_equal(self.cur.dereference()['first'], tombstone)): self.cur = self.cur + 1 def next(self): if self.cur == self.end: raise StopIteration cur = self.cur v = cur.dereference()['first' if self.first else 'second'] if not self.first: self.cur = self.cur + 1 self.advancePastEmptyBuckets() self.first = True else: self.first = False return 'x', v def __init__(self, val): self.val = val def children(self): t = self.val.type.template_argument(3).pointer() begin = self.val['Buckets'].cast(t) end = (begin + self.val['NumBuckets']).cast(t) return self._iterator(self.val.type.template_argument(2), begin, end) def to_string(self): return 'llvm::DenseMap with %d elements' % (self.val['NumEntries']) def display_hint(self): return 'map' class TwinePrinter: "Print a Twine" def __init__(self, val): self._val = val def display_hint(self): return 'string' def string_from_pretty_printer_lookup(self, val): '''Lookup the default pretty-printer for val and use it. If no pretty-printer is defined for the type of val, print an error and return a placeholder string.''' pp = gdb.default_visualizer(val) if pp: s = pp.to_string() # The pretty-printer may return a LazyString instead of an actual Python # string. Convert it to a Python string. However, GDB doesn't seem to # register the LazyString type, so we can't check # "type(s) == gdb.LazyString". if 'LazyString' in type(s).__name__: s = s.value().address.string() else: print(('No pretty printer for {} found. The resulting Twine ' + 'representation will be incomplete.').format(val.type.name)) s = '(missing {})'.format(val.type.name) return s def is_twine_kind(self, kind, expected): if not kind.endswith(expected): return False # apparently some GDB versions add the NodeKind:: namespace # (happens for me on GDB 7.11) return kind in ('llvm::Twine::' + expected, 'llvm::Twine::NodeKind::' + expected) def string_from_child(self, child, kind): '''Return the string representation of the Twine::Child child.''' if self.is_twine_kind(kind, 'EmptyKind') or self.is_twine_kind(kind, 'NullKind'): return '' if self.is_twine_kind(kind, 'TwineKind'): return self.string_from_twine_object(child['twine'].dereference()) if self.is_twine_kind(kind, 'CStringKind'): return child['cString'].string() if self.is_twine_kind(kind, 'StdStringKind'): val = child['stdString'].dereference() return self.string_from_pretty_printer_lookup(val) if self.is_twine_kind(kind, 'StringRefKind'): val = child['stringRef'].dereference() pp = StringRefPrinter(val) return pp.to_string() if self.is_twine_kind(kind, 'SmallStringKind'): val = child['smallString'].dereference() pp = SmallStringPrinter(val) return pp.to_string() if self.is_twine_kind(kind, 'CharKind'): return chr(child['character']) if self.is_twine_kind(kind, 'DecUIKind'): return str(child['decUI']) if self.is_twine_kind(kind, 'DecIKind'): return str(child['decI']) if self.is_twine_kind(kind, 'DecULKind'): return str(child['decUL'].dereference()) if self.is_twine_kind(kind, 'DecLKind'): return str(child['decL'].dereference()) if self.is_twine_kind(kind, 'DecULLKind'): return str(child['decULL'].dereference()) if self.is_twine_kind(kind, 'DecLLKind'): return str(child['decLL'].dereference()) if self.is_twine_kind(kind, 'UHexKind'): val = child['uHex'].dereference() return hex(int(val)) print(('Unhandled NodeKind {} in Twine pretty-printer. The result will be ' 'incomplete.').format(kind)) return '(unhandled {})'.format(kind) def string_from_twine_object(self, twine): '''Return the string representation of the Twine object twine.''' lhs_str = '' rhs_str = '' lhs = twine['LHS'] rhs = twine['RHS'] lhs_kind = str(twine['LHSKind']) rhs_kind = str(twine['RHSKind']) lhs_str = self.string_from_child(lhs, lhs_kind) rhs_str = self.string_from_child(rhs, rhs_kind) return lhs_str + rhs_str def to_string(self): return self.string_from_twine_object(self._val) pp = gdb.printing.RegexpCollectionPrettyPrinter("LLVMSupport") pp.add_printer('llvm::SmallString', '^llvm::SmallString<.*>$', SmallStringPrinter) pp.add_printer('llvm::StringRef', '^llvm::StringRef$', StringRefPrinter) pp.add_printer('llvm::SmallVectorImpl', '^llvm::SmallVector(Impl)?<.*>$', SmallVectorPrinter) pp.add_printer('llvm::ArrayRef', '^llvm::(Const)?ArrayRef<.*>$', ArrayRefPrinter) pp.add_printer('llvm::Optional', '^llvm::Optional<.*>$', OptionalPrinter) pp.add_printer('llvm::DenseMap', '^llvm::DenseMap<.*>$', DenseMapPrinter) pp.add_printer('llvm::Twine', '^llvm::Twine$', TwinePrinter) gdb.printing.register_pretty_printer(gdb.current_objfile(), pp)
py
1a54a0bfde60b24a21c678bd5c2450ed7e412960
from win32._ts import *
py
1a54a16130bc637db1fe84e9fc257ecc95fe2a62
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import tqdm tqdm.monitor_interval = 0 # workaround for https://github.com/tqdm/tqdm/issues/481 class SimpleTqdm(): def __init__(self, iterable=None, total=None, **kwargs): self.iterable = list(iterable) if iterable is not None else None self.total = len(self.iterable) if self.iterable is not None else total assert self.iterable is not None or self.total is not None self.current_step = 0 self.print_frequency = max(self.total // 50, 1) self.desc = "" def set_description_str(self, desc): self.desc = desc def set_description(self, desc): self.desc = desc def update(self, steps): last_print_step = (self.current_step // self.print_frequency) * self.print_frequency i = 1 while last_print_step + i * self.print_frequency <= self.current_step + steps: print("*", end='') i += 1 self.current_step += steps def close(self): print("\n" + self.desc) def __iter__(self): assert self.iterable is not None self.index = 0 return self def __next__(self): if self.index < self.total: element = self.iterable[self.index] self.update(1) self.index += 1 return element else: self.close() raise StopIteration def tqdm_notebook_failsafe(*args, **kwargs): try: return tqdm.tqdm_notebook(*args, **kwargs) except: # tqdm is broken on Google Colab return SimpleTqdm(*args, **kwargs)
py
1a54a282a4e02fee15b483d99f74eea570df3f33
# [8 kyu] Century From Year # # Author: Hsins # Date: 2019/12/21 import math def century(year): return math.ceil(year / 100)
py
1a54a2844c395e037a321a789f7015e642a0faa6
#!/usr/bin/env python """\ @file md5check.py @brief Replacement for message template compatibility verifier. $LicenseInfo:firstyear=2010&license=viewerlgpl$ Second Life Viewer Source Code Copyright (C) 2010-2011, Linden Research, Inc. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; version 2.1 of the License only. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA $/LicenseInfo$ """ import sys import hashlib if len(sys.argv) != 3: print """Usage: %s --create|<hash-digest> <file> Creates an md5sum hash digest of the specified file content and compares it with the given hash digest. If --create is used instead of a hash digest, it will simply print out the hash digest of specified file content. """ % sys.argv[0] sys.exit(1) if sys.argv[2] == '-': fh = sys.stdin filename = "<stdin>" else: filename = sys.argv[2] fh = open(filename) hexdigest = hashlib.md5(fh.read()).hexdigest() if sys.argv[1] == '--create': print hexdigest elif hexdigest == sys.argv[1]: print "md5sum check passed:", filename else: print "md5sum check FAILED:", filename sys.exit(1)
py
1a54a29242630552ad96105e649e0c374f787df3
# -*- coding: utf-8 -*- import pytest import numpy as np from unittest import TestCase from SciDataTool import DataTime, Data1D, DataLinspace, VectorField from pyleecan.Classes.SolutionData import SolutionData from pyleecan.Classes.SolutionMat import SolutionMat from pyleecan.Classes.SolutionVector import SolutionVector @pytest.mark.MeshSol def test_SolutionMat(): """ Tests for get_field method from SolutionMat class""" DELTA = 1e-10 field = np.zeros((2, 3, 2)) field[:, :, 0] = np.array([[1, 2, 3], [2, 3, 4]]) field[:, :, 1] = np.array([[11, 21, 31], [21, 31, 41]]) solution = SolutionMat() solution.field = field solution.axis_name = ["time", "indice", "z"] solution.axis_size = [2, 3, 2] field = solution.get_field() correction = field result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) np.testing.assert_almost_equal(result, 0, err_msg=msg) field = solution.get_field("time[1]", "indice[1,2]", is_squeeze=True) correction = np.array([[3, 4]]) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) np.testing.assert_almost_equal(result, 0, err_msg=msg) field = solution.get_field("z[1]", "indice[1,2]", is_squeeze=True) correction = np.array([[21, 31]]) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) np.testing.assert_almost_equal(result, 0, err_msg=msg) @pytest.mark.MeshSol def test_SolutionVector(): DELTA = 1e-10 Indices_Cell = Data1D(name="indice", values=[0, 1, 2, 4], is_components=True) Time = DataLinspace( name="time", unit="s", initial=0, final=1, number=10, ) H = np.ones((10, 4, 2)) # Store the results for H componentsH = {} Hx_data = DataTime( name="Magnetic Field Hx", unit="A/m", symbol="Hx", axes=[Time, Indices_Cell], values=H[:, :, 0], ) componentsH["comp_x"] = Hx_data Hy_data = DataTime( name="Magnetic Field Hy", unit="A/m", symbol="Hy", axes=[Time, Indices_Cell], values=H[:, :, 1], ) componentsH["comp_y"] = Hy_data vecH = VectorField(name="Magnetic Field", symbol="H", components=componentsH) solution = SolutionVector(field=vecH, type_cell="triangle", label="H") field = solution.get_field() correction = np.ones((10, 4, 2)) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) np.testing.assert_almost_equal(result, 0, err_msg=msg) field = solution.get_field("time[0]", "indice[1,2]") correction = np.ones((2, 2)) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) np.testing.assert_almost_equal(result, 0, err_msg=msg) @pytest.mark.MeshSol def test_SolutionData(): DELTA = 1e-10 Indices_Cell = Data1D(name="indice", values=[0, 1, 2, 4], is_components=True) Time = DataLinspace( name="time", unit="s", initial=0, final=1, number=10, ) # Store the results for H H = DataTime( name="Magnetic Field Hx", unit="A/m", symbol="Hx", axes=[Time, Indices_Cell], values=np.ones((10, 4)), ) solution = SolutionData(field=H, type_cell="triangle", label="H") field = solution.get_field() correction = np.ones((10, 4)) result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) np.testing.assert_almost_equal(result, 0, err_msg=msg) field = solution.get_field("time[0]", "indice[1,2]") correction = correction[0, 1:3] result = np.sum(np.abs(correction - field)) msg = "Wrong result: returned " + str(field) + ", expected: " + str(correction) np.testing.assert_almost_equal(result, 0, err_msg=msg) if __name__ == "__main__": test_SolutionMat() test_SolutionData() test_SolutionVector() # test_plot_contour_2group()
py
1a54a35aed5d379676944fd97e3e35bd9b173b34
"""nio encryption module. Encryption is handled mostly transparently to the user. The main thing users need to worry about is device verification. While device verification is handled in the Client classes of nio the classes that are used to introspect OlmDevices or device authentication sessions are documented here. """ import sys from .._compat import package_installed from .attachments import encrypt_attachment, decrypt_attachment if sys.version_info >= (3, 5): from .async_attachments import (AsyncDataT, async_encrypt_attachment, async_generator_from_data,) if package_installed("olm"): from .sessions import ( OlmAccount, Session, OutboundSession, InboundSession, OutboundGroupSession, InboundGroupSession, OlmDevice, OutgoingKeyRequest, TrustState ) from .memorystores import ( SessionStore, GroupSessionStore, DeviceStore ) from .log import logger from .olm_machine import Olm from .sas import Sas, SasState ENCRYPTION_ENABLED = True else: ENCRYPTION_ENABLED = False
py
1a54a48e19e9ddb907264df193d49de95e20e589
# coding: utf-8 # flake8: noqa """ HubDB endpoints HubDB is a relational data store that presents data as rows, columns, and cells in a table, much like a spreadsheet. HubDB tables can be added or modified [in the HubSpot CMS](https://knowledge.hubspot.com/cos-general/how-to-edit-hubdb-tables), but you can also use the API endpoints documented here. For more information on HubDB tables and using their data on a HubSpot site, see the [CMS developers site](https://designers.hubspot.com/docs/tools/hubdb). You can also see the [documentation for dynamic pages](https://designers.hubspot.com/docs/tutorials/how-to-build-dynamic-pages-with-hubdb) for more details about the `useForPages` field. HubDB tables now support `DRAFT` and `PUBLISHED` versions. This allows you to update data in the table, either for testing or to allow for a manual approval process, without affecting any live pages using the existing data. Draft data can be reviewed and published by a user working in HubSpot or published via the API. Draft data can also be discarded, allowing users to go back to the live version of the data without disrupting it. # noqa: E501 The version of the OpenAPI document: v3 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import __version__ = "1.0.0" # import apis into sdk package from hubspot.cms.hubdb.api.default_api import DefaultApi # import ApiClient from hubspot.cms.hubdb.api_client import ApiClient from hubspot.cms.hubdb.configuration import Configuration from hubspot.cms.hubdb.exceptions import OpenApiException from hubspot.cms.hubdb.exceptions import ApiTypeError from hubspot.cms.hubdb.exceptions import ApiValueError from hubspot.cms.hubdb.exceptions import ApiKeyError from hubspot.cms.hubdb.exceptions import ApiException # import models into sdk package from hubspot.cms.hubdb.models.batch_input_hub_db_table_row_v3 import ( BatchInputHubDbTableRowV3, ) from hubspot.cms.hubdb.models.batch_input_json_node import BatchInputJsonNode from hubspot.cms.hubdb.models.batch_input_string import BatchInputString from hubspot.cms.hubdb.models.batch_response_hub_db_table_row_v3_with_errors import ( BatchResponseHubDbTableRowV3WithErrors, ) from hubspot.cms.hubdb.models.collection_response_with_total_hub_db_table_row_v3_forward_paging import ( CollectionResponseWithTotalHubDbTableRowV3ForwardPaging, ) from hubspot.cms.hubdb.models.collection_response_with_total_hub_db_table_v3_forward_paging import ( CollectionResponseWithTotalHubDbTableV3ForwardPaging, ) from hubspot.cms.hubdb.models.column import Column from hubspot.cms.hubdb.models.column_input import ColumnInput from hubspot.cms.hubdb.models.error import Error from hubspot.cms.hubdb.models.error_detail import ErrorDetail from hubspot.cms.hubdb.models.foreign_id import ForeignId from hubspot.cms.hubdb.models.forward_paging import ForwardPaging from hubspot.cms.hubdb.models.hub_db_table_clone_request import HubDbTableCloneRequest from hubspot.cms.hubdb.models.hub_db_table_row_v3 import HubDbTableRowV3 from hubspot.cms.hubdb.models.hub_db_table_row_v3_input import HubDbTableRowV3Input from hubspot.cms.hubdb.models.hub_db_table_v3 import HubDbTableV3 from hubspot.cms.hubdb.models.hub_db_table_v3_input import HubDbTableV3Input from hubspot.cms.hubdb.models.hub_db_table_v3_live_input import HubDbTableV3LiveInput from hubspot.cms.hubdb.models.import_result import ImportResult from hubspot.cms.hubdb.models.next_page import NextPage from hubspot.cms.hubdb.models.option import Option from hubspot.cms.hubdb.models.simple_user import SimpleUser
py
1a54a5605302154186ec1d96983e1e735b6c3c8d
"""Forms.""" from flask_wtf import Form from flask_wtf.file import (FileField, FileAllowed) from wtforms import ( BooleanField, StringField, PasswordField, SubmitField, TextAreaField) import wtforms.validators as validators from flask.ext.pagedown.fields import PageDownField class LoginForm(Form): """Form to login.""" email = StringField( 'Email', validators=[validators.DataRequired(), validators.Email()]) password = PasswordField('Password', validators=[validators.DataRequired()]) submit = SubmitField('Login') class EditGroupForm(Form): """Form to edit group.""" # churchtools where = StringField('Treffpunkt') when = StringField('Treffzeit') audience = StringField('Zielgruppe') # metadata description = PageDownField('Beschreibung', validators=[validators.Length(max=700)]) group_image = FileField('Bild', validators=[FileAllowed(['jpg'], 'Nur JPGs')]) # submit submit = SubmitField('Submit') class EditIndexForm(Form): """Form to edit frontpage.""" first_row_image = FileField('Erste Reihe Bild', validators=[FileAllowed(['jpg'], 'Nur JPGs')]) first_row_link = StringField('Erste Reihe Link', validators=[validators.URL(require_tld=True)]) second_row_image = FileField('Zweite Reihe Bild', validators=[FileAllowed(['jpg'], 'Nur JPGs')]) second_row_link = StringField( 'Zweite Reihe Link', validators=[validators.URL(require_tld=True)]) third_row_left_image = FileField( 'Dritte Reihe Links Bild', validators=[FileAllowed(['jpg'], 'Nur JPGs')]) third_row_left_link = StringField( 'Dritte Reihe Links Link', validators=[validators.URL(require_tld=True)]) third_row_right_image = FileField( 'Dritte Reihe Rechts Bild', validators=[FileAllowed(['jpg'], 'Nur JPGs')]) third_row_right_link = StringField( 'Dritte Reihe Rechts Link', validators=[validators.URL(require_tld=True)]) # submit submit = SubmitField('Submit') class AddPrayerForm(Form): """Form to add prayer.""" body = PageDownField( '', validators=[validators.DataRequired(), validators.Length(max=700)]) name = StringField('Name', validators=[validators.Length(max=120)]) active = BooleanField('Aktiv') submit = SubmitField('Submit') class EditProfileForm(Form): """Form to edit profile.""" # churchtools password = PasswordField('Neues Password', validators=[validators.EqualTo('confirm')]) confirm = PasswordField('Confirm Password') street = StringField('Strasse') postal_code = StringField('PLZ') city = StringField('Ort') # metadata bio = PageDownField('Bio', validators=[validators.Length(max=700)]) user_image = FileField('Bild', validators=[FileAllowed(['jpg'], 'Nur JPGs')]) twitter = StringField('Twitter', validators=[validators.optional(), validators.URL()]) facebook = StringField( 'Facebook', validators=[validators.optional(), validators.URL()]) # submit submit = SubmitField('Submit') class MailForm(Form): """Form to send mail.""" subject = StringField('Betreff', validators=[validators.DataRequired()]) body = TextAreaField('Nachricht', validators=[validators.DataRequired()]) submit = SubmitField('Submit') class AddWhatsUp(Form): """Form to add whatsup post.""" subject = StringField( 'Subject', validators=[validators.DataRequired(), validators.Length(max=120)]) body = TextAreaField( 'Body', validators=[validators.DataRequired(), validators.Length(max=700)]) submit = SubmitField('Submit') class AddWhatsUpComment(Form): """Form to add whatsup comment.""" body = TextAreaField( 'Kommentar', validators=[validators.DataRequired(), validators.Length(max=700)]) submit = SubmitField('Submit') class SearchForm(Form): """Form to search.""" search = StringField('search', validators=[validators.DataRequired()])
py
1a54a56ca3685a98e5df2e15bc84f6eaed269ee4
# -*- coding: UTF-8 -*- # @Time : 04/02/2020 10:58 # @Author : BubblyYi # @FileName: seeds_net_data_provider_aug.py # @Software: PyCharm from torch.utils.data import Dataset from torch.utils.data import DataLoader import torch import pandas as pd import os import numpy as np import SimpleITK as sitk import random class DataGenerater(Dataset): def __init__(self,data_path, pre_fix_path, transform = None, flag = '', target_transform = None): self.flag = flag data = [] print("csv path:",data_path) csv_data = pd.read_csv(data_path) x_data = csv_data['patch_name'] if self.flag == 'train' or self.flag == 'val': proximity = csv_data["proximity"] for i in range(len(x_data)): if pre_fix_path is None: data.append((temp, proximity[i])) else: temp = os.path.join(pre_fix_path,x_data[i]) data.append((temp, proximity[i])) else: for i in range(len(x_data)): if pre_fix_path is None: data.append(x_data[i]) else: temp = os.path.join(pre_fix_path, x_data[i]) data.append(temp) self.data = data self.transform = transform self.target_transform = target_transform self.p_gaussian_noise = 0.2 def __getitem__(self, index): if self.flag == 'train' or self.flag == 'val': data_path, p = self.data[index] img = sitk.GetArrayFromImage(sitk.ReadImage(data_path, sitk.sitkFloat32)) proximity = p upper_bound = np.percentile(img, 99.5) lower_bound = np.percentile(img, 00.5) img = np.clip(img, lower_bound, upper_bound) if self.flag=='train': if np.random.uniform() <= self.p_gaussian_noise: img = self.augment_gaussian_noise(img) mean_intensity = np.mean(img) std_intensity = np.std(img) img = (img - mean_intensity) / (std_intensity+1e-9) img = img.astype(np.float32) img = torch.from_numpy(img) return img.unsqueeze(0), proximity elif self.flag == 'test': data_path = self.data[index] img = sitk.GetArrayFromImage(sitk.ReadImage(data_path, sitk.sitkFloat32)) upper_bound = np.percentile(img, 99.5) lower_bound = np.percentile(img, 00.5) img = np.clip(img, lower_bound, upper_bound) mean_intensity = np.mean(img) std_intensity = np.std(img) # 防止除0 img = (img - mean_intensity) / (std_intensity+1e-9) img = torch.from_numpy(img) return img.unsqueeze(0) def augment_gaussian_noise(self,data_sample, noise_variance=(0, 0.1)): if noise_variance[0] == noise_variance[1]: variance = noise_variance[0] else: variance = random.uniform(noise_variance[0], noise_variance[1]) data_sample = data_sample + np.random.normal(0.0, variance, size=data_sample.shape) return data_sample def __len__(self): return len(self.data)
py
1a54a57a3dc613073e6f5391261d62bdde2d82c6
import _plotly_utils.basevalidators class CmidValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="cmid", parent_name="surface", **kwargs): super(CmidValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), implied_edits=kwargs.pop("implied_edits", {}), **kwargs, )
py
1a54a76db422302621ac696372901e4fe8acce16
import torch import os from skimage import io, transform from torch import nn, optim from torch.nn import functional as F from torchvision import datasets, transforms from torch.autograd import Variable from torchvision.utils import save_image import matplotlib.pyplot as plt import seaborn as sns from torch.nn.modules.module import _addindent import numpy as np import re from tqdm import tqdm from scipy.interpolate import interp1d from sklearn.metrics import confusion_matrix, accuracy_score, mean_squared_error, mean_absolute_error, classification_report, roc_curve, roc_auc_score from torch.utils.data import DataLoader from torchsummary import summary batch_size = 128 epochs = 2000 no_cuda = False seed = 1 log_interval = 50 cuda = not no_cuda and torch.cuda.is_available() torch.manual_seed(seed) device = torch.device("cuda" if cuda else "cpu") print(device) kwargs = {'num_workers': 4, 'pin_memory': True} if cuda else {} # HIGH res train_root = 'data/deepfake_bgr/train/' TRANSFORM_IMG = transforms.Compose([ transforms.Resize(100), # transforms.CenterCrop(100), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) TRANSFORM_IMG_TEST = transforms.Compose([ transforms.Resize(100), # transforms.CenterCrop(100), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) train_loader = torch.utils.data.DataLoader( datasets.ImageFolder(train_root, transform=TRANSFORM_IMG), batch_size=batch_size, shuffle=True) # for evaluation/testing def mse_loss_cal(input, target, avg_batch=True): ret = torch.mean((input - target) ** 2) return ret.item() class VAE_CNN(nn.Module): def __init__(self): super(VAE_CNN, self).__init__() # Encoder self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(64) self.conv4 = nn.Conv2d(64, 16, kernel_size=3, stride=2, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(16) #self.drop = nn.Dropout(0.2) # Latent vectors mu and sigma self.fc1 = nn.Linear(25 * 25 * 16, 1024) self.fc_bn1 = nn.BatchNorm1d(1024) self.fc21 = nn.Linear(1024, 1024) self.fc22 = nn.Linear(1024, 1024) # Sampling vector self.fc3 = nn.Linear(1024, 1024) self.fc_bn3 = nn.BatchNorm1d(1024) self.fc4 = nn.Linear(1024, 25 * 25 * 16) self.fc_bn4 = nn.BatchNorm1d(25 * 25 * 16) self.relu = nn.ReLU() # Decoder self.conv5 = nn.ConvTranspose2d( 16, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(64) self.conv6 = nn.ConvTranspose2d( 64, 32, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) self.bn6 = nn.BatchNorm2d(32) self.conv7 = nn.ConvTranspose2d( 32, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn7 = nn.BatchNorm2d(16) self.conv8 = nn.ConvTranspose2d( 16, 3, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) def encode(self, x): conv1 = self.relu(self.bn1(self.conv1(x))) conv2 = self.relu(self.bn2(self.conv2(conv1))) conv3 = self.relu(self.bn3(self.conv3(conv2))) conv4 = self.relu(self.bn4(self.conv4(conv3))) conv4 = conv4.view(-1, 25 * 25 * 16) fc1 = self.relu(self.fc_bn1(self.fc1(conv4))) r1 = self.fc21(fc1) r2 = self.fc22(fc1) return r1, r2 def reparameterize(self, mu, logvar): std = logvar.mul(0.50).exp_() eps = Variable(std.data.new(std.size()).normal_()) return eps.mul(std).add_(mu) def decode(self, z): fc3 = self.relu(self.fc_bn3(self.fc3(z))) fc4 = self.relu(self.fc_bn4(self.fc4(fc3))) fc4 = fc4.view(-1, 16, 25, 25) conv5 = self.relu(self.bn5(self.conv5(fc4))) conv6 = self.relu(self.bn6(self.conv6(conv5))) conv7 = self.relu(self.bn7(self.conv7(conv6))) conv8 = self.conv8(conv7) return conv8.view(-1, 3, 100, 100) def forward(self, x): mu, logvar = self.encode(x) z = self.reparameterize(mu, logvar) return self.decode(z), mu, logvar class customLoss(nn.Module): def __init__(self): super(customLoss, self).__init__() self.mse_loss = nn.MSELoss(reduction="sum") def forward(self, x_recon, x, mu, logvar): loss_MSE = self.mse_loss(x_recon, x) loss_KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return loss_MSE + loss_KLD model = VAE_CNN().to(device) optimizer = optim.Adam(model.parameters(), lr=1e-3) loss_mse = customLoss() train_losses = [] print(summary(model, (3, 100, 100))) #ckpt = torch.load("dfdc/vae_pytorch_dfdc_FT_.pt") # model.load_state_dict(ckpt) #model = model.to(device) for epoch in range(1, epochs + 1): # train(epoch) model.train() train_loss = 0 for batch_idx, (data, _) in enumerate(train_loader): data = data.to(device) optimizer.zero_grad() #permute = [2, 1, 0] #data = data[:, permute, :, :] recon_batch, mu, logvar = model(data) loss = loss_mse(recon_batch, data, mu, logvar) loss.backward() train_loss += loss.item() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 128. * batch_idx / len(train_loader), loss.item() / len(data))) print('====> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(train_loader.dataset))) train_losses.append(train_loss / len(train_loader.dataset)) # EVALUATE YOUR MODEL HERE # model.eval() # with torch.no_grad(): plt.figure(figsize=(15, 10)) plt.plot(range(len(train_losses[1:])), train_losses[1:], c="dodgerblue") plt.title("Loss per epoch", fontsize=18) plt.xlabel("epoch", fontsize=18) plt.ylabel("loss", fontsize=18) plt.legend(['Train. Loss'], fontsize=18) plt.show()
py
1a54a7d720eccd7dcaf63b00f05d3059f7fd367c
#!/usr/bin/env python # # Generate pnSeed[] from Pieter's DNS seeder # NSEEDS=600 import re import sys from subprocess import check_output def main(): lines = sys.stdin.readlines() ips = [] pattern = re.compile(r"^(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3}):10319") for line in lines: m = pattern.match(line) if m is None: continue ip = 0 for i in range(0,4): ip = ip + (int(m.group(i+1)) << (8*(i))) if ip == 0: continue ips.append(ip) for row in range(0, min(NSEEDS,len(ips)), 8): print " " + ", ".join([ "0x%08x"%i for i in ips[row:row+8] ]) + "," if __name__ == '__main__': main()
py
1a54a81b3b54a946f39720899150ad8eea437668
#!/usr/bin/python # Classification (U) """Program: get_status.py Description: Unit testing of get_status in elastic_db_admin.py. Usage: test/unit/elastic_db_admin/get_status.py Arguments: """ # Libraries and Global Variables # Standard import sys import os if sys.version_info < (2, 7): import unittest2 as unittest else: import unittest # Third-party import mock # Local sys.path.append(os.getcwd()) import elastic_db_admin import lib.gen_libs as gen_libs import version __version__ = version.__version__ class ElasticSearchStatus(object): """Class: ElasticSearchStatus Description: Class representation of the ElasticSearchStatus class. Methods: __init__ -> Initialize configuration environment. get_mem_status -> Holder for ElasticSearchStatus.get_mem_status method. get_nodes -> Stub holder for ElasticSearchStatus.get_nodes method. get_cluster -> Stub holder for ElasticSearchStatus.get_cluster method. get_all -> Stub holder for ElasticSearchStatus.get_all method. """ def __init__(self, hosts, port): """Method: __init__ Description: Initialization instance of the class. Arguments: (input) hosts -> Host name. (input) port -> Port number. """ self.hosts = hosts self.port = port def get_mem_status(self): """Method: get_mem_status Description: Holder for ElasticSearchStatus.get_mem_status method. Arguments: """ return {"memory": "memory_status"} def get_nodes(self): """Method: get_nodes Description: Stub holder for ElasticSearchStatus.get_nodes method. Arguments: """ return {"node": "node_name"} def get_cluster(self): """Method: get_cluster Description: Stub holder for ElasticSearchStatus.get_cluster method. Arguments: """ return {"cluster": "cluster_name"} def get_all(self): """Method: get_all Description: Stub holder for ElasticSearchStatus.get_all method. Arguments: """ return True class ElasticSearch(object): """Class: ElasticSearch Description: Class representation of the ElasticSearch class. Methods: __init__ -> Initialize configuration environment. """ def __init__(self): """Method: __init__ Description: Initialization instance of the class. Arguments: """ self.hosts = ["nodename1", "nodename2"] self.port = 9200 class UnitTest(unittest.TestCase): """Class: UnitTest Description: Class which is a representation of a unit testing. Methods: setUp -> Initialization for unit testing. test_empty_display_list -> Test with empty display list. test_incorrect_option -> Test with incorrect option. test_one_option -> Test with one option. test_all -> Test with all option. test_no_options -> Test with no options. test_display_all -> Test with display all option. test_display_default -> Test with display default option. """ def setUp(self): """Function: setUp Description: Initialization for unit testing. Arguments: """ self.els = ElasticSearch() self.args_array = {"-D": ["all"]} self.args_array2 = {"-D": ["memory"]} self.args_array3 = {"-D": []} self.args_array4 = {"-D": [], "-j": True} self.args_array5 = {"-D": ["all"], "-j": True} self.args_array6 = {"-D": ["memory"], "-j": True} self.args_array7 = {"-D": ["incorrect"], "-j": True} self.args_array8 = {"-D": []} self.status_call = {"memory": "get_mem_status"} @mock.patch("elastic_db_admin.elastic_class.ElasticSearchStatus") def test_empty_display_list(self, mock_class): """Function: test_empty_display_list Description: Test with empty display list. Arguments: """ mock_class.return_value = ElasticSearchStatus(self.els.hosts, self.els.port) with gen_libs.no_std_out(): self.assertFalse( elastic_db_admin.get_status( self.els, status_call=self.status_call, args_array=self.args_array8)) @mock.patch("elastic_db_admin.elastic_class.ElasticSearchStatus") def test_incorrect_option(self, mock_class): """Function: test_incorrect_option Description: Test with incorrect option. Arguments: """ mock_class.return_value = ElasticSearchStatus(self.els.hosts, self.els.port) with gen_libs.no_std_out(): self.assertFalse( elastic_db_admin.get_status( self.els, status_call=self.status_call, args_array=self.args_array7)) @mock.patch("elastic_db_admin.elastic_class.ElasticSearchStatus") def test_one_option(self, mock_class): """Function: test_one_option Description: Test with one option. Arguments: """ mock_class.return_value = ElasticSearchStatus(self.els.hosts, self.els.port) with gen_libs.no_std_out(): self.assertFalse( elastic_db_admin.get_status( self.els, status_call=self.status_call, args_array=self.args_array6)) @mock.patch("elastic_db_admin.elastic_class.ElasticSearchStatus") def test_all(self, mock_class): """Function: test_all Description: Test with all option. Arguments: """ mock_class.return_value = ElasticSearchStatus(self.els.hosts, self.els.port) with gen_libs.no_std_out(): self.assertFalse( elastic_db_admin.get_status( self.els, status_call=self.status_call, args_array=self.args_array5)) @mock.patch("elastic_db_admin.elastic_class.ElasticSearchStatus") def test_no_options(self, mock_class): """Function: test_no_options Description: Test with no options. Arguments: """ mock_class.return_value = ElasticSearchStatus(self.els.hosts, self.els.port) with gen_libs.no_std_out(): self.assertFalse( elastic_db_admin.get_status( self.els, status_call=self.status_call, args_array=self.args_array4)) @mock.patch("elastic_db_admin.elastic_class.ElasticSearchStatus") def test_display_all(self, mock_class): """Function: test_display_all Description: Test with display all option. Arguments: """ mock_class.return_value = ElasticSearchStatus(self.els.hosts, self.els.port) with gen_libs.no_std_out(): self.assertFalse( elastic_db_admin.get_status( self.els, status_call=self.status_call, args_array=self.args_array)) @mock.patch("elastic_db_admin.elastic_class.ElasticSearchStatus") def test_display_default(self, mock_class): """Function: test_display_default Description: Test with display default option. Arguments: """ mock_class.return_value = ElasticSearchStatus(self.els.hosts, self.els.port) with gen_libs.no_std_out(): self.assertFalse( elastic_db_admin.get_status( self.els, status_call=self.status_call, args_array={})) if __name__ == "__main__": unittest.main()
py
1a54a87ebccafe8981eb22ee1e0dc5384f25db8a
from enum import Enum from typing import Optional import numpy as np from pydantic import PrivateAttr, validator from ..events import EventedModel from ..events.custom_types import Array from ..translations import trans from .colorbars import make_colorbar from .standardize_color import transform_color class ColormapInterpolationMode(str, Enum): """INTERPOLATION: Interpolation mode for colormaps. Selects an interpolation mode for the colormap. * linear: colors are defined by linear interpolation between colors of neighboring controls points. * zero: colors are defined by the value of the color in the bin between by neighboring controls points. """ LINEAR = 'linear' ZERO = 'zero' class Colormap(EventedModel): """Colormap that relates intensity values to colors. Attributes ---------- colors : array, shape (N, 4) Data used in the colormap. name : str Name of the colormap. display_name : str Display name of the colormap. controls : array, shape (N,) or (N+1,) Control points of the colormap. interpolation : str Colormap interpolation mode, either 'linear' or 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). """ # fields colors: Array[float, (-1, 4)] name: str = 'custom' _display_name: Optional[str] = PrivateAttr(None) interpolation: ColormapInterpolationMode = ColormapInterpolationMode.LINEAR controls: Array[float, (-1,)] = None def __init__(self, colors, display_name: Optional[str] = None, **data): if display_name is None: display_name = data.get('name', 'custom') super().__init__(colors=colors, **data) self._display_name = display_name # validators @validator('colors', pre=True) def _ensure_color_array(cls, v): return transform_color(v) # controls validator must be called even if None for correct initialization @validator('controls', pre=True, always=True) def _check_controls(cls, v, values): if v is None or len(v) == 0: n_controls = len(values['colors']) + int( values['interpolation'] == ColormapInterpolationMode.ZERO ) return np.linspace(0, 1, n_controls) return v def __iter__(self): yield from (self.colors, self.controls, self.interpolation) def map(self, values): values = np.atleast_1d(values) if self.interpolation == ColormapInterpolationMode.LINEAR: # One color per control point cols = [ np.interp(values, self.controls, self.colors[:, i]) for i in range(4) ] cols = np.stack(cols, axis=1) elif self.interpolation == ColormapInterpolationMode.ZERO: # One color per bin indices = np.clip( np.searchsorted(self.controls, values) - 1, 0, len(self.colors) ) cols = self.colors[indices.astype(np.int32)] else: raise ValueError( trans._( 'Unrecognized Colormap Interpolation Mode', deferred=True, ) ) return cols @property def colorbar(self): return make_colorbar(self)
py
1a54a8b8fd08571d7597ac4d86df5e3e02479d77
import sys import gzip import json if __name__ == '__main__': if len(sys.argv) != 3: print('Usage: python3 convert_mrqa_to_fgc.py <mrqa-format-input-fpath> <fgc-format-output-fpath>') exit(1) input_fpath = sys.argv[1] output_fpath = sys.argv[2] # Read MRQA-format data with gzip.open(input_fpath) as f: jsonl_data = f.readlines() data_info = json.loads(jsonl_data[0]) dataset = data_info['header']['dataset'] line_count = len(jsonl_data) - 1 # Convert MRQA-format to FGC-format new_data = [] for di, jsonl_line in enumerate(jsonl_data[1:], start=1): # PQA (Outer loop) new_PQA = {} PQA = json.loads(jsonl_line) DID = '%d' % di DTEXT = PQA['context'] new_PQA['DID'] = DID new_PQA['DTEXT'] = DTEXT new_PQA['QUESTIONS'] = [] # QA (Middle loop) for qi, QA in enumerate(PQA['qas'], start=1): new_QA = {'AMODE': 'Single-Span-Extraction', 'ATYPE': ''} QID = '%s-%d' % (DID, qi) QTEXT = QA['question'] new_QA['QID'] = QID new_QA['QTEXT'] = QTEXT # Inner A (Inner loop) answer_map = {} new_ANSWER, new_ASPAN = [], [] for A in QA['detected_answers']: ATEXT = A['text'] start = A['char_spans'][0][0] end = A['char_spans'][0][1] # ANSWER if ATEXT not in answer_map: answer_map[ATEXT] = len(answer_map) new_ANSWER.append({'ATEXT': ATEXT, 'ATOKEN': [{'text': ATEXT, 'start': start}]}) else: ai = answer_map[ATEXT] atoken_info = {'text': ATEXT, 'start': start} if atoken_info not in new_ANSWER[ai]['ATOKEN']: new_ANSWER[ai]['ATOKEN'].append(atoken_info) # ASPAN aspan_info = {'text': ATEXT, 'start': start, 'end': end} if aspan_info not in new_ASPAN: new_ASPAN.append(aspan_info) new_QA['ANSWER'] = new_ANSWER new_QA['ASPAN'] = new_ASPAN new_PQA['QUESTIONS'].append(new_QA) new_data.append(new_PQA) print('%s: %d/%d (%.2f%%)\r' % (dataset, di, line_count, 100*di/line_count), end='') print() # Save FGC-format data as JSON with open(output_fpath, 'w') as f: json.dump(new_data, f)
py
1a54a91390a003e1612615bb4ab3cd4505f90f57
#AUTOGENERATED! DO NOT EDIT! File to edit: dev/60_medical_imaging.ipynb (unless otherwise specified). __all__ = ['DcmDataset', 'DcmTag', 'DcmMultiValue', 'dcmread', 'pixels', 'scaled_px', 'array_freqhist_bins', 'dicom_windows', 'show'] #Cell from ..test import * from ..basics import * from ..vision import models import pydicom from pydicom.dataset import Dataset as DcmDataset from pydicom.tag import BaseTag as DcmTag from pydicom.multival import MultiValue as DcmMultiValue from scipy import ndimage import skimage #Cell @patch def dcmread(self:Path): return pydicom.dcmread(str(self)) #Cell @patch_property def pixels(self:DcmDataset): "`pixel_array` as a tensor" return tensor(self.pixel_array.astype(np.float32)) #Cell @patch_property def scaled_px(self:DcmDataset): "`pixels` scaled by `RescaleSlope` and `RescaleIntercept" img = self.pixels return img*self.RescaleSlope + self.RescaleIntercept #Cell def array_freqhist_bins(self, n_bins=100): imsd = np.sort(self.flatten()) t = np.array([0.001]) t = np.append(t, np.arange(n_bins)/n_bins+(1/2/n_bins)) t = np.append(t, 0.999) t = (len(imsd)*t+0.5).astype(np.int) return np.unique(imsd[t]) #Cell @patch def freqhist_bins(self:Tensor, n_bins=100): imsd = self.view(-1).sort()[0] t = torch.cat([tensor([0.001]), torch.arange(n_bins).float()/n_bins+(1/2/n_bins), tensor([0.999])]) t = (len(imsd)*t).long() return imsd[t].unique() #Cell @patch def hist_scaled(self:Tensor, brks=None): if brks is None: brks = self.freqhist_bins() ys = torch.linspace(0., 1., len(brks)) return self.flatten().interp_1d(brks, ys).reshape(self.shape).clamp(0.,1.) #Cell @patch def hist_scaled_px(self:DcmDataset, brks=None, min_px=None, max_px=None): px = self.scaled_px if min_px is not None: px[px<min_px] = min_px if max_px is not None: px[px>max_px] = max_px return px.hist_scaled(brks=brks) #Cell @patch def windowed(self:DcmDataset, w, l): px = self.scaled_px.float() px_min = l - w//2 px_max = l + w//2 px[px<px_min] = px_min px[px>px_max] = px_max return (px-px_min) / (px_max-px_min) #Cell # From https://radiopaedia.org/articles/windowing-ct dicom_windows = types.SimpleNamespace( brain=(80,40), subdural=(200,80), stroke=(8,32), brain_bone=(2800,600), brain_soft=(375,40), lungs=(1500,-600), mediastinum=(350,50), abdomen_soft=(400,50), liver=(150,30), spine_soft=(250,50), spine_bone=(1800,400) ) #Cell @patch @delegates(show_image) def show(self:DcmDataset, scale=True, cmap=plt.cm.bone, min_px=-1100, max_px=None, **kwargs): px = (self.windowed(*scale) if isinstance(scale,tuple) else self.hist_scaled_px(min_px=min_px,max_px=max_px,brks=scale) if isinstance(scale,(ndarray,Tensor)) else self.hist_scaled_px(min_px=min_px,max_px=max_px) if scale else self.scaled_px) show_image(px, cmap=cmap, **kwargs) #Cell @patch def zoom(self:DcmDataset, ratio): data_d = ndimage.zoom(self.pixel_array, ratio) self.PixelData = data_d.tobytes() self.Rows,self.Columns = data_d.shape #Cell def _cast_dicom_special(x): cls = type(x) if not cls.__module__.startswith('pydicom'): return x return cls.__base__(x) def _split_elem(res,k,v): if not isinstance(v,DcmMultiValue): return res[f'Multi{k}'] = 1 for i,o in enumerate(v): res[f'{k}{"" if i==0 else i}']=o #Cell @patch def pct_in_window(dcm:DcmDataset, w, l): "% of pixels in the window `(w,l)`" px = dcm.scaled_px return ((px > l-w//2) & (px < l+w//2)).float().mean().item() #Cell @patch def as_dict(self:DcmDataset, px_summ=True, window=dicom_windows.brain): pxdata = (0x7fe0,0x0010) vals = [self[o] for o in self.keys() if o != pxdata] its = [(v.keyword,v.value) for v in vals] res = dict(its) res['fname'] = self.filename for k,v in its: _split_elem(res,k,v) if not px_summ: return res stats = 'min','max','mean','std' try: pxs = self.pixel_array for f in stats: res['img_'+f] = getattr(pxs,f)() res['img_pct_window'] = self.pct_in_window(*window) except Exception as e: for f in stats: res['img_'+f] = 0 print(res,e) for k in res: res[k] = _cast_dicom_special(res[k]) return res #Cell def _dcm2dict(fn, **kwargs): return fn.dcmread().as_dict(**kwargs) #Cell @delegates(parallel) def _from_dicoms(cls, fns, n_workers=0, **kwargs): return pd.DataFrame(parallel(_dcm2dict, fns, n_workers=n_workers, **kwargs)) pd.DataFrame.from_dicoms = classmethod(_from_dicoms)
py
1a54a94def44626bb8a27857befe4e6b4785d710
'''OpenGL extension EXT.separate_shader_objects This module customises the behaviour of the OpenGL.raw.GLES2.EXT.separate_shader_objects to provide a more Python-friendly API The official definition of this extension is available here: http://www.opengl.org/registry/specs/EXT/separate_shader_objects.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES2 import _types, _glgets from OpenGL.raw.GLES2.EXT.separate_shader_objects import * from OpenGL.raw.GLES2.EXT.separate_shader_objects import _EXTENSION_NAME def glInitSeparateShaderObjectsEXT(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) # INPUT glCreateShaderProgramvEXT.strings size not checked against count glCreateShaderProgramvEXT=wrapper.wrapper(glCreateShaderProgramvEXT).setInputArraySize( 'strings', None ) # INPUT glDeleteProgramPipelinesEXT.pipelines size not checked against n glDeleteProgramPipelinesEXT=wrapper.wrapper(glDeleteProgramPipelinesEXT).setInputArraySize( 'pipelines', None ) # INPUT glGenProgramPipelinesEXT.pipelines size not checked against n glGenProgramPipelinesEXT=wrapper.wrapper(glGenProgramPipelinesEXT).setInputArraySize( 'pipelines', None ) # INPUT glGetProgramPipelineInfoLogEXT.infoLog size not checked against bufSize glGetProgramPipelineInfoLogEXT=wrapper.wrapper(glGetProgramPipelineInfoLogEXT).setInputArraySize( 'infoLog', None ).setInputArraySize( 'length', 1 ) # INPUT glProgramUniform1fvEXT.value size not checked against count glProgramUniform1fvEXT=wrapper.wrapper(glProgramUniform1fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform1ivEXT.value size not checked against count glProgramUniform1ivEXT=wrapper.wrapper(glProgramUniform1ivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform2fvEXT.value size not checked against count*2 glProgramUniform2fvEXT=wrapper.wrapper(glProgramUniform2fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform2ivEXT.value size not checked against count*2 glProgramUniform2ivEXT=wrapper.wrapper(glProgramUniform2ivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform3fvEXT.value size not checked against count*3 glProgramUniform3fvEXT=wrapper.wrapper(glProgramUniform3fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform3ivEXT.value size not checked against count*3 glProgramUniform3ivEXT=wrapper.wrapper(glProgramUniform3ivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform4fvEXT.value size not checked against count*4 glProgramUniform4fvEXT=wrapper.wrapper(glProgramUniform4fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform4ivEXT.value size not checked against count*4 glProgramUniform4ivEXT=wrapper.wrapper(glProgramUniform4ivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix2fvEXT.value size not checked against count*4 glProgramUniformMatrix2fvEXT=wrapper.wrapper(glProgramUniformMatrix2fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix3fvEXT.value size not checked against count*9 glProgramUniformMatrix3fvEXT=wrapper.wrapper(glProgramUniformMatrix3fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix4fvEXT.value size not checked against count*16 glProgramUniformMatrix4fvEXT=wrapper.wrapper(glProgramUniformMatrix4fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform1uivEXT.value size not checked against count glProgramUniform1uivEXT=wrapper.wrapper(glProgramUniform1uivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform2uivEXT.value size not checked against count*2 glProgramUniform2uivEXT=wrapper.wrapper(glProgramUniform2uivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform3uivEXT.value size not checked against count*3 glProgramUniform3uivEXT=wrapper.wrapper(glProgramUniform3uivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniform4uivEXT.value size not checked against count*4 glProgramUniform4uivEXT=wrapper.wrapper(glProgramUniform4uivEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix4fvEXT.value size not checked against count*16 glProgramUniformMatrix4fvEXT=wrapper.wrapper(glProgramUniformMatrix4fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix2x3fvEXT.value size not checked against count*6 glProgramUniformMatrix2x3fvEXT=wrapper.wrapper(glProgramUniformMatrix2x3fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix3x2fvEXT.value size not checked against count*6 glProgramUniformMatrix3x2fvEXT=wrapper.wrapper(glProgramUniformMatrix3x2fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix2x4fvEXT.value size not checked against count*8 glProgramUniformMatrix2x4fvEXT=wrapper.wrapper(glProgramUniformMatrix2x4fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix4x2fvEXT.value size not checked against count*8 glProgramUniformMatrix4x2fvEXT=wrapper.wrapper(glProgramUniformMatrix4x2fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix3x4fvEXT.value size not checked against count*12 glProgramUniformMatrix3x4fvEXT=wrapper.wrapper(glProgramUniformMatrix3x4fvEXT).setInputArraySize( 'value', None ) # INPUT glProgramUniformMatrix4x3fvEXT.value size not checked against count*12 glProgramUniformMatrix4x3fvEXT=wrapper.wrapper(glProgramUniformMatrix4x3fvEXT).setInputArraySize( 'value', None ) ### END AUTOGENERATED SECTION
py
1a54aa081f074901fb54422276106c08c53ee86b
# py-motmetrics - Metrics for multiple object tracker (MOT) benchmarking. # https://github.com/cheind/py-motmetrics/ # # MIT License # Copyright (c) 2017-2020 Christoph Heindl, Jack Valmadre and others. # See LICENSE file for terms. """Functions for loading data and writing summaries.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from enum import Enum import io import numpy as np import pandas as pd import scipy.io import xmltodict class Format(Enum): """Enumerates supported file formats.""" MOT16 = 'mot16' """Milan, Anton, et al. "Mot16: A benchmark for multi-object tracking." arXiv preprint arXiv:1603.00831 (2016).""" MOT15_2D = 'mot15-2D' """Leal-Taixe, Laura, et al. "MOTChallenge 2015: Towards a benchmark for multi-target tracking." arXiv preprint arXiv:1504.01942 (2015).""" VATIC_TXT = 'vatic-txt' """Vondrick, Carl, Donald Patterson, and Deva Ramanan. "Efficiently scaling up crowdsourced video annotation." International Journal of Computer Vision 101.1 (2013): 184-204. https://github.com/cvondrick/vatic """ DETRAC_MAT = 'detrac-mat' """Wen, Longyin et al. "UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking." arXiv preprint arXiv:arXiv:1511.04136 (2016). http://detrac-db.rit.albany.edu/download """ DETRAC_XML = 'detrac-xml' """Wen, Longyin et al. "UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking." arXiv preprint arXiv:arXiv:1511.04136 (2016). http://detrac-db.rit.albany.edu/download """ def load_motchallenge(fname, **kwargs): r"""Load MOT challenge data. Params ------ fname : str Filename to load data from Kwargs ------ sep : str Allowed field separators, defaults to '\s+|\t+|,' min_confidence : float Rows with confidence less than this threshold are removed. Defaults to -1. You should set this to 1 when loading ground truth MOTChallenge data, so that invalid rectangles in the ground truth are not considered during matching. Returns ------ df : pandas.DataFrame The returned dataframe has the following columns 'X', 'Y', 'Width', 'Height', 'Confidence', 'ClassId', 'Visibility' The dataframe is indexed by ('FrameId', 'Id') """ sep = kwargs.pop('sep', r'\s+|\t+|,') min_confidence = kwargs.pop('min_confidence', -1) df = pd.read_csv( fname, sep=sep, index_col=[0, 1], skipinitialspace=True, header=None, names=['FrameId', 'Id', 'X', 'Y', 'Width', 'Height', 'Confidence', 'ClassId', 'Visibility', 'unused'], engine='python' ) # Account for matlab convention. df[['X', 'Y']] -= (1, 1) # Removed trailing column del df['unused'] # Remove all rows without sufficient confidence return df[df['Confidence'] >= min_confidence] def load_vatictxt(fname, **kwargs): """Load Vatic text format. Loads the vatic CSV text having the following columns per row 0 Track ID. All rows with the same ID belong to the same path. 1 xmin. The top left x-coordinate of the bounding box. 2 ymin. The top left y-coordinate of the bounding box. 3 xmax. The bottom right x-coordinate of the bounding box. 4 ymax. The bottom right y-coordinate of the bounding box. 5 frame. The frame that this annotation represents. 6 lost. If 1, the annotation is outside of the view screen. 7 occluded. If 1, the annotation is occluded. 8 generated. If 1, the annotation was automatically interpolated. 9 label. The label for this annotation, enclosed in quotation marks. 10+ attributes. Each column after this is an attribute set in the current frame Params ------ fname : str Filename to load data from Returns ------ df : pandas.DataFrame The returned dataframe has the following columns 'X', 'Y', 'Width', 'Height', 'Lost', 'Occluded', 'Generated', 'ClassId', '<Attr1>', '<Attr2>', ... where <Attr1> is placeholder for the actual attribute name capitalized (first letter). The order of attribute columns is sorted in attribute name. The dataframe is indexed by ('FrameId', 'Id') """ # pylint: disable=too-many-locals sep = kwargs.pop('sep', ' ') with io.open(fname) as f: # First time going over file, we collect the set of all variable activities activities = set() for line in f: for c in line.rstrip().split(sep)[10:]: activities.add(c) activitylist = sorted(list(activities)) # Second time we construct artificial binary columns for each activity data = [] f.seek(0) for line in f: fields = line.rstrip().split() attrs = ['0'] * len(activitylist) for a in fields[10:]: attrs[activitylist.index(a)] = '1' fields = fields[:10] fields.extend(attrs) data.append(' '.join(fields)) strdata = '\n'.join(data) dtype = { 'Id': np.int64, 'X': np.float32, 'Y': np.float32, 'Width': np.float32, 'Height': np.float32, 'FrameId': np.int64, 'Lost': bool, 'Occluded': bool, 'Generated': bool, 'ClassId': str, } # Remove quotes from activities activitylist = [a.replace('\"', '').capitalize() for a in activitylist] # Add dtypes for activities for a in activitylist: dtype[a] = bool # Read from CSV names = ['Id', 'X', 'Y', 'Width', 'Height', 'FrameId', 'Lost', 'Occluded', 'Generated', 'ClassId'] names.extend(activitylist) df = pd.read_csv(io.StringIO(strdata), names=names, index_col=['FrameId', 'Id'], header=None, sep=' ') # Correct Width and Height which are actually XMax, Ymax in files. w = df['Width'] - df['X'] h = df['Height'] - df['Y'] df['Width'] = w df['Height'] = h return df def load_detrac_mat(fname): """Loads UA-DETRAC annotations data from mat files Competition Site: http://detrac-db.rit.albany.edu/download File contains a nested structure of 2d arrays for indexed by frame id and Object ID. Separate arrays for top, left, width and height are given. Params ------ fname : str Filename to load data from Kwargs ------ Currently none of these arguments used. Returns ------ df : pandas.DataFrame The returned dataframe has the following columns 'X', 'Y', 'Width', 'Height', 'Confidence', 'ClassId', 'Visibility' The dataframe is indexed by ('FrameId', 'Id') """ matData = scipy.io.loadmat(fname) frameList = matData['gtInfo'][0][0][4][0] leftArray = matData['gtInfo'][0][0][0].astype(np.float32) topArray = matData['gtInfo'][0][0][1].astype(np.float32) widthArray = matData['gtInfo'][0][0][3].astype(np.float32) heightArray = matData['gtInfo'][0][0][2].astype(np.float32) parsedGT = [] for f in frameList: ids = [i + 1 for i, v in enumerate(leftArray[f - 1]) if v > 0] for i in ids: row = [] row.append(f) row.append(i) row.append(leftArray[f - 1, i - 1] - widthArray[f - 1, i - 1] / 2) row.append(topArray[f - 1, i - 1] - heightArray[f - 1, i - 1]) row.append(widthArray[f - 1, i - 1]) row.append(heightArray[f - 1, i - 1]) row.append(1) row.append(-1) row.append(-1) row.append(-1) parsedGT.append(row) df = pd.DataFrame(parsedGT, columns=['FrameId', 'Id', 'X', 'Y', 'Width', 'Height', 'Confidence', 'ClassId', 'Visibility', 'unused']) df.set_index(['FrameId', 'Id'], inplace=True) # Account for matlab convention. df[['X', 'Y']] -= (1, 1) # Removed trailing column del df['unused'] return df def load_detrac_xml(fname): """Loads UA-DETRAC annotations data from xml files Competition Site: http://detrac-db.rit.albany.edu/download Params ------ fname : str Filename to load data from Kwargs ------ Currently none of these arguments used. Returns ------ df : pandas.DataFrame The returned dataframe has the following columns 'X', 'Y', 'Width', 'Height', 'Confidence', 'ClassId', 'Visibility' The dataframe is indexed by ('FrameId', 'Id') """ with io.open(fname) as fd: doc = xmltodict.parse(fd.read()) frameList = doc['sequence']['frame'] parsedGT = [] for f in frameList: fid = int(f['@num']) targetList = f['target_list']['target'] if not isinstance(targetList, list): targetList = [targetList] for t in targetList: row = [] row.append(fid) row.append(int(t['@id'])) row.append(float(t['box']['@left'])) row.append(float(t['box']['@top'])) row.append(float(t['box']['@width'])) row.append(float(t['box']['@height'])) row.append(1) row.append(-1) row.append(-1) row.append(-1) parsedGT.append(row) df = pd.DataFrame(parsedGT, columns=['FrameId', 'Id', 'X', 'Y', 'Width', 'Height', 'Confidence', 'ClassId', 'Visibility', 'unused']) df.set_index(['FrameId', 'Id'], inplace=True) # Account for matlab convention. df[['X', 'Y']] -= (1, 1) # Removed trailing column del df['unused'] return df def loadtxt(fname, fmt=Format.MOT15_2D, **kwargs): """Load data from any known format.""" fmt = Format(fmt) switcher = { Format.MOT16: load_motchallenge, Format.MOT15_2D: load_motchallenge, Format.VATIC_TXT: load_vatictxt, Format.DETRAC_MAT: load_detrac_mat, Format.DETRAC_XML: load_detrac_xml } func = switcher.get(fmt) return func(fname, **kwargs) def render_summary(summary, formatters=None, namemap=None, buf=None): """Render metrics summary to console friendly tabular output. Params ------ summary : pd.DataFrame Dataframe containing summaries in rows. Kwargs ------ buf : StringIO-like, optional Buffer to write to formatters : dict, optional Dicionary defining custom formatters for individual metrics. I.e `{'mota': '{:.2%}'.format}`. You can get preset formatters from MetricsHost.formatters namemap : dict, optional Dictionary defining new metric names for display. I.e `{'num_false_positives': 'FP'}`. Returns ------- string Formatted string """ if namemap is not None: summary = summary.rename(columns=namemap) if formatters is not None: formatters = {namemap.get(c, c): f for c, f in formatters.items()} output = summary.to_string( buf=buf, formatters=formatters, ) return output motchallenge_metric_names = { 'idf1': 'IDF1', 'idp': 'IDP', 'idr': 'IDR', 'recall': 'Rcll', 'precision': 'Prcn', 'num_unique_objects': 'GT', 'mostly_tracked': 'MT', 'partially_tracked': 'PT', 'mostly_lost': 'ML', 'num_false_positives': 'FP', 'num_misses': 'FN', 'num_switches': 'IDs', 'num_fragmentations': 'FM', 'mota': 'MOTA', 'motp': 'MOTP', 'num_transfer': 'IDt', 'num_ascend': 'IDa', 'num_migrate': 'IDm', } """A list mappings for metric names to comply with MOTChallenge."""
py
1a54aa19422822e888fa8b0c37203188d5e19274
# # Copyright 2014 Quantopian, Inc. # Modifications Copyright 2018 Alpaca # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest import pandas as pd from pylivetrader.errors import ( SymbolNotFound, OrderDuringInitialize, TradingControlViolation, RegisterTradingControlPostInit, ) import pylivetrader.protocol as proto from pylivetrader.misc import events from pylivetrader.algorithm import Algorithm from pylivetrader.executor.executor import AlgorithmExecutor from pylivetrader.misc.api_context import LiveTraderAPI from pylivetrader.loader import get_functions from unittest.mock import Mock def get_algo(script, **kwargs): functions = get_functions(script) return Algorithm( backend='pylivetrader.testing.fixtures', **functions, **kwargs, ) def simulate_init_and_handle(algo): algo._assets_from_source = \ algo.asset_finder.retrieve_all(algo.asset_finder.sids) if not algo.initialized: algo.initialize() algo.initialized = True algo.executor = AlgorithmExecutor(algo, algo.data_portal) dt_to_use = pd.Timestamp( '2018/08/13 9:30', tz='America/New_York').tz_convert('UTC') with LiveTraderAPI(algo): algo.on_dt_changed(dt_to_use) algo.executor.current_data.datetime = dt_to_use algo.before_trading_start(algo.executor.current_data) algo.handle_data(algo.executor.current_data) def test_algorithm_init(): # check init algo = Algorithm(backend='pylivetrader.testing.fixtures') assert not algo.initialized algo = get_algo(''' def initialize(ctx): pass def handle_data(ctx, data): pass ''') simulate_init_and_handle(algo) def test_algorithm_get_datetime(): algo = get_algo(''' import pandas as pd def initialize(ctx): pass def handle_data(ctx, data): dt = get_datetime() assert dt == pd.Timestamp( '2018/08/13 9:30', tz='America/New_York').tz_convert('UTC') ''') simulate_init_and_handle(algo) def test_before_trading_start(): algo = get_algo(''' def before_trading_start(ctx, data): record(value=1) ''') simulate_init_and_handle(algo) assert algo.recorded_vars['value'] == 1 def test_datetime_bad_params(): algo = get_algo(""" from pytz import timezone def initialize(context): pass def handle_data(context, data): get_datetime(timezone) """) with pytest.raises(TypeError): simulate_init_and_handle(algo) def test_schedule(): algo = get_algo(""" def scheduled(context, data): pass def initialize(context): schedule_function( scheduled, date_rules.every_day(), time_rules.market_open(minutes=1) ) """) simulate_init_and_handle(algo) assert algo.event_manager._events[-1].callback.__name__ == 'scheduled' assert isinstance(algo.event_manager._events[-1].rule, events.OncePerDay) def test_asset_lookup(): algo = get_algo(""" def initialize(context): assert symbol('ASSET1').sid == 'asset-1' """) simulate_init_and_handle(algo) algo = get_algo(""" def initialize(context): symbol('INVALID') """) with pytest.raises(SymbolNotFound): simulate_init_and_handle(algo) with pytest.raises(TypeError): algo.symbol(1) with pytest.raises(TypeError): algo.symbol((1,)) with pytest.raises(TypeError): algo.symbol([1]) with pytest.raises(TypeError): algo.symbol({1}) with pytest.raises(TypeError): algo.symbol({"foo": "bar"}) @pytest.mark.parametrize('func, amt, expect', [ ('order', 1, 1), ('order_value', 1, 1), ('order_target', 1, 1), ('order_percent', 0.1, 1), ('order_percent', 0.2, 2), ('order_target_percent', 0.1, 1), ('order_target_value', 1, 1), ]) def test_order(func, amt, expect): algo = get_algo('') simulate_init_and_handle(algo) target = algo.sid('asset-1') def assert_order(asset, amount, style): assert asset == target assert amount == expect class portfolio: portfolio_value = 1000.0 positions = proto.Positions() algo._backend.portfolio = portfolio() algo._backend.order = assert_order getattr(algo, func)(target, amt) def test_order_in_init(): """ Test that calling order in initialize will raise an error. """ with pytest.raises(OrderDuringInitialize): algo = get_algo(''' def initialize(ctx): order(sid('asset-1'), 1) ''') simulate_init_and_handle(algo) def test_portfolio_in_init(): """ Test that accessing portfolio in init doesn't break. """ algo = get_algo(''' def initialize(ctx): ctx.portfolio ''') algo._backend.portfolio = {} simulate_init_and_handle(algo) def test_account_in_init(): """ Test that accessing portfolio in init doesn't break. """ algo = get_algo(''' def initialize(ctx): ctx.account ''') algo._backend.account = {} simulate_init_and_handle(algo) def test_long_only(): algo = get_algo(''' def initialize(ctx): set_long_only() ''') simulate_init_and_handle(algo) class portfolio: portfolio_value = 1000.0 positions = proto.Positions() class order: id = 'oid' algo._backend.portfolio = portfolio algo._backend.order = lambda *args, **kwrags: order() with pytest.raises(TradingControlViolation): algo.order(algo.sid('asset-1'), -1) algo.order(algo.sid('asset-1'), 1) def test_post_init(): algo = get_algo('') simulate_init_and_handle(algo) with pytest.raises(RegisterTradingControlPostInit): algo.set_max_position_size(algo.sid('asset-1'), 1, 1) with pytest.raises(RegisterTradingControlPostInit): algo.set_max_order_size(algo.sid('asset-1'), 1, 1) with pytest.raises(RegisterTradingControlPostInit): algo.set_max_order_count(1) with pytest.raises(RegisterTradingControlPostInit): algo.set_long_only() def test_state_restore(): algo = get_algo(''' def handle_data(ctx, data): ctx.value = 1 ''') simulate_init_and_handle(algo) algo = get_algo(''' def handle_data(ctx, data): ctx.value = 1 ''') algo.initialize() assert algo.value == 1 # should fail with checksum check algo = get_algo(''' def handle_data(ctx, data): ctx.value = 1 ''', algoname='invalid', statefile='algo-state.pkl') with pytest.raises(ValueError): algo.initialize() def test_pipeline(): algo = get_algo('') pipe = Mock() algo.attach_pipeline(pipe, 'mock') import sys pkg = 'pipeline_live.engine' if pkg in sys.modules: del sys.modules[pkg] with pytest.raises(RuntimeError): algo.pipeline_output('mock') mod = Mock() sys.modules[pkg] = mod eng = Mock() def ctor(list_symbols): symbols = list_symbols() assert symbols[0] == 'ASSET0' return eng mod.LivePipelineEngine = ctor eng.run_pipeline.return_value = pd.DataFrame( [[42.0]], index=['ASSET0'], columns=['close']) res = algo.pipeline_output('mock') assert res.index[0].symbol == 'ASSET0' del sys.modules[pkg] def test_backend_param(): class Backend: pass bknd = Backend() algo = Algorithm(backend=bknd) assert algo._backend == bknd with pytest.raises(RuntimeError): Algorithm(backend='foo.does.not.exist')
py
1a54abea92865f0c5f41e90a49ff8b85202805db
#!/usr/bin/env python from jinja2 import Environment, FileSystemLoader import ipaddress from ipaddress import * import ipaddress import re import yaml loader= FileSystemLoader(".") ENV = Environment(loader=loader) def get_config(configfile): """Pulls YAML configuration from file and returns dict object""" with open(configfile) as _: return yaml.load(_, Loader=yaml.FullLoader) def gen_snippet(snippet, config): """Renders a config snippet. "config" represents the portion of the YAML file applicable to this snippet""" template = ENV.get_template('./snippets/Configuration/' + snippet + ".j2") return template.render(config) def printHostNameError(): print('Invalid input for variable hostslist: Hostname not supported or the Hostnames order is not correct') """ def supportedInputKeys(inputKeys, supportedInputKeys): for inputKey in inputKeys: try: supportedInputKeys.index(inputKey) except ValueError: return -1 return 1 """ def printHostName(HostName): return "################### " + HostName + " ###################\n" def buildIpAddress(subnet,ipOffset ): return str( ipaddress.ip_network(subnet).network_address + ipOffset ) def buildPrefixlen(subnet): return str( ipaddress.ip_network(subnet).prefixlen ) def isInt(s): try: int(s) return True except ValueError: return False def isOspfArea(str): if not isInt(str): splitedOspfArea = str.split(".") if len(splitedOspfArea) == 4: for OspfAreaBits in splitedOspfArea: if not isInt(OspfAreaBits): return False else: return False return True def isSubnet(str): try: ipaddress.ip_network(str) return True except (AddressValueError, NetmaskValueError): return False except ValueError: return False
py
1a54accdfff03d35bebc32252820ef87c0c77f50
import pyunitwizard as puw puw.configure.load_library(['pint', 'simtk.unit']) puw.configure.set_default_form('pint') puw.configure.set_standard_units(['nm', 'ps', 'K', 'mole', 'amu', 'e', 'kJ/mol', 'kJ/(mol*nm**2)', 'N', 'degrees'])
py
1a54ace422acec1035a1e59c0438a580b6dbfb1f
from django.contrib import admin from .models import Flan, ContactForm, Category, Post, Comment @admin.register(Flan) class FlanAdmin(admin.ModelAdmin): list_display = ('name','description','is_private','price') prepopulated_fields = {'slug': ('name',),} list_filter = ('is_private',) search_fields = ('name',) admin.site.register(ContactForm) admin.site.register(Category) @admin.register(Post) class AuthorAdmin(admin.ModelAdmin): list_display = ('title','id','status','slug','author') prepopulated_fields = {'slug': ('title',),} @admin.register(Comment) class CommentAdmin(admin.ModelAdmin): list_display = ('post','name','email','publish','status') list_filter = ('status','publish') search_fields = ('name','email','content') # Register your models here.
py
1a54ade49b5337f6480115ef4072b71a96734dd8
# python3 from itertools import product from sys import stdin def partition3(values): assert 1 <= len(values) <= 20 assert all(1 <= v <= 30 for v in values) type here if __name__ == '__main__': input_n, *input_values = list(map(int, stdin.read().split())) assert input_n == len(input_values) print(partition3(input_values))
py
1a54ae312b333bc0484dd8f1e32302f85f6cf43e
import sys import threading import time from io import StringIO from typing import Optional from labml.internal.api import ApiCaller, ApiDataSource, Packet WARMUP_COMMITS = 5 class ApiLogs(ApiDataSource): api_caller: Optional[ApiCaller] frequency: float def __init__(self): super().__init__() self.api_caller = None self.frequency = 1 self.last_committed = time.time() self.commits_count = 0 self.data = {} self.lock = threading.Lock() def set_api(self, api_caller: ApiCaller, *, frequency: float): self.api_caller = api_caller self.frequency = frequency self.check_and_flush() def check_and_flush(self): if self.api_caller is None: return with self.lock: if not self.data: return t = time.time() freq = self.frequency if self.commits_count < WARMUP_COMMITS: freq /= 2 ** (WARMUP_COMMITS - self.commits_count) if self.data.get('stderr', '') != '' or self.commits_count == 0 or t - self.last_committed > freq: self.commits_count += 1 self.api_caller.has_data(self) def _clean(self, data: str): last_newline = None remove = [] for i in range(len(data)): if data[i] == '\r': if i + 1 < len(data) and data[i + 1] == '\n': remove.append((i, i)) elif last_newline is not None: remove.append((last_newline + 1, i)) last_newline = i elif data[i] == '\n': last_newline = i res = [] offset = 0 for r in remove: if offset < r[0]: res.append(data[offset: r[0]]) offset = r[1] + 1 res.append(data[offset:]) return ''.join(res) def get_data_packet(self) -> Packet: with self.lock: self.last_committed = time.time() self.data['time'] = time.time() for type_ in ['stdout', 'logger']: if type_ not in self.data: continue self.data[type_] = self._clean(self.data[type_]) packet = Packet(self.data) self.data = {} return packet def outputs(self, *, stdout_: str = '', stderr_: str = '', logger_: str = ''): with self.lock: if stdout_ != '': self.data['stdout'] = self.data.get('stdout', '') + stdout_ if stderr_ != '': self.data['stderr'] = self.data.get('stderr', '') + stderr_ if logger_ != '': self.data['logger'] = self.data.get('logger', '') + logger_ self.check_and_flush() API_LOGS = ApiLogs() class OutputStream(StringIO): def write(self, *args, **kwargs): # real signature unknown super().write(*args, **kwargs) save = StringIO() save.write(*args, **kwargs) API_LOGS.outputs(**{self.type_: save.getvalue()}) self.original.write(*args, **kwargs) def __init__(self, original, type_): # real signature unknown super().__init__() self.type_ = type_ self.original = original _original_stdout_write = sys.stdout.write _original_stderr_write = sys.stderr.write def _write_stdout(*args, **kwargs): _original_stdout_write(*args, **kwargs) save = StringIO() save.write(*args, **kwargs) API_LOGS.outputs(stdout_=save.getvalue()) def _write_stderr(*args, **kwargs): _original_stderr_write(*args, **kwargs) save = StringIO() save.write(*args, **kwargs) API_LOGS.outputs(stderr_=save.getvalue()) def capture(): sys.stdout.write = _write_stdout sys.stderr.write = _write_stderr capture()
py
1a54ae7a1607addbeab835355ac871a9b82abf3e
model = Model() i1 = Input("input", "TENSOR_FLOAT32", "{1, 24, 1}") squeezeDims = Parameter("squeezeDims", "TENSOR_INT32", "{1}", [2]) output = Output("output", "TENSOR_FLOAT32", "{1, 24}") model = model.Operation("SQUEEZE", i1, squeezeDims).To(output) # Example 1. Input in operand 0, input0 = {i1: # input 0 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]} output0 = {output: # output 0 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]} # Instantiate an example Example((input0, output0))
py
1a54ae7f1d6af29d59f8169ea6667d3473f74ce4
class NFCTransactionDialog(AnimatedPopup): mode = OptionProperty('send', options=('send','receive')) scanner = ObjectProperty(None) def __init__(self, **kwargs): # Delayed Init global NFCSCanner if NFCSCanner is None: from electrum_xuez_gui.kivy.nfc_scanner import NFCScanner self.scanner = NFCSCanner super(NFCTransactionDialog, self).__init__(**kwargs) self.scanner.nfc_init() self.scanner.bind() def on_parent(self, instance, value): sctr = self.ids.sctr if value: def _cmp(*l): anim = Animation(rotation=2, scale=1, opacity=1) anim.start(sctr) anim.bind(on_complete=_start) def _start(*l): anim = Animation(rotation=350, scale=2, opacity=0) anim.start(sctr) anim.bind(on_complete=_cmp) _start() return Animation.cancel_all(sctr)
py
1a54aea66ada4b284f61c2d61c3cb845b4b2840c
""" Деменчук Г.М., вариант 6, стандартные задания """ import math import matplotlib.pyplot as plt class GraphClass: """ Вариант задания для операторов цикла + график Класс для вывода графика варианта задания для операторов цикла """ def __init__(self): self.graph() def graph(self): args = ([], []) x = 0.2 end_cycle = 0.8 while x != end_cycle: obj = MathUpper(x) args[0].append(x) args[1].append(obj.result) x = round(x + 0.1, 2) ax = plt.figure().gca() ax.plot(args[0], args[1], linewidth=2, marker="o") plt.show() class MathUpper: """ Вариант задания на условные операторы Класс для работы с первым заданием на условные операторы """ def __init__(self, x): self.x = x self.getter() def getter(self): x = self.x upper = x ** 3 * math.e ** (x - 1) lower = x ** 3 - math.fabs(x) if lower == 0: print("Знаменатель равен нулю, деление на 0!") self.result = 0 return first = upper / lower log_sqrt = math.sqrt(x) - x if log_sqrt >= 0: buf_log = math.log(log_sqrt, 2) else: print("Выражение в log[sqrt(x)-x,2] меньше 0!") self.result = 0 return self.result = first - buf_log class CycleClass: """ Вариант задания для операторов цикла Класс для вызова MathUpper в цикле """ def __init__(self): self.cycle() def cycle(self): x = 0.2 end_cycle = 0.8 while x != end_cycle: obj = MathUpper(x) print("x=", x, "result = ", obj.result) x = round(x + 0.1, 2) pass def main(): try: x = float(input("Введите x: ")) except: print("Проблема ввода данных!") return obj = MathUpper(x) print("\n*Условные операторы*") print("Результат:" + str(obj.result)) print("\n*Операторы цикла*") CycleClass() GraphClass() if __name__ == "__main__": main()
py
1a54af556e95323a7e06b8391496ea4f78fe7318
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from .. import models class MetricDefinitionsOperations(object): """MetricDefinitionsOperations operations. You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client Api Version. Constant value: "2018-01-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-01-01" self.config = config def list( self, resource_uri, metricnamespace=None, custom_headers=None, raw=False, **operation_config): """Lists the metric definitions for the resource. :param resource_uri: The identifier of the resource. :type resource_uri: str :param metricnamespace: Metric namespace to query metric definitions for. :type metricnamespace: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of MetricDefinition :rtype: ~azure.mgmt.monitor.v2018_01_01.models.MetricDefinitionPaged[~azure.mgmt.monitor.v2018_01_01.models.MetricDefinition] :raises: :class:`ErrorResponseException<azure.mgmt.monitor.v2018_01_01.models.ErrorResponseException>` """ def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceUri': self._serialize.url("resource_uri", resource_uri, 'str', skip_quote=True) } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') if metricnamespace is not None: query_parameters['metricnamespace'] = self._serialize.query("metricnamespace", metricnamespace, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def internal_paging(next_link=None): request = prepare_request(next_link) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: raise models.ErrorResponseException(self._deserialize, response) return response # Deserialize response header_dict = None if raw: header_dict = {} deserialized = models.MetricDefinitionPaged(internal_paging, self._deserialize.dependencies, header_dict) return deserialized list.metadata = {'url': '/{resourceUri}/providers/microsoft.insights/metricDefinitions'}
py
1a54af7d24e710ce77fc50cfb53ae28a3eeeeae0
import networkx as nx from parse import read_input_file, write_output_file from utils import is_valid_solution, calculate_score import sys from os.path import basename, normpath import glob import heapq import os import copy import random #from Queue import PriorityQueue def remove_edge(G, i, j): G.remove_edge(i, j) if nx.is_connected(G): return G return False def remove_node(G, i): G.remove_node(i) if nx.is_connected(G): return G return False def remove_edges(G, edges): G.remove_edge_from(edges) if nx.is_connected(G): return G return False def remove_nodes(G, nodes): G.remove_node_from(nodes) if nx.is_connected(G): return G return False def min_cut(G, size): cut_value, partition = nx.minimum_cut(G, 0, size-1) return cut_value, partition '''def try_remove(pack, size, num_c=1, num_k=15): #score = pack[0] lst = pack[1] #G = lst[0] c = lst[1] k = lst[2] if len(c) >= num_c and len(k) >= num_k: return pack elif len(c) >= num_c: return try_edge(pack, size) else: return try_node(pack, size)''' def try_node_random(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) if len(path) < 3: return None index = random.randint(1, len(path)-2) G = remove_node(G, path[index]) node_to_remove = path[index] if node_to_remove: if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum C.append(node_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_node_first(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) if len(path) < 3: return None G = remove_node(G, path[1]) node_to_remove = path[1] if node_to_remove: if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum C.append(node_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_node_last(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) if len(path) < 3: return None G = remove_node(G, path[-2]) node_to_remove = path[-2] if node_to_remove: if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum C.append(node_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_node_gain(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) if len(path) < 3: return None path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) node_to_remove = None dis_gain = float('-inf') for i in range(len(path_edges)-1): len_i = G.edges[path_edges[i][0], path_edges[i][1]]['weight'] + G.edges[path_edges[i+1][0], path_edges[i+1][1]]['weight'] paths_len = [] for j in nx.edge_disjoint_paths(G, path_edges[i][0], path_edges[i+1][1]): path_len = 0 for k in range(len(j)-1): path_len += G.edges[j[k], j[k+1]]['weight'] paths_len.append(path_len) if len(paths_len)==1: continue paths_len.sort() paths_len = paths_len[1:] dis_gain_i = min(paths_len) - len_i if dis_gain_i > dis_gain: dis_gain = dis_gain_i if path_edges[i][0] == 0: node_to_remove = path_edges[i][1] elif path_edges[i][1] == size - 1: node_to_remove = path_edges[i][0] else: if G.edges[path_edges[i-1][0], path_edges[i-1][1]]['weight'] < \ G.edges[path_edges[i+1][0], path_edges[i+1][1]]['weight']: node_to_remove = path_edges[i][0] else: node_to_remove = path_edges[i][1] if node_to_remove: G = remove_node(G, node_to_remove) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum C.append(node_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_node_lightest(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) if len(path) < 3: return None path_edges = [] weight = float('inf') index = 0 for i in range(len(path) - 1): path_edges.append((path[i], path[i + 1])) if G.edges[path[i], path[i + 1]]['weight'] < weight: weight = G.edges[path[i], path[i + 1]]['weight'] index = i edge_to_remove = path_edges[index] if edge_to_remove[0] == 0: G = remove_node(G, edge_to_remove[1]) node_to_remove = edge_to_remove[1] elif edge_to_remove[1] == size-1: G = remove_node(G, edge_to_remove[0]) node_to_remove = edge_to_remove[0] else: if G[path[path.index(edge_to_remove[0])-1]][edge_to_remove[0]]['weight'] < G[edge_to_remove[1]][path[path.index(edge_to_remove[1])+1]]['weight']: G = remove_node(G, edge_to_remove[0]) node_to_remove = edge_to_remove[0] else: G = remove_node(G, edge_to_remove[1]) node_to_remove = edge_to_remove[1] if node_to_remove and G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum C.append(node_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_node_cut(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) if len(path) < 3: return None path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) min_cut_set = list(nx.connectivity.minimum_edge_cut(G, 0, size - 1)) edge_to_remove = None for i in path_edges: if i in min_cut_set: edge_to_remove = i break if edge_to_remove[0] == 0: G = remove_node(G, edge_to_remove[1]) node_to_remove = edge_to_remove[1] elif edge_to_remove[1] == size-1: G = remove_node(G, edge_to_remove[0]) node_to_remove = edge_to_remove[0] else: if G[path[path.index(edge_to_remove[0])-1]][edge_to_remove[0]]['weight'] < G[edge_to_remove[1]][path[path.index(edge_to_remove[1])+1]]['weight']: G = remove_node(G, edge_to_remove[0]) node_to_remove = edge_to_remove[0] else: G = remove_node(G, edge_to_remove[1]) node_to_remove = edge_to_remove[0] if node_to_remove and G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum C.append(node_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_edge_gain(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) edge_to_remove = None dis_gain = float('-inf') for i in range(len(path_edges)): len_i = G.edges[path_edges[i][0], path_edges[i][1]]['weight'] paths_len = [] for j in nx.edge_disjoint_paths(G, path_edges[i][0], path_edges[i][1]): path_len = 0 for k in range(len(j)-1): path_len += G.edges[j[k], j[k+1]]['weight'] paths_len.append(path_len) if len(paths_len)==1: continue paths_len.sort() paths_len = paths_len[1:] dis_gain_i = min(paths_len) - len_i if dis_gain_i > dis_gain: dis_gain = dis_gain_i edge_to_remove = path_edges[i] if edge_to_remove: G = remove_edge(G, edge_to_remove[0], edge_to_remove[1]) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum K.append(edge_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_edge_cut(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) min_cut_set = list(nx.connectivity.minimum_edge_cut(G, 0, size - 1)) edge_to_remove = None for i in path_edges: if i in min_cut_set: edge_to_remove = i break if edge_to_remove: G = remove_edge(G, edge_to_remove[0], edge_to_remove[1]) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum K.append(edge_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None ''' def try_edge_cut_2(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) min_cut_set = list(nx.connectivity.minimum_st_edge_cut(G, 0, size - 1)) edge_to_remove = None for i in path_edges: if i in min_cut_set: edge_to_remove = i min_cut_set.remove(i) break if edge_to_remove: weight = float('inf') second_edge = None neighbor = list(G.neighbors(edge_to_remove[0])) edge_set = [(edge_to_remove[0], j) for j in neighbor if j != edge_to_remove[1]] for i in edge_set: temp = G.edges[i[0], i[1]]['weight'] if temp < weight: weight = temp second_edge = i G = remove_edge(G, edge_to_remove[0], edge_to_remove[1]) if G and second_edge: G = remove_edge(G, second_edge[0], second_edge[1]) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum K.append(edge_to_remove) K.append(second_edge) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None ''' def try_edge_random(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) edge_to_remove = path_edges[random.randint(0, len(path_edges)-1)] if edge_to_remove: G = remove_edge(G, edge_to_remove[0], edge_to_remove[1]) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum K.append(edge_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_edge_first(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) edge_to_remove = path_edges[0] if edge_to_remove: G = remove_edge(G, edge_to_remove[0], edge_to_remove[1]) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum K.append(edge_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_edge_last(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) path_edges = [] for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) edge_to_remove = path_edges[-1] if edge_to_remove: G = remove_edge(G, edge_to_remove[0], edge_to_remove[1]) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum K.append(edge_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None def try_edge_lightest(pack, size, datum): lst = pack[3] G = lst[0] C = lst[1] K = lst[2] path = nx.dijkstra_path(G, 0, size-1) path_edges = [] weight = float('inf') index = 0 for i in range(len(path)-1): path_edges.append((path[i], path[i+1])) if G.edges[path[i], path[i+1]]['weight'] < weight: weight = G.edges[path[i], path[i+1]]['weight'] index = i edge_to_remove = path_edges[index] if edge_to_remove: G = remove_edge(G, edge_to_remove[0], edge_to_remove[1]) if G: value = nx.dijkstra_path_length(G, 0, size - 1) diff = value - datum K.append(edge_to_remove) opts = len(C)*2 + len(K) new_pack = (diff, diff/opts, random.random(), [G, C, K]) return new_pack return None ''' ######################################### ######################################### ######################################### make sure to change num_c and num_k when changing graph size small graph num_c = 1 and num_k = 15 medium graph num_c = 3 and num_k = 50 large graph num_c = 5 and num_k = 100 ######################################### ######################################### ######################################### ''' def is_finished(pack, num_c=3, num_k=50): lst = pack[3] C = lst[1] K = lst[2] return num_c - len(C), num_k - len(K) def clean_graph(G): edges = list(G.edges) for i in edges: if i[0] == i[1]: G.remove_edge(i[0], i[1]) return G def prune_pq(pq): respq = [i for i in pq if i] numspq1 = [] numspq2 = [] cachespq = [] for i in respq: if i[0] not in numspq1 and i[1] not in numspq2: numspq1.append(i[0]) numspq2.append(i[1]) cachespq.append(i) return cachespq def solve(G): """ Args: G: networkx.Graph Returns: c: list of cities to remove k: list of edges to remove """ size = G.number_of_nodes() datum = nx.dijkstra_path_length(G, 0, size - 1) pq = [] G_prime = copy.deepcopy(G) G_prime = clean_graph(G_prime) cache = (0, 0, 0, [G_prime, [], []]) heapq.heappush(pq, cache) count = 0 count1 = 0 score = float('inf') while pq: caches = [] if len(pq) <= 512: #cache = heapq.nlargest(1, pq)[0] #if score == cache[0]: #cache = heapq.heappop(pq) '''tries the smallest or the largest#############''' #if count1 & 2 == 1: #cache = heapq.nlargest(1, pq)[0] #else: #cache = heapq.heappop(pq) '''only pops the smallest###############''' cache = heapq.heappop(pq) #score = cache[0] c, k = is_finished(cache) '''edit the combination of these transitions##########################''' if c > 0: caches.append(try_node_random(copy.deepcopy(cache), size, datum)) caches.append(try_node_last(copy.deepcopy(cache), size, datum)) caches.append(try_node_first(copy.deepcopy(cache), size, datum)) caches.append(try_node_gain(copy.deepcopy(cache), size, datum)) caches.append(try_node_cut(copy.deepcopy(cache), size, datum)) caches.append(try_edge_random(copy.deepcopy(cache), size, datum)) caches.append(try_node_lightest(copy.deepcopy(cache), size, datum)) #if k > 1: #caches.append(try_edge_cut_2(copy.deepcopy(cache), size, datum)) if k > 0: #caches.append(try_edge_first(copy.deepcopy(cache), size, datum)) #caches.append(try_edge_last(copy.deepcopy(cache), size, datum)) caches.append(try_edge_gain(copy.deepcopy(cache), size, datum)) caches.append(try_edge_cut(copy.deepcopy(cache), size, datum)) caches.append(try_edge_random(copy.deepcopy(cache), size, datum)) caches.append(try_edge_random(copy.deepcopy(cache), size, datum)) caches.append(try_edge_lightest(copy.deepcopy(cache), size, datum)) res = [i for i in caches if i] nums = [] caches = [] for i in res: if i[0] not in nums: nums.append(i[0]) caches.append(i) if len(caches) > 0: caches.sort(reverse=True) for i in range(len(caches)): if caches[i]: heapq.heappush(pq, caches[i]) count += 1 pq = prune_pq(pq) '''edit the width of searching#################################''' if len(pq) > 64: while len(pq) > 64: heapq.heappop(pq) '''edit the schedule of narrowing##############################''' if count > 500: while len(pq) > 32: heapq.heappop(pq) if count > 1000: while len(pq) > 16: heapq.heappop(pq) elif count > 1500: while len(pq) > 8: heapq.heappop(pq) elif count > 2000: while len(pq) > 4: heapq.heappop(pq) count1 += 1 print(cache[0]) #print(count) print(len(pq)) score = cache[0] print(cache[0]) C = cache[3][1] K = cache[3][2] return C, K pass input_dir = r"C:\Users\antho\Desktop\untitled\inputs\medium" output_dir = r"C:\Users\antho\Desktop\untitled\outputs\medium4" input_file = os.listdir(input_dir) if __name__ == '__main__': q = 0 for g in input_file: if q >= 118: c, k = None, None input_path = input_dir + '/' + g G = read_input_file(input_path) c, k = solve(G) assert is_valid_solution(G, c, k) print("Shortest Path Difference: {}".format(calculate_score(G, c, k))) write_output_file(G, c, k, output_dir + "//" + g[:-3] + '.out') q += 1 #if __name__ == '__main__': # for med_g in graph_med: # input_path = med_dir + '/' + med_g # G = read_input_file(input_path) # c, k = solve(G) # assert is_valid_solution(G, c, k) # print("Shortest Path Difference: {}".format(calculate_score(G, c, k))) # output_dir = r"C:\Users\antho\Desktop\170\project\outputs\medium" # write_output_file(G, c, k, output_dir + "//" + med_g[:-3] + '.out') # Here's an example of how to run your solver. # Usage: python3 solver.py test.in ''' if __name__ == '__main__': assert len(sys.argv) == 2 path = sys.argv[1] G = read_input_file(path) c, k = solve(G) assert is_valid_solution(G, c, k) print("Shortest Path Difference: {}".format(calculate_score(G, c, k))) write_output_file(G, c, k, 'outputs/small-1.out')''' # For testing a folder of inputs to create a folder of outputs, you can use glob (need to import it) # if __name__ == '__main__': # inputs = glob.glob('inputs/*') # for input_path in inputs: # output_path = 'outputs/' + basename(normpath(input_path))[:-3] + '.out' # G = read_input_file(input_path) # c, k = solve(G) # assert is_valid_solution(G, c, k) # distance = calculate_score(G, c, k) # write_output_file(G, c, k, output_path)
py
1a54afa29f1cb6256074980c6b4384a71e42973d
from topaz.module import ClassDef from topaz.objects.objectobject import W_Object class W_ProcObject(W_Object): classdef = ClassDef("Proc", W_Object.classdef) def __init__(self, space, bytecode, w_self, lexical_scope, cells, block, parent_interp, top_parent_interp, regexp_match_cell, is_lambda): W_Object.__init__(self, space) self.bytecode = bytecode self.w_self = w_self self.lexical_scope = lexical_scope self.cells = cells self.block = block self.parent_interp = parent_interp self.top_parent_interp = top_parent_interp self.regexp_match_cell = regexp_match_cell self.is_lambda = is_lambda def copy(self, space, w_self=None, lexical_scope=None, is_lambda=False): return W_ProcObject( space, self.bytecode, w_self or self.w_self, lexical_scope or self.lexical_scope, self.cells, self.block, self.parent_interp, self.top_parent_interp, self.regexp_match_cell, is_lambda or self.is_lambda ) @classdef.singleton_method("new") def method_new(self, space, block): if block is None: raise space.error(space.w_ArgumentError, "tried to create Proc object without a block") return block.copy(space) method_allocate = classdef.undefine_allocator() @classdef.method("yield") @classdef.method("===") @classdef.method("[]") @classdef.method("call") def method_call(self, space, args_w, block): from topaz.interpreter import RaiseReturn, RaiseBreak try: return space.invoke_block(self, args_w, block_arg=block) except RaiseReturn as e: if self.is_lambda: return e.w_value else: raise except RaiseBreak as e: if self.is_lambda: return e.w_value else: raise space.error(space.w_LocalJumpError, "break from proc-closure") @classdef.method("lambda?") def method_lambda(self, space): return space.newbool(self.is_lambda) @classdef.method("arity") def method_arity(self, space): return space.newint(self.bytecode.arity(negative_defaults=self.is_lambda)) @classdef.method("binding") def method_binding(self, space): return space.newbinding_fromblock(self)
py
1a54b02fb8e1ab546c4c9774e505086acd02def3
# # Copyright 2013-2014 eNovance <[email protected]> # # Authors: Mehdi Abaakouk <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from ceilometerclient.v2 import alarms import eventlet from oslo.config import fixture as fixture_config from oslo.utils import timeutils import six from ceilometer.alarm import rpc as rpc_alarm from ceilometer.alarm.storage import models from ceilometer import messaging from ceilometer.tests import base as tests_base class FakeNotifier(object): def __init__(self, transport): self.rpc = messaging.get_rpc_server( transport, "alarm_notifier", self) self.notified = [] def start(self, expected_length): self.expected_length = expected_length self.rpc.start() def notify_alarm(self, context, data): self.notified.append(data) if len(self.notified) == self.expected_length: self.rpc.stop() class TestRPCAlarmNotifier(tests_base.BaseTestCase): def setUp(self): super(TestRPCAlarmNotifier, self).setUp() self.CONF = self.useFixture(fixture_config.Config()).conf self.setup_messaging(self.CONF) self.notifier_server = FakeNotifier(self.transport) self.notifier = rpc_alarm.RPCAlarmNotifier() self.alarms = [ alarms.Alarm(None, info={ 'name': 'instance_running_hot', 'meter_name': 'cpu_util', 'comparison_operator': 'gt', 'threshold': 80.0, 'evaluation_periods': 5, 'statistic': 'avg', 'state': 'ok', 'ok_actions': ['http://host:8080/path'], 'user_id': 'foobar', 'project_id': 'snafu', 'period': 60, 'alarm_id': str(uuid.uuid4()), 'matching_metadata':{'resource_id': 'my_instance'} }), alarms.Alarm(None, info={ 'name': 'group_running_idle', 'meter_name': 'cpu_util', 'comparison_operator': 'le', 'threshold': 10.0, 'statistic': 'max', 'evaluation_periods': 4, 'state': 'insufficient data', 'insufficient_data_actions': ['http://other_host/path'], 'user_id': 'foobar', 'project_id': 'snafu', 'period': 300, 'alarm_id': str(uuid.uuid4()), 'matching_metadata':{'metadata.user_metadata.AS': 'my_group'} }), ] def test_rpc_target(self): topic = self.notifier.client.target.topic self.assertEqual('alarm_notifier', topic) def test_notify_alarm(self): self.notifier_server.start(2) previous = ['alarm', 'ok'] for i, a in enumerate(self.alarms): self.notifier.notify(a, previous[i], "what? %d" % i, {'fire': '%d' % i}) self.notifier_server.rpc.wait() self.assertEqual(2, len(self.notifier_server.notified)) for i, a in enumerate(self.alarms): actions = getattr(a, models.Alarm.ALARM_ACTIONS_MAP[a.state]) self.assertEqual(self.alarms[i].alarm_id, self.notifier_server.notified[i]["alarm_id"]) self.assertEqual(actions, self.notifier_server.notified[i]["actions"]) self.assertEqual(previous[i], self.notifier_server.notified[i]["previous"]) self.assertEqual(self.alarms[i].state, self.notifier_server.notified[i]["current"]) self.assertEqual("what? %d" % i, self.notifier_server.notified[i]["reason"]) self.assertEqual({'fire': '%d' % i}, self.notifier_server.notified[i]["reason_data"]) def test_notify_non_string_reason(self): self.notifier_server.start(1) self.notifier.notify(self.alarms[0], 'ok', 42, {}) self.notifier_server.rpc.wait() reason = self.notifier_server.notified[0]['reason'] self.assertIsInstance(reason, six.string_types) def test_notify_no_actions(self): alarm = alarms.Alarm(None, info={ 'name': 'instance_running_hot', 'meter_name': 'cpu_util', 'comparison_operator': 'gt', 'threshold': 80.0, 'evaluation_periods': 5, 'statistic': 'avg', 'state': 'ok', 'user_id': 'foobar', 'project_id': 'snafu', 'period': 60, 'ok_actions': [], 'alarm_id': str(uuid.uuid4()), 'matching_metadata': {'resource_id': 'my_instance'} }) self.notifier.notify(alarm, 'alarm', "what?", {}) self.assertEqual(0, len(self.notifier_server.notified)) class FakeCoordinator(object): def __init__(self, transport): self.rpc = messaging.get_rpc_server( transport, "alarm_partition_coordination", self) self.notified = [] def presence(self, context, data): self._record('presence', data) def allocate(self, context, data): self._record('allocate', data) def assign(self, context, data): self._record('assign', data) def _record(self, method, data): self.notified.append((method, data)) self.rpc.stop() class TestRPCAlarmPartitionCoordination(tests_base.BaseTestCase): def setUp(self): super(TestRPCAlarmPartitionCoordination, self).setUp() self.CONF = self.useFixture(fixture_config.Config()).conf self.setup_messaging(self.CONF) self.coordinator_server = FakeCoordinator(self.transport) self.coordinator_server.rpc.start() eventlet.sleep() # must be sure that fanout queue is created self.coordination = rpc_alarm.RPCAlarmPartitionCoordination() self.alarms = [ alarms.Alarm(None, info={ 'name': 'instance_running_hot', 'meter_name': 'cpu_util', 'comparison_operator': 'gt', 'threshold': 80.0, 'evaluation_periods': 5, 'statistic': 'avg', 'state': 'ok', 'ok_actions': ['http://host:8080/path'], 'user_id': 'foobar', 'project_id': 'snafu', 'period': 60, 'alarm_id': str(uuid.uuid4()), 'matching_metadata':{'resource_id': 'my_instance'} }), alarms.Alarm(None, info={ 'name': 'group_running_idle', 'meter_name': 'cpu_util', 'comparison_operator': 'le', 'threshold': 10.0, 'statistic': 'max', 'evaluation_periods': 4, 'state': 'insufficient data', 'insufficient_data_actions': ['http://other_host/path'], 'user_id': 'foobar', 'project_id': 'snafu', 'period': 300, 'alarm_id': str(uuid.uuid4()), 'matching_metadata':{'metadata.user_metadata.AS': 'my_group'} }), ] def test_coordination_presence(self): id = str(uuid.uuid4()) priority = float(timeutils.utcnow().strftime('%s.%f')) self.coordination.presence(id, priority) self.coordinator_server.rpc.wait() method, args = self.coordinator_server.notified[0] self.assertEqual(id, args['uuid']) self.assertEqual(priority, args['priority']) self.assertEqual('presence', method) def test_coordination_assign(self): id = str(uuid.uuid4()) self.coordination.assign(id, self.alarms) self.coordinator_server.rpc.wait() method, args = self.coordinator_server.notified[0] self.assertEqual(id, args['uuid']) self.assertEqual(2, len(args['alarms'])) self.assertEqual('assign', method) def test_coordination_allocate(self): id = str(uuid.uuid4()) self.coordination.allocate(id, self.alarms) self.coordinator_server.rpc.wait() method, args = self.coordinator_server.notified[0] self.assertEqual(id, args['uuid']) self.assertEqual(2, len(args['alarms'])) self.assertEqual('allocate', method)
py
1a54b042e856ba0cf340924267502abd3522ffbf
import random #file1=open("edge.txt","r") #file2=open("edge_sssp.txt","w"); #for line in file1: # file2.write(line.replace("\n","\t")+str(random.randint(1,9))+"\n") #file1.close() #file2.close() file1=open("node.txt","r") file2=open("node_bp.txt","w") i=0; for line in file1: if i==0: file2.write(line.replace("\n","\t")+"0.8\n") else: file2.write(line.replace("\n","\t")+"0.8\n") i=i+1 file1.close() file2.close()
py
1a54b0a76a101a02e17489015f44689187d1831e
import datetime import os # ================================================= # Background Information # ------------------------------------------------- mip = "cmip5" exp = "historical" frequency = "mo" realm = "atm" # ================================================= # Analysis Options # ------------------------------------------------- variability_mode = "NAM" # Available domains: NAM, NAO, SAM, PNA, PDO seasons = [ "DJF", "MAM", "JJA", "SON", ] # Available seasons: DJF, MAM, JJA, SON, monthly, yearly RemoveDomainMean = True # Remove Domain Mean from each time step (default=True) EofScaling = False # Convert EOF pattern as unit variance (default=False) landmask = False # Maskout land region thus consider only ocean grid (default=False) ConvEOF = True # Calculate conventioanl EOF for model CBF = True # Calculate Common Basis Function (CBF) for model # ================================================= # Miscellaneous # ------------------------------------------------- update_json = True # False debug = False # False # ================================================= # Observation # ------------------------------------------------- reference_data_name = "NOAA-CIRES_20CR" reference_data_path = os.path.join( "/p/user_pub/PCMDIobs/PCMDIobs2/atmos/mon/psl/20CR/gn/v20200707", "psl_mon_20CR_BE_gn_v20200707_187101-201212.nc", ) varOBS = "psl" ObsUnitsAdjust = (True, "divide", 100.0) # Pa to hPa; or (False, 0, 0) osyear = 1900 oeyear = 2005 eofn_obs = 1 # ================================================= # Models # ------------------------------------------------- modpath = os.path.join( "/p/user_pub/pmp/pmp_results/pmp_v1.1.2/additional_xmls/latest/v20200116", "%(mip)/%(exp)/atmos/mon/%(variable)", "%(mip).%(exp).%(model).%(realization).mon.%(variable).xml", ) modnames = [ "ACCESS1-0", "ACCESS1-3", "BCC-CSM1-1", "BCC-CSM1-1-M", "BNU-ESM", "CanCM4", "CanESM2", "CCSM4", "CESM1-BGC", "CESM1-CAM5", "CESM1-FASTCHEM", "CESM1-WACCM", "CMCC-CESM", "CMCC-CM", "CMCC-CMS", "CNRM-CM5", "CNRM-CM5-2", "CSIRO-Mk3-6-0", "EC-EARTH", "FGOALS-g2", "FGOALS-s2", "FIO-ESM", "FIO-ESM", "GFDL-CM2p1", "GFDL-CM3", "GFDL-ESM2G", "GFDL-ESM2M", "GISS-E2-H", "GISS-E2-H-CC", "GISS-E2-R", "GISS-E2-R-CC", "HadCM3", "HadGEM2-AO", "HadGEM2-CC", "HadGEM2-ES", "INMCM4", "IPSL-CM5A-LR", "IPSL-CM5A-MR", "IPSL-CM5B-LR", "MIROC-ESM", "MIROC-ESM-CHEM", "MIROC4h", "MIROC5", "MPI-ESM-LR", "MPI-ESM-MR", "MPI-ESM-P", "NorESM1-M", "NorESM1-ME", ] modnames = ["all"] # modnames = ['ACCESS1-0'] realization = "*" # realizations # realization = 'r1i1p1' varModel = "psl" ModUnitsAdjust = (True, "divide", 100.0) # Pa to hPa msyear = 1900 meyear = 2005 eofn_mod = 1 # ================================================= # Output # ------------------------------------------------- case_id = "{:v%Y%m%d}".format(datetime.datetime.now()) pmprdir = "/p/user_pub/pmp/pmp_results/pmp_v1.1.2" if debug: pmprdir = "/work/lee1043/imsi/result_test" results_dir = os.path.join( pmprdir, "%(output_type)", "variability_modes", "%(mip)", "%(exp)", "%(case_id)", "%(variability_mode)", "%(reference_data_name)", ) nc_out = True # Write output in NetCDF plot = True # Create map graphics
py
1a54b117db06556e9d67044c96ded32508db8c04
import numpy as np def get_samples_complex(fp,n): z = fp.read(2*n) if len(z)!=2*n: return None s = np.fromstring(z,dtype='int8') s.shape = (n,2) x = np.empty(n,dtype='c8') x.real = s[:,0] x.imag = s[:,1] return x
py
1a54b141931780046d09a15b40dc26bb3efcaf12
import sys import os import cfnresponse import boto3 import botocore import json import logging logger = logging.getLogger() logger.setLevel(os.getenv("LOG_LEVEL", "DEBUG")) def lambda_handler(event, context): try: logger.debug("Received event: {}".format(json.dumps(event))) result = cfnresponse.SUCCESS reason = None client = boto3.client("iam") # Pull identifiers from the request (passes as Properties in the custom resource) role_names = event["ResourceProperties"].get("RoleNames", []) role_arns = {} missing_roles = [] if event["RequestType"] in ["Create", "Update"]: for name in role_names: key = name.split("-")[-1] # Strip the leading ProjectName from role name try: logger.debug(f"Checking Account Roles for {name}") role = client.get_role(RoleName=name)["Role"] role_arn = role["Arn"] logger.debug(f"Role already exists: {role_arn}") role_arns[key + "Arn"] = role_arn role_arns[key + "Name"] = role["RoleName"] except botocore.exceptions.ClientError as e: if e.response["Error"]["Code"] in ["NoSuchEntity", "AccessDenied"]: logger.error(f"{name} Role does not exist") # The roles should be deployed all at once or not at all (via the supplied template); # therefore, it does not make sense to proceed with the deployment if one of them is missing result = cfnresponse.FAILED missing_roles.append(name) else: logger.error("Uncaught boto exception", e) result = cfnresponse.FAILED elif event["RequestType"] == "Delete": logger.info("Delete request - NOOP") result = cfnresponse.SUCCESS except Exception as e: logger.error("Error: {}".format(e)) result = cfnresponse.FAILED responseData = role_arns if result == cfnresponse.FAILED: reason = ("Required roles were not found in account; please use or refer to the ast-iam-role template for a " "list of required roles. The following roles were not found: " + ", ".join(missing_roles)) logger.info("Returning response of: {}, with result of: {}".format(result, responseData)) sys.stdout.flush() # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-lambda-function-code-cfnresponsemodule.html cfnresponse.send(event, context, result, responseData, reason=reason)
py
1a54b227d1280d53944ef2dbe0063b87437ed111
import math from typing import Sequence, Tuple import torch from torch import nn from torch.nn import functional as F from tensorfn.config import config_model from pydantic import StrictInt, StrictFloat from .layer import DropPath, tuple2, PositionwiseFeedForward LayerNorm = lambda x: nn.LayerNorm(x, eps=1e-6) def patchify(input, size): batch, height, width, dim = input.shape return ( input.view(batch, height // size, size, width // size, size, dim) .permute(0, 1, 3, 2, 4, 5) .reshape(batch, height // size, width // size, -1) ) class PositionalEncodingGenerator(nn.Module): def __init__(self, dim): super().__init__() self.proj = nn.Conv2d(dim, dim, 3, padding=1, bias=False, groups=dim) def forward(self, input): out = input.permute(0, 3, 1, 2) out = self.proj(out) + out out = out.permute(0, 2, 3, 1) return out class MultiHeadedAttention(nn.Module): def __init__(self, dim, n_head, reduction=1, dropout=0): super().__init__() self.dim_head = dim // n_head self.n_head = n_head self.linear_q = nn.Linear(dim, dim, bias=False) self.linear_kv = nn.Linear(dim, dim * 2, bias=False) self.linear = nn.Linear(dim, dim) self.dropout = dropout self.reduction = reduction if self.reduction > 1: self.reduce_conv = nn.Conv2d( dim, dim, self.reduction, stride=self.reduction ) def forward(self, input): batch_size, height, width, _ = input.shape def reshape(input): return input.reshape(batch_size, -1, self.n_head, self.dim_head).transpose( 1, 2 ) query = reshape(self.linear_q(input)) if self.reduction > 1: dim = input.shape[-1] reduc = input.transpose(1, 2).reshape(batch_size, dim, height, width) reduc = self.reduce_conv(reduc).reshape(batch_size, dim, -1).transpose(1, 2) kv = reduc else: kv = input key, value = self.linear_kv(kv).chunk(2, dim=2) key = reshape(key).transpose(2, 3) value = reshape(value) score = query @ key / math.sqrt(self.dim_head) attn = F.softmax(score, 3) attn = F.dropout(attn, self.dropout, training=self.training) out = attn @ value out = out.transpose(1, 2).reshape( batch_size, height, width, self.dim_head * self.n_head ) out = self.linear(out) return out class MultiHeadedLocalAttention(nn.Module): def __init__(self, dim, n_head, dim_head, window_size, dropout=0): super().__init__() self.dim_head = dim_head self.n_head = n_head self.weight = nn.Linear(dim, n_head * dim_head * 3, bias=True) self.linear = nn.Linear(n_head * dim_head, dim) self.window_size = window_size self.dropout = dropout def forward(self, input): batch, height, width, dim = input.shape h_stride = height // self.window_size w_stride = width // self.window_size window = self.window_size def reshape(input): return ( input.reshape( batch, h_stride, window, w_stride, window, self.n_head, self.dim_head, ) .permute(0, 1, 3, 5, 2, 4, 6) .reshape(batch, -1, self.n_head, window * window, self.dim_head) ) query, key, value = self.weight(input).chunk(3, dim=-1) # B, S, H, W^2, D query = reshape(query) key = reshape(key).transpose(-2, -1) value = reshape(value) score = query @ key / math.sqrt(self.dim_head) # B, S, H, W^2, W^2 attn = F.softmax(score, -1) attn = F.dropout(attn, self.dropout, training=self.training) out = attn @ value # B, S, H, W^2, D out = ( out.view( batch, h_stride, w_stride, self.n_head, window, window, self.dim_head ) .permute(0, 1, 4, 2, 5, 3, 6) .reshape(batch, height, width, self.n_head * self.dim_head) ) out = self.linear(out) return out class TransformerLayer(nn.Module): def __init__( self, dim, n_head, dim_head, dim_ff, window_size, activation=nn.SiLU, drop_ff=0, drop_attn=0, drop_path=0, ): super().__init__() self.norm_attn_local = LayerNorm(dim) self.attn_local = MultiHeadedLocalAttention( dim, n_head, dim_head, window_size, drop_attn ) self.norm_ff_local = LayerNorm(dim) self.ff_local = PositionwiseFeedForward( dim, dim_ff, activation=activation, dropout=drop_ff ) self.norm_attn_global = LayerNorm(dim) self.attn_global = MultiHeadedAttention(dim, n_head, window_size, drop_attn) self.norm_ff_global = LayerNorm(dim) self.ff_global = PositionwiseFeedForward( dim, dim_ff, activation=activation, dropout=drop_ff ) self.drop_path = DropPath(drop_path) def set_drop_path(self, p): self.drop_path.p = p def forward(self, input): out = input + self.drop_path(self.attn_local(self.norm_attn_local(input))) out = out + self.drop_path(self.ff_local(self.norm_ff_local(out))) out = out + self.drop_path(self.attn_global(self.norm_attn_global(out))) out = out + self.drop_path(self.ff_global(self.norm_ff_global(out))) return out class PatchEmbedding(nn.Module): def __init__(self, in_dim, out_dim, window_size): super().__init__() self.window_size = window_size self.linear = nn.Linear(in_dim * window_size * window_size, out_dim) self.norm = nn.LayerNorm(out_dim) def forward(self, input): out = patchify(input, self.window_size) out = self.linear(out) out = self.norm(out) return out def reduce_size(size, reduction): return (size[0] // reduction, size[1] // reduction) @config_model(name="twins_svt", namespace="model", use_type=True) class TwinsSVT(nn.Module): def __init__( self, n_class: StrictInt, depths: Tuple[StrictInt, StrictInt, StrictInt, StrictInt], dims: Tuple[StrictInt, StrictInt, StrictInt, StrictInt], dim_head: StrictInt, n_heads: Tuple[StrictInt, StrictInt, StrictInt, StrictInt], dim_ffs: Tuple[StrictInt, StrictInt, StrictInt, StrictInt], window_size: StrictInt, drop_ff: StrictFloat = 0.0, drop_attn: StrictFloat = 0.0, drop_path: StrictFloat = 0.0, ): super().__init__() self.depths = depths def make_block(i, in_dim, reduction): return self.make_block( depths[i], in_dim, dims[i], n_heads[i], dim_head, dim_ffs[i], window_size, reduction, drop_ff, drop_attn, ) self.block1 = make_block(0, 3, 4) self.block2 = make_block(1, dims[0], 2) self.block3 = make_block(2, dims[1], 2) self.block4 = make_block(3, dims[2], 2) self.final_linear = nn.Sequential(nn.LayerNorm(dims[-1])) linear = nn.Linear(dims[-1], n_class) nn.init.normal_(linear.weight, std=0.02) nn.init.zeros_(linear.bias) self.classifier = nn.Sequential(nn.AdaptiveAvgPool2d(1), nn.Flatten(1), linear) self.apply(self.init_weights) self.set_dropout(None, drop_path) def set_dropout(self, dropout, drop_path): n_blocks = sum(self.depths) dp_rate = [drop_path * float(i) / n_blocks for i in range(n_blocks)] i = 0 for block in self.block1: try: block.set_drop_path(dp_rate[i]) i += 1 except: continue for block in self.block2: try: block.set_drop_path(dp_rate[i]) i += 1 except: continue for block in self.block3: try: block.set_drop_path(dp_rate[i]) i += 1 except: continue for block in self.block4: try: block.set_drop_path(dp_rate[i]) i += 1 except: continue def init_weights(self, module): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.LayerNorm): nn.init.ones_(module.weight) nn.init.zeros_(module.bias) def make_block( self, depth, in_dim, dim, n_head, dim_head, dim_ff, window_size, reduction, drop_ff, drop_attn, ): block = [PatchEmbedding(in_dim, dim, reduction)] for i in range(depth): block.append( TransformerLayer( dim, n_head, dim_head, dim_ff, window_size, drop_ff=drop_ff, drop_attn=drop_attn, ) ) if i == 0: block.append(PositionalEncodingGenerator(dim)) return nn.Sequential(*block) def forward(self, input): out = self.block1(input.permute(0, 2, 3, 1)) out = self.block2(out) out = self.block3(out) out = self.block4(out) out = self.final_linear(out).permute(0, 3, 1, 2) out = self.classifier(out) return out
py
1a54b273fca55b21ca20058463e43ce47010cc68
#!/usr/bin/env python # # esp-idf NVS partition generation tool. Tool helps in generating NVS-compatible # partition binary, with key-value pair entries provided via a CSV file. # # Copyright 2018 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import division, print_function import argparse import array import binascii import codecs import datetime import distutils.dir_util import os import random import struct import sys import zlib from builtins import bytes, int, range from io import open from itertools import zip_longest try: from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes except ImportError: print('The cryptography package is not installed.' 'Please refer to the Get Started section of the ESP-IDF Programming Guide for ' 'setting up the required packages.') raise VERSION1_PRINT = 'V1 - Multipage Blob Support Disabled' VERSION2_PRINT = 'V2 - Multipage Blob Support Enabled' def reverse_hexbytes(addr_tmp): addr = [] reversed_bytes = '' for i in range(0, len(addr_tmp), 2): addr.append(addr_tmp[i:i + 2]) reversed_bytes = ''.join(reversed(addr)) return reversed_bytes """ Class for standard NVS page structure """ class Page(object): PAGE_PARAMS = { 'max_size': 4096, 'max_old_blob_size': 1984, 'max_new_blob_size': 4000, 'max_entries': 126 } # Item type codes U8 = 0x01 I8 = 0x11 U16 = 0x02 I16 = 0x12 U32 = 0x04 I32 = 0x14 U64 = 0x08 I64 = 0x18 SZ = 0x21 BLOB = 0x41 BLOB_DATA = 0x42 BLOB_IDX = 0x48 # Few Page constants HEADER_SIZE = 32 BITMAPARRAY_OFFSET = 32 BITMAPARRAY_SIZE_IN_BYTES = 32 FIRST_ENTRY_OFFSET = 64 SINGLE_ENTRY_SIZE = 32 CHUNK_ANY = 0xFF ACTIVE = 0xFFFFFFFE FULL = 0xFFFFFFFC VERSION1 = 0xFF VERSION2 = 0xFE def __init__(self, page_num, version, is_rsrv_page=False): self.entry_num = 0 self.bitmap_array = array.array('B') self.version = version self.page_buf = bytearray(b'\xff') * Page.PAGE_PARAMS['max_size'] if not is_rsrv_page: self.bitmap_array = self.create_bitmap_array() self.set_header(page_num, version) def set_header(self, page_num, version): # set page state to active page_header = bytearray(b'\xff') * 32 page_state_active_seq = Page.ACTIVE struct.pack_into('<I', page_header, 0, page_state_active_seq) # set page sequence number struct.pack_into('<I', page_header, 4, page_num) # set version if version == Page.VERSION2: page_header[8] = Page.VERSION2 elif version == Page.VERSION1: page_header[8] = Page.VERSION1 # set header's CRC crc_data = bytes(page_header[4:28]) crc = zlib.crc32(crc_data, 0xFFFFFFFF) struct.pack_into('<I', page_header, 28, crc & 0xFFFFFFFF) self.page_buf[0:len(page_header)] = page_header def create_bitmap_array(self): bitarray = array.array('B') charsize = 32 # bitmaparray has 256 bits, hence 32 bytes fill = 255 # Fill all 8 bits with 1's bitarray.extend((fill,) * charsize) return bitarray def write_bitmaparray(self): bitnum = self.entry_num * 2 byte_idx = bitnum // 8 # Find byte index in the array bit_offset = bitnum & 7 # Find bit offset in given byte index mask = ~(1 << bit_offset) self.bitmap_array[byte_idx] &= mask start_idx = Page.BITMAPARRAY_OFFSET end_idx = Page.BITMAPARRAY_OFFSET + Page.BITMAPARRAY_SIZE_IN_BYTES self.page_buf[start_idx:end_idx] = self.bitmap_array def encrypt_entry(self, data_arr, tweak_arr, encr_key): # Encrypt 32 bytes of data using AES-XTS encryption backend = default_backend() plain_text = codecs.decode(data_arr, 'hex') tweak = codecs.decode(tweak_arr, 'hex') cipher = Cipher(algorithms.AES(encr_key), modes.XTS(tweak), backend=backend) encryptor = cipher.encryptor() encrypted_data = encryptor.update(plain_text) return encrypted_data def encrypt_data(self, data_input, no_of_entries, nvs_obj): # Set values needed for encryption and encrypt data byte wise encr_data_to_write = bytearray() data_len_needed = 64 # in hex tweak_len_needed = 32 # in hex key_len_needed = 64 init_tweak_val = '0' init_data_val = 'f' tweak_tmp = '' encr_key_input = None # Extract encryption key and tweak key from given key input if len(nvs_obj.encr_key) == key_len_needed: encr_key_input = nvs_obj.encr_key else: encr_key_input = codecs.decode(nvs_obj.encr_key, 'hex') rel_addr = nvs_obj.page_num * Page.PAGE_PARAMS['max_size'] + Page.FIRST_ENTRY_OFFSET if not isinstance(data_input, bytearray): byte_arr = bytearray(b'\xff') * 32 byte_arr[0:len(data_input)] = data_input data_input = byte_arr data_input = binascii.hexlify(data_input) entry_no = self.entry_num start_idx = 0 end_idx = start_idx + 64 for _ in range(0, no_of_entries): # Set tweak value offset = entry_no * Page.SINGLE_ENTRY_SIZE addr = hex(rel_addr + offset)[2:] addr_len = len(addr) if addr_len > 2: if not addr_len % 2: addr_tmp = addr else: addr_tmp = init_tweak_val + addr tweak_tmp = reverse_hexbytes(addr_tmp) tweak_val = tweak_tmp + (init_tweak_val * (tweak_len_needed - (len(tweak_tmp)))) else: tweak_val = addr + (init_tweak_val * (tweak_len_needed - len(addr))) # Encrypt data data_bytes = data_input[start_idx:end_idx] if type(data_bytes) == bytes: data_bytes = data_bytes.decode() data_val = data_bytes + (init_data_val * (data_len_needed - len(data_bytes))) encr_data_ret = self.encrypt_entry(data_val, tweak_val, encr_key_input) encr_data_to_write = encr_data_to_write + encr_data_ret # Update values for encrypting next set of data bytes start_idx = end_idx end_idx = start_idx + 64 entry_no += 1 return encr_data_to_write def write_entry_to_buf(self, data, entrycount,nvs_obj): encr_data = bytearray() if nvs_obj.encrypt: encr_data_ret = self.encrypt_data(data, entrycount,nvs_obj) encr_data[0:len(encr_data_ret)] = encr_data_ret data = encr_data data_offset = Page.FIRST_ENTRY_OFFSET + (Page.SINGLE_ENTRY_SIZE * self.entry_num) start_idx = data_offset end_idx = data_offset + len(data) self.page_buf[start_idx:end_idx] = data # Set bitmap array for entries in current page for i in range(0, entrycount): self.write_bitmaparray() self.entry_num += 1 def set_crc_header(self, entry_struct): crc_data = bytearray(b'28') crc_data[0:4] = entry_struct[0:4] crc_data[4:28] = entry_struct[8:32] crc_data = bytes(crc_data) crc = zlib.crc32(crc_data, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 4, crc & 0xFFFFFFFF) return entry_struct def write_varlen_binary_data(self, entry_struct, ns_index, key, data, data_size, total_entry_count, encoding, nvs_obj): chunk_start = 0 chunk_count = 0 chunk_index = Page.CHUNK_ANY offset = 0 remaining_size = data_size tailroom = None while True: chunk_size = 0 # Get the size available in current page tailroom = (Page.PAGE_PARAMS['max_entries'] - self.entry_num - 1) * Page.SINGLE_ENTRY_SIZE assert tailroom >= 0, 'Page overflow!!' # Split the binary data into two and store a chunk of available size onto curr page if tailroom < remaining_size: chunk_size = tailroom else: chunk_size = remaining_size remaining_size = remaining_size - chunk_size # Change type of data to BLOB_DATA entry_struct[1] = Page.BLOB_DATA # Calculate no. of entries data chunk will require datachunk_rounded_size = (chunk_size + 31) & ~31 datachunk_entry_count = datachunk_rounded_size // 32 datachunk_total_entry_count = datachunk_entry_count + 1 # +1 for the entry header # Set Span entry_struct[2] = datachunk_total_entry_count # Update the chunkIndex chunk_index = chunk_start + chunk_count entry_struct[3] = chunk_index # Set data chunk data_chunk = data[offset:offset + chunk_size] # Compute CRC of data chunk struct.pack_into('<H', entry_struct, 24, chunk_size) if type(data) != bytes: data_chunk = bytes(data_chunk, encoding='utf8') crc = zlib.crc32(data_chunk, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 28, crc & 0xFFFFFFFF) # compute crc of entry header entry_struct = self.set_crc_header(entry_struct) # write entry header self.write_entry_to_buf(entry_struct, 1,nvs_obj) # write actual data self.write_entry_to_buf(data_chunk, datachunk_entry_count,nvs_obj) chunk_count = chunk_count + 1 if remaining_size or (tailroom - chunk_size) < Page.SINGLE_ENTRY_SIZE: nvs_obj.create_new_page() self = nvs_obj.cur_page offset = offset + chunk_size # All chunks are stored, now store the index if not remaining_size: # Initialise data field to 0xff data_array = bytearray(b'\xff') * 8 entry_struct[24:32] = data_array # change type of data to BLOB_IDX entry_struct[1] = Page.BLOB_IDX # Set Span entry_struct[2] = 1 # Update the chunkIndex chunk_index = Page.CHUNK_ANY entry_struct[3] = chunk_index struct.pack_into('<I', entry_struct, 24, data_size) entry_struct[28] = chunk_count entry_struct[29] = chunk_start # compute crc of entry header entry_struct = self.set_crc_header(entry_struct) # write last entry self.write_entry_to_buf(entry_struct, 1,nvs_obj) break return entry_struct def write_single_page_entry(self, entry_struct, data, datalen, data_entry_count, nvs_obj): # compute CRC of data struct.pack_into('<H', entry_struct, 24, datalen) if type(data) != bytes: data = bytes(data, encoding='utf8') crc = zlib.crc32(data, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 28, crc & 0xFFFFFFFF) # compute crc of entry header entry_struct = self.set_crc_header(entry_struct) # write entry header self.write_entry_to_buf(entry_struct, 1, nvs_obj) # write actual data self.write_entry_to_buf(data, data_entry_count, nvs_obj) """ Low-level function to write variable length data into page buffer. Data should be formatted according to encoding specified. """ def write_varlen_data(self, key, data, encoding, ns_index,nvs_obj): # Set size of data datalen = len(data) if datalen > Page.PAGE_PARAMS['max_old_blob_size']: if self.version == Page.VERSION1: raise InputError(' Input File: Size (%d) exceeds max allowed length `%s` bytes for key `%s`.' % (datalen, Page.PAGE_PARAMS['max_old_blob_size'], key)) else: if encoding == 'string': raise InputError(' Input File: Size (%d) exceeds max allowed length `%s` bytes for key `%s`.' % (datalen, Page.PAGE_PARAMS['max_old_blob_size'], key)) # Calculate no. of entries data will require rounded_size = (datalen + 31) & ~31 data_entry_count = rounded_size // 32 total_entry_count = data_entry_count + 1 # +1 for the entry header # Check if page is already full and new page is needed to be created right away if self.entry_num >= Page.PAGE_PARAMS['max_entries']: raise PageFullError() elif (self.entry_num + total_entry_count) >= Page.PAGE_PARAMS['max_entries']: if not (self.version == Page.VERSION2 and encoding in ['hex2bin', 'binary', 'base64']): raise PageFullError() # Entry header entry_struct = bytearray(b'\xff') * 32 # Set Namespace Index entry_struct[0] = ns_index # Set Span if self.version == Page.VERSION2: if encoding == 'string': entry_struct[2] = data_entry_count + 1 # Set Chunk Index chunk_index = Page.CHUNK_ANY entry_struct[3] = chunk_index else: entry_struct[2] = data_entry_count + 1 # set key key_array = b'\x00' * 16 entry_struct[8:24] = key_array entry_struct[8:8 + len(key)] = key.encode() # set Type if encoding == 'string': entry_struct[1] = Page.SZ elif encoding in ['hex2bin', 'binary', 'base64']: entry_struct[1] = Page.BLOB if self.version == Page.VERSION2 and (encoding in ['hex2bin', 'binary', 'base64']): entry_struct = self.write_varlen_binary_data(entry_struct,ns_index,key,data, datalen,total_entry_count, encoding, nvs_obj) else: self.write_single_page_entry(entry_struct, data, datalen, data_entry_count, nvs_obj) """ Low-level function to write data of primitive type into page buffer. """ def write_primitive_data(self, key, data, encoding, ns_index,nvs_obj): # Check if entry exceeds max number of entries allowed per page if self.entry_num >= Page.PAGE_PARAMS['max_entries']: raise PageFullError() entry_struct = bytearray(b'\xff') * 32 entry_struct[0] = ns_index # namespace index entry_struct[2] = 0x01 # Span chunk_index = Page.CHUNK_ANY entry_struct[3] = chunk_index # write key key_array = b'\x00' * 16 entry_struct[8:24] = key_array entry_struct[8:8 + len(key)] = key.encode() if encoding == 'u8': entry_struct[1] = Page.U8 struct.pack_into('<B', entry_struct, 24, data) elif encoding == 'i8': entry_struct[1] = Page.I8 struct.pack_into('<b', entry_struct, 24, data) elif encoding == 'u16': entry_struct[1] = Page.U16 struct.pack_into('<H', entry_struct, 24, data) elif encoding == 'i16': entry_struct[1] = Page.I16 struct.pack_into('<h', entry_struct, 24, data) elif encoding == 'u32': entry_struct[1] = Page.U32 struct.pack_into('<I', entry_struct, 24, data) elif encoding == 'i32': entry_struct[1] = Page.I32 struct.pack_into('<i', entry_struct, 24, data) elif encoding == 'u64': entry_struct[1] = Page.U64 struct.pack_into('<Q', entry_struct, 24, data) elif encoding == 'i64': entry_struct[1] = Page.I64 struct.pack_into('<q', entry_struct, 24, data) # Compute CRC crc_data = bytearray(b'28') crc_data[0:4] = entry_struct[0:4] crc_data[4:28] = entry_struct[8:32] crc_data = bytes(crc_data) crc = zlib.crc32(crc_data, 0xFFFFFFFF) struct.pack_into('<I', entry_struct, 4, crc & 0xFFFFFFFF) # write to file self.write_entry_to_buf(entry_struct, 1,nvs_obj) """ Get page buffer data of a given page """ def get_data(self): return self.page_buf """ NVS class encapsulates all NVS specific operations to create a binary with given key-value pairs. Binary can later be flashed onto device via a flashing utility. """ class NVS(object): def __init__(self, fout, input_size, version, encrypt=False, key_input=None): self.size = input_size self.encrypt = encrypt self.encr_key = None self.namespace_idx = 0 self.page_num = -1 self.pages = [] self.version = version self.fout = fout if self.encrypt: self.encr_key = key_input self.cur_page = self.create_new_page(version) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if exc_type is None and exc_value is None: # Create pages for remaining available size while True: try: self.create_new_page() except InsufficientSizeError: self.size = None # Creating the last reserved page self.create_new_page(is_rsrv_page=True) break result = self.get_binary_data() self.fout.write(result) def create_new_page(self, version=None, is_rsrv_page=False): # Set previous page state to FULL before creating new page if self.pages: curr_page_state = struct.unpack('<I', self.cur_page.page_buf[0:4])[0] if curr_page_state == Page.ACTIVE: page_state_full_seq = Page.FULL struct.pack_into('<I', self.cur_page.page_buf, 0, page_state_full_seq) # Set version for NVS binary generated version = self.version # Update available size as each page is created if self.size == 0: raise InsufficientSizeError('Error: Size parameter is less than the size of data in csv.Please increase size.') if not is_rsrv_page: self.size = self.size - Page.PAGE_PARAMS['max_size'] self.page_num += 1 # Set version for each page and page header new_page = Page(self.page_num, version, is_rsrv_page) self.pages.append(new_page) self.cur_page = new_page return new_page """ Write namespace entry and subsequently increase namespace count so that all upcoming entries will be mapped to a new namespace. """ def write_namespace(self, key): self.namespace_idx += 1 try: self.cur_page.write_primitive_data(key, self.namespace_idx, 'u8', 0,self) except PageFullError: new_page = self.create_new_page() new_page.write_primitive_data(key, self.namespace_idx, 'u8', 0,self) """ Write key-value pair. Function accepts value in the form of ascii character and converts it into appropriate format before calling Page class's functions to write entry into NVS format. Function handles PageFullError and creates a new page and re-invokes the function on a new page. We don't have to guard re-invocation with try-except since no entry can span multiple pages. """ def write_entry(self, key, value, encoding): if encoding == 'hex2bin': value = value.strip() if len(value) % 2 != 0: raise InputError('%s: Invalid data length. Should be multiple of 2.' % key) value = binascii.a2b_hex(value) if encoding == 'base64': value = binascii.a2b_base64(value) if encoding == 'string': if type(value) == bytes: value = value.decode() value += '\0' encoding = encoding.lower() varlen_encodings = ['string', 'binary', 'hex2bin', 'base64'] primitive_encodings = ['u8', 'i8', 'u16', 'i16', 'u32', 'i32', 'u64', 'i64'] if encoding in varlen_encodings: try: self.cur_page.write_varlen_data(key, value, encoding, self.namespace_idx,self) except PageFullError: new_page = self.create_new_page() new_page.write_varlen_data(key, value, encoding, self.namespace_idx,self) elif encoding in primitive_encodings: try: self.cur_page.write_primitive_data(key, int(value), encoding, self.namespace_idx,self) except PageFullError: new_page = self.create_new_page() new_page.write_primitive_data(key, int(value), encoding, self.namespace_idx,self) else: raise InputError('%s: Unsupported encoding' % encoding) """ Return accumulated data of all pages """ def get_binary_data(self): data = bytearray() for page in self.pages: data += page.get_data() return data class PageFullError(RuntimeError): """ Represents error when current page doesn't have sufficient entries left to accommodate current request """ def __init__(self): super(PageFullError, self).__init__() class InputError(RuntimeError): """ Represents error on the input """ def __init__(self, e): print('\nError:') super(InputError, self).__init__(e) class InsufficientSizeError(RuntimeError): """ Represents error when NVS Partition size given is insufficient to accomodate the data in the given csv file """ def __init__(self, e): super(InsufficientSizeError, self).__init__(e) def nvs_open(result_obj, input_size, version=None, is_encrypt=False, key=None): """ Wrapper to create and NVS class object. This object can later be used to set key-value pairs :param result_obj: File/Stream object to dump resultant binary. If data is to be dumped into memory, one way is to use BytesIO object :param input_size: Size of Partition :return: NVS class instance """ return NVS(result_obj, input_size, version, encrypt=is_encrypt, key_input=key) def write_entry(nvs_instance, key, datatype, encoding, value): """ Wrapper to set key-value pair in NVS format :param nvs_instance: Instance of an NVS class returned by nvs_open() :param key: Key of the data :param datatype: Data type. Valid values are "file", "data" and "namespace" :param encoding: Data encoding. Valid values are "u8", "i8", "u16", "i16", "u32", "i32", "u64", "i64", "string", "binary", "hex2bin" and "base64" :param value: Data value in ascii encoded string format for "data" datatype and filepath for "file" datatype :return: None """ if datatype == 'file': abs_file_path = value if os.path.isabs(value) is False: script_dir = os.getcwd() abs_file_path = os.path.join(script_dir, value) with open(abs_file_path, 'rb') as f: value = f.read() if datatype == 'namespace': nvs_instance.write_namespace(key) else: nvs_instance.write_entry(key, value, encoding) def nvs_close(nvs_instance): """ Wrapper to finish writing to NVS and write data to file/stream object provided to nvs_open method :param nvs_instance: Instance of NVS class returned by nvs_open() :return: None """ nvs_instance.__exit__(None, None, None) def check_size(size): ''' Checks for input partition size :param size: Input partition size ''' try: # Set size input_size = int(size, 0) if input_size % 4096 != 0: sys.exit('Size of partition must be multiple of 4096') # Update size as a page needs to be reserved of size 4KB input_size = input_size - Page.PAGE_PARAMS['max_size'] if input_size < (2 * Page.PAGE_PARAMS['max_size']): sys.exit('Minimum NVS partition size needed is 0x3000 bytes.') return input_size except Exception as e: print(e) sys.exit(0) def set_target_filepath(outdir, filepath): ''' Set target file path: <outdir>/<filepath> :param outdir: Target output dir to store files :param filepath: Path of target file ''' bin_ext = '.bin' # Expand if tilde(~) provided in path outdir = os.path.expanduser(outdir) if filepath: key_file_name, ext = os.path.splitext(filepath) if not ext: filepath = key_file_name + bin_ext elif bin_ext not in ext: sys.exit('Error: `%s`. Only `%s` extension allowed.' % (filepath, bin_ext)) # Create dir if does not exist if not (os.path.isdir(outdir)): distutils.dir_util.mkpath(outdir) filedir, filename = os.path.split(filepath) filedir = os.path.join(outdir,filedir,'') if filedir and not os.path.isdir(filedir): distutils.dir_util.mkpath(filedir) if os.path.isabs(filepath): if not outdir == os.getcwd(): print('\nWarning: `%s` \n\t==> absolute path given so outdir is ignored for this file.' % filepath) # Set to empty as outdir is ignored here outdir = '' # Set full path - outdir + filename filepath = os.path.join(outdir, '') + filepath return outdir, filepath def encrypt(args): ''' Generate encrypted NVS Partition :param args: Command line arguments given ''' key = None bin_ext = '.bin' check_size(args.size) if (args.keygen is False) and (not args.inputkey): sys.exit('Error. --keygen or --inputkey argument needed.') elif args.keygen and args.inputkey: sys.exit('Error. --keygen and --inputkey both are not allowed.') elif not args.keygen and args.keyfile: print('\nWarning:','--inputkey argument is given. --keyfile argument will be ignored...') if args.inputkey: # Check if key file has .bin extension filename, ext = os.path.splitext(args.inputkey) if bin_ext not in ext: sys.exit('Error: `%s`. Only `%s` extension allowed.' % (args.inputkey, bin_ext)) key = bytearray() with open(args.inputkey, 'rb') as key_f: key = key_f.read(64) # Generate encrypted NVS Partition generate(args, is_encr_enabled=True, encr_key=key) def decrypt_data(data_input, decr_key, page_num, entry_no, entry_size): ''' Decrypt NVS data entry ''' page_max_size = 4096 first_entry_offset = 64 init_tweak_val = '0' tweak_len_needed = 32 # in hex tweak_tmp = '' data_input = binascii.hexlify(data_input) rel_addr = page_num * page_max_size + first_entry_offset # Set tweak value offset = entry_no * entry_size addr = hex(rel_addr + offset)[2:] addr_len = len(addr) if addr_len > 2: if not addr_len % 2: addr_tmp = addr else: addr_tmp = init_tweak_val + addr tweak_tmp = reverse_hexbytes(addr_tmp) tweak_val = tweak_tmp + (init_tweak_val * (tweak_len_needed - (len(tweak_tmp)))) else: tweak_val = addr + (init_tweak_val * (tweak_len_needed - len(addr))) if type(data_input) == bytes: data_input = data_input.decode() # Decrypt 32 bytes of data using AES-XTS decryption backend = default_backend() plain_text = codecs.decode(data_input, 'hex') tweak = codecs.decode(tweak_val, 'hex') cipher = Cipher(algorithms.AES(decr_key), modes.XTS(tweak), backend=backend) decryptor = cipher.decryptor() decrypted_data = decryptor.update(plain_text) return decrypted_data def decrypt(args): ''' Decrypt encrypted NVS Partition :param args: Command line arguments given ''' bin_ext = '.bin' nvs_read_bytes = 32 decrypted_entry_no = 0 file_entry_no = 0 page_num = 0 page_max_size = 4096 start_entry_offset = 0 empty_data_entry = bytearray(b'\xff') * nvs_read_bytes # Check if key file has .bin extension input_files = [args.input, args.key, args.output] for filepath in input_files: filename, ext = os.path.splitext(filepath) if bin_ext not in ext: sys.exit('Error: `%s`. Only `%s` extension allowed.' % (filepath, bin_ext)) with open(args.key,'rb') as decr_key_file: decr_key = decr_key_file.read(64) args.outdir, args.output = set_target_filepath(args.outdir, args.output) output_buf = bytearray(b'\xff') with open(args.input, 'rb') as input_file, open(args.output,'wb') as output_file: while True: if file_entry_no == 128: decrypted_entry_no = 0 file_entry_no = 0 page_num += 1 data_entry = input_file.read(nvs_read_bytes) if not data_entry: break if data_entry != empty_data_entry and file_entry_no not in [0,1]: data_entry = decrypt_data(data_entry, decr_key, page_num, decrypted_entry_no, nvs_read_bytes) decrypted_entry_no += 1 write_entry_no = ((page_num * page_max_size) + file_entry_no) start_idx = start_entry_offset + (write_entry_no * nvs_read_bytes) end_idx = nvs_read_bytes output_buf[start_idx:end_idx] = data_entry file_entry_no += 1 start_entry_offset += nvs_read_bytes output_file.write(output_buf) print('\nCreated NVS decrypted binary: ===>', args.output) def generate_key(args): ''' Generate encryption keys :param args: Command line arguments given ''' page_max_size = 4096 keys_dir = 'keys' output_keyfile = None bin_ext = '.bin' if not args.keyfile: timestamp = datetime.datetime.now().strftime('%m-%d_%H-%M') args.keyfile = 'keys-' + timestamp + bin_ext keys_outdir = os.path.join(args.outdir,keys_dir, '') # Create keys/ dir in <outdir> if does not exist if not (os.path.isdir(keys_outdir)): distutils.dir_util.mkpath(keys_outdir) keys_outdir, output_keyfile = set_target_filepath(keys_outdir, args.keyfile) key = ''.join(random.choice('0123456789abcdef') for _ in range(128)).strip() encr_key_bytes = codecs.decode(key, 'hex') key_len = len(encr_key_bytes) keys_buf = bytearray(b'\xff') * page_max_size keys_buf[0:key_len] = encr_key_bytes crc_data = keys_buf[0:key_len] crc_data = bytes(crc_data) crc = zlib.crc32(crc_data, 0xFFFFFFFF) struct.pack_into('<I', keys_buf, key_len, crc & 0xFFFFFFFF) with open(output_keyfile, 'wb') as output_keys_file: output_keys_file.write(keys_buf) print('\nCreated encryption keys: ===> ', output_keyfile) return key def generate(args, is_encr_enabled=False, encr_key=None): ''' Generate NVS Partition :param args: Command line arguments given :param is_encr_enabled: Encryption enabled/disabled :param encr_key: Key to encrypt NVS partition ''' is_dir_new = False bin_ext = '.bin' input_size = check_size(args.size) if args.version == 1: args.version = Page.VERSION1 elif args.version == 2: args.version = Page.VERSION2 # Check if key file has .bin extension filename, ext = os.path.splitext(args.output) if bin_ext not in ext: sys.exit('Error: `%s`. Only `.bin` extension allowed.' % args.output) args.outdir, args.output = set_target_filepath(args.outdir, args.output) if is_encr_enabled and not encr_key: encr_key = generate_key(args) input_file = open(args.input, 'rt', encoding='utf8') output_file = open(args.output, 'wb') with open(args.input, 'rt', encoding='utf8') as input_file,\ open(args.output, 'wb') as output_file,\ nvs_open(output_file, input_size, args.version, is_encrypt=is_encr_enabled, key=encr_key) as nvs_obj: if nvs_obj.version == Page.VERSION1: version_set = VERSION1_PRINT else: version_set = VERSION2_PRINT print('\nCreating NVS binary with version:', version_set) line = input_file.readline().strip() # Comments are skipped while line.startswith('#'): line = input_file.readline().strip() if not isinstance(line, str): line = line.encode('utf-8') header = line.split(',') while True: line = input_file.readline().strip() if not isinstance(line, str): line = line.encode('utf-8') value = line.split(',') if len(value) == 1 and '' in value: break data = dict(zip_longest(header, value)) try: # Check key length if len(data['key']) > 15: raise InputError('Length of key `{}` should be <= 15 characters.'.format(data['key'])) write_entry(nvs_obj, data['key'], data['type'], data['encoding'], data['value']) except InputError as e: print(e) filedir, filename = os.path.split(args.output) if filename: print('\nWarning: NVS binary not created...') os.remove(args.output) if is_dir_new and not filedir == os.getcwd(): print('\nWarning: Output dir not created...') os.rmdir(filedir) sys.exit(-2) print('\nCreated NVS binary: ===>', args.output) def main(): parser = argparse.ArgumentParser(description='\nESP NVS partition generation utility', formatter_class=argparse.RawTextHelpFormatter) subparser = parser.add_subparsers(title='Commands', dest='command', help='\nRun nvs_partition_gen.py {command} -h for additional help\n\n') parser_gen = subparser.add_parser('generate', help='Generate NVS partition', formatter_class=argparse.RawTextHelpFormatter) parser_gen.set_defaults(func=generate) parser_gen.add_argument('input', default=None, help='Path to CSV file to parse') parser_gen.add_argument('output', default=None, help='Path to output NVS binary file') parser_gen.add_argument('size', default=None, help='Size of NVS partition in bytes\ \n(must be multiple of 4096)') parser_gen.add_argument('--version', choices=[1,2], default=2, type=int, help='''Set multipage blob version.\ \nVersion 1 - Multipage blob support disabled.\ \nVersion 2 - Multipage blob support enabled.\ \nDefault: Version 2''') parser_gen.add_argument('--outdir', default=os.getcwd(), help='Output directory to store files created\ \n(Default: current directory)') parser_gen_key = subparser.add_parser('generate-key', help='Generate keys for encryption', formatter_class=argparse.RawTextHelpFormatter) parser_gen_key.set_defaults(func=generate_key) parser_gen_key.add_argument('--keyfile', default=None, help='Path to output encryption keys file') parser_gen_key.add_argument('--outdir', default=os.getcwd(), help='Output directory to store files created.\ \n(Default: current directory)') parser_encr = subparser.add_parser('encrypt', help='Generate NVS encrypted partition', formatter_class=argparse.RawTextHelpFormatter) parser_encr.set_defaults(func=encrypt) parser_encr.add_argument('input', default=None, help='Path to CSV file to parse') parser_encr.add_argument('output', default=None, help='Path to output NVS binary file') parser_encr.add_argument('size', default=None, help='Size of NVS partition in bytes\ \n(must be multiple of 4096)') parser_encr.add_argument('--version', choices=[1,2], default=2, type=int, help='''Set multipage blob version.\ \nVersion 1 - Multipage blob support disabled.\ \nVersion 2 - Multipage blob support enabled.\ \nDefault: Version 2''') parser_encr.add_argument('--keygen', action='store_true', default=False, help='Generates key for encrypting NVS partition') parser_encr.add_argument('--keyfile', default=None, help='Path to output encryption keys file') parser_encr.add_argument('--inputkey', default=None, help='File having key for encrypting NVS partition') parser_encr.add_argument('--outdir', default=os.getcwd(), help='Output directory to store files created.\ \n(Default: current directory)') parser_decr = subparser.add_parser('decrypt', help='Decrypt NVS encrypted partition', formatter_class=argparse.RawTextHelpFormatter) parser_decr.set_defaults(func=decrypt) parser_decr.add_argument('input', default=None, help='Path to encrypted NVS partition file to parse') parser_decr.add_argument('key', default=None, help='Path to file having keys for decryption') parser_decr.add_argument('output', default=None, help='Path to output decrypted binary file') parser_decr.add_argument('--outdir', default=os.getcwd(), help='Output directory to store files created.\ \n(Default: current directory)') args = parser.parse_args() args.func(args) if __name__ == '__main__': main()
py
1a54b28acedd9ff633d1db4868301520a6ba9dcb
import csv import sys #This program was written in Python 3.6.3 by Henry Caushi. You are free to use it for any reason, without my permission, without having to inform myself or anyone else #This program was was written to aid other programs, by providing a list of all event IDs so that they appear only once #List of all event IDs list_ids = [] filename = "Higgs_Hunters_data_ALL.csv" #Open the data file f = open(filename+,"r") reader = csv.reader(f) for row in reader: #If an event ID is not already added to the list, add it to the list if row[3] not in list_ids: list_ids.append(row[3]) f.close() #Open a new file, and dump the event IDs f = open("List IDs.txt","w") for row in list_ids: f.write(row+"\n") f.close()
py
1a54b2d585824fe4ae3901e30d6faf682affc7e0
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('Bcl2', ['BidM', 'BaxA']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'Bcl2', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM', 'Bcl2']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6A', ['C8pro']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 21500.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('Bcl2_0', 328000.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6A_0', 0.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('Bcl2_obs', Bcl2()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6A_obs', C6A()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None, Bcl2=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None, Bcl2=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None, Bcl2=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('inhibition_0_Bcl2_inhibitor_BidM_inh_target', Bcl2(BidM=None, BaxA=None) + BidM(BaxM=None, Bcl2=None) | Bcl2(BidM=1, BaxA=None) % BidM(BaxM=None, Bcl2=1), inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr) Rule('inhibition_0_Bcl2_inhibitor_BaxA_inh_target', Bcl2(BidM=None, BaxA=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | Bcl2(BidM=None, BaxA=1) % BaxA(BaxM=None, Bcl2=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(Bcl2(BidM=None, BaxA=None), Bcl2_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None, Bcl2=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6A(C8pro=None), C6A_0) Initial(C6pro(C3A=None), C6pro_0)
py
1a54b2d9ff285fe4e246dab55e01346336899a5d
import os from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail meessage = Mail( from_email='[email protected]', to_emails='[email protected]', subject='Sending with Twilio SendGrid is Fun', html_content='<strong>and easy to do anywhere, even with Python</strong>') try: sg = SendGridAPIClient(os.environ.get('SENDGRID_API_KEY')) response = sg.send(message) print(response.status_code) print(response.body) print(response.headers) except Exception as e: print(e.message)
py
1a54b329c79178875b7a9c33abd65a56470386e2
""" Density fitting and interpolation classes """ import numpy as np from scipy.optimize import leastsq, least_squares, curve_fit from scipy.interpolate import PchipInterpolator, CubicSpline import pdb # Idealised models def sech(z): return 2./(np.exp(z) + np.exp(-z)) def ideal_rho_tanh(z, rho0, drho, dp, L): #return drho/2 - drho/2*np.tanh(dp + dp*z/L ) return drho/2 * (1 - np.tanh(dp + dp*z/L ) ) + rho0 #return drho/2 * (1 - np.tanh(z/L + 1 ) ) def lamb_tanh_rho(z, rho0, dp, z1, h1, H=None): # Assumes z is negative down if H is None: H = z.min() zhat = z-H return rho0*(1 - dp*(1 + np.tanh( (zhat-z1)/h1) ) ) def single_tanh_rho(z, rho0, rho1, z1, h1,): #return rho0 + rho1/2*(1-np.tanh( (z+z1)/h1)) return rho0 - rho1*np.tanh((z+z1)/h1) def double_tanh_rho_orig(z, rho0, rho1, rho2, z1, z2, h1, h2): """ Seven parameter model """ return rho0 + rho1/2*(1-np.tanh( (z+z1)/h1)) +\ rho2/2*(1-np.tanh( (z+z2)/h2)) def double_tanh_rho(z, rho0, rho1, rho2, z1, z2, h1, h2): """ Seven parameter model """ #return rho0 + rho1/2*(1-np.tanh( (z+z1)/h1)) +\ # rho2/2*(1-np.tanh( (z+z2)/h2)) return rho0 - rho1*np.tanh((z+z1)/h1) -\ rho2*np.tanh((z+z2)/h2) def double_tanh_rho_new(z, rho0, rho1, z1, z2, h1, h2): """ Six parameter model proposed by Andrew Manderson and Ed Cripps, UWA Stats """ return rho0 - rho1* (np.tanh((z+z1)/h1) +\ np.tanh((z+z1+z2)/h2)) def fdiff(coeffs, rho, z, density_func): if density_func=='double_tanh': soln = double_tanh_rho(z, *coeffs) elif density_func=='double_tanh_new': soln = double_tanh_rho_new(z, *coeffs) elif density_func=='single_tanh': soln = single_tanh_rho(z, *coeffs) else: soln = density_func(z, coeffs) #print coeffs[-4], coeffs[-3], coeffs[-2], coeffs[-1] return rho - soln def fit_rho(rho, z, density_func='single_tanh', errmax=1.0, bounds=None, initguess=None): """ Fits an analytical density profile to data Uses a robust linear regression Inputs: --- rho: vector of density [Nz] z : depth [Nz] w/ negative values i.e. 0 at surface, positive: up Returns: --- rhofit: best fit function at z locations f0: tuple with analytical parameters """ status = 0 rho0 = rho.min() #rhotry = rho # Use "least_squares" at it allows bounds on fitted parameters to be input rhotry = rho # - rho0 H = np.abs(z).max() if density_func=='double_tanh': initguess = [rho0, 0.01, 0.01, 1., 2., H/10., H/10.] # double tanh guess #bounds = [(0,10.),(0,10.),(0,H),(0,H),(0,H/2),(0,H/2)] bounds = [(rho0-5,0.,0.,0.,0.,H/20.,H/20.),(rho0+5,10.,10.,H,H,H/2,H/2)] elif density_func=='double_tanh_new': initguess = [rho0, 0.01, 1., 2., H/10., H/10.] # double tanh guess #bounds = [(0,10.),(0,10.),(0,H),(0,H),(0,H/2),(0,H/2)] bounds = [(rho0-5,0.,0.,0.,H/20.,H/20.),(rho0+5,10.,H,H,H/2,H/2)] elif density_func=='single_tanh': initguess = [rho0, 1e-3, 40., 100.] # single stratification function bounds = [(rho0-5,0.,0.,0.),(rho0+5,10.,2*H,2*H)] #else: User must set bounds soln =\ least_squares(fdiff, initguess, args=(rhotry, z, density_func), \ bounds=bounds,\ xtol=1e-10, ftol=1e-10, loss='cauchy', f_scale=0.1, # Robust verbose=0, ) f0 = soln['x'] #soln = leastsq(fdiff, initguess, args=(rhotry, z), \ # full_output=True) #f0 = soln[0] # This could be changed to pass a function directly... if density_func=='double_tanh': rhofit = double_tanh_rho(z, *f0)# + rho0 elif density_func=='double_tanh_new': rhofit = double_tanh_rho_new(z, *f0)# + rho0 elif density_func=='single_tanh': rhofit = single_tanh_rho(z, *f0) else: rhofit = density_func(z, f0) err = np.linalg.norm(rhofit - rhotry) if err > errmax: print('Warning in density fit -- large error: %f'%err) status = -1 #raise Exception('maximum fitting error exceeded') return rhofit, f0, status class FitDensity(object): """ Interpolate by fitting an analytical profile first """ density_func = 'single_tanh' bounds = None initguess = None def __init__(self, rho, z, **kwargs): self.__dict__.update(**kwargs) self.rho0 = rho.min() rhofit, self.f0, self.status = fit_rho(rho, z, density_func=self.density_func, bounds=self.bounds, initguess=self.initguess) def __call__(self, Z): f0 = self.f0 if self.density_func=='double_tanh': return double_tanh_rho(Z, *f0)# + self.rho0 elif self.density_func=='double_tanh_new': return double_tanh_rho_new(Z, *f0)# + self.rho0 elif self.density_func=='single_tanh': return single_tanh_rho(Z, *f0) else: return self.density_func(Z, f0) class InterpDensity(object): """ Wrapper class for pchip function """ density_func = None def __init__(self, rho ,z, **kwargs): self.__dict__.update(**kwargs) self.Fi = PchipInterpolator(z, rho, axis=0, extrapolate=True) #self.Fi = CubicSpline(z, rho, axis=0, bc_type='natural') def __call__(self, Z): return self.Fi(Z) class ChebyFitDensity(object): """ Wrapper class for Chebyshev Polynomial fit """ order=None def __init__(self, rho ,z, **kwargs): self.__dict__.update(**kwargs) nz = z.size if self.order is None: self.order = int(max(3,nz -2)) self.f0 = coefs = np.polynomial.chebyshev.chebfit(z, rho, self.order) def __call__(self, Z): return np.polynomial.chebyshev.chebval(Z, self.f0)
py
1a54b4b17dd80029a954b2dc6c323d71be8f8290
import os # sprawdzenie czy plik istnieje if os.path.isfile("/tmp/abc.txt"): print("istnieje") else: print("nie istnieje") # listowanie katalogu i sprawdzanie typów dl = os.listdir("/tmp/") print (dl) for f in dl: if os.path.isfile(f): print("\"" + f + "\" jest plikiem") elif os.path.isdir(f): print("\"" + f + "\" jest katalogiem") else: print("\"" + f + "\" jest czymś innym") # można także rekurencyjnie wraz z podkatalogami for currDir, dirs, files in os.walk('/tmp'): print("podkatalogi \"" + currDir + "\":") for d in dirs: print(" " + os.path.join(currDir, d)) print("pliki w \"" + currDir + "\":") for f in files: print(" " + os.path.join(currDir, f)) # zmiana nazwy os.rename("/tmp/a.txt" "/tmp/b.txt") # usuwanie os.remove("/tmp/b.txt")
py
1a54b4b9d7ef3580b31e62693083fa59aae2c3e5
# -*- coding: utf-8 -*- ''' 专门为wapi程序准备的初始化入口 ''' ''' 统一拦截处理和统一错误处理 ''' from api.interceptors.Auth import * from api.interceptors.ErrorHandler import * ''' 蓝图功能,对所有的url进行蓝图功能配置 ''' from api.controllers.route import *
py
1a54b4cb29a262e674555f2cbbc5af659809474c
import math import json import numpy as np import torch from mmcv.runner import get_dist_info from torch.utils.data import Sampler class DistributedClassAwareSampler(Sampler): def __init__(self, dataset, samples_per_gpu=1, num_replicas=None, rank=None, seed=1, sample_weight_path=None): _rank, _num_replicas = get_dist_info() if num_replicas is None: num_replicas = _num_replicas if rank is None: rank = _rank self.dataset = dataset self.samples_per_gpu = samples_per_gpu self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.seed = seed if seed is not None else 1 assert hasattr(self.dataset, 'flag') assert len(self.dataset.flag) == len(self.dataset) self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) with open(sample_weight_path, "r") as f: sample_weight = json.load(f) self.sample_weights = torch.tensor( list(sample_weight.values()), dtype=torch.float) self.indices = None self.set_epoch(-1) def __iter__(self): return iter(self.indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch g = torch.Generator() g.manual_seed(self.seed + self.epoch) indices = torch.multinomial( self.sample_weights, len(self.dataset), generator=g, replacement=True ).numpy() self.flag = self.dataset.flag[indices] self.group_sizes = np.bincount(self.flag) self.num_samples = 0 for i, j in enumerate(self.group_sizes): self.num_samples += math.ceil(self.group_sizes[i] / self.samples_per_gpu / self.num_replicas) * self.samples_per_gpu self.total_size = self.num_samples * self.num_replicas indices_group = [] for i, size in enumerate(self.group_sizes): if size > 0: flag_i_indice = np.where(self.flag == i)[0] assert len(flag_i_indice) == size indice = indices[flag_i_indice].tolist() extra = math.ceil( size / self.samples_per_gpu / self.num_replicas ) * self.samples_per_gpu * self.num_replicas - len(indice) tmp = indice.copy() for _ in range(extra // size): indice.extend(tmp) indice.extend(tmp[:extra % size]) indices_group.extend(indice) assert len(indices_group) == self.total_size indices_group = [ indices_group[j] for i in list( torch.randperm( len(indices_group) // self.samples_per_gpu, generator=g)) for j in range(i * self.samples_per_gpu, (i + 1) * self.samples_per_gpu) ] offset = self.num_samples * self.rank indices_group = indices_group[offset:offset + self.num_samples] assert len(indices_group) == self.num_samples self.indices = indices_group
py
1a54b55514c4b875944c99f0218ae615d45aaa78
#!/usr/bin/env python """ get_result.py """ import click from urllib.parse import parse_qsl, urljoin, urlparse import requests from bs4 import BeautifulSoup DAUM_DICT_HOST = "https://dic.daum.net/" LANG = 'eng' COMMAND_SET = { 'a': 'antonym', 'e': 'example sentences', 's': 'synonym', 'q': 'quit' } COMMANDS = "more: " + ' | '.join( [f'{COMMAND_SET[key]}({key})' for key in COMMAND_SET] ) def example_url(wordid: str, page: int = 1): example_host = f'{DAUM_DICT_HOST}/word/view_example_more.do' qsl = f'?wordid={wordid}&summaryid=etc&page={page}' return urljoin(example_host, qsl) def parse(html: str): bs = BeautifulSoup(html, 'html.parser') content = bs.findAll('meta', attrs={'property': 'og:description'})[0]\ .get('content') if not content: return 'No results found.', '' try: redir_url = bs.findAll('meta', attrs={'http-equiv': 'Refresh'})[0]\ .get('content').split('URL=')[1] except IndexError: # the result comes with polysemic words redir_url = bs.findAll('a', attrs={'txt_cleansch'})[0].attrs['href'] dic_query = urlparse(redir_url).query wordid = dict(parse_qsl(dic_query))['wordid'] return content, wordid def parse_detail(html: str, wordid: str, category: str): """ parse once more to get the detailed view """ bs = BeautifulSoup(html, 'html.parser') id_set = { 'antonym': 'OPPOSITE_WORD', 'synonym': 'SIMILAR_WORD' } if category not in id_set.keys(): pass else: words = bs.find(id=id_set[category]) if not words: # there's no antonym of this keyword return 'No results found.' tags = words.findAll('li') result = [ f"{tag.find('a').text}: {tag.find('span').text}" for tag in tags ] return '\n'.join(result) def parse_example(url: str): """ extract the example sentences """ html = requests.get(url).text bs = BeautifulSoup(html, 'html.parser') list_ = bs.findAll('li') sentences = [] for l in list_: eng_phrase = l.find('span', attrs={'txt_example'}).text.split('\n')[0] mean_phrase = l.find('span', attrs={'mean_example'}).text phrase_set = f'{eng_phrase}\n -> {mean_phrase}\n\n' sentences.append(phrase_set) return ''.join(sentences) @click.command() @click.argument('keyword', metavar='<keyword>') def main(keyword): """ Use DAUM Dictionary via terminal """ click.echo('Searching...') url = f'{DAUM_DICT_HOST}search.do?q={keyword}&dic={LANG}' response = requests.get(url) meanings, wordid = parse(response.text) detailed_url = f'https://dic.daum.net/word/view.do?wordid={wordid}' detailed_text = None click.echo(meanings) if meanings == 'No results found.' and wordid == '': return while(True): value = click.prompt(click.style(COMMANDS, fg='white', bg='blue')) try: command = COMMAND_SET[value] except KeyError: click.echo("Sorry, I don't understand.") continue if value != 'q': if value == 'e': result = parse_example(example_url(wordid)) click.echo(result) else: # a / s if detailed_text is None: detailed_text = requests.get(detailed_url).text result = parse_detail(detailed_text, wordid, command) click.secho(command, fg='green') click.echo(result) else: break if __name__ == "__main__": main()
py
1a54b56d49a816dc1a46cbed02e4eb1928ff02be
import numpy as np import torch import torch.nn.functional as F def restore_bn(kernel, bn, conv_bias): gamma = bn.weight std = (bn.running_var + bn.eps).sqrt() bias = -bn.running_mean new_bias = (conv_bias - bn.bias) / gamma * std - bias new_weight = kernel * (std / gamma).reshape(-1, 1, 1, 1) return new_weight, new_bias def transI_fusebn(kernel, bn, conv_bias): gamma = bn.weight std = (bn.running_var + bn.eps).sqrt() bias = -bn.running_mean if conv_bias is not None: bias += conv_bias return kernel * ( (gamma / std).reshape(-1, 1, 1, 1)), bn.bias + bias * gamma / std def transII_addbranch(kernels, biases): return torch.sum(kernels, dim=0), torch.sum(biases, dim=0) def transIII_1x1_kxk(k1, b1, k2, b2, groups=1): if groups == 1: k = F.conv2d(k2, k1.permute(1, 0, 2, 3)) b_hat = (k2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3)) else: k_slices = [] b_slices = [] k1_T = k1.permute(1, 0, 2, 3) k1_group_width = k1.size(0) // groups k2_group_width = k2.size(0) // groups for g in range(groups): k1_T_slice = k1_T[:, g * k1_group_width:(g + 1) * k1_group_width, :, :] k2_slice = k2[g * k2_group_width:(g + 1) * k2_group_width, :, :, :] k_slices.append(F.conv2d(k2_slice, k1_T_slice)) b_slices.append( (k2_slice * b1[g * k1_group_width:(g + 1) * k1_group_width].reshape( 1, -1, 1, 1)).sum((1, 2, 3))) k, b_hat = transIV_depthconcat(k_slices, b_slices) return k, b_hat + b2 def transIV_depthconcat(kernels, biases): return torch.cat(kernels), torch.cat(biases) def transV_avg(channels, kernel_size, groups): input_dim = channels // groups k = torch.zeros((channels, input_dim, kernel_size, kernel_size)) k[np.arange(channels).tolist(), np.tile(np.arange(input_dim), groups).tolist( ), :, :] = 1.0 / kernel_size**2 return k def transVI_multiscale(kernel, target_kernel_size): """ NOTE: This has not been tested with non-square kernels (kernel.size(2) != kernel.size(3)) nor even-size kernels """ W_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2 H_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2 return F.pad( kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad]) def transVII_kxk_1x1(k1, b1, k2, b2): return F.conv2d(k1.permute(1, 0, 2, 3), k2).permute(1, 0, 2, 3), (k2 * b1.reshape(-1, 1, 1, 1)).sum( (1, 2, 3)) + b2 def transIIX_kxk_kxk(k1, b1, k2, b2, groups=1): k1 = torch.from_numpy( np.flip(np.flip(np.array(k1), axis=3), axis=2).copy()) k_size = k1.size(2) padding = k_size // 2 + 1 if groups == 1: k = F.conv2d(k2, k1.permute(1, 0, 2, 3), padding=padding) b_hat = (k2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3)) else: k_slices = [] b_slices = [] k1_T = k1.permute(1, 0, 2, 3) k1_group_width = k1.size(0) // groups k2_group_width = k2.size(0) // groups for g in range(groups): k1_T_slice = k1_T[:, g * k1_group_width:(g + 1) * k1_group_width, :, :] k2_slice = k2[g * k2_group_width:(g + 1) * k2_group_width, :, :, :] k_slices.append(F.conv2d(k2_slice, k1_T_slice, padding=padding)) b_slices.append( (k2_slice * b1[g * k1_group_width:(g + 1) * k1_group_width].reshape( 1, -1, 1, 1)).sum((1, 2, 3))) k, b_hat = transIV_depthconcat(k_slices, b_slices) return k, b_hat + b2 def transIX_bn_to_1x1(bn, in_channels, groups=1): input_dim = in_channels // groups kernel_value = np.zeros((in_channels, input_dim, 3, 3), dtype=np.float32) for i in range(in_channels): kernel_value[i, i % input_dim, 1, 1] = 1 id_tensor = torch.from_numpy(kernel_value).to(bn.weight.device) kernel = id_tensor running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std
py
1a54b7b6238dc9cd51b4d99c566445f37a2c25e8
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 """ image = mpimg.imread('./images/waymo_car.jpg') #Image Dimensions print("Image Dimensions: ", image.shape) """ """ Starting with B & W """ """ #Covert to GrayScale convGrayScale = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) print("Converted Image Dimensions: ", convGrayScale.shape) plt.imshow(convGrayScale, cmap='gray') # Print the value at the centre of the image x = convGrayScale.shape[1]//2 y = convGrayScale.shape[0]//2 print(convGrayScale[y,x]) # Finds the maximum and minimum grayscale values in this image max_val = np.amax(convGrayScale) min_val = np.amin(convGrayScale) print('Max: ', max_val) print('Min: ', min_val) """ """ With Colour Images """ """ #image = mpimg.imread('images/wa_state_highway.jpg') plt.imshow(image) # Copying RGB Channels into separate arrays red = image[:,:,0] green = image[:,:,1] blue = image[:,:,2] f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(20,10)) ax1.set_title('Red channel') ax1.imshow(red, cmap='gray') ax2.set_title('Green channel') ax2.imshow(green, cmap='gray') ax3.set_title('Blue channel') ax3.imshow(blue, cmap='gray') """ """ Creating Blue Screen """ """ pizzaImage = cv2.imread("./images/pizza_bluescreen.jpg") print("This image is a(n)", type(pizzaImage)) #Please remember that the image dimensions are displayed as Height x Width x Colour Components print("Image Dimensions", pizzaImage.shape) #We need to make a copy and convert the image to RGB pizzaCopy = np.copy(pizzaImage) pizzaCopy = cv2.cvtColor(pizzaCopy, cv2.COLOR_BGR2RGB) plt.imshow(pizzaCopy) #Identifying Colour thresholds for Blue lowerBlue = np.array([0,0,210]) upperBlue = np.array([70,70,255]) #Creating masks for Blue area mask = cv2.inRange(pizzaCopy, lowerBlue, upperBlue) #Visualize the mask - Black area means that the mask isn't effective there plt.imshow(mask, cmap='gray') maskedImage = np.copy(pizzaCopy) maskedImage[mask != 0] = [0, 0, 0] plt.imshow(maskedImage, cmap='gray') #Adding the background backgroundImage = cv2.imread('./images/space_background.jpg') backgroundImage = cv2.cvtColor(backgroundImage, cv2.COLOR_BGR2RGB) croppedImage = backgroundImage[0:514, 0:816] croppedImage[mask == 0] = [0,0,0] plt.imshow(croppedImage) completeImage = croppedImage + maskedImage plt.imshow(completeImage) """ """ Coding for Green Screen """ """ carImage = cv2.imread("./images/car_green_screen.jpg") print("This image is a(n)", type(carImage)) #Please remember that the image dimensions are displayed as Height x Width x Colour Components print("Image Dimensions", carImage.shape) #We need to make a copy and convert the image to RGB carCopy = np.copy(carImage) carCopy = cv2.cvtColor(carCopy, cv2.COLOR_BGR2RGB) plt.imshow(carCopy) #Identifying Colour thresholds for Green lowerGreen = np.array([36, 25, 25]) upperGreen = np.array([70, 255, 255]) #Creating masks for Green area mask = cv2.inRange(carCopy, lowerGreen, upperGreen) #Visualize the mask - Black area means that the mask isn't effective there plt.imshow(mask, cmap='gray') maskedImage = np.copy(carCopy) maskedImage[mask != 0] = [0, 0, 0] plt.imshow(maskedImage, cmap='gray') #Adding the background backgroundImage = cv2.imread('./images/space_background.jpg') backgroundImage = cv2.cvtColor(backgroundImage, cv2.COLOR_BGR2RGB) plt.imshow(backgroundImage, cmap='gray') croppedImage = backgroundImage[0:450, 0:660] croppedImage[mask == 0] = [0,0,0] plt.imshow(croppedImage) completeImage = croppedImage + maskedImage plt.imshow(completeImage) """ """ Converting to HSV format """ image = cv2.imread('images/water_balloons.jpg') image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) plt.imshow(image) # RGB channels r = image[:,:,0] g = image[:,:,1] b = image[:,:,2] f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(20,10)) ax1.set_title('Red') ax1.imshow(r, cmap='gray') ax2.set_title('Green') ax2.imshow(g, cmap='gray') ax3.set_title('Blue') ax3.imshow(b, cmap='gray') # Convert from RGB to HSV hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) # HSV channels h = hsv[:,:,0] s = hsv[:,:,1] v = hsv[:,:,2] f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(20,10)) ax1.set_title('Hue') ax1.imshow(h, cmap='gray') ax2.set_title('Saturation') ax2.imshow(s, cmap='gray') ax3.set_title('Value') ax3.imshow(v, cmap='gray') # Define our color selection criteria in HSV values lower_hue = np.array([160,0,0]) upper_hue = np.array([180,255,255]) # Define our color selection criteria in RGB values lower_pink = np.array([180,0,100]) upper_pink = np.array([255,255,230]) # Define the masked area in RGB space mask_rgb = cv2.inRange(image, lower_pink, upper_pink) # mask the image masked_image = np.copy(image) masked_image[mask_rgb==0] = [0,0,0] # Vizualize the mask plt.imshow(masked_image) # Now try HSV! # Define the masked area in HSV space mask_hsv = cv2.inRange(hsv, lower_hue, upper_hue) # mask the image masked_image = np.copy(image) masked_image[mask_hsv==0] = [0,0,0] # Vizualize the mask plt.imshow(masked_image)
py
1a54b7d425f4736f0ad6b06ae7dd31ffe4a98bed
version_info = (0, 12, 17, 'final', 0) _specifier_ = {'alpha': 'a', 'beta': 'b', 'candidate': 'rc', 'final': ''} __version__ = '%s.%s.%s%s'%(version_info[0], version_info[1], version_info[2], '' if version_info[3]=='final' else _specifier_[version_info[3]]+str(version_info[4])) __frontend_version__ = '^0.5.17'
py
1a54b899ede7700d0e27202ae96eeebe0068786a
""" The DRAGON plugin. This is a namespace package for running DRAGON. """ from .plugin import DragonPlugin
py
1a54b8cb92618966f6945e9cf463c20d23d33325
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** # Export this package's modules as members: from ._enums import * from .get_machine_learning_compute import * from .get_machine_learning_service import * from .get_private_endpoint_connection import * from .get_workspace import * from .get_workspace_connection import * from .list_machine_learning_compute_keys import * from .list_machine_learning_compute_nodes import * from .list_notebook_keys import * from .list_storage_account_keys import * from .list_workspace_keys import * from .list_workspace_notebook_access_token import * from .machine_learning_compute import * from .machine_learning_service import * from .private_endpoint_connection import * from .workspace import * from .workspace_connection import * from ._inputs import * from . import outputs def _register_module(): import pulumi from ... import _utilities class Module(pulumi.runtime.ResourceModule): _version = _utilities.get_semver_version() def version(self): return Module._version def construct(self, name: str, typ: str, urn: str) -> pulumi.Resource: if typ == "azure-native:machinelearningservices/v20210101:MachineLearningCompute": return MachineLearningCompute(name, pulumi.ResourceOptions(urn=urn)) elif typ == "azure-native:machinelearningservices/v20210101:MachineLearningService": return MachineLearningService(name, pulumi.ResourceOptions(urn=urn)) elif typ == "azure-native:machinelearningservices/v20210101:PrivateEndpointConnection": return PrivateEndpointConnection(name, pulumi.ResourceOptions(urn=urn)) elif typ == "azure-native:machinelearningservices/v20210101:Workspace": return Workspace(name, pulumi.ResourceOptions(urn=urn)) elif typ == "azure-native:machinelearningservices/v20210101:WorkspaceConnection": return WorkspaceConnection(name, pulumi.ResourceOptions(urn=urn)) else: raise Exception(f"unknown resource type {typ}") _module_instance = Module() pulumi.runtime.register_resource_module("azure-native", "machinelearningservices/v20210101", _module_instance) _register_module()
py
1a54b918c75b8f6851f014b049727a99f83a5fe1
############# constants TITLE = "Cheese Maze" DEVELOPER = "Jack Gartner" HISTORY = "A mouse wants eat his cheese, Make it to the Hashtag to win, watch out for plus signs, $ is a teleport, P is a power up, Obtain the Key (K) in order to unlock the door (D)" INSTRUCTIONS = "left arrow key\t\t\tto move left\nright arrow key\t\t\tto move right\nup arrow key\t\t\tto move up\ndown arrow key\t\t\tto move down\npress q\t\t\t\t\tto quit" ############# functions def displayTitle(): print(TITLE) print("By " + DEVELOPER) print() print(HISTORY) print() print(INSTRUCTIONS) print() def displayBoard(): print("-----------------") print("| +\033[36mK\033[37m + \033[33mP\033[37m|") print("|\033[32m#\033[37m \033[31mD\033[37m + |") print("|++++ ++++++ |") print("| + |") print("| ++++++ +++++|") print("| \033[34m$\033[37m|") print("-----------------")
py
1a54b9b79cf4ce739e9b7e3f439af4601538de99
# (C) Copyright 2005- ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # # # Python implementation: bufr_clone # # Description: how to create a new BUFR message by cloning # an existing message. # from __future__ import absolute_import import traceback import sys from eccodes import * INPUT = '../../data/bufr/syno_1.bufr' OUTPUT = 'bufr_clone_test_p.clone.bufr' VERBOSE = 1 # verbose error reporting def example(): # open BUFR file fin = open(INPUT, 'rb') # open output BUFR file fout = open(OUTPUT, 'wb') # get handle for message bufr = codes_bufr_new_from_file(fin) # create several clones of this message and alter them # in different ways for centre in range(0, 3): # clone the message clone_id = codes_clone(bufr) # this is the place where you may wish to modify the clone codes_set(clone_id, 'bufrHeaderCentre', centre) # write the cloned message to a file codes_write(clone_id, fout) # release the clone's handle codes_release(clone_id) # release the source's handle codes_release(bufr) fin.close() fout.close() def main(): try: example() except CodesInternalError as err: if VERBOSE: traceback.print_exc(file=sys.stderr) else: sys.stderr.write(err.msg + '\n') return 1 if __name__ == "__main__": sys.exit(main())
py
1a54badbeb2ee6fcab9e5d3f258f903941cb00ce
import datetime as dt import functools import itertools import logging from logging.handlers import RotatingFileHandler import os import sys import threading import traceback # pylint: disable=redefined-builtin from codecs import open from collections import namedtuple from time import time from cli_helpers.tabular_output import TabularOutputFormatter from cli_helpers.tabular_output.preprocessors import (align_decimals, format_numbers) import humanize import click from prompt_toolkit.shortcuts import PromptSession, CompleteStyle from prompt_toolkit.completion import DynamicCompleter, ThreadedCompleter from prompt_toolkit.enums import DEFAULT_BUFFER, EditingMode from prompt_toolkit.document import Document from prompt_toolkit.filters import HasFocus, IsDone from prompt_toolkit.lexers import PygmentsLexer from prompt_toolkit.layout.processors import (ConditionalProcessor, HighlightMatchingBracketProcessor, TabsProcessor) from prompt_toolkit.history import FileHistory from prompt_toolkit.auto_suggest import AutoSuggestFromHistory from pygments.lexers.sql import PostgresLexer from mssqlcli.config import ( get_casing_file, config_location, ensure_dir_exists, get_config, ) from mssqlcli.completion_refresher import CompletionRefresher from mssqlcli.__init__ import __version__ from mssqlcli.encodingutils import text_type from mssqlcli.key_bindings import mssqlcli_bindings from mssqlcli.mssqlcliclient import MssqlCliClient from mssqlcli.mssqlcompleter import MssqlCompleter from mssqlcli.mssqlstyle import style_factory, style_factory_output from mssqlcli.mssqltoolbar import create_toolbar_tokens_func from mssqlcli.sqltoolsclient import SqlToolsClient from mssqlcli.packages import special from mssqlcli.mssqlbuffer import mssql_is_multiline from mssqlcli.util import is_command_valid import mssqlcli.localized_strings as localized # Query tuples are used for maintaining history MetaQuery = namedtuple( 'Query', [ 'query', # The entire text of the command 'successful', # True If all subqueries were successful 'total_time', # Time elapsed executing the query 'meta_changed', # True if any subquery executed create/alter/drop 'db_changed', # True if any subquery changed the database 'path_changed', # True if any subquery changed the search path 'mutated', # True if any subquery executed insert/update/delete 'contains_secure_statement', # True if any subquery contains the security statement ]) MetaQuery.__new__.__defaults__ = ('', False, 0, False, False, False, False, False) OutputSettings = namedtuple( 'OutputSettings', 'table_format dcmlfmt floatfmt missingval expanded max_width case_function' ) OutputSettings.__new__.__defaults__ = ( None, None, None, '<null>', False, None, lambda x: x ) security_keywords = ['password', 'secret', 'encrypted_value'] def security_words_found_in(query): try: tokens = query.lower() return any([keyword for keyword in security_keywords if keyword in tokens]) except AttributeError: return False class MssqlFileHistory(FileHistory): def append_string(self, string): if security_words_found_in(string): return super(MssqlFileHistory, self).append_string(string) class MssqlCli(object): # pylint: disable=too-many-instance-attributes, useless-object-inheritance max_len_prompt = 30 default_prompt = '\\d> ' def set_default_pager(self, config): configured_pager = config['main'].get('pager') os_environ_pager = os.environ.get('PAGER') is_less_installed = is_command_valid(['less', '--version']) default_pager = configured_pager or os_environ_pager or \ ('less -SRXF' if is_less_installed else False) or None if configured_pager: self.logger.info( 'Default pager found in config file: "%s"', configured_pager) elif os_environ_pager: self.logger.info('Default pager found in PAGER environment variable: "%s"', os_environ_pager) elif is_less_installed: self.logger.info('Default pager set to Less') else: self.logger.info( 'No default pager found in environment. Using os default pager') # Set default set of less recommended options, if they are not already set. # They are ignored if pager is different than less. if not os.environ.get('LESS'): os.environ['LESS'] = '-SRXF' if default_pager is not None: os.environ['PAGER'] = default_pager return default_pager def __init__(self, options): # Load config. c = self.config = get_config(options.mssqlclirc_file) self.initialize_logging() self.logger = logging.getLogger(u'mssqlcli.main') self.interactive_mode = options.interactive_mode self.table_format = c['main']['table_format'] self.decimal_format = c['data_formats']['decimal'] self.float_format = c['data_formats']['float'] self.null_string = c['main'].get('null_string', '<null>') self.expanded_output = c['main']['expand'] == 'always' self.integrated_auth = options.integrated_auth self.less_chatty = bool( options.less_chatty) or c['main'].as_bool('less_chatty') or self.interactive_mode keyword_casing = c['main']['keyword_casing'] self.settings = { 'casing_file': get_casing_file(c), 'generate_casing_file': c['main'].as_bool('generate_casing_file'), 'generate_aliases': c['main'].as_bool('generate_aliases'), 'asterisk_column_order': c['main']['asterisk_column_order'], 'qualify_columns': c['main']['qualify_columns'], 'case_column_headers': c['main'].as_bool('case_column_headers'), 'search_path_filter': c['main'].as_bool('search_path_filter'), 'single_connection': False, 'less_chatty': self.less_chatty, 'keyword_casing': keyword_casing, } if self.interactive_mode: pager = self.set_default_pager(c) self.prompt_session = None # set auto_expand to false if less is detected with auto expand self.auto_expand = options.auto_vertical_output \ or (c['main']['expand'] == 'auto' and pager != 'less -SRXF') self.multiline = c['main'].as_bool('multi_line') self.multiline_mode = c['main'].get('multi_line_mode', 'tsql') self.vi_mode = c['main'].as_bool('vi') self.prompt_format = options.prompt or c['main'].get('prompt', self.default_prompt) self.row_limit = options.row_limit self.min_num_menu_lines = c['main'].as_int('min_num_menu_lines') self.multiline_continuation_char = c['main']['multiline_continuation_char'] self.syntax_style = c['main']['syntax_style'] self.cli_style = c['colors'] self.output_style = style_factory_output(self.syntax_style, self.cli_style) self.wider_completion_menu = c['main'].as_bool('wider_completion_menu') self.on_error = c['main']['on_error'].upper() self.now = dt.datetime.today() self.completion_refresher = CompletionRefresher() self.query_history = [] # Initialize completer smart_completion = c['main'].get('smart_completion', 'True').lower() == 'true' self.completer = MssqlCompleter(smart_completion=smart_completion, settings=self.settings) self._completer_lock = threading.Lock() # input and output file are for non-interactive mode self.input_file = options.input_file self.output_file = options.output_file self.query = options.query self.sqltoolsclient = SqlToolsClient(enable_logging=options.enable_sqltoolsservice_logging) self.mssqlcliclient_main = MssqlCliClient(options, self.sqltoolsclient) # exit and return error if user enters interactive mode with -i or -o arguments enabled if self.interactive_mode and (self.input_file or self.output_file): raise ValueError("Invalid arguments: -i and -o can only be used in non-interactive " "mode.") # exit and return error if both query text and an input file are specified if self.query and self.input_file: raise ValueError("Invalid arguments: either query [-Q] or input file [-i] may be " "specified.") def __del__(self): # Shut-down sqltoolsservice if self.sqltoolsclient: self.sqltoolsclient.shutdown() # TODO: possibly use at a later date for expanded output file functionality # def write_to_file(self, pattern, **_): # if not pattern: # self.output_file = None # message = 'File output disabled' # return [(None, None, None, message, '', True)] # filename = os.path.abspath(os.path.expanduser(pattern)) # if not os.path.isfile(filename): # try: # open(filename, 'w').close() # except IOError as e: # self.output_file = None # message = str(e) + '\nFile output disabled' # return [(None, None, None, message, '', False)] # self.output_file = filename # message = 'Writing to file "%s"' % self.output_file # return [(None, None, None, message, '', True)] def initialize_logging(self): log_file = self.config['main']['log_file'] if log_file == 'default': log_file = config_location() + 'mssqlcli.log' ensure_dir_exists(log_file) log_level = self.config['main']['log_level'] # Disable logging if value is NONE by switching to a no-op handler. # Set log level to a high value so it doesn't even waste cycles getting # called. if log_level.upper() == 'NONE': handler = logging.NullHandler() else: # creates a log buffer with max size of 20 MB and 5 backup files handler = RotatingFileHandler(os.path.expanduser(log_file), encoding='utf-8', maxBytes=1024*1024*20, backupCount=5) level_map = {'CRITICAL': logging.CRITICAL, 'ERROR': logging.ERROR, 'WARNING': logging.WARNING, 'INFO': logging.INFO, 'DEBUG': logging.DEBUG, 'NONE': logging.CRITICAL } log_level = level_map[log_level.upper()] formatter = logging.Formatter( '%(asctime)s (%(process)d/%(threadName)s) ' '%(name)s %(levelname)s - %(message)s') handler.setFormatter(formatter) root_logger = logging.getLogger('mssqlcli') root_logger.addHandler(handler) root_logger.setLevel(log_level) root_logger.info('Initializing mssqlcli logging.') root_logger.debug('Log file %r.', log_file) def set_main_mssqlcli_client(self, mssqlcli_client): self.mssqlcliclient_main = mssqlcli_client def connect_to_database(self): owner_uri, error_messages = self.mssqlcliclient_main.connect_to_database() if not owner_uri and error_messages: click.secho('\n'.join(error_messages), err=True, fg='yellow') self.logger.debug('Database connection failed: %r.', error_messages) sys.exit(1) def handle_editor_command(self, text): r""" Editor command is any query that is prefixed or suffixed by a '\e'. The reason for a while loop is because a user might edit a query multiple times. For eg: "select * from \e"<enter> to edit it in vim, then come back to the prompt with the edited query "select * from blah where q = 'abc'\e" to edit it again. :param text: Document :return: Document """ # FIXME: using application.pre_run_callables like this here is not the best solution. # It's internal api of prompt_toolkit that may change. This was added to fix #668. # We may find a better way to do it in the future. # pylint: disable=no-member editor_command = special.editor_command(text) while editor_command: filename = special.get_filename(text) query = (special.get_editor_query(text) or self.get_last_query()) sql, message = special.open_external_editor(filename, sql=query) if message: # Something went wrong. Raise an exception and bail. raise RuntimeError(message) while True: try: text = self.prompt_session.prompt(default=sql) break except KeyboardInterrupt: sql = "" editor_command = special.editor_command(text) return text def _execute_interactive_command(self, text): """ Runs commands in the interactive CLI mode. """ logger = self.logger # Initialize default metaquery in case execution fails query = MetaQuery(query=text, successful=False) try: output, query = self._evaluate_command(text) except KeyboardInterrupt: # Issue where Ctrl+C propagates to sql tools service process and kills it, # so that query/cancel request can't be sent. # Right now the sql_tools_service process is killed and we restart # it with a new connection. click.secho(u'Cancelling query...', err=True, fg='red') self.reset() logger.debug("cancelled query, sql: %r", text) click.secho("Query cancelled.", err=True, fg='red') except NotImplementedError: click.secho('Not Yet Implemented.', fg="yellow") else: if query.total_time > 1: # pylint: disable=no-member print('Time: %0.03fs (%s)' % (query.total_time, humanize.time.naturaldelta(query.total_time))) else: print('Time: %0.03fs' % query.total_time) # Check if we need to update completions, in order of most # to least drastic changes if query.db_changed: with self._completer_lock: self.completer.reset_completions() self.refresh_completions(persist_priorities='keywords') elif query.meta_changed: self.refresh_completions(persist_priorities='all') if not query.contains_secure_statement: # Allow MssqlCompleter to learn user's preferred keywords, etc. with self._completer_lock: self.completer.extend_query_history(text) self.query_history.append(query) return output def execute_query(self, text): """ Processes a query string and outputs to file or terminal """ if self.interactive_mode: output = self._execute_interactive_command(text) else: # non-interactive mode output, _ = self._evaluate_command(text) self._output_query(output) return output def _output_query(self, output): """ Specifies how query output is handled """ if self.interactive_mode: click.echo_via_pager('\n'.join(output)) else: if self.output_file: try: with open(self.output_file, 'w', encoding='utf-8') as f: click.echo('\n'.join(output), file=f) except IOError as e: click.secho(str(e), err=True, fg='red') sys.exit(1) else: click.echo('\n'.join(output)) def run(self): """ Spins up CLI. """ # raise error if interactive mode is set to false here if not self.interactive_mode: raise ValueError("Invalid arguments: 'run' must be used in interactive mode! Please set " "interactive_mode to True.") # exit and return error if user enters interactive mode with -o argument enabled if self.output_file: raise ValueError("Invalid arguments: -o must be used with interactive mode set to " "false.") history_file = self.config['main']['history_file'] if history_file == 'default': history_file = config_location() + 'history' history = MssqlFileHistory(os.path.expanduser(history_file)) self.refresh_completions(history=history, persist_priorities='none') self.prompt_session = self._build_cli(history) if not self.less_chatty: print('Version: {}'.format(__version__)) print('Mail: [email protected]') print('Home: http://github.com/dbcli/mssql-cli') try: while True: try: text = self.prompt_session.prompt() except KeyboardInterrupt: continue # The reason we check here instead of inside the mssqlcliclient is # because we want to raise the Exit exception which will be # caught by the try/except block that wraps the mssqlcliclient execute # statement. if self.quit_command(text): raise EOFError try: text = self.handle_editor_command(text) except RuntimeError as e: self.logger.error("sql: %r, error: %r", text, e) self.logger.error("traceback: %r", traceback.format_exc()) click.secho(str(e), err=True, fg='red') continue self.execute_query(text) self.now = dt.datetime.today() except EOFError: self.mssqlcliclient_main.shutdown() if not self.less_chatty: print(localized.goodbye()) def _build_cli(self, history): """ Builds prompt session. NOTE: PROMPT-SESSION USES THIS AS DEPENDENCY. """ def get_message(): prompt = self.get_prompt(self.prompt_format) return [(u'class:prompt', prompt)] def get_continuation(width, line_number, is_soft_wrap): """ NOTE: updating parameters will cause prompt session to crash. """ # pylint: disable=unused-argument continuation = self.multiline_continuation_char * (width - 1) + ' ' return [(u'class:continuation', continuation)] get_toolbar_tokens = create_toolbar_tokens_func(self) if self.wider_completion_menu: complete_style = CompleteStyle.MULTI_COLUMN else: complete_style = CompleteStyle.COLUMN with self._completer_lock: self.prompt_session = PromptSession( message=get_message, style=style_factory(self.syntax_style, self.cli_style), # Layout options. lexer=PygmentsLexer(PostgresLexer), prompt_continuation=get_continuation, bottom_toolbar=get_toolbar_tokens, complete_style=complete_style, input_processors=[ ConditionalProcessor( processor=HighlightMatchingBracketProcessor( chars='[](){}'), #pylint: disable=invalid-unary-operand-type filter=HasFocus(DEFAULT_BUFFER) & ~IsDone()), # Render \t as 4 spaces instead of "^I" TabsProcessor(char1=u' ', char2=u' ')], reserve_space_for_menu=self.min_num_menu_lines, # Buffer options. multiline=mssql_is_multiline(self), completer=ThreadedCompleter( DynamicCompleter(lambda: self.completer)), history=history, auto_suggest=AutoSuggestFromHistory(), complete_while_typing=True, # Key bindings. enable_system_prompt=True, enable_open_in_editor=True, # Other options. key_bindings=mssqlcli_bindings(self), editing_mode=EditingMode.VI if self.vi_mode else EditingMode.EMACS, search_ignore_case=True) return self.prompt_session def _should_show_limit_prompt(self, status, rows): """ Returns True if limit prompt should be shown, False otherwise. NOTE: updating parameters will cause prompt session to crash. """ # pylint: disable=unused-argument if not rows: return False return self.interactive_mode and self.row_limit > 0 and len(rows) > self.row_limit def _evaluate_command(self, text): """ Used to run a command entered by the user during CLI operation (Puts the E in REPL) returns (results, MetaQuery) """ # pylint: disable=too-many-locals all_success = True meta_changed = False # CREATE, ALTER, DROP, etc mutated = False # INSERT, DELETE, etc db_changed = False contains_secure_statement = False path_changed = False output = [] total = 0 # Run the query. start = time() # mssql-cli if not self.mssqlcliclient_main.connect_to_database(): click.secho(u'No connection to server. Exiting.') sys.exit(1) for rows, columns, status, sql, is_error in \ self.mssqlcliclient_main.execute_query(text): total = time() - start if self._should_show_limit_prompt(status, rows): click.secho('The result set has more than %s rows.' % self.row_limit, fg='red') if not click.confirm('Do you want to continue?'): click.secho("Aborted!", err=True, fg='red') break contains_secure_statement = security_words_found_in(sql) if is_error: output.append(status) all_success = False continue if self.interactive_mode and self.auto_expand and self.prompt_session: max_width = self.prompt_session.output.get_size().columns else: max_width = None settings = OutputSettings( table_format=self.table_format, dcmlfmt=self.decimal_format, floatfmt=self.float_format, missingval=self.null_string, expanded=self.expanded_output, max_width=max_width, case_function=( self.completer.case if self.interactive_mode and self.settings['case_column_headers'] else lambda x: x ) ) formatted = self.format_output(None, rows, columns, status, settings) output.extend(formatted) db_changed, new_db_name = self.has_change_db_cmd(sql) if new_db_name: self.logger.info('Database context changed.') self.mssqlcliclient_main.connected_database = new_db_name if all_success: meta_changed = meta_changed or self.has_meta_cmd(text) return output, MetaQuery( text, all_success, total, meta_changed, db_changed, path_changed, mutated, contains_secure_statement) def _handle_server_closed_connection(self): """Used during CLI execution""" reconnect = click.prompt( 'Connection reset. Reconnect (Y/n)', show_default=False, type=bool, default=True) if reconnect: self.reset() click.secho('Reconnected!\nTry the command again.', fg='green') def shutdown(self): """ API for shutting down client """ self.mssqlcliclient_main.shutdown() def reset(self): """ Reset mssqlcli client with a new sql tools service and connection. """ self.sqltoolsclient.shutdown() self.sqltoolsclient = SqlToolsClient() self.mssqlcliclient_main = self.mssqlcliclient_main.clone(self.sqltoolsclient) database_response = self.mssqlcliclient_main.connect_to_database() if not database_response: click.secho('Unable reconnect to server %s; database %s.' % ( self.mssqlcliclient_main.server_name, self.mssqlcliclient_main.connected_database), err=True, fg='yellow') self.logger.info(u'Unable to reset connection to server %s; database %s', self.mssqlcliclient_main.server_name, self.mssqlcliclient_main.connected_database) sys.exit(1) else: owner_uri, error_messages = database_response if not owner_uri and error_messages: # can occur if database credentials change during reset self.logger.error(u'Error in reset : %s', error_messages) raise ConnectionResetError(error_messages) def refresh_completions(self, history=None, persist_priorities='all'): # Clone mssqlcliclient to create a new connection with a new owner Uri. mssqlclclient_completion_refresher = self.mssqlcliclient_main.clone() callback = functools.partial(self._on_completions_refreshed, persist_priorities=persist_priorities) self.completion_refresher.refresh(mssqcliclient=mssqlclclient_completion_refresher, callbacks=callback, history=history, settings=self.settings) return [(None, None, None, 'Auto-completion refresh started in the background.')] def _on_completions_refreshed(self, new_completer, persist_priorities): self._swap_completer_objects(new_completer, persist_priorities) if self.prompt_session: # After refreshing, redraw the CLI to clear the statusbar # "Refreshing completions..." indicator self.prompt_session.app.invalidate() def _swap_completer_objects(self, new_completer, persist_priorities): """Swap the completer object with the newly created completer. persist_priorities is a string specifying how the old completer's learned prioritizer should be transferred to the new completer. 'none' - The new prioritizer is left in a new/clean state 'all' - The new prioritizer is updated to exactly reflect the old one 'keywords' - The new prioritizer is updated with old keyword priorities, but not any other. """ with self._completer_lock: old_completer = self.completer self.completer = new_completer if persist_priorities == 'all': # Just swap over the entire prioritizer new_completer.prioritizer = old_completer.prioritizer elif persist_priorities == 'keywords': # Swap over the entire prioritizer, but clear name priorities, # leaving learned keyword priorities alone new_completer.prioritizer = old_completer.prioritizer new_completer.prioritizer.clear_names() elif persist_priorities == 'none': # Leave the new prioritizer as is pass # When mssql-cli is first launched we call refresh_completions before # instantiating the cli object. So it is necessary to check if cli # exists before trying the replace the completer object in cli. self.completer = new_completer def get_completions(self, text, cursor_position): with self._completer_lock: return self.completer.get_completions( Document(text=text, cursor_position=cursor_position), None) def get_prompt(self, string): string = string.replace('\\t', self.now.strftime('%x %X')) string = string.replace('\\u', self.mssqlcliclient_main.user_name or '(none)') string = string.replace('\\h', self.mssqlcliclient_main.prompt_host or '(none)') string = string.replace('\\d', self.mssqlcliclient_main.connected_database or '(none)') string = string.replace('\\p', str(self.mssqlcliclient_main.prompt_port) or '(none)') string = string.replace('\\n', "\n") return string def get_last_query(self): """Get the last query executed or None.""" return self.query_history[-1][0] if self.query_history else None @staticmethod def has_meta_cmd(query): """Determines if the completion needs a refresh by checking if the sql statement is an alter, create, drop, commit or rollback.""" if query and isinstance(query, str): first_token = query.split()[0] if first_token.lower() in ('alter', 'create', 'drop'): return True return False @staticmethod def has_change_db_cmd(query): """Determines if the statement is a database switch such as 'use' or '\\c' Returns (True, DBName) or (False, None) """ if query and isinstance(query, str): first_token = query.split()[0] if first_token.lower() in ('use', '\\c', '\\connect'): return True, query.split()[1].strip('"') return False, None @staticmethod def quit_command(sql): return (sql.strip().lower() == 'exit' or sql.strip().lower() == 'quit' or sql.strip() == r'\q' or sql.strip() == ':q') @staticmethod def format_output(title, cur, headers, status, settings): # pylint: disable=too-many-locals output = [] expanded = (settings.expanded or settings.table_format == 'vertical') table_format = ('vertical' if settings.expanded else settings.table_format) max_width = settings.max_width case_function = settings.case_function formatter = TabularOutputFormatter(format_name=table_format) def format_array(val): if val is None: return settings.missingval if not isinstance(val, list): return val return '{' + ','.join(text_type(format_array(e)) for e in val) + '}' def format_arrays(data, headers, **_): data = list(data) for row in data: row[:] = [ format_array(val) if isinstance(val, list) else val for val in row ] return data, headers output_kwargs = { 'sep_title': 'RECORD {n}', 'sep_character': '-', 'sep_length': (1, 25), 'missing_value': settings.missingval, 'integer_format': settings.dcmlfmt, 'float_format': settings.floatfmt, 'preprocessors': (format_numbers, format_arrays), 'disable_numparse': True, 'preserve_whitespace': True } if not settings.floatfmt: output_kwargs['preprocessors'] = (align_decimals, ) if title: output.append(title) if cur: headers = [case_function(x) for x in headers] if max_width is not None: cur = list(cur) formatted = formatter.format_output(cur, headers, **output_kwargs) if isinstance(formatted, text_type): formatted = iter(formatted.splitlines()) first_line = next(formatted) formatted = itertools.chain([first_line], formatted) if (not expanded and max_width and len( first_line) > max_width and headers): formatted = formatter.format_output( cur, headers, format_name='vertical', column_types=None, **output_kwargs) if isinstance(formatted, text_type): formatted = iter(formatted.splitlines()) output = itertools.chain(output, formatted) if status: # Only print the status if it's not None. output = itertools.chain(output, [status]) return output
py
1a54bb8934b5db7cf7bbcbd831d4cc1646341821
import copy import logging import os import time from collections import Counter from statistics import mean import numpy as np import pandas as pd from .fold_fitting_strategy import AbstractFoldFittingStrategy, SequentialLocalFoldFittingStrategy from ..abstract.abstract_model import AbstractModel from ...constants import MULTICLASS, REGRESSION, SOFTCLASS, QUANTILE, REFIT_FULL_SUFFIX from ...utils.exceptions import TimeLimitExceeded from ...utils.loaders import load_pkl from ...utils.savers import save_pkl from ...utils.utils import CVSplitter, _compute_fi_with_stddev logger = logging.getLogger(__name__) # TODO: Add metadata object with info like score on each model, train time on each model, etc. class BaggedEnsembleModel(AbstractModel): """ Bagged ensemble meta-model which fits a given model multiple times across different splits of the training data. For certain child models such as KNN, this may only train a single model and instead rely on the child model to generate out-of-fold predictions. """ _oof_filename = 'oof.pkl' def __init__(self, model_base: AbstractModel, random_state=0, **kwargs): self.model_base = model_base self._child_type = type(self.model_base) self.models = [] self._oof_pred_proba = None self._oof_pred_model_repeats = None self._n_repeats = 0 # Number of n_repeats with at least 1 model fit, if kfold=5 and 8 models have been fit, _n_repeats is 2 self._n_repeats_finished = 0 # Number of n_repeats finished, if kfold=5 and 8 models have been fit, _n_repeats_finished is 1 self._k_fold_end = 0 # Number of models fit in current n_repeat (0 if completed), if kfold=5 and 8 models have been fit, _k_fold_end is 3 self._k = None # k models per n_repeat, equivalent to kfold value self._k_per_n_repeat = [] # k-fold used for each n_repeat. == [5, 10, 3] if first kfold was 5, second was 10, and third was 3 self._random_state = random_state self.low_memory = True self._bagged_mode = None # _child_oof currently is only set to True for KNN models, that are capable of LOO prediction generation to avoid needing bagging. # TODO: Consider moving `_child_oof` logic to a separate class / refactor OOF logic. # FIXME: Avoid unnecessary refit during refit_full on `_child_oof=True` models, just re-use the original model. self._child_oof = False # Whether the OOF preds were taken from a single child model (Assumes child can produce OOF preds without bagging). self._cv_splitters = [] # Keeps track of the CV splitter used for each bagged repeat. super().__init__(problem_type=self.model_base.problem_type, eval_metric=self.model_base.eval_metric, **kwargs) def _set_default_params(self): default_params = { # 'use_child_oof': False, # [Advanced] Whether to defer to child model for OOF preds and only train a single child. 'save_bag_folds': True, # 'refit_folds': False, # [Advanced, Experimental] Whether to refit bags immediately to a refit_full model in a single .fit call. } for param, val in default_params.items(): self._set_default_param_value(param, val) super()._set_default_params() def _get_default_auxiliary_params(self) -> dict: default_auxiliary_params = super()._get_default_auxiliary_params() extra_auxiliary_params = dict( drop_unique=False, # TODO: Get the value from child instead ) default_auxiliary_params.update(extra_auxiliary_params) return default_auxiliary_params def is_valid(self): return self.is_fit() and (self._n_repeats == self._n_repeats_finished) def can_infer(self): return self.is_fit() and self.params.get('save_bag_folds', True) def is_stratified(self): if self.problem_type in [REGRESSION, QUANTILE, SOFTCLASS]: return False else: return True def is_fit(self): return len(self.models) != 0 def can_fit(self) -> bool: return not self.is_fit() or self._bagged_mode def is_valid_oof(self): return self.is_fit() and (self._child_oof or self._bagged_mode) def get_oof_pred_proba(self, **kwargs): # TODO: Require is_valid == True (add option param to ignore is_valid) return self._oof_pred_proba_func(self._oof_pred_proba, self._oof_pred_model_repeats) @staticmethod def _oof_pred_proba_func(oof_pred_proba, oof_pred_model_repeats): oof_pred_model_repeats_without_0 = np.where(oof_pred_model_repeats == 0, 1, oof_pred_model_repeats) if oof_pred_proba.ndim == 2: oof_pred_model_repeats_without_0 = oof_pred_model_repeats_without_0[:, None] return oof_pred_proba / oof_pred_model_repeats_without_0 def _init_misc(self, **kwargs): child = self._get_model_base().convert_to_template() child.initialize(**kwargs) self.eval_metric = child.eval_metric self.stopping_metric = child.stopping_metric self.quantile_levels = child.quantile_levels self.normalize_pred_probas = child.normalize_pred_probas def preprocess(self, X, preprocess_nonadaptive=True, model=None, **kwargs): if preprocess_nonadaptive: if model is None: if not self.models: return X model = self.models[0] model = self.load_child(model) return model.preprocess(X, preprocess_stateful=False) else: return X def _get_cv_splitter(self, n_splits, n_repeats, groups=None): return CVSplitter(n_splits=n_splits, n_repeats=n_repeats, groups=groups, stratified=self.is_stratified(), random_state=self._random_state) def _fit(self, X, y, X_val=None, y_val=None, X_pseudo=None, y_pseudo=None, k_fold=None, k_fold_start=0, k_fold_end=None, n_repeats=1, n_repeat_start=0, groups=None, **kwargs): use_child_oof = self.params.get('use_child_oof', False) if use_child_oof: if self.is_fit(): # TODO: We may want to throw an exception instead and avoid calling fit more than once return self k_fold = 1 k_fold_end = None groups = None if k_fold is None and groups is None: k_fold = 5 if k_fold is not None and k_fold < 1: k_fold = 1 if k_fold is None or k_fold > 1: k_fold = self._get_cv_splitter(n_splits=k_fold, n_repeats=n_repeats, groups=groups).n_splits self._validate_bag_kwargs( k_fold=k_fold, k_fold_start=k_fold_start, k_fold_end=k_fold_end, n_repeats=n_repeats, n_repeat_start=n_repeat_start, groups=groups, ) if k_fold_end is None: k_fold_end = k_fold model_base = self._get_model_base() model_base.rename(name='') kwargs['feature_metadata'] = self.feature_metadata kwargs['num_classes'] = self.num_classes # TODO: maybe don't pass num_classes to children if self.model_base is not None: self.save_model_base(self.model_base) self.model_base = None if self._oof_pred_proba is None and self.is_fit(): self._load_oof() save_bag_folds = self.params.get('save_bag_folds', True) if k_fold == 1: self._fit_single(X=X, y=y, model_base=model_base, use_child_oof=use_child_oof, **kwargs) return self else: refit_folds = self.params.get('refit_folds', False) if refit_folds: save_bag_folds = False if kwargs.get('time_limit', None) is not None: fold_start = n_repeat_start * k_fold + k_fold_start fold_end = (n_repeats - 1) * k_fold + k_fold_end folds_to_fit = fold_end - fold_start # Reserve time for final refit model kwargs['time_limit'] = kwargs['time_limit'] * folds_to_fit / (folds_to_fit + 1.2) self._fit_folds(X=X, y=y, model_base=model_base, X_pseudo=X_pseudo, y_pseudo=y_pseudo, k_fold=k_fold, k_fold_start=k_fold_start, k_fold_end=k_fold_end, n_repeats=n_repeats, n_repeat_start=n_repeat_start, save_folds=save_bag_folds, groups=groups, **kwargs) # FIXME: Don't save folds except for refit # FIXME: Cleanup self # FIXME: Don't add `_FULL` to name if refit_folds: refit_template = self.convert_to_refit_full_template() refit_template.params['use_child_oof'] = False kwargs['time_limit'] = None refit_template.fit(X=X, y=y, k_fold=1, **kwargs) refit_template._oof_pred_proba = self._oof_pred_proba refit_template._oof_pred_model_repeats = self._oof_pred_model_repeats refit_template._child_oof = True refit_template.fit_time += self.fit_time + self.predict_time return refit_template else: return self def _validate_bag_kwargs(self, *, k_fold, k_fold_start, k_fold_end, n_repeats, n_repeat_start, groups): if groups is not None: if self._n_repeats_finished != 0: raise AssertionError('Bagged models cannot call fit with `groups` specified when a full k-fold set has already been fit.') if n_repeats > 1: raise AssertionError('Cannot perform repeated bagging with `groups` specified.') return if k_fold_end is None: k_fold_end = k_fold if k_fold is None: raise ValueError('k_fold cannot be None.') if k_fold < 1: raise ValueError(f'k_fold must be equal or greater than 1, value: ({k_fold})') if n_repeat_start != self._n_repeats_finished: raise ValueError(f'n_repeat_start must equal self._n_repeats_finished, values: ({n_repeat_start}, {self._n_repeats_finished})') if n_repeats <= n_repeat_start: raise ValueError(f'n_repeats must be greater than n_repeat_start, values: ({n_repeats}, {n_repeat_start})') if k_fold_start != self._k_fold_end: raise ValueError(f'k_fold_start must equal previous k_fold_end, values: ({k_fold_start}, {self._k_fold_end})') if k_fold_start >= k_fold_end: # TODO: Remove this limitation if n_repeats > 1 raise ValueError(f'k_fold_end must be greater than k_fold_start, values: ({k_fold_end}, {k_fold_start})') if (n_repeats - n_repeat_start) > 1 and k_fold_end != k_fold: # TODO: Remove this limitation raise ValueError(f'k_fold_end must equal k_fold when (n_repeats - n_repeat_start) > 1, values: ({k_fold_end}, {k_fold})') if self._k is not None and self._k != k_fold: raise ValueError(f'k_fold must equal previously fit k_fold value for the current n_repeat, values: (({k_fold}, {self._k})') def predict_proba(self, X, normalize=None, **kwargs): model = self.load_child(self.models[0]) X = self.preprocess(X, model=model, **kwargs) pred_proba = model.predict_proba(X=X, preprocess_nonadaptive=False, normalize=normalize) for model in self.models[1:]: model = self.load_child(model) pred_proba += model.predict_proba(X=X, preprocess_nonadaptive=False, normalize=normalize) pred_proba = pred_proba / len(self.models) if self.temperature_scalar is not None: pred_proba = self._apply_temperature_scaling(pred_proba) return pred_proba def _predict_proba(self, X, normalize=False, **kwargs): return self.predict_proba(X=X, normalize=normalize, **kwargs) def score_with_oof(self, y, sample_weight=None): self._load_oof() valid_indices = self._oof_pred_model_repeats > 0 y = y[valid_indices] y_pred_proba = self.get_oof_pred_proba()[valid_indices] if sample_weight is not None: sample_weight = sample_weight[valid_indices] return self.score_with_y_pred_proba(y=y, y_pred_proba=y_pred_proba, sample_weight=sample_weight) def _fit_single(self, X, y, model_base, use_child_oof, time_limit=None, **kwargs): if self.is_fit(): raise AssertionError('Model is already fit.') if self._n_repeats != 0: raise ValueError(f'n_repeats must equal 0 when fitting a single model with k_fold == 1, value: {self._n_repeats}') model_base.name = f'{model_base.name}S1F1' model_base.set_contexts(path_context=self.path + model_base.name + os.path.sep) time_start_fit = time.time() model_base.fit(X=X, y=y, time_limit=time_limit, **kwargs) model_base.fit_time = time.time() - time_start_fit model_base.predict_time = None X_len = len(X) # Check if pred_proba is going to take too long if time_limit is not None and X_len >= 10000: max_allowed_time = time_limit * 1.3 # allow some buffer time_left = max( max_allowed_time - model_base.fit_time, time_limit * 0.1, # At least 10% of time_limit 10, # At least 10 seconds ) # Sample at most 500 rows to estimate prediction time of all rows # TODO: Consider moving this into end of abstract model fit for all models. # Currently this only fixes problem when in bagged mode, if not bagging, then inference could still be problamatic n_sample = min(500, round(X_len * 0.1)) frac = n_sample / X_len X_sample = X.sample(n=n_sample) time_start_predict = time.time() model_base.predict_proba(X_sample) time_predict_frac = time.time() - time_start_predict time_predict_estimate = time_predict_frac / frac logger.log(15, f'\t{round(time_predict_estimate, 2)}s\t= Estimated out-of-fold prediction time...') if time_predict_estimate > time_left: logger.warning(f'\tNot enough time to generate out-of-fold predictions for model. Estimated time required was {round(time_predict_estimate, 2)}s compared to {round(time_left, 2)}s of available time.') raise TimeLimitExceeded if use_child_oof: logger.log(15, '\t`use_child_oof` was specified for this model. It will function similarly to a bagged model, but will only fit one child model.') time_start_predict = time.time() if model_base._get_tags().get('valid_oof', False): self._oof_pred_proba = model_base.get_oof_pred_proba(X=X, y=y) else: logger.warning('\tWARNING: `use_child_oof` was specified but child model does not have a dedicated `get_oof_pred_proba` method. This model may have heavily overfit validation scores.') self._oof_pred_proba = model_base.predict_proba(X=X) self._child_oof = True model_base.predict_time = time.time() - time_start_predict model_base.val_score = model_base.score_with_y_pred_proba(y=y, y_pred_proba=self._oof_pred_proba) else: self._oof_pred_proba = model_base.predict_proba(X=X) # TODO: Cheater value, will be overfit to valid set self._oof_pred_model_repeats = np.ones(shape=len(X), dtype=np.uint8) self._n_repeats = 1 self._n_repeats_finished = 1 self._k_per_n_repeat = [1] self._bagged_mode = False model_base.reduce_memory_size(remove_fit=True, remove_info=False, requires_save=True) if not self.params.get('save_bag_folds', True): model_base.model = None if self.low_memory: self.save_child(model_base, verbose=False) self.models = [model_base.name] else: self.models = [model_base] self._add_child_times_to_bag(model=model_base) def _fit_folds(self, X, y, model_base, X_pseudo=None, y_pseudo=None, k_fold=None, k_fold_start=0, k_fold_end=None, n_repeats=1, n_repeat_start=0, time_limit=None, sample_weight=None, save_folds=True, groups=None, **kwargs): fold_fitting_strategy = self.params.get('fold_fitting_strategy', SequentialLocalFoldFittingStrategy) # TODO: Preprocess data here instead of repeatedly # FIXME: Raise exception if multiclass/binary and a single val fold contains all instances of a class. (Can happen if custom groups is specified) time_start = time.time() if k_fold_start != 0: cv_splitter = self._cv_splitters[n_repeat_start] else: cv_splitter = self._get_cv_splitter(n_splits=k_fold, n_repeats=n_repeats, groups=groups) if k_fold != cv_splitter.n_splits: k_fold = cv_splitter.n_splits if k_fold_end is None: k_fold_end = k_fold if cv_splitter.n_repeats < n_repeats: # If current cv_splitter doesn't have enough n_repeats for all folds, then create a new one. cv_splitter = self._get_cv_splitter(n_splits=k_fold, n_repeats=n_repeats, groups=groups) fold_fit_args_list, n_repeats_started, n_repeats_finished = self._generate_fold_configs( X=X, y=y, cv_splitter=cv_splitter, k_fold_start=k_fold_start, k_fold_end=k_fold_end, n_repeat_start=n_repeat_start, n_repeat_end=n_repeats, ) fold_fit_args_list = [dict(model_base=model_base, fold_ctx=fold_ctx, kwargs=kwargs) for fold_ctx in fold_fit_args_list] logger.log(20, f'\tFitting {len(fold_fit_args_list)} child models ' f'({fold_fit_args_list[0]["fold_ctx"]["model_name_suffix"]} - {fold_fit_args_list[-1]["fold_ctx"]["model_name_suffix"]})') oof_pred_proba, oof_pred_model_repeats = self._construct_empty_oof(X=X, y=y) models = [] # noinspection PyCallingNonCallable fold_fitting_strategy: AbstractFoldFittingStrategy = fold_fitting_strategy( bagged_ensemble_model=self, X=X, y=y, X_pseudo=X_pseudo, y_pseudo=y_pseudo, sample_weight=sample_weight, time_limit=time_limit, time_start=time_start, models=models, oof_pred_proba=oof_pred_proba, oof_pred_model_repeats=oof_pred_model_repeats, save_folds=save_folds) for fold_fit_args in fold_fit_args_list: fold_fitting_strategy.schedule_fold_model_fit(**fold_fit_args) fold_fitting_strategy.after_all_folds_scheduled() self.models += models self._bagged_mode = True if self._oof_pred_proba is None: self._oof_pred_proba = oof_pred_proba self._oof_pred_model_repeats = oof_pred_model_repeats else: self._oof_pred_proba += oof_pred_proba self._oof_pred_model_repeats += oof_pred_model_repeats self._cv_splitters += [cv_splitter for _ in range(n_repeats_started)] self._k_per_n_repeat += [k_fold for _ in range(n_repeats_finished)] self._n_repeats = n_repeats if k_fold == k_fold_end: self._k = None self._k_fold_end = 0 self._n_repeats_finished = self._n_repeats else: self._k = k_fold self._k_fold_end = k_fold_end self._n_repeats_finished = self._n_repeats - 1 @staticmethod def _generate_fold_configs(*, X, y, cv_splitter, k_fold_start, k_fold_end, n_repeat_start, n_repeat_end) -> (list, int, int): """ Generates fold configs given a cv_splitter, k_fold start-end and n_repeat start-end. Fold configs are used by inheritors of AbstractFoldFittingStrategy when fitting fold models. Returns a list of fold configs, the number of started repeats, and the number of finished repeats. """ k_fold = cv_splitter.n_splits kfolds = cv_splitter.split(X=X, y=y) fold_start = n_repeat_start * k_fold + k_fold_start fold_end = (n_repeat_end - 1) * k_fold + k_fold_end folds_to_fit = fold_end - fold_start fold_fit_args_list = [] n_repeats_started = 0 n_repeats_finished = 0 for repeat in range(n_repeat_start, n_repeat_end): # For each repeat is_first_set = repeat == n_repeat_start is_last_set = repeat == (n_repeat_end - 1) if (not is_first_set) or (k_fold_start == 0): n_repeats_started += 1 fold_in_set_start = k_fold_start if repeat == n_repeat_start else 0 fold_in_set_end = k_fold_end if is_last_set else k_fold for fold_in_set in range(fold_in_set_start, fold_in_set_end): # For each fold fold = fold_in_set + (repeat * k_fold) fold_ctx = dict( model_name_suffix=f'S{repeat + 1}F{fold_in_set + 1}', # S5F3 = 3rd fold of the 5th repeat set fold=kfolds[fold], is_last_fold=fold == (fold_end - 1), folds_to_fit=folds_to_fit, folds_finished=fold - fold_start, folds_left=fold_end - fold, ) fold_fit_args_list.append(fold_ctx) if fold_in_set_end == k_fold: n_repeats_finished += 1 assert len(fold_fit_args_list) == folds_to_fit, "fold_fit_args_list is not the expected length!" return fold_fit_args_list, n_repeats_started, n_repeats_finished # TODO: Augment to generate OOF after shuffling each column in X (Batching), this is the fastest way. # TODO: Reduce logging clutter during OOF importance calculation (Currently logs separately for each child) # Generates OOF predictions from pre-trained bagged models, assuming X and y are in the same row order as used in .fit(X, y) def compute_feature_importance(self, X, y, features=None, silent=False, time_limit=None, is_oof=False, **kwargs) -> pd.DataFrame: if features is None: # FIXME: use FULL features (children can have different features) features = self.load_child(model=self.models[0]).features if not is_oof: return super().compute_feature_importance(X, y, features=features, time_limit=time_limit, silent=silent, **kwargs) fi_fold_list = [] model_index = 0 num_children = len(self.models) if time_limit is not None: time_limit_per_child = time_limit / num_children else: time_limit_per_child = None if not silent: logging_message = f'Computing feature importance via permutation shuffling for {len(features)} features using out-of-fold (OOF) data aggregated across {num_children} child models...' if time_limit is not None: logging_message = f'{logging_message} Time limit: {time_limit}s...' logger.log(20, logging_message) time_start = time.time() early_stop = False children_completed = 0 log_final_suffix = '' for n_repeat, k in enumerate(self._k_per_n_repeat): if is_oof: if self._child_oof or not self._bagged_mode: raise AssertionError('Model trained with no validation data cannot get feature importances on training data, please specify new test data to compute feature importances (model=%s)' % self.name) kfolds = self._cv_splitters[n_repeat].split(X=X, y=y) cur_kfolds = kfolds[n_repeat * k:(n_repeat + 1) * k] else: cur_kfolds = [(None, list(range(len(X))))] * k for i, fold in enumerate(cur_kfolds): _, test_index = fold model = self.load_child(self.models[model_index + i]) fi_fold = model.compute_feature_importance(X=X.iloc[test_index, :], y=y.iloc[test_index], features=features, time_limit=time_limit_per_child, silent=silent, log_prefix='\t', importance_as_list=True, **kwargs) fi_fold_list.append(fi_fold) children_completed += 1 if time_limit is not None and children_completed != num_children: time_now = time.time() time_left = time_limit - (time_now - time_start) time_child_average = (time_now - time_start) / children_completed if time_left < (time_child_average * 1.1): log_final_suffix = f' (Early stopping due to lack of time...)' early_stop = True break if early_stop: break model_index += k # TODO: DON'T THROW AWAY SAMPLES! USE LARGER N fi_list_dict = dict() for val in fi_fold_list: val = val['importance'].to_dict() # TODO: Don't throw away stddev information of children for key in val: if key not in fi_list_dict: fi_list_dict[key] = [] fi_list_dict[key] += val[key] fi_df = _compute_fi_with_stddev(fi_list_dict) if not silent: logger.log(20, f'\t{round(time.time() - time_start, 2)}s\t= Actual runtime (Completed {children_completed} of {num_children} children){log_final_suffix}') return fi_df def get_features(self): assert self.is_fit(), "The model must be fit before calling the get_features method." return self.load_child(self.models[0]).get_features() def load_child(self, model, verbose=False) -> AbstractModel: if isinstance(model, str): child_path = self.create_contexts(self.path + model + os.path.sep) return self._child_type.load(path=child_path, verbose=verbose) else: return model def save_child(self, model, verbose=False): child = self.load_child(model) child.set_contexts(self.path + child.name + os.path.sep) child.save(verbose=verbose) # TODO: Multiply epochs/n_iterations by some value (such as 1.1) to account for having more training data than bagged models def convert_to_refit_full_template(self): init_args = self.get_params() init_args['hyperparameters']['save_bag_folds'] = True # refit full models must save folds init_args['model_base'] = self.convert_to_refit_full_template_child() init_args['name'] = init_args['name'] + REFIT_FULL_SUFFIX model_full_template = self.__class__(**init_args) return model_full_template def convert_to_refit_full_template_child(self): refit_params_trained = self._get_compressed_params_trained() refit_params = copy.deepcopy(self._get_model_base().get_params()) refit_params['hyperparameters'].update(refit_params_trained) refit_child_template = self._child_type(**refit_params) return refit_child_template def get_params(self): init_args = dict( model_base=self._get_model_base(), random_state=self._random_state, ) init_args.update(super().get_params()) init_args.pop('eval_metric') init_args.pop('problem_type') return init_args def convert_to_template_child(self): return self._get_model_base().convert_to_template() def _get_compressed_params(self, model_params_list=None): if model_params_list is None: model_params_list = [ self.load_child(child).get_trained_params() for child in self.models ] model_params_compressed = dict() for param in model_params_list[0].keys(): model_param_vals = [model_params[param] for model_params in model_params_list] if all(isinstance(val, bool) for val in model_param_vals): counter = Counter(model_param_vals) compressed_val = counter.most_common(1)[0][0] elif all(isinstance(val, int) for val in model_param_vals): compressed_val = round(mean(model_param_vals)) elif all(isinstance(val, float) for val in model_param_vals): compressed_val = mean(model_param_vals) else: try: counter = Counter(model_param_vals) compressed_val = counter.most_common(1)[0][0] except TypeError: compressed_val = model_param_vals[0] model_params_compressed[param] = compressed_val return model_params_compressed def _get_compressed_params_trained(self): model_params_list = [ self.load_child(child).params_trained for child in self.models ] return self._get_compressed_params(model_params_list=model_params_list) def _get_model_base(self): if self.model_base is None: return self.load_model_base() else: return self.model_base def _add_child_times_to_bag(self, model): if self.fit_time is None: self.fit_time = model.fit_time else: self.fit_time += model.fit_time if self.predict_time is None: self.predict_time = model.predict_time else: self.predict_time += model.predict_time @classmethod def load(cls, path: str, reset_paths=True, low_memory=True, load_oof=False, verbose=True): model = super().load(path=path, reset_paths=reset_paths, verbose=verbose) if not low_memory: model.persist_child_models(reset_paths=reset_paths) if load_oof: model._load_oof() return model @classmethod def load_oof(cls, path, verbose=True): try: oof = load_pkl.load(path=path + 'utils' + os.path.sep + cls._oof_filename, verbose=verbose) oof_pred_proba = oof['_oof_pred_proba'] oof_pred_model_repeats = oof['_oof_pred_model_repeats'] except FileNotFoundError: model = cls.load(path=path, reset_paths=True, verbose=verbose) model._load_oof() oof_pred_proba = model._oof_pred_proba oof_pred_model_repeats = model._oof_pred_model_repeats return cls._oof_pred_proba_func(oof_pred_proba=oof_pred_proba, oof_pred_model_repeats=oof_pred_model_repeats) def _load_oof(self): if self._oof_pred_proba is not None: pass else: oof = load_pkl.load(path=self.path + 'utils' + os.path.sep + self._oof_filename) self._oof_pred_proba = oof['_oof_pred_proba'] self._oof_pred_model_repeats = oof['_oof_pred_model_repeats'] def persist_child_models(self, reset_paths=True): for i, model_name in enumerate(self.models): if isinstance(model_name, str): child_path = self.create_contexts(self.path + model_name + os.path.sep) child_model = self._child_type.load(path=child_path, reset_paths=reset_paths, verbose=True) self.models[i] = child_model def load_model_base(self): return load_pkl.load(path=self.path + 'utils' + os.path.sep + 'model_template.pkl') def save_model_base(self, model_base): save_pkl.save(path=self.path + 'utils' + os.path.sep + 'model_template.pkl', object=model_base) def save(self, path=None, verbose=True, save_oof=True, save_children=False) -> str: if path is None: path = self.path if save_children: model_names = [] for child in self.models: child = self.load_child(child) child.set_contexts(path + child.name + os.path.sep) child.save(verbose=False) model_names.append(child.name) self.models = model_names if save_oof and self._oof_pred_proba is not None: save_pkl.save(path=path + 'utils' + os.path.sep + self._oof_filename, object={ '_oof_pred_proba': self._oof_pred_proba, '_oof_pred_model_repeats': self._oof_pred_model_repeats, }) self._oof_pred_proba = None self._oof_pred_model_repeats = None return super().save(path=path, verbose=verbose) # If `remove_fit_stack=True`, variables will be removed that are required to fit more folds and to fit new stacker models which use this model as a base model. # This includes OOF variables. def reduce_memory_size(self, remove_fit_stack=False, remove_fit=True, remove_info=False, requires_save=True, reduce_children=False, **kwargs): super().reduce_memory_size(remove_fit=remove_fit, remove_info=remove_info, requires_save=requires_save, **kwargs) if remove_fit_stack: try: os.remove(self.path + 'utils' + os.path.sep + self._oof_filename) except FileNotFoundError: pass if requires_save: self._oof_pred_proba = None self._oof_pred_model_repeats = None try: os.remove(self.path + 'utils' + os.path.sep + 'model_template.pkl') except FileNotFoundError: pass if requires_save: self.model_base = None try: os.rmdir(self.path + 'utils') except OSError: pass if reduce_children: for model in self.models: model = self.load_child(model) model.reduce_memory_size(remove_fit=remove_fit, remove_info=remove_info, requires_save=requires_save, **kwargs) if requires_save and self.low_memory: self.save_child(model=model) def _get_model_names(self): model_names = [] for model in self.models: if isinstance(model, str): model_names.append(model) else: model_names.append(model.name) return model_names def get_info(self): info = super().get_info() children_info = self._get_child_info() child_memory_sizes = [child['memory_size'] for child in children_info.values()] sum_memory_size_child = sum(child_memory_sizes) if child_memory_sizes: max_memory_size_child = max(child_memory_sizes) else: max_memory_size_child = 0 if self.low_memory: max_memory_size = info['memory_size'] + sum_memory_size_child min_memory_size = info['memory_size'] + max_memory_size_child else: max_memory_size = info['memory_size'] min_memory_size = info['memory_size'] - sum_memory_size_child + max_memory_size_child # Necessary if save_space is used as save_space deletes model_base. if len(self.models) > 0: child_model = self.load_child(self.models[0]) else: child_model = self._get_model_base() child_hyperparameters = child_model.params child_ag_args_fit = child_model.params_aux bagged_info = dict( child_model_type=self._child_type.__name__, num_child_models=len(self.models), child_model_names=self._get_model_names(), _n_repeats=self._n_repeats, # _n_repeats_finished=self._n_repeats_finished, # commented out because these are too technical # _k_fold_end=self._k_fold_end, # _k=self._k, _k_per_n_repeat=self._k_per_n_repeat, _random_state=self._random_state, low_memory=self.low_memory, # If True, then model will attempt to use at most min_memory_size memory by having at most one child in memory. If False, model will use max_memory_size memory. bagged_mode=self._bagged_mode, max_memory_size=max_memory_size, # Memory used when all children are loaded into memory at once. min_memory_size=min_memory_size, # Memory used when only the largest child is loaded into memory. child_hyperparameters=child_hyperparameters, child_hyperparameters_fit=self._get_compressed_params_trained(), child_ag_args_fit=child_ag_args_fit, ) info['bagged_info'] = bagged_info info['children_info'] = children_info child_features_full = list(set().union(*[child['features'] for child in children_info.values()])) info['features'] = child_features_full info['num_features'] = len(child_features_full) return info def get_memory_size(self): models = self.models self.models = None memory_size = super().get_memory_size() self.models = models return memory_size def _get_child_info(self): child_info_dict = dict() for model in self.models: if isinstance(model, str): child_path = self.create_contexts(self.path + model + os.path.sep) child_info_dict[model] = self._child_type.load_info(child_path) else: child_info_dict[model.name] = model.get_info() return child_info_dict def _construct_empty_oof(self, X, y): if self.problem_type == MULTICLASS: oof_pred_proba = np.zeros(shape=(len(X), len(y.unique())), dtype=np.float32) elif self.problem_type == SOFTCLASS: oof_pred_proba = np.zeros(shape=y.shape, dtype=np.float32) elif self.problem_type == QUANTILE: oof_pred_proba = np.zeros(shape=(len(X), len(self.quantile_levels)), dtype=np.float32) else: oof_pred_proba = np.zeros(shape=len(X), dtype=np.float32) oof_pred_model_repeats = np.zeros(shape=len(X), dtype=np.uint8) return oof_pred_proba, oof_pred_model_repeats def _preprocess_fit_resources(self, silent=False, **kwargs): """Pass along to child models to avoid altering up-front""" return kwargs # TODO: Currently double disk usage, saving model in HPO and also saving model in bag # FIXME: with use_bag_holdout=True, the fold-1 scores that are logged are of the inner validation score, not the holdout score. # Fix this by passing X_val, y_val into this method def _hyperparameter_tune(self, X, y, k_fold, scheduler_options, preprocess_kwargs=None, groups=None, **kwargs): if len(self.models) != 0: raise ValueError('self.models must be empty to call hyperparameter_tune, value: %s' % self.models) kwargs['feature_metadata'] = self.feature_metadata kwargs['num_classes'] = self.num_classes # TODO: maybe don't pass num_classes to children self.model_base.set_contexts(self.path + 'hpo' + os.path.sep) # TODO: Preprocess data here instead of repeatedly if preprocess_kwargs is None: preprocess_kwargs = dict() use_child_oof = self.params.get('use_child_oof', False) X = self.preprocess(X=X, preprocess=False, fit=True, **preprocess_kwargs) if use_child_oof: k_fold = 1 X_fold = X y_fold = y X_val_fold = None y_val_fold = None train_index = list(range(len(X))) test_index = train_index cv_splitter = None else: cv_splitter = self._get_cv_splitter(n_splits=k_fold, n_repeats=1, groups=groups) if k_fold != cv_splitter.n_splits: k_fold = cv_splitter.n_splits kfolds = cv_splitter.split(X=X, y=y) train_index, test_index = kfolds[0] X_fold, X_val_fold = X.iloc[train_index, :], X.iloc[test_index, :] y_fold, y_val_fold = y.iloc[train_index], y.iloc[test_index] orig_time = scheduler_options[1]['time_out'] if orig_time: scheduler_options[1]['time_out'] = orig_time * 0.8 # TODO: Scheduler doesn't early stop on final model, this is a safety net. Scheduler should be updated to early stop hpo_models, hpo_model_performances, hpo_results = self.model_base.hyperparameter_tune(X=X_fold, y=y_fold, X_val=X_val_fold, y_val=y_val_fold, scheduler_options=scheduler_options, **kwargs) scheduler_options[1]['time_out'] = orig_time bags = {} bags_performance = {} for i, (model_name, model_path) in enumerate(hpo_models.items()): child: AbstractModel = self._child_type.load(path=model_path) # TODO: Create new Ensemble Here bag = copy.deepcopy(self) bag.rename(f"{bag.name}{os.path.sep}T{i}") bag.set_contexts(self.path_root + bag.name + os.path.sep) oof_pred_proba, oof_pred_model_repeats = self._construct_empty_oof(X=X, y=y) if child._get_tags().get('valid_oof', False): y_pred_proba = child.get_oof_pred_proba(X=X, y=y) bag._n_repeats_finished = 1 bag._k_per_n_repeat = [1] bag._bagged_mode = False bag._child_oof = True # TODO: Consider a separate tag for refit_folds vs efficient OOF else: y_pred_proba = child.predict_proba(X_val_fold) oof_pred_proba[test_index] += y_pred_proba oof_pred_model_repeats[test_index] += 1 bag.model_base = None child.rename('') child.set_contexts(bag.path + child.name + os.path.sep) bag.save_model_base(child.convert_to_template()) bag._k = k_fold bag._k_fold_end = 1 bag._n_repeats = 1 bag._oof_pred_proba = oof_pred_proba bag._oof_pred_model_repeats = oof_pred_model_repeats child.rename('S1F1') child.set_contexts(bag.path + child.name + os.path.sep) if not self.params.get('save_bag_folds', True): child.model = None if bag.low_memory: bag.save_child(child, verbose=False) bag.models.append(child.name) else: bag.models.append(child) bag.val_score = child.val_score bag._add_child_times_to_bag(model=child) if cv_splitter is not None: bag._cv_splitters = [cv_splitter] bag.save() bags[bag.name] = bag.path bags_performance[bag.name] = bag.val_score # TODO: hpo_results likely not correct because no renames return bags, bags_performance, hpo_results def _more_tags(self): return {'valid_oof': True}
py
1a54bbc131e4b24632b0c0806326e53844174796
""" Account (OOC) commands. These are stored on the Account object and self.caller is thus always an Account, not an Object/Character. These commands go in the AccountCmdset and are accessible also when puppeting a Character (although with lower priority) These commands use the account_caller property which tells the command parent (MuxCommand, usually) to setup caller correctly. They use self.account to make sure to always use the account object rather than self.caller (which change depending on the level you are calling from) The property self.character can be used to access the character when these commands are triggered with a connected character (such as the case of the `ooc` command), it is None if we are OOC. Note that under MULTISESSION_MODE > 2, Account commands should use self.msg() and similar methods to reroute returns to the correct method. Otherwise all text will be returned to all connected sessions. """ from builtins import range import time from codecs import lookup as codecs_lookup from django.conf import settings from evennia.server.sessionhandler import SESSIONS from evennia.utils import utils, create, logger, search COMMAND_DEFAULT_CLASS = utils.class_from_module(settings.COMMAND_DEFAULT_CLASS) _MAX_NR_CHARACTERS = settings.MAX_NR_CHARACTERS _MULTISESSION_MODE = settings.MULTISESSION_MODE # limit symbol import for API __all__ = ("CmdOOCLook", "CmdIC", "CmdOOC", "CmdPassword", "CmdQuit", "CmdCharCreate", "CmdOption", "CmdSessions", "CmdWho", "CmdColorTest", "CmdQuell") class MuxAccountLookCommand(COMMAND_DEFAULT_CLASS): """ Custom parent (only) parsing for OOC looking, sets a "playable" property on the command based on the parsing. """ def parse(self): """Custom parsing""" super().parse() if _MULTISESSION_MODE < 2: # only one character allowed - not used in this mode self.playable = None return playable = self.account.db._playable_characters if playable is not None: # clean up list if character object was deleted in between if None in playable: playable = [character for character in playable if character] self.account.db._playable_characters = playable # store playable property if self.args: self.playable = dict((utils.to_str(char.key.lower()), char) for char in playable).get(self.args.lower(), None) else: self.playable = playable # Obs - these are all intended to be stored on the Account, and as such, # use self.account instead of self.caller, just to be sure. Also self.msg() # is used to make sure returns go to the right session # note that this is inheriting from MuxAccountLookCommand, # and has the .playable property. class CmdOOCLook(MuxAccountLookCommand): """ look while out-of-character Usage: look Look in the ooc state. """ # This is an OOC version of the look command. Since a # Account doesn't have an in-game existence, there is no # concept of location or "self". If we are controlling # a character, pass control over to normal look. key = "look" aliases = ["l", "ls"] locks = "cmd:all()" help_category = "General" # this is used by the parent account_caller = True def func(self): """implement the ooc look command""" if _MULTISESSION_MODE < 2: # only one character allowed self.msg("You are out-of-character (OOC).\nUse |wic|n to get back into the game.") return # call on-account look helper method self.msg(self.account.at_look(target=self.playable, session=self.session)) class CmdCharCreate(COMMAND_DEFAULT_CLASS): """ create a new character Usage: charcreate <charname> [= desc] Create a new character, optionally giving it a description. You may use upper-case letters in the name - you will nevertheless always be able to access your character using lower-case letters if you want. """ key = "charcreate" locks = "cmd:pperm(Player)" help_category = "General" # this is used by the parent account_caller = True def func(self): """create the new character""" account = self.account if not self.args: self.msg("Usage: charcreate <charname> [= description]") return key = self.lhs desc = self.rhs charmax = _MAX_NR_CHARACTERS if not account.is_superuser and \ (account.db._playable_characters and len(account.db._playable_characters) >= charmax): self.msg("You may only create a maximum of %i characters." % charmax) return from evennia.objects.models import ObjectDB typeclass = settings.BASE_CHARACTER_TYPECLASS if ObjectDB.objects.filter(db_typeclass_path=typeclass, db_key__iexact=key): # check if this Character already exists. Note that we are only # searching the base character typeclass here, not any child # classes. self.msg("|rA character named '|w%s|r' already exists.|n" % key) return # create the character start_location = ObjectDB.objects.get_id(settings.START_LOCATION) default_home = ObjectDB.objects.get_id(settings.DEFAULT_HOME) permissions = settings.PERMISSION_ACCOUNT_DEFAULT new_character = create.create_object(typeclass, key=key, location=start_location, home=default_home, permissions=permissions) # only allow creator (and developers) to puppet this char new_character.locks.add("puppet:id(%i) or pid(%i) or perm(Developer) or pperm(Developer);delete:id(%i) or perm(Admin)" % (new_character.id, account.id, account.id)) account.db._playable_characters.append(new_character) if desc: new_character.db.desc = desc elif not new_character.db.desc: new_character.db.desc = "This is a character." self.msg("Created new character %s. Use |wic %s|n to enter the game as this character." % (new_character.key, new_character.key)) logger.log_sec('Character Created: %s (Caller: %s, IP: %s).' % (new_character, account, self.session.address)) class CmdCharDelete(COMMAND_DEFAULT_CLASS): """ delete a character - this cannot be undone! Usage: chardelete <charname> Permanently deletes one of your characters. """ key = "chardelete" locks = "cmd:pperm(Player)" help_category = "General" def func(self): """delete the character""" account = self.account if not self.args: self.msg("Usage: chardelete <charactername>") return # use the playable_characters list to search match = [char for char in utils.make_iter(account.db._playable_characters) if char.key.lower() == self.args.lower()] if not match: self.msg("You have no such character to delete.") return elif len(match) > 1: self.msg("Aborting - there are two characters with the same name. Ask an admin to delete the right one.") return else: # one match from evennia.utils.evmenu import get_input def _callback(caller, callback_prompt, result): if result.lower() == "yes": # only take action delobj = caller.ndb._char_to_delete key = delobj.key caller.db._playable_characters = [pc for pc in caller.db._playable_characters if pc != delobj] delobj.delete() self.msg("Character '%s' was permanently deleted." % key) logger.log_sec('Character Deleted: %s (Caller: %s, IP: %s).' % (key, account, self.session.address)) else: self.msg("Deletion was aborted.") del caller.ndb._char_to_delete match = match[0] account.ndb._char_to_delete = match # Return if caller has no permission to delete this if not match.access(account, 'delete'): self.msg("You do not have permission to delete this character.") return prompt = "|rThis will permanently destroy '%s'. This cannot be undone.|n Continue yes/[no]?" get_input(account, prompt % match.key, _callback) class CmdIC(COMMAND_DEFAULT_CLASS): """ control an object you have permission to puppet Usage: ic <character> Go in-character (IC) as a given Character. This will attempt to "become" a different object assuming you have the right to do so. Note that it's the ACCOUNT character that puppets characters/objects and which needs to have the correct permission! You cannot become an object that is already controlled by another account. In principle <character> can be any in-game object as long as you the account have access right to puppet it. """ key = "ic" # lock must be all() for different puppeted objects to access it. locks = "cmd:all()" aliases = "puppet" help_category = "General" # this is used by the parent account_caller = True def func(self): """ Main puppet method """ account = self.account session = self.session new_character = None if not self.args: new_character = account.db._last_puppet if not new_character: self.msg("Usage: ic <character>") return if not new_character: # search for a matching character new_character = [char for char in search.object_search(self.args) if char.access(account, "puppet")] if not new_character: self.msg("That is not a valid character choice.") return if len(new_character) > 1: self.msg("Multiple targets with the same name:\n %s" % ", ".join("%s(#%s)" % (obj.key, obj.id) for obj in new_character)) return else: new_character = new_character[0] try: account.puppet_object(session, new_character) account.db._last_puppet = new_character logger.log_sec('Puppet Success: (Caller: %s, Target: %s, IP: %s).' % (account, new_character, self.session.address)) except RuntimeError as exc: self.msg("|rYou cannot become |C%s|n: %s" % (new_character.name, exc)) logger.log_sec('Puppet Failed: %s (Caller: %s, Target: %s, IP: %s).' % (exc, account, new_character, self.session.address)) # note that this is inheriting from MuxAccountLookCommand, # and as such has the .playable property. class CmdOOC(MuxAccountLookCommand): """ stop puppeting and go ooc Usage: ooc Go out-of-character (OOC). This will leave your current character and put you in a incorporeal OOC state. """ key = "ooc" locks = "cmd:pperm(Player)" aliases = "unpuppet" help_category = "General" # this is used by the parent account_caller = True def func(self): """Implement function""" account = self.account session = self.session old_char = account.get_puppet(session) if not old_char: string = "You are already OOC." self.msg(string) return account.db._last_puppet = old_char # disconnect try: account.unpuppet_object(session) self.msg("\n|GYou go OOC.|n\n") if _MULTISESSION_MODE < 2: # only one character allowed self.msg("You are out-of-character (OOC).\nUse |wic|n to get back into the game.") return self.msg(account.at_look(target=self.playable, session=session)) except RuntimeError as exc: self.msg("|rCould not unpuppet from |c%s|n: %s" % (old_char, exc)) class CmdSessions(COMMAND_DEFAULT_CLASS): """ check your connected session(s) Usage: sessions Lists the sessions currently connected to your account. """ key = "sessions" locks = "cmd:all()" help_category = "General" # this is used by the parent account_caller = True def func(self): """Implement function""" account = self.account sessions = account.sessions.all() table = self.styled_table("|wsessid", "|wprotocol", "|whost", "|wpuppet/character", "|wlocation") for sess in sorted(sessions, key=lambda x: x.sessid): char = account.get_puppet(sess) table.add_row(str(sess.sessid), str(sess.protocol_key), isinstance(sess.address, tuple) and sess.address[0] or sess.address, char and str(char) or "None", char and str(char.location) or "N/A") self.msg("|wYour current session(s):|n\n%s" % table) class CmdWho(COMMAND_DEFAULT_CLASS): """ list who is currently online Usage: who doing Shows who is currently online. Doing is an alias that limits info also for those with all permissions. """ key = "who" aliases = "doing" locks = "cmd:all()" # this is used by the parent account_caller = True def func(self): """ Get all connected accounts by polling session. """ account = self.account session_list = SESSIONS.get_sessions() session_list = sorted(session_list, key=lambda o: o.account.key) if self.cmdstring == "doing": show_session_data = False else: show_session_data = account.check_permstring("Developer") or account.check_permstring("Admins") naccounts = SESSIONS.account_count() if show_session_data: # privileged info table = self.styled_table("|wAccount Name", "|wOn for", "|wIdle", "|wPuppeting", "|wRoom", "|wCmds", "|wProtocol", "|wHost") for session in session_list: if not session.logged_in: continue delta_cmd = time.time() - session.cmd_last_visible delta_conn = time.time() - session.conn_time account = session.get_account() puppet = session.get_puppet() location = puppet.location.key if puppet and puppet.location else "None" table.add_row(utils.crop(account.get_display_name(account), width=25), utils.time_format(delta_conn, 0), utils.time_format(delta_cmd, 1), utils.crop(puppet.get_display_name(account) if puppet else "None", width=25), utils.crop(location, width=25), session.cmd_total, session.protocol_key, isinstance(session.address, tuple) and session.address[0] or session.address) else: # unprivileged table = self.styled_table("|wAccount name", "|wOn for", "|wIdle") for session in session_list: if not session.logged_in: continue delta_cmd = time.time() - session.cmd_last_visible delta_conn = time.time() - session.conn_time account = session.get_account() table.add_row(utils.crop(account.get_display_name(account), width=25), utils.time_format(delta_conn, 0), utils.time_format(delta_cmd, 1)) is_one = naccounts == 1 self.msg("|wAccounts:|n\n%s\n%s unique account%s logged in." % (table, "One" if is_one else naccounts, "" if is_one else "s")) class CmdOption(COMMAND_DEFAULT_CLASS): """ Set an account option Usage: option[/save] [name = value] Switches: save - Save the current option settings for future logins. clear - Clear the saved options. This command allows for viewing and setting client interface settings. Note that saved options may not be able to be used if later connecting with a client with different capabilities. """ key = "option" aliases = "options" switch_options = ("save", "clear") locks = "cmd:all()" # this is used by the parent account_caller = True def func(self): """ Implements the command """ if self.session is None: return flags = self.session.protocol_flags # Display current options if not self.args: # list the option settings if "save" in self.switches: # save all options self.caller.db._saved_protocol_flags = flags self.msg("|gSaved all options. Use option/clear to remove.|n") if "clear" in self.switches: # clear all saves self.caller.db._saved_protocol_flags = {} self.msg("|gCleared all saved options.") options = dict(flags) # make a copy of the flag dict saved_options = dict(self.caller.attributes.get("_saved_protocol_flags", default={})) if "SCREENWIDTH" in options: if len(options["SCREENWIDTH"]) == 1: options["SCREENWIDTH"] = options["SCREENWIDTH"][0] else: options["SCREENWIDTH"] = " \n".join("%s : %s" % (screenid, size) for screenid, size in options["SCREENWIDTH"].items()) if "SCREENHEIGHT" in options: if len(options["SCREENHEIGHT"]) == 1: options["SCREENHEIGHT"] = options["SCREENHEIGHT"][0] else: options["SCREENHEIGHT"] = " \n".join("%s : %s" % (screenid, size) for screenid, size in options["SCREENHEIGHT"].items()) options.pop("TTYPE", None) header = ("Name", "Value", "Saved") if saved_options else ("Name", "Value") table = self.styled_table(*header) for key in sorted(options): row = [key, options[key]] if saved_options: saved = " |YYes|n" if key in saved_options else "" changed = "|y*|n" if key in saved_options and flags[key] != saved_options[key] else "" row.append("%s%s" % (saved, changed)) table.add_row(*row) self.msg("|wClient settings (%s):|n\n%s|n" % (self.session.protocol_key, table)) return if not self.rhs: self.msg("Usage: option [name = [value]]") return # Try to assign new values def validate_encoding(new_encoding): # helper: change encoding try: codecs_lookup(new_encoding) except LookupError: raise RuntimeError("The encoding '|w%s|n' is invalid. " % new_encoding) return val def validate_size(new_size): return {0: int(new_size)} def validate_bool(new_bool): return True if new_bool.lower() in ("true", "on", "1") else False def update(new_name, new_val, validator): # helper: update property and report errors try: old_val = flags.get(new_name, False) new_val = validator(new_val) if old_val == new_val: self.msg("Option |w%s|n was kept as '|w%s|n'." % (new_name, old_val)) else: flags[new_name] = new_val self.msg("Option |w%s|n was changed from '|w%s|n' to '|w%s|n'." % (new_name, old_val, new_val)) return {new_name: new_val} except Exception as err: self.msg("|rCould not set option |w%s|r:|n %s" % (new_name, err)) return False validators = {"ANSI": validate_bool, "CLIENTNAME": utils.to_str, "ENCODING": validate_encoding, "MCCP": validate_bool, "NOGOAHEAD": validate_bool, "MXP": validate_bool, "NOCOLOR": validate_bool, "NOPKEEPALIVE": validate_bool, "OOB": validate_bool, "RAW": validate_bool, "SCREENHEIGHT": validate_size, "SCREENWIDTH": validate_size, "SCREENREADER": validate_bool, "TERM": utils.to_str, "UTF-8": validate_bool, "XTERM256": validate_bool, "INPUTDEBUG": validate_bool, "FORCEDENDLINE": validate_bool} name = self.lhs.upper() val = self.rhs.strip() optiondict = False if val and name in validators: optiondict = update(name, val, validators[name]) else: self.msg("|rNo option named '|w%s|r'." % name) if optiondict: # a valid setting if "save" in self.switches: # save this option only saved_options = self.account.attributes.get("_saved_protocol_flags", default={}) saved_options.update(optiondict) self.account.attributes.add("_saved_protocol_flags", saved_options) for key in optiondict: self.msg("|gSaved option %s.|n" % key) if "clear" in self.switches: # clear this save for key in optiondict: self.account.attributes.get("_saved_protocol_flags", {}).pop(key, None) self.msg("|gCleared saved %s." % key) self.session.update_flags(**optiondict) class CmdPassword(COMMAND_DEFAULT_CLASS): """ change your password Usage: password <old password> = <new password> Changes your password. Make sure to pick a safe one. """ key = "password" locks = "cmd:pperm(Player)" # this is used by the parent account_caller = True def func(self): """hook function.""" account = self.account if not self.rhs: self.msg("Usage: password <oldpass> = <newpass>") return oldpass = self.lhslist[0] # Both of these are newpass = self.rhslist[0] # already stripped by parse() # Validate password validated, error = account.validate_password(newpass) if not account.check_password(oldpass): self.msg("The specified old password isn't correct.") elif not validated: errors = [e for suberror in error.messages for e in error.messages] string = "\n".join(errors) self.msg(string) else: account.set_password(newpass) account.save() self.msg("Password changed.") logger.log_sec('Password Changed: %s (Caller: %s, IP: %s).' % (account, account, self.session.address)) class CmdQuit(COMMAND_DEFAULT_CLASS): """ quit the game Usage: quit Switch: all - disconnect all connected sessions Gracefully disconnect your current session from the game. Use the /all switch to disconnect from all sessions. """ key = "quit" switch_options = ("all",) locks = "cmd:all()" # this is used by the parent account_caller = True def func(self): """hook function""" account = self.account if 'all' in self.switches: account.msg("|RQuitting|n all sessions. Hope to see you soon again.", session=self.session) reason = "quit/all" for session in account.sessions.all(): account.disconnect_session_from_account(session, reason) else: nsess = len(account.sessions.all()) reason = "quit" if nsess == 2: account.msg("|RQuitting|n. One session is still connected.", session=self.session) elif nsess > 2: account.msg("|RQuitting|n. %i sessions are still connected." % (nsess - 1), session=self.session) else: # we are quitting the last available session account.msg("|RQuitting|n. Hope to see you again, soon.", session=self.session) account.disconnect_session_from_account(self.session, reason) class CmdColorTest(COMMAND_DEFAULT_CLASS): """ testing which colors your client support Usage: color ansi||xterm256 Prints a color map along with in-mud color codes to use to produce them. It also tests what is supported in your client. Choices are 16-color ansi (supported in most muds) or the 256-color xterm256 standard. No checking is done to determine your client supports color - if not you will see rubbish appear. """ key = "color" locks = "cmd:all()" help_category = "General" # this is used by the parent account_caller = True # the slices of the ANSI_PARSER lists to use for retrieving the # relevant color tags to display. Replace if using another schema. # This command can only show one set of markup. slice_bright_fg = slice(7, 15) # from ANSI_PARSER.ansi_map slice_dark_fg = slice(15, 23) # from ANSI_PARSER.ansi_map slice_dark_bg = slice(-8, None) # from ANSI_PARSER.ansi_map slice_bright_bg = slice(None, None) # from ANSI_PARSER.ansi_xterm256_bright_bg_map def table_format(self, table): """ Helper method to format the ansi/xterm256 tables. Takes a table of columns [[val,val,...],[val,val,...],...] """ if not table: return [[]] extra_space = 1 max_widths = [max([len(str(val)) for val in col]) for col in table] ftable = [] for irow in range(len(table[0])): ftable.append([str(col[irow]).ljust(max_widths[icol]) + " " * extra_space for icol, col in enumerate(table)]) return ftable def func(self): """Show color tables""" if self.args.startswith("a"): # show ansi 16-color table from evennia.utils import ansi ap = ansi.ANSI_PARSER # ansi colors # show all ansi color-related codes bright_fg = ["%s%s|n" % (code, code.replace("|", "||")) for code, _ in ap.ansi_map[self.slice_bright_fg]] dark_fg = ["%s%s|n" % (code, code.replace("|", "||")) for code, _ in ap.ansi_map[self.slice_dark_fg]] dark_bg = ["%s%s|n" % (code.replace("\\", ""), code.replace("|", "||").replace("\\", "")) for code, _ in ap.ansi_map[self.slice_dark_bg]] bright_bg = ["%s%s|n" % (code.replace("\\", ""), code.replace("|", "||").replace("\\", "")) for code, _ in ap.ansi_xterm256_bright_bg_map[self.slice_bright_bg]] dark_fg.extend(["" for _ in range(len(bright_fg) - len(dark_fg))]) table = utils.format_table([bright_fg, dark_fg, bright_bg, dark_bg]) string = "ANSI colors:" for row in table: string += "\n " + " ".join(row) self.msg(string) self.msg("||X : black. ||/ : return, ||- : tab, ||_ : space, ||* : invert, ||u : underline\n" "To combine background and foreground, add background marker last, e.g. ||r||[B.\n" "Note: bright backgrounds like ||[r requires your client handling Xterm256 colors.") elif self.args.startswith("x"): # show xterm256 table table = [[], [], [], [], [], [], [], [], [], [], [], []] for ir in range(6): for ig in range(6): for ib in range(6): # foreground table table[ir].append("|%i%i%i%s|n" % (ir, ig, ib, "||%i%i%i" % (ir, ig, ib))) # background table table[6 + ir].append("|%i%i%i|[%i%i%i%s|n" % (5 - ir, 5 - ig, 5 - ib, ir, ig, ib, "||[%i%i%i" % (ir, ig, ib))) table = self.table_format(table) string = "Xterm256 colors (if not all hues show, your client might not report that it can handle xterm256):" string += "\n" + "\n".join("".join(row) for row in table) table = [[], [], [], [], [], [], [], [], [], [], [], []] for ibatch in range(4): for igray in range(6): letter = chr(97 + (ibatch * 6 + igray)) inverse = chr(122 - (ibatch * 6 + igray)) table[0 + igray].append("|=%s%s |n" % (letter, "||=%s" % letter)) table[6 + igray].append("|=%s|[=%s%s |n" % (inverse, letter, "||[=%s" % letter)) for igray in range(6): # the last row (y, z) has empty columns if igray < 2: letter = chr(121 + igray) inverse = chr(98 - igray) fg = "|=%s%s |n" % (letter, "||=%s" % letter) bg = "|=%s|[=%s%s |n" % (inverse, letter, "||[=%s" % letter) else: fg, bg = " ", " " table[0 + igray].append(fg) table[6 + igray].append(bg) table = self.table_format(table) string += "\n" + "\n".join("".join(row) for row in table) self.msg(string) else: # malformed input self.msg("Usage: color ansi||xterm256") class CmdQuell(COMMAND_DEFAULT_CLASS): """ use character's permissions instead of account's Usage: quell unquell Normally the permission level of the Account is used when puppeting a Character/Object to determine access. This command will switch the lock system to make use of the puppeted Object's permissions instead. This is useful mainly for testing. Hierarchical permission quelling only work downwards, thus an Account cannot use a higher-permission Character to escalate their permission level. Use the unquell command to revert back to normal operation. """ key = "quell" aliases = ["unquell"] locks = "cmd:pperm(Player)" help_category = "General" # this is used by the parent account_caller = True def _recache_locks(self, account): """Helper method to reset the lockhandler on an already puppeted object""" if self.session: char = self.session.puppet if char: # we are already puppeting an object. We need to reset # the lock caches (otherwise the superuser status change # won't be visible until repuppet) char.locks.reset() account.locks.reset() def func(self): """Perform the command""" account = self.account permstr = account.is_superuser and " (superuser)" or "(%s)" % (", ".join(account.permissions.all())) if self.cmdstring in ('unquell', 'unquell'): if not account.attributes.get('_quell'): self.msg("Already using normal Account permissions %s." % permstr) else: account.attributes.remove('_quell') self.msg("Account permissions %s restored." % permstr) else: if account.attributes.get('_quell'): self.msg("Already quelling Account %s permissions." % permstr) return account.attributes.add('_quell', True) puppet = self.session.puppet if puppet: cpermstr = "(%s)" % ", ".join(puppet.permissions.all()) cpermstr = "Quelling to current puppet's permissions %s." % cpermstr cpermstr += "\n(Note: If this is higher than Account permissions %s," \ " the lowest of the two will be used.)" % permstr cpermstr += "\nUse unquell to return to normal permission usage." self.msg(cpermstr) else: self.msg("Quelling Account permissions%s. Use unquell to get them back." % permstr) self._recache_locks(account) class CmdStyle(COMMAND_DEFAULT_CLASS): """ In-game style options Usage: style style <option> = <value> Configure stylings for in-game display elements like table borders, help entriest etc. Use without arguments to see all available options. """ key = "style" switch_options = ['clear'] def func(self): if not self.args: self.list_styles() return self.set() def list_styles(self): table = self.styled_table('Option', 'Description', 'Type', 'Value', width=78) for op_key in self.account.options.options_dict.keys(): op_found = self.account.options.get(op_key, return_obj=True) table.add_row(op_key, op_found.description, op_found.__class__.__name__, op_found.display()) self.msg(str(table)) def set(self): try: result = self.account.options.set(self.lhs, self.rhs) except ValueError as e: self.msg(str(e)) return self.msg('Style %s set to %s' % (self.lhs, result))
py
1a54bca3f906f2a2547cb23106d3d842753567d9
""" Task object to generate / manage assessors and cluster.""" from datetime import date import errno import logging import os import shutil import time from . import cluster from .cluster import PBS from .errors import (NeedInputsException, NoDataException, ClusterLaunchException) from .dax_settings import DAX_Settings, DEFAULT_DATATYPE, DEFAULT_FS_DATATYPE from . import assessor_utils __copyright__ = 'Copyright 2013 Vanderbilt University. All Rights Reserved' __all__ = ['Task', 'ClusterTask', 'XnatTask'] DAX_SETTINGS = DAX_Settings() # Logger to print logs LOGGER = logging.getLogger('dax') # Job Statuses # assessor that doesn't have data to run (for session assessor) # E.G: dtiqa multi but no dti present. NO_DATA = 'NO_DATA' # assessor that is ready to be launch on the cluster. # All the input data for the process to run are there. NEED_TO_RUN = 'NEED_TO_RUN' # assessor where input data are missing from a scan, # multiple scans or other assessor. NEED_INPUTS = 'NEED_INPUTS' # the job has been submitted on the cluster and is running right now. JOB_RUNNING = 'JOB_RUNNING' # the job failed on the cluster. JOB_FAILED = 'JOB_FAILED' # Job done, waiting for the Spider to upload the results READY_TO_UPLOAD = 'READY_TO_UPLOAD' # in the process of uploading the resources on XNAT. UPLOADING = 'UPLOADING' # the assessors contains all the files. The upload and the job are done. COMPLETE = 'COMPLETE' # the job finished and upload is complete READY_TO_COMPLETE = 'READY_TO_COMPLETE' DOES_NOT_EXIST = 'DOES_NOT_EXIST' OPEN_STATUS_LIST = [NEED_TO_RUN, UPLOADING, JOB_RUNNING, READY_TO_COMPLETE, JOB_FAILED] JOB_BUILT = 'JOB_BUILT' # QC Statuses # job is still running, not ready for QA yet JOB_PENDING = 'Job Pending' # job ready to be QA NEEDS_QA = 'Needs QA' # QC status set by the Image Analyst after looking at the results. GOOD = 'Good' # QC status set by the Image Analyst after looking at the results. PASSED_QA = 'Passed' # QC status set by the Image Analyst after looking at the results. FAILED = 'Failed' # QC status set by the Image Analyst after looking at the results. BAD = 'Bad' # QC status set by the Image Analyst after looking at the results. POOR = 'Poor' # will cause spider to delete results and rerun the processing RERUN = 'Rerun' # will cause spider to zip the current results and put in OLD, # and then processing REPROC = 'Reproc' # Do not run this assessor anymore DONOTRUN = 'Do Not Run' FAILED_NEEDS_REPROC = 'Failed-needs reprocessing' # FS PASSED_EDITED_QA = 'Passed with edits' # FS OPEN_QA_LIST = [RERUN, REPROC] BAD_QA_STATUS = [FAILED, BAD, POOR, DONOTRUN] # Other Constants DEFAULT_EMAIL_OPTS = DAX_SETTINGS.get_email_opts() JOB_EXTENSION_FILE = DAX_SETTINGS.get_job_extension_file() READY_TO_UPLOAD_FLAG_FILENAME = 'READY_TO_UPLOAD.txt' OLD_RESOURCE = 'OLD' EDITS_RESOURCE = 'EDITS' REPROC_RES_SKIP_LIST = [OLD_RESOURCE, EDITS_RESOURCE] INPUTS_DIRNAME = 'INPUTS' BATCH_DIRNAME = 'BATCH' OUTLOG_DIRNAME = 'OUTLOG' PBS_DIRNAME = 'PBS' # Status and QC status supported by DAX SUPPORTED_STATUS = [NO_DATA, NEED_TO_RUN, NEED_INPUTS, JOB_RUNNING, JOB_FAILED, READY_TO_UPLOAD, UPLOADING, READY_TO_COMPLETE, COMPLETE, JOB_BUILT] SUPPORTED_QC_STATUS = [JOB_PENDING, NEEDS_QA, GOOD, PASSED_QA, FAILED, BAD, POOR, RERUN, REPROC, DONOTRUN, FAILED_NEEDS_REPROC, PASSED_EDITED_QA] def mkdirp(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST: pass else: raise def create_flag(flag_path): open(flag_path, 'w').close() class Task(object): """ Class Task to generate/manage the assessor with the cluster """ def __init__(self, processor, assessor, upload_dir): """ Init of class Task :param processor: processor used :param assessor: pyxnat assessor object :param upload_dir: upload directory to copy data after job finished. :return: None """ self.processor = processor self.assessor = assessor self.upload_dir = upload_dir self.atype = processor.xsitype.lower() # Cache for convenience self.assessor_label = assessor_utils.full_label_from_assessor(assessor) def get_processor_name(self): """ Get the name of the Processor for the Task. :return: String of the Processor name. """ return self.processor.name def get_processor_version(self): """ Get the version of the Processor. :return: String of the Processor version. """ return self.processor.version def is_open(self): """ Check to see if a task is still in "Open" status as defined in OPEN_STATUS_LIST. :return: True if the Task is open. False if it is not open """ astatus = self.get_status() return astatus in OPEN_STATUS_LIST def get_job_usage(self): """ Get the amount of memory used, the amount of walltime used, the jobid of the process, the node the process ran on, and when it started from the scheduler. :return: List of strings. Memory used, walltime used, jobid, node used, and start date """ atype = self.atype mgets = self.assessor.attrs.mget([ '%s/memused' % atype, '%s/walltimeused' % atype, '%s/jobid' % atype, '%s/jobnode' % atype, '%s/jobstartdate' % atype ]) return [mgets[0].strip(), mgets[1].strip(), mgets[2].strip(), mgets[3].strip(), mgets[4].strip()] def check_job_usage(self): """ The task has now finished, get the amount of memory used, the amount of walltime used, the jobid of the process, the node the process ran on, and when it started from the scheduler. Set these values on XNAT :return: None """ [memused, walltime, jobid, jobnode, jobstrdate] = self.get_job_usage() if walltime: if memused and jobnode: LOGGER.debug('memused and walltime already set, skipping') else: if memused == '': self.set_memused('NotFound') if jobnode == '': self.set_jobnode('NotFound') return # We can't get info from cluster if job too old if not cluster.is_traceable_date(jobstrdate): self.set_walltime('NotFound') self.set_memused('NotFound') self.set_jobnode('NotFound') return # Get usage with tracejob jobinfo = cluster.tracejob_info(jobid, jobstrdate) if jobinfo['mem_used'].strip(): self.set_memused(jobinfo['mem_used']) else: self.set_memused('NotFound') if jobinfo['walltime_used'].strip(): self.set_walltime(jobinfo['walltime_used']) else: self.set_walltime('NotFound') if jobinfo['jobnode'].strip(): self.set_jobnode(jobinfo['jobnode']) else: self.set_jobnode('NotFound') def get_memused(self): """ Get the amount of memory used for a process :return: String of how much memory was used """ memused = self.assessor.attrs.get('%s/memused' % self.atype) return memused.strip() def set_memused(self, memused): """ Set the amount of memory used for a process :param memused: String denoting the amount of memory used :return: None """ self.assessor.attrs.set('%s/memused' % self.atype, memused) def get_walltime(self): """ Get the amount of walltime used for a process :return: String of how much walltime was used for a process """ walltime = self.assessor.attrs.get('%s/walltimeused' % self.atype) return walltime.strip() def set_walltime(self, walltime): """ Set the value of walltime used for an assessor on XNAT :param walltime: String denoting how much time was used running the process. :return: None """ self.assessor.attrs.set('%s/walltimeused' % self.atype, walltime) def get_jobnode(self): """ Gets the node that a process ran on :return: String identifying the node that a job ran on """ jobnode = self.assessor.attrs.get('%s/jobnode' % self.atype) if jobnode is None: jobnode = 'NotFound' return jobnode.strip() def set_jobnode(self, jobnode): """ Set the value of the the node that the process ran on on the grid :param jobnode: String identifying the node the job ran on :return: None """ self.assessor.attrs.set('%s/jobnode' % self.atype, jobnode) def undo_processing(self): """ Unset the job ID, memory used, walltime, and jobnode information for the assessor on XNAT :except: pyxnat.core.errors.DatabaseError when attempting to delete a resource :return: None """ from pyxnat.core.errors import DatabaseError self.set_qcstatus(JOB_PENDING) self.set_jobid(' ') self.set_memused(' ') self.set_walltime(' ') self.set_jobnode(' ') out_resource_list = self.assessor.out_resources() for out_resource in out_resource_list: if out_resource.label() not in REPROC_RES_SKIP_LIST: LOGGER.info(' Removing %s' % out_resource.label()) try: out_resource.delete() except DatabaseError: LOGGER.error(' ERROR:deleting resource.') def reproc_processing(self): """ If the procstatus of an assessor is REPROC on XNAT, rerun the assessor. :return: None """ curtime = time.strftime("%Y%m%d-%H%M%S") local_dir = '%s_%s' % (self.assessor_label, curtime) local_zip = '%s.zip' % local_dir xml_filename = os.path.join(self.upload_dir, local_dir, '%s.xml' % self.assessor_label) # Make the temp dir mkdirp(os.path.join(self.upload_dir, local_dir)) # Download the current resources out_resource_list = self.assessor.out_resources() for out_resource in out_resource_list: olabel = out_resource.label() if olabel not in REPROC_RES_SKIP_LIST and \ len(out_resource.files().get()) > 0: LOGGER.info(' Downloading: %s' % olabel) out_res = self.assessor.out_resource(olabel) out_res.get(os.path.join(self.upload_dir, local_dir), extract=True) # Download xml of assessor xml = self.assessor.get() with open(xml_filename, 'w') as f_xml: f_xml.write('%s\n' % xml) # Zip it all up cmd = 'cd %s && zip -qr %s %s/' % (self.upload_dir, local_zip, local_dir) LOGGER.debug('running cmd: %s' % cmd) os.system(cmd) # Upload it to Archive self.assessor.out_resource(OLD_RESOURCE)\ .file(local_zip)\ .put(os.path.join(self.upload_dir, local_zip)) # Run undo self.undo_processing() # Delete the local copies os.remove(os.path.join(self.upload_dir, local_zip)) shutil.rmtree(os.path.join(self.upload_dir, local_dir)) def update_status(self): """ Update the satus of a Task object. :return: the "new" status (updated) of the Task. """ old_status, qcstatus, jobid = self.get_statuses() new_status = old_status if old_status == COMPLETE or old_status == JOB_FAILED: if qcstatus == REPROC: LOGGER.info(' * qcstatus=REPROC, running \ reproc_processing...') self.reproc_processing() new_status = NEED_TO_RUN elif qcstatus == RERUN: LOGGER.info(' * qcstatus=RERUN, running \ undo_processing...') self.undo_processing() new_status = NEED_TO_RUN else: # self.check_date() pass elif old_status == NEED_TO_RUN: # TODO: anything, not yet??? pass elif old_status == READY_TO_COMPLETE: self.check_job_usage() new_status = COMPLETE elif old_status == NEED_INPUTS: # This is now handled by dax_build pass elif old_status == JOB_RUNNING: LOGGER.debug('calling check_running') new_status = self.check_running(jobid) elif old_status == READY_TO_UPLOAD: # TODO: let upload spider handle it??? # self.check_date() pass elif old_status == UPLOADING: # TODO: can we see if it's really uploading??? pass elif old_status == NO_DATA: pass else: LOGGER.warn(' * unknown status for %s: %s' % (self.assessor_label, old_status)) LOGGER.debug('new_status='+new_status) if new_status != old_status: LOGGER.info(' * changing status from %s to %s' % (old_status, new_status)) # Update QC Status if new_status == COMPLETE: self.set_proc_and_qc_status(new_status, NEEDS_QA) else: self.set_status(new_status) return new_status def get_jobid(self): """ Get the jobid of an assessor as stored on XNAT :return: string of the jobid """ jobid = self.assessor.attrs.get('%s/jobid' % self.atype) if jobid is None: jobid = 'NotFound' return jobid.strip() def get_job_status(self, jobid=None): """ Get the status of a job given its jobid as assigned by the scheduler :param jobid: job id assigned by the scheduler :return: string from call to cluster.job_status or UNKNOWN. """ jobstatus = 'UNKNOWN' if jobid is None: jobid = self.get_jobid() if jobid != '' and jobid != '0': jobstatus = cluster.job_status(jobid) LOGGER.debug('jobid,jobstatus='+str(jobid)+','+str(jobstatus)) return jobstatus def launch(self, jobdir, job_email=None, job_email_options=DAX_SETTINGS.get_email_opts(), job_rungroup=None,xnat_host=None, writeonly=False, pbsdir=None, force_no_qsub=False): """ Method to launch a job on the grid :param jobdir: absolute path where the data will be stored on the node :param job_email: who to email if the job fails :param job_email_options: grid-specific job email options (e.g., fails, starts, exits etc) :param job_rungroup: grid-specific group to run the job under :param xnat_host: set the XNAT_HOST in the PBS job :param writeonly: write the job files without submitting them :param pbsdir: folder to store the pbs file :param force_no_qsub: run the job locally on the computer (serial mode) :raises: cluster.ClusterLaunchException if the jobid is 0 or empty as returned by pbs.submit() method :return: True if the job failed """ cmds = self.commands(jobdir) pbsfile = self.pbs_path(writeonly, pbsdir) outlog = self.outlog_path() outlog_dir = os.path.dirname(outlog) mkdirp(outlog_dir) pbs = PBS(pbsfile, outlog, cmds, self.processor.walltime_str, self.processor.memreq_mb, self.processor.ppn, self.processor.env, job_email, job_email_options, job_rungroup, xnat_host, self.processor.job_template) pbs.write() if writeonly: mes_format = """ filepath: {path}""" LOGGER.info(mes_format.format(path=pbsfile)) return True else: jobid, job_failed = pbs.submit(outlog=outlog, force_no_qsub=force_no_qsub) if jobid == '' or jobid == '0': # TODO: check to be sure it didn't really launch, then # try one more time LOGGER.error('failed to launch job on cluster') raise ClusterLaunchException else: self.set_launch(jobid) if force_no_qsub or \ not cluster.command_found(DAX_SETTINGS.get_cmd_submit()): if job_failed: LOGGER.info(' * changing status to %s' % JOB_FAILED) self.set_status(JOB_FAILED) else: LOGGER.info(' * changing status to %s' % READY_TO_UPLOAD) # Status already set in the spider return True def check_date(self): """ Sets the job created date if the assessor was not made through dax_build :return: Returns if get_createdate() is != '', sets date otherwise """ if self.get_createdate() != '': return jobstartdate = self.get_jobstartdate() if jobstartdate != '': self.set_createdate(jobstartdate) def get_jobstartdate(self): """ Get the date that the job started :return: String of the date that the job started in "%Y-%m-%d" format """ return self.assessor.attrs.get('%s/jobstartdate' % self.atype) def set_jobstartdate_today(self): """ Set the date that the job started on the grid to today :return: call to set_jobstartdate with today's date """ today_str = str(date.today()) return self.set_jobstartdate(today_str) def set_jobstartdate(self, date_str): """ Set the date that the job started on the grid based on user passed value :param date_str: Datestring in the format "%Y-%m-%d" to set the job starte date to :return: None """ self.assessor.attrs.set('%s/jobstartdate' % self.atype, date_str) def get_createdate(self): """ Get the date an assessor was created :return: String of the date the assessor was created in "%Y-%m-%d" format """ return self.assessor.attrs.get('%s/date' % self.atype) def set_createdate(self, date_str): """ Set the date of the assessor creation to user passed value :param date_str: String of the date in "%Y-%m-%d" format :return: String of today's date in "%Y-%m-%d" format """ self.assessor.attrs.set('%s/date' % self.atype, date_str) return date_str def set_createdate_today(self): """ Set the date of the assessor creation to today :return: String of todays date in "%Y-%m-%d" format """ today_str = str(date.today()) self.set_createdate(today_str) return today_str def get_status(self): """ Get the procstatus of an assessor :return: The string of the procstatus of the assessor. DOES_NOT_EXIST if the assessor does not exist """ if not self.assessor.exists(): xnat_status = DOES_NOT_EXIST elif self.atype.lower() in [DEFAULT_DATATYPE.lower(), DEFAULT_FS_DATATYPE.lower()]: xnat_status = self.assessor.attrs.get('%s/procstatus' % self.atype.lower()) else: xnat_status = 'UNKNOWN_xsiType: %s' % self.atype return xnat_status def get_statuses(self, cached_sessions=None): """ Get the procstatus, qcstatus, and job id of an assessor :return: Serially ordered strings of the assessor procstatus, qcstatus, then jobid. """ if cached_sessions: for csess in cached_sessions: for cassr in csess.assessors(): if cassr.label() == self.assessor_label: pstatus = cassr.info()['procstatus'] qstatus = cassr.info()['qcstatus'] jobid = cassr.info()['jobid'] return pstatus, qstatus, jobid if not self.assessor.exists(): xnat_status = DOES_NOT_EXIST qcstatus = DOES_NOT_EXIST jobid = '' elif self.atype.lower() in [DEFAULT_DATATYPE.lower(), DEFAULT_FS_DATATYPE.lower()]: xnat_status, qcstatus, jobid = self.assessor.attrs.mget([ '%s/procstatus' % self.atype, '%s/validation/status' % self.atype, '%s/jobid' % self.atype ]) else: xnat_status = 'UNKNOWN_xsiType: %s' % self.atype qcstatus = 'UNKNOWN_xsiType: %s' % self.atype jobid = '' return xnat_status, qcstatus, jobid def set_status(self, status): """ Set the procstatus of an assessor on XNAT :param status: String to set the procstatus of the assessor to :return: None """ self.assessor.attrs.set('%s/procstatus' % self.atype, status) def get_qcstatus(self): """ Get the qcstatus of the assessor :return: A string of the qcstatus for the assessor if it exists. If it does not, it returns DOES_NOT_EXIST. The else case returns an UNKNOWN xsiType with the xsiType of the assessor as stored on XNAT. """ qcstatus = '' if not self.assessor.exists(): qcstatus = DOES_NOT_EXIST elif self.atype.lower() in [DEFAULT_DATATYPE.lower(), DEFAULT_FS_DATATYPE.lower()]: qcstatus = self.assessor.attrs.get('%s/validation/status' % self.atype) else: qcstatus = 'UNKNOWN_xsiType: %s' % self.atype return qcstatus def set_qcstatus(self, qcstatus): """ Set the qcstatus of the assessor :param qcstatus: String to set the qcstatus to :return: None """ self.assessor.attrs.mset({ '%s/validation/status' % self.atype: qcstatus, '%s/validation/validated_by' % self.atype: 'NULL', '%s/validation/date' % self.atype: 'NULL', '%s/validation/notes' % self.atype: 'NULL', '%s/validation/method' % self.atype: 'NULL', }) def set_proc_and_qc_status(self, procstatus, qcstatus): """ Set the procstatus and qcstatus of the assessor :param procstatus: String to set the procstatus of the assessor to :param qcstatus: String to set the qcstatus of the assessor to :return: None """ self.assessor.attrs.mset({ '%s/procstatus' % self.atype: procstatus, '%s/validation/status' % self.atype: qcstatus, }) def set_jobid(self, jobid): """ Set the job ID of the assessor on XNAT :param jobid: The ID of the process assigned by the grid scheduler :return: None """ self.assessor.attrs.set('%s/jobid' % self.atype, jobid) def set_launch(self, jobid): """ Set the date that the job started and its associated ID on XNAT. Additionally, set the procstatus to JOB_RUNNING :param jobid: The ID of the process assigned by the grid scheduler :return: None """ today_str = str(date.today()) self.assessor.attrs.mset({ '%s/jobstartdate' % self.atype.lower(): today_str, '%s/jobid' % self.atype.lower(): jobid, '%s/procstatus' % self.atype.lower(): JOB_RUNNING, }) def commands(self, jobdir): """ Call the get_cmds method of the class Processor. :param jobdir: Fully qualified path where the job will run on the node. Note that this is likely to start with /tmp on most grids. :return: A string that makes a command line call to a spider with all args. """ assr_dir = os.path.join(jobdir, self.assessor_label) return self.processor.get_cmds(self.assessor, assr_dir) def pbs_path(self, writeonly=False, pbsdir=None): """ Method to return the path of the PBS file for the job :param writeonly: write the job files without submitting them in TRASH :param pbsdir: folder to store the pbs file :return: A string that is the absolute path to the PBS file that will be submitted to the scheduler for execution. """ res_dir = self.upload_dir j_ext = DAX_SETTINGS.get_job_extension_file() assessor_label = assessor_utils.full_label_from_assessor( self.assessor) filename = '%s%s' % (assessor_label, j_ext) if writeonly: if pbsdir and os.path.isdir(pbsdir): return os.path.join(pbsdir, filename) else: return os.path.join(os.path.join(res_dir, 'TRASH'), filename) else: if pbsdir: return os.path.join(pbsdir, filename) else: return os.path.join(os.path.join(res_dir, 'PBS'), filename) def outlog_path(self): """ Method to return the path of outlog file for the job :return: A string that is the absolute path to the OUTLOG file. """ assr_fout = '%s.output' % self.assessor_label return os.path.join(self.upload_dir, OUTLOG_DIRNAME, assr_fout) def ready_flag_exists(self): """ Method to see if the flag file <UPLOAD_DIR>/<ASSESSOR_LABEL>/READY_TO_UPLOAD.txt exists :return: True if the file exists. False if the file does not exist. """ flagfile = os.path.join(self.upload_dir, self.assessor_label, READY_TO_UPLOAD_FLAG_FILENAME) return os.path.isfile(flagfile) def check_running(self, jobid=None): """ Check to see if a job specified by the scheduler ID is still running :param jobid: The ID of the job in question assigned by the scheduler. :return: A String of JOB_RUNNING if the job is running or enqueued and JOB_FAILED if the ready flag (see read_flag_exists) does not exist in the assessor label folder in the upload directory. """ # Check status on cluster jobstatus = self.get_job_status(jobid) LOGGER.debug('jobstatus='+str(jobstatus)) if not jobstatus or jobstatus in ['R', 'Q']: # Still running return JOB_RUNNING elif not self.ready_flag_exists(): # Check for a flag file created upon completion, # if it's not there then the job failed return JOB_FAILED else: # Let Upload Spider handle the upload return JOB_RUNNING class ClusterTask(Task): """ Class Task to generate/manage the assessor with the cluster """ def __init__(self, assr_label, upload_dir, diskq): """ Init of class ClusterTask :return: None """ self.assessor_label = assr_label self.processor = None self.assessor = None self.atype = None self.assessor_id = None self.diskq = diskq self.upload_dir = upload_dir def get_processor_name(self): """ Get the name of the Processor for the Task. :return: String of the Processor name. """ raise NotImplementedError() def get_processor_version(self): """ Get the version of the Processor. :return: String of the Processor version. """ raise NotImplementedError() def is_open(self): """ Check to see if a task is still in "Open" status as defined in OPEN_STATUS_LIST. :return: True if the Task is open. False if it is not open """ astatus = self.get_status() return astatus in OPEN_STATUS_LIST def get_job_usage(self): """ Get the amount of memory used, the amount of walltime used, the jobid of the process, the node the process ran on, and when it started from the scheduler. :return: List of strings. Memory used, walltime used, jobid, node used, and start date """ memused = self.get_attr('memused') walltime = self.get_attr('walltimeused') jobid = self.get_attr('jobid') jobnode = self.get_attr('jobnode') jobstartdate = self.get_attr('jobstartdate') return [memused, walltime, jobid, jobnode, jobstartdate] def check_job_usage(self): """ The task has now finished, get the amount of memory used, the amount of walltime used, the jobid of the process, the node the process ran on, and when it started from the scheduler. Set these values locally :return: None """ [memused, walltime, jobid, jobnode, jobstrdate] = self.get_job_usage() if walltime: if memused and jobnode: LOGGER.debug('memused and walltime already set, skipping') else: if memused == '': self.set_memused('NotFound') if jobnode == '': self.set_jobnode('NotFound') return # We can't get info from cluster if job too old if not cluster.is_traceable_date(jobstrdate): self.set_walltime('NotFound') self.set_memused('NotFound') self.set_jobnode('NotFound') return # Get usage with tracejob jobinfo = cluster.tracejob_info(jobid, jobstrdate) if jobinfo['mem_used'].strip(): self.set_memused(jobinfo['mem_used']) else: self.set_memused('NotFound') if jobinfo['walltime_used'].strip(): self.set_walltime(jobinfo['walltime_used']) else: self.set_walltime('NotFound') if jobinfo['jobnode'].strip(): self.set_jobnode(jobinfo['jobnode']) else: self.set_jobnode('NotFound') def get_memused(self): """ Get the amount of memory used for a process :return: String of how much memory was used """ memused = self.get_attr('memused') if memused is None: memused = 'NotFound' return memused def set_memused(self, memused): """ Set the amount of memory used for a process :param memused: String denoting the amount of memory used :return: None """ self.set_attr('memused', memused) def get_walltime(self): """ Get the amount of walltime used for a process :return: String of how much walltime was used for a process """ walltime = self.get_attr('walltimeused') if walltime is None: walltime = 'NotFound' return walltime def set_walltime(self, walltime): """ Set the value of walltime used for an assessor :param walltime: String denoting how much time was used running the process. :return: None """ self.set_attr('walltimeused', walltime) def get_jobnode(self): """ Gets the node that a process ran on :return: String identifying the node that a job ran on """ jobnode = self.get_attr('jobnode') return jobnode def set_jobnode(self, jobnode): """ Set the value of the the node that the process ran on on the grid :param jobnode: String identifying the node the job ran on :return: None """ self.set_attr('jobnode', jobnode) def undo_processing(self): raise NotImplementedError() def reproc_processing(self): """ :raises: NotImplementedError :return: None """ raise NotImplementedError() def update_status(self): """ Update the status of a Cluster Task object. :return: the "new" status (updated) of the Task. """ old_status = self.get_status() new_status = old_status LOGGER.debug('old_status='+old_status) if old_status == JOB_RUNNING: new_status = self.check_running() if new_status == READY_TO_UPLOAD: new_status = self.complete_task() elif new_status == JOB_FAILED: new_status = self.fail_task() else: # still running pass elif old_status in [COMPLETE, JOB_FAILED, NEED_TO_RUN, NEED_INPUTS, READY_TO_UPLOAD, UPLOADING, NO_DATA]: pass else: LOGGER.warn(' * unknown status for %s: %s' % (self.assessor_label, old_status)) if new_status != old_status: LOGGER.info(' * changing status from %s to %s' % (old_status, new_status)) self.set_status(new_status) return new_status def get_jobid(self): """ Get the jobid of an assessor as stored in local cache :return: string of the jobid """ jobid = self.get_attr('jobid') return jobid def get_job_status(self): """ Get the status of a job given its jobid as assigned by the scheduler :param jobid: job id assigned by the scheduler :return: string from call to cluster.job_status or UNKNOWN. """ jobstatus = 'UNKNOWN' jobid = self.get_jobid() if jobid and jobid != '0': jobstatus = cluster.job_status(jobid) LOGGER.debug('jobid,jobstatus='+str(jobid)+','+str(jobstatus)) return jobstatus def launch(self, force_no_qsub=False): """ Method to launch a job on the grid :raises: cluster.ClusterLaunchException if the jobid is 0 or empty as returned by pbs.submit() method :return: True if the job failed """ batch_path = self.batch_path() outlog = self.outlog_path() jobid, job_failed = cluster.submit_job(batch_path, outlog=outlog, force_no_qsub=force_no_qsub) if jobid == '' or jobid == '0': LOGGER.error('failed to launch job on cluster') raise ClusterLaunchException else: self.set_launch(jobid) cmd = DAX_SETTINGS.get_cmd_submit() if (force_no_qsub or not cluster.command_found(cmd)) and \ job_failed: self.set_status(JOB_FAILED) return True def check_date(self): """ Sets the job created date if the assessor was not made via dax_build """ raise NotImplementedError() def get_jobstartdate(self): """ Get the date that the job started :return: String of the date that the job started in "%Y-%m-%d" format """ jobstartdate = self.get_attr('jobstartdate') if jobstartdate is None: jobstartdate = 'NULL' return jobstartdate def set_jobstartdate(self, date_str): """ Set the date that the job started on the grid based on user passed value :param date_str: Datestring in the format "%Y-%m-%d" to set the job starte date to :return: None """ self.set_attr('jobstartdate', date_str) def get_createdate(self): """ Get the date an assessor was created :return: String of the date the assessor was created in "%Y-%m-%d" format """ raise NotImplementedError() def set_createdate(self, date_str): """ Set the date of the assessor creation to user passed value :param date_str: String of the date in "%Y-%m-%d" format :return: String of today's date in "%Y-%m-%d" format """ raise NotImplementedError() def set_createdate_today(self): """ Set the date of the assessor creation to today :return: String of todays date in "%Y-%m-%d" format """ raise NotImplementedError() def get_status(self): """ Get the procstatus :return: The string of the procstatus """ procstatus = self.get_attr('procstatus') if not procstatus: procstatus = NEED_TO_RUN return procstatus def get_statuses(self): """ Get the procstatus, qcstatus, and job id of an assessor """ raise NotImplementedError() def set_status(self, status): """ Set the procstatus of an assessor on XNAT :param status: String to set the procstatus of the assessor to :return: None """ self.set_attr('procstatus', status) def get_qcstatus(self): """ Get the qcstatus """ raise NotImplementedError() def set_qcstatus(self, qcstatus): """ Set the qcstatus of the assessor :param qcstatus: String to set the qcstatus to :return: None """ raise NotImplementedError() def set_proc_and_qc_status(self, procstatus, qcstatus): """ Set the procstatus and qcstatus of the assessor """ raise NotImplementedError() def set_jobid(self, jobid): """ Set the job ID of the assessor :param jobid: The ID of the process assigned by the grid scheduler :return: None """ self.set_attr('jobid', jobid) def set_launch(self, jobid): """ Set the date that the job started and its associated ID. Additionally, set the procstatus to JOB_RUNNING :param jobid: The ID of the process assigned by the grid scheduler :return: None """ today_str = str(date.today()) self.set_attr('jobstartdate', today_str) self.set_attr('jobid', jobid) self.set_attr('procstatus', JOB_RUNNING) def commands(self, jobdir): """ Call the get_cmds method of the class Processor. :param jobdir: Fully qualified path where the job will run on the node. Note that this is likely to start with /tmp on most grids. :return: A string that makes a command line call to a spider with all args. """ raise NotImplementedError() def batch_path(self): """ Method to return the path of the PBS file for the job :return: A string that is the absolute path to the PBS file that will be submitted to the scheduler for execution. """ label = self.assessor_label return os.path.join(self.diskq, BATCH_DIRNAME, '%s%s' % (label, JOB_EXTENSION_FILE)) def outlog_path(self): """ Method to return the path of outlog file for the job :return: A string that is the absolute path to the OUTLOG file. """ f_out = '%s.txt' % self.assessor_label return os.path.join(self.diskq, OUTLOG_DIRNAME, f_out) def processor_spec_path(self): """ Method to return the path of processor file for the job :return: A string that is the absolute path to the file. """ return os.path.join(self.diskq, 'processor', self.assessor_label) def upload_pbs_dir(self): """ Method to return the path of dir for the PBS :return: A string that is the directory path for the PBS dir """ label = self.assessor_label return os.path.join(self.upload_dir, label, PBS_DIRNAME) def upload_outlog_dir(self): """ Method to return the path of outlog file for the job :return: A string that is the absolute path to the OUTLOG file. """ label = self.assessor_label return os.path.join(self.upload_dir, label, OUTLOG_DIRNAME) def check_running(self): """ Check to see if a job specified by the scheduler ID is still running :param jobid: The ID of the job in question assigned by the scheduler. :return: A String of JOB_RUNNING if the job is running or enqueued and JOB_FAILED if the ready flag (see read_flag_exists) does not exist in the assessor label folder in the upload directory. """ if self.ready_flag_exists(): return READY_TO_UPLOAD # Check status on cluster jobstatus = self.get_job_status() LOGGER.debug('jobstatus='+str(jobstatus)) if not jobstatus or jobstatus == 'R' or jobstatus == 'Q': # Still running return JOB_RUNNING else: return JOB_FAILED def build_task(self): """ Method to build a job """ raise NotImplementedError() def build_commands(self): """ Call the get_cmds method of the class Processor. :param jobdir: Fully qualified path where the job will run on the node. Note that this is likely to start with /tmp on most grids. :return: A string that makes a command line call to a spider with all args. """ raise NotImplementedError() def get_attr(self, name): apath = self.attr_path(name) if not os.path.exists(apath): return None with open(apath, 'r') as f: return f.read().strip() def set_attr(self, name, value): attr_path = self.attr_path(name) attr_dir = os.path.dirname(attr_path) mkdirp(attr_dir) with open(self.attr_path(name), 'w') as f: f.write(str(value) + '\n') def attr_path(self, attr): return os.path.join(self.diskq, attr, self.assessor_label) def complete_task(self): self.check_job_usage() # Copy batch file, note we don't move so dax_upload knows the # task origin src = self.batch_path() dst = self.upload_pbs_dir() mkdirp(dst) LOGGER.debug('copying batch file from %s to %s' % (src, dst)) shutil.copy(src, dst) # Move output file src = self.outlog_path() dst = self.upload_outlog_dir() if os.path.exists(src): mkdirp(dst) LOGGER.debug('moving outlog file from %s to %s' % (src, dst)) shutil.move(src, dst) # Touch file for dax_upload to check res_dir = self.upload_dir create_flag(os.path.join(res_dir, self.assessor_label, '%s.txt' % READY_TO_COMPLETE)) return COMPLETE def fail_task(self): self.check_job_usage() # Copy batch file, note we don't move so dax_upload knows the # task origin src = self.batch_path() dst = self.upload_pbs_dir() mkdirp(dst) LOGGER.debug('copying batch file from %s to %s' % (src, dst)) shutil.copy(src, dst) # Move output file src = self.outlog_path() dst = self.upload_outlog_dir() mkdirp(dst) LOGGER.debug('moving outlog file from %s to %s' % (src, dst)) shutil.move(src, dst) # Touch file for dax_upload that job failed res_dir = self.upload_dir create_flag(os.path.join(res_dir, self.assessor_label, '%s.txt' % JOB_FAILED)) # Touch file for dax_upload to check create_flag(os.path.join(res_dir, self.assessor_label, '%s.txt' % READY_TO_COMPLETE)) return JOB_FAILED def delete_attr(self, attr): try: os.remove(self.attr_path(attr)) except OSError: pass def delete_batch(self): # Delete batch file try: os.remove(self.batch_path()) except OSError: pass def delete(self): # Delete attributes attr_list = ['jobid', 'jobnode', 'procstatus', 'walltimeused', 'memused', 'jobstartdate', 'processor'] for attr in attr_list: self.delete_attr(attr) self.delete_batch() class XnatTask(Task): """ Class Task to generate/manage the assessor with the cluster """ def __init__(self, processor, assessor, upload_dir, diskq): """ Init of class Task :param processor: processor used :param assessor: assessor dict ? :param upload_dir: upload directory to copy data when job finished. :return: None """ super(XnatTask, self).__init__(processor, assessor, upload_dir) self.diskq = diskq def check_job_usage(self): """ The task has now finished, get the amount of memory used, the amount of walltime used, the jobid of the process, the node the process ran on, and when it started from the scheduler. Set these values on XNAT :return: None """ raise NotImplementedError() def update_status(self): """ Update the satus of an XNAT Task object. :return: the "new" status (updated) of the Task. """ old_status, qcstatus, jobid = self.get_statuses() new_status = old_status if old_status == COMPLETE or old_status == JOB_FAILED: if qcstatus == REPROC: LOGGER.info(' * qcstatus=REPROC, running \ reproc_processing...') self.reproc_processing() new_status = NEED_TO_RUN elif qcstatus == RERUN: LOGGER.info(' * qcstatus=RERUN, running \ undo_processing...') self.undo_processing() new_status = NEED_TO_RUN else: pass elif old_status in [NEED_TO_RUN, READY_TO_COMPLETE, NEED_INPUTS, JOB_RUNNING, READY_TO_UPLOAD, UPLOADING, NO_DATA, JOB_BUILT]: pass else: LOGGER.warn(' * unknown status for %s: %s' % (self.assessor_label, old_status)) if new_status != old_status: LOGGER.info(' * changing status from %s to %s' % (old_status, new_status)) self.set_status(new_status) return new_status def get_job_status(self): raise NotImplementedError() def launch(self): """ Method to launch a job on the grid """ raise NotImplementedError() def set_launch(self, jobid): """ Set the date that the job started and its associated ID on XNAT. Additionally, set the procstatus to JOB_RUNNING :param jobid: The ID of the process assigned by the grid scheduler :return: None """ raise NotImplementedError() def batch_path(self): """ Method to return the path of the PBS file for the job :return: A string that is the absolute path to the PBS file that will be submitted to the scheduler for execution. """ f_pbs = '%s%s' % (self.assessor_label, JOB_EXTENSION_FILE) return os.path.join(self.diskq, BATCH_DIRNAME, f_pbs) def outlog_path(self): """ Method to return the path of outlog file for the job :return: A string that is the absolute path to the OUTLOG file. """ f_txt = '%s.txt' % self.assessor_label return os.path.join(self.diskq, OUTLOG_DIRNAME, f_txt) def processor_spec_path(self): """ Method to return the path of processor file for the job :return: A string that is the absolute path to the file. """ return os.path.join(self.diskq, 'processor', self.assessor_label) def check_running(self): """ Check to see if a job specified by the scheduler ID is still running :param jobid: The ID of the job in question assigned by the scheduler. :return: A String of JOB_RUNNING if the job is running or enqueued and JOB_FAILED if the ready flag (see read_flag_exists) does not exist in the assessor label folder in the upload directory. """ raise NotImplementedError() def write_processor_spec(self): filename = self.processor_spec_path() mkdirp(os.path.dirname(filename)) self.processor.write_processor_spec(filename) def build_task(self, assr, sessions, jobdir, job_email=None, job_email_options=DEFAULT_EMAIL_OPTS, job_rungroup=None, xnat_host=None): """ Method to build a job """ (old_proc_status, old_qc_status, _) = self.get_statuses(sessions) try: resdir = self.upload_dir cmds = self.build_commands(assr, sessions, jobdir, resdir) batch_file = self.batch_path() outlog = self.outlog_path() batch = PBS(batch_file, outlog, cmds, self.processor.walltime_str, self.processor.memreq_mb, self.processor.ppn, self.processor.env, job_email, job_email_options, job_rungroup, xnat_host, self.processor.job_template) LOGGER.info('writing:' + batch_file) batch.write() # Set new statuses to be updated new_proc_status = JOB_RUNNING new_qc_status = JOB_PENDING # Write processor spec file for version 3 try: if (self.processor.procyamlversion == '3.0.0-dev.0'): # write processor spec file LOGGER.debug('writing processor spec file') self.write_processor_spec() except AttributeError as err: # older processor does not have version LOGGER.debug('procyamlversion not found'.format(err)) except NeedInputsException as e: new_proc_status = NEED_INPUTS new_qc_status = e.value except NoDataException as e: new_proc_status = NO_DATA new_qc_status = e.value if new_proc_status != old_proc_status or \ new_qc_status != old_qc_status: self.set_proc_and_qc_status(new_proc_status, new_qc_status) return (new_proc_status, new_qc_status) def build_commands(self, assr, sessions, jobdir, resdir): """ Call the build_cmds method of the class Processor. :param jobdir: Fully qualified path where the job will run on the node. Note that this is likely to start with /tmp on most grids. :return: A string that makes a command line call to a spider with all args. """ return self.processor.build_cmds( assr, self.assessor_label, sessions, jobdir, resdir)
py
1a54bcc805cfb85ab55550de668e096041c316a0
import _init_paths import utils.zl_utils as zl import h5py import zl_config as C import numpy as np def merge_pickled_files(): import os h5f = h5py.File(C.coco_eb_h5_path,'w') cnt = 0 zl.tick() for path, subdirs, files in os.walk(C.coco_eb_dir): for name in files: cnt += 1 if cnt %1000==0: print cnt,zl.tock() zl.tick() fpath = os.path.join(path, name) fid = name.replace('.eb','') bbs = np.array(zl.load(fpath)).astype(np.float16) h5f[fid]=bbs merge_pickled_files()